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CHAPTER 1: Introduction, Measurement, Estimating

Responses to Questions

10.

(a) A particular person’s foot. Merits: reproducible. Drawbacks: not accessible to the general
public; not invariable (could change size with age, time of day, etc.); not indestructible.

() Any person’s foot. Merits: accessible. Drawbacks: not reproducible (different people have
different size feet); not invariable (could change size with age, time of day, etc.); not
indestructible.

Neither of these options would make a good standard.

The number of digits you present in your answer should represent the precision with which you
know a measurement; it says very little about the accuracy of the measurement. For example, if you
measure the length of a table to great precision, but with a measuring instrument that is not
calibrated correctly, you will not measure accurately.

The writers of the sign converted 3000 ft to meters without taking significant figures into account.
To be consistent, the elevation should be reported as 900 m.

The distance in miles is given to one significant figure and the distance in kilometers is given to five
significant figures! The figure in kilometers indicates more precision than really exists or than is
meaningful. The last digit represents a distance on the same order of magnitude as the car’s length!

If you are asked to measure a flower bed, and you report that it is “four,” you haven’t given enough
information for your answer to be useful. There is a large difference between a flower bed that is 4 m
long and one that is 4 ft long. Units are necessary to give meaning to the numerical answer.

Imagine the jar cut into slices each about the thickness of a marble. By looking through the bottom
of the jar, you can roughly count how many marbles are in one slice. Then estimate the height of the
jar in slices, or in marbles. By symmetry, we assume that all marbles are the same size and shape.
Therefore the total number of marbles in the jar will be the product of the number of marbles per
slice and the number of slices.

You should report a result of 8.32 cm. Your measurement had three significant figures. When you
multiply by 2, you are really multiplying by the integer 2, which is exact. The number of significant
figures is determined by your measurement.

The correct number of significant figures is three: sin 30.0° = 0.500.
You only need to measure the other ingredients to within 10% as well.

Useful assumptions include the population of the city, the fraction of people who own cars, the
average number of visits to a mechanic that each car makes in a year, the average number of weeks a
mechanic works in a year, and the average number of cars each mechanic can see in a week.

(a) There are about 800,000 people in San Francisco. Assume that half of them have cars. If each of
these 400,000 cars needs servicing twice a year, then there are 800,000 visits to mechanics in a
year. If mechanics typically work 50 weeks a year, then about 16,000 cars would need to be
seen each week. Assume that on average, a mechanic can work on 4 cars per day, or 20 cars a
week. The final estimate, then, is 800 car mechanics in San Francisco.

(b) Answers will vary.
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11. One common way is to observe Venus at a Sun
time when a line drawn from Earth to Venus O\_\ __________________ (I)Venus
is perpendicular to a line connecting Venus ~o |
to the Sun. Then Earth, Venus, and the Sun ~o :
are at the vertices of a right triangle, with ~ :
Venus at the 90° angle. (This configuration ~o |
will result in the greatest angular distance S '
between Venus and the Sun, as seen from
Earth.) One can then measure the distance to
Venus, using radar, and measure the angular distance between Venus and the Sun. From this
information you can use trigonometry to calculate the length of the leg of the triangle that is the
distance from Earth to the Sun.

12. No. Length must be included as a base quantity.

Solutions to Problems

(a) 14 billion years = |1.4x10" years

(5) (1.4x10°y)(3.156x10's/1 y) =[4.4x10"]

2. (a) 214 |3 significant ﬁgures|

(b) 81.60 |4 significant ﬁgures|

(¢) 7.03 |3 significant ﬁgures|

(d) 0.03 |1 significant ﬁgure|

(e) 0.0086 |2 significant ﬁgures|

(H 3236 |4 significant ﬁgures|

(g) 8700 |2 significant ﬁgures|

3. (@) 1.156=[L156x10]
) 21.8=[2.18x10]
(©) 0.0068=]6.8x10"]
(d) 328.65=|3.2865x10"]
(© 0219=[2.19x10"]
() 444 =4.44x10°]

4. (a) 8.69x10"=[86,900]
(b) 9.1x10" =[9,100]

(c) 8.8x107' =]0.88
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(d) 4.76x10° =[476]
() 3.62x10” =[0.0000362]

0.25
5. % uncertainty = 523 m x100% =
A48 m

0.2
6. (a) % uncertainty = 5—S><100% =
S
0.2
() % uncertainty = ?SXmO% =
S

0.2
(€)% uncertainty = > x100% =[0.07%

S

To add values with significant figures, adjust all values to be added so that their exponents are all the
same.

(9.2><103s)+(8.3x104s)+(0.008x10“s) = (9.2><103s)+(83><103s)+(8><103s)

=(9.2+83+8)x10’s =100.2x10’s =

When adding, keep the least accurate value, and so keep to the “ones” place in the last set of
parentheses.

8. (2.079 X 102m) (0.082 X107 ) = . When multiplying, the result should have as many digits as

the number with the least number of significant digits used in the calculation.

9. H(radians) sin(f) tan(6)
0 0.00 0.00 Keeping 2 significant figures in the angle, and
0.10 0.10 0.10 expressing the angle in radians, the largest angle that has
0.12 0.12 0.12 the same sine and tangent is |0.24 radians|. In degrees,
0.20 0.20 0.20 the largest angle (keeping 2 significant figure) is 12°.
0.24 0.24 0.24 The spreadsheet used for this problem can be found on
0.25 0.25 0.26 the Media Manager, with filename

“PSE4 ISM_CHO1.XLS,” on tab “Problem 1.9.”

10. To find the approximate uncertainty in the volume, calculate the volume for the minimum radius and
the volume for the maximum radius. Subtract the extreme volumes. The uncertainty in the volume
is then half this variation in volume.

=47r o =47(0.84m) =2.483m’

specified

i) =47(0.80m)’ =2.145m’

min 3 min
V. =4z =47(0.88m)’ =2.855m’

AV =LV, -V, )=+(2.855m’ -2.145m") = 0.355m’

max min

Vspeciﬁed

~
Il

AV 0355m’
2.483m’

specified

x100=14.3=|14%|.

The percent uncertainty is
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11.

12.

—
W

14.

15.

16.

17.

(a) 286.6 mm 286.6x107m 0.2866 m

(b) 85uV 85x107°V 0.000085 V

(¢) 760 mg 760x10°kg 0.00076 kg| (if last zero is not significant)
(d) 60.0 ps 60.0x10™"s 10.0000000000600 s|

(e) 22.5fm 22.5%10"°m 0.0000000000000225 m

(f) 2.50 gigavolts  2.5x10’volts 12,500,000,000 volts|

(@) 1x10°volts 1 megavolt| =1 Mvolt

(b) 2x107meters =2um
(c) 6x10°days 6 kilodays| = 6 kdays
(d) 18x10°bucks 18 hectobucks| =18 hbucks or 1.8 kilobucks

(e) 8x10*seconds |80 nanoseconds| =80 ns

Assuming a height of 5 feet 10 inches, then 5'10" = (70 in) (1 m/39.37 in) =|[1.8 m|. Assuming a

weight of 165 lbs, then (165 lbs) (0.456 kg/l lb) = . Technically, pounds and mass

measure two separate properties. To make this conversion, we have to assume that we are at a
location where the acceleration due to gravity is 9.80 m/s’.

(@) 93 million miles = (93X106miles)(1610 m/1 mile) =

(b) 1.5x10"m=150x10"m = |150 gigameters| or 1.5x10"m=0.15x10"m =|0.15 terameters

. . 10.111yd’
(@) 1ft°= (1 ftz)(l yd/3 ft)” =0.111 yd’, and so the conversion factor is sz
t
2 2 2 2 . . 10.8 ft*
b)) 1m’= (1 m )(3.28 ft/I m)" =10.8 ft*, and so the conversion factor is .
m

Use the speed of the airplane to convert the travel distance into a time. d =vt,so t =d / V.

lh
t=dfv=1.00 km( j(3600sj: 3.85
950 km )\ 1h

(@) 1.0x10™"m =(1.0x10""m)(39.37 in/1 m) =|3.9x10”in

») <1.ocm>( Lm j( Latom j:

100 cm /L 1.0x10""m
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18.

20.

21.

22.

23.

24.

To add values with significant figures, adjust all values to be added so that their units are all the
same.

1.80 m+142.5 cm+5.34x10° um =1.80 m+1.425 m+0.534 m = 3.759 m =

When adding, the final result is to be no more accurate than the least accurate number used. In this
case, that is the first measurement, which is accurate to the hundredths place when expressed in
meters.

.621 mi . i
(a) (1km/h) (Mj =0.621mi/h, and so the conversion factor is 0.621mi/h .
Ikm Tkm/h
3.28 ft 3.281t
() (1 m/S)( j =3.28ft/s, and so the conversion factor is /s .
I'm 1m/s
1000 lh 0.278
© (1 km/h)( m)( j =0.278m/s, and so the conversion factor is 0278 m/s .
1km )\ 3600 Tkm/h

One mile is 1.61x10°m. Itis 110 m longer than a 1500-m race. The percentage difference is
calculated here.

110
1500‘“ x100% =

m

(a) Find the distance by multiplying the speed times the time.

1.00 Iy = (2.998x 10" m/s)(3.156 x10"s) = 9.462x10"m =

() Do a unit conversion from ly to AU.

9.462x10" 1 AU
(1.001y)( - m]( j:6.31><104AU

1.00 ly 1.50x10"'m

1AU (3600
() (2.998><108m/s)( : j( Sj=7.2OAU/h
1.50x10"m )\ 1 hr

lchar>< I min y 1 hour « 1day y 1year
Ibyte 180char 60min 8hour 365.25days

(82 %10’ bytes) X = 2598 years = |2600 years

The surface area of a sphere is found by 4 = 47" = 47 (d/2)" = nd’.

oo = D}, = 7(3.48x10°m)” =[3.80x10"m’]

(a) 4
5 2 2 6 2
*) Aewi _ D _[ P | _[ Reawa | _[ 6:38x10°m | _rom
Ay, 7D} D R 1.74x10°m

Moon Moon Moon

(a) 2800=2.8x10" ~1x10’ =m
(b) 86.30x10° =8.630x10° =10x10° =[10*

(©) 0.0076="7.6x10" =10x10" =

(d) 15.0x10° =1.5x10" =1x10’ =|10’
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The textbook is approximately 25 cm deep and 5 cm wide. With books on both sides of a shelf, the
shelf would need to be about 50 cm deep. If the aisle is 1.5 meter wide, then about 1/4 of the floor
space is covered by shelving. The number of books on a single shelf level is then

0.25m)(0.05m)

books stored is as follows.

book
(7.0><104 Lj@ shelves) = |6 x10” books

1 k
1 (3500 m’ )(( boo ] =7.0x10*books. With 8 shelves of books, the total number of

shelf level

26. The distance across the United States is about 3000 miles.

(3000 mi) (1 km/0.621 mi)(1 hr/10 km) ~

Of course, it would take more time on the clock for the runner to run across the U.S. The runner
could obviously not run for 500 hours non-stop. If they could run for 5 hours a day, then it would
take about 100 days for them to cross the country.

27. A commonly accepted measure is that a person should drink eight 8-o0z. glasses of water each day.
That is about 2 quarts, or 2 liters of water per day. Approximate the lifetime as 70 years.

(70y)(365 /1 y) (2 L/1 d) =[5x10'L]

28. An NCAA-regulation football field is 360 feet long (including the end zones) and 160 feet wide,
which is about 110 meters by 50 meters, or 5500 m>. The mower has a cutting width of 0.5 meters.
Thus the distance to be walked is as follows.

_area 5500 m’
width 0.5m
At a speed of 1 km/hr, then it will take about to mow the field.

=11000 m =11 km

29. In estimating the number of dentists, the assumptions and estimates needed are:
the population of the city
the number of patients that a dentist sees in a day
the number of days that a dentist works in a year
the number of times that each person visits the dentist each year
We estimate that a dentist can see 10 patients a day, that a dentist works 225 days a year, and that
each person visits the dentist twice per year.
(a) For San Francisco, the population as of 2001 was about 1.7 million, so we estimate the
population at two million people. The number of dentists is found by the following calculation.

) visits
1 1 dentist
(2 x10° people) year z eI.1 .1s = [1800 dentists
1 person |\ 225 workdays lOLHS
workday

(b) For Marion, Indiana, the population is about 50,000. The number of dentists is found by a
similar calculation to that in part (a), and would be . There are about 50 dentists
listed in the 2005 yellow pages.

30. Assume that the tires last for 5 years, and so there is a tread wearing of 0.2 cm/year. Assume the
average tire has a radius of 40 cm, and a width of 10 cm. Thus the volume of rubber that is
becoming pollution each year from one tire is the surface area of the tire, times the thickness per year
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32.

33.

34.

that is wearing. Also assume that there are 1.5x10° automobiles in the country — approximately one
automobile for every two people. And there are 4 tires per automobile. The mass wear per year is
given by the following calculation.

( mass] ( surface area ) E thickness wear

j(density of rubber) (# of tires)

year tire year

{27z(o.4m)(o.1m)

. }(0.002 m/y)(1200kg/m’)(6.0x10°tires) =|4x 10" kg/y
1 tire

Consider the diagram shown (not to scale). The balloon is a distance /# above the
surface of the Earth, and the tangent line from the balloon height to the surface of
the earth indicates the location of the horizon, a distance d away from the balloon.
Use the Pythagorean theorem.

(r+h) =r+d> — P +2rh+h =r +d’
2eh+ i’ =d> — d=~2rh+k

d = J2(6.4x10°m) (200m)+ (200m)’ =5.1x10'm =[5x10*m](= 80 mi)

At $1,000 per day, you would earn $30,000 in the 30 days. With the other pay method, you would
get $0.01 (2’_1) on the /" day. On the first day, you get $0.01 (ZH) =$0.01. On the second day,

you get $0.01(2%") =$0.02. On the third day, you get $0.01(2"") =$0.04. On the 30" day, you

get $0.01 (23071 ) =$5.4x10°, which is over 5 million dollars. Get paid by the .

In the figure in the textbook, the distance d is perpendicular to the vertical radius. Thus there is a
right triangle, with legs of 4 and R, and a hypotenuse of R+h. Since h < R, h* < 2Rh.

d*+R =(R+h) =R +2Rh+1* — d*=2Rh+h — d’=2Rh —

) 2
L S L B FEITO

_5_ 2(1.5m)

A better measurement gives R = 6.38x10°m.

To see the Sun “disappear,” your line of sight to the top
of the Sun is tangent to the Earth’s surface. Initially, you To 1st sunset
are lying down at point A, and you see the first sunset.
Then you stand up, elevating your eyes by the height 4.
While standing, your line of sight is tangent to the
Earth’s surface at point B, and so that is the direction to
the second sunset. The angle & is the angle through g
which the Sun appears to move relative to the Earth

during the time to be measured. The distance d is the

distance from your eyes when standing to point B.

To 2nd sunset ..~/ 7

)
Use the Pythagorean theorem for the following Earth center
relationship.

d’+R =(R+h) =R +2Rh+1’ — d’=2Rh+I’
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The distance /4 is much smaller than the distance R, and so 4* < 2Rh which leads to d° =2Rh. We
also have from the same triangle that d / R =tan@, and so d = Rtand. Combining these two

2h
tan’ 0
The angle 6 can be found from the height change and the radius of the Earth. The elapsed time
between the two sightings can then be found from the angle, knowing that a full revolution takes 24

relationships gives d> =2Rh=R’tan’ #,and so R =

hours.
(1.3
=" . g-tan” ,/ ‘/ m) = (3.66x107)’
tan’ @ 6.38%x10°m
o B tsec N
360° 24h><3600s
1h
3.66x107)°
Z:( 0 j Jap 5 36008 ( ) J4p 5 36005 [
360° 1h 360° 1h

. . mass units M
35. Density units = ——— = || —
volume units L

36. (a) For the equation v = A¢’ — Bt , the units of A¢" must be the same as the units of v. So the units

of 4 must be the same as the units of v/ ', which would be L/ T*|. Also, the units of Bt

must be the same as the units of v. So the units of B must be the same as the units of v/z,

which would be L/ T’

(b) For A, the SI units would be m/ s*|, and for B, the SI units would be m/ s*.

(a) The quantity v¢* has units of (m/ s) (sz) =mes, which do not match with the units of meters

for x. The quantity 2at has units (m/ s’ ) (s) =m/s, which also do not match with the units of

meters for x. Thus this equation |cann0t be correct|.

(b) The quantity v,¢ has units of (m/s)(s) =m, and Lar’ has units of (rn/sz)(sz) =m. Thus,

since each term has units of meters, this equation |can be correct|.

(¢) The quantity v, ¢ has units of (m/s) (s) =m, and 2at’ has units of (m/sz)(sz) =m. Thus,

since each term has units of meters, this equation .

Ll B
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2
39. The percentage accuracy is ﬁx 100% =[1x107%|. The distance of 20,000,000 m needs to
x10'm

be distinguishable from 20,000,002 m, which means that | 8 significant figures | are needed in the
distance measurements.

40. Multiply the number of chips per wafer times the number of wafers that can be made from a
cylinder.

(100 chips )( 1 wafer j 250 mm _ [83.000 chips
wafer /\ 0.300 mm /\ 1 cylinder cylinder

3.156x10’
41. (a) # ofsecondsin 1.00y: 1.00y=(1.00y)[l—sj= 3.16x10’s

y
3.156x10’s | 1x10’
(b) # of nanoseconds in 1.00 y: 1.00y=(1.00y)( " S]( 1 nsj=3,16x1016ns
y S
(¢) #ofyearsin 1.00s: 1.00s=(1 OOS)(I—yjz 3.17x10"y
3.156x10’s

42. Since the meter is longer than the yard, the soccer field is longer than the football field.

I -1 =100mx2Yd

soccer football

-100yd =|9yd

=100m—100ydx 8m

soccer  ~football

1.09yd

Since the soccer field is 109 yd compare to the 100-yd football field, the soccer field is longer
than the football field.

Assume that the alveoli are spherical, and that the volume of a typical human lung is about 2 liters,
which is .002 m>. The diameter can be found from the volume of a sphere, %ﬂf .
d’
iﬂf =%ﬂ'(d/2)3 ZT

3

3

, 1/3
(3x108)7z%=2x10'3m3 N d:{Mmil =[2x10" m]|

3x10° 7

1.000x10*m> \( 3.281ft ) 1
44. 1 hectare = (1 hectare) xUm [ acre y 2) =1|2.471acres
lhectare Im 4.356x10"ft

45. There are about 3x10° people in the United States. Assume that half of them have cars, that they
each drive 12,000 miles per year, and their cars get 20 miles per gallon of gasoline.

( 3x1 08people) 1 automobile |( 12,000 mi/auto (1 gallo'n] _
2 people ly 20 mi

1x10" gal/y
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46.

47.

48.

50.

51.

10 kg 1 proton or neutron s
(@) : - = (10" protons or neutrons
1 bacterium 107 kg
107"k 1 prot t
(b) g pro on;r neutron | _ 101°pr0tons or neutrons
1 DNA molecule 107" kg
10°k 1 prot t
© g pro Oni‘: HEWTOR | = [10” protons or neutrons
1 human 10~"kg
10"k 1 t t
) g pro on_;r heutron |\ _ 10% protons or neutrons
1 galaxy 107 kg

The volume of water used by the people can be calculated as follows:
1200L 1 *\( 1km Y
(4>< 104people) 00L/day \('365day ) 1000cm ( - j =438x107 km'/y
4 people ly 1L 10°cm
The depth of water is found by dividing the volume by the area.

vV 438x10” km’ km \( 10°
d=L1=222%"2 X ¥ (7610 km | L0em =8.76em/y =[9em/y
A 50 km y 1 km

Approximate the gumball machine as a rectangular box with a square cross-sectional area. In
counting gumbealls across the bottom, there are about 10 in a row. Thus we estimate that one layer
contains about 100 gumballs. In counting vertically, we see that there are about 15 rows. Thus we
estimate that there are in the machine.

Make the estimate that each person has 1.5 loads of laundry per week, and that there are 300 million
people in the United States.
kg kg

1.5 loads/ week jS2weeks 0.1kg 234%10° <8 < | %10° &
1 person ly lload y Y

(300 X 106people) X

o _ 3"
The volume of a sphere is given by ¥ =477, and so the radius is » = (4—) . For a 1-ton rock,
T

the volume is calculated from the density, and then the diameter from the volume.

3
r=(1 T)(zooo lbj[ o j=10.8 f’

1T 186 1b
1/3
3\ 3(10.8 ft*
d=2}":2[4—j =2|:¥ :274ft~"-" 3ft
T T

8 bits Isec 1min
X X

(783.216x10° bytes ) x —
Ibyte 1.4x10°bits 60sec

=74.592 min = |75 min
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Chapter 1

52. A pencil has a diameter of about 0.7 cm. If held about 0.75 m from the eye, it can just block out the
Moon. The ratio of pencil diameter to arm length is the same as the ratio of Moon diameter to Moon

distance. From the diagram, we have the following ratios.

Pencil

Penci
Distance

Moon
Distance

Pencil diameter _ Moon diameter

Pencil distance - Moon distance
Pencil diamet 7x10°

Jenctl dlatheter Moon distance) = Wm(&leOSkm) =|3500 km
75 m

Pencil distance

Moon diameter =

The actual value is 3480 km.
53. To calculate the mass of water, we need to find the volume of water, and then convert the volume to
mass. The volume of water is the area of the city (40 km’ ) times the depth of the water (1.0 cm).

10”kg |( 1 metric ¢
gj[ metric 0nj=|4><105rnetrictons|

5
(ax10' )| 2222 | |10 cm)[ 3 :
1 km 1 cm 10°kg

To find the number of gallons, convert the volume to gallons.

2
10° 1L 1 gal
0 cm (l.Ocm)[ 3 3)( =2 )=1.06><108ga1z 1x10° gal
1km 1x10°cm’ )\ 3.78 L

(4><101 kmz)

54. A cubit is about a half of a meter, by measuring several people’s forearms. Thus the dimensions of
Noah’s ark would be |150 m long , 25 m wide, 15 m high | The volume of the ark is found by

~[6x10°m’|

The person walks 4km/h , 10 hours each day. The radius of the Earth is about 6380 km, and the
distance around the Earth at the equator is the circumference, 27R_ . We assume that the person
can “walk on water,” and so ignore the existence of the oceans.

277 (6380 km)(ij(ij =

4km/\10h

multiplying the three dimensions.
V' =(150 m)(25 m)(15 m) =5.625x10"m’

56. The volume of the oil will be the area times the thickness. The area is 7 7° =7 (d / 2)2 , and so

3
T 10000m3( I m )
Vo n(d2) i dzz\ﬁzz 100em) _ 37 5 m]
7t 7z(2><10 m)

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

11



Physics for Scientists & Engineers with Modern Physics, 4" Edition Instructor Solutions Manual

57. Consider the diagram shown. Let £ represent is the distance she walks upstream, which
is about 120 yards. Find the distance across the river from the diagram.
d
tan 60° = — d=/tan60° = (120yd)tan60° =|210yd d
3ft | 0.305 0
(210yd)| — = |=[190m /60
lyd 11t 4

8 1
58. (—Sj(—y %100% = |3x10°%

1y )\3.156x10’s

o °\( 107" 1
59. (a) 1.0A=(1.0A] mJ(longm)z

1A m
° o[ 107" 1fi

(b) 1.0A=(1.0A) Om](lofmjzl.onosfm
1A
1A °

C Um=(L.Um =11.0X

1.0 1.0 — 1.0x10° A

10 "'m

=19.5x10" A

9.46x10"°m 1,2,
1.0ly=(1.01
@ 1oy=(oy) 208

60. The volume of a sphere is found by V' = %72’)’3.

Viow = £7TR,,, = +71(1.74x10°m)’ = [2.21x10"m’

Ve _ 2R _(Ruy | _[638x10°m) _
View 7R R '

Moon 3 Moon

Moon

Thus it would take about M Moons to create a volume equal to that of the Earth.

(a) Note that sin15.0° =0.259 and sin15.5° =0.267, and so Asiné& =0.267 —0.259 = 0.008.
AG 0.5° Asin 6 8x10~
=2 1100=| —==— |100 = [3%| 100 = 100 = [3%]
( 0 j (15.0"] - ( sin@ j ( 0.259 j -
(b) Note that sin75.0° =0.966 and sin75.5° = 0.968, and so Asin & = 0.968 — 0.966 = 0.002.

AG 0.5° Asin @ 2x107
(—JIOO{W}OM ( o jmo:(ox% }00:

0 sin @
A consequence of this result is that when using a protractor, and you have a fixed uncertainty in the

angle (£0.5° in this case), you should measure the angles from a reference line that gives a large
angle measurement rather than a small one. Note above that the angles around 75° had only a 0.2%
error in sin @, while the angles around 15° had a 3% error in sin 6.
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62. Utilize the fact that walking totally around the Earth along the meridian would trace out a circle
whose full 360° would equal the circumference of the Earth.

0 27(6.38x10°km ~
(mmute)[ | j{ 7(638x )j(o.finml):

60 minute 360°

63. Consider the body to be a cylinder, about 170 cm tall (= 5'7”), and about 12 cm in cross-sectional

radius (which corresponds to a 30-inch waist). The volume of a cylinder is given by the area of the
cross section times the height.

V=nmrh=r(012m) (1.7 m)=7.69x10"m’ =

64. The maximum number of buses would be needed during rush hour. We assume that a bus can hold
50 passengers.
(a) The current population of Washington, D.C. is about half a million people. We estimate that
10% of them ride the bus during rush hour.

1b 1dri
50,000 passengers X us X VT . 1000drivers

S0passengers  1bus

(b) For Marion, Indiana, the population is about 50,000. Because the town is so much smaller
geographically, we estimate that only 5% of the current population rides the bus during rush
hour.

1b 1dri .
2500 passengers X s Ve 50drivers

S50passengers  1bus

65. The units for each term must be in liters, since the volume is in liters.

[units of 4.1][m] = [L] - [units of 4.1] = £

[units of 0.018][y]=[L] — |[units of 0.018] = L
y

[units of 2.69] = L

. mass 8g 3 3
66. density = = =2.82g/cm’ =|3¢g/cm
Y volume 2.8325cm’ g/ g/
2 2 10°km ’
(a) SAEanh — 4”REanh — REanh — (638X 0 ) — 134
SlgMoon 47z.RIf/Ioon RI\Z/Ioun (1 . 74 X 1 03 km )2
s 7R * (6.38x10°km)
(b) VEanh — ?” Earth — REarth — i — 493

VMOOH % ﬂ-Rs/loon R’:\;/IODH ( 1 .74 X 1 03 km )3

#atoms _ 6.02x10” atoms B 6.02x10” atoms i 18x10° at012ns

68. =
m’ 47R;,, 47(638x10°m)’ m
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69. Multiply the volume of a spherical universe times the density of matter, adjusted to ordinary matter.
The volume of a sphere is %7[1”3.
9.46x10"m

3
m=pV =(1x10" kg/m’ )<z (13.7><1091y)><T (0.04)

=3.65x10"'kg = |4x10’ kg
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CHAPTER 2: Describing Motion: Kinematics in One Dimension

Responses to Questions

10.

11.

A car speedometer measures only speed, since it gives no indication of the direction in which the car
is traveling.

If the velocity of an object is constant, the speed must also be constant. (A constant velocity means
that the speed and direction are both constant.) If the speed of an object is constant, the velocity
CAN vary. For example, a car traveling around a curve at constant speed has a varying velocity,
since the direction of the velocity vector is changing.

When an object moves with constant velocity, the average velocity and the instantaneous velocity
are the same at all times.

No, if one object has a greater speed than a second object, it does not necessarily have a greater
acceleration. For example, consider a speeding car, traveling at constant velocity, which passes a
stopped police car. The police car will accelerate from rest to try to catch the speeder. The speeding
car has a greater speed than the police car (at least initially!), but has zero acceleration. The police
car will have an initial speed of zero, but a large acceleration.

The accelerations of the motorcycle and the bicycle are the same, assuming that both objects travel
in a straight line. Acceleration is the change in velocity divided by the change in time. The
magnitude of the change in velocity in each case is the same, 10 km/h, so over the same time interval
the accelerations will be equal.

Yes, for example, a car that is traveling northward and slowing down has a northward velocity and a
southward acceleration.

Yes. If the velocity and the acceleration have different signs (opposite directions), then the object is
slowing down. For example, a ball thrown upward has a positive velocity and a negative acceleration
while it is going up. A car traveling in the negative x-direction and braking has a negative velocity
and a positive acceleration.

Both velocity and acceleration are negative in the case of a car traveling in the negative x-direction
and speeding up. If the upward direction is chosen as +y, a falling object has negative velocity and
negative acceleration.

Car A is going faster at this instant and is covering more distance per unit time, so car A is passing
car B. (Car B is accelerating faster and will eventually overtake car A.)

Yes. Remember that acceleration is a change in velocity per unit time, or a rate of change in
velocity. So, velocity can be increasing while the rate of increase goes down. For example, suppose a
car is traveling at 40 km/h and a second later is going 50 km/h. One second after that, the car’s speed
is 55 km/h. The car’s speed was increasing the entire time, but its acceleration in the second time
interval was lower than in the first time interval.

If there were no air resistance, the ball’s only acceleration during flight would be the acceleration
due to gravity, so the ball would land in the catcher’s mitt with the same speed it had when it left the
bat, 120 km/h. The path of the ball as it rises and then falls would be symmetric.
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12.

14.

15.

16.

17.

18.

(a) If air resistance is negligible, the acceleration of a freely falling object stays the same as the
object falls toward the ground. (Note that the object’s speed increases, but since it increases at a
constant rate, the acceleration is constant.)

(b) In the presence of air resistance, the acceleration decreases. (Air resistance increases as speed
increases. If the object falls far enough, the acceleration will go to zero and the velocity will
become constant. See Section 5-6.)

Average speed is the displacement divided by the time. If the distances from A to B and from B to C
are equal, then you spend more time traveling at 70 km/h than at 90 km/h, so your average speed
should be less than 80 km/h. If the distance from A to B (or B to C) is x, then the total distance
traveled is 2x. The total time required to travel this distance is x/70 plus x/90. Then

d 2x _2(90)(70)

y=2=

¢ x/70+x/90 90470

79 km/h.

Yes. For example, a rock thrown straight up in the air has a constant, nonzero acceleration due to
gravity for its entire flight. However, at the highest point it momentarily has a zero velocity. A car, at
the moment it starts moving from rest, has zero velocity and nonzero acceleration.

Yes. Anytime the velocity is constant, the acceleration is zero. For example, a car traveling at a
constant 90 km/h in a straight line has nonzero velocity and zero acceleration.

A rock falling from a cliff has a constant acceleration IF we neglect air resistance. An elevator
moving from the second floor to the fifth floor making stops along the way does NOT have a
constant acceleration. Its acceleration will change in magnitude and direction as the elevator starts
and stops. The dish resting on a table has a constant acceleration (zero).

The time between clinks gets smaller and smaller. The bolts all start from rest and all have the same
acceleration, so at any moment in time, they will all have the same speed. However, they have
different distances to travel in reaching the floor and therefore will be falling for different lengths of
time. The later a bolt hits, the longer it has been accelerating and therefore the faster it is moving.
The time intervals between impacts decrease since the higher a bolt is on the string, the faster it is
moving as it reaches the floor. In order for the clinks to occur at equal time intervals, the higher the
bolt, the further it must be tied from its neighbor. Can you guess the ratio of lengths?

The slope of the position versus time curve is the velocity. The object starts at the origin with a
constant velocity (and therefore zero acceleration), which it maintains for about 20 s. For the next 10
s, the positive curvature of the graph indicates the object has a positive acceleration; its speed is
increasing. From 30 s to 45 s, the graph has a negative curvature; the object uniformly slows to a
stop, changes direction, and then moves backwards with increasing speed. During this time interval
its acceleration is negative, since the object is slowing down while traveling in the positive direction
and then speeding up while traveling in the negative direction. For the final 5 s shown, the object
continues moving in the negative direction but slows down, which gives it a positive acceleration.
During the 50 s shown, the object travels from the origin to a point 20 m away, and then back 10 m
to end up 10 m from the starting position.

The object begins with a speed of 14 m/s and increases in speed with constant positive acceleration
from ¢ = 0 until =45 s. The acceleration then begins to decrease, goes to zero at t = 50 s, and then

goes negative. The object slows down from =50 s to # =90 s, and is at rest from =90 s to £ = 108
s. At that point the acceleration becomes positive again and the velocity increases from ¢ = 108 s to

t=130s.
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Chapter 2 Describing Motion: Kinematics in One Dimension

Solutions to Problems

The distance of travel (displacement) can be found by rearranging Eq. 2-2 for the average velocity.
Also note that the units of the velocity and the time are not the same, so the speed units will be
converted.

TN szVAtz(llOkm/h)[ Lh
At 3600 s

j(2.05) =0.061 km =[61 m|

The average speed is given by Eq. 2-2.
v = Ax/At =235 km/3.25 h =|72.3km/h

The average velocity is given by Eq. 2.2.
Ax 85cm-43cm  42cm

—= = =10.65
At 4.5s—(—2.0s) 6.5s cm/s

|The average speed cannot be calculated.| To calculate the average speed, we would need to know the
actual distance traveled, and it is not given. We only have the displacement.

V=

The average velocity is given by Eq. 2-2.

Ax —-42cm-34 -7.6
BT

A 5.15-3.0s 215

The negative sign indicates the direction.

The speed of sound is intimated in the problem as 1 mile per 5 seconds. The speed is calculated as
follows.

dist Imi \[ 1610
speed = 1s. ance _ [ I mi ( .mj _T00 m/s
time 5s 1 mi

The speed of 300 m/ s would imply the sound traveling a distance of 900 meters (which is

approximately 1 km) in 3 seconds. So the rule could be approximated as | 1 km every 3 seconds |

The time for the first part of the trip is calculated from the initial speed and the first distance.

Ax, Ax,  130km
JAVA v 95km/h

1
The time for the second part of the trip is now calculated.
At, =At . —At =333h-137h=196 h=118 min
The distance for the second part of the trip is calculated from the average speed for that part of the

trip and the time for that part of the trip.

v, = i’;z — Ax, =V,At, =(65km/h)(1.96h) =127.5 km =1.3x10’km

Y

=1.37h =82 min

total

2

a) The total distance is then Ax . = Ax + Ax, =130 km +127.5 km = 257.5 km = [2.6 x 10*km|.
( ) total 1 2

(b) The average speed is NOT the average of the two speeds. Use the definition of average speed,
Eq. 2-2.

_ Ax,, 2575km
= ol _ =|77km/h
Y 3.33h

total
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The distance traveled is 116 km+1(116 km) =174 km, and the displacement is
116 km—1(116 km) = 58 km. The total time is 14.0 s + 4.8 s = 18.8 s.

dist 174
(a) Average speed = AR = —[9.26 m/s

time elapsed  18.8 s

_ displacement 58 m

(b) Average velocity = v, = =(3.1m/s
s Y ®  timeelapsed 18.8s /
8. (a) ”
® ///_\\
30 \\
g/ 20 |
=
10
0 T T
0.0 0.5 1.0 15 2.0 25 3.
t (sec)

The spreadsheet used for this problem can be found on the Media Manager, with filename
“PSE4 ISM_CHO02.XLS”, on tab “Problem 2.8a”.
(b) The average velocity is the displacement divided by the elapsed time.

 x(3.0)-x(00) |34+10(3.0)-2(3.0)' |m~(34m) SomT
" T T 30s-00s 3.0s Rk

(¢) The instantaneous velocity is given by the derivative of the position function.
d. 5
v="2(10-6)m/s  10-6°=0 — tz\/:s=1.3s
dt 3

This can be seen from the graph as the “highest” point on the graph.

9. Slightly different answers may be obtained since the data comes from reading the graph.
(a) The instantaneous velocity is given by the slope of the tangent line to the curve. At ¢t =10.0s,

3m-0
the slope is approximately v(10) = ——— =[0.3m/s|.
pe is app y v(10) = —"—

(b) At t=30.0s, the slope of the tangent line to the curve, and thus the instantaneous velocity, is
2m-10m _
35s—=25s

1.2m/s|.

approximately v(30) =

x(5)-x(0) _15m-0 _

0.30m/s|.

(¢) The average velocity is given by v =

5.0s-0s 5.0s
L _ x(30)-x(25) 16m-9m
(d) The average velocity is given by v = = =(1.4m/s|
30.0s —25.0s 5.0s
S _ x(50)-x(40) 10m-19.5m
(e) The average velocity is given by v = = =|-0.95m/s|.
s vise Y 50.0s —40.0s 10.0s
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Chapter 2 Describing Motion: Kinematics in One Dimension

10. (a) Multiply the reading rate times the bit density to find the bit reading rate.
N = 1.2m 1bit

X — =
Is 0.28x10"m
(b) The number of excess bits is N — N.
N =N, =4.3x10°bits/s — 1.4 x10° bits/s = 2.9 x10° bits/s

N-N, 2.9x10°bits/s
= =0.67 =
N 43x10°bits/s -

4.3x10° bits/s

11. Both objects will have the same time of travel. If the truck travels a distance Ax then the

truck ?
distance the car travels will be Ax_ = Ax

solve for time, and equate the two times.

+110m. Use Eq. 2-2 for average speed, v = Ax/At,

truck

At _ Axtruck _ A'xcar Axtruck _ Axtru&:k + 1 10 m
VoV 75 km/h 95 km/h
75km/h
Solving for Ax_, gives Ax, = (1 lOm) ( m/ ) =412.5m.

(95km/h —75km/h)

Ax 412.5 60 mi
The time of travel is Af = —k = ( m J( mmj =0.33min =19.8s = [2.0x10's]|.

v, 75000 m/h 1h

1%

truck

Also note that Ar = er _ | H2.5m+110m A 60min ) _ o0 o oo,
V., 95000 m/h 1h
ALTERNATE SOLUTION:

The speed of the car relative to the truck is 95 km/ h-75 km/ h=20 km/ h. In the reference frame of
the truck, the car must travel 110 m to catch it.

Ao 0.11 km (3600 sj=19.8 )
20km/h\ 1h

12. Since the locomotives have the same speed, they each travel half the distance, 4.25 km. Find the

time of travel from the average speed.
_ A Ax  4.25 km
V=—>2A=—=——"—

At v 95km/h

60 min

=0.0447 h( j =2.68 min =|2.7 min

(a) The area between the concentric circles is equal to the length times the width of the spiral path.
7R —-7R =wl —
7(R-R?) [ (0.058m) = (0.025m)’ ]

/= = - =5.378%10"m =|5400m
w 1.6x10°m

1 | mi
(b) 5.378x10°m| — T ) 172 min
1.25m 60s
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o A Ax
14. The average speed for each segment of the trip is given by v = A—x, so At =— for each
t v
Ax,  3100km
segment. For the first segment, Af, =—-=————=4.306h. For the second segment,
v, 720km/h
2800km
At, = A%, = 800 =2.828h..

v, 990km/h

2

Thus the total time is Ar_ = Ar, + Ar, =4.306h +2.828h = 7.134h = |7.1h|.

Ax 3100 km + 2800 km

The average speed of the plane for the entire trip is v = —< = =827km/h
At 7.134 h

tot

~|830km/h|

15. The distance traveled is 500 km (250 km outgoing, 250 km return, keep 2 significant figures). The
displacement (Ax) is 0 because the ending point is the same as the starting point.
(a) To find the average speed, we need the distance traveled (500 km) and the total time elapsed.

. . . Ax Ax,  250km .
During the outgoing portion, v, = —- and so At, =—- =———=2.632h. During the
At, v, 95km/h
. Ax,  250km _
return portion, v, = Ax, , and so At, =—2%=———=4.545h. Thus the total time,
At, v, 55km/h

including lunch, is Ar = At + At +At, =8.177h.

Ax 500km

v=—»u="—=|6lkm/h
At 8.177h

total

(b) Average velocity = |V = Ax/ At=0

16. We are given that x(7) =2.0m—(3. 6rn/s)t+(1 1m/s? )1 )
(@) x(1.0s)=2.0m-(3.6m/s)(1.0s)+(1.1m/s*)(1.0s)" =|-0.5m
x(2.05) =2.0m—(3.6m/s)(2.0s) +(1.1m/s*)(2.0s)" =|-0.8m

x(3.0s)=2.0m—(3.6m/s)(3.0s)+(1.1m/s*)(3.0s)" = |L.Im

®) Vzgz l.lm—(—O.Sm) :

At 2.0s

dx(l)

(c) The instantaneous velocity is given by v(z) = " -3.6m/s+ (2.2 m/s’ ) .
t

v(2.08)=-3.6m/s+(2.2m/s*)(2.0s) =|0.8m/s
v(3.0s) =-3.6m/s+(2.2m/s*)(3.0s) =[3.0m/s
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Chapter 2 Describing Motion: Kinematics in One Dimension

17. The distance traveled is 120m +1(120m) = 180m, and the displacement is
120m —1(120m) = 60m. The total time is 8.4s+<(8.4s) =11.2s.

distance B 180m 3

16m/s

(a) Average speed =

time elapsed 1125

. displacement  60m . . . . . .
(b) Average velocity = v = = = [+5m/s| (in original direction)(1 sig fi
s Y *  timeelapsed 11.2s ( 8 ) (1sig fi)

18. For the car to pass the train, the car must travel the length of the train AND the distance the train

travels. The distance the car travels can thus be written as either d_ = v_ = (95 km/ h)t or
d, =2 +v,.t=1.10km+(75km/h)¢. To solve for the time, equate these two expressions for

C train

the distance the car travels.

(95km/h)¢ =1.10 km + (75km/h)¢ — = ;‘Oloﬂ: 0.055 h = [3.3 min]

km/h

The distance the car travels during this time is d = (95km/h)(0.055 h) = 5.225km = [5.2 km]|

If the train is traveling the opposite direction from the car, then the car must travel the length of the
train MINUS the distance the train travels. Thus the distance the car travels can be written as either

d . =(95km/h)¢ or d, =1.10 km —(75km/h)¢ To solve for the time, equate these two

expressions for the distance the car travels.

(95km/h)¢=1.10 km — (75km/h)s — = L1OKm 7107 h=[2333)
170km/h

The distance the car travels during this time is d = (95km/h) (6.47 x107 h) = .

=
g

= Ax/ At, and so the time for the sound to travel from

the end of the lane back to the bowleris Az = = ﬂ = 16.5 m
» sound 340 m/S

nd
the ball to travel from the bowler to the end of the lane is given by At

The average speed of sound is given by v

=4.85x107"s. Thus the time for

-At, =

sound

= At
ball
2.50s-4.85x107 s =2.4515s. And so the speed of the ball is as follows.

Ax  16.5m
y, =——= =16.73m/s|.
A 2.4515s

ball

total

20. The average acceleration is found from Eq. 2-5.

(95km/h) _lmjs
Av _ 95km/h-0km/h _ 3.6km/h )
At 4.5s 4.5s

5.9 m/s2

a=

21. The time can be found from the average acceleration, @ = Av/At.
(30km/h) _Lmfs
v 110km/h—80km/h _

Ar=2Y 3'6km/hj_4.630sz

a 1.8rn/s2 1.8rn/s2
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22.

23.

24,

5
bt

26.

(a) The average acceleration of the sprinter is @ = Av = 9.00m/s ~0.00m/s =1(7.03 m/ s,
At 1.28 s
1km (36005
b) @=(7.03m/s’ =9.11x10" km/h’
N ( / )(1000 mj( lh j /

Slightly different answers may be obtained since the data comes from reading the graph.

(a) The greatest velocity is found at the highest point on the graph, which is at .

(b) The indication of a constant velocity on a velocity—time graph is a slope of 0, which occurs
from |t =90s to t =108 s|.

(¢) The indication of a constant acceleration on a velocity—time graph is a constant slope, which

occurs from |t =0s to t=42 s|, again from |t =655 to t =83 s|, and again from

lt=90s to =108 s|.
(d) The magnitude of the acceleration is greatest when the magnitude of the slope is greatest, which

occurs from |t =65s to t=83 s|.

The initial velocity of the car is the average speed of the car before it accelerates.

Ax 110
V=—= rn=22m/s=v0
At 50s
The final speed is v = 0, and the time to stop is 4.0 s. Use Eq. 2-12a to find the acceleration.
- 0-22
v=y,+at — a=Y""% - m/S=—5.5rn/s2
t 4.0s
. L lg
Thus the magnitude of the acceleration is |5.5m/s”|, or (5.5m/s*)| ——=—|=]0.56 g's|.
: o (s5mfs)

Ax 385m-25m
V=—=———=|21.2
@ v At 20.0s—-3.0s

Av 45.0m/s—11.0
(h) 7=-Y-= m/s m/s _ 2.00m/s’
At 20.05-3.0s

Slightly different answers may be obtained since the data comes from reading the graph. We assume
that the short, nearly horizontal portions of the graph are the times that shifting is occurring, and

(T3 1]

those times are not counted as being “in” a certain gear.

Av

24 -14
(a) The average acceleration in 2™ gear is given by a,=—2== m/s m/s =12.5 m/ s*.
At, 8s—4s
A 44 -37
(b) The average acceleration in 4™ gear is given by a, = e _ m/ 5 m/ S 0.6 m/ s
At, 27s—16s
Av

(¢) The average acceleration through the first four gears is given by a = " =
t

Av 44m/s-0m/s
At 27s—-0s

a=

1.6m/sz.
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Describing Motion: Kinematics in One Dimension

27. The acceleration is the second derivative of the position function.

28.

d
x=68+857 — v="1_68+17.0 — a=

To estimate the velocity, find the average velocity over
each time interval, and assume that the car had that velocity

d’x 3 ﬂ 3
dt dtr’

dt

17.0 rn/s2

Table of Calculations

at the midpoint of the time interval. To estimate the t(s) _x(m) ((s) v(mbs) i(s) a(ms)
acceleration, find the average acceleration over each time 0.00  0.00 0.00 000 o 35
. . 0.125 044
interval, and assume that the car had that acceleration at the 025 011 025 384
midpoint of the time interval. A sample of each calculation 0375  1.40
is shown. 0.50 0.46 0.50  4.00
0.625 240
From 2.00 s to 2.50 s, for average velocity: 075 1.06 0.75 448
0875  3.52
2.50s+2.00 s
_ = : _ 100 1.94 106 491
ty=—————=225s
5 125 536
150 4.62 150 5.00
v _£_1379 m—8.55m_5.24m_1048m/s 1.75 7.86
avg ~ - - - 2.00 8.5 200 524
At 2.50s—-2.00s 0.50 s 225 1048
250 13.79 250 532
From 2.25 s to 2.75 s, for average acceleration: 275 13.14
3.00 20.36 300 5.52
225s+2.75s
_ = : _ 325  15.90
mid =230 3.50 2831 350 5.6
375  18.68
4 _ Av _ 13.14 m/s—1048 m/s _ 2.66 m/s 4.00 37.65 4.00 5.52
avg - - 425 2144
At 2.75s8—-2.25s 0.50s 450 4837 450 484
=532 m/sz 475  23.86
500 60.30 500 4.12
525 2592
550 73.26 550  3.76
575  27.80
6.00 87.16
30 6
25 / 5 /\\
20 4 // \\
215 A N§ 3
z X}
E / s
=10 2
54 1
0 T T T 0 T T
0 1 2 3 4 5 6 0 1 2 3 4
t (s) t(s)

The spreadsheet used for this problem can be found on the Media Manager, with filename

“PSE4 ISM_CHO02.XLS,” on tab “Problem 2.28.”

29. (a) Since the units of A times the units of # must equal meters, the units of 4 must be .

Since the units of B times the units of > must equal meters, the units of B must be

2
m/s .
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(b) The acceleration is the second derivative of the position function.
d d’x d
x=At4+BE - v="oa42B > a="F=Z—Bm/s
dt dt dt

(c) v=A+2Bt — v(5)=|(4+10B)m/s| a=|2Bm/s’

(d) The velocity is the derivative of the position function.

x=At+Bt> — v:ﬂ:

dt

30. The acceleration can be found from Eq. 2-12c.

2.2 —(2 2
vi=v +2a(x-x,) — a= yov 0 (25m/s) =|-37m/s’
2(x-x,)  2(85m)
iy o v-v, 2lm/s—12m/s ;
By definition, the acceleration is a = = =1.5 m/ s

t 6.0s
The distance of travel can be found from Eq. 2-12b.

x—x, =vt+ia’ =(12m/s)(6.0 s) +1(1.5m/s) (6.0 5)" =[99m

32. Assume that the plane starts from rest. The runway distance is found by solving Eq. 2-12¢ for
X = X,.

22 32 2_0
v2=v§+2a(x—x0) - x—x0=v vo_( m/s) :

2 2(3.0m/s’)

33. For the baseball, v, =0, x —x, =3.5m, and the final speed of the baseball (during the throwing

motion) is v =41 m/ s. The acceleration is found from Eq. 2-12c.

Vvl (41mfs) -0

v2=v§+2a(x—x0) — a= =

2(x—-x,) 2(3.5m)

240m/s>

o Ax - . .
34. The average velocity is defined by Eq. 2-2, v = A_ =1 % Compare this expression to Eq. 2-
t t

12d, v = %(V +v, ) A relation for the velocity is found by integrating the expression for the

acceleration, since the acceleration is the derivative of the velocity. Assume the velocity is v, at
time ¢ = 0.

t

a=A+Bt=§ — dv=(A+Bt)dt > [dv=[(A+Bt)dt — v=v,+At++B’
t

Vo 0

Find an expression for the position by integrating the velocity, assuming that x = x, at time ¢ = 0.

d.
vEv b At+1BE = o dv=(v,+ At+LBR)dE
dt

X t
[dx={(v,+At+1B)dt — x—x, =vg+iar’ +LB0
X, 0
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35.

36.

37

38.

39.

xX—X
Compare t L to L(v+y,).

. x-x vi+LlA + LB
V= L= 2 C =y, +1At+1Br°
¢ ¢
v +v + At + L Bt’
L(v+y,)="+—" — =y, +1At+1Br°
2

They are different, so [v # 1 (v+v,)|.

The sprinter starts from rest. The average acceleration is found from Eq. 2-12c.

vi-y, (11.5m/s)2 -0
2(x-x,)  2(15.0m)
Her elapsed time is found by solving Eq. 2-12a for time.

y=v +at — ;oYY _11.5m/s—0=

a  4.408m/s’

v2=v§+2a(x—x0) — a= :4.408m/s2z 4.41m/s2

Calculate the distance that the car travels during the reaction time and the deceleration.
Ax, = v,At = (18.0m/s)(0.200s) = 3.6 m
P2 0-(18.0m/s)’
Vv =v:+2aAy, — Ax,=——0 = ( /2) = 44.4m
2 2(-3.65m/s*)
Ax=3.6m+44.4m=48.0m
| He will NOT be able to stop in time.|

The words “slows down uniformly” implies that the car has a constant acceleration. The distance of
travel is found from combining Egs. 2-2 and 2-9.

v, tv 18.0m/s+0m/s)
- X, = t= 5.00 =145.0
Y% ) ( 2 ( sec)

The final velocity of the car is zero. The initial velocity is found from Eq. 2-12c with v=0 and
solving for v,. Note that the acceleration is negative.

vi=vi+2a(x-x,) — vO:\/vz—Za(x—xO):\/0—2(—4.00m/sz)(85m): 26m/s

(a) The final velocity of the car is 0. The distance is found from Eq. 2-12¢ with an acceleration of
a=-0.50m/s’ and an initial velocity of 85km/h.

Im/s ’
Vv 0_[(85km/h)(3.6km/hﬂ o

X—X. = =

24 2(-0.50m/s*)
(b) The time to stop is found from Eq. 2-12a.

_— 0 —{(85 km/h)(g);ff/hﬂ

t= - = (—O.SOm/SZ) =47.22s=|47s

560m
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(¢) Take x,=x(1=0)=0m. Use Eq.2-12b, with a = —0.50m/s’ and an initial velocity

of 85 km/h. The first second is from ¢ =0s to ¢ =1s, and the fifth second is from ¢ =4s to
t=35s.

x(0)=0 ; x(1)=0+(85km/h)[
x(1)-x(0)=|23m

x(4) = 0+(85km/h)(

1m/s

mj(ls)+g(—o.50m/s2)(1s)z =2336m —

1m/s
3.6km/h

x(5)= o+(85km/h)[%j(s s)+4(-0.50m/s*)(5s)" =111.81m

x(5)-x(4)=111.81m-90.44m =21.37m = [21m|

40. The final velocity of the driver is zero. The acceleration is found from Eq. 2-12¢ with v=0 and
solving for a.

Im/s ’
N 0{(105 km/h)[3.6km/h ﬂ 317

a = =

2(x-x,) 2(0.80 m)

. v —531.7m/s2 I ,
Converting to “g’s”: a _—(9.80m/s2)/g —

J(4s)+g(—0.50m/s2)(4s)2 —90.44m

~|-5.3x10% m/s’

41. The origin is the location of the car at the beginning of the reaction time. The initial speed of the car

is (95km/h)(ﬂ

3.6km/h

the equation for motion at constant velocity: x, = v,z, = (26.39m/s)(1.0 s) =26.39 m. This is now

] =26.39 m/ s. The location where the brakes are applied is found from

the starting location for the application of the brakes. In each case, the final speed is 0.
(a) Solve Eq. 2-12c for the final location.

S - (26. ’
YV 639 ma (26 39m/2s) _
2 (—5.0 m/s )
(b) Solve Eq. 2-12c for the final location with the second acceleration.

V- 0-(26.39m/s)’
X=X, +2—°= 26.39 m + 2(_7‘0m/52) =

a

96 m

vi=v +2a(x-x,) - x=x,+

42. Calculate the acceleration from the velocity—time data using Eq. 2-12a, and then use Eq. 2-12b to
calculate the displacement at ¢ = 2.0s and ¢ = 6.0s. The initial velocity is v, = 65m/s.

o _162m/s—65m/s
t 10.0s

V-V
=9.7rn/s2 x=x,+tvt+ta’ —

a =

x(6.05) ~x(2.05) = (x, +v,(6.05) +£a (6.05)" ) = (x, + v, (2.05) + +a (2.05)’) |
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=7, (6.05-2.05) +4a[ (6.05)" = (2.05)" | = (65m/s) (4.05) +4(9.7m/s*) (325"

=415m ~[4.2x10°m]

Use the information for the first 180 m to find the acceleration, and the information for the full

44,

motion to find the final velocity. For the first segment, the train has v, = 0m/s, v, =23m/s, and a

displacement of x, —x, =180m. Find the acceleration from Eq. 2-12c.

P2 (23m/s) -0
vo=v, +2a(x -x,) - a= st =( /s) =1~469m/52
2(x,-x,)  2(180m)
Find the speed of the train after it has traveled the total distance (total displacement of
x, — X, = 255 m) using Eq. 2-12c.

v; =vi+2a(x,—-x,) — v, =\/v§ +2a(x,—x,) =\/2(1.469m/s2)(255 m) =

Define the origin to be the location where the speeder passes the police car. Start a timer at the
instant that the speeder passes the police car, and find another time that both cars have the same
displacement from the origin.

For the speeder, traveling with a constant speed, the displacement is given by the following.

ﬂj@):@m) -

Ax, =v ¢ =(135km/h
= ut =135 km/ )(3.6km/h

For the police car, the displacement is given by two components. The first part is the distance
traveled at the initially constant speed during the 1 second of reaction time.

Ax, =v, (1.00s) = (95km/h)(ﬁ

The second part of the police car displacement is that during the accelerated motion, which lasts for
(t - 1.00) s. So this second part of the police car displacement, using Eq. 2-12b, is given as follows.

(¢=1.00) ++a, (t=1.00)" = [ (2639 m/s) (1 ~1.00) + +(2.00m/s*) (¢~ 1.00)" |m

](1.00s)= 26.39 m

Ax  =v

p2 rl

So the total police car displacement is Ax, = Ax | +Ax , = (26.39 +26.39(1-1.00) + (- 1.00)’ ) m.

2
Now set the two displacements equal, and solve for the time.
26.39+26.39(¢—1.00) + (1 — 1.00)2 =375t — £ -13.11t+1.00=0

13.11%4/(13.11)" = 4.00 .
t= =7.67x107s , [13.0
2 :

The answer that is approximately 0 s corresponds to the fact that both vehicles had the same
displacement of zero when the time was 0. The reason it is not exactly zero is rounding of previous
values. The answer of 13.0 s is the time for the police car to overtake the speeder.

