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CHAPTER 1:  Introduction, Measurement, Estimating 
 
Responses to Questions 
 
1.  (a) A particular person’s foot. Merits: reproducible. Drawbacks: not accessible to the general  

public; not invariable (could change size with age, time of day, etc.); not indestructible. 
(b) Any person’s foot. Merits: accessible. Drawbacks: not reproducible (different people have  

different size feet); not invariable (could change size with age, time of day, etc.); not 
indestructible. 

Neither of these options would make a good standard. 
 
2.  The number of digits you present in your answer should represent the precision with which you 

know a measurement; it says very little about the accuracy of the measurement. For example, if you 
measure the length of a table to great precision, but with a measuring instrument that is not 
calibrated correctly, you will not measure accurately.  

 
3.   The writers of the sign converted 3000 ft to meters without taking significant figures into account. 

To be consistent, the elevation should be reported as 900 m.  
 
4.  The distance in miles is given to one significant figure and the distance in kilometers is given to five 

significant figures! The figure in kilometers indicates more precision than really exists or than is 
meaningful. The last digit represents a distance on the same order of magnitude as the car’s length!   

 
5.  If you are asked to measure a flower bed, and you report that it is “four,” you haven’t given enough 

information for your answer to be useful. There is a large difference between a flower bed that is 4 m 
long and one that is 4 ft long. Units are necessary to give meaning to the numerical answer. 

 
6.  Imagine the jar cut into slices each about the thickness of a marble. By looking through the bottom 

of the jar, you can roughly count how many marbles are in one slice. Then estimate the height of the 
jar in slices, or in marbles. By symmetry, we assume that all marbles are the same size and shape. 
Therefore the total number of marbles in the jar will be the product of the number of marbles per 
slice and the number of slices.  

 
7.  You should report a result of 8.32 cm. Your measurement had three significant figures. When you 

multiply by 2, you are really multiplying by the integer 2, which is exact. The number of significant 
figures is determined by your measurement. 

 
8.  The correct number of significant figures is three: sin 30.0º = 0.500. 
 
9.  You only need to measure the other ingredients to within 10% as well. 
 
10.  Useful assumptions include the population of the city, the fraction of people who own cars, the 

average number of visits to a mechanic that each car makes in a year, the average number of weeks a 
mechanic works in a year, and the average number of cars each mechanic can see in a week. 
(a) There are about 800,000 people in San Francisco. Assume that half of them have cars. If each of  

these 400,000 cars needs servicing twice a year, then there are 800,000 visits to mechanics in a 
year. If mechanics typically work 50 weeks a year, then about 16,000 cars would need to be 
seen each week. Assume that on average, a mechanic can work on 4 cars per day, or 20 cars a 
week. The final estimate, then, is 800 car mechanics in San Francisco. 

(b) Answers will vary. 
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Sun 

Earth 

Venus 
11.  One common way is to observe Venus at a 

time when a line drawn from Earth to Venus 
is perpendicular to a line connecting Venus 
to the Sun. Then Earth, Venus, and the Sun 
are at the vertices of a right triangle, with 
Venus at the 90º angle. (This configuration 
will result in the greatest angular distance 
between Venus and the Sun, as seen from 
Earth.) One can then measure the distance to 
Venus, using radar, and measure the angular distance between Venus and the Sun. From this 
information you can use trigonometry to calculate the length of the leg of the triangle that is the 
distance from Earth to the Sun. 

 
12.  No. Length must be included as a base quantity.  
 
 
Solutions to Problems 
 

1. (a) 1014 billion years 1.4 10 years= ×  

 (b)  ( )( )10 7 171.4 10 y 3.156 10 s 1 y 4.4 10 s× × = ×  

 
2. (a) 214         3 significant figures  

 (b) 81.60      4 significant figures  

 (c) 7.03        3 significant figures  

 (d) 0.03        1 significant figure  

 (e) 0.0086    2 significant figures  

 (f) 3236       4 significant figures  

 (g) 8700       2 significant figures  

 

3. (a) 01.156 1.156 10= ×  

 (b) 121.8 2.18 10= ×  

 (c) 30.0068 6.8 10−= ×  

 (d) 2328.65 3.2865 10= ×  

 (e) 10.219 2.19 10−= ×  

 (f) 2444 4.44 10= ×  
 
4. (a) 48.69 10 86,900× =  

 (b) 39.1 10 9,100× =  

 (c) 18.8 10 0.88−× =  
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 (d) 24.76 10 476× =  

 (e) 53.62 10 0.0000362−× =  
 

5. 
0.25 m

% uncertainty 100% 4.6%
5.48 m

= × =  

 

6. (a) 
0.2 s

% uncertainty 100% 4%
5 s

= × =  

 (b) 
0.2 s

% uncertainty 100% 0.4%
50 s

= × =  

 (c) 
0.2 s

% uncertainty 100% 0.07%
300 s

= × =  

 
7. To add values with significant figures, adjust all values to be added so that their exponents are all the 

same. 

  
( ) ( ) ( ) ( ) ( ) ( )

( )

3 4 6 3 3 3

3 3 5

9.2 10 s 8.3 10 s 0.008 10 s 9.2 10 s 83 10 s 8 10 s

9.2 83 8 10 s 100.2 10 s 1.00 10 s     

× + × + × = × + × + ×

= + + × = × = ×
 

When adding, keep the least accurate value, and so keep to the “ones” place in the last set of 
parentheses. 

 
8. ( ) ( )2 12.079 10 m 0.082 10 1.7 m .−× × =  When multiplying, the result should have as many digits as 

the number with the least number of significant digits used in the calculation. 
 
9. θ (radians) sin(θ )  tan(θ )   
       0  0.00   0.00   Keeping 2 significant figures in the angle, and 

      0.10  0.10   0.10   expressing the angle in radians, the largest angle that has  
       0.12  0.12   0.12   the same sine and tangent is 0.24 radians .  In degrees,  

      0.20  0.20   0.20   the largest angle (keeping 2 significant figure) is 12 .°  
      0.24  0.24   0.24   The spreadsheet used for this problem can be found on  
      0.25 0.25   0.26   the Media Manager, with filename  

“PSE4_ISM_CH01.XLS,” on tab “Problem 1.9.” 
 
10. To find the approximate uncertainty in the volume, calculate the volume for the minimum radius and 

the volume for the maximum radius.  Subtract the extreme volumes.  The uncertainty in the volume 
is then half this variation in volume. 

( )
( )
( )

33 34 4
specified specified3 3

33 34 4
min min3 3

33 34 4
max max3 3

0.84 m 2.483m

0.80 m 2.145m

0.88m 2.855m

V r

V r

V r

π π

π π

π π

= = =

= = =

= = =

 

( ) ( )3 3 31 1
max min2 2 2.855m 2.145m 0.355mV V VΔ = − = − =  

 The percent uncertainty is 
3

3
specified

0.355m
100 14.3 14 %

2.483m
.V

V
Δ

= × = ≈  
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11. (a) 286.6 mm   3286.6 10 m−×   0.286 6 m  

 (b)  85 Vμ    685 10 V−×   0.000085 V  

 (c)  760 mg    6760 10 kg−×   0.000 76 kg   (if last zero is not significant) 

 (d)  60.0 ps    1260.0 10 s−×   0.000 000 0000600 s  

 (e)  22.5 fm    1522.5 10 m−×   0.0000000000000225 m  

 (f)  2.50 gigavolts  92.5 10 volts×   2,500, 000,000 volts  
 
12. (a) 61 10 volts×   1 megavolt 1 Mvolt=  

 (b)  62 10 meters−×   2 micrometers 2 mμ=  

 (c)  36 10 days×   6 kilodays 6 kdays=  

 (d)  218 10 bucks×   18 hectobucks 18 hbucks=  or 1.8 kilobucks 

 (e)  88 10 seconds−×  80 nanoseconds 80 ns=  
 
13. Assuming a height of 5 feet 10 inches, then ( ) ( )5'10" 70 in 1 m 39.37 in 1.8 m .= =  Assuming a 

weight of 165 lbs, then ( ) ( )165 lbs 0.456 kg 1 lb 75.2 kg .=  Technically, pounds and mass 
measure two separate properties.  To make this conversion, we have to assume that we are at a 
location where the acceleration due to gravity is 9.80 m/s2.   

  

14.   (a)  ( )( )6 1193 million miles 93 10 miles 1610 m 1 mile 1.5 10 m= × = ×   

 (b) 11 91.5 10 m 150 10 m 150 gigameters× = × =  or 11 121.5 10 m 0.15 10 m 0.15 terameters× = × =  

 

15. (a) ( ) ( )22 2 21 ft 1 ft 1 yd 3 ft 0.111 yd= = , and so the conversion factor is 
2

2

0.111 yd
1 ft

.  

(b) ( )( )22 2 21 m 1 m 3.28 ft 1 m 10.8 ft= = , and so the conversion factor is  
2

2

10.8ft
1m

.  

 
16. Use the speed of the airplane to convert the travel distance into a time.  d vt= , so t d v= . 

1 h 3600s
1.00 km 3.8s

950 km 1 h
t d v= = =⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  

 

17. (a) ( )( )10 10 91.0 10 m 1.0 10 m 39.37 in 1 m 3.9 10 in− − −× = × = ×  

 (b) ( ) 8
10

1 m 1 atom
1.0 cm 1.0 10 atoms

100 cm 1.0 10 m−
= ×

×
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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18. To add values with significant figures, adjust all values to be added so that their units are all the 
same. 

  51.80 m 142.5 cm 5.34 10 m 1.80 m 1.425 m 0.534 m 3.759 m 3.76 mμ+ + × = + + = =  
When adding, the final result is to be no more accurate than the least accurate number used.  In this 
case, that is the first measurement, which is accurate to the hundredths place when expressed in 
meters. 

 

19. (a) ( ) 0.621 mi
1km h 0.621mi h

1 km
=⎛ ⎞

⎜ ⎟
⎝ ⎠

, and so the conversion factor is 
0.621mi h

1km h
.  

 (b) ( ) 3.28 ft
1m s 3.28ft s

1 m
=⎛ ⎞

⎜ ⎟
⎝ ⎠

, and so the conversion factor is 
3.28ft s

1m s
.  

 (c) ( ) 1000 m 1 h
1km h 0.278 m s

1 km 3600 s
=⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, and so the conversion factor is 
0.278 m s

1km h
.  

 
20. One mile is 31.61 10 m× .  It is 110 m longer than a 1500-m race.  The percentage difference is  

calculated here. 

  
110 m

100% 7.3%
1500 m

× =  

 
21. (a) Find the distance by multiplying the speed times the time. 

( ) ( )8 7 15 151.00 ly 2.998 10 m s 3.156 10 s 9.462 10 m 9.46 10 m= × × = × ≈ ×  

 (b) Do a unit conversion from ly to AU. 

( )
15

4
11

9.462 10 m 1 AU
1.00 ly 6.31 10 AU

1.00 ly 1.50 10 m
×

= ×
×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  

 (c) ( )8
11

1 AU 3600 s
2.998 10 m s 7.20 AU h

1.50 10 m 1 hr
× =

×
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 

22. ( )9 1char 1min 1hour 1day 1year
82 10 bytes 2598 years 2600 years

1byte 180char 60 min 8hour 365.25days
× × × × × × = ≈  

 
23. The surface area of a sphere is found by ( )22 24 4 2 .A r d dπ π π= = =  

 (a) ( )22 6 13 2
Moon Moon 3.48 10 m 3.80 10 mA Dπ π= = × = ×  

 (b) 
2 2 22 6

Earth Earth Earth Earth
2 6

Moon Moon Moon Moon

6.38 10 m
13.4

1.74 10 m
A D D R
A D D R

π
π

×
= = = = =

×
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 

24.  (a) 3 3 32800 2.8 10 1 10 10= × ≈ × =  

 (b) 2 3 3 486.30 10 8.630 10 10 10 10× = × ≈ × =  

 (c) 3 3 20.0076 7.6 10 10 10 10− − −= × ≈ × =  

 (d) 8 9 9 915.0 10 1.5 10 1 10 10× = × ≈ × =  
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25. The textbook is approximately 25 cm deep and 5 cm wide.  With books on both sides of a shelf, the 
shelf would need to be about 50 cm deep.  If the aisle is 1.5 meter wide, then about 1/4 of the floor 
space is covered by shelving.  The number of books on a single shelf level is then 

( ) ( ) ( )
2 41

4

1 book
3500 m 7.0 10 books.

0.25 m 0.05 m
= ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

  With 8 shelves of books, the total number of 

books stored is as follows. 

( )4 5books
7.0 10 8 shelves 6 10  books

shelf level
× ≈ ×⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
26. The distance across the United States is about 3000 miles. 

( ) ( ) ( )3000 mi 1 km 0.621 mi 1 hr 10 km 500 hr≈  
Of course, it would take more time on the clock for the runner to run across the U.S.  The runner 
could obviously not run for 500 hours non-stop.  If they could run for 5 hours a day, then it would 
take about 100 days for them to cross the country. 

 
27.  A commonly accepted measure is that a person should drink eight 8-oz. glasses of water each day.  

That is about 2 quarts, or 2 liters of water per day.   Approximate the lifetime as 70 years. 

  ( ) ( )( ) 470 y 365 d 1 y 2 L 1 d 5 10 L≈ ×  
 
28.  An NCAA-regulation football field is 360 feet long (including the end zones) and 160 feet wide, 

which is about 110 meters by 50 meters, or 5500 m2.  The mower has a cutting width of 0.5 meters. 
Thus the distance to be walked is as follows. 

  
2area 5500 m

11000 m 11 km
width 0.5 m

d = = = =  

 At a speed of 1 km/hr, then it will take about 11 h to mow the field. 
 
29. In estimating the number of dentists, the assumptions and estimates needed are: 

the population of the city 
the number of patients that a dentist sees in a day 
the number of days that a dentist works in a year 
the number of times that each person visits the dentist each year 

We estimate that a dentist can see 10 patients a day, that a dentist works 225 days a year, and that 
each person visits the dentist twice per year. 

 (a) For San Francisco, the population as of 2001 was about 1.7 million, so we estimate the  
population at two million people.  The number of dentists is found by the following calculation. 

  ( )6

visits
2

1 yr 1 dentistyear2 10 people 1800 dentists
visits1 person 225 workdays 10

workday

×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ≈⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 (b) For Marion, Indiana, the population is about 50,000.  The number of dentists is found by a  
similar calculation to that in part (a), and would be 45 dentists .  There are about 50 dentists 
listed in the 2005 yellow pages. 

 
30. Assume that the tires last for 5 years, and so there is a tread wearing of 0.2 cm/year.  Assume the 

average tire has a radius of 40 cm, and a width of 10 cm.  Thus the volume of rubber that is 
becoming pollution each year from one tire is the surface area of the tire, times the thickness per year 
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To 1st sunset

To 2nd sunset

A
B

Earth center

R
R

hd

θ

θ

that is wearing.  Also assume that there are 81.5 10×  automobiles in the country – approximately one 
automobile for every two people.  And there are 4 tires per automobile.  The mass wear per year is 
given by the following calculation. 

( ) ( )

( ) ( ) ( ) ( ) ( )3 8 8

mass surface area thickness wear
density of rubber # of tires

year tire year

2 0.4 m 0.1m
             0.002 m y 1200 kg m 6.0 10 tires 4 10 kg y

1 tire
π

=

= × = ×

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
⎡ ⎤
⎢ ⎥⎣ ⎦

 

 
31. Consider the diagram shown (not to scale).  The balloon is a distance h above the 

surface of the Earth, and the tangent line from the balloon height to the surface of 
the earth indicates the location of the horizon, a distance d away from the balloon.  
Use the Pythagorean theorem. 

 

( )

( ) ( ) ( ) ( )

2 2 2 2 2 2 2

2 2 2

26 4 4

    2

2     2

2 6.4 10 m 200 m 200 m 5.1 10 m 5 10 m 80 mi

r h r d r rh h r d

rh h d d rh h

d

+ = + → + + = +

+ = → = +

= × + = × ≈ × ≈

 

 
32. At $1,000 per day, you would earn $30,000 in the 30 days.  With the other pay method, you would 

get ( )1$0.01 2t−  on the tth day.  On the first day, you get ( )1 1$0.01 2 $0.01− = .  On the second day, 

you get ( )2 1$0.01 2 $0.02− = .  On the third day, you get ( )3 1$0.01 2 $0.04− = .  On the 30th day, you 

get ( )30 1 6$0.01 2 $5.4 10− = × , which is over 5 million dollars.  Get paid by the second method. 

 
33. In the figure in the textbook, the distance d is perpendicular to the vertical radius.  Thus there is a 

right triangle, with legs of d and R, and a hypotenuse of R+h.  Since h R� , 2 2 .h Rh�  

  
( )
( )
( )

22 2 2 2 2 2 2

22
6

2     2     2   

4400 m
6.5 10 m

2 2 1.5 m

d R R h R Rh h d Rh h d Rh

d
R

h

+ = + = + + → = + → ≈ →

= = = ×
 

 A better measurement gives 66.38 10 m.R = ×  
 
34. To see the Sun “disappear,” your line of sight to the top  

of the Sun is tangent to the Earth’s surface.  Initially, you 
are lying down at point A, and you see the first sunset.  
Then you stand up, elevating your eyes by the height h.  
While standing, your line of sight is tangent to the 
Earth’s surface at point B, and so that is the direction to 
the second sunset.  The angle θ  is the angle through 
which the Sun appears to move relative to the Earth 
during the time to be measured.  The distance d is the 
distance from your eyes when standing to point B. 

 

Use the Pythagorean theorem for the following 
relationship. 
 ( )22 2 2 2 2 22     2d R R h R Rh h d Rh h+ = + = + + → = +  

 

h

r
r

d
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The distance h is much smaller than the distance R, and so 2 2h Rh�  which leads to 2 2 .d Rh≈   We 
also have from the same triangle that tand R θ= , and so tan .d R θ=   Combining these two 

relationships gives 2 2 22 tand Rh R θ=≈ , and so 
2

2
tan

.h
R

θ
=  

The angle θ  can be found from the height change and the radius of the Earth.  The elapsed time 
between the two sightings can then be found from the angle, knowing that a full revolution takes 24 
hours. 

( ) ( )

( )

o1 1 2
2 6

o

o2

o o

2 1.3m2 2
    tan tan 3.66 10

tan 6.38 10 m
sec

  
3600s360 24 h

1h

3.66 103600s 3600s
24 h 24 h 8.8s

360 1h 360 1h

h h
R

R
t

t

θ
θ

θ

θ

− − −

−

= → = = = ×
×

= →
×

×
= × = × =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 

35. 
3

mass units
Density units

volume units
M
L

= = ⎡ ⎤
⎢ ⎥⎣ ⎦

 

 
36. (a) For the equation 3v At Bt= − , the units of 3At  must be the same as the units of v .  So the units  

of A  must be the same as the units of 3v t , which would be 4 .L T   Also, the units of Bt  

must be the same as the units of v .  So the units of B  must be the same as the units of v t , 

which would be 2 .L T  

 (b) For A, the SI units would be 4m s ,  and for B, the SI units would be 2m s .  

 
37. (a) The quantity 2vt  has units of ( ) ( )2m s s m s= i , which do not match with the units of meters  

for x.  The quantity 2at  has units ( ) ( )2m s s m s ,=  which also do not match with the units of 

meters for x.  Thus this equation cannot be correct .  
 (b) The quantity 0v t  has units of ( ) ( )m s s m,=  and 21

2 at  has units of ( ) ( )2 2m s s m.=   Thus,  

since each term has units of meters, this equation can be correct .  

 (c) The quantity 0v t  has units of ( ) ( )m s s m,=  and 22at  has units of ( ) ( )2 2m s s m.=   Thus,  

since each term has units of meters, this equation can be correct .  
 

38. [ ]

3 2

2 3 2 5 5
2

55 3 5 3
    P

L ML
MT TGh L L T M T

t T T
c MT L TL

T

= → = = = =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎣ ⎦

⎣ ⎦ ⎣ ⎦⎡ ⎤
⎢ ⎥⎣ ⎦
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39. The percentage accuracy is 5
7

2 m
100% 1 10 %

2 10 m
.−× = ×

×
  The distance of 20,000,000 m needs to  

be distinguishable from 20,000,002 m, which means that  8 significant figures  are needed in the 
distance measurements. 

 
40. Multiply the number of chips per wafer times the number of wafers that can be made from a  

cylinder. 
chips 1 wafer 250 mm chips

100 83,000
wafer 0.300 mm 1 cylinder cylinder

=⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

 

41. (a) # of seconds in 1.00 y:  ( )
7

73.156 10 s
1.00 y 1.00 y 3.16 10 s

1 y
×

= = ×
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

(b) # of nanoseconds in 1.00 y: ( )
7 9

163.156 10 s 1 10 ns
1.00 y 1.00 y 3.16 10 ns

1 y 1 s
× ×

= = ×
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  

(c) # of years in 1.00 s:  ( ) 8
7

1 y
1.00 s 1.00 s 3.17 10 y

3.156 10 s
−= = ×

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

 
42. Since the meter is longer than the yard, the soccer field is longer than the football field. 

  
soccer football

soccer football

1.09 yd
100 m 100 yd 9 yd

1m
1m

100 m 100 yd 8 m
1.09 yd

L L

L L

− = × − =

− = − × =
 

Since the soccer field is 109 yd compare to the 100-yd football field, the soccer field is 9% longer 
than the football field. 

 
43.  Assume that the alveoli are spherical, and that the volume of a typical human lung is about 2 liters, 

which is .002 m3. The diameter can be found from the volume of a sphere, 34
3 .rπ  

( )

( ) ( )

3
334 4

3 3

1/ 333
8 3 3 3 4

8

2
6

6 2 10
3 10 2 10 m     m 2 10 m

6 3 10

d
r d

d
d

ππ π

π
π

−
− −

= =

×
× = × → = = ×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

   

 

44. ( )
24 2

4 2

1.000 10 m 3.281ft 1acre
1 hectare 1 hectare 2.471acres

1hectare 1m 4.356 10 ft
×

= =
×

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

 

 
45. There are about 83 10×  people in the United States.  Assume that half of them have cars, that they 

each drive 12,000 miles per year, and their cars get 20 miles per gallon of gasoline. 

( )8 111 automobile 12,000 1 gallon
3 10 people 1 10 gal y

2 people 1 y 20 mi
mi auto

× ≈ ×⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

10 

46. (a) 
15

12
27

10 kg 1 proton or neutron
10 protons or neutrons

1 bacterium 10 kg

−

−
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  

(b) 
17

10
27

10 kg 1 proton or neutron
10 protons or neutrons

1 DNA molecule 10 kg

−

−
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  

(c)  
2

29
27

10 kg 1 proton or neutron
10 protons or neutrons

1 human 10 kg−
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  

(d) 
41

68
27

10 kg 1 proton or neutron
10 protons or neutrons

1 galaxy 10 kg−
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  

 
47. The volume of water used by the people can be calculated as follows: 

( )
33

4 3 3
5

1200 L day 365day 1000cm 1km
4 10 people 4.38 10 km y

4 people 1 y 1L 10 cm
−× = ×

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

  

 The depth of water is found by dividing the volume by the area. 

  
3 3 5

5
2

4.38 10 km y km 10 cm
8.76 10 8.76cm y 9cm y

50 km y 1 km
V

d
A

−
−×

= = = × = ≈
⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
48. Approximate the gumball machine as a rectangular box with a square cross-sectional area.  In 

counting gumballs across the bottom, there are about 10 in a row.  Thus we estimate that one layer 
contains about 100 gumballs.  In counting vertically, we see that there are about 15 rows.  Thus we 
estimate that there are 1500 gumballs  in the machine. 

 
49. Make the estimate that each person has 1.5 loads of laundry per week, and that there are 300 million  

people in the United States. 

  ( )6 9 91.5 loads week 52 weeks 0.1kg kg kg
300 10 people 2.34 10 2 10

1person 1 y 1load y y
× × × × = × ≈ ×  

 

50.  The volume of a sphere is given by 34
3 ,V rπ=  and so the radius is 

1/ 33
4

.V
r

π
= ⎛ ⎞
⎜ ⎟
⎝ ⎠

  For a 1-ton rock, 

the volume is calculated from the density, and then the diameter from the volume. 

( )
3

32000 lb 1ft
1 T 10.8 ft

1 T 186 lb
V = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

( ) 1/ 331/ 3 3 10.8 ft3
2 2 2 2.74 ft 3 ft

4 4
V

d r
π π

= = = = ≈
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠ ⎢ ⎥⎣ ⎦
 

 

51. ( )6
6

8 bits 1sec 1min
783.216 10 bytes 74.592 min 75 min

1byte 1.4 10 bits 60sec
× × × × = ≈

×
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52. A pencil has a diameter of about 0.7 cm.  If held about 0.75 m from the eye, it can just block out the  
Moon.  The ratio of pencil diameter to arm length is the same as the ratio of Moon diameter to Moon 
distance.  From the diagram, we have the following ratios. 
 
 
 
 
 
 

   

( ) ( )
3

5

Pencil diameter Moon diameter
    

Pencil distance Moon distance
Pencil diameter 7 10 m

Moon diameter Moon distance 3.8 10 km 3500 km
Pencil distance 0.75 m

−

= →

×
= = × ≈

 

 The actual value is 3480 km. 
 
53.  To calculate the mass of water, we need to find the volume of water, and then convert the volume to 

mass.  The volume of water is the area of the city ( )240km times the depth of the water (1.0 cm). 

( ) ( )
25 3

1 2 5
3 3

10 cm 10 kg 1 metric ton
4 10  km 1.0 cm 4 10 metric tons

1 km 1 cm 10 kg

−

× = ×
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞
⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 To find the number of gallons, convert the volume to gallons. 

  ( ) ( )
25

1 2 8 8
3 3

10 cm 1 L 1 gal
4 10  km 1.0 cm 1.06 10 gal 1 10 gal

1 km 1 10 cm 3.78 L
× = × ≈ ×

×

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦
 

 
54. A cubit is about a half of a meter, by measuring several people’s forearms.  Thus the dimensions of 

Noah’s ark would be 150 m long , 25 m wide, 15 m high .   The volume of the ark is found by 
multiplying the three dimensions. 

  ( )( )( ) 4 3 4 3150 m 25 m 15 m 5.625 10 m 6 10 mV = = × ≈ ×  
 
55. The person walks 4 km h , 10 hours each day.  The radius of the Earth is about 6380 km, and the 

distance around the Earth at the equator is the circumference, Earth2 .Rπ   We assume that the person 
can “walk on water,” and so ignore the existence of the oceans. 

( ) 31 h 1 d
2 6380 km 1 10 d

4 km 10 h
π = ×⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
56. The volume of the oil will be the area times the thickness.  The area is ( )22 2 ,r dπ π=  and so  

( ) ( )

3
3

2 3
10

1 m
1000cm

100 cm2     2 2 3 10 m
2 10 m

V
V d t d

t
π

π π −
= → = = = ×

×

⎛ ⎞
⎜ ⎟
⎝ ⎠ . 

 
 
 

Moon 
Pencil 

Pencil 
Distance Moon 

Distance
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57. Consider the diagram shown.  Let l represent is the distance she walks upstream, which 
is about 120 yards.  Find the distance across the river from the diagram. 

( )

( )

o o otan 60     tan 60 120 yd tan 60 210 yd

3ft 0.305m
210 yd 190 m

1yd 1ft

d
d= → = = =

=
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

l
l

 

 

58. 5
7

8 s 1 y
100% 3 10 %

1 y 3.156 10 s
−× = ×

×
⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

 

59. (a) 
10o o

o 9

10 m 1 nm
1.0 A 1.0 A 0.10 nm

10 m1A

−

−
= =

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 (b) 
10o o

5
o 15

10 m 1 fm
1.0 A 1.0 A 1.0 10 fm

10 m1A

−

−
= = ×

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 (c) ( )
o

o
10

10

1A
1.0 m 1.0 m 1.0 10 A

10 m−
= = ×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

  

 (d) ( )
o

15 o
25

10

9.46 10 m 1A
1.0 ly 1.0 ly 9.5 10 A

1 ly 10 m−

×
= = ×

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
  

 
60. The volume of a sphere is found by 34

3 .V rπ=  

  ( )33 6 19 34 4
Moon Moon3 3 1.74 10 m 2.21 10 mV Rπ π= = × = ×   

  
3 33 64

EarthEarth 3 Earth
3 64

Moon Moon Moon3

6.38 10 m
49.3

1.74 10 m
RV R

V R R
π
π

×
= = = =

×
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

Thus it would take about 49.3  Moons to create a volume equal to that of the Earth. 
 
61. (a) Note that osin15.0 0.259=  and osin15.5 0.267,=  and so sin 0.267 0.259 0.008.θΔ = − =  

   
o

o

0.5
100 100 3%

15.0
θ
θ
Δ

= =
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
   

3sin 8 10
100 100 3%

sin 0.259
θ
θ

−Δ ×
= =
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 (b) Note that osin 75.0 0.966=  and osin 75.5 0.968,=  and so sin 0.968 0.966 0.002.θΔ = − =  

   
o

o

0.5
100 100 0.7%

75.0
θ
θ
Δ

= =
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
  

3sin 2 10
100 100 0.2%

sin 0.966
θ
θ

−Δ ×
= =
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 A consequence of this result is that when using a protractor, and you have a fixed uncertainty in the 
angle ( o0.5±  in this case), you should measure the angles from a reference line that gives a large 
angle measurement rather than a small one.  Note above that the angles around 75o had only a 0.2% 
error in sin θ , while the angles around 15o had a 3% error in sin θ. 

 

l 

d

60o 
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62.  Utilize the fact that walking totally around the Earth along the meridian would trace out a circle 
whose full 360o would equal the circumference of the Earth.   

 ( ) ( )3o

o

2 6.38 10 km1 0.621 mi
1 minute 1.15 mi

60 minute 360 1 km

π ×
=

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

 
63. Consider the body to be a cylinder, about 170 cm tall ( )5 7′ ′′≈ , and about 12 cm in cross-sectional 

radius (which corresponds to a 30-inch waist).  The volume of a cylinder is given by the area of the 
cross section times the height. 

  ( ) ( )22 2 3 2 30.12 m 1.7 m 7.69 10 m 8 10 mV r hπ π − −= = = × ≈ ×  
 
64. The maximum number of buses would be needed during rush hour.  We assume that a bus can hold  

50 passengers.   
 (a) The current population of Washington, D.C. is about half a million people.  We estimate that  

10% of them ride the bus during rush hour. 
1bus 1driver

50,000 passengers 1000drivers
50 passengers 1bus

× × ≈  

 (b) For Marion, Indiana, the population is about 50,000.  Because the town is so much smaller  
geographically, we estimate that only 5% of the current population rides the bus during rush 
hour. 

   
1bus 1driver

2500 passengers 50drivers
50 passengers 1bus

× × ≈  

 
65. The units for each term must be in liters, since the volume is in liters. 

[ ][ ] [ ] [ ]

[ ][ ] [ ] [ ]

[ ]

L
units of 4.1 m L    units of 4.1

m

L
units of 0.018 y L     units of 0.018

y

units of 2.69 L

= → =

= → =

=

 

 

66. 3 3
3

mass 8g
density 2.82 g cm 3g cm

volume 2.8325cm
= = = ≈  

 

67. (a) 
( )
( )

232 2
Earth Earth Earth

22 2 3
Moon Moon Moon

6.38 10 kmSA 4
13.4

SA 4 1.74 10 km

R R
R R

π
π

×
= = = =

×
 

 (b) 
( )
( )

333 34
EarthEarth 3 Earth

33 34 3
Moon Moon Moon3

6.38 10 kmV
49.3

V 1.74 10 km

R R
R R

π
π

×
= = = =

×
 

 

68. 
( )

23 23
9

22 2 26
Earth

# atoms 6.02 10 atoms 6.02 10 atoms atoms
1.18 10

m 4 m4 6.38 10 mRπ π

× ×
= = = ×

×
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69. Multiply the volume of a spherical universe times the density of matter, adjusted to ordinary matter.  
The volume of a sphere is 34

3 .rπ  

( ) ( ) ( )
315

26 3 94
3

51 51

9.46 10 m
1 10 kg m 13.7 10 ly 0.04

1ly

  3.65 10 kg 4 10 kg

m Vρ π− ×
= = × × ×

= × ≈ ×

⎛ ⎞
⎜ ⎟
⎝ ⎠   
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CHAPTER 2:  Describing Motion: Kinematics in One Dimension 
 
Responses to Questions 
 
1.  A car speedometer measures only speed, since it gives no indication of the direction in which the car 

is traveling. 
 
2.  If the velocity of an object is constant, the speed must also be constant. (A constant velocity means 

that the speed and direction are both constant.) If the speed of an object is constant, the velocity 
CAN vary. For example, a car traveling around a curve at constant speed has a varying velocity, 
since the direction of the velocity vector is changing. 

 
3.  When an object moves with constant velocity, the average velocity and the instantaneous velocity 

are the same at all times. 
 
4.  No, if one object has a greater speed than a second object, it does not necessarily have a greater 

acceleration. For example, consider a speeding car, traveling at constant velocity, which passes a 
stopped police car. The police car will accelerate from rest to try to catch the speeder. The speeding 
car has a greater speed than the police car (at least initially!), but has zero acceleration. The police 
car will have an initial speed of zero, but a large acceleration. 

 
5.  The accelerations of the motorcycle and the bicycle are the same, assuming that both objects travel 

in a straight line. Acceleration is the change in velocity divided by the change in time. The 
magnitude of the change in velocity in each case is the same, 10 km/h, so over the same time interval 
the accelerations will be equal. 

  
6.  Yes, for example, a car that is traveling northward and slowing down has a northward velocity and a 

southward acceleration. 
 
7.  Yes. If the velocity and the acceleration have different signs (opposite directions), then the object is 

slowing down. For example, a ball thrown upward has a positive velocity and a negative acceleration 
while it is going up. A car traveling in the negative x-direction and braking has a negative velocity 
and a positive acceleration. 

 
8.  Both velocity and acceleration are negative in the case of a car traveling in the negative x-direction 

and speeding up. If the upward direction is chosen as +y, a falling object has negative velocity and 
negative acceleration.  

 
9.  Car A is going faster at this instant and is covering more distance per unit time, so car A is passing 

car B. (Car B is accelerating faster and will eventually overtake car A.) 
 
10.  Yes. Remember that acceleration is a change in velocity per unit time, or a rate of change in 

velocity. So, velocity can be increasing while the rate of increase goes down. For example, suppose a 
car is traveling at 40 km/h and a second later is going 50 km/h. One second after that, the car’s speed 
is 55 km/h. The car’s speed was increasing the entire time, but its acceleration in the second time 
interval was lower than in the first time interval. 

 
11.  If there were no air resistance, the ball’s only acceleration during flight would be the acceleration 

due to gravity, so the ball would land in the catcher’s mitt with the same speed it had when it left the 
bat, 120 km/h. The path of the ball as it rises and then falls would be symmetric. 
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12.  (a) If air resistance is negligible, the acceleration of a freely falling object stays the same as the  
object falls toward the ground. (Note that the object’s speed increases, but since it increases at a 
constant rate, the acceleration is constant.) 

(b) In the presence of air resistance, the acceleration decreases. (Air resistance increases as speed  
increases. If the object falls far enough, the acceleration will go to zero and the velocity will 
become constant. See Section 5-6.)   

 
13.  Average speed is the displacement divided by the time. If the distances from A to B and from B to C 

are equal, then you spend more time traveling at 70 km/h than at 90 km/h, so your average speed 
should be less than 80 km/h. If the distance from A to B (or B to C) is x, then the total distance 
traveled is 2x. The total time required to travel this distance is x/70 plus x/90. Then 

 
2 2(90)(70)

79 km/h.
70 90 90 70

d x
v

t x x
= = = =

+ +
 

 
14.  Yes.  For example, a rock thrown straight up in the air has a constant, nonzero acceleration due to 

gravity for its entire flight. However, at the highest point it momentarily has a zero velocity. A car, at 
the moment it starts moving from rest, has zero velocity and nonzero acceleration.  

 
15.  Yes. Anytime the velocity is constant, the acceleration is zero. For example, a car traveling at a 

constant 90 km/h in a straight line has nonzero velocity and zero acceleration. 
 
16.  A rock falling from a cliff has a constant acceleration IF we neglect air resistance. An elevator 

moving from the second floor to the fifth floor making stops along the way does NOT have a 
constant acceleration. Its acceleration will change in magnitude and direction as the elevator starts 
and stops. The dish resting on a table has a constant acceleration (zero). 

 
17.  The time between clinks gets smaller and smaller. The bolts all start from rest and all have the same 

acceleration, so at any moment in time, they will all have the same speed. However, they have 
different distances to travel in reaching the floor and therefore will be falling for different lengths of 
time. The later a bolt hits, the longer it has been accelerating and therefore the faster it is moving. 
The time intervals between impacts decrease since the higher a bolt is on the string, the faster it is 
moving as it reaches the floor. In order for the clinks to occur at equal time intervals, the higher the 
bolt, the further it must be tied from its neighbor. Can you guess the ratio of lengths? 

 
18.  The slope of the position versus time curve is the velocity. The object starts at the origin with a 

constant velocity (and therefore zero acceleration), which it maintains for about 20 s. For the next 10 
s, the positive curvature of the graph indicates the object has a positive acceleration; its speed is 
increasing. From 30 s to 45 s, the graph has a negative curvature; the object uniformly slows to a 
stop, changes direction, and then moves backwards with increasing speed. During this time interval 
its acceleration is negative, since the object is slowing down while traveling in the positive direction 
and then speeding up while traveling in the negative direction. For the final 5 s shown, the object 
continues moving in the negative direction but slows down, which gives it a positive acceleration. 
During the 50 s shown, the object travels from the origin to a point 20 m away, and then back 10 m 
to end up 10 m from the starting position.  

 
19.  The object begins with a speed of 14 m/s and increases in speed with constant positive acceleration 

from t = 0 until t = 45 s. The acceleration then begins to decrease, goes to zero at t = 50 s, and then 
goes negative. The object slows down from t = 50 s to t = 90 s, and is at rest from t = 90 s to t = 108 
s. At that point the acceleration becomes positive again and the velocity increases from t = 108 s to 
t = 130 s.  
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Solutions to Problems 
 
1. The distance of travel (displacement) can be found by rearranging Eq. 2-2 for the average velocity.  

Also note that the units of the velocity and the time are not the same, so the speed units will be 
converted. 

( ) ( )1 h
 110 km h 2.0s 0.061 km 61 m

3600 s
 x

v x v t
t

Δ
= → Δ = Δ = = =
Δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

   
2.   The average speed is given by Eq. 2-2. 

235 km 3.25 h 72.3 km hv x t= Δ Δ = =  

 
3. The average velocity is given by Eq. 2.2. 

 
( )

8.5 cm 4.3cm 4.2 cm
0.65 cm s

4.5s 2.0 s 6.5s
x

v
t

Δ −
= = = =
Δ − −

 

The average speed cannot be calculated.  To calculate the average speed, we would need to know the 
actual distance traveled, and it is not given.  We only have the displacement. 

 
4. The average velocity is given by Eq. 2-2. 

  
4.2 cm 3.4 cm 7.6 cm

3.6 cm s
5.1s 3.0s 2.1s

x
v

t
Δ − − −

= = = = −
Δ −

 

 The negative sign indicates the direction. 
 
5. The speed of sound is intimated in the problem as 1 mile per 5 seconds.  The speed is calculated as 

follows. 
distance 1mi 1610 m

speed 300 m s
time 5s 1 mi

= = =
⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

The speed of 300 m s  would imply the sound traveling a distance of 900 meters (which is 
approximately 1 km) in 3 seconds.  So the rule could be approximated as  1 km every 3 seconds . 

 
6. The time for the first part of the trip is calculated from the initial speed and the first distance.   

1 1
1 1

1 1

130 km
1.37 h 82 min

95km h
x x

v t
t v

Δ Δ
= → Δ = = = =
Δ

 

 The time for the second part of the trip is now calculated. 
2 total 1 3.33 h 1.37 h 1.96 h 118 mint t tΔ = Δ − Δ = − = =  

The distance for the second part of the trip is calculated from the average speed for that part of the 
trip and the time for that part of the trip. 

( )( ) 22
2 2 2 2

2

65 km h 1.96 h 127.5 km 1.3 10 km
x

v x v t
t

Δ
= → Δ = Δ = = = ×
Δ

 

 (a) The total distance is then 2
total 1 2 130 km 127.5 km 257.5 km 2.6 10 km .x x xΔ = Δ + Δ = + = ≈ ×  

 (b) The average speed is NOT the average of the two speeds.  Use the definition of average speed,  
Eq. 2-2. 

   total

total

257.5 km
77 km h

3.33 h
x

v
t

Δ
= = =
Δ
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7. The distance traveled is ( )1
2116 km 116 km 174 km,+ =  and the displacement is  

( )1
2116 km 116 km 58 km.− =  The total time is 14.0 s + 4.8 s = 18.8 s. 

(a)  Average speed = distance 174 m
9.26 m s

time elapsed 18.8 s
= =  

  (b)  Average velocity = avg
displacement 58 m

3.1m s
time elapsed 18.8 s

v = = =  

 
8. (a) 

 
 

  
 
 
 
 
 
 
 
 
 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH02.XLS”, on tab “Problem 2.8a”. 

(b) The average velocity is the displacement divided by the elapsed time. 

   
( ) ( ) ( ) ( ) ( )334 10 3.0 2 3.0 m 34 m3.0 0.0

8.0 m s
3.0s 0.0s 3.0s

x x
v

+ − −−
= = = −

−

⎡ ⎤⎣ ⎦  

 (c) The instantaneous velocity is given by the derivative of the position function. 

   ( )2 2 5
10 6 m s         10 6 0    s 1.3s

3
dx

v t t t
dt

= = − − = → = =  

  This can be seen from the graph as the “highest” point on the graph. 
 
9. Slightly different answers may be obtained since the data comes from reading the graph. 
  (a) The instantaneous velocity is given by the slope of the tangent line to the curve.  At 10.0s,t =   

the slope is approximately ( ) 3m 0
10 0.3m s

10.0 s 0
.v

−
≈ =

−
 

 (b) At 30.0 s,t =  the slope of the tangent line to the curve, and thus the instantaneous velocity, is  

approximately ( ) 22 m 10 m
30 1.2 m s

35s 25s
.v

−
≈ =

−
 

 (c)  The average velocity is given by ( ) ( )5 0 1.5m 0
0.30 m s

5.0s 0s 5.0s
.x x

v
− −

= = =
−

 

 (d)  The average velocity is given by ( ) ( )30 25 16 m 9 m
1.4 m s

30.0s 25.0s 5.0s
.x x

v
− −

= = =
−

 

 (e)  The average velocity is given by ( ) ( )50 40 10 m 19.5 m
0.95 m s

50.0s 40.0s 10.0s
.x x

v
− −

= = = −
−

 

 
 

0

10

20

30

40

50

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t  (sec)

x 
(m

)
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10. (a) Multiply the reading rate times the bit density to find the bit reading rate. 

   6
6

1.2 m 1bit
4.3 10 bits s

1s 0.28 10 m
N

−
= × = ×

×
  

 (b) The number of excess bits is 0.N N−  

   6 6 6
0 4.3 10 bits s 1.4 10 bits s 2.9 10 bits sN N− = × − × = ×  

   
6

0
6

2.9 10 bits s
0.67 67%

4.3 10 bits s
N N

N
− ×

= = =
×

 

 
11. Both objects will have the same time of travel.  If the truck travels a distance truck ,xΔ  then the 

distance the car travels will be car truck 110 m.x xΔ = Δ +   Use Eq. 2-2 for average speed, ,v x t= Δ Δ  
solve for time, and equate the two times. 

truck car truck truck

truck car

110 m
        

75 km h 95 km h
x x x x

t
v v
Δ Δ Δ Δ +

Δ = = =  

Solving for truckxΔ  gives ( ) ( )
( )truck

75km h
110 m 412.5m.

95km h 75km h
xΔ = =

−
 

The time of travel is 1truck

truck

412.5 m 60 min
0.33min 19.8s 2.0 10 s

75000 m h 1h
x

t
v
Δ

Δ = = = = = ×
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

Also note that car

car

412.5m 110 m 60 min
0.33min 20s.

95000 m h 1h
x

t
v
Δ +

Δ = = = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

 ALTERNATE SOLUTION: 
 The speed of the car relative to the truck is 95km h 75km h 20 km h− = .  In the reference frame of 

the truck, the car must travel 110 m to catch it. 

  
0.11 km 3600 s

19.8 s
20 km h 1 h

tΔ = =⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
12. Since the locomotives have the same speed, they each travel half the distance, 4.25 km.  Find the 

time of travel from the average speed. 
4.25 km 60 min

0.0447 h 2.68 min 2.7 min
95km h 1 h

x x
v t

t v
Δ Δ

= → Δ = = = = ≈
Δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
13. (a) The area between the concentric circles is equal to the length times the width of the spiral path. 

   ( ) ( ) ( )

2 2
2 1

2 22 2
2 1 3

6

  

0.058m 0.025m
5.378 10 m 5400 m

1.6 10 m

R R w

R R

w

π π

ππ
−

− = →

−−
= = = × ≈

×

⎡ ⎤⎣ ⎦

l

l

 

 (b) 3 1s 1min
5.378 10 m 72 min

1.25 m 60s
× =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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14. The average speed for each segment of the trip is given by ,x
v

t
Δ

=
Δ

 so 
x

t
v
Δ

Δ =  for each  

segment.  For the first segment, 1
1

1

3100 km
4.306 h.

720 km h
x

t
v
Δ

Δ = = =   For the second segment, 

2
2

2

2800 km
2.828h.

990 km h
x

t
v
Δ

Δ = = = .  

Thus the total time is tot 1 2 4.306 h 2.828 h 7.134 h 7.1h .t t tΔ = Δ + Δ = + = ≈  

The average speed of the plane for the entire trip is tot

tot

3100 km 2800 km
827 km h

7.134 h
x

v
t

Δ +
= = =
Δ  

830 km h .≈  

 
15. The distance traveled is 500 km (250 km outgoing, 250 km return, keep 2 significant figures).  The 

displacement ( )xΔ is 0 because the ending point is the same as the starting point. 
(a) To find the average speed, we need the distance traveled (500 km) and the total time elapsed.   

During the outgoing portion, 1
1

1

x
v

t
Δ

=
Δ

 and so 1
1

1

250 km
2.632 h.

95km h
x

t
v
Δ

Δ = = =   During the 

return portion, 2
2

2

,x
v

t
Δ

=
Δ

 and so 2
2

2

250 km
4.545h.

55km h
x

t
v
Δ

Δ = = =   Thus the total time, 

including lunch, is total 1 lunch 2 8.177 h.t t t tΔ = Δ + Δ + Δ =  

total

total

500 km
61km h

8.177 h
x

v
t

Δ
= = =
Δ

 

(b) Average velocity = 0v x t= Δ Δ =  

 
16. We are given that ( ) ( ) ( )2 22.0 m 3.6 m s 1.1m s .x t t t= − +  

 (a) ( ) ( )( ) ( )( )221.0s 2.0 m 3.6 m s 1.0s 1.1m s 1.0s 0.5mx = − + = −  

  
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

22

22

2.0s 2.0 m 3.6 m s 2.0s 1.1m s 2.0s 0.8 m

3.0s 2.0 m 3.6 m s 3.0s 1.1m s 3.0s 1.1m

x

x

= − + = −

= − + =
 

 (b) 
( )1.1m 0.5m

0.80 m s
2.0s

x
v

t
− −Δ

= = =
Δ

 

 (c) The instantaneous velocity is given by ( ) ( ) ( )23.6 m s 2.2 m s .
dx t

v t t
dt

= = − +  

   
( ) ( )( )
( ) ( )( )

2

2

2.0s 3.6 m s 2.2 m s 2.0s 0.8 m s

3.0s 3.6 m s 2.2 m s 3.0s 3.0 m s

v

v

= − + =

= − + =
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17. The distance traveled is ( )1
2120 m 120 m 180 m,+ =  and the displacement is  

( )1
2120 m 120 m 60 m.− =   The total time is ( )1

38.4s 8.4s 11.2s.+ =  

(a)  Average speed = 
distance 180 m

16 m s
time elapsed 11.2 s

= =  

  (b)  Average velocity = ( ) ( )avg

displacement 60 m
5m s  1 sig fig

time elapsed 11.2 s
in original directionv = = = +  

 
18. For the car to pass the train, the car must travel the length of the train AND the distance the train 

travels.  The distance the car travels can thus be written as either ( )car car 95km hd v t t= =  or 

( )car train train 1.10 km 75km h .d v t t= + = +l   To solve for the time, equate these two expressions for 
the distance the car travels.  

( ) ( ) 1.10 km
95 km h 1.10 km 75 km h     0.055 h 3.3 min

20 km h
t t t= + → = = =  

The distance the car travels during this time is ( ) ( )95 km h 0.055 h 5.225 km 5.2 km .d = = ≈  
 

 If the train is traveling the opposite direction from the car, then the car must travel the length of the 
train MINUS the distance the train travels.  Thus the distance the car travels can be written as either 

( )car 95 km hd t=  or ( )car 1.10 km 75 km h .d t= −   To solve for the time, equate these two 
expressions for the distance the car travels. 

  ( ) ( ) 31.10 km
95 km h 1.10 km 75 km h     6.47 10  h 23.3 s

170 km h
t t t −= − → = = × =   

The distance the car travels during this time is ( ) ( )395 km h 6.47 10  h 0.61 km .d −= × =  

 
19. The average speed of sound is given by sound ,v x t= Δ Δ  and so the time for the sound to travel from 

the end of the lane back to the bowler is 2
sound

sound

16.5 m
4.85 10 s.

340 m s
t

v
x −Δ = = = ×

Δ
  Thus the time for 

the ball to travel from the bowler to the end of the lane is given by ball total soundt t tΔ = Δ − Δ =  
22.50s 4.85 10 s 2.4515s.−− × =    And so the speed of the ball is as follows.

 ball
ball

16.5m
6.73m s

2.4515s
.x

v
t
Δ

= = =
Δ

 

 
20. The average acceleration is found from Eq. 2-5. 

( )
2

1m s
95km h

3.6 km h95km h 0 km h
5.9 m s

4.5s 4.5s
v

a
t

Δ −
= = = =
Δ

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 
21. The time can be found from the average acceleration, .a v t= Δ Δ  

( )
2 2

1m s
30 km h

3.6 km h110 km h 80 km h
4.630s 5s

1.8 m s 1.8 m s
v

t
a
Δ −

Δ = = = = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠  
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22. (a) The average acceleration of the sprinter is 29.00 m s 0.00 m s
7.03m s

1.28 s
.v

a
t

Δ −
= = =
Δ

 

(b) ( )
2

2 4 21 km 3600 s
7.03m s 9.11 10 km h

1000 m 1 h
a = = ×⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
23.   Slightly different answers may be obtained since the data comes from reading the graph. 

(a) The greatest velocity is found at the highest point on the graph, which is at 48 s .t ≈  
 (b) The indication of a constant velocity on a velocity–time graph is a slope of 0, which occurs  

from 90 s  to  108 s .t t= ≈  
 (c) The indication of a constant acceleration on a velocity–time graph is a constant slope, which  

occurs from 0 s  to  42 s ,t t= ≈  again from 65 s  to  83 s ,t t≈ ≈  and again from 

90 s  to  108 s .t t= ≈  
 (d) The magnitude of the acceleration is greatest when the magnitude of the slope is greatest, which  

occurs from 65 s  to  83 s .t t≈ ≈  
 
24. The initial velocity of the car is the average speed of the car before it accelerates. 

0

110 m
22 m s

5.0 s
x

v v
t

Δ
= = = =
Δ

 

The final speed is 0v = , and the time to stop is 4.0 s.  Use Eq. 2-12a to find the acceleration. 
20

0

0 22 m s
    5.5 m s

4.0 s
v v

v v at a
t
− −

= + → = = = −  

Thus the magnitude of the acceleration is 25.5 m s ,  or ( )2
2

1 
5.5 m s 0.56 ' s

9.80 m s
.g

g=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

25. (a) 385 m 25 m
21.2 m s

20.0s 3.0 s
x

v
t

Δ −
= = =
Δ −

 

 

 (b) 245.0 m s 11.0 m s
2.00 m s

20.0s 3.0 s
v

a
t

Δ −
= = =
Δ −

 

 
26. Slightly different answers may be obtained since the data comes from reading the graph.  We assume  

that the short, nearly horizontal portions of the graph are the times that shifting is occurring, and 
those times are not counted as being “in” a certain gear. 

(a) The average acceleration in 2nd gear is given by 22
2

2

24 m s 14 m s
2.5 m s

8s 4 s
.v

a
t

Δ −
= = =
Δ −

 

(b) The average acceleration in 4th gear is given by 24
4

4

44 m s 37 m s
0.6 m s

27 s 16s
.v

a
t

Δ −
= = =
Δ −

 

(c) The average acceleration through the first four gears is given by v
a

t
Δ

= =
Δ

  

 244 m s 0 m s
1.6 m s

27 s 0 s
.v

a
t

Δ −
= = =
Δ −
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27. The acceleration is the second derivative of the position function. 

  
2

2 2
2

6.8 8.5     6.8 17.0     17.0 m s
dx d x dv

x t t v t a
dt dt dt

= + → = = + → = = =  

 
28. To estimate the velocity, find the average velocity over 

each time interval, and assume that the car had that velocity 
at the midpoint of the time interval.  To estimate the 
acceleration, find the average acceleration over each time 
interval, and assume that the car had that acceleration at the 
midpoint of the time interval.  A sample of each calculation 
is shown. 

 

From 2.00 s to 2.50 s, for average velocity:   

mid

avg

2.50 s 2.00 s
2.25 s

2
13.79 m 8.55 m 5.24 m

10.48 m s
2.50 s 2.00 s 0.50 s

t

x
v

t

+
= =

Δ −
= = = =
Δ −

 

 
 From 2.25 s to 2.75 s, for average acceleration: 

mid

avg

2

2.25 s 2.75 s
2.50 s

2
13.14 m s 10.48 m s 2.66 m s

2.75 s 2.25 s 0.50 s
    5.32 m s

t

v
a

t

+
= =

Δ −
= = =
Δ −

=

  

 
 
 

 

0

5

10

15

20

25

30

0 1 2 3 4 5 6
t  (s)

v 
(m

/s
)

0

1

2

3

4

5

6

0 1 2 3 4 5 6
t  (s)

a
 (m

/s2 )

 
The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH02.XLS,” on tab “Problem 2.28.” 

 
29. (a) Since the units of A times the units of t must equal meters, the units of A must be m s .  

  Since the units of B times the units of 2t  must equal meters, the units of B must be  
2m s .  

 
 
 

t (s) x (m) t (s) v  (m/s) t (s) a (m/s2)
0.00 0.00 0.00 0.00

0.125 0.44
0.25 0.11 0.25 3.84

0.375 1.40
0.50 0.46 0.50 4.00

0.625 2.40
0.75 1.06 0.75 4.48

0.875 3.52
1.00 1.94 1.06 4.91

1.25 5.36
1.50 4.62 1.50 5.00

1.75 7.86
2.00 8.55 2.00 5.24

2.25 10.48
2.50 13.79 2.50 5.32

2.75 13.14
3.00 20.36 3.00 5.52

3.25 15.90
3.50 28.31 3.50 5.56

3.75 18.68
4.00 37.65 4.00 5.52

4.25 21.44
4.50 48.37 4.50 4.84

4.75 23.86
5.00 60.30 5.00 4.12

5.25 25.92
5.50 73.26 5.50 3.76

5.75 27.80
6.00 87.16

0.063 3.52

Table of Calculations 
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 (b) The acceleration is the second derivative of the position function. 

   
2

2 2
2

    2     2 m s
dx d x dv

x At Bt v A Bt a B
dt dt dt

= + → = = + → = = =  

 (c) ( ) ( ) 22     5 10 m s 2 m s     v A Bt v A B a B= + → = + =  

  
(d) The velocity is the derivative of the position function. 

   3 4    3
dx

x At Bt v A Bt
dt

− −= + → = = −  

 
30. The acceleration can be found from Eq. 2-12c. 

( ) ( )
( )
( )

22 2
2 2 20

0 0
0

0 25 m s
2     3.7 m s

2 2 85 m
v v

v v a x x a
x x

−−
= + − → = = = −

−
 

 

31. By definition, the acceleration is 20 21m s 12 m s
1.5 m s

6.0 s
.v v

a
t
− −

= = =  

 The distance of travel can be found from Eq. 2-12b. 
( ) ( ) ( ) ( )22 21 1

0 0 2 212 m s 6.0 s 1.5m s 6.0 s 99 mx x v t at− = + = + =  

 
32. Assume that the plane starts from rest.  The runway distance is found by solving Eq. 2-12c for 

0.x x−  

( ) ( )
( )

22 2
2 2 20

0 0 0 2

32 m s 0
2     1.7 10 m

2 2 3.0 m s
v v

v v a x x x x
a

−−
= + − → − = = = ×  

 
33. For the baseball, 0 0v = , 0 3.5m,x x− =  and the final speed of the baseball (during the throwing 

motion) is 41m s.v =   The acceleration is found from Eq. 2-12c. 

( ) ( )
( )

( )

22 2
2 2 20

0 0
0

41m s 0
2     240 m s

2 2 3.5 m
v v

v v a x x a
x x

−−
= + − → = = =

−
 

 

34. The average velocity is defined by Eq. 2-2, 0 .x x x
v

t t
Δ −

= =
Δ

  Compare this expression to Eq. 2-

12d, ( )1
02 .v v v= +   A relation for the velocity is found by integrating the expression for the 

acceleration, since the acceleration is the derivative of the velocity.  Assume the velocity is 0v  at 
time 0.t =  

  ( ) ( )
0

21
0 2

0

            
v t

v

dv
a A Bt dv A Bt dt dv A Bt dt v v At Bt

dt
= + = → = + → = + → = + +∫ ∫  

 Find an expression for the position by integrating the velocity, assuming that 0x x=  at time 0.t =  

  
( )

( )
0

2 21 1
0 02 2

2 2 31 1 1
0 0 02 2 6

0

      

    
x t

x

dx
v v At Bt dx v At Bt dt

dt

dx v At Bt dt x x v t At Bt

= + + = → = + + →

= + + → − = + +∫ ∫
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 Compare 0x x
t
−

 to ( )1
02 .v v+  

  
2 31 1

22 60 0 1 1
0 2 6

x x v t At Bt
v v At Bt

t t
− + +

= = = + +  

  ( )
21

220 01 1 1
0 02 2 42

v v At Bt
v v v At Bt

+ + +
+ = = + +  

 They are different, so ( )1
02 .v v v≠ +  

 
35. The sprinter starts from rest.  The average acceleration is found from Eq. 2-12c. 

( ) ( )
( )

( )

22 2
2 2 2 20

0 0
0

11.5 m s 0
2     4.408 m s 4.41m s

2 2 15.0 m
v v

v v a x x a
x x

−−
= + − → = = = ≈

−
 

 Her elapsed time is found by solving Eq. 2-12a for time. 
0

0 2

11.5 m s 0
    2.61 s

4.408 m s
v v

v v at t
a
− −

= + → = = =  

 
36. Calculate the distance that the car travels during the reaction time and the deceleration. 

( ) ( )1 0 18.0 m s 0.200s 3.6 mx v tΔ = Δ = =  

( )
( )

22 2
2 2 0

0 2 2 2

0 18.0 m s
2     44.4 m

2 2 3.65 m s

3.6 m 44.4 m 48.0 m

v v
v v a x x

a

x

−−
= + Δ → Δ = = =

−

Δ = + =

 

 He will NOT be able to stop in time.  
 
37. The words “slows down uniformly” implies that the car has a constant acceleration.  The distance of 

travel is found from combining Eqs. 2-2 and 2-9. 

( )0
0

18.0 m s 0 m s
5.00 sec 45.0 m

2 2
v v

x x t
+ +

− = = =⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
38. The final velocity of the car is zero.  The initial velocity is found from Eq. 2-12c with 0v =  and 

solving for 0.v   Note that the acceleration is negative. 

( ) ( ) ( )( )2 2 2 2
0 0 0 02     2 0 2 4.00 m s 85 m 26 m sv v a x x v v a x x= + − → = − − = − − =  

 
39. (a) The final velocity of the car is 0.  The distance is found from Eq. 2-12c with an acceleration of  

20.50 m sa = −  and an initial velocity of 85 km h.  

   
( )

( )

2

2 2
0

0 2

1m s
0 85 km h

3.6 km h
557 m 560 m

2 2 0.50 m s
v v

x x
a

−
−

− = = = ≈
−

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  

(b) The time to stop is found from Eq. 2-12a. 

   
( )

( )
0

2

1m s
0 85 km h

3.6 km h
47.22 s 47 s

0.50 m s
v v

t
a

−
−

= = = ≈
−

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  
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 (c) Take ( )0 0 0 m.x x t= = =   Use Eq. 2-12b, with 20.50 m sa = − and an initial velocity  
of 85 km h.   The first second is from 0 st =  to 1s,t =  and the fifth second is from 4 st =  to 

5s.t =  

   
( ) ( ) ( ) ( ) ( )( )

( ) ( )

221
2

1m s
0 0  ;  1 0 85 km h 1s 0.50 m s 1s 23.36 m  

3.6 km h

1 0 23 m

x x

x x

= = + + − = →

− =

⎛ ⎞
⎜ ⎟
⎝ ⎠  

   

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )

221
2

221
2

1m s
4 0 85 km h 4 s 0.50 m s 4 s 90.44 m

3.6 km h

1m s
5 0 85 km h 5s 0.50 m s 5s 111.81m

3.6 km h

5 4 111.81m 90.44 m 21.37m 21m

x

x

x x

= + + − =

= + + − =

− = − = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
40. The final velocity of the driver is zero.  The acceleration is found from Eq. 2-12c with 0v =  and   

solving for a . 

( )

( )

( )

2

2 2
2 2 20

0

1m s
0 105 km h

3.6 km h
531.7 m s 5.3 10 m s

2 2 0.80 m
v v

a
x x

−
−

= = = − ≈ − ×
−

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  

Converting to “g’s”:  ( )
2

2

531.7 m s
54 's

9.80 m s
a g

g
−

= = −  

 
41. The origin is the location of the car at the beginning of the reaction time.  The initial speed of the car 

is ( ) 1m s
95 km h 26.39 m s

3.6 km h
.=

⎛ ⎞
⎜ ⎟
⎝ ⎠

  The location where the brakes are applied is found from 

the equation for motion at constant velocity: ( ) ( )0 0 26.39 m s 1.0 s 26.39 m.Rx v t= = =   This is now 
the starting location for the application of the brakes.  In each case, the final speed is 0. 
(a) Solve Eq. 2-12c for the final location.  

( ) ( )
( )

22 2
2 2 0

0 0 0 2

0 26.39 m s
2     26.39 m 96 m

2 2 5.0 m s
v v

v v a x x x x
a

−−
= + − → = + = + =

−
 

(b) Solve Eq. 2-12c for the final location with the second acceleration. 
( )
( )

22 2
0

0 2

0 26.39 m s
26.39 m 76 m

2 2 7.0 m s
v v

x x
a

−−
= + = + =

−
 

 
42. Calculate the acceleration from the velocity–time data using Eq. 2-12a, and then use Eq. 2-12b to 

calculate the displacement at 2.0st =  and 6.0s.t =   The initial velocity is 0 65 m s.v =  

  
( ) ( ) ( ) ( )( ) ( ) ( )( )

2 20 1
0 0 2

2 21 1
0 0 0 02 2

162 m s 65 m s
9.7 m s       

10.0s

6.0s 2.0s 6.0s 6.0s 2.0s 2.0s

v v
a x x v t at

t

x x x v a x v a

− −
= = = = + + →

− = + + − + +⎡ ⎤⎣ ⎦
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( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 21 1
0 2 2

2

   6.0s 2.0s 6.0s 2.0s 65 m s 4.0s 9.7 m s 32 s

   415 m 4.2 10 m

v a= − + − = +

= ≈ ×

⎡ ⎤⎣ ⎦  

 
43. Use the information for the first 180 m to find the acceleration, and the information for the full 

motion to find the final velocity.  For the first segment, the train has 0 0 m s ,v = 1 23 m s ,v =  and a 
displacement of 1 0 180 m.x x− =   Find the acceleration from Eq. 2-12c. 