As a check on the answer, the speeder travels Ax, = (37.5m/s)(13.0 s) = 488 m, and the police car
travels Ax = [26.39 +26.39(12.0) + (12.0)2:'m =487 m.. The difference is due to rounding.
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45.

46.

47.

Define the origin to be the location where the speeder passes the police car. Start a timer at the
instant that the speeder passes the police car. Both cars have the same displacement 8.00 s after the
initial passing by the speeder.

For the speeder, traveling with a constant speed, the displacement is givenby Ax =v ¢ = (8.00vl\, ) m.

For the police car, the displacement is given by two components. The first part is the distance
traveled at the initially constant speed during the 1.00 s of reaction time.

1m/s
Ax  =v (1.00s)=(95km/h)| ————
=0 (1008) = o5k 1

The second part of the police car displacement is that during the accelerated motion, which lasts for
7.00 s. So this second part of the police car displacement, using Eq. 2-12b, is given by the following.

Ax,, =v, (7.00s)+1a,(7.00s)" = (26.39m/s)(7.00s)++(2.00m/s" )(7.00s)" =233.73m
Thus the total police car displacement is Ax = Ax  +Ax , =(26.39+233.73)m = 260.12m.

Now set the two displacements equal, and solve for the speeder’s velocity.

3.6km/h
8.00 =260.12 =(32.5 —— | =|117km/h
(3000 )m=260.12m > =225/ 270

j(l.OOs) =26.39m

During the final part of the race, the runner must have a displacement of 1100 m in a time of 180 s
(3.0 min). Assume that the starting speed for the final part is the same as the average speed thus far.
Ax 8900 m

V=—=————=5494m/s=v
At (27x60) s fs=v,
The runner will accomplish this by accelerating from speed v, to speed v for fseconds, covering a
distance d,, and then running at a constant speed of v for (180 - t) seconds, covering a distance d,.
We have these relationships from Eq. 2-12a and Eq. 2-12b.
v=v +at d =vt+tat’ d,=v(180—1)=(v,+at)(180—1¢)
1100 m=d, +d, =vt+Lat’ +(v,+at)(180-¢) — 1100 m =180v, +180at—Ltat’® —
1100 m = (180 5)(5.494m/s) + (180 5)(0.2m/s* ) = 1(0.2m/s* )

0.1 =36t +111=0 t=357s,3.11s

Since we must have ¢ <180 s, the solution is .

For the runners to cross the finish line side-by-side means they must both reach the finish line in the
same amount of time from their current positions. Take Mary’s current location as the origin. Use
Eq. 2-12b.

For Sally:  22=5+5(+1(-5)¢ — -200+68=0 —

204,/20° —4(68
= (68) =4.343s, 15.665

2
The first time is the time she first crosses the finish line, and so is the time to be used for the
problem. Now find Mary’s acceleration so that she crosses the finish line in that same amount of
time.

t

22-4t  22-4(4.343)

=10.49m/s”
St 1(4.343)° /

For Mary: 22=0+4t+1a’ — a=
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48.

50.

51.

52.

Choose downward to be the positive direction, and take y, = 0 at the top of the cliff. The initial

velocity is v, = 0, and the acceleration is a = 9.80 m/ s*. The displacement is found from Eq. 2-
12b, with x replaced by y.

y=ytvittar = y=0=0+4(9.80m/s’)(3.755)" - y=[68.9m]

Choose downward to be the positive direction. The initial velocity is v, = 0, the final velocity is
1

v =(55km/h) _Lmfs

3.6km/h

found by solving Eq. 2-12a for the time.
V=V, 15 28m/s—0

a 9.80m/s’

j =15.28 m/s , and the acceleration is a = 9.80 m/s2 . The time can be

=11.6s

v=y,tat — t=

Choose downward to be the positive direction, and take y, = 0 to be at the top of the Empire State

Building. The initial velocity is v, = 0, and the acceleration is a = 9.80 m/ s’
(a) The elapsed time can be found from Eq. 2-12b, with x replaced by y.

2(380
I N L (—mz)=8.806Sz.
a 9.80m/s

(b) The final velocity can be found from Eq. 2-12a.

v=v, +ar=0+(9.80m/s*)(8.806 s) =

Choose upward to be the positive direction, and take y, = 0 to be at the height where the ball was

hit. For the upward path, v, =20m/s, v=0 at the top of the path, and a = -9.80 m/s2 .
(a) The displacement can be found from Eq. 2-12¢, with x replaced by y .
2oy 0-(20m/s)’
vi=vi+2a(y- S oy=y e VO:O+— Om
o +2a(y=,) AT 2(-9.80m/s”) 20m

(b) The time of flight can be found from Eq. 2-12b, with x replaced by y , using a displacement of 0
for the displacement of the ball returning to the height from which it was hit.

2v, 2(20m/s
Y=y, tvtt+tar’ =0 - t(v,+tat)=0 — t=0,t=_—; 9(80m/s) .

The result of = 0 s is the time for the original displacement of zero (when the ball was hit), and
the result of # =4 s is the time to return to the original displacement. Thus the answer is 1 =4 s.

Choose upward to be the positive direction, and take y, = 0 to be the height from which the ball

was thrown. The acceleration is a = —9.80 m/ s’. The displacement upon catching the ball is 0,

assuming it was caught at the same height from which it was thrown. The starting speed can be
found from Eq. 2-12b, with x replaced by y.

Y=y, tvtt+ta’=0 —

2

t
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The height can be calculated from Eq. 2-12c, with a final velocity of v =0 at the top of the path.

2_ )2 0-(15.68 ?
Vi=vi+2a(y-y,) — y=y0+v “o_0+ ( m/s) :12.54mz

2a 2(-9.80m/s”)

53. Choose downward to be the positive direction, and take y, = 0 to be at the maximum height of the
kangaroo. Consider just the downward motion of the kangaroo. Then the displacement is
y =1.65m, the acceleration is a = 9.80 m/s2 , and the initial velocity is v, = 0m/s. Use Eq. 2-

12b to calculate the time for the kangaroo to fall back to the ground. The total time is then twice the
falling time.

2 2y
+vt+ at =0 - y——a T
a
/2y 165m
=2 16s
wtal 980m/s -

54. Choose upward to be the positive direction, and take y, = 0 to be at the floor level, where the jump

starts. For the upward path, y =1.2m, v =0 at the top of the path, and a = -9.80 m/s2 .
(a) The initial speed can be found from Eq. 2-12c, with x replaced by y .
2 2
Vo=, +2a(y—y0) -

v, =V ~2a(y-y,) =y[-2ay = [-2(-9.80m/s*) (1.2m) = 4.8497 m/s = [4.8m5]

(b) The time of flight can be found from Eq. 2-12b, with x replaced by y , using a displacement of 0
for the displacement of the jumper returning to the original height.

y=y,tvit+tar’ =0 — t(vy+iat)=0 —

2 2(4.897m/s

—-a 9.80 m/ s
The result of = 0 s is the time for the original displacement of zero (when the jumper started to
jump), and the result of # = 0.99 s is the time to return to the original displacement. Thus the
answer is ¢ = 0.99 seconds.

O
bt

Choose downward to be the positive direction, and take y, = 0 to be the height where the object

was released. The initial velocity is v, = —5.10m/ s, the acceleration is a = 9.80 m/ s’, and the
displacement of the package will be y =105 m. The time to reach the ground can be found from
Eq. 2-12b, with x replaced by y.

2(-5.1 2(1
y=y,tvt+ia’ — t2+ﬁz—2—y:o 5 £+ (=5 Omfs) _ (Osz):
a a 9.80m/s 9.80m/s
1=518s, —4.14s

The correct time is the positive answer, .
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56. Choose downward to be the positive direction, and take y, = 0 to be the height from which the

object is released. The initial velocity is v, = 0, and the acceleration is a = g. Then we can

calculate the position as a function of time from Eq. 2-12b, with x replaced by y, as y (t) =7 gt’. At

the end of each second, the position would be as follows.

y(0)=0: y()=tg: »(2)=1g(2) =4y(1): »(3)=12(3) =9»(1)
The distance traveled during each second can be found by subtracting two adjacent position values
from the above list.

d()=y(1)-»(0)=y(1); d(2)=x(2)-»(1)=3»(1): d(3)=»(3)-»(2)=5»(1)
We could do this in general.

y(n)z%gn2 y(n+1)=%g(n+1)2
a?(n+1)=y(n+1)—y(n)=%g(n+1)2—%gn2 =§g((n+1)2—n2)

=%g(n2+2n+1—n2)=ig(2n+l)

2

The value of (2n + 1) is always odd, in the sequence|l, 3, 5,7, .. .|

57. Choose upward to be the positive direction, and y, = 0 to be the level from which the ball was

thrown. The initial velocity is v,,, the instantaneous velocity is v = 14 m/ s, the acceleration is

0%°
a=-9.80 m/s2 , and the location of the window is y =23 m.
(a) Using Eq. 2-12¢ and substituting y for x, we have

v =v§ +2a(y—y0) -

v, =t v —2a(y-,) = i\/(14m/s)2 ~2(-9.8m/s*)(23 m) = 25.43m/s =

Choose the positive value because the initial direction is upward.
(b) At the top of its path, the velocity will be 0, and so we can use the initial velocity as found
above, along with Eq. 2-12c.

2 _ 2 0—(25.43 :
V=v+2a(y-y,) o yey =0+ (35 H3m)s) =[33m]

2a 2(-9.80m/s’)

(c) We want the time elapsed from throwing (speed v, = 25.43 m/ s ) to reaching the window (speed
V= 14m/s ). Using Eq. 2-12a, we have the following.
Vv, 14m/s—25.43m/s
a  -9.80m/s’
(d) We want the time elapsed from the window (speed v, =14 m/ s) to reaching the street (speed

=1.166s =|1.2s

v=y, tat — (=

v=-25.43m/s). Using Eq. 2-12a, we have the following.
v-v, -2543m/s-14m/s

a  -980m/s’
This is the elapsed time after passing the window. The total time of flight of the baseball from

v=y,tat — t= 4.0s

passing the window to reaching the street is 4.0s+1.2s =|5.25s|.
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58. (a) Choose upward to be the positive direction, and y, =0 at the ground. The rocket has v, =0,

a=32 m/ s’, and y =950m when it runs out of fuel. Find the velocity of the rocket when it
runs out of fuel from Eq 2-12¢, with x replaced by y.
2 =v§ +2a(y—y0) -

950 m

Vo = 1V +2a(y = ,) = £,0+2(3.2m/5*) (950 m) = 77.97 m/s =

The positive root is chosen since the rocket is moving upwards when it runs out of fuel.
(b) The time to reach the 950 m location can be found from Eq. 2-12a.
%

Soh, = gsom — Vo _ 77.97m/s—0 _ 9437 s::

a 3.2 m/ s’
(c) For this part of the problem, the rocket will have an initial velocity v, = 77.97 m/ S, an

v,

V950 m = VO + at950m

acceleration of a = —9.80 m/ s*, and a final velocity of v =0 at its maximum altitude. The
altitude reached from the out-of-fuel point can be found from Eq. 2-12c.
+2a(y-950m) —

2 _ .2
v _v()SOm

2 _ 2
Yo =950m+0vﬂ=950m+L7m/Sz)=9som+310m=
2a 2(-9.80m/s*)

(d) The time for the “coasting” portion of the flight can be found from Eq. 2-12a.
v—v, 0-77.97m/s

V= v95() m + atcoast - tcoast = = 2

a ~9.80m/s

Thus the total time to reach the maximum altitude is # = 24.37 s+ 7.96 s =32.33s = |32 s|.

=7.96s

(e) For the falling motion of the rocket, v, =0 m/ s, a=-9.80 m/ s*, and the displacement is
—1260 m (it falls from a height of 1260 m to the ground). Find the velocity upon reaching the
Earth from Eq. 2-12c.

v =v§ +2a(y—y0) -

v=t vl +2a(y-y,) = £J0+2(-9.80m/s*) (~1260 m) = ~157m/s =

The negative root was chosen because the rocket is moving downward, which is the negative
direction.
() The time for the rocket to fall back to the Earth is found from Eq. 2-12a.

— -157 -0
v=y, +at — tm:v Yo _ 98(1)11/8/2 =16.0s
-9.80m/s

Thus the total time for the entire flight is  =32.33 s+16.0 s =48.33s = . .

59. (a) Choose y =0 to be the ground level, and positive to be upward. Then y = 0m,
Y, =15m, a=-g, and 1 =0.83s describe the motion of the balloon. Use Eq. 2-12b.

Y=y, tvtt+ia’ —
y—y,—Lta’ 0-15m-1(-9.80m/s*)(0.83s)’
- t - (0.83s)

So the speed is .

=-14m/s

Yo
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(b) Consider the change in velocity from being released to being at Roger’s room, using Eq. 2-12c.
v -y —(-14m/s)’

2a 2(-9.8m/s’)
Thus the balloons are coming from 2 floors above Roger, and so the | fifth floor |.

=10m

Vi=vi+2aAy — Ay=

60. Choose upward to be the positive direction, and y, = 0 to be the height from which the stone is
thrown. We have v, = 24.0m/s, a =-9.80m/s*, and y—y, =13.0m.
(a) The velocity can be found from Eq, 2-12¢, with x replaced by y.
vi=v, +2a(y-y,)=0 —
V=2V +2ay = i\/(24.0m/s)2 +2(-9.80m/s*)(13.0 m) = £17.9m/s

Thus the speed is ||[v| =17.9m/s|

(b) The time to reach that height can be found from Eq. 2-12b.
2(24.0m/s 2(-13.0m
y=y,tvt+ta’ — '+ ( /2)t+ ( 2):0 —
~9.80m/s ~9.80m/s

£ ~4.8981+2.653=0 — |1=4.285,0.620 5|

(¢) [There are two times at which the object reaches that height| — once on the way up (t=0.620 s) ,

and once on the way down (Z =4.28 s).

Choose downward to be the positive direction, and y, = 0 to be the height from which the stone is
dropped. Call the location of the top of the window y, , and the time for the stone to fall from
release to the top of the window is 7 . Since the stone is dropped from rest, using Eq. 2-12b with y
substituting for x, we have y =y, +vt+Lat’ =0+0+1gr’. The location of the bottom of the
window is y_+2.2m, and the time for the stone to fall from release to the bottom of the window is
t,+0.33s. Since the stone is dropped from rest, using Eq. 2-12b, we have the following:
y,+22m=y,+v,+tar’ =0+0+1g (tw +0.33 s)2 . Substitute the first expression for y  into
the second expression.

Ll +22m=2g(r,+033s) — 7,=0515s

Use this time in the first equation to get the height above the top of the window from which the stone
fell.

v, =ter =1(9.80m/s*)(0.5155)" =

62. Choose upward to be the positive direction, and y, = 0 to be the location of the nozzle. The initial

velocity is v,, the acceleration is a = —9.80 m/ s*, the final location is y = —1.5m, and the time of

flightis # = 2.0s. Using Eq. 2-12b and substituting y for x gives the following.
y—ta -15m-1(-9.80m/s*)(2.0s)’
i 20

=[9.1m/s

— 1 42 —
Y=Y, tyt+yatt — vy =
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63.

64.

65.

Choose up to be the positive direction, so @ = —g. Let the ground be the y = 0 location. As an

intermediate result, the velocity at the bottom of the window can be found from the data given.

Assume the rocket is at the bottom of the window at ¢ = 0, and use Eq. 2-12b.

_ 1 42
ytop of ybottom of + vbottom oftpass + 2 atpass -
window window window  window window

10.0m=8.0m+v,, . (0.155)++(-9.80m/s*)(0.155)" — v
window window
Now use the velocity at the bottom of the window with Eq. 2-12c to find the launch velocity,

assuming the launch velocity was achieved at the ground level.

2 2
vbottom of = vlaunch + 2a (y - y()) —

window

Voo = \/vjonomof ~2a(y-y,) = \/(14.07 m/s)’ +2(9.80m/s*)(8.0m) =18.84m/s

=14.07m/s

window

SiEma

The maximum height can also be found from Eq. 2-12c¢, using the launch velocity and a velocity of 0

at the maximum height.

2 _.2
Vmaximum - vlaunch + 2a (ymax - yO ) -
height

2 2

maximum

vlaunch 2
: —(18.84
ymax — yo + height _ ( 8 8 m/S) _

2a 2(-9.80m/s*)

Choose up to be the positive direction. Let the bottom of the cliff be the y = 0 location. The
equation of motion for the dropped ball is y,, = y, + vt +Lat’ =50.0m+1 (—9.80 m/s2 )tz. The

equation of motion for the thrown stone is y, . = y, + v,t + Lat’ = (24.0m/s )¢ + %(—9.80 m/s’ )tz.

Set the two equations equal and solve for the time of the collision. Then use that time to find the
location of either object.
Vour = Vi = 50.0m+1(-9.80m/s’ )¢’ = (24.0m/s)r +4(-9.80m/s’ )i —

50.0m = (24.0m/s)t — 1= —22™ _ 0835

24.0m/s
Vour = Vo F vt +Lat’ =50.0m +1(-9.80m/s*)(2.083s)’ =|28.7m

stone

For the falling rock, choose downward to be the positive direction, and y, = 0 to be the height from
which the stone is dropped. The initial velocity is v, = Om/ s, the acceleration is a = g, the
displacement is y = H, and the time of fall is #,. Using Eq. 2-12b with y substituting for x, we have

H=y,+vt+Li’=0+0+1gt’. For the sound wave, use the constant speed equation that
Ax

. . H . .
v, = ~ T o which can be rearranged to give t, = T ——, where T =3.4s is the total time
t -t v

elapsed from dropping the rock to hearing the sound. Insert this expression for 7, into the equation

s

for H from the stone, and solve for H.
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2
H T
H=1 (T——) N %Hz—(g—+le+§gT2:0 -

2
A% A4 A%
s s

s

4239%x10°H* —1.098H +56.64=0 — H =51.7m,2.59x10'm

H
If the larger answer is used in ¢, = T ——, a negative time of fall results, and so the physically

correct answer is |H =52 m|.

66. (a)

(b)

(©)

v

s

Choose up to be the positive direction. Let the throwing height of both objects be the y =0

location, and so y, = 0 for both objects. The acceleration of both objects is a = —g. The

equation of motion for the rock, using Eq. 2-12b,is y_, =y, + v, .t +2at’ =v, t—Lgt’,

where ¢ is the time elapsed from the throwing of the rock. The equation of motion for the ball,

being thrown 1.00 s later, is y,,, = ¥, + v,y (1 =1.008) + 2a (1 -1.00s)" =

Voo (1=1.008) =L g (1-1.00s)". Set the two equations equal (meaning the two objects are at

0 ball
the same place) and solve for the time of the collision.

Yeok = Yo 7 Vo mckt_%gt2 = V0 ban (t_ 1‘005) —%g(t—l‘OOSy -
(12.0m/s) - 1(9.80m/s* )¢’ = (18.0m/s) (¢ - 1.00s) = +(9.80m/s*) (1= 1.00s)" —

(15.8m/s)¢=(22.9m) — =

Use the time for the collision to find the position of either object. ‘ '
t—+gt* =(12.0m/s)(1.455) - 1(9.80m/s*)(1.455)" =|7.10m|

yrock = VO rock

Now the ball is thrown first, and so y,, =v,,.f —3 gt’ and

Vi = Vo roa (1—1.008) =L g (£ -1.00 s)2 . Again set the two equations equal to find the time of

collision.
Yot = Viok > Vovarl _%gtz = Vo rock (t_ I'OOS) —%g(f— I‘OOS)2 -
(18.0m/s)r—1(9.80m/s*)¢* = (12.0m/s) (t = 1.00s) -1 (9.80m/s* ) (r = 1.00s)" —
(3.80m/s)t=169m — t=445s

But this answer can be deceptive. Where do the objects collide?

Vo = Vool —18¢" =(18.0m/s)(4.455) - 1(9.80m/s’ ) (4.455)" =-16.9m

0 ball 2

Thus, assuming they were thrown from ground level, they collide below ground level, which

cannot happen. Thus | they never collide |

The displacement is found from the integral of the velocity, over the given time interval.

Ax = ]Z.vdt = [=}15(25+18t)dz = (25t +9%)

t t=1.5s

=(106 m

T =[25(3.)+9(3.0) |- [25(1.5)+9(1.5)']
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68. (a) The speed is the integral of the acceleration.

a=§ - dv=adt — dv:A\/;dt — jdv=A.[\/;dt -
t 0

Yo

vy, =24r"7 5 v=v +24r7 5 v=75m/s+2(20m/s")

(b) The displacement is the integral of the velocity.
d.
v :?x — dx=vdt — dx= (vo +§At3/2)dt -
t

j dx = j(vo +2A07)dt - x=vr+22407 =|(7.5m/s) 1+ £(2.0m/s7) 7

Om 0

() a(t=5.0s)= (2.0m/s”)«/5.05 =|4.5m/s’
v(1=50s)=7.5m/s+2(2.0m/s")(5.0s)"" = 22.41m/s =

x(t = 5.0s) = (7.5 m/s)(S.O s) +%(2.0 m/sS/z)(S.O s)S/2 =67.3Im =|67m

69. (a) The velocity is found by integrating the acceleration with respect to time. Note that with the
substitution given in the hint, the initial value of u is u, = g —kv, = g.

a=ﬂ — dv=adt — dv=(g—kv)dt — dv =dt
dt g—kv
Now make the substitution that u = g — kv.
d d du 1 d
u=g—kv — dv=-"2 Y oear > 2o car 5 Zekar
k g—kv k u u
h d ( u —
—u=—kde — Inul =-kt — s =—kt — u=ge'=g-kv —
4
g u 0 g
g —kt
v==(1-e
£ (1)

(b) As t goes to infinity, the value of the velocity is v = 1im%(1 - e"") = , We also note that
if the acceleration is zero (which happens at terminal velocity), then a = g-kv=0 —
vterm = g

k

70. (a) The train's constant speed is v,_. = 5.0m/s, and the location of the empty box car as a
t=(5.0m/s)t. The fugitive has v, =0m/s and

a=1.2 m/ s’ until his final speed is 6.0 m/ s. The elapsed time during the acceleration is

train

function of time is given by x_. =v_.

V=Y, 6.0m/s
* a 1.2m/s’
run. The first possibility to consider is, “Can the fugitive catch the empty box car before he
reaches his maximum speed?”” During the fugitive's acceleration, his location as a function of

t = 5.0 s. Let the origin be the location of the fugitive when he starts to

2

time is given by Eq. 2-12b, x, .. =x, +v¢+Ltar’ =0+ 0+§(1.2 m/sz)t . For him to catch

fugitive
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71.

72.

the train, we must have x,_. = x

train

— (5.0m/s)t= %(1.2 m/s? )tz. The solutions of this

fugitive

are ¢t = 0s, 8.3s. Thus the fugitive cannot catch the car during his 5.0 s of acceleration.

Now the equation of motion of the fugitive changes. After the 5.0 s of acceleration, he runs
with a constant speed of 6.0 m/ s. Thus his location is now given (for times ¢ > 5s) by the
following.

Xoge =2(1.2m/57)(5.0s) + (6.0m/s) (¢ - 5.0s) = (6.0m/s)r-15.0m
So now, for the fugitive to catch the train, we again set the locations equal.

Xiain = Xpuginve (S.Om/s)tz(6.0m/s)l—15.0m — t=

(b) The distance traveled to reach the box car is given by the following.

Xone (1=15.0'8) = (6.0m/s)(15.0 s) =15.0 m =

Choose the upward direction to be positive, and y, = 0 to be the level from which the object was

thrown. The initial velocity is v, and the velocity at the top of the pathis v =0 m/ s. The height at

the top of the path can be found from Eq. 2-12¢ with x replaced by y.

2
0

2a
From this we see that the displacement is inversely proportional to the acceleration, and so if the
acceleration is reduced by a factor of 6 by going to the Moon, and the initial velocity is unchanged,

-V

vVi=vi+2a(y-y,) = y-»y, =

the |displacernent increases by a factor of 6|.

(a) For the free-falling part of the motion, choose downward to be the positive direction, and
¥, = 0 to be the height from which the person jumped. The initial velocity is v, = 0,

acceleration is a = 9.80 m/ s*, and the location of the netis y =15.0m. Find the speed upon
reaching the net from Eq. 2-12¢ with x replaced by y.

v =vi+2a(y-y,) > v=+J0+2a(y-0) =J_r\/2(9.80m/s2)(15.0 m) =17.1m/s

The positive root is selected since the person is moving downward.
For the net-stretching part of the motion, choose downward to be the positive direction, and

¥, = 15.0m to be the height at which the person first contacts the net. The initial velocity is

v, =17.1m/s, the final velocity is v = 0, and the location at the stretched position is
y =16.0m.. Find the acceleration from Eq. 2-12¢ with x replaced by y.
Py 0 =(17.1m/s)
YR o ( /s) =|-150m/s’
2(y=»)  2(1.0m)

(b) For the acceleration to be smaller, in the above equation we see that the displacement should

be larger. This means that the net should be .

v? =v§+2a(y—y0) - a=

1m/s
3.6km/h
location at which the deceleration begins. We have v =0 m/ s and a = -30g = -294 m/ s*. Find

The initial velocity of the car is v, = (100 km/h)( j =27.8m/s. Choose x, = 0 to be the

the displacement from Eq. 2-12c.
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2 2 _ 2
vi=v, +2a(x-x,) — x=x0+v Yo _o+ 0-(27.8m/s) )=1.31mz

2a 2(-2.94x10* m/s’

74. Choose downward to be the positive direction, and y, = 0 to be at the start of the pelican’s dive.

The pelican has an initial velocity is v, = 0, an acceleration of a = g, and a final location of
y=16.0m. Find the total time of the pelican’s dive from Eq. 2-12b, with x replaced by y.

2 2(16.0 m
y=y,tvtt+ta’® - y=0+0+ita’ — t, = = (—2)=1-815-
V a 9.80m/s

The fish can take evasive action if he sees the pelican at a time of 1.81 s —0.20 s = 1.61 s into the
dive. Find the location of the pelican at that time from Eq. 2-12b.

=y, +vt+tat=0+0+1(9.80m/s?)(1.615) =127 m

Thus the fish must spot the pelican at a minimum height from the surface of the water of

16.0m—12.7m =.

75. (a) Choose downward to be the positive direction, and y, = 0 to be the level from which the

car was dropped. The initial velocity is v, = 0, the final location is y = H, and the

acceleration is @ = g. Find the final velocity from Eq. 2-12c, replacing x with y.

v =v, +2a(y yO - v= 1/\) +2a y yO t./2gH .

The speed is the magnitude of the velocity, (v =+/2gH |.

2

(b) Solving the above equation for the height, we have that H = ;— Thus for a collision of
g

= (50km/h)[ﬁ

2 2
:V_Z(BLm/S))zg.Mmz

2¢  2(9.80m/s’

j =13.89 m/ s, the corresponding height is as follows.

1
(¢) For acollision of v = (100 km/ h) L/S =27.78 m/ s, the corresponding height is as
3.6km/h
follow.
2

vi (2778 m/s)’
H=5=W=39.37mz

76. Choose downward to be the positive direction, and y, = 0 to be at the roof from which the stones

are dropped. The first stone has an initial velocity of v, =0 and an acceleration of a = g. Egs. 2-

12a and 2-12b (with x replaced by y) give the velocity and location, respectively, of the first stone as
a function of time.

v=y, tat — v, =gt y=y, tvt+ttat’® — y =Lgt
The second stone has the same initial conditions, but its elapsed time 7 —1.50s, and so has velocity
and location equations as follows.
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77.

78.

v, =g (1, —1.50s) yzzég(tl—l.SOS)2
The second stone reaches a speed of v, =12.0 m/ s at a time given by the following.

12.0
f=1.50s+-2 = 1.505+—m/sz
g 9.80m/s

The location of the first stone at that time is y, = L gt/ = %(9.80 m/s2 ) (2.72 s)2 =36.4m..

=2.72s

The location of the second stone at that time is y, = 7 g (t1 -1.50 s)2 =
%(9.80 m/s’ ) (2.72-1.50s)" = 7.35m. Thus the distance between the two stones is

v, -y, = 36.4m—7.35rn:.

1m/s

The initial velocity is v, = (1 5 km/ h) (m
.6km

J =4.17 m/ s. The final velocity is

v, = (75km/h)(%

average acceleration from Eq. 2-12c.
v —v2 (20.83m/s) —(4.17m/s)’

] =20.83 m/s. The displacement is x —x, =4.0km = 4000m. Find the

‘=vi+2a(x-x,) - a= = = [5.2x102 m/s
Vs 2a(-x) ‘ 2(x-x,) 2(4000 m) m/s
The speed limit is SOkm/h ﬂ =13.89m/s.
3.6km/h

(a) For your motion, you would need to travel (10+15+50+15+70+15)m =175m to get the

front of the car all the way through the third intersection. The time to travel the 175 m is found
using the distance and the constant speed.

A 175
Ax=vAr — A= _PM _15605

v 13.89m/s
, you can make it through all three lights without stopping.
(b) The second car needs to travel 165 m before the third light turns red. This car accelerates from
v, =0m/s to a maximum of v =13.89 m/s with @ = 2.0 rn/s2 . Use Eq. 2-12a to determine
the duration of that acceleration.
v—v, 13.89m/s—0m/s
a 2.0 m/ s?
The distance traveled during that time is found from Eq. 2-12b.
(x=x,),. = Vel +Tatl, =0+1(2.0m/s*)(6.94s)" =48.2m
Since 6.94 s have elapsed, there are 13 — 6.94 = 6.06 s remaining to clear the intersection. The
car travels another 6.06 s at a speed of 13.89 m/s, covering a distance of Ax

=6.94s

v=y,tat — t =

= \)avg[ =

constant
speed

(13.89m/s)(6.06 s) =84.2m. Thus the total distance is 48.2 m + 84.2 m = 132.4 m. ,
the car cannot make it through all three lights without stopping.
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The car has to travel another 32.6 m to clear the third intersection, and is traveling at a speed of

13.89 m/s. Thus the care would enter the intersection a time ¢ = & ﬂ =12.3s| after

v 13.89m/s

the light turns red.

First consider the “uphill lie,” in which the ball is being putted down the hill. Choose x, = 0 to be
the ball’s original location, and the direction of the ball’s travel as the positive direction. The final
velocity of the ball is v = 0m/s, the acceleration of the ball is a = —1.8 m/ s*, and the displacement

of the ball will be x — x;, = 6.0m for the first case and x — x, = 8.0 m for the second case. Find the
initial velocity of the ball from Eq. 2-12c.

. s ) \/0—2(—1.8m/s2)(6.0m)=4.6m/s
Vo=, 2a(x xo) — Vv, =4V 2a(x xo)— \/0—2(—1.8m/s2)(8.0m)=5,4m/s

, aspread of 0.8 m/s.

The range of acceptable velocities for the uphill lie is [4.6m/s to 5.4m/s

Now consider the “downhill lie,” in which the ball is being putted up the hill. Use a very similar set-
up for the problem, with the basic difference being that the acceleration of the ball is now

a=-2.8 rn/s2 . Find the initial velocity of the ball from Eq. 2-12c.

0-2(-2.8m/s*)(6.0m) = 5.8m/s
vi=v, +2a(x-x,) — vozm: \/ ( )

J0-2(-2.8m/s*)(8.0m) = 6.7m/s
The range of acceptable velocities for the downhill lie is |5.8 m/s to 6.7m/s

, aspread of 0.9 m/s.

Because the range of acceptable velocities is smaller for putting down the hill, more control in
putting is necessary, and so putting the ball downbhill (the “uphill lie) is more difficult.

80. To find the distance, we divide the motion of the robot into three segments. First, the initial
acceleration from rest; second, motion at constant speed; and third, deceleration back to rest.

d, =vt+tar =0+1(020m/s?)(5.0s)" =2.5m v, =qy =(0.20m/s*)(5.08) =1.0m/s
d,=vt,=(1.0m/s)(68s)=68m v, =v, =1.0m/s

d,=vt, +1at’ =(1.0m/s)(2.55) +1(-0.40m/s*)(2.55)" =1.25m

d=d +d,+d =25m+68m+125m=7175m=[72m]

81. Choose downward to be the positive direction, and y, = 0 to be at the top of the cliff. The initial

velocity is v, = —12.5m/s, the acceleration is @ = 9.80 m/s2 , and the final location is y = 75.0m.

(a) Using Eq. 2-12b and substituting y for x, we have the following.
y=y,tvt+iar - (49m/s’)F - (12.5m/s)1-75.0m=0 — r=-2.839s,5390s

The positive answer is the physical answer: .
(b) Using Eq. 2-12a, we have v =v, +at =-12.5m/s + (9.80 m/sz)(5.390s) = .
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(¢) The total distance traveled will be the distance up plus the distance down. The distance down
will be 75.0 m more than the distance up. To find the distance up, use the fact that the speed at
the top of the path will be 0. Using Eq. 2-12c we have the following.

V- 0-(-12.5m/s)’

Vi=vit2a(y-n) = yEyt—t=04 (5 50m/s) =-797m

Thus the distance up is 7.97 m, the distance down is 82.97 m, and the total distance traveled is

oo]

82. (a) Inthe interval from A to B, it is |moving in the negative direction |, because its displacement is

negative.

(b) In the interval from A to B, it is [speeding up|, because the magnitude of its slope is increasing

(changing from less steep to more steep).

(¢) Inthe interval from A to B, |the acceleration is negative|, because the graph is concave down,

indicating that the slope is getting more negative, and thus the acceleration is negative.

, because the displacement is

(d) In the interval from D to E, it is |m0ving in the positive direction

positive.

(e) In the interval from D to E, it is |speeding up |, because the magnitude of its slope is increasing
(changing from less steep to more steep).

() In the interval from D to E,

the acceleration is positive|, because the graph is concave upward,

indicating the slope is getting more positive, and thus the acceleration is positive.

(g) In the interval from C to D, |the object is not moving in either direction|.

|The velocity and acceleration are both 0.

83. This problem can be analyzed as a series of three one-dimensional motions: the acceleration phase,
the constant speed phase, and the deceleration phase. The maximum speed of the train is as follows.

(95 km/h)(%} =26.39m/s

In the acceleration phase, the initial velocity is v, = 0m/s, the acceleration is a = 1.1m/ s*, and

the final velocity is v = 26.39m/s. Find the elapsed time for the acceleration phase from Eq. 2-12a.
v—v, 2639m/s—0
v=vy,tat — = = 2
a 1.1 m/s
Find the displacement during the acceleration phase from Eq. 2-12b.
(x-x,),. =vi+iar =0+1(1.1m/s*)(23.99s)" =316.5m

aci

=23.99s

In the deceleration phase, the initial velocity is v, = 26.39 m/ s, the acceleration is a = -2.0 m/ s’
and the final velocity is v = 0m/s. Find the elapsed time for the deceleration phase from Eq. 2-12a.
v—v, 0-2639m/s
v=y,tat — . = = P
a -2.0 m/s
Find the distance traveled during the deceleration phase from Eq. 2-12b.
(x-x,),. =v¢+iar’ =(2639m/s)(13.20s) +<(-2.0m/s*)(13.20s)" =174.1m

dec

=13.20s
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&4.

The total elapsed time and distance traveled for the acceleration / deceleration phases are:
to.tit,.=2399s+13.20s=37.195s

ac

(x-x,)  +(x-x)),. =3165m+174.1m =491 m
9000 m

1800 m
station segments. A train making the entire trip would thus have a total of 5 inter-station
segments and 4 stops of 22 s each at the intermediate stations. Since 491 m is traveled during
acceleration and deceleration, 1800m —491m = 1309 m of each segment is traveled at an

(a) If the stations are spaced 1.80 km = 1800 m apart, then there is a total of =5 inter-

average speed of v =26.39 rn/ s. The time for that 1309 m is given by Ax = vAt —
Ax 1309

Atconslanl =—= —m

speed v 26.39m/s

49.60 s = 86.79 s. With 5 inter-station segments of 86.79 s each, and 4 stops of 22 s each, the

total time is given by 7,,, =5(86.79s)+4(22s) =522s = .

(b) If the stations are spaced 3.0 km = 3000 m apart, then there is a total of

=49.60s. Thus a total inter-station segment will take 37.19 s +

9000 m

0m
station segments. A train making the entire trip would thus have a total of 3 inter-station
segments and 2 stops of 22 s each at the intermediate stations. Since 491 m is traveled during
acceleration and deceleration, 3000 m —491m = 2509 m of each segment is traveled at an

=3 inter-

average speed of ¥ =26.39m/s. The time for that 2509 m is given by d =vt —
d  2509m

v 26.39m/s
132.3 s. With 3 inter-station segments of 132.3 s each, and 2 stops of 22 s each, the total time is

fiow = 3(132.35) +2(225) = 4415 = ,

For the motion in the air, choose downward to be the positive direction, and y, = 0 to be at the

=95.07s. Thus a total inter-station segment will take 37.19 s + 95.07 s =

height of the diving board. The diver has v, = 0 (assuming the diver does not jump upward or
downward), a = g = 9.80 m/ s’, and y = 4.0 m when reaching the surface of the water. Find the
diver’s speed at the water’s surface from Eq. 2-12¢, with x replaced by y.
2 2
Vo=, +2a(y—y0)x —
v=t vl +2a(y-y,) =,J0+2(9.80m/s*) (4.0 m) =8.85m/s

For the motion in the water, again choose down to be positive, but redefine y, = 0 to be at the

surface of the water. For this motion, v, =8.85m/s, v=0,and y—y, =2.0 m. Find the
acceleration from Eq. 2-12¢, with x replaced by y.

2.2 _ 2
vi=v +2a(y-y,) — a= ¥~ % =0 (8.85ms) =—19.6m/szz—20m/s2
2-r)x  2(20m)

The negative sign indicates that the acceleration is directed upwards.

Choose upward to be the positive direction, and the origin to be at the level where the ball was
thrown. The velocity at the top of the ball’s path will be v = 0, and the ball will have an
acceleration of ¢ = —g. If the maximum height that the ball reaches is y = H, then the relationship
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between the initial velocity and the maximum height can be found from Eq. 2-12¢, with x replaced
by y.
v =v§ +2a(y—y0) - 0=v§+2(—g)H - H =v§/2g

2 2
=1.5v SO HBill — (VO Bi]]) /2g _ (VO Bi]]) — 152 =225 :::_

T L () 28 ()’

It is given that v,

86. The v vs. ¢ graph is found by taking the slope of the x vs. ¢ graph.
Both graphs are shown here.

1
1 |
- i i
'\I:- 10 i | — ! |
- ; I | ' i ! i
d ] o H H : 1
P e i N T B B
i L. i | 21 EoH o]

{78}

_Ims o m/s.
3.6km/h

Case I: trying to stop. The constraint is, with the braking deceleration of the car (a =-58 m/ s’ ) ,

87. The car’s initial speed is v, = (45 km/h)(

can the car stop in a 28 m displacement? The 2.0 seconds has no relation to this part of the problem.
Using Eq. 2-12c, the distance traveled during braking is as follows.

(x-x,)= V- _ 0-(12.5m/s)

0
2a 2(-5.8m/s’)
Case II: crossing the intersection. The constraint is, with the given acceleration of the car
65km/h —45km/h 1 . .
a= ( / / j m/s =0.9259 m/ s* |, can she get through the intersection
6.0s 3.6km/h

(travel 43 meters) in the 2.0 seconds before the light turns red? Using Eq. 2-12b, the distance
traveled during the 2.0 sec is as follows.

(x=x,)=vt+Ltar’ =(12.5m/s)(2.0s)+1(0.927m/s*)(2.05)" =26.9 m

=135m — |She can stop the car in time.|

|She should stop.|

88. The critical condition is that the total distance covered by the passing car and the approaching car
must be less than 400 m so that they do not collide. The passing car has a total displacement
composed of several individual parts. These are: i) the 10 m of clear room at the rear of the truck, ii)
the 20 m length of the truck, iii) the 10 m of clear room at the front of the truck, and iv) the distance

the truck travels. Since the truck travels at a speed of ¥ = 25m/s, the truck will have a

displacement of Ax,_ . = (25 m/ s) t. Thus the total displacement of the car during passing is

truck
Ax ., =40m+(25m/s)t.
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To express the motion of the car, we choose the origin to be at the location of the passing car when
the decision to pass is made. For the passing car, we have an initial velocity of v, = 25m/s and an

acceleration of @ =1.0 m/s2. Find Ax from Eq. 2-12b.

passing
car

AX iine =X, — X =Vt +5at = (25m/s)t+%(1.0m/s2)t2

Set the two expressions for Ax equal to each other in order to find the time required to pass.

passing
car

40m+(25m/s)e, =(25m/s)e  ++(1.0m/s* )2, — 40m=1(1.0m/s*)r  —

pass 2 pass

t =+/80s’ =8.94s

pass

Calculate the displacements of the two cars during this time.
Ax, . =40m+(25m/s)(8.945) =264 m

passing
car

v t=(25m/s)(8.94s)=224m

approaching ~ " approaching
car car

Thus the two cars together have covered a total distance of 488 m, which is more than allowed.

The car should not pass.|

89. Choose downward to be the positive direction, and y, = 0 to be at the height of the bridge. Agent

Bond has an initial velocity of v, = 0, an acceleration of a = g, and will have a displacement of
y=13m-1.5m=11.5m. Find the time of fall from Eq. 2-12b with x replaced by y.

2 2(11.5 m
y=y0+v0t+§at2 — t= 2y (—2)=1.5325
\ a 9.80m/s

If the truck is approaching with v = 25 m/ s, then he needs to jump when the truck is a distance
away given by d = vt = (25 m/s) (1.532 s) =38.3m. Convert this distance into “poles.”
d= (38.3 m)(l pole/25 m) =1.53 poles

So he should jump when the truck is about |1.5 poles| away from the bridge.

90. Take the origin to be the location where the speeder passes the police car. The speeder’s constant
Im/s
3.6 km/h
=V, oo = (36.1m/s) ¢

speeder ”speeder

speedis v .. = (130km/ h)( j =36.1m/s, and the location of the speeder as a function

of time is given by x__.. peeder+ 1 D€ police car has an initial velocity of

v, =0m/s and a constant acceleration of a .- The location of the police car as a function of time

lice *
2
police” police *

is given by BEq. 2-12b: x . =vt+1ar’ =1a

police

(a) The position vs. time graphs would qualitatively look
like the graph shown here.

(b) The time to overtake the speeder occurs when the speeder )
has gone a distance of 750 m. The time is found using the
speeder’s equation from above.

Police can
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92.

93.

750 m
=—=20.8s =|21s
36.1m/s

(¢) The police car’s acceleration can be calculated knowing that the police car also had gone a
distance of 750 m in a time of 22.5 s.

750 m = (36.1m/s)z

speeder speeder

a, (20.8 s)2 - a,= Z(L()mz) = 3.47m/s2 = 3.5m/s2
(20.8 5)

(d) The speed of the police car at the overtaking point can be found from Eq. 2-12a.

vV=y, +at=0+(3.47m/s2)(20.8 s)=72.2m/s :

Note that this is exactly twice the speed of the speeder.

d I.1m
The speed of the conveyor belt is givenby d = VAt - v =—= =[0.44m/min| The rate
v

2.5 min
of burger production, assuming the spacing given is center to center, can be found as follows.

(1 burgerj(0.44 mj _lrg burgers

0.15m 1 min min

750 m =

L
2

Choose downward to be the positive direction, and the origin to be at the top of the building. The
barometer has y, =0, v, =0, and a = g =9.8 rn/s2 . Use Eq. 2-12b to find the height of the
building, with x replaced by y.

Y=y, tvtt+Lat’ = 0+0+§(9.8m/sz)t2

s ~HOS0/) @0 ~20m o, =(05m/5) (235 =26 m

The difference in the estimates is 6 m. If we assume the height of the building is the average of the

. . .6
two measurements, then the % difference in the two values is 23_m X100 = .
m

(a) The two bicycles will have the same velocity at A
any time when the instantaneous slopes of their
x vs. t graphs are the same. That occurs near the X
time ¢, as marked on the graph.

(b) Bicycle A has the larger acceleration, because
its graph is concave upward, indicating a positive
acceleration. Bicycle B has no acceleration because
its graph has a constant slope. t

(¢) The bicycles are passing each other at the times
when the two graphs cross, because they both have the same position at that time. The graph
with the steepest slope is the faster bicycle, and so is the one that is passing at that instant. So at
the first crossing, bicycle B is passing bicycle A. At the second crossing, bicycle A is passing
bicycle B.

(d) Bicycle B has the highest instantaneous velocity at all times until the time #,, where both graphs
have the same slope. For all times after ¢, bicycle A has the highest instantaneous velocity.
The largest instantaneous velocity is for bicycle A at the latest time shown on the graph.

(e) The bicycles appear to have the same average velocity. If the starting point of the graph for a
particular bicycle is connected to the ending point with a straight line, the slope of that line is
the average velocity. Both appear to have the same slope for that “average” line.

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

45



Physics for Scientists & Engineers with Modern Physics, 4" Edition Instructor Solutions Manual

94. In this problem, note that ¢ <0 and x > 0. Take your starting position as 0. Then your position is
given by Eq. 2-12b, x, =v, ¢ +§at2, and the other car’s position is given by x, = x + v, f. Set the

two positions equal to each other and solve for the time of collision. If this time is negative or
imaginary, then there will be no collision.

X, =x, = vit+ta’=x+vgi — Ltar’+(v,-v,)i-x=0

(0, -v ) (v, -y, —43a(-x)

No collision: (v, —v,)’ —4La(-x)<0 — |x>

95. The velocities were changed from km/h to m/s by multiplying the conversion factor that 1 km/hr =
1/3.6 m/s.

(a) The average acceleration for each interval is calculated by a = Av/At, and taken to be the
acceleration at the midpoint of the time interval. In the spreadsheet, a , = il The
n ; t
accelerations are shown in the table below.
(b) The position at the end of each interval is calculated by x,., =x, +<(v, +v,,,)(¢,,, —1,).

This can also be represented as x = x, + VAz. These are shown in the table below.

t(s) v (kmh) v (m/s) 1(s) g (m/sd) t(s) x (m)
0.0 0.0 0.0 0.0 0.00
0.5 6.0 1.7 0.25 3.33 0.5 0.42
1.0 13.2 3.7 0.75 4.00 1.0 1.75
1.5 223 6.2 1.25 5.06 1.5 4.22
2.0 32.2 8.9 1.75 5.50 2.0 8.00
2.5 43.0 11.9 2.25 6.00 2.5 13.22
3.0 53.5 14.9 2.75 5.83 3.0 19.92
35 62.6 17.4 3.25 5.06 35 27.99
4.0 70.6 19.6 3.75 4.44 4.0 37.24
45 78.4 21.8 425 4.33 4.5 47.58
5.0 85.1 23.6 4.75 3.72 5.0 58.94

(¢) The graphs are shown below. The spreadsheet used for this problem can be found on the Media
Manager, with filename “PSE4 ISM_CHO02.XLS,” on tab “Problem 2.95¢.”

. . /

n
=]

353
(=]

Acc (m/sz)
- op g
Distance (m)
S

(=]
L
—_
(=]

=1

=]
(=]
&

0 1 2 3 4 5 2 3 4 5
Time (s) Time (s)

=
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96. For this problem, a spreadsheet was designed. The columns of the spreadsheet are time,
acceleration, velocity, and displacement. The time starts at 0 and with each interval is incremented

by 1.00 s. The acceleration at each time is from the data t(5) a@msd) v (ms) x (m)
given in the problem. The velocity at each time is found 0.0 1.25 0.0 0
by multiplying the average of the accelerations at the 1.0 1.58 1.4 1
current time and the previous time, by the time interval, 2.0 1.96 32 3
and then adding that to the previous velocity. Thus 3.0 2.40 54 7
v, =v,+%(a,+a,, )(t,, —1). Thedisplacement from 4.0 2.66 7.9 14
the starting position at each time interval is calculated by a 5.0 2.70 10.6 23
constant acceleration model, where the acceleration is as 6.0 2.74 133 35
given above. Thus the positions is calculated as follows. 7.0 2.72 16.0 30
2 8.0 2.60 18.7 67
X, =x,+v, (1, -1,)+3[3(a, +a,)](., - 1) 9.0 2.30 21.1 87
The table of values is reproduced here. 10.0 2.04 233 109
— 11.0 1.76 25.2 133
@ v(17.00) 12.0 1.41 268 159
() x(17.00) =[305m] 13.0 1.09 280 187
The spreadsheet used for this problem can be found on the 128 82? 33(7) ;}é
Media Manager, with filename “PSE4 ISM_CHO02.XLS,” ’ ’ ’
on tab “Problem 2.96.” 16.0 0.28 30.1 275
17.0 0.10 30.3 305

(a) For each segment of the path,

.S . .. 8.6
the time is given by the distance divided
by the speed. 8.4 \
d o = 8.2
t= tland + tpool = o + = g
vland v ool ﬁ 8.0
’ 2
o 7.8 /
x D’ + (d - )C)2 o \ /
=—+ 276 ~
Vr Vs £ \\_/
. . = 74
(b) The graph is shown here. The minimum
time occurs at a distance along the pool of 7.2 T T
bout 0 ! 2 gistange alo?lg po?)l (m)7 8 s
about [x =6.8m|.

An analytic differentiation to solve for the minimum point gives x = 6.76 m.

The spreadsheet used for this problem can be found on the Media Manager, with filename
“PSE4 ISM_CHO02.XLS,” on tab “Problem 2.97b.”
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CHAPTER 3: Kinematics in Two or Three Dimensions; Vectors

Responses to Questions

10.

11.

12.

No. Velocity is a vector quantity, with a magnitude and direction. If two vectors have different
directions, they cannot be equal.

No. The car may be traveling at a constant speed of 60 km/h and going around a curve, in which case
it would be accelerating.

Automobile races that begin and end at the same place; a round-trip by car from New York to San
Francisco and back; a balloon flight around the world.

The length of the displacement vector is the straight-line distance between the beginning point and
the ending point of the trip and therefore the shortest distance between the two points. If the path is a
straight line, then the length of the displacement vector is the same as the length of the path. If the
path is curved or consists of different straight line segments, then the distance from beginning to end
will be less than the path length. Therefore, the displacement vector can never be longer than the
length of the path traveled, but it can be shorter.

The player and the ball have the same displacement.

V is the magnitude of the vector V ; it is not necessarily larger than the magnitudes ¥ and V5. For
instance, if \71 and \72 have the same magnitude as each other and are in opposite directions, then V

is zero.

The maximum magnitude of the sum is 7.5 km, in the case where the vectors are parallel. The
minimum magnitude of the sum is 0.5 km, in the case where the vectors are antiparallel.

No. The only way that two vectors can add up to give the zero vector is if they have the same
magnitude and point in exactly opposite directions. However, three vectors of unequal magnitudes
can add up to the zero vector. As a one-dimensional example, a vector 10 units long in the positive x
direction added to two vectors of 4 and 6 units each in the negative x direction will result in the zero
vector. In two dimensions, consider any three vectors that when added form a triangle.

(a) Yes. In three dimensions, the magnitude of a vector is the square root of the sum of the squares
of the components. If two of the components are zero, the magnitude of the vector is equal to
the magnitude of the remaining component.

(b) No.

Yes. A particle traveling around a curve while maintaining a constant speed is accelerating because
its direction is changing. A particle with a constant velocity cannot be accelerating, since the velocity
is not changing in magnitude or direction.

The odometer and the speedometer of the car both measure scalar quantities (distance and speed,
respectively).

Launch the rock with a horizontal velocity from a known height over level ground. Use the equations
for projectile motion in the y-direction to find the time the rock is in the air. (Note that the initial
velocity has a zero y-component.) Use this time and the horizontal distance the rock travels in the
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equation for x-direction projectile motion to find the speed in the x-direction, which is the speed the
slingshot imparts. The meter stick is used to measure the initial height and the horizontal distance the
rock travels.

—
W

No. The arrow will fall toward the ground as it travels toward the target, so it should be aimed above
the target. Generally, the farther you are from the target, the higher above the target the arrow should
be aimed, up to a maximum launch angle of 45°. (The maximum range of a projectile that starts and
stops at the same height occurs when the launch angle is 45°.)

14. As long as air resistance is negligible, the horizontal component of the projectile’s velocity remains
constant until it hits the ground. It is in the air longer than 2.0 s, so the value of the horizontal
component of its velocity at 1.0 s and 2.0 s is the same.

15. A projectile has the least speed at the top of its path. At that point the vertical speed is zero. The
horizontal speed remains constant throughout the flight, if we neglect the effects of air resistance.

16. If the bullet was fired from the ground, then the y-component of its velocity slowed considerably by
the time it reached an altitude of 2.0 km, because of both acceleration due to gravity (downward) and
air resistance. The x-component of its velocity would have slowed due to air resistance as well.
Therefore, the bullet could have been traveling slowly enough to be caught!

17. (a) Cannonball A, because it has a larger initial vertical velocity component.
() Cannonball A, same reason.
(c¢) Itdepends. If 85 <45° cannonball A will travel farther. If g > 45°, cannonball B will travel
farther. If 8, > 45° and 05 < 45°, the cannonball whose angle is closest to 45° will travel
farther.

18. (a) The ball lands back in her hand.
(b) The ball lands behind her hand.
(¢) The ball lands in front of her hand.
(d) The ball lands beside her hand, to the outside of the curve.
(e) The ball lands behind her hand, if air resistance is not negligible.

This is a question of relative velocity. From the point of view of an observer on the ground, both
trains are moving in the same direction (forward), but at different speeds. From your point of view
on the faster train, the slower train (and the ground) will appear to be moving backward. (The
ground will be moving backward faster than the slower train!)

20. The time it takes to cross the river depends on the component of velocity in the direction straight
across the river. Imagine a river running to the east and rowers beginning on the south bank. Let the
still water speed of both rowers be v. Then the rower who heads due north (straight across the river)
has a northward velocity component v. The rower who heads upstream, though, has a northward
velocity component of less than v. Therefore, the rower heading straight across reaches the opposite
shore first. (However, she won’t end up straight across from where she started!)

21. As you run forward, the umbrella also moves forward and stops raindrops that are at its height above
the ground. Raindrops that have already passed the height of the umbrella continue to move toward
the ground unimpeded. As you run, you move into the space where the raindrops are continuing to
fall (below the umbrella). Some of them will hit your legs and you will get wet.
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Solutions to Problems

The resultant vector displacement of the car is given by
ﬁR = ﬁwest +l350uth_. The westward displacement is |

west west

2254 78c0s45° =280.2km and the south displacement is

=]}

78sin45° = 55.2km . The resultant displacement has a magnitude of v/280.2° +55.2> =[286km|.

The direction is € = tan™' 55.2/280.2 = |11°south of west|

The truck has a displacement of 28 + (—26) =2 blocks north and 16 blocks D,

east. The resultant has a magnitude of v/2*> +16> =16.1blocks = |16 blocks = 1
b _
and a direction of tan™ 2/16 = 17° north of east|. north D

Given that ¥ =7.80 units and V, = —6.40 units, the magnitude of V s
given by V' = 1/VXZ + V)2 = \/7.802 + (—6.40)2 =[10.1units|. The direction is

. ., —6.40 .. .
given by 6 = tan™' =20 = , 39.4° below the positive x-axis.

The vectors for the problem are drawn approximately to scale. The
resultant has a length of and a direction north of east. If

calculations are done, the actual resultant should be 17 m at 23° north of
east.

(a) See the accompanying diagram

(b) V,=-24.8c0s23.4°=[-22.8 units| ¥, =24.85in23.4° =[9.85 units
(© V=\V2+v? =\(-22.8) +(9.85)" =

9.85
6 =tan” fg = |23.4°ab0ve the — x axis|

We see from the diagram that A = 6.8i and B = —5.5i.

(@) C=A+B=68i+ (—5.5)i = m The magnitude is , and the direction is .
(b) A-B=68i- (—S.S)i = . The magnitude is , and the direction is .
() C=B-A-= (-5.5) i-6.8i= . The magnitude is , and the direction is E

A
Il
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10.

11.

@ v,u= (835 km/h)(cos41.5°) = Vi = (835 km/h)(sin41.5°) =
(b) Ad,, =v,,t=(625km/h)(2.50 h)=

Ad,. =v,t=(553km/h)(2.50 h) =

(@ V,=-60i+8.0] ¥ =6.0"+8.0>=[10.0] 6=tan TO():
() V,=451-50] 7, =45 +50" =[6.7] 0=tan" 4—50=

© V. +V, =(—6.oi+8.oj)+(4.5i—5.oj)=—1.si+3.oj
=4/1.5 +3.0° —- 0 = tan™ 05=

d V,- =(451—50_]) (-6.0i +8.0) =10.51 - 13.0]

IV, - V/|=+105" +13.0" = 0 = tanl%z

V

(@) V,+V,+V,=(4.0i-8.0j)+(1.0i+1.0j) + (-2.0i +4.0j) = 3.0i - 3.0]

Vi +V,+V,|=+3.0"+3.0" = 6 = tan” ‘— 315°]

(b) V,=V,+V, =(4.0i-8.0j) - (1.0i +1.0j) + (- 201+40)= 1.0i - 5.0j

—V,+V,[=31.0+5.0" =[5.1]] 6=tan” 0 2807

=

A, =44.0c0s28.0°=38.85 A, =44.0sin28.0° = 20.66
B, =-26.5c0856.0°=—-14.82 B, =26.5sin56.0°=21.97
C, =31.0c0s270° = 0.0 C, =31.0sin270° = -31.0
(@) (A+B+C) =38.85+(-14.82)+0.0=24.03=
(A+B+C) =20.66+21.97+(-31.0)=11.63=

v

(b) |A+B+C|=4/(24.03) +(11.63) =[267] 0= tan'1%=

A =44.0cos28.0°=38.85 A, =44.0sin28.0° = 20.66

X

B, =-26.5c0856.0°=-14.82 B =26.55in56.0° = 21.97

(@) (B-A) =(-14.82)-3885=-53.67  (B-A) =21.97-20.66=1231

Note that since the x component is negative and the y component is positive, the vector is in the
2" quadrant.

B-A =|-53.7i+1.31j
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1.31

|1§—A|:\/(—53.67)2 +(1.31) =[53.7] 6, ,=tan”’ = [1.4° above — x axis|

B-4

() (A-B) =38.85-(-14.82)=53.67  (A-B) =20.66-21.97=-131

Note that since the x component is positive and the y component is negative, the vector is in the
4™ quadrant.

A-B=|537i-131j

|1§ —ﬁ| = \/(53.67)2 + (—1.31)2 = 0 =tan™' _513371 = |1.4° below + x axis

Comparing the results shows that B — A = (;& ﬁ)

12. A, =44.0c0s28.0°=38.85 A =44.0sin28.0° = 20.66
C, =31.0c05270° = 0.0 C, =31.05in270° = -31.0
(A-C) =3885-00=3885  (A-C) =20.66-(-31.0)=51.66

—C=138.8i+51.7]

A -€|=/(38.85)" +(51.66)" =[64.6] 9=tan*%=

13. 4 =44.0cos28.0° = 38.85 A4, =44.0sin28.0° = 20.66
B =-26.5c0856.0°=-14.82 B =126.5sin56.0° = 21.97
C,=31.0c0s270°=0.0 C, =31.0sin270° = -31.0
(@) (B-2A) =-14.82-2(38.85)=-92.52 (B-2A) =21.97-2(20.66)=-19.35
x y
Note that since both components are negative, the vector is in the 3™ quadrant.
B -2A =|-92.51 - 19.4]

|B-24=/(-92.52)" +(~1935) =[945] 0= 1tan 122; [11.8°below — x axis

(b) (2A-3B+2C) =2(38.85)-3(-14.82)+2(0.0) =122.16
(24-3B+2C) =2(20.66)-3(21.97)+2(-31.0) = -86.59

Note that since the x component is positive and the y component is negative, the vector is in the
4™ quadrant.

2A -3B +2C =122i - 86.6]

-86.59

2A -3B+2C|= \/(122.16)2 +(-86.59)" = 6 = tan™ = [35.3°below + x axis

14. A, =44.0c0s28.0°=38.85 A =44.0sin28.0° = 20.66
B, =-26.5c0856.0°=-14.82 B, =26.5sin56.0°=21.97
C, =31.0c0s270° = 0.0 C, =31.0sin270° = -31.0
(@) (A-B+C) =38.85-(-14.82)+0.0=53.67
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(A-B+C) =20.66-21.97+(-31.0)=-3231

Note that since the x component is positive and the y component is negative, the vector is in the
4™ quadrant.

A-B+C=153.7i-32.3]

A-B+C|=/(53.67) +(-3231) =[626] 0=1tan

—32.31 =(31.0°below + x axis

(b) =38.85+(—14.82)-0.0 = 24.03

( ).
(A+B-C) =20.66+21.97—(-31.0)=73.63

A +B-C =(24.0i +73.6]

A+1§—C= 24.03)" +(73.63)° 0 = tan “7363 71.9°
| J(24.03) -[77] o

(¢) (C-A-B) =0.0-38.85—(-14.82)=-24.03
(C-A-B) =-31.0-20.66-21.97 = ~73.63
Note that since both components are negative, the vector is in the 3 quadrant.
C-A-B=|-24.0i-73.6j

- . —73.63
C—A—B|=/(—24.03) +(-73.63) =[775] 0=tan" 03 =[71.9°below — x axis
Note that the answer to (c) is the exact opposite of the answer to (D).

15. The x component is negative and the y component is positive, since the summit is to the west of
north. The angle measured counterclockwise from the positive x axis would be 122.4°. Thus the
components are found to be as follows.

x =4580c0s122.4° = -2454m y =4580sin122.4°=3867m z=2450m

F=—2450mi+3870m]+2450mk|  [F] = /(-2454)" + (4580)" + (2450)" =

16. (a) Use the Pythagorean theorem to find the possible x components.
90.0° = x> +(-55.0)° — x’=5075 — x=

(b) Express each vector in component form, with V the vector to be determined.
(71.2i-55.05) + (V.i+V,j) = -80.0i +0.0j —
=(-80.0-71.2) =-151.2 V, =550

V =|-151.2i + 55.0j

17. Differentiate the position vector in order to determine the velocity, and differentiate the velocity in
order to determine the acceleration.

F=(9.60ri+8.85j-1.00k)m — v (9.60i -2.00rk)m/s| —
dt
a=L [ 00km/s
dt
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18.

20.

21.

The average velocity is found from the displacement at the two times.

_F(1)-F(1)
o L=

[(9-60(3.00)i +8.85§(3.00)" k) m |- (9.60(1.00)i +8.85 (1.00)" k) m |
2.00s

=1(9.60i-4.00k ) m/s

The magnitude of the instantaneous velocity is found from the velocity vector.
dr = -
v=""={(9.60i-2.00:k)m/s

dt

v(2.00) = (9.601 - (2.00)(2.00) k) m/s = (9.60i — 4.00k ) m/s

V= \/(9.60)2 +(4.00)" m/s =[10.4m/s

Note that, since the acceleration of this object is constant, the average velocity over the time interval
is equal to the instantaneous velocity at the midpoint of the time interval.

From the original position vector, we have x = 9.60¢, y = 8.85, z = —=1.00¢>. Thus

X

2
z=- (%] = —ax’,y =8.85. This is the equation for a in the x-z plane that has its

vertex at coordinate (0,8.85,0) and opens downward.

(a) Average velocity is displacement divided by elapsed time. Since the displacement is not
known, the | average velocity cannot be determined | A special case exists in the case of
constant acceleration, where the average velocity is the numeric average of the initial and final
velocities. But this is not specified as motion with constant acceleration, and so that special
case cannot be assumed.

(b) Define east as the positive x-direction, and north as the positive y-direction. The average
acceleration is the change in velocity divided by the elapsed time.

AV 27.5im/s—(—18.03m/s)
a
" At 8.00s

2 2 4 2.25 =
:\/(3.44m/sz) +(2.25m/sz) = 4.11m/s2 6 = tan ]m:

(¢) Average speed is distance traveled divided by elapsed time. Since the distance traveled is not
known, the | average speed cannot be determined|.

=3.44im/s* +2.25jm/s’

a

avg

Note that the acceleration vector is constant, and so Egs. 3-13a and 3-13b are applicable. Also
V,=0and r, =0.

(@) V=V, +ar=(40/i+3.0tf)m/s — |v =40rm/s v =3.0rm/s

(b) v=4V: +v —\/40tm/s 30tm/s) =[5.0tm/s

(¢) F=F + =|(2.07 i+ 1.5 j)m

N|._.

(d) |v,(2.0)=8.0m/s ,v (2.0)=6.0m/s ,v(2.0)=10.0m/s ,¥(2.0)=(8.0i+6.0j)m
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22. Choose downward to be the positive y direction for this problem. Her acceleration is directed along
the slope.
(a) The vertical component of her acceleration is directed downward, and its magnitude will be

givenby a =asinf = (1.80 m/sz)sin 30.0° ={0.900 m/s2 .
(b) The time to reach the bottom of the hill is calculated from Eq. 2-12b, with a y displacement of
325m, v, =0, and a, = 0.900m/s’.

Y=y v ittarl - 325m=0+0+1(0.900m/s’)(r)’ -

(= |[205m) e

(0.900m/s*)

23. The three displacements for the ant are shown in the diagram,
along with the net displacement. In x and y components, they are

+10.0cmi, (10.00s30.0°1 +10.0sin30.0°j)cm, , and

A

(10.0 c0s100°i +10.0sin100° J) cm. To find the average velocity,

divide the net displacement by the elapsed time.
(@) AF=+10.0cmi+(10.0c0s30.0° +10.0sin30.0°5) em

A
.

+(10.0c0s100°1 +10.0sin100°j ) em = (16.92i +14.85) em

AF  (16.92i+14.85])cm
Vv == =
™ At 2.00s+1.80s+1.55s

(3.16i +2.78]) cm/s

L, 2.78

= \/(3.16cm/s)2 +(2.780m/s)2 =|421cm/s| 6= tan'li: tan m=

v

(b)

avg

v

X

24. Since the acceleration vector is constant, Egs. 3-13a and 3-13b are applicable. The particle reaches
its maximum x coordinate when the x velocity is 0. Note that v, = 5.0m/ si and r,=0.

v=v,+ar=50 im/s+(—3.0ti+4.5tj)m/s

v =(50-300)m/s — v.=0=(50-3.0_ )mfs — ¢ = S0m/s 675

X—max - m

V(t ) =50 im/s+[-3.0(1.67)i+4.5(1.67)¢j |m/s = |7.5m/s

A
.

t+186 =50¢im+1(-3.071+4.57 j)m

=l

(f, ) =5:0(1:67) im/s + 4] -3.0(1.67) 1 +4.5(1.67)" ] | m =|42im + 6 3jm

(a) Differentiate the position vector, r = (3.0 £i-6.0¢ ]) m, with respect to time in order to find

the velocity and the acceleration.

_ dr . A . P - R
v=—=|16.0¢i—-18.0¢"j)m/s a=—=1(6.0i-36.0¢j)m/s
= i)m/ ( i)m/
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(b) ¥(2.55)=[30(25)1-6.0(2:5) j|m=|(191-94})m

v(2.55)=| 6.0(2.5)i-18.0(2.5) | m/s =|(15 i -110})m/s

26. The position vector can be found from Eq. 3-13b, since the acceleration vector is constant. The time
at which the object comes to rest is found by setting the velocity vector equal to 0. Both components
of the velocity must be 0 at the same time for the object to be at rest.

V=V, +ar=(-14i-7.0j)m/s+(6.0¢i+3.0j) m/s =[ (=14 +6.0¢) i + (~7.0+3.0r) j | m/s
V. = (0.0i+0.05)m/s =[ (~14+6.0¢)i + (~7.0+3.0¢) j | m/s

rest

14
(vx)rest =00=-14+6.0t — t=as=ls

3

7.0
(v,) =00=-7.0+3.0t - t=——s=1s
Y/ rest 3.0 3

Since both components of velocity are 0 at £ = s, the object is at rest at that time.

F=F +V,t+1ar =(0.0i+0.0j)m+(-14i—7.0¢j)m+ (6.0 +3.0°f) m
(-14 1—7o<%>) +1(60(3)1+3.0(3)'f)m
(-14(3)+46.0(3)")im+(-7.0(3)+43.0(3)") jm

(-16.3i-8.16j) m =|(-16.3i - 8.2j) m

27. Find the position at # = 5.0 s, and then subtract the initial point from that new location.
7(5.0)=[50(50)+6.0(5.0)" mi+[7.0-3.0(50)' [mj=175mi-368m]

AF = (175.0mi-368.0mj) - (0.0mi+7.0mj)=175mi-375m

~375
AF|=+/(175m)’ + (=375m)’ =414 0 =tan"' —— =|-65.0°
[AF = /(175 m)" + (-375m) an” =

28. Choose downward to be the positive y direction. The origin will be at the point where the tiger leaps
from the rock. In the horizontal direction, v , =3.2m/s and a_ = 0. In the vertical direction,

v,, =0, a, =9.80 m/s2 , ¥, =0, and the final location y = 7.5m. The time for the tiger to reach
the ground is found from applying Eq. 2-12b to the vertical motion.

2 (7.5m)

9.80m/s’

The horizontal displacement is calculated from the constant horizontal velocity.

Ax =v t=(32m/s)(1.24 sec) =

29. Choose downward to be the positive y direction. The origin will be at the point where the diver

y=y v tttar > 75m=0+0+1(9.80m/s’) — r= =1.24 sec

dives from the cliff. In the horizontal direction, v , = 2.3 m/ s and a_=0. In the vertical direction,

v, =0, a =980 m/s?, y, =0, and the time of flight is # = 3.0 s. The height of the cliff is found
from applying Eq. 2-12b to the vertical motion.
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Y=y tvittarf - y=0+0+1(9.80m/s)(3.0s) =
The distance from the base of the cliff to where the diver hits the water is found from the horizontal

motion at constant velocity:
Ax=v t=(23m/s)(3.0s)=|6.9m

v, sin 26,
g
held constant, the range is inversely proportional to the value of g. The acceleration due to gravity

on the Moon is 1/6" that on Earth.

30. Apply the range formula from Example 3-10: R = . If the launching speed and angle are

2 - 2 .
v, sin 26, v, sin 26,
REarth - Moon - REarth gEarth - RMoon gMoon
g Earth g Moon
g Earth
RMoun - REarth - 6REarth

Moon

Thus on the Moon, the person can jump .

Apply the range formula from Example 3-10.

2 . 2
R= v, sin26,

g T 1.5
R 2.5m)(9.80m/s’ 3

sin2(90=—‘2g=( ) 2/ ) o579 § 11
v, (6.5 m/s) 2

T 0.5
26, =sin"' 0.5799 — @, =|18°,72° £

O T T T
. 0 0.5 1 1.5 2 2.5
There are two angles because each angle gives the horizontal distance (m)

same range. If one angle is 6 =45°+ ¢ , then
6 =45° -9 is also a solution. The two paths are shown in the graph.

32. Choose downward to be the positive y direction. The origin will be at the point where the ball is
thrown from the roof of the building. In the vertical direction, Vi = 0, a,= 9.80 m/ s, ¥, =0,
and the displacement is 9.0 m. The time of flight is found from applying Eq. 2-12b to the vertical

motion.
2 (9.0 m)
=y, +tv t+tiat’ — 9.0m=1(980m/s*) — t= |——2 =1355sec
R a /¥) 9.80m/s’
The horizontal speed (which is the initial speed) is found from the horizontal motion at constant

velocity.

Av=vi — v =Av/t=95m/1355s=[7.0m/s|

33. Choose the point at which the football is kicked the origin, and choose upward to be the positive y
direction. When the football reaches the ground again, the y displacement is 0. For the football,

v, =(18.0sin38.0°)m/s, a =-9.80 m/s” , and the final y velocity will be the opposite of the
starting y velocity. Use Eq. 2-12a to find the time of flight.
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34.

35.

36.

v, =V, (-18.0sin38.0°)m/s —(18.0sin38.0°)m/s

2.26s
a ~9.80m/s’

v =v, tat — =
y ¥y

Choose downward to be the positive y direction. The origin is the point where the ball is thrown
from the roof of the building. In the vertical direction V=0, ¥, = 0, and a, =9.80 m/ s’. The

initial horizontal velocity is 23.7 m/s and the horizontal range is 31.0 m. The time of flight is found
from the horizontal motion at constant velocity.

Ax=vt — t=Ax/v,=31.0m/23.7m/s=1.308s
The vertical displacement, which is the height of the building, is found by applying Eq. 2-12b to the
vertical motion.

yEytvtttar - y=0+0+1(9.80m/s’)(1.308s)" =

Choose the origin to be the point of release of the shot put. Choose upward to be the positive y
direction. Then y, =0, Vi = (14.4 sin 34.0°)m/s =8.05 m/s, a,=-9.80 m/s2 ,and y=-2.10m
at the end of the motion. Use Eq. 2-12b to find the time of flight.

Y=y, tv bt %aytz - %aytz +vf—y= 0 —

vtV —4(2a,)(=y) | -8.05+/(8.05) ~2(-9.80)(2.10)
21a, -9.80

Choose the positive result since the time must be greater than 0. Now calculate the
horizontal distance traveled using the horizontal motion at constant velocity.

Ax = vt =[(14.4c0s34.0°)m/s](1.8725) =

Choose the origin to be the point of launch, and upwards to be the positive y direction. The initial
velocity of the projectile is v, the launching angle is ,, a, =-g, y,=0, and v  =v sing,. Eq.

y

t= =1.8725,-0.2290s

2-12a is used to find the time required to reach the highest point, at which v =0.
vV, =V, _ 0-v,sin6, _ Y sin 6,

a -8 g
Eq. 2-12c is used to find the height at this highest point.

v =v , tat - t, =
Y b up up

22 2 .2 2 .2
L —v,sin” 6, v sin” 6,

2 2
vy=vy0+2ay(ymax_y0) - ymax=y0+ = + -
2a, -2g 2g
Eq. 2-12b is used to find the time for the object to fall the other part of the path, with a starting y
2 - 2
. . . (7
velocity of 0 and a starting height of y, = V"Szl#
g
2 2 2 .
6, o
y = yn + vyot + %avtz - 0 = vo il : + Otdown - %gtjown - down = vo i :
‘ 2g g
A comparison shows that |, =1, |

When shooting the gun vertically, half the time of flight is spent moving upwards. Thus the upwards
flight takes 2.0 s. Choose upward as the positive y direction. Since at the top of the flight, the
vertical velocity is zero, find the launching velocity from Eq. 2-12a.

v,=v,+at — v, =v —at=0-(-9.80m/s*)(2.0s)=19.6m/s
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38.

39.

40.

41.

Using this initial velocity and an angle of 45° in the range formula (from Example 3-10) will give the
maximum range for the gun.

oo Yosin26, (19.6m/s)’ sinz(90°) _Fom

g 9.80m/s

Choose the origin to be the point on the ground directly below the point where the baseball was hit.
Choose upward to be the positive y direction. Then y, =1.0m, y =13.0m at the end of the
motion, v = (27.0 sin 45.0°)m/s =19.09 m/s, and a, =-9.80 m/s2 . Use Eq. 2-12b to find the
time of flight.

y=ytvttiar’ - lar’ +vy0t+(y0 -y)=0 —

v v —4(2a, ) (v - ¥)  —19.09%/(19.09) —2(<9.80) (~12.0)
2%a, B ~9.80
= 0.788s, 3.108s

The smaller time is the time the baseball reached the building’s height on the way up, and the larger
time is the time the baseball reached the building’s height on the way down. We must choose the
larger result, because the baseball cannot land on the roof on the way up. Now calculate the
horizontal distance traveled using the horizontal motion at constant velocity.

Ax = vt =[(27.0c0s45.0°) m/s](3.1085) =

We choose the origin at the same place. With the new definition of the coordinate axes, we have the
following data: y, =0, y =+1.00m, v  =-12.0 m/s, v, =-16.0m/s, a =9.80 m/s2 .

=

y=y,+v t+igl — 1.00m=0-(12.0m/s)r+(4.90m/s’ ) —

(4.90m/52)t2 -(12.0m/s)¢t—(1.00m) =0
This is the same equation as in Example 3-11, and so we know the appropriate solution is ¢ = 2.53s.
We use that time to calculate the horizontal distance the ball travels.

x=v,t=(-160m/s)(2.53s) =-40.5m

Since the x-direction is now positive to the left, the negative value means that the ball lands
to the right of where it departed the punter’s foot.

The horizontal range formula from Example 3-10 can be used to find the launching velocity of the
grasshopper.

2 1.0m)(9.80m/s’
govisin26, [ Re :\/( m)O30m/5') 3
g sin26, sin 90°

Since there is no time between jumps, the horizontal velocity of the grasshopper is the horizontal
component of the launching velocity.

v, =v,co86, = (3.13m/s)cos 45" =|2.2m/s

(a) Take the ground to be the y = 0 level, with upward as the positive direction. Use Eq. 2-12b to
solve for the time, with an initial vertical velocity of 0.

y=y, v t+iar - 150m=910m+1(-9.80m/s’)’ —
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2(150-910)
t= |[A——— =12.45s =[125s
(-9.80m/s*)

(b) The horizontal motion is at a constant speed, since air resistance is being ignored.
Ax=vt=(50m/s)(12.455) = 62.25m =

42. Consider the downward vertical component of the motion, which will occur in half the total time.

Take the starting position to be y = 0, and the positive direction to be downward. Use Eq. 2-12b with
an initial vertical velocity of 0.

2
tY 9.80
y=y, v t+tar — h=0+0+%gf§0wn=%g(5] e ¢ =1.2250 = [1.27°]

Choose downward to be the positive y direction. The origin is the point where the supplies are
dropped. In the vertical direction, v ; =0, a, =9.80 rn/ s, ¥, =0, and the final position is
y =150m. The time of flight is found from applying Eq. 2-12b to the vertical motion.

yEytvttiar > 160m=0+0+1(9.80m/s’ ) —

2(150 m)
= —_—
9.80m/s’

Note that the horizontal speed of the airplane does not enter into this calculation.

5.5s

44. (a) Use the “level horizontal range” formula from Example 3-10 to find her takeoff speed.

2 9.80m/s” ) (8.0
R:aneo — V(): gR :\/( m/s )( m) :8.8541'1'1/5z 89m/s
g sin26, sin90°

(b) Let the launch point be at the y = 0 level, and choose upward to be positive. Use Eq. 2-12b to
solve for the time to fall to 2.5 meters below the starting height, and then calculate the
horizontal distance traveled.

y=y,+v t+iar — -2.5m=(8.854m/s)sin45% +1(-9.80m/s’ )
497 —6.2611-2.5m=0 —

6.261t \/(6.261)2 -4(4.9)(-2.5) 6.261£9.391
- 2(4.9) C2(49)
Use the positive time to find the horizontal displacement during the jump.
Ax =v, t =v,cos45°t = (8.854m/s) cos45°(1.597s) =10.0m
|She will land exactly on the opposite bank, neither long nor short.|

t

=-0.319s, 1.597s

45. Choose the origin to be the location at water level directly underneath the diver when she left the
board. Choose upward as the positive y direction. For the diver, y, = 5.0 m, the final y position is

» =0.0 m (water level), a = —g, the time of flight is # =1.3s, and the horizontal displacement is

Ax =3.0 m.
(a) The horizontal velocity is determined from the horizontal motion at constant velocity.
Ax 3.0
Av=vi — v =—=2"T_231m/s
t 1.3s
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The initial y velocity is found using Eq. 2-12b.
y=y,tvttiar - 0m=50m+v, (13s)+L(-9.80m/s’)(135) —
v, =2.52m/s
Thus the velocity in both vector and magnitude / direction format are as follows.
= < B 2 2 2 2
Vo = (2.31 + 2.5])m/s Vo =4[Vt VY, = \/(2.31m/s) + (2.52 m/s) = 3.4m/s
I 2.52m/s _
v, 231m/s
() The maximum height will be reached when the y velocity is zero. Use Eq. 2-12c.
v =yl +2ahy — 0=(2.52m/s) +2(-9.80m/s*)(»

Voo

48° above the horizontal

6 =tan'

-50m) —

max

Vi =[3.3m

(¢) To find the velocity when she enters the water, the horizontal velocity is the (constant) value of
v, =2.31m/s. The vertical velocity is found from Eq. 2-12a.

v, =v,+at=252m/s+(-9.80m/s*)(1.3s) =-10.2m/s
The velocity is as follows.

v, =|(23i-102j) m/s

f

v = v+ =\/(2.31m/s)2 +(~102m/s)” =10.458m/s = |10m/s

Ve, -10.2
6, = tan"' —X = tan”' —m/s =
Ve 2.31m/s

-77° (below the horizontal)

46. Choose the origin to be at ground level, under the place where the projectile is launched, and
upwards to be the positive y direction. For the projectile, v, = 65.0 m/ s, 6,=35.0°% a =-g,

Y, =115m, and v, =v sin6,.

(a) The time taken to reach the ground is found from Eq. 2-12b, with a final height of 0.
y=y,+ vyot-l-%ayt2 — 0=y, +v,sinft—L1gt’ —

—v,sin@, + /v sin’ @ —4 (-1
= \/2"( ) (2800 _ g 9645, ~236555 -
—2&
2
Choose the positive time since the projectile was launched at time ¢ = 0.
(b) The horizontal range is found from the horizontal motion at constant velocity.
Ax=vt=(v,cos6,)t=(65.0m/s)(cos35.0°)(9.964s) =|531m

(c) At the instant just before the particle reaches the ground, the horizontal component of its

velocity is the constant v, = v, cos 6, = (65.0m/s)cos35.0° = . The vertical

component is found from Eq. 2-12a.
v, =v,, +at=v,sin6, - gt = (65.0m/s)sin35.0°~ (9.80m/s*)(9.964s)

- [evin/
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47.

48.

(d) The magnitude of the velocity is found from the x and y components calculated in part (c)

above.
v= 4y = \/(53.2 m/s)’ +(-60.4m/s)’ =[80.5m/s
v —60.
(e) The direction of the velocity is 6 = tan™' — = tan™' H = —48.6°, and so the object is
A% .

moving |48.6° below the horizon|.

(A The maximum height above the cliff top reached by the projectile will occur when the y-
velocity is 0, and is found from Eq. 2-12c.

vi =vi0+2ay(y—y0) - Ozvgsinzﬁo—?.gy

max

2 .2 2 -2 o
y o lsin 6, _ (65.0m/s) sin 235.0 _o9m
2g 2(9.80m/s”)

Choose upward to be the positive y direction. The origin is the point from which the football is
kicked. The initial speed of the football is v, = 20.0m/s. We have V., =V, 8in37.0°=12.04 m/s,

Y, =0, and a, =-9.80 rn/s2 . In the horizontal direction, v, = v, c0s37.0° =15.97m/s, and

Ax =36.0 m. The time of flight to reach the goalposts is found from the horizontal motion at
constant speed.

Ax=vt — t=Ax/v, =36.0m/15.97m/s=2254s
Now use this time with the vertical motion data and Eq. 2-12b to find the height of the football when
it reaches the horizontal location of the goalposts.

y=y,+vt+tart =0+(12.04m/s)(2.254 s)+1(-9.80m/s*)(2.254s)" =2.24 m

Since the ball’s height is less than 3.00 m, | the football does not clear the bar| . Itis 0.76 m too low
when it reaches the horizontal location of the goalposts.

To find the distances from which a score can be made, redo the problem (with the same initial
conditions) to find the times at which the ball is exactly 3.00 m above the ground. Those times
would correspond with the maximum and minimum distances for making the score. Use Eq. 2-12b.

y=y, v t+iar - 3.00=0+(12.04m/s)r+4(-9.80m/s’ ) —

12.04 + \/(12.04)2 —4(4.90)(3.00)
2(4.90)
Ax, =v t=1597m/s(0.2814s) =4.49m ; Ax, = v t =15.97m/s(2.1757s) = 34.746m

490t —12.04t+3.00=0 — ¢=

=2.1757s, 0.2814s

So the kick must be made in the range from |4.5 mto 34.7 m|.

The constant acceleration of the projectile is given by a = —9.80 m/ s’ j We use Eq. 3-13a with the
given velocity, the acceleration, and the time to find the initial velocity.
V=V, +it — V,=v-ar=(8.6i+48j)m/s—(-9.80m/s’j)(3.0s) = (8.6i+342])m/s

The initial speed is v, = \/(8.6 m/s)2 + (34.2 m/s)2 =35.26 m/s, and the original launch direction is
, 342m/s

8.6m/ = 75.88°. Use this information with the horizontal range formula from
.6m/s

given by 6, = tan

Example 3-10 to find the range.
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50.

2 - 2 . °
(@ R= v, sin 26, _ (35.26m/s) (51121151.76 ) _
g 9.80m/s g

(b) We use the vertical information to find the maximum height. The initial vertical velocity is
34.2 m/s, and the vertical acceleration is —9.80 m/ s’. The vertical velocity at the maximum
height is 0, and the initial height is 0. Use Eq. 2-12c.

Vj =v,§0 +2ay(ymax _yO) -
vV _ v, —(342m/s)’ 1
Ve = Vo T = = —~=59.68m =[6.0x10'm
2a, 2a,  2(-9.80m/s”)

(c¢) From the information above and the symmetry of projectile motion, we know that the final
speed just before the projectile hits the ground is the same as the initial speed, and the angle is

the same as the launching angle, but below the horizontal. So v, = and

final

O = |76° below the horizontal|.

Choose the origin to be the location from which the balloon is
fired, and choose upward as the positive y direction. Assume
the boy in the tree is a distance H up from the point at which
the balloon is fired, and that the tree is a distance d horizontally
from the point at which the balloon is fired. The equations of
motion for the balloon and boy are as follows, using constant
acceleration relationships.

=, cos 6t Vo = 04V, sin 6t — 1 gt’ Yooy =H

X

Balloon
Use the horizontal motion at constant velocity to find the elapsed time after the balloon has traveled
d to the right.

d
d=v,cos0t, — t,=—"+
v, cos 6,

Where is the balloon vertically at that time?
2 2
d d d
Voutoon = VoSO, —Lgtr =v sinf———-Lg| ——— | =dtanf, - 1g| ——
v, cos 6, v, cos b, Vv, cos b,

Where is the boy vertically at that time? Note that # = d tan 6.

2 2
d d
Vboy =H-L1gt :H—gg(—] :dtanﬁo—ég(—J
A v, cos 6,

Note that yp ... = Vg, and so the boy and the balloon are at the same height and the same

horizontal location at the same time. Thus they collide!

(a) Choose the origin to be the location where the car leaves the ramp, and choose upward to be the
positive y direction. At the end of its flight over the 8 cars, the car must be at y = —1.5m. Also

for the car, v , =0, a,=-g, v, =V, and Ax =22m. The time of flight is found from the
horizontal motion at constant velocity: Ax=v ¢ — ¢=Ax/v,. Thatexpression for the time

is used in Eq. 2-12b for the vertical motion.
y=y,+ vyot+§ayt2 - y=0+ 0+%(—g)(A)c/vo)2 —
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_g(Ax)?  |-(9.80m/s*)(22m)’

v, = g(ax) _ |=(980m/s')(22m) =39.76m/s = [40m/s

2(y) 2(-1.5m)

(b) Again choose the origin to be the location where the car leaves the ramp, and choose upward to
be the positive y direction. The y displacement of the car at the end of its flight over the 8 cars

must againbe y =-1.5m. Forthecar, v  =v sin6, a =-g, v, =v,cos6,, and
Ax =22m. The launch angle is 6, = 7.0°. The time of flight is found from the horizontal

motion at constant velocity.
Ax

Ax=vi — t=——
Vv, cos 0,

That expression for the time is used in Eq. 2-12b for the vertical motion.

Ax Ar Y
() |
v, cos 6, v, cos 6,

v :\/ g (Ax)” (9.80m/s*)(22m)’

- _[24
2(Axtan 6, — y)cos’ 6, \2((22m)tan7.0°+1.5 m)cos’ 7.0° m/s

Y=Y, +vy0t+§ayt2 —  y=v,sinf,

0=

51. The angle is in the direction of the velocity, so find the components of the velocity, and use them to
define the angle. Let the positive y-direction be down.

avY, o 8t
v =v +at=gt O=tan” r = |tan” £
Yy Yy Yy

vx VO

V.=V,

52. Choose the origin to be where the projectile is launched, and upwards to be the positive y direction.
The initial velocity of the projectile is v,, the launching angle is 6,, a,=-g,and v =y, sing,.
vé sin 26,

g
maximum height of the projectile will occur when its vertical speed is 0. Apply Eq. 2-12c.

The range of the projectile is given by the range formula from Example 3-10, R = . The

2 2
v, sin 0,

vj=v50+2ay(y—y0) — O=v§sin290—2gy -y = 5
g

max max

Now find the angle for which R = y

v, sin26, v, sin’ 6,
g 2g
2sin,cosf, =1sin’ 6, — 4cosf, =sinf, — tanf,=4 — 6, =tan 4=

R=y —  sin26,=1sin’6, —

max

53. Choose the origin to be where the projectile is launched, and upwards to be the positive y direction.
The initial velocity of the projectile is v, the launching angle is 6,, a, =-g, and v , =v,sin6,.
(a) The maximum height is found from Eq. 2-12c, vf = vio +2a, (y - yo), with v =0 at
the maximum height.
v, -v,, —vlsin’6, wv.sin’6, (46.6m/s) sin’42.2°

=0 = = =150.0
Y =0F 2g 2g 2(9.80m/s’) =

v
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(b) The total time in the air is found from Eq. 2-12b, with a total vertical displacement
of 0 for the ball to reach the ground.
2

y=y,tvt+tar’ — 0=vysinfr-Ltg’ —
_2v,sing, 2(46.6m/s)sin42.2°
g (9.80m/s*)

The time of 0 represents the launching of the ball.
(¢) The total horizontal distance covered is found from the horizontal motion at constant velocity.

Ax =vt=(v,cos6,)t=(46.6m/s)(cos42.2°)(6.39s) =|221m

(d) The velocity of the projectile 1.50 s after firing is found as the vector sum of the horizontal
and vertical velocities at that time. The horizontal velocity is a constant v, cos 6, =

(46.6 m/s) (cos 42.20) =345 m/s. The vertical velocity is found from Eq. 2-12a.
v, =v,+at=v,sind, - gt = (46.6m/s)sin42.2° — (9.80m/s’ ) (1.50s) = 16.6 m/s

Thus the speed of the projectile is v = \/vf + vi = \/34.52 +16.6> = .

v 16.6
The direction above the horizontal is given by @ = tan™ —* = tan™' m

X

=16.39s|and =0

54. (a) Use the “level horizontal range” formula from Example 3-10.

_ vy sin26, / (7.80 m)(9.80m/s”)
=19.72
sin 20 \/ sin 54.0°

g
(b) Now increase the speed by 5.0% and calculate the new range. The new speed would be
9.72 m/s (1 .05) =10.2 m/s and the new range would be as follows.
v, > sin 26, (10 Zm/s) sin 54°
g 9.80m/s”

=8.59m

This is an increase of [0.79m (10% increase)|. .

Choose the origin to be at the bottom of the hill, just where the incline starts. The equation of the
line describing the hill is y, = x tan¢. The equations of the motion of the object are

Y= vl La¢* and x = v, ¢, with v, = v, cos@ and V,, =V, sin@. Solve the horizontal
equation for the time of flight, and insert that into the vertical projectile motion equation.

2 2
=xtanl9—%
2v, cos” 0

X X . X ,
t=—-= — y, =v,sind -5g

v v, cos & v,cosd v, cos &

0x
Equate the y-expressions for the line and the parabola to find the location where the two x-
coordinates intersect.

2
xtan¢=xtan9—% - tanH—tanq):%
2v, cos” 0 2v, cos” @
tan 8 — tan
x_M2 cos o
g

This intersection x-coordinate is related to the desired quantity d by x = d cos ¢.
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2 2 2 6 2 2
dcos¢=(tan9—tan¢)& d= Yo (sin@cos&—tan¢)coszt9)
gcos¢
To maximize the distance, set the derivative of d with respect to 8 equal to 0, and solve for 6.

2
a\d) (4) = 2ﬁi(sin 6 cos O — tan gcos’ 9)
do gcos¢g do

2
_ 2% [sin@(—sin &)+ cos O (cosO) —tan ¢ (2)cos O (—sin6)|
gcosg
2v§ 2 2 . 2V§ .
= [—sm 0 + cos t9+2tan¢cos€sm49:| = [c0s26 +sin20tang] =0
gcosg gcos¢

1
cos26 +sin20tang=0 — OH=2Ltan™'| -
tan ¢

This expression can be confusing, because it would seem that a negative sign enters the solution. In
order to get appropriate values, 180° or 7z radians must be added to the angle resulting from the
inverse tangent operation, to have a positive angle. Thus a more appropriate expression would be the
following:

1 . : V4
0= %{7{ +tan” (— ¢H . This can be shown to be equivalent to |6 = ¢ +—|, because
tan

2 4

1 V4 T
tan”'| — =tan" (—cotg)=cot cotg——=¢p——.
( tan ¢j ( ) 2 2

56. See the diagram. Solve for R, the horizontal range, which is the horizontal speed times the time of
flight.

R=(vcos6,)t — t=—
v, cos 6,

h=(v,sin6)t—+gt’ — Lg’—(v,sinf)t+h=0 —

2v; cos’ 6, tan O s 2hv, cos’ 6, 0

g g

R*-R

2 2 2 2 2 2 2
2v, cos” 6, tanﬁi (2\/0 cos” 6, tanﬁj _42hv0 cos” 6,

R= g g g
2
v, cos 6, ) > . 2
= —[vo sin @, /v, sin” @, — Zgh}
g
Which sign is to be used? We know the result if # =0 from Example 3-10. Substituting & = 0 gives
o . . . .
R= m[v0 sin@, £ v,sin6,]. To agree with Example 3-10, we must choose the + sign, and so
v, cos 6, _ 2 .2 . . .
R= —|:V0 sin@, + /v, sin” 6, — 2gh:| . We see from this result that if 4 > 0, the range will
g

shorten, and if 4 < 0, the range will lengthen.
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57. Call the direction of the boat relative to the water the positive direction. For the jogger moving
towards the bow, we have the following:

\7 , +v =2.0m/si + 8.5m/si={10.5m/si|.
jogger Jjogger boat rel.
rel. water rel. boat water

For the jogger moving towards the stern, we have the following.

= —2.0m/si + 8.5rn/si = 6.5rn/si

<l

V. V. +vVv
jogger jogger boat rel.
rel. water rel. boat water

58. Call the direction of the flow of the river the x direction, and the

direction of Huck walking relative to the raft the y direction. Vl-lilcll;
A A e rel. ban
Vi = Vi Vine =0.70jm/s +1.50im/s V Huek
rel. bank rel. raft bank rel. raft J2]
= (1.50i +0.70j) m/s Vi
( J) / Eelf.t bank)
current
Magnitude: v, . =~/1.50> +0.70° =
rel. bank
,0.70

Direction: € =tan" = |25°relative to river|

59. From the diagram in Figure 3-33, itis seen that v, =V, . cos@ = Vv;l]ater rel.
shore water Siore
1.85m/s)cos40.4° = 1.41m/s| v
( / ) / Vboat rel. -
shore Vboat rel.

water

60. If each plane has a speed of 780 km/hr, then their relative speed of approach is 1560 km/hr. If the
planes are 12.0 km apart, then the time for evasive action is found as follows.

A 12.0 km
A =vi = z:—d=£ : j(%OOSeCj:

v 1560 km/hr 1 hr

The lifeguard will be carried downstream at the same rate as the child. Thus only the horizontal
45m

motion need be considered. To cover 45 meters horizontally at a rate of 2 m/s takes 5
m/s

22.5s =|23s| for the lifeguard to reach the child. During this time they would both be moving

downstream at 1.0 m/s, and so would travel (1.0m/s)(22.5s) =22.5m = downstream.

62. Call the direction of the boat relative to the water the x direction, and upward the y direction. Also
see the diagram.

passenger = Vpassenger + Vboat rel. Vpassenger
rel. water rel. boat water rel. water
. o . Vo
= (0.60cos45°i +0.60sin 45°) m/s +1.70im/s 2 P bost
a N Vboat rel.
=|(2.12i +0.42j) m/s et
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63. (a) Call the upward direction positive for the vertical motion. Then the velocity of the ball
relative to a person on the ground is the vector sum of the horizontal and vertical motions. The

horizontal velocity is v, =10.0m/s and the vertical velocity is v, =50 m/s.

v=10.0m/si+50m/sj — v=\/(10.0m/s)2+(5.0m/s)2 =[11.2m/s

, 5.0m/s
10.0m/s

(b) The only change is the initial vertical velocity, and so v, =-5.0 m/ S.

v=100m/si-50m/sj — vz\/(IO.Om/s)2+(—5.0m/s)z=
, —5.0m/s
10.0m/s

0 = tan = |27O above the horizonta1|

0 = tan = |27° below the horizonta1|

64. Call east the positive x direction and north the positive y direction. Then the

following vector velocity relationship exists.
(a) Vplane rel. = Vplane + Vair rel.
ground rel. air ground

= -580jkm/h + (90.0c0545.0°i +90.05in 45.0°§) km/h

\

v

plane rel.
ground

= (63.61 - 516]) km/h Vo

plane rel, = \/(63-6km/h)2 +(~516km/h)’ =[520km/h

ground L

6 =tan” ﬂ =-7.0°= |7.0° east of south| /
16 v

air rel.
ground

(b) The plane is away from its intended position by the distance the air has caused
it to move. The wind speed is 90.0 km/h, so after 11.0 min the plane is off course by the
following amount.

Ax=vxt=(90.0km/h)(11.0min)( lh. J: 16.5km|.
60 min

65. Call east the positive x direction and north the positive y direction. Then the
following vector velocity relationship exists.
v =V +V. —

\4
plane rel. plane air rel.
ground rel. air ground

Ve retd = (—580 sin i + 580 cos H])km/h v vplanegel'
groun

ground plane

rel. air

+ (90.0 cos 45.0°1 +90.0sin 45.0°j) km/h

Equate x components in the above equation.
0=-580sind+90.0cos45.0° —

0 = sin”! 90.0cos45.0°
=sinT ——

= |6.3°, west of south| /
580 Vair rel.

ground
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66. Call east the positive x direction and north the positive y direction. From

the first diagram, this relative velocity relationship is seen. car 2 rel.
car 1 rel. = Vcar 1 rel. + Vcar 2 rel. - -
street car 2 street - VvV
Vv car |
R . . A N N A car 1 rel. rel.
il = Vet = Vewrw = 35jkm/h —45ikm/h = (—451 + 35J)km/h car 2 street
car 2 street street
For the other relative velocity relationship: Var2 rel.
= _ = - street
car2rel. VcarZ rel. + Vcar 1 rel. -
street car 1 street
= - - < S e A V Vcar 1
Vewrnn = Vewara — Ve 10, = 451 km/h = 35jkm/h = (45i - 35j) km/h car2 reh )
car 1 street street car 1 street
Notice that the two relative velocities are opposites of each other: vV, . ==V_ .-
car | car2
Call the direction of the flow of the river the x direction, and the direction v
. . . . . . . water rel.
straight across the river the y direction. Call the location of the swimmer’s shore
starting point the origin.
stimmer = szimmer + Vwater rel = 060 m/sj + 050 m/Si A i
s . swimmer
rel. shore rel. water shore rel. water v

swimmer
rel. shore

(a) Since the swimmer starts from the origin, the distances covered in
the x and y directions will be exactly proportional to the speeds in
those directions.

Ax vt v Ax O.SOm/s
= —_x = - sz-46m
55m 0.60m/s

Ay - vt - v,

(b) The time is found from the constant velocity relationship for either the x or y directions.
Ay 55m

v, 0.60m/s

92s

Ay=vit — 1=

68. (a) Call the direction of the flow of the river the x direction, and the
direction straight across the river the y direction. water rel.

shore

<l

<

swimmer
rel. shore

\‘Naterrel. 0501’1’1/5 0.50
sin@ =2 = — O =sin" —— =756.44° = -56°
v 0.60m/s 0.60

swimmer

swimmer rel. water

rel. water
(b) From the diagram her speed with respect to the shore is found as follows.
cos @ = (0.60m/s) cos56.44° = 0.332m/s

. =V_.
swimmer swimmer
rel. shore rel. water

The time to cross the river can be found from the constant velocity relationship.

Ax 55
Av=vi - (=—=_20
v 0.332m/s

=[170s = 2.8 min|

v water rel.

69. The boat is traveling directly across the stream, with a heading of 8 =19.5° shore

upstream, and speed of v =3.40 rn/ S.

boat rel.
water

(@) Vs = Voost et SiNO = (3.40m/s)sin19.5° =|1.13m/ boat rel.

shore water

(B) Vo = Vooarras €080 = (3.40m/s) c0s19.5° = [3.20m/s

shore water

l

v boat rel.
water
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70. Call the direction of the flow of the river the x direction (to the left in
the diagram), and the direction straight across the river the y direction

ter rel.
120 m shore

(to the top in the diagram). From the diagram, @ = tan™' 120m / 280m
=23°. Equate the vertical components of the velocities to find the
speed of the boat relative to the shore.

boatre, COSEO =V, sin45° —

shore water

280 m

v

Vioatrel. — (2.70 m/s)%

shore CcOS 23 °

Equate the horizontal components of the velocities.
v sind=v cos45°—v -

boat rel. boat rel. water
shore water rel. shore

=2.07 m/s

=y cos45°—vy sin @

water boat rel. boat rel.
rel. shore water shore

=(2.70m/s)cos45° - (2.07m/s)sin23° =|1.10m/s

71. Call east the positive x direction and north the positive y direction. The
following is seen from the diagram. Apply the law of sines to the
triangle formed by the three vectors.

V.. A Vplane rel.
plane air rel. air rel. air
rel. air ground

_ == —  sinf = 2"5in128° —
sin128°  sin# %

v

52°

|
v plane rél.
ground:

plane
rel. air

V.. .
airrel. 72
O =sin"'| £ ¢in128° |=sin"' | ——sin128° | = 5.6°
580km/h

v
plane
rel. air

So the plane should head in a direction of 38.0° +5.6° = |43.6°n0rth of east | .

72. (a) For the magnitudes to add linearly, the two vectors must be parallel. \71 [ \72

(b) For the magnitudes to add according to the Pythagorean theorem, the two vectors must be at

right angles to each other. |V, LV,

(¢) The magnitude of V, vector 2 must be 0. |V, =0

Let east be the positive x-direction, north be the positive y-direction, and up

=
v

be the positive z-direction. Then the plumber’s resultant displacement in D,
component notation is [D = 66 mi—35 mj —12mk|. Since this is a 3- D,
dimensional problem, it requires 2 angles to determine his location (similar D,

to latitude and longitude on the surface of the Earth). For the x-y
(horizontal) plane, see the first figure.

D, 5
¢=tan"' — = tan - —28° = 28° south of east

D, =\[D}+D? =\J(66) +(-35) =74.7m =75m
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74.

75.

76.

For the vertical motion, consider another right triangle, made up of D as

D,
one leg, and the vertical displacement D_ as the other leg. See the second 0
figure, and the following calculations. D D,
D -12
0, = tan” —— =tan”’ o —9° = 9° below the horizontal
D 74.7m

D =02 + D7 = [D? + D + D = \J(66)" +(-35) +(-12)’ =76 m

The result is that the displacement is |76 m|, at an angle of |28°south of east|, and

9° below the horizontal |

The deceleration is along a straight line. The starting velocity is 110 km/ h ( 3 ém/S

km/h] =30.6m/s,

and the ending velocity is 0 m/s. The acceleration is found from Eq. 2-12a.

v=v,+at — 0=30.6m/s+a(7.0s) — a= - 200MS e
7.0s

The horizontal acceleration is a,,, = acos6 = —4.37m/s’ (cos26°) = |-3.9m/s’|.

= asin@ =-437m/s’ (sin26°) = |-1.9m/s’|.

The horizontal acceleration is to the left in Figure 3-54, and the vertical acceleration is down.

The vertical acceleration is a_,

rt

Call east the positive x direction and north the positive y direction. Then this

relative velocity relationship follows (see the accompanying diagram). \ Vplane ol
- _ V + ‘7 . - 45 round
plane rel. plane air rel. A"
f plane
ground rel. air ground

rel. air

Equate the x components of the velocity vectors. The magnitude of v

plane rel. Vair rel
' ' ground 6 grouna
is given as 135 km/h. & ====-
(135km/h)cos45°=0+v,,,, —> V. =95.5km/h.
From the y components of the above equation, we find v, , .
—135sin45°=—185+v, ., — V,, =185-135sin45°=89.5 km/h

The magnitude of the wind velocity is as follows.
Vons = AVt FVinay = \/(95.5 km/h)’ +(89.5km/h)’ = [131km/h

Vi 89.5
The direction of the wind is 8 = tan™' =¥ = tan™' E = |43.1° north of east|,
v .

wind-x

The time of flight is found from the constant velocity relationship for horizontal motion.

Ax=vit= — t=Ax/v,=8.0m/9.1m/s :

The y motion is symmetric in time — it takes half the time of flight to rise, and half to fall. Thus the
time for the jumper to fall from his highest point to the ground is 0.44 sec. His vertical speed is zero
at the highest point. From the time, the initial vertical speed, and the acceleration of gravity, the
maximum height can be found. Call upward the positive y direction. The point of maximum height
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is the starting position y,, the ending positionis y = 0, the starting vertical speed is 0, and a = —g.
Use Eq. 2-12b to find the height.

yEy Hvtttar > 0=y, +0-1(9.8m/s’)(0445) — y, =[0.95m

77. Choose upward to be the positive y direction. The origin is the point from which the pebbles are
released. In the vertical direction, a,= -9.80 m/ s’, the velocity at the window is v, = 0, and the

vertical displacement is 8.0 m. The initial y velocity is found from Eq. 2-12c.

vi=vi+2a (y-y,) —

v, = =2a (y-3,) = J0-2(-9.80m/s)(8.0 m) = 12.5m/s

Find the time for the pebbles to travel to the window from Eq. 2-12a.

v, =V, 0-12.5
Y 20 = m/zs = 1288
a -9.80 m/s

v, =v, ,tat — =

Find the horizontal speed from the horizontal motion at constant velocity.

Av=vi — v =Av/t=9.0m/1.28s=[7.0m/s]

This is the speed of the pebbles when they hit the window.

78. Choose the x direction to be the direction of train travel (the direction the
passenger is facing) and choose the y direction to be up. This relationship exists <

V..
.. - - - . v rain rel.
among the velocities: v . =v_ +Vv_. . From the diagram, find the Viain rel. ground
3 . N train
ground train ground
expression for the speed of the raindrops.
vtrain rel. v v Vtrain rel.
d ground
tan § = ———=—1 - v, =—"
rain rel. H
vrain rel. vrain rel. ground tan
ground ground

Assume that the golf ball takes off and lands at the same height, so that the range formula derived in
Example 3-10 can be applied. The only variable is to be the acceleration due to gravity.

80. (a)

2 . 2 .
REarth - VO Slnzeo /gEarth RMoon - VO Slnzeo /gMoon

REarth — V; SinzeO/gEanh - 1/gEarth — gMoon — 32 m :()18 -

R vé sin 26?0/gMOOn l/gMoon ey 180 m
Zyoon = 0-18g,.,, =0.18(9.80m/s*) = |1.8 m/s’

Choose downward to be the positive y direction. The origin is the point where the bullet
leaves the gun. In the vertical direction, v ; =0, y, =0, and a, =9.80 m/ s*. Inthe
horizontal direction, Ax =68.0 m and v_ =175 m/ s. The time of flight is found from the

horizontal motion at constant velocity.
Ax=vt — t=Ax/v,=68.0m/175m/s=0.3886s
This time can now be used in Eq. 2-12b to find the vertical drop of the bullet.

Y=y, v t+tar o y=0+0+4(9.80m/s*)(03886s)" =[0.740m]
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81.

82.

83.

(b) For the bullet to hit the target at the same level, the level horizontal range formula of Example
3-10 applies. The range is 68.0 m, and the initial velocity is 175 m/s. Solving for the angle of
launch results in the following.

2 68.0 9.80m/s’
R=2520 Ghag =R g~ igin (68.0 m)( zm/s ).
g v, (175m/s)

Because of the symmetry of the range formula, there is also an answer of the complement of the
above answer, which would be 89.4°. That is an unreasonable answer from a practical physical
viewpoint — it is pointing the gun almost straight up.

Choose downward to be the positive y direction. The origin is at the point from which the divers
push off the cliff. In the vertical direction, the initial velocity is v , = 0, the acceleration is

a, =9.80 m/ s*, and the displacement is 35 m. The time of flight is found from Eq. 2-12b.

L N ey

The horizontal speed (which is the initial speed) is found from the horizontal motion at constant
velocity.

Ax=vi — v, =Ax/t=50m/27s=[1.9m/s]

The minimum speed will be that for which the ball just clears the
fence; i.e., the ball has a height of 8.0 m when it is 98 m
horizontally from home plate. The origin is at home plate, with

upward as the positive y direction. For the ball, y, =1.0m,
y=80m,, a =-g, v, =vsing, v, =v,cosf,, and 6, =36°.

See the diagram (not to scale). For the constant-velocity horizontal

Ax
motion, Ax =v t=v, cosft, andso t = —0 For the vertical motion, apply Eq. 2-12b.
v, COs

Y=Y, +vy0t+%ayt2 =y, +v, (sinH )t——gt

Substitute the value of the time of flight for the first occurrence only in the above equation, and then
solve for the time.

2 1 2

. Ax
- Y=y, tv,sinf ———--gt" —
v, cos b,

t:\/z(yo —y+Axtant90j _ \/2(1.0m—8.0m+(98m)tan36°] o0

g 9.80m/s’

Finally, use the time with the horizontal range to find the initial speed.
Ax 98

Ax =v,cosOt — v, = o =(33m/s

tcos 6, (3 6205)cos36°

Y=Y, +vtsinf, -7 gt

(a) For the upstream trip, the boat will cover a distance of D/ 2 with a net speed of v —u, so the

o D/2 . . :
timeis ¢, = / =3 ( . For the downstream trip, the boat will cover a distance of D/2
v—u v—u
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&4.

D/2 D
with a net speed of v+u , so the time is ¢, = / = . Thus the total time for the
vtu  2(v+u)
D D Dv

dtripwillbe t =¢ +1, = + = .
roune P Wi be b 2(v-u) 2(v+u) (vz—uz)

(b) For the boat to go directly across the river, it must be angled against v
water rel.

the current in such a way that the net velocity is straight across the shore
river, as in the picture. This equation must be satisfied:

A% + - - q
shore water shore Vboat rel. — v

boat rel. = Vboat rel. Vwater rel. =v+u.
water
2 2 . .
= /v’ —u", and the time to go a distance D/2 across

/2

D 3 D
\/vz—u2 Zx/vz—uz'

back, so the time to come back is given by #, = ¢ and the total timeis ¢ =¢ +¢, =

=1

Vboat rel.
shore

Thus v

boat rel.
shore

the river is ¢, = The same relationship would be in effect for crossing

D

2 2 i
NV —u
The speed v must be greater than the speed u. The velocity of the boat relative to the shore when

going upstream is v —u. If v <u, the boat will not move upstream at all, and so the first part of the

trip would be impossible. Also, in part (b), we see that v is longer than u in the triangle, since v is the
hypotenuse, and so we must have v > u.

Choose the origin to be the location on the ground directly underneath the ball when served, and
choose upward as the positive y direction. Then for the ball, y, =2.50m, v ;=0, a =-g, and

the y location when the ball just clears the netis y = 0.90 m. The time for the ball to reach the net is
calculated from Eq. 2-12b.
y=y,+vtttar — 090m=250m+0+%(-9.80m/s*)’ —

2(-1.60 m)
to = ———5=057143s
net -9.80 m/S
The x velocity is found from the horizontal motion at constant velocity.
Ax 15.0
Av=vi — v =—=—"0 _2625~[263m/s
: t 057143 s

This is the minimum speed required to clear the net.

To find the full time of flight of the ball, set the final y location to be y = 0, and again use Eq. 2-12b.
Y=y +vttiar - 0.0m=2.50m+1(-9.80m/s’)’ —

2(-2.50 m)
Lo = 4| ———>5 =0.7143=0.714s
-9.80m/s
The horizontal position where the ball lands is found from the horizontal motion at constant velocity.
Ax=v1=(2625m/s)(0.7143 s)=18.75 ~

Since this is between 15.0 and 22.0 m,

the ball lands in the “good” region|.
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Work in the frame of reference in which the car is at rest at ground level. In this reference frame, the

86.

1
helicopter is moving horizontally with a speed of 208 km/ h-156 km/ h =52 km/ h (ﬁ]
.6km

=14.44 m/ s . For the vertical motion, choose the level of the helicopter to be the origin, and
downward to be positive. Then the package’s y displacementis y =78.0m, v ; =0, and a = g.
The time for the package to fall is calculated from Eq. 2-12b.