( ) ( )
( )

( )

22 2
2 2 21 0
1 0 1 0

1 0

23m s 0
2     1.469 m s

2 2 180 m
v v

v v a x x a
x x

−−
= + − → = = =

−
 

 Find the speed of the train after it has traveled the total distance (total displacement of 
2 0 255 m)x x− = using Eq. 2-12c. 

( ) ( ) ( )( )2 2 2 2
2 0 2 0 2 0 2 02     2 2 1.469 m s 255 m 27 m sv v a x x v v a x x= + − → = + − = =  

 
44. Define the origin to be the location where the speeder passes the police car.  Start a timer at the 

instant that the speeder passes the police car, and find another time that both cars have the same 
displacement from the origin. 

 

For the speeder, traveling with a constant speed, the displacement is given by the following. 

( ) ( ) ( )1m s
135 km h 37.5  m

3.6 km hs sx v t t tΔ = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

For the police car, the displacement is given by two components.  The first part is the distance 
traveled at the initially constant speed during the 1 second of reaction time. 

( ) ( ) ( )1 1

1m s
1.00s 95km h 1.00s 26.39 m

3.6 km hp px vΔ = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The second part of the police car displacement is that during the accelerated motion, which lasts for  
( )1.00 s.t −   So this second part of the police car displacement, using Eq. 2-12b, is given as follows.  

( ) ( ) ( ) ( ) ( ) ( )2 221 1
2 1 2 21.00 1.00 26.39 m s 1.00 2.00 m s 1.00 mp p px v t a t t tΔ = − + − = − + −⎡ ⎤

⎣ ⎦  

So the total police car displacement is ( ) ( )( )2
1 2 26.39 26.39 1.00 1.00 m.p p px x x t tΔ = Δ + Δ = + − + −  

Now set the two displacements equal, and solve for the time. 
( ) ( )

( )

2 2

2

2

26.39 26.39 1.00 1.00 37.5         13.11 1.00 0

13.11 13.11 4.00
7.67 10 s , 13.0s

2

t t t t t

t −

+ − + − = → − + =

± −
= = ×

 

The answer that is approximately 0 s corresponds to the fact that both vehicles had the same 
displacement of zero when the time was 0.  The reason it is not exactly zero is rounding of previous 
values.  The answer of 13.0 s is the time for the police car to overtake the speeder. 

  

As a check on the answer, the speeder travels ( ) ( )37.5 m s 13.0 s 488 m,sxΔ = =  and the police car 

travels ( ) ( )226.39 26.39 12.0 12.0 m 487 m.pxΔ = + + =⎡ ⎤⎣ ⎦ .  The difference is due to rounding. 
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45. Define the origin to be the location where the speeder passes the police car.  Start a timer at the 
instant that the speeder passes the police car.  Both cars have the same displacement 8.00 s after the 
initial passing by the speeder. 

 

For the speeder, traveling with a constant speed, the displacement is given by ( )8.00 m.s s sx v t vΔ = =    
For the police car, the displacement is given by two components.  The first part is the distance 
traveled at the initially constant speed during the 1.00 s of reaction time. 

( ) ( ) ( )1 1

1m s
1.00s 95 km h 1.00s 26.39 m

3.6 km hp px vΔ = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The second part of the police car displacement is that during the accelerated motion, which lasts for  
7.00 s.  So this second part of the police car displacement, using Eq. 2-12b, is given by the following. 

( ) ( ) ( ) ( ) ( ) ( )2 221 1
2 1 2 27.00s 7.00 s 26.39 m s 7.00 s 2.00 m s 7.00s =233.73 mp p px v aΔ = + = +  

Thus the total police car displacement is ( )1 2 26.39 233.73 m 260.12 m.p p px x xΔ = Δ + Δ = + =  
Now set the two displacements equal, and solve for the speeder’s velocity. 

( ) ( ) 3.6 km h
8.00 m 260.12 m    32.5m s 117 km h

1m ss sv v= → = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
46. During the final part of the race, the runner must have a displacement of 1100 m in a time of 180 s 

(3.0 min).  Assume that the starting speed for the final part is the same as the average speed thus far. 

( ) 0

8900 m
5.494 m s

27 60  s
x

v
t

v Δ
= = =

Δ ×
=  

The runner will accomplish this by accelerating from speed 0v  to speed v for t seconds, covering a 
distance 1,d  and then running at a constant speed of v for ( )180 t− seconds, covering a distance 2.d   
We have these relationships from Eq. 2-12a and Eq. 2-12b. 

( ) ( ) ( )
( ) ( )

21
1 2 02

2 21 1
1 2 0 02 2

                    180 180

1100 m 180     1100 m 180 180     
o o

o

v v at d v t at d v t v at t

d d v t at v at t v at at

= + = + = − = + −

= + = + + + − → = + − →

  
( ) ( ) ( ) ( ) ( )2 2 21

2

2

1100 m 180 s 5.494 m s 180 s 0.2 m s 0.2 m s

0.1 36 111 0        357 s , 3.11 s

t t

t t t

= + −

− + = =
 

Since we must have 180 st < , the solution is 3.1s .t =  

 
47. For the runners to cross the finish line side-by-side means they must both reach the finish line in the 

same amount of time from their current positions.  Take Mary’s current location as the origin.  Use 
Eq. 2-12b. 

 

 For Sally: ( ) 2 21
222 5 5 .5     20 68 0  t t t t= + + − → − + = →   

( )220 20 4 68
4.343s, 15.66s

2
t

± −
= =  

The first time is the time she first crosses the finish line, and so is the time to be used for the 
problem.  Now find Mary’s acceleration so that she crosses the finish line in that same amount of 
time. 

For Mary: 
( )

( )
2 21

2 221 1
2 2

22 4 4.34322 4
22 0 4     0.49 m s

4.343

t
t at a

t
−−

= + + → = = =  
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48. Choose downward to be the positive direction, and take 0 0y =  at the top of the cliff.  The initial 

velocity is 0 0,v =  and the acceleration is 29.80 m s .a =   The displacement is found from Eq. 2-
12b, with x replaced by y. 

( ) ( )22 21 1
0 0 2 2    0 0 9.80 m s 3.75 s     68.9 my y v t at y y= + + → − = + → =  

 
49. Choose downward to be the positive direction.  The initial velocity is 0 0,v =  the final velocity is 

( ) 1m s
55km h 15.28 m s

3.6 km h
,v = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and the acceleration is 29.80 m s .a =   The time can be 

found by solving Eq. 2-12a for the time. 

  0
0 2

15.28 m s 0
    1.6s

9.80 m s
v v

v v at t
a
− −

= + → = = =  

 
50. Choose downward to be the positive direction, and take 0 0y =  to be at the top of the Empire State 

Building.  The initial velocity is 0 0,v =  and the acceleration is 29.80 m s .a =    
(a) The elapsed time can be found from Eq. 2-12b, with x replaced by y. 

( )21
0 0 2 2

2 380 m2
      8.806s 8.8 s

9.80 m s
y

y y v t at t
a

− = + → = = = ≈ . 

 (b)  The final velocity can be found from Eq. 2-12a. 
( )( )2

0 0 9.80 m s 8.806 s 86 m sv v at= + = + =  

 
51. Choose upward to be the positive direction, and take 0 0y =  to be at the height where the ball was 

hit.  For the upward path, 0 20 m s ,v =  0v =  at the top of the path, and 29.80 m s .a = −  
(a)  The displacement can be found from Eq. 2-12c, with x replaced by y . 

( ) ( )
( )

22 2
2 2 0

0 0 0 2

0 20 m s
2     0 20 m

2 2 9.80 m s
v v

v v a y y y y
a

−−
= + − → = + = + =

−
 

(b) The time of flight can be found from Eq. 2-12b, with x replaced by y , using a displacement of 0  
for the displacement of the ball returning to the height from which it was hit. 

( ) ( )2 01 1
0 0 02 2 2

2 20 m s2
0      0      0 , 4 s

9.80 m s
v

y y v t at t v at t t
a

= + + = → + = → = = = =
−

 

The result of t = 0 s is the time for the original displacement of zero (when the ball was hit), and 
the result of t = 4 s is the time to return to the original displacement.  Thus the answer is t = 4 s. 

 
 
52. Choose upward to be the positive direction, and take 0 0y =  to be the height from which the ball 

was thrown.  The acceleration is 29.80 m s .a = −   The displacement upon catching the ball is 0, 
assuming it was caught at the same height from which it was thrown.  The starting speed can be 
found from Eq. 2-12b, with x replaced by y. 

( )( )

21
0 0 2

21
20 2 1 1

0 2 2

0   

9.80 m s 3.2 s 15.68 m s 16 m s

y y v t at

y y at
v at

t

= + + = →

− −
= = − = − − = ≈
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The height can be calculated from Eq. 2-12c, with a final velocity of 0v =  at the top of the path. 

( ) ( )
( )

22 2
2 2 0

0 0 0 2

0 15.68 m s
2     0 12.54 m 13 m

2 2 9.80 m s
v v

v v a y y y y
a

−−
= + − → = + = + = ≈

−
 

 
53. Choose downward to be the positive direction, and take 0 0y =  to be at the maximum height of the 

kangaroo.  Consider just the downward motion of the kangaroo.  Then the displacement is 
1.65 m,y =  the acceleration is 29.80 m s ,a =  and the initial velocity is 0 0 m s.v =   Use Eq. 2-

12b to calculate the time for the kangaroo to fall back to the ground.  The total time is then twice the 
falling time. 

  
( )

( )

2 21 1
0 0 fall2 2

total 2

2
0            

2 1.65 m2
2 2 1.16 s

9.80 m s

y
y y v t at y at t

a

y
t

a

= + + = → = → = →

= = =
 

 
54. Choose upward to be the positive direction, and take 0 0y =  to be at the floor level, where the jump 

starts.  For the upward path, 1.2 my = , 0v =  at the top of the path, and 29.80 m sa = − . 
(a)  The initial speed can be found from Eq. 2-12c, with x replaced by y . 

 
( )
( ) ( )( )

2 2
0 0

2 2
0 0

2   

2 2 2 9.80 m s 1.2 m 4.8497 m s 4.8 m s

v v a y y

v v a y y ay

= + − →

= − − = − = − − = ≈
 

(b) The time of flight can be found from Eq. 2-12b, with x replaced by y , using a displacement of 0  
for the displacement of the jumper returning to the original height. 

( )
( )

21 1
0 0 02 2

0
2

0      0   

2 4.897 m s2
0 , 0.99 s

9.80 m s

y y v t at t v at

v
t t

a

= + + = → + = →

= = = =
−

 

The result of t = 0 s is the time for the original displacement of zero (when the jumper started to 
jump), and the result of t = 0.99 s is the time to return to the original displacement.  Thus the 
answer is t = 0.99 seconds. 

 
55. Choose downward to be the positive direction, and take 0 0y =  to be the height where the object 

was released. The initial velocity is 0 5.10 m s ,v = −  the acceleration is 29.80 m s ,a =  and the 
displacement of the package will be 105 m.y =   The time to reach the ground can be found from 
Eq. 2-12b, with x replaced by y. 

( ) ( )2 2 201
0 0 2 2 2

2 5.10 m s 2 105 m2 2
     0     0   

9.80 m s 9.80 m s
5.18s ,  4.14s

v y
y y v t at t t t t

a a
t

−
= + + → + − = → + − = →

= −

   

 The correct time is the positive answer, 5.18s .t =  
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56. Choose downward to be the positive direction, and take 0 0y =  to be the height from which the 

object is released.  The initial velocity is 0 0,v =  and the acceleration is .a g=   Then we can 

calculate the position as a function of time from Eq. 2-12b, with x replaced by y, as ( ) 21
2 .y t gt=   At 

the end of each second, the position would be as follows. 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 21 1 1

2 2 20 0 ;      1  ;      2 2 4 1  ;      3 3 9 1y y g y g y y g y= = = = = =  
The distance traveled during each second can be found by subtracting two adjacent position values 
from the above list. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 0 1  ;      2 2 1 3 1  ;      3 3 2 5 1d y y y d y y y d y y y= − = = − = = − =
We could do this in general. 

    

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )

221 1
2 2

2 22 21 1 1
2 2 2

2 21 1
2 2

        1 1

1 1 1 1

            2 1 2 1

y n gn y n g n

d n y n y n g n gn g n n

g n n n g n

= + = +

+ = + − = + − = + −

= + + − = +

 

 The value of ( )2 1n +  is always odd, in the sequence 1, 3, 5, 7, …. 
 
57. Choose upward to be the positive direction, and 0 0y =  to be the level from which the ball was 

thrown.  The initial velocity is 0 ,v , the instantaneous velocity is 14 m s ,v =  the acceleration is 
29.80 m s ,a = −  and the location of the window is 23m.y =    

(a) Using Eq. 2-12c and substituting y for x, we have  
( )

( ) ( ) ( )( )

2 2
0 0

22 2
0 0

2   

2 14 m s 2 9.8 m s 23 m 25.43 m s 25 m s

v v a y y

v v a y y

= + − →

= ± − − = ± − − = ≈
 

Choose the positive value because the initial direction is upward. 
(b) At the top of its path, the velocity will be 0, and so we can use the initial velocity as found 

above, along with Eq. 2-12c. 

( ) ( )
( )

22 2
2 2 0

0 0 0 2

0 25.43 m s
2     0 33 m

2 2 9.80 m s
v v

v v a y y y y
a

−−
= + − → = + = + =

−
 

(c) We want the time elapsed from throwing (speed 0 25.43m sv = ) to reaching the window (speed 
14 m sv = ).  Using Eq. 2-12a, we have the following.  

0
0 2

14 m s 25.43 m s
    1.166 s 1.2 s

9.80 m s
v v

v v at t
a
− −

= + → = = = ≈
−

 

 (d)  We want the time elapsed from the window (speed 0 14 m sv = ) to reaching the street (speed  
25.43 m sv = − ).  Using Eq. 2-12a, we have the following. 

0
0 2

25.43m s 14 m s
    4.0 s

9.80 m s
v v

v v at t
a
− − −

= + → = = =
−

 

This is the elapsed time after passing the window.  The total time of flight of the baseball from 
passing the window to reaching the street is 4.0s 1.2s 5.2s .+ =  
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58. (a) Choose upward to be the positive direction, and 0 0y =  at the ground.  The rocket has 0 0,v =   
23.2 m s ,a =  and 950 my =  when it runs out of fuel.  Find the velocity of the rocket when it 

runs out of fuel from Eq 2-12c, with x replaced by y. 
( )

( ) ( )( )

2 2
950 m 0 0

2 2
950 m 0 0

2   

2 0 2 3.2 m s 950 m 77.97 m s 78 m s

v v a y y

v v a y y

= + − →

= ± + − = ± + = ≈
 

The positive root is chosen since the rocket is moving upwards when it runs out of fuel. 
(b) The time to reach the 950 m location can be found from Eq. 2-12a. 

950 m 0
950  m 0 950 m 950 m 2

77.97 m s 0
    24.37 s 24 s

3.2 m s
v v

v v at t
a
− −

= + → = = = ≈  

(c) For this part of the problem, the rocket will have an initial velocity 0 77.97 m s ,v =  an  

acceleration of 29.80 m s ,a = −  and a final velocity of 0v =  at its maximum altitude.  The 
altitude reached from the out-of-fuel point can be found from Eq. 2-12c.   

( )
( )
( )

2 2
950 m

22
950 m

max 2

2 950 m   

77.97 m s0
950 m 950 m 950 m 310 m 1260 m

2 2 9.80 m s

v v a y

v
y

a

= + − →

−−
= + = + = + =

−

 

 (d) The time for the “coasting” portion of the flight can be found from Eq. 2-12a. 
0

950  m coast coast 2

0 77.97 m s
    7.96 s

9.80 m s
v v

v v at t
a
− −

= + → = = =
−

 

Thus the total time to reach the maximum altitude is 24.37 s 7.96 s 32.33s 32 s .t = + = ≈  
(e) For the falling motion of the rocket, 0 0 m s ,v = 29.80 m s ,a = −  and the displacement is 

1260 m−  (it falls from a height of 1260 m to the ground).  Find the velocity upon reaching the 
Earth from Eq. 2-12c. 

( )
( ) ( )( )

2 2
0 0

2 2
0 0

2   

2 0 2 9.80 m s 1260 m 157 m s 160 m s

v v a y y

v v a y y

= + − →

= ± + − = ± + − − = − ≈ −
  

The negative root was chosen because the rocket is moving downward, which is the negative 
direction. 

(f) The time for the rocket to fall back to the Earth is found from Eq. 2-12a. 
0

0 fall 2

157 m s 0
    16.0 s

9.80 m s
v v

v v at t
a
− − −

= + → = = =
−

 

Thus the total time for the entire flight is 32.33 s 16.0 s 48.33s 48s .t = + = ≈ . 

 
59. (a) Choose 0y =  to be the ground level, and positive to be upward.  Then 0 m,y =   

0 15m,y =  ,a g= −  and 0.83st =  describe the motion of the balloon.  Use Eq. 2-12b. 

 ( ) ( )
( )

21
0 0 2

22121
220

0

  

0 15m 9.80 m s 0.83s
14 m s

0.83s

y y v t at

y y at
v

t

= + + →

− − −− −
= = = −

 

So the speed is 14 m s .  
 
 



Chapter 2  Describing Motion: Kinematics in One Dimension 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

33 

 (b) Consider the change in velocity from being released to being at Roger’s room, using Eq. 2-12c. 

   
( )
( )

22 2
2 2 0

0 2

14 m s
2     10 m

2 2 9.8 m s
v v

v v a y y
a

− −−
= + Δ → Δ = = =

−
 

  Thus the balloons are coming from 2 floors above Roger, and so the  fifth floor . 
 
60. Choose upward to be the positive direction, and 0 0y = to be the height from which the stone is 

thrown.  We have 0 24.0 m s ,v =  29.80 m s ,a = −   and 0 13.0 m.y y− =  
(a) The velocity can be found from Eq, 2-12c, with x replaced by y. 

( )

( ) ( )( )

2 2
0 0

22 2
0

2 0   

2 24.0 m s 2 9.80 m s 13.0 m 17.9 m s

v v a y y

v v ay

= + − = →

= ± + = ± + − = ±
 

  Thus the speed is 17.9 m s .v =  

 (b) The time to reach that height can be found from Eq. 2-12b. 
( ) ( )2 21

0 0 2 2 2

2

2 24.0 m s 2 13.0 m
     0   

9.80 m s 9.80 m s

4.898 2.653 0    4.28 s , 0.620 s

y y v t at t t

t t t

−
= + + → + + = →

− −

− + = → =

 

 (c) There are two times at which the object reaches that height – once on the way up ( )0.620s ,t =   

and once on the way down ( )4.28s .t =  
 
61. Choose downward to be the positive direction, and 0 0y =  to be the height from which the stone is 

dropped.  Call the location of the top of the window ,wy  and the time for the stone to fall from 
release to the top of the window is .wt   Since the stone is dropped from rest, using Eq. 2-12b with y 

substituting for x, we have 2 21 1
0 0 2 20 0 .w wy y v t at gt= + + = + +   The location of the bottom of the 

window is 2.2 m,wy +  and the time for the stone to fall from release to the bottom of the window is 
0.33s.wt +   Since the stone is dropped from rest, using Eq. 2-12b, we have the following: 

( )221 1
0 0 2 22.2 m 0 0 0.33s .w wy y v at g t+ = + + = + + +   Substitute the first expression for wy  into 

the second expression. 
( )221 1

2 22.2 m 0.33 s     0.515 sw w wgt g t t+ = + → =  
Use this time in the first equation to get the height above the top of the window from which the stone 
fell. 

( )( )22 21 1
2 2 9.80 m s 0.515 s 1.3mw wy gt= = =  

 
62. Choose upward to be the positive direction, and 0 0y =  to be the location of the nozzle.  The initial 

velocity is 0 ,v  the acceleration is 29.80 m s ,a = −  the final location is 1.5m,y = −  and the time of 
flight is 2.0 s.t =   Using Eq. 2-12b and substituting y for x gives the following. 

( )( )22121
22 21

0 0 02

1.5 m 9.80 m s 2.0 s
    9.1m s

2.0 s
y at

y y v t at v
t

− − −−
= + + → = = =  
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63. Choose up to be the positive direction, so .a g= −   Let the ground be the 0y = location.  As an 
intermediate result, the velocity at the bottom of the window can be found from the data given.  
Assume the rocket is at the bottom of the window at t = 0, and use Eq. 2-12b. 

  21
top of bottom of bottom of pass pass2
window window window window window

 y y v t at= + + →  

  ( ) ( ) ( )221
bottom of bottom of2
window window

10.0 m 8.0 m 0.15s 9.80 m s 0.15s     14.07 m sv v= + + − → =  

 Now use the velocity at the bottom of the window with Eq. 2-12c to find the launch velocity, 
assuming the launch velocity was achieved at the ground level. 

  

( )

( ) ( ) ( ) ( )

2 2
bottom of launch 0
window

22 2
launch bottom of 0

window

2   

2 14.07 m s 2 9.80 m s 8.0 m 18.84 m s

v v a y y

v v a y y

= + − →

= − − = + =
 

  18.8 m s       ≈  

 The maximum height can also be found from Eq. 2-12c, using the launch velocity and a velocity of 0 
at the maximum height. 

  

( )

( )
( )

2 2
maximum launch max 0
height

2 2
2maximum launch

height
max 0 2

2   

18.84 m s
18.1m

2 2 9.80 m s

v v a y y

v v
y y

a

= + − →

−
−

= + = =
−

 

 
64. Choose up to be the positive direction.  Let the bottom of the cliff be the 0y =  location.  The 

equation of motion for the dropped ball is ( )2 2 21 1
ball 0 0 2 250.0 m+ 9.80 m s .y y v t at t= + + = −   The 

equation of motion for the thrown stone is ( ) ( )2 2 21 1
stone 0 0 2 224.0 m s 9.80 m s .y y v t at tt= + + = −+   

Set the two equations equal and solve for the time of the collision.  Then use that time to find the 
location of either object. 

( ) ( ) ( )
( )

2 2 2 21 1
ball stone 2 2    50.0 m+ 9.80 m s 24.0 m s 9.80 m s   

50.0 m
50.0 m 24.0 m s     2.083s

24.0 m s

y y t t t

t t

= → − = + − →

= → = =
 

( ) ( )22 21 1
ball 0 0 2 250.0 m 9.80 m s 2.083s 28.7 my y v t at= + + = + − =  

 
65. For the falling rock, choose downward to be the positive direction, and 0 0y =  to be the height from 

which the stone is dropped.  The initial velocity is 0 0 m s ,v =  the acceleration is ,a g=   the  

displacement is ,y H=  and the time of fall is 1.t   Using Eq. 2-12b with y substituting for x, we have 
2 21 1

0 0 12 20 0 .H y v t t gt= + + = + +   For the sound wave, use the constant speed equation that 

1

,s

x H
v

t T t
Δ

= =
Δ −

 which can be rearranged to give 1 ,
s

H
t T

v
= −  where 3.4sT =  is the total time 

elapsed from dropping the rock to hearing the sound.  Insert this expression for 1t  into the equation 
for H from the stone, and solve for H. 
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2

2 21 1
2 22

5 2 4

    1 0  
2

4.239 10 1.098 56.64 0    51.7 m, 2.59 10 m
s s s

H g gT
H g T H H gT

v v v

H H H−

= − → − + + = →

× − + = → = ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

If the larger answer is used in 1 ,
s

H
t T

v
= −  a negative time of fall results, and so the physically 

correct answer is 52 m .H =  

 
66. (a) Choose up to be the positive direction.  Let the throwing height of both objects be the 0y =   

location, and so 0 0y =  for both objects.  The acceleration of both objects is .a g= −  The 

equation of motion for the rock, using Eq. 2-12b, is 2 21 1
rock 0 0  rock 0  rock2 2 ,y y v t at v t gt= + + = −  

where t is the time elapsed from the throwing of the rock.  The equation of motion for the ball, 
being thrown 1.00 s later, is ( ) ( )21

ball 0 0  ball 21.00s 1.00sy y v t a t= + − + − =  

( ) ( )21
0  ball 21.00s 1.00s .v t tg− − −   Set the two equations equal (meaning the two objects are at 

the same place) and solve for the time of the collision. 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

221 1
rock ball 0  rock 0  ball2 2

22 2 21 1
2 2

    1.00s 1.00s   

12.0 m s 9.80 m s 18.0 m s 1.00s 9.80 m s 1.00s   

15.8 m s 22.9 m     1.45s

y y v t gt v t g t

t t t t

t t

= → − = − − − →

− = − − − →

= → =

 

 (b) Use the time for the collision to find the position of either object. 
   ( )( ) ( )( )22 21 1

rock 0  rock 2 212.0 m s 1.45s 9.80 m s 1.45s 7.10 my v t gt= − = − =  

(c) Now the ball is thrown first, and so 21
ball 0  ball 2y v t gt= −  and 

( ) ( )21
rock 0  rock 21.00s 1.00s .y v t g t= − − −   Again set the two equations equal to find the time of 

collision. 

   

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( )

221 1
ball rock 0  ball 0  rock2 2

22 2 21 1
2 2

    1.00s 1.00s   

18.0 m s 9.80 m s 12.0 m s 1.00s 9.80 m s 1.00s   

3.80 m s 16.9 m    4.45s

y y v t gt v t g t

t t t t

t t

= → − = − − − →

− = − − − →

= → =

 

  But this answer can be deceptive.  Where do the objects collide? 
   ( )( ) ( )( )22 21 1

ball 0  ball 2 218.0 m s 4.45s 9.80 m s 4.45s 16.9 my v t gt= − = − = −  

Thus, assuming they were thrown from ground level, they collide below ground level, which 
cannot happen.  Thus they never collide .  

 
67. The displacement is found from the integral of the velocity, over the given time interval. 

  
( ) ( ) ( ) ( ) ( ) ( )

2

1

3.1s
3.1s 2 22

1.5s
1.5s

25 18 25 9 25 3.1 9 3.1 25 1.5 9 1.5

    106 m

t t
t

t
t t

x vdt t dt t t
=

=

=
=

Δ = = + = + = + − +

=

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫
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68. (a) The speed is the integral of the acceleration. 

   

( )
0 0

3 / 2 3 / 2 5/2 3 / 22 2 2
0 03 3 3

              

    7.5 m s 2.0 m s

v t

v

dv
a dv adt dv A tdt dv A tdt

dt

v v At v v At v t

= → = → = → = →

− = → = + → = +

∫ ∫
 

 (b) The displacement is the integral of the velocity. 

   ( )3 / 22
0 3          

dx
v dx vdt dx v At dt

dt
= → = → = + →  

   ( ) ( ) ( )3 / 2 5 / 2 5/2 5 / 22 2 2 4
0 03 3 5 15

0 m 0

    7.5 m s 2.0 m s
x t

dx v At dt x v t At t t= + → = + = +∫ ∫  

 (c) ( ) ( )5/2 25.0s 2.0 m s 5.0s 4.5 m sa t = = =  

  
( ) ( )( )
( ) ( )( ) ( )( )

3 / 25/22
3

5 / 25/24
15

5.0 s 7.5 m s 2.0 m s 5.0 s 22.41m s 22 m s

5.0 s 7.5 m s 5.0 s 2.0 m s 5.0 s 67.31m 67 m

v t

x t

= = + = ≈

= = + = ≈
 

 
69. (a) The velocity is found by integrating the acceleration with respect to time.  Note that with the  

substitution given in the hint, the initial value of u  is 0 0 .u g kv g= − =  

   ( )            
dv dv

a dv adt dv g kv dt dt
dt g kv

= → = → = − → =
−

 

  Now make the substitution that .u g kv≡ −  
1

                      
du dv du du

u g kv dv dt dt kdt
k g kv k u u

≡ − → = − = → − = → = −
−

 

( )
0

    ln     ln       

1

u t
u kt
g

g

kt

du u
k dt u kt kt u ge g kv

u g

gv e
k

−

−

= − → = − → = − → = = − →

= −

∫ ∫
 

(b) As t goes to infinity, the value of the velocity is ( )term t
lim 1 .kt ggv e

k k
−

→∞
= − =   We also note that 

if the acceleration is zero (which happens at terminal velocity), then 0  a g kv= − = →  

term .v
g
k

=  

70. (a) The train's constant speed is train 5.0 m s ,v =  and the location of the empty box car as a  

function of time is given by ( )train train 5.0 m s .x v t t= =   The fugitive has 0 0 m sv =  and 
21.2 m sa =  until his final speed is 6.0 m s.   The elapsed time during the acceleration is 

0
acc 2

6.0 m s
5.0 s.

1.2 m s
v v

t
a
−

= = =   Let the origin be the location of the fugitive when he starts to 

run.  The first possibility to consider is, “Can the fugitive catch the empty box car before he 
reaches his maximum speed?”  During the fugitive's acceleration, his location as a function of 
time is given by Eq. 2-12b, ( )2 2 21 1

fugitive 0 0 2 20 0 1.2 m s .x x v t at t= + + = + +   For him to catch 
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the train, we must have ( ) ( )2 21
train fugitive 2    5.0 m s 1.2 m s .x x t t= → =   The solutions of this 

are 0 s, 8.3s.t =   Thus the fugitive cannot catch the car during his 5.0 s of acceleration.   
 

Now the equation of motion of the fugitive changes.  After the 5.0 s of acceleration, he runs 
with a constant speed of 6.0 m s.   Thus his location is now given (for times 5st > ) by the 
following. 

( ) ( ) ( ) ( ) ( )221
fugitive 2 1.2 m s 5.0s 6.0 m s 5.0s 6.0 m s 15.0 mx t t= + − = −  

So now, for the fugitive to catch the train, we again set the locations equal. 
( ) ( )train fugitive     5.0 m s 6.0 m s 15.0 m    15.0 sx x t t t= → = − → =  

(b) The distance traveled to reach the box car is given by the following. 
( ) ( ) ( )fugitive 15.0 s 6.0 m s 15.0 s 15.0 m 75 mx t = = − =  

 
71. Choose the upward direction to be positive, and 0 0y =  to be the level from which the object was 

thrown.  The initial velocity is 0v  and the velocity at the top of the path is 0 m s.v =   The height at 
the top of the path can be found from Eq. 2-12c with x replaced by y. 

( )
2

2 2 0
0 0 02     

2
v

v v a y y y y
a

−
= + − → − =  

From this we see that the displacement is inversely proportional to the acceleration, and so if the 
acceleration is reduced by a factor of 6 by going to the Moon, and the initial velocity is unchanged, 
the displacement increases by a factor of 6 .  

 
72. (a) For the free-falling part of the motion, choose downward to be the positive direction, and  

0 0y =  to be the height from which the person jumped.  The initial velocity is 0 0,v =  

acceleration is 29.80 m s ,a =  and the location of the net is 15.0 m.y =   Find the speed upon 
reaching the net from Eq. 2-12c with x replaced by y.   

( )( ) ( ) ( )( )2 2 2
0 2      0 2 0 2 9.80 m s 15.0 m 17.1m sv v a y y v a y= + − → = ± + − = ± =

The positive root is selected since the person is moving downward. 
For the net-stretching part of the motion, choose downward to be the positive direction, and 

0 15.0 my = to be the height at which the person first contacts the net.  The initial velocity is 

0 17.1m s ,v =  the final velocity is 0,v =  and the location at the stretched position is 
16.0 m.y = .  Find the acceleration from Eq. 2-12c with x replaced by y. 

( ) ( )
( )
( )

222 2
2 2 20

0 0
0

0 17.1m s
2      150 m s

2 2 1.0 m
v v

v v a y y a
y y

−−
= + − → = = = −

−
 

(b) For the acceleration to be smaller, in the above equation we see that the displacement should  
be larger.  This means that the net should be  “loosened” . 

 

73. The initial velocity of the car is ( )0

1m s
100 km h 27.8 m s

3.6 km h
.v = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

  Choose 0 0x =  to be the 

location at which the deceleration begins.  We have 0 m sv =  and 230 294 m s .a g= − = −  Find 
the displacement from Eq. 2-12c. 
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( ) ( )
( )

22 2
2 2 0

0 0 0 2 2

0 27.8 m s
2     0 1.31m 1.3m

2 2 2.94 10 m s
v v

v v a x x x x
a

−−
= + − → = + = + = ≈

− ×
 

 
74. Choose downward to be the positive direction, and 0 0y =  to be at the start of the pelican’s dive.   

The pelican has an initial velocity is 0 0,v =  an acceleration of ,a g=  and a final location of 
16.0 m.y =   Find the total time of the pelican’s dive from Eq. 2-12b, with x replaced by y. 

( )2 21 1
0 0 dive2 2 2

2 16.0 m2
    0 0     1.81 s

9.80 m s
y

y y v t at y at t
a

= + + → = + + → = = = . 

The fish can take evasive action if he sees the pelican at a time of 1.81 s – 0.20 s = 1.61 s into the 
dive.  Find the location of the pelican at that time from Eq. 2-12b. 

( )( )221 1
0 0 2 20 0 9.80 m s 1.61 s 12.7 my y v t at= + + = + + =  

Thus the fish must spot the pelican at a minimum height from the surface of the water of   
16.0 m 12.7 m 3.3m− = . 

 
75. (a) Choose downward to be the positive direction, and 0 0y =  to be the level from which the  

car was dropped.  The initial velocity is 0 0,v =  the final location is ,y H=  and the 
acceleration is .a g=   Find the final velocity from Eq. 2-12c, replacing x with y. 

( ) ( )2 2 2
0 0 0 02     2 2v v a y y v v a y y gH= + − → = ± + − = ± . 

The speed is the magnitude of the velocity, 2 .v gH=  

(b) Solving the above equation for the height, we have that 
2

2
.v

H
g

=   Thus for a collision of  

( ) 1m s
50 km h 13.89 m s

3.6 km h
,v = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 the corresponding height is as follows.  

( )
( )

22

2

13.89 m s
9.84 m 10 m

2 2 9.80 m s
v

H
g

= = = ≈  

(c) For a collision of ( ) 1m s
100 km h 27.78 m s

3.6 km h
,v = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

the corresponding height is as  

follow. 
( )
( )

22

2

27.78 m s
39.37 m 40 m

2 2 9.80 m s
v

H
g

= = = ≈  

 
76. Choose downward to be the positive direction, and 0 0y =  to be at the roof from which the stones 

are dropped.  The first stone has an initial velocity of 0 0v =  and an acceleration of .a g=   Eqs. 2-
12a and 2-12b (with x replaced by y) give the velocity and location, respectively, of the first stone as 
a function of time. 

2 21 1
0 1 1 0 0 1 12 2                    v v at v gt y y v t at y gt= + → = = + + → =  

The second stone has the same initial conditions, but its elapsed time 1.50s,t −  and so has velocity 
and location equations as follows. 
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( ) ( )21
2 1 2 121.50s             1.50sv g t y g t= − = −  

 The second stone reaches a speed of 2 12.0 m sv =  at a time given by the following. 

2
1 2

12.0 m s
1.50s 1.50s 2.72 s

9.80 m s
v

t
g

= + = + =  

The location of the first stone at that time is ( ) ( )2221 1
1 12 2 9.80 m s 2.72 s 36.4 m.y gt= = = . 

The location of the second stone at that time is ( )21
2 12 1.50sy g t= − =  

( ) ( )221
2 9.80 m s 2.72 1.50s 7.35 m.− =  Thus the distance between the two stones is 

1 2 36.4 m 7.35m 29.0 m .y y− = − =  

 

77. The initial velocity is ( )0

1m s
15km h 4.17 m s

3.6 km h
.v = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

  The final velocity is 

( )0

1m s
75km h 20.83m s

3.6 km h
.v = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

  The displacement is 0 4.0 km 4000 m.x x− = =   Find the 

average acceleration from Eq. 2-12c. 

( ) ( )
( ) ( )

( )

2 22 2
2 2 2 20

0 0
0

20.83m s 4.17 m s
2     5.2 10 m s

2 2 4000 m
v v

v v a x x a
x x

−−−
= + − → = = = ×

−
 

 

78. The speed limit is 
1m s

50 km h 13.89 m s
3.6 km h

.=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(a) For your motion, you would need to travel ( )10 15 50 15 70 15 m 175 m+ + + + + =  to get the 
front of the car all the way through the third intersection.  The time to travel the 175 m is found 
using the distance and the constant speed.   

175 m
    12.60 s

13.89 m s
x

x v t t
v
Δ

Δ = → Δ = = =Δ  

Yes , you can make it through all three lights without stopping. 
(b)  The second car needs to travel 165 m before the third light turns red.  This car accelerates from 

0 0 m sv =  to a maximum of 13.89 m sv =  with 22.0 m s .a =  Use Eq. 2-12a to determine 
the duration of that acceleration. 

  0
0 acc 2

13.89 m s 0 m s
    6.94 s

2.0 m s
v v

v v at t
a
− −

= + → = = =  

The distance traveled during that time is found from Eq. 2-12b. 
( ) ( ) ( )22 21 1

0 0 acc acc2 2acc
0 2.0 m s 6.94 s 48.2 mx x v t at− = + = + =  

Since 6.94 s have elapsed, there are 13 – 6.94 = 6.06 s remaining to clear the intersection.  The 
car travels another 6.06 s at a speed of 13.89 m/s, covering a distance of constant

speed
avgx v tΔ = =  

( ) ( )13.89 m s 6.06 s 84.2 m.=   Thus the total distance is 48.2 m + 84.2 m = 132.4 m.  No , 
the car cannot make it through all three lights without stopping. 
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The car has to travel another  32.6 m to clear the third intersection, and is traveling at a speed of 

13.89 m/s.  Thus the care would enter the intersection a time 
32.6 m

2.3s
13.89 m s

x
t

v
Δ

= = =  after 

the light turns red. 
 
79. First consider the “uphill lie,” in which the ball is being putted down the hill.  Choose 0 0x =  to be 

the ball’s original location, and the direction of the ball’s travel as the positive direction.  The final 
velocity of the ball is 0 m s ,v =  the acceleration of the ball is 21.8 m s ,a = −  and the displacement 
of the ball will be 0 6.0 mx x− = for the first case and 0 8.0 mx x− = for the second case.  Find the 
initial velocity of the ball from Eq. 2-12c. 

( ) ( )
( ) ( )

( ) ( )

2

2 2 2
0 0 0 0

2

0 2 1.8 m s 6.0 m 4.6 m s
2     2

0 2 1.8 m s 8.0 m 5.4 m s
v v a x x v v a x x

− − =
= + − → = − − =

− − =

⎧
⎪
⎨
⎪⎩

 

 The range of acceptable velocities for the uphill lie is 4.6 m s  to 5.4 m s ,  a spread of 0.8 m/s. 
 

 Now consider the “downhill lie,” in which the ball is being putted up the hill.  Use a very similar set-
up for the problem, with the basic difference being that the acceleration of the ball is now 

22.8 m s .a = −  Find the initial velocity of the ball from Eq. 2-12c. 

( ) ( )
( ) ( )

( ) ( )

2

2 2 2
0 0 0 0

2

0 2 2.8 m s 6.0 m 5.8 m s
2     2

0 2 2.8 m s 8.0 m 6.7 m s
v v a x x v v a x x

− − =
= + − → = − − =

− − =

⎧
⎪
⎨
⎪⎩

 

 The range of acceptable velocities for the downhill lie is 5.8 m s  to 6.7 m s ,  a spread of 0.9 m/s. 
 

  Because the range of acceptable velocities is smaller for putting down the hill, more control in 
putting is necessary, and so putting the ball downhill (the “uphill lie”) is more difficult. 

 
80. To find the distance, we divide the motion of the robot into three segments.  First, the initial 

acceleration from rest; second, motion at constant speed; and third, deceleration back to rest. 

  
( ) ( ) ( ) ( )

( ) ( )

22 2 21 1
1 0 1 1 1 1 12 2

2 1 2 2 1

0 0.20 m s 5.0s 2.5m     0.20 m s 5.0s 1.0 m s

1.0 m s 68s 68 m          1.0 m s

d v t a t v a t

d v t v v

= + = + = = = =

= = = = =
 

  
( ) ( ) ( ) ( )22 21 1

3 2 3 1 12 2

1 2 3

1.0 m s 2.5s 0.40 m s 2.5s 1.25m

2.5m 68 m 1.25 m 71.75m 72 m

d v t a t

d d d d

= + = + − =

= + + = + + = ≈
 

 
81. Choose downward to be the positive direction, and 0 0y =  to be at the top of the cliff.  The initial 

velocity is 0 12.5 m s ,v = −  the acceleration is 29.80 m s ,a =  and the final location is 75.0 m.y =    
 
(a) Using Eq. 2-12b and substituting y for x, we have the following. 

( ) ( )2 2 21
0 0 2  4.9 m s 12.5 m s 75.0 m 0  2.839 s , 5.390sy y v t at t t t= + + → − − = → = −   

The positive answer is the physical answer: 5.39s .t =  

(b) Using Eq. 2-12a, we have ( ) ( )2
0 12.5 m s 9.80 m s 5.390s 40.3m s .v v at= + = − + =  
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(c) The total distance traveled will be the distance up plus the distance down.  The distance down 
will be 75.0 m more than the distance up.  To find the distance up, use the fact that the speed at 
the top of the path will be 0.  Using Eq. 2-12c we have the following.  

( ) ( )
( )

22 2
2 2 0

0 0 0 2

0 12.5 m s
2      0 7.97 m

2 2 9.80 m s
v v

v v a y y y y
a

− −−
= + − → = + = + = −  

Thus the distance up is 7.97 m, the distance down is 82.97 m, and the total distance traveled is 
90.9 m .  

 
82. (a) In the interval from A to B, it is moving in the negative direction , because its displacement is  

negative. 
 (b) In the interval from A to B, it is speeding up , because the magnitude of its slope is increasing 

(changing from less steep to more steep). 
 (c) In the interval from A to B, the acceleration is negative , because the graph is concave down, 

indicating that the slope is getting more negative, and thus the acceleration is negative. 
 (d) In the interval from D to E, it is moving in the positive direction , because the displacement is  

positive. 
 (e) In the interval from D to E, it is speeding up , because the magnitude of its slope is increasing 

(changing from less steep to more steep). 
 (f) In the interval from D to E, the acceleration is positive , because the graph is concave upward, 

indicating the slope is getting more positive, and thus the acceleration is positive. 
 (g) In the interval from C to D, the object is not moving in either direction .  

The velocity and acceleration are both 0.  

 
83. This problem can be analyzed as a series of three one-dimensional motions:  the acceleration phase, 

the constant speed phase, and the deceleration phase.  The maximum speed of the train is as follows. 

( ) 1m s
95km h 26.39 m s

3.6 km h
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

In the acceleration phase, the initial velocity is 0 0 m s ,v =  the acceleration is 21.1m s ,a =  and 
the final velocity is 26.39 m s.v =   Find the elapsed time for the acceleration phase from Eq. 2-12a. 

0
0 acc 2

26.39 m s 0
    23.99 s

1.1m s
v v

v v at t
a
− −

= + → = = =  

Find the displacement during the acceleration phase from Eq. 2-12b. 
( ) ( ) ( )22 21 1

0 0 2 2acc
0 1.1m s 23.99s 316.5mx x v t at− = + = + =  

In the deceleration phase, the initial velocity is 0 26.39 m s,v =  the acceleration is 22.0 m s ,a = −  
and the final velocity is 0 m s.v =   Find the elapsed time for the deceleration phase from Eq. 2-12a. 

0
0 dec 2

0 26.39 m s
    13.20s

2.0 m s
v v

v v at t
a
− −

= + → = = =
−

 

Find the distance traveled during the deceleration phase from Eq. 2-12b. 
( ) ( ) ( ) ( ) ( )22 21 1

0 0 2 2dec
26.39 m s 13.20s 2.0 m s 13.20s 174.1mx x v t at− = + = + − =  
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The total elapsed time and distance traveled for the acceleration / deceleration phases are: 

( ) ( )
acc dec

0 0acc dec

23.99 s 13.20 s 37.19 s

316.5 m 174.1m 491m

t t

x x x x

+ = + =

− + − = + =
 

(a) If the stations are spaced 1.80 km = 1800 m apart, then there is a total of 9000 m
5

1800 m
=  inter-

station segments.  A train making the entire trip would thus have a total of 5 inter-station 
segments and 4 stops of 22 s each at the intermediate stations.  Since 491 m is traveled during 
acceleration and deceleration, 1800 m 491m 1309 m− = of each segment is traveled at an 
average speed of 26.39 m s.v =   The time for that 1309 m is given by   x v tΔ = →Δ  

constant
speed

1309 m
49.60 s.

26.39 m s
x

t
v
Δ

Δ = = =   Thus a total inter-station segment will take 37.19 s + 

49.60 s = 86.79 s.  With 5 inter-station segments of 86.79 s each, and 4 stops of 22 s each, the 
total time is given by ( ) ( )0.8 km 5 86.79s 4 22s 522s 8.7 min .t = + = =  

(b) If the stations are spaced 3.0 km = 3000 m apart, then there is a total of 
9000 m

3
3000 m

=  inter-

station segments.  A train making the entire trip would thus have a total of 3 inter-station 
segments and 2 stops of 22 s each at the intermediate stations.  Since 491 m is traveled during 
acceleration and deceleration, 3000 m 491m 2509 m− = of each segment is traveled at an 
average speed of 26.39 m sv = .  The time for that 2509 m is given by   d vt= →  

2509 m
95.07 s.

26.39 m s
d

t
v

= = =   Thus a total inter-station segment will take 37.19 s + 95.07 s = 

132.3 s.  With 3 inter-station segments of 132.3 s each, and 2 stops of 22 s each, the total time is  
( ) ( )3.0 km 3 132.3s 2 22s 441s 7.3min .t = + = =  

 
84. For the motion in the air, choose downward to be the positive direction, and 0 0y =  to be at the  

height of the diving board.  The diver has 0 0v = (assuming the diver does not jump upward or 

downward), 29.80 m s ,a g= =  and 4.0 my =  when reaching the surface of the water.  Find the 
diver’s speed at the water’s surface from Eq. 2-12c, with x replaced by y. 

 
( )
( ) ( )( )

2 2
0 0

2 2
0 0

2   

2 0 2 9.80 m s 4.0 m 8.85 m s

v v a y y x

v v a y y

= + − →

= ± + − = + =
 

For the motion in the water, again choose down to be positive, but redefine 0 0y = to be at the  
surface of the water.  For this motion, 0 8.85 m sv = , 0v = , and 0 2.0 my y− = .  Find the 
acceleration from Eq. 2-12c, with x replaced by y. 

( ) ( )
( )
( )

22 2
2 2 2 20

0 0
0

0 8.85 m s
2     19.6 m s 20 m s

2 2 2.0 m
v v

v v a y y a
y y x

−−
= + − → = = = − ≈ −

−
 

 The negative sign indicates that the acceleration is directed upwards. 
 
85. Choose upward to be the positive direction, and the origin to be at the level where the ball was 

thrown.  The velocity at the top of the ball’s path will be 0,v =  and the ball will have an 
acceleration of .a g= −   If the maximum height that the ball reaches is ,y H=  then the relationship 
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between the initial velocity and the maximum height can be found from Eq. 2-12c, with x replaced 
by y. 

( ) ( )2 2 2 2
0 0 0 02     0 2     2v v a y y v g H H v g= + − → = + − → =  

 It is given that 0  Bill 0  Joe1.5v v= , so ( )
( )

( )
( )

2 2
20  Bill 0  BillBill

2 2
Joe 0  Joe 0  Joe

2
1.5 2.25 2.3

2
.v g vH

H v g v
= = = = ≈  

 
86. The v vs. t graph is found by taking the slope of the x vs. t graph.   

Both graphs are shown here. 
 
 
 
 
 
 
 
 
 
 
 
 

87. The car’s initial speed is ( ) 1m s
45km h 12.5m s

3.6 km h
.ov = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Case I:  trying to stop.  The constraint is, with the braking deceleration of the car ( )25.8 m s ,a = −  

can the car stop in a 28 m displacement?  The 2.0 seconds has no relation to this part of the problem.  
Using Eq. 2-12c, the distance traveled during braking is as follows. 

( ) ( )
( )

22 2
0

0 2

0 12.5 m s
13.5 m

2 2 5.8 m s
 v v

x x
a

−−
− = = =

−
→  She can stop the car in time.  

 Case II:  crossing the intersection.  The constraint is, with the given acceleration of the car 

265km h 45km h 1m s
0.9259 m s

6.0 s 3.6 km h
,a

−
= =

⎡ ⎤⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 can she get through the intersection 

(travel 43 meters) in the 2.0 seconds before the light turns red?  Using Eq. 2-12b, the distance 
traveled during the 2.0 sec is as follows. 

( ) ( )( ) ( )( )22 21 1
0 0 2 212.5 m s 2.0 s 0.927 m s 2.0 s 26.9 mx x v t at− = + = + =  

She should stop.  

 
88. The critical condition is that the total distance covered by the passing car and the approaching car 

must be less than 400 m so that they do not collide.  The passing car has a total displacement 
composed of several individual parts.  These are: i) the 10 m of clear room at the rear of the truck, ii) 
the 20 m length of the truck, iii) the 10 m of clear room at the front of the truck, and iv) the distance 
the truck travels.  Since the truck travels at a speed of 25 m s,v =  the truck will have a 
displacement of ( )truck 25 m s .x tΔ =   Thus the total displacement of the car during passing is 

( )passing
car

40 m 25 m s .x tΔ = +  
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To express the motion of the car, we choose the origin to be at the location of the passing car when 
the decision to pass is made.  For the passing car, we have an initial velocity of 0 25 m sv =  and an 

acceleration of 21.0 m s .a =   Find passing
car

xΔ  from Eq. 2-12b. 

( ) ( )2 21 1
passing 0 0 2 2
car

25 m s 1.0 m scx x x v t at t tΔ = − = + = +  

Set the two expressions for passing
car

xΔ  equal to each other in order to find the time required to pass. 

( ) ( ) ( ) ( )2 2 2 21 1
pass pass pass pass2 2

2
pass

40 m 25 m s 25 m s 1.0 m s   40 m 1.0 m s  

80s 8.94 s

t t t t

t

+ = + → = →

= =
 

 

 Calculate the displacements of the two cars during this time. 
( )( )

( )( )

passing
car

approaching approaching
car car

40 m 25 m s 8.94 s 264 m

25 m s 8.94 s 224 m

x

x v t

Δ = + =

Δ = = =
 

Thus the two cars together have covered a total distance of 488 m, which is more than allowed. 
The car should not pass.  

 
89. Choose downward to be the positive direction, and 0 0y =  to be at the height of the bridge.  Agent 

Bond has an initial velocity of 0 0,v =  an acceleration of ,a g=  and will have a displacement of 
13m 1.5m 11.5m.y = − =   Find the time of fall from Eq. 2-12b with x replaced by y. 

( )21
0 0 2 2

2 11.5 m2
    1.532 s

9.80 m s
y

y y v t at t
a

= + + → = = =  

If the truck is approaching with 25 m s ,v =  then he needs to jump when the truck is a distance 
away given by ( ) ( )25 m s 1.532 s 38.3 m.d vt= = =   Convert this distance into “poles.” 

( ) ( )38.3 m 1 pole 25 m 1.53 polesd = =  

So he should jump when the truck is about 1.5 poles  away from the bridge. 

 
90. Take the origin to be the location where the speeder passes the police car.  The speeder’s constant 

speed is ( )speeder

1m s
130 km h 36.1m s

3.6 km h
,v = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and the location of the speeder as a function 

of time is given by ( )speeder speeder speeder speeder36.1m s .x v t t= =   The police car has an initial velocity of 

0 0 m sv =  and a constant acceleration of police .a   The location of the police car as a function of time 

is given by Eq. 2-12b: 2 21 1
police 0 police police2 2 .x v t at a t= + =    

(a) The position vs. time graphs would qualitatively look  
like the graph shown here. 
 

(b) The time to overtake the speeder occurs when the speeder 
 has gone a distance of 750 m.  The time is found using the 
 speeder’s equation from above. 

x

t 1t

Speeder 

Police car 
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( ) speeder speeder

750 m
750 m 36.1m s     20.8 s 21s

36.1m s
t t= → = = ≈  

(c) The police car’s acceleration can be calculated knowing that the police car also had gone a 
distance of 750 m in a time of 22.5 s. 

( ) ( )
( )

2 2 21
2 2

2 750 m
750 m 20.8 s     3.47 m s 3.5 m s

20.8 sp pa a= → = = ≈  

(d) The speed of the police car at the overtaking point can be found from Eq. 2-12a. 
( ) ( )2

0 0 3.47 m s 20.8 s 72.2 m s 72 m sv v at= + = + = ≈  

  Note that this is exactly twice the speed of the speeder. 
 

91. The speed of the conveyor belt is given by 1.1 m
 0.44 m min

2.5 min
.d

d v t v
t

= Δ → = = =
Δ

  The rate 

of burger production, assuming the spacing given is center to center, can be found as follows.  
1 burger 0.44 m burgers

2.9
0.15 m 1 min min

=⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
92. Choose downward to be the positive direction, and the origin to be at the top of the building.  The 

barometer has 0 0,y = 0 0,v =  and 29.8 m s .a g= =   Use Eq. 2-12b to find the height of the 
building, with x replaced by y. 

( )
( )( ) ( )( )

2 2 21 1
0 0 2 2

2 22 21 1
2.0 2.32 2

0 0 9.8 m s

9.8 m s 2.0 s 20 m          9.8 m s 2.3 s 26 mt t

y y v t at t

y y= =

= + + = + +

= = = =
 

The difference in the estimates is 6 m.  If we assume the height of the building is the average of the 

two measurements, then the % difference in the two values is   6 m
100 26%

23m
.× =  

 
93. (a) The two bicycles will have the same velocity at  

any time when the instantaneous slopes of their 
x vs. t graphs are the same.  That occurs near the 
time t1 as marked on the graph. 

(b) Bicycle A has the larger acceleration, because  
its graph is concave upward, indicating a positive 
acceleration.  Bicycle B has no acceleration because 
its graph has a constant slope. 

 (c) The bicycles are passing each other at the times  
when the two graphs cross, because they both have the same position at that time.  The graph 
with the steepest slope is the faster bicycle, and so is the one that is passing at that instant.  So at 
the first crossing, bicycle B is passing bicycle A.  At the second crossing, bicycle A is passing 
bicycle B. 

(d) Bicycle B has the highest instantaneous velocity at all times until the time t1, where both graphs 
have the same slope.  For all times after t1, bicycle A has the highest instantaneous velocity.  
The largest instantaneous velocity is for bicycle A at the latest time shown on the graph. 

 (e) The bicycles appear to have the same average velocity.  If the starting point of the graph for a  
particular bicycle is connected to the ending point with a straight line, the slope of that line is 
the average velocity.  Both appear to have the same slope for that “average” line. 

 

t 
t1 

x

A
B
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94. In this problem, note that 0a <  and 0.x >   Take your starting position as 0.  Then your position is 
given by Eq. 2-12b, 21

1 2 ,Mx v t at= +  and the other car’s position is given by 2 .Ax x v t= +   Set the 
two positions equal to each other and solve for the time of collision.  If this time is negative or 
imaginary, then there will be no collision. 

  

( )

( ) ( ) ( )

( ) ( ) ( )

2 21 1
1 2 2 2

2 1
2

1
2

2
2 1

2

        0

4

2

No collision:  4 0    
2

M A M A

A M M A

M A
M A

x x v t at x v t at v v t x

v v v v a x
t

a

v v
v v a x x

a

= → + = + → + − − =

− ± − − −
=

−
− − − < → >

−

 

 
95. The velocities were changed from km/h to m/s by multiplying the conversion factor that 1 km/hr = 

1/3.6 m/s. 
(a) The average acceleration for each interval is calculated by ,a v t= Δ Δ  and taken to be the 

acceleration at the midpoint of the time interval.  In the spreadsheet, 1
2

1

1

.n n
n

n n

v v
a

t t
+

+
+

−
=

−
  The 

accelerations are shown in the table below. 
(b) The position at the end of each interval is calculated by  ( ) ( )1

1 1 12 .n n n n n nx x v v t t+ + += + + −  
This can also be represented as 0 .x x v t= + Δ   These are shown in the table below. 

   t  (s)   v  (km/h)    v  (m/s)    t  (s) a  (m/s2)    t  (s) x  (m)
0.0 0.0 0.0 0.0 0.00
0.5 6.0 1.7 0.25 3.33 0.5 0.42
1.0 13.2 3.7 0.75 4.00 1.0 1.75
1.5 22.3 6.2 1.25 5.06 1.5 4.22
2.0 32.2 8.9 1.75 5.50 2.0 8.00
2.5 43.0 11.9 2.25 6.00 2.5 13.22
3.0 53.5 14.9 2.75 5.83 3.0 19.92
3.5 62.6 17.4 3.25 5.06 3.5 27.99
4.0 70.6 19.6 3.75 4.44 4.0 37.24
4.5 78.4 21.8 4.25 4.33 4.5 47.58
5.0 85.1 23.6 4.75 3.72 5.0 58.94  

 

(c) The graphs are shown below.  The spreadsheet used for this problem can be found on the Media 
 Manager, with filename “PSE4_ISM_CH02.XLS,” on tab “Problem 2.95c.” 

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1 2 3 4 5
Time (s)

A
cc

 (m
/s2 )

0

10

20

30

40

50

60

0 1 2 3 4 5
Time (s)

D
is

ta
nc

e 
(m

)

 
 



Chapter 2  Describing Motion: Kinematics in One Dimension 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

47 

96. For this problem, a spreadsheet was designed.  The columns of the spreadsheet are time, 
acceleration, velocity, and displacement.  The time starts at 0 and with each interval is incremented 
by 1.00 s.  The acceleration at each time is from the data 
given in the problem.  The velocity at each time is found 
by multiplying the average of the accelerations at the 
current time and the previous time, by the time interval, 
and then adding that to the previous velocity.  Thus 

( ) ( )1
1 1 12 .n n n n n nv v a a t t+ + += + + −   The displacement from 

the starting position at each time interval is calculated by a 
constant acceleration model, where the acceleration is as 
given above.  Thus the positions is calculated as follows.  

( ) ( )[ ]( )21 1
1 1 1 12 2n n n n n n n n nx x v t t a a t t+ + + += + − + + −   

The table of values is reproduced here. 
 (a) ( )17.00 30.3m sv =  

 (b) ( )17.00 305mx =  

The spreadsheet used for this problem can be found on the 
Media Manager, with filename “PSE4_ISM_CH02.XLS,” 
on tab “Problem 2.96.” 

 
97. (a) For each segment of the path,  

the time is given by the distance divided 
by the speed. 

   
( )

poolland
land pool

land pool

22

 
R S

dd
t t t

v v

D d xx
v v

= + = +

+ −
= +

  

 (b) The graph is shown here.  The minimum  
time occurs at a distance along the pool of 
about 6.8m .x =  

  An analytic differentiation to solve for the minimum point gives x = 6.76 m. 
 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH02.XLS,” on tab “Problem 2.97b.” 

 

  t  (s) a  (m/s2) v  (m/s)    x  (m)
0.0 1.25 0.0 0
1.0 1.58 1.4 1
2.0 1.96 3.2 3
3.0 2.40 5.4 7
4.0 2.66 7.9 14
5.0 2.70 10.6 23
6.0 2.74 13.3 35
7.0 2.72 16.0 50
8.0 2.60 18.7 67
9.0 2.30 21.1 87

10.0 2.04 23.3 109
11.0 1.76 25.2 133
12.0 1.41 26.8 159
13.0 1.09 28.0 187
14.0 0.86 29.0 215
15.0 0.51 29.7 245
16.0 0.28 30.1 275
17.0 0.10 30.3 305

7.2
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CHAPTER 3:  Kinematics in Two or Three Dimensions; Vectors 
 
Responses to Questions 
 
1. No.  Velocity is a vector quantity, with a magnitude and direction.  If two vectors have different 

directions, they cannot be equal. 
 
2. No. The car may be traveling at a constant speed of 60 km/h and going around a curve, in which case 

it would be accelerating. 
 
3. Automobile races that begin and end at the same place; a round-trip by car from New York to San 

Francisco and back; a balloon flight around the world. 
 
4. The length of the displacement vector is the straight-line distance between the beginning point and 

the ending point of the trip and therefore the shortest distance between the two points. If the path is a 
straight line, then the length of the displacement vector is the same as the length of the path. If the 
path is curved or consists of different straight line segments, then the distance from beginning to end 
will be less than the path length. Therefore, the displacement vector can never be longer than the 
length of the path traveled, but it can be shorter. 

 
5. The player and the ball have the same displacement. 
 
6. V is the magnitude of the vector V ; it is not necessarily larger than the magnitudes V1 and V2. For 

instance, if 1V  and 2V  have the same magnitude as each other and are in opposite directions, then V 
is zero. 

 
7. The maximum magnitude of the sum is 7.5 km, in the case where the vectors are parallel.  The 

minimum magnitude of the sum is 0.5 km, in the case where the vectors are antiparallel. 
 
8. No. The only way that two vectors can add up to give the zero vector is if they have the same 

magnitude and point in exactly opposite directions.  However, three vectors of unequal magnitudes 
can add up to the zero vector. As a one-dimensional example, a vector 10 units long in the positive x 
direction added to two vectors of 4 and 6 units each in the negative x direction will result in the zero 
vector. In two dimensions, consider any three vectors that when added form a triangle. 

 
9. (a) Yes.  In three dimensions, the magnitude of a vector is the square root of the sum of the squares  

  of the components.  If two of the components are zero, the magnitude of the vector is equal to 
the magnitude of the remaining component. 

 (b) No. 
 
10. Yes. A particle traveling around a curve while maintaining a constant speed is accelerating because 

its direction is changing. A particle with a constant velocity cannot be accelerating, since the velocity 
is not changing in magnitude or direction. 

 
11. The odometer and the speedometer of the car both measure scalar quantities (distance and speed, 

respectively). 
 
12. Launch the rock with a horizontal velocity from a known height over level ground. Use the equations 

for projectile motion in the y-direction to find the time the rock is in the air. (Note that the initial 
velocity has a zero y-component.) Use this time and the horizontal distance the rock travels in the 
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equation for x-direction projectile motion to find the speed in the x-direction, which is the speed the 
slingshot imparts. The meter stick is used to measure the initial height and the horizontal distance the 
rock travels.   

 
13. No. The arrow will fall toward the ground as it travels toward the target, so it should be aimed above 

the target. Generally, the farther you are from the target, the higher above the target the arrow should 
be aimed, up to a maximum launch angle of 45º. (The maximum range of a projectile that starts and 
stops at the same height occurs when the launch angle is 45º.) 

 
14. As long as air resistance is negligible, the horizontal component of the projectile’s velocity remains 

constant until it hits the ground. It is in the air longer than 2.0 s, so the value of the horizontal 
component of its velocity at 1.0 s and 2.0 s is the same. 

 
15. A projectile has the least speed at the top of its path. At that point the vertical speed is zero. The 

horizontal speed remains constant throughout the flight, if we neglect the effects of air resistance. 
 
16. If the bullet was fired from the ground, then the y-component of its velocity slowed considerably by 

the time it reached an altitude of 2.0 km, because of both acceleration due to gravity (downward) and 
air resistance. The x-component of its velocity would have slowed due to air resistance as well. 
Therefore, the bullet could have been traveling slowly enough to be caught! 

 
17. (a) Cannonball A, because it has a larger initial vertical velocity component. 
 (b) Cannonball A, same reason. 
 (c) It depends.  If θA < 45º, cannonball A will travel farther.  If θB > 45º, cannonball B will travel 

farther.  If  θA > 45º and θB < 45º, the cannonball whose angle is closest to 45º will travel 
farther. 

 
18. (a) The ball lands back in her hand. 

(b) The ball lands behind her hand. 
(c) The ball lands in front of her hand. 
(d) The ball lands beside her hand, to the outside of the curve. 
(e) The ball lands behind her hand, if air resistance is not negligible. 

  
19. This is a question of relative velocity. From the point of view of an observer on the ground, both 

trains are moving in the same direction (forward), but at different speeds. From your point of view 
on the faster train, the slower train (and the ground) will appear to be moving backward. (The 
ground will be moving backward faster than the slower train!) 