2(78.0 m)
9.80m/s”

The horizontal distance that the package must move, relative to the “stationary” car, is found from
the horizontal motion at constant velocity.

Ax =vt=(14.44m/s)(3.99 s) =57.6 m
Thus the angle under the horizontal for the package release will be as follows.

A 78.0
0 =tan"' (Ey) = tan”' ( m) =53.6°=

57.6 m

y=y v ttiar - 780m=1(980m/s’) — = =3.99 sec

2

The proper initial speeds will be those for which the ball has

— oy
traveled a horizontal distance somewhere between 10.78 m e ~
and 11.22 m while it changes height from 2.10 m to 3.05 m 4
with a shooting angle of 38.0°. Choose the origin to be at the .‘/_ _99 ______________ y=095m
shooting location of the basketball, with upward as the Ac=1078 m—11.22 m

positive y direction. Then the vertical displacement is
y=095m, a, =-9.80 m/s2 » V, =V, 8in6,, and the (constant) x velocity is v, = v, cosf,. See

the diagram (not to scale). For the constant-velocity horizontal motion, Ax =v t = v, cos 6t

Ax : .
and so t = ——. For the vertical motion, apply Eq. 2-12b.
v, cos 6,

y=y,+v t+tar =vsin0r—Lgt’
Substitute the expression for the time of flight and solve for the initial velocity.

2 2
Ax Ax Ax
y:vosinﬁt—égf=vosin6——§g S :Axtane—%
v, cos 6, v, cos 6, 2v, cos” 6,

. g (Ax)
" \2cos’ 6, (~y +Axtan )
For Ax =10.78 m , the shortest shot:

) (9.80m/s*)(10.78 m)’ [T
K 2cos® 38.0°[(~0.95 m+(10.78 m) tan 38.0°)] A

For Ax =11.22 m, the longest shot:

) (9.80m/s”)(11.22 m)’ _[(T3m/
"7\ 20057 38.0°[(<0.95 m+ (11.22 m) tan38.0°9)]  ——r)
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87.

88.

9.

The acceleration is the derivative of the velocity.
. av ~
a=—=[3.5m/s’]

dt

Since the acceleration is constant, we can use Eq. 3-13b.

F=F +V+1ar = (1.51-3.1j) + (-2.0i)++(3.55)7

=|(1.5-2.06)mi+(-3.1+ 1.75 )m]
The shape is , with the parabola opening in the y-direction.

Choose the origin to be the point from which the projectile is launched, and choose upward as the
positive y direction. The y displacement of the projectile is 135 m, and the horizontal range of the

projectile is 195 m. The acceleration in the y direction is a , = —g, and the time of flight is 6.6 s.

The horizontal velocity is found from the horizontal motion at constant velocity.
Ax 195
Ax=vit — v =—= m
t 6.6s
Calculate the initial y velocity from the given data and Eq. 2-12b.
y=y,+v t+tar — 135m=v (6.6s)+1(-9.80m/s*)(6.65)" — v =5279m/s

Thus the initial velocity and direction of the projectile are as follows.
v, =V v = \/(29.55m/s)2 +(52.79m/s)” =|60m/s
v 52.79
6 =tan"' 2 =tan™' —m/s =

29.55m/s

=29.55m/s

x

We choose to initially point the boat downstream at an angle of ¢ relative to straight across the

river, because then all horizontal velocity components are in the same direction, and the algebraic
signs might be less confusing. If the boat should in reality be pointed upstream, the solution will

give a negative angle. We use v, =1.60 m/ s , the speed of the boat relative to the water (the

rowing speed); v, = 0.80m/s, the speed of ending point landing point

the water relative to the shore (the current);

and v, =3.00m/s, his running speed. The
width of the river is w = 1200 m, and the
length traveled along the bank is £. The time
spent in the water is 7, , and the time running

=

is ¢, . The actual vector velocity of the boat is

Vus = Vuw T Vi - That vector addition is

illustrated on the diagram (not drawn to scale). starting point

The distance straight across the river (w) is the velocity component across the river, times the time in
the water. The distance along the bank ({) is the velocity component parallel to the river, times the
time in the water. The distance along the bank is also his running speed times the time running.
These three distances are expressed below.

W= (Vg COSP) 1y, 5 € = (Vg sSiNG+v )1y, 3 € =yl
The total time is ¢ = ¢, + ¢, , and needs to be expressed as a function of ¢ . Use the distance

relations above to write this function.
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w

4 (v sing+v S)t (v sing+v S)
t=t, +t, =t, +— =1, +—> e M -
Vi v

v

R R

w )
= —[vR Vst Vaw sm¢] =
Vaw Vg COS @

[(vR +V s ) sec P+ vy, tan ¢]
vBWvR

dt
To find the angle corresponding to the minimum time, we set — = 0 and solve for the angle.

dt d w
d_¢ = d_¢{vavR [(VR + vws)sec¢+ Vaw tan¢]}

-— [ (v +v ) tangsec g +v,, sec’ ¢ |=0 —

VBWVR

) v
[(vp +V ) tang+v,, sechlsecd=0 — secg=0, sing=——2L"

Ve T Vs
The first answer is impossible, and so we must use the second solution.

1.60
sing=——BY _ __ m/s = 0421 — ¢=sin"(-0.421)=-24.9°
Ve TV 3.00m/s+0.80m/s
To know that this is really a minimum and not a maximum, some argument must be made. The
maximum time would be infinity, if he pointed his point either directly upstream or downstream.
Thus this angle should give a

minimum. A second derivative test 2000

could be done, but that would be

algebraically challenging. A graph of - 1600 7

tvs. ¢ could alllso b? e.xamlned to s.ee (ED 1200 i /
that the angle is a minimum. Here is a 8 N— —
portion of such a graph, showing a % 800

minimum time of somewhat more than E 400 i

800 seconds near ¢ = —-25°. The

spreadsheet used for this problem can 0

be found on the Media Manager, with s -0 25 0 25 %0 &
filename “PSE4_ISM_CHO03.XLS,” on angle (degrees)

tab “Problem 3.89.”

The time he takes in getting to the final location can be calculated from the angle.
w 1200 m

Vi COS @ ) (1.60m/s) cos (—24.9°)
4= (vyysing+v,,)t, =[(1.60m/s)sin(-24.9°) + 0.80m/s](826.865) = 104.47 m
_/ _10447m

fo=—=—"M 34805 r=1, +1, =826.865+34.825=|862s
v, 3.00m/s

ty =

=826.865

Thus he must point the boat 24.9° upstream, taking 827 seconds to cross, and landing 104 m from
the point directly across from his starting point. Then he runs the 104 m from his landing point to
the point directly across from his starting point, in 35 seconds, for a total elapsed time of 862
seconds (about 14.4 minutes).

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

71



Physics for Scientists & Engineers with Modern Physics, 4" Edition Instructor Solutions Manual

90.

Call the direction of the flow of the river the x direction, and the direction the boat is headed (which
is different than the direction it is moving) the y direction. -

Vwater rel.

(a) vboatrel_ = \/v2 + v2 = \/1302 + 2202 = 256 m/S shore

water rel. boat rel.
shore water

shore

- boat rel.

1.30
6 =tan" E =30.6°,¢9=90°-60 = |59.4°relative to shore| Voat rel. shore

(b) The position of the boat after 3.00 seconds is given by the following. ?
Ad =, .t =[ (1301 +2.20§) m/s ](3.00sec) ¢

boatrel.”
shore

=((3.90 m downstream, 6.60 m across the river)

As a magnitude and direction, it would be 7.67 m away from the starting point, at an angle of
59.4° relative to the shore.

First, we find the direction of the straight-line path that the boat must take buoy

92.

to pass 150 m to the east of the buoy. See the first diagram (not to scale). 150m ,
We find the net displacement of the boat in the horizontal and vertical s
directions, and then calculate the angle. )/
Ax =(3000m)sin22.5°+150m Ay =(3000m)cos22.5° 3000m/ 7
/ boat path
Ay (3000m)cos 22.5° /

=tan — = = 64.905° /
9 ,
Ax  (3000m)sin22.5°+150m /

This angle gives the direction that the boat must travel, so it is the
direction of the velocity of the boat with respect to the shore, v, ., . So //\
shore ¢

Vooatrel = Vioatrel (cos @i +sin ¢j) . Then, using the second diagram (also not

shore shore

<

water rel.

to scale), we can write the relative velocity equation relating the boat’s travel thore
and the current. The relative velocity equation gives us the following. See
the second diagram. Vioat rel

— — water

= +V -

v boat rel. v boat rel. water rel.
shore water shore

(cos¢)i+sin¢j) = 2.1(cost9i+sinﬁj) +02i —

Vboat rel.
shore

vboat rel.
shore

Vioutre, COSP=2.1cos0+0.2 ; v, . sing=2.1sind

shore shore

These two component equations can then be solved for v and €. One technique is to isolate the

boat rel.
shore

terms with @ in each equation, and then square those equations and add them. That gives a

quadratic equation for v, which is solved by v, =2.177m/s. Then the angle is found to be

shore shore

0=69.9° NofE|.

See the sketch of the geometry. We assume that the hill is P
sloping downward to the right. Then if we take the point
where the child jumps as the origin, with the x-direction

positive to the right and the y-direction positive upwards,
then the equation for the hill is given by y = —xtan12°.
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93.

The path of the child (shown by the dashed line) is projectile motion. With the same origin and
coordinate system, the horizontal motion of the child is given by x = v cos15° (t) , and the vertical

motion of the child will be given by Eq. 2-12b, y = v, sin15°¢ -+ gt’. The landing point of the child

is given by x, . =1.4cos12° and y,_ . =-1.4sin12°. Use the horizontal motion and landing
point to find an expression for the time the child is in the air, and then use that time to find the initial

speed.

X 1.4cos12°
x=v,co815°(t) — t=—"—, L anding =
v, cos15°

Equate the y expressions, and use the landing time. We also use the trigonometric identity that
sin12°cos15°+sin15°co0s12° = sin (12° + 15°).

v, cos15°

_ _ : o _ : o 142
ylanding - yprojectile - 14 sin 12’ - vO sin 15 tlanding 2 gtlanding -

2
1.4 12° 1.4 12°
—1.4sin12°=vosin15°L_L (Lj

v, cos15° v, cos15°

1200 14
p =g S — v, =3.8687m/s =[3.9m/s

" 287027 cos15°

Find the time of flight from the vertical data, using Eq. 2-12b. Call the floor the y = 0 location, and
choose upwards as positive.
y=y, v t+tar — 3.05m=24m+(12m/s)sin35° +4(-9.80m/s’ )¢’

4.90t* —6.883t+0.65m =0 —

| 6.883%,/6.883* —4(4.90) (0.65)

2(4.90)
(a) Use the larger time for the time of flight. The shorter time is the time for the ball to rise to the
basket height on the way up, while the longer time is the time for the ball to be at the basket

height on the way down.

x=vt=v,(cos35°)¢ = (12m/s)(cos 35°) (1.303s) = 12.81m =
(b) The angle to the horizontal is determined by the components of the velocity.

v.=v,cosf, =12c0s35°=9.830m/s

v, =V, +at=vsing, - gt =12sin35°—-9.80(1.303) = -5.886 m/s

v, ,, —5.886
0=tan"' -~ =tan™ 9830 -30.9° =

1%

t =1.303s,0.102s

x

The negative angle means it is below the horizontal.

94. Wehave v, =25m/s. Use the diagram, illustrating -
ground Vsnow rel. -
car
v - Vv v snow rel.
Voowre = Vaowrd T Verr» t0 calculate the other speeds. P,
ground car ground
v -
car rel. 1
i 2 5 m/s car rel.
cos37° = groun N vsnowm- = /O = 31111/5 ground
Vsnow rel. car cos37

car
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vsnowrcl.
tan37° =" 5 y_=(25m/s)tan37°=|19m/s
ground

A%
car rel.
ground

95. Let the launch point be the origin of coordinates, with right and upwards as the positive directions.
The equation of the line representing the ground is y,, = —x. The equations representing the

2
X

rock *

motion of the rock are x,_, =v, and y_, =—1gt’, which can be combined into y,, = —é%

VU
Find the intersection (the landing point of the rock) by equating the two expressions for y, and so
finding where the rock meets the ground.

2v? 2 2(25m/s
yrockzygnd - _%%xﬂ:_x — x:i - [:i:iz(—/z): 5.1s
Yo g v, & 9.80m/s

96. Choose the origin to be the point at ground level directly below where the ball was hit. Call upwards
the positive y direction. For the ball, we have v, = 28 m/s, 6,=61° a, =-g, y,=09m, and
y=0.0m.

(a) To find the horizontal displacement of the ball, the horizontal velocity and the time of flight are
needed. The (constant) horizontal velocity is given by v_ =v cos6,. The time of flight is
found from Eq. 2-12b.

Y=Y, +vyot+§ayt2 — 0=y, +v,sinft—1gt’ —

2
-V, sing, = \/vj sin” 6, —4(—§g)y0
2(-+¢g)
—(28m/s)sin61° £ \/(28m/s)2 sin®61°—4(-1)(9.80m/s”)(0.9m)

2(-1)(9.80m/s*)

=

=5.034 5,—-0.0365 s

Choose the positive time, since the ball was hit at # = 0. The horizontal displacement of the
ball will be found by the constant velocity relationship for horizontal motion.

Ax = vt =v,cos6,t = (28m/s)(cos61°)(5.034s) = 68.34 m = [68 m]

(b) The center fielder catches the ball right at ground level. He ran 105 m — 68.34 m = 36.66 m to
catch the ball, so his average running speed would be as follows.

Ad 36.66 m
= = 7282 =|(7.3
Vavg ¢ 5034S m/s

Choose the origin to be the point at the top of the building from which the ball is shot, and call
upwards the positive y direction. The initial velocity is v, =18 m/ s at an angle of §, =42°. The

o)
=~

acceleration due to gravity is a , = —g.
(@) v, =v,cos6, =(18m/s)cos42°=13.38 =

Vo =V,8In6, = (18m/s)sin42° =12.04 =

(b) Since the horizontal velocity is known and the horizontal distance is known, the time of flight
can be found from the constant velocity equation for horizontal motion.
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98.

99.

Ax 55
Ax=vt — t=—= >0
: v.  13.38m/s
With that time of flight, calculate the vertical position of the ball using Eq. 2-12b.

y=y,+v,t+iar =(12.04m/s)(4.111s)+1(-9.80m/s*)(4.111s)’

=-333=

So the ball will strike 33 m below the top of the building.

=4.111s

Since the ball is being caught at the same height from

which it was struck, use the range formula from Location of

Example 3-10 to find the horizontal distance the ball catching ball Initial location
travels. of outfielder
. 2 . o
R= v, sin 26, _ (28m/s) sm(2><55 ) _75175m 75.175m
g 9.80m/s” T~
85 m

Then as seen from above, the location of home plate, the point where
the ball must be caught, and the initial location of the outfielder are
shown in the diagram. The dark arrow shows the direction in which
the outfielder must run. The length of that distance is found from the
law of cosines as applied to the triangle.

X =\/a2 +b° —2abcosb

Home plate

= \/75.1752 +85% = 2(75.175)(85) cos 22° = 32.048 m
The angle 6 at which the outfielder should run is found from the law of sines.

in22° ino 75.175
S - > @=sin" [ sin 22°j = 61.49° or 118.51°
32.048m  75.175m 48

Since 75.175° < 85> +32.048, the angle must be acute, so we choose 6 = 61.49°.

Now assume that the outfielder’s time for running is the same as the time of flight of the ball. The
time of flight of the ball is found from the horizontal motion of the ball at constant velocity.

R 75.175
R=vi=v,cosft — (= - o - 4.681s
v,cos6, (28m/s)cos55°

Ad  32.048
Thus the average velocity of the outfielder mustbe v, = —= Shi ALl

t 4.681s
relative to the outfielder’s line of sight to home plate.

6.8 m/s at an angle of

(a) To determine the best-fit straight line, the data was plotted in Excel and a linear trendline was
added, giving the equation |x = (3.03¢ — 0.0265)m|. The initial speed of the ball is the x-

component of the velocity, which from the equation has the value of [3.03m/s|. The graph is

below. The spreadsheet used for this problem can be found on the Media Manager, with
filename “PSE4 ISM_CHO03.XLS,” on tab “Problem 3.99a.”
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1.50 /

1.25 +
x =3.0347¢ - 0.0265 .
2 /
R™=0.9947

0.0 0.1 0.2 0.3 0.4 0.5
1(s)

(b) To determine the best-fit quadratic equation, the data was plotted in Excel and a quadratic

trendline was added, giving the equation |y = (0.158 —0.855¢ + 6.09¢° ) m|. Since the quadratic

term in this relationship is %at2 , we have the acceleration as (12.2 m/ s’|. The graph is below.

The spreadsheet used for this problem can be found on the Media Manager, with filename
“PSE4 ISM_CHO03.XLS,” on tab “Problem 3.99b.”

1.50

1.25

y =6.0919¢” - 0.8545¢ + 0.158

1.00 A 5
R™=10.9989

0.75

¥ (m)

0.50

0.25 ¢

0.00 ‘ ‘
0.0 0.1 02 f(s) 03 0.4 0.5

100. Use the vertical motion to determine the time of flight. Let the ground be the y = 0 level, and choose
upwards to be the positive y-direction. Use Eq. 2-12b.
2

y=y v t+tar — 0=h+v (sing,)t-1g — Lgt’ v (sinf)t-h=0

_v,sing, * \/vg sin’ 6, —4(5g)(=h) _v,sind, /v, sin’ 6, +2gh
2(1¢) g
To get a positive value for the time of flight, the positive sign must be taken.
o v, Sin 6, ++/v; sin’ 6, + 2 gh
g
To find the horizontal range, multiply the horizontal velocity by the time of flight.

v, Sin @, + /v, sin’ 6, + 2gh _vécos@osinﬁ{l_i_ - 2gh }

g g v, sin’ 6,

t

R=vt=v,cos6,

2 .
20, 2gh
sz 1+ 1+%
2g v, sin” 6,
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As a check, if / is set to 0 in the

range formula.

With the values given in the pro

relationship is obtained.

R v, sin 26,

v, sin26,

above equation, we get R = % | the level horizontal
g

blem of v, =13.5m/s, #=2.1m, and g = 9.80m/s2 , the following

_ (13.5)"sin 26, 2(9.80)(2.1)

2g

2gh
1+ 1+ =5
v, sin” 6,

~2(9.80) {1 " \/1 " (13.5)"sin” 6, }

22
=9.30sin26,| 1+ |1+ 0 . 6
sin” 6,

Here is a plot of that
relationship. The maximum is

at approximately . The

spreadsheet used for this
problem can be found on the
Media Manager, with filename
“PSE4 ISM_CHO03.XLS,” on
tab “Problem 3.100.”

As a further investigation, let us

dR
find —, set it equal to 0, and
do

0
{1+ 1+

solve for the angle.
R= v, sin 26,

2g

dR a 2\/5 cos 26,
do, 2g

2
—_0

2g

2 - 2
v, sin” 6,

{1+ 1+
2gh
2¢0826,| 1+ [1l+—2"— |=sin26, || 1+—
v, sin” 6,
2gh
2co0s26,| 1+ 1+% =sin26,| | 1+—
v, sin” 6,

[\
=

N

/ AN

15 30 45 60 75

— ot [\ )
N O
1

S b~ 0 N

Range (meters

90

Launch angle (degrees)

2gh :|

2gh

.2
v, sin” 6,

2)2ghcosé,

2 3
v, sin” 6,

-

2 .
v, sin26,

2g

1
2

2gh

2 -2
v, sin” 6,

J

2ghcos 6,

e

2ghcos 6,

= atl

2gh

)

2 -3
v, sin” 6,

)

.2
v, sin” 6,

J

2gh

. 2
v, sin” 6,

2 3
v, sin” 6,

Calculate the two sides of the above equation and find where they are equal. This again happens at

about 42.1°.
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Responses to Questions

When you give the wagon a sharp pull forward, the force of friction between the wagon and the
child acts on the child to move her forward. But the force of friction acts at the contact point between
the child and the wagon — either the feet, if the child is standing, or her bottom, if sitting. In either
case, the lower part of the child begins to move forward, while the upper part, following Newton’s
first law (the law of inertia), remains almost stationary, making it seem as if the child falls backward.

(a) Andrea, standing on the ground beside the truck, will see the box remain motionless while the
truck accelerates out from under it. Since there is no friction, there is no net force on the box
and it will not speed up.

(b) Jim, riding on the truck, will see the box appear to accelerate backwards with respect to his
frame of reference, which is not inertial. (Jim better hold on, though; if the truck bed is
frictionless, he too will slide off if he is just standing!)

If the acceleration of an object is zero, the vector sum of the forces acting on the object is zero
(Newton’s second law), so there can be forces on an object that has no acceleration. For example, a
book resting on a table is acted on by gravity and the normal force, but it has zero acceleration,
because the forces are equal in magnitude and opposite in direction.

Yes, the net force can be zero on a moving object. If the net force is zero, then the object’s
acceleration is zero, but its velocity is not necessarily zero. [Instead of classifying objects as
“moving” and “not moving,” Newtonian dynamics classifies them as “accelerating” and “not
accelerating.” Both zero velocity and constant velocity fall in the “not accelerating” category.]

If only one force acts on an object, the object cannot have zero acceleration (Newton’s second law).
It is possible for the object to have zero velocity, but only for an instant. For example (if we neglect
air resistance), a ball thrown up into the air has only the force of gravity acting on it. Its speed will
decrease while it travels upward, stop, then begin to fall back to the ground. At the instant the ball is
at its highest point, its velocity is zero.

(a) Yes, there must be a force on the golf ball (Newton’s second law) to make it accelerate upward.
(b) The pavement exerts the force (just like a “normal force”).

As you take a step on the log, your foot exerts a force on the log in the direction opposite to the
direction in which you want to move, which pushes the log “backwards.” (The log exerts an equal
and opposite force forward on you, by Newton’s third law.) If the log had been on the ground,
friction between the ground and the log would have kept the log from moving. However, the log is
floating in water, which offers little resistance to the movement of the log as you push it backwards.

When you kick a heavy desk or a wall, your foot exerts a force on the desk or wall. The desk or wall
exerts a force equal in magnitude on your foot (Newton’s third law). Ouch!

(a) The force that causes you to stop quickly is the force of friction between your shoes and the
ground (plus the forces your muscles exert in moving your legs more slowly and bracing
yourself).

(b) If we assume the top speed of a person to be around 6 m/s (equivalent to about 12 mi/h, or a 5-
minute mile), and if we assume that it take 2 s to stop, then the maximum rate of deceleration is
about 3 m/s?.
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10.

11.

12.

14.

15.

16.

17.

18.

(a) When you first start riding a bicycle you need to exert a strong force to accelerate the bike and
yourself. Once you are moving at a constant speed, you only need to exert a force to equal the
opposite force of friction and air resistance.

(b) When the bike is moving at a constant speed, the net force on it is zero. Since friction and air
resistance are present, you would slow down if you didn’t pedal to keep the net force on the
bike (and you) equal to zero.

The father and daughter will each have the same magnitude force acting on them as they push each
other away (Newton’s third law). If we assume the young daughter has less mass than the father, her
acceleration should be greater (¢ = F/m). Both forces, and therefore both accelerations, act over the
same time interval (while the father and daughter are in contact), so the daughter’s final speed will
be greater than her dad’s.

The carton would collapse (a). When you jump, you accelerate upward, so there must be a net
upward force on you. This net upward force can only come from the normal force exerted by the
carton on you and must be greater than your weight. How can you increase the normal force of a
surface on you? According to Newton’s third law, the carton pushes up on you just as hard as you
push down on it. That means you push down with a force greater than your weight in order to
accelerate upwards. If the carton can just barely support you, it will collapse when you exert this
extra force.

If a person gives a sharp pull on the dangling thread, the thread is likely to break below the stone. In
the short time interval of a sharp pull, the stone barely begins to accelerate because of its great mass
(inertia), and so does not transmit the force to the upper string quickly. The stone will not move
much before the lower thread breaks. If a person gives a slow and steady pull on the thread, the
thread is most likely to break above the stone because the tension in the upper thread is the applied
force plus the weight of the stone. Since the tension in the upper thread is greater, it is likely to break
first.

The force of gravity on the 2-kg rock is twice as great as the force on the 1-kg rock, but the 2-kg
rock has twice the mass (and twice the inertia) of the 1-kg rock. Acceleration is the ratio of force to
mass (@ = F/m, Newton’s second law), so the two rocks have the same acceleration.

A spring responds to force, and will correctly give the force or weight in pounds, even on the Moon.
Objects weigh much less on the Moon, so a spring calibrated in kilograms will give incorrect results
(by a factor of 6 or so).

The acceleration of the box will (c) decrease. Newton’s second law is a vector equation. When you
pull the box at an angle @, only the horizontal component of the force, Fcos6, will accelerate the box
horizontally across the floor.

The Earth actually does move as seen from an inertial reference frame. But the mass of the Earth is
so great, the acceleration is undetectable (Newton’s second law).

Because the acceleration due to gravity on the Moon is less than it is on the Earth, an object with a
mass of 10 kg will weigh less on the Moon than it does on the Earth. Therefore, it will be easier to
lift on the Moon. (When you lift something, you exert a force to oppose its weight.) However, when
throwing the object horizontally, the force needed to accelerate it to the desired horizontal speed is
proportional to the object’s mass, F' = ma. Therefore, you would need to exert the same force to
throw the 2-kg object on the Moon as you would on Earth.
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20.

21.

22.

23.

24.

A weight of 1 N corresponds to 0.225 1b. That’s about the weight of (a) an apple.

Newton’s third law involves forces on different objects, in this case, on the two different teams.
Whether or not a team moves and in what direction is determined by Newton’s second law and the
net force on the team. The net force on one team is the vector sum of the pull of the other team and
the friction force exerted by the ground on the team. The winning team is the one that pushes hardest
against the ground (and so has a greater force on them exerted by the ground).

When you stand still on the ground, two forces act on you: your weight downward, and the normal
force exerted upward by the ground. You are at rest, so Newton’s second law tells you that the
normal force must equal your weight, mg. You don’t rise up off the ground because the force of
gravity acts downward, opposing the normal force.

The victim’s head is not really thrown backwards during the car crash. If the victim’s car was
initially at rest, or even moving forward, the impact from the rear suddenly pushes the car, the seat,
and the person’s body forward. The head, being attached by the somewhat flexible neck to the body,
can momentarily remain where it was (inertia, Newton’s first law), thus lagging behind the body.

(a) The reaction force has a magnitude of 40 N.
(b) It points downward.

(c¢) Itisexerted on Mary’s hands and arms.

(d) lItis exerted by the bag of groceries.

No. In order to hold the backpack up, the rope must exert a vertical force equal to the backpack’s
weight, so that the net vertical force on the backpack is zero. The force, F, exerted by the rope on
each side of the pack is always along the length of the rope. The vertical component of this force is
Fsin6, where 0 is the angle the rope makes with the horizontal. The higher the pack goes, the smaller
6 becomes and the larger F' must be to hold the pack up there. No matter how hard you pull, the rope
can never be horizontal because it must exert an upward (vertical) component of force to balance the
pack’s weight. See also Example 4-16 and Figure 4-26.

Solutions to Problems

Use Newton’s second law to calculate the force.

> F =ma=(55kg)(l.4m/s*) =
Use Newton’s second law to calculate the mass.

ZFzma - m=zF— 265N =

a 2.30m/s2

In all cases, W = mg , where g changes with location.

(@) Wi =mgy,, = (68kg)(9.80m/s*) =
(B) Wy = M2, = (68Ke) (1.7m/57) =

(©) Wy, =mg,,, =(68kg)(3.7m/s’)=|250N
(d) VVSpace = mgSpace = (68 kg)(om/sz) =
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4. Use Newton’s second law to calculate the tension.

> F=F, =ma=(1210kg)(1.20m/s*) = 1452N ~[1.45x10°N]

5. Find the average acceleration from Eq. 2-12c, and then find the force needed from Newton’s second
law. We assume the train is moving in the positive direction.

Im/s Ny
=0 =(120km/h)| ———— [=33.33 - 0
R ) R I ey

2 2

2
=ma,, =m&=(3.6><105kg){0_(33'33m/s) }:—1,333x106N.~.

F
" " 2(x-x,) 2(150m)
The negative sign indicates the direction of the force, in the opposite direction to the initial velocity.
We compare the magnitude of this force to the weight of the train.

F . 6
e 1.333x10°N 03886

mg  (3.6x10°kg)(9.80m/s?)

Thus the force is | 39% of the weight | of the train.
By Newton’s third law, the train exerts the same magnitude of force on Superman that Superman

exerts on the train, but in the opposite direction. So the train exerts a force of [1.3x10°N]| in the
forward direction on Superman.

6. Find the average acceleration from Eq. 2-5. The average force on the car is found from Newton’s
second law.

V=V

0.278m/s}=26.4m/s . - ) _0-264m/s

v=0 v, =(95km/h)( s

F,, =ma, =(950kg)(-330m/s")=

The negative sign indicates the direction of the force, in the opposite direction to the initial velocity.

N = -3.30m/s’
¢ t 8.0s

Find the average acceleration from Eq. 2-12¢, and then find the force needed from Newton’s second

law.
2_v2
= 0 —
" 2(x—-x,)
A (13m/s)2—0
F = =m—2—=(7.0kg)| —————|=211.25N =[210N
wg — M mz(x—xo) ( g)|: 2(2.8m)

8.  The problem asks for the average force on the glove, which in a direct calculation would require
knowledge about the mass of the glove and the acceleration of the glove. But no information about
the glove is given. By Newton’s third law, the force exerted by the ball on the glove is equal and
opposite to the force exerted by the glove on the ball. So calculate the average force on the ball, and
then take the opposite of that result to find the average force on the glove. The average force on the
ball is its mass times its average acceleration. Use Eq. 2-12¢ to find the acceleration of the ball, with

v=0, v,=35.0m/s, and x—x,=0.110 m. The initial direction of the ball is the positive
direction.
Py 0-(35.0m/s)’
a =——Y - (35.0m/s) _ ~5568 m/s’
“ 2(x-x,) 2(0.110m)
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10.

11.

12.

F,, =ma,, =(0.140 kg)(~5568 m/s’)=

avg
Thus the average force on the glove was 780 N, in the direction of the initial velocity of the ball.

We assume that the fish line is pulling vertically on the fish, and that the fish is not jerking
the line. A free-body diagram for the fish is shown. Write Newton’s second law for the fish
in the vertical direction, assuming that up is positive. The tension is at its maximum.
ZFZFT -mg=ma — F, =m(g+a) —
F, 18N 5
m=—--—= - ~=1.5kg mg
gta 9.80m/s + 2.5m/s
Thus a mass of 1.5 kg is the maximum that the fish line will support with the given

acceleration. Since the line broke, the fish’s mass is given by |m >1.5kg| (about 3 1bs).

(a) The 20.0 kg box resting on the table has the free-body diagram shown. Its weight F
is mg =(20.0 kg) (9.80m/s2) =|196N|. Since the box is at rest, the net force on i

the box must be 0, and so the normal force must also be [196 N|.

(b) Free-body diagrams are shown for both boxes. FH is the force on box 1 (the l mg
F,

top box) due to box 2 (the bottom box), and is the normal force on box 1. F21

is the force on box 2 due to box 1, and has the same magnitude as Fn by Top [box (#1)

Newton’s third law. FNZ is the force of the table on box 2. That is the normal |

force on box 2. Since both boxes are at rest, the net force on each box must 1 mg
be 0. Write Newton’s second law in the vertical direction for each box, taking
the upward direction to be positive.

ZFIZFNl_mIgZO Fo

F, =mg=(10.0kg)(9.80m/s*) =[98.0N|=F, = F, Botthm [box
(#2)

ZFQZFNz_Fm_ng:O al -
m,g 1 F,,

F,, =F, +m,g =980 N+(20.0kg)(9.80m/s*) =

The average force on the pellet is its mass times its average acceleration. The average acceleration is
found from Eq. 2-12c. For the pellet, v, =0, v=125m/s, and x —x, = 0.800m.
v -yl (125mfs)" -0

= = =9766m/s’
s T3 (—x)  2(0.800m) m/s

E,, =ma,, =(9.20x107kg)(9766m/s*) =

Choose up to be the positive direction. Write Newton’s second law for the vertical
direction, and solve for the tension force.

ZF:FT—mg=ma —)FT:m(g+a)

F, = (1200 kg) (9.80m/s* +0.70m/s*) =
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Choose up to be the positive direction. Write Newton’s second law for the vertical

14.

15.

16.

17. Use Eq. 2-12c¢ to find the acceleration. The starting speed is 35 km/ h(

direction, and solve for the acceleration.
ZF =F. —mg=ma
F,—mg 163N —(14.0kg)(9.80m/s’)
om 14.0kg
Since the acceleration is positive, the bucket has an acceleration.

= 1.8rn/s2

Use Eq. 2-12b with v, =0 to find the acceleration.
2(x- 2(402 1"g"
x-x, =vit+ta’ — a= (x . %) _ 2 mz) =19.63m/s*| —— |=[2.00g"s
t (6.40s)

The accelerating force is found by Newton’s second law.

F =ma = (535kg) (19.63m/s’) =

If the thief were to hang motionless on the sheets, or descend at a constant speed, the sheets

would not support him, because they would have to support the full 75 kg. But if he E
descends with an acceleration, the sheets will not have to support the total mass. A free- [ ]
body diagram of the thief in descent is shown. If the sheets can support a mass of 58 kg,

then the tension force that the sheets can exert is F, = (58kg) (9.80 m/ sz) =568 N.

Assume that is the tension in the sheets. Then write Newton’s second law for the thief, mg
taking the upward direction to be positive.

F.—mg S568N—(75kg)(9.80m/s’)
m o 75 kg
The negative sign shows that the acceleration is downward.

ZF=FT—mg=ma — a= =—2.2rn/s2

If the thief descends with an acceleration of 2.2 m/s’ or greater, the sheets will support his descent.

In both cases, a free-body diagram for the elevator would look like the adjacent I

diagram. Choose up to be the positive direction. To find the MAXIMUM tension, T

assume that the acceleration is up. Write Newton’s second law for the elevator.
ZFzmazFT—mg - mi

F,=ma+mg=m(a+g)=m(0.0680g +g)=(4850 kg)(1.0680)(9.80m/s" )

=[s.08x10']

To find the MINIMUM tension, assume that the acceleration is down. Then Newton’s second law
for the elevator becomes the following.

ZFzmazFT—mg — F, =ma+mg=m(a+g)=m(—0.0680g+g)

= (4850 kg)(0.9320)(9.80m/s* ) =
Lm/s J =9.72m/s.

3.6km/h

2 2 _ 2
V=vii2a(x-x) — a=—"Y 0 (972 m/s) = -2779m/s’ =|-2800m/s’
2(x—x,)  2(0.017m)
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2779 m/s’ [983#} = 284g's =

The acceleration is negative because the car is slowing down. The required force is found by
Newton’s second law.

F = ma = (68kg) (2779 m/s*) =

This huge acceleration would not be possible unless the car hit some very heavy, stable object.

18. There will be two forces on the person — their weight, and the normal force of the &
scales pushing up on the person. A free-body diagram for the person is shown.
Choose up to be the positive direction, and use Newton’s second law to find the

acceleration.
ZF=FN—mg=ma — 0.75mg-mg =ma — mg P

N

a=-025g=-025(9.8m/s*)=|-2.5m/s’

Due to the sign of the result, the direction of the acceleration is . Thus the elevator must have
started to move down since it had been motionless.

(a) To calculate the time to accelerate from rest, use Eq. 2-12a.

L |
- 9.0 -0
v=v,+at — p=2" o m/s2 =7.5s
a 1.2 m/s
The distance traveled during this acceleration is found from Eq. 2-12b.
x-x,=vt+tar’ =1(1.2m/s*)(7.55)" =33.75m mg || &

To calculate the time to decelerate to rest, use Eq. 2-12a.
v—-v, 0-9.0m/s
a  -12 m/s2
The distance traveled during this deceleration is found from Eq. 2-12b.
x—x, = vt +tar’ =(9.0m/s)(7.55) ++(-1.2m/s’ ) (7.55)" =33.75m

=7.5s

v=y,t+tat — t=

To distance traveled at constant velocity is 180m —2(33.75m) =112.5m.
To calculate the time spent at constant velocity, use Eq. 2-8.

_x-x, 112.5m/s
v 9.0m/s
Thus the times for each stage are:

X=Xx,+vt — t =12.5s=13s

|Accelerating: 7.5s Constant Velocity: 13s  Decelerating: 7.5s

(b) The normal force when at rest is mg. From the free-body diagram, if up is the positive
direction, we have that F, —mg = ma. Thus the change in normal force is the difference in the
normal force and the weight of the person, or ma.

AF, 1.2m/s*
Accelerating: v _1e_2_ L/SZ x100 =
F mg g 9.80 rn/s

N

AF, 0
Constant velocity: v e _2_ ——— X100 =
F, mg g 980 m/s
AF -12m/s’
Decelerating: v _Me_4_ —m/sx 100 =

F, - mg _E_ 9.80m/s2
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(¢) The normal force is not equal to the weight during the accelerating and deceleration phases.

7.5s+7.5s
= 0

7.5s+12.5s+7.5s

20. The ratio of accelerations is the same as the ratio of the force.
ma F F

aoptics _ optics optics optics

g mg  mg p(inr)g

10x10™"*N
_ x =1949 —

1.0 lke 10°cm’ ]
(1.0cri3 100§g l;r? jiﬂ(.leO “m) (9.80m/s’)

21. (a) Since the rocket is exerting a downward force on the gases, the gases will exert an
upward force on the rocket, typically called the thrust. The free-body diagram for the rocket
shows two forces — the thrust and the weight. Newton’s second law can be used to find the
acceleration of the rocket.

ZFzFT—mgzma -

F.—mg 3.355x10'N—(2.75x10°kg)(9.80m/s’)
o om (2.75%10°kg)
(b) The velocity can be found from Eq. 2-12a.

v=v,+ar=0+(3.109m/s*)(8.0s) = 24.872m/s =

(c¢) The time to reach a displacement of 9500 m can be found from Eq. 2-12b.

2(x—x 2(9500 m -
X=X, =vt+La® — tz\/ ( °)=\/(3_(109m/sz)): mg

=3.109m/s’ = (3.1m/s’ F

a

22. (a) There will be two forces on the skydivers — their combined weight, and the
upward force of air resistance, FA. Choose up to be the positive direction. Write
Newton’s second law for the skydivers.

ZF =F, -mg=ma — 025mg-mg=ma —

a=-0.75g =—0.75(9.80m/s’ ) = |-7.35m/s’

Due to the sign of the result, the direction of the acceleration is down.
(b) If they are descending at constant speed, then the net force on them must
be zero, and so the force of air resistance must be equal to their weight.

F, =mg =(132 kg)(9.80m/s’ ) =

23. The velocity that the person must have when losing contact with the ground is found from 1

Eq. 2-12c, using the acceleration due to gravity, with the condition that their speed at the
top of the jump is 0. We choose up to be the positive direction.

v2=v§+2a(x—x0) -

v, =V —2a(x-x,) = \/0— 2(-9.80m/s*)(0.80m) = 3.960m/s
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This velocity is the velocity that the jumper must have as a result of pushing with their legs. Use that
velocity with Eq. 2-12c again to find what acceleration the jumper must have during their push on
the floor, given that their starting speed is 0.

vi—vl  (3.960m/s)’ -0
2(x-x,)  2(0.20m)
Finally, use this acceleration to find the pushing force against the ground.

ZFzFP—mgzma -

=39.20m/s’

v2=v§+2a(x—x0) - a=

F,=m(g+a)=(68kg)(9.80m/s’ +39.20m/s’) =[3300N

24. Choose UP to be the positive direction. Write Newton’s second law for the elevator. F
ZF =F. -mg=ma —
F. —mg 21750 N—(2125kg)(9.80m/s*)
oom 2125 kg

=0.4353 m/s2 = 0.44rn/s2 mg

We break the race up into two portions. For the acceleration phase, we call the distance @, and the
time ¢,. For the constant speed phase, we call the distance d, and the time #,. We know that

d =45m, d, =55m, and ¢, =10.0s—¢. Eq.2-12b is used for the acceleration phase and Eq. 2-2

is used for the constant speed phase. The speed during the constant speed phase is the final speed of
the acceleration phase, found from Eq. 2-12a.

x—x,=vt+ia® — d =latl ; Ax=vt — d,=vt,=v(10.0s—1) ;v=v,+at,
This set of equations can be solved for the acceleration and the velocity.
d =tat} ; d,=v(10.0s—¢) ; v=at, > 2d =at] ; d, =at (10.0-1) —

a=2h ;dz=2Z—”2’1t1(1o.o-tl)=2—dl(1o.o-tl) S dy =2d,(100-1) —
1 1 1
_ 2004, _2d, _ 2d, _(dy+2d))
' (d,+2d) y 2004, | (2005%)d,
(d, +2d,)

_(d,+2d,)" 20.0d, (d,+2d,)

- 200d, (d,+2d)  10.0s
(a) The horizontal force is the mass of the sprinter times their acceleration.
(d,+2d,)" _ (66ke) (145m)’
(200s%)4, (2005 ) (45m)
(b) The velocity for the second portion of the race was found above.
(d,+2d,) 145m _

10.0s 10.0s

F=ma=m =154 N =|150N

14.5m/s

26. (a) Use Eq. 2-12c to find the speed of the person just before striking the ground. Take down to be
the positive direction. For the person, v, =0, y—y,=3.9m, and a =9.80 m/ s

v —vé =2a(y—y0) - v=,/2a(y—y0) =\/2(9.80m/s2)(3.9 m) =8.743=
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(b) For the deceleration, use Eq. 2-12¢ to find the average deceleration, choosing down to be
positive.

v, =8743m/s  v=0 y-y,=070m v -v =2a(y-y,) -
—v2  —(8.743m/s)’

= = —54.6m/s’ %
“Toa T 2(070m) /s F

The average force on the torso (FT ) due to the legs is found from Newton’s second
law. See the free-body diagram. Down is positive.
F

net

Fy=mg-ma=m(g—a)=(42kg)(9.80m/s’ —-54.6m/s’ ) =

The force is upward.

=mg-F,=ma —

27. Free-body diagrams for the box and the weight are shown below. The
tension exerts the same magnitude of force on both objects. F F; F
(a) If the weight of the hanging weight is less than the weight of the box, N
the objects will not move, and the tension will be the same as the
weight of the hanging weight. The acceleration of the box will also mg mg
be zero, and so the sum of the forces on it will be zero. For the box, !

F +F -mg=0 — F,=mg-F =mg-mg=77.0N-30.0N =
(b) The same analysis as for part (a) applies here.
F,=mg-mg=71.0N-60.0N=[17.0 N]|
(¢) Since the hanging weight has more weight than the box on the table, the box on the table will be
lifted up off the table, and normal force of the table on the box will be .

28. (a) Just before the player leaves the ground, the forces on the player are his
weight and the floor pushing up on the player. If the player jumps straight up,
then the force of the floor will be straight up — a normal force. See the first

diagram. In this case, while touching the floor, F} > mg.

() While the player is in the air, the only force on the player is their weight.
See the second diagram.

29. (a) Just as the ball is being hit, ignoring air resistance, there are two main P
forces on the ball: the weight of the ball, and the force of the bat on the ball. o
(b) As the ball flies toward the outfield, the only force on it is its weight, if mg
air resistance is ignored. -

30. The two forces must be oriented so that the northerly component of the first

force is exactly equal to the southerly component of the second force. Thus the
second force must act | southwesterly | See the diagram.
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(a) We draw a free-body diagram for the piece of
the rope that is directly above the person. -
That piece of rope should be in equilibrium.
The person’s weight will be pulling down on that
spot, and the rope tension will be pulling away from
that spot towards the points of attachment. Write Newton’s 5
second law for that small piece of the rope.

72.0kg)(9.80m/s>
S F =2Fsinf-mg=0 — 0= sin TE _ i 2)(9:80m/s ) _ 6onse
2(2900N)

T

tanf=—"—— — x=(125m)wn6.988°=1532m=1.5m]

12.5m

(b) Use the same equation to solve for the tension force with a sag of only % that found above.
-, 0.383m

12.5m

x=f(1.532m)=0.383m ; @=tan =1.755°

_ mg _ (72.0kg)(9.80m/s’)
“2sin6  2(sinl.755°)

The | rope will not break |, but it exceeds the recommended tension by a factor of about 4.

=|11.5kN

T

32. The window washer pulls down on the rope with her hands with a tension force F,

so the rope pulls up on her hands with a tension force F,. The tension in the rope is 1 I |
T Ia

also applied at the other end of the rope, where it attaches to the bucket. Thus there is
another force F pulling up on the bucket. The bucket-washer combination thus has t

a net force of 2F, upwards. See the adjacent free-body diagram, showing only forces

on the bucket-washer combination, not forces exerted by the combination (the pull
down on the rope by the person) or internal forces (normal force of bucket on person).
(a) Write Newton’s second law in the vertical direction, with up as positive. The net
force must be zero if the bucket and washer have a constant speed. S

YF=F+F-mg=0 — 2F, =mg —

F, =1mg=1(72kg)(9.80m/s’) =352.8N =[350N

T

(b) Now the force is increased by 15%, so F, =358.2N (1.15) =405.72N. Again write Newton’s
second law, but with a non-zero acceleration.
ZFzFT+FT—mg=ma -
2F —mg 2(405.72N) - (72kg)(9.80m/s’)
- m - 72kg

=147m/s’ ~[1.5m/s’

33. We draw free-body diagrams for each bucket.
(a) Since the buckets are at rest, their acceleration is 0. Write Newton’s F,, Fy
second law for each bucket, calling UP the positive direction.

ZE =F,-mg=0 —
F, =mg =(3.2kg)(9.80m/s’ ) = F, | [me mg

Top (#2) Bottom (# 1)
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Y F=F,-F,-mg=0 —

Fy, = F, +mg=2mg=2(32kg)(9.80m/s’ ) =
(b) Now repeat the analysis, but with a non-zero acceleration. The free-body diagrams are
unchanged.
ZFI =F ,-mg=ma —

F =mg+ma=(32kg)(9.80m/s’ +1.25m/s’) =35.36N =[35N

ZFZ =F,-F,-mg=ma — F,=F, +mg+ma=2F, =|7T1N

34. See the free-body diagram for the bottom bucket, and write Newton’s second law to find

the tension. Take the upward direction as positive. Fgmm
ZF = FT] - mbuckctg = mbuckcta -
bottom

F, =m,,. (g+a)=(32kg)(9.80m/s’ +125m/s’) =3536N = (35N

bottom

mbucketg
Next, see the free-body for the rope between the buckets. The mass of the cord is given by
/4
mcord = ot *
g FT]
ZF = FTl M8 FTl =ma — lop
top bottom
FTI =FT1 +mcord (g+a)=mbucket(g+a)+mcord (g+a)
top bottom
/4 2.0N -
=l m, . +— |(g+a)=|32kg+————— |(11.05m/s’ F &
( ek g j( ) ( 9.80 m/s2 j( / ) Taiom py | Heord®
=37.615N =|38N
Note that this is the same as saying that the tension at the top is accelerating the F,
bucket and cord together.
Now use the free-body diagram for the top bucket to find the tension at the bottom
of the second cord. .
ZF =F, = Fy —my, 8 = my,a — FlTolp Mpyerer®

top

FTZ = FT] + mbuckct (g + a) = mbuckct (g + a) + mcord (g + a) + mbuckct (g + a)

top

W
= (2mbuckel + mcord ) (g + a) = (2mbuckel + ?rd] (g + a)

20N ,
=|2(3.2ke) + ———— |(11.05 =72.98N =|73N
[ ( g)+9.80m/s2j( m/s)

Note that this is the same as saying that the tension in the top cord is accelerating the two buckets
and the connecting cord.
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35.

36.

Choose the y direction to be the “forward” direction for the motion of the snowcats, and the x
direction to be to the right on the diagram in the textbook. Since the housing unit moves in the
forward direction on a straight line, there is no acceleration in the x direction, and so the net force in
the x direction must be 0. Write Newton’s second law for the x direction.

Y F =F_+F, =0 — -F,sin48°+F,sin32°=0 —
F,sin48° (4500N)sin48°
F =2 = =6311N =|6300N
? sin 32° sin 32°
Since the x components add to 0, the magnitude of the vector sum of the two forces will just be the
sum of their y components.

D F =F, +F, =F, cos48°+F, cos32° = (4500 N) cos 48° + (6311 N) cos 32°
=8363N =[8400N]

Since all forces of interest in this problem are horizontal, draw the free-body diagram showing only

the horizontal forces. Fn is the tension in the coupling between the locomotive and the first car, and
it pulls to the right on the first car. Fv is the tension in the coupling between the first car an the

second car. It pulls to the right on car 2, labeled Fm and to the left on car 1, labeled F_ . Both cars

T2L*
have the same mass m and the same acceleration a. Note that ‘f*}m‘ = ‘f*’m‘ = F,, by Newton’s third

law.

Y -— v
s —

Y -— v
i —

5
Alz Al =~ AS

NN =

Write a Newton’s second law expression for each car.
ZEZFH_Fn:ma zezFTz:ma
Substitute the expression for ma from the second expression into the first one.

FT1_FT2 :ma:Frz - FT1 :2FT2 - FTl/FTz =2

This can also be discussed in the sense that the tension between the locomotive and the first car is
pulling 2 cars, while the tension between the cars is only pulling one car.

The net force in each case is found by vector addition with components.

(@ Fy,=-F=-102N F, =-F=-160N
~16.0
F, = \/(—10.2)2 +(~16.0) =190N @ =tan" T 57.48°

The actual angle from the x-axis is then 237.48°. Thus the net force is
F,, =[19.0 N at 237.5°|

F, 190N
_Fw  DDON 1.03m/s” at 237.5°
m  18.5kg
(b) F, =Fcos30°=8833N F, =F —Fsin30°=10.9N

F =y(8833N) +(109N)’ =14.03N =

10.9 F 14.03 N
f=tan —— = a=-—"= = 0.758m/s2 at
8.833 m  185kg
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38. Since the sprinter exerts a force of 720 N on the ground at an angle of 22°
below the horizontal, by Newton’s third law the ground will exert a force of
720 N on the sprinter at an angle of 22° above the horizontal. A free-body
diagram for the sprinter is shown.
(a) The horizontal acceleration will be found from the net
horizontal force. Using Newton’s second law, we have the following.

_ F,c0s22° (720 N)cos22°
m 65 kg

D> F =F,cos22°=ma, — a

X

=10.27m/s* =[1.0x10' m/s’
(b) Eq.2-12a1is used to find the final speed. The starting speed is 0.
v=v,+at — v=0+ar=(1027m/s*)(0.32s)=3286m/s =(33m/s

F
39. During the time while the force is F|, the acceleration is @ = —*. Thus the distance traveled would

m

be given by Eq. 2-12b, with a 0 starting velocity, x — x, = v, + Lat’ =

1
2

F .
—L¢2. The velocity at the
m

F
end of that time is given by Eq. 2-12a, v=v +at=0+ (—0) t,. During the time while the force is
m

£

2F,, the acceleration is a = . The distance traveled during this time interval would again be

m

F
given by Eq. 2-12b, with a starting velocity of (—0) ty-
m

F, 2F, F,
x—x, =vt+Liar’ =H;°jto}to +§( mojtj = 2;°t§

RRI

o |

. . F F
The total distance traveled is %—Ot(f +2 —Otg =
m 2 m

40. Find the net force by adding the force vectors. Divide that net force by the mass to find the
acceleration, and then use Eq. 3-13a to find the velocity at the given time.

> F = (161 +12j) N +(-10i + 22j) N = (6i + 34j) N = ma = (3.0kg)d —

(6i+34))N
— V=V, tar=0+-—-—""—
3.0kg 3.0kg

In magnitude and direction, the velocity is 35 m/ s at an angle of 80°.

a= (3.0s) = (6i+34j)m/s

41. For a simple ramp, the decelerating force is the component of gravity
along the ramp. See the free-body diagram, and use Eq. 2-12c¢ to
calculate the distance.

ZFX:—mgsmﬁzma — a=-gsinf
2 2 2 2
vi—y, O-v, v

X—x, = = -

24 2(-gsind)  2gsind
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[
_ ' =

2(9.80m/s’)sin11°

42. The average force can be found from the average acceleration. Use Eq. 2-12¢ to find the

acceleration.
2 2
vV =V
vi=v,+2a(x-x,) — a =2(x——x00)
2 2 _ 2
Fe=ma=m—r__"0__ (60.0kg)m - _120N
2(x-x,) 2(25.0m)

The average retarding force is |1.20x 10> N/, in the direction opposite to the child’s velocity.

From the free-body diagram, the net force along the plane on the skater is
mgsin @, and so the acceleration along the plane is gsinf. We use the

kinematical data and Eq. 2-12b to write an equation for the acceleration,

and then solve for the angle. P / Y
x—x,=vit+iat’ =vt+Lgt’singd — Y
X
2Ax — vt 2(18m)—-2(2.0m/s)(3.3s /
H( ] (8m)-2020m (339 | | ]
gt (9.80m/s*)(3.3s) i
/, mg
44. For each object, we have the free-body diagram shown, assuming that the string doesn’t §
break. Newton’s second law is used to get an expression for the tension. Since the string ' T

broke for the 2.10 kg mass, we know that the required tension to accelerate that mass was
more than 22.2 N. Likewise, since the string didn’t break for the 2.05 kg mass, we know O
that the required tension to accelerate that mass was less than 22.2 N. These relationships 1 mg
can be used to get the range of accelerations.

ZFzFT—mgzma — FT=m(a+g)

F, F,

F. <m2‘10(a+g) ; F, >m2.05(a+g) - ———g<a; —-g>a —
max max mz_ 10 m2.05

£y £y 222N 222N

M _gcg<— g 5 T _980m/s’<a<—-—-9.80m/s’ —

m, ., m, 2.10kg 2.05kg

0.77m/s2 <a <1.O3m/s2 — 0.8m/s2 <a<1.0rn/s2

45. We use the free-body diagram with Newton’s first law for the stationary lamp to
find the forces in question. The angle is found from the horizontal displacement and
the length of the wire.

. 4015
(a) O=sin 2 0m 2.15°
4.0m
F =Fsn@-F, =0 — F, =Fsind

net
X
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mg

F_ =Fcos0-mg=0 — F = —
v cosd
F, =% in0 = mgtan 6 = (27kg) (9.80m/s* ) tan 2.15° = [9.9N
cos
mg (27kg)(9.80m/sz)
b) F = = =[260N
®) F=—= 260N

cos2.15°

46. (a) In the free-body diagrams below, FAB = force on block A exerted by block B, FB , = force on
block B exerted by block A, F,. = force on block B exerted by block C, and F, = force on

block C exerted by block B. The magnitudes of FB . and F s are equal, and the magnitudes of

F,. and F_, are equal, by Newton’s third law.
F, . -
FBN FCN
P Fs FBA F,. Fe
|

1 myg

1 m.g

l m,g

(b) All of the vertical forces on each block add up to zero, since there is no acceleration in the
vertical direction. Thus for each block, F, = mg . For the horizontal direction, we have the
following.

F
Y F=F-F,+F, —-F,+F, S —
mA+mB+mC

CB=F:(mA+mB+mC)a - |la=

(¢) For each block, the net force must be ma by Newton’s second law. Each block has the same
acceleration since they are in contact with each other.
m m m
FAnet = F A FB net = F . F;net = F <
m, +my +m,. m, +my +mg m, +my +mg
. m
(d) From the free-body diagram, we see that for mc, F, = F_  =|F € . And by

m, +m, +m_

Newton’s third law, F.. = F.. =|F Me

se = Fep ————| Ofcourse, F,; and F,, are in opposite
m, +my +mg

directions. Also from the free-body diagram, we use the net force on ma.

M
m, +m,+m,

m
— F,=F-F——2
m, +my+m,

=F

A net -

F-F,

my +m
— B C
F,=F

m, +m, +m,

+
By Newton’s third law, F,. = F,, =|F e B

AB

I’I’l1+l’lflz+}’}’l3
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F 960N
m,+m,+m, 30.0kg

(e) Using the given values, a = 3.20 m/ s’|. Since all three masses

are the same value, the net force on each mass is F, = ma = (10.0 kg) (3.20 m/s2) =32.0N.
This is also the value of F, and F,.. The value of F,, and F,, is found as follows.