 
20. The time it takes to cross the river depends on the component of velocity in the direction straight 

across the river. Imagine a river running to the east and rowers beginning on the south bank. Let the 
still water speed of both rowers be v. Then the rower who heads due north (straight across the river) 
has a northward velocity component v.  The rower who heads upstream, though, has a northward 
velocity component of less than v. Therefore, the rower heading straight across reaches the opposite 
shore first. (However, she won’t end up straight across from where she started!)  

 
21. As you run forward, the umbrella also moves forward and stops raindrops that are at its height above 

the ground. Raindrops that have already passed the height of the umbrella continue to move toward 
the ground unimpeded. As you run, you move into the space where the raindrops are continuing to 
fall (below the umbrella). Some of them will hit your legs and you will get wet. 
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Solutions to Problems 
 
1. The resultant vector displacement of the car is given by 

R west south-
west

.= +D D D   The westward displacement is  

225 78cos 45 280.2 km+ ° =  and the south displacement is 

78sin 45 55.2 km° = .  The resultant displacement has a magnitude of 2 2280.2 55.2 286km .+ =   

The direction is 1tan 55.2 280.2 11 south of west .θ −= = °  

 
2. The truck has a displacement of ( )28 26 2+ − =  blocks north and 16 blocks 

east.  The resultant has a magnitude of 2 22 16 16.1blocks 16 blocks+ = ≈  

and a direction of 1tan 2 16 7  north of east .− = °  
 
 
 
3. Given that 7.80xV =  units and 6.40yV = −  units, the magnitude of V  is 

given by ( )22 2 27.80 6.40 10.1units .x yV V V= + = + − =   The direction is 

given by 1 6.40
tan 39.4

7.80
,θ − −

= = − °  39.4°  below the positive x-axis. 

 
 
4. The vectors for the problem are drawn approximately to scale.  The 

resultant has a length of 17.5m  and a direction 19°  north of east. If 

calculations are done, the actual resultant should be 17 m at 23o north of 
east. 

 
 
 
 
 
5. (a) See the accompanying diagram 

(b) 24.8cos23.4 22.8 units      24.8sin 23.4 9.85 unitsx yV V= − ° = − = ° =  

 (c) ( ) ( )2 22 2 22.8 9.85 24.8 unitsx yV V V= + = − + =  

1 9.85
tan 23.4 above the  axis

22.8
xθ −= = ° −   

 
6. We see from the diagram that ˆ6.8=A i  and ˆ5.5 .= −B i  

(a) ( )ˆ ˆ ˆ6.8 5.5 1.3 .= + = + − =C A B i i i   The magnitude is  1.3 units , and the direction is +x . 

(b) ( )ˆ ˆ ˆ6.8 5.5 12.3 .= − = − − =C A B i i i   The magnitude is  12.3 units , and the direction is +x . 

(c) ( ) ˆ ˆ ˆ5.5 6.8 12.3 .= − = − − = −C B A i i i   The magnitude is  12.3 units , and the direction is –x. 

RDsouth-
west

D
westD

θ

northD

eastD

southD

RD

V

xV
y

x
θ

yV

23.4°

xV

V yV

1V

2V

3V

R 1 2

3       

= +

+

V V V
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7. (a) ( ) ( )north 835 km h cos 41.5 625 km hv = ° =  ( ) ( )west 835 km h sin 41.5 553 km hv = ° =   

(b) ( ) ( )north north 625 km h 2.50 h 1560 kmd v tΔ = = =  

( ) ( )west west 553 km h 2.50 h 1380 kmd v tΔ = = =  
 

8. (a) 2 2 1
1 1

8.0ˆ ˆ6.0 8.0     6.0 8.0 10.0     tan 127
6.0

V θ −= − + = + = = = °
−

V i j  

(b) 2 2 1
2 2

5.0ˆ ˆ4.5 5.0     4.5 5.0 6.7     tan 312
4.5

V θ − −
= − = + = = = °V i j  

(c) ( ) ( )1 2
ˆ ˆ ˆ ˆ ˆ ˆ6.0 8.0 4.5 5.0 1.5 3.0= − + − = − ++ +V V i j i j i j  

 2 2 1
1 2

3.0
1.5 3.0 3.4     tan 117

1.5
θ −+ = = = °

−
+ =V V  

(d) ( ) ( )2 1
ˆ ˆ ˆ ˆ ˆ ˆ4.5 5.0 6.0 8.0 10.5 13.0= − − + = −− −V V i j i j i j  

 2 2 1
2 1

13.0
10.5 13.0 16.7     tan 309

10.5
θ − −

+ = = = °− =V V  

 
9. (a) ( ) ( ) ( )1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4.0 8.0 1.0 1.0 2.0 4.0 3.0 3.0+ + = − + + + − + = −V V V i j i j i j i j  

  2 2 1
1 2 3

3.0
3.0 3.0 4.2     tan 315

3.0
θ − −

+ = = = °+ + =V V V  

(b) ( ) ( ) ( )1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4.0 8.0 1.0 1.0 2.0 4.0 1.0 5.0+ = − + + − + = −− −V V V i j i j i j i j  

  2 2 1
1 2 3

5.0
1.0 5.0 5.1     tan 280

1.0
θ − −

+ = = = °− + =V V V  

 
10. 44.0 cos 28.0 38.85         44.0sin 28.0 20.66x yA A= ° = = ° =  

26.5cos 56.0 14.82     26.5sin 56.0 21.97

31.0 cos 270 0.0              31.0 sin 270 31.0
x y

x y

B B

C C

= − ° = − = ° =

= ° = = ° = −
 

 (a) ( ) ( )38.85 14.82 0.0 24.03 24.0
x

= + − + = =A + B + C       

( ) ( )20.66 21.97 31.0 11.63 11.6
y

= + + − = =A + B + C  

 (b) ( ) ( )2 224.03 11.63 26.7= + =A + B + C   1 11.63
tan 25.8

24.03
θ −= = °  

 
11. 44.0cos 28.0 38.85         44.0sin 28.0 20.66x yA A= ° = = ° =  

26.5cos56.0 14.82     26.5sin 56.0 21.97x yB B= − ° = − = ° =  

(a) ( ) ( ) ( )14.82 38.85 53.67        21.97 20.66 1.31
x y

− = − − = − − = − =B A B A  

Note that since the x component is negative and the y component is positive, the vector is in the 
2nd quadrant. 

ˆ ˆ53.7 1.31− = − +B A i j  
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( ) ( )2 2 1 1.31
53.67 1.31 53.7       tan 1.4  above  axis

53.67B A xθ −
−− = − + = = = ° −

−
B A  

 (b) ( ) ( ) ( )38.85 14.82 53.67        20.66 21.97 1.31
x y

− = − − = − = − = −A B A B  

Note that since the x component is positive and the y component is negative, the vector is in the 
4th quadrant. 

( ) ( )2 2 1

ˆ ˆ53.7 1.31

1.31
53.67 1.31 53.7      tan 1.4  below  axis

53.7
xθ −

− = −

−
− = + − = = = ° +

A B i j

A B
  

  Comparing the results shows that ( ).− = − −B A A B  
 
12. 44.0 cos 28.0 38.85         44.0sin 28.0 20.66x yA A= ° = = ° =  

 31.0 cos 270 0.0            31.0sin 270 31.0x yC C= ° = = ° = −  

( ) ( ) ( )38.85 0.0 38.85        20.66 31.0 51.66

ˆ ˆ38.8 51.7

x y
− = − = − = − − =

− = +

A C A C

A C i j
 

( ) ( )2 2 1 51.66
38.85 51.66 64.6          tan 53.1

38.85
θ −− = + = = = °A C  

 
13. 44.0 cos 28.0 38.85         44.0sin 28.0 20.66x yA A= ° = = ° =  

26.5cos 56.0 14.82     26.5sin 56.0 21.97

31.0 cos 270 0.0              31.0 sin 270 31.0
x y

x y

B B

C C

= − ° = − = ° =

= ° = = ° = −
 

(a) ( ) ( ) ( ) ( )2 14.82 2 38.85 92.52     2 21.97 2 20.66 19.35
x y

− = − − = − − = − = −B A B A  

Note that since both components are negative, the vector is in the 3rd quadrant. 

( ) ( )2 2 1

ˆ ˆ2 92.5 19.4

19.35
2 92.52 19.35 94.5      tan 11.8 below  axis

92.52
xθ −

− = − −

−
− = − + − = = = ° −

−

B A i j

B A
 

 (b) ( ) ( ) ( ) ( )2 3 2 2 38.85 3 14.82 2 0.0 122.16
x

− + = − − + =A B C  

( ) ( ) ( ) ( )2 3 2 2 20.66 3 21.97 2 31.0 86.59
y

− + = − + − = −A B C  

Note that since the x component is positive and the y component is negative, the vector is in the 
4th quadrant. 

( ) ( )2 2 1

ˆ ˆ2 3 2 122 86.6

86.59
2 3 2 122.16 86.59 150      tan 35.3 below  axis

122.16
xθ −

− + = −

−
− + = + − = = = ° +

A B C i j

A B C
 

 
14. 44.0 cos 28.0 38.85         44.0sin 28.0 20.66x yA A= ° = = ° =  

26.5cos 56.0 14.82     26.5sin 56.0 21.97

31.0 cos 270 0.0              31.0 sin 270 31.0
x y

x y

B B

C C

= − ° = − = ° =

= ° = = ° = −
 

 (a) ( ) ( )38.85 14.82 0.0 53.67
x

− + = − − + =A B C  
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( ) ( )20.66 21.97 31.0 32.31
y

− + = − + − = −A B C  

Note that since the x component is positive and the y component is negative, the vector is in the 
4th quadrant. 

( ) ( )2 2 1

ˆ ˆ53.7 32.3

32.31
53.67 32.31 62.6      tan 31.0 below  axis

53.67
xθ −

− + = −

−
− + = + − = = = ° +

A B C i j

A B C
 

(b) ( ) ( )38.85 14.82 0.0 24.03
x

+ − = + − − =A B C  

( ) ( )20.66 21.97 31.0 73.63
y

+ − = + − − =A B C  

( ) ( )2 2 1

ˆ ˆ24.0 73.6

73.63
24.03 73.63 77.5      tan 71.9

24.03
θ −

+ − = +

+ − = + = = = °

A B C i j

A B C
 

 (c) ( ) ( )0.0 38.85 14.82 24.03
x

− − = − − − = −C A B  

( ) 31.0 20.66 21.97 73.63
y

− − = − − − = −C A B  

Note that since both components are negative, the vector is in the 3rd quadrant. 

( ) ( )2 2 1

ˆ ˆ24.0 73.6

73.63
24.03 73.63 77.5      tan 71.9 below  axis

24.03
xθ −

− − = − −

−
− − = − + − = = = ° −

−

C A B i j

C A B
 

  Note that the answer to (c) is the exact opposite of the answer to (b). 
 
15. The x component is negative and the y component is positive, since the summit is to the west of 

north.  The angle measured counterclockwise from the positive x axis would be 122.4o.  Thus the 
components are found to be as follows. 

( ) ( ) ( )2 2 2

4580 cos122.4 2454 m            4580sin122.4 3867 m      2450 m

ˆ ˆ ˆ2450 m 3870 m 2450 m         2454 4580 2450 5190 m

x y z= ° = − = ° = =

= − + + = − + + =r i j k r
 

 
16. (a) Use the Pythagorean theorem to find the possible x components. 

( )22 2 290.0 55.0       5075     71.2 unitsx x x= + − → = → = ±  

 (b) Express each vector in component form, with V  the vector to be determined. 

   

( ) ( )
( )

ˆ ˆ ˆ ˆ ˆ ˆ71.2 55.0 80.0 0.0   

80.0 71.2 151.2        55.0

ˆ ˆ151.2 55.0

x y

x y

V V

V V

− + + = − + →

= − − = − =

= − +

i j i j i j

V i j

 

 
17. Differentiate the position vector in order to determine the velocity, and differentiate the velocity in 

order to determine the acceleration. 

  ( ) ( )2ˆ ˆ ˆˆ ˆ9.60 8.85 1.00 m    9.60 2.00 m s   
d

t t t
dt

= + − → = = − →
r

r i j k v i k  

  2ˆ2.00 m s
d
dt

= = −
v

a k  
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18. The average velocity is found from the displacement at the two times. 

  

( ) ( )

( ) ( )( ) ( ) ( )( )

2 1
avg

2 1

2 2ˆ ˆ ˆ ˆˆ ˆ9.60 3.00 8.85 3.00 m 9.60 1.00 8.85 1.00 m
      

2.00s

t t
t t

−
=

−

+ − − + −
=
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

r r
v

i j k i j k
 

  ( )ˆ ˆ      9.60 4.00 m s= −i k  

 The magnitude of the instantaneous velocity is found from the velocity vector. 

  

( )
( ) ( ) ( )( ) ( )

( ) ( )2 2

ˆ ˆ9.60 2.00 m s

ˆ ˆˆ ˆ2.00 9.60 2.00 2.00 m s 9.60 4.00 m s   

9.60 4.00 m s 10.4 m s

d
t

dt

v

= = −

= − = − →

= + =

r
v i k

v i k i k  

Note that, since the acceleration of this object is constant, the average velocity over the time interval 
is equal to the instantaneous velocity at the midpoint of the time interval. 

 
19. From the original position vector, we have 29.60 , 8.85, 1.00 .x t y z t= = = −   Thus 

2
2 , 8.85.

9.60
x

z ax y= − = − =⎛ ⎞
⎜ ⎟
⎝ ⎠

  This is the equation for a  parabola  in the x-z plane that has its 

vertex at coordinate (0,8.85,0) and opens downward. 
 
20. (a) Average velocity is displacement divided by elapsed time.  Since the displacement is not  

known, the  average velocity cannot be determined .  A special case exists in the case of 
constant acceleration, where the average velocity is the numeric average of the initial and final 
velocities.  But this is not specified as motion with constant acceleration, and so that special 
case cannot be assumed.  

(b) Define east as the positive x-direction, and north as the positive y-direction.  The average 
acceleration is the change in velocity divided by the elapsed time. 

  
( ) 2 2

avg

ˆ ˆ27.5 m s 18.0 m s ˆ ˆ3.44 m s 2.25 m s
8.00st

− −Δ
= = = +

Δ

i jv
a i j  

  ( ) ( )2 22 2 2 1
avg

2.25
3.44 m s 2.25 m s 4.11m s     tan 33.2

3.44
θ −= + = = = °a  

(c) Average speed is distance traveled divided by elapsed time.  Since the distance traveled is not 
known, the  average speed cannot be determined . 

 
21. Note that the acceleration vector is constant, and so Eqs. 3-13a and 3-13b are applicable.  Also 

0 0=v  and 0 0.=r  

(a) ( )0
ˆ ˆ4.0 3.0 m s     4.0 m s  , 3.0 m sx yt t t v t v t= + = + → = =v v a i j  

 (b) ( ) ( )2 22 2 4.0 m s 3.0 m s 5.0 m sx yv v v t t t= + = + =  

 (c) ( )2 2 21
0 0 2

ˆ ˆ2.0 1.5 mt t t t= + + = +r r v a i j  

 (d) ( ) ( ) ( ) ( ) ( )ˆ ˆ2.0 8.0 m s  , 2.0 6.0 m s  , 2.0 10.0 m s  , 2.0 8.0 6.0 mx yv v v= = = = +r i j  
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22. Choose downward to be the positive y direction for this problem.  Her acceleration is directed along 
the slope. 
(a) The vertical component of her acceleration is directed downward, and its magnitude will be  

given by ( )2 o 2sin 1.80 m s sin 30.0 0.900 m s .ya a θ= = =  

(b) The time to reach the bottom of the hill is calculated from Eq. 2-12b, with a y displacement of  
325 m, 0 0,yv =  and 20.900 m s .ya =    

( ) ( )
( )

( )

22 21 1
0 0 2 2

2

    325 m 0 0 0.900 m s   

2 325 m
26.9 s

0.900 m s

y yy y v t a t t

t

= + + → = + + →

= =
 

 
23. The three displacements for the ant are shown in the diagram, 

along with the net displacement.  In x and y components, they are 
ˆ10.0cm ,+ i  ( )ˆ ˆ10.0cos30.0 10.0sin 30.0 cm,° + °i j , and 

( )ˆ ˆ10.0cos100 10.0sin100 cm.° + °i j   To find the average velocity, 

divide the net displacement by the elapsed time. 
 (a) ( )ˆ ˆ10.0cm 10.0cos30.0 10.0sin 30.0 cmˆΔ = + + ° + °r i ji  

( ) ( )
( ) ( )avg

ˆ ˆ ˆ ˆ          10.0cos100 10.0sin100 cm 16.92 14.85 cm

ˆ ˆ16.92 14.85 cm ˆ ˆ3.16 2.78 cm s
2.00s 1.80s 1.55st

+ ° + ° = +

+Δ
= = = +

Δ + +

i j i j

i jr
v i j

 

 (b) ( ) ( )2 2
avg 3.16cm s 2.78cm s 4.21cm s= + =v      1 1 2.78

tan tan 41.3
3.16

y

x

v
v

θ − −= = = °  

 
24. Since the acceleration vector is constant, Eqs. 3-13a and 3-13b are applicable.  The particle reaches 

its maximum x coordinate when the x velocity is 0.  Note that 0
ˆ5.0 m s=v i  and 0 0.=r  

  ( )0
ˆ ˆ ˆ5.0 m s 3.0 4.5 m st t t= + = + − +v v a i i j  

  

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

max max 2

max

2 2 21 1
0 0 2 2

21
max 2

5.0 m s
5.0 3.0 m s     0 5.0 3.0 m s     1.67s

3.0 m s

ˆ ˆ ˆ ˆ5.0 m s 3.0 1.67 4.5 1.67 m s 7.5m s

ˆ ˆ ˆ5.0 m 3.0 4.5 m

ˆ ˆ5.0 1.67 m s 3.0 1.67

x x x x

x

x

v t v t t

t t

t t t t t

t

− −

−

−

= − → = = − → = =

= + − + =

= + + = + − +

= + − +

⎡ ⎤⎣ ⎦v i i j j

r r v a i i j

r i i ( )2 ˆ ˆ ˆ4.5 1.67 m 4.2 m 6.3 m= +⎡ ⎤⎣ ⎦j i j

 

 
25. (a) Differentiate the position vector, ( )2 3ˆ ˆ3.0 6.0 mt t= −r i j , with respect to time in order to find  

the velocity and the acceleration. 

   ( ) ( )2 2ˆ ˆ ˆ ˆ6.0 18.0 m s 6.0 36.0 m s       d d
t t t

dt dt
= = − = = −

r v
v i j a i j  

 
 

o30

o70



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

56 

 (b) ( ) ( ) ( ) ( )2 3ˆ ˆ ˆ ˆ2.5s 3.0 2.5 6.0 2.5 m 19 94 m= − = −⎡ ⎤⎣ ⎦r i j i j  

( ) ( ) ( ) ( )2ˆ ˆ ˆ ˆ2.5s 6.0 2.5 18.0 2.5 m s 15 110 m s= − = −⎡ ⎤⎣ ⎦v i j i j  

 
26. The position vector can be found from Eq. 3-13b, since the acceleration vector is constant.  The time 

at which the object comes to rest is found by setting the velocity vector equal to 0.  Both components 
of the velocity must be 0 at the same time for the object to be at rest.  

( ) ( ) ( ) ( )0
ˆ ˆ ˆ ˆ ˆ ˆ14 7.0 m s 6.0 3.0 m s 14 6.0 7.0 3.0 m st t t t t= + = − − + + = − + + − +⎡ ⎤⎣ ⎦v v a i j i j i j  

( ) ( ) ( )

( )

( )

rest

7
3rest

7
3rest

ˆ ˆ ˆ ˆ0.0 0.0 m s 14 6.0 7.0 3.0 m s   

14
0.0 14 6.0     s s

6.0
7.0

0.0 7.0 3.0     s s
3.0

x

y

t t

v t t

v t t

= + = − + + − + →

= = − + → = =

= = − + → = =

⎡ ⎤⎣ ⎦v i j i j

 

Since both components of velocity are 0 at 7
3 st = , the object is at rest at that time.  

  

( ) ( ) ( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )

2 2 21 1
0 0 2 2

2 21
2

2 21 1
2 2

7 7 7 7
3 3 3 3

7 7 7 7
3 3 3 3

ˆ ˆ ˆ ˆ ˆ ˆ0.0 0.0 m 14 7.0 m 6.0 3.0 m

ˆ ˆ ˆ ˆ  14 7.0 m 6.0 3.0 m

ˆ ˆ  14 6.0 m 7.0 3.0 m

ˆ ˆ ˆ ˆ  16.3 8.16 m 16.3 8.2 m

t t t t t t= + + = + + − − + +

= − − + +

= − + + − +

= − − ≈ − −

r r v a i j i j i j

i j i j

i j

i j i j

 

 
27. Find the position at t = 5.0 s, and then subtract the initial point from that new location. 
  ( ) ( ) ( ) ( )2 3ˆ ˆ ˆ ˆ5.0 5.0 5.0 6.0 5.0 m 7.0 3.0 5.0 m 175 m 368 m= + + − = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦r i j i j  

  ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ175.0 m 368.0m 0.0 m 7.0m 175 m 375mΔ = − − + = −r i j i j i j  

( ) ( )2 2 1 375
175 m 375 m 414 m      tan 65.0

175
θ − −

Δ = + − = = = − °r  

 
28. Choose downward to be the positive y direction.  The origin will be at the point where the tiger leaps 

from the rock.  In the horizontal direction, 0 3.2 m sxv =  and 0.xa =   In the vertical direction, 

0 0,yv =  29.80 m s ,ya =  0 0,y =  and the final location 7.5 m.y =   The time for the tiger to reach 
the ground is found from applying Eq. 2-12b to the vertical motion. 

( ) ( )2 2 21 1
0 0 2 2 2

2 7.5m
    7.5m 0 0 9.80 m s     1.24 sec

9.80 m sy yy y v t a t t t= + + → = + + → = =  

The horizontal displacement is calculated from the constant horizontal velocity. 
( ) ( )3.2 m s 1.24 sec 4.0 mxx v tΔ = = =  

 
29. Choose downward to be the positive y direction.  The origin will be at the point where the diver 

dives from the cliff.  In the horizontal direction, 0 2.3 m sxv =  and 0.xa =   In the vertical direction, 

0 0,yv =  29.80 m s ,ya =  0 0,y =  and the time of flight is 3.0 s.t =   The height of the cliff is found 
from applying Eq. 2-12b to the vertical motion. 
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( ) ( )22 21 1
0 0 2 2      0 0 9.80 m s 3.0 s 44 my yy y v t a t y= + + → = + + =  

The distance from the base of the cliff to where the diver hits the water is found from the horizontal 
motion at constant velocity: 

( ) ( )2.3 m s 3.0 s 6.9 mxx v tΔ = = =  

 

30. Apply the range formula from Example 3-10:  
2
0 0sin 2 .v

R
g

θ
=   If the launching speed and angle are 

held constant, the range is inversely proportional to the value of .g   The acceleration due to gravity 
on the Moon is 1/6th that on Earth. 

2 2
0 0 0 0

Earth Moon Earth Earth Moon Moon
Earth Moon

sin 2 sin 2
         

v v
R R R g R g

g g
θ θ

= = → =  

Earth
Moon Earth Earth

Moon

6
g

R R R
g

= =  

Thus on the Moon, the person can jump 6 times farther .  
 
31. Apply the range formula from Example 3-10.   

( ) ( )
( )

2
0 0

2

0 22
0

1
0 0

sin 2
   

2.5 m 9.80 m s
sin 2 0.5799

6.5 m s

2 sin 0.5799      18 ,72

v
R

g

Rg
v

θ

θ

θ θ−

= →

= = =

= → = ° °
 
 
There are two angles because each angle gives the 
same range.  If one angle is 45θ δ= ° + , then 

45θ δ= ° −  is also a solution.  The two paths are shown in the graph. 
 
32. Choose downward to be the positive y direction.  The origin will be at the point where the ball is 

thrown from the roof of the building.  In the vertical direction, 0 0,yv =  29.80 m s ,ya =  0 0,y =  
and the displacement is 9.0 m.  The time of flight is found from applying Eq. 2-12b to the vertical 
motion. 

( ) ( )2 2 21 1
0 0 2 2 2

2 9.0 m
      9.0 m 9.80 m s       1.355 sec

9.80 m sy yy y v t a t t t= + + → = → = =  

The horizontal speed (which is the initial speed) is found from the horizontal motion at constant 
velocity. 

     9.5 m 1.355s 7.0 m sx xx v t v x tΔ = → = Δ = =  

 
33. Choose the point at which the football is kicked the origin, and choose upward to be the positive y 

direction.  When the football reaches the ground again, the y displacement is 0.  For the football, 
( )0 18.0 sin 38.0 m s ,yv = °  29.80 m s ,ya = − and the final y velocity will be the opposite of the 

starting y velocity.  Use Eq. 2-12a to find the time of flight. 

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5
horizontal distance (m)

ve
rti

ca
l d

is
ta

nc
e 

(m
)
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( ) ( )0
0 2

18.0sin 38.0 m s 18.0sin 38.0 m s
      2.26s

9.80 m s
y y

y y

v v
v v at t

a
− − ° − °

= + → = = =
−

 

 
34. Choose downward to be the positive y direction.  The origin is the point where the ball is thrown 

from the roof of the building.  In the vertical direction 0 0,yv =  0 0,y =  and 29.80 m s .ya =   The 
initial horizontal velocity is 23.7 m/s and the horizontal range is 31.0 m.  The time of flight is found 
from the horizontal motion at constant velocity. 

     31.0 m 23.7 m s 1.308 sx xx v t t x vΔ = → = Δ = =  
The vertical displacement, which is the height of the building, is found by applying Eq. 2-12b to the 
vertical motion. 

( ) ( )22 21 1
0 0 2 2      0 0 9.80 m s 1.308s 8.38 my yy y v t a t y= + + → = + + =  

 
35. Choose the origin to be the point of release of the shot put.  Choose upward to be the positive y 

direction.  Then 0 0,y =  ( )0 14.4 sin 34.0 m s 8.05m s,yv = ° =  29.80 m s ,ya = −  and 2.10 my = −  
at the end of the motion.  Use Eq. 2-12b to find the time of flight. 

( ) ( ) ( ) ( ) ( )

2 21 1
0 0 02 2

22 1
20 0

1
2

      0   

4 8.05 8.05 2 9.80 2.10
1.872 s, 0.2290s

2 9.80

y y y y

y y y

y

y y v t a t a t v t y

v v a y
t

a

= + + → + − = →

− ± − − − ± − −
= = = −

−

 

 Choose the positive result since the time must be greater than 0.  Now calculate the  
horizontal distance traveled using the horizontal motion at constant velocity. 

( )[ ]( )14.4 cos 34.0 m s 1.872 s 22.3mxx v tΔ = = ° =  

 
36.   Choose the origin to be the point of launch, and upwards to be the positive y direction.  The initial 

velocity of the projectile is 0 ,v  the launching angle is 0 ,θ  ,ya g= −  0 0,y =  and 0 0 0sin .yv v θ=   Eq. 
2-12a is used to find the time required to reach the highest point, at which 0.yv =  

0 0 0 0 0
0 up up

0 sin sin
      y y

y y

v v v v
v v at t

a g g
θ θ− −

= + → = = =
−

 

 Eq. 2-12c is used to find the height at this highest point.   

( )
2 2 2 2 2 2

02 2 0 0 0 0
0 max 0 max 0

sin sin
2       0

2 2 2
y y

y y y
y

v v v v
v v a y y y y

a g g
θ θ− −

= + − → = + = + =
−

 

Eq. 2-12b is used to find the time for the object to fall the other part of the path, with a starting y 

velocity of 0 and a starting height of 
2 2
0 0

0

sin
.

2
v

y
g

θ
=   

2 2
2 20 0 0 01 1

0 down down down2 2

sin sin
      0 0

2
    o y y

v v
y y v t a t t gt t

g g
θ θ

= + + → = + − =→  

 A comparison shows that up downt t= . 
 
37. When shooting the gun vertically, half the time of flight is spent moving upwards.  Thus the upwards 

flight takes 2.0 s.  Choose upward as the positive y direction. Since at the top of the flight, the 
vertical velocity is zero, find the launching velocity from Eq. 2-12a. 

( ) ( )2
0 0      0 9.80 m s 2.0s 19.6 m sy y y yv v at v v at= + → = − = − − =  
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Using this initial velocity and an angle of 45o in the range formula (from Example 3-10) will give the 
maximum range for the gun. 

  ( ) ( )22
0 0

2

19.6 m s sin 90sin 2
39 m

9.80 m s
v

R
g

θ °
= = =  

 
38. Choose the origin to be the point on the ground directly below the point where the baseball was hit.   

Choose upward to be the positive y direction.  Then 0 1.0 m,y =  13.0 my = at the end of the 

motion, ( )0 27.0sin 45.0 m s 19.09 m s,yv = ° =  and 29.80 m s .ya = −   Use Eq. 2-12b to find the 
time of flight. 

( )
( ) ( ) ( ) ( ) ( )

2 21 1
0 0 02 2

22 1
20 0

1
2

0

0

      0   

4 19.09 19.09 2 9.80 12.0

2 9.80

0.788s, 3.108s 

y y y y

y y y

y

y y v t a t a t v t y y

v v a y y
t

a

= + + → + + − = →

− ± − − − ± − − −
= =

−

=

 

The smaller time is the time the baseball reached the building’s height on the way up, and the larger 
time is the time the baseball reached the building’s height on the way down.  We must choose the 
larger result, because the baseball cannot land on the roof on the way up.  Now calculate the 
horizontal distance traveled using the horizontal motion at constant velocity. 

( )[ ]( )27.0 cos 45.0 m s 3.108s 59.3mxx v tΔ = = ° =  

 
39. We choose the origin at the same place.  With the new definition of the coordinate axes, we have the 

following data:  2
0 0 00,  1.00 m, 12.0 m s   16.0 m s 9.80 m s, ,  .y xy y v v a= = + = − − ==  

( ) ( )
( ) ( ) ( )

2 2 21
0 0 2

2 2

    1.00 m 0 12.0 m s 4.90 m s   

4.90 m s 12.0 m s 1.00 m 0

yy y v t gt t t

t t

= + + → = − + →

− − =
 

This is the same equation as in Example 3-11, and so we know the appropriate solution is 2.53s.t =   
We use that time to calculate the horizontal distance the ball travels. 

( ) ( )0 16.0 m s 2.53s 40.5mxx v t= = − = −  
Since the x-direction is now positive to the left, the negative value means that the ball lands  40.5 m  
to the right of where it departed the punter’s foot. 

 
40. The horizontal range formula from Example 3-10 can be used to find the launching velocity of the 

grasshopper. 

  
( ) ( )22

0 0
0

0

1.0m 9.80 m ssin 2
    3.13m s

sin 2 sin 90
v Rg

R v
g

θ
θ

= → = = =
°

 

Since there is no time between jumps, the horizontal velocity of the grasshopper is the horizontal 
component of the launching velocity. 

  ( ) o
0 0cos 3.13m s cos 45 2.2 m sxv v θ= = =  

 
41. (a) Take the ground to be the y = 0 level, with upward as the positive direction.  Use Eq. 2-12b to  

solve for the time, with an initial vertical velocity of 0. 
   ( )2 2 21 1

0 0 2 2    150 m 910 m 9.80 m s   y yy y v t a t t= + + → = + − →  
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( )

( )2

2 150 910
12.45s 12s

9.80 m s
t

−
= = ≈

−
 

 (b) The horizontal motion is at a constant speed, since air resistance is being ignored. 
( ) ( )5.0 m s 12.45s 62.25m 62 mxx v tΔ = = = ≈  

 
42. Consider the downward vertical component of the motion, which will occur in half the total time.  

Take the starting position to be y = 0, and the positive direction to be downward.  Use Eq. 2-12b with 
an initial vertical velocity of 0. 

2
2 2 2 2 21 1 1

0 0 down2 2 2

9.80
    0 0 1.225 1.2

2 8y y

t
y y v t a t h gt g t t t= + + → = + + = = = ≈⎛ ⎞

⎜ ⎟
⎝ ⎠

  

 
43. Choose downward to be the positive y direction.  The origin is the point where the supplies are 

dropped.  In the vertical direction, 0 0,yv =  29.80 m s ,ya =  0 0,y =  and the final position is 
150 m.y =   The time of flight is found from applying Eq. 2-12b to the vertical motion. 

( )
( )

2 2 21 1
0 0 2 2

2

      160 m 0 0 9.80 m s    

2 150 m
5.5s

9.80 m s

y yy y v t a t t

t

= + + → = + + →

= =
 

 Note that the horizontal speed of the airplane does not enter into this calculation. 
 
44. (a) Use the “level horizontal range” formula from Example 3-10 to find her takeoff speed. 

   
( ) ( )22

0 0
0

0

9.80 m s 8.0 msin 2
    8.854 m s 8.9 m s

sin 2 sin 90
v gR

R v
g

θ
θ

= → = = = ≈
°

 

 (b) Let the launch point be at the y = 0 level, and choose upward to be positive.  Use Eq. 2-12b to  
solve for the time to fall to 2.5 meters below the starting height, and then calculate the 
horizontal distance traveled. 

   ( ) ( )2 2 21 1
0 0 2 2    2.5m 8.854 m s sin 5 9.80 m sy yy y v t a t t t= + + → − = 4 ° + −  

( ) ( ) ( )
( ) ( )

2

2

4.9 6.261 2.5m 0  

6.261 6.261 4 4.9 2.5 6.261 9.391
0.319s , 1.597s

2 4.9 2 4.9

t t

t

− − = →

± − − ±
= = = −

 

  Use the positive time to find the horizontal displacement during the jump.  
   ( ) ( )0 0 cos 45 8.854 m s cos 45 1.597s 10.0 mxx v t v tΔ = = ° = ° =  
  She will land exactly on the opposite bank, neither long nor short. 
 
45. Choose the origin to be the location at water level directly underneath the diver when she left the 

board.  Choose upward as the positive y direction.  For the diver, 0 5.0 m,y =  the final  y position is 
0.0 my = (water level), ,ya g= −  the time of flight is 1.3s,t =  and the horizontal displacement is 

3.0 m.xΔ =  
 

(a) The horizontal velocity is determined from the horizontal motion at constant velocity. 
3.0 m

      2.31m s
1.3 sx x

x
x v t v

t
Δ

Δ = → = = =  
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 The initial y velocity is found using Eq. 2-12b. 
( ) ( )( )22 21 1

0 0 02 2

0

  0 m 5.0 m 1.3 s 9.80 m s 1.3 s  

2.52 m s
y y y

y

y y v t a t v

v

= + + → = + + − →

=
 

 Thus the velocity in both vector and magnitude / direction format are as follows.  

( ) ( ) ( )2 22 2
0 0

01 1

0
ˆ ˆ2.3 2.5 m s      2.31m s 2.52 m s 3.4 m s

2.52 m s
tan tan 48 above the horizontal

2.31m s

x y

y

x

v v v

v
v

θ − −

= + = + = + =

= = = °

v i j
  

 (b) The maximum height will be reached when the y velocity is zero.  Use Eq. 2-12c. 
( ) ( ) ( )22 2 2

0 max

max

2       0 2.52 m s 2 9.80 m s 5.0 m    

5.3m

y yv v a y y

y

= + Δ → = + − − →

=
 

(c) To find the velocity when she enters the water, the horizontal velocity is the (constant) value of 
2.31m sxv = .  The vertical velocity is found from Eq. 2-12a. 

( )( )2
0 2.52 m s 9.80 m s 1.3 s 10.2 m sy yv v at= + = + − = −  

The velocity is as follows. 

( )
( ) ( )

f

2 22 2
f

ˆ ˆ2.3 10.2 m s

2.31m s 10.2 m s 10.458 m s 10 m sx yv v v

= −

= + = + − = ≈

v i j
  

( )f1 1
f

f

10.2 m s
tan tan 77 below the horizontal

2.31m s
y

x

v
v

θ − − −
= = = − °  

 
46. Choose the origin to be at ground level, under the place where the projectile is launched, and 

upwards to be the positive y direction.  For the projectile, 0 65.0 m s ,v =  0 35.0 ,θ = °  ,ya g= −  

0 115 m,y =  and  0 0 0sin .yv v θ=  
 
 (a) The time taken to reach the ground is found from Eq. 2-12b, with a final height of 0. 

( )
( )

2 21 1
0 0 0 02 2

2 2 1
20 0 0 0

1
2

0

0

      0 sin    

sin sin 4
9.964 s , 2.3655s 9.96s

2

y yy y v t a t y v t gt

v v g
t

g
y

θ

θ θ

= + + → = + − →

− ± − −
= = − =

−

 

  Choose the positive time since the projectile was launched at time t = 0. 
 (b) The horizontal range is found from the horizontal motion at constant velocity. 

( ) ( ) ( ) ( )0 0cos 65.0 m s cos 35.0 9.964 s 531mxx v t v tθΔ = = = ° =  

(c) At the instant just before the particle reaches the ground, the horizontal component of its  
velocity is the constant ( )0 0cos 65.0 m s cos 35.0 53.2 m s .xv v θ= = ° =   The vertical 

component is found from Eq. 2-12a. 
( ) ( ) ( )2

0 0 0sin 65.0 m s sin 35.0 9.80 m s 9.964 s

60.4 m s   

y yv v at v gtθ= + = − = ° −

= −
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(d) The magnitude of the velocity is found from the x and y components calculated in part (c)  
above.   

( ) ( )2 22 2 53.2 m s 60.4 m s 80.5 m sx yv v v= + = + − =  

(e) The direction of the velocity is 1 1 60.4
tan tan 48.6

53.2
y

x

v
v

θ − − −
= = = − ° , and so the object is  

moving 48.6  below the horizon .°  
(f) The maximum height above the cliff top reached by the projectile will occur when the y- 

velocity is 0, and is found from Eq. 2-12c. 
( )

( )
( )

2 2 2 2
0 0 0 0 max

2 22 2
0 0

max 2

2       0 sin 2

65.0 m s sin 35.0sin
70.9 m

2 2 9.80 m s

y y yv v a y y v gy

v
y

g

θ

θ

= + − → = −

°
= = =

 

 
47. Choose upward to be the positive y direction.  The origin is the point from which the football is 

kicked.  The initial speed of the football is 0 20.0 m s.v =   We have 0 0 sin 37.0 12.04 m s ,yv v= ° =  

0 0,y =  and 29.80 m s .ya = −   In the horizontal direction, 0 cos 37.0 15.97 m s ,xv v= ° =  and 
36.0 m.xΔ =   The time of flight to reach the goalposts is found from the horizontal motion at 

constant speed. 
      36.0 m 15.97 m s 2.254 sx xx v t t x vΔ = → = Δ = =  

Now use this time with the vertical motion data and Eq. 2-12b to find the height of the football when 
it reaches the horizontal location of the goalposts. 

( )( ) ( )( )22 21 1
0 0 2 20 12.04 m s 2.254 s 9.80 m s 2.254s 2.24 my yy y v t a t= + + = + + − =  

Since the ball’s height is less than 3.00 m,  the football does not clear the bar  .  It is 0.76 m too low 
when it reaches the horizontal location of the goalposts. 

 

To find the distances from which a score can be made, redo the problem (with the same initial 
conditions) to find the times at which the ball is exactly 3.00 m above the ground.  Those times 
would correspond with the maximum and minimum distances for making the score.  Use Eq. 2-12b. 

 

( ) ( )
( ) ( ) ( )

( )

2 2 21 1
0 0 2 2

2

2

    3.00 0 12.04 m s 9.80 m s   

12.04 12.04 4 4.90 3.00
4.90 12.04 3.00 0    2.1757s, 0.2814s

2 4.90

y yy y v t a t t t

t t t

= + + → = + + − →

± −
− + = → = =

 

 ( ) ( )1 115.97 m s 0.2814 s 4.49 m ; 15.97 m s 2.1757 s 34.746 mx xx v t x v tΔ = = = Δ = = =  

So the kick must be made in the range from 4.5m to 34.7 m .  

 
48. The constant acceleration of the projectile is given by 2 ˆ9.80 m s .= −a j   We use Eq. 3-13a with the  

given velocity, the acceleration, and the time to find the initial velocity. 
( ) ( ) ( ) ( )2

0 0
ˆ ˆ ˆ ˆ ˆ8.6 4.8 m s 9.80 m s 8.6 34.2 m s    3.0st t= + = − = + − +→ − =v v a v v a i j j i j  

The initial speed is ( ) ( )2 2
0 8.6 m s 34.2 m s 35.26 m s,v = + =  and the original launch direction is 

given by 1
0

34.2 m s
tan 75.88 .

8.6 m s
θ −= = °   Use this information with the horizontal range formula from 

Example 3-10 to find the range. 
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(a) ( ) ( )22
10 0

2

35.26 m s sin151.76sin 2
6.0 10 m

9.80 m s
v

R
g g

θ °
= = = ×  

(b) We use the vertical information to find the maximum height.  The initial vertical velocity is  
34.2 m/s, and the vertical acceleration is 29.80 m s .−   The vertical velocity at the maximum 
height is 0, and the initial height is 0.  Use Eq. 2-12c. 

  

( )
( )

( )

2 2
0 max 0

22 2 2
0 0 1

max 0 2

2    

34.2 m s
59.68 m 6.0 10 m

2 2 2 9.80 m s

y y y

y y y

y y

v v a y y

v v v
y y

a a

= + − →

− − −
= + = = = ≈ ×

−

 

(c) From the information above and the symmetry of projectile motion, we know that the final  
speed just before the projectile hits the ground is the same as the initial speed, and the angle is 
the same as the launching angle, but below the horizontal.  So final 35m sv =  and 

final 76 below the horizontal .θ = °  

 
49. Choose the origin to be the location from which the balloon is 

fired, and choose upward as the positive y direction.  Assume  
the boy in the tree is a distance H up from the point at which  
the balloon is fired, and that the tree is a distance d horizontally 
from the point at which the balloon is fired.  The equations of  
motion for the balloon and boy are as follows, using constant  
acceleration relationships. 

2 21 1
Balloon 0 0 Balloon 0 0 Boy2 2cos           0 sin      x v t y v t gt y H gtθ θ= = + − = −  

Use the horizontal motion at constant velocity to find the elapsed time after the balloon has traveled 
d to the right.   

0 0
0 0

cos           
cosD D

d
d v t t

v
θ

θ
= → =  

Where is the balloon vertically at that time?    
2 2

21 1 1
Balloon 0 0 0 0 02 2 2

0 0 0 0 0 0

sin sin tan
cos cos cosD D

d d d
y v t gt v g g

v v v
dθ θ θ

θ θ θ
= − = − = −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Where is the boy vertically at that time?  Note that tan .oH d θ=  
2 2

21 1 1
Boy 02 2 2

0 0 0 0

tan
cos cosD

d d
y H gt H g g

v v
d θ

θ θ
= − = − = −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Note that Balloon Boy ,y y=  and so the boy and the balloon are at the same height and the same 
horizontal location at the same time.  Thus they collide! 

 
50. (a) Choose the origin to be the location where the car leaves the ramp, and choose upward to be the  

positive y direction.  At the end of its flight over the 8 cars, the car must be at 1.5 m.y = −   Also 
for the car, 0 0,yv =  ,ya g= −  0 ,xv v=  and 22 m.xΔ =   The time of flight is found from the 

horizontal motion at constant velocity:  0    .xx v t t x vΔ = → = Δ   That expression for the time 
is used in Eq. 2-12b for the vertical motion. 

( ) ( )221 1
0 0 02 2      0 0    y yy y v t a t y g x v= + + → = + + − Δ →  

H 

d 
θ 

ov

x 

y 
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( )
( )

( ) ( )
( )

222

0

9.80 m s 22 m
39.76 40 m s

2 2 1.5 m
m sg x

v
y

−− Δ
= = =

−
≈  

(b) Again choose the origin to be the location where the car leaves the ramp, and choose upward to  
be the positive y direction.  The y displacement of the car at the end of its flight over the 8 cars 
must again be 1.5 m.y = −   For the car, 0 0 0sin ,yv v θ=  ,ya g= −  0 0cos ,xv v θ=  and 

22 m.xΔ =   The launch angle is 0 7.0 .θ = °   The time of flight is found from the horizontal 
motion at constant velocity. 

0 0

      
cosx

x
x v t t

v θ
Δ

Δ = → =  

That expression for the time is used in Eq. 2-12b for the vertical motion. 

( )
2

21 1
0 0 0 02 2

0 0 0 0

      sin    
cos cosy y

x x
y y v t a t y v g

v v
θ

θ θ
Δ Δ

= + + → = + − →
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( )
( )

( ) ( )
( )( )

222

0 2 2
0 0

9.80 m s 22 m
24 m s

2 tan cos 2 22 m tan 7.0 1.5 m cos 7.0
g x

v
x yθ θ

Δ
= = =

Δ − ° + °
 

 
51. The angle is in the direction of the velocity, so find the components of the velocity, and use them to 

define the angle.  Let the positive y-direction be down. 

  1 1
0 0

0

          tan tany
x y y y

x

v gt
v v v v a t gt

v v
θ − −= = + = = =  

 
52. Choose the origin to be where the projectile is launched, and upwards to be the positive y direction.  

The initial velocity of the projectile is 0 ,v  the launching angle is 0 ,θ  ,ya g= −  and 0 0 0sin .yv v θ=   

The range of the projectile is given by the range formula from Example 3-10, 
2
0 0sin 2

.
v

R
g

θ
=   The 

maximum height of the projectile will occur when its vertical speed is 0.  Apply Eq. 2-12c.   

( )
2 2

2 2 2 2 0 0
0 0 0 0 max max

sin
2       0 sin 2       

2y y y

v
v v a y y v gy y

g
θ

θ= + − → = − → =  

Now find the angle for which max .R y=  
2 2 2

20 0 0 0 1
max 0 02

sin 2 sin
            sin 2 sin   

2
v v

R y
g g

θ θ θ θ= → = → = →  

2 11
0 0 0 0 0 0 022 sin cos sin     4 cos sin     tan 4    tan 4 76θ θ θ θ θ θ θ −= → = → = → = = °  

 
53. Choose the origin to be where the projectile is launched, and upwards to be the positive y direction.  

The initial velocity of the projectile is 0v , the launching angle is 0 ,θ  ,ya g= −  and 0 0 0sin .yv v θ=    

 (a) The maximum height is found from Eq. 2-12c, ( )2 2
0 02 ,y y yv v a y y= + −  with 0yv =  at  

the maximum height. 
( )

( )
22 2 22 2 2 2

0 0 0 0 0
max 2

46.6 m s sin 42.2sin sin
0 50.0 m

2 2 2 2 9.80 m s
y y

y

v v v v
y

a g g
θ θ− °−

= + = = = =
−
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(b) The total time in the air is found from Eq. 2-12b, with a total vertical displacement  
of 0 for the ball to reach the ground. 

( )
( )

2 21 1
0 0 0 02 2

0 0
2

      0 sin    

2 46.6 m s sin 42.22 sin
6.39 s  and 0

9.80 m s

y yy y v t a t v t gt

v
t t

g

θ

θ

= + + → = − →

°
= = = =

 

  The time of 0 represents the launching of the ball. 
(c) The total horizontal distance covered is found from the horizontal motion at constant velocity. 

( ) ( ) ( ) ( )0 0cos 46.6 m s cos 42.2 6.39 s 221mxx v t v tθΔ = = = ° =  

 (d) The velocity of the projectile 1.50 s after firing is found as the vector sum of the horizontal  
and vertical velocities at that time.  The horizontal velocity is a constant 0 0cosv θ =   

( ) ( )46.6 m s cos 42.2 34.5 m s.° =   The vertical velocity is found from Eq. 2-12a. 

( ) ( ) ( )2
0 0 0sin 46.6 m s sin 42.2 9.80 m s 1.50s 16.6 m sy yv v at v gtθ= + = − = ° − =  

Thus the speed of the projectile is 2 2 2 234.5 16.6 38.3m s .x yv v v= + = + =  

 The direction above the horizontal is given by 1 1 16.6
tan tan 25.7

34.5
.y

x

v
v

θ − −= = = °  

 
54. (a) Use the “level horizontal range” formula from Example 3-10. 

( ) ( )22
0 0

0
0

7.80 m 9.80 m ssin 2
     9.72 m s

sin 2 sin 54.0
v Rg

R v
g

θ
θ

= → = = =
°

 

(b) Now increase the speed by 5.0% and calculate the new range.  The new speed would be  
( )9.72 m s 1.05 10.2 m s=  and the new range would be as follows. 

( )22
0 0

2

10.2 m s sin 54sin 2
8.59 m

9.80 m s
v

R
g

θ °
= = =  

  This is an increase of  ( )0.79 m 10% increase . . 

 
55. Choose the origin to be at the bottom of the hill, just where the incline starts.  The equation of the 

line describing the hill is 2 tan .y x φ=   The equations of the motion of the object are 
21

1 0 2 y yy v t a t= +  and 0 ,xx v t=  with 0 0 cosxv v θ=  and 0 0 sin .yv v θ=   Solve the horizontal 
equation for the time of flight, and insert that into the vertical projectile motion equation. 

2 2
1

1 0 2 2 2
0 0 0 0 0

sin tan
cos cos cos 2 cos

   
x

x x x x gx
t y v g x

v v v v v
θ θ

θ θ θ θ
= = = − = −

⎛ ⎞→ ⎜ ⎟
⎝ ⎠

 

 Equate the y-expressions for the line and the parabola to find the location where the two x-
coordinates intersect. 

  
( )

2

2 2 2 2
0 0

2 2
0

tan tan     tan tan   
2 cos 2 cos

tan tan
2 cos

gx gx
x x

v v

x v
g

φ θ θ φ
θ θ

θ φ
θ

= − → − = →

−
=

 

 This intersection x-coordinate is related to the desired quantity d by cos .x d φ=  
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  ( ) ( )
2 2 2

20 02 cos 2
cos tan tan     sin cos tan cos

cos
v v

d d
g g

θφ θ φ θ θ φ θ
φ

= − → = −  

 To maximize the distance, set the derivative of d with respect to θ  equal to 0, and solve for .θ  
( ) ( )

( ) ( ) ( ) ( )[ ]

[ ]

2
20

2
0

2 2
2 20 0

11
2

2
sin cos tan cos

cos

2
        sin sin cos cos tan 2 cos sin

cos

2 2
        sin cos 2 tan cos sin cos 2 sin tan 0

cos cos

1
cos 2 sin tan 0    tan

tan

d d v d
d g d

v
g

v v
g g

θ θ φ θ
θ φ θ

θ θ θ θ φ θ θ
φ

θ θ φ θ θ θ θ φ
φ φ

θ θ φ θ
φ

−

= −

= − + − −

= − + + = + 2 =

+ 2 = → = −

⎡ ⎤⎣ ⎦

⎛
⎝

⎞
⎜ ⎟

⎠

  

 This expression can be confusing, because it would seem that a negative sign enters the solution.  In 
order to get appropriate values, 180°  or π  radians must be added to the angle resulting from the 
inverse tangent operation, to have a positive angle.  Thus a more appropriate expression would be the 
following: 

11
2

1
 tan

tan
θ π

φ
−= + −

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

.  This can be shown to be equivalent to  
2 4
φ πθ = + , because 

( )1 1 11
tan tan cot cot cot

tan 2 2
π πφ φ φ

φ
− − −− = − = − = −⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
56. See the diagram.  Solve for R, the horizontal range, which is the horizontal speed times the time of  

flight. 

( )0 0
0

cos     
cos
R

R v t t
v

θ
θ0

= → =  

  

( ) ( )2 21 1
0 0 0 02 2

2 2 2 2
2 0 0 0 0

22 2 2 2 2 2
0 0 0 0 0 0

2 20 0
0 0 0 0

sin     sin 0  

2 cos tan 2 cos
0

2 cos tan 2 cos tan 2 cos
4

2
cos

   sin sin 2

h v t gt gt v t h

v hv
R R

g g

v v hv
g g g

R

v
v v gh

g

θ θ

θ θ θ

θ θ θ θ θ

θ θ θ

= − → − + = →

− + =

± −
=

= ± −

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎣ ⎦

 

Which sign is to be used?  We know the result if h = 0 from Example 3-10.  Substituting h = 0 gives 

[ ]0 0
0 0 0 0

cos
sin sin .v

R v v
g

θ θ θ= ±   To agree with Example 3-10, we must choose the + sign, and so 

2 20 0
0 0 0 0

cos
sin sin 2 .v

R v v gh
g

θ θ θ= −⎡ ⎤+⎣ ⎦   We see from this result that if h > 0, the range will 

shorten, and if h < 0, the range will lengthen. 
 

h

R
0θ

0v
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57. Call the direction of the boat relative to the water the positive direction.  For the jogger moving 
towards the bow, we have the following: 

jogger jogger boat rel.
rel. water rel. boat water

ˆ ˆ ˆ2.0 m s 8.5m s 10.5m s .= + = + =v v v i i i    

For the jogger moving towards the stern, we have the following. 

jogger jogger boat rel.
rel. water rel. boat water

ˆ ˆ ˆ2.0 m s 8.5m s 6.5m s= + = − + =v v v i i i  

 
58. Call the direction of the flow of the river the x direction, and the 

direction of Huck walking relative to the raft the y direction. 

( )
Huck Huck raft rel.
rel. bank rel. raft bank

ˆ ˆ0.70 m s 1.50 m s

ˆ ˆ           1.50 0.70 m s

= + = +

= +

v v v j i

i j
 

2 2
Huck
rel. bank

Magnitude: 1.50 0.70 1.66 m sv = + =  

1 0.70
Direction:  tan 25 relative to river

1.50
θ −= = °  

 
59. From the diagram in Figure 3-33, it is seen that  boat rel. boat rel.

shore water

cosv v θ= =  

( )1.85 m s cos 40.4 1.41m s .° =  

 
 
60. If each plane has a speed of 780 km/hr, then their relative speed of approach is 1560 km/hr.  If the 

planes are 12.0 km apart, then the time for evasive action is found as follows. 
12.0 km 3600 sec

      27.7 s
1560 km hr 1 hr

d
d vt t

v
Δ

Δ = → = = =
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
61. The lifeguard will be carried downstream at the same rate as the child.  Thus only the horizontal 

motion need be considered.  To cover 45 meters horizontally at a rate of 2 m/s takes 
45m
2 m s

=   

22.5s 23s≈  for the lifeguard to reach the child.  During this time they would both be moving 

downstream at 1.0 m/s, and so would travel ( ) ( )1.0 m s 22.5s 22.5m 23m= ≈  downstream. 

 
62. Call the direction of the boat relative to the water the x direction, and upward the y direction.  Also 

see the diagram. 

( )
( )

passenger passenger boat rel.
rel. water rel. boat water

ˆ ˆ ˆ           0.60cos 45 0.60sin 45 m s 1.70 m s

ˆ ˆ           2.12 0.42 m s

= +

= ° + ° +

= +

v v v

i j i

i j

    

 
 
 

Huck
rel. bank

v
Huck
rel. raft

v

( )

ra f t
re l.  b a n k
c u r re n t

v
θ 

boat rel.
water

v

water rel.
shore

v

boat rel.
shore

v θ

boat rel.
water

v
passenger
rel. boat

v

passenger
rel. water

v

θ
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63. (a) Call the upward direction positive for the vertical motion.  Then the velocity of the ball  
relative to a person on the ground is the vector sum of the horizontal and vertical motions.  The 
horizontal velocity is 10.0 m sxv =  and the vertical velocity is 5.0 m s.yv =  

( ) ( )2 2

1

ˆ ˆ10.0 m s 5.0 m s     10.0 m s 5.0 m s 11.2 m s

5.0 m s
tan 27 above the horizontal

10.0 m s

v

θ −

= + → = + =

= = °

v i j
 

(b) The only change is the initial vertical velocity, and so 5.0 m syv = − .  

  
( ) ( )2 2

1

ˆ ˆ10.0 m s 5.0 m s     10.0 m s 5.0 m s 11.2 m s

5.0 m s
tan 27 below the horizontal

10.0 m s

v

θ −

= − → = + − =

−
= = °

v i j
 

 
64. Call east the positive x direction and north the positive y direction.  Then the 

following vector velocity relationship exists. 
 (a) plane rel. plane air rel.

ground rel. air ground

= +v v v  

( )
( )
( ) ( )2 2

plane rel.
ground

1

ˆ ˆ           580 km h 90.0cos 45.0 90.0sin 45.0 km h

ˆ           63.6 516 km h

63.6 km h 516 km h 520 km h

63.6
tan 7.0 7.0  east of south

516

ˆ

ˆ

v

θ −

= − + ° °

= −

= + − =

= = − ° °
−

+

=

j j

j

i

i

  

(b) The plane is away from its intended position by the distance the air has caused 
it to move.  The wind speed is 90.0 km/h, so after 11.0 min the plane is off course by the 
following amount. 

( ) ( ) 1h
90.0 km h 11.0 min 16.5km

60 min
.xx v tΔ = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
65. Call east the positive x direction and north the positive y direction.  Then the 

following vector velocity relationship exists. 

( )
( )

plane rel. plane air rel.
ground rel. air ground

plane rel.
ground

   

ˆ580sin 580cos km h

ˆ                           90.0 cos 45.0 90.0sin 45.0 km h

ˆ ˆ

ˆ

v θ θ

= + →

− = − +

+ ° + °

v v v

i

i

j j

j

 

Equate x components in the above equation. 

  1

0 580sin 90.0 cos 45.0    
90.0 cos 45.0

sin 6.3 , west of south
580

θ

θ −

= − + ° →

°
= = °

 

 
 
 

plane
rel. air

v

air rel.
ground

v

plane rel.
ground

vθ

plane
rel. air

v

air rel.
ground

v

plane rel.
ground

v

θ
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66. Call east the positive x direction and north the positive y direction.  From  
the first diagram, this relative velocity relationship is seen. 

( )
car 1 rel. car 1 rel. car 2 rel.
street car 2 street

car 1 rel. car 1 rel. car 2 rel.
car 2 street street

   

ˆ ˆ ˆ ˆ35 km h 45 km h 45 35 km h

= + →

= − = − = − +

v v v

v v v j i i j
 

For the other relative velocity relationship: 

( )
car 2 rel. car 2 rel. car 1 rel.
street car 1 street

car 2 rel. car 2 rel. car 1 rel.
car 1 street street

   

ˆ ˆ ˆ ˆ45 km h 35 km h 45 35 km h

= + →

= − = − = −

v v v

v v v i j i j
 

 Notice that the two relative velocities are opposites of each other: car 2 rel. car 1 rel.
car 1 car 2

.= −v v  

 
67. Call the direction of the flow of the river the x direction, and the direction 

straight across the river the y direction.  Call the location of the swimmer’s 
starting point the origin. 

  swimmer swimmer water rel.
rel. shore rel. water shore

ˆ ˆ0.60 m s 0.50 m s= + = +v v v j i  

 (a) Since the swimmer starts from the origin, the distances covered in  
the x and y directions will be exactly proportional to the speeds in 
those directions.  

0.50 m s
            46 m

55 m 0.60 m s
x x

y y

x v t v x
x

y v t v
Δ Δ

= = → = → Δ =
Δ

 

 (b) The time is found from the constant velocity relationship for either the x or y directions.   
55 m

      92 s
0.60 m sy

y

y
y v t t

v
Δ

Δ = → = = =  

 
68. (a) Call the direction of the flow of the river the x direction, and the  

direction straight across the river the y direction. 

   
water rel.
shore 1

swimmer
rel. water

0.50 m s 0.50
sin   sin 56.44 56

0.60 m s 0.60

v

v
θ θ −= = → = = ° °≈  

 (b) From the diagram her speed with respect to the shore is found as follows. 
( )swimmer swimmer

rel. shore rel. water

cos 0.60 m s cos 56.44 0.332 m sv v θ= = ° =  

The time to cross the river can be found from the constant velocity relationship. 

 
55 m

    170s 2.8 min
0.332 m s

x
x vt t

v
Δ

Δ = → = = = =  

 
69. The boat is traveling directly across the stream, with a heading of 19.5θ = °  

upstream, and speed of boat rel.
water

3.40 m s.v =  

(a) ( )water rel.
shore

boat rel.
water

sin 3.40 m s sin19.5 1.13m sv v θ = ° ==  

(b) ( )boat rel.
shore

boat rel.
water

cos 3.40 m s cos19.5 3.20 m sv v θ = ° ==  

car 1
rel.
street

v

car 2 rel.
street

v

car 1 rel.
car 2

v θ

car 1
rel.
street

v

car 2 rel.
street

v

car 2 rel.
car 1

v
θ

swimmer
rel. water

v

water rel.
shore

v

swimmer
rel. shore

vθ

swimmer
rel. water

v

water rel.
shore

v

swimmer
rel. shore

vθ

boat rel.
water

v

water rel.
shore

v

boat rel.
shore

v
θ
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70. Call the direction of the flow of the river the x direction (to the left in 
the diagram), and the direction straight across the river the y direction 
(to the top in the diagram).  From the diagram, 1tan 120 m 280 mθ −=  

23 .= °   Equate the vertical components of the velocities to find the 
speed of the boat relative to the shore. 

 
( )

boat rel. boat rel.
shore water

boat rel.
shore

cos sin 45   

sin 45
2.70 m s 2.07 m s

cos 23

v v

v

θ = ° →

°
= =

°

 

Equate the horizontal components of the velocities. 

 

( ) ( )

boat rel. boat rel. water
shore water rel. shore

water boat rel. boat rel.
rel. shore water shore

sin cos 45   

cos 45 sin

          2.70 m s cos 45 2.07 m s sin 23 1.10 m s

v v v

v v v

θ

θ

= ° − →

= ° −

= ° − ° =

 

 
71. Call east the positive x direction and north the positive y direction.  The 

following is seen from the diagram.  Apply the law of sines to the 
triangle formed by the three vectors. 

  
plane air rel. air rel.
rel. air ground ground

plane
rel. air

      sin sin128   
sin128 sin

v v v

v
θ

θ
= → = ° →

°
 

  
air rel.
ground 1

plane
rel. air

1 72
sin sin128 sin sin128 5.6

580 km h

v

v
θ −−= ° ° = °

⎛ ⎞
⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟

⎝ ⎠

 

 So the plane should head in a direction of 38.0 5.6 43.6 north of east .° + ° = ° . 
 
72. (a) For the magnitudes to add linearly, the two vectors must be parallel.  1 2V V  

(b) For the magnitudes to add according to the Pythagorean theorem, the two vectors must be at 
right angles to each other.  1 2⊥V V  

 (c) The magnitude of 2V vector 2 must be 0.  2 0=V  

 
73. Let east be the positive x-direction, north be the positive y-direction, and up 

be the positive z-direction.  Then the plumber’s resultant displacement in 

component notation is ˆ ˆ ˆ66 m 35 m 12 m .= − −D i j k  Since this is a 3-

dimensional problem, it requires 2 angles to determine his location (similar 
to latitude and longitude on the surface of the Earth).  For the x-y 
(horizontal) plane, see the first figure. 

  1 1 35
tan tan 28 28  south of east

66
y

x

D
D

φ − − −
= = = − ° °=    

( ) ( )2 22 2 66 35 74.7 m 75 mxy x yD D D= + = + − = ≈  

water rel.
shore

v

boat rel.
shore

v

boat rel.
water

v

120 m

280 m

θ
o45

air rel.
ground

v
plane rel.
air

v

plane rel.
ground

v

128°

38°

θ 52°

φ
xD

yD
xyD
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For the vertical motion, consider another right triangle, made up of xyD  as 

one leg, and the vertical displacement zD  as the other leg.  See the second 
figure, and the following calculations. 

  1 1
2

12 m
tan tan 9 9  below the horizontal

74.7 m
z

xy

D
D

θ − − −
= = = − ° = °  

  ( ) ( ) ( )2 2 22 2 2 2 2 66 35 12 76 mxy z x y zD D D D D D= + = + + = + − + − =  

The result is that the displacement is 76m ,  at an angle of 28 south of east ,°  and 

9 below the horizontal .°  

 

74. The deceleration is along a straight line.   The starting velocity is 1m s
110 km h 30.6 m s

3.6 km h
,=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and the ending velocity is 0 m/s.  The acceleration is found from Eq. 2-12a. 

( ) 2
0

30.6 m s
      0 30.6 m s 7.0 s       4.37 m s

7.0 s
v v at a a= + → = + → = − = −  

 The horizontal acceleration is ( )2 2
horiz cos 4.37 m s cos 26 3.9 m s .a a θ= = − ° = −  

 The vertical acceleration is ( )2 2
vert sin 4.37 m s sin 26 1.9 m s .a a θ= = − ° = −  

The horizontal acceleration is to the left in Figure 3-54, and the vertical acceleration is down. 
 
75. Call east the positive x direction and north the positive y direction.  Then this 

relative velocity relationship follows (see the accompanying diagram). 
plane rel. plane air rel.
ground rel. air ground

= +v v v  

Equate the x components of the velocity vectors.  The magnitude of plane rel.
ground

v  

is given as 135 km/h. 
( ) wind wind 135 km h cos 45 0     95.5 km hx xv v° = + → = . 

 From the y components of the above equation, we find wind .yv  

  wind wind135sin 45 185     185 135sin 45 89.5 km hy yv v− ° = − + → = − ° =  
The magnitude of the wind velocity is  as follows. 

( ) ( )2 22 2
wind wind wind 95.5km h 89.5km h 131km hx yv v v= + = + =  

The direction of the wind is wind-y1 1

wind-x

89.5
tan tan 43.1  north of east

95.5
.

v
v

θ − −= = = °  

 
76. The time of flight is found from the constant velocity relationship for horizontal motion. 

      8.0 m 9.1m s 0.88 sx xx v t t x vΔ = = → = Δ = =  
The y motion is symmetric in time – it takes half the time of flight to rise, and half to fall.  Thus the 
time for the jumper to fall from his highest point to the ground is 0.44 sec.  His vertical speed is zero 
at the highest point.  From the time, the initial vertical speed, and the acceleration of gravity, the 
maximum height can be found.  Call upward the positive y direction.  The point of maximum height 

air rel.
ground

v

plane
rel. air

v
plane rel.
ground

v

θ

o45

θ
xyD

zd

D zD
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is the starting position 0 ,y  the ending position is 0,y =  the starting vertical speed is 0, and .a g= −   
Use Eq. 2-12b to find the height. 

( ) ( )22 21 1
0 0 0 02 2    0 0 9.8 m s 0.44 s     0.95 my yy y v t a t y y= + + → = + − → =  

 
77. Choose upward to be the positive y direction.  The origin is the point from which the pebbles are 

released.  In the vertical direction, 29.80 m s ,ya = −  the velocity at the window is 0,yv =  and the 
vertical displacement is 8.0 m.  The initial y velocity is found from Eq. 2-12c. 

( )

( ) ( ) ( )

2 2
0 0

2 2
0 0

2    

2 0 2 9.80 m s 8.0 m 12.5 m s

y y y

y y y

v v a y y

v v a y y

= + − →

= − − = − − =
 

 Find the time for the pebbles to travel to the window from Eq. 2-12a. 
0

0 2

0 12.5 m s
      1.28s

9.80 m s
y y

y y

v v
v v at t

a
− −

= + → = = =
−

 

Find the horizontal speed from the horizontal motion at constant velocity. 
      9.0 m 1.28 s 7.0 m sx xx v t v x tΔ = → = Δ = =  

 This is the speed of the pebbles when they hit the window. 
 
78. Choose the x direction to be the direction of train travel (the direction the 

passenger is facing) and choose the y direction to be up.  This relationship exists 
among the velocities: rain rel. rain rel. train rel.

ground train ground

.= +v v v   From the diagram, find the 

expression for the speed of the raindrops. 

 
train rel.
ground T T

rain rel.
groundrain rel. rain rel.

ground ground

tan       
tan

v
v v

v
v v

θ
θ

= = → =  

 
79. Assume that the golf ball takes off and lands at the same height, so that the range formula derived in 

Example 3-10 can be applied.  The only variable is to be the acceleration due to gravity. 

( )

2 2
Earth 0 0 Earth Moon 0 0 Moon

2
Earth 0 0 Earth Earth Moon

2
Moon 0 0 Moon Moon Earth

2 2
Moon Earth

sin 2         sin 2

sin 2 1 32 m
0.18   

sin 2 1 180 m

0.18 0.18 9.80 m s 1.8 m s

R v g R v g

R v g g g
R v g g g

g g

θ θ

θ
θ

= =

= = = = = →

= = ≈

 

 
80. (a) Choose downward to be the positive y direction.  The origin is the point where the bullet  

leaves the gun.  In the vertical direction, 0 0,yv =  0 0,y =  and 29.80 m s .ya =   In the 

horizontal direction, 68.0 mxΔ =  and 175 m s.xv =   The time of flight is found from the 
horizontal motion at constant velocity. 

     68.0 m 175 m s 0.3886 sx xx v t t x vΔ = → = Δ = =  
This time can now be used in Eq. 2-12b to find the vertical drop of the bullet. 

( ) ( )22 21 1
0 0 2 2      0 0 9.80 m s 0.3886 s 0.740 my yy y v t a t y= + + → = + + =  

 
 

rain rel.
ground

v

train rel.
ground

v

rain rel.
train

v θ
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(b) For the bullet to hit the target at the same level, the level horizontal range formula of Example  
3-10 applies.  The range is 68.0 m, and the initial velocity is 175 m/s.  Solving for the angle of 
launch results in the following. 

( ) ( )
( )

22
10 0 1

0 0 2 22
0

68.0 m 9.80 m ssin 2
     sin 2     sin 0.623

175 m s
v Rg

R
g v

θ θ θ −= → = → = = °  

Because of the symmetry of the range formula, there is also an answer of the complement of the 
above answer, which would be 89.4o.  That is an unreasonable answer from a practical physical 
viewpoint – it is pointing the gun almost straight up. 

 
81. Choose downward to be the positive y direction.  The origin is at the point from which the divers 

push off the cliff.  In the vertical direction, the initial velocity is 0 0,yv =  the acceleration is 
29.80 m s ,ya =  and the displacement is 35 m.  The time of flight is found from Eq. 2-12b. 

( ) ( )2 2 21 1
0 0 2 2 2

2 35 m
      35 m 0 0 9.8 m s       2.7 s

9.8 m sy yy y v t a t t t= + + → = + + → = =  

The horizontal speed (which is the initial speed) is found from the horizontal motion at constant 
velocity. 

     5.0 m 2.7 s 1.9 m sx xx v t v x tΔ = → = Δ = =  

 
82. The minimum speed will be that for which the ball just clears the  

fence; i.e., the ball has a height of 8.0 m when it is 98 m  
horizontally from home plate.  The origin is at home plate, with  
upward as the positive y direction.  For the ball, 0 1.0 m,y =   

8.0 m,y = , ,ya g= −  0 0 0sin ,yv v θ=  0 0cos ,xv v θ=  and 0 36 .θ = °  
See the diagram (not to scale).  For the constant-velocity horizontal  

motion, 0 0cos ,xx v t v tθΔ = =  and so 
0 0cos

.x
t

v θ
Δ

=   For the vertical motion, apply Eq. 2-12b. 

( )2 21 1
0 0 0 0 02 2siny yy y v t a t y v t gtθ= + + = + −  

Substitute the value of the time of flight for the first occurrence only in the above equation, and then 
solve for the time. 

2 21 1
0 0 0 0 0 02 2

0 0

sin     sin   
cos

x
y y v t gt y y v gt

v
θ θ

θ
Δ

= + − → = + − →  

( )0 0
2

1.0 m 8.0 m 98 m tan 36tan
2 2 3.620s

9.80 m s
y y x

t
g

θ − + °− + Δ
= = =

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 Finally, use the time with the horizontal range to find the initial speed. 

  
( )0 0 0

0

98 m
cos     33m s

cos 3.620s cos 36
x

x v t v
t

θ
θ

Δ
Δ = → = = =

°
 

 
83. (a) For the upstream trip, the boat will cover a distance of 2D  with a net speed of ,v u−  so the  

time is 
( )1

2
2

.D D
t

v u v u
= =

− −
  For the downstream trip, the boat will cover a distance of 2D   

0 1.0 my = 8.0 my =

98 mxΔ =

0v

0θ



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

74 

with a net speed of v u+ , so the time is 
( )2

2
2

.D D
t

v u v u
= =

+ +
  Thus the total time for the 

round trip will be 
( ) ( ) ( )1 2 2 22 2

.D D Dv
t t t

v u v u v u
= + = + =

− + −
 

(b) For the boat to go directly across the river, it must be angled against 
the current in such a way that the net velocity is straight across the 
river, as in the picture.  This equation must be satisfied:   

boat rel. boat rel. water rel.
shore water shore

= + = +v v v v u . 

Thus 2 2
boat rel.
shore

,v v u= −  and the time to go a distance 2D  across 

the river is 1 2 2 2 2

2

2
.D D

t
v u v u

= =
− −

  The same relationship would be in effect for crossing 

back, so the time to come back is given by 2 1t t=  and the total time is 1 2 2 2
.D

t t t
v u

= + =
−

   

The speed v  must be greater than the speed .u   The velocity of the boat relative to the shore when 
going upstream is .v u−   If ,v u<  the boat will not move upstream at all, and so the first part of the 
trip would be impossible.  Also, in part (b), we see that v is longer than u in the triangle, since v is the 
hypotenuse, and so we must have .v u>  

 
84. Choose the origin to be the location on the ground directly underneath the ball when served, and 

choose upward as the positive y direction.  Then for the ball, 0 2.50 m,y =  0 0,yv =  ,ya g= −  and 
the y location when the ball just clears the net is 0.90 m.y =   The time for the ball to reach the net is 
calculated from Eq. 2-12b. 

( )
( )

2 2 21 1
0 0 2 2

to 2
net

  0.90 m 2.50 m 0 9.80 m s  

2 1.60 m
0.57143 s

9.80 m s

y yy y v t a t t

t

= + + → = + + − →

−
= =

−

 

 The x velocity is found from the horizontal motion at constant velocity. 
15.0 m

      26.25 26.3 m s
0.57143 sx x

x
x v t v

t
Δ

Δ = → = = = ≈  

This is the minimum speed required to clear the net. 
 

To find the full time of flight of the ball, set the final y location to be y = 0, and again use Eq. 2-12b. 
( )

( )

2 2 21 1
0 0 2 2

total 2

  0.0 m 2.50 m 9.80 m s  

2 2.50 m
0.7143 0.714s

9.80 m s

y yy y v t a t t

t

= + + → = + − →

−
= = ≈

−

 

The horizontal position where the ball lands is found from the horizontal motion at constant velocity. 
( )( )26.25 m s 0.7143 s 18.75 18.8 mxx v tΔ = = = ≈  

Since this is between 15.0 and 22.0 m,  the ball lands in the “good” region . 
 

boat rel.
water

=v v

water rel.
shore

=v u

boat rel.
shore

v
θ
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85. Work in the frame of reference in which the car is at rest at ground level.  In this reference frame, the 

helicopter is moving horizontally with a speed of 
1m s

208 km h 156 km h 52 km h
3.6 km h

− =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

14.44 m s= .  For the vertical motion, choose the level of the helicopter to be the origin, and 
downward to be positive.  Then the package’s y displacement is 78.0 m,y =  0 0,yv =  and .ya g=   
The time for the package to fall is calculated from Eq. 2-12b. 

( ) ( )2 2 21 1
0 0 2 2 2

2 78.0 m
      78.0 m 9.80 m s      3.99 sec

9.80 m sy yy y v t a t t t= + + → = → = =  

The horizontal distance that the package must move, relative to the “stationary” car, is found from 
the horizontal motion at constant velocity.  

( ) ( )14.44 m s 3.99 s 57.6 mxx v tΔ = = =  
 Thus the angle under the horizontal for the package release will be as follows. 

1 1 78.0 m
tan tan 53.6 54

57.6 m
y
x

θ − −Δ
= = = ° °

Δ
⎛ ⎞ ⎛ ⎞ ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
86. The proper initial speeds will be those for which the ball has  

traveled a horizontal distance somewhere between 10.78 m  
and 11.22 m while it changes height from 2.10 m to 3.05 m  
with a shooting angle of 38.0o.  Choose the origin to be at the  
shooting location of the basketball, with upward as the  
positive y direction.  Then the vertical displacement is  

0.95m,y =  29.80 m s ,ya = −  0 0 0sin ,yv v θ=  and the (constant) x velocity is 0 0cos .xv v θ=   See 

the diagram (not to scale).  For the constant-velocity horizontal motion, 0 0cosxx v t v tθΔ = =  

 and so 
0 0cos

.x
t

v θ
Δ

=   For the vertical motion, apply Eq. 2-12b. 

2 21 1
0 0 02 2siny yy y v t a t v t gtθ= + + = −  

Substitute the expression for the time of flight and solve for the initial velocity. 

( )2 2
21 1

0 02 2 2 2
0 0 0 0 0 0

sin sin tan
cos cos 2 cos

g xx x
y v t gt v g x

v v v
θ θ θ

θ θ θ
ΔΔ Δ

= − = − = Δ −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( )
( )

2

0 2
02 cos tan
g x

v
y xθ θ
Δ

=
− + Δ

 

 For 10.78 mxΔ = , the shortest shot: 

( ) ( )
( )( )[ ]

22

0 2

9.80 m s 10.78 m
11.1m s

2 cos 38.0 0.95 m 10.78 m tan 38.0
.v = =

° − + °
 

 For 11.22 mxΔ = , the longest shot: 

( ) ( )
( )( )[ ]

22

0 2

9.80 m s 11.22 m
11.3m s

2 cos 38.0 0.95 m 11.22 m tan 38.0
.v = =

° − + °
 

 
 
 

0.95my =

10.78 m 11.22 mxΔ = −
0θ
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87. The acceleration is the derivative of the velocity. 

  2 ˆ3.5m s
d
dt

= =
v

a j  

 Since the acceleration is constant, we can use Eq. 3-13b. 

  
( ) ( ) ( )

( ) ( )

2 21 1
0 0 2 2

2

ˆ ˆ ˆ ˆ1.5 3.1 2.0 3.5

ˆ ˆ 1.5 2.0 m 3.1 1.75 m

t t t t

t t

= + + = − + − +

= − + − +

r r v a i j i j

i j
 

 The shape is  parabolic , with the parabola opening in the y-direction. 
 
88. Choose the origin to be the point from which the projectile is launched, and choose upward as the 

positive y direction.  The y displacement of the projectile is 135 m, and the horizontal range of the 
projectile is 195 m.  The acceleration in the y direction is ,ya g= −  and the time of flight is 6.6 s.  
The horizontal velocity is found from the horizontal motion at constant velocity. 

195 m
      29.55 m s

6.6sx x

x
x v t v

t
Δ

Δ = → = = =  

 Calculate the initial y velocity from the given data and Eq. 2-12b. 
( ) ( ) ( )22 21 1

0 0 0 02 2  135 m 6.6s 9.80 m s 6.6s   52.79 m sy y y yy y v t a t v v= + + → = + − → =  

 Thus the initial velocity and direction of the projectile are as follows.  

( ) ( )2 22 2
0 0

01 1

29.55m s 52.79 m s 60 m s

52.79 m s
tan tan 61

29.55m s

x y

y

x

v v v

v
v

θ − −

= + = + =

= = = °
 

 
89. We choose to initially point the boat downstream at an angle of φ  relative to straight across the 

river, because then all horizontal velocity components are in the same direction, and the algebraic 
signs might be less confusing.  If the boat should in reality be pointed upstream, the solution will 
give a negative angle.  We use BW 1.60 m sv = , the speed of the boat relative to the water (the 
rowing speed); WS 0.80 m sv = , the speed of 
the water relative to the shore (the current); 
and R 3.00 m sv = , his running speed.  The 
width of the river is w = 1200 m, and the 
length traveled along the bank is l.   The time 
spent in the water is Wt , and the time running 
is Rt .  The actual vector velocity of the boat is 

BS BW WS= +v v v .  That vector addition is 
illustrated on the diagram (not drawn to scale). 

 
 The distance straight across the river (w) is the velocity component across the river, times the time in 

the water.  The distance along the bank (l) is the velocity component parallel to the river, times the 
time in the water.  The distance along the bank is also his running speed times the time running.  
These three distances are expressed below. 

  ( ) ( )BW W BW W R Rcos  ; sin  ; WSw v t v v t v tφ φ= = + =l l  
The total time is W Rt t t= + , and needs to be expressed as a function of φ .  Use the distance 
relations above to write this function. 

w

l

BWv
WSv

φ

starting point

landing pointending point
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( ) ( )

[ ] ( )[ ]

BW W BW
W R W W W

R R R

R BW R WS BW
BW R BW R

sin sin
1

  sin sec tan
cos

WS WS

WS

v v t v v
t t t t t t

v v v

w w
v v v v v v

v v v v

φ φ

φ φ φ
φ

+ +
= + = + = + = +

= + = + +

⎡ ⎤
⎢ ⎥
⎣ ⎦

+

l

 

 To find the angle corresponding to the minimum time, we set 0
dt
dφ

=  and solve for the angle. 

  

( )[ ]

( )

( )[ ]

R WS BW
BW R

2
R WS BW

BW R

BW
R WS BW

R WS

sec tan

     tan sec sec 0  

tan sec sec 0    sec 0 , sin

dt d w
v v v

d d v v

w
v v v

v v

v
v v v

v v

φ φ
φ φ

φ φ φ

φ φ φ φ φ

= + +

= + + = →

+ + = → = = −
+

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎡ ⎤⎣ ⎦  

 The first answer is impossible, and so we must use the second solution. 

( )1BW

R WS

1.60 m s
sin 0.421    sin 0.421 24.9

3.00 m s 0.80 m s
v

v v
φ φ −= − = − = − → = − = − °

+ +
 

To know that this is really a minimum and not a maximum, some argument must be made.  The 
maximum time would be infinity, if he pointed his point either directly upstream or downstream.  
Thus this angle should give a 
minimum.  A second derivative test 
could be done, but that would be 
algebraically challenging.  A graph of  
t vs. φ  could also be examined to see 
that the angle is a minimum.  Here is a 
portion of such a graph, showing a 
minimum time of somewhat more than 
800 seconds near 25φ = − ° .  The 
spreadsheet used for this problem can 
be found on the Media Manager, with 
filename “PSE4_ISM_CH03.XLS,” on 
tab “Problem 3.89.” 
 
The time he takes in getting to the final location can be calculated from the angle. 

( ) ( )
( ) ( ) ( )[ ]( )

W
BW

BW W

R W R
R

1200 m
826.86s

cos 1.60 m s cos 24.9

sin 1.60 m s sin 24.9 0.80 m s 826.86s 104.47 m

104.47 m
34.82 s          826.86s 34.82 s 862 s

3.00 m s

WS

w
t

v

v v t

t t t t
v

φ

φ

= = =
− °

= + = − ° + =

= = = = + = + =

l

l

 

 

Thus he must point the boat 24.9°  upstream, taking 827 seconds to cross, and landing 104 m from 
the point directly across from his starting point.  Then he runs the 104 m from his landing point to 
the point directly across from his starting point, in 35 seconds, for a total elapsed time of 862 
seconds (about 14.4 minutes). 
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90. Call the direction of the flow of the river the x direction, and the direction the boat is headed (which 
is different than the direction it is moving) the y direction. 

(a) 2 2 2 2
boat rel. water rel. boat rel.
shore shore water

1.30 2.20 2.56 m sv v v= + = + =  

1 1.30
tan 30.6  , 90 59.4 relative to shore

2.20
θ φ θ−= = ° = ° − = °  

(b) The position of the boat after 3.00 seconds is given by the following. 
( ) ( )

( )

boat rel.
shore

ˆ1.30 2.20 m s 3.00sec

     3.90 m downstream,6.60 m across the river

d v tΔ = = +

=

⎡ ⎤⎣ ⎦i j
 

As a magnitude and direction, it would be 7.67 m away from the starting point, at an angle of 
59.4o relative to the shore. 

 
91.  First, we find the direction of the straight-line path that the boat must take 

to pass 150 m to the east of the buoy.  See the first diagram (not to scale).  
We find the net displacement of the boat in the horizontal and vertical 
directions, and then calculate the angle. 

  
( ) ( )

( )
( )

1

3000 m sin 22.5 150 m     3000m cos 22.5

3000 m cos 22.5
tan 64.905

3000 m sin 22.5 150 m

x y

y
x

φ −

Δ = ° + Δ = °

°Δ
= = = °

Δ ° +

 

 This angle gives the direction that the boat must travel, so it is the 
direction of the velocity of the boat with respect to the shore, boat rel.

shore

v .  So 

( )boat rel. boat rel.
shore shore

ˆ ˆcos sinv φ φ= +v i j .  Then, using the second diagram (also not 

to scale), we can write the relative velocity equation relating the boat’s travel 
and the current.  The relative velocity equation gives us the following.  See 
the second diagram. 

  ( ) ( )
boat rel. boat rel. water rel.
shore water shore

boat rel.
shore

boat rel. boat rel.
shore shore

  

ˆ ˆ ˆ ˆ ˆcos sin 2.1 cos sin 0.2   

cos 2.1cos 0.2  ;  sin 2.1sin

v

v v

φ φ θ θ

φ θ φ θ

= + →

+ = + + →

= + =

v v v

i j i j i  

 These two component equations can then be solved for boat rel.
shore

v  and .θ   One technique is to isolate the 

terms with θ in each equation, and then square those equations and add them.  That gives a 
quadratic equation for boat rel.

shore

,v  which is solved by boat rel.
shore

2.177 m s.v =   Then the angle is found to be 

69.9  N of Eθ = ° . 

  
92. See the sketch of the geometry.  We assume that the hill is 

sloping downward to the right.  Then if we take the point 
where the child jumps as the origin, with the x-direction 
positive to the right and the y-direction positive upwards, 
then the equation for the hill is given by tan12y x= − ° .  

buoy

boat path

150m

3000m

o22.5

φ

boat rel.
water

v

water rel.
shore

v

boat rel.
shore

v

θ
φ

12°
1.4 m

boat rel.
water

v

water rel.
shore

v

boat rel.
shore

v

θ
φ
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The path of the child (shown by the dashed line) is  projectile motion.  With the same origin and 
coordinate system, the horizontal motion of the child is given by ( )0 cos15x v t= ° , and the vertical 

motion of the child will be given by Eq. 2-12b, 21
0 2sin15y v t gt= ° − .  The landing point of the child 

is given by landing 1.4 cos12x = °  and landing 1.4 sin12y = − ° .  Use the horizontal motion and landing 
point to find an expression for the time the child is in the air, and then use that time to find the initial 
speed. 

( )0 landing
0 0

1.4 cos12
cos15      , 

cos15 cos15
x

x v t t t
v v

°
= ° → = =

° °
 

 Equate the y expressions, and use the landing time.  We also use the trigonometric identity that 
( )sin12 cos15 sin15 cos12 sin 12 15 .° ° + ° ° = ° + °  

21
landing projectile 0 landing landing2

2

1
0 2

0 0

2
2 1
0 02

    1.4 sin12 sin15   

1.4 cos12 1.4 cos12
1.4 sin12 sin15   

cos15 cos15

cos 12 1.4
    3.8687 m s 3.9 m s

sin 27 cos15

y y v t gt

v g
v v

v g v

= → − ° = ° − →

° °
− ° = ° − →

° °

°
= → = ≈

° °

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
93. Find the time of flight from the vertical data, using Eq. 2-12b.  Call the floor the y = 0 location, and 

choose upwards as positive.   

  

( ) ( )

( ) ( )
( )

2 2 21 1
0 0 2 2

2

2

    3.05m 2.4 m 12 m s sin 35 9.80 m s

4.90 6.883 0.65m 0  

6.883 6.883 4 4.90 0.65
1.303s , 0.102s

2 4.90

y yy y v t a t t t

t t

t

= + + → = + ° + −

− + = →

± −
= =

  

 (a) Use the larger time for the time of flight.  The shorter time is the time for the ball to rise to the  
basket height on the way up, while the longer time is the time for the ball to be at the basket 
height on the way down. 

   ( ) ( ) ( ) ( )0 cos35 12 m s cos35 1.303s 12.81m 13mxx v t v t= = ° = ° = ≈  

 (b) The angle to the horizontal is determined by the components of the velocity. 

   ( )
0 0

0 0 0

cos 12cos35 9.830 m s

sin 12sin 35 9.80 1.303 5.886 m/s
x

y y

v v

v v at v gt

θ
θ

= = ° =

= + = − = ° − = −
 

   1 1 5.886
tan tan 30.9 31

9.830
y

x

v
v

θ − − −
= = = − ° ≈ − °  

  The negative angle means it is below the horizontal. 
 
94. We have car rel.

ground

25m s.v =   Use the diagram, illustrating  

snow rel. snow rel. car rel.
ground car ground

,= +v v v  to calculate the other speeds. 

car rel.
ground

snow rel.
carsnow rel.

car

25m s
cos 37     31m s

cos 37

v
v

v
° = → = =

°
 

snow rel.
ground

v

car rel.
ground

v

snow rel.
car

v

37°
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( )
snow rel.
ground

snow rel.
groundcar rel.

ground

tan 37     25m s tan 37 19 m s
v

v
v

° = → = ° =  

  
95. Let the launch point be the origin of coordinates, with right and upwards as the positive directions.  

The equation of the line representing the ground is gnd .y x= −   The equations representing the 

motion of the rock are rock 0x v t=  and 21
rock 2 ,y gt= −  which can be combined into 21

rock rock2 2
0

.g
y x

v
= −   

Find the intersection (the landing point of the rock) by equating the two expressions for y, and so 
finding where the rock meets the ground. 

  
( )2

2 0 01
rock gnd 2 2 2

0 0

2 25m s2 2
            5.1s

9.80 m s
g v x v

y y x x x t
v g v g

= → − = − → = → = = = =  

 
96. Choose the origin to be the point at ground level directly below where the ball was hit.  Call upwards 

the positive y direction. For the ball, we have 0 28 m s ,v =  0 61 ,θ = °  ,ya g= −  0 0.9 m,y =  and  
0.0 m.y =  

 (a) To find the horizontal displacement of the ball, the horizontal velocity and the time of flight are  
needed.  The (constant) horizontal velocity is given by 0 0cos .xv v θ=   The time of flight is 
found from Eq. 2-12b. 

( )
( )

2 21 1
0 0 0 0 02 2

2 2 1
0 0 0 0 02

1
2

      0 sin    

sin sin 4

2

y yy y v t a t y v t gt

v v g y
t

g

θ

θ θ

= + + → = + − →

− ± − −
=

−

 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 21
2

21
2

28 m s sin 61 28 m s sin 61 4 9.80 m s 0.9 m
  

2 9.80 m s

  5.034 s, 0.0365 s

− ° ± ° − −
=

−

= −

 

Choose the positive time, since the ball was hit at 0.t =   The horizontal displacement of the 
ball will be found by the constant velocity relationship for horizontal motion. 

( ) ( ) ( )0 0cos 28 m s cos 61 5.034s 68.34 m 68 mxx v t v tθΔ = = = ° = ≈  
(b) The center fielder catches the ball right at ground level.  He ran 105 m – 68.34 m = 36.66 m to  

catch the ball, so his average running speed would be as follows. 
36.66 m

7.282 m s 7.3 m s
5.034savg

d
v

t
Δ

= = = ≈  

 
97. Choose the origin to be the point at the top of the building from which the ball is shot, and call 

upwards the positive y direction.  The initial velocity is 0 18 m sv =  at an angle of 0 42 .θ = °   The 
acceleration due to gravity is .ya g= −  

(a) ( )0 0cos 18 m s cos 42 13.38 13m sxv v θ= = ° = ≈   

( )0 0 0sin 18 m s sin 42 12.04 12 m syv v θ= = ° = ≈  

 (b) Since the horizontal velocity is known and the horizontal distance is known, the time of flight  
can be found from the constant velocity equation for horizontal motion. 
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55 m
      4.111 s

13.38 m sx
x

x
x v t t

v
Δ

Δ = → = = =  

With that time of flight, calculate the vertical position of the ball using Eq. 2-12b. 
( )( ) ( )( )22 21 1

0 0 2 212.04 m s 4.111 s 9.80 m s 4.111 s

  33.3 33 m

y yy y v t a t= + + = + −

= − = −
 

 So the ball will strike 33 m below the top of the building. 
 
98. Since the ball is being caught at the same height from 

which it was struck, use the range formula from  
Example 3-10 to find the horizontal distance the ball  
travels. 

( ) ( )22
0 0

2

28 m s sin 2 55sin 2
75.175 m

9.80 m s
v

R
g

θ × °
= = =  

Then as seen from above, the location of home plate, the point where  
the ball must be caught, and the initial location of the outfielder are 
shown in the diagram.  The dark arrow shows the direction in which  
the outfielder must run.  The length of that distance is found from the 
law of cosines as applied to the triangle. 

( ) ( )

2 2

2 2

2 cos

  75.175 85 2 75.175 85 cos 22 32.048 m

x a b ab θ= + −

= + − ° =
 

 The angle θ  at which the outfielder should run is found from the law of sines. 
1sin 22 sin 75.175

      sin sin 22 61.49  or 118.51
32.048 m 75.175 m 32.048

θ θ −°
= → = ° = ° °⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 Since 2 2 275.175 85 32.048 ,+<  the angle must be acute, so we choose 61.49 .θ = °  
 

Now assume that the outfielder’s time for running is the same as the time of flight of the ball.  The 
time of flight of the ball is found from the horizontal motion of the ball at constant velocity. 

( )0 0
0 0

75.175 m
cos       4.681s

cos 28 m s cos 55x

R
R v t v t t

v
θ

θ
= = → = = =

°
 

Thus the average velocity of the outfielder must be 
32.048 m

6.8 m s
4.681savg

d
v

t
Δ

= = = at an angle of 

61°  relative to the outfielder’s line of sight to home plate. 
 
99. (a) To determine the best-fit straight line, the data was plotted in Excel and a linear trendline was  

added, giving the equation ( )3.03 0.0265 m .x t= −   The initial speed of the ball is the x-

component of the velocity, which from the equation has the value of 3.03m s .   The graph is 

below.  The spreadsheet used for this problem can be found on the Media Manager, with 
filename “PSE4_ISM_CH03.XLS,” on tab “Problem 3.99a.” 

Home plate 

Location of 
catching ball 

Initial location 
of outfielder 

22o 

θ 
75.175 m

85 m 

x 
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x  = 3.0347t  - 0.0265
R2 = 0.9947

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.1 0.2 0.3 0.4 0.5
t (s)

x(
m

)

 
 (b) To determine the best-fit quadratic equation, the data was plotted in Excel and a quadratic  

trendline was added, giving the equation ( )20.158 0.855 6.09 m .y t t= − +   Since the quadratic 

term in this relationship is 21
2 at , we have the acceleration as 212.2 m s .   The graph is below.  

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH03.XLS,” on tab “Problem 3.99b.” 

y  = 6.0919t 2 - 0.8545t  + 0.158
R2 = 0.9989

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.1 0.2 0.3 0.4 0.5t (s)

y(
m

)

 
 
100. Use the vertical motion to determine the time of flight.  Let the ground be the y = 0 level, and choose 

upwards to be the positive y-direction.  Use Eq. 2-12b. 

  

( ) ( )

( ) ( )
( )

2 2 21 1 1
0 0 0 0 0 02 2 2

2 2 2 21
20 0 0 0 0 0 0 0

1
2

    0 sin     sin 0

sin sin 4 sin sin 2
2

y yy y v t a t h v t gt gt v t h

v v g h v v gh
t

g g

θ θ

θ θ θ θ

= + + → = + − → − − =

± − − ± +
= =

 

 To get a positive value for the time of flight, the positive sign must be taken. 

  
2 2

0 0 0 0sin sin 2v v gh
t

g
θ θ+ +

=  

 To find the horizontal range, multiply the horizontal velocity by the time of flight. 

  
2 2 2

0 0 0 0 0 0 0
0 0 2 2

0 0

sin sin 2 cos sin 2
cos 1 1

sinx

v v gh v gh
R v t v

g g v
θ θ θ θθ

θ
+ +

= = = + +
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 

  
2
0 0

2 2
0 0

sin 2 2
 1 1

2 sin
v gh

R
g v

θ
θ

= + +
⎡ ⎤
⎢ ⎥
⎣ ⎦
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 As a check, if h is set to 0 in the above equation, we get 
2
0 0sin 2

,
v

R
g

θ
=  the level horizontal  

range formula. 
 

With the values given in the problem of 0 13.5m s ,v =  2.1m,h =  and 29.80 m s ,g =  the following 
relationship is obtained. 

  

( )
( )

( ) ( )
( )

22
00 0

22 2 2
0 0 0

0 2
0

13.5 sin 2 9.80 2.1sin 2 2
1 1 1 1

2 sin 2 9.80 13.5 sin

0.226
9.30sin 1 1

sin
  

v gh
R

g v
θθ

θ θ

θ
θ

2
= + + = + +

= 2 + +

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Here is a plot of that 
relationship.  The maximum is 
at approximately 42 .°   The 
spreadsheet used for this 
problem can be found on the 
Media Manager, with filename  
“PSE4_ISM_CH03.XLS,” on 

tab “Problem 3.100.” 
 

As a further investigation, let us 

find 
0

dR
dθ

, set it equal to 0, and 

solve for the angle. 

( )

2
0 0

2 2
0 0

1/ 22 2
00 0 0 0

2 2 2 2 2 3
0 0 0 0 0 0 0

2
0

0 02 2 2 2
0 0 0

sin 2 2
1 1

2 sin

2 2 cos2 cos 2 2 sin 2 1 2
1 1 1

2 sin 2 2 sin sin

2 2
2cos 2 1 1 sin 2 1

2 sin sin

v gh
R

g v

ghdR v gh v gh
d g v g v v

v gh gh
g v v

θ
θ

θθ θ
θ θ θ θ

θ θ
θ

−

= + +

−
= + + + +

= + + − +

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎢ ⎥ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

1/ 2

0
2 3

0 0 0

2 cos
0

sin
gh

v
θ

θ θ

−

=
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪

⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

1/ 2

0
0 02 2 2 2 2 3

0 0 0 0 0 0

2 2 2 cos
2cos 2 1 1 sin 2 1

sin sin sin
gh gh gh

v v v
θθ θ

θ θ θ

−

+ + = +
⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎢ ⎥ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Calculate the two sides of the above equation and find where they are equal.  This again happens at 
about 42.1 .°  
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CHAPTER 4:  Dynamics: Newton’s Laws of Motion 
 
Responses to Questions 
 
1.  When you give the wagon a sharp pull forward, the force of friction between the wagon and the 

child acts on the child to move her forward. But the force of friction acts at the contact point between 
the child and the wagon – either the feet, if the child is standing, or her bottom, if sitting. In either 
case, the lower part of the child begins to move forward, while the upper part, following Newton’s 
first law (the law of inertia), remains almost stationary, making it seem as if the child falls backward. 

 
2.  (a) Andrea, standing on the ground beside the truck, will see the box remain motionless while the  

  truck accelerates out from under it. Since there is no friction, there is no net force on the box 
and it will not speed up. 

 (b) Jim, riding on the truck, will see the box appear to accelerate backwards with respect to his  
  frame of reference, which is not inertial. (Jim better hold on, though; if the truck bed is 

frictionless, he too will slide off if he is just standing!)   
 
3.  If the acceleration of an object is zero, the vector sum of the forces acting on the object is zero 

(Newton’s second law), so there can be forces on an object that has no acceleration. For example, a 
book resting on a table is acted on by gravity and the normal force, but it has zero acceleration, 
because the forces are equal in magnitude and opposite in direction. 

 
4.  Yes, the net force can be zero on a moving object. If the net force is zero, then the object’s 

acceleration is zero, but its velocity is not necessarily zero. [Instead of classifying objects as 
“moving” and “not moving,” Newtonian dynamics classifies them as “accelerating” and “not 
accelerating.” Both zero velocity and constant velocity fall in the “not accelerating” category.]  

 
5.  If only one force acts on an object, the object cannot have zero acceleration (Newton’s second law). 

It is possible for the object to have zero velocity, but only for an instant. For example (if we neglect 
air resistance), a ball thrown up into the air has only the force of gravity acting on it. Its speed will 
decrease while it travels upward, stop, then begin to fall back to the ground. At the instant the ball is 
at its highest point, its velocity is zero. 

 
6.  (a) Yes, there must be a force on the golf ball (Newton’s second law) to make it accelerate upward. 
 (b) The pavement exerts the force (just like a “normal force”). 
 
7.  As you take a step on the log, your foot exerts a force on the log in the direction opposite to the 

direction in which you want to move, which pushes the log “backwards.” (The log exerts an equal 
and opposite force forward on you, by Newton’s third law.) If the log had been on the ground, 
friction between the ground and the log would have kept the log from moving. However, the log is 
floating in water, which offers little resistance to the movement of the log as you push it backwards.  

 
8.  When you kick a heavy desk or a wall, your foot exerts a force on the desk or wall. The desk or wall 

exerts a force equal in magnitude on your foot (Newton’s third law). Ouch! 
 
9.  (a) The force that causes you to stop quickly is the force of friction between your shoes and the  

ground (plus the forces your muscles exert in moving your legs more slowly and bracing 
yourself). 

     (b) If we assume the top speed of a person to be around 6 m/s (equivalent to about 12 mi/h, or a 5- 
minute mile), and if we assume that it take 2 s to stop, then the maximum rate of deceleration is 
about 3 m/s². 
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10.  (a) When you first start riding a bicycle you need to exert a strong force to accelerate the bike and  
yourself. Once you are moving at a constant speed, you only need to exert a force to equal the 
opposite force of friction and air resistance. 

 (b) When the bike is moving at a constant speed, the net force on it is zero. Since friction and air  
  resistance are present, you would slow down if you didn’t pedal to keep the net force on the 

bike (and you) equal to zero. 
 
11.  The father and daughter will each have the same magnitude force acting on them as they push each 

other away (Newton’s third law). If we assume the young daughter has less mass than the father, her 
acceleration should be greater (a = F/m). Both forces, and therefore both accelerations, act over the 
same time interval (while the father and daughter are in contact), so the daughter’s final speed will 
be greater than her dad’s.  

 
12.  The carton would collapse (a). When you jump, you accelerate upward, so there must be a net 

upward force on you. This net upward force can only come from the normal force exerted by the 
carton on you and must be greater than your weight. How can you increase the normal force of a 
surface on you? According to Newton’s third law, the carton pushes up on you just as hard as you 
push down on it. That means you push down with a force greater than your weight in order to 
accelerate upwards. If the carton can just barely support you, it will collapse when you exert this 
extra force.  

 
13.  If a person gives a sharp pull on the dangling thread, the thread is likely to break below the stone. In 

the short time interval of a sharp pull, the stone barely begins to accelerate because of its great mass 
(inertia), and so does not transmit the force to the upper string quickly. The stone will not move 
much before the lower thread breaks. If a person gives a slow and steady pull on the thread, the 
thread is most likely to break above the stone because the tension in the upper thread is the applied 
force plus the weight of the stone. Since the tension in the upper thread is greater, it is likely to break 
first. 

 
14.  The force of gravity on the 2-kg rock is twice as great as the force on the 1-kg rock, but the 2-kg 

rock has twice the mass (and twice the inertia) of the 1-kg rock. Acceleration is the ratio of force to 
mass (a = F/m, Newton’s second law), so the two rocks have the same acceleration. 

 
15.  A spring responds to force, and will correctly give the force or weight in pounds, even on the Moon. 

Objects weigh much less on the Moon, so a spring calibrated in kilograms will give incorrect results 
(by a factor of 6 or so).  

 
16.  The acceleration of the box will (c) decrease. Newton’s second law is a vector equation. When you 

pull the box at an angle θ, only the horizontal component of the force, Fcosθ, will accelerate the box 
horizontally across the floor.  

 
17.  The Earth actually does move as seen from an inertial reference frame. But the mass of the Earth is 

so great, the acceleration is undetectable (Newton’s second law).  
 
18.  Because the acceleration due to gravity on the Moon is less than it is on the Earth, an object with a 

mass of 10 kg will weigh less on the Moon than it does on the Earth. Therefore, it will be easier to 
lift on the Moon. (When you lift something, you exert a force to oppose its weight.) However, when 
throwing the object horizontally, the force needed to accelerate it to the desired horizontal speed is 
proportional to the object’s mass, F = ma. Therefore, you would need to exert the same force to 
throw the 2-kg object on the Moon as you would on Earth. 
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19.  A weight of 1 N corresponds to 0.225 lb. That’s about the weight of (a) an apple.  
 
20.  Newton’s third law involves forces on different objects, in this case, on the two different teams. 

Whether or not a team moves and in what direction is determined by Newton’s second law and the 
net force on the team. The net force on one team is the vector sum of the pull of the other team and 
the friction force exerted by the ground on the team. The winning team is the one that pushes hardest 
against the ground (and so has a greater force on them exerted by the ground).  

 
21.  When you stand still on the ground, two forces act on you: your weight downward, and the normal 

force exerted upward by the ground. You are at rest, so Newton’s second law tells you that the 
normal force must equal your weight, mg. You don’t rise up off the ground because the force of 
gravity acts downward, opposing the normal force.  

 
22.  The victim’s head is not really thrown backwards during the car crash. If the victim’s car was 

initially at rest, or even moving forward, the impact from the rear suddenly pushes the car, the seat, 
and the person’s body forward. The head, being attached by the somewhat flexible neck to the body, 
can momentarily remain where it was (inertia, Newton’s first law), thus lagging behind the body. 

 
23. (a) The reaction force has a magnitude of 40 N. 

(b) It points downward. 
(c) It is exerted on Mary’s hands and arms. 
(d) It is exerted by the bag of groceries.  

 
24.  No. In order to hold the backpack up, the rope must exert a vertical force equal to the backpack’s 

weight, so that the net vertical force on the backpack is zero. The force, F, exerted by the rope on 
each side of the pack is always along the length of the rope. The vertical component of this force is 
Fsinθ, where θ is the angle the rope makes with the horizontal. The higher the pack goes, the smaller 
θ becomes and the larger F must be to hold the pack up there. No matter how hard you pull, the rope 
can never be horizontal because it must exert an upward (vertical) component of force to balance the 
pack’s weight. See also Example 4-16 and Figure 4-26. 

 
Solutions to Problems 
 
1. Use Newton’s second law to calculate the force. 

( ) ( )255 kg 1.4 m s 77 NF ma= = =∑  

 
2. Use Newton’s second law to calculate the mass. 

2

265 N
    115 kg

2.30 m s
F

F ma m
a

= → = = =∑∑  

 
3. In all cases, W mg= , where g changes with location. 

 (a) ( ) ( )2
Earth Earth 68 kg 9.80 m s 670 NW mg= = =  

 (b) ( ) ( )2
Moon Moon 68 kg 1.7 m s 120 NW mg= = =  

 (c) ( ) ( )2
Mars Mars 68 kg 3.7 m s 250 NW mg= = =  

 (d) ( ) ( )2
Space Space 68 kg 0 m s 0 NW mg= = =  
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4. Use Newton’s second law to calculate the tension. 

( ) ( )2 3
T 1210 kg 1.20 m s 1452 N 1.45 10 NF F ma= = = = ≈ ×∑  

 
5. Find the average acceleration from Eq. 2-12c, and then find the force needed from Newton’s second 

law.  We assume the train is moving in the positive direction. 

( ) ( )

( ) ( ) ( )
( )

2 2
0

0
0

22 2
5 6 60

0

1m s
0     120km h 33.33m s      

3.6 km h 2

0 33.33m s
3.6 10 kg 1.333 10 N 1.3 10 N

2 2 150 m

avg

avg avg

v v
v v a

x x

v v
F ma m

x x

−
= = = =

−

−−
= = = × = − × ≈ − ×

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 The negative sign indicates the direction of the force, in the opposite direction to the initial velocity. 
We compare the magnitude of this force to the weight of the train. 

 ( ) ( )
6

5 2

1.333 10 N
0.3886

3.6 10 kg 9.80m s
avgF

mg
×

= =
×

 

Thus the force is  39% of the weight  of the train. 
By Newton’s third law, the train exerts the same magnitude of force on Superman that Superman 

exerts on the train, but in the opposite direction.  So the train exerts a force of 61.3 10 N×  in the 
forward direction on Superman. 

 
6. Find the average acceleration from Eq. 2-5.  The average force on the car is found from Newton’s 

second law.  

( ) 20
0

0.278m s 0 26.4 m s
0     95km h 26.4 m s      3.30m s

1km h 8.0 savg

v v
v v a

t
− −

= = = = = = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( ) ( )2 3950 kg 3.30 m s 3.1 10 Navg avgF ma= = − = − ×  

 The negative sign indicates the direction of the force, in the opposite direction to the initial velocity. 
 
7. Find the average acceleration from Eq. 2-12c, and then find the force needed from Newton’s second 

law. 

( )

( ) ( ) ( )
( )

2 2
0

0

22 2
0

0

2

13m s
7.0 kg 211.25N 210 N

2 2 2.8m

  

0

avg

avg avg

v v
a

x x

v v
F ma m

x x

−
=

−

−
= = = = ≈

−

→

⎡ ⎤−
⎢ ⎥
⎣ ⎦

 

 
8. The problem asks for the average force on the glove, which in a direct calculation would require 

knowledge about the mass of the glove and the acceleration of the glove.  But no information about 
the glove is given.  By Newton’s third law, the force exerted by the ball on the glove is equal and 
opposite to the force exerted by the glove on the ball.  So calculate the average force on the ball, and 
then take the opposite of that result to find the average force on the glove.  The average force on the  
ball is its mass times its average acceleration.  Use Eq. 2-12c to find the acceleration of the ball, with 

0,v =  0 35.0 m s,v =  and 0 0.110 m.x x− =   The initial direction of the ball is the positive 
direction. 

( )
( )
( )

22 2
20

0

0 35.0 m s
5568 m s

2 2 0.110 mavg

v v
a

x x
−−

= = = −
−
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( ) ( )2 20.140 kg 5568 m s 7.80 10 Navg avgF ma= = − = − ×  

 Thus the average force on the glove was 780 N, in the direction of the initial velocity of the ball. 
 
9. We assume that the fish line is pulling vertically on the fish, and that the fish is not jerking 

the line.  A free-body diagram for the fish is shown.  Write Newton’s second law for the fish 
in the vertical direction, assuming that up is positive.  The tension is at its maximum. 

( )T T      F F mg ma F m g a= − = → = + →∑  

T
2 2

18 N
1.5kg

9.80 m s 2.5m s
F

m
g a

= = =
+ +

 

 Thus a mass of 1.5 kg is the maximum that the fish line will support with the given  
acceleration.  Since the line broke, the fish’s mass is given by 1.5kgm >  (about 3 lbs). 

 
10. (a) The 20.0 kg box resting on the table has the free-body diagram shown.  Its weight 

is ( ) ( )220.0 kg 9.80 m s 196 N .mg = =   Since the box is at rest, the net force on 

the box must be 0, and so the normal force must also be 196 N .  

(b) Free-body diagrams are shown for both boxes. 12F  is the force on box 1 (the  

top box) due to box 2 (the bottom box), and is the normal force on box 1.  21F  

is the force on box 2 due to box 1, and has the same magnitude as 12F  by 

Newton’s third law.  N2F  is the force of the table on box 2.  That is the normal 
force on box 2.  Since both boxes are at rest, the net force on each box must 
be 0.  Write Newton’s second law in the vertical direction for each box, taking 
the upward direction to be positive. 

 
( )( )

N1 11

2
N1 1 12 21

0

10.0 kg 9.80 m s 98.0 N

F F m g

F m g F F

= − =

= = = = =

∑
 

( )( )
N2 21 22

2
N2 21 2

0

98.0 N 20.0 kg 9.80 m s 294 N

F F F m g

F F m g

= − − =

= + = + =

∑
 

 
11. The average force on the pellet is its mass times its average acceleration.  The average acceleration is  

found from Eq. 2-12c. For the pellet, 0 0,v =  125m s,v =  and 0 0.800 m.x x− =  

( )
( )

( )

22 2
20

0

125m s 0
9766 m s

2 2 0.800 mavg

v v
a

x x
−−

= = =
−

 

( ) ( )3 29.20 10 kg 9766 m s 89.8 Navg avgF ma −= = × =  

 
12. Choose up to be the positive direction.  Write Newton’s second law for the vertical  

direction, and solve for the tension force. 
( )

( ) ( )
T T

2 2 4
T

  

1200 kg 9.80 m s 0.70 m s 1.3 10 N

F F mg ma F m g a

F

= − = → = +

= + = ×

∑
 

 
 

Top  box (#1) 

1m g

N1 12=F F

Bottom    box  
(#2) 

2m g

N2F

21F

mg

TF

mg

NF

mg

TF
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mg

TF
13. Choose up to be the positive direction.  Write Newton’s second law for the vertical  

direction, and solve for the acceleration. 

( ) ( )
T

2
2T

163 N 14.0 kg 9.80 m s
1.8 m s

14.0 kg

F F mg ma

F mg
a

m

= − =

−−
= = =

∑
 

 Since the acceleration is positive, the bucket has an  upward  acceleration. 
 
14. Use Eq. 2-12b with 0 0v =  to find the acceleration. 

( ) ( )
( )

2 201
0 0 2 22 2

2 2 402 m 1 " "
    19.63m s 2.00 ' s

9.80 m s6.40 s
x x g

x x v t at a g
t
−

− = + → = = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 The accelerating force is found by Newton’s second law.   

( ) ( )2 4535kg 19.63m s 1.05 10 NF ma= = = ×  

 
15. If the thief were to hang motionless on the sheets, or descend at a constant speed, the sheets 

would not support him, because they would have to support the full 75 kg.  But if he 
descends with an acceleration, the sheets will not have to support the total mass.  A free-
body diagram of the thief in descent is shown.  If the sheets can support a mass of 58 kg, 
then the tension force that the sheets can exert is ( ) ( )2

T 58 kg 9.80 m s 568 N.F = =   

Assume that is the tension in the sheets.  Then write Newton’s second law for the thief, 
taking the upward direction to be positive. 

( ) ( )2
2T

T

568 N 75 kg 9.80 m s
    2.2 m s

75 kg
F mg

F F mg ma a
m

−−
= − = → = = = −∑  

The negative sign shows that the acceleration is downward. 
2If the thief descends with an acceleration of 2.2 m/s  or greater, the sheets will support his descent.  

 
16. In both cases, a free-body diagram for the elevator would look like the adjacent  

diagram.  Choose up to be the positive direction.  To find the MAXIMUM tension, 
assume that the acceleration is up.  Write Newton’s second law for the elevator. 
 T   F ma F mg= = − →∑  

( ) ( ) ( )( )( )2
T 0.0680 4850 kg 1.0680 9.80 m sF ma mg m a g m g g= + = + = + =  

4    5.08 10 N= ×  
To find the MINIMUM tension, assume that the acceleration is down.  Then Newton’s second law 
for the elevator becomes the following. 

( ) ( )
( )( )( )

T T

2 4

    0.0680

4850 kg 0.9320 9.80 m s 4.43 10 N                                            

F ma F mg F ma mg m a g m g g= = − → = + = + = − +

= = ×

∑
 

17.  Use Eq. 2-12c to find the acceleration.  The starting speed is 
1m s

35 km h 9.72 m s.
3.6 km h

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  ( ) ( )
( )
( )

22 2
2 2 2 20

0 0
0

0 9.72 m s
2       2779 m s 2800 m s

2 2 0.017 m
v v

v v a x x a
x x

−−
= + − → = = = − ≈ −

−
 

mg

TF

mg

TF
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  2
2

1
2779 m s 284 ' s 280 ' s

9.80 m s
g

g g= ≈
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The acceleration is negative because the car is slowing down.  The required force is found by 
Newton’s second law. 

( ) ( )2 568 kg 2779 m s 1.9 10 NF ma= = = ×  

 This huge acceleration would not be possible unless the car hit some very heavy, stable object. 
 
18. There will be two forces on the person – their weight, and the normal force of the 

scales pushing up on the person.  A free-body diagram for the person is shown.  
Choose up to be the positive direction, and use Newton’s second law to find the 
acceleration. 

  
( )

N

2 2

    0.75   

0.25 0.25 9.8 m s 2.5m s

F F mg ma mg mg ma

a g

= − = → − = →

= − = − = −

∑
 

Due to the sign of the result, the direction of the acceleration is  down . Thus the elevator must have 
started to move down since it had been motionless. 

 
19. (a) To calculate the time to accelerate from rest, use Eq. 2-12a. 

0
0 2

9.0 m s 0
    

1.2 m s
7.5sv v

v v at t
a
− −

= + → = = =  

  The distance traveled during this acceleration is found from Eq. 2-12b. 
   ( ) ( )22 21 1

0 0 2 2 1.2 m s 7.5s 33.75 mx x v t at− + = ==  

To calculate the time to decelerate to rest, use Eq. 2-12a. 

 0
0 2

0 9.0 m s
    

1.2 m s
7.5sv v

v v at t
a
− −

= + → = = =
−

 

  The distance traveled during this deceleration is found from Eq. 2-12b. 
   ( ) ( ) ( ) ( )22 21 1

0 0 2 29.0 m s 7.5s 1.2 m s 7.5s 33.75 mx x v t at− = + = + − =  

To distance traveled at constant velocity is ( )180 m 2 33.75 m 112.5 m.− =  
To calculate the time spent at constant velocity, use Eq. 2-8. 

0
0

112.5 m s
   12.5s 13s

9.0 m s
x x

x x vt t
v
−

= + → = = = ≈  

Thus the times for each stage are: 
Accelerating: 7.5s     Constant Velocity: 13s     Decelerating: 7.5s  

(b) The normal force when at rest is mg.  From the free-body diagram, if up is the positive  
direction, we have that N .F mg ma− =   Thus the change in normal force is the difference in the 
normal force and the weight of the person, or .ma      

Accelerating: 
2

2

1.2 m s
100 12%

9.80 m s
N

N

F ma a
F mg g

Δ
= = = × =  

   Constant velocity: 
2

0
100 0%

9.80 m s
N

N

F ma a
F mg g

Δ
= = = × =  

Decelerating: 
2

2

1.2 m s
100 12%

9.80 m s
N

N

F ma a
F mg g

Δ −
= = = × = −  

 

mg
NF

mg
NF
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 (c) The normal force is not equal to the weight during the accelerating and deceleration phases. 

   
7.5s 7.5s

55%
7.5s 12.5s 7.5s

+
=

+ +
 

 
20. The ratio of accelerations is the same as the ratio of the force. 

  

( )

( ) ( )

optics optics optics optics
34

3

12

6 3
36 24

33 3

10 10 N
        1949

1.0 g 1kg 10 cm
.5 10 m 9.80 m s

1.0 cm 1000 g 1m

2000 's

 

a ma F F
g mg mg r g

ga

ρ π

π

−

−

= = =

×
= =

×

≈

→
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
21. (a) Since the rocket is exerting a downward force on the gases, the gases will exert an  

upward force on the rocket, typically called the thrust.  The free-body diagram for the rocket 
shows two forces – the thrust and the weight.  Newton’s second law can be used to find the 
acceleration of the rocket. 

   ( ) ( )
( )

T

7 6 2
2 2T

6

  

3.55 10 N 2.75 10 kg 9.80 m s
3.109 m s 3.1m s

2.75 10 kg

F F mg ma

F mg
a

m

= − = →

× − ×−
= = = ≈

×

∑
 

 (b) The velocity can be found from Eq. 2-12a. 
   ( ) ( )2

0 0 3.109 m s 8.0 s 24.872 m s 25 m sv v at= + = + = ≈  

 (c) The time to reach a displacement of 9500 m can be found from Eq. 2-12b. 

   ( ) ( )
( )

2 01
0 0 2 2

2 2 9500 m
    78s

3.109 m s
x x

x x v t at t
a
−

− = + → = = =  

 
22. (a) There will be two forces on the skydivers – their combined weight, and the  

upward force of air resistance, A .F   Choose up to be the positive direction.  Write 
Newton’s second law for the skydivers. 

( )
A

2 2

    0.25   

0.75 0.75 9.80 m s 7.35m s

F F mg ma mg mg ma

a g

= − = → − = →

= − = − = −

∑
 

  Due to the sign of the result, the direction of the acceleration is down. 
 (b) If they are descending at constant speed, then the net force on them must  

be zero, and so the force of air resistance must be equal to their weight.   

  ( )( )2 3
A 132 kg 9.80 m s 1.29 10 NF mg= = = ×  

 
23. The velocity that the person must have when losing contact with the ground is found from 

Eq. 2-12c, using the acceleration due to gravity, with the condition that their speed at the 
top of the jump is 0.  We choose up to be the positive direction. 

  
( )

( ) ( ) ( )

2 2
0 0

2 2
0 0

2    

2 0 2 9.80 m s 0.80 m 3.960 m s

v v a x x

v v a x x

= + − →

= − − = − − =
  

 

mg

AF

mg

TF

mg

PF
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This velocity is the velocity that the jumper must have as a result of pushing with their legs.  Use that 
velocity with Eq. 2-12c again to find what acceleration the jumper must have during their push on 
the floor, given that their starting speed is 0. 

  ( ) ( )
( )

( )

22 2
2 2 20

0 0
0

3.960 m s 0
2       39.20 m s

2 2 0.20 m
v v

v v a x x a
x x

−−
= + − → = = =

−
 

 Finally, use this acceleration to find the pushing force against the ground. 

  
( ) ( ) ( )

P

2 2
P

  

68kg 9.80 m s 39.20 m s 3300 N

F F mg ma

F m g a

= − = →

= + = + =

∑
 

 
24. Choose UP to be the positive direction.  Write Newton’s second law for the elevator. 

  ( )( )
T

2
2 2T

  

21, 750 N 2125 kg 9.80 m s
0.4353m s 0.44 m s

2125 kg

F F mg ma

F mg
a

m

= − = →

−−
= = = ≈

∑
 

 
25. We break the race up into two portions.  For the acceleration phase, we call the distance 1d  and the 

time 1.t   For the constant speed phase, we call the distance 2d  and the time 2.t   We know that 

1 45m,d =  2 55m,d =  and 2 110.0s .t t= −   Eq. 2-12b is used for the acceleration phase and Eq. 2-2 
is used for the constant speed phase.  The speed during the constant speed phase is the final speed of 
the acceleration phase, found from Eq. 2-12a. 

  ( )2 21 1
0 0 1 1 2 2 1 12 2 0      ;      10.0s  ; x x v t at d at x vt d vt v t v v at− = + → = Δ = → = = − = +  

This set of equations can be solved for the acceleration and the velocity.  

 
( ) ( )

( ) ( ) ( )

2 21
1 1 2 1 1 1 1 2 1 12

1 1 1
2 1 1 1 2 1 1 12 2

1 1 1

  ;  10.0s   ;      2   ;  10.0   

2 2 2
  ;  10.0 10.0     2 10.0   

d at d v t v at d at d at t

d d d
a d t t t d t d t

t t t

= = − = → = = − →

= = − = − → = − →
 

 

( )
( )

( )
( )

( )
( )

( )

2
2 11 1 1

1 22 2
2 1 1 11

2 1

2
2 1 2 11

1
1 2 1

220.0 2 2
    

2 200s20.0
 

2

2 220.0
200 2 10.0s

d dd d d
t a

d d t dd
d d

d d d dd
v at

d d d

+
= → = = =

+

+

+ +
= = =

+

⎡ ⎤
⎢ ⎥
⎣ ⎦  

(a) The horizontal force is the mass of the sprinter times their acceleration. 
( )
( ) ( ) ( )

( ) ( )

2 2
2 1

2 2
1

2 145m
66 kg 154 N 150 N

200s 200s 45m
d d

F ma m
d

+
= = = = ≈  

(b) The velocity for the second portion of the race was found above. 

  
( )2 12 145m

14.5m s
10.0s 10.0s

d d
v

+
= = =  

 
26. (a) Use Eq. 2-12c to find the speed of the person just before striking the ground.  Take down to be  

the positive direction.  For the person, 0 0,v =   0 3.9 m,y y− =  and 29.80 m s .a =  

( ) ( ) ( ) ( )2 2 2
0 0 02     2 2 9.80 m s 3.9 m 8.743 8.7 m sv v a y y v a y y− = − → = − = = =  

mg

TF
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 (b) For the deceleration, use Eq. 2-12c to find the average deceleration, choosing down to be  
positive.   

( )
( )

( )

2 2
0 0 0 0

22
20

8.743m s       0     0.70 m     2   

8.743m s
54.6 m s

2 2 0.70 m

v v y y v v a y y

v
a

y

= = − = − = − →

−−
= = = −

Δ

 

The average force on the torso ( )TF due to the legs is found from Newton’s second 
law.  See the free-body diagram.  Down is positive. 

( ) ( ) ( )2 2 3

net T

T

  

42 kg 9.80 m s 54.6 m s 2.7 10 N

F mg F ma

F mg ma m g a

= − →

= − = − = ×

=

− = −
 

 The force is upward. 
 
27. Free-body diagrams for the box and the weight are shown below.  The 

tension exerts the same magnitude of force on both objects. 
(a) If the weight of the hanging weight is less than the weight of the box, 

the objects will not move, and the tension will be the same as the 
weight of the hanging weight.  The acceleration of the box will also 
be zero, and so the sum of the forces on it will be zero.  For the box, 

N T 1 N 1 T 1 20    77.0N 30.0 N 47.0 NF F m g F m g F m g m g+ − = → = − = − = − =  
(b) The same analysis as for part (a) applies here.   

N 1 2 77.0 N 60.0 N 17.0 NF m g m g= − = − =  
(c) Since the hanging weight has more weight than the box on the table, the box on the table will be  

lifted up off the table, and normal force of the table on the box will be 0 N . 
 
28.   (a) Just before the player leaves the ground, the forces on the player are his  

weight and the floor pushing up on the player.  If the player jumps straight up, 
then the force of the floor will be straight up – a normal force.  See the first 
diagram.  In this case, while touching the floor, N .F mg>  

 

(b) While the player is in the air, the only force on the player is their weight.   
See the second diagram. 

 
29. (a) Just as the ball is being hit, ignoring air resistance, there are two main  

forces on the ball: the weight of the ball, and the force of the bat on the ball. 
 (b) As the ball flies toward the outfield, the only force on it is its weight, if  

air resistance is ignored. 
 
 
30. The two forces must be oriented so that the northerly component of the first  

force is exactly equal to the southerly component of the second force.  Thus  the 
second force must act  southwesterly .  See the diagram. 

 
 
 
 
 
 
 

mg

TF

1m g 2m g

TFTF
NF

NF mg
mg

mg

batF

mg

1F
2F

21 FF +
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31. (a) We draw a free-body diagram for the piece of  
the rope that is directly above the person.   
That piece of rope should be in equilibrium.   
The person’s weight will be pulling down on that  
spot, and the rope tension will be pulling away from  
that spot towards the points of attachment.  Write Newton’s 
second law for that small piece of the rope. 

   

( ) ( )
( )

( )

2
1 1

T
T

72.0 kg 9.80 m s
2 sin 0    sin sin 6.988

2 2 2900 N

tan     12.5m tan 6.988 1.532 m 1.5m
12.5m

y

mg
F F mg

F

x
x

θ θ

θ

− −= − = → = = = °

= → = ° = ≈

∑
 

 (b) Use the same equation to solve for the tension force with a sag of only ¼ that found above. 

   

( )

( ) ( )
( )

11
4

2

T

0.383m
1.532 m 0.383m  ;  tan 1.755

12.5m

72.0 kg 9.80 m s
11.5kN

2sin 2 sin1.755

x

mg
F

θ

θ

−= = = = °

= = =
°

 

  The  rope will not break , but it exceeds the recommended tension by a factor of about 4. 
 
32. The window washer pulls down on the rope with her hands with a tension force T ,F  

so the rope pulls up on her hands with a tension force T.F   The tension in the rope is 
also applied at the other end of the rope, where it attaches to the bucket.  Thus there is 
another force TF  pulling up on the bucket.  The bucket-washer combination thus has 
a net force of T2F  upwards.  See the adjacent free-body diagram, showing only forces 
on the bucket-washer combination, not forces exerted by the combination (the pull 
down on the rope by the person) or internal forces (normal force of bucket on person). 
(a) Write Newton’s second law in the vertical direction, with up as positive.  The net  

force must be zero if the bucket and washer have a constant speed. 