Fy, =F, =(m,+m)a=(20.0kg)(3.20m/s’) = 64.0N

AB

To summarize:

F BneleCnetz FAB:FBA: FBCZFCBZ

A net = F

The values make sense in that in order of magnitude, we should have F > F,, > F,

s » since F'is the

net force pushing the entire set of blocks, Fap is the net force pushing the right two blocks, and Fpc
is the net force pushing the right block only.

47. (a) Refer to the free-body diagrams shown. With the stipulation i I
that the direction of the acceleration be in the direction of motion NI N Yy
for both objects, we have a. =a, =a. . l
a
|mEg—FT=mEa ; FT—ngsza| T
(b) Add the equations together to solve them. 1Y |
(m,g—F.)+(F,—m.g)=ma+ma — mg n,g
myg—m.g=ma+ma —
- 1150kg —1000k
a="e mcgz g g(9.80m/sz)= 0.68m/s2
mg +m, 1150kg +1000kg
- 2 2(1000kg)(1150k
E.=m.(g+a)=m, g+mE mcg = s g= ( g)( g)(9.80m/s2)
mg +m. my +m. 1150kg +1000kg

=10,483N = (10,500 N

48. (a) Consider the free-body diagram for the block on the frictionless
surface. There is no acceleration in the y direction. Use Newton’s
second law for the x direction to find the acceleration.

ZFx =mgsinf=ma —

a=gsin®=(9.80m/s*)sin22.0°=|3.67m/s’
(b) Use Eq. 2-12¢ with v, =0 to find the final speed.

Vovi=2a(x-x,) = v=y2a(r-x)=,2(367m/s")(12.0m) = [9.39m/s

(a) Consider the free-body diagram for the block on the frictionless
surface. There is no acceleration in the y direction. Write Newton’s
second law for the x direction.

ZFX =mgsinf=ma — a=gsinf
Use Eq. 2-12¢ with v, =—4.5m/s and v =0m/s to find the distance
that it slides before stopping.
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2 2
v =V

0-(-4.5m/s)’
(x-x,)= L = ( > m/s) =-2.758m =|2.8 m up the plane
2 2(9.80m/s’)sin22.0°

(b) The time for a round trip can be found from Eq. 2-12a. The free-body diagram (and thus the

acceleration) is the same whether the block is rising or falling. For the entire trip, v, = —4.5 m/ s

and v =+4.5m/s.

vevrat o =t SR Z(ASWS) b Bss
a (9.80m/s )s1n22°

50. Consider a free-body diagram of the object. The car is moving to the right. The
acceleration of the dice is found from Eq. 2-12a.

- 28 -0
v=vy,+=at — ax:v L m/s = 4.67m/s’
’ t 6.0s
Now write Newton’s second law for both the vertical (y) and horizontal (x)
directions.
mg .
ZszFTcosH—mg:O - F = P Z:I’TX:FTsmﬁ:ma)r
: oS

Substitute the expression for the tension from the y equation into the x equation.

ma_=F,sin@ = & sind=mgtanfd — a_=gtan0

cosd
La, ,4.67 rn/ s’ o 5
0 =tan" — = tan 1—2:25.48 z
g 9.80m/s
51. (a) See the free-body diagrams included. l—x'
(b) For block A, since there is no motion in the vertical direction, Y FT
we have F, =m,g. We write Newton’s second law for the x F, -
direction: ZF . =F,=m,a, . Forblock B, we only need to i,
consider vertical forces: ZFBy =myg — F, =mya, . Since the m,§ m,g
A
two blocks are connected, the magnitudes of their accelerations

will be the same, and so let a, = a,, =a. Combine the two force equations from above, and

solve for a by substitution.

F=ma mg-F=ma — mg-ma=ma —

m,m
= —g—B = —og—AB

ma+ma=m,g — |a=g F=ma=g

m, +m, m, +m,

52. (a) From Problem 51, we have the acceleration of each block. Both blocks have the same
acceleration.

5.0kg

=2.722m/s* =|2.7m/s’
(5.0kg+13.0kg) m/s m/s

a= ng (9.80m/sz)
m, +m

A B
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53.

54.

(b) Use Eq. 2-12b to find the time.

— 1 2 —
x—xo—v0t+3al 4 l—\/

2(x-x,) :\/ 2(1250m) _rooe

a (2.722m/s2) -

(¢) Again use the acceleration from Problem 51.

a=g— =0 5 T L 5 4 =99m, =[99kg

m, +m m, +m

A B A B

This problem can be solved in the same way as problem 51, with the modification that we increase
mass m, by the mass of Z, and we increase mass m, by the mass of Z,. We take the result from

problem 51 for the acceleration and make these modifications. We assume that the cord is uniform,
and so the mass of any segment is directly proportional to the length of that segment.

/B [B
my, +———="—m, my + m,.
4= m, e l,+ Y, 3 l + 2,
=& a=g =&
m, +m, l, Z, m, +mg +m,_
m, + m, |+| my+ m.
l, + Y, l,+ Y,

Note that this acceleration is NOT constant, because the lengths Z, and /Z, are functions of time.

Thus constant acceleration kinematics would not apply to this system.

We draw a free-body diagram for each mass. We choose UP to be the

positive direction. The tension force in the cord is found from analyzing Fe

the two hanging masses. Notice that the same tension force is applied to

each mass. Write Newton’s second law for each of the masses.
FT_mlg:mlal FT_ng:mzaz

Since the masses are joined together by the cord, their accelerations will

have the same magnitude but opposite directions. Thus a, = —a,. F; F;

Substitute this into the force expressions and solve for the tension force.

meg—F
F.-mg=-ma, — F.=mg-ma, — a2=L F; F;
m, my m
1.2 kg 32kg

mlg—FT] o F :2m1m2g
T
m

m, + m, m,g mg
Apply Newton’s second law to the stationary pulley.
amm,g _4(32kg)(1.2kg)(9.80m/s’)

m, +m, 4.4kg

FT_ngzmzaz zmz(

1

=[34N

F.-2F,=0 — F,=2F, =

If m doesn’t move on the incline, it doesn’t move in the vertical direction, and
so has no vertical component of acceleration. This suggests that we analyze
the forces parallel and perpendicular to the floor. See the force diagram for
the small block, and use Newton’s second law to find the acceleration of the
small block.

mg
cosd

sz =F,cos0-mg=0 — F =

F sin@ sin &
X =08 =gtand

ZFX =F sinf=ma — a=
’ m mcos @
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Since the small block doesn’t move on the incline, the combination of both masses has the same
horizontal acceleration of gtand. That can be used to find the applied force.

F =(m+M)a=(m+M)gtan(9

applied

Note that this gives the correct answer for the case of 8 =0, , where it would take no applied force to
keep m stationary. It also gives a reasonable answer for the limiting case of & — 90°, where no

force would be large enough to keep the block from falling, since there would be no upward force to
counteract the force of gravity.

P _

56. Because the pulleys are massless, the net force on them must be 0. e Fre
Because the cords are massless, the tension will be the same at both g " 4
ends of the cords. Use the free-body diagrams to write Newton’s ¢ ¢ ¢

second law for each mass. We are using the same approach taken in _

problem 47, where we take the direction of acceleration to be F F Mg

.. . . . . . TA TA
positive in the direction of motion of the object. We assume that m
is falling, my is falling relative to its pulley, and m, is rising F., F,,
relative to its pulley. Also note that if the acceleration of m,

my s | My ag

relative to the pulley above itis ag , then a, = a, +a.. Then, the
acceleration of my is a, = a, —a_, since a. is in the opposite m,g myg

direction of a, .
m, : ZF =F,-mg=ma, =m, (aR +ac)
My - ZF =myg — Fy, = mya, :mB(aR _ac)
m : ZF =m.g - F,.=m.a,
pulley: Y F=F_ -2F, =0 — F,=2F,
Re-write this system as three equations in three unknowns F,,, a,, a..
FTA_mAg:mA(aR+aC) -  F,-ma.-ma, =mg
myg = Fy=my(ay—ac) —  F—mac+mya, =myg
m.g—2F, =m.a, — 2F, tm.a,. =m.g
This system now needs to be solved. One method to solve a system of linear equations is by
determinants. We show that for a..

I m, -m,
I m, m,
4 = 2 m, 0 :—mBmC+mA(2mB)—mA(mC—2mB)
1 o Tmy —mgm, —m, (2mB) —m, (mc + ZmB)
I -my, my
2 mg 0
B dm,m, —m,m. —mym,_ _mm.+mym. — 4m,m,
—4m,my, —m, m.—mm,. dm,my +m,m. +mym,.

Similar manipulations give the following results.
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57.

58.

2(m,m.—mym.) 4m,mom,.

aR_ g;FTA:
dm . m,+m m.+m.m dm.m,.+m m.+m.m
A""B ATTC B°C A""'B ATC B°C

(a) The accelerations of the three masses are found below.

3 3 2(m,m. —mym,) m,m. +mym.—4m,m,
a,=a, +a, = g+
dm,m, +m,m. +mym,. dm,my +m,m. +mym,_

3m,m.—mgm.—4m, m,

dm,m, +m,m. +mym,.

2(mym.—mym,) _myme +mgm, —4m,m,

—a. =
C
dm,my +m,m. +mym,. dm,my +m,m. +mym,.

m,m. —3mym. +4m,m,

dm, m, +m,m.+mym,.

m,m. +mym. —4m,m,

dm,m, +m,m. +m,m,.

(b) The tensions are shown below.

dm, m.m 8m, m.m
— A"'B°C . _ — AT'BTC
FTA_ 4 g > FTC_ZFTA_ 4
mAmB + mAmC + mBmC mAmB + mAmC + mBmC

Please refer to the free-body diagrams given in the textbook for this problem. Initially, treat the two
boxes and the rope as a single system. Then the only accelerating force on the system is FP. The

mass of the system is 23.0 kg, and so using Newton’s second law, the acceleration of the system is
F, 350N

_ P
m  23.0kg

=1.522 rn/ s? =(1.52 m/ s’|. This is the acceleration of each part of the system.

Now consider m, alone. The only force on it is FBT , and it has the acceleration found above. Thus
F,

5 can be found from Newton’s second law.

Fy =mya = (120 kg)(1.522m/s*) =18.26 N =[183N

and it also has the acceleration found

Now consider the rope alone. The net force on it is FT W FTB,

above. Thus F,, can be found from Newton’s second law.

Fy —F,=ma — F, =F,+ma=1826N+(10kg)(1.522m/s’)=|19.8N

TA

First, draw a free-body diagram for each mass. Notice that the same

tension force is applied to each mass. Choose UP to be the positive P I
direction. Write Newton’s second law for each of the masses. T T

F -mg=mua, F.—-mg=ma, my m
Since the masses are joined together by the cord, their accelerations will 2.2kg 3.6kg
have the same magnitude but opposite directions. Thus a, = —a,. m,g mg
Substitute this into the force expressions and solve for the acceleration by

subtracting the second equation from the first.
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59.

FT -mg=-ma,

— F . =mg-ma,
F.-mg=ma, — mg-ma,—mg=ma, — mg-—m,g=ma,+ma,

m, —m, 3.6kg—-22kg
a, = =

Lom +m, 8 36kgt22 ke

The lighter block starts with a speed of 0, and moves a distance of 1.8 meters with the acceleration
found above. Using Eq. 2-12c, the velocity of the lighter block at the end of this accelerated motion
can be found.

Vv =2a(y-y,) = v=yit+2a(y-,) :\/0+2(2.366m/sz)(1.8m) =2.918m/s

Now the lighter block has different conditions of motion. Once the heavier block hits the ground,
the tension force disappears, and the lighter block is in free fall. It has an initial speed of 2.918 m/s
upward as found above, with an acceleration of —9.80 m/s* due to gravity. At its highest point, its
speed will be 0. Eq. 2-12c¢ can again be used to find the height to which it rises.

Vi—v2  0-(2.918m/s)’

0

20 2(-9.80m/s’)

(9.80m/s*) =2.366m/s’

v2—v§=2a(y—y0) - (y—yo)z =0.434m

Thus the total height above the ground is 1.8 m+ 1.8 m + 0.43 m = |4.0m|.

The force F is accelerating the total mass, since it is the only force external to the :
. 0/ -
system. If mass m, does not move relative to m, then all the blocks have the 1/ F

same horizontal acceleration, and none of the blocks have vertical acceleration. We :
solve for the acceleration of the system and then find the magnitude of F from
Newton’s second law. Start with free-body diagrams for m, and m,. myg

my Z:Fr =F.sinf=mya ;

ZFyzFTcosH—mBgzo — F.cos@=m,g B

Square these two expressions and add them, to get a relationship between F, and a. I
Elsin®@=mia’ ; F cos’0=m)g’ — 1

FTz(sin26+cosz<9):m;(g2+a2) - F :m;(g2+a2)

Now analyze m,.
m, ZFX =F.=ma — FT2 :mia2 ; ZFy =F,-m,g=0
Equate the two expressions for ., solve for the acceleration and then finally the magnitude of the
applied force.
:mé(g2+a2)=mia2 - azz—T;gzz 5 og=—88
(i} —me)

(m, +my+m.)m

J(m—m)

F2

T

B

F=(m,+m,+m.)a= g
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60. The velocity can be found by integrating the acceleration function, and the position can be found by
integrating the position function.

C d C r ¢ C C
F=ma=Cf — a=—f== & dv=""rA"dt — Idv=j—t2dt —lv=—"or
m dt m p Y 3m
C d. C ¢ e C
ve—r =2 . n="ta > _[dxzj'—ﬂdt - |x=—1I1
3m dt 3m o ) 3m 12m

We assume that the pulley is small enough that the part of the cable that is touching
the surface of the pulley is negligible, and so we ignore any force on the cable due to
the pulley itself. We also assume that the cable is uniform, so that the mass of a
portion of the cable is proportional to the length of that portion. We then treat the

m
cable as two masses, one on each side of the pulley. The masses are given by ’
/- . m,
m, = LM and m, = TyM . Free-body diagrams for the masses are shown.
(a) We take downward motion of m, to be the positive direction for m,, F, E,
and upward motion of m, to be the positive direction for m,. Newton’s second
law for the masses gives the following.
F:wtl :mlg_FT =ma, Fnet2 :FT_ng — a= A
m, +m, B mlg
Y-y e
.y / gzy—(/—y)g=2y—/g=(2_y_l)g
% M+ /;y M y+(£-») / l

(b) Use the hint supplied with the problem to set up the equation for the velocity. The cable starts
with a length y, (assuming y, >+ /) on the right side of the pulley, and finishes with a length

Z on the right side of the pulley.
2 dv dvd d 2
a:(_y_ljg:—vz—v—yzv—v RN (7y—1jgdy=vdv -

4 dt dy dt dy
Vs 2 Ve 2 / .
J(—y—ljgdyzj.vdv - g y——y =(%v2)0r — gyo( —&jzév; -
Yo / 0 [ Y /

Yo
v, =|,]2 l-—
f gyo( [j

(¢) For y, =2/, wehave v},=\/2gy0( —%]z\/2g(%)/( —§7j:

9.80m/s”
62. The acceleration of a person having a 30 “g” deceleration is a = (30" g") ("—II'I'/S) =294 m/ s,
g

)%}
R
~N

The average force causing that acceleration is F = ma = (65kg) (294 m/ sz) =|1.9x10*N|. Since

the person is undergoing a deceleration, the acceleration and force would both be directed opposite
to the direction of motion. Use Eq. 2-12c to find the distance traveled during the deceleration. Take
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63.

64.

65.

the initial velocity to be in the positive direction, so that the acceleration will have a negative value,
and the final velocity will be 0.

v, = (95km/h)(%

j: 26.4m/s

Vv -y 0-(264m/s)
20 2(-294m/s’)

vz—vg :2a(x—x0) - (x—xo):

—

2m

See the free-body diagram for the falling purse. Assume that down is the positive _
direction, and that the air resistance force Fﬁ is constant. Write Newton’s second law for
the vertical direction. i '

ZF=mg—Fﬁ:ma — Fﬁ:m(g—a) ;'

Now obtain an expression for the acceleration from Eq. 2-12¢ with v, = 0, and substitute

back into the friction force.

2
v

vz—vg =2a(x—x0) - a=—2(x_x0)

2

F, = m(g —h} = (20 kg)(9.80m/s2 —M] =[6.3N

X—X 2(55m)

Each rope must support 1/6 of Tom’s weight, and so must have a vertical component of tension
givenby T, =+mg . For the vertical ropes, their entire tension is vertical.

T = tmg =£(74.0 ke) (9.80m/s’) = 120.9N =[121x10°N]

For the ropes displaced 30° from the vertical, see the first diagram.

120.9N
T =T, co830°=tmg — T, = e =[1.40x10°N
6c0s30° cos30°

For the ropes displaced 60° from the vertical, see the second diagram.

120.9N i
T,..=Tcos60°=tmg — T,=— o= =[2.42x10°N /
' 60°

- 6c0s60° cos60°

The corresponding ropes on the other side of the glider will also have the same
tensions as found here.

Consider the free-body diagram for the soap block on the frictionless
surface. There is no acceleration in the y direction. Write Newton’s
second law for the x direction.

ZFX =mgsinf=ma — a=gsind
Use Eq. 2-12b with v, =0 to find the time of travel.

_ 1 42
x—xo—v0t+2at 4

o 2(x-x)  [2(x-x,) 2(3.0m) B
t_\/ a _\/ gsin@ _\/(9.80m/sz)sin(8.5°) _

Since the mass does not enter into the calculation, the | time would be the same | for the heavier bar of
soap.
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66. See the free-body diagram for the load. The vertical component of the tension force must
be equal to the weight of the load, and the horizontal component of the tension
accelerates the load. The angle is exaggerated in the picture.

F_ sin@
F =Fsinf=ma — a= 0 } By =Frcos0-mg=0 —
X m y
]
in &
F. = SN a, = mg s :gtanHz(9.80m/sz)tan5.0°=
cos @ cosf m

0.86m/s” '
(@)

Draw a free-body diagram for each block. Write

Newton’s second law for each block. Notice that the i
acceleration of block A in the ya direction will be zero, Ve T
since it has no motion in the y, direction.
F,=F -mgcos0=0 — F =mgcost e
B
ZFXA =m,gsin@-F.=m,a_,

l m,g
FyB =F -m,g= mya, — FE =m, (g+ayB)
Since the blocks are connected by the cord, a,=a, =a. Substitute the expression for the

tension force from the last equation into the x direction equation for block 1, and solve for the
acceleration.

m,gsin@-my(g+a)=ma — m,gsind—-myg=m,a+mya

(mA sinH—mB)

(m, +my)

(b)

If the acceleration is to be down the plane, it must be positive. That will happen if

m, sin@ > m,, (down the plane)|. The acceleration will be up the plane (negative) if

m, sin@ <m, (up the plane)|. If m, sin@ = m,, then the system will not accelerate. It will

move with a constant speed if set in motion by a push.

68. (a) From problem 67, we have an expression for the acceleration.
in@ — 1.00kg)sin33.0°—1.00k;
gmgasinf=m) (9.80m/s*) [(1.00kg) sin gl _ ~2.23m/s’
(m, +my) 2.00kg
~(-2.2 m/ s’

The negative sign means that m, will be accelerating UP the plane.
(b) If the system is at rest, then the acceleration will be 0.
(m, sin@—my)

=0 — m, =m,sind=(1.00kg)sin33.0° = 0.5446kg ~

a=g

0.545kg

(m, +m,)
(¢) Again from problem 68, we have F, =m, ( g+ a).
Case (a): Fy =my(g+a)=(1.00kg)(9.80m/s’ ~2.23m/s*) =7.57N =
Case (b): F, =my(g+a)=(0.5446kg)(9.80m/s* +0) = 5.337N =
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69. (a) A free-body diagram is shown for each block.

70.

We define the positive x-direction for m, to be

up its incline, and the positive x-direction for my

to be down its incline. With that definition the
masses will both have the same acceleration.
Write Newton’s second law for each body in the
x direction, and combine those equations to find
the acceleration.

y

m, : ZszFT—mAgsinﬁAzmAa
my ZFx =mygsin6, —F. =mya add these two equations

mysing, —m, sin@,

(F,—m,gsin@,)+(m,gsinf, - F,)=ma+ma — a=
m, +m,

(b) For the system to be at rest, the acceleration must be 0.
_mysin@, —m, sinf,

a= g=0 — mysing,—m,sind, —
m, +m,
sin@A (50k )Sil’l32°
m, =m = . = .
? A sin g, g sin 23° g

The tension can be found from one of the Newton’s second law expression from part (a).
m,: F.—m,gsin, =0 — F. =m,gsinf, = (5.0kg)(9.80m/sz)sin32° =
(c¢) Asin part (b), the acceleration will be 0 for constant velocity in either direction.
mysin @, —m, sin 6,
a=

g=0 — mysing,—m,sind, —

mA+mB

in 6, in23°
my _sinfy, _sin23"_[o7g
m, sin@, sin32°

A free-body diagram for the person in the elevator is shown. The scale reading is the

L
magnitude of the normal force. Choosing up to be the positive direction, Newton’s
second law for the person says that Y F = F, -mg=ma — F,=m(g+a). The
kg reading of the scale is the apparent weight, F| , divided by g, which gives -
m _

F, m(g+a) g F,
F, Nke = - -

g g
(@) a=0 — F,=mg=(750kg)(9.80m/s’)=[7.35x10°N

Fop =2 =m=[750kg
g

®) a=0 — F,=[135x1°N], F,,, =[75.0kg
(© a=0 — F, =[135x10°N|, F,,, =[75.0kg
() F,=m(g+a)=(750kg)(9.80m/s’ +3.0m/s*)a=[9.60x10°N
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F. 960N
Fo=x- PN _Tog 0k
Y g 9.80m/s?
(©) F,=m(g+a)=(750kg)(9.80m/s’ =3.0m/s*)a =|5.1x10°N|
F

510N
F, =-N=—_— _-I5k
M g 9.80m/s?

71. The given data can be used to calculate the force with which the road pushes
against the car, which in turn is equal in magnitude to the force the car
pushes against the road. The acceleration of the car on level ground is found
from Eq. 2-12a.

v—v, 2lm/s—0
t 12.5s
The force pushing the car in order to have this acceleration is found from
Newton’s second law.

F, =ma = (920kg)(1.68m/s’) = 1546 N

We assume that this is the force pushing the car on the incline as well. Consider a free-body diagram
for the car climbing the hill. We assume that the car will have a constant speed on the maximum
incline. Write Newton’s second law for the x direction, with a net force of zero since the car is not
accelerating.

v-y,=at — a= =1.68m/s2

. . F,
ZF_:FP—mgsmé’zo — sinf=—
X mg

6 =sin™' £ _ sin”' 1546N =

mg (920kg) (9.80m/s*)

72. Consider a free-body diagram for the cyclist coasting downhill at a constant
speed. Since there is no acceleration, the net force in each direction must be
zero. Write Newton’s second law for the x direction (down the plane).

ZFX =mgsin@—-F, =0 — F,=mgsinf

This establishes the size of the air friction force at 6.0 km/h, and so can be
used in the next part.

force pushing the cyclist uphill. Again, write Newton’s second law for the x
direction, with a net force of 0.

Y. F =F,+mgsin0-F,=0 —

Now consider a free-body diagram for the cyclist climbing the hill. £, is the y L\
X

F,=F,+mgsinf =2mgsin@

= 2(65 kg) (9.80m/s*) (sin 6.5°) =

(a) The value of the constant ¢ can be found from the free-body diagram,
knowing that the net force is 0 when coasting downhill at the specified
speed.

Zﬂ=mgsin9—F. =0 —» F_=mgsinf=cv —

air air
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i 80.0kg)(9.80 ?)sin5.0°
o= mgSll’le _ ( g)( m/s )Sm =40.9981z 41l

o (6.0km/h)(lm/sj ms | ms

3.6km/h
(b) Now consider the cyclist with an added pushing force FP directed along

the plane. The free-body diagram changes to reflect the additional force
the cyclist must exert. The same axes definitions are used as in part (a).

> F. =F,+mgsin0-F, =0 —

air

F,=F_-mgsin@ =cv—mgsin0

_ (40.998%}[(18-01‘”11)(%}}

—(80.0kg)(9.80m/s’ )sin5.0° =136.7N =

74. Consider the free-body diagram for the watch. Write Newton’s second law for
both the x and y directions. Note that the net force in the y direction is 0 because

there is no acceleration in the y direction. y

m

ZFy=FTcosﬁ—mg:0 — F = £ X ‘
cosd

sin@ = ma

ZFX =F sinf=ma —
cosd

a=gtand = (9.80m/sz)tan25° =457m/s’
Use Eq. 2-12a with v, =0 to find the final velocity (takeoff speed).
v=v,=at — v=v,+at=0+(457m/s’)(16s)=|73m/s

75. (a) To find the minimum force, assume that the piano is moving with a constant i
velocity. Since the piano is not accelerating, F, = Mg. For the lower pulley, since b
the tension in a rope is the same throughout, and since the pulley is not accelerating,
itis seenthat £, + F., =2F, =Mg — F, =F,=Mg/2.

It also can be seen that since F = F.,, that |F = Mg/2|
(b) Draw a free-body diagram for the upper pulley. From that Mg

. 3Mg
diagram, we see that F, = F + F, +F = T P Fﬂ Upper FB
. T Pulley
To summarize:
FT1:FT2:Mg/2 FT3:3Mg/2 F.,=Mg F Lower FTz =
™1 pulley F
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76. Consider a free-body diagram for a grocery cart being pushed up an
incline. Assuming that the cart is not accelerating, we write Newton’s
second law for the x direction.

F
> F =F,-mgsing=0 — sinf=—=
mg

F, 18N
6 =sin" —-=sin"' =|4.2°
" mg T (25kg)(9.80m)/57) 427

77. The acceleration of the pilot will be the same as that of the plane, since the pilot
is at rest with respect to the plane. Consider first a free-body diagram of the
pilot, showing only the net force. By Newton’s second law, the net force MUST
point in the direction of the acceleration, and its magnitude is ma . That net force
is the sum of ALL forces on the pilot. If we assume that the force of gravity and ~
the force of the cockpit seat on the pilot are the only forces on the pilot, then in F

terms of vectors, F_ =mg+F_ =ma. Solve this equation for the force of the

seatto find F_ = Fﬂel —mg =ma—mg. A vector diagram of that equation is

seat

shown. Solve for the force of the seat on the pilot using components.
F =F —macoslSo:(75kg)(3.8m/sz)00518°:271.1N

x seat x net

F =mg+Fvnc

y seat

= mg + masin18°

t

= (75kg)(9.80m/s) + (75kg) (3.8m/s’ )sin18° = 823.2N

The magnitude of the cockplt seat force is as follows.

F=\F  +F, \/271 IN)’ +(823.2N)’ =866.7N = 870N

The angle of the cockpit seat force is as follows.

F 823.2N .
6 =tan" -2 = tan™ LN above the horizontal

X seat

78. (@) The helicopter and frame will both have the same acceleration, and so can be
treated as one object if no information about internal forces (like the cable
tension) is needed. A free-body diagram for the helicopter-frame T}(
combination is shown. Write Newton’s second law for the combination,
calling UP the positive direction.

ZF I m +m )gz(mH+mF)a - ﬁm

=T

lift

F = (my, +m,)(g+a)=(7650 kg+1250 kg)(9.80m/s’ +0.80m/s" )
=(9.43x10*N -
(my +m.)g
(b) Now draw a free-body diagram for the frame alone, in order to find the
tension in the cable. Again use Newton’s second law.
Y F=F-mg=ma — F,
F,=m,(g+a)=(1250 kg)(9.80m/s* +0.80m/s*) =[1.33x 10" N| QS é
(c¢) The tension in the cable is the same at both ends, and so the cable exerts a Mg

force of |1.33x10*N| downward on the helicopter.
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(a) We assume that the maximum horizontal force occurs when the train is moving very slowly,
and so the air resistance is negligible. Thus the maximum acceleration is given by the
following.

_F,.  4xION

a = A

™ m  64x10°kg

(b) At top speed, we assume that the train is moving at constant velocity. Therefore the net force
on the train is 0, and so the air resistance and friction forces together must be of the same

magnitude as the horizontal pushing force, which is [1.5x10°N].

80. See the free-body diagram for the fish being pulled upward vertically. From Newton’s -
second law, calling the upward direction positive, we have this relationship. F;

ZFy_=FT—mg=ma - FT=m(g+a) ?

(a) Ifthe fish has a constant speed, then its acceleration is zero, and so F, =mg. Thus

=0.625m/s’ ~|0.6m/s’

the heaviest fish that could be pulled from the water in this case is |45 N (10 lb) .

(b) If the fish has an acceleration of 2.0 m/s?, and F, is at its maximum of 45 N, then

solve the equation for the mass of the fish.

F, 45N
m= =
g+ta 9.8m/s2 +2.Om/s2

mg =(3.8kg)(9.8m/s*)=[37 N (=8.41b)

(¢) Itisnot possible to land a 15-1b fish using 10-Ib line, if you have to lift the fish vertically. If
the fish were reeled in while still in the water, and then a net used to remove the fish from the
water, it might still be caught with the 10-Ib line.

=38kg —

81. Choose downward to be positive. The elevator’s acceleration is calculated by Eq. 2-12c.
2y 0-(3.5m/s)’ F
vi-vy =2a(y-y,) — a= il /T ( /s) = -2.356m/s’ '
2(y=y)  2(26m)
See the free-body diagram of the elevator/occupant combination. Write Newton’s second
law for the elevator. a
mg
ZFy =mg—-F =ma

F, =m(g-a) = (1450kg) (9.80m/s’ — 2356 m/s’) =

82. (a) First calculate Karen’s speed from falling. Let the downward direction be positive, and use Eq.
2-12¢ with v, =0.

Vovi=2a(y-y,) = v=y0+2a(y-y,) =2(98m/s")(2.0 m) = 626 m/s

Now calculate the average acceleration as the rope stops Karen, again using Eq. 2-12¢, with
down as positive.

P2 0-(626m/s)’ >
vi—v, =2a(y-y,) — a= il ( m/s) =—19.6m/s2 Fope
2(v=»)  2(1.0m)

The negative sign indicates that the acceleration is upward. Since this is her

acceleration, the net force on Karen is given by Newton’s second law, F, =ma. mg
That net force will also be upward. Now consider the free-body diagram of Karen as
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she decelerates. Call DOWN the positive direction. Newton’s second law says that

F,=ma=mg-F, — F, =mg-ma. Theratio of this force to Karen’s weight is
mg —ma a -19.6m/s’
e 18 =1.0-—=1.0- —/S =3.0. Thus the rope pulls upward on Karen

mg g g 9.8m/s2

with an average force of |3.0 times her weight |

(b) A completely analogous calculation for Bill gives the same speed after the 2.0 m fall, but since
he stops over a distance of 0.30 m, his acceleration is =65 m/s”, and the rope pulls upward on

Bill with an average force of |7.7 times his weight | Thus, |Bi11 is more likely to get hurt.

83. Since the climbers are on ice, the frictional force for the =
lower two climbers is negligible. Consider the free-
body diagram as shown. Note that all the masses are
the same. Write Newton’s second law in the x direction
for the lowest climber, assuming he is at rest.

Zﬂan—mgsinﬁzo Fu
Fy, = mgsin® = (75kg)(9.80m/s’ )sin31.0°

=(380N

7 I
19 \ v
Write Newton’s second law in the x direction for the mg
middle climber, assuming he is at rest.

Y F =F,-F,-mgsind=0 — F, =F,+mgsing=2F,gsin0=|760N

84. Use Newton’s second law.

10 -
A At:msz(l.Oxlo kg)(2.0><103m/s)::93d

At F (2.5N)

o0
)}

Use the free-body diagram to find the net force in the x direction, and then
find the acceleration. Then Eq. 2-12c¢ can be used to find the final speed at )
the bottom of the ramp.

ZFx =mgsin@-F, =ma —

mgsin@—F, (450kg)(9.80m/s” )sin22°~1420N

a= = )

m 450kg J lmg
=0.516m/s’ '

v :vg +2a(x—x0) - v=,/2a(x—x0) =\/2(0.516m/s2)(11.5m) =
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86. (@) We use the free-body diagram to find the force needed to pull the masses at a ¥
constant velocity. We choose the “up the plane” direction as the positive \/X
direction for both masses. Then they both have the same acceleration ? F
even if it is non-zero.

m, : ZFx=FT—mAgsin¢9A=mAa=0
m, : ZszF—FT—mBgsinﬁBszazo

Add the equations to eliminate the tension force and
solve for F.

(F,—m,gsin@, )+ (F-F,—mygsing,)=0 —

F =g(m,sin6, +mysind,)

= (9.80m/s*)[(9.5ke)sin 59° + (11.5kg) sin32°] =

(b) Since 6, > 0,, if there were no connecting string, m, would have a larger acceleration than

my. 1If 68, <@,, there would be no tension. But, since there is a connecting string, there will be

.

tension in the string. Use the free-body diagram from above but ignore the applied force F.
m, : ZFX =F -m,gsin6, =ma ; m,: ZFX =-F —-mygsinf, =m.a

Again add the two equations to eliminate the tension force.

(F,—m,gsin@,)+(—F, —mygsinf,)=ma+mga —

o= g™ sin g, +m, sin6, _ _(9 80m/s2) (9.5kg)sin59°+ (11.5kg)sin32°
m, +m, . 21.0kg

=—-6.644 m/s2 =|6.64 m/s2 , down the planes

(¢) Use one of the Newton’s second law expressions from part () to find the string tension. It must
be positive if there is a tension.
F.—m,gsinf, =m,a —

Fy =m, (gsin6, +a) = (9.5kg)[ (9.80m/s” ) (sin59°) - 6.644 m/s* | =

87. (a) Ifthe 2-block system is taken as a whole system, then the net force on the system is just the

force F, accelerating the total mass. Use Newton’s second law to find the force from the mass
and acceleration. Take the direction of motion caused by the force (left for the bottom block,
right for the top block) as the positive direction. Then both blocks have the same acceleration.

> F =F=(m, +m,,, )a=(9.0kg)(2.5m/s’) =22.5N = 23N

top

(b) The tension in the connecting cord is the only force acting on the top block, and so must be
causing its acceleration. Again use Newton’s second law.

> F =F =m_a=(15kg)(2.5m/s") =3.75N = [3.8N
This could be checked by using the bottom block.
Y F =F-F =m

a — F=F-m,,a=225N-(75kg)(2.5m/s’)=3.75N

bottom bottom

88. (a) For this scenario, find your location at a time of 4.0 sec, using Eq. 2-12b. The acceleration is
found from Newton’s second law.

E 1200N

_ forward __

m 750kg

a
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x—x, = vt +1ar’ =(15m/s)(4.0s) +%1200kz (4.0s)" =728 m>65m

| Yes |, you will make it through the intersection before the light turns red.

(b) For this scenario, find your location when the car has been fully stopped, using Eq. 2-12¢c. The
acceleration is found from Newton’s second law.
F o 1800N
a=— = — vi=v+2a(x-x,) —
m 750kg
vi—v 0- (15rn/s)2
X—x,= =
2a 5 - 1800 N
750kg
, you will not stop before entering the intersection.

=469m>45m

89. We take the mass of the crate as m until we insert values. A free-body
diagram is shown.
(a) (1) Use Newton’s second law to find the acceleration.

ZFX:mgsinG:ma - a=
(ii) Use Eq. 2-12b to find the time for a displacement of Z
x—x,=vt+ta® - £=Lg(sin0)t’ —

2/
gsinf
(iii) Use Eq. 2-12a to find the final velocity.

/ 27
v=v0+at=gsin9[ - 0}: \J2Z4gsin6
gsin

(iv) Use Newton’s second law to find the normal force.

ZFyzFN—mgcosﬁzo - FN=

(b) Using the values of m =1500kg, g =9.80 m/ s’,and Z =100m, the requested quantities
become as follows.

=

2(100) ‘.
9.80sin@
v =\/2(100)(9.80)sin6m/s ; F, =(1500)(9.80) cos &

Graphs of these quantities as a function of & are given here.

a=(9.80sin0)m/s’ ;=

’ /-—-’""_'
<o 8 - /
B -
=6
S /
£4
i
Q 2 A
<
O T T
0 15 30 45 60 75 90
Angle (degrees)
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We consider the limiting cases: at

an angle of 0°, the crate does not 40
move, and so the acceleration and oy
final velocity would be 0. The g
time to travel 100 m would be g 2
infinite, and the normal force o
would be equal to the weight of 2 10
W =mg [as!
_ 2 0 T T T
= (1500kg) (9'80 m/s ) 0 15 30 45 60 75 90
=1.47x10"N. Angle (degrees)
The graphs are all consistent with
those results. 50
= 40 /
For an angle of 90°, we would ié;: 30 _—
expect free-fall motion. The 5 /
o
acceleration should be 9.80 m/ s I 2
The normal force would be 0. The | 10
free-fall time for an object =, ‘ ‘ ‘
dropped from rest a distance of 0 s 30 45 0 7 %0
100 m and the final velocity after Angle (degrees)
that distance are calculated below.
X=X, :vOl+§al2 - 15000 e
— 1 542
l=38 - 2 12000 -
{= 24 _ —2(100m) —45s |2 9000
g 9.80 m/ s’ f
g 6000
v2=v;+2a(x—x0) - 2 3000
v=,/2g(x—x0) 0 \ \ \ ‘
0 15 30 45 60 75 90
= \/2(9.80m/s2)(100m) Angle (degrees)

=44m/s

Yes, the graphs agree with these results for the limiting cases.

The spreadsheet used for this problem can be found on the Media Manager, with filename
“PSE4 ISM_CHO04.XLS,” on tab “Problem 4.89b.”

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

117



CHAPTER 5: Using Newton’s Laws: Friction, Circular Motion, Drag Forces

Responses to Questions

2.

Static friction between the crate and the truck bed causes the crate to accelerate.

The kinetic friction force is parallel to the ramp and the block’s weight has a component parallel to
the ramp. The parallel component of the block’s weight is directed down the ramp whether the block
is sliding up or down. However, the frictional force is always in the direction opposite the block’s
motion, so it will be down the ramp while the block is sliding up, but up the ramp while the block is
sliding down. When the block is sliding up the ramp, the two forces acting on it parallel to the ramp
are both acting in the same direction, and the magnitude of the net force is the sum of their
magnitudes. But when the block is sliding down the ramp, the friction and the parallel component of
the weight act in opposite directions, resulting in a smaller magnitude net force. A smaller net force
yields a smaller (magnitude) acceleration.

Because the train has a larger mass. If the stopping forces on the truck and train are equal, the
(negative) acceleration of the train will be much smaller than that of the truck, since acceleration is

inversely proportional to mass (ﬁ = F/ m) The train will take longer to stop, as it has a smaller

acceleration, and will travel a greater distance before stopping. The stopping force on the train may
actually be greater than the stopping force on the truck, but not enough greater to compensate for the
much greater mass of the train.

Yes. Refer to Table 5-1. The coefficient of static friction between rubber and many solid surfaces is
typically between 1 and 4. The coefficient of static friction can also be greater than one if either of
the surfaces is sticky.

When a skier is in motion, a small coefficient of kinetic friction lets the skis move easily on the snow
with minimum effort. A large coefficient of static friction lets the skier rest on a slope without
slipping and keeps the skier from sliding backward when going uphill.

When the wheels of a car are rolling without slipping, the force between each tire and the road is
static friction, whereas when the wheels lock, the force is kinetic friction. The coefficient of static
friction is greater than the coefficient of kinetic friction for a set of surfaces, so the force of friction
between the tires and the road will be greater if the tires are rolling. Once the wheels lock, you also
have no steering control over the car. It is better to apply the brakes slowly and use the friction
between the brake mechanism and the wheel to stop the car while maintaining control. If the road is
slick, the coefficients of friction between the road and the tires are reduced, and it is even more
important to apply the brakes slowly to stay in control.

(b). If the car comes to a stop without skidding, the force that stops the car is the force of kinetic
friction between the brake mechanism and the wheels. This force is designed to be large. If you slam
on the brakes and skid to a stop, the force that stops the car will be the force of kinetic friction
between the tires and the road. Even with a dry road, this force is likely to be less that the force of
kinetic friction between the brake mechanism and the wheels. The car will come to a stop more
quickly if the tires continue to roll, rather than skid. In addition, once the wheels lock, you have no
steering control over the car.
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10.

11.

12.

—
(98]

14.

15.

16.

The forces in (a), (b), and (d) are all equal to 400 N in magnitude.

(a) You exert a force of 400 N on the car; by Newton’s third law the force exerted by the car on you
also has a magnitude of 400 N.

(b) Since the car doesn’t move, the friction force exerted by the road on the car must equal 400 N,
too. Then, by Newton’s third law, the friction force exerted by the car on the road is also 400 N.

(¢) The normal force exerted by the road on you will be equal in magnitude to your weight
(assuming you are standing vertically and have no vertical acceleration). This force is not
required to be 400 N.

(d) The car is exerting a 400 N horizontal force on you, and since you are not accelerating, the
ground must be exerting an equal and opposite horizontal force. Therefore, the magnitude of the
friction force exerted by the road on you is 400 N.

On an icy surface, you need to put your foot straight down onto the sidewalk, with no component of
velocity parallel to the surface. If you can do that, the interaction between you and the ice is through
the static frictional force. If your foot has a component of velocity parallel to the surface of the ice,
any resistance to motion will be caused by the kinetic frictional force, which is much smaller. You
will be much more likely to slip.

Yes, the centripetal acceleration will be greater when the speed is greater since centripetal
acceleration is proportional to the square of the speed. An object in uniform circular motion has an
acceleration, since the direction of the velocity vector is changing even though the speed is constant.

No. The centripetal acceleration depends on 1/, so a sharp curve, with a smaller radius, will generate
a larger centripetal acceleration than a gentle curve, with a larger radius. (Note that the centripetal
force in this case is provided by the static frictional force between the car and the road.)

The three main forces on the child are the downward force of gravity (weight), the normal force up
on the child from the horse, and the static frictional force on the child from the surface of the horse.
The frictional force provides the centripetal acceleration. If there are other forces, such as contact
forces between the child’s hands or legs and the horse, which have a radial component, they will
contribute to the centripetal acceleration.

As the child and sled come over the crest of the hill, they are moving in an arc. There must be a
centripetal force, pointing inward toward the center of the arc. The combination of gravity (down)
and the normal force (up) provides this centripetal force, which must be greater than or equal to zero.
(At the top of the arc, F, = mg — N = mv*/r > 0.) The normal force must therefore be less than the
child’s weight.

No. The barrel of the dryer provides a centripetal force on the clothes to keep them moving in a
circular path. A water droplet on the solid surface of the drum will also experience this centripetal
force and move in a circle. However, as soon as the water droplet is at the location of a hole in the
drum there will be no centripetal force on it and it will therefore continue moving in a path in the
direction of its tangential velocity, which will take it out of the drum. There is no centrifugal force
throwing the water outward; there is rather a lack of centripetal force to keep the water moving in a
circular path.

When describing a centrifuge experiment, the force acting on the object in the centrifuge should be
specified. Stating the rpm will let you calculate the speed of the object in the centrifuge. However, to
find the force on an object, you will also need the distance from the axis of rotation.

She should let go of the string at the moment that the tangential velocity vector is directed exactly at
the target.
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17.

18.

20.

21.

22.

The acceleration of the ball is inward, directly toward the pole, and is provided by the horizontal
component of the tension in the string.

For objects (including astronauts) on the inner surface of the cylinder, the normal force provides a
centripetal force which points inward toward the center of the cylinder. This normal force simulates
the normal force we feel when on the surface of Earth.

(a) Falling objects are not in contact with the floor, so when released they will continue to move
with constant velocity until the floor reaches them. From the frame of reference of the astronaut
inside the cylinder, it will appear that the object falls in a curve, rather than straight down.

(b) The magnitude of the normal force on the astronaut’s feet will depend on the radius and speed
of the cylinder. If these are such that vZ/r = g (so that mv%r = mg for all objects), then the
normal force will feel just like it does on the surface of Earth.

(c¢) Because of the large size of Earth compared to humans, we cannot tell any difference between
the gravitational force at our heads and at our feet. In a rotating space colony, the difference in
the simulated gravity at different distances from the axis of rotation would be significant.

At the top of bucket’s arc, the gravitational force and normal forces from the bucket provide the
centripetal force needed to keep the water moving in a circle. (If we ignore the normal forces, mg =

mv?/r, so the bucket must be moving with speed v > /gr orthe water will spill out of the bucket.)

At the top of the arc, the water has a horizontal velocity. As the bucket passes the top of the arc, the
velocity of the water develops a vertical component. But the bucket is traveling with the water, with
the same velocity, and contains the water as it falls through the rest of its path.

(a) The normal force on the car is largest at point C. In this case, the centripetal force keeping the
car in a circular path of radius R is directed upward, so the normal force must be greater than the
weight to provide this net upward force.

(b) The normal force is smallest at point A, the crest of the hill. At this point the centripetal force
must be downward (towards the center of the circle) so the normal force must be less than the
weight. (Notice that the normal force is equal to the weight at point B.)

(¢) The driver will feel heaviest where the normal force is greatest, or at point C.

(d) The driver will feel lightest at point A, where the normal force is the least.

(e) At point A, the centripetal force is weight minus normal force, or mg — N = mv*/r. The point at
which the car just loses contact with the road corresponds to a normal force of zero. Setting

N =0 gives mg = mv’/r or v=+/gr.

Leaning in when rounding a curve on a bicycle puts the bicycle tire at an angle with respect to the
ground. This increases the component of the (static) frictional force on the tire due to the road. This
force component points inward toward the center of the curve, thereby increasing the centripetal
force on the bicycle and making it easier to turn.

When an airplane is in level flight, the downward force of gravity is counteracted by the upward lift
force, analogous to the upward normal force on a car driving on a level road. The lift on an airplane
is perpendicular to the plane of the airplane’s wings, so when the airplane banks, the lift vector has
both vertical and horizontal components (similar to the vertical and horizontal components of the
normal force on a car on a banked turn). The vertical component of the lift balances the weight and
the horizontal component of the lift provides the centripetal force. If L = the total lift and ¢ = the

banking angle, measured from the vertical, then Lcos@ =mg and Lsing = mv’ / r so

Q= tan'l(vz/gr).

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

120



Chapter 5 Using Newton’s Laws: Friction, Circular Motion, Drag Forces

23. If we solve for b, we have b = —F/v. The units for b are N-s/m = kg-m-s/(m-s?) = kg/s.

24. The force proportional to v* will dominate at high speed.

Solutions to Problems

1]

A free-body diagram for the crate is shown. The crate does not accelerate =

F
vertically, and so F;, = mg. The crate does not accelerate horizontally, and F, = F,
S0 FP = F;"r'
F, =F, = u F, = u,mg = (030)(22kg)(9.80m/s* ) =65 N| e

If the coefficient of kinetic friction is zero, then the horizontal force required

is , since there is no friction to counteract. Of course, it would take a force to START the crate

moving, but once it was moving, no further horizontal force would be necessary to maintain the
motion.

A free-body diagram for the box is shown. Since the box does not accelerate

vertically, F, =mg. i Fy F
(a) To start the box moving, the pulling force must just overcome the I Z
force of static friction, and that means the force of static friction will I

reach its maximum value of F, = ¢ F,. Thus we have for the starting l mg

motion,
YFE=F-F=0 -
F

350N
F :F = F = :—P = =
P fr lLts N llemg - /Lts mg (60 kg)(ggom/sz)

(b) The same force diagram applies, but now the friction is kinetic friction, and the pulling force is
NOT equal to the frictional force, since the box is accelerating to the right.
Z:FzFP—Ffr =ma — F-ulk =ma — F,—umg=ma —
F,—ma 350N-(6.0kg)(0.60m/s")

/uk_ - =

mg (6.0 kg)(9.80m/sz)

A free-body diagram for you as you stand on the train is shown. You do not
accelerate vertically, and so F,, = mg. The maximum static frictional force is u F),

and that must be greater than or equal to the force needed to accelerate you in order
for you not to slip.

F.2ma — ulk 2ma — umgz2ma — U Za/g:O.ZOg/g:
The static coefficient of friction must be at least 0.20 for you to not slide.

See the included free-body diagram. To find the maximum angle, assume
that the car is just ready to slide, so that the force of static friction is a
maximum. Write Newton’s second law for both directions. Note that for
both directions, the net force must be zero since the car is not accelerating.

sz =F,—-mgcos@=0 — F =mgcost

mg;
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ZFX:mgsinH—Fﬁ:O — mgsin@=F = ulkF, =umgcost

ino
8T n6=090 — O=tan" 0.90° = [42°)

s

- mg cos 6

A free-body diagram for the accelerating car is shown. The car does not
accelerate vertically, and so F,, = mg. The static frictional force is the
accelerating force, and so F, = ma. If we assume the maximum acceleration,
then we need the maximum force, and so the static frictional force would be its
maximum value of x F,. Thus we have

F

fr

=ma — UF,=ma — umg=ma —

a=p,g=090(9.80m/s’) =|8.8m/s’

(a) Here is a free-body diagram for the box at rest on the plane. The
force of friction is a STATIC frictional force, since the box is at rest.
(b) If the box were sliding down the plane, the only change is that
the force of friction would be a KINETIC frictional force.
(c) If the box were sliding up the plane, the force of friction would
be a KINETIC frictional force, and it would point down the
plane, in the opposite direction to that shown in the diagram.
Notice that the angle is not used in this solution.

Start with a free-body diagram. Write Newton’s second law for each
direction.

ZFX =mgsin0@—F, =ma,
ZF) =F,—mgcos@=ma, =0

Notice that the sum in the y direction is 0, since there is no motion
(and hence no acceleration) in the y direction. Solve for the force of
friction.

mgsin@—-F, =ma_ —
F, = mgsin@-ma, =(25.0 kg)[ (9.80m/s* ) (sin27°) - 0.30m/s* | =103.7 N =

Now solve for the coefficient of kinetic friction. Note that the expression for the normal force comes
from the y direction force equation above.

F 103.7N 048
F‘ _ F _ H — fr — = 048
AN AR O T g cos0 (25,0 ke) (9.80m/s ) (cos 27%)

The direction of travel for the car is to the right, and that is also the positive
horizontal direction. Using the free-body diagram, write Newton’s second law in
the x direction for the car on the level road. We assume that the car is just on the

verge of skidding, so that the magnitude of the friction force is F, = u F} .
a 3.80 m/ s’

F =-F =ma F =—ma=-umg — ==
Z x fr fr Il’l_g g /Lls g 9801’1,1/S2

=0.3878
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10.

11.

Now put the car on an inclined plane. Newton’s second law in the x-direction
for the car on the plane is used to find the acceleration. We again assume

the car is on the verge of slipping, so the static frictional force is at its
maximum.

ZFx:—Fﬁ—mgsinﬁzma —
—F, —mgsin@ —umgcosd—mgsinf
a= = =

—g (4, cos 0 +sin )

m m

=—(9.80m/s*)(0.3878059.3°+5in 9.3°) =

=53 m/s2

Since the skier is moving at a constant speed, the net force on the skier must
be 0. See the free-body diagram, and write Newton’s second law for both
the x and y directions.

mgsin® = F, = u F, = umgcost —

M, =tan@ = tan27° =|0.51

A free-body diagram for the bar of soap is shown. There is no motion in
the y direction and thus no acceleration in the y direction. Write Newton’s
second law for both directions, and use those expressions to find the
acceleration of the soap.

ZﬂzFN—mgcosﬁzo — I, =mgcos@
Zﬂzmgsinﬁ—ﬂrzma

ma =mgsin@ — u F,, =mgsin@ — 1 mg cos O
a= g(sinﬂ—ﬂk 0056’)

Now use Eq. 2-12b, with an initial velocity of 0, to find the final velocity.
x=x,+vt+ia’® —

; 2x 2x 2 (9.0 m) 13
= |— = = = .08

a \g(sin6-p cosf) | (9.80m/s*)(sin8.0°~(0.060)cos8.0°)
A free-body diagram for the box is shown, assuming that it is moving to the P
right. The “push” is not shown on the free-body diagram because as soon as the A
box moves away from the source of the pushing force, the push is no longer f?ﬁ
applied to the box. It is apparent from the diagram that F, = mg for the vertical —<—— |

direction. We write Newton’s second law for the horizontal direction, with
positive to the right, to find the acceleration of the box.

ZEKZ_F;YZ’"“ - ma=-pu kb, =-umg —
a=-g=-0.15(9.80m/s’) =147 m/s’

Eq. 2-12c can be used to find the distance that the box moves before stopping. The initial speed is
4.0 m/s, and the final speed will be 0.

2 2 vz_vz 0—(3.5m/s)2
v —v0=2a(x—x0) — x-x,= 0 = )=4.17mz

20 2(-147m/s’
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12.

—
W

14.

(a) A free-body diagram for the car is shown, assuming that it is moving to the
right. It is apparent from the diagram that Fy = mg for the vertical direction.
Write Newton’s second law for the horizontal direction, with positive to the
right, to find the acceleration of the car. Since the car is assumed to NOT be
sliding, use the maximum force of static friction.

S\ =-F,=ma - ma=—uF,~—umg > a=-ug

Eq. 2-12c¢ can be used to find the distance that the car moves before stopping. The initial speed
is given as v, and the final speed will be 0.

Vz—vz—2a(x—x) N (x_x)_V2—V2_ O—v2 _ V2
‘ 0 0 2a 2(—,uyg) 2u.g

(b) Using the given values:
1m/s v (26.38m/s)’
v=(95km/h)| ———— |=26.38m/s xX—x,)= = =(55m
(95km/ )[3.6km/hj fo (x-x) 2ug  2(0.65)(9.80m/s’)
(¢) From part (a), we see that the distance is inversely proportional to g, and so if g is reduced by a
factor of 6, the distance is increased by a factor of 6 to .

We draw three free-body diagrams — one for the car, one for the trailer, and
then “add” them for the combination of car and trailer. Note that since the
car pushes against the ground, the ground will push against the car with an

equal but oppositely directed force. F.. is the force on the car due to the

CG

ground, F._ is the force on the trailer due to the car, and F., is the force on

the car due to the trailer. Note that by Newton’s rhird law, |FCT| = |FTC |

From consideration of the vertical forces in the individual free-body
diagrams, it is apparent that the normal force on each object is equal to its

weight. This leads to the conclusion that  F, = u F,, = um, g =
(0.15)(350 kg) (9.80m/s*) = 514.5N .

Now consider the combined free-body diagram. Write
Newton’s second law for the horizontal direction, This allows
the calculation of the acceleration of the system.

ZF =F,—F, = (mC +mT)a -

F.—F  3600N-5145N

a=— & =1.893m/s’
me +m, 1630kg

Finally, consider the free-body diagram for the trailer alone. Again write Newton’s second law for

the horizontal direction, and solve for F,_.
ZFZFTC_Ffr =ma —

Fpo = F, +ma=5145N +(350 kg) (1.893m/s* ) =1177N ={1200N

Assume that kinetic friction is the net force causing the deceleration. See the
free-body diagram for the car, assuming that the right is the positive direction,
and the direction of motion of the skidding car. There is no acceleration in the

vertical direction, and so /|, =mg . Applying Newton’s second law to the x
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direction gives the following.
ZF Z_Ff =ma — _lukFN =-yumg=ma — a=-Ug

Use Eq. 2-12c¢ to determine the initial speed of the car, with the final speed of the car being zero.
v —vé =2a(x—x0) -

v =2a(x=x,) =/0-2(-4,8) (x~x,) = \/2(0.80)(9.80111/52)(72 m) =|34m/s

v, =

15. (a) Consider the free-body diagram for the snow on the roof. If the snow
is just ready to slip, then the static frictional force is at its maximum

value, F, = u F,. Write Newton’s second law in both directions,
with the net force equal to zero since the snow is not accelerating.
ZF, =F,—mgcosf =0 — F, =mgcosl
y

ZFX =mgsind-F, =0 —

mgsin@ = F, = u F, = umgcosd — u =tanf =tan34°=|0.67
If 4 >0.67, then the snow would not be on the verge of slipping.

(b) The same free-body diagram applies for the sliding snow. But now the force of friction is
kinetic, so £} =y F,, and the net force in the x direction is not zero. Write Newton’s second
law for the x direction again, and solve for the acceleration.

ZFX =mgsin@ - F, =ma

_mgsinf—F, _mg sin@ — ﬂkmgcosé’

g(sin@ -, cosO)
m m

Use Eq. 2-12¢ with v, =0 to find the speed at the end of the roof.

\/2—\/2 =2a(x—x0)

v—\/v +2a(x—x,) =\/2g(sin¢9—ﬂkcosﬁ)(x—xo)

= \/2 9.80m/s” ) (sin 34° - (0.20) cos 34°) (6.0 m) = 6.802m/s = 6.8 m/s

(c) Now the problem becomes a projectile motion problem. The projectile
has an initial speed of 6.802 m/s, directed at an angle of 34° below the
horizontal. The horizontal component of the speed, (6.802 m/s) cos 34°
=5.64 m/s, will stay constant. The vertical component will change due
to gravity. Define the positive direction to be downward. Then the
starting vertical velocity is (6.802 m/s) sin 34° =3.804 m/s, the vertical acceleration is 9.80 m/s,
and the vertical displacement is 10.0 m. Use Eq. 2-12c to find the final vertical speed.

vi—vioy =2a(y—y0)
v, = \/vjo +2a(y-y,) = \/(3.804m/s)2 +2(9.80m/s*)(10.0 m) =14.5 m/s

To find the speed when it hits the ground, the horizontal and vertical components of velocity
must again be combined, according to the Pythagorean theorem.

=V +v —\/ 5.64m/s)’ +(14.5 m/s)” =15.6m/s =|16m/s
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16. Consider a free-body diagram for the box, showing force on the box. When -
F, = 23N, the block does not move. Thus in that case, the force of friction F;
is static friction, and must be at its maximum value, given by F, = u F,. F, —
. -
Write Newton’s second law in both the x and y directions. The net force in = --=-- 28 “mg Ky
each case must be 0, since the block is at rest.

17. (@)

(b)

(©)

ZszFPcosH—FNzo — F,=F,cosf

D F =F,+F,sin0-mg=0 — F,+F,sin0=mg
MF +F,sin@=mg — ulkF,cos@+F,sind=mg
23N

O/s

Since the two blocks are in contact, they can be treated as a =
single object as long as no information is needed about internal N
forces (like the force of one block pushing on the other block). -—
Since there is no motion in the vertical direction, it is apparent that F,  — ] l

m, +m,

-(0.40c0528° +5in 28" ) =|1.9kg

F,
m= (/1 cosH+sml9
g

}’YI1+

F,=(m,+m,)g, andso F, = . F, =, (m, +m,)g. Write

N
Newton’s second law for the horizontal direction.

ZF;:FP_F;r:(ml-l'mz)a -
_F,-F, F,—u(m+m)g 650N-(0.18)(190kg)(9.80m/s’)
m, +m, m, +m, 190kg

= 1.657111/52 = 1.7rn/s2
To solve for the contact forces between the blocks, an individual block
must be analyzed. Look at the free-body diagram for the second block. —
is the force of the first block pushing on the second block. Again, it —

mp

F21

. 1 ’ Fr |
is apparent that £, =m,g and so F, = i F\, = y,m,g. Write Newton’s ~17? & I l m.,g

N2
second law for the horlzontal direction.

ZF F,=ma —
= pm,g +mya = (0.18) (125kg) (9.80m/s’ ) + (125kg) (1.657m/s* ) = [430N
By Newton s third law, there will also be a 430 N force to the left on block # 1 due to block # 2.

If the crates are reversed, the acceleration of the system will remain P

the same — the analysis from part () still applies. We can also repeat the 12

analysis from part () to find the force of one block on the other, if we m
simply change m, to m, in the free-body diagram and the resulting F

equations. m F,, I l mg

a= 1.7m/52 s Y F=F,-F,=ma —

X

= p,m,g +ma = (0.18)(65kg) (9.80m/s*) + (65 kg) (1.657 m/s” ) =|220N
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18. (a)

(b)

(a)

(b)

Consider the free-body diagram for the crate on the surface. There is
no motion in the y direction and thus no acceleration in the y direction.
Write Newton’s second law for both directions.

ZFyzFN—mgcosﬁzo — F,=mgcost
ZFX:mgsinH—Fﬁ:ma

ma =mgsin@ — u F, =mgsin®— y,mgcosd

a=g(sind—p, cos)

= (9.80m/s’ ) (sin25.0° = 0.19¢0s25.0°) = 2.454m/s” = 2.5 m/s’
Now use Eq. 2-12¢, with an initial velocity of 0, to find the final velocity.

vz—v§=2a(x—x0) - v=1/2a(x—x0)=\/2(2.454m/sz)(8.15m)=

Consider the free-body diagram for the crate on the surface. There is
no motion in the y direction and thus no acceleration in the y direction.
Write Newton’s second law for both directions, and find the
acceleration.

ZFy =F,-mgcosd=0 — F,=mgcost

ZFX =mgsin@+ F, =ma

ma =mgsin@ + u F,, = mgsin@ + u mg cos 6
a= g(sin9+,uk 00549)
Now use Eq. 2-12¢, with an initial velocity of —=3.0m/s and a final velocity of 0 to find the
distance the crate travels up the plane.

vz—vg =2a(x—x0) —

—v; —(-3.0m/s)’

0

7 20 2(9.80m/5?)(sin25.0°+ 0.17¢0525.0°)

The crate travels up the plane.

We use the acceleration found above with the initial velocity in Eq. 2-12a to find the time for
the crate to travel up the plane.

=-0.796m

X —

Vo (-3.0m/s)
v=vy,tat — t, =——=— o =0.5308s
" a (9.80m/s*) (sin25.0°+0.17 c0s 25.0°)

up

The total time is NOT just twice the time to travel up the plane, because
the acceleration of the block is different for the two parts of the motion.
The second free-body diagram applies to the block sliding down the
plane. A similar analysis will give the acceleration, and then Eq. 2-12b
with an initial velocity of 0 is used to find the time to move down the
plane.

ZEV=FN—mgcos0=0 — F =mgcost
ZFX:mgsinH—Fﬁ:ma

ma =mgsin@ — u F, =mgsin®— y,mgcosd
a=g(sind— p, cos)
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— 1,42
X=X, =Vt+yat” —

Lion = \/2(x %) _ \/ 2(0796m) =0.7778s

a (9.80m/s* ) (sin 25.0° - 0.17c0s 25.0°)

down

t=t +t1
up

down

=0.5308s+0.7778s =|1.3s

It is worth noting that the final speed is about 2.0 m/s, significantly less than the 3.0 m/s original
speed.

20. Since the upper block has a higher coefficient of friction, that
block will “drag behind” the lower block. Thus there will be
tension in the cord, and the blocks will have the same
acceleration. From the free-body diagrams for each block, we
write Newton’s second law for both the x and y directions for
each block, and then combine those equations to find the
acceleration and tension.

(a) Block A:

F,=F,—-mgcos0=0 — F, =m,gcost

F,=mgsn0-F, ~F =ma
ma=m,gsin@—-u F, —F =m,gsin@—um,gcost—F,

Block B:

ZEVB =F,—-mygcosd=0 — F,=m,gcost
ZFxB =m,gsinf—-F,, +F. =mya
mga =mygsin@ — u F, +F, =m,gsin0— um,gcos0+ F,

Add the final equations together from both analyses and solve for the acceleration.
ma=m,gsin@—um,gcos@—F,  ; ma=m,gsin0— um,gcost+F,
ma+myua=m,gsind—um,gcos@—F +m,gsind—um,gcosf@+F —
e [mA (sin@— p, cos @) +m, (sin 0 — i, cose)}

¢ (m, +m,)

=(9.80m/sz) (5.0kg)(sin32°—0.20c0s32°) +(5.0kg) (sin32° - 0.30cos 32°)
(10.0kg)

=3.1155m/s’ = |3.1m/s’

(b) Solve one of the equations for the tension force.
ma=m,gsin@—um,gcosd—F, —

F.=m,(gsin0—u,gcosf—a)
= (5.0kg)[ (9.80m/s*) (sin32° - 0.20c0s32°) ~3.1155 m/s” | =
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21. (a) If u, < u,, the untethered acceleration of m, would be greater than that of m. If there were
no cord connecting the masses, m, would “run away” from m. So if they are joined together,

m, would be restrained by the tension in the cord, m, would be pulled forward by the tension

in the cord, and the two masses would have the same acceleration. This is exactly the situation
for Problem 20.

(b) If u, > u,, the untethered acceleration of m, would be less than that of m,. So even if there

is a cord between them, m, will move ever closer to m,, and there will be no tension in the

As
cord. If the incline were long enough, eventually m, would catch up to m, and begin to push
it down the plane.

(¢) For u, < u,, the analysis will be exactly like Problem 20. Refer to that free-body diagram and
analysis. The acceleration and tension are as follows, taken from the Problem 20 analysis.

. [mA (sin@ — u, cos @)+ my (sin 6 — 1, cosﬁ)}
¢ (m, +my)

ma=m,gsin@—um,gcosd—F, —

F.=m,gsm0—um,gcost—m,a

m, (sin@ — u, cos@)+m, (sin 6 — i, cose)}

=mAgsin9—ﬂAmAgcosH—mAg[ (m_+m,)
A B

:mAmBgcosﬁ( —u)
(my+m,) """

For wu, > u,, we can follow the analysis of Problem 20 but not include the tension forces.

Each block will have its own acceleration. Refer to the free-body diagram for Problem 20.
Block A:

F,=F,—-mgcos0=0 — F, =m,gcost

F,=mgsin0—-F,

TA = mAa

A

mAaA=mAgsinl9—luAFNA:mAgsjng_luAmAgcosg N

a, =g(sinf—u, cosﬁ)
Block B:
ZEB =F,—-mygcosd=0 — F,=mygcost
ZFxB =m,gsinf - F,

TA

= mBaB

mya, =mygsin — w,F, =m,gsind— yum.gcostd —

a, = g (sin@ -y, cos )

Note that since u, > u,, a, > a, as mentioned above. And |F, =0|.

22. The force of static friction is what decelerates the crate if it is not sliding on the E
truck bed. If the crate is not to slide, but the maximum deceleration is desired, Ffr N
then the maximum static frictional force must be exerted, and so F, = u F . l
The direction of travel is to the right. It is apparent that /| = mg since there is l mg

no acceleration in the y direction. Write Newton’s second law for the truck in
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the horizontal direction.
Y F =-F,=ma — -umg=ma — a=-pg= —(0.75)(9.80m/s2) =|-7.4m/s’

The negative sign indicates the direction of the acceleration — opposite to the direction of motion.

23. (a) For my to not move, the tension must be equal to m,g, and so m,g = F,. For m, tonot
move, the tension must be equal to the force of static friction, and so F, = F,. Note that the
normal force on m, is equal to its weight. Use these relationships to solve for m,.
mg=F =F<umg — m, Zﬁ=%=5.0kg - m, 2
u. 040
(b) For m, to move with constant velocity, the tension must be equal to m,g. For m, to move

with constant velocity, the tension must be equal to the force of kinetic friction. Note that the

normal force on m, is equal to its weight. Use these relationships to solve for m, .
mB

F=u N 2.0kg
m = = m m =—=———-n=
Bg k k Ag A lle 030

6.7kg

24. We define f'to be the fraction of the cord that

is handing down, between m and the pulley. FN y
X
7 FE

Thus the mass of that piece of cord is fin.. F,

We assume that the system is moving to the - l X
right as well. We take the tension in the cord

to be F, at the pulley. We treat the hanging 'mAg (1 f)m.g

mass and hanging fraction of the cord as one - -
mass, and the sliding mass and horizontal part myg + fincg
of the cord as another mass. See the free-body

diagrams. We write Newton’s second law for each object.

F;fA:FN_(mA—I—(l_f)mC)g:O
FvA=FT_E}=FT_lukFN=(mA+(1_«f)mC)a
Fsz(mB-l'fmc)g_FT :(mB+fmc)a

Combine the relationships to solve for the acceleration. In particular, add the two equations for the
x-direction, and then substitute the normal force.

[mﬁfmc—ﬂk (mA+(1—f)mc)}g

mA+mB+mC

a =

(a) Consider the free-body diagram for the block on the surface. There is
no motion in the y direction and thus no acceleration in the y direction.
Write Newton’s second law for both directions, and find the
acceleration.

ZFy =F,-mgcosd=0 — F,=mgcost

ZFJ_ =mgsin@+ F, =ma

ma =mgsin@ + u F,, = mgsin@ + u mg cos
a=g(sinf+ u, cos)
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26.

27.

Now use Eq. 2-12¢, with an initial velocity of v, a final velocity of 0, and a displacement of

—d to find the coefficient of kinetic friction.
vi—v, =2a(x-x,) — 0-v; =2g(sin@+ 4, cosf)(-d) —

2

v()
=|—————tané@
e 2gd cos@

(b) Now consider the free-body diagram for the block at the top of its
motion. We use a similar force analysis, but now the magnitude of the

friction force is given by F, < u F,, and the acceleration is 0.

ZF} =F,-mgcosd=0 — F,=mgcost

Zﬂ=mgsin9—Fﬁ=ma=0 — F, =mgsind

F,.SuF, — mgsin@<umgcost — |u =tan0

First consider the free-body diagram for the snowboarder on the incline.
Write Newton’s second law for both directions, and find the acceleration.

ZF},zFN—mgcosﬁzo — F, =mgcos®
ZﬂzmgsinH—Fﬁzma
ma =mgsin@ — u F, = mgsin6 — u, mg cos o

Ay, = &(sin0—u, cosO) = (9.80m/sz)(sin 28°-0.18¢0s28°)

=3.043m/s’ = [3.0m/s’

Now consider the free-body diagram for the snowboarder on the flat surface.
Again use Newton’s second law to find the acceleration. Note that the normal F,
force and the frictional force are different in this part of the problem, even
though the same symbol is used.

ZF}_zFN—mgzo — F,=mg Zsz—Ffrzma

ma —F, =, by = —umg —

flat

ay, = —14,¢ =—(0.15)(9.80m/s* ) = —1.47m/s’ = |-1.5m/s’

Use Eq. 2-12c¢ to find the speed at the bottom of the slope. This is the speed at the start of the flat

section. Eq. 2-12c can be used again to find the distance x.
v? —vg =2a(x—x0) -

1%

= \/vj +2a,, (x-x,) = \/(S.Om/s)z +2(3.043m/s*)(110m) =26.35m/s

end of
slope

vz—v(f =2a(x—xo) -
0-(2635m/s)”

2 2

A% —VO
)= - =236m ~ [240
(x=x) 2a 2(-147m/s*) " =

flat

The belt is sliding underneath the box (to the right), so there will be a force of

kinetic friction on the box, until the box reaches a speed of 1.5 m/s. Use the free-

body diagram to calculate the acceleration of the box.
(@) D F =F, =ma=uF, =umg - a=iug
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2 F =F =ma=uF =umg — a=ug

v=vy,tat — tzv_vozv_(): 1.5m/s —~ =|0.22s
a  ug (0.70)(9.80m/s*)
2 2 2 15 2
(b) x—x0=v oo Y ( m/s) =10.16m

2a 2ug 2(0.70)(9.80m/s’) -

28. We define the positive x direction to be the direction
of motion for each block. See the free-body diagrams.
Write Newton’s second law in both dimensions for
both objects. Add the two x-equations to find the
acceleration.

Block A:

F,=F,—-mgcos6, =0 — F, =m,gcosb,

F,=F —mgsn0-F, =ma
Block B:
ZFyB =F,-mygcosly=0 — F , =m.gcosty
Fy=mygsin0Fy, = F, = mya
Add the final equations together from both analyses and solve for the acceleration, noting that in
both cases the friction force is found as F, = uF;,.

ma=F —m,gsin@, —um,gcost, ; mya=m,gsin6, —um.gcost, —F,
mya+mya=F —m,gsin@, —um,gcost, +m,gsin6, — um,gcost, —F,. —
4o [—mA (sin@, + u, cos 6, ) +my (sin€ — u, 0059)}
h (m, +m,)
(9'80m/sz)[—(2.Okg)(sin51°+0.3000s51°)+(5.0kg)(sin21°—O.3Ocos21°)}
(7.0kg)

=|-2.2m/s’

29. We assume that the child starts from rest at the top of the slide, and then slides
a distance x —x, along the slide. A force diagram is shown for the child on

the slide. First, ignore the frictional force and so consider the no-friction case.
All of the motion is in the x direction, so we will only consider Newton’s
second law for the x direction.

ZFX =mgsinf=ma — a=gsind
Use Eq. 2-12¢ to calculate the speed at the bottom of the slide.

v —vg = 2a(x—x0) = V(5o friction) = dvg +2a(x—x0) = 1/2gsin9(x—x0)
Now include kinetic friction. We must consider Newton’s second law in both the x and y directions

now. The net force in the y direction must be 0 since there is no acceleration in the y direction.
ZF} =F,—-mgcos@=0 — F =mgcosf

ZFX =ma=mgsin0 —F, =mgsin@ — u, F, =mgsin@ — u,mg coso
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in@— 7]
o = g sin0 - u,mg cos =g (sin@ -y, cosf)

m
With this acceleration, we can again use Eq. 2-12¢ to find the speed after sliding a certain distance.

vz—v§=2a(x—x0) - v(maion)=1/v§+2a(x—x0)=\/2g(sint9—/,tkcosﬁ)(x—x0)

Now let the speed with friction be half the speed without friction, and solve for the coefficient of
friction. Square the resulting equation and divide by gcosé to get the result.

v(friction) = %V(No friction ) - \/Zg (Sin 6 - lLl/c COSH) (x - xO) = %\/zg (Sin 9) ('x B xO)
2g(sin@— p, cosO)(x—x,)=+2g(sind)(x—x,)

U, =+tanf = +tan34° =|0.51

30. (a) Given that m, is moving down, m, must be moving
up the incline, and so the force of kinetic friction on P
m, will be directed down the incline. Since the

blocks are tied together, they will both have the
same acceleration, and so a , =a , =a. Write

myg

VB

Newton’s second law for each mass.

FyB =mg-F =ma — F. =mg-mya

Y8

ErA = FT _mAgSine_F;r =m,a
F,=F,-mgcos0=0 — F,=m,gcost
Take the information from the two y equations and substitute into the x equation to solve for the

acceleration.
m.g—mya—m,gsinf—um,gcos@=ma —

_ in@— o
m,g—m,gsinb—m,gl gcos :Lg(l—sinﬁ—,ukgCOS@)

2

a =
(m +m)

(9.80m/s*)(1-sin34°—0.15¢c0534°) = |1.6m/s’

L
2

(b) To have an acceleration of zero, the expression for the acceleration must be zero.
a =%g(1—sin¢9—ﬂkcost9) =0 — 1-sin@-y.cosd=0 —
l-sind 1-sin34°
_1-sinf 1-sin _[0.53
cost cos 34°

My

Draw a free-body diagram for each block.

~ FNA _Ffr AB FNB _FNA
F, - [
- - F. <— E
| FfrAB . | l F
_ ; FfrB —
mLg mgg 1
Block A (top) Block B (bottom)
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Ffr g 18 the force of friction between the two blocks, FN , 18 the normal force of contact between the
two blocks, FﬁB 1s the force of friction between the bottom block and the floor, and FNB is the
normal force of contact between the bottom block and the floor.
Neither block is accelerating vertically, and so the net vertical force on each block is zero.

top: F,-mg=0 — F,=mg

bottom: F,—F,, -m,g=0 — F,=F,+myg=(m,+m,)g
Take the positive horizontal direction to be the direction of motion of each block. Thus for the
bottom block, positive is to the right, and for the top block, positive is to the left. Then, since the
blocks are constrained to move together by the connecting string, both blocks will have the same
acceleration. Write Newton’s second law for the horizontal direction for each block.

top: . —F, ., =m,a bottom: F—-F . -F_, —F

fr AB fr AB wp = Mgd

(a) If the two blocks are just to move, then the force of static friction will be at its maximum, and so
the frictions forces are as follows.

Fow =ty =pmg 5 Foy=uFy=p(m +m)g
Substitute into Newton’s second law for the horizontal direction with @ =0 and solve for F'.
top: £, —pum,g=0 — F =umg
bottom: F — F, — um,g — p (m, +m,)g=0 —
F=F +,uSmAg+,us(mA +mB)g =pumg+umg+ (mA +mB)g
= 11, (3m, +m,) g =(0.60)(14kg)(9.80m/s’) =82.32N =
(b) Multiply the force by 1.1 so that £ =1.1(82.32N) =90.55N. Again use Newton’s second law

for the horizontal direction, but with ¢ # 0 and using the coefficient of kinetic friction.
tp:  F-gmg=ma
bottom: F —F, —um,g — u, (m, +my) g =mya
sum: F—pum,g—pumg—pu (m, +my)g=(m,+my)a —
F—um,g—pum,g—u (m, +my)g _ F—u (3m, +my)g
(m, +my) (m, +m,)
90.55N - (0.40) (14.0kg) (9.80m/s’ )
) (8.0kg)

a =

= 4.459m/s2 = 4.5m/s2

32. Free-body diagrams are shown for both blocks. There is a force of friction P
between the two blocks, which acts to the right on the top block, and to the left top
on the bottom block. They are a Newton’s third law pair of forces. F,
(a) Ifthe 4.0 kg block does not slide off, then it must have the same | o
acceleration as the 12.0 kg block. That acceleration is caused by the force ~
of static friction between the two blocks. To find the minimum coefficient, 1 o
we use the maximum force of static friction.

52 3 B
F, =m a=uF, =um g — ﬂ=3— m/ = 0.5306 = - Fb —Ky

f:)p top g / S top _
(b) If the coefficient of friction only has half the Value, then the blocks will be P li
sliding with respect to one another, and so the friction will be kinetic. bottom |
#=1%(0.5306)=0.2653 ; F, =m a=uF, =um,g — lmbmmg
top top
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a = ug =(0.2653)(9.80m/s’) = |2.6m/s’

(¢) The bottom block is still accelerating to the right at 5.2 rn/ s*. Since the top block has a smaller
acceleration than that, it has a negative acceleration relative to the bottom block.
a =a +a =a -a =2.6m/szi—5.2rn/s2i=—2.6m/s2i

top rel top rel ground rel top rel bottom rel
bottom ground bottom ground ground

The top block has an acceleration of |2.6 m/ s” to the left| relative to the bottom block.
(d) No sliding:

E\' = FP - F;'r = mbonomabottom
bottom bottom
net
FP = F;} + mbottomabottom = F;'r + mbottomaboltom = m‘opatop + mbottomabottom = (mtop + mbottom ) a
bottom top

= (16.0kg) (5.2m/s’) =

This is the same as simply assuming that the external force is accelerating the total mass. The
internal friction need not be considered if the blocks are not moving relative to each other.

Sliding:
F‘x = FP - F‘fr = mbunomaboltum -
bottom bottom
net
FP = E} + mbottomabottom = F;r + mbottomabonom = mtopatop + mboltomabottom

bottom top

= (4.0kg) (2.6m/s*) + (12.0kg) (5.2m/s*) =

Again this can be interpreted as the external force providing the acceleration for each block.
The internal friction need not be considered.

33. To find the limiting value, we assume that the blocks are NOT slipping,
but that the force of static friction on the smaller block is at its

maximum value, so that F, = uF,. For the two-block system, there is

no friction on the system, and so F = (M + m)a describes the

horizontal motion of the system. Thus the upper block has a vertical

. ) . F .
acceleration of 0 and a horizontal acceleration of ———. Write
(M + m)

Newton’s second law for the upper block, using the force diagram, and solve for the applied force F.
Note that the static friction force will be DOWN the plane, since the block is on the verge of sliding
UP the plane.

mg
(cos @ — pusinO)

ZF) =F cos@—F,sinf—-mg =F,(cos@— usind)—-mg=0 — F, =

ZFr=FNsint9+Ffrcosé?=FN(sinl9+,ucos¢9)=ma=m d -
’ M+m
F=F, (sin9+ﬂc059)M+m = s . (sin0+ﬂc059)M+m
m (cos@— usin ) m
_ (M+m)g(sm6’+,ucost9)

(cosH — usin 0)
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34. A free-body diagram for the car at one instant of time is shown. In the diagram, the
car is coming out of the paper at the reader, and the center of the circular path is to Fo -
the right of the car, in the plane of the paper. If the car has its maximum speed, it ﬂ_f;
would be on the verge of slipping, and the force of static friction would be at its L
maximum value. The vertical forces (gravity and normal force) are of the same mg
magnitude, because the car is not accelerating vertically. We assume that the force
of friction is the force causing the circular motion.

F=F - mvz/r:,LtSFN:Mmg —

= Ju.rg =J(0.65)(80.0m)(9.80m/s*) = 22.57m/s =

Notice that the result is | independent of the car’s mass |

35. (a) Find the centripetal acceleration from Eq. 5-1.
a, =v*[r=(1.30m/s)’ /120m =1.408m/s* ~|1.41m/s’

(b) The net horizontal force is causing the centripetal motion, and so will be the centripetal force.

F, = ma, =(22.5kg)(1.408m/s’) = 31.68N =

36. Find the centripetal acceleration from Eq. 5-1.

(525m/s)” ) lg
= 57.42 —=2 —|=]586¢
4 =fr= 4.80%x10’m =(s742m/s )(9.80m/s2j £

We assume the water is rotating in a vertical circle of radius ». When the bucket

is at the top of its motion, there would be two forces on the water (considering - \" S~
the water as a single mass). The weight of the water would be directed down, e F
and the normal force of the bottom of the bucket pushing on the water would N mg

also be down. See the free-body diagram. If the water is moving in a circle,
then the net downward force would be a centripetal force.

ZF=FN+mg=ma=mv2/r — F =m(v2/r—g)

The limiting condition of the water falling out of the bucket means that the water loses contact with
the bucket, and so the normal force becomes 0.

=m(v2/r—g) - m(chri,ical/”_g)zo - vcritical:\/g

From this, we see that , it is possible to whirl the bucket of water fast enough. The minimum

speed is |\/rg|.

38. The centripetal acceleration of a rotating object is given by a, = v / r.

v=Jayr = J(125%10°¢) r = [(1.25x10°)(9.80m/s") (8.00x10m) = 3.13x10* m/s .

(3.13x10° m/s)( lrev j( 005 ): 3.74x10* rpm

277(8.00x107m) J\ 1 min
39. For an unbanked curve, the centripetal force to move the car in a circular path must F
. D e : . N E
be provided by the static frictional force. Also, since the roadway is level, the fr
normal force on the car is equal to its weight. Assume the static frictional force is g ’
at its maximum value, and use the force relationships to calculate the radius of the mg
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curve. See the free-body diagram, which assumes the center of the curve is to the right in the
diagram.

F,=F - mvz/rzﬂsFNz,usmg -

{(mkm/h)(g,;mkﬁ/hﬂz 2Rm e

(0.7)(9.80m/s*)

30m

r=v:|ug=

40. At the top of a circle, a free-body diagram for the passengers would be as
shown, assuming the passengers are upside down. Then the car’s normal
force would be pushing DOWN on the passengers, as shown in the diagram.
We assume no safety devices are present. Choose the positive direction to
be down, and write Newton’s second law for the passengers.

ZF=FN+mg=ma=mv2/r — F =m(vz/r—g)

We see from this expression that for a high speed, the normal force is positive, meaning the
passengers are in contact with the car. But as the speed decreases, the normal force also decreases. If
the normal force becomes 0, the passengers are no longer in contact with the car — they are in free
fall. The limiting condition is as follows.

Vo lr-g=0 = v, =rg=/(9.80m/s")(7.6m) =

41. A free-body diagram for the car is shown. Write Newton’s second law for the car
in the vertical direction, assuming that up is positive. The normal force is twice
the weight.

ZFzFN—mgzma - 2mg—mg=mv2/r —
v=1Jrg = /(95m)(9.80m/s*) =30.51m/s = [31m3]

42. In the free-body diagram, the car is coming out of the paper at the reader, and the F,
center of the circular path is to the right of the car, in the plane of the paper. The fi
vertical forces (gravity and normal force) are of the same magnitude, because the
car is not accelerating vertically. We assume that the force of friction is the force mg
causing the circular motion. If the car has its maximum speed, it would be on the
verge of slipping, and the force of static friction would be at its maximum value.

2 {(%km/hr)( Lm/s

2
=
F =F 2 =ulF = =v_= =084

R fr — my /r 'Ll“' N ﬂsmg - ﬂS rg (85 m)(980m/sz)

Notice that the result is independent of the car’s mass.

5
v

The orbit radius will be the sum of the Earth’s radius plus the 400 km orbit height. The orbital
period is about 90 minutes. Find the centripetal acceleration from these data.

60 sec

1 min

r =6380km +400km = 6780 km = 6.78x10°m T=90 min[ j=5400 sec

ar’r A7’ (6.78x10°m)
S (5400560)2

R

=(9.18m/s’ )(98(1)#} =0.937=[0.9g's
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Notice how close this is to g, because the shuttle is not very far above the surface of the Earth,

relative to the radius of the Earth.

44. (a) At the bottom of the motion, a free-body diagram of the bucket would be as

shown. Since the bucket is moving in a circle, there must be a net force on it F
towards the center of the circle, and a centripetal acceleration. Write q
Newton’s second law for the bucket, with up as the positive direction.
ZFR=FT—mg=ma=mv2/r — -
r(F. —m 1.10 m)| 25.0 N—(2.00 kg 9.80m/s2
o frFimme) _ (10m)] ( I )]:1723z1.7m/s
m 2.00 kg
(b) A free-body diagram of the bucket at the top of the motion is shown. Since the
bucket is moving in a circle, there must be a net force on it towards the center
of the circle, and a centripetal acceleration. Write Newton’s second law for the
bucket, with down as the positive direction. F; mg
r(F.+m
ZFRzFT+mg=ma=mv2/r - v= —( - g)_
m

If the tension is to be zero, then

y= ,/M = Jrg = /(110 m) (9.80m/s")

3.28m/s

The bucket must move faster than 3.28 m/s in order for the rope not to go slack.

45. The free-body diagram for passengers at the top of a Ferris wheel is as shown.
Fy is the normal force of the seat pushing up on the passenger. The sum of the
forces on the passenger is producing the centripetal motion, and so must be a
centripetal force. Call the downward direction positive, and write Newton’s

second law for the passenger.
ZFR =mg—-F,=ma= mvz/r

Since the passenger is to feel “weightless,” they must lose contact with their seat, and so the normal
force will be 0. The diameter is 22 m, so the radius is 11 m.

mg=mv'[r — v=\Jgr=/(9.80m/s")(11m) =1038m/s

1min

(10.38m/s)[2;(rlelvm)j( 60s j:

46. To describe the motion in a circle, two independent quantities are needed. The radius of the circle
and the speed of the object are independent of each other, so we choose those two quantities. The

radius has dimensions of [L] and the speed has dimensions of [L/T]. These two dimensions need

to be combined to get dimensions of [L/ T2]. The speed must be squared, which gives I:L2 / TZ:I,

and then dividing by the radius gives [L/ T’ ] So

— 2/
a, =v'/r

is a possible form for the centripetal

acceleration. Note that we are unable to get numerical factors, like 77 or I, from dimensional

analysis.
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47.

48.

50.

(a) See the free-body diagram for the pilot in the jet at the bottom of the

{(uookm/h)(&:nkﬁ/hﬂz

2/ =6.0 =2 - =[1900
V[r=60g > r 6.0g 6.0(9.80m/s’) =z

(b) The net force must be centripetal, to make the pilot go in a circle. Write Newton’s second
law for the vertical direction, with up as positive. The normal force is the apparent weight.

ZFR =F,—-mg =mv2/r
The centripetal acceleration is to be v’ / r=6.0g.
Fy=mg+mv[r=Tmg=7(78 kg)(9.80m/s’) = 5350N =

(c¢) See the free-body diagram for the pilot at the top of the loop. Notice that
the normal force is down, because the pilot is upside down. Write Newton’s
second law in the vertical direction, with down as positive.

ZFR=FN+mg=mv2/r=6mg — F,=5mg =|3800N

loop. We have a, =v*/r=6g.

To experience a gravity-type force, objects must be on the inside of the outer
wall of the tube, so that there can be a centripetal force to move the objects in
a circle. See the free-body diagram for an object on the inside of the outer
wall, and a portion of the tube. The normal force of contact between the
object and the wall must be maintaining the circular motion. Write Fy
Newton’s second law for the radial direction.

ZFR =F, =ma= mvz/r
If this is to have the same effect as Earth gravity, then we must also have that
F, =mg. Equate the two expressions for normal force and solve for the speed.

Eo=mv'/r=mg — v=1lgr =[(9.80m/s*)(550m) = 73.42m/s

(73.42m/s) rev (86’400 S]=1836rev/dz 1.8x10" rev/d
27(550 m) 1d

The radius of either skater’s motion is 0.80 m, and the period is 2.5 sec. Thus their speed is given by

272(0.80 m)

V= Zﬂr/ T= =2.0 m/ s. Since each skater is moving in a circle, the net radial force on

each one is given by Eq. 5-3.

v / 600kg (ZOm/S) ‘

0.80 m

A free-body diagram for the ball is shown. The tension in the |
suspending cord must not only hold the ball up, but also provide the :
centripetal force needed to make the ball move in a circle. Write q
Newton’s second law for the vertical direction, noting that the ball is "8
not accelerating vertically.

mg
sin @

ZF =F sinf-mg=0 — F =
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51.

52.

The force moving the ball in a circle is the horizontal portion of the tension. Write Newton’s second
law for that radial motion.

ZFR =F cosO =ma, = mvz/r
Substitute the expression for the tension from the first equation into the second equation, and solve
for the angle. Also substitute in the fact that for a rotating object, v = 27zr/ T. Finally we recognize
that if the string is of length #, then the radius of the circle is » = Zcos6.

2

'y 4°ml cos O
F, cos = 1.11g costmv _ ﬂznr: ﬂmzcos
sin @ r T T
2 2
' oT” ogrt . (9:80m/s)(0.500s)
sinf = — fO=sin ——=sin = -5.94°
iy 4 Al 47° (0.600 m)
0.150 kg)(9.80m/s’
The tension is then given by F, = I.ng = ( g)( / ) =142 N
sin @ sin 5.94°

The force of static friction is causing the circular motion — it is the centripetal
force. The coin slides off when the static frictional force is not large enough to F
move the coin in a circle. The maximum static frictional force is the coefficient —
of static friction times the normal force, and the normal force is equal to the
weight of the coin as seen in the free-body diagram, since there is no vertical
acceleration. In the free-body diagram, the coin is coming out of the paper and
the center of the circle is to the right of the coin, in the plane of the paper.

The rotational speed must be changed into a linear speed.

y = (35.0 rev ]( ! minj(zﬁ(o'lzom)j = 0.4398m/s

min 60 s 1 rev

| <

2 0.4398m/s)’ 0164
F=F - 2 =ukF = — = = ( =10.164
\=F, > mvi[r=uF =umg - u rg (0.120m)(9.80m/s’)

For the car to stay on the road, the normal force must be greater i Tnitial
than 0. See the free-body diagram, write the net radial force, and Road
solve for the radius. /o3

2 2
my my

F,=mgcos-F,=— —> r=—————
¢ Yoy mg cos 0 — F

For the car to be on the verge of leaving the road, the normal force
2 2
my v . .
= . This expression
mgcosf gcosl

would be 0, and so

critical

gets larger as the angle increases, and so we must evaluate at the
largest angle to find a radius that is good for all angles in the range.

o el

L= = =77
himn g COS 0. (9.80 m/ s? ) c0s22° =
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53.

54.

(a) A free-body diagram of the car at the instant it is on the top of the hill is '@%
shown. Since the car is moving in a circular path, there must be a net
centripetal force downward. Write Newton’s second law for the car, with F, mg

down as the positive direction.
ZFR =mg—F, =ma =mv2/r -

(12.0m/s)’
Fo=m(g-v}/r)= (975kg)(9.80m/sz Earryoead b

(b) The free-body diagram for the passengers would be the same as the one for the car, leading to
the same equation for the normal force on the passengers.

Fy=m(g-v'[r)= (72.0kg)[9.80m/52 —M] =588 N

88.0m

Notice that this is significantly less than the 700-N weight of the passenger. Thus the passenger
will feel “light” as they drive over the hill.
(c¢) For the normal force to be zero, we must have the following.

FN:m(g—vz/r):O - g:vz/r — v:\/gz\/(9.80m/sz)(88.0m):

If the masses are in line and both have the same frequency of
rotation, then they will always stay in line. Consider a free- F FN A
body diagram for both masses, from a side view, at the ® F, F, F,,
instant that they are to the left of the post. Note that the same Mg my >
tension that pulls inward on mass 2 pulls outward on mass 1,
by Newton’s third law. Also notice that since there is no myg m,g
vertical acceleration, the normal force on each mass is equal
to its weight. Write Newton’s second law for the horizontal
direction for both masses, noting that they are in uniform circular motion.

ZFRA :FTA_FTB =m,a, :mAvi/rA ZFRB :FTB =mypdy :va;/rB

. rev \( 27r

The speeds can be expressed in terms of the frequency as follows: v = ( f gj (1 revj =27rf.

FTB =my v;/rB =my (2ﬂrBf)2/rB = 4ﬂ2mBrBf2

F,=F, +mAvi/rA =47szrBf2 +mA(27Z'rAf)Z/A = 47r2f2 (mArA +mBrB)

A free-body diagram of Tarzan at the bottom of his swing is shown. The upward

tension force is created by his pulling down on the vine. Write Newton’s second law I
in the vertical direction. Since he is moving in a circle, his acceleration will be !
centripetal, and points upward when he is at the bottom.

(FT - mg) r -
m
The maximum speed will be obtained with the maximum tension.
(Fy,o —mg)r (1350 N—-(78kg)(9.80m/s*))5.2 m

voo= T = =[6.2m/s
m 78kg

ZFzFT—mgzmazmvz/r - v=
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56.

57.

8.

The fact that the pilot can withstand 9.0 g’s without blacking out, along with the
speed of the aircraft, will determine the radius of the circle that he must fly as he
pulls out of the dive. To just avoid crashing into the sea, he must begin to form
that circle (pull out of the dive) at a height equal to the radius of that circle.

2 2
aR:vz/r=9.0g SN A (310m/s) :

9.0g  9.0(9.80m/s’)

(a) We are given that x = (2.0m) cos(3.0 rad/s t) and y = (2.0rn) sin(3.0rad/s t) . Square both
components and add them together.
¥+ = [(2.0m) cos(3.0rad/s t)]z + [(Z.Om) sin(S.Orad/s t)]2
= (2.0 m)2 [cos2 (3.0rad/s t) +sin’ (3.0rad/s t)] = (Z.Om)2
This is the equation of a circle, x* + y* =7, with a radius of 2.0 m.

(b) |V =(-6.0m/s)sin(3.0rad/s t)i+(6.0m/s)cos(3.0rad/s t)j

a= (—18m/sz)cos(3.0rad/s t)i+ (—18m/sz)sin(3.0rad/s t)i
(@) v= VP +Vi= \/[(—6.0m/s)sin(3.0rad/s O]’ +[(6.0m/s)cos(3.0rad/s 1)]" =
a=,lal+a = \/[(—ISm/sz)cos(&Orad/s t)}2 +[(—18m/s2)sin(3.0rad/s t)}2 =|18m/s?

ﬁ_ (6.0m/s)2 B 2
(d) —="" =18m/s’ = a

(e) a= (—18m/s2)cos(3.0rad/s t)i+(—18m/s2)sin(3.0rad/s 1)j
= (—9.0/s2)[2.0mcos(3.0rad/s t)i+2.0msin(3.0rad/s ¢) j] = (9.0/s2)(—f)

We see that the acceleration vector is directed oppositely of the position vector. Since the
position vector points outward from the center of the circle, the acceleration vector points
toward the center of the circle.

Since the curve is designed for 65 km/h, traveling at a higher speed with the same radius means that
more centripetal force will be required. That extra centripetal force will be supplied by a force of
static friction, downward along the incline. See the free-body diagram for the car on the incline.
Note that from Example 5-15 in the textbook, the no-friction banking angle is given by the

following.
2
1.0m/s
65km/h)| ———
SV y {( / )(3.6km/hﬂ
6 =tan” — = tan s =214°
rg (85m)(9.80m/s’)

Write Newton’s second law in both the x and y directions. The car will have no acceleration in the y
direction, and centripetal acceleration in the x direction. We also assume that the car is on the verge

of skidding, so that the static frictional force has its maximum value of F, = u F,,. Solve each
equation for the normal force.
ZF} =F,cos0-mg—F,sin0=0 — F cosd@—-ulF sind=mg —
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mg
(cos@ - sin0)
ZFX=FNsinl9+Fﬁcos¢9=FR=mv2/r - FNsin6’+,uSFNcost9=mv2/r —

2
my /r

(sin@+ u, cosO)

Equate the two expressions for £, , and solve for the coefficient of friction. The speed of rounding

1.0m/s

the curve is given by v = (95km/h)(3 6km/hj =26.39 m/s.

mg B mv’ [ N
(cos@—u sin@) (sin@+ p, cosb)

2 2 26.39m/s)’
(Vcosﬁ—gsinﬁj (V—gtanﬁj [(m/s)—(9.80m/s2)tan2l.4°J

r r 85m

= oY (v ) (26.39m/s)’
(gcos¢9+sin¢9j Eg+tan¢9j [9.80m/s2+'mstan2l.4°J
r

=0.33

r 85 m

would mean no friction is needed to round the curve. From Example 5-

59. Since the curve is designed for a speed of 85 km/h, traveling at that speed y
X
15 in the textbook, the no-friction banking angle is given by T_,

2
1m/s
(85km/h)(ﬂ o
0 =tan” v—z =tan”’ { 3.6kan/h =3991° F;
rg (68m)(9.80m/s”)

Driving at a higher speed with the same radius means that more centripetal force will be required
than is present by the normal force alone. That extra centripetal force will be supplied by a force of
static friction, downward along the incline, as shown in the first free-body diagram for the car on the
incline. Write Newton’s second law in both the x and y directions. The car will have no acceleration
in the y direction, and centripetal acceleration in the x direction. We also assume that the car is on

the verge of skidding, so that the static frictional force has its maximum value of F, = u F} .
ZF) =F cosO@—mg—F, sinf0=0 — F cos@—ukF, sind=mg —
mg
(cos 0 — u, sin 49)
ZFr =F sin@+F,_cosO = mvz/r — F sin@+ u F, cosO = mvz/r -

F, =

2
my /r

(sin@+ u, cos )
Equate the two expressions for the normal force, and solve for the speed.
mv’ / r 3 mg
(sinﬁ + U, cos@) - (cosH — U, sin 9) ~

(sin€+ u, cos6) (68m) (9 80rn/sz) (sin39.91°+0.30¢c0s39.91°) 2 mfs
v=|r = . =
8 (cos@ - u, sinb) (c0s39.91° - 0.30sin39.91°)
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Now for the slowest possible speed. Driving at a slower speed with
the same radius means that less centripetal force will be required than
that supplied by the normal force. That decline in centripetal force
will be supplied by a force of static friction, upward along the incline,
as shown in the second free-body diagram for the car on the incline.
Write Newton’s second law in both the x and y directions. The car
will have no acceleration in the y direction, and centripetal
acceleration in the x direction. We also assume that the car is on the

verge of skidding, so that the static frictional force has its maximum value of F = u F.
ZE =F,cos@-mg+F, sinf=0 —
mg
(cos@+ p, sin6)
ZFX =F, sin@—-F, cosl = mvz/r — F sin@—-uF, cost = mv2/r -

F,cosO+uF sinf=mg — F =

2
my /r

(sin 0 — u, cos 6’)
Equate the two expressions for the normal force, and solve for the speed.
2
: my /f' _ mg : N
(sin@—p cos@) (cosf+ u, sinb)

ve |rg (smB—,uS cc.)sH) _ (68m)(9.80m/s2)(sm39'91 —0.300(.)539.91 ) =17m/s
(cos@+ u, sin6) (c0s39.91°+0.30sin39.91°)

, which is |61km/h <v <115km/h|.

Thus the range is |17 m/s <v<32m/s

60. (a) The object has a uniformly increasing speed, which means the tangential acceleration is
constant, and so constant acceleration relationships can be used for the tangential motion. The
object is moving in a circle of radius 2.0 meters.

Vn TV,

2Ax, 2[4(27r)] z(2.0m)
Axtan ZTt - vtan = tl _VO = - ¢ = ZOS :

tan

(b) The initial location of the object is at 2.0 mj , and the final location is 2.0 mi.

F—F 2.0mi—2.0mj

vavg
t 2.0s

1.0m/s(i—j)

(¢) The velocity at the end of the 2.0 seconds is pointing in the —j’ direction.

-V, —(7m/s)] :
T el )

Apply uniform acceleration relationships to the tangential motion to find the tangential acceleration.
Use Eq. 2-12b.

2(4(2 .
Axlan = vO t+%alant2 % alan = ZAftan = [4 ( Zﬂ.r)] = ﬂ(z Om) = (7Z-/2)1’I1/S2

tan t t (205)2

. L . L v
The tangential acceleration is constant. The radial acceleration is found from a_, = —* =
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62.

63.

64.

65.

(@ a,,=|(7/2)m/s| a,, = (a“‘;t)z = [(7;/2);1(?:2(%)] =[o]
®) a,,=|(7/2)m/s], a,, = (a”,it)z - [(”/Z)IE./OSZ o] (7*/8)m/s’
© a,=|(7/2)m/s], a,, = (ala;t)z - [(”/2)‘;“/;:;2-05)] =|(z/2)m/s’

(a) The tangential acceleration is the time derivative of the speed.
dv. d(3.6+1.5¢)

a
“dt dt
(b) The radial acceleration is given by Eq. 5-1.

=3.0 - a,,(3.0s)=3.0(3.0)=(9.0m/s’

: (364158 3.6+1.5(3.0)°)
—Vti:—( +157) — arad(?:.OS):( 22( ; ) = [13m/s’
r r m

rad

We show a top view of the particle in circular motion, traveling clockwise.
Because the particle is in circular motion, there must be a radially-inward
component of the acceleration.

(@) a, =asin9=v2/r -
v=+arsin@ = (1.15m/s*)(3.80m)sin38.0° = [1.64 m/s

(b) The particle’s speed change comes from the tangential acceleration,
which is given by a, = acos@. If the tangential acceleration is

constant, then using Eq. 2-12a,
Var = Voun = A

tan 0 tan

Ve = Vo + @t = 1.64m/s + (1.15m/s ) (c0s 38.0°) (2.00 ) =

The tangential force is simply the mass times the tangential acceleration.

a,=b+ct’ — F,=ma,= m(b+ct2)

To find the radial force, we need the tangential velocity, which is the anti-derivative of the tangential
acceleration. We evaluate the constant of integration so thatv = v at £ =0.

aT:b+ct2 — vT=c+bt+§ct3 — v(O):c=vO — vT=vO+bt+§ct3

F,= = ﬁ(vo+bt+§ct3)2

2
mv;
r r

The time constant T must have dimensions of [T]. The units of m are [M]. Since the expression

bv is a force, we must have the dimensions of » as force units divided by speed units. So the
Force units [M][L/TZJ B

dimensions of b are as follows: — =
speed units [L/T]

[T], we must have m

M
[F:l Thus to get dimensions of
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66. (a) The terminal velocity is given by Eq. 5-9. This can be used to find the value of »
3x107kg)(9.80m/s’
y, =28 b:ﬁz( g)(9:80m/ )=3.27><10‘5kg/s: 3x10" kg/s
b vy (9m/s)

() From Example 5-17, the time required for the velocity to reach 63% of terminal velocity is the
time constant, 7 =m/b.

m 3x107kg

=————=0917s=|ls
b 3.27x107kg/s

. (a) We choose downward as the positive direction. Then the force of gravity is in the positive
direction, and the resistive force is upwards. We follow the analysis given in Example 5-17

d b b
F =mg—-bv=ma — a__v_g__V:__( mgj

p——=
dt m m b

dv ——ﬁdt - j dv ——ﬁj‘dt - ln[v——g} =——t —

mg m ' mg ms, , m
V_ \Ov— 0

b b

N N PR S
In b =——! > b =e" — |lvy=—2|1-e™ +ve ™

_mg | m _mg b

v, v,

b b

Note that this motion has a terminal velocity of v . ~=mg / b.

(b) We choose upwards as the positive direction. Then both the force of gravity and the resistive
force are in the negative direction.

F,=-mg=bv=ma — a:ﬂz—g—ﬁvz_ﬁ(v mgj N
dt m

m

v =—£dt — j v :—ﬁjdt - ln[v+mg} :—ﬁt -
V+@ n V0V+E s b Yo n
v+% v+@ b
In b _|__ t - b —eiz — v= mg(e 1j+ve
v, + 28 n L+ b
b b

After the object reaches its maximum height |:trisc = ﬂ1n(

b
1+ 2% , at which point the speed
mg

will be 0, it will then start to fall. The equation from part (¢) will then describe its falling
motion.

68. The net force on the falling object, taking downward as positive, will be ZF mg —bv' =ma
(a) The terminal velocity occurs when the acceleration is 0

mg—-bv’ =ma — mg—bv2=0 -

b)) v :‘f— - b=—>= 2k m
T b V.f. (60m/s m
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(¢) The curve would be qualitatively like Fig. 5-27, because the speed would increase from 0 to the
terminal velocity, asymptotically. But this curve would be ABOVE the one in Fig. 5-27,
because the friction force increases more rapidly. For Fig. 5-27, if the speed doubles, the
friction force doubles. But in this case, if the speed doubles, the friction force would increase
by a factor of 4, bringing the friction force closer to the weight of the object in a shorter period
of time.

69. (a) See the free-body diagram for the coasting. Since the bicyclist has a
constant velocity, the net force on the bicycle must be 0. Use this to
find the value of the constant c.

D F =mgsin@-F, =mgsinf@—cv’ =0 —

_mgsin@ _ (80.0kg)(9.80m/s’)sin7.0°

v 1m/s ’
[9-51““/ h(gékm/hﬂ
= 14kg/m

(b) Now another force, FP, must be added down the plane to represent

=13.72kg/m

the additional force needed to descend at the higher speed. The
velocity is still constant. See the new free-body diagram.

ZF,V =mgsinf+F, - F, =mgsin¢9+FP—cv2 =0 —

F,=cv' —mgsin6

=(13.72 kg/m)[zskm/h(%ﬂz ~ (80.0kg) (9.80m/s’ )sin7.0° =

70. (a) The rolling drag force is given as F; =4.0N. The air resistance drag force is proportional to

v’, andso F,, = bv*. Use the data to find the proportionality constant, and then sum the two

drag forces to find the total drag force.
1.ON
F,=bh" — 1ON=b(22m/s)’ — b=———=0.2066kg/m
(2.2 m/s)

F,=F, +F, =|(40+021")N

(b) See the free-body diagram for the coasting bicycle and rider. Take
the positive direction to be down the plane, parallel to the plane.
The net force in that direction must be 0 for the bicycle to coast at a
constant speed.

ZFX:mgsinﬁ—FD=0 — mgsinfd=F, —

(4.0+0.20661")

0 =sin" —2 =sin"
mg mg
(40N +(0.2066 kg/m) (8.0m/s)’)

(78kg)(9.80m/s’) =

=sin~
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b
71. From Example 5-17, we have that v = %[1 —-en" ] We use this expression to find the position

and acceleration expressions.

dv mg ‘% ( bj —%f
a=—=—| —e¢ -—— |=|ge
dt b m

dx
v=

dr

b, 2 b,
oo| T8 e | (e el
b b b b b

0

- dx=vdt — :[dx=j.vdt=j‘%(l—e_:”jdt -

72. We solve this problem by integrating the acceleration to find the velocity, and integrating the
velocity to find the position.

Ilfw[:—bv%=ma=mﬂ - ﬂ=—£v% - d‘lj=—£dt -
dt dt m V2 m
rd b . 1 b Lo Y
—‘1}=——J.dt — v -2y =——t — v=(v5——j

WV ms m 2m
d | bt 2 | bt 2 X t N bt 2
—x=(v(§ ——) — dxz(vg ——) d — .fdxzj.(vg ——) dt —
dt 2m 2m ) ) 2m

2m ( L bt j | 2m| - ( L bt I
X==—"——|Vo—— | =V |=—| Vs —| Ve ——
3b 2m 3b 2m

2 o 2
From problem 72, we have that v = (vé - ﬂj and x =| vt —vo—bt2 + b —¢* |. The maximum
2m 2m 12m

distance will occur at the time when the velocity is 0. From the equation for the velocity, we see that

2mv; C e . . . .
happens at ¢ = . Use this time in the expression for distance to find the maximum distance.

x(t=t) = b b 3b 3b

0
b 2m| b 12m°| b

1 1 1\2 1\3 3 3 3 3
2mv; v b (vag ] b’ [2mv3 ] 2mv;  2mv;  2mvy; 2mv;
— + +

74. The net force is the force of gravity downward, and the drag force upwards. Let the downward
direction be positive. Represent the value of 1.00x10* kg/s by the symbol b, as in Eq. 5-6.
dv dv b

F=mg—F =mg-bv=ma=m— — —=g——v —
2 =N dt a S
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el e LA (o B R R
mg ms b b

Solve for ¢, and evaluate at v = 0.02v,.

m(o.ozvo mgjl(mgj
b b

—b/m
(75kg)(9.80m/s) (75kg)(9.80m/s’)
1n£0.02(5.0m/s)— L00x10" kg/s ]—m[(s.Om/s)— 100X 10" kg)s
~(1.00x10"kg/s) /(75kg)

=3.919x10%s = [3.9%107s]

75. The only force accelerating the boat is the drag force, and so Newton’s second law becomes
ZF =—bv =ma. Use this to solve for the velocity and position expressions, and then find the

=

distance traveled under the given conditions.
dv dv b cdv b v b
ZF=—bv=ma:m— - —=—-—v = —=——Idt - Ih—=-—t —
dt dt m Y ms Vo m
b
——t
v=y,e "
Note that this velocity never changes sign. It asymptotically approaches 0 as time approaches

infinity. Apply the condition that at = 3.0 s the speed is v =1 v,.
b In2

1y JE

20 m  3.0s

Now solve for the position expression. The object will reach its maximum position when it stops,
which is after an infinite time.

_’l(3_0)
m —

v(1=3.0)=ve

dx —il ,E, T ’ *ﬂf
v=?=voe’" = dx=ve"dt — Idx=.[voe”’dt -
t
0 0

b, b,
S Gl S (R IR GO R R e b ST

76. A free-body diagram for the coffee cup is shown. Assume that the car is moving to
the right, and so the acceleration of the car (and cup) will be to the left. The
deceleration of the cup is caused by friction between the cup and the dashboard. For
the cup to not slide on the dash, and to have the minimum deceleration time means

the largest possible static frictional force is acting, so F, = u F,. The normal force

on the cup is equal to its weight, since there is no vertical acceleration. The
horizontal acceleration of the cup is found from Eq. 2-12a, with a final velocity of zero.

1m/s
= (45km/h)| ———— |=12.5m/s
Kl /)(3.6km/hJ /
v—y,  0-12.5m/s

=-3.57m/s’
t 35s

V—V():al — a=
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Write Newton’s second law for the horizontal forces, considering to the right to be positive.

a (-357m/s?)
ZF;:-F;}zma — ma=-uF, =-umg — ,US=—_:_—2=
g 9.80m/s

77. Since the drawer moves with the applied force of 9.0 N, we assume that the maximum static
frictional force is essentially 9.0 N. This force is equal to the coefficient of static friction times the
normal force. The normal force is assumed to be equal to the weight, since the drawer is horizontal.

F, 9.0N
F, =puF, = =t = =10.46
L R (2.0kg)(9.80m/s”)

78. See the free-body diagram for the descending roller coaster. It starts its

descent with v, = (6.0km/h) _Lmfs
3.6km/h

displacement in the x direction is x —x, =45.0m. Write Newton’s second

J =1.667m/s. The total

law for both the x and y directions.
ZE =F,—-mgcosf@=0 — F,=mgcosl

ZFX =ma=mgsin@—F, =mgsin@—u F, =mgsin6— 1, mg cost

o 0
_mgsmo—H,mgeoso g (sin@ - u, cos )

a
m

Now use Eq. 2-12c to solve for the final velocity.
v —vé = Za(x—xo) —

v=\/v§ +2a(x—x0) =\/v§ +2g(sin0—ﬂk cosﬁ)(x—xo)

- \/(1.667 m/s)’ +2(9.80m/s*)[sin45° - (0.12) cos45°] (45.0 m)

=23.49m/s =|23m/s| =~ 85km/h

Consider a free-body diagram of the box. Write Newton’s second law for
both directions. The net force in the y direction is 0 because there is no
acceleration in the y direction.