( ) ( )
T T T

21 1
T 2 2

0  2  

72 kg 9.80 m s 352.8 N 350 N

F F F mg F mg

F mg

= + − = → = →

= = = ≈

∑
 

(b) Now the force is increased by 15%, so ( )T 358.2 N 1.15 405.72 N.F = =   Again write Newton’s  
second law, but with a non-zero acceleration. 

( ) ( ) ( )
T T

2
2 2T

  

2 405.72 N 72 kg 9.80 m s2
1.47 m s 1.5m s

72 kg

F F F mg ma

F mg
a

m

= + − = →

−−
= = = ≈

∑
 

 
33. We draw free-body diagrams for each bucket.   
 (a) Since the buckets are at rest, their acceleration is 0.  Write Newton’s  

second law for each bucket, calling UP the positive direction. 

 
( ) ( )

1 T1

2
T1

0  

3.2 kg 9.80 m s 31N

F F mg

F mg

= − = →

= = =

∑
  

mg

TF
TF

Top (# 2) 

mgT1F

T2F

Bottom (# 1)

mg

T1F

TF

mg

TF
θθ

x

12.5m
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( ) ( )

2 T2 T1

2
T2 T1

0  

2 2 3.2 kg 9.80 m s 63 N

F F F mg

F F mg mg

= − − = →

= + = = =

∑
 

 (b) Now repeat the analysis, but with a non-zero acceleration.  The free-body diagrams are  
unchanged. 

( ) ( )
1 T1

2 2
T1

2 T2 T1 T2 T1 T1

  

3.2 kg 9.80 m s 1.25m s 35.36 N 35 N

   2 71N

F F mg ma

F mg ma

F F F mg ma F F mg ma F

= − = →

= + = + = ≈

= − − = → = + + = =

∑

∑
 

 
34. See the free-body diagram for the bottom bucket, and write Newton’s second law to find 

the tension.  Take the upward direction as positive. 

  
( ) ( ) ( )

T1 bucket bucket
bottom

2 2
T1 bucket
bottom

  

3.2 kg 9.80 m s 1.25m s 35.36 N 35 N

F F m g m a

F m g a

= − = →

= + = + = ≈

∑
 

 
 

Next, see the free-body for the rope between the buckets.   The mass of the cord is given by 
cord

cord .W
m

g
=  

  

( ) ( ) ( )

( ) ( )

T1 cord T1 cord
top bottom

T1 T1 cord bucket cord
top bottom

2cord
bucket 2

  

2.0 N
     3.2 kg 11.05m s

9.80 m s

37.615 N 38 N     

F F m g F m a

F F m g a m g a m g a

W
m g a

g

= − − = →

= + + = + + +

= + + = +

= ≈

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

 

Note that this is the same as saying that the tension at the top is accelerating the 
bucket and cord together. 

 

Now use the free-body diagram for the top bucket to find the tension at the bottom 
of the second cord. 

  ( ) ( ) ( ) ( )

( ) ( ) ( )

T2 T1 bucket bucket
top

T2 T1 bucket bucket cord bucket
top

cord
bucket cord bucket

  

     2 2

F F F m g m a

F F m g a m g a m g a m g a

W
m m g a m g a

g

= − − = →

= + + = + + + + +

= + + = + +⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
 

  ( ) ( )2
2

2.0 N
    2 3.2 kg 11.05m s 72.98 N 73N

9.80 m s
= + = ≈
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Note that this is the same as saying that the tension in the top cord is accelerating the two buckets 
and the connecting cord. 

 
 

bucketm g

T1
bottom

F

cordm gT1
bottom

F

T1
top

F

bucketm gT1
top

F

T2F
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35. Choose the y direction to be the “forward” direction for the motion of the snowcats, and the x 
direction to be to the right on the diagram in the textbook.  Since the housing unit moves in the 
forward direction on a straight line, there is no acceleration in the x direction, and so the net force in 
the x direction must be 0.  Write Newton’s second law for the x direction. 

( )
A B A B

A
B

0    sin 48 sin 32 0  

4500 N sin 48sin 48
6311N 6300 N

sin 32 sin 32

x x xF F F F F

F
F

= + = → − + = →

°°
= = = ≈

° °

° °∑
 

 Since the x components add to 0, the magnitude of the vector sum of the two forces will just be the  
sum of their y components.   

( ) ( )A B A Bcos48 cos32 4500 N cos48 6311N cos32

8363N 8400 N        
y y yF F F F F= + = + = +

= ≈

° ° ° °∑
 

 
36. Since all forces of interest in this problem are horizontal, draw the free-body diagram showing only 

the horizontal forces.  T1F  is the tension in the coupling between the locomotive and the first car, and 

it pulls to the right on the first car.  T2F  is the tension in the coupling between the first car an the 

second car.  It pulls to the right on car 2, labeled T2RF and to the left on car 1, labeled T2L.F   Both cars 

have the same mass m and the same acceleration a.  Note that T2R T2L 2TF= =F F  by Newton’s third 
law. 

 
 
 

Write a Newton’s second law expression for each car.   

1 1 2 2 2     T T TF F F ma F F ma= − = = =∑ ∑  
 Substitute the expression for  ma  from the second expression into the first one. 

1 2 2 T1 T2 T1 T2    2     2T T TF F ma F F F F F− = = → = → =  

 This can also be discussed in the sense that the tension between the locomotive and the first car is  
pulling 2 cars, while the tension between the cars is only pulling one car. 

 
37. The net force in each case is found by vector addition with components. 
 (a) Net x 1 Net y 210.2 N     16.0 NF F F F= − = − = − = −  

( ) ( )2 2 1
Net

16.0
10.2 16.0 19.0 N      tan 57.48

10.2
F θ − −

= − + − = = =
−

°  

  The actual angle from the x-axis is then 237.48° .  Thus the net force is 
  Net 19.0 N at 237.5F = °  

  2Net 19.0 N
1.03m s at 237.5

18.5kg
F

a
m

= = = °  

 

 (b) o o
Net x 1 Net y 2 1cos30 8.833 N     sin 30 10.9 NF F F F F= = = − =  

( ) ( )2 2
Net

1 2Net

8.833 N 10.9 N 14.03N 14.0 N

10.9 14.03 N
tan 51.0 0.758m s  at 51.0

8.833 18.5 kg
     

F

F
a

m
θ −

= + = ≈

= = ° = = = °
 

 

θ 
1F

2F
netF

θ 
30o 

1F

2F netF

T1FT2FT2F
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38. Since the sprinter exerts a force of 720 N on the ground at an angle of 22o 
below the horizontal, by Newton’s third law the ground will exert a force of  
720 N on the sprinter at an angle of 22o above the horizontal.  A free-body 
diagram for the sprinter is shown. 

 (a) The horizontal acceleration will be found from the net  
horizontal force. Using Newton’s second law, we have the following. 

( )P
P

2 1 2

720 N cos 22cos 22
cos 22     

65 kg

                                                   10.27 m s 1.0 10 m s

x x x

F
F F ma a

m
°°

= = → = =

= ≈ ×

°∑
 

(b)  Eq. 2-12a is used to find the final speed.  The starting speed is 0.       

( )( )2
0     0 10.27 m s 0.32 s 3.286 m s 3.3m sv v at v at= + → = + = = ≈  

 

39. During the time while the force is 0 ,F  the acceleration is 0 .F
a

m
=   Thus the distance traveled would 

be given by Eq. 2-12b, with a 0 starting velocity, 2 201 1
0 0 02 2 .F

x x v t at t
m

− = + =   The velocity at the 

end of that time is given by Eq. 2-12a,  0
0 00 .F

v v at t
m

= + = + ⎛ ⎞
⎜ ⎟
⎝ ⎠

  During the time while the force is 

02 ,F  the acceleration is 02 .F
a

m
=   The distance traveled during this time interval would again be 

given by Eq. 2-12b, with a starting velocity of 0
0.

F
t

m
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 2 2 20 0 01 1
0 0 0 0 0 02 2

2
2

F F F
x x v t at t t t t

m m m
− = + = + =⎡ ⎤⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

The total distance traveled is 2 2 20 0 01
0 0 02

5
2

2
.F F F

t t t
m m m

+ =  

 
40. Find the net force by adding the force vectors.  Divide that net force by the mass to find the 

acceleration, and then use Eq. 3-13a to find the velocity at the given time. 

  
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )0

ˆ ˆ ˆ ˆ ˆ ˆ16 12 N 10 22 N 6 34 N 3.0 kg

ˆ ˆ ˆ ˆ6 34 N 6 34 N ˆ ˆ       0 3.0s 6 34 m s
3.0 kg 3.0 kg

m

t

= + + − + = + = = →

+ +
= = + = + = +

∑F i j i j i j a a

i j i j
a v v a i j

 

 In magnitude and direction, the velocity is 35m s  at an angle of 80° . 
 
41. For a simple ramp, the decelerating force is the component of gravity 

along the ramp.  See the free-body diagram, and use Eq. 2-12c to  
calculate the distance. 

( )
2 2 2 2

0 0 0
0

sin     sin

0
2 2 sin 2 sin

xF mg ma a g

v v v v
x x

a g g

θ θ

θ θ

= − = → = −

− −
− = = =

−

∑
 

22o 
mg

NF

PF

θ 

y x

mg

NF
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( )

( )

2

2
2

1m s
140 km h

3.6km h
        4.0 10 m

2 9.80m s sin11
= = ×

°

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  

 
42. The average force can be found from the average acceleration.  Use Eq. 2-12c to find the 

acceleration. 

  

( ) ( )

( ) ( ) ( )
( )

2 2
2 2 0

0 0
0

22 2
0

0

2       
2

0 10.0 m s
60.0kg 120 N

2 2 25.0 m

v v
v v a x x a

x x

v v
F ma m

x x

−
= + − → =

−

−−
= = = = −

−

 

 The average retarding force is 21.20 N10× , in the direction opposite to the child’s velocity. 
 
43. From the free-body diagram, the net force along the plane on the skater is 

sin ,mg θ  and so the acceleration along the plane is sin .g θ   We use the 
kinematical data and Eq. 2-12b to write an equation for the acceleration, 
and then solve for the angle. 

  ( ) ( ) ( )
( ) ( )

2 21 1
0 0 02 2

1 10
22 2

sin   

2 18 m 2 2.0 m s 3.3s2
sin sin 12

9.80 m s 3.3s

x x v t at v t gt

x v t
gt

θ

θ − −

− = + = + →

−Δ −
= = = °

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
 
44. For each object, we have the free-body diagram shown, assuming that the string doesn’t 

break.  Newton’s second law is used to get an expression for the tension.  Since the string 
broke for the 2.10 kg mass, we know that the required tension to accelerate that mass was 
more than 22.2 N.  Likewise, since the string didn’t break for the 2.05 kg mass, we know 
that the required tension to accelerate that mass was less than 22.2 N.  These relationships 
can be used to get the range of accelerations. 

  

( )

( ) ( )

T T

T T
max max

T 2.10 T 2.05
max max 2.10 2.05

    

  ;        ;    

F F mg ma F m a g

F F
F m a g F m a g g a g a

m m

= − = → = +

< + > + → − < − > →

∑
 

  

T T
max max 2 2

2.10 2.05

2 2 2 2

22.2 N 22.2 N
    9.80 m s 9.80 m s   

2.10 kg 2.05kg

0.77 m s 1.03m s     0.8m s 1.0 m s

F F
g a g a

m m

a a

− < < − → − < < − →

< < → < <

 

45. We use the free-body diagram with Newton’s first law for the stationary lamp to   
find the forces in question.  The angle is found from the horizontal displacement and 
the length of the wire. 

  (a) 1 0.15m
sin 2.15

4.0 m
θ −= = °  

net T H H T
x

sin 0    sinF F F F Fθ θ= − = → =  

y 

x 

θ 
mg

NF

θ 

θ 

mg

TF

HF

TF

mg
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( ) ( )

net T T
y

2
H

cos 0     
cos

sin tan 27 kg 9.80 m s tan 2.15 9.9 N
cos

mg
F F mg F

mg
F mg

θ
θ

θ θ
θ

= − = → = →

= = = ° =

 

(b) 
( ) ( )2

T

27 kg 9.80 m s
260 N

cos cos 2.15
mg

F
θ

= = =
°

 

 
46. (a) In the free-body diagrams below, ABF  = force on block A exerted by block B, BAF  = force on  

block B exerted by block A, BCF  = force on block B exerted by block C, and CBF  = force on 

block C exerted by block B.  The magnitudes of BAF  and ABF  are equal, and the magnitudes of 

BCF  and CBF  are equal, by Newton’s third law. 

 

(b) All of the vertical forces on each block add up to zero, since there is no acceleration in the  
vertical direction.  Thus for each block, NF mg= .  For the horizontal direction, we have the 
following. 

( )AB BA BC CB A B C
A B C

    
F

F F F F F F F m m m a a
m m m

= − + − + = = + + → =
+ +∑   

 (c) For each block, the net force must be ma by Newton’s second law.  Each block has the same  
acceleration since they are in contact with each other.  

A
A net

A B C

m
F F

m m m
=

+ +
 B

B net
A B C

m
F F

m m m
=

+ +
 C

3
A B C

net

m
F F

m m m
=

+ +
 

(d) From the free-body diagram, we see that for mC, C
CB C net

A B C

.m
F F F

m m m
= =

+ +
  And by 

Newton’s third law, C
BC CB

A B C

.m
F F F

m m m
= =

+ +
  Of course, 23F  and 32F  are in opposite 

directions.  Also from the free-body diagram, we use the net force on mA. 
A A

AB A net AB
A B C A B C

B C
AB

A B C

    
m m

F F F F F F F
m m m m m m

m m
F F

m m m

− = = → = − →
+ + + +

+
=

+ +

 

 By Newton’s third law, 2 3
BC AB

1 2 3

.m m
F F F

m m m
+

= =
+ +

 

Am g

F

Bm g Cm g

A NF

ABF
BAF BCF

B NF
C NF

CBF
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 (e) Using the given values, 2

1 2 3

96.0 N
3.20 m s

30.0 kg
.F

a
m m m

= = =
+ +

  Since all three masses  

are the same value, the net force on each mass is ( ) ( )2
net 10.0 kg 3.20 m s 32.0 NF ma= = = . 

This is also the value of CBF  and BC.F    The value of ABF  and BAF  is found as follows.  

( ) ( ) ( )2
AB BA 2 3 20.0 kg 3.20 m s 64.0 NF F m m a= = + = =  

  To summarize: 
   A net B net C net AB BA BC CB32.0 N         64.0 N         32.0 NF F F F F F F= = = = = = =  

The values make sense in that in order of magnitude, we should have BA CBF F F> > , since F is the 
net force pushing the entire set of blocks, FAB is the net force pushing the right two blocks, and FBC 
is the net force pushing the right block only. 

 
47. (a) Refer to the free-body diagrams shown.  With the stipulation  

that the direction of the acceleration be in the direction of motion 
for both objects, we have C E .a a a= =  

   E T E T C C  ;  m g F m a F m g m a− = − =  

 (b) Add the equations together to solve them. 
( ) ( )

( )

E T T C E C

E C E C

2 2E C

E C

  

  

1150kg 1000kg
9.80m s 0.68m s

1150kg 1000kg

m g F F m g m a m a

m g m g m a m a

m m
a g

m m

− + − = + →

− = + →

− −
= = =

+ +

 
( ) ( ) ( ) ( )2E C C E

T C C
E C E C

2 1000kg 1150 kg2
9.80m s

1150kg 1000kg

    10,483N 10,500 N

m m m m
F m g a m g g g

m m m m
−

= + = + = =
+ + +

= ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 
48. (a) Consider the free-body diagram for the block on the frictionless  

surface.  There is no acceleration in the y direction.  Use Newton’s 
second law for the x direction to find the acceleration. 

 
( )2 2

sin   

sin 9.80m s sin 22.0 3.67 m s

xF mg ma

a g

θ

θ

= = →

= = ° =

∑
 

 (b) Use Eq. 2-12c with 0 0v =  to find the final speed. 

   ( ) ( ) ( ) ( )2 2 2
0 0 02     2 2 3.67 m s 12.0 m 9.39 m sv v a x x v a x x− = − → = − = =  

 
49. (a) Consider the free-body diagram for the block on the frictionless  

surface.  There is no acceleration in the y direction.  Write Newton’s 
second law for the x direction. 

sin     sinxF mg ma a gθ θ= = → =∑  

Use Eq. 2-12c with 0 4.5m sv = −  and 0 m sv =  to find the distance 
that it slides before stopping.  

y 

x 

θ θ 
mg

NF

y 

x 

θ θ 
mg

NF

a

+y 
 

a

+y

1m g 2m g

NF NF
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( )

( ) ( )
( )

2 2
0 0

22 2
0

0 2

2   

0 4.5m s
2.758m 2.8m up the plane

2 2 9.80 m s sin 22.0

v v a x x

v v
x x

a

− = − →

− −−
− = = = − ≈

°

 

(b) The time for a round trip can be found from Eq. 2-12a.  The free-body diagram (and thus the 
acceleration) is the same whether the block is rising or falling.  For the entire trip, 0 4.5m sv = −  
and 4.5m s.v = +   

( ) ( )
( )

0
0 2 o

4.5m s 4.5m s
    2.452s 2.5s

9.80 m s sin 22
v v

v v at t
a

− −−
= + → = = = ≈  

 
50. Consider a free-body diagram of the object.  The car is moving to the right.  The 

acceleration of the dice is found from Eq. 2-12a. 
20

0

28 m s 0
      4.67 m s

6.0 sx x

v v
v v a t a

t
− −

= + = → = = =  

Now write Newton’s second law for both the vertical (y) and horizontal (x) 
directions. 

T T Tcos 0          sin
cosy x x

mg
F F mg F F F maθ θ

θ
= − = → = = =∑ ∑  

Substitute the expression for the tension from the y equation into the x equation. 

T

2
1 1 o o

2

sin sin tan     tan
cos

4.67 m s
tan tan 25.48 25

9.80 m s

x x

x

mg
ma F mg a g

a
g

θ θ θ θ
θ

θ − −

= = = → =

= = = ≈
 

 
51. (a) See the free-body diagrams included. 
 

 (b) For block A, since there is no motion in the vertical direction,  
we have NA A .F m g=   We write Newton’s second law for the x 

direction:  A T A A .x xF F m a= =∑   For block B, we only need to 

consider vertical forces:  B B T B B .y yF m g F m a= − =∑   Since the 
two blocks are connected, the magnitudes of their accelerations 
will be the same, and so let  A B .x ya a a= =   Combine the two force equations from above, and 
solve for a by substitution. 

 
T A B T B B A B             F m a m g F m a m g m a m a= − = → − = →  

B A B
A B B T A

A B A B

         
m m m

m a m a m g a g F m a g
m m m m

+ = → = = =
+ +

 

 
52. (a) From Problem 51, we have the acceleration of each block.  Both blocks have the same  

acceleration. 

   ( ) ( )
2 2 2B

A B

5.0 kg
9.80 m s 2.722 m s 2.7 m s

5.0 kg 13.0 kg
m

a g
m m

= = = ≈
+ +

 

 

y 

NAF

Bm g

TF

Am g

 x 

TF

θ 

mg

TF
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 (b) Use Eq. 2-12b to find the time. 

   ( ) ( )
( )

2 01
0 0 2 2

2 2 1.250 m
    0.96 s

2.722 m s
x x

x x v t at t
a
−

− = + → = = =  

 (c) Again use the acceleration from Problem 51. 

   B B
A

A B A B

1 1
100 100        99 99 kgB

m m
a g g m m

m m m m
= = → = → = =

+ +
 

 
53. This problem can be solved in the same way as problem 51, with the modification that we increase 

mass Am  by the mass of Al  and we increase mass Bm  by the mass of B.l   We take the result from 
problem 51 for the acceleration and make these modifications.  We assume that the cord is uniform, 
and so the mass of any segment is directly proportional to the length of that segment. 

  

B B
B B

B A B A B

A B A B CA B
A B

A B A B

    
C C

C C

m m m m
m

a g a g g
m m m m m

m m m m

+ +
+ +

= → = =
+ + +

+ + +
+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

l l

l l l l

l l

l l l l

 

Note that this acceleration is NOT constant, because the lengths Al  and Bl  are functions of time.  
Thus constant acceleration kinematics would not apply to this system. 

 
54. We draw a free-body diagram for each mass.  We choose UP to be the 

positive direction.  The tension force in the cord is found from analyzing 
the two hanging masses.   Notice that the same tension force is applied to 
each mass.  Write Newton’s second law for each of the masses. 

T 1 1 1 T 2 2 2     F m g m a F m g m a− = − =  
Since the masses are joined together by the cord, their accelerations will 
have the same magnitude but opposite directions.  Thus 1 2.a a= −   
Substitute this into the force expressions and solve for the tension force. 

1 T
T 1 1 2 T 1 1 2 2

1

1 T 1 2
T 2 2 2 2 T

1 1 2

        

2
    

m g F
F m g m a F m g m a a

m

m g F m m g
F m g m a m F

m m m

−
− = − → = − → =

−
− = = → =

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Apply Newton’s second law to the stationary pulley. 
( ) ( ) ( )2

1 2
C C

1 2

4 3.2 kg 1.2 kg 9.80 m s4
2 0    2 34 N

4.4 kgT T

m m g
F F F F

m m
− = → = = = =

+
 

 
55. If m doesn’t move on the incline, it doesn’t move in the vertical direction, and 

so has no vertical component of acceleration.  This suggests that we analyze 
the forces parallel and perpendicular to the floor.  See the force diagram for 
the small block, and use Newton’s second law to find the acceleration of the 
small block. 

  
N N

N
N

cos 0    
cos

sin sin
sin     tan

cos

y

x

mg
F F mg F

F mg
F F ma a g

m m

θ
θ

θ θθ θ
θ

= − = → =

= = → = = =

∑

∑
 

m2 
1.2 kg 

m1 
3.2 kg

2m g 1m g

TFTF

TFTF

CF

mg

NF

θ

θ
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Since the small block doesn’t move on the incline, the combination of both masses has the same 
horizontal acceleration of tan .g θ   That can be used to find the applied force. 

( ) ( )applied tanF m M a m M g θ= + = +  

Note that this gives the correct answer for the case of 0,θ = , where it would take no applied force to 
keep m stationary.  It also gives a reasonable answer for the limiting case of 90 ,θ → °  where no 
force would be large enough to keep the block from falling, since there would be no upward force to 
counteract the force of gravity. 

 
56. Because the pulleys are massless, the net force on them must be 0.  

Because the cords are massless, the tension will be the same at both 
ends of the cords.  Use the free-body diagrams to write Newton’s 
second law for each mass.  We are using the same approach taken in 
problem 47, where we take the direction of acceleration to be 
positive in the direction of motion of the object.  We assume that Cm  
is falling, Bm  is falling relative to its pulley, and Am  is rising 
relative to its pulley.  Also note that if the acceleration of Am  
relative to the pulley above it is Ra , then A R C.a a a= +   Then, the 
acceleration of Bm  is B R C ,a a a= −  since Ca  is in the opposite 
direction of Ba . 

  

( )
( )

A TA A A A A R C

B B TA B B B R C

C C TC C C

TC TA TC TA

:   

:   

:   

pulley:  2 0    2

m F F m g m a m a a

m F m g F m a m a a

m F m g F m a

F F F F F

= − = = +

= − = = −

= − =

= − = → =

∑
∑
∑
∑

  

 Re-write this system as three equations in three unknowns TA R C, , .F a a  

  

( )
( )

TA A A R C TA A C A R A

B TA B R C TA B C B R B

C TA C C TA C C C

       

       

2               2             

F m g m a a F m a m a m g

m g F m a a F m a m a m g

m g F m a F m a m g

− = + → − − =

− = − → − + =

− = → + =

 

This system now needs to be solved.  One method to solve a system of linear equations is by 
determinants.  We show that for C.a  

 

( ) ( )
( ) ( )

A A

B B

C B C A B A C B
C

A A B C A B A C B

B B

C

A B A C B C A C B C A B

A B A C B C A B A C B C

1
1
2 0 2 2

1 2 2
1
2 0

4 4
   

4 4

m m
m m
m m m m m m m m

a
m m m m m m m m m
m m

m

m m m m m m m m m m m m
m m m m m m m m m m m m

g g

g g

−

− + − −
= =

− − − − − +
−

− − + −
= =

− − − + +

 

 
Similar manipulations give the following results. 

Cm g

TCF

Cm Ca

Am g

TAF

Am Aa

Bm g

TAF

Bm Ba

TCF

TAF TAF

Ca
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( )A C B C

R
A B A C B C

2
4

m m m m
a

m m m m m m
g−

=
+ +

  ;  A B C
TA

A B A C B C

4
4

m m m
F

m m m m m m
g=

+ +
 

(a) The accelerations of the three masses are found below. 

  

( )A C B C A C B C A B
A R C

A B A C B C A B A C B C

A C B C A B

A B A C B C

2 4
4 4

3 4
    

4

m m m m m m m m m m
a a a g g

m m m m m m m m m m m m

m m m m m m
g

m m m m m m

− + −
= + = +

+ + + +

− −
=

+ +

 

  

( )A C B C A C B C A B
B R C

A B A C B C A B A C B C

A C B C A B

A B A C B C

2 4
4 4

3 4
   

4

m m m m m m m m m m
a a a g g

m m m m m m m m m m m m

m m m m m m
g

m m m m m m

− + −
= − = −

+ + + +

− +
=

+ +

 

  A C B C A B
C

A B A C B C

4
4
m m m m m m

a g
m m m m m m

+ −
=

+ +
 

(b) The tensions are shown below. 

  A B C A B C
TA TC TA

A B A C B C A B A C B C

4 8
2

4 4
  ;  m m m m m m

F F F
m m m m m m m m m m m m

g g= = =
+ + + +

 

 
57. Please refer to the free-body diagrams given in the textbook for this problem.  Initially, treat the two  

boxes and the rope as a single system.  Then the only accelerating force on the system is P.F   The 
mass of the system is 23.0 kg, and so using Newton’s second law, the acceleration of the system is 

2 2P 35.0 N
1.522 m s 1.52 m s

23.0 kg
.F

a
m

= = = ≈   This is the acceleration of each part of the system. 

 

Now consider Bm  alone.  The only force on it is BT ,F  and it has the acceleration found above.  Thus 

BTF  can be found from Newton’s second law. 

( ) ( )2
BT B 12.0 kg 1.522 m s 18.26 N 18.3 NF m a= = = ≈  

 

Now consider the rope alone.  The net force on it is TA TB,−F F  and it also has the acceleration found 
above.  Thus TAF  can be found from Newton’s second law.   

( ) ( )2
TA TB TA TB C    18.26 N 1.0 kg 1.522 m s 19.8 NCF F m a F F m a− = → = + = + =  

  
58. First, draw a free-body diagram for each mass.  Notice that the same  

tension force is applied to each mass.  Choose UP to be the positive  
direction.  Write Newton’s second law for each of the masses. 

T 2 2 2 T 1 1 1     F m g m a F m g m a− = − =  
Since the masses are joined together by the cord, their accelerations will 
have the same magnitude but opposite directions.  Thus 1 2.a a= −   
Substitute this into the force expressions and solve for the acceleration by 
subtracting the second equation from the first. 

m2 
2.2 kg 

m1 
3.6 kg 

2m g 1m g

TFTF
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( )

T 1 1 2 T 1 1 2

T 2 2 2 1 1 2 2 2 2 1 2 1 2 2 2

2 21 2
2

1 2

    

        

3.6 kg 2.2 kg
9.80 m s 2.366 m s

3.6 kg 2.2 kg

F m g m a F m g m a

F m g m a m g m a m g m a m g m g m a m a

m m
a g

m m

− = − → = −

− = → − − = → − = +

− −
= = =

+ +

 

The lighter block starts with a speed of 0, and moves a distance of 1.8 meters with the acceleration 
found above.  Using Eq. 2-12c, the velocity of the lighter block at the end of this accelerated motion 
can be found. 

( ) ( ) ( ) ( )2 2 2 2
0 0 0 02     2 0 2 2.366 m s 1.8m 2.918m sv v a y y v v a y y− = − → = + − = + =  

Now the lighter block has different conditions of motion.  Once the heavier block hits the ground, 
the tension force disappears, and the lighter block is in free fall.  It has an initial speed of 2.918 m/s 
upward as found above, with an acceleration of –9.80 m/s2 due to gravity.  At its highest point, its 
speed will be 0.  Eq. 2-12c can again be used to find the height to which it rises. 

( ) ( ) ( )
( )

22 2
2 2 0

0 0 0 2

0 2.918m s
2     0.434 m

2 2 9.80 m s
v v

v v a y y y y
a

−−
− = − → − = = =

−
 

Thus the total height above the ground is 1.8 m + 1.8 m + 0.43 m = 4.0m .  

 
59. The force F  is accelerating the total mass, since it is the only force external to the 

system.  If mass Am  does not move relative to C,m  then all the blocks have the 
same horizontal acceleration, and none of the blocks have vertical acceleration.  We 
solve for the acceleration of the system and then find the magnitude of F  from 
Newton’s second law.  Start with free-body diagrams for Am  and B.m  

  B T B

T B T B

:   sin  ;

         cos 0    cos
x

y

m F F m a

F F m g F m g

θ

θ θ

= =

= − = → =
∑
∑

 

 Square these two expressions and add them, to get a relationship between TF  and a. 

( ) ( ) ( )
2 2 2 2 2 2 2 2

T B T B

2 2 2 2 2 2 2 2 2 2
T B T B

sin   ;  cos   

sin cos     

F m a F m g

F m g a F m g a

θ θ

θ θ

= = →

+ = + → = +
 

 Now analyze A.m  
2 2 2

A T A T A N A:        0  ;  x ym F F m a F m a F F m g= = → = = =−∑ ∑  

Equate the two expressions for 2
T ,F  solve for the acceleration and then finally the magnitude of the 

applied force. 

( ) ( ) ( )

( ) ( )
( )

2 2
2 2 2 2 2 2 2 B B

T B A 2 2 2 2
A B A B

A B C B
A B C 2 2

A B

          
m g m g

F m g a m a a a
m m m m

m m m m
F m m m a g

m m

= + = → = → = →
− −

+ +
= + + =

−

 

 
 
 
 
 

Am g

NF
TF

Bm g

TFθ
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60. The velocity can be found by integrating the acceleration function, and the position can be found by 
integrating the position function. 

  2 2 2 2 3

0 0

              
3

v tC dv C C C
F ma Ct a t dv t dt dv t dt v t

m dt m m m
= = → = = → = → = → =∫ ∫   

3 3 3 4

0 0

            
3 3 3 12

x tC dx C C C
v t dx t dt dx t dt x t

m dt m m m
= = → = → = → =∫ ∫  

 
61. We assume that the pulley is small enough that the part of the cable that is touching 

the surface of the pulley is negligible, and so we ignore any force on the cable due to 
the pulley itself.  We also assume that the cable is uniform, so that the mass of a 
portion of the cable is proportional to the length of that portion.  We then treat the 
cable as two masses, one on each side of the pulley.  The masses are given by 

1

y
m M=

l
 and 2 .

y
m M

−
=
l

l
  Free-body diagrams for the masses are shown. 

 (a) We take downward motion of 1m  to be the positive direction for 1,m   
and upward motion of 2m  to be the positive direction for 2.m   Newton’s second 
law for the masses gives the following. 

 
( )
( )

1 2
net 1 1 T 1 net 2 T 2

1 2

 ;      

2 2
1

m m
F m g F m a F F m g a g

m m

y y
M M y y y y

a g g g g
y y y yM M

−
= − = = − → =

+

−
− − − −

= = = = −
− + −+

⎛ ⎞
⎜ ⎟
⎝ ⎠

l

l ll l

l l l l

l l

  

(b) Use the hint supplied with the problem to set up the equation for the velocity.  The cable starts  
with a length 0y  (assuming 1

0 2y > l ) on the right side of the pulley, and finishes with a length 
l  on the right side of the pulley. 

  ( )
f

f

0 0

2
2 201 1

02 20
0

0
0

2 2
1     1   

2
1         1   

2 1

v
v

f
y y

f

y dv dv dy dv y
a g v gdy vdv

dt dy dt dy

y y y
gdy vdv g y v gy v

y
v gy

= − = = = → − = →

− = → − = → − = →

= −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫
ll

l l

l l l

l

 

(c) For 2
0 3y = l , we have ( )

2
30 2 2

0 3 32 1 2 1 .f

y
v gy g g= − = − =⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

l
l l

l l
 

 

62.  The acceleration of a person having a 30 “g” deceleration is ( )
2

29.80 m s
30" " 294 m s

" "
.a g

g
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

   

The average force causing that acceleration is ( ) ( )2 465 kg 294 m s 1.9 10 N .F ma= = = ×   Since  

the person is undergoing a deceleration, the acceleration and force would both be directed opposite 
to the direction of motion.  Use Eq. 2-12c to find the distance traveled during the deceleration.  Take 

2m g

TF

2m

1m

1m g

TF
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the initial velocity to be in the positive direction, so that the acceleration will have a negative value, 
and the final velocity will be 0. 

( )

( ) ( ) ( )
( )

0

22 2
2 2 0

0 0 0 2

1m s
95km h 26.4 m s

3.6 km h

0 26.4 m s
2     1.2 m

2 2 294 m s

v

v v
v v a x x x x

a

= =

−−
− = − → − = = =

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
63. See the free-body diagram for the falling purse.  Assume that down is the positive  

direction, and that the air resistance force frF  is constant.  Write Newton’s second law for 
the vertical direction. 

( )fr fr    F mg F ma F m g a= − = → = −∑  

 Now obtain an expression for the acceleration from Eq. 2-12c with 0 0v = , and substitute 
 back into the friction force. 

( ) ( )
2

2 2
0 0

0

2     
2

v
v v a x x a

x x
− = − → =

−
 

( ) ( ) ( )
( )

22
2

0

27 m s
2.0 kg 9.80 m s 6.3N

2 2 55 mf

v
F m g

x x
= − = − =

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
64. Each rope must support 1/6 of Tom’s weight, and so must have a vertical component of tension 

given by 1
vert 6T mg= .  For the vertical ropes, their entire tension is vertical. 

 ( ) ( )2 21 1
1 6 6 74.0 kg 9.80 m s 120.9 N 1.21 10 NT mg= = = ≈ ×  

For the ropes displaced 30o from the vertical, see the first diagram. 
21

2 vert 2 26

120.9 N
cos 30     1.40 10 N

6cos 30 cos 30
mg

T T mg T= ° = → = = = ×
° °

 

For the ropes displaced 60o from the vertical, see the second diagram.  
21

3 vert 3 36

120.9 N
cos 60     2.42 10 N

6cos 60 cos 60
mg

T T mg T= ° = → = = = ×
° °

 

The corresponding ropes on the other side of the glider will also have the same 
tensions as found here. 

 
65. Consider the free-body diagram for the soap block on the frictionless  

surface.  There is no acceleration in the y direction.  Write Newton’s 
second law for the x direction. 

sin     sinxF mg ma a gθ θ= = → =∑  

Use Eq. 2-12b with 0 0v =  to find the time of travel. 

( ) ( ) ( )
( ) ( )

21
0 0 2

0 0
2

  

2 2 2 3.0 m
2.0s

sin 9.80 m s sin 8.5

x x v t at

x x x x
t

a g θ

− = + →

− −
= = = =

°

 

Since the mass does not enter into the calculation, the  time would be the same  for the heavier bar of 
soap. 

 

mg

frF

30o 
T2 

60o 
T3 

y 

x 

θ θ 
mg

NF
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66. See the free-body diagram for the load.  The vertical component of the tension force must 
be equal to the weight of the load, and the horizontal component of the tension 
accelerates the load.  The angle is exaggerated in the picture. 

( )

T
net T net T
x y

2 2
T H

sin
sin       ;  cos 0  

sin
    tan 9.80 m s tan 5.0 0.86 m s

cos cos

F
F F ma a F F mg

m
mg mg

F a g
m

θθ θ

θ θ
θ θ

= = → = = − = →

= → = = = ° =

  

 
67. (a) Draw a free-body diagram for each block.  Write  

Newton’s second law for each block.  Notice that the 
acceleration of block A in the yA direction will be zero, 
since it has no motion in the yA direction. 

A N A N Acos 0    cosyF F m g F m gθ θ= − = → =∑
 A A T A Asinx xF m g F m aθ= − =∑  

( )B T B B B T B B    y y yF F m g m a F m g a= − = → = +∑  

Since the blocks are connected by the cord, B A .y xa a a= =   Substitute the expression for the 
tension force from the last equation into the x direction equation for block 1, and solve for the 
acceleration. 

( )
( )

( )

A B A A B A B

A B

A B

sin     sin

sin

m g m g a m a m g m g m a m a

m m
a g

m m

θ θ

θ

− + = → − = +

−
=

+

 

 (b) If the acceleration is to be down the plane, it must be positive. That will happen if  
( )A Bsin  down the plane .m mθ >  The acceleration will be up the plane (negative) if 

( )A Bsin  up the plane .m mθ <  If  A Bsin ,m mθ =  then the system will not accelerate.  It will 

move with a constant speed if set in motion by a push. 
 
68. (a) From problem 67, we have an expression for the acceleration. 

( )
( ) ( ) ( )[ ]2 2A B

A B

2

1.00 kg sin 33.0 1.00 kgsin
9.80 m s 2.23m s

2.00 kg

2.2 m s  

m m
a g

m m
θ ° −−

= = = −
+

≈ −

 

  The negative sign means that Am  will be accelerating UP the plane.  
 (b) If the system is at rest, then the acceleration will be 0. 

   
( )

( ) ( )A B
B A

A B

sin
0    sin 1.00 kg sin 33.0 0.5446 kg 0.545kg

m m
a g m m

m m
θ

θ
−

= = → = = ° = ≈
+

 

 (c) Again from problem 68, we have ( )T B .F m g a= +  

   Case (a): ( ) ( ) ( )2 2
T B 1.00 kg 9.80 m s 2.23m s 7.57 N 7.6 NF m g a= + = − = ≈  

   Case (b): ( ) ( ) ( )2
T B 0.5446 kg 9.80 m s 5.337 N 5.34 N0F m g a= + = = ≈+  

 

θ 

mg

TF

Bm g

TF

Am g

NF
TF

θ
θ

By

Ax

Ay
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69. (a) A free-body diagram is shown for each block.   
We define the positive x-direction for Am  to be 
up its incline, and the positive x-direction for Bm  
to be down its incline.  With that definition the 
masses will both have the same acceleration.  
Write Newton’s second law for each body in the 
x direction, and combine those equations to find 
the acceleration. 

   A T A A A:   sinxm F F m g m aθ= − =∑  

   
( ) ( )

B B B T B

B B A A
T A A B B T A B

A B

:   sin      add these two equations

sin sin
sin sin     

xm F m g F m a

m m
F m g m g F m a m a a g

m m

θ

θ θθ θ

= − =

−
− + − = + → =

+

∑
 

(b) For the system to be at rest, the acceleration must be 0. 

   
( )

B B A A
B B A A

A B

A
B A

B

sin sin
0    sin sin   

sin sin 32
5.0kg 6.8kg

sin sin 23

m m
a g m m

m m

m m

θ θ θ θ

θ
θ

−
= = → − →

+

°
= = =

°

 

  The tension can be found from one of the Newton’s second law expression from part (a). 
   ( ) ( )2

A T A A T A A:   sin 0    sin 5.0kg 9.80m s sin 32 26 Nm F m g F m gθ θ− = → = = ° =  

(c) As in part (b), the acceleration will be 0 for constant velocity in either direction. 

   

B B A A
B B A A

A B

A B

B A

sin sin
0    sin sin   

sin sin 23
0.74

sin sin 32

m m
a g m m

m m

m
m

θ θ θ θ

θ
θ

−
= = → − →

+

°
= =

°
=

 

 
70. A free-body diagram for the person in the elevator is shown.  The scale reading is the 

magnitude of the normal force.  Choosing up to be the positive direction, Newton’s 
second law for the person says that ( )N N    .F F mg ma F m g a= − = → = +∑   The 

kg reading of the scale is the apparent weight, NF , divided by g, which gives  

( )N
N-kg .m g aF

F
g g

+
= =  

 (a) ( ) ( )2
N

20    75.0 kg 9.80 m s 7.35 10 Na F mg= → = = = ×  

N-kg 75.0 kg
mg

F m
g

= = =  

 (b) N N-kg
20    7.35 10 N 75.0 kg , a F F= → = × =  

 (c) N N-kg
20    7.35 10 N 75.0 kg , a F F= → = × =  

 (d) ( ) ( ) ( )2 2 2
N 75.0 kg 9.80 m s 3.0 m s 9.60 10 NF m g a a= + = + = ×  

mg
NF

N-AF TF

Am g

Aθ Bθ

Bm g

xy

TF

Aθ
Bθ

N-BF

x

y
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  N
N-kg 2

960 N
98.0 kg

9.80 m s
F

F
g

= = =  

(e) ( ) ( ) ( )2 2 2
N 75.0 kg 9.80 m s 3.0 m s 5.1 10 NF m g a a= + = = ×−  

  N
N-kg 2

510 N
52 kg

9.80 m s
F

F
g

= = =  

 
71. The given data can be used to calculate the force with which the road pushes  

against the car, which in turn is equal in magnitude to the force the car 
pushes against the road.  The acceleration of the car on level ground is found 
from Eq. 2-12a.   

20
0

21m s 0
    1.68m s

12.5 s
v v

v v at a
t

− −
− = → = = =  

The force pushing the car in order to have this acceleration is found from 
Newton’s second law. 

( ) ( )2
P 920 kg 1.68m s 1546 NF ma= = =  

We assume that this is the force pushing the car on the incline as well.  Consider a free-body diagram 
for the car climbing the hill.  We assume that the car will have a constant speed on the maximum 
incline.  Write Newton’s second law for the x direction, with a net force of zero since the car is not 
accelerating. 

P
P sin 0    sin

x

F
F F mg

mg
θ θ= − = → =∑  

( ) ( )
1 1P

2

1546 N
sin sin 9.9

920 kg 9.80 m s
F
mg

θ − −= = = °  

 
72. Consider a free-body diagram for the cyclist coasting downhill at a constant 

speed.  Since there is no acceleration, the net force in each direction must be 
zero.  Write Newton’s second law for the x direction (down the plane). 

fr frsin 0    sinxF mg F F mgθ θ= − = → =∑  
This establishes the size of the air friction force at 6.0 km/h, and so can be 
used in the next part. 

 

Now consider a free-body diagram for the cyclist climbing the hill.  PF  is the 
force pushing the cyclist uphill.  Again, write Newton’s second law for the x 
direction, with a net force of 0. 

fr Psin 0  xF F mg Fθ= + − = →∑  

( ) ( ) ( )
P fr

2 2

sin 2 sin

    2 65 kg 9.80 m s sin 6.5 1.4 10 N

F F mg mgθ θ= + =

= ° = ×
 

 
73. (a) The value of the constant c can be found from the free-body diagram,  

knowing that the net force is 0 when coasting downhill at the specified 
speed. 

   air airsin 0    sin   xF mg F F mg cvθ θ= − = → = = →∑  
       

θ θ 

y x 

mg

NF

PF

y 

x

θ θ 
mg

NF

frF

PF

y 

x 
θ 

 

 
mg

NF
airF

θ 

θ  
mg

NF
frF

θ 
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( ) ( )
( )

280.0kg 9.80m s sin5.0sin N N
40.998 41

m s m s1m s
6.0km h

3.6km h

mg
c

v
θ °

= = = ≈
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) Now consider the cyclist with an added pushing force PF directed along  
the plane.  The free-body diagram changes to reflect the additional force 
the cyclist must exert.  The same axes definitions are used as in part (a).

 ( )

( ) ( )

P air

P air

2

sin 0  

sin sin

N 1m s
    40.998 18.0 km h

m s 3.6 km h

           80.0 kg 9.80 m s sin 5.0 136.7 N 140 N

xF F mg F

F F mg cv mg

θ

θ θ

= + − = →

= − = −

=

− ° = ≈

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

∑

 

 
74. Consider the free-body diagram for the watch.  Write Newton’s second law for 

both the x and y directions.  Note that the net force in the y direction is 0 because 
there is no acceleration in the y direction.  

( )

T T

T

2 2

cos 0    
cos

sin     sin
cos

         tan 9.80 m s tan 25 4.57 m s

y

x

mg
F F mg F

mg
F F ma ma

a g

θ
θ

θ θ
θ

θ

= − = → =

= = → =

= = =°

∑

∑  

Use Eq. 2-12a with 0 0v =  to find the final velocity (takeoff speed). 

( ) ( )2
0 0    0 4.57 m s 16s 73m sv v at v v at− = → = + = + =  

 
75. (a) To find the minimum force, assume that the piano is moving with a constant  

velocity.  Since the piano is not accelerating, T4 .F Mg=   For the lower pulley, since 
the tension in a rope is the same throughout, and since the pulley is not accelerating, 
it is seen that T1 T 2 T1 T1 T22     2.F F F Mg F F Mg+ = = → = =  

It also can be seen that since T2F F= , that 2 .F Mg=  

(b) Draw a free-body diagram for the upper pulley.  From that  

diagram, we see that T3 T1 T 2

3
2
Mg

F F F F= + + = . 

  To summarize: 
   T1 T2 T3 T42      3 2      F F Mg F Mg F Mg= = = =  

 
 
 
 
 
 
 
 

 x 

y 
 θ 

mg

TF

Lower 
Pulley 

Upper 
Pulley

F

T1F

T1F
T2F

T2F

T3F

T4F

Mg

T4F

θ  
mg

NF
airF

θ 
PF
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76. Consider a free-body diagram for a grocery cart being pushed up an  
incline.  Assuming that the cart is not accelerating, we write Newton’s 
second law for the x direction. 

  

( ) ( )
1 1

2

sin 0    sin

18 N
sin sin 4.2

25kg 9.80 m s

P
x P

P

F
F F mg

mg
F
mg

θ θ

θ − −

= − = → =

= = = °

∑
 

 
77. The acceleration of the pilot will be the same as that of the plane, since the pilot 

is at rest with respect to the plane.  Consider first a free-body diagram of the 
pilot, showing only the net force.  By Newton’s second law, the net force MUST 
point in the direction of the acceleration, and its magnitude is ma .  That net force 
is the sum of ALL forces on the pilot.  If we assume that the force of gravity and 
the force of the cockpit seat on the pilot are the only forces on the pilot, then in 
terms of vectors, net seat .m m= + =F g F a   Solve this equation for the force of the 

seat to find seat net .m m m= − = −F F g a g   A vector diagram of that equation is 
shown.  Solve for the force of the seat on the pilot using components. 

( ) ( )

( ) ( ) ( ) ( )

2
 seat  net

 seat  net

2 2

cos18 75kg 3.8m s cos18 271.1N

sin18

        75kg 9.80 m s 75kg 3.8m s sin18 823.2 N

x x

y y

F F ma

F mg F mg ma

= = ° = ° =

= + = + °

= + ° =

 

 The magnitude of the cockpit seat force is as follows. 

( ) ( )2 22 2
 seat  seat 271.1N 823.2 N 866.7 N 870 Nx yF F F= + = + = ≈  

 The angle of the cockpit seat force is as follows. 

   seat1 1

 seat

823.2 N
tan tan 72

271.1N
y

x

F
F

θ − −= = = °  above the horizontal 

 
78.  (a) The helicopter and frame will both have the same acceleration, and so can be 

treated as one object if no information about internal forces (like the cable 
tension) is needed.  A free-body diagram for the helicopter-frame 
combination is shown.  Write Newton’s second law for the combination, 
calling UP the positive direction. 

( ) ( )
( ) ( ) ( )( )

lift H F H F

2 2
lift H F

4

  

7650 kg 1250 kg 9.80 m s 0.80 m s

      9.43 10 N

F F m m g m m a

F m m g a

= − + = + →

= + + = + +

= ×

∑

  

(b) Now draw a free-body diagram for the frame alone, in order to find the  
tension in the cable.  Again use Newton’s second law. 

( ) ( ) ( )
T F F

2 2 4
T F

  

1250 kg 9.80 m s 0.80 m s 1.33 10 N

F F m g m a

F m g a

= − = →

= + = + = ×

∑
  

 

 (c) The tension in the cable is the same at both ends, and so the cable exerts a  

force of 41.33 10 N×  downward on the helicopter. 

y 
x

θ θ 
mg

NF

PF

18o
netF

θ 
mg

netF

seatF

( )H Fm m+ g

liftF

Fm g

TF
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79. (a) We assume that the maximum horizontal force occurs when the train is moving very slowly,  
and so the air resistance is negligible.  Thus the maximum acceleration is given by the 
following. 

5
2 2max

max 5

4 10 N
0.625m s 0.6m s

6.4 10 kg
F

a
m

×
= = = ≈

×
 

 (b) At top speed, we assume that the train is moving at constant velocity.  Therefore the net force  
on the train is 0, and so the air resistance and friction forces together must be of the same 
magnitude as the horizontal pushing force, which is 51.5 10 N× . 

 
80. See the free-body diagram for the fish being pulled upward vertically.  From Newton’s 

second law, calling the upward direction positive, we have this relationship. 
( )T T    yF F mg ma F m g a= − = → = +∑  

 (a) If the fish has a constant speed, then its acceleration is zero, and so T .F mg=   Thus  

the heaviest fish that could be pulled from the water in this case is ( )45 N 10 lb .  

 (b) If the fish has an acceleration of 2.0 m/s2, and TF  is at its maximum of 45 N, then  
solve the equation for the mass of the fish.   

( )( ) ( )

T
2 2

2

45 N
3.8 kg  

9.8 m s 2.0 m s

3.8 kg 9.8 m s 37 N 8.4 lb

F
m

g a

mg

= = = →
+ +

= = ≈
 

 (c) It is not possible to land a 15-lb fish using 10-lb line, if you have to lift the fish vertically.  If  
the fish were reeled in while still in the water, and then a net used to remove the fish from the 
water, it might still be caught with the 10-lb line. 

 
81. Choose downward to be positive.  The elevator’s acceleration is calculated by Eq. 2-12c. 

( ) ( )
( )
( )

22 2
2 2 20

0 0
0

0 3.5m s
2     2.356 m s

2 2 2.6 m
v v

v v a y y a
y y

−−
− = − → = = = −

−
 

See the free-body diagram of the elevator/occupant combination.  Write Newton’s second 
law for the elevator. 

  
( ) ( ) ( )

T

2 2 4
T 1450 kg 9.80 m s 2.356 m s 1.76 10 N

yF mg F ma

F m g a

= − =

= − = − − = ×

∑
 

 
82. (a) First calculate Karen’s speed from falling.  Let the downward direction be positive, and use Eq.  

2-12c with 0 0v = . 

( ) ( ) ( ) ( )2 2 2
0 0 02     0 2 2 9.8m s 2.0 m 6.26m sv v a y y v a y y− = − → = + − = =  

Now calculate the average acceleration as the rope stops Karen, again using Eq. 2-12c, with 
down as positive. 

( ) ( )
( )
( )

22 2
2 2 20

0 0
0

0 6.26 m s
2     19.6 m s

2 2 1.0 m
v v

v v a y y a
y y

−−
− = − → = = = −

−
 

The negative sign indicates that the acceleration is upward.  Since this is her 
acceleration, the net force on Karen is given by Newton’s second law, netF ma= .  
That net force will also be upward.  Now consider the free-body diagram of Karen as 

mg

TF

mg

TF

mg

ropeF



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

114 

she decelerates.  Call DOWN the positive direction.  Newton’s second law says that 
net rope rope    .F ma mg F F mg ma= = − → = −   The ratio of this force to Karen’s weight is 

2
rope

2

19.6 m s
1.0 1.0 3.0.

9.8 m s
F mg ma a
mg g g

− −
= = − = − =   Thus the rope pulls upward on Karen 

with an average force of 3.0 times her weight .  
(b) A completely analogous calculation for Bill gives the same speed after the 2.0 m fall, but since 

he stops over a distance of 0.30 m, his acceleration is –65 m/s2, and the rope pulls upward on 
Bill with an average force of  7.7 times his weight .   Thus, Bill is more likely to get hurt.  

 
83. Since the climbers are on ice, the frictional force for the 

lower two climbers is negligible.  Consider the free-
body diagram as shown.  Note that all the masses are 
the same.  Write Newton’s second law in the x direction 
for the lowest climber, assuming he is at rest. 

( ) ( )
T2

2
T2

sin 0

sin 75kg 9.80 m s sin 31.0

     380 N

xF F mg

F mg

θ

θ

= − =

= = °

=

∑
 

Write Newton’s second law in the x direction for the 
middle climber, assuming he is at rest. 

  T1 T2 T1 T2 T2sin 0    sin 2 sin 760 NxF F F mg F F mg F gθ θ θ= − − = → = + = =∑  

 
84. Use Newton’s second law. 

  
( ) ( )

( )

10 3
6

1.0 10 kg 2.0 10 m s
    8.0 10 s 93d

2.5 N
v m v

F ma m t
t F

−× ×Δ Δ
= = → Δ = = = × =

Δ
 

 
85. Use the free-body diagram to find the net force in the x direction, and then 

find the acceleration.  Then Eq. 2-12c can be used to find the final speed at 
the bottom of the ramp. 

  
( ) ( )
P

2

P

2

sin   

450 kg 9.80 m s sin 22 1420 Nsin
450 kg

0.516 m s  

xF mg F ma

mg F
a

m

θ

θ

= − = →

° −−
= =

=

∑

 

( ) ( ) ( ) ( )2 2 2
0 0 02     2 2 0.516 m s 11.5m 3.4 m sv v a x x v a x x= + − → = − = =  

 
 
 
 
 
 
 
 
 

y 
x 

θ 
θ 

θ 

θ mg

mg

mg

N1F

N2F

N3F
T2F

T1F
T1F

T2F

frF

y 

x 

mg

NF

PF

θ θ
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86. (a) We use the free-body diagram to find the force needed to pull the masses at a 
constant velocity.  We choose the “up the plane” direction as the positive  
direction for both masses.  Then they both have the same acceleration  
even if it is non-zero. 

   A T A A A

b T B B B

:   sin 0

:   sin 0
x

x

m F F m g m a

m F F F m g m a

θ

θ

= − = =

= − − = =
∑
∑

 

Add the equations to eliminate the tension force and  
solve for F.      

 
( ) ( )

( )
T A A T B B

A A B B

sin sin 0  

sin sin

F m g F F m g

F g m m

θ θ

θ θ

− + − − = →

= +
 

( ) ( ) ( )[ ]2 2  9.80 m s 9.5kg sin59 11.5kg sin32 1.40 10 N= ° + ° = ×  

 (b) Since A B,θ θ>  if there were no connecting string, Am  would have a larger acceleration than  

B.m   If A B,θ θ<  there would be no tension.  But, since there is a connecting string, there will be 

tension in the string.  Use the free-body diagram from above but ignore the applied force .F  
   A T A A A b T B B B:   sin    ;   :   sinx xm F F m g m a m F F m g m aθ θ= − = = − − =∑ ∑  
  Again add the two equations to eliminate the tension force. 

   

( ) ( )

( ) ( ) ( )
T A A T B B A B

2A A B B

A B

2 2

sin sin   

9.5kg sin59 11.5kg sin 32sin sin
9.80m s

21.0kg

  6.644 m s 6.64 m s , down the planes

F m g F m g m a m a

m m
a g

m m

θ θ

θ θ

− + − − = + →

° + °+
= − = −

+

= − ≈

 

 (c) Use one of the Newton’s second law expressions from part (b) to find the string tension.  It must  
be positive if there is a tension. 

   
( ) ( ) ( ) ( )

T A A A

2 2
T A A

sin   

sin 9.5kg 9.80m s sin59 6.644 m s 17 N

F m g m a

F m g a

θ

θ

− = →

= + = ° − =⎡ ⎤⎣ ⎦
 

 
87. (a) If the 2-block system is taken as a whole system, then the net force on the system is just the  

force ,F  accelerating the total mass.  Use Newton’s second law to find the force from the mass 
and acceleration.  Take the direction of motion caused by the force (left for the bottom block, 
right for the top block) as the positive direction.  Then both blocks have the same acceleration. 

   ( ) ( ) ( )2
top bottom 9.0 kg 2.5m s 22.5N 23NxF F m m a= = + = = ≈∑  

(b) The tension in the connecting cord is the only force acting on the top block, and so must be 
causing its acceleration.  Again use Newton’s second law. 

   ( ) ( )2
T top 1.5kg 2.5m s 3.75N 3.8 NxF F m a= = = = ≈∑  

  This could be checked by using the bottom block. 
   ( ) ( )2

T bottom T bottom   22.5N 7.5kg 2.5m s 3.75NxF F F m a F F m a= − = → = − = − =∑  

 
88. (a) For this scenario, find your location at a time of 4.0 sec, using Eq. 2-12b.  The acceleration is  

found from Newton’s second law. 

 forward 1200 N
  

750kg
F

a
m

= →=  

N-AF TF

Am g

Aθ

xy

Aθ

Bθ

TF

Bm g

Bθ

N-BF
x

y

F
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 ( ) ( ) ( )221 1
0 0 2 2

1200 N
15m s 4.0s 4.0s 72.8 m 65m

750kg
x x v t at− = + = + = >  

 Yes , you will make it through the intersection before the light turns red. 
 

(b) For this scenario, find your location when the car has been fully stopped, using Eq. 2-12c.  The  
acceleration is found from Newton’s second law. 

  

( )

( )

braking 2 2
0 0

22 2
0

0

1800 N
    2   

750kg

0 15m s
46.9 m 45m

2 1800 N
2

750kg

F
a v v a x x

m

v v
x x

a

= = − → = + − →

−−
− = = = >

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 No , you will not stop before entering the intersection. 
 
89. We take the mass of the crate as m until we insert values. A free-body  

diagram is shown. 
 (a) (i) Use Newton’s second law to find the acceleration. 

sin     sinxF mg ma a gθ θ= = → =∑  
  (ii) Use Eq. 2-12b to find the time for a displacement of l. 

    
( )2 21 1

0 0 2 2    sin   

2
sin

x x v t at g t

t
g

θ

θ

− = + → = →

=

l

l
 

  (iii) Use Eq. 2-12a to find the final velocity. 

    0

2
sin 2 sin

sin
v v at g g

g
θ θ

θ
= + = =

⎡ ⎤
⎢ ⎥
⎣ ⎦

l
l  

  (iv) Use Newton’s second law to find the normal force. 
    N Ncos 0    cosyF F mg F mgθ θ= − = → =∑  

(b) Using the values of 1500 kgm = , 29.80m sg = , and  100 m=l , the requested quantities  
become as follows.  

 
( ) ( )

( ) ( ) ( ) ( )

2

N

2 100
9.80sin m s  ; s ;

9.80sin

2 100 9.80 sin m s  ; 1500 9.80 cos

a t

v F

θ
θ

θ θ

= =

= =

 

  Graphs of these quantities as a function of θ are given here. 
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We consider the limiting cases: at 
an angle of 0° , the crate does not 
move, and so the acceleration and 
final velocity would be 0.  The 
time to travel 100 m would be 
infinite, and the normal force 
would be equal to the weight of  

( ) ( )2

4

   1500 kg 9.80 m s

1.47 10 N.   

W mg=

=

= ×

 

The graphs are all consistent with 
those results. 
 

 
For an angle of 90° , we would 
expect free-fall motion.  The 
acceleration should be 29.80 m s .   
The normal force would be 0.  The 
free-fall time for an object 
dropped from rest a distance of 
100 m and the final velocity after 
that distance are calculated below. 

( )

21
0 0 2

21
2

2

  

  

2 100 m2
4.5s

9.80 m s

x x v t at

gt

t
g

− = + →

= →

= = =

l

l

  
( )

( )

( ) ( )

2 2
0 0

0

2

2   

2

  2 9.80 m s 100 m

44 m s  

v v a x x

v g x x

= + − →

= −

=

=

 

 
Yes, the graphs agree with these results for the limiting cases. 
 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH04.XLS,” on tab “Problem 4.89b.” 
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CHAPTER 5:  Using Newton’s Laws: Friction, Circular Motion, Drag Forces 
 
Responses to Questions 
 
1.  Static friction between the crate and the truck bed causes the crate to accelerate. 
 
2.  The kinetic friction force is parallel to the ramp and the block’s weight has a component parallel to 

the ramp. The parallel component of the block’s weight is directed down the ramp whether the block 
is sliding up or down. However, the frictional force is always in the direction opposite the block’s 
motion, so it will be down the ramp while the block is sliding up, but up the ramp while the block is 
sliding down. When the block is sliding up the ramp, the two forces acting on it parallel to the ramp 
are both acting in the same direction, and the magnitude of the net force is the sum of their 
magnitudes. But when the block is sliding down the ramp, the friction and the parallel component of 
the weight act in opposite directions, resulting in a smaller magnitude net force. A smaller net force 
yields a smaller (magnitude) acceleration. 

 
3.  Because the train has a larger mass. If the stopping forces on the truck and train are equal, the 

(negative) acceleration of the train will be much smaller than that of the truck, since acceleration is 
inversely proportional to mass ( ).m=a F  The train will take longer to stop, as it has a smaller 
acceleration, and will travel a greater distance before stopping. The stopping force on the train may 
actually be greater than the stopping force on the truck, but not enough greater to compensate for the 
much greater mass of the train. 

 
4.  Yes. Refer to Table 5-1. The coefficient of static friction between rubber and many solid surfaces is 

typically between 1 and 4. The coefficient of static friction can also be greater than one if either of 
the surfaces is sticky. 

 
5. When a skier is in motion, a small coefficient of kinetic friction lets the skis move easily on the snow 

with minimum effort.  A large coefficient of static friction lets the skier rest on a slope without 
slipping and keeps the skier from sliding backward when going uphill. 

 
6.  When the wheels of a car are rolling without slipping, the force between each tire and the road is 

static friction, whereas when the wheels lock, the force is kinetic friction. The coefficient of static 
friction is greater than the coefficient of kinetic friction for a set of surfaces, so the force of friction 
between the tires and the road will be greater if the tires are rolling. Once the wheels lock, you also 
have no steering control over the car. It is better to apply the brakes slowly and use the friction 
between the brake mechanism and the wheel to stop the car while maintaining control. If the road is 
slick, the coefficients of friction between the road and the tires are reduced, and it is even more 
important to apply the brakes slowly to stay in control. 

  
7.  (b). If the car comes to a stop without skidding, the force that stops the car is the force of kinetic 

friction between the brake mechanism and the wheels. This force is designed to be large. If you slam 
on the brakes and skid to a stop, the force that stops the car will be the force of kinetic friction 
between the tires and the road. Even with a dry road, this force is likely to be less that the force of 
kinetic friction between the brake mechanism and the wheels. The car will come to a stop more 
quickly if the tires continue to roll, rather than skid. In addition, once the wheels lock, you have no 
steering control over the car.  
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8.  The forces in (a), (b), and (d) are all equal to 400 N in magnitude. 
(a) You exert a force of 400 N on the car; by Newton’s third law the force exerted by the car on you 

also has a magnitude of 400 N.  
(b) Since the car doesn’t move, the friction force exerted by the road on the car must equal 400 N, 

too. Then, by Newton’s third law, the friction force exerted by the car on the road is also 400 N. 
(c) The normal force exerted by the road on you will be equal in magnitude to your weight 

(assuming you are standing vertically and have no vertical acceleration). This force is not 
required to be 400 N. 

(d) The car is exerting a 400 N horizontal force on you, and since you are not accelerating, the 
ground must be exerting an equal and opposite horizontal force. Therefore, the magnitude of the 
friction force exerted by the road on you is 400 N. 

 
9.  On an icy surface, you need to put your foot straight down onto the sidewalk, with no component of 

velocity parallel to the surface. If you can do that, the interaction between you and the ice is through 
the static frictional force. If your foot has a component of velocity parallel to the surface of the ice, 
any resistance to motion will be caused by the kinetic frictional force, which is much smaller. You 
will be much more likely to slip. 

 
10.  Yes, the centripetal acceleration will be greater when the speed is greater since centripetal 

acceleration is proportional to the square of the speed. An object in uniform circular motion has an 
acceleration, since the direction of the velocity vector is changing even though the speed is constant. 

  
11.  No. The centripetal acceleration depends on 1/r, so a sharp curve, with a smaller radius, will generate 

a larger centripetal acceleration than a gentle curve, with a larger radius. (Note that the centripetal 
force in this case is provided by the static frictional force between the car and the road.) 

 
12.  The three main forces on the child are the downward force of gravity (weight), the normal force up 

on the child from the horse, and the static frictional force on the child from the surface of the horse. 
The frictional force provides the centripetal acceleration. If there are other forces, such as contact 
forces between the child’s hands or legs and the horse, which have a radial component, they will 
contribute to the centripetal acceleration. 

 
13.  As the child and sled come over the crest of the hill, they are moving in an arc. There must be a 

centripetal force, pointing inward toward the center of the arc. The combination of gravity (down) 
and the normal force (up) provides this centripetal force, which must be greater than or equal to zero. 
(At the top of the arc, Fy = mg – N = mv²/r ≥ 0.) The normal force must therefore be less than the 
child’s weight. 

 
14.  No. The barrel of the dryer provides a centripetal force on the clothes to keep them moving in a 

circular path. A water droplet on the solid surface of the drum will also experience this centripetal 
force and move in a circle.  However, as soon as the water droplet is at the location of a hole in the 
drum there will be no centripetal force on it and it will therefore continue moving in a path in the 
direction of its tangential velocity, which will take it out of the drum. There is no centrifugal force 
throwing the water outward; there is rather a lack of centripetal force to keep the water moving in a 
circular path.  

 
15.  When describing a centrifuge experiment, the force acting on the object in the centrifuge should be 

specified. Stating the rpm will let you calculate the speed of the object in the centrifuge. However, to 
find the force on an object, you will also need the distance from the axis of rotation. 

 
16.  She should let go of the string at the moment that the tangential velocity vector is directed exactly at 

the target. 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

120 

17.  The acceleration of the ball is inward, directly toward the pole, and is provided by the horizontal 
component of the tension in the string. 

 
18.  For objects (including astronauts) on the inner surface of the cylinder, the normal force provides a 

centripetal force which points inward toward the center of the cylinder. This normal force simulates 
the normal force we feel when on the surface of Earth.  
(a) Falling objects are not in contact with the floor, so when released they will continue to move 

with constant velocity until the floor reaches them. From the frame of reference of the astronaut 
inside the cylinder, it will appear that the object falls in a curve, rather than straight down. 

(b) The magnitude of the normal force on the astronaut’s feet will depend on the radius and speed 
of the cylinder.  If these are such that v²/r = g (so that mv²/r = mg for all objects), then the 
normal force will feel just like it does on the surface of Earth. 

(c) Because of the large size of Earth compared to humans, we cannot tell any difference between 
the gravitational force at our heads and at our feet. In a rotating space colony, the difference in 
the simulated gravity at different distances from the axis of rotation would be significant. 

 
19.  At the top of bucket’s arc, the gravitational force and normal forces from the bucket provide the 

centripetal force needed to keep the water moving in a circle. (If we ignore the normal forces, mg = 
mv²/r, so the bucket must be moving with speed v gr≥  or the water will spill out of the bucket.)  
At the top of the arc, the water has a horizontal velocity. As the bucket passes the top of the arc, the 
velocity of the water develops a vertical component. But the bucket is traveling with the water, with 
the same velocity, and contains the water as it falls through the rest of its path. 

 
20.  (a) The normal force on the car is largest at point C. In this case, the centripetal force keeping the  

car in a circular path of radius R is directed upward, so the normal force must be greater than the 
weight to provide this net upward force. 

(b) The normal force is smallest at point A, the crest of the hill. At this point the centripetal force  
must be downward (towards the center of the circle) so the normal force must be less than the 
weight. (Notice that the normal force is equal to the weight at point B.) 

(c) The driver will feel heaviest where the normal force is greatest, or at point C. 
(d) The driver will feel lightest at point A, where the normal force is the least. 
(e) At point A, the centripetal force is weight minus normal force, or mg – N = mv2/r.  The point at  

which the car just loses contact with the road corresponds to a normal force of zero. Setting  
N = 0 gives mg = mv2/r  or .v gr=  

 
21. Leaning in when rounding a curve on a bicycle puts the bicycle tire at an angle with respect to the 

ground.  This increases the component of the (static) frictional force on the tire due to the road. This 
force component points inward toward the center of the curve, thereby increasing the centripetal 
force on the bicycle and making it easier to turn. 

 
22.  When an airplane is in level flight, the downward force of gravity is counteracted by the upward lift 

force, analogous to the upward normal force on a car driving on a level road. The lift on an airplane 
is perpendicular to the plane of the airplane’s wings, so when the airplane banks, the lift vector has 
both vertical and horizontal components (similar to the vertical and horizontal components of the 
normal force on a car on a banked turn). The vertical component of the lift balances the weight and 
the horizontal component of the lift provides the centripetal force. If L = the total lift and φ = the 
banking angle, measured from the vertical, then cosL mgϕ =  and 2sinL mv rϕ =  so 

( )1 2tan .v grϕ −=  
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23. If we solve for b, we have b = –F/v.  The units for b are N·s/m = kg·m·s/(m·s²) = kg/s. 
 
24.  The force proportional to v² will dominate at high speed. 
 
 
Solutions to Problems 
 
1. A free-body diagram for the crate is shown.  The crate does not accelerate 

vertically, and so N .F mg=   The crate does not accelerate horizontally, and 
so P fr .F F=  

( )( )( )2
P fr N 0.30 22 kg 9.80 m s 65 Nk kF F F mgμ μ= = = = =  

If the coefficient of kinetic friction is zero, then the horizontal force required 
is 0 N ,  since there is no friction to counteract.  Of course, it would take a force to START the crate 
moving, but once it was moving, no further horizontal force would be necessary to maintain the 
motion. 

 
2. A free-body diagram for the box is shown.  Since the box does not accelerate 

vertically, N .F mg=  
(a) To start the box moving, the pulling force must just overcome the  

force of static friction, and that means the force of static friction will 
reach its maximum value of  fr N .sF Fμ=   Thus we have for the starting 
motion,  

( ) ( )

P fr

P
P fr N 2

0  

35.0 N
    0.60

6.0 kg 9.80 m s

x

s s s

F F F

F
F F F mg

mg
μ μ μ

= − = →

= = = → = = =

∑
 

 (b) The same force diagram applies, but now the friction is kinetic friction, and the pulling force is  
NOT equal to the frictional force, since the box is accelerating to the right. 

( )( )
( ) ( )

P fr P N P

2

P
2

          

35.0 N 6.0 kg 0.60 m s
0.53

6.0 kg 9.80 m s

k k

k

F F F ma F F ma F mg ma

F ma
mg

μ μ

μ

= − = → − = → − = →

−−
= = =

∑
 

 
3. A free-body diagram for you as you stand on the train is shown.  You do not  

accelerate vertically, and so N .F mg=   The maximum static frictional force is ,s NFμ  
and that must be greater than or equal to the force needed to accelerate you in order 
for you not to slip. 

fr N            0.20 0.20s s sF ma F ma mg ma a g g gμ μ μ≥ → ≥ → ≥ → ≥ = =  
 The static coefficient of friction must be at least 0.20 for you to not slide. 
 
4. See the included free-body diagram.  To find the maximum angle, assume 

that the car is just ready to slide, so that the force of static friction is a 
maximum.  Write Newton’s second law for both directions.  Note that for 
both directions, the net force must be zero since the car is not accelerating. 

N Ncos 0    cos
y

F F mg F mgθ θ= − = → =∑  

mg

NF
frF PF

mg

NF
frF PF

mg
NF

frF

θ θ 

y x 

mg

NF

frF
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fr fr N

1

sin 0    sin cos

sin
tan 0.90    tan 0.90 42

cos

s sx

s

F mg F mg F F mg

mg
mg

θ θ μ μ θ

θμ θ θ
θ

−

= − = → = = =

= = = → = = °°

∑
 

 
5. A free-body diagram for the accelerating car is shown.  The car does not  

accelerate vertically, and so N .F mg=   The static frictional force is the 
accelerating force, and so fr .F ma=   If we assume the maximum acceleration, 
then we need the maximum force, and so the static frictional force would be its 
maximum value of N.sFμ   Thus we have 

( )
fr N

2 2

          

0.90 9.80 m s 8.8 m s

s s

s

F ma F ma mg ma

a g

μ μ

μ

= → = → = →

= = =
  

 
6. (a) Here is a free-body diagram for the box at rest on the plane.  The   

force of friction is a STATIC frictional force, since the box is at rest. 
 (b) If the box were sliding down the plane, the only change is that 

the force of friction would be a KINETIC frictional force. 
(c) If the box were sliding up the plane, the force of friction would  

be a KINETIC frictional force, and it would point down the  
plane, in the opposite direction to that shown in the diagram. 

 Notice that the angle is not used in this solution. 
 
7. Start with a free-body diagram.  Write Newton’s second law for each 

direction. 

fr

N

sin

cos 0
x x

y y

F mg F ma

F F mg ma

θ

θ

= − =

= − = =
∑
∑

 

 Notice that the sum in the y direction is 0, since there is no motion 
(and hence no acceleration) in the y direction.  Solve for the force of 
friction. 

( ) ( )( )
fr

2 2 2
fr

sin   

sin 25.0 kg 9.80 m s sin 27 0.30 m s 103.7 N 1.0 10 N

x

x

mg F ma

F mg ma

θ

θ

− = →

= − = ° − = ≈ ×⎡ ⎤⎣ ⎦
 

Now solve for the coefficient of kinetic friction.  Note that the expression for the normal force comes  
from the y direction force equation above.  

( )( )( )
fr

fr N 2

103.7 N
cos     0.48

cos 25.0 kg 9.80 m s cos 27k k k

F
F F mg

mg
μ μ θ μ

θ
= = → = = =

°
  

 
8. The direction of travel for the car is to the right, and that is also the positive  

horizontal direction.  Using the free-body diagram, write Newton’s second law in 
the x direction for the car on the level road.  We assume that the car is just on the 
verge of skidding, so that the magnitude of the friction force is fr N .sF Fμ=  

2

fr fr s 2

3.80 m s
            0.3878

9.80 m sx s

a
F F ma F ma mg

g
μ μ= − = = − = − → = = =∑

 

 
 

y

x 
θ θ mg

NFfrF

y

x 
θ θ 

mg

NFfrF

mg

NF

frF

mg

NF

frF
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θ 
θ 

y
x 

mg

NF

frF

Now put the car on an inclined plane.  Newton’s second law in the x-direction 
for the car on the plane is used to find the acceleration.  We again assume  
the car is on the verge of slipping, so the static frictional force is at its  
maximum. 

( )

( )( )

fr

sfr
s

2 2

sin   

cos sinsin
cos sin

  9.80 m s 0.3878cos9.3 sin 9.3 5.3m s

xF F mg ma

mg mgF mg
a g

m m

θ

μ θ θθ
μ θ θ

= − − = →

− −− −
= = = − +

= − ° + ° = −

∑
 

 
9. Since the skier is moving at a constant speed, the net force on the skier must 

be 0.  See the free-body diagram, and write Newton’s second law for both 
the x and y directions. 

fr Nsin cos   

tan tan 27 0.51
s s

s

mg F F mgθ μ μ θ

μ θ

= = = →

= = ° =
 

 
 
 
10. A free-body diagram for the bar of soap is shown.  There is no motion in 

the y direction and thus no acceleration in the y direction.  Write Newton’s 
second law for both directions, and use those expressions to find the 
acceleration of the soap. 

( )

N N

fr

N

cos 0    cos

sin

sin sin cos

sin cos

x

x

k k

k

F F mg F mg

F mg F ma

ma mg F mg mg

a g

θ θ

θ

θ μ θ μ θ
θ μ θ

= − = → =

= − =

= − = −

= −

∑
∑   

Now use Eq. 2-12b, with an initial velocity of 0, to find the final velocity. 

( )
( )

( ) ( )( )

21
0 0 2

2

  

2 9.0 m2 2
4.8s

sin cos 9.80 m s sin 8.0 0.060 cos8.0k

x x v t at

x x
t

a g θ μ θ

= + + →

= = = =
− ° − °

 

 
11. A free-body diagram for the box is shown, assuming that it is moving to the  

right.  The “push” is not shown on the free-body diagram because as soon as the 
box moves away from the source of the pushing force, the push is no longer 
applied to the box.  It is apparent from the diagram that NF mg=  for the vertical 
direction.  We write Newton’s second law for the horizontal direction, with 
positive to the right, to find the acceleration of the box. 

( )
fr N

2 2

      

0.15 9.80 m s 1.47 m s

x k k

k

F F ma ma F mg

a g

μ μ

μ

= − = → = − = − →

= − = − = −

∑
 

Eq. 2-12c can be used to find the distance that the box moves before stopping.  The initial speed is 
4.0 m/s, and the final speed will be 0. 

( ) ( )
( )

22 2
2 2 0

0 0 0 2

0 3.5m s
2     4.17 m 4.2 m

2 2 1.47 m s
v v

v v a x x x x
a

−−
− = − → − = = = ≈

−
 

mg

NF

frF

NF
y

x 
θ θ 

mg

frF

mg

NF

frF

θθ
x

y
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12. (a) A free-body diagram for the car is shown, assuming that it is moving to the  
right.  It is apparent from the diagram that FN = mg for the vertical direction.  
Write Newton’s second law for the horizontal direction, with positive to the 
right, to find the acceleration of the car.  Since the car is assumed to NOT be 
sliding, use the maximum force of static friction. 

fr N        x s s sF F ma ma F mg a gμ μ μ= − = → = − = − → = −∑  
Eq. 2-12c can be used to find the distance that the car moves before stopping.  The initial speed 
is given as v, and the final speed will be 0. 

( ) ( ) ( )
2 2 2 2

2 2 0
0 0 0

0
2     

2 2 2s s

v v v v
v v a x x x x

a g gμ μ
− −

− = − → − = = =
−

 

 (b) Using the given values:   

( ) ( ) ( )
( ) ( )

22

0 2

26.38m s1m s
95km h 26.38m s       55m

3.6 km h 2 2 0.65 9.80 m ss

v
v x x

gμ
= = − = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (c) From part (a), we see that the distance is inversely proportional to g, and so if g is reduced by a  
factor of 6, the distance is increased by a factor of 6 to 330 m .  

 
13. We draw three free-body diagrams – one for the car, one for the trailer, and 

then “add” them for the combination of car and trailer.  Note that since the 
car pushes against the ground, the ground will push against the car with an 
equal but oppositely directed force.  CGF  is the force on the car due to the 

ground, TCF  is the force on the trailer due to the car, and CTF  is the force on 

the car due to the trailer.  Note that by Newton’s rhird law, CT TC .=F F  
 

From consideration of the vertical forces in the individual free-body 
diagrams, it is apparent that the normal force on each object is equal to its 
weight.  This leads to the conclusion that  fr N T Tk kF F m gμ μ= = =  

( ) ( ) ( )20.15 350 kg 9.80 m s 514.5 N= . 

Now consider the combined free-body diagram.  Write 
Newton’s second law for the horizontal direction,  This allows 
the calculation of the acceleration of the system. 

( )CG fr C T

2CG fr

C T

  

3600 N 514.5 N
1.893m s

1630 kg

F F F m m a

F F
a

m m

= − = + →

− −
= = =

+

∑
 

Finally, consider the free-body diagram for the trailer alone.  Again write Newton’s second law for 
the horizontal direction, and solve for TC.F  

( ) ( )
TC fr T

2
TC fr T

  

514.5 N 350 kg 1.893m s 1177 N 1200 N

F F F m a

F F m a

= − = →

= + = + = ≈

∑
 

 
14. Assume that kinetic friction is the net force causing the deceleration.  See the 

free-body diagram for the car, assuming that the right is the positive direction, 
and the direction of motion of the skidding car.  There is no acceleration in the 
vertical direction, and so NF mg= .  Applying Newton’s second law to the x 

mg

NF

frF

mg

NF
frF

( )C Tm m+ gNT NC+F F

CGF
frF

Tm g
NTF

frF TCF

Cm g

NCF
CGFCTF
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direction gives the following. 
          f k N k kF F ma F mg ma a gμ μ μ= − = → − = − = → = −∑  

Use Eq. 2-12c to determine the initial speed of the car, with the final speed of the car being zero. 

  
( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
0 0

2 2
0 0 0

2   

2 0 2 2 0.80 9.80 m s 72 m 34 m sk

v v a x x

v v a x x g x xμ

− = − →

= − − = − − − = =
 

 
15. (a) Consider the free-body diagram for the snow on the roof.  If the snow  

is just ready to slip, then the static frictional force is at its maximum 
value, fr N .sF Fμ=   Write Newton’s second law in both directions, 
with the net force equal to zero since the snow is not accelerating. 

N N

fr

cos 0    cos

sin 0  
y

x

F F mg F mg

F mg F

θ θ

θ

= − = → =

= − = →
∑
∑

   

fr Nsin cos     tan tan 34 0.67s s smg F F mgθ μ μ θ μ θ= = = → = = =°  
If 0.67sμ > , then the snow would not be on the verge of slipping. 

(b) The same free-body diagram applies for the sliding snow.  But now the force of friction is  
kinetic, so fr N ,kF Fμ=  and the net force in the x direction is not zero.  Write Newton’s second 
law for the x direction again, and solve for the acceleration. 

( )

fr

fr

sin

sin cossin
sin cos

x

k
k

F mg F ma

mg mgmg F
a g

m m

θ

θ μ θθ θ μ θ

= − =

−−
= = = −

∑
 

Use Eq. 2-12c with 0iv =  to find the speed at the end of the roof. 

( )
( ) ( ) ( )

( ) ( )( ) ( )

2 2
0 0

0 0 0

2

2

2 2 sin cos

  2 9.80 m s sin 34 0.20 cos34 6.0 m 6.802 m s 6.8m s

k

v v a x x

v v a x x g x xθ μ θ

− = −

= + − = − −

= ° − ° = ≈

 

(c) Now the problem becomes a projectile motion problem.  The projectile 
has an initial speed of 6.802 m/s, directed at an angle of 34o below the 
horizontal.  The horizontal component of the speed, (6.802 m/s) cos 34o  
= 5.64 m/s,  will stay constant.  The vertical component will change due 
to gravity.  Define the positive direction to be downward.  Then the 
starting vertical velocity is (6.802 m/s) sin 34o =3.804 m/s, the vertical acceleration is 9.80 m/s2, 
and the vertical displacement is 10.0 m.  Use Eq. 2-12c to find the final vertical speed. 

( )

( ) ( ) ( ) ( )

2 2
0 0

22 2
0 0

2

2 3.804 m s 2 9.80 m s 10.0 m 14.5 m/s

y y y

y y

v v a y y

v v a y y

− = −

= + − = + =
 

To find the speed when it hits the ground, the horizontal and vertical components of velocity 
must again be combined, according to the Pythagorean theorem. 

   ( ) ( )2 22 2 5.64 m s 14.5 m/s 15.6 16m sm sx yv v v= + = + = ≈  

 
 
 

34o 

y 
x 

θ θ 

mg

NF
frF
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16. Consider a free-body diagram for the box, showing force on the box.  When 
P 23N,F =  the block does not move.  Thus in that case, the force of friction 

is static friction, and must be at its maximum value, given by fr N .sF Fμ=   
Write Newton’s second law in both the x and y directions.  The net force in 
each case must be 0, since the block is at rest. 

P N N P

fr P fr P

N P P P

cos 0    cos

sin 0    sin

sin     cos sin

x

y

s s

F F F F F

F F F mg F F mg

F F mg F F mg

θ θ

θ θ

μ θ μ θ θ

= − = → =

= + − = → + =

+ = → + =

∑
∑

 ( ) ( )o oP
2

23 N
cos sin 0.40cos 28 sin 28 1.9 kg

9.80 m ss

F
m

g
μ θ θ= + = + =  

 
17. (a) Since the two blocks are in contact, they can be treated as a  

single object as long as no information is needed about internal 
forces (like the force of one block pushing on the other block).   
Since there is no motion in the vertical direction, it is apparent that  

( )N 1 2 ,F m m g= +  and so ( )fr N 1 2 .k kF F m m gμ μ= = +   Write 
Newton’s second law for the horizontal direction. 

( )P fr 1 2  xF F F m m a= − = + →∑  

( ) ( ) ( ) ( )2

P 1 2P fr

1 2 1 2

2 2

650 N 0.18 190 kg 9.80 m s

190 kg

1.657 m s 1.7 m s  

kF m m gF F
a

m m m m
μ −− +−

= = =
+ +

= ≈

  

(b) To solve for the contact forces between the blocks, an individual block 
must be analyzed.  Look at the free-body diagram for the second block.  

21F  is the force of the first block pushing on the second block.  Again, it 
is apparent that N 2 2F m g=  and so fr2 N2 2 .k kF F m gμ μ= =  Write Newton’s 
second law for the horizontal direction. 

( ) ( ) ( ) ( ) ( )
21 fr2 2

2 2
21 2 2

  

0.18 125kg 9.80 m s 125kg 1.657 m s 430 N

x

k

F F F m a

F m g m aμ

= − = →

= + = + =

∑
 

By Newton’s third law, there will also be a 430 N force to the left on block # 1 due to block # 2. 
 (c) If the crates are reversed, the acceleration of the system will remain  

the same – the analysis from part (a) still applies.  We can also repeat the 
analysis from part (b) to find the force of one block on the other, if we 
simply change m1 to m2 in the free-body diagram and the resulting 
equations.  

2
12 fr1 11.7 m s     ;  xa F F F m a= = − = →∑

 ( ) ( ) ( ) ( ) ( )2 2
12 1 1 0.18 65 kg 9.80 m s 65 kg 1.657 m s 220 NkF m g m aμ= + = + =  

 
 
 
 
 
 

28ο mg NF

frF

PF

m1 + 
   m2 

( )1 2m m+ g
NF

frF

PF

 m2 

2m g
N2F

21F

fr2F

 m1 

1m g
N1F

12F

fr1F
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18. (a) Consider the free-body diagram for the crate on the surface.  There is  
no motion in the y direction and thus no acceleration in the y direction.  
Write Newton’s second law for both directions. 

( )

N N

fr

N

cos 0    cos

sin

sin sin cos

sin cos

y

x

k k

k

F F mg F mg

F mg F ma

ma mg F mg mg

a g

θ θ

θ

θ μ θ μ θ
θ μ θ

= − = → =

= − =

= − = −

= −

∑
∑

 ( ) ( )2 2 2  9.80 m s sin 25.0 0.19 cos 25.0 2.454 m s 2.5m s= ° − ° = ≈  

(b) Now use Eq. 2-12c, with an initial velocity of 0, to find the final velocity. 

( ) ( ) ( ) ( )2 2 2
0 0 02     2 2 2.454 m s 8.15m 6.3m sv v a x x v a x x− = − → = − = =  

 
19. (a) Consider the free-body diagram for the crate on the surface.  There is  

no motion in the y direction and thus no acceleration in the y direction.  
Write Newton’s second law for both directions, and find the 
acceleration. 

( )

N N

fr

N

cos 0    cos

sin

sin sin cos

sin cos

y

x

k k

k

F F mg F mg

F mg F ma

ma mg F mg mg

a g

θ θ

θ

θ μ θ μ θ
θ μ θ

= − = → =

= + =

= + = +

= +

∑
∑  

Now use Eq. 2-12c, with an initial velocity of 3.0 m s−  and a final velocity of 0 to find the 
distance the crate travels up the plane. 

( )
( )

( ) ( )

2 2
0 0

22
0

0 2

2   

3.0m s
0.796m

2 2 9.80m s sin 25.0 0.17cos 25.0

v v a x x

v
x x

a

− = − →

− −−
− = = = −

° + °

 

  The crate travels 0.80 m  up the plane. 

(b) We use the acceleration found above with the initial velocity in Eq. 2-12a to find the time for 
the crate to travel up the plane. 

( )
( ) ( )2

0
0 up

3.0m s
0.5308s

9.80m s sin 25.0 0.17cos25.0
    

up

v v
vat t
a

−
= =

° + °
+ → = − = −  

The total time is NOT just twice the time to travel up the plane, because 
the acceleration of the block is different for the two parts of the motion.   
The second free-body diagram applies to the block sliding down the 
plane.  A similar analysis will give the acceleration, and then Eq. 2-12b 
with an initial velocity of 0 is used to find the time to move down the 
plane. 

 

( )

N N

fr

N

cos 0    cos

sin

sin sin cos

sin cos

y

x

k k

k

F F mg F mg

F mg F ma

ma mg F mg mg

a g

θ θ

θ

θ μ θ μ θ
θ μ θ

= − = → =

= − =

= − = −

= −

∑
∑  

y

x 
θ θ 

mg

NF
frF

mg

NF

frF

θθ

x

y

NF

x

y

mg

frF

θθ
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 ( ) ( )
( ) ( )

21
0 0 2

0
down 2

down

up down

  

2 2 0.796m
0.7778s

9.80m s sin 25.0 0.17cos25.0

0.5308s 0.7778s 1.3s

x x v t at

x x
t

a

t t t

− = + →

−
= = =

° − °

= + = + =

 

It is worth noting that the final speed is about 2.0 m/s, significantly less than the 3.0 m/s original 
speed. 

 
20. Since the upper block has a higher coefficient of friction, that 

block will “drag behind” the lower block.  Thus there will be 
tension in the cord, and the blocks will have the same 
acceleration.  From the free-body diagrams for each block, we 
write Newton’s second law for both the x and y directions for 
each block, and then combine those equations to find the 
acceleration and tension.  

 (a) Block A: 

A NA A NA A

A A frA T A

cos 0    cos

sin
y

x

F F m g F m g

F m g F F m a

θ θ

θ

= − = → =

= − − =

∑
∑

 A A A NA T A A A Tsin sin cosm a m g F F m g m g Fθ μ θ μ θ= − − = − −  
Block B: 

NB B NB B

A frA T B

B B B NB T B B B T

cos 0    cos

sin

sin sin cos

yB

xB

F F m g F m g

F m g F F m a

m a m g F F m g m g F

θ θ

θ

θ μ θ μ θ

= − = → =

= − =

= − = − +

+
+

∑
∑  

  Add the final equations together from both analyses and solve for the acceleration. 

   A A A A T B B B B T

A B A A A T B B B T

sin cos   ;  sin cos

sin cos sin cos   

m a m g m g F m a m g m g F

m a m a m g m g F m g m g F

θ μ θ θ μ θ
θ μ θ θ μ θ

= − − = − +

+ = − − + − + →
 

   

( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

A A B B

A B

2

2 2

sin cos sin cos

5.0 kg sin 32 0.20cos32 5.0 kg sin 32 0.30cos32
  9.80 m s

10.0 kg

  3.1155m s 3.1m s

m m
a g

m m
θ μ θ θ μ θ− + −

=
+

° − ° + ° − °
=

= ≈

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 (b) Solve one of the equations for the tension force. 

   ( )
( ) ( ) ( )

A A A A T

T A A

2 2

sin cos   

sin cos

5.0 kg 9.80 m s sin 32 0.20cos32 3.1155m s 2.1N   

m a m g m g F

F m g g a

θ μ θ
θ μ θ

= − − →

= − −

= ° − ° − =⎡ ⎤⎣ ⎦

 

 
 
 
 
 
 

Am g
θ

Bm g
θ

θ
NAF

frAF

NBF

TF

TF

frBF
x

y
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21. (a) If A B,μ μ<  the untethered acceleration of Am  would be greater than that of B.m   If there were  
no cord connecting the masses, Am  would “run away” from B.m   So if they are joined together, 

Am would be restrained by the tension in the cord, Bm  would be pulled forward by the tension 
in the cord, and the two masses would have the same acceleration.  This is exactly the situation 
for Problem 20. 

(b) If A B,μ μ>  the untethered acceleration of Am  would be less than that of B.m   So even if there 
is a cord between them, Bm  will move ever closer to A ,m  and there will be no tension in the 
cord.  If the incline were long enough, eventually Bm  would catch up to Am  and begin to push 
it down the plane. 

(c) For A B ,μ μ<  the analysis will be exactly like Problem 20.  Refer to that free-body diagram and 
analysis.  The acceleration and tension are as follows, taken from the Problem 20 analysis. 

   ( ) ( )
( )

A A B B

A B

sin cos sin cosm m
a g

m m
θ μ θ θ μ θ− + −

=
+

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

   
( ) ( )

( )

( ) ( )

A A A A T

T A A A A

A A B B
A A A A

A B

A B
B A

A B

sin cos   

sin cos

sin cos sin cos
    sin cos

cos
    

m a m g m g F

F m g m g m a

m m
m g m g m g

m m

m m g
m m

θ μ θ
θ μ θ

θ μ θ θ μ θ
θ μ θ

θ μ μ

= − − →

= − −

− + −
= − −

+

= −
+

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

For  A B,μ μ>  we can follow the analysis of Problem 20 but not include the tension forces.  
Each block will have its own acceleration.  Refer to the free-body diagram for Problem 20. 
Block A: 

A NA A NA A

A A frA A A

cos 0    cos

sin
y

x

F F m g F m g

F m g F m a

θ θ

θ

= − = → =

= − =

∑
∑

 
( )

A A A A NA A A A

A A

sin sin cos   

sin cos

m a m g F m g m g

a g

θ μ θ μ θ

θ μ θ

= − = − →

= −
 

Block B: 

( )

NB B NB B

A frA B B

B B B B NB B B B

B B

cos 0    cos

sin

sin sin cos   

sin cos

yB

xB

F F m g F m g

F m g F m a

m a m g F m g m g

a g

θ θ

θ

θ μ θ μ θ

θ μ θ

= − = → =

= − =

= − = − →

= −

∑
∑

 

Note that since A B,μ μ>  A Ba a>  as mentioned above.  And T 0 .F =  

 
22. The force of static friction is what decelerates the crate if it is not sliding on the 

truck bed.  If the crate is not to slide, but the maximum deceleration is desired, 
then the maximum static frictional force must be exerted, and so fr N.sF Fμ=   
The direction of travel is to the right.  It is apparent that NF mg=  since there is 
no acceleration in the y direction.  Write Newton’s second law for the truck in 

mg

NF
frF
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the horizontal direction. 

( ) ( )2 2
fr         0.75 9.80 m s 7.4 m sx s sF F ma mg ma a gμ μ= − = → − = → = − = − = −∑   

 The negative sign indicates the direction of the acceleration – opposite to the direction of motion. 
 
23. (a) For Bm  to not move, the tension must be equal to B ,m g  and so B T.m g F=   For Am  to not  

move, the tension must be equal to the force of static friction, and so S T.F F=   Note that the 
normal force on Am  is equal to its weight.  Use these relationships to solve for A.m  

B
B T s A A A

2.0 kg
    5.0 kg    5.0 kg

0.40s
s

m
m g F F m g m mμ

μ
= = ≤ → ≥ = = → ≥  

(b) For Bm  to move with constant velocity, the tension must be equal to Bm g .  For Am  to move 
with constant velocity, the tension must be equal to the force of kinetic friction.  Note that the 
normal force on Am  is equal to its weight.  Use these relationships to solve for Am . 

B
B k A A

k

2.0 kg
    6.7 kg

0.30k

m
m g F m g mμ

μ
= = → = = =  

 
24. We define f to be the fraction of the cord that 

is handing down, between Bm  and the pulley.  
Thus the mass of that piece of cord is C.fm   
We assume that the system is moving to the 
right as well.  We take the tension in the cord 
to be TF  at the pulley.  We treat the hanging 
mass and hanging fraction of the cord as one 
mass, and the sliding mass and horizontal part 
of the cord as another mass.  See the free-body 
diagrams.  We write Newton’s second law for each object. 

  

( )( )
( )( )

( ) ( )

A N A C

A T fr T k N A C

B B C T B C

1 0

1
y

x

x

F F m f m g

F F F F F m f m a

F m fm g F m fm a

μ

= − + − =

= − = − = + −

= + − = +

∑
∑
∑

 

 Combine the relationships to solve for the acceleration.  In particular, add the two equations for the 
x-direction, and then substitute the normal force. 

  
( )( )B C k A C

A B C

1m fm m f m
a g

m m m
μ+ − + −

=
+ +

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
25. (a) Consider the free-body diagram for the block on the surface.  There is  

no motion in the y direction and thus no acceleration in the y direction.  
Write Newton’s second law for both directions, and find the 
acceleration. 

( )

N N

fr

N

cos 0    cos

sin

sin sin cos

sin cos

y

x

k k

k

F F mg F mg

F mg F ma

ma mg F mg mg

a g

θ θ

θ

θ μ θ μ θ
θ μ θ

= − = → =

= + =

= + = +

= +

∑
∑  mg

NF

frF

θθ

x

y

B Cm fm+g g

TF
NF

frF

Am g
( ) C1 f m− g

TF

y 
x 

x 
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Now use Eq. 2-12c, with an initial velocity of 0v , a final velocity of 0, and a displacement of 
d−  to find the coefficient of kinetic friction. 

( ) ( ) ( )2 2 2
0 0 0

2
0

2     0 2 sin cos   

tan
2 cos

k

k

v v a x x v g d

v
gd

θ μ θ

μ θ
θ

− = − → − = + − →

= −
 

 (b) Now consider the free-body diagram for the block at the top of its  
motion.  We use a similar force analysis, but now the magnitude of the 
friction force is given by fr s N ,F Fμ≤  and the acceleration is 0. 

   
N N

fr fr

fr s N s s

cos 0    cos

sin 0    sin

    sin cos     tan

y

x

F F mg F mg

F mg F ma F mg

F F mg mg

θ θ

θ θ

μ θ μ θ μ θ

= − = → =

= − = = → =

≤ → ≤ → ≥

∑
∑  

 
26. First consider the free-body diagram for the snowboarder on the incline.  

Write Newton’s second law for both directions, and find the acceleration. 

  

( ) ( ) ( )

N N

fr

1 N 1

2
slope 1

2 2

cos 0    cos

sin

sin sin cos

sin cos 9.80 m s sin 28 0.18cos 28

3.043m s 3.0 m s      

y

x

k k

k

F F mg F mg

F mg F ma

ma mg F mg mg

a g

θ θ

θ

θ μ θ μ θ

θ μ θ

= − = → =

= − =

= − = −

= − = ° − °

= ≈

∑
∑

 

Now consider the free-body diagram for the snowboarder on the flat surface.  
Again use Newton’s second law to find the acceleration.  Note that the normal 
force and the frictional force are different in this part of the problem, even 
though the same symbol is used. 

  N N fr

flat fr 2 N 1

0         

  
y x

k k

F F mg F mg F F ma

ma F F mgμ μ

= − = → = = − =

= − = − = − →
∑ ∑  

  ( ) ( )2 2 2
flat 2 0.15 9.80 m s 1.47 m s 1.5m ska gμ= − = − = − ≈ −  

Use Eq. 2-12c to find the speed at the bottom of the slope.  This is the speed at the start of the flat 
section.  Eq. 2-12c can be used again to find the distance x. 

  ( )2 2
0 02   v v a x x− = − →   

  

( ) ( ) ( ) ( )

( )

( ) ( )
( )

22 2
end of 0 slope 0
slope

2 2
0 0

22 2
0

0 2
flat

2 5.0 m s 2 3.043m s 110 m 26.35m s

2   

0 26.35m s
236 m 240 m

2 2 1.47 m s

v v a x x

v v a x x

v v
x x

a

= + − = + =

− = − →

−−
− = = = ≈

−

 

 
27. The belt is sliding underneath the box (to the right), so there will be a force of 

kinetic friction on the box, until the box reaches a speed of 1.5 m/s.  Use the free-
body diagram to calculate the acceleration of the box. 

 (a) fr k N k k    xF F ma F mg a gμ μ μ= = = = → =∑  

NF

x

y

mg

frF

θθ

mg

NF
frF

mg

NF

frF

θθ
x

y

NF

frF

mg
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( ) ( )

fr k N k k

0
0 2

k

    

0 1.5m s
    0.22s

0.70 9.80 m s

xF F ma F mg a g

v v v
v v at t

a g

μ μ μ

μ

= = = = → =

− −
= + → = = = =

∑
 

 (b) 
( )

( ) ( )2
k

22 2 2
0

0 0.16m
2 0.70 9.80m s

1.5m s
2 2

v
x x

g
v v

a μ
− = =

−= =  

 
28. We define the positive x direction to be the direction  

of motion for each block.  See the free-body diagrams.  
Write Newton’s second law in both dimensions for 
both objects.  Add the two x-equations to find the 
acceleration. 
Block A: 

A NA A NA A

A A frA A

A A

T

cos 0  cos

sin
y

x

F F m g F m g

F F m g F m a

θ θ

θ

= − = → =

= − =−
∑
∑

Block B: 

NB B NB B

B frB T B

B Bcos 0    cos

sin
yB

xB

F F m g F m g

F m g F F m a

θ θ

θ

= − = → =

= − =−
∑
∑

 

Add the final equations together from both analyses and solve for the acceleration, noting that in 
both cases the friction force is found as fr N.F Fμ=  

( ) ( )
( )

A T A A A A A B B B B B B T

A B T A A A A A B B B B B T

A A A A B B

A B

sin cos    ;   sin cos

sin cos sin cos   

sin cos sin cos

m a F m g m g m a m g m g F

m a m a F m g m g m g m g F

m m
a g

m m

θ μ θ θ μ θ
θ μ θ θ μ θ

θ μ θ θ μ θ

= − − = − −

+ = − − + − − →

− + + −
=

+
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

( ) ( ) ( ) ( ) ( )
( )

2

2

2.0 kg sin 51 0.30cos51 5.0 kg sin 21 0.30cos 21
  9.80 m s

7.0 kg

  2.2 m s

− ° + ° + ° − °
=

= −

⎡ ⎤
⎢ ⎥
⎣ ⎦  

 
29.  We assume that the child starts from rest at the top of the slide, and then slides  

a distance 0x x−  along the slide.  A force diagram is shown for the child on 
the slide.  First, ignore the frictional force and so consider the no-friction case.  
All of the motion is in the x direction, so we will only consider Newton’s 
second law for the x direction. 

sin     sinxF mg ma a gθ θ= = → =∑  
Use Eq. 2-12c to calculate the speed at the bottom of the slide. 

( ) ( ) ( ) ( )2 2 2
0 0 0 0 0No friction2     2 2 sinv v a x x v v a x x g x xθ− = − → = + − = −  

Now include kinetic friction.  We must consider Newton’s second law in both the x and y directions 
now.  The net force in the y direction must be 0 since there is no acceleration in the y direction. 

N Ncos 0    cosyF F mg F mgθ θ= − = → =∑  

fr Nsin sin sin cosx k kF ma mg F mg F mg mgθ θ μ θ μ θ= = − = − = −∑  

y 

x 
θ θ 

mg

NF
frF

Am g
Aθ Aθ

NAF

frAF

TF
x

y
NBF

y

x 
BθBθ

Bm g

TF
frBF
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( )sin cos
sin cosk

k

mg mg
a g

m
θ μ θ

θ μ θ
−

= = −  

 With this acceleration, we can again use Eq. 2-12c to find the speed after sliding a certain distance. 

( ) ( ) ( ) ( ) ( )2 2 2
0 0 0 0 0friction2     2 2 sin coskv v a x x v v a x x g x xθ μ θ− = − → = + − = − −  

Now let the speed with friction be half the speed without friction, and solve for the coefficient of 
friction.  Square the resulting equation and divide by cosg θ  to get the result. 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1
0 0friction No friction2 2

1
0 04

3 3
4 4

    2 sin cos 2 sin

2 sin cos 2 sin

tan tan 34 0.51

k

k

k

v v g x x g x x

g x x g x x

θ μ θ θ

θ μ θ θ

μ θ

= → − − = −

− − = −

= = =°

 

 
30. (a) Given that Bm  is moving down, Am  must be moving  

up the incline, and so the force of kinetic friction on 
Am  will be directed down the incline.  Since the 

blocks are tied together, they will both have the 
same acceleration, and so B A .y xa a a= =  Write 
Newton’s second law for each mass. 

B B T B T B B

A T A fr A

A N A N A

    

sin

cos 0    cos

y

x

y

F m g F m a F m g m a

F F m g F m a

F F m g F m g

θ

θ θ

= − = → = −

= − − =

= − = → =

∑
∑
∑

Take the information from the two y equations and substitute into the x equation to solve for the 
acceleration. 

B B A A Asin cos    km g m a m g m g m aθ μ θ− − − = →  

( ) ( )

( ) ( )

B A A 1
2

A B

2 21
2

sin cos
1 sin cos

 9.80 m s 1 sin 34 0.15cos34 1.6 m s

k
k

m g m g m g g
a g g

m m
θ μ θ θ μ θ− −

= = − −
+

= − ° − ° =

 

 
 
 
 (b) To have an acceleration of zero, the expression for the acceleration must be zero. 

   
( )1

2 1 sin cos 0    1 sin cos 0  

1 sin 1 sin 34
0.53

cos cos34

k k

k

a g θ μ θ θ μ θ
θμ

θ

= − − = → − − = →

− − °
= = =

°

 

 
31. Draw a free-body diagram for each block. 

Block A (top) 
Am g

NAF

fr ABF
TF

Block  B (bottom) 
Bm g

NBFfr AB−F

TF

NA−F

F
fr BF

yB 
Bm g

TF

yAxA

Am g

NF
TF

θ
θ

Bm g
frF
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fr ABF  is the force of friction between the two blocks, NAF  is the normal force of contact between the 
two blocks, fr BF  is the force of friction between the bottom block and the floor, and NBF  is the 
normal force of contact between the bottom block and the floor. 

 

Neither block is accelerating vertically, and so the net vertical force on each block is zero. 

( )
NA A NA A

NB NA B NB NA B A B

top:        0      

bottom:  0    

F m g F m g

F F m g F F m g m m g

− = → =

− − = → = + = +
 

 Take the positive horizontal direction to be the direction of motion of each block.  Thus for the  
bottom block, positive is to the right, and for the top block, positive is to the left.  Then, since the 
blocks are constrained to move together by the connecting string, both blocks will have the same 
acceleration.  Write Newton’s second law for the horizontal direction for each block. 
 T fr AB A T fr AB fr B Btop:       bottom: F F m a F F F F m a− = − − − =  
(a) If the two blocks are just to move, then the force of static friction will be at its maximum, and so  

the frictions forces are as follows. 
   ( )fr AB s NA s A fr B s NB s A B   ;   F F m g F F m m gμ μ μ μ= = = = +  
  Substitute into Newton’s second law for the horizontal direction with 0a =  and solve for F . 

   
( )
( ) ( )

( ) ( ) ( ) ( )

T s A T s A

T s A s A B

T s A s A B s A s A s A B

2
s A B

top: 0    

bottom: 0  

            

                3 0.60 14 kg 9.80m s 82.32 N 82 N

F m g F m g

F F m g m m g

F F m g m m g m g m g m m g

m m g

μ μ
μ μ

μ μ μ μ μ

μ

− = → =

− − − + = →

= + + + = + + +

= + = = ≈

 

(b) Multiply the force by 1.1 so that ( )1.1 82.32 N 90.55N.F = =   Again use Newton’s second law 
for the horizontal direction, but with 0a ≠  and using the coefficient of kinetic friction. 

   ( )
( ) ( )

T k A A

T k A k A B B

k A k A k A B A B

top:          

bottom:   

sum:          

F m g m a

F F m g m m g m a

F m g m g m m g m m a

μ
μ μ

μ μ μ

− =

− − − + =

− − − + = + →

 

   

( )
( )

( )
( )

( ) ( ) ( )
( )

k A k A k A B k A B

A B A B

2
2 2

3
             

90.55N 0.40 14.0kg 9.80m s
               4.459 m s 4.5m s

8.0kg

F m g m g m m g F m m g
a

m m m m
μ μ μ μ− − − + − +

= =
+ +

−
= = ≈

 

 
32. Free-body diagrams are shown for both blocks.  There is a force of friction 

between the two blocks, which acts to the right on the top block, and to the left 
on the bottom block.  They are a Newton’s third law pair of forces. 

 (a) If the 4.0 kg block does not slide off, then it must have the same  
acceleration as the 12.0 kg block.  That acceleration is caused by the force 
of static friction between the two blocks.  To find the minimum coefficient, 
we use the maximum force of static friction. 

   
2

fr top N top 2
top top

5.2 m s
   0.5306 0.53

9.80m s
a

F m a F m g
g

μ μ μ= = = → = = = ≈

 (b) If the coefficient of friction only has half the value, then the blocks will be  
sliding with respect to one another, and so the friction will be kinetic. 
 ( )1

fr top N top2
top top

0.5306 0.2653  ;    F m a F m gμ μ μ= = = = = →  

topm g

N
top

F

fr
top

F

bottomm g

N
bottom

F

fr
bottom

F
PF

N
top

−F
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 ( ) ( )2 20.2653 9.80m s 2.6 m sa gμ= = =  

 (c) The bottom block is still accelerating to the right at 25.2 m s .   Since the top block has a smaller  
acceleration than that, it has a negative acceleration relative to the bottom block.   
 2 2 2

top rel top rel ground rel top rel bottom rel
bottom ground bottom ground ground

ˆ ˆ ˆ2.6m s 5.2 m s 2.6 m s= + = − = − = −a a a a a i i i   

  The top block has an acceleration of 22.6m s to the left  relative to the bottom block. 

 (d) No sliding: 

( )

( ) ( )

P fr bottom bottom
bottom bottom
net

P fr bottom bottom fr bottom bottom top top bottom bottom top bottom
bottom top

2

  

    16.0kg 5.2 m s 83N

xF F F m a

F F m a F m a m a m a m m a

= − = →

= + = + = + = +

= =

 

This is the same as simply assuming that the external force is accelerating the total mass.  The 
internal friction need not be considered if the blocks are not moving relative to each other. 

  

  Sliding: 

   

( ) ( ) ( ) ( )

P fr bottom bottom
bottom bottom
net

P fr bottom bottom fr bottom bottom top top bottom bottom
bottom top

2 2

  

4.0kg 2.6m s 12.0kg 5.2 m s 73N   

xF F F m a

F F m a F m a m a m a

= − = →

= + = + = +

= + =

 

Again this can be interpreted as the external force providing the acceleration for each block.  
The internal friction need not be considered. 

 
33. To find the limiting value, we assume that the blocks are NOT slipping, 

but that the force of static friction on the smaller block is at its 
maximum value, so that fr N.F Fμ=   For the two-block system, there is 

no friction on the system, and so ( )F M m a= +  describes the  
horizontal motion of the system.  Thus the upper block has a vertical 

acceleration of 0 and a horizontal acceleration of 
( )

.F
M m+

  Write 

Newton’s second law for the upper block, using the force diagram, and solve for the applied force F.  
Note that the static friction force will be DOWN the plane, since the block is on the verge of sliding 
UP the plane. 

  

( ) ( )

( )

( ) ( ) ( )

N fr N N

N fr N

N

cos sin cos sin 0    
cos sin

sin cos sin cos   

sin cos sin cos
cos sin

y

x

mg
F F F mg F mg F

F
F F F F ma m

M m
M m mg M m

F F
m m

θ θ θ μ θ
θ μ θ

θ θ θ μ θ

θ μ θ θ μ θ
θ μ θ

= − − = − − = → =
−

= + = + = = →
+

+ +
= + = +

−

∑

∑  

  ( ) ( )
( )
sin cos
cos sin

  M m g
θ μ θ
θ μ θ

+
= +

−
 

mg

NF

frF

θ

x

y
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34. A free-body diagram for the car at one instant of time is shown.  In the diagram, the 
car is coming out of the paper at the reader, and the center of the circular path is to 
the right of the car, in the plane of the paper.  If the car has its maximum speed, it 
would be on the verge of slipping, and the force of static friction would be at its 
maximum value.  The vertical forces (gravity and normal force) are of the same 
magnitude, because the car is not accelerating vertically.  We assume that the force 
of friction is the force causing the circular motion.  

( ) ( ) ( )

2
R fr N

2

      

0.65 80.0 m 9.80 m s 22.57 23m sm s

s s

s

F F m v r F mg

v rg

μ μ

μ

= → = = →

= = = ≈
 

Notice that the result is  independent of the car’s mass . 
 
35. (a) Find the centripetal acceleration from Eq. 5-1. 

( )22 2
R

21.30 m s 1.20 m 1.408 1.41m sm sa v r= = = ≈  

 (b) The net horizontal force is causing the centripetal motion, and so will be the centripetal force.    
   ( ) ( )2

R R 22.5 kg 1.408 m s 31.68N 31.7 NF ma= = = ≈  

 
36. Find the centripetal acceleration from Eq. 5-1. 

( ) ( )
2

2 2
3 2

525m s 1 
57.42 m s 5.86 's

4.80 10 m 9.80 m sR

g
a v r g= = = =

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
37. We assume the water is rotating in a vertical circle of radius r.  When the bucket 

is at the top of its motion, there would be two forces on the water (considering 
the water as a single mass).  The weight of the water would be directed down, 
and the normal force of the bottom of the bucket pushing on the water would 
also be down.  See the free-body diagram.  If the water is moving in a circle, 
then the net downward force would be a centripetal force. 

  ( )2 2
N N    F F mg ma m v r F m v r g= + = = → = −∑  

The limiting condition of the water falling out of the bucket means that the water loses contact with 
the bucket, and so the normal force becomes 0. 

  ( ) ( )2 2
N critical critical    0    F m v r g m v r g v rg= − → − = → =  

From this, we see that  yes , it is possible to whirl the bucket of water fast enough.  The minimum 

speed is .rg  

 
38.  The centripetal acceleration of a rotating object is given by 2

Ra v r= . 

( ) ( ) ( ) ( )5 5 2 2
R

21.25 10 1.25 10 9.80m s 8.00 10 m 3.13 10 m sv a r g r −= = × = × × = × . 

( ) ( )
2 4

2

1 rev 60 s
3.13 10 m s 3.74 10 rpm

2 8.00 10 m 1 minπ −
× = ×

×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
39. For an unbanked curve, the centripetal force to move the car in a circular path must 

be provided by the static frictional force.  Also, since the roadway is level, the 
normal force on the car is equal to its weight.  Assume the static frictional force is 
at its maximum value, and use the force relationships to calculate the radius of the 

mg

frFNF

mg

frFNF

mgNF
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curve.  See the free-body diagram, which assumes the center of the curve is to the right in the 
diagram. 

  ( )

( ) ( )

2
R fr N

2

2
2

      

1m s
30 km h

3.6 km h
28 m 30 m

0.7 9.80 m s

s s

s

F F m v r F mg

r v g

μ μ

μ

= → = = →

= = = ≈

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 
40. At the top of a circle, a free-body diagram for the passengers would be as 

shown, assuming the passengers are upside down.  Then the car’s normal 
force would be pushing DOWN on the passengers, as shown in the diagram.  
We assume no safety devices are present.  Choose the positive direction to 
be down, and write Newton’s second law for the passengers. 

  ( )2 2
N N    F F mg ma m v r F m v r g= + = = → = −∑  

We see from this expression that for a high speed, the normal force is positive, meaning the 
passengers are in contact with the car.  But as the speed decreases, the normal force also decreases. If 
the normal force becomes 0, the passengers are no longer in contact with the car – they are in free 
fall.  The limiting condition is as follows. 

 ( ) ( )2 2
min min0    9.80m s 7.6 m 8.6 m sv r g v rg− = → = = =  

 
41. A free-body diagram for the car is shown.  Write Newton’s second law for the car 

in the vertical direction, assuming that up is positive.  The normal force is twice 
the weight. 

( ) ( )
N

2

2    2   

95m 9.80 m s 30.51m s 31m s

F F mg ma mg mg m

v rg

v r= − = → − = →

= = = ≈

∑
 

 
42. In the free-body diagram, the car is coming out of the paper at the reader, and the 

center of the circular path is to the right of the car, in the plane of the paper.  The 
vertical forces (gravity and normal force) are of the same magnitude, because the 
car is not accelerating vertically.  We assume that the force of friction is the force 
causing the circular motion.  If the car has its maximum speed, it would be on the 
verge of slipping, and the force of static friction would be at its maximum value. 

( )

( ) ( )

2

2
2

fr N 2

 1m s
95km hr

3.6 km hr
        0.84

85 m 9.80 m sR s s s

v
F F m v r F mg

rg
μ μ μ= → = = → = = =

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  

 Notice that the result is independent of the car’s mass. 
 
43. The orbit radius will be the sum of the Earth’s radius plus the 400 km orbit height.  The orbital 

period is about 90 minutes.  Find the centripetal acceleration from these data. 

( )
( )

( )

6

2 62
2

R 22 2

60 sec
6380 km 400 km 6780 km 6.78 10 m         90 min 5400 sec

1 min

4 6.78 10 m4 1 
9.18 m s 0.937 0.9 's

9.80 m s5400 sec

r T

r g
a g

T

ππ

= + = = × = =

×
= = = = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

mgNF

mg

frF
NF

mgNF
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Notice how close this is to g, because the shuttle is not very far above the surface of the Earth, 
relative to the radius of the Earth. 

 
44. (a) At the bottom of the motion, a free-body diagram of the bucket would be as  

shown.  Since the bucket is moving in a circle, there must be a net force on it  
towards the center of the circle, and a centripetal acceleration.  Write   
Newton’s second law for the bucket, with up as the positive direction. 

( ) ( ) ( ) ( )

2
R T

2

T

  

1.10 m 25.0 N 2.00 kg 9.80 m s
1.723 1.7 m s

2.00 kg

F F mg ma m v r

r F mg
v

m

= − = = →

−−
= = = ≈

⎡ ⎤⎣ ⎦

∑
 

(b) A free-body diagram of the bucket at the top of the motion is shown.  Since the 
bucket is moving in a circle, there must be a net force on it towards the center 
of the circle, and a centripetal acceleration.  Write Newton’s second law for the 
bucket, with down as the positive direction. 

   
( )2 T

R T     
r F mg

F F mg ma m v r v
m
+

= + = = → =∑  

If the tension is to be zero, then  
( ) ( )( )20

1.10 m 9.80 m s 3.28 m s
r mg

v rg
m
+

= = = =  

  The bucket must move faster than 3.28 m/s in order for the rope not to go slack. 
 
45. The free-body diagram for passengers at the top of a Ferris wheel is as shown. 

FN is the normal force of the seat pushing up on the passenger.  The sum of the 
forces on the passenger is producing the centripetal motion, and so must be a  
centripetal force.  Call the downward direction positive, and write Newton’s  
second law for the passenger. 

  2
R NF mg F ma m v r= − = =∑  

Since the passenger is to feel “weightless,” they must lose contact with their seat, and so the normal 
force will be 0.  The diameter is 22 m, so the radius is 11 m. 

( ) ( )2 2    9.80 m s 11m 10.38m smg m v r v gr= → = = =  

  ( ) ( )
1 rev 60s

10.38m s 9.0 rpm
2 11m 1minπ

=
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
46. To describe the motion in a circle, two independent quantities are needed.  The radius of the circle 

and the speed of the object are independent of each other, so we choose those two quantities.  The 
radius has dimensions of [ ]L  and the speed has dimensions of [ ]L T .   These two dimensions need 

to be combined to get dimensions of 2L T .⎡ ⎤⎣ ⎦   The speed must be squared, which gives 2 2L T ,⎡ ⎤⎣ ⎦  

and then dividing by the radius gives 2L T .⎡ ⎤⎣ ⎦   So 2
Ra v r=  is a possible form for the centripetal 

acceleration.  Note that we are unable to get numerical factors, like π  or 1
2 , from dimensional 

analysis. 
 
 
 

mgTF

mgNF

mg
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47. (a) See the free-body diagram for the pilot in the jet at the bottom of the  
loop.  We have 2

R 6a v r g= = . 

( )

( )

2

2
2

2

1m s
1200 km h

3.6 km h
6.0     1900 m

6.0 6.0 9.80m s
v

v r g r
g

= → = = =

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

(b) The net force must be centripetal, to make the pilot go in a circle.  Write Newton’s second  
law for the vertical direction, with up as positive.  The normal force is the apparent weight. 

2
R NF F mg m v r= − =∑  

The centripetal acceleration is to be 2 6.0 .v r g=   

  ( ) ( )2 2
N 7 7 78 kg 9.80 m s 5350 N 5400 NF mg m v r mg= + = = = =  

(c)  See the free-body diagram for the pilot at the top of the loop.  Notice that  
the normal force is down, because the pilot is upside down.  Write Newton’s 
second law in the vertical direction, with down as positive. 

2
R N N6     5 3800 NF F mg m v r mg F mg= + = = → = =∑  

 
48. To experience a gravity-type force, objects must be on the inside of the outer  

wall of the tube, so that there can be a centripetal force to move the objects in 
a circle.  See the free-body diagram for an object on the inside of the outer  
wall, and a portion of the tube.  The normal force of contact between the  
object and the wall must be maintaining the circular motion.  Write  
Newton’s second law for the radial direction. 

2
R NF F ma m v r= = =∑  

If this is to have the same effect as Earth gravity, then we must also have that  
N .F mg=   Equate the two expressions for normal force and solve for the speed.   

( ) ( )2 2
N     9.80 m s 550 m 73.42 m sF m v r mg v gr= = → = = =  

( ) ( )
31 rev 86,400 s

73.42 m s 1836 rev d 1.8 10 rev d
2 550 m 1 dπ

= ≈ ×
⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

 
49. The radius of either skater’s motion is 0.80 m, and the period is 2.5 sec.  Thus their speed is given by 

( )2 0.80 m
2 2.0 m s

2.5 s
.v r T

π
π= = =   Since each skater is moving in a circle, the net radial force on 

each one is given by Eq. 5-3. 
( )( )2

2 2
R

60.0 kg 2.0 m s
3.0 10 N

0.80 m
F m v r= = = × . 

 
50. A free-body diagram for the ball is shown.  The tension in the 

suspending cord must not only hold the ball up, but also provide the 
centripetal force needed to make the ball move in a circle.  Write 
Newton’s second law for the vertical direction, noting that the ball is 
not accelerating vertically.  

T Tsin 0    
siny

mg
F F mg Fθ

θ
= − = → =∑  

θ 

mg

TF

mg

NF

mg
NF

NF
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The force moving the ball in a circle is the horizontal portion of the tension.  Write Newton’s second 
law for that radial motion. 

2

R T RcosF F ma m v rθ= = =∑  
Substitute the expression for the tension from the first equation into the second equation, and solve 
for the angle.  Also substitute in the fact that for a rotating object, 2 .v r Tπ=   Finally we recognize 
that if the string is of length ,l  then the radius of the circle is cos .r θ= l  

( )( )
( )

2 2 2

T 2 2

222 2
1 1

2 2 2

4 4 cos
cos cos   

sin
9.80 m s 0.500 s

sin     sin sin 5.94
4 4 4 0.600 m

mg mv mr m
F

r T T

gT gT

π π θθ θ
θ

θ θ
π π π

− −

= = = = →

= → = = = °

l

l l

 

The tension is then given by 
( ) ( )2

T

0.150 kg 9.80 m s
14.2 N

sin sin 5.94
mg

F
θ

= = =
°

 

 
51. The force of static friction is causing the circular motion – it is the centripetal  

force.  The coin slides off when the static frictional force is not large enough to 
move the coin in a circle.  The maximum static frictional force is the coefficient 
of static friction times the normal force, and the normal force is equal to the 
weight of the coin as seen in the free-body diagram, since there is no vertical 
acceleration.  In the free-body diagram, the coin is coming out of the paper and 
the center of the circle is to the right of the coin, in the plane of the paper. 

 

 The rotational speed must be changed into a linear speed. 

  

( )

( )
( ) ( )

22
2

R fr N 2

2 0.120 mrev  1 min
35.0 0.4398m s

min 60 s 1 rev

0.4398 m s
        0.164

0.120 m 9.80 m ss s s

v

v
F F m v r F mg

rg

π

μ μ μ

= =

= → = = → = = =

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

 
52. For the car to stay on the road, the normal force must be greater 

than 0.  See the free-body diagram, write the net radial force, and 
solve for the radius. 

  
2 2

R N
N

cos     
cos

mv mv
F mg F r

r mg F
θ

θ
= − = → =

−
 

For the car to be on the verge of leaving the road, the normal force 

would be 0, and so 
2 2

critical cos cos
.mv v

r
mg gθ θ

= =   This expression 

gets larger as the angle increases, and so we must evaluate at the 
largest angle to find a radius that is good for all angles in the range. 

 ( )

2

2

critical 2
maximum max

1m s
95km h

3.6 km h
77 m

cos 9.80 m s cos 22
v

r
g θ

= = =
°

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  

 
 
 
 

mg

frFNF

Initial 
Road

Final 
Road

mg

NF

θθ
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53. (a) A free-body diagram of the car at the instant it is on the top of the hill is  
shown.  Since the car is moving in a circular path, there must be a net  
centripetal force downward.  Write Newton’s second law for the car, with  
down as the positive direction. 

   
( ) ( ) ( )

2
R N

2
2 2

N

  

12.0 m s
975kg 9.80 m s 7960 N

88.0 m

F mg F ma m v r

F m g v r

= − = = →

= − = − =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
 

(b) The free-body diagram for the passengers would be the same as the one for the car, leading to  
the same equation for the normal force on the passengers.  

( ) ( ) ( )2
2 2

N

12.0 m s
72.0 kg 9.80 m s 588 N

88.0 m
F m g v r= − = − =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Notice that this is significantly less than the 700-N weight of the passenger.  Thus the passenger 
will feel “light” as they drive over the hill. 

(c) For the normal force to be zero, we must have the following. 

( ) ( ) ( )2 2 2
N 0        9.80 m s 88.0 m 29.4 m sF m g v r g v r v gr= − = → = → = = =  

 
54. If the masses are in line and both have the same frequency of 

rotation, then they will always stay in line.  Consider a free-
body diagram for both masses, from a side view, at the 
instant that they are to the left of the post.  Note that the same 
tension that pulls inward on mass 2 pulls outward on mass 1, 
by Newton’s third law.  Also notice that since there is no 
vertical acceleration, the normal force on each mass is equal 
to its weight.  Write Newton’s second law for the horizontal 
direction for both masses, noting that they are in uniform circular motion. 

  2 2
RA TA TB A A A A A RB TB B B B B B      F F F m a m v r F F m a m v r= − = = = = =∑ ∑  

The speeds can be expressed in terms of the frequency as follows:   
rev 2

2 .
sec 1 rev

r
v f rf

π π= =⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( )

( ) ( )

22 2 2
TB B B B B B B B B

22 2 2 2
TA TB A A A B B A A A A A B B

2 4

4 2 4

F m v r m r f r m r f

F F m v r m r f m r f r f m r m r

π π

π π π

= = =

= + = + = +
 

 
55. A free-body diagram of Tarzan at the bottom of his swing is shown.  The upward  

tension force is created by his pulling down on the vine.  Write Newton’s second law  
in the vertical direction.  Since he is moving in a circle, his acceleration will be  
centripetal, and points upward when he is at the bottom. 

( )2 T
T     

F mg r
F F mg ma m v r v

m
−

= − = = → =∑  

 The maximum speed will be obtained with the maximum tension. 

( ) ( ) ( )( )2
T max

max

1350 N 78kg 9.80 m s 5.2 m
6.2 m s

78 kg

mg r
v

m

−−
= = =

F
 

 

mg
NF

mA mB 

Am gBm g

TBF TBF TAFNBF NAF

mg

TF
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56. The fact that the pilot can withstand 9.0 g’s without blacking out, along with the 
speed of the aircraft, will determine the radius of the circle that he must fly as he 
pulls out of the dive.  To just avoid crashing into the sea, he must begin to form 
that circle (pull out of the dive) at a height equal to the radius of that circle. 

  
( )
( )

22
2 3

R 2

310 m s
9.0     1.1 10 m

9.0 9.0 9.80 m s
v

a v r g r
g

= = → = = = ×  

 
57. (a) We are given that ( ) ( )2.0 m cos 3.0 rad sx t=  and ( ) ( )2.0 m sin 3.0 rad sy t= .  Square both  

components and add them together. 

   
( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( ) ( )

2 22 2

2 22 2

2.0 m cos 3.0 rad s 2.0 m sin 3.0 rad s

2.0 m cos 3.0 rad s sin 3.0 rad s 2.0 m          

x y t t

t t

+ = +

= + =⎡ ⎤⎣ ⎦
 

  This is the equation of a circle, 2 2 2x y r+ = , with a radius of 2.0 m. 