ZE =F,—-mgcosf@=0 — F,=mgcosl
ZE =mgsin@-F, =ma

Now solve for the force of friction and the coefficient of friction.
ZF} =F,—-mgcosd=0 — F, =mgcosd

ZF =mgsin@—F,_=ma

F, =mgsin®—ma=m(gsin®-a) = (18.0 kg)[ (9.80m/s’)(sin37.0°) - 0.220m/s’ |
=1022N ~[102N
o= F = pumgecostd — u = T 10221 :

mg cos 0 - (18.0 kg)(9.80m/sz)cos37.0°
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80. Since mass m is dangling, the tension in the cord must be equal to the weight of mass m, and so
F, =mg. That same tension is in the other end of the cord, maintaining the circular motion of mass

M,andso F,=F, =Ma, =MV’ / r. Equate the expressions for tension and solve for the velocity.
Mvz/r =mg — v= ngR/M

81. Consider the free-body diagram for the cyclist in the sand, assuming that the -

cyclist is traveling to the right. It is apparent that F, = mg since there is no N
vertical acceleration. Write Newton’s second law for the horizontal direction, P
positive to the right. fr

ZF;=—Ffr=ma - —umg=ma — a=-Ug e
Use Eq. 2-12¢ to determine the distance the cyclist could travel in the sand
before coming to rest.

2 2 2 2
Vvi—v -V 20.0m/s
vz—v§=2a(x—x0) - (x—x0)= L = - ( /s) =29m

2 —2ug 2(070)(9.80m/s")

Since there is only 15 m of sand,

found from Eq. 2-12c.
v —vé =2a(x—x0) -

v= i +2a(x-x,) = v}~ 2p,8 (x-x,) = \/(20.0rn/s)2 ~2(0.70)(9.80m/s* ) (15m)

=(14m/s

the cyclist will emerge from the sand|. The speed upon emerging is

82. Consider the free-body diagram for a person in the “Rotor-ride.” FN is the

normal force of contact between the rider and the wall, and F. is the static

frictional force between the back of the rider and the wall. Write Newton’s
second law for the vertical forces, noting that there is no vertical acceleration.

ZFA=Ff—mg:O — F . =mg

y r T

If we assume that the static friction force is a maximum, then
F;izﬂsFNng - FN:mg/lLlA

But the normal force must be the force causing the centripetal motion — it is the

only force pointing to the center of rotation. Thus F, = F, =mV’ / r. Using v=27r/T, we have
B 4r’mr
==
friction. Note that since there are 0.50 rev per sec, the period is 2.0 sec.

F

N

Equate the two expressions for the normal force and solve for the coefficient of

T U, "4y 477 (5.5m)
Any larger value of the coefficient of friction would mean that the normal force could be smaller to
achieve the same frictional force, and so the period could be longer or the cylinder radius smaller.

2 > (9.80m/s*)(2.0s)’
F_47Z'mr:E %lu_gT ( m/s)( S) :m

N =

There is no force pushing outward on the riders. Rather, the wall pushes against the riders, so by
Newton’s third law, the riders push against the wall. This gives the sensation of being pressed into
the wall.
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&3.

&4.

The force is a centripetal force, and is of magnitude 7.45mg. Use Eq. 5-3 for centripetal force.
2

F=m—=745mg — v=.[745rg = \/7.45(1 1.0m)(9.80m/s*) =28.34m/s = 28.3m/s
r

(28.34m/s)x—__ _[0410rev/s

27(11.0m)

The car moves in a horizontal circle, and so there must be a net horizontal
centripetal force. The car is not accelerating vertically. Write Newton’s
second law for both the x and y directions.

mg
cosd

ZFyzFNcosﬁ—mg=0 - F =

ZFX = ZFR =F sinf =ma_

The amount of centripetal force needed for the car to round the curve is as follows.
2
1.0
(85km/h) _LOom/s
3.6km/h s
=9.679x10°N

2m

The actual horizontal force available from the normal force is as follows.

F, =mv'[r = (1250 kg)

F sinf = e

cosd
Thus more force is necessary for the car to round the curve than can be
supplied by the normal force. That extra force will have to have a
horizontal component to the right in order to provide the extra centripetal
force. Accordingly, we add a frictional force pointed down the plane.
That corresponds to the car not being able to make the curve without
friction.

sin@ = mg tan 0 = (1250kg) (9.80m/s* ) tan 14° = 3.054 x 10°N

Again write Newton’s second law for both directions, and again the y
acceleration is zero.

) mg+ F_sin@
ZEFFNcosé’—mg—Fﬁsme:o N FNzg—fr
) cosd

> F =Fsin0+F,cos=mv'[r

Substitute the expression for the normal force from the y equation into the x equation, and solve for

the friction force.
2

+ F_sinf
usin9+ﬂrcos€=mv2/lf - (mg+E}sin0)sin0+F}rcoszl9=mv—cosH
cosf r
V2
F, =m—cos @ — mgsin @ = (9.679x10'N) cos14° — (1250 kg) (9.80 m/s* ) sin 14°
r
=6.428x10°N

So a frictional force of [6.4x10°N down the plane|is needed to provide the necessary centripetal

force to round the curve at the specified speed.
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The radial force is given by Eq. 5-3.

86.

87.

v? (27 m/s)2

F, =m—=(1150kg) =1863N =[1900N
r

50m/s

The tangential force is the mass times the tangential acceleration. The tangential acceleration is the
change in tangential speed divided by the elapsed time.

F, =ma, =m%= (llSOkg)MzMSON ~[3500N
¢

(9.0s)

Since the walls are vertical, the normal forces are horizontal, away _ B y
Fer Fer X

from the wall faces. We assume that the frictional forces are at
their maximum values, so F, = u _F, applies at each wall. We

climber |e—— Fy,

|

assume that the rope in the diagram is not under any tension and
so does not exert any forces. Consider the free-body diagram for

NL
g
the climber. £, is the normal force on the climber from the right l 8

wall, and F is the normal force on the climber from the left wall. The static frictional forces are

F, =u,F, and F, =u F,. Write Newton’s second law for both the x and y directions. The

sL™ NL
net force in each direction must be zero if the climber is stationary.

ZE:FNL_FNR:O = Iy =Fy ZEV:F;}L—l—F;}R_mg:O

Substitute the information from the x equation into the y equation.

F'er + F'er = mg - IL[SLFNL + /usRFNR = mg - (/usL + lLlsR)FNL = mg
70.0kg)(9.80m/s”
F,=—"%8 ! ) (9:80ms )=4.90><102N
(Il’tsL +IL‘,¢R) 140

And so |F, = F, =4.90x10°N|. These normal forces arise as Newton’s third law reaction forces

to the climber pushing on the walls. Thus the climber must exert a force of at least 490 N against
each wall.

The mass would start sliding when the static frictional force was not
large enough to counteract the component of gravity that will be
pulling the mass along the curved surface. See the free-body diagram,
and assume that the static frictional force is a maximum. We also
assume the block has no speed, so the radial force must be 0.

F oy =F, —mgcos¢p — F =mgcosp
ZF;angemial =mg sin ¢ - F;r — F;r =mg sin ¢
Er :lLlSFN :ﬂsmgcos¢=mgsin¢) — IL[S = tan¢ N

¢=tan"' u = tan™' 0.70 =

88. (a) Consider the free-body diagrams for both objects, initially stationary. As sand is added, the

tension will increase, and the force of static friction on the block will increase until it reaches its
maximum of F, = u F,. Then the system will start to move. Write Newton’s second law for

each object, when the static frictional force is at its maximum, but the objects are still
stationary.
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ZF;fbuckelzmlg_FT:O - FT=mlg 2
F;»blockzFN_m2g=O - Fszzg R X5 -
F;block:FT_F}rZO - FTzFfr Ffr FT

Equate the two expressions for tension, and substitute in the expression for
the normal force to find the masses. F, | lng
mg=F — mg=uF =umg —

m, = pum, =(0.45)(28.0kg) =12.6kg i

T
Thus 12.6kg — 2.00 kg = 10.6kg ~[11kg| of sand was added. yl l

(b)  The same free-body diagrams can be used, but now the objects will

accelerate. Since they are tied together, a , =a_, = a. The frictional force is

1
now kinetic friction, given by F, = u, F, = u,m,g. Write Newton’s second
laws for the objects in the direction of their acceleration.

ZFyhuckez = mlg_FT =ma — FT =mg—ma

F;block :FT _Ffr =ma — FT =Ffr tm,a
Equate the two expressions for tension, and solve for the acceleration.

mg-ma=pumg+ma —>

(m, —pum,) .\ (12.6kg —(0.32)(28.0kg))
(m, +m,) = (9:80m/5") (12.6kg +28.0kg)

a=g

=10.88m/s’

89. The acceleration that static friction can provide can be found from the minimum stopping distance,
assuming that the car is just on the verge of sliding. Use Eq. 2-12c. Then, assuming an unbanked
curve, the same static frictional force is used to provide the centripetal acceleration needed to make
the curve. The acceleration from the stopping distance is negative, and so the centripetal
acceleration is the opposite of that expression.

2 2 2 2
o R _ Vo
v —vo—2a(x—x0) = Ayopping = = - ag=—"
2(x-x)) 2(x—x,) 2(x—x,)
Equate the above expression to the typical expression for centripetal acceleration.
2 2
v v
ay=—=—-"— — r=2(x-x,)=|132m
ro 2 (x - xo)

Notice that we didn’t need to know the mass of the car, the initial speed, or the coefficient of friction.
90. The radial acceleration is given by a, =V’ / r. Substitute in the speed of the tip of the sweep hand,

: 47’ :
given by v =27r/T, to get a, = ?r For the tip of the sweep hand, »=0.015 m, and 7 = 60 sec.

4’y 47m°(0.015m)

- 0 1.6x10™ m/s’

R
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|

(a) The horizontal component of the lift force will produce a centripetal .
acceleration. Write Newton’s second law for both the horizontal and
vertical directions, and combine those equations to solve for the time
needed to reverse course (a half-period of the circular motion). Note that <=

d

27y "
T=——1.

v -

2

. v
ZE/cnical = Fcos0=mg ; ZFhoriZomal =F. sin0=m—

lift
7

lift

~

Divide these two equations.

F, sin6@ m’ v? v 27v

: = — tanf=—-= =—
Ficos0  rmg rg Iv gT

g
2z
. ;{(480km/h)[31'60kn;1//shﬂ
v :

- = =|(55s
2 gtand (9.80m/s* ) tan38°

(b) The passengers will feel a change in the normal force that their seat exerts on them. Prior to the
banking, the normal force was equal to their weight. During banking, the normal force will

increase, so that F S-S 1.27mg. Thus they will feel “pressed down” into their seats,

normal

banking COS 0

with about a 25% increase in their apparent weight. If the plane is banking to the left, they will
feel pushed to the right by that extra 25% in their apparent weight.

92. From Example 5-15 in the textbook, the no-friction banking angle is given by € = tan™'

centripetal force in this case is provided by a component of the normal !
force. Driving at a higher speed with the same radius requires more 7 \0
g g P q x !
centripetal force than that provided by the normal force alone. The
additional centripetal force is supplied by a force of static friction,
downward along the incline. See the free-body diagram for the car on
the incline. The center of the circle of the car’s motion is to the right of
the car in the diagram. Write Newton’s second law in both the x and y
directions. The car will have no acceleration in the y direction, and
centripetal acceleration in the x direction. Assume that the car is on the verge of skidding, so that the

static frictional force has its maximum value of F, = u F .

ZFyzFNCOSH—mg—F}rsinﬁzo — F cos@—-u F sind=mg —
mg
(cos@— u, sind)
ZFX=FR=FNsinH+Fﬁcos49=mv2/R - FNsin(9+uSFNcos(9=mv2/R —
mv2/R
~ (sin6+ p, cos6)

Equate the two expressions for the normal force, and solve for the speed, which is the maximum
speed that the car can have.
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mvz/R B mg N
(sin@+ p, cos®) (cosd—u, sinb)
. =\/Rg sin@ (1+u,/tan )

cos@ (1-u, tan6)

Driving at a slower speed with the same radius requires less
centripetal force than that provided by the normal force alone. The
decrease in centripetal force is supplied by a force of static friction,
upward along the incline. See the free-body diagram for the car on
the incline. Write Newton’s second law in both the x and y directions.
The car will have no acceleration in the y direction, and centripetal
acceleration in the x direction. Assume that the car is on the verge of

skidding, so that the static frictional force is given by F, = u F, .
ZFy =F,cos0-mg+F sind=0 —

F,cosO+ukF sinf=mg — F = e -
(cos@+ p, sin0)
ZszFR=FNsint9—Fﬁcost9=mv2/R - FNsinH—,uSFNcos&:mvz/R -

mvz/R

F —
N (sinH—,us cosé’)

Equate the two expressions for the normal force, and solve for the speed.
mv’ / R B mg N
(sin@ -, cos®) (cos@+ u, sinb)

cos@ (1+u, tan6)

and |v

93. (a) Because there is no friction between the bead and the hoop, the
hoop can only exert a normal force on the bead. See the free-body
diagram for the bead at the instant shown in the textbook figure. Note
that the bead moves in a horizontal circle, parallel to the floor. Thus
the centripetal force is horizontal, and the net vertical force must be 0.
Write Newton’s second law for both the horizontal and vertical
directions, and use those equations to determine the angle 8. We also
use the fact that the speed and the frequency are related to each other,
by v =27 frsin@.

ZFvenical =l cos@-mg=0 — F = mg
cosd
2 2 p2 2 « 2
4r J2]
ZF;adialeNSingzm v =m fr Sin
rsin@ rsin@
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Chapter 5 Using Newton’s Laws: Friction, Circular Motion, Drag Forces

4 2 2.2 - 26
F,sinf = =t sin6?=mﬂf’j—Sln 0= cos"%
cos @ rsin @ 4z’ fr
L8 y 9.80m/s’
(b) H=cos” =cos =
A’ fr 47° (2.00Hz)’ (0.220m)

(o) @, the bead cannot ride as high as the center of the circle. If the bead were located there, the
normal force of the wire on the bead would point horizontally. There would be no force to
counteract the bead’s weight, and so it would have to slip back down below the horizontal to

balance the force of gravity. From a mathematical standpoint, the expression % would

4z f°r
have to be equal to 0 and that could only happen if the frequency or the radius were infinitely
large.

94. An object at the Earth’s equator is rotating in a circle with a radius equal to the radius of the Earth,
and a period equal to one day. Use that data to find the centripetal acceleration and then compare it

to g.
[2;;;»)2 47° (6.38%10°m)
2 I 2 2
aR=V—= T :47z2r ay _ (86,40052 — 0.00344 = 3
r r T g (9.80m/s?) 1000

So, for example, if we were to calculate the normal force on an object at the Earth’s equator, we
could not say ZF =F,—mg =0. Instead, we would have the following.

2

2
v 1
ZFzFN—mgz—m— — F,=mg-m—
r r
2

v . .
If we then assumed that F, = mg_ . =mg—m—, then we see that the effective value of g is
r

2

g, =g——=g—0003g=0997g.
r

95. A free-body diagram for the sinker weight is shown. L is the
length of the string actually swinging the sinker. The radius of
the circle of motion is moving is » = Lsind. Write Newton’s
second law for the vertical direction, noting that the sinker is
not accelerating vertically. Take up to be positive.

mg
cosd

The radial force is the horizontal portion of the tension. Write
Newton’s second law for the radial motion.

ZFR = F, sin@ = ma, =mv2/r

Substitute the tension from the vertical equation, and the relationships » = Lsind and v = Zﬂr/ T.

ZQ:FTcosﬁ—mg:O — F. =

2 3 2
FTsinl9=mv2/r - & sinﬁzw — cosf = gY;
cosd T 4z°L
| gT? . (9:80m/s7)(0.50 s)°
0 =cos”' £ =cos =[82°
P arr T ar(045m)
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9. The speed of the train is (160 km/h)[ — /5
3.6km/h

(a) If there is no tilt, then the friction force must supply the entire centripetal force on the
passenger.

2
F —mv'/R = (75kg)(44.44m/s) 500N =

(570m)

(b) For the banked case, the normal force will contribute to the radial force
needed. Write Newton’s second law for both the x and y directions. The y
acceleration is zero, and the x acceleration is radial.

j: 44.44mfs.

+ F_sin@
ZFy=FNcos19—mg—Fﬁsin6:O - FN:m‘g—fr
cosd

ZE =F sin@+F, cosf = mvz/r
Substitute the expression for the normal force from the y equation into the
x equation, and solve for the friction force.

mg + F,_sin 0

sin@+ F, cos@=mv'[r —
cosf
vz
(mg + F,sin@)sin@ + F, cos’ § =m—cosf —
r

r

2
- (75 kg){%COSS.OO - (9.80m/sz)sin8.0°} —155N =
m

2
F = m(v—cosﬁ—gsiné’j

We include friction from the start, and then for the no-friction result, set the
coefficient of friction equal to 0. Consider a free-body diagram for the car on
the hill. Write Newton’s second law for both directions. Note that the net
force on the y direction will be zero, since there is no acceleration in the y
direction.

ZF),zFN—mgcosé'zo — F, =mgcosd
ZFX:mgsinH—Fﬁ:ma -

E cos@
a=gsinf——= =gsin6’—'u"L
m

Use Eq. 2-12¢ to determine the final velocity, assuming that the car starts from rest.
vi—v =2a(x-x,) — v=\/0+2a(x—x0) =\/2g(x—x0)(sin0—yk cosd)

The angle is given by siné = 1/4 — O=sin"025=145°
(@ =0 — v=,2g(x-x,)xsin6 = \/2(9.80m/sz)(55 m)sin14.5° = [16m/s

= g(sin@—,uk 0056’)

() u =010 — v=\/2(9.80m/sz)(55m)(sin14.5°—0.1000514.5")::13m/s:
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98. The two positions on the cone correspond to two opposite directions of the
force of static friction. In one case, the frictional force points UP the cone’s
surface, and in the other case, it points DOWN the cone’s surface. In each
case the net vertical force is 0, and force of static friction is assumed to be its
maximum value. The net horizontal force is producing centripetal motion.

F. ..=F.sing—F cosp—mg=F sing—uF, cosp—mg=0 —

vertical

mg
F, = L

sing— u_cos ¢
ZFhorizml =F, cos¢+ F, sing = F, cos @+ u F, sin¢

2
=F, (cos¢+ u sing) = mﬁ = mw =47’ rmf? —
r r
4’ rmf’
- (cos@+ u sing)
Equate the two expressions for the normal force, and solve for the radius.
o= mg _ 47’ rmf? N P g(cos¢+ M, sin¢))
Y sing—u cosgp (cosg+ u sing) " 47’ 7 (sing — u, cos @)

A similar analysis will lead to the minimum radius.
Z:I”vemca1 =F sing+F, cos¢p—mg=F sing+ukF, cosp—mg=0—

_ mg
Y sing+ M, COsP
ZF;wrizontal =FN COs ¢ - F}r sin ¢ = FN COos ¢ - “usFN sin ¢

2 2
:FN(cos¢)—,ussin¢):mv—:mwszrmfz%
r r
o A’ rmf?
Y (cosg— u, sing)
2 2 _ .
F mg 3 47 rmf N P g(cos¢) ,ussm¢))

N sing + u cos ¢ - (cos¢— p, sing) " 4t f? (sing+ 4 cosg)

99. (a) See the free-body diagram for the skier when the tow rope is horizontal.
Use Newton’s second law for both the vertical and horizontal directions
in order to find the acceleration.

ZFy=FN—mg=O — F,=mg

D F =F —F,=F - uF =F - img=ma
F.—umg (240N)-025(72kg)(9.80m/s’)

TTw (72kg)

(b) Now see the free-body diagram for the skier when the tow rope has
an upward component.

=10.88m/s’

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

159



Physics for Scientists & Engineers with Modern Physics, 4" Edition Instructor Solutions Manual

D F =F,+F,sin0-mg=0 — F,=mg-F,sin6
ZEczF'TcosH—E}zFTCOSH—,ukFN
=FTcos(9—,uk(mg—FTsin6’)=ma
F,(cos@+ u, sin@) — umg

a=
m

(240N) (cos12°+0.25sin12°) - 0.25(72kg) (9.80m/s* ) -
= =10.98m/s
(72kg)
(¢) The acceleration is greater in part (b) because the upward tilt of the tow rope reduces the normal
force, which then reduces the friction. The reduction in friction is greater than the reduction in
horizontal applied force, and so the horizontal acceleration increases.

’ > (6.0m/s)’
100. The radial acceleration is a, = V—, and so a, = A M =
r r 0.80m

The tension force has no tangential component, and so the tangential force is seen from the diagram

45m/s2 .

tobe F, , =mgcosé.

F_ =mgcos@=ma, —> a =gcost9=(9.8011[1/s2)c0s30°=8.5rn/s2

tang tang tang

The tension force can be found from the net radial force.
2

F, =F, —mgsin@zmv— —
r

F. = m(gsin(9+v—:j = (1.0kg)((9.80m/52)sin300+45m/sz) -

Note that the answer has 2 significant figures.

101. (a) The acceleration has a magnitude given by a = v’ / r.

2

o= (15 Tm/s) +(232mfs ) =2s0imfy =

v=/(28.01m/s*)(63.5m) = 42.17m/s =

(b) Since the acceleration points radially in and the position vector points radially out, the
components of the position vector are in the same proportion as the components of the
acceleration vector, but of opposite sign.

el sm BT sn] et g om) 2200 )
a

28.01m/s a 28.01m/s’

102. (a) We find the acceleration as a function of velocity, and then use numeric integration with a
constant acceleration approximation to estimate the speed and position of the rocket at later
times. We take the downward direction to be positive, and the starting position to be y = 0.

k
F=mg-kv’=ma — a=g——V
m

Fort=0, y(0)=y,=0, v(0)=v,=0,and a(0)=a, =g—£v2 =9.80m/s>. Assume this
m
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acceleration is constant over the next interval, and so y, = y, + v At +1a, (At)2 , v, =V, taAt,

k . . . .
and a, =—-g——v;. This continues for each successive interval. We apply this method first for
m

a time interval of 1 s, and get the speed and position at = 15.0 s. Then we reduce the interval
to 0.5 s and again find the speed and position at # = 15.0 s. We compare the results from the
smaller time interval with those of the larger time interval to see if they agree within 2%. If not,
a smaller interval is used, and the process repeated. For this problem, the results for position
and velocity for time intervals of 1.0 s and 0.5 s agree to within 2%, but to get two successive
acceleration values to agree to 2%, intervals of 0.05 s and 0.02 s are used. Here are the results
for various intervals.

At =1s: x(15s) =648 m v(15s) =57.5m/s a(15s) = 0.109m/s’
At=0.5s:  x(15s)=641m v(15s) =57.3m/s a(15s) =0.169m/s’
At=02s:  x(15s)=636m v(15s) =57.2m/s a(15s)=0.210m/s’
At=0.1s:  x(15s)=634.4m v(155)=57.13m/s  a(155)=0.225m/s’
At=0.05s:  x(15s)=633.6m v(15s)=57.11m/s  a(15s)=0.232m/s’
At=0.02s:  x(15s)=633.1m v(155)=57.10m/s  a(155)=0.236m/s’

The spreadsheet used for this problem can be found on the Media Manager, with filename
“PSE4 ISM_CHO05.XLS,” on tab “Problem 102a.”

(b) The terminal velocity is the velocity that produces an acceleration of 0. Use the acceleration
equation from above.

k 75kg)(9.80m/s?
cms by om0

m

At this velocity, the drag force is equal in magnitude to the force of gravity, so the skydiver no
longer accelerates, and thus the velocity stays constant.

(c¢) From the spreadsheet, it is seen that it takes to reach 99.5% of terminal velocity.

103 ] Use the free body diagram to write Newton’s second law for the block, and solve =

F
for the acceleration. % OF,
F=ma=F,-F,=F,-uF,=F,—umg — F, | —
—
F 41N 0.20(9.80m/s> 1. 1 mg
gt g o AN 0N080mS) o 196 ] .
k 2 2 2 2
m 8.0kg  (1+0.0020v") (1+0.0020v)

Fort=0, x(0)=x,=0, v(0)=v, =0, and a(0)=a, =3.165m/s’. Assume this acceleration is

constant over the next time interval, and so x, = x, +v, At +La, (A?)’, v, = v, +a,At, and

1.96 : . o .
a=[5125-——"— m/ s’. This continues for each successive interval. We apply this

(1+0.0020v})

method first for a time interval of 1 second, and get the speed and position at = 5.0 s. Then we
reduce the interval to 0.5 s and again find the speed and position at # = 5.0 s. We compare the results
from the smaller time interval with those of the larger time interval to see if they agree within 2%. If
not, a smaller interval is used, and the process repeated. For this problem, the results for position
and velocity for time intervals of 1.0 s and 0.5 s agree to within 2%.
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(a) The speed at 5.0 s, from the numeric ”
integration, is 18.0 m/s. The 1
velocity—time graph is shown, along 15 Varying friction Av
with a graph for a constant coefficient | _ —*— Constant friction /
of friction, g = 0.20. The varying E|
(decreasing) friction gives a higher -
o . 5 /
speed than the constant friction. The "
spreadsheet used for this problem can
be found on the Media Manager, with 0 . | ) ‘ i i
filename “PSE4 ISM_ CHO05.XLS,” t (s)
on tab “Problem 5.103.”
(b) The position at 5.0 s, from the pn
numeric integration, is 42.4 m. The \
position—time graph is shown, along 40 - Varying friction 4
with a graph for a constant —*— Constant friction /
coefficient of friction, g = 0.20. The §30 Z
varying (decreasing) friction gives a 720 1
larger distance than the constant 04
friction. The spreadsheet used for
this problem can be found on the 0 e ‘
Media Manager, with filename 0 1 2 e 4 3
“PSE4 ISM_CHO05.XLS,” on tab
“Problem 5.103.”
(c) If the coefficient of friction is constant, then a = 3.165 m/ s’. Constant acceleration
relationships can find the speed and position at # = 5.0 s.
v=vy,tat=0+at — v, = (3.165m/s2)(5.05) =15.8m/s
x=x,+vt+ia’ =0+0+ta’ — x, =1(3.165m/s*)(5.0s)" =39.6m
We compare the variable friction results to the constant friction results.
v tant -V variable 158 _180
ve Odiff = Jemn ~Viuiae _ 15-8m)s m/s:
v,u variable 1 80 m/S
. X constant X variable 396 - 424
v Yodiff = Jremm ~Xuome _ 39.6m/s—424m)s _7on
x,u variable 424 m/s
104. We find the e.lccelera'tion as a function of Velocity, and then () ym)  vms)  qms)
use numeric integration with a constant acceleration 0 0 120.0 470
approxirpation to estimate the speed and position of the rocket 1 9 7.8 236
at later times. ) 157 492 -16.1
k 3 199 331 -126
F=- - 2 = —> = —0 - — 2 . .
mg — kv =ma a=-g=" 4 225 205 -109
Fort=0, y(0)=0, v(0)=v =120m/s, and 3 240 9.6 -100
»(0) (0)=, / 6 245 -0.5 9.8

a(0)=a,=-g —5\/2 =-9.80m/s’. Assume this

. . . . 2
acceleration is constant over the next time interval, and so y, = y, + v, At ++a, (A1), v, =v, +a,At,
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and a, =-g——v.. This continues for each successive interval. Applying this method gives the
m

results shown in the table. We estimate the maximum height reached as y, = .

If air resistance is totally ignored, then the acceleration is a constant —g and Eq. 2-12c may be used to
find the maximum height.

vz_vg =2a(y—y0) -
V= 3 B _ (120m/s)2

a —2; ~2(9.80m/s)

Thus the air resistance reduces the maximum height to about 1/3 of the no-resistance value. A more
detailed analysis (with smaller time intervals) gives 302 m for the maximum height, which is also the
answer obtained from an analytical solution.

=730m

Y=Y, =

The spreadsheet used for this problem can be found on the Media Manager, with filename
“PSE4 _ISM_CHO05.XLS,” on tab “Problem 5.104.”
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CHAPTER 6: Gravitation and Newton’s Synthesis

Responses to Questions

(=]

Whether the apple is attached to a tree or falling, it exerts a gravitational force on the Earth equal to
the force the Earth exerts on it, which is the weight of the apple (Newton’s third law).

The tides are caused by the difference in gravitational pull on two opposite sides of the Earth. The
gravitational pull from the Sun on the side of the Earth closest to it depends on the distance from the
Sun to the close side of the Earth. The pull from the Sun on the far side of the Earth depends on this
distance plus the diameter of the Earth. The diameter of the Earth is a very small fraction of the total
Earth—Sun distance, so these two forces, although large, are nearly equal. The diameter of the Earth
is a larger fraction of the Earth—-Moon distance, and so the difference in gravitational force from the
Moon to the two opposite sides of the Earth will be greater.

The object will weigh more at the poles. The value of 72 at the equator is greater, both from the
Earth’s center and from the bulging mass on the opposite side of the Earth. Also, the object has
centripetal acceleration at the equator. The two effects do not oppose each other.

Since the Earth’s mass is greater than the Moon’s, the point at which the net gravitational pull on the
spaceship is zero is closer to the Moon. A spaceship traveling from the Earth towards the Moon must
therefore use fuel to overcome the net pull backwards for over half the distance of the trip. However,
when the spaceship is returning to the Earth, it reaches the zero point at less than half the trip
distance, and so spends more of the trip “helped” by the net gravitational pull in the direction of
travel.

The gravitational force from the Sun provides the centripetal force to keep the Moon and the Earth
going around the Sun. Since the Moon and Earth are at the same average distance from the Sun, they
travel together, and the Moon is not pulled away from the Earth.

As the Moon revolves around the Earth, its position relative to the distant background stars changes.
This phenomenon is known as “parallax.” As a demonstration, hold your finger at arm’s length and
look at it with one eye at a time. Notice that it “lines up” with different objects on the far wall
depending on which eye is open. If you bring your finger closer to your face, the shift in its position
against the background increases. Similarly, the Moon’s position against the background stars will
shift as we view it in different places in its orbit. The distance to the Moon can be calculated by the
amount of shift.

At the very center of the Earth, all of the gravitational forces would cancel, and the net force on the
object would be zero.

A satellite in a geosynchronous orbit stays over the same spot on the Earth at all times. The satellite
travels in an orbit about the Earth’s axis of rotation. The needed centripetal force is supplied by the
component of the gravitational force perpendicular to the axis of rotation. A satellite directly over
the North Pole would lie on the axis of rotation of the Earth. The gravitational force on the satellite
in this case would be parallel to the axis of rotation, with no component to supply the centripetal
force needed to keep the satellite in orbit.

According to Newton’s third law, the force the Earth exerts on the Moon has the same magnitude as
the force the Moon exerts on the Earth. The Moon has a larger acceleration, since it has a smaller
mass (Newton’s second law, F' = ma).
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10.

11.

12.

14.

15.

16.

17.

The satellite needs a certain speed with respect to the center of the Earth to achieve orbit. The Earth
rotates towards the east so it would require less speed (with respect to the Earth’s surface) to launch
a satellite towards the east (a). Before launch, the satellite is moving with the surface of the Earth so
already has a “boost” in the right direction.

If the antenna becomes detached from a satellite in orbit, the antenna will continue in orbit around
the Earth with the satellite. If the antenna were given a component of velocity toward the Earth (even
a very small one), it would eventually spiral in and hit the Earth.

Ore normally has a greater density than the surrounding rock. A large ore deposit will have a larger
mass than an equal amount of rock. The greater the mass of ore, the greater the acceleration due to
gravity will be in its vicinity. Careful measurements of this slight increase in g can therefore be used
to estimate the mass of ore present.

Yes. At noon, the gravitational force on a person due to the Sun and the gravitational force due to the
Earth are in the opposite directions. At midnight, the two forces point in the same direction.
Therefore, your apparent weight at midnight is greater than your apparent weight at noon.

Your apparent weight will be greatest in case (b), when the elevator is accelerating upward. The
scale reading (your apparent weight) indicates your force on the scale, which, by Newton’s third law,
is the same as the normal force of the scale on you. If the elevator is accelerating upward, then the
net force must be upward, so the normal force (up) must be greater than your actual weight (down).
When in an elevator accelerating upward, you “feel heavy.”

Your apparent weight will be least in case (c¢), when the elevator is in free fall. In this situation your
apparent weight is zero since you and the elevator are both accelerating downward at the same rate
and the normal force is zero.

Your apparent weight will be the same as when you are on the ground in case (d), when the elevator
is moving upward at a constant speed. If the velocity is constant, acceleration is zero and N = mg.
(Note that it doesn’t matter if the elevator is moving up or down or even at rest, as long as the
velocity is constant.)

If the Earth’s mass were double what it is, the radius of the Moon’s orbit would have to double (if
the Moon’s speed remained constant), or the Moon’s speed in orbit would have to increase by a
factor of the square root of 2 (if the radius remained constant). If both the radius and orbital speed
were free to change, then the product »v? would have to double.

If the Earth were a perfect, nonrotating sphere, then the gravitational force on each droplet of water
in the Mississippi would be the same at the headwaters and at the outlet, and the river wouldn’t flow.
Since the Earth is rotating, the droplets of water experience a centripetal force provided by a part of
the component of the gravitational force perpendicular to the Earth’s axis of rotation. The centripetal
force is smaller for the headwaters, which are closer to the North pole, than for the outlet, which is
closer to the equator. Since the centripetal force is equal to mg — N (apparent weight) for each
droplet, N is smaller at the outlet, and the river will flow. This effect is large enough to overcome
smaller effects on the flow of water due to the bulge of the Earth near the equator.

The satellite remains in orbit because it has a velocity. The instantaneous velocity of the satellite is
tangent to the orbit. The gravitational force provides the centripetal force needed to keep the satellite
in orbit, acting like the tension in a string when twirling a rock on a string. A force is not needed to
keep the satellite “up”; a force is needed to bend the velocity vector around in a circle.
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18.

20.

21.

22.

23.

24.

Between steps, the runner is not touching the ground. Therefore there is no normal force up on the
runner and so she has no apparent weight. She is momentarily in free fall since the only force is the
force of gravity pulling her back toward the ground.

If you were in a satellite orbiting the Earth, you would have no apparent weight (no normal force).
Walking, which depends on the normal force, would not be possible. Drinking would be possible,
but only from a tube or pouch, from which liquid could be sucked. Scissors would not sit on a table
(no apparent weight = no normal force).

The centripetal acceleration of Mars in its orbit around the Sun is smaller than that of the Earth. For
both planets, the centripetal force is provided by gravity, so the centripetal acceleration is inversely
proportional to the square of the distance from the planet to the Sun:
vi Gm,
; so —=—7
r r r r
Since Mars is at a greater distance from the Sun than Earth, it has a smaller centripetal acceleration.
Note that the mass of the planet does not appear in the equation for the centripetal acceleration.

2
m v Gm.m
)i — 5P

2

For Pluto’s moon, we can equate the gravitational force from Pluto on the moon to the centripetal
force needed to keep the moon in orbit:
mmv2 Gml’mm

2
r r

This allows us to solve for the mass of Pluto (m,) if we know G, the radius of the moon’s orbit, and
the velocity of the moon, which can be determined from the period and orbital radius. Note that the
mass of the moon cancels out.

The Earth is closer to the Sun in January. The gravitational force between the Earth and the Sun is a
centripetal force. When the distance decreases, the speed increases. (Imagine whirling a rock around
your head in a horizontal circle. If you pull the string through your hand to shorten the distance
between your hand and the rock, the rock speeds up.)

2
m.v Gm.m Gm
—f—=—""% 50 = [
r r r

Since the speed is greater in January, the distance must be less. This agrees with Kepler’s second
law.

The Earth’s orbit is an ellipse, not a circle. Therefore, the force of gravity on the Earth from the Sun
is not perfectly perpendicular to the Earth’s velocity at all points. A component of the force will be
parallel to the velocity vector and will cause the planet to speed up or slow down.

Standing at rest, you feel an upward force on your feet. In free fall, you don’t feel that force. You
would, however, be aware of the acceleration during free fall, possibly due to your inner ear.

If we treat g as the acceleration due to gravity, it is the result of a force from one mass acting on
another mass and causing it to accelerate. This implies action at a distance, since the two masses do
not have to be in contact. If we view g as a gravitational field, then we say that the presence of a
mass changes the characteristics of the space around it by setting up a field, and the field then
interacts with other masses that enter the space in which the field exists. Since the field is in contact
with the mass, this conceptualization does not imply action at a distance.
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Solutions to Problems

The spacecraft is at 3.00 Earth radii from the center of the Earth, or three times as far from the
Earth’s center as when at the surface of the Earth. Therefore, since the force of gravity decreases as
the square of the distance, the force of gravity on the spacecraft will be one-ninth of its weight at the
Earth’s surface.

(1480kg)(9.80m/s’
FG = %mg Earth's = (9 )

surface

=|1610N

This could also have been found using Eq. 6-1, Newton’s law of universal gravitation.

The force of gravity on an object at the surface of a planet is given by Newton’s law of universal
gravitation, Eq. 6-1, using the mass and radius of the planet. If that is the only force on an object,
then the acceleration of a freely falling object is acceleration due to gravity.

m
Moon —
F.=G—"—=mg,,.. —

rMoon

7.35x10%k
2 w: 1.62m/s?

Gy, = G Mo M =(6.67x10" N-m’/kg /
oo (1.74><106m)

The acceleration due to gravity at any location on or above the surface of a planet is given by

Gomes =T M s r*, where r is the distance from the center of the planet to the location in question.
M 1 M 1 9.80m/s”
gplanet — G Plzanet — G Earth — - G 2Earth — ~ Qs — H:/S — 1.9m/52
r (2. 3REanh) 23 R.,. 23 2.3

The acceleration due to gravity at any location at or above the surface of a planet is given by
Goanes = O My, / r*, where r is the distance from the center of the planet to the location in question.

1.80M M
Gy =G ;’1 = G o, SO(G Edﬂhj_l 808, =1.80(9.80m/s’) =[17.6m/s’

Earth

Earth

The acceleration due to gravity is determined by the mass of the Earth and the radius of the Earth.

GM, GM. G2M, 2GM, |,
gO = 2 gnew = 2 = 2 == 2 - EgO
h he o (Br) 9 7

So g is multiplied by a factor of 2/ 9.

The acceleration due to gravity at any location at or above the surface of a planet is given by
Gt =G M / r*, where r is the distance from the center of the planet to the location in question.

For this problem, M, =M, , =597x10"kg.
(@) r=R_, +6400 m=6.38x10"m+ 6400 m

(5.98x10*kg)

=19.78 m/s2

g=G Ea““—(6.67><10"1N-m2/kg2 _
r (6.38x10°m+6400 m)
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(b) r=R,,, +6400 km=6.38x10'm+6.4x10° m=12.78x10"m (3 sig fig)
(5.98x10"kg)

6 2
(12.78x10°m)

=[2.44m/s’

¢=G Eanh_(6‘67X10_11N‘m2/kg2)
r

The distance from the Earth’s center is » = +300km = 6.38x10°m +3%x10°m =

Earth

6.68x10°m (2 sig fig). Calculate the acceleration due to gravity at that location.

24
g=G Earth _ GMEanh _ (6.67><1()7” N-m2/kg2) 5.97x%x10 ng
r r (6.68x10°m)

=8.924m/s’

2

n n

I"g
=8.924m/s’| —>——|=[0.91g’|
/ ( 9.80m/s’ ] g
This is only about a 9% reduction from the value of g at the surface of the Earth.

8. We are to calculate the force on Earth, so we need the distance of each planet from Earth.
=(150-108)x10° km=4.2x10"m 7, =(778-150)x10° km =6.28x10""m

Ea.nh Earth
Venus Jupiter
Fow =(1430-150)x10° km =1.28x10"”m

Saturn

Jupiter and Saturn will exert a rightward force, while Venus will exert a leftward force. Take the
right direction as positive.

_ MEanhMJupiter MEmhMSatum MEanhMVenus
E . =G > +G > -G——
planets n Earth 4 Earth rEarth
Jupiter Saturn Venus
318 95.1 0.815
5 . .
=GM., + -
arth

(628x10"m)"  (1.28x10°m)" (4.2x10"m)’

= (6.67x10™ Nem®/kg? ) (5.97x10*kg)” (4.02x102m*) = 9.56 10" N =

The force of the Sun on the Earth is as follows.
5.97x10%kg)(1.99x10"kg)

= MM _ (667510 Nom? kg’ )(

By - =3.52x10”N
11
Sun r (1.50x10"m)
Sun
And so the ratio is F,_ / L =9.56x10"N/3.52x10”N =|2.7x10~*|, which is 27 millionths.
planets Sun

9. Calculate the force on the sphere in the lower left corner, using the free- <>
body diagram shown. From the symmetry of the problem, the net forces in @ d @
the x and y directions will be the same. Note 6 = 45°.

m’ m’ 1 m’ 1
F =F,_ +F, cosf= G G————=G—| 1+——=
right dia d (\/Ed)z \/5 dQ( 2\/5)

d

—>
\_m

rlght

2
Thus F, =F, = G—[l + —j The net force can be found by the

N0)
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Pythagorean combination of the two component forces. Due to the symmetry of the arrangement,
the net force will be along the diagonal of the square.

F=\F+F =\2F =F2=G6" (1+zj/_ cpan («/_ ;j

=(6.67x10™" N-mz/ng)&(\/z-;-%j =

(0.80 m)’
The force points towards the center of the square.

10. Assume that the two objects can be treated as point masses, with m, = m and m, = 4.00kg —m. The
gravitational force between the two masses is given by the following.

4.00 -
F=Gm"2"2:Gm( . m)=(6.67><10’”N
r r (0.25m

This can be rearranged into a quadratic form of m”’ —4.00m + 0.234 = 0. Use the quadratic formula
to solve for m, resulting in two values which are the two masses.

m, =3.94kg , m, = 0.06kg

=2.5x10""N

/k )400m m’

11. The force on m due to 2m points in the idirection. The force on m due to 4m points in the i

2N
X,

direction. The force on m due to 3m points in the direction given by 6 = tan . Add the force
0

vectors together to find the net force.

FzG(zm)mi+G(4m)mj+G(3m)mc sOi +G(3 )msmﬁj

X, ¥ X+, X+,
2m’® » 4m* 3m’ . 3m)m .
€ Gy Yo iG(Z)Z Yo 3
Xy Yo Xo T Y, \/)Cé‘l'yg Xo T Y, \/)C;-l'yg
2 3 . | 4 3 .
:Gm2 _2+ xo 3/2 i+ _2+ yO 3/2 j
X 2 2 y 2+ 2
0 (x0+y0) 0 (x0 yo)

12. With the assumption that the density of Europa is the same as Earth’s, the radius of Europa can be

calculated.
1/3
M M M
— Europa Earth _ "~ Europa_
p Europa - p Earth - 4 3 - 4 3 - rEuropa - rEarih M
3 ﬂ.rEuropa 3 ﬂ-rEarth Earth
1/3 2/3 1/3 1/3
g _ GMEuropa _ GMEuropa _ GMEumpaMEarth _ GM Earth MEuropa _ MEuropa
Europa 2 - N2 2 - 2 1/3 ~ OEarth
rEuropa ( M E J rEarth rEarth MEarth MEarth
uropa
7 _ Hope
Earth
MEarth

» 1/3
_ (9.80@&)(%} =1.98m/s’ = [2.0m/s’
98 x g

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

169



Physics for Scientists & Engineers with Modern Physics, 4" Edition Instructor Solutions Manual

To find the new weight of objects at the Earth’s surface, the new value of g at the Earth’s surface
needs to be calculated. Since the spherical shape is being maintained, the Earth can be treated as a
point mass. Find the density of the Earth using the actual values, and use that density to find g under
the revised conditions.

1/3
m m 3m 3m
goriginal = G_ZE 7 p = E3 = E3 N rE — E
4rr. 47p

E

_ mE _G (’/nE)”3 G (ZWZE)]/3 :21/3G (WZE)I/3 :21/3

goriginal =G 2/3 2/3 > Baew = 2/3 2/3
3m, 3 3 3
4o 4o 4o 4o

Thus g is multiplied by 2"*, and so the weight would be | multiplied by 2"

body
2
body

14. The expression for the acceleration due to gravity at the surface of a body is g, , =G , where

R, 1s the radius of the body. For Mars, g, =0.38g, .

M M
G = 038Gt

2
Mars Earth

6.5x10"kg

2
R
M, =038M, . (Lj =0.38(5.98x10* kg)(6380 —

Earth

3400 kmjz ~

15. For the net force to be zero means
that the gravitational force on the Moon
spacecraft due to the Earth must be
the same as that due to the Moon.

Write the gravitational forces on the spacecraft
spacecraft, equate them, and solve X ;04 d-x
for the distance x. We measure

from the center of the bodies.

v

v

M M
FEaﬁh_ — G Earth nzspacecraft , FMOO“ — G Moonmspaczecraﬂ
spacecraft X spacecraft ( d - .x)
G MEanh mspacecraft — G MMoon mspacecraﬂ N xz — (d - x)2 N X — d X
x2 (d - x)2 MEanh MMoon \/MEarth \/MMo(m
M . 24
x=d V7 = (3.84x10°m) V5-97x10 ke —[3.46x10°m]

(VM + M)

This is only about 22 Moon radii away from the Moon. Or, it is about 90% of the distance from the
center of the Earth to the center of the Moon.

(\/7.35><1022kg +\/5.97><1024kg)

16. The speed of an object in an orbit of radius  around the Sun is given by v = /G M / r, and is also

given by v = 27rr/ T, where T is the period of the object in orbit. Equate the two expressions for the

speed and solve for M, using data for the Earth.

Sun ?
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3

M 2 Az’ 477 (1.50x10" m
G2 o T = ( ) —=[2.01x10" kg
r T GT™ (6.67x10™" Nem” /kg® )(3.15%x10"sec)

This is the same result obtained in Example 6-9 using Kepler’s third law.

17. Each mass M will exert a gravitational force on mass ’\
m. The vertical components of the two forces will
sum to be 0, and so the net force on m is directed
horizontally. That net force will be twice the
horizontal component of either force.

F - M -
o (x2 + Rz)
GMm GMm X GMmx
Fme —mCOSH = (xz +R2) \/x2 +R2 - (x2 +R2)3/2
net x = ZFme = 2Gme

18. From the symmetry of the problem, we can
examine diametrically opposite infinitesimal
masses and see that only the horizontal
components of the force will be left. Any off-axis
components of force will add to zero. The
infinitesimal horizontal force on m due to an

infinitesimal mass dM is dF),,, = ﬂdM .

(x*+7%)

The horizontal component of that force is given by the following.

cos GdM = —2™" ¥ o =—9"  au

(x2+r2)\/(x2+r2) (xz+r2)3/2
The total force is then found by integration.

M M ‘M,
dF:Gmxd _)IdFX:-[ Gmxd. L F- GMmx

X 3/2 3/2 X 3/2
(x2+r2) (x2+r2) (x2+r2)

From the diagram we see that it points inward towards the center of the ring.

(dF,

G
de),vc= 2m2
(x*+7%)

The expression for g at the surface of the Earth is g = Gm—zE. Let g+ Ag be the value at a distance
T
of 1, + Ar from the center of Earth, which is Ar above the surface.

-2
(@) g=G= 5 g+Ag=G—2% =G E =Gm—f(1+—j zg(l—z—J -

T (rE+Ar)2 2[1+A”J2 T
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A
Agz—Zg—r

Ts

(b) The minus sign indicated that the [change in g is in the opposite direction as the change in 7. So,
if r increases, g decreases, and vice-versa.
(¢) Using this result:
Ar 1.25x10°m
Ag =-2g—=-2(9.80m/s’ ) ———=-0384m/s’ — g=|9.42m/s’
8Ts r ( / )6.38><106m / & /

Direct calculation:

(5.98x10*kg)

6 — =9.43m/s’
(6.38><10 m+1.25x10 m)

g=G" =(6.67x10" Nem*/kg*)
r
The difference is only about 0.1%.

20. We can find the actual g by taking g due to the uniform Earth,
subtracting away g due to the bubble as if it contained uniform Earth
matter, and adding in g due to the oil-filled bubble. In the diagram,
7= 1000 m (the diameter of the bubble, and the distance from the
surface to the center of the bubble). The mass of matter in the
bubble is found by taking the density of the matter times the volume
of the bubble.

8ol = Gunitorm ~ ouvvle T oubble

present Earth (Earth (oil)
matter)

Ag =8 T Sunitorm — oubvle ~ Spubble

present Earth (oil) (Earth
matter)
G M GMbubblc
bubble (Earth G G
_ (oil) matter) __ _ 4 3
- 2 - 2 2 M bubble M bubble 7| Poit ™ Prarn |3 oubble
r r r (oil) (Earth matter

matter)
The density of oil is given, but we must calculate the density of a uniform Earth.

5.98x10*k
Doy = = S _-550x10°kg/m’

mie 37 47(6.38x10°m)

G
— 4 3
Ag = 7 Lot = Prarr |5 Floubble

matter

_ (6.67x10™" Nem® /kg’
~ (100x10'm)’

=-1.6414x10" m/s* = 1.6 x10™ m/s’
Finally we calculate the percentage difference.
A ~1.6414x10" m/s”
=8 (%) = Zm/s %100 = |=1.7x10"%
g 9.80m/s
The negative sign means that the value of g would decrease from the uniform Earth value.

) (8.0x10° kg/m’ ~5.50x10° kg/m’ )£ 7 (5.0x10°m )
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21. For an object “at rest” on the surface of the rotating Earth, there are
two force vectors that add together to form the net force: Fgm , the

force of gravity, directed towards the center of the Earth; and FN , the

normal force, which is given by F, =-mg_.. The sum of these two

forces must produce the centripetal force that acts on the object, causing
centripetal motion. See the diagram. Notice that the component axes
are parallel and perpendicular to the surface of the Earth. Write
Newton’s second law in vector component form for the object, and

solve for g .. The radius of the circular motion of the object is

eff *
. . 2zr
r =r, cos®, and the speed of the circular motion is v = T, where

T is the period of the rotation, one day.
2 2

= = = m.m» - my »  my ~
+FK,=F, —» -G—L—j+F = sinfi———cosfj —
grav net 2 N
7 r r
2 2 2 2
- mv. . a m.m my A Az°r . m 4y A
F, =——sin@i+| G———-——cosf |j=m| ——sinfi+| G—-————cosb |j
r r r T r T
4r’
=m

2
rE

BBl SOS 0 sin 0 + (Gm—f - —47[2FE cos® cos HJ j}
T T

[47? (6.38x10°m) 1 , 47* (6.38x10° .
= m al 2m)1i+ 9.80m/s” - (638 zm)l j
(86,400s)" 2 (86,400s)" 2

= m[(1.687><102 m/sz)i-k (9.783m/52)j]
1.687x107 m/s’
1 ( / )

(9.783m/s%) = 009887

From this calculation we see that FN points at an angle of ¢ = tan~

north of local “upwards” direction. Now solve F, =-mg_, for g_..

F, =m[(1.687x107 m/s’)i+(9.783m/s’)j| = -mg,, —

)
8., =-[(1.687x107 m/s*)i+(9.783m/s’)j] —

2. =/(1.687x107 m/s*) +(9.783m/s*) =|9.78 m/s’

g, points |0.O99O south of radially inward|

22. Consider a distance r from the center of the Earth that satisfies » < R Calculate the force due to

Earth *
the mass inside the radius r.

M M
3 3 3
Mooy (r) = pV = pir = — St == 2
center 3 7 Earth Earth
M
3
M m Earth 7 m
closer to R3 M r r
center Earth
» :G :G art :G Earthm :mg‘ _
gravity 2 2 R 2 surface R
r r Earth Earth Earth
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23.

24.

26.

Thus for F__. =0.95mg, we must have r = 0.95R

gravity

to 5% of the Earth’s radius.

0.05R,,,, =0.05(6.38x10°m) =3.19x10°m =

The shuttle must be moving at “orbit speed” in order for the satellite to remain in the orbit when
released. The speed of a satellite in circular orbit around the Earth is shown in Example 6-6 to be

o oM
orbit °
r

v:\/GMEmh :\/G( M., _ (6.67X10_“N-m2/kg2)

can» aNd s0 we must drill down a distance equal

(5.98x10*kg)
(6.38><10"m+6.8><105m)

r R, +680 km)

Earth

=[7.52x10° m/s

The speed of a satellite in a circular orbit around a body is shown in Example 6-6 to be
Vst = /G Moy, / r, where r is the distance from the satellite to the center of the body.

/ 5.98x10*k
ve g Mbody - g M., _ (6.67><107“ N-mz/kgz)( X g)
r R, +5.8x10°m (12.18x10°m)

=(5.72x10° m/s

Consider a free-body diagram of yourself in the elevator. FN is the force of the scale
pushing up on you, and reads the normal force. Since the scale reads 76 kg, if it were
calibrated in Newtons, the normal force would be F, = (76kg) (9.80 m/ sz) =744.8N.

Write Newton’s second law in the vertical direction, with upward as positive.

F,-mg T448N—(65kg)(9.80m/s’)
m 65kg

Since the acceleration is positive, the acceleration is upward.

ZFzFN—mg=ma — a= = 1.7m/s2upward

Draw a free-body diagram of the monkey. Then write Newton’s second law for the
vertical direction, with up as positive.

F -
Y F=F -mg=ma — a=-1""¢
m

For the maximum tension of 185 N,
185N —(13.0kg) (9.80m/s’)
‘" (13.0kg)

Thus the elevator must have an | upward acceleration greater than a = 4.4 m/ s* | for the cord to

= 4.43m/s* = 44m/s’

break. Any downward acceleration would result in a tension less than the monkey’s weight.
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27. The speed of an object in a circular orbit of radius » around mass M is given in Example 6-6 by
v=4GM / r, and is also given by v = 27zr/ T, where T is the period of the orbiting object. Equate
the two expressions for the speed and solve for 7.

M 2r
= ="

[ (1.86x10°m) 3 :
T=2x =27 =17.20x10’s ~ 120 min
GM (6.67x10™" Nem® /kg)(7.35x10m)

28. The speed of a satellite in circular orbit around the Earth is shown in Example 6-6 to be

=,/G—2  Thus the velocity is inversely related to the radius, and so the closer satellite will
r

be orbiting faster.

Vorbit

Earth

Vaoe _ VT ra \/ Enh+15><107m_\/6.38><106m+1.5><107m

v +5%10°m 6.38x10°m +5x10°m
far Eanh Llose

And so | the close satelhte is moving 1.4 times faster | than the far satellite.

=1.37

29. Consider a free-body diagram for the woman in the elevator. FN is the upwards force

the spring scale exerts, providing a normal force. Write Newton’s second law for the
vertical direction, with up as positive.

ZFzFN—mgzma — F,=m(g+a)

(a, b) For constant speed motion in a straight line, the acceleration is 0, and so the F mg
normal force is equal to the weight.

F, = mg = (53kg)(9.80m/s’) =[520N]
(c) Here a=+0.33g and so F, —l33mg—133(53kg) 980m/s
(d) Here a=-0.33g andso F, = 0.67mg = 0.67(53kg)(9.80m/s*) =
(¢e) Here a=-g andso F = .

30. The speed of an object in an orbit of radius » around the Earth is given in Example 6-6 by
=\GM,__, / r, and is also given by v = 27Z'r/ T, where T is the period of the object in orbit.

Equate the two expressions for the speed and solve for 7. Also, for a “near-Earth” orbit, r =R, .

3

¢ Mun 27 p ooy
r T Earth
R (638x10°m)’
T=2r —2— = — —— =15070 s = 84.5 min|
GM, . (6.67x10™" Nem® /kg* ) (5.98x10*m)

, the result does not depend on the mass of the satellite.
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Consider the free-body diagram for the astronaut in the space vehicle. The Moon is
below the astronaut in the figure. We assume that the astronaut is touching the inside ﬁ
of the space vehicle, or in a seat, or strapped in somehow, and so a force will be exerted

on the astronaut by the spacecraft. That force has been labeled F,. The magnitude of f:N mg

that force is the apparent weight of the astronaut. Take down as the positive direction.
(a) If the spacecraft is moving with a constant velocity, then the acceleration of the astronaut must
be 0, and so the net force on the astronaut is 0.

ZF=mg—FN=O -

mM

F ——m = (6.67x10" Nom®/kg?)

N

=59.23N

75 kg)(7.4x107k
:ngG > ( g)( g)

r (2.5><106m)2

Since the value here is positive, the normal force points in the original direction as shown on the
free-body diagram. The astronaut will be pushed “upward” by the floor or the seat. Thus the

astronaut will perceive that he has a “weight” of |59 N, towards the Moon|.

(b) Now the astronaut has an acceleration towards the Moon. Write Newton’s second law for the
astronaut, with down as the positive direction.