 (b) ( ) ( ) ( ) ( )ˆ ˆ6.0m s sin 3.0 rad s 6.0m s cos 3.0 rad st t= − +v i j  

  ( ) ( ) ( ) ( )2 2ˆ ˆ18m s cos 3.0 rad s 18m s sin 3.0 rad st t= − + −a i j  

 (c) ( ) ( )[ ] ( ) ( )[ ]2 22 2 6.0 m s sin 3.0 rad s 6.0 m s 3.0 rad s 6.0 m scosx yv t tv v= −+ = + =  

  ( ) ( ) ( ) ( )2 22 2 2 2 218 m s cos 3.0 rad s 18m s sin 3.0 rad s 18m sx ya a a t t= + = − + − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

 (d) ( )22
26.0 m s

18m s
2.0 m

v
a

r
= = =  

 (e) ( ) ( ) ( ) ( )2 2ˆ ˆ18m s cos 3.0 rad s 18 m s sin 3.0 rad st t= − + −a i j   

  ( ) ( ) ( ) ( ) ( )2 2ˆ ˆ9.0 s 2.0 m cos 3.0 rad s 2.0 msin 3.0 rad s 9.0 s  t t− +⎡ ⎤= = −⎣ ⎦i j r  

 We see that the acceleration vector is directed oppositely of the position vector.  Since the 
position vector points outward from the center of the circle, the acceleration vector points 
toward the center of the circle. 

 
58. Since the curve is designed for 65 km/h, traveling at a higher speed with the same radius means that 

more centripetal force will be required.  That extra centripetal force will be supplied by a force of 
static friction, downward along the incline.  See the free-body diagram for the car on the incline.  
Note that from Example 5-15 in the textbook, the no-friction banking angle is given by the 
following. 

  
( )

( ) ( )

2

2
1 1

2

1.0 m s
65km h

3.6 km h
tan tan 21.4

85m 9.80 m s
v
rg

θ − −= = =

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦ °  

Write Newton’s second law in both the x and y directions.  The car will have no acceleration in the y 
direction, and centripetal acceleration in the x direction.  We also assume that the car is on the verge 
of skidding, so that the static frictional force has its maximum value of fr N .sF Fμ=   Solve each 
equation for the normal force. 

N fr N Ncos sin 0    cos sin   y sF F mg F F F mgθ θ θ μ θ= − − = → − = →∑  
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( )N cos sins

mg
F

θ μ θ
=

−
 

( )

2 2
N fr R N N

2

N

sin cos     sin cos   

sin cos

x s

s

F F F F mv r F F mv r

mv r
F

θ θ θ μ θ

θ μ θ

= + = = → + = →

=
+

∑
 

Equate the two expressions for NF , and solve for the coefficient of friction.  The speed of rounding  

the curve is given by ( ) 1.0 m s
95km h 26.39 m s

3.6 km h
.v = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( ) ( )
2

 
cos sin sin coss s

mg mv r
θ μ θ θ μ θ

= →
− +

 

( ) ( )
( )

22 2
2

2 2 2
2

26.39 m s
9.80 m s tan 21.4cos sin tan

85m
0.33

26.39 m scos sin tan 9.80 m s tan 21.4
85 m

s

v v
g g

r r
v v

g g
r r

θ θ θ
μ

θ θ θ

− °− −
= = = =

+ + + °

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
59. Since the curve is designed for a speed of 85 km/h, traveling at that speed 

would mean no friction is needed to round the curve.  From Example 5-
15 in the textbook, the no-friction banking angle is given by  

( )

( ) ( )

2

2
1 1

2

1m s
85km h

3.6 km h
tan tan 39.91

68 m 9.80 m s
v
rg

θ − −= = = °

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  

Driving at a higher speed with the same radius means that more centripetal force will be required 
than is present by the normal force alone.  That extra centripetal force will be supplied by a force of 
static friction, downward along the incline, as shown in the first free-body diagram for the car on the 
incline.  Write Newton’s second law in both the x and y directions.  The car will have no acceleration 
in the y direction, and centripetal acceleration in the x direction.  We also assume that the car is on 
the verge of skidding, so that the static frictional force has its maximum value of fr N .sF Fμ=  

( )

N fr N N

N

cos sin 0    cos sin   

cos sin

y s

s

F F mg F F F mg

mg
F

θ θ θ μ θ

θ μ θ

= − − = → − = →

=
−

∑
 

( )

2 2
N fr N N

2

N

sin cos     sin cos   

sin cos

x s

s

F F F m v r F F m v r

mv r
F

θ θ θ μ θ

θ μ θ

= + = → + = →

=
+

∑
 

Equate the two expressions for the normal force, and solve for the speed. 

( ) ( )
( )
( ) ( ) ( ) ( )

( )

2

2

  
sin cos cos sin

sin cos sin 39.91 0.30cos39.91
  68m 9.80 m s 32 m s

cos sin cos39.91 0.30sin 39.91

s s

s

s

mv r mg

v rg

θ μ θ θ μ θ

θ μ θ
θ μ θ

= →
+ −

+ ° + °
= = =

− ° − °

 

 

θ 

θ y 
x 

θ 
mg

NF

frF
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Now for the slowest possible speed.  Driving at a slower speed with 
the same radius means that less centripetal force will be required than 
that supplied by the normal force.  That decline in centripetal force 
will be supplied by a force of static friction, upward along the incline, 
as shown in the second free-body diagram for the car on the incline.  
Write Newton’s second law in both the x and y directions.  The car 
will have no acceleration in the y direction, and centripetal 
acceleration in the x direction.  We also assume that the car is on the 
verge of skidding, so that the static frictional force has its maximum value of fr N .sF Fμ=  

( )

N fr

N N N

cos sin 0  

cos sin      
cos sin

y

s
s

F F mg F

mg
F F mg F

θ θ

θ μ θ
θ μ θ

= − + = →

+ = → =
+

∑
 

( )

2 2
N fr N N

2

N

sin cos     sin cos   

sin cos

x s

s

F F F m v r F F m v r

mv r
F

θ θ θ μ θ

θ μ θ

= − = → − = →

=
−

∑
 

Equate the two expressions for the normal force, and solve for the speed. 

( ) ( )
( )
( ) ( ) ( ) ( )

( )

2

2

  
sin cos cos sin

sin cos sin 39.91 0.30cos39.91
  68m 9.80 m s 17 m s

cos sin cos39.91 0.30sin 39.91

s s

s

s

mv r mg

v rg

θ μ θ θ μ θ

θ μ θ
θ μ θ

= →
− +

− ° − °
= = =

+ ° + °

 

Thus the range is 17 m s 32 m s ,v≤ ≤  which is 61km h 115km h .v≤ ≤  

 
60. (a) The object has a uniformly increasing speed, which means the tangential acceleration is  

constant, and so constant acceleration relationships can be used for the tangential motion.  The 
object is moving in a circle of radius 2.0 meters. 

   
( )[ ] ( )tan 0 1

tan 4tan
tan tan 0

tan

2 2 2.0 m2
    m s

2 2.0s

v v
rx

x t v v
t t

π π
π

+
Δ

Δ = → = − = = =  

 (b) The initial location of the object is at ˆ2.0 mj , and the final location is ˆ2.0 m .i  

   ( )0
avg

ˆ ˆ2.0 m 2.0 m ˆ ˆ1.0 m s
2.0st

− −
= = = −

r r i j
v i j  

 (c) The velocity at the end of the 2.0 seconds is pointing in the ˆ−j  direction.   

   ( ) ( )20
avg

ˆm s ˆ2 m s
2.0st
π

π
−−

= = = −
jv v

a j  

 
61. Apply uniform acceleration relationships to the tangential motion to find the tangential acceleration.  

Use Eq. 2-12b. 

  
( )[ ] ( )

( )
( )

1
2 24tan1

tan 0 tan tan2 22 2
tan

2 2 2.0 m2
    2 m s

2.0s

rx
x v t a t a

t t
π π

πΔ
Δ = + → = = = =  

 The tangential acceleration is constant.  The radial acceleration is found from ( )22
tantan

rad .a tv
a

r r
= =  

y 
x 

θ 

θ 

θ 

mg

NFfrF
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 (a) ( ) ( ) ( ) ( ) 222
2 tan

tan rad

2 m s 0s
2 m s ,  0

2.0 m
a t

a a
r

π
π= = = =

⎡ ⎤⎣ ⎦  

 (b) ( ) ( ) ( ) ( ) ( )
222

2 2 2tan
tan rad

2 m s 1.0s
2 m s ,  8 m s

2.0 m
a t

a a
r

π
π π= = = =

⎡ ⎤⎣ ⎦  

 (c) ( ) ( ) ( ) ( ) ( )
222

2 2 2tan
tan rad

2 m s 2.0s
2 m s ,  2 m s

2.0 m
a t

a a
r

π
π π= = = =

⎡ ⎤⎣ ⎦  

 
62. (a) The tangential acceleration is the time derivative of the speed. 

   
( ) ( ) ( )

2
2tan

tan tan

3.6 1.5
3.0     3.0s 3.0 3.0 9.0 m s

d tdv
a t a

dt dt

+
= = = → = =  

 (b) The radial acceleration is given by Eq. 5-1. 

   
( ) ( )

( )( )22 222
2tan

rad rad

3.6 1.5 3.03.6 1.5
   3.0s 13m s

22 m

tv
a a

r r

++
= = → = =  

 
63. We show a top view of the particle in circular motion, traveling clockwise.  

Because the particle is in circular motion, there must be a radially-inward 
component of the acceleration. 
(a) 2

R sin   a a v rθ= = →  

( ) ( )2 osin 1.15 m s 3.80 m sin 38.0 1.64 m sv ar θ= = =  

(b)  The particle’s speed change comes from the tangential acceleration,  
which is given by tan cos .a a θ=   If the tangential acceleration is 

 constant, then using Eq. 2-12a,  

  ( ) ( ) ( )
tan 0 tan tan

2
tan 0  tan tan

  

1.64 m s 1.15m s cos38.0 2.00 s 3.45m s

v v a t

v v a t

− = →

= + = + ° =
 

 
64. The tangential force is simply the mass times the tangential acceleration. 

( )2 2    T T Ta b ct F ma m b ct= + → = = +  

To find the radial force, we need the tangential velocity, which is the anti-derivative of the tangential 
acceleration.  We evaluate the constant of integration so that 0v v=  at 0.t =  

  
( )

( )

2 3 31 1
0 03 3

2
231

0 3

        0     T T T

T
R

a b ct v c bt ct v c v v v bt ct

mv m
F v bt ct

r r

= + → = + + → = = → = + +

= = + +
 

 
65. The time constant τ must have dimensions of [ ]T .   The units of m are [ ]M .   Since the expression 

bv  is a force, we must have the dimensions of b  as force units divided by speed units.  So the 

 dimensions of b  are as follows:  
[ ]

[ ]

2M L TForce units M
speed units L T T

.= =
⎡ ⎤ ⎡ ⎤⎣ ⎦

⎢ ⎥⎣ ⎦
  Thus to get dimensions of  

[ ]T , we must have .m bτ =  

θ 
a

Ra

tana
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66. (a) The terminal velocity is given by Eq. 5-9.  This can be used to find the value of .b  
( ) ( )

( )

5 2
5 5

T
T

3 10 kg 9.80 m s
    3.27 10 kg s 3 10 kg s

9 m s
mg mg

v b
b v

−
− −

×
= → = = = × ≈ ×  

(b) From Example 5-17, the time required for the velocity to reach 63% of terminal velocity is the 
time constant, .m bτ =  

5

5

3 10 kg
0.917s 1s

3.27 10 kg s
m
b

τ
−

−

×
= = = ≈

×
 

 
67. (a) We choose downward as the positive direction.  Then the force of gravity is in the positive  

direction, and the resistive force is upwards.  We follow the analysis given in Example 5-17. 

   
00

net

0

0

0 0

      

        ln   

ln         1

vv t

vv

b b b
t t t

m m m

dv b b mg
F mg bv ma a g v v

dt m m b

dv b dv b mg b
dt dt v t

mg mgm m b mv v
b b

mg mg
v vb mgb bt e v e v e

mg mgm bv v
b b

− − −

= − = → = = − = − − →

= − → = − → − = − →
− −

− −
= − → = → = − +

− −

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥
⎝ ⎠⎢ ⎥

⎣ ⎦

∫ ∫  

  Note that this motion has a terminal velocity of terminalv mg b= . 
 (b) We choose upwards as the positive direction.  Then both the force of gravity and the resistive  

force are in the negative direction. 

   net       
dv b b mg

F mg bv ma a g v v
dt m m b

= − − = → = = − − = − + →⎛ ⎞
⎜ ⎟
⎝ ⎠

 

   

00 0

0

0 0

        ln   

ln         1

vv t

vv

b b b
t t t

m m m

dv b dv b mg b
dt dt v t

mg mgm m b mv v
b b

mg mg
v vb mgb bt e v e v e

mg mgm bv v
b b

− − −

= − → = − → + = − →
+ +

+ +
= − → = → = − +

+ +

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥
⎝ ⎠⎢ ⎥

⎣ ⎦

∫ ∫

 

After the object reaches its maximum height 0
rise ln 1 ,m bv

t
b mg

= +
⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 at which point the speed 

will be 0, it will then start to fall.  The equation from part (a) will then describe its falling 
motion. 

 
68. The net force on the falling object, taking downward as positive, will be 2 .F mg bv ma= − =∑  
 (a) The terminal velocity occurs when the acceleration is 0. 

   2 2
T T    0    mg bv ma mg bv v mg b− = → − = → =  

 (b) 
( ) ( )

( )

2

T 22
T

75kg 9.80 m s
    0.2 kg m

60 m s
mg mg

v b
b v

= → = = =  
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 (c) The curve would be qualitatively like Fig. 5-27, because the speed would increase from 0 to the  
terminal velocity, asymptotically.  But this curve would be ABOVE the one in Fig. 5-27, 
because the friction force increases more rapidly.  For Fig. 5-27, if the speed doubles, the 
friction force doubles.  But in this case, if the speed doubles, the friction force would increase 
by a factor of 4, bringing the friction force closer to the weight of the object in a shorter period 
of time. 

 
69. (a) See the free-body diagram for the coasting.  Since the bicyclist has a  

constant velocity, the net force on the bicycle must be 0.  Use this to 
find the value of the constant c. 

   
 
 
 
 
 
 
 
 

(b) Now another force, P ,F  must be added down the plane to represent  
the additional force needed to descend at the higher speed.  The 
velocity is still constant.  See the new free-body diagram. 

  
2

P D P

2
P

sin sin 0  

sin
xF mg F F mg F cv

F cv mg

θ θ

θ

= + − = + − = →

= −

∑  

( ) ( ) ( )
2

21m s
    13.72 kg m 25km h 80.0kg 9.80 m s sin 7.0 570 N

3.6 km h
= − ° =

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 
70. (a) The rolling drag force is given as D1 4.0 N.F ≈   The air resistance drag force is proportional to  

2 ,v  and so D2
2.F bv=   Use the data to find the proportionality constant, and then sum the two 

drag forces to find the total drag force. 

   
( )

( )

( )

22
D2 2

2
D D1 D2

1.0 N
    1.0 N 2.2 m s     0.2066 kg m

2.2 m s

4.0 0.21 N

F bv b b

F F F v

= → = → = =

= + = +

   

(b) See the free-body diagram for the coasting bicycle and rider.  Take 
the positive direction to be down the plane, parallel to the plane.  
The net force in that direction must be 0 for the bicycle to coast at a 
constant speed. 

( )

( ) ( )( )
( ) ( )

D D

2
1 1D

2

1
2

sin 0    sin   

4.0 0.2066
sin sin

4.0N 0.2066 kg m 8.0 m s
sin 1.3

78kg 9.80 m s
 

x
F mg F mg F

vF
mg mg

θ θ

θ − −

−

= − = → = →

+
= =

+
= = °

∑

  

 

θ  
mg

NF
DF

θ 

y

x 

θ  
mg

NF
DF

θ 

y

x 

θ  
mg

NF
DF

θ 

y

x 

PF

( ) ( )
2

D

2

22

sin sin 0  

80.0kg 9.80 m s sin 7.0sin
13.72 kg m

1m s
9.5km h

3.6 km h

 14 kg m

xF mg F mg cv

mg
c

v

θ θ

θ

= − = − = →

°
= = =

≈

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

∑
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71. From Example 5-17, we have that 1 .
b

t
mmg

e
b

v
−

= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

  We use this expression to find the position 

and acceleration expressions. 

  
b b

t t
m mdv mg b

a e ge
dt b m

− −
= = − − =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

  
0 0 0

2

2
0

        1   

1

bx t t
t

m

tb b
t t

m m

dx mg
v dx vdt dx v dt e dt

dt b

mg mg m mg m g
x t e t e

b b b b b

−

− −

= → = → = = − →

= + = + −

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠

∫ ∫ ∫
 

 
72. We solve this problem by integrating the acceleration to find the velocity, and integrating the 

velocity to find the position. 

  

1 1
2 2

1
2

1 1 1
2 2 2

1
2

0

net

2

0 0
0

          

             2 2     
2

v t

v

dv dv b dv b
F bv ma m v dt

dt dt m mv

dv b b bt
dt v v t v v

m m mv

= − = = → = − → = − →

= − → − = − → = −⎛ ⎞
⎜ ⎟
⎝ ⎠∫ ∫

  

  

1 1 1
2 2 2

3 31 1
2 2 2 2

2 2 2

0 0 0
0 0

3 3

0 0 0 0

          
2 2 2

2 2
3 2 3 2

x tdx bt bt bt
v dx v dt dx v dt

dt m m m

m bt m bt
x v v v v

b m b m

= − → = − → = − →

= − − − = − −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫
 

  

3 3 3 31 1
2 2 2 2 2 2

1
2

2 2 3 3 2 2 3 3

0 0 0 0 0 0 0 02 3 2 3

2
2 30

0 2

2 2
3 3 3 3

3 2 4 8 3 2 4 8

2 12

  

  

m bt b t b t m bt b t b t
v v v v v v v v

b m m m b m m m

v b b
v t t t

m m

= − − + − − + − +

= − +

⎛ ⎞⎛ ⎞ ⎛ ⎞=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

73. From problem 72, we have that 
1
2

2

0 2
bt

v v
m

= −⎛ ⎞
⎜ ⎟
⎝ ⎠

 and 
1
2 2

2 30
0 22 12

.v b b
x v t t t

m m
= − +
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

  The maximum 

distance will occur at the time when the velocity is 0.  From the equation for the velocity, we see that 

happens at 
1
2

0
max

2 .mv
t

b
=   Use this time in the expression for distance to find the maximum distance.

 ( )
3 3 3 31 1 1 1

2 2 2 2 2 2 2 2

2 3
2

0 0 0 0 0 0 0 0
max 0 2

2 2 2 2 2 2 2
2 12 3 3

mv v b mv b mv mv mv mv mv
x t t v

b m b m b b b b b
= = − + = − + =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
74. The net force is the force of gravity downward, and the drag force upwards.  Let the downward 

direction be positive.  Represent the value of 41.00 10 kg s×  by the symbol b, as in Eq. 5-6. 

  d      
dv dv b

F mg F mg bv ma m g v
dt dt m

= − = − = = → = − →∑  
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0

0
0

        ln ln
v t

v

dv b dv b mg mg b
dt dt v v t

mg mgm m b b mv v
b b

= − → = − → − − − = −
− −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  

 Solve for t, and evaluate at 00.02 .v v=  

  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0

2 2

4 4

4

2 2

ln 0.02 ln

75kg 9.80 m s 75kg 9.80 m s
ln 0.02 5.0 m s ln 5.0 m s

1.00 10 kg s 1.00 10 kg s
 

1.00 10 kg s 75kg

3.919 10 s 3.9 10 s 

mg mg
v v

b bt
b m

− −

− − −
=

−

− − −
× ×

=
− ×

= × ≈ ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

 
75. The only force accelerating the boat is the drag force, and so Newton’s second law becomes 

.F bv ma= − =∑   Use this to solve for the velocity and position expressions, and then find the 
distance traveled under the given conditions. 

  0 0 0

0

            ln   
v t

v

b t
m

dv dv b dv b b
F bv ma m v dt t

dt dt m v m m
v
v

v v e
−

= − = = → = − → = − → = − →

=

∑ ∫ ∫
 

 Note that this velocity never changes sign.  It asymptotically approaches 0 as time approaches 
infinity.  Apply the condition that at t = 3.0 s the speed is 1

02 .v v=  

  ( )
( )3.0

1
0 02

ln 2
3.0     

3.0s

b
m b

v t v e v
m

−
= = = → =  

 Now solve for the position expression.  The object will reach its maximum position when it stops, 
which is after an infinite time. 

  

( ) ( )

0 0 0
0 0

0 0 0

          

3.0s
1 1     2.4 m s 10.39 m 10 m

ln 2

b b bx t
t t t

m m m

b b
t t

m m

dx
v v e dx v e dt dx v e dt

dt

m m m
x v e v e x t v

b b b

− − −

− −

= = → = → = →

= − − = − → = ∞ = = = ≈
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫
 

 
76. A free-body diagram for the coffee cup is shown.  Assume that the car is moving to 

the right, and so the acceleration of the car (and cup) will be to the left.  The  
deceleration of the cup is caused by friction between the cup and the dashboard.  For 
the cup to not slide on the dash, and to have the minimum deceleration time means 
the largest possible static frictional force is acting, so fr N .sF Fμ=   The normal force 
on the cup is equal to its weight, since there is no vertical acceleration.  The 
horizontal acceleration of the cup is found from Eq. 2-12a, with a final velocity of zero. 

( )0

20
0

1m s
45 km h 12.5 m s

3.6 km h

0 12.5 m s
    3.57 m s

3.5 s

v

v v
v v at a

t

= =

− −
− = → = = = −

⎛ ⎞
⎜ ⎟
⎝ ⎠  

mg

NF

frF
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Write Newton’s second law for the horizontal forces, considering to the right to be positive. 
( )2

fr N 2

3.57 m s
        0.36

9.80 m sx s s s

a
F F ma ma F mg

g
μ μ μ

−
= − = → = − = − → = − = − =∑  

 
77. Since the drawer moves with the applied force of 9.0 N, we assume that the maximum static 

frictional force is essentially 9.0 N.  This force is equal to the coefficient of static friction times the 
normal force.  The normal force is assumed to be equal to the weight, since the drawer is horizontal. 

  
( ) ( )

fr
fr N 2

9.0 N
    0.46

2.0 kg 9.80 m ss s s

F
F F mg

mg
μ μ μ= = → = = =   

 
78. See the free-body diagram for the descending roller coaster.  It starts its 

descent with ( )0

1m s
6.0 km h 1.667 m s

3.6 km h
.v = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

  The total 

displacement in the x direction is 0 45.0 m.x x− =   Write Newton’s second 
law for both the x and y directions. 

N Ncos 0    cosyF F mg F mgθ θ= − = → =∑  

( )

fr Nsin sin sin cos

sin cos
          sin cos

x k k

k
k

F ma mg F mg F mg mg

mg mg
a g

m

θ θ μ θ μ θ

θ μ θ
θ μ θ

= = − = − = −

−
= = −

∑
 

Now use Eq. 2-12c to solve for the final velocity. 
( )
( ) ( ) ( )

( ) ( ) ( )[ ]( )

2 2
0 0

2 2
0 0 0 0

2 2

2   

2 2 sin cos

  1.667 m s 2 9.80 m s sin45 0.12 cos45 45.0 m

  23.49 m s 23m s 85km h

k

v v a x x

v v a x x v g x xθ μ θ

− = − →

= + − = + − −

= + ° − °

= ≈ ≈

 

 
79. Consider a free-body diagram of the box.  Write Newton’s second law for 

both directions.  The net force in the y direction is 0 because there is no 
acceleration in the y direction. 

N N

fr

cos 0    cos

sin
y

x

F F mg F mg

F mg F ma

θ θ

θ

= − = → =

= − =

∑
∑

 

Now solve for the force of friction and the coefficient of friction. 

N N

fr

cos 0    cos

sin
y

x

F F mg F mg

F mg F ma

θ θ

θ

= − = → =

= − =

∑
∑

  

( ) ( ) ( ) ( )2 o 2
fr sin sin 18.0 kg 9.80 m s sin 37.0 0.220 m s

    102.2 N 102 N

F mg ma m g aθ θ= − = − = −

= ≈

⎡ ⎤⎣ ⎦
 

( ) ( )
fr

fr N 2 o

102.2 N
cos     0.725

cos 18.0 kg 9.80 m s cos37.0k k k

F
F F mg

mg
μ μ θ μ

θ
= = → = = =  

 
 

y

x 
θ θ 

mg

NF
frF

y

x

mg

NF

θ θ

frF
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80. Since mass m is dangling, the tension in the cord must be equal to the weight of mass m, and so  
T .F mg=   That same tension is in the other end of the cord, maintaining the circular motion of mass 

M, and so  2
T R R .F F Ma M v r= = =   Equate the expressions for tension and solve for the velocity. 

2     M v r mg v mgR M= → =  

 
81. Consider the free-body diagram for the cyclist in the sand, assuming that the 

cyclist is traveling to the right.  It is apparent that NF mg=  since there is no 
vertical acceleration.  Write Newton’s second law for the horizontal direction, 
positive to the right. 

fr         x k kF F ma mg ma a gμ μ= − = → − = → = −∑  
Use Eq. 2-12c to determine the distance the cyclist could travel in the sand 
before coming to rest.   

( ) ( ) ( )
( ) ( )

22 2 2
2 2 0 0

0 0 0 2

20.0 m s
2     29 m

2 2 2 0.70 9.80 m sk

v v v
v v a x x x x

a gμ
− −

− = − → − = = = =
−

 

Since there is only 15 m of sand, the cyclist will emerge from the sand .  The speed upon emerging is 
found from Eq. 2-12c. 

( )2 2
0 02   v v a x x− = − →  

( ) ( ) ( ) ( ) ( ) ( )22 2 2
0 0 02 2 20.0 m s 2 0.70 9.80 m s 15m

  14 m s

i kv v a x x v g x xμ= + − = − − = −

=
 

 
82.  Consider the free-body diagram for a person in the “Rotor-ride.”  NF  is the  

normal force of contact between the rider and the wall, and frF  is the static 
frictional force between the back of the rider and the wall.  Write Newton’s 
second law for the vertical forces, noting that there is no vertical acceleration.   

fr fr0    yF F mg F mg= − = → =∑  
If we assume that the static friction force is a maximum, then  

fr N N    s sF F mg F m gμ μ= = → = . 
 But the normal force must be the force causing the centripetal motion – it is the  

only force pointing to the center of rotation.  Thus 2
R N .F F m v r= =   Using 2 ,v r Tπ=  we have 

2

2

4 .N

mr
F

T
π

=   Equate the two expressions for the normal force and solve for the coefficient of 

friction.  Note that since there are 0.50 rev per sec, the period is 2.0 sec. 

( ) ( )
( )

222 2

2 2 2

9.80 m s 2.0s4
    0.18

4 4 5.5mN s
s

mr mg gT
F

T r
π μ

μ π π
= = → = = =  

Any larger value of the coefficient of friction would mean that the normal force could be smaller to 
achieve the same frictional force, and so the period could be longer or the cylinder radius smaller. 

 

There is no force pushing outward on the riders.  Rather, the wall pushes against the riders, so by 
Newton’s third law, the riders push against the wall.  This gives the sensation of being pressed into 
the wall.  

 

mg

NF

frF

mg
NF

frF
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83. The force is a centripetal force, and is of magnitude 7.45 .mg   Use Eq. 5-3 for centripetal force. 

  
( ) ( )

( ) ( )

2
27.45     7.45 7.45 11.0 m 9.80 m s 28.34 m s 28.3m s

1rev
28.34 m s 0.410 rev s

2 11.0 m

v
F m mg v rg

r

π

= = → = = = ≈

× =
 

 
84. The car moves in a horizontal circle, and so there must be a net horizontal  

centripetal force.  The car is not accelerating vertically.  Write Newton’s 
second law for both the x and y directions. 

N N

R N

cos 0    
cos

sin

y

x x

mg
F F mg F

F F F ma

θ
θ

θ

= − = → =

= = =

∑
∑ ∑

 

 The amount of centripetal force needed for the car to round the curve is as follows. 

( )
( )

2

2 3
R

1.0 m s
85km h

3.6 km h
1250 kg 9.679 10 N

72 m
F m v r= = = ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  

The actual horizontal force available from the normal force is as follows. 

( ) ( )2 3
N sin sin tan 1250 kg 9.80 m s tan14 3.054 10 N

cos
mg

F mgθ θ θ
θ

= = = = ×°  

Thus more force is necessary for the car to round the curve than can be 
supplied by the normal force.  That extra force will have to have a 
horizontal component to the right in order to provide the extra centripetal 
force.  Accordingly, we add a frictional force pointed down the plane.  
That corresponds to the car not being able to make the curve without 
friction. 

 

 Again write Newton’s second law for both directions, and again the y  
acceleration is zero. 

fr
N fr N

2
N fr

sin
cos sin 0    

cos
sin cos

y

x

mg F
F F mg F F

F F F m v r

θ
θ θ

θ
θ θ

+
= − − = → =

= + =

∑

∑
 

Substitute the expression for the normal force from the y equation into the x equation, and solve for 
the friction force. 

( )

( ) ( ) ( )

2
2 2fr

fr fr fr

2
3 2

fr

3

sin
sin cos     sin sin cos cos

cos

cos sin 9.679 10 N cos14 1250 kg 9.80 m s sin14

    6.428 10 N

mg F v
F m v r mg F F m

r
v

F m mg
r

θ θ θ θ θ θ θ
θ

θ θ

+
+ = → + + =

= − = × ° − °

= ×

 

So a frictional force of 36.4 10 N down the plane× is needed to provide the necessary centripetal 
force to round the curve at the specified speed. 

 
 
 
 

y 
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85. The radial force is given by Eq. 5-3. 

  ( ) ( )22

R

27 m s
1150 kg 1863N 1900 N

450 m s
v

F m
r

= = = ≈  

The tangential force is the mass times the tangential acceleration.  The tangential acceleration is the 
change in tangential speed divided by the elapsed time. 

  ( ) ( )
( )

T
T T

27 m s
1150 kg 3450 N 3500 N

9.0s
v

F ma m
t

Δ
= = = = ≈

Δ
 

 
86. Since the walls are vertical, the normal forces are horizontal, away 

from the wall faces.  We assume that the frictional forces are at 
their maximum values, so fr NsF Fμ=  applies at each wall.  We 
assume that the rope in the diagram is not under any tension and 
so does not exert any forces.  Consider the free-body diagram for 
the climber.  NRF  is the normal force on the climber from the right 
wall, and NLF  is the normal force on the climber from the left wall.  The static frictional forces are 

frL L NLsF Fμ=  and frR R NRsF Fμ= .  Write Newton’s second law for both the x and y directions.  The 
net force in each direction must be zero if the climber is stationary. 

  NL NR NL NR frL frR0            0x yF F F F F F F F mg= − = → = = + − =∑ ∑  
Substitute the information from the x equation into the y equation. 

( )

( )
( ) ( )

frL frR L NL R NR L R NL

2
2

NL
L R

        

70.0 kg 9.80 m s
4.90 10 N

1.40

s s s s

s s

F F mg F F mg F mg

mg
F

μ μ μ μ

μ μ

+ = → + = → + =

= = = ×
+

 

And so 2
NL NR 4.90 10 N .F F= = ×   These normal forces arise as Newton’s third law reaction forces 

to the climber pushing on the walls.  Thus the climber must exert a force of at least 490 N against 
each wall. 

 
87. The mass would start sliding when the static frictional force was not 

large enough to counteract the component of gravity that will be 
pulling the mass along the curved surface.  See the free-body diagram, 
and assume that the static frictional force is a maximum.  We also 
assume the block has no speed, so the radial force must be 0. 

  

radial N N

tangential fr fr

fr s N s s

1 1

cos     cos

sin     sin

cos sin     tan   

tan tan 0.70 35s

F F mg F mg

F mg F F mg

F F mg mg

φ φ

φ φ

μ μ φ φ μ φ

φ μ− −

= − → =

= − → =

= = = → = →

= = = °

∑
∑  

 
88. (a) Consider the free-body diagrams for both objects, initially stationary.  As sand is added, the  

tension will increase, and the force of static friction on the block will increase until it reaches its 
maximum of fr N.sF Fμ=   Then the system will start to move.  Write Newton’s second law for 
each object, when the static frictional force is at its maximum, but the objects are still 
stationary. 

climber 

y 
x 

mg

NRF
NLF

frLF
frRF

NF

mg

φ

frF
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 bucket 1 T T 1

 block N 2 N 2

 block T fr T fr

0    

0    

0    

y

y

x

F m g F F m g

F F m g F m g

F F F F F

= − = → =

= − = → =

= − = → =

∑
∑
∑

 

Equate the two expressions for tension, and substitute in the expression for 
the normal force to find the masses.  

( ) ( )
1 fr 1 N 2

1 2

      

0.45 28.0 kg 12.6 kg
s s

s

m g F m g F m g

m m

μ μ
μ

= → = = →

= = =
 

Thus 12.6 kg 2.00 kg 10.6 kg 11kg− = ≈  of sand was added. 

(b) The same free-body diagrams can be used, but now the objects will 
accelerate.  Since they are tied together, 1 2 .y xa a a= =   The frictional force is 

now kinetic friction, given by fr N 2 .k kF F m gμ μ= =   Write Newton’s second 
laws for the objects in the direction of their acceleration. 

 bucket 1 T 1 T 1 1

 block T fr 2 T fr 2

    

    
y

x

F m g F m a F m g m a

F F F m a F F m a

= − = → = −

= − = → = +

∑
∑

 

Equate the two expressions for tension, and solve for the acceleration. 

( )
( ) ( ) ( ) ( )( )

( )

1 1 2 2

2 21 2

1 2

12.6 kg 0.32 28.0 kg
9.80 m s 0.88m s

12.6 kg 28.0kg

  k

k

m g m a m g m a

m m
a g

m m

μ

μ

− = +

−−
= = =

+ +

→
 

 
89. The acceleration that static friction can provide can be found from the minimum stopping distance, 

assuming that the car is just on the verge of sliding.  Use Eq. 2-12c.  Then, assuming an unbanked 
curve, the same static frictional force is used to provide the centripetal acceleration needed to make 
the curve.  The acceleration from the stopping distance is negative, and so the centripetal 
acceleration is the opposite of that expression. 

  ( ) ( ) ( ) ( )
2 2 2

2 2 0 0
0 0

2
0

stopping R
0 0 0

2     
2 2

    
2

v v v
v v a x x a

va
x x x x x x

− −
− = − → = = → =

− − −
 

 Equate the above expression to the typical expression for centripetal acceleration.     

  
( ) ( )

2 2
0

R 0
0

    2 132 m
2

v v
a r x x

r x x
= = → = − =

−
 

 Notice that we didn’t need to know the mass of the car, the initial speed, or the coefficient of friction. 
 
90. The radial acceleration is given by 2 .Ra v r=   Substitute in the speed of the tip of the sweep hand, 

given by 2 ,v r Tπ=  to get 
2

2

4 .R

r
a

T
π

=   For the tip of the sweep hand, r = 0.015 m, and T = 60 sec. 

( )
( )

22
4 2

22

4 0.015 m4
1.6 10 m s

60 s
R

r
a

T
ππ −= = = ×  

 
 
 
 
 

x2 

y2 

 
y1 

1m g

2m g
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91. (a) The horizontal component of the lift force will produce a centripetal  
acceleration.  Write Newton’s second law for both the horizontal and 
vertical directions, and combine those equations to solve for the time 
needed to reverse course (a half-period of the circular motion).  Note that 

2 .r
T

v
π

=  

   
2

vertical lift horizontal liftcos   ;  sin
v

F F mg F F m
r

θ θ= = = =∑ ∑  

  Divide these two equations. 

   
( )

( )

2 2 2
lift

lift

2

sin 2
    tan   

cos
2

1.0 m s
480 km h

3.6 km h
55s

2 tan 9.80 m s tan 38

F mv v v v
TvF rmg rg gTg

T v
g

θ πθ
θ

π

π
π

θ

= → = = = →

= = =
°

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 (b) The passengers will feel a change in the normal force that their seat exerts on them.  Prior to the  
banking, the normal force was equal to their weight.  During banking, the normal force will 

increase, so that normal
banking

1.27 .
cos
mg

F mg
θ

= =   Thus they will feel “pressed down” into their seats, 

with about a 25% increase in their apparent weight.  If the plane is banking to the left, they will 
feel pushed to the right by that extra 25% in their apparent weight. 

 

92. From Example 5-15 in the textbook, the no-friction banking angle is given by 
2

1 0tan .v
Rg

θ −=   The 

centripetal force in this case is provided by a component of the normal 
force.  Driving at a higher speed with the same radius requires more 
centripetal force than that provided by the normal force alone.  The 
additional centripetal force is supplied by a force of static friction, 
downward along the incline.  See the free-body diagram for the car on 
the incline.  The center of the circle of the car’s motion is to the right of 
the car in the diagram.  Write Newton’s second law in both the x and y 
directions.  The car will have no acceleration in the y direction, and 
centripetal acceleration in the x direction.  Assume that the car is on the verge of skidding, so that the 
static frictional force has its maximum value of fr NsF Fμ= . 

( )

N fr N N

N

cos sin 0    cos sin   

cos sin

y s

s

F F mg F F F mg

mg
F

θ θ θ μ θ

θ μ θ

= − − = → − = →

=
−

∑
 

( )

2 2
R N fr N N

2

N

sin cos     sin cos   

sin cos

x s

s

F F F F m v R F F m v R

mv R
F

θ θ θ μ θ

θ μ θ

= = + = → + = →

=
+

∑
 

Equate the two expressions for the normal force, and solve for the speed, which is the maximum 
speed that the car can have. 

y 
x 

θ 
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mg
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frF
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( ) ( )

( )
( )

( )
( )

2

2
0

max 0 2
0

  
sin cos cos sin

11 tansin
cos 1 tan 1

s s

ss

s s

mv R mg

Rg v
v Rg v

v Rg

θ μ θ θ μ θ

μμ θθ
θ μ θ μ

= →
+ −

++
= =

− −

 

Driving at a slower speed with the same radius requires less 
centripetal force than that provided by the normal force alone.  The 
decrease in centripetal force is supplied by a force of static friction, 
upward along the incline.  See the free-body diagram for the car on 
the incline.  Write Newton’s second law in both the x and y directions.  
The car will have no acceleration in the y direction, and centripetal 
acceleration in the x direction.  Assume that the car is on the verge of 
skidding, so that the static frictional force is given by fr NsF Fμ= . 

N frcos sin 0  yF F mg Fθ θ= − + = →∑  

( )N N Ncos sin      
cos sins

s

mg
F F mg Fθ μ θ

θ μ θ
+ = → =

+
 

( )

2 2
R N fr N N

2

N

sin cos     sin cos   

sin cos

x s

s

F F F F m v R F F m v R

mv R
F

θ θ θ μ θ

θ μ θ

= = − = → − = →

=
−

∑
 

Equate the two expressions for the normal force, and solve for the speed. 

( ) ( )

( )
( )

( )
( )

2

2
0

min 0 2
0

  
sin cos cos sin

11 tansin
cos 1 tan 1

s s

ss

s s

mv R mg

Rg v
v Rg v

v Rg

θ μ θ θ μ θ

μμ θθ
θ μ θ μ

= →
− +

−−
= =

+ +

 

Thus 
( )
( )

2
0

min 0 2
0

1

1
s

s

Rg v
v v

v Rg

μ

μ

−
=

+
 and 

( )
( )

2
0

max 0 2
0

1

1
s

s

Rg v
v v

v Rg

μ

μ

+
=

−
. 

 
93. (a) Because there is no friction between the bead and the hoop, the  

hoop can only exert a normal force on the bead.  See the free-body 
diagram for the bead at the instant shown in the textbook figure.  Note 
that the bead moves in a horizontal circle, parallel to the floor.  Thus 
the centripetal force is horizontal, and the net vertical force must be 0.  
Write Newton’s second law for both the horizontal and vertical 
directions, and use those equations to determine the angle .θ   We also 
use the fact that the speed and the frequency are related to each other, 
by 2 sin .v frπ θ=  

   
vertical N N

2 2 2 2 2

radial N

cos 0    
cos

4 sin
sin

sin sin

mg
F F mg F

v f r
F F m m

r r

θ
θ

π θθ
θ θ

= − = → =

= = =

∑

∑
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2 2 2 2
1

N 2 2

4 sin
sin sin     cos

cos sin 4
mg f r g

F m
r f r

π θθ θ θ
θ θ π

−= = → =  

 (b) 
( ) ( )

2
1 1

22 2 2

9.80 m s
cos cos 73.6

4 4 2.00 Hz 0.220 m
g
f r

θ
π π

− −= = = °  

 (c) No , the bead cannot ride as high as the center of the circle.  If the bead were located there, the  
normal force of the wire on the bead would point horizontally.  There would be no force to 
counteract the bead’s weight, and so it would have to slip back down below the horizontal to 

balance the force of gravity.  From a mathematical standpoint, the expression 
2 24
g
f rπ

 would 

have to be equal to 0 and that could only happen if the frequency or the radius were infinitely 
large.  

 
94. An object at the Earth’s equator is rotating in a circle with a radius equal to the radius of the Earth, 

and a period equal to one day.  Use that data to find the centripetal acceleration and then compare it 
to g. 

  

( )
( )
( )

2 62

22 2
R

R 2 2

4 6.38 10 m2
86,400s4 3

    0.00344
9.80 m s 1000

r
v r aTa
r r T g

ππ
π

×

= = = → = = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠   

So, for example, if we were to calculate the normal force on an object at the Earth’s equator, we 
could not say N 0.F F mg= − =∑   Instead, we would have the following. 

2 2

N N    
v v

F F mg m F mg m
r r

= − = − → = −∑  

If we then assumed that 
2

N eff ,v
F mg mg m

r
= = −  then we see that the effective value of g is 

2

eff 0.003 0.997 .
v

g g g g g
r

= − = − =  

 
95. A free-body diagram for the sinker weight is shown.  L is the 

length of the string actually swinging the sinker.  The radius of 
the circle of motion is moving is sin .r L θ=   Write Newton’s 
second law for the vertical direction, noting that the sinker is 
not accelerating vertically.  Take up to be positive. 

T Tcos 0    
cosy

mg
F F mg Fθ

θ
= − = → =∑  

The radial force is the horizontal portion of the tension.  Write 
Newton’s second law for the radial motion. 

2
R T RsinF F ma m v rθ= = =∑  

Substitute the tension from the vertical equation, and the relationships sinr L θ=  and 2 .v r Tπ=  
2 2

2
T 2 2

4 sin
sin     sin     cos

cos 4
mg mL gT

F m v r
T L

π θθ θ θ
θ π

= → = → =  

( ) ( )
( )

222
1 1

2 2

9.80 m s 0.50 s
cos cos 82

4 4 0.45 m
gT

L
θ

π π
− −= = = °  

r = L sin θ 

θ L 

mg

TF
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96. The speed of the train is ( ) 1m s
160 km h 44.44 m s

3.6 km h
.=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(a) If there is no tilt, then the friction force must supply the entire centripetal force on the  
passenger. 

   
( ) ( )

( )

2
2 2

R

75kg 44.44 m s
259.9 N 2.6 10 N

570 m
F m v R= = = ≈ ×  

 (b) For the banked case, the normal force will contribute to the radial force 
needed.  Write Newton’s second law for both the x and y directions.  The y 
acceleration is zero, and the x acceleration is radial.  

fr
N fr N

2
N fr

sin
cos sin 0    

cos
sin cos

y

x

mg F
F F mg F F

F F F m v r

θθ θ
θ

θ θ

+
= − − = → =

= + =

∑

∑
 

Substitute the expression for the normal force from the y equation into the 
x equation, and solve for the friction force. 

( )

2fr
fr

2
2

fr fr

sin
sin cos   

cos

sin sin cos cos   

mg F
F m v r

v
mg F F m

r

θ θ θ
θ

θ θ θ θ

+
+ = →

+ + = →
 

( ) ( ) ( )

2

fr

2
o 2 o 2

cos sin

44.44 m s
    75 kg cos8.0 9.80 m s sin8.0 155 N 1.6 10 N

570 m

v
F m g

r
θ θ= −

= − = ≈ ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
97. We include friction from the start, and then for the no-friction result, set the 

coefficient of friction equal to 0.  Consider a free-body diagram for the car on 
the hill.  Write Newton’s second law for both directions.  Note that the net 
force on the y direction will be zero, since there is no acceleration in the y 
direction. 

( )

N N

fr

fr

cos 0    cos

sin   

cos
sin sin sin cos

y

x

k
k

F F mg F mg

F mg F ma

mgF
a g g g

m m

θ θ

θ

μ θ
θ θ θ μ θ

= − = → =

= − = →

= − = − = −

∑
∑   

Use Eq. 2-12c to determine the final velocity, assuming that the car starts from rest. 
( ) ( ) ( )( )2 2

0 0 0 02     0 2 2 sin coskv v a x x v a x x g x x θ μ θ− = − → = + − = − −  

The angle is given by 1 osin 1 4     sin 0.25 14.5θ θ −= → = =  

  (a)  ( ) ( ) ( )2 o
00    2 sin 2 9.80m s 55 m sin14.5 16m sk v g x x xμ θ= → = − = =  

  (b)  ( ) ( ) ( )2 o o0.10    2 9.80m s 55 m sin14.5 0.10cos14.5 13m sk vμ = → = − =  
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98. The two positions on the cone correspond to two opposite directions of the 
force of static friction.  In one case, the frictional force points UP the cone’s 
surface, and in the other case, it points DOWN the cone’s surface.  In each 
case the net vertical force is 0, and force of static friction is assumed to be its 
maximum value.  The net horizontal force is producing centripetal motion. 

( ) ( )

( )

vertical N fr N s N

N
s

horizontal N fr N s N

22
2 2

N s

2 2

N
s

sin cos sin cos 0  

sin cos

cos sin cos sin

2
                cos sin 4

4
cos sin

F F F mg F F mg

mg
F

F F F F F

rfv
F m m rmf

r r
rmf

F

φ φ φ μ φ

φ μ φ

φ φ φ μ φ

π
φ μ φ π

π
φ μ φ

= − − = − − = →

=
−

= + = +

= + = = →

=
+

=

∑

∑  

Equate the two expressions for the normal force, and solve for the radius. 

  
( )

( )
( )

2 2
s

N max 2 2
s s s

cos sin4
    

sin cos cos sin 4 sin cos
gmg rmf

F r
f

φ μ φπ
φ μ φ φ μ φ π φ μ φ

+
= = → =

− + −
 

 
 A similar analysis will lead to the minimum radius. 

  

( ) ( )

( )

vertical N fr N s N

N
s

horizontal N fr N s N

22
2 2

N s

2 2

N
s

sin cos sin cos 0

sin cos

cos sin cos sin

2
               cos sin 4

4
cos sin

F F F mg F F mg

mg
F

F F F F F

rfv
F m m rmf

r r
rmf

F

φ φ φ μ φ

φ μ φ

φ φ φ μ φ

π
φ μ φ π

π
φ μ φ

= + − = + − = →

=
+

= − = −

= − = = = →

=
−

∑

∑  

  
( )

( )
( )

2 2
s

N min 2 2
s s s

cos sin4
    

sin cos cos sin 4 sin cos
gmg rmf

F r
f

φ μ φπ
φ μ φ φ μ φ π φ μ φ

−
= = → =

+ − +
 

 
99. (a) See the free-body diagram for the skier when the tow rope is horizontal.   

Use Newton’s second law for both the vertical and horizontal directions  
in order to find the acceleration. 

( ) ( ) ( )
( )

N N

T fr T k N T k

2
2T k

0    

240 N 0.25 72 kg 9.80 m s
0.88m s

72 kg

y

x

F F mg F mg

F F F F F F mg ma

F mg
a

m

μ μ

μ

= − = → =

= − = − = − =

−−
= = =

∑
∑  

 (b) Now see the free-body diagram for the skier when the tow rope has  
an upward component. 

mg
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( )

N T N T

T fr T k N

T k T

sin 0    sin

cos cos

        cos sin

y

x

F F F mg F mg F

F F F F F

F mg F ma

θ θ

θ θ μ

θ μ θ

= + − = → = −

= − = −

= − − =

∑
∑  

( )T k kcos sinF mg
a

m
θ μ θ μ+ −

=

 
( ) ( ) ( ) ( )

( )

2
2

240 N cos12 0.25sin12 0.25 72 kg 9.80 m s
0.98m s

72 kg
  

° + ° −
= =  

 (c) The acceleration is greater in part (b) because the upward tilt of the tow rope reduces the normal  
force, which then reduces the friction.  The reduction in friction is greater than the reduction in 
horizontal applied force, and so the horizontal acceleration increases. 

 

100. The radial acceleration is 
2

R ,v
a

r
=  and so ( )22

2
R

6.0 m s
45m s

0.80 m
.v

a
r

= = =  

The tension force has no tangential component, and so the tangential force is seen from the diagram 
to be tang cos .F mg θ=  

  ( )2 2
tang tang tangcos     cos 9.80 m s cos30 8.5m sF mg ma a gθ θ= = → = = ° =  

 The tension force can be found from the net radial force. 

  
( ) ( )( )

2

R T

2
2 2

T

sin   

sin 1.0 kg 9.80 m s sin 30 45m s 50 N

v
F F mg m

r
v

F m g
r

θ

θ

= − = →

= + = ° + =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 Note that the answer has 2 significant figures. 
 
101. (a) The acceleration has a magnitude given by 2 .a v r=  

   
( ) ( )

( ) ( )

2
2 22 2 2

2

15.7 m s 23.2 m s 28.01m s   
63.5m

28.01m s 63.5m 42.17 m s 42.2 m s

v
a

v

= − + − = = →

= = ≈

  

 

(b) Since the acceleration points radially in and the position vector points radially out, the 
components of the position vector are in the same proportion as the components of the 
acceleration vector, but of opposite sign. 

   ( ) ( )
2 2

2 2

15.7 m s 23.2 m s
63.5m 35.6 m           63.5m 52.6 m

28.01m s 28.01m s
yx

aa
x r y r

a a
= = = = = =  

 
102. (a) We find the acceleration as a function of velocity, and then use numeric integration with a  

constant acceleration approximation to estimate the speed and position of the rocket at later 
times.  We take the downward direction to be positive, and the starting position to be y = 0.   

   2 2    F mg kv a g
kma v
m

= − = −= →  

For t = 0, ( ) 00 0y y= = , ( ) 00 0v v= = , and ( ) 2 2
00 9.80 m s .k

a a g v
m

= = − =   Assume this  
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acceleration is constant over the next interval, and so ( )21
1 0 0 02 ,y y v t a t= + Δ + Δ  1 0 0 ,v v a t= + Δ  

and 2
1 1 .k

a g v
m

= − −   This continues for each successive interval.  We apply this method first for 

a time interval of 1 s, and get the speed and position at t = 15.0 s.  Then we reduce the interval 
to 0.5 s and again find the speed and position at t = 15.0 s.  We compare the results from the 
smaller time interval with those of the larger time interval to see if they agree within 2%.  If not, 
a smaller interval is used, and the process repeated.  For this problem, the results for position 
and velocity for time intervals of 1.0 s and 0.5 s agree to within 2%, but to get two successive 
acceleration values to agree to 2%, intervals of 0.05 s and 0.02 s are used.  Here are the results 
for various intervals. 

   1s:tΔ =   ( )15s 648mx =   ( )15s 57.5m sv =   ( ) 215s 0.109 m sa =  

   0.5s:tΔ =  ( )15s 641mx =   ( )15s 57.3m sv =   ( ) 215s 0.169 m sa =  

   0.2s:tΔ =  ( )15s 636 mx =   ( )15s 57.2 m sv =   ( ) 215s 0.210 m sa =  

   0.1s:tΔ =  ( )15s 634.4 mx =   ( )15s 57.13m sv =  ( ) 215s 0.225m sa =  

   0.05s:tΔ =  ( )15s 633.6 mx =   ( )15s 57.11m sv =  ( ) 215s 0.232 m sa =  

   0.02s:tΔ =  ( )15s 633.1mx =   ( )15s 57.10 m sv =  ( ) 215s 0.236 m sa =  
The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH05.XLS,” on tab “Problem 102a.” 

 (b) The terminal velocity is the velocity that produces an acceleration of 0.  Use the acceleration 
equation from above. 

   
( ) ( )2

2
terminal

75kg 9.80 m s
    58m s

0.22 kg m
k mg

a g v v
m k k

= − → = = =   

At this velocity, the drag force is equal in magnitude to the force of gravity, so the skydiver no 
longer accelerates, and thus the velocity stays constant. 

 (c) From the spreadsheet, it is seen that it takes 17.6s to reach 99.5% of terminal velocity. 

 
103. Use the free body diagram to write Newton’s second law for the block, and solve 

for the acceleration. 

  ( )
( ) ( )

P fr P k N P k

2
2P

k 2 22 2

  

0.20 9.80 m s41N 1.96
5.125 m s

8.0 kg 1 0.0020 1 0.0020

F ma F F F F F mg

F
a g

m v v

μ μ

μ

= = − = − = − →

= − = − = −
+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

For t = 0, ( ) 00 0,x x= =  ( ) 00 0,v v= =  and ( ) 2
00 3.165m s .a a= =   Assume this acceleration is 

constant over the next time interval, and so ( )21
1 0 0 02 ,x x v t a t= + Δ + Δ  1 0 0 ,v v a t= + Δ  and 

( )
2

1 22
1

1.96
5.125 m s

1 0.0020
.a

v
= −

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

  This continues for each successive interval.  We apply this 

method first for a time interval of 1 second, and get the speed and position at t = 5.0 s.  Then we 
reduce the interval to 0.5 s and again find the speed and position at t = 5.0 s.  We compare the results 
from the smaller time interval with those of the larger time interval to see if they agree within 2%.  If 
not, a smaller interval is used, and the process repeated.  For this problem, the results for position 
and velocity for time intervals of 1.0 s and 0.5 s agree to within 2%. 
 

mg

NF

frF
PF
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(a) The speed at 5.0 s, from the numeric 
integration, is 18.0 m/s.  The 
velocity–time graph is shown, along 
with a graph for a constant coefficient 
of friction, k 0.20.μ =  The varying 
(decreasing) friction gives a higher 
speed than the constant friction.  The 
spreadsheet used for this problem can 
be found on the Media Manager, with 
filename “PSE4_ISM_CH05.XLS,” 
on tab “Problem 5.103.” 

 
(b) The position at 5.0 s, from the  

numeric integration, is 42.4 m.  The 
position–time graph is shown, along 
with a graph for a constant 
coefficient of friction, k 0.20.μ =  The 
varying (decreasing) friction gives a 
larger distance than the constant 
friction.    The spreadsheet used for 
this problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH05.XLS,” on tab 
“Problem 5.103.” 

(c) If the coefficient of friction is constant, then 23.165m s .a =  Constant acceleration 
relationships can find the speed and position at t = 5.0 s. 

  
( ) ( )

( ) ( )

2
0 final

22 2 21 1 1
0 0 final2 2 2

0     3.165m s 5.0s 15.8 m s

0 0     3.165m s 5.0s 39.6 m

v v at at v

x x v t at at x

= + = + → = =

= + + = + + → = =
  

 We compare the variable friction results to the constant friction results. 

  

 constant  variable

 variable

 constant  variable

 variable

15.8m s 18.0 m s
:   % diff 12%

18.0 m s

39.6 m s 42.4 m s
:   % diff 6.6%

42.4 m s

v v
v

v

x x
x

x

μ μ

μ

μ μ

μ

− −
= = = −

− −
= = = −

 

 
104. We find the acceleration as a function of velocity, and then 

use numeric integration with a constant acceleration 
approximation to estimate the speed and position of the rocket 
at later times. 

  2 2    F mg kv a g
kma v
m

= − − = − −= →  

For t = 0, ( )0 0,y =  ( ) 00 120 m s,v v= =  and 

( ) 2 2
00 9.80 m s .k

a a g v
m

= = − − = −   Assume this 

acceleration is constant over the next time interval, and so ( )21
1 0 0 02 ,y y v t a t= + Δ + Δ  1 0 0 ,v v a t= + Δ  

0

5

10

15

20

0 1 2 3 4 5
t  (s)

v
 (m

/s)

Varying friction

Constant friction

0

10

20

30

40

50

0 1 2 3 4 5
t  (s)

x
 (m

)

Varying friction
Constant friction

t (s) y (m) v (m/s) a (m/s2)
0 0 120.0 -47.2
1 96 72.8 -23.6
2 157 49.2 -16.1
3 199 33.1 -12.6
4 225 20.5 -10.9
5 240 9.6 -10.0
6 245 -0.5 -9.8
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and 2
1 1 .k

a g v
m

= − −   This continues for each successive interval.  Applying this method gives the 

results shown in the table.  We estimate the maximum height reached as max 245m .y =  

If air resistance is totally ignored, then the acceleration is a constant –g and Eq. 2-12c may be used to 
find the maximum height. 

( )
( )
( )

2 2
0 0

22 2 2
0 0

0 2

2   

120 m s
730 m

2 2 2 9.80 m s

v v a y y

v v v
y y

a g

− = − →

− −
− = = = =

−

 

Thus the air resistance reduces the maximum height to about 1/3 of the no-resistance value.  A more 
detailed analysis (with smaller time intervals) gives 302 m for the maximum height, which is also the 
answer obtained from an analytical solution. 
 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH05.XLS,” on tab “Problem 5.104.” 
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CHAPTER 6:  Gravitation and Newton’s Synthesis 
 
Responses to Questions 
 
1.  Whether the apple is attached to a tree or falling, it exerts a gravitational force on the Earth equal to 

the force the Earth exerts on it, which is the weight of the apple (Newton’s third law). 
 
2.   The tides are caused by the difference in gravitational pull on two opposite sides of the Earth. The 

gravitational pull from the Sun on the side of the Earth closest to it depends on the distance from the 
Sun to the close side of the Earth. The pull from the Sun on the far side of the Earth depends on this 
distance plus the diameter of the Earth. The diameter of the Earth is a very small fraction of the total 
Earth–Sun distance, so these two forces, although large, are nearly equal. The diameter of the Earth 
is a larger fraction of the Earth–Moon distance, and so the difference in gravitational force from the 
Moon to the two opposite sides of the Earth will be greater. 

 
3.  The object will weigh more at the poles. The value of r² at the equator is greater, both from the 

Earth’s center and from the bulging mass on the opposite side of the Earth. Also, the object has 
centripetal acceleration at the equator. The two effects do not oppose each other.  

 
4.  Since the Earth’s mass is greater than the Moon’s, the point at which the net gravitational pull on the 

spaceship is zero is closer to the Moon. A spaceship traveling from the Earth towards the Moon must 
therefore use fuel to overcome the net pull backwards for over half the distance of the trip. However, 
when the spaceship is returning to the Earth, it reaches the zero point at less than half the trip 
distance, and so spends more of the trip “helped” by the net gravitational pull in the direction of 
travel.  

 
5.  The gravitational force from the Sun provides the centripetal force to keep the Moon and the Earth 

going around the Sun. Since the Moon and Earth are at the same average distance from the Sun, they 
travel together, and the Moon is not pulled away from the Earth. 

 
6.  As the Moon revolves around the Earth, its position relative to the distant background stars changes. 

This phenomenon is known as “parallax.” As a demonstration, hold your finger at arm’s length and 
look at it with one eye at a time. Notice that it “lines up” with different objects on the far wall 
depending on which eye is open. If you bring your finger closer to your face, the shift in its position 
against the background increases. Similarly, the Moon’s position against the background stars will 
shift as we view it in different places in its orbit. The distance to the Moon can be calculated by the 
amount of shift.  

 
7.  At the very center of the Earth, all of the gravitational forces would cancel, and the net force on the 

object would be zero. 
 
8.  A satellite in a geosynchronous orbit stays over the same spot on the Earth at all times. The satellite 

travels in an orbit about the Earth’s axis of rotation. The needed centripetal force is supplied by the 
component of the gravitational force perpendicular to the axis of rotation. A satellite directly over 
the North Pole would lie on the axis of rotation of the Earth. The gravitational force on the satellite 
in this case would be parallel to the axis of rotation, with no component to supply the centripetal 
force needed to keep the satellite in orbit.  

 
9.  According to Newton’s third law, the force the Earth exerts on the Moon has the same magnitude as 

the force the Moon exerts on the Earth. The Moon has a larger acceleration, since it has a smaller 
mass (Newton’s second law, F = ma). 
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10.  The satellite needs a certain speed with respect to the center of the Earth to achieve orbit. The Earth 
rotates towards the east so it would require less speed (with respect to the Earth’s surface) to launch 
a satellite towards the east (a). Before launch, the satellite is moving with the surface of the Earth so 
already has a “boost” in the right direction. 

 
11.  If the antenna becomes detached from a satellite in orbit, the antenna will continue in orbit around 

the Earth with the satellite. If the antenna were given a component of velocity toward the Earth (even 
a very small one), it would eventually spiral in and hit the Earth. 

 
12.  Ore normally has a greater density than the surrounding rock. A large ore deposit will have a larger 

mass than an equal amount of rock. The greater the mass of ore, the greater the acceleration due to 
gravity will be in its vicinity. Careful measurements of this slight increase in g can therefore be used 
to estimate the mass of ore present. 

 
13. Yes. At noon, the gravitational force on a person due to the Sun and the gravitational force due to the 

Earth are in the opposite directions. At midnight, the two forces point in the same direction. 
Therefore, your apparent weight at midnight is greater than your apparent weight at noon. 

 
14.  Your apparent weight will be greatest in case (b), when the elevator is accelerating upward. The 

scale reading (your apparent weight) indicates your force on the scale, which, by Newton’s third law, 
is the same as the normal force of the scale on you. If the elevator is accelerating upward, then the 
net force must be upward, so the normal force (up) must be greater than your actual weight (down). 
When in an elevator accelerating upward, you “feel heavy.” 

 

Your apparent weight will be least in case (c), when the elevator is in free fall. In this situation your 
apparent weight is zero since you and the elevator are both accelerating downward at the same rate 
and the normal force is zero. 

 

Your apparent weight will be the same as when you are on the ground in case (d), when the elevator 
is moving upward at a constant speed. If the velocity is constant, acceleration is zero and N = mg. 
(Note that it doesn’t matter if the elevator is moving up or down or even at rest, as long as the 
velocity is constant.) 

 
15. If the Earth’s mass were double what it is, the radius of the Moon’s orbit would have to double (if 

the Moon’s speed remained constant), or the Moon’s speed in orbit would have to increase by a 
factor of the square root of 2 (if the radius remained constant). If both the radius and orbital speed 
were free to change, then the product rv² would have to double. 

 
16.  If the Earth were a perfect, nonrotating sphere, then the gravitational force on each droplet of water 

in the Mississippi would be the same at the headwaters and at the outlet, and the river wouldn’t flow.  
Since the Earth is rotating, the droplets of water experience a centripetal force provided by a part of 
the component of the gravitational force perpendicular to the Earth’s axis of rotation. The centripetal 
force is smaller for the headwaters, which are closer to the North pole, than for the outlet, which is 
closer to the equator. Since the centripetal force is equal to mg – N (apparent weight) for each 
droplet, N is smaller at the outlet, and the river will flow. This effect is large enough to overcome 
smaller effects on the flow of water due to the bulge of the Earth near the equator. 

 
17. The satellite remains in orbit because it has a velocity. The instantaneous velocity of the satellite is 

tangent to the orbit. The gravitational force provides the centripetal force needed to keep the satellite 
in orbit, acting like the tension in a string when twirling a rock on a string.  A force is not needed to 
keep the satellite “up”; a force is needed to bend the velocity vector around in a circle.  
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18.  Between steps, the runner is not touching the ground. Therefore there is no normal force up on the 
runner and so she has no apparent weight. She is momentarily in free fall since the only force is the 
force of gravity pulling her back toward the ground.  

 
19. If you were in a satellite orbiting the Earth, you would have no apparent weight (no normal force). 

Walking, which depends on the normal force, would not be possible. Drinking would be possible, 
but only from a tube or pouch, from which liquid could be sucked. Scissors would not sit on a table 
(no apparent weight = no normal force). 