Y F=mg—F,=ma — F,=mg—ma=5923N-(75kg)(2.3m/s’)=-113.3N

Because of the negative value, the normal force points in the opposite direction from what is

shown on the free-body diagram — it is pointing towards the Moon. So perhaps the astronaut is
pinned against the “ceiling” of the spacecraft, or safety belts are pulling down on the astronaut.
The astronaut will perceive being “pushed downwards,” and so has an upward apparent weight

of |1 10N, away from the Moon|.

32. The apparent weight is the normal force on the passenger. For a person at rest, the normal force is
equal to the actual weight. If there is acceleration in the vertical direction, either up or down, then
the normal force (and hence the apparent weight) will be different than the actual weight. The speed

of the Ferris wheel is v = 27zr/T = 27[(1 l.Om)/IZ.SS =15.529 m/s.

(a) See the free-body diagram for the highest point of the motion. We assume the
passengers are right-side up, so that the normal force of the Ferris wheel
seat is upward. The net force must point to the center of the circle, so
write Newton’s second law with downward as the positive direction.

The acceleration is centripetal since the passengers are moving in a circle.

ZF =F =mg-F,=ma= mvz/r — F =mg—mv2/r
The ratio of apparent weight to real weight is given by the following.

— 2 —? 2 ’
mg mv/r:g v/rzl_v__l (5.529m/s) :

mg g re (11.0 m)(9.80m/s2)

(b) At the bottom, consider the free-body diagram shown. We assume
the passengers are right-side up, so that the normal force of the Ferris \ /
wheel seat is upward. The net force must point to the center of the circle,
so write Newton’s second law with upward as the positive direction. The f:N mg
acceleration is centripetal since the passengers are moving in a circle.

ZFzFR =F, —mgzmazmvz/r — I =mg+mv2/r

The ratio of apparent weight to real weight is given by the following.
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2 2 2
mg +mv /r:1+v_=1+ (5.529m/s) {282
mg rg (11.0m)(9.80m/s’)
33. See the diagram for the two stars. d

(a) The two stars don’t crash into each other because of
their circular motion. The force on them is centripetal,
and maintains their circular motion. Another way to
consider it is that the stars have a velocity, and the
gravity force causes CHANGE in velocity, not actual
velocity. If the stars were somehow brought to rest and then released under the influence of
their mutual gravity, they would crash into each other.

(b) Set the gravity force on one of the stars equal to the centripetal force, using the relationship that

v =27r/T = 7d /T, and solve for the mass.

M’ % 2(7d/T)  22°Md M* 27*Md
F,=G—=F, =M =M == 5 (— ="
d d/2 d T d T
3
27°d? 27°(8.0x10" m
M = gT‘i = ( ) =19.6x10"kg

3.15><1o7sj2

(6.67x10™" N-mz/kgz)(12.6 y X
ly

34. (a) The speed of an object in near-surface orbit around a planet is given in Example 6-6 to be
v=./GM/R, where M is the planet mass and R is the planet radius. The speed is also given

by v = 2ﬂ'R/ T, where T is the period of the object in orbit. Equate the two expressions for the

speed.
M 2zR M 4r'R’ M  4r’
G—=—- - G—= 2 - 5T 2
R T R T R GT
. . : . M M
The density of a uniform spherical planet is given by p = = ~. Thus
Volume 7R
e 3M 3 47’ | 37
4zR’ 4z GT® |GT’

(b) For Earth, we have the following.

3 3
p=—2 = z =[5.4x10°kg/m’

GT*  (6.67x10™" Nom’/kg’ )[(85min) (60s/min)]

35. Consider the lower left mass in the diagram. The center of the orbits is
the intersection of the three dashed lines in the diagram. The net force
on the lower left mass is the vector sum of the forces from the other
two masses, and points to the center of the orbits. To find that net
force, project each force to find the component that lies along the line
towards the center. The angle is 8 =30°.

2 2
F= G% = F, ponem = £7€080 = GAZ V3

towards
center

2
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F

net

M* /3 M’
G 2£= 3G—;
/F 2 /

The net force is causing centripetal motion, and so is of the form Ay’ / r. Note that rcos@ = 2¢ / 2.

M’ Mv M’ M MY
_2G — \/_
Foe 22 r //(2005«9) //\/_ /\/_
GM
v=|,]—
/

36. The effective value of the acceleration due to gravity in the elevator is
8w =8%a,...- We take the upwards direction to be positive. The

acceleration relative to the plane is along the plane, as shown in the free-
body diagram.

(a) The elevator acceleration is a =40.50g.

elevator

g, =g1t050g=150g —

a,=g,.sind=150gsin32°=|7.79 rn/s2
=-0.50g.

elevator

(b) The elevator acceleration is a

gs=8-050g=050g — a 6 =g,sinf=0.50gsin32°= 2.60m/s2

(¢) The elevator accelerationis a, . =—g.

gs=8-2=0 — a_ =g,sinf=0sin32°= Om/s2

(d) The elevator acceleration is 0.

g,=g-0=g — a =g, sinf=519m/s’

Use Kepler’s third law for objects orbiting the Earth. The following are given.
86,400
T, = period of Moon = (27.4 day) [d—sj =2.367x10° sec

r, = radius of Moon's orbit = 3.84x10°m

7, = radius of near-Earth orbit = R__ = 6.38x10°m

(1/T.)" = (r/n)
6 3/2
T =T,(r/r)" = (2.367x106sec)£wJ = [5.07x10"sec] (= 84.5 min)

3.84x10°m

38. Knowing the period of the Moon and the distance to the Moon, we can calculate the speed of the
Moon by v = 272'r/ T. But the speed can also be calculated for any Earth satellite by

=,/GM_,,/r, asderived in Example 6-6. Equate the two expressions for the speed, and solve
for the mass of the Earth.
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JGM,, [r=2mr]T —

PR 47° (3.84x10°m)’
My = 2 0 S ( N ) > = 5.98X1024kg
GT*  (6.67x10™" Nem®/kg®)[(27.4 d)(86,400s/d)]

39. Use Kepler’s third law for objects orbiting the Sun.
2 3
(TNcptunc / TEaﬂh ) = (rNcptunc / rEarth ) -

Fegne ) 45%10°km
Toine = Do (M] = (1 year) [—] =160 years

Nepuune 1.50x10°km

rEanh

40. As found in Example 6-6, the speed for an object orbiting a distance » around a mass M is given by

v:\/GM/r.

GMstar
w Vo _[a_ \ﬁ _
Vg GM r, 9 |3
r

B

41. There are two expressions for the velocity of an object in circular motion around a mass M:
v=/GM/r and v =27zr/T. Equate the two expressions and solve for T.

NGM[r=2rr|T —

3x10° m/s)(3.16x10’sec

3
(3><104ly)( )
T—27z,/i Y Ly =5.8x10"s = 1.8x10°
Nom (6.67x10™" Nem’ /kg® ) (4x10"kg) o Y

~[2x10%y

42. (a) The relationship between satellite period 7, mean satellite distance 7, and planet mass M can be
derived from the two expressions for satellite speed: v=,/GM/r and v = 27zr/ T. Equate the
two expressions and solve for M.

2.3
JoMJr =2mrT - M=

GT’
Substitute the values for Io to get the mass of Jupiter.
47°(422x10'm) _
Jupiter- = = 190X10 kg

To

24 h ’
(6.67x10™" N-mz/kgz)(l.ﬂdxx%oo Sj
1d 1h

(b) For the other moons, we have the following.
47°(6.71x10°m)’

. = =[1.90x10"" kg
B (6.67x107" Nem® /kg” ) (3.55%24x3600 s )’
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47° (1.07%10°m)’ _

Jupiter- = _ > =11.89%10 kg
11 2 2

Ganmeie(6.67x107"" Nom” /kg* ) (7.16x 24x3600 )

47° (1.883x10°m)’ -
Jupiter- = _ > = 190 X 10 kg
caio(6.67x107" Nem? /kg? ) (16.7x24x3600 s)

, the results are consistent — only about 0.5% difference between them.

Use Kepler’s third law to find the radius of each moon of Jupiter, using Io’s data for », and 75.
(n/n) =(T/T)" - n=n(/T)"
rEuropa = rIo (TEuropa/T;O )2/3 = (422X103km)(355 d/177 d)2/3 =
o = (422%10°km ) (7.16 /177 d)"" =
e = (422x10°km) (16.7 d/1.77 )" =

The agreement with the data in the table is excellent.

44. (a) Use Kepler’s third law to relate the Earth and the hypothetical planet in their orbits around the

Sun.
2 3
(nlanet /TEanh ) = (’;lanet /rEarth ) -

Tplanct = Toun (}})]anct/rEarth )3/2 = (1 Y) (3/1)3/2 =520y =

(b) No mass data can be calculated from this relationship, because the relationship is mass-
independent. Any object at the orbit radius of 3 times the Earth’s orbit radius would have a
period of 5.2 years, regardless of its mass.

45. (a) Use Kepler’s third law to relate the orbits of the Earth and the comet around the Sun.

3 2
’;omet T;omet
—comet = | —=ome -
rEarth TEanh

2/3 2/3
T 2400
Feomet = T (—“‘] =(1 AU)[ yJ =179.3AU =180 AU

ly
Earth
(b) The mean distance is the numeric average of the closest and farthest distances.
1.00AU +
179.3AU = frm — 1 =357.6AU =[360AU

(c¢) Refer to Figure 6-17, which illustrates Kepler’s second law. If the time for each shaded region
is made much shorter, then the area of each region can be approximated as a triangle. The area
of each triangle is half the “base” (speed of comet multiplied by the amount of time) times the
“height” (distance from Sun). So we have the following.

— 1 — 1
Areamin - Areamax - 2 (vmint) rmin -2 ( vmaxt) rmax -

vmin /vmax = rmax rmin = m
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46. (a)

(b)

47. (a)

(b)

In a short time At¢, the planet will travel a
distance vAr along its orbit. That distance is
essentially a straight line segment for a short
time duration. The time (and distance moved)
during At have been greatly exaggerated on the
diagram. Kepler’s second law states that the
area swept out by a line from the Sun to the
planet during the planet’s motion for the Az is
the same anywhere on the orbit. Take the areas
swept out at the near and far points, as shown on the diagram, and approximate them as
triangles (which will be reasonable for short Az).

(Area), = (Area), — H(nAr)dy =2(n,20)d, — [ofv, =d,/d,
Since the orbit is almost circular, an average velocity can be found by assuming a circular orbit
with a radius equal to the average distance.
21r 2mi(d,+d) 2m%(147x10"m+1.52x10"m)
v — — —
YT T 3.16x10"s

From part (a) we find the ratio of near and far velocities.

v /ve =d,/d, =152/1.47=1.034

For this small change in velocities (3.4% increase from smallest to largest), we assume that the
minimum velocity is 1.7% lower than the average velocity and the maximum velocity is 1.7%
higher than the average velocity.

vy =V, (140.017) =2.973x10* m/s(1.017) ={3.02x10" m/s

vIAt

vlAt S F
Sun

=2.973x10* m/s

v, =v,,(1-0.017) =2.973x10" m/s(0.983) = |2.92x10" m/s

Take the logarithm of both sides of the Kepler’s third law expression.

An’ An’ Ar’
T2=( i j,ﬁ N logTzzlog( i Jﬁ - 210gT=log( i j+310gr —
GmJ Gm] GmJ

e
10gT=%10gr+§log(G7Z j

m

This predicts a straight line graph for log(7) vs. log(r), with a | slope of 3/2 |and a

_ 47
y-intercept of +log c .

m

The data is taken from 6.2
Table 6-3, and the graph is

60 4 log(T) = 1.50 log(r) - 7.76 /
shown here, with a straight- ' R =1.00

line fit to the data. The data 5.8 /v‘/
need to be converted to s s 4

seconds and meters before o

the logarithms are 5.4 1 /
calculated. 521

From the graph, the slope is 5.0 ‘ ‘
1.50 (as expected), and the 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3
y-intercept is —7.76. log(r)
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2 2 2

glog( 4:% ] =b > m = G?lfi)”’) : (6.67“;‘_?)(10_1552) =[1.97x10"kg
The actual mass of Jupiter is given in problem 8 as 318 times the mass of the Earth, which is
1.90x10”kg. The spreadsheet used for this problem can be found on the Media Manager, with
filename “PSE4 ISM_CHO06.XLS,” on tab “Problem 6.47b.”

48. We choose the line joining the Earth and Moon
centers to be the x-axis. The field of the Earth Earth d
will point towards the Earth, and the field of < >
the Moon will point towards the Moon.

Moon

g =%(—i) + GMMoon (i) _ G(MMoon _MEanh) 2

2 2 2 1
1 1 1
2 rEanh- 2 rEarth- 2 rEanh-
Moon Moon Moon

(6.67x107" Nem’ /kg’)(7.35x107kg - 5.97x10*kg) . 07107 /s ]
= 1=—1. X m/S 1
(4(384x10°m))

So the magnitude is [1.07 x107 m/ s”|and the direction is | towards the center of the Earth |.

(a) The gravitational field due to a spherical mass M, at a distance » from the center of the mass, is

g=GM/r2.
6.67x107" Nem®/kg” )(1.99 x10*k
gsunfG]yS““ =( . /)| ; - g)= 5.93x107 m/s’
A (1.496><10“m)

Earth

(b) Compare this to the field caused by the Earth at the surface of the Earth.

B 5935107 m/s’

gEarlh 980 m/52
@l, this is not going to affect your weight significantly. The effect is less than 0.1 %.

=6.05x10™"

50. (a) From the symmetry of the situation,

the net force on the object will be down. G 010 g
: o LI Y Erignt
However, we will show that explicitly by v
writing the field in vector component l' X, ple X, ,I
notation.
. - m . 2 m A
=8 T 8w = H—G — sin 9] i+ (—G S Cos Hj.]j|
X, +y X, +y
+|| G Zm —sin 6 i+| -G 2m ~cost j
X, +y X, +y
m % m Y 3 Y 3
= (—ZG T €O0s GJJ =| 260—5—— — |i= —2Gmﬁ J
Xty Xty \/x0+y (x0+y)
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51.

52.

53.

y
2 2
(35 +7)
We find locations of the maximum magnitude by setting the first derivative equal to 0. Since
the expression is never negative, any extrema will be maxima.

(b) If we keep y as a positive quantity, then the magnitude of the field is g =2Gm

3/2°°

g=26m—2X—— - B _6m (x§+y2)3/2—y§(x§+y2)”22y

(xj +y’ )3/2 dt (x2 +y’ )3

N 4Gm Gm

There would also be a maximum at y = —x, / \/5 .

The acceleration due to the Earth’s gravity at a location at or above the surface is given by
g=GM__, / r*, where r is the distance from the center of the Earth to the location in question.

Find the location where g =+ g_ . .
GM,, 1GM,_,
r2E : = 5 RZ — - rz = 2Réanh — = ﬁREanh

Earth

The distance above the Earth’s surface is as follows.

r=R., =(v2-1)R,, =(V2-1)(638x10°m) =

(a) Mass is independent of location and so the mass of the ball is | 13.0 kg | on both the Earth and
the planet.
(b) The weight is found by W = mg.

Wy = My = (13.0 kg) (9.80m/s” ) =127 N

W,

Planet

= mgp,. =(13.0 kg)(12.0m/s*) = 156N

(a) The acceleration due to gravity at any location at or above the surface of a star is given by
8w=GM_, / r*, where r is the distance from the center of the star to the location in question.

30
g. = G}t{i =(6.67x10™" N-mz/kgz)% = [4.38x10" m/s’
Moon . m

(b) W =mg,, =(65kg)(438x10" m/s*) =

(¢) Use Eq. 2-12¢, with an initial velocity of 0.
vi=vi+2a(x—x,) —

v=2a(x-x,) = \/2(4.38><107 m/s*)(1.0m) ={9.4x10’ m/s
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54. In general, the acceleration due to gravity of the Earth is givenby g =G M, / r*, where r is the
distance from the center of the Earth to the location in question. So for the location in question, we
have the following.

M
-1 et _ 1 2 panh 210 R2
g T gsurface - G 2 10 G 2 - r 1OIQEarth

r Earth

r=+10R,,, =~/10(6.38x10°m) =

The speed of an object in an orbit of radius » around a planet is given in Example 6-6 as
v=\GM . / r, and is also given by v = 2777/T, where T is the period of the object in orbit.

Equate the two expressions for the speed and solve for 7.

M 27 }
e R LAy YU s
p T GM

Planet

[
9]

For this problem, the inner orbit has radius » _ =7.3x10"m, and the outer orbit has radius

inner

r =1.7x10°m. Use these values to calculate the periods.

outer

7 3
r - (7:3x10"m) YT

(6.67x10™" Nem® /kg*)(5.7x10*kg)

3 3
L (1.7x10°m) [0y

Tone (6.67x10™" Nem® /kg?)(5.7x10*kg)

Saturn’s rotation period (day) is 10 hr 39 min, which is about 3.8 x10*sec. Thus the inner ring will
appear to move across the sky “faster” than the Sun (about twice per Saturn day), while the outer
ring will appear to move across the sky “slower” than the Sun (about once every two Saturn days).

56. The speed of an object in an orbit of radius 7 around the Moon is given by v=,/GM,,_ / r, and is

also given by v = 27Z'r/ T, where T is the period of the object in orbit. Equate the two expressions
for the speed and solve for T.

,/GMMM/r =27r/T —

Py (R +100km)’ (1.74x10°m +1x10°m)’
o GM (6.67x10™" Nom’ /kg? ) (7.35x107kg)

T=2rx

Moon Moon

=|7.1x10’s (~2.0h)

57. Use Kepler’s third law to relate the orbits of Earth and Halley’s comet around the Sun.
3 2
(rHalley / rEarth ) = (THalley / TEanh ) -

vt (T [T ) = (150%10°km ) (76 y/1y)

2/3

r =2690%x10°km

Halley =n

This value is half the sum of the nearest and farthest distances of Halley’s comet from the Sun. Since
the nearest distance is very close to the Sun, we will approximate that nearest distance as 0. Then the
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farthest distance is twice the value above, or 5380x10°km = |5.4x10”m|. This distance approaches

the mean orbit distance of Pluto, which is 5.9x10" m. | It is still in the solar system, nearest t0|

Pluto’s orbit.

58. (a) The speed of a satellite orbiting the Earth is given by v =G M, / r. For the GPS satellites,
r=R,,, +(11,000)(1.852 km) =2.68x10"m.

) (5.97x10%kg)
_ 1\ oy 2 2
v—\/(6.67><10 Nem®/kg )—2.68><107m

(b) The period can be found from the speed and the radius.

277(2.68x10"m
v:27zr/T - T=2ﬂr= ( ; )=
v 3.86x10° m/s

=3.86x10" m/s =|3.9x10° m/s

4.4x10%sec ~12h

59. For a body on the equator, the net motion is circular. Consider the free-
body diagram as shown. Fy is the normal force, which is the apparent
weight. The net force must point to the center of the circle for the object to
be moving in a circular path at constant speed. Write Newton’s second law
with the inward direction as positive.

_ _ _ 2
ZFR - mg_lupiter FN =my /R.lupiter —

M. . 2
FN - (gjuf’“” B VZ/RJupncr) =m (G%_ Rv ]

Jupiter Jupiter

Use the fact that for a rotating object, v = 272'r/ T.

2

F _ G M.lupitcr _ 472- R.lupitcr _
N m 2 2 - mgperceived

Jupiter Jupiter

Thus the perceived acceleration due to gravity of the object on the surface of Jupiter is as follows.

2
_ MJupiter _ 4” RJupiter
gperceived - 2 2
R T
upiter Jupiter

= (6.67)(107“ N‘mz/kg2> (19X1027kg) B a7’ (71)(1071’1’1)

2 2
(7.1><107m) {(S%min)(fo's ﬂ
min
=22.94m/s’ (#j/szj -

Based on this result, you would not be crushed at all. You would feel “heavy,” but not at all crushed.

60. The speed of rotation of the Sun about the galactic center, under the assumptions made, is given by
2

M. ooV . . . .
v=|G—"" andso M, =-Swebt - Substitute in the relationship that v =277, . /T.
r galaxy G un orbit

Sun orbit
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4z (ry ) 4r* [(30,000)(9.5%10"m) |

eert 3.15x10°s \ |
(6.67x10™" Nem® / kg’ ){(200><10"’y)('1xsﬂ
y

=3.452x10"kg =|3x10" kg

The number of solar masses is found by dividing the result by the solar mass.

M 3.452x10"k
# stars = Mgalaxy = & _1726%10" =

2.0x10"kg

Sun

61. In the text, it says that Eq. 6-6 is valid if the radius 7 is replaced with the semi-major axis s. From
Fig. 6-16, the distance of closest approach 7., isseentobe r, =s—es=s (1 - e) , and so the

min

semi-major axis is given by s =

—e

T’ 47’

D -

s GMSgrA

1.5%10"m Y
123AU x 2X10m
- 1AU
A 2( e )3 1-0.87
4 2 3 T
Seh o Gr? GT>

7 \2
(6.67x107" Nem’/kg’) (15.2}' X mj

=7.352x10"kg =|7.4x10* kg

M 735210k
Msgm = L 09% 10"k g_ 3.7x10°| and so SgrA is almost 4 million times more massive than
.99 x g

Sun
our Sun.

62. (a) The gravitational force on the satellite is given by F__ = GM, where r is the distance of

grav 2

the satellite from the center of the Earth. Since the satellite is moving in circular motion, then
the net force on the satellite can be written as F, =mV’ / r. By substituting v = 27zr/ T fora

Az
circular orbit, we have F = % Then, since gravity is the only force on the satellite, the
two expressions for force can be equated, and solved for the orbit radius.

G M, .m _ 4z’ mr
2 2
r T
1/3
oM, 7" | (6.67x107" Nem’/kg* )(6.0x10*kg)(6200s)"
= art =
ar’ ar’

=7.304x10°m z
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(b) From this value the gravitational force on the satellite can be calculated.
6.0x10*kg)(5500kg)

—~ =4.126x10'N
(7.304><106m)

F. = Gy = (6.67x10" Nem?/kg’ ) (

grav

~|41x10'N|

(c¢) The altitude of the satellite above the Earth’s surface is given by the following.

r—R,, =7.304x10°m-6.38x10°m =|9.2x10°m

63. Your weight is given by the law of universal gravitation. The derivative of the weight with respect
to time is found by taking the derivative of the weight with respect to distance from the Earth’s

center, and using the chain rule.
mon v _dwdr [
r dt dr dt r

mym
3

14

W=aGg

64. The speed of an orbiting object is given in Example 6-6 as v =,/G M/r, where r is the radius of the
orbit, and M is the mass around which the object is orbiting. Solve the equation for M.

) ot (57x107m)(7.8x10°m/s) .
v=yGM[r — M==—= (667%10 " Nerr" /) ={5.2x10"kg

The number of solar masses is found by dividing the result by the solar mass.

M 5.2x10"k
# solar masses = —22 = E_ |2.6><109solar masses|

2x10" kg

Sun

65. Find the “new” Earth radius by setting the acceleration due to gravity at the Sun’s surface equal to
the acceleration due to gravity at the “new” Earth’s surface.

GM GM M 5.98x10™k
gEanh = gSun - 2 Farh = 2 Sun — rEanh = rSun Lorth = (696 X 108 m) —30 g
new rEarth rSun new MSun 1 99 X 10 kg
=1[1.21x10°m|, about %the actual Earth radius.

66. (a) See the free-body diagram for the plumb bob. The attractive gravitational force

on the plumb bob is F,, =G ngM . Since the bob is not accelerating, the net

M
force in any direction will be zero. Write the net force for both vertical and

horizontal directions. Use g = G —"*.

Earth
mg
cos@

szenical =F . cosf@-mg=0 — F, =

ZF;xorizontaleM_FTsingzo — FM=FTSin0:mgtan6

2
-1 mM REanh

GmnzM =mgtand — Hztan'le—Mzz tan >
oD}, M, D

M Earth™™ M
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(b) We estimate the mass of Mt. Everest by taking its volume times its mass density. If we
approximate Mt. Everest as a cone with the same size diameter as height, then its volume is

V =Lzrh=17(2000 m)’ (4000 m) =1.7x10"m’. The density is 0 =3x10kg/m’. Find
the mass by multiplying the volume times the density.
M =pV =(3x10"kg/m’)(1.7x10"m’) =|5x10" kg
(¢) With D = 5000 m, use the relationship derived in part (a).

: 5x10"kg)(6.38x10°m)’
0 = tan™' MM—RE“'Z“ = tan”' ( gZZ( m)2 =|8x 10 *degrees
M, D} (5.97x10%kg)(5000m)

Since all of the masses (or mass holes) are spherical, and g is being
measured outside of their boundaries, we can use the simple
Newtonian gravitation expression. In the diagram, the distance » =
2000 m. The radius of the deposit is unknown.

Mmissing G M
dirt oil

Sactual = it T Emissing T8 =& ~ 2 + 2
Earth dirt mass Earth r r
G (Mmissing - Moil j
dirt
=8 2
Earth r
G (Mmissing - MoilJ G G V 2
_ _ dirt _ _ ol -
Ag - gglal]l-th - gactual - ]"2 - 7(I/giisingp$:sing - I/oilpoilj - }"2 (pgil[i:sing - poil} - Wg
2 7 1 2 (2000m)’ 1
Va =8 =—7(9.80m/s2) 11 2 2 2
10° G ( | 10 (6.67x10™" Nem’/kg®) (3000 - 800) kg/m
missing oil
dirt

=534x10'm’ =
3V 1/3
’:ieposit = (4_0‘]) = 234m = > mdeposit = I/oillooil = 427 x lolokg ~|4x lolokg

T

68. The relationship between orbital speed and orbital radius for objects in orbit around the Earth is
given in Example 6-6 as v =,/G M, /r. There are two orbital speeds involved — the one at the

original radius, v, = /G M, /r,, and the faster speed at the reduced radius,

v = \/GMEmh/(ro - Ar).
(a) At the faster speed, 25,000 more meters will be traveled during the “catch-up” time, . Note that

7, =638x10°m+4x10'm = 6.78x10°m.

%

M M
vt=vt+25x10'm — [ Gﬂ}z( GﬂJHZ.leO‘m —
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_25X10'm( 11 )

o o> n

) 2.5%10°m ( 1 o J'l
\/(6.67><10‘“N-m2/kg2)(5.97><102“kg) J6.78%10°m—1x10°m  v/6.78x10°m

=4.42><10“sz

(b) Again, 25,000 more meters must be traveled at the faster speed in order to catch up to the
satellite.

M M
vt=vt+25x10'm — ( Gﬂjtz( Gﬂsz.leO“m -

r, = Ar Ty
-1
{ 1 1 +2.5><1o“m . X 1 +2.5><1o“m
= ’E) — A\r =
,/E) - Ar \/Z t\/GMEarth \/Z t\/GMEanh
-2
1 2.5x10*
Ar=r—|——+ 2| =(6.78x10°m)
\/g t\/GMEanh
-2
1 2.5%10*m
- +

J(6.78x10°m)  (252005) (66710 Nem’® /kg* ) (5.97x 10" ke)
=1755 m =[1.810'm|

69. If the ring is to produce an apparent gravity equivalent to that of

Earth, then the normal force of the ring on objects must be given by - Sun

F, =mg. The Sun will also exert a force on objects on the ring. &» <’VC>A4'>

See the free-body diagram. Write Newton’s second law for the P /s
N

object, with the fact that the acceleration is centripetal.
S F=F =F, +F,=mV[r

M
Substitute in the relationships that v = 27zr/T, F, =mg, and F,, =G S‘;“m , and solve for the

r
period of the rotation.
M, m A7’ mr M A’y
+FN=mv2/r - GS—“2“+mg= 5 - G i““+g= -
r T r T

T:/ Ar'r _I 47 (1.50x10" m)

M - 30
\/Grsz““fg (6.67><10”N-mz/kgz)(lggxmkgz+9.80m/sz
(1.50x10"'m)

F,

Sun

=7.77%x10°s =[8.99 d]

The force of the Sun is only about 1/1600 the size of the normal force. The force of the Sun could
have been ignored in the calculation with no significant change in the result given above.
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70. For an object to be apparently weightless would mean that the object would have a centripetal
acceleration equal to g. This is really the same as asking what the orbital period would be for an
object orbiting the Earth with an orbital radius equal to the Earth’s radius. To calculate, use

g=a.= \/2/REarth , along with v = 27[R5anh/T , and solve for T.

2 2
47°R R
g — v — Earth N T — 272. Earth -
R T’
Earth g

= (~ 84.5 min)

. . C GM
71. The speed of an object orbiting a mass is given in Example 6-6 as v =, [—,
r
GM GM GM GM
Viw =15vand v = [— — 15v= o 1.5\/ Sun — o
I/;IEW ,;ww r new
= ——=0.44r
1.5

72. From the Venus data, the mass of the Sun can be determined by the following. Set the gravitational

force on Venus equal to the centripetal force acting on Venus to make it orbit.
2

2727/'Venus
orbit
Venus 4”2m Ve ‘ 4ﬂ_2r3 ‘
G M 2 Venus Venus® Venus Venus

Sun mVenus _ mVenustenus _ _ orbit N M _ orbit

2 - - - GT2 Sun 2

Venus rVenus rVenus Venus Venus

orbit orbit orbit

2.3
47[ rCallisto
Then likewise, for Callisto orbiting Jupiter, M . = +‘t, and for the Moon orbiting the Earth,
G Callisto
2.3
4” rMoon
bit . . . . .

M, .. =———. To find the density ratios, take the mass ratios with the mass expressed as density

GT,

oon
times volume, and expressed as found above.
2.3
47[ rCallislu

orbit

4 gryd 2
M.lupiter _ pJupiler 3 ”’tlupiter _ GTCallism BN
- 43 2.3
MSun pSun 3 ﬂ.rSun 4” rVenus
orbit

GT!

Venus

3

rCallislo 2 3 3 ?
p.lupiter — orzbit T\;enus I;Sun — (001253) (2247) ! 3=

pSun TCallisto rVenus I/:Iupiter (1669)2 (0-724)3 (00997)

orbit

And likewise for the Earth—Sun combination:
3
rMoon T2

Oun o2 2 (0.003069) (224.7)° 1
i

Paw Ton Tome Town (27.32)° (0.724)° (0.0109)°

orbit
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74.

75.

GM
The initial force of 120 N can be represented as F,, , = % =120N.

grav

r
(a) The new radius is 1.5 times the original radius.
GM lane GM ane GM ane 1
e =t P o (]20N)=|53N
radius ]/;ww (15}") 2257" 225
(b) With the larger radius, the period is 7= 7200 seconds. As found in Example 6-6, orbit speed
GM
can be calculated by v =
,
[6M  27r A 47°(3.0x10'm)’
v= == 5> M=—©m=-= - =3.1x10"kg
ro T GT*  (6.67x10™" Nem’/kg*)(72005)
The density of the sphere is uniform, and is given by o = — The mass that was removed to
37tr
. . 3 .
make the cavity is M, =7V, = py— (%7[(}’/ 2) ) =+M. The net force on the point mass can

3
be found by finding the force due to the entire sphere, and then subtracting the force caused by the
cavity alone.

1
Fnet = F;phere - F::avity = Gﬁfm - G(8 M)n;l = GMm L2_ l 2
d (d-r/2) d” 8(d-r/2)

_|GMm( 1
d’ 8(1-r/2d)’

(a) We use the law of universal gravitation to express the force for each mass m. One mass is
“near” the Moon, and so the distance from that mass to the center of the Moon is R, , — R, .

The other mass is “far” from the Moon, and so the distance from that mass to the center of the
Moonis R, + R,.

— GMMoon GMMoon
near —2 far = —2
Moon (REM - RE ) Moon (REM + RE )
GMMoonm
2 2 3 6 2
Fr) _(Ra=R) _(Ry+R ) _(384x10°'m+638x10°m)
F, ). GM.m R, —R, 3.84x10°'m-6.38x10°m '
(REM + RE )2
(b) We use a similar analysis to part ().
_ GMy . m GM  m
near —2 far = —2
Sun (rES - ) Moon (rES + VE)
GM, m

far EM E

2 2 1 6.\’
(1;) _ (234 r‘iz :(rEMij 2(1.496x10 m +6.38x10 mj _ 1000171
Sun _—

oy — 1.496x10'"'m - 6.38x10°m
2
(rES + rE)
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(¢) For the average gravitational force on the large masses, we use the distance between their

centers.
— GMSUHMEaﬂh — GMMOonMEarth
Sun 2 Moon 2
rES rEM

GMSunMEarth %0 ) 2
Fu _ 1 My, R (1.99x10"kg) (3.84x10°m) 78
FMuun GMMoonMEarth }"E2$ MMuon (1496)( lollm)2 (735 X 1022 kg)

2
FEM

(d) Apply the expression for AF as given in the statement of the problem.

F __near __ 1 __mear __ 1
AF‘Moon _ o ( F;"ar JMoon _ FMOOn ( Eﬂl’ jMoon — 1 (10687 — 1) —

A}TSun F Elear 1 ) F‘Sun Elear 1 B ﬁ (l 000 l 71 - 1)
" F Sun F Sun

far far

76. The acceleration is found from the law of universal gravitation. Using the chain rule, a relationship
between the acceleration expression and the velocity can be found which is integrated to find the
velocity as a function of distance. The outward radial direction is taken to be positive, so the
acceleration is manifestly negative.

m.m Gm dv dvdr dv Gm dv
F=ma=-G E2 — a=- 2E=—:——:V_ G — 2E=V— N
r r dt dr dt dr r dr
dr Ydr Gm, |*
—GmE—zzvdv - _GmEJTZJVdV EN E =%v; N
r 2 0 r 21 ‘
Gm Gm Gm Gm
L — E=%vj. — v, =t £ v, = E
7 2r, r, i

The negative sign is chosen because the object is moving towards the center of the Earth, and the
outward radial direction is positive.

77. Equate the force of gravity on a mass m at the surface of the Earth as expressed by the acceleration
due to gravity to that as expressed by Newton’s law of universal gravitation.

GMEanhm N G — gRéanh - gR;arth 3g _ 3g — 3g

mg = = =
éanh MEarth p Earth %”Réanh 4ﬂp REanh 47[[0@ 210 CEanh
27
3(10m/s’ 3 3
- ( 3/ ) = 1.25x107 = |Ix107"°
2(3000kg/m*)(4x10"m) kges kges

This is roughly twice the size of the accepted value of G.
78. (a) From Example 6-6, the speed of an object in a circular orbit of radius r about mass M is

/GM . . . iy .
v = ,/——. Use that relationship along with the definition of density to find the speed.
r

b /GM I GM _ Gpinr
r r r
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2 2
I L \/ 3(22m/s) =25330mz

4nGp \|47(6.67x10™" Nom’/kg’ ) (2700kg/m’)
2 2 27 (25330
b v="L =T ( M) _ 72345 =[2.0n
T Y 22 m/s
(a) The graph is shown. 30000
; 25000 +—| prad
(b) From the graph, we get this 7% =0.9999 1> +0.3412 /
equation. 20000 +— R = 1.0000
T* =0.99997" +0.3412 | "2 ;5000 - _—
(17-03412)" | 10000 | //
0.9999 5000 -
0 T T
0 5000 10000 15000 20000 25000 30000
r* (AUY)

0.9999

A quoted value for the means distance of Pluto is 39.47 AU. The spreadsheet used for this
problem can be found on the Media Manager, with filename “PSE4 ISM_CHO06.XLS,” on tab
“Problem 6.79.”

2 1/3
(T =2477y) = [247.7 0.3412) _[944 A0
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CHAPTER 7: Work and Energy

Responses to Questions

10.

“Work™ as used in everyday language generally means “energy expended,” which is similar to the
way “work” is defined in physics. However, in everyday language, “work” can involve mental or
physical energy expended, and is not necessarily connected with displacement, as it is in physics. So
a student could say she “worked” hard carrying boxes up the stairs to her dorm room (similar in
meaning to the physics usage), or that she “worked” hard on a problem set (different in meaning
from the physics usage).

Yes, she is doing work. The work done by her and the work done on her by the river are opposite in
sign, so they cancel and she does not move with respect to the shore. When she stops swimming, the
river continues to do work on her, so she floats downstream.

No, not if the object is moving in a circle. Work is the product of force and the displacement in the
direction of the force. Therefore, a centripetal force, which is perpendicular to the direction of
motion, cannot do work on an object moving in a circle.

You are doing no work on the wall. Your muscles are using energy generated by the cells in your
body and producing byproducts which make you feel fatigued.

No. The magnitudes of the vectors and the angle between them are the relevant quantities, and these
do not depend on the choice of coordinate system.

Yes. A dot product can be negative if corresponding components of the vectors involved point in
opposite directions. For example, if one vector points along the positive x-axis, and the other along
the negative x-axis, the angle between the vectors is 180°. Cos 180° =—1, and so the dot product of
the two vectors will be negative.

No. For instance, imagine C as a vector along the +x axis. Aand B could be two vectors with the
same magnitude and the same x-component but with y-components in opposite directions, so that

one is in quadrant I and the other in quadrant IV. Then A+C = B+C even though A and B are
different vectors.

No. The dot product of two vectors is always a scalar, with only a magnitude.

Yes. The normal force is the force perpendicular to the surface an object is resting on. If the object
moves with a component of its displacement perpendicular to this surface, the normal force will do
work. For instance, when you jump, the normal force does work on you in accelerating you
vertically.

(a) If the force is the same, then F =k x =k,x,,s0 x, =kx, / k, . The work done on spring 1 will

27720
be W, =1kx;. The work done on spring 2 will be W, =1k,x] =1k, (kfxf/kf) =W, (k /k,).

Since k, > k,, W, >W, , so more work is done on spring 2.

(b) If the displacement is the same, then W, =1k x’ and W, =Lk,x*. Since k, > k,, W, >W,, so

more work is done on spring 1.
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11. The kinetic energy increases by a factor of 9, since the kinetic energy is proportional to the square of
the speed.

12. Until the x = 0 point, the spring has a positive acceleration and is accelerating the block, and
therefore will remain in contact with it. After the x = 0 point, the spring begins to slow down, but (in
the absence of friction), the block will continue to move with its maximum speed and will therefore
move faster than the spring and will separate from it.

The bullet with the smaller mass has a speed which is greater by a factor of \/5 =1.4. Since their

kinetic energies are equal, then Lm, v’ =Lm,v2. If my=2m,, then Lmy? =1-2mv3, so
v, = \/Evz. They can both do the same amount of work, however, since their kinetic energies are
the same. (See the work-energy principle.)

14. The net work done on a particle and the change in the kinetic energy are independent of the choice
of reference frames only if the reference frames are at rest with respect to each other. The work-
energy principle is also independent of the choice of reference frames if the frames are at rest with
respect to each other.

If the reference frames are in relative motion, the net work done on a particle, the kinetic energy, and
the change in the kinetic energy all will be different in different frames. The work-energy theorem
will still be true.

15. The speed at point C will be less than twice the speed at point B. The force is constant and the
displacements are the same, so the same work is done on the block from A to B as from B to C.
Since there is no friction, the same work results in the same change in kinetic energy. But kinetic
energy depends on the square of the speed, so the speed at point C will be greater than the speed at

point B by a factor of \/5 , not a factor of 2.

Solutions to Problems

The force and the displacement are both downwards, so the angle between them is 0°. Use Eq. 7-1.

. = mgd cos 6 = (280kg)(9.80m/s*) (2.80m ) cos 0° =

W

2. The rock will rise until gravity does —80.0 J of work on the rock. The displacement is upwards, but
the force is downwards, so the angle between them is 180°. Use Eq. 7-1.

W -80.0J
L - [4.41m]
f mga CoS mgcose (185kg)(980 m/sZ)(_l) m

3. The minimum force required to lift the firefighter is equal to his weight. The force and the
displacement are both upwards, so the angle between them is 0°. Use Eq. 7-1.

Wiw = FndcosO =mgdcost = (75.0 kg)(9.80 m/sz)(20.0rn)cos 0° =

4. The maximum amount of work would be the work done by gravity. Both the force and the
displacement are downwards, so the angle between them is 0°. Use Eq. 7-1.
W, =mgd cos 0 = (2.0kg)(9.80m/s*)(0.50m) cos 0° = (9.8
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This is a small amount of energy. If the person adds a larger force to the hammer during the fall,
then the hammer will have a larger amount of energy to give to the nail.

The distance over which the force acts is the area to be mowed divided by the width of the mower.
The force is parallel to the displacement, so the angle between them is 0°. Use Eq. 7-1.

A 200m’
W =Fdcos@=F—cos@=(15N ={6000]J
cos0=(15N) o= 6000

Consider the diagram shown. If we assume that the man pushes
straight down on the end of the lever, then the work done by the

man (the “input” work) is given by W, = Fh,. The object moves a
shorter distance, as seen from the diagram, and so W, = F_h,,.

Equate the two amounts of work.

F, h
Wo :VVI - Foho =F1h1 - =
1 hO
h / F, 7
But by similar triangles, we see that —/ =—-, and so |—> = —|.
(6] [O E [O

Draw a free-body diagram of the car on the incline. The minimum work
will occur when the car is moved at a constant velocity. Write Newton’s
second law in the x direction, noting that the car is unaccelerated. Only the
forces parallel to the plane do work.

ZszFP—mgsinﬁzo — F,=mgsind

The work done by F » in moving the car a distance d along the plane

(parallel to E,) is given by Eq. 7-1.

W, = Fyd cos0° = mgdsin @ = (950 kg) (9.80m/s*) (310m)sin9.0° =

The first book is already in position, so no work is required to position it. The second book must be
moved upwards by a distance d, by a force equal to its weight, mg. The force and the displacement
are in the same direction, so the work is mgd. The third book will need to be moved a distance of 2d
by the same size force, so the work is 2mgd. This continues through all seven books, with each
needing to be raised by an additional amount of d by a force of mg. The total work done is

W =mgd +2mgd +3mgd + 4mgd + Smgd + 6mgd + Tmgd

— 28mgd = 28(1.8 kg)(9.8m/s*)(0.040 m) =

Since the acceleration of the box is constant, use Eq. 2-12b to find the distance moved. Assume that
the box starts from rest.

d=x-x, =vt+tar’ =0+1(2.0m/s’)(7.0s)" =49m
Then the work done in moving the crate is found using Eq. 7-1.

W = Fdcos0° = mad = (6.0kg)(2.0m/sz)(49m) =
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10. (a) Write Newton’s second law for the vertical direction, with up as positive.

Y F =F -Mg=Ma=M(0.10g) — F =[1.10Mg]

(b) The work done by the lifting force in lifting the helicopter a vertical distance /4 X
is given by Eq. 7-1. The lifting force and the displacement are in the same Mg

direction.

W, =F hcos0° =.

11. The piano is moving with a constant velocity down the plane. FP is the
force of the man pushing on the piano.

(a) Write Newton’s second law on each direction for the piano, with an
acceleration of 0.

ZF;ZFN—mgCOSQZO — F,=mgcos@
D> F =mgsin0-F,=0 —

F, =mgsinf =mgsind
= (380kg)(9.80m/s*) (sin27°) = 1691N = |1700N

() The work done by the man is the work done by FP. The angle between FP and the direction of
motion is 180°. Use Eq. 7-1.
W, = F,d cos180° = —(1691N)(3.9m) = —6595J = [-6600] .
(¢) The angle between the force of gravity and the direction of motion is 63°. Calculate the work
done by gravity.
W, = F,d cos63° = mgd cos 63° = (380kg) (9.80m/s* ) (3.9m) cos 63°

= 6594 N =|6600J

(d) Since the piano is not accelerating, the net force on the piano is 0, and so the net work done on
the piano is also 0. This can also be seen by adding the two work amounts calculated.

W =W, +W, =—6.6x10"T+6.6x10°] =

net

12. (a) The motor must exert a force equal and opposite to the force of gravity on the gondola and
passengers in order to lift it. The force is in the same direction as the displacement. Use Eq.
7-1 to calculate the work.

W = Fod €05 0° = mgd = (2250kg) (9.80m/s* ) (3345 m —2150m) = |2.63x10'J]

motor motor

(b) Gravity would do the exact opposite amount of work as the motor, because the force and
displacement are of the same magnitude, but the angle between the gravity force and the
displacement is 180°.

W, = F,d cos180° = —mgd = —(2250kg) (9.80m/s*) (3345m - 2150 m) =[~2.63x10'1]

(¢) If the motor is generating 10% more work, than it must be able to exert a force that is 10%
larger than the force of gravity. The net force then would be as follows, with up the positive

direction.
F:1ct = F:notor _FG = 11mg _mg = Olmg =ma — a-= Olg = 09811’1/52
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(a) The gases exert a force on the jet in the same direction as the displacement of the jet. From the

14.

15.

(b)

(b)

graph we see the displacement of the jet during launch is 85 m. Use Eq. 7-1 to find the work.

W, = F,dcos0° = (130x10°N) (85m) =[1.1x10"J]

The work done by catapult is the area underneath the graph in Figure 7-22. That area is a
trapezoid.

W = +(1100X10°N +65x10'N) (85m) =

See the free-body diagram for the crate as it is being pulled. Since the AX
crate is not accelerating horizontally, F, = F, = 230N. The work done to - ~

F, F,
move it across the floor is the work done by the pulling force. The angle i -
between the pulling force and the direction of motion is 0°. Use Eq. 7-1. =

_ o_ _ F mg
W, = F,d cos0°= (230 N)(4.0 m) (1) ={920J N [ l
See the free-body diagram for the crate as it is being lifted. Since the crate is not Ay |F

angle between the pulling force and the direction of motion is 0°.

W, = Fyd cos0" = mgd = (2200N)(4.0m) =[8800J] -

accelerating vertically, the pulling force is the same magnitude as the weight. The ]

Consider a free-body diagram for the grocery cart being pushed up the

ramp. If the cart is not accelerating, then the net force is 0 in all
directions. This can be used to find the size of the pushing force. The
angles are ¢ =17°and @ =12°. The displacement is in the x-direction.
The work done by the normal force is 0 since the normal force is
perpendicular to the displacement. The angle between the force of
gravity and the displacement is 90° + 8 =102°. The angle between the
normal force and the displacement is 90°. The angle between the

pushing force and the displacement is total work done is ¢ + & = 29°.

mg sin @

F =F +0) - nf=0 » F=—%2""~
D F =F,cos(¢+6)-mgsin "= oos(9 4 0)

m,

W,, =mgd cos112° = (16kg)(9.80m/s” ) (15m) cos 102° =490

W =F.dcos90°=|0]

normal
mgsin12°

cos29

= (16kg) (9.80m/s* ) (15m)sin12° =

W, =F,dcos29°= ( jd c0s29° = mgd sin12°

16. Use Eq. 7.4 to calculate the dot product.

AB=AB +AB +A4B =(2.0x")(11.0)+(-4.0x)(2.5x)+(5.0)(0) = 22x* - 10x°

=[12x°
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17.

18.

-
<

20.

21.

22.

23.

Use Eq. 7.4 to calculate the dot product. Note that i=1li+ Oj +0Kk, j =0i+ 1]‘ + 0Kk, and
k =0i+0j+1k.
V=1V +(0)V,+(0)7,
keV =(0)V, +(0)V, +(1)V, =

Use Eq. 7.4 and Eq. 7.2 to calculate the dot product, and then solve for the angle.
AB=A4B +AB +A4B =(68)(82)+(-3.4)(2.3)+(-6.2)(-7.0)=91.34

V= (07, + (1)1, + (O)F. =¥

y

A=/(68")+(-34) +(-62)" =981 B= \/(8.22)+ (2.3)" +(-7.0)" =11.0

eB=A4Bcos® — O =cos’ A-B_ cos”' _ o34 =
AB (9.81)(11.0)

g

We utilize the fact that if B = B_i+ Byj + B.k, then -B = (-B, ) i+ (—By )j +(-B,) k.
A«(-B)=4 (-B,)+ 4, (-B,)+ 4 (-B.)

= (-4)(8)+(=4,)(8,)+(-4)(8.)=-AB

See the diagram to visualize the geometric relationship between the two vectors. z
The angle between the two vectors is 138°.
V.V, =V ¥, cos 0 = (75)(58)cos138° = |-3200 v,

If A is perpendicular to B, then A+B =0. Use this to find B.
AB=AB +A4B =(30)B +(1.5)B,=0 — B =-2.0B,

Any vector B that satisfies B, =-2.0B, will be perpendicular to A. For example, B = 1.5 - 3.0]’ .

Both vectors are in the first quadrant, so to find the angle between them, we can simply subtract the
angles of each of them.

=(20i+4.0j)N — F=\/(2.0N)2 +(40N)' =(V20)N 5 ¢, =tan'1;—'g=tan'l 2.0

= (1.0i+5.03)m — d= \/(I.Om)2 +(5.Orn)2 = (\/%)m ; 9, = tan'%z tan”' 5.0

(@) W =Fdcosl = [(\/%)N][(\/%)m} cos[tanfl 5.0—tan’ 2.0] =(221]

() W=Fd +Fd =(2.0N)(1.0m)+(4.0N)(5.0m)=|22]

(@) A«(B+C)=(9.0i-8.5])[ (-8.0i +7.1j+4.2k) +(6.81-9.2]) |
= (9.01 - 8.5])+(~1.2 - 2.1+ 4.2k) = (9.0) (=1.2) + (-8.5) (~2.1) + (0) (4.2) = 7.05 =[7.1]

(b) (A+C)-B=[(9.0i-8.5])+(6.8i - 9.2j) |(~8.0i + 7.1j + 4.2k)
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= (15.81 17.7j)+(-8.0i + 7.1j+ 4.2k ) = (15.8) (~8.0) + (~17.7) (7.1) + (0) (4.2)
=-252 =

() (B+A)C=[(-8.0i+7.1j+42K)+(9.0i -8.5) ]:(6.8 - 9.2])
= (1.0i - 1.4j + 4.2k }+(6.81 - 9.2j) = (1.0) (6.8) + (~1.4) (-9.2) + (4.2) (0)

=19.68 = [20]

24. We assume that the dot product of two vectors is given by Eq. 7-2. Note that for two unit vectors,
this gives the following.

isi=(1)(1)cos0°=1=joj = kek and isj=(1)(1)cos90° = 0 = ik = joi = jok = kei = kej
Apply these results to A«B.
AB=(A4i+A4j+Ak)(Bi+Bj+BKk)
= ABisi+ ABjj+ ABik+ABji+ABjoj+ABjk+ABKkei+ABKej+ABKkk
=AB (1)+A4B, (0)+A4B (0)+4B (0)+4B (1)
+A4B (0)+A4B (0)+4B (0)+4B.(1)
=AB +AB, +AB.

If C is perpendicular to B, then C+B = 0. Use this along with the value of C-A to find C. We
also know that C has no z-component.
C=Ci+Cj; CB=CB +CB =0; C:A=C A +C,A =200 —
9.6C . +6.7C =0 ; —4.8C +6.8C, =20.0

This set of two equations in two unknowns can be solved for the components of C.
9.6C, +6.7C =0 ; —4.8C +6.8C =200 —» C,=-14,C =20 —

C=-14i+2.0j

26. We are given that the magnitudes of the two vectors are the same, so sz + Aj + AZ2 = Bf + Bf + BZQ.

If the sum and difference vectors are perpendicular, their dot product must be zero.
A+B=(4 +B)i+(4 +B)j+(4 +B )k

A-B=(4,-B,)i+(4,-B))j+(4 -B)k
(A+B)(A-B)=(4, +B,)(4,-B,)+(4,+B)(4,-B,)+(4 +B)(4-B,)
=A-B+ AL -B+4L-B =(L+AL+4)-(B+B +B)=0

27. Note that by Eq. 7-2, the dot product of a vector A with a unit vector B would give the magnitude

of A times the cosine of the angle between the unit vector and A . Thus if the unit vector lies along
one of the coordinate axes, we can find the angle between the vector and the coordinate axis. We
also use Eq. 7-4 to give a second evaluation of the dot product.

Vei= Veos@ =V, —
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=cos | ———=~——=cos”' 20.0 =

4
' v Jieviev: J(20.0)* +(22.0)° + (~14.0)’
,

0 =cos" —=cos" 22.0 =(48.0°
4 \/(20.0)2 +(22.0)" + (~14.0)°

0. =cos” V. _ cos”' _14.0 =
4 \/(20.0)2 +(22.0)" +(-14.0)°

28. For the diagram shown, B+C = A , or C = A — B. Let the magnitude of each vector

be represented by the corresponding lowercase letter, so ‘C‘ = ¢, for example. The

angle between A and B is 6. Take the dot product C+C.
C-C=(A-B)(A-B)=A-A+BB-2A-B — ¢ =a’+b'—2abcosl

29. The scalar product is positive, so the angle between A and B must be acute. But the direction of

the angle from A to B could be either counterclockwise or clockwise.

- = 20.0
AB = ABcosO =(12.0)(24.0)cos# =20.0 — 6 =cos" ————— =86.0°
(12.0)(24.0)
So this angle could be either added or subtracted to the angle of A to find the angle of B.

0,=6,+0=27.4°186.0°=[113.4° or —58.6°(301.4°)

30. We can represent the vectors as A = Axi + Avj = Acos i + Asin aj and B = Bxi + ij

= Bcos fi + Bsin f8]. The angle between the two vectors is & — . Use Egs. 7-2 and 7-4 to express
the dot product.
AB = ABcos(a— )= A B, + A B, = AcosaBcos S+ AsinaBsin f —

ABcos(a— f8) = ABcosacos B+ ABsinasinf — |cos(a— f8) = cosacos f +sinasin B

(a) Use the two expressions for dot product, Egs. 7-2 and 7-4, to find the angle between the two
vectors.
AB=ABcosO=AB +AB +AB —
L AB +A4B +AB.
AB

(1.0)(-1.0) +(1.0)(1.0) + (-2.0) (2.0)

1/ 1/2

[(10) +(1.0)" +(-2.0) | "[(-1.0)" +(1.0)" + (2.0)" |
= cos™' (-2) =132° = [130°]

(b) The negative sign in the argument of the inverse cosine means that the angle between the two
vectors is obtuse.

6 = cos

-1
= COS
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32.

33.

34.

35.

36.

To be perpendicular to the given vector means that the dot product will be 0. Let the unknown
vector be given as u = “xi +u yj'.

@(3.01+4.0j) =3.0u +4.0u, — u,=-0.75u, ; unitlength —>u’+u’ =1 —
1

V1.5625

So the two possible vectors are |i = 0.8i —0.6]| and |& = —0.8i + 0.6j|.

Wl =ul+(-0.75u)" =1.5625u" =1 — u =+t =108 , u, =F0.6

Note that it is very easy to get a non-unit vector perpendicular to another vector in two dimensions,
simply by interchanging the coordinates and negating one of them. So a non-unit vector

perpendicular to (3.0i + 4.03) could be either (4.0i - 3.03) or (—4.0i + 3.03) . Then divide each of

those vectors by its magnitude (5.0) to get the possible unit vectors.

From Figure 7-6, we see a graphical interpretation of the scalar product
as the magnitude of one vector times the projection of the other vector

onto the first vector. So to show that A-(E + C) = A*B + A+C is the
same as showing that A (ﬁ + é)u =A (E)H + A4 (é)u , where the

subscript is implying the component of the vector that is parallel to
vector A . From the diagram, we see that (E + é)” = (E)H + (é)u'

Multiplying this equation by the magnitude of vector A gives
A (ﬁ + é)u =4 (ﬁ)” +4 (C)H . But from Figure 7-6, this is the same as

«—B —>< ¢~

A-(B + C) = A«B + A-C. So we have proven the statement. ) (ﬁ + é) N
Il
The downward force is 450 N, and the downward displacement would be a diameter of the pedal

circle. Use Eq. 7-1.
W = Fdcos@=(450N)(0.36m)cos0° ={160]J

The force exerted to stretch a spring is given by F, . =kx F=ix

stretch
(the opposite of the force exerted by the spring, which is e
given by F = —kx. A graph of F,
straight line of slope k through the origin. The stretch from
X1 to x, as shown on the graph, outlines a trapezoidal area. !
This area represents the work.

W=%(kx1+kx2)(xz—xl)— 'k(x1+x2)(x2—x1)

2

vs. x will be a

tretch Force

X X2

= 1(65N/m)(0.095m)(0.035m) = Stretch distance

For a non-linear path, the work is found by considering the path to

be an infinite number of infinitesimal (or differential) steps, each of
which can be considered to be in a specific direction, namely, the d¢
direction tangential to the path. From the diagram, for each step we

have dW =Fed? = Fd/ cos6. But dcos6 = —dy, the projection
of the path in the direction of the force, and F = mg , the force of