 
20.  The centripetal acceleration of Mars in its orbit around the Sun is smaller than that of the Earth. For 

both planets, the centripetal force is provided by gravity, so the centripetal acceleration is inversely 
proportional to the square of the distance from the planet to the Sun: 

2

2
p s pm v Gm m
r r

=   so  
2

2
sv Gm

r r
=  

Since Mars is at a greater distance from the Sun than Earth, it has a smaller centripetal acceleration. 
Note that the mass of the planet does not appear in the equation for the centripetal acceleration. 

 
21.  For Pluto’s moon, we can equate the gravitational force from Pluto on the moon to the centripetal 

force needed to keep the moon in orbit:   

    
2

2
p mm

Gm mm v
r r

=  

This allows us to solve for the mass of Pluto (mp) if we know G, the radius of the moon’s orbit, and 
the velocity of the moon, which can be determined from the period and orbital radius. Note that the 
mass of the moon cancels out. 

 
22.  The Earth is closer to the Sun in January. The gravitational force between the Earth and the Sun is a 

centripetal force. When the distance decreases, the speed increases. (Imagine whirling a rock around 
your head in a horizontal circle. If you pull the string through your hand to shorten the distance 
between your hand and the rock, the rock speeds up.)   

2

2
E S Em v Gm m
r r

=     so  SGm
v

r
=  

Since the speed is greater in January, the distance must be less. This agrees with Kepler’s second 
law. 

 
23. The Earth’s orbit is an ellipse, not a circle. Therefore, the force of gravity on the Earth from the Sun 

is not perfectly perpendicular to the Earth’s velocity at all points. A component of the force will be 
parallel to the velocity vector and will cause the planet to speed up or slow down. 

 
24. Standing at rest, you feel an upward force on your feet.  In free fall, you don’t feel that force.  You 

would, however, be aware of the acceleration during free fall, possibly due to your inner ear. 
 
25.   If we treat gG  as the acceleration due to gravity, it is the result of a force from one mass acting on 

another mass and causing it to accelerate. This implies action at a distance, since the two masses do 
not have to be in contact. If we view gG  as a gravitational field, then we say that the presence of a 
mass changes the characteristics of the space around it by setting up a field, and the field then 
interacts with other masses that enter the space in which the field exists. Since the field is in contact 
with the mass, this conceptualization does not imply action at a distance. 
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Solutions to Problems 
 
1. The spacecraft is at 3.00 Earth radii from the center of the Earth, or three times as far from the 

Earth’s center as when at the surface of the Earth.  Therefore, since the force of gravity decreases as 
the square of the distance, the force of gravity on the spacecraft will be one-ninth of its weight at the 
Earth’s surface. 

( ) ( )2

1
Earth's9
surface

1480 kg 9.80 m s
1610 N

9GF mg= = =  

 This could also have been found using Eq. 6-1, Newton’s law of universal gravitation. 
 
2. The force of gravity on an object at the surface of a planet is given by Newton’s law of universal  

gravitation, Eq. 6-1, using the mass and radius of the planet.  If that is the only force on an object, 
then the acceleration of a freely falling object is acceleration due to gravity. 

Moon
Moon2

Moon

  G

M m
F G mg

r
= = →  

( ) ( )
( )

22
11 2 2 2Moon

Moon 22 6
Moon

7.35 10 kg
6.67 10 N m kg 1.62 m s

1.74 10 m

M
g G

r
−

×
= = × ⋅ =

×
 

 
3. The acceleration due to gravity at any location on or above the surface of a planet is given by 

2
planet planet ,g G M r=  where r is the distance from the center of the planet to the location in question. 

( )

2
2Planet Earth Earth

planet Earth22 2 2 2 2
EarthEarth

1 1 9.80 m s
1.9 m s

2.3 2.3 2.32.3
M M M

g G G G g
r RR

= = = = = =  

 
4. The acceleration due to gravity at any location at or above the surface of a planet is given by 

2
planet Planet ,g G M r=  where r is the distance from the center of the planet to the location in question. 

  ( )2 2Planet Earth Earth
planet Earth2 2 2

Earth Earth

1.80
1.80 1.80 1.80 9.80 m s 17.6 m s

M M M
g G G G g

r R R
= = = = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
5. The acceleration due to gravity is determined by the mass of the Earth and the radius of the Earth. 

( )
0 new 0 0 2

0 new 0922 2 2
0 new 00

2 2
        

93
GM GM G M GM

g g g
r r rr

= = = = =  

 So g is multiplied by a factor of 2 9 . 

 
6. The acceleration due to gravity at any location at or above the surface of a planet is given by 

2
planet Planet ,g G M r=  where r is the distance from the center of the planet to the location in question.  

For this problem, 24
Planet Earth 5.97 10 kg.M M= = ×  

(a) 6
Earth 6400 m 6.38 10 m 6400 mr R= + = × +  

( ) ( )
( )

24
11 2 2 2Earth

22 6

5.98 10 kg
6.67 10 N m kg 9.78 m s

6.38 10 m 6400 m

M
g G

r
−

×
= = × =

× +
i  
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(b) ( )6 6 6
Earth 6400 km 6.38 10 m 6.4 10  m 12.78 10 m 3 sig figr R= + = × + × = ×  

( ) ( )
( )

24
11 2 2 2Earth

22 6

5.98 10 kg
6.67 10 N m kg 2.44 m s

12.78 10 m

M
g G

r
−

×
= = × =

×
i  

 
7. The distance from the Earth’s center is 6 5

Earth 300 km 6.38 10 m 3 10 mr R= + = × + × =  

( )66.68 10 m 2 sig fig .×   Calculate the acceleration due to gravity at that location. 

( )
( )

24
11 2 2 2Earth Earth

22 2 6

2
2

5.97 10 kg
6.67 10 N m kg 8.924 m s

6.68 10 m

1" "
   8.924 m s 0.91 's

9.80 m s

M M
g G G

r r

g
g

− ×
= = = × =

×

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

i

 

This is only about a 9% reduction from the value of g at the surface of the Earth. 
 
8. We are to calculate the force on Earth, so we need the distance of each planet from Earth. 

( ) ( )

( )

6 10 6 11
Earth Earth
Venus Jupiter

6 12
Earth
Saturn

150 108 10  km 4.2 10 m        778 150 10  km 6.28 10 m

1430 150 10  km 1.28 10 m

r r

r

= − × = × = − × = ×

= − × = ×
 

Jupiter and Saturn will exert a rightward force, while Venus will exert a leftward force.  Take the 
right direction as positive. 

( ) ( ) ( )
( )

Earth Jupiter Earth Saturn Earth Venus
Earth- 2 2 2
planets Earth Earth Earth

Jupiter Saturn Venus

2
Earth 2 2 211 12 10

11 2 2

318 95.1 0.815
       

6.28 10 m 1.28 10 m 4.2 10 m

       6.67 10 N m kg 5.97 10

M M M M M M
F G G G

r r r

GM

−

= + −

= + −
× × ×

= × ×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

i ( ) ( )224 22 2 17 17kg 4.02 10 m 9.56 10 N 9.6 10 N− −× = × ≈ ×

 

 The force of the Sun on the Earth is as follows. 

( ) ( )( )
( )

24 30
11 2 2 22Earth Sun

Earth- 22 11Sun Earth
Sun

5.97 10 kg 1.99 10 kg
6.67 10 N m kg 3.52 10 N

1.50 10 m

M M
F G

r
−

× ×
= = × = ×

×
i  

 And so the ratio is 17 22 5
Earth- Earth-
planets Sun

9.56 10 N 3.52 10 N 2.7 10 ,F F −= × × = ×  which is 27 millionths. 

 
9. Calculate the force on the sphere in the lower left corner, using the free-

body diagram shown.  From the symmetry of the problem, the net forces in 
the x and y directions will be the same.   Note 45 .θ = °  

( )
2 2 2

right dia 22 2

1 1
cos 1

2 2 22
x

m m m
F F F G G G

d dd
θ= + = + = +⎛ ⎞

⎜ ⎟
⎝ ⎠

 

Thus 
2

2

1
1

2 2y x

m
F F G

d
= = +⎛ ⎞

⎜ ⎟
⎝ ⎠

.  The net force can be found by the 

m 

mm 

m

d

d

θ 
upF
G

rightF
G

diagF
G
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Pythagorean combination of the two component forces.  Due to the symmetry of the arrangement, 
the net force will be along the diagonal of the square. 

( ) ( )
( )

2 2
2 2 2

2 2

2
11 2 2 8 o

2

1 1
2 2 1 2 2

22 2

8.5 kg 1
   6.67 10 N m kg 2 1.4 10 N at 45

20.80 m

x y x x

m m
F F F F F G G

d d

− −

= + = = = + = +

= × + = ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

i
 

 The force points towards the center of the square. 
 
10. Assume that the two objects can be treated as point masses, with 1m m=  and 2 4.00 kg .m m= −   The 

gravitational force between the two masses is given by the following. 
( ) ( ) ( )

2
11 2 2 101 2

22 2

4.00 4.00
6.67 10 N m kg 2.5 10 N

0.25 m
m mm m m m

F G G
r r

− −− −
= = = × ⋅ = ×  

This can be rearranged into a quadratic form of 2 4.00 0.234 0m m− + = .  Use the quadratic formula 
to solve for m, resulting in two values which are the two masses. 

1 23.94 kg , 0.06 kgm m= =  

 
11. The force on m due to 2m points in the î direction.  The force on m due to 4m points in the ĵ  

direction.  The force on m due to 3m points in the direction given by 1 0

0

tan .y
x

θ −=   Add the force 

vectors together to find the net force. 

  

( ) ( ) ( ) ( )

( )

( ) ( )

2 2 2 2 2 2
0 0 0 0 0 0

2 2 2
0 0

2 2 2 2 2 22 2 2 2
0 0 0 0 0 00 0 0 0

2 0 0
3 / 2 3 / 22 22 2 2 2

0 00 0 0 0

2 4 3 3ˆ ˆ ˆ ˆcos sin

32 4 3ˆ ˆ ˆ ˆ  

2 3 4 3ˆ ˆ  

m m m m m m m m
G G G G

x y x y x y

m mm m m x y
G G G G

x y x y x yx y x y

x y
Gm

x yx y x y

θ θ= + + +
+ +

= + + +
+ ++ +

= + + +
+ +

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

F i j i j

i j i j

i j

G

 

  
12. With the assumption that the density of Europa is the same as Earth’s, the radius of Europa can be 

calculated. 

  
1/ 3

Europa EuropaEarth
Europa Earth Europa Earth3 34 4

3 3Europa Earth Earth

        
M MM

r r
r r M

ρ ρ
π π

= → = → =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( )

1/ 31/ 3 2 / 3 1/ 3
Europa Europa Europa Earth Europa EuropaEarth

Europa Earth22 2 2 1/ 31/ 3
Europa Earth Earth Earth Earth

Europa
Earth

Earth

1/ 322
2

24

4.9 10 kg
9.80 m s

5.98 10 kg

GM GM GM M M MGM
g g

r r r M MM
r

M

= = = = =

×
= =

×

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎝ ⎠⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

2 21.98 m s 2.0 m s≈
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13. To find the new weight of objects at the Earth’s surface, the new value of g at the Earth’s surface 
needs to be calculated.  Since the spherical shape is being maintained, the Earth can be treated as a 
point mass.  Find the density of the Earth using the actual values, and use that density to find g under 
the revised conditions. 

  ( ) ( ) ( )

1/ 3

E E E E
original E2 3 34

3E E E

1/ 3 1/ 3 1/ 3
1/ 3 1/ 3E E EE

original new2 / 3 2 / 3 2 / 3 2 / 3

E

3 3
  ;        

4 4

2
  ;  2 2

3 3 3 3
4 4 4 4

m m m m
g G r

r r r

m m mm
g G G g G G g

m

ρ
π π πρ

πρ πρ πρ πρ

= = = → = →

= = = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  

 Thus g is multiplied by 1/ 32 , and so the weight would be   multiplied by 1/ 32 . 
 

14. The expression for the acceleration due to gravity at the surface of a body is body
body 2

body

,
M

g G
R

=  where  

bodyR  is the radius of the body.  For Mars, Mars Earth0.38 .g g=   

( )

Mars Earth
2 2
Mars Earth

2 2
24 23Mars

Mars Earth
Earth

0.38   

3400 km
0.38 0.38 5.98 10 kg 6.5 10 kg

R 6380 km

M M
G G

R R

R
M M

= →

= = × = ×
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
15. For the net force to be zero means 

that the gravitational force on the 
spacecraft due to the Earth must be 
the same as that due to the Moon.  
Write the gravitational forces on the 
spacecraft, equate them, and solve 
for the distance x.  We measure 
from the center of the bodies. 

  
( )

( )
( )

Earth spacecraft Moon spacecraft
Earth- Moon 22
spacecraft spacecraft

22
Earth spacecraft Moon spacecraft

22
Earth Moon Earth Moon

      ;      

        

M m M m
F G F G

x d x

M m M m d xx x d x
G G

x M M M Md x

= =
−

− −
= → = → =

−

 

( ) ( ) ( )
24

Earth 8 8

22 24
Moon Earth

5.97 10 kg
3.84 10 m 3.46 10 m

7.35 10 kg 5.97 10 kg

M
x d

M M

×
= = × = ×

+ × + ×
 

This is only about 22 Moon radii away from the Moon.  Or, it is about 90% of the distance from the 
center of the Earth to the center of the Moon. 

 
16. The speed of an object in an orbit of radius r around the Sun is given by Sun ,v G M r=  and is also 

given by 2 ,v r Tπ=  where T is the period of the object in orbit.  Equate the two expressions for the 
speed and solve for Sun ,M  using data for the Earth. 

d 

spacecraft 

Earth 
Moon 

d-x x 
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( )
( )( )

32 112 3
30Sun

Sun 22 11 2 2 7

4 1.50 10 m2 4
    2.01 10  kg

6.67 10 N m kg 3.15 10 sec

M r r
G M

r T GT

ππ π
−

×
= → = = = ×

× ×i
This is the same result obtained in Example 6-9 using Kepler’s third law. 

 
17. Each mass M will exert a gravitational force on mass 

m.  The vertical components of the two forces will 
sum to be 0, and so the net force on m is directed 
horizontally.  That net force will be twice the 
horizontal component of either force. 

( )2 2
  Mm

GMm
F

x R
=

+
→

 
( ) ( ) ( )

( )

 3 / 22 2 2 2 2 2 2 2

net  3 / 22 2

cos

2
2

Mm x

x Mm x

GMm GMm x GMmx
F

x R x R x R x R

GMmx
F F

x R

θ= = =
+ + + +

= =
+

 

 
18. From the symmetry of the problem, we can 

examine diametrically opposite infinitesimal 
masses and see that only the horizontal 
components of the force will be left.  Any off-axis 
components of force will add to zero.  The 
infinitesimal horizontal force on m due to an 

infinitesimal mass dM is ( )2 2dMm

Gm
dF dM

x r
=

+
.  

The horizontal component of that force is given by the following. 

( ) ( ) ( ) ( ) ( )3 / 22 2 2 2 2 22 2
cosdMm x

Gm Gm x Gmx
dF dM dM dM

x r x r x rx r
θ= = =

+ + ++
 

The total force is then found by integration. 

  
( ) ( ) ( )3 / 2 3 / 2 3 / 22 2 2 2 2 2

        x x x

Gmx dM Gmx dM GMmx
dF dF F

x r x r x r
= → = → =

+ + +
∫ ∫  

 From the diagram we see that it points inward towards the center of the ring. 
 

19. The expression for g at the surface of the Earth is E
2

E

.m
g G

r
=  Let g g+ Δ  be the value at a distance 

of Er r+ Δ  from the center of Earth, which is rΔ  above the surface.  

 (a) 
( )

2

E E E E
2 22 2

E E E EE 2
E

E

    1 1 2   

1

m m m m r r
g G g g G G G g

r r r rr r r
r

r

−
Δ Δ

= → + Δ = = = + ≈ − →
+ Δ Δ

+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎛ ⎞ ⎝ ⎠ ⎝ ⎠
⎜ ⎟
⎝ ⎠

 

θ
θ

R

R

x

2 2x R+

2 2x R+

θ
θ

r

r
x

2 2x r+

2 2x r+

dM

dM
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E

2
r

g g
r
Δ

Δ ≈ −  

 (b) The minus sign indicated that the change in g is in the opposite direction as the change in r.  So,  
if r increases, g decreases, and vice-versa.  

 (c) Using this result: 

   ( )
5

2 2 2
6

E

1.25 10 m
2 2 9.80 m s 0.384 m s     9.42 m s

6.38 10 m
r

g g g
r
Δ ×

Δ ≈ − = − = − → =
×

 

  Direct calculation: 

   ( ) ( )
( )

24
11 2 2 2E

22 6 5

5.98 10 kg
6.67 10 N m kg 9.43m s

6.38 10 m 1.25 10 m

m
g G

r
−

×
= = × =

× + ×
i   

  The difference is only about 0.1%. 
 
20. We can find the actual g by taking g due to the uniform Earth, 

subtracting away g due to the bubble as if it contained uniform Earth 
matter, and adding in g due to the oil-filled bubble.  In the diagram, 
r = 1000 m (the diameter of the bubble, and the distance from the 
surface to the center of the bubble).  The mass of matter in the 
bubble is found by taking the density of the matter times the volume 
of the bubble. 

  

oil uniform bubble bubble
present Earth (Earth (oil)

matter)

oil uniform bubble bubble
present Earth (oil) (Earth

matter)

  g g g g

g g g g g

= − + →

Δ = − = −
 

( )

( )

bubble
bubble (Earth
oil matter) 34

bubble bubble oil Earth bubble32 2 2 2
(Earth matteroil
matter)

GMGM
G G

M M r
r r r r

ρ ρ π= − = − = −
⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 The density of oil is given, but we must calculate the density of a uniform Earth. 

  
( )

24
3 3E

Earth 334 64matter 3 E 3

5.98 10 kg
5.50 10 kg m

6.38 10 m

m
r

ρ
π π

×
= = = ×

×
 

  ( )
( )

( ) ( )

34
oil Earth bubble32

matter

11 2 2
32 3 3 3 24

323

6.67 10 N m kg
    8.0 10 kg m 5.50 10 kg m 5.0 10 m

1.00 10 m

G
g r

r
ρ ρ π

π
−

Δ = −

×
= × − × ×

×

⎛ ⎞
⎜ ⎟
⎝ ⎠

i
 

  4 2 4 2    1.6414 10 m s 1.6 10 m s− −= − × ≈ − ×  
Finally we calculate the percentage difference. 

( )
4 2

3
2

1.6414 10 m s
% 100 1.7 10 %

9.80 m s
g

g

−
−Δ − ×

= × = − ×  

 The negative sign means that the value of g would decrease from the uniform Earth value. 
 
 
 

Er

Er r−

r
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gravF
G

netF
G

NF
Gy

x

θ

θ

φ

21. For an object “at rest” on the surface of the rotating Earth, there are  
two force vectors that add together to form the net force:  grav ,F

G
 the  

force of gravity, directed towards the center of the Earth; and N ,F
G

 the  

normal force, which is given by N eff .m= −F g
G G   The sum of these two  

forces must produce the centripetal force that acts on the object, causing 
centripetal motion.  See the diagram.  Notice that the component axes 
are parallel and perpendicular to the surface of the Earth.  Write  
Newton’s second law in vector component form for the object, and  
solve for eff .gG  The radius of the circular motion of the object is  

E cos ,r r θ=  and the speed of the circular motion is 
2 ,r

v
T
π

=  where 

T is the period of the rotation, one day. 
2 2

E
grav N net N2

E

2 2 2 2
E E

N 2 2 2 2
E E

2 2
E E E

2 2 2
E

ˆ ˆ ˆ    sin cos   

4 4ˆ ˆ ˆ ˆsin cos sin cos

4 cos 4 cosˆ ˆ    sin cos

m m mv mv
G

r r r

mv m m mv r m r
G m G

r r r T r T

r m r
m G

T r T

θ θ

π πθ θ θ θ

π θ π θθ θ

+ = → − + = − →

= + − = + −

= + −

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎛ ⎞
⎜ ⎟
⎝ ⎠

F F F j F i j

F i j i j

i j

G G G G

G

( )
( )

( )
( )

( ) ( )

2 6 2 6
2

2 2

2 2 2

4 6.38 10 m 4 6.38 10 m1 1ˆ ˆ    9.80 m s
2 286,400s 86,400s

ˆ ˆ    1.687 10 m s 9.783m s

m

m

π π

−

× ×
= + −

= × +

⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎣ ⎦

i j

i j

 

From this calculation we see that NF
G

 points at an angle of 
( )

( )
2 2

1
2

1.687 10 m s
tan 0.0988

9.783m s
φ

−
−

×
= = °  

north of local “upwards” direction.  Now solve N effm= −F g
G G  for eff .gG  

( ) ( )
( ) ( )

( ) ( )

2 2 2
N eff

2 2 2
eff

2 2 2 2
eff

eff

ˆ ˆ1.687 10 m s 9.783m s   

ˆ ˆ1.687 10 m s 9.783m s   

1.687 10 m s 9.783m s 9.78 m s

 points 0.099  south of radially inward

m m

g

−

−

−

= × + = − →

= − × + →

= × + =

°

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

F i j g

g i j

g

G G

G

G

 

 
 
22. Consider a distance r from the center of the Earth that satisfies Earth .r R<   Calculate the force due to 

the mass inside the radius r. 

  ( ) 3 3 3Earth Earth4 4
closer to 3 33 34
center 3 Earth Earth

M M
M r V r r r

R R
ρ ρ π π

π
= = = =  

  

3Earth
3closer to

center Earth Earth
gravity surface2 2 2

Earth Earth Earth

M
r mM m

R M r r
F G G G m mg

r r R R R
= = = =

⎛ ⎞
⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Thus for gravity 0.95 ,F mg=  we must have Earth0.95 ,r R=  and so we must drill down a distance equal 
to 5% of the Earth’s radius. 

( )6 5
Earth0.05 0.05 6.38 10 m 3.19 10 m 320 kmR = × = × ≈  

 
23. The shuttle must be moving at “orbit speed” in order for the satellite to remain in the orbit when  

released.  The speed of a satellite in circular orbit around the Earth is shown in Example 6-6 to be 

Earth
orbit .M

v G
r

=  

( ) ( ) ( )
( )

24
11 2 2Earth Earth

6 5
Earth

3

5.98 10 kg
6.67 10 N m kg

680 km 6.38 10 m 6.8 10 m

  7.52 10 m s

M M
v G G

r R
−

×
= = = ×

+ × + ×

= ×

i
 

 
24. The speed of a satellite in a circular orbit around a body is shown in Example 6-6 to be 

orbit body ,v G M r=  where r is the distance from the satellite to the center of the body. 

( ) ( )
( )

24
body 11 2 2Earth

6 6
Earth

3

5.98 10 kg
6.67 10 N m kg

5.8 10 m 12.18 10 m

 5.72 10 m s

M M
v G G

r R
−

×
= = = ×

+ × ×

= ×

i
 

 
25. Consider a free-body diagram of yourself in the elevator.  NF

G
 is the force of the scale 

pushing up on you, and reads the normal force.  Since the scale reads 76 kg, if it were 
calibrated in Newtons, the normal force would be ( ) ( )2

N 76 kg 9.80 m s 744.8 N.F = =   

Write Newton’s second law in the vertical direction, with upward as positive. 
 

( ) ( )2
2N

N

744.8 N 65kg 9.80 m s
    1.7 m s upward

65kg
F mg

F F mg ma a
m

−−
= − = → = = =∑  

Since the acceleration is positive, the acceleration is upward. 
 
26. Draw a free-body diagram of the monkey.  Then write Newton’s second law for the 

vertical direction, with up as positive. 
T

T     
F mg

F F mg ma a
m
−

= − = → =∑  

 
For the maximum tension of 185 N,  

( ) ( )
( )

2
2 2

185 N 13.0 kg 9.80 m s
4.43m s 4.4 m s

13.0 kg
a

−
= = ≈  

Thus the elevator must have an  upward acceleration greater than 24.4 m sa =   for the cord to 
break.  Any downward acceleration would result in a tension less than the monkey’s weight. 

 

mgG

TF
G

mgG
NF
G
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27. The speed of an object in a circular orbit of radius r around mass M is given in Example 6-6 by 
,v G M r=  and is also given by 2 ,v r Tπ=  where T is the period of the orbiting object.  Equate 

the two expressions for the speed and solve for T. 

( )
( ) ( )

363
3

11 2 2 22

2
  

1.86 10 m
2 2 7.20 10 s 120 min

6.67 10 N m kg 7.35 10 m

M r
G

r T

r
T

GM

π

π π
−

= →

×
= = = × ≈

× ×i

 

 
28. The speed of a satellite in circular orbit around the Earth is shown in Example 6-6 to be 

Earth
orbit .M

v G
r

=   Thus the velocity is inversely related to the radius, and so the closer satellite will 

be orbiting faster. 

  

Earth
7 6 7

closeclose far Earth
6 6 6

far close EarthEarth

far

1.5 10 m 6.38 10 m 1.5 10 m
1.37

5 10 m 6.38 10 m 5 10 m

GM
rv r R

v r RGM
r

+ × × + ×
= = = = =

+ × × + ×
 

 And so  the close satellite is moving 1.4 times faster  than the far satellite. 
 
29. Consider a free-body diagram for the woman in the elevator.  NF

G
 is the upwards force 

the spring scale exerts, providing a normal force.  Write Newton’s second law for the 
vertical direction, with up as positive. 

( )N N    F F mg ma F m g a= − = → = +∑  
(a, b)  For constant speed motion in a straight line, the acceleration is 0, and so the  

   normal force is equal to the weight. 
( ) ( )2

N 53kg 9.80 m s 520 NF mg= = =  

 (c) Here 0.33a g= +  and so ( ) ( )2
N 1.33 1.33 53kg 9.80 m s 690 N .F mg= = =  

 (d) Here 0.33a g= −  and so ( ) ( )2
N 0.67 0.67 53kg 9.80 m s 350 N .F mg= = =  

 (e) Here a g= −  and so N 0 N .F =  
 
30. The speed of an object in an orbit of radius r around the Earth is given in Example 6-6 by 

Earth ,v G M r=  and is also given by 2 ,v r Tπ=  where T is the period of the object in orbit.  

Equate the two expressions for the speed and solve for T.  Also, for a “near-Earth” orbit, Earth .r R=  

( )
( )( )

3
Earth

Earth

363
Earth

11 2 2 24
Earth

2
    2

6.38 10 m
2 2 5070 s 84.5 min

6.67 10 N m kg 5.98 10 m

M r r
G T

r T GM

R
T

GM

π π

π π
−

= → =

×
= = = =

× ×i

 

  No , the result does not depend on the mass of the satellite. 
 

mgG
NF
G
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31. Consider the free-body diagram for the astronaut in the space vehicle.  The Moon is  
below the astronaut in the figure.  We assume that the astronaut is touching the inside 
of the space vehicle, or in a seat, or strapped in somehow, and so a force will be exerted 
on the astronaut by the spacecraft.  That force has been labeled N.F

G
  The magnitude of 

that force is the apparent weight of the astronaut.  Take down as the positive direction. 
(a) If the spacecraft is moving with a constant velocity, then the acceleration of the astronaut must  

be 0, and so the net force on the astronaut is 0. 

   ( ) ( ) ( )
( )

22
11 2 2Moon

22 6

0  

75 kg 7.4 10 kg
6.67 10 N m kg 59.23N

2.5 10 m

N

N

F mg F

mM
F mg G

r
−

= − = →

×
= = = × =

×

∑

i
 

Since the value here is positive, the normal force points in the original direction as shown on the 
free-body diagram.  The astronaut will be pushed “upward” by the floor or the seat.  Thus the 
astronaut will perceive that he has a “weight” of 59 N, towards the Moon .  

(b) Now the astronaut has an acceleration towards the Moon.  Write Newton’s second law for the  
astronaut, with down as the positive direction. 

( ) ( )2    59.23N 75kg 2.3m s 113.3 NN NF mg F ma F mg ma= − = → = − = − = −∑  

Because of the negative value, the normal force points in the opposite direction from what is 
shown on the free-body diagram – it is pointing towards the Moon.  So perhaps the astronaut is 
pinned against the “ceiling” of the spacecraft, or safety belts are pulling down on the astronaut.  
The astronaut will perceive being “pushed downwards,” and so has an upward apparent weight 
of 110 N, away from the Moon .  

 
32. The apparent weight is the normal force on the passenger.  For a person at rest, the normal force is 

equal to the actual weight.  If there is acceleration in the vertical direction, either up or down, then 
the normal force (and hence the apparent weight) will be different than the actual weight.  The speed 
of the Ferris wheel is ( )2 2 11.0m 12.5s 5.529 m s.v r Tπ π= = =  
(a) See the free-body diagram for the highest point of the motion.  We assume the  

passengers are right-side up, so that the normal force of the Ferris wheel  
seat is upward.  The net force must point to the center of the circle, so  
write Newton’s second law with downward as the positive direction.   
The acceleration is centripetal since the passengers are moving in a circle. 

2 2
R N N    F F mg F ma mv r F mg mv r= = − = = → = −∑  

The ratio of apparent weight to real weight is given by the following. 
( )

( ) ( )
22 2 2

2

5.529 m s
1 1 0.716

11.0 m 9.80 m s
mg m v r g v r v

mg g rg
− −

= = − = − =  

(b) At the bottom, consider the free-body diagram shown.  We assume 
the passengers are right-side up, so that the normal force of the Ferris  
wheel seat is upward.  The net force must point to the center of the circle,  
so write Newton’s second law with upward as the positive direction.  The  
acceleration is centripetal since the passengers are moving in a circle. 

2 2
R N N    F F F mg ma mv r F mg mv r= = − = = → = +∑  

The ratio of apparent weight to real weight is given by the following. 

mgGNF
G

mgGNF
G

mgGNF
G
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( )
( ) ( )

22 2

2

5.529 m s
1 1 1.284

11.0 m 9.80 m s
mg m v r v

mg rg
+

= + = + =  

 
33. See the diagram for the two stars. 

(a) The two stars don’t crash into each other because of  
their circular motion.  The force on them is centripetal, 
and maintains their circular motion.  Another way to 
consider it is that the stars have a velocity, and the 
gravity force causes CHANGE in velocity, not actual 
velocity.  If the stars were somehow brought to rest and then released under the influence of 
their mutual gravity, they would crash into each other. 

(b) Set the gravity force on one of the stars equal to the centripetal force, using the relationship that  
2 ,v r T d Tπ π= =  and solve for the mass.    

( )

( )
( )

22 2 2 2 2

R2 2 2 2

32 112 3
29

22 7
11 2 2

2 2 2
     

/ 2

2 8.0 10 m2
9.6 10 kg

3.15 10 s
6.67 10 N m kg 12.6 y

1 y

G

d TM v Md M Md
F G F M M G

d d d T d T

d
M

GT

π π π

ππ

−

= = = = = → = →

×
= = = ×

×
× ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

i

 

 
34. (a) The speed of an object in near-surface orbit around a planet is given in Example 6-6 to be   

,v GM R=  where M  is the planet mass and R  is the planet radius.  The speed is also given 

by 2 ,v R Tπ=  where T is the period of the object in orbit.  Equate the two expressions for the 
speed.        

2 2 2

2 3 2

2 4 4
        

M R M R M
G G

R T R T R GT
π π π

= → = → =  

The density of a uniform spherical planet is given by 
34

3Volume
M M

R
ρ

π
= = .  Thus  

2

3 2 2

3 3 4 3
4 4

M
R GT GT

π πρ
π π

= = =  

(b) For Earth, we have the following. 

  
( ) ( ) ( )[ ]

3 3
22 11 2 2

3 3
5.4 10 kg m

6.67 10 N m kg 85min 60s minGT
π πρ

−
= = = ×

× i
 

 
35. Consider the lower left mass in the diagram.  The center of the orbits is 

the intersection of the three dashed lines in the diagram.  The net force 
on the lower left mass is the vector sum of the  forces from the other 
two masses, and points to the center of the orbits.  To find that net 
force, project each force to find the component that lies along the line 
towards the center.  The angle is 30θ = ° .

 
2 2

component2 2
towards
center

3
    cos   

2
M M

F G F F Gθ= → = = →
l l

 

d 

GF
G

GF
G

θ
r

2l
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2 2

net 2 2

3
2 3

2
M M

F G G= =
l l

 

The net force is causing centripetal motion, and so is of the form 2Mv r .  Note that cos 2r θ = l . 

( )
2 2 2 2 2 2 2

net 2 2 2

3
2 3     3   

2 2cos 3 3
M M Mv Mv Mv M Mv

F G G G
r

GM
v

θ
= = = = = → = →

=

l l l ll l

l

 

 
36. The effective value of the acceleration due to gravity in the elevator is 

eff elevator .g g a= +   We take the upwards direction to be positive.  The 
acceleration relative to the plane is along the plane, as shown in the free-
body diagram. 

 (a) The elevator acceleration is elevator 0.50 .a g= +  

eff 0.50 1.50  g g g g= + = →  
2

rel eff sin 1.50 sin 32 7.79 m sa g gθ= = ° =  

 (b) The elevator acceleration is elevator 0.50 .a g= −  
2

eff rel eff0.50 0.50 sin 0.50 sin 32 2.60 m s    g g g g a g gθ= − = = = ° =→    

 (c) The elevator acceleration is elevator .a g= −  
2

eff rel eff0 sin 0sin 32 0 m s    g g g a g θ= − = = = ° =→  

 (d) The elevator acceleration is 0. 

   2
eff rel eff0 sin 5.19 m s    g g g a g θ= − = = =→  

 
37. Use Kepler’s third law for objects orbiting the Earth.  The following are given. 

( ) 6
2

8
2

6
1 Earth

86, 400 s
period of Moon 27.4 day 2.367 10  sec

1 day

radius of Moon's orbit 3.84 10 m

radius of near-Earth orbit 6.38 10 m

T

r

r R

= = = ×

= = ×

= = = ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
( ) ( )2 3

1 2 1 2   T T r r= →  

( ) ( ) ( )
3/ 26

3 / 2 6 3
1 2 1 2 8

6.38 10 m
2.367 10 sec 5.07 10 sec 84.5 min

3.84 10 m
T T r r

×
= = × = × =

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
38. Knowing the period of the Moon and the distance to the Moon, we can calculate the speed of the 

Moon by 2 .v r Tπ=   But the speed can also be calculated for any Earth satellite by 

Earth ,v G M r=  as derived in Example 6-6.  Equate the two expressions for the speed, and solve 
for the mass of the Earth. 

NF
G

relaG

effmgG
θ

θ
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( )
( ) ( )( )[ ]

Earth

32 82 3
24

Earth 22 11 2 2

2   

4 3.84 10 m4
5.98 10 kg

6.67 10 N m kg 27.4 d 86, 400s d

G M r r T

r
M

GT

π

ππ
−

= →

×
= = = ×

× i

 

 
39. Use Kepler’s third law for objects orbiting the Sun.  

( ) ( )2 3

Neptune Earth Neptune Earth  T T r r= →   

( )
3 / 2 3 / 29

Neptune
Neptune Earth 8

Earth

4.5 10 km
1 year 160 years

1.50 10 km
r

T T
r

×
= = =

×
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
40. As found in Example 6-6, the speed for an object orbiting a distance r around a mass M is given by 

.v G M r=  

  

star

AA B

B Astar

B

1 1
9 3

GM
rv r

v rGM
r

= = = =  

 
41. There are two expressions for the velocity of an object in circular motion around a mass M:  

v G M r=  and 2 .v r Tπ=  Equate the two expressions and solve for T.   

( ) ( )( )

( )( )

38 7
4

3
15 8

11 2 2 41

8

2   

3 10 m s 3.16 10 sec
3 10 ly

1 ly
2 2 5.8 10 s 1.8 10 y

6.67 10 N m kg 4 10 kg

    2 10 y

G M r r T

r
T

GM

π

π π
−

= →

× ×
×

= = = × = ×
× ×

≈ ×

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

i
 

 
42. (a) The relationship between satellite period T, mean satellite distance r, and planet mass M can be  

derived from the two expressions for satellite speed:  v G M r=  and 2 .v r Tπ=   Equate the 
two expressions and solve for M. 

2 3

2

4
2     

r
G M r r T M

GT
ππ= → =  

Substitute the values for Io to get the mass of Jupiter.  

( )
( )

32 8
27

Jupiter- 2
Io 11 2 2

4 4.22 10 m
1.90 10 kg

24 h 3600 s
6.67 10 N m kg 1.77d

1 d 1 h

M
π

−

×
= = ×

× × ×⎛ ⎞
⎜ ⎟
⎝ ⎠

i
 

(b) For the other moons, we have the following. 

   
( )

( )( )

32 8
27

Jupiter- 211 2 2
Europa

4 6.71 10 m
1.90 10 kg

6.67 10 N m kg 3.55 24 3600 s
M

π
−

×
= = ×

× × ×i
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( )

( )( )

32 9
27

Jupiter- 211 2 2
Ganymede

4 1.07 10 m
1.89 10 kg

6.67 10 N m kg 7.16 24 3600 s
M

π
−

×
= = ×

× × ×i
 

   
( )

( )( )

32 9
27

Jupiter- 211 2 2
Callisto

4 1.883 10 m
1.90 10 kg

6.67 10 N m kg 16.7 24 3600 s
M

π
−

×
= = ×

× × ×i
 

   Yes , the results are consistent – only about 0.5% difference between them. 
 
43. Use Kepler’s third law to find the radius of each moon of Jupiter, using Io’s data for r2 and T2. 

( ) ( ) ( )3 2 2 / 3

1 2 1 2 1 2 1 2    r r T T r r T T= → =  

  ( ) ( )( )2 / 3 2 / 33 3
Europa Io Europa Io 422 10 km 3.55 d 1.77 d 671 10 kmr r T T= = × = ×  

  ( )( )2 / 33 3
Ganymede 422 10 km 7.16 d 1.77 d 1070 10 kmr = × = ×  

  ( )( )2 / 33 3
Callisto 422 10 km 16.7 d 1.77 d 1880 10 kmr = × = ×  

 The agreement with the data in the table is excellent. 
 
44. (a) Use Kepler’s third law to relate the Earth and the hypothetical planet in their orbits around the  

Sun. 

( ) ( )
( ) ( ) ( )

2 3

planet Earth planet Earth

3 / 2 3/ 2
planet Earth planet Earth

  

  1 y 3 1 5.20 y 5 y

T T r r

T T r r

= →

= = = ≈
 

(b) No mass data can be calculated from this relationship, because the relationship is mass- 
independent.  Any object at the orbit radius of 3 times the Earth’s orbit radius would have a 
period of 5.2 years, regardless of its mass. 

 
45.  (a) Use Kepler’s third law to relate the orbits of the Earth and the comet around the Sun. 

( )

3 2

comet comet

Earth Earth

2 / 3 2 / 3

comet
comet Earth

Earth

  

2400 y
1 AU 179.3AU 180 AU

1 y

r T
r T

T
r r

T

= →

= = = ≈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 

 (b) The mean distance is the numeric average of the closest and farthest distances. 
max

max

1.00 AU
179.3AU     357.6 AU 360 AU

2
r

r
+

= → = ≈  

(c) Refer to Figure 6-17, which illustrates Kepler’s second law.  If the time for each shaded region 
is made much shorter, then the area of each region can be approximated as a triangle.  The area 
of each triangle is half the “base” (speed of comet multiplied by the amount of time) times the 
“height” (distance from Sun).  So we have the following. 

( ) ( )1 1
min max min min max max2 2

min max max min

Area Area       

360 1

v t r v t r

v v r r

= → = →

= =
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46. (a) In a short time tΔ , the planet will travel a  
distance v tΔ  along its orbit.  That distance is 
essentially a straight line segment for a short 
time duration.  The time (and distance moved) 
during tΔ  have been greatly exaggerated on the 
diagram.  Kepler’s second law states that the 
area swept out by a line from the Sun to the 
planet during the planet’s motion for the tΔ  is 
the same anywhere on the orbit.  Take the areas 
swept out at the near and far points, as shown on the diagram, and approximate them as 
triangles (which will be reasonable for short tΔ ). 

   ( ) ( ) ( ) ( )1 1
N N F F N F F N2 2N F

Area Area         v t d v t d v v d d= → Δ = Δ → =  

(b) Since the orbit is almost circular, an average velocity can be found by assuming a circular orbit 
with a radius equal to the average distance. 

   ( ) ( )11 1111
2 42 N F

avg 7

2 1.47 10 m 1.52 10 m22
2.973 10 m s

3.16 10 s
d dr

v
T T

πππ × + ×+
= = = = ×

×
 

  From part (a) we find the ratio of near and far velocities. 
   N F F N 1.52 1.47 1.034v v d d= = =  

For this small change in velocities (3.4% increase from smallest to largest), we assume that the 
minimum velocity is 1.7% lower than the average velocity and the maximum velocity is 1.7% 
higher than the average velocity. 

   
( ) ( )

( ) ( )

4 4
N avg

4 4
F avg

1 0.017 2.973 10 m s 1.017 3.02 10 m s

1 0.017 2.973 10 m s 0.983 2.92 10 m s

v v

v v

= + = × = ×

= − = × = ×
 

 
47. (a) Take the logarithm of both sides of the Kepler’s third law expression. 

2 2 2
2 3 2 3

J J J

4 4 4
    log log     2 log log 3log   T r T r T r

Gm Gm Gm
π π π

= → = → = + →
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

2
3 1
2 2

J

4
log log logT r

Gm
π

= +
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  This predicts a straight line graph for log(T) vs. log(r), with a  slope of 3/2  and a  

y-intercept of 
2

1
2

J

4
log

Gm
π⎛ ⎞

⎜ ⎟
⎝ ⎠

. 

 
 (b) The data is taken from  

Table 6-3, and the graph is 
shown here, with a straight-
line fit to the data.  The data 
need to be converted to 
seconds and meters before 
the logarithms are 
calculated. 

 
From the graph, the slope is 
1.50 (as expected), and the 
y-intercept is –7.76. 

Sun

Nd Fd
Fv tΔ

Nv tΔ

log(T ) = 1.50 log(r ) - 7.76
R2 = 1.00

5.0

5.2

5.4

5.6

5.8

6.0

6.2

8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3
log(r ) 

lo
g(

T
)
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( ) ( ) ( )
2 2 2

271
J2 2 11 15.52

J

4 4 4
log     1.97 10 kg

10 6.67 10 10b
b m

Gm G
π π π

− −
= → = = = ×

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The actual mass of Jupiter is given in problem 8 as 318 times the mass of the Earth, which is 
271.90 10 kg× .  The spreadsheet used for this problem can be found on the Media Manager, with 

filename “PSE4_ISM_CH06.XLS,” on tab “Problem 6.47b.” 
 
48. We choose the line joining the Earth and Moon 

centers to be the x-axis.  The field of the Earth 
will point towards the Earth, and the field of 
the Moon will point towards the Moon. 

 

( ) ( ) ( )

( ) ( )
( )( )

Moon EarthEarth Moon
2 2 2

1 1 1
2 2 2Earth- Earth- Earth-

Moon Moon Moon

11 2 2 22 24
2 2

261
2

ˆ ˆ ˆ

6.67 10 N m kg 7.35 10 kg 5.97 10 kg ˆ ˆ  1.07 10 m s
384 10 m

G M MGM GM

r r r

−
−

−
= − + =

× × − ×
= = − ×

×

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

g i i i

i i

G

i
 

 So the magnitude is 2 21.07 10 m s−× and the direction is  towards the center of the Earth .   

 
49. (a) The gravitational field due to a spherical mass M, at a distance r from the center of the mass, is  

2 .g GM r=  

   
( ) ( )

( )
11 2 2 30

3 2Sun
Sun at 22 11Earth Sun to

Earth

6.67 10 N m kg 1.99 10 kg
5.93 10 m s

1.496 10 m

GM
g

r

−
−

× ×
= = = ×

×

i
 

 (b) Compare this to the field caused by the Earth at the surface of the Earth. 

   
3 2Sun at

Earth 4
2

Earth

5.93 10 m s
6.05 10

9.80 m s

g

g

−
−×

= = ×  

  No , this is not going to affect your weight significantly.  The effect is less than 0.1 %. 
 
50. (a) From the symmetry of the situation,  

the net force on the object will be down.  
However, we will show that explicitly by 
writing the field in vector component 
notation. 

  

left right 2 2 2 2
0 0

2 2 2 2
0 0

2 2 2 2 2 2 2
0 0 0 0

ˆ ˆsin cos

ˆ ˆ                      sin cos

ˆ ˆ  2 cos 2 2

m m
G G

x y x y

m m
G G

x y x y

m m y y
G G Gm

x y x y x y x

θ θ

θ θ

θ

= + = − + −
+ +

+ + −
+ +

= − = − = −
+ + +

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

g g g i j

i j

j j

G G G

( )3 / 22
ˆ

y+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

j

  

d Earth Moon 

0x

θ θ
rightgGleftgG

0x

y
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(b) If we keep y as a positive quantity, then the magnitude of the field is 
( )3 / 22 2

0

2 .y
g Gm

x y
=

+
  

We find locations of the maximum magnitude by setting the first derivative equal to 0.  Since 
the expression is never negative, any extrema will be maxima. 

  ( )
( ) ( )

( )

( ) ( )

3 / 2 1/ 22 2 2 23
20 0

3 / 2 32 2 2 2
0 0

3 / 2 1/ 22 2 2 2 03
0 0 max 02

2
2     2 0  

2 0    0.71
2

x y y x y yy dg
g Gm Gm

dtx y x y

x
x y y x y y y x

+ − +
= → = = →

+ +

+ − + = → = ≈

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦  

  

0

0
max 3 / 2 222

002 0
0

422 0.77
2 3 3

2

x
x Gm Gm

g g y Gm
xxx

x

= = = = ≈

+

⎛ ⎞
⎜ ⎟
⎝ ⎠ ⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 There would also be a maximum at 0 2 .y x= −  
 
51. The acceleration due to the Earth’s gravity at a location at or above the surface is given by 

2
Earth ,g G M r=  where r is the distance from the center of the Earth to the location in question.  

Find the location where 1
surface2 .g g=  

2 2Earth Earth
Earth Earth2 2

Earth

1
    2     2

2
GM GM

r R r R
r R

= → = → =  

The distance above the Earth’s surface is as follows. 

( ) ( )( )6 6
Earth Earth2 1 2 1 6.38 10 m 2.64 10 mr R R− = − = − × = ×  

 
52. (a) Mass is independent of location and so the mass of the ball is  13.0 kg  on both the Earth and  

the planet. 
 
(b) The weight is found by .W mg=  

( ) ( )2
Earth Earth 13.0 kg 9.80 m s 127 NW mg= = =  

( ) ( )2
Planet Planet 13.0 kg 12.0 m s 156 NW mg= = =  

 
53. (a) The acceleration due to gravity at any location at or above the surface of a star is given by  

2
star star ,g G M r=  where r is the distance from the center of the star to the location in question. 

   ( ) ( )
( )

30
11 2 2 7 2sun

star 22 6
Moon

1.99 10 kg
6.67 10 N m kg 4.38 10 m s

1.74 10  m

M
g G

R
−

×
= = × = ×

×
i  

 (b) ( )( )7 2 9
star 65 kg 4.38 10 m s 2.8 10 NW mg= = × = ×  

 (c) Use Eq. 2-12c, with an initial velocity of 0. 

   
( )

( ) ( ) ( )

2 2
0 0

7 2 3
0

2   

2 2 4.38 10 m s 1.0 m 9.4 10 m s

v v a x x

v a x x

= + − →

= − = × = ×
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54. In general, the acceleration due to gravity of the Earth is given by 2
Earth ,g G M r=  where r is the 

distance from the center of the Earth to the location in question. So for the location in question, we 
have the following. 

( )

2 2Earth Earth1 1
surface Earth10 102 2

Earth

6 7
Earth

        =10

10 10 6.38 10 m 2.02 10 m

M M
g g G G r R

r R

r R

= → = →

= = × = ×

 

 
55. The speed of an object in an orbit of radius r around a planet is given in Example 6-6 as  

planet ,v G M r=  and is also given by 2 ,v r Tπ=  where T is the period of the object in orbit.  

Equate the two expressions for the speed and solve for T. 

       
3

Planet

Planet

2
    2

M r r
G T

r T GM
π π= → =  

For this problem, the inner orbit has radius 7
inner 7.3 10 m,r = ×  and the outer orbit has radius 

8
outer 1.7 10 m.r = ×   Use these values to calculate the periods. 

( )
( )( )

( )
( )( )

37
4

inner 11 2 2 26

38
4

outer 11 2 2 26

7.3 10 m
2 2.0 10 s

6.67 10 N m kg 5.7 10 kg

1.7 10 m
2 7.1 10 s

6.67 10 N m kg 5.7 10 kg

T

T

π

π

−

−

×
= = ×

× ×

×
= = ×

× ×

i

i

 

Saturn’s rotation period (day) is 10 hr 39 min, which is about 43.8 10 sec.×  Thus the inner ring will 
appear to move across the sky “faster” than the Sun (about twice per Saturn day), while the outer 
ring will appear to move across the sky “slower” than the Sun (about once every two Saturn days). 

 
56. The speed of an object in an orbit of radius r around the Moon is given by Moon ,v G M r=  and is 

also given by 2 ,v r Tπ=  where T is the period of the object in orbit.  Equate the two expressions 
for the speed and solve for T.        

  

  
( ) ( )

( )( )
( )

Moon

36 533
Moon

11 2 2 22
Moon Moon

3

2   

1.74 10 m 1 10 m100 km
2 2 2

6.67 10 N m kg 7.35 10 kg

  7.1 10 s 2.0 h

G M r r T

Rr
T

GM GM

π

π π π
−

= →

× + ×+
= = =

× ×

= ×

i

∼

 

 
57. Use Kepler’s third law to relate the orbits of Earth and Halley’s comet around the Sun. 

( ) ( )
( ) ( )( )

3 2

Halley Earth Halley Earth

2 / 3 2 / 36 6
Halley Earth Halley Earth

  

150 10 km 76 y 1 y 2690 10 km

r r T T

r r T T

= →

= = × = ×
 

This value is half the sum of the nearest and farthest distances of Halley’s comet from the Sun.  Since 
the nearest distance is very close to the Sun, we will approximate that nearest distance as 0.  Then the 
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farthest distance is twice the value above, or 6 125380 10 km 5.4 10 m .× = ×   This distance approaches 
the mean orbit distance of Pluto, which is 125.9 10 m.×    It is still in the solar system, nearest to 
Pluto’s orbit. 

 
58. (a) The speed of a satellite orbiting the Earth is given by Earth .v G M r=   For the GPS satellites,  

( ) ( ) 7
Earth 11,000 1.852 km 2.68 10 m.r R= + = ×  

( ) ( )24
11 2 2 3 3

7

5.97 10 kg
6.67 10 N m kg 3.86 10 m s 3.9 10 m s

2.68 10 m
v −

×
= × = × ≈ ×

×
i  

 (b) The period can be found from the speed and the radius. 
( )7

4
3

2 2.68 10 m2
2     4.4 10 sec 12 h

3.86 10 m s
r

v r T T
v

πππ
×

= → = = = ×
×

∼  

 
59. For a body on the equator, the net motion is circular.  Consider the free- 

body diagram as shown.  FN is the normal force, which is the apparent 
weight.  The net force must point to the center of the circle for the object to 
be moving in a circular path at constant speed.  Write Newton’s second law 
with the inward direction as positive. 

( )

2
R Jupiter N Jupiter

2
Jupiter2

N Jupiter Jupiter 2
Jupiter Jupiter

  

  

F mg F m v R

M v
F m g v R m G

R R

= − = →

= − = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
 

Use the fact that for a rotating object, 2 .v r Tπ=  

 
2

Jupiter Jupiter
N 2 2

Jupiter Jupiter
perceived

4M R
F m G

R T
mg

π
= −

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

Thus the perceived acceleration due to gravity of the object on the surface of Jupiter is as follows. 

( ) ( )
( )

( )
( )

2
Jupiter Jupiter

perceived 2 2
Jupiter Jupiter

27 2 7
11 2 2

2 27

4

1.9 10 kg 4 7.1 10 m
           6.67 10 N m kg

60 s7.1 10 m 595 min
1 min

M R
g G

R T
π

π
−

= −

× ×
= × −

× ⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

i
 

2
2

1 
           22.94 m s 2.3 ' s

9.8m s
g

g= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Based on this result, you would not be crushed at all.  You would feel “heavy,” but not at all crushed. 
 
60. The speed of rotation of the Sun about the galactic center, under the assumptions made, is given by 

galaxy

Sun orbit

M
v G

r
=  and so 

2
Sun orbit

galaxy .r v
M

G
=   Substitute in the relationship that Sun orbit2 .v r Tπ=   

 

mgG

NF
G
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( ) ( )( )

( ) ( )

32 1532
Sun orbit

galaxy 22 7
11 2 2 6

41 41

4 30, 000 9.5 10 m4

3.15 10 s
6.67 10 N m kg 200 10 y

1 y

          3.452 10 kg 3 10 kg

r
M

GT

ππ

−

×
= =

×
× ×

= × ≈ ×

⎡ ⎤⎣ ⎦
⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

i  

The number of solar masses is found by dividing the result by the solar mass. 
41

galaxy 11 11
30

Sun

3.452 10 kg
#  stars 1.726 10 2 10 stars

2.0 10 kg

M

M
×

= = = × ≈ ×
×

 

 
61. In the text, it says that Eq. 6-6 is valid if the radius r is replaced with the semi-major axis s.  From 

Fig. 6-16, the distance of closest approach minr  is seen to be ( )min 1 ,r s es s e= − = −  and so the 

semi-major axis is given by min

1
.r

s
e

=
−

 

  

( )

2 2

3

311

2
3

2 min
2 3

22 2 7
11 2 2

36 36

SgrA

SgrA

4
  

1.5 10 m
123AU

1AU4
1 0.87

4
4 1

3.156 10 s
6.67 10 N m kg 15.2y

1 y

7.352 10 kg 7.4 10 kg        

T
s GM

r
s eM

GT GT

π

π
π

π

−

= →

×
×

−
−= = =

×
× ×

= × ≈ ×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

i

 

36
SgrA 6

30
Sun

7.352 10 kg
3.7 10

1.99 10 kg
M
M

×
= = ×

×
 and so SgrA is almost 4 million times more massive than 

our Sun. 

62. (a) The gravitational force on the satellite is given by Earth
grav 2

,M m
F G

r
=  where r is the distance of  

the satellite from the center of the Earth.  Since the satellite is moving in circular motion, then 
the net force on the satellite can be written as 2

net .F m v r=   By substituting 2v r Tπ=  for a 

circular orbit, we have 
2

net 2

4 .mr
F

T
π

=   Then, since gravity is the only force on the satellite, the 

two expressions for force can be equated, and solved for the orbit radius. 

( ) ( ) ( )

2
Earth

2 2

1/ 321/ 3 11 2 2 242
Earth

2 2

6 6

4
  

6.67 10 N m kg 6.0 10 kg 6200s

4 4

7.304 10 m 7.3 10 m 

M m mr
G

r T

GM T
r

π

π π

−

= →

× ×
= =

= × ≈ ×

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠ ⎢ ⎥⎣ ⎦

i
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(b) From this value the gravitational force on the satellite can be calculated. 

( ) ( ) ( )
( )

24
11 2 2 4Earth

grav 22 6

4

6.0 10 kg 5500 kg
6.67 10 N m kg 4.126 10 N

7.304 10 m

      4.1 10 N

M m
F G

r
−

×
= = × = ×

×

≈ ×

i
 

(c) The altitude of the satellite above the Earth’s surface is given by the following. 
6 6 5

Earth 7.304 10 m 6.38 10 m 9.2 10 mr R− = × − × = ×  
 
63. Your weight is given by the law of universal gravitation.  The derivative of the weight with respect 

to time is found by taking the derivative of the weight with respect to distance from the Earth’s 
center, and using the chain rule. 

  E E
2 3

    2
m m dW dW dr m m

W G G v
r dt dr dt r

= → = = −  

 
64. The speed of an orbiting object is given in Example 6-6 as ,v G M r=  where r is the radius of the 

orbit, and M is the mass around which the object is orbiting.  Solve the equation for M. 

( )( )
( )

217 52
39

11 2 2

5.7 10 m 7.8 10 m s
    5.2 10 kg

6.67 10 N m kg
rv

v G M r M
G −

× ×
= → = = = ×

× i
 

The number of solar masses is found by dividing the result by the solar mass. 
39

galaxy 9
30

Sun

5.2 10 kg
#  solar masses 2.6 10 solar masses

2 10 kg

M

M
×

= = = ×
×

 

 
65. Find the “new” Earth radius by setting the acceleration due to gravity at the Sun’s surface equal to 

the acceleration due to gravity at the “new” Earth’s surface. 

( )
24

8Earth Sun Earth
Earth Sun Earth Sun2 2 30
new newEarth Sun Sun

new

6 1
5

5.98 10 kg
        6.96 10 m

1.99 10 kg

                                                                  1.21 10 m , about the ac

GM GM M
g g r r

r r M
×

= → = → = = ×
×

= × tual Earth radius.

 

 
66. (a) See the free-body diagram for the plumb bob.  The attractive gravitational force  

on the plumb bob is M
M 2

.
M

mm
F G

D
=   Since the bob is not accelerating, the net 

force in any direction will be zero.   Write the net force for both vertical and 

horizontal directions.  Use Earth
2
Earth

.M
g G

R
=  

vertical T T

horizontal M T M T

2
1 1 M EarthM M

2 2 2
Earth

cos 0    
cos

sin 0    sin tan

tan     tan tan
M M M

mg
F F mg F

F F F F F mg

m Rmm m
G mg G

D gD M D

θ
θ

θ θ θ

θ θ − −

= − = → =

= − = → = =

= → = =

∑
∑  

 

θ 

mgG

MF
GTF

G
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(b) We estimate the mass of Mt. Everest by taking its volume times its mass density.  If we  
approximate Mt. Everest as a cone with the same size diameter as height, then its volume is 

( ) ( )22 10 31 1
3 3 2000 m 4000 m 1.7 10 m .V r hπ π= = = ×   The density is 3 33 10 kg m .ρ = ×   Find 

the mass by multiplying the volume times the density. 

( )( )3 3 10 3 133 10 kg m 1.7 10 m 5 10 kgM Vρ= = × × = ×  

 (c)  With D = 5000 m, use the relationship derived in part (a). 

( ) ( )
( ) ( )

213 62
1 1 4M Earth

22 24
Earth M

5 10 kg 6.38 10 m
tan tan 8 10 degrees

5.97 10 kg 5000 m
M R
M D

θ − − −
× ×

= = = ×
×

 

 
67.  Since all of the masses (or mass holes) are spherical, and g is being  

measured outside of their boundaries, we can use the simple 
Newtonian gravitation expression.  In the diagram, the distance r = 
2000 m.  The radius of the deposit is unknown. 

missing
dirt oil

actual full missing oil full 2 2
Earth dirt mass Earth

missing oil
dirt

full 2
Earth

       

GM
GM

g g g g g
r r

G M M
g

r

= − + = − +

−
= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

( ) ( )
( )

missing oil
dirt oil

full actual missing missing oil oil missing oil2 2 2 7
Earth dirt dirt dirt

22
2

oil 7 7 11 2 2

missing oil
dirt

2
10

2000 m2 1 2
9.80 m s

10 10 6.67 10 N m kg

G M M
G GV

g g g V V g
r r r

r
V g

G

ρ ρ ρ ρ

ρ ρ
−

−
Δ = − = = − = − =

= =
×−

⎛ ⎞
⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

i ( ) 2

7 3 7 3

1
3000 800 kg m

    5.34 10 m 5 10 m

−

= × ≈ ×

 

1/ 3
10 10oil

deposit deposit oil oil

3
234 m 200 m    ;  4.27 10 kg 4 10 kg

4
V

r m V ρ
π

= = ≈ = = × ≈ ×⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
68. The relationship between orbital speed and orbital radius for objects in orbit around the Earth is 

given in Example 6-6 as Earth .v G M r=   There are two orbital speeds involved – the one at the 

original radius, 0 Earth 0 ,v G M r=  and the faster speed at the reduced radius, 

( )Earth 0 .v G M r r= − Δ  
(a) At the faster speed, 25,000 more meters will be traveled during the “catch-up” time, t.  Note that 

6 5 6
0 6.38 10 m 4 10 m 6.78 10 m.r = × + × = ×   

4 4Earth Earth
0

0 0

2.5 10 m    2.5 10 m  
M M

vt v t G t G t
r r r

= + × → = + × →
− Δ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Er

Er r−

r
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( ) ( )

4

Earth 0 0

4

6 3 611 2 2 24

4

1

1

2.5 10 m 1 1

2.5 10 m 1 1
 

6.78 10 m 1 10 m 6.78 10 m6.67 10 N m kg 5.97 10 kg

 4.42 10 s 12 h

t
GM r r r

−

−

−

×
= −

− Δ

×
= −

× − × ×× ×

= × ≈

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠i

 

(b) Again, 25,000 more meters must be traveled at the faster speed in order to catch up to the 
satellite. 

  ( )

4 4Earth Earth
0

0 0

1
4 4

0
0 0 Earth 0 Earth

2
4

6
0

0 Earth

2.5 10 m    2.5 10 m  

1 1 2.5 10 m 1 2.5 10 m
      

1 2.5 10 m
6.78 10 m

                   

M M
vt v t G t G t

r r r

r r
r r r t GM r t GM

r r
r t GM

−

−

= + × → = + × →
− Δ

× ×
= + → − Δ = + →

− Δ

×
Δ = + = ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
− ⎢ ⎥
⎣ ⎦

( ) ( ) ( ) ( )

2
4

6 11 2 2 24

3

1 2.5 10 m

6.78 10 m 25200s 6.67 10 N m kg 5.97 10 kg

    1755 m 1.8 10 m

−

−

×
− +

× × ×

= ≈ ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦i

 

 
69. If the ring is to produce an apparent gravity equivalent to that of  

Earth, then the normal force of the ring on objects must be given by  
N .F mg=   The Sun will also exert a force on objects on the ring.  

See the free-body diagram.  Write Newton’s second law for the 
object, with the fact that the acceleration is centripetal. 

2
R Sun NF F F F m v r= = + =∑  

Substitute in the relationships that 2 ,v r Tπ=  N ,F mg=  and Sun
Sun 2

,M m
F G

r
=  and solve for the 

period of the rotation. 
2 2

2 Sun Sun
2 2 2 2

4 4
        Sun N

M m Mmr r
F F m v r G mg G g

r T r T
π π

+ = → + = → + =  

( )
( ) ( )

( )

2 112

30
Sun 11 2 2 2
2 211

5

4 1.50 10 m4
1.99 10 kg

6.67 10 N m kg 9.80 m s
1.50 10 m

7.77 10 s 8.99 d  

r
T

M
G g

r

ππ

−

×
= =

×+ × +
×

= × =

i  

The force of the Sun is only about 1/1600 the size of the normal force.  The force of the Sun could 
have been ignored in the calculation with no significant change in the result given above. 

 

Sun 

NF
G

SunF
G
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70. For an object to be apparently weightless would mean that the object would have a centripetal 
acceleration equal to g.  This is really the same as asking what the orbital period would be for an 
object orbiting the Earth with an orbital radius equal to the Earth’s radius.  To calculate, use 

2
Earth ,Cg a v R= =  along with Earth2 ,v R Tπ=  and solve for T. 

( )
22 6

3Earth Earth
2 2

Earth

4 6.38 10 m
    2 2 5.07 10 s 84.5 min

9.80 m s
R Rv

g T
R T g

π
π π ×

= = → = = = × ∼  

 

71. The speed of an object orbiting a mass is given in Example 6-6 as Sun .GM
v

r
=  

  

Sun Sun Sun Sun

new new new

new 2

new new1.5  and 1.5 1.5  

0.44
1.5

       =   GM GM GM GM
v v v v

r r r r

r
r r

= =

= =

= → → →
 

 
72. From the Venus data, the mass of the Sun can be determined by the following.  Set the gravitational  

force on Venus equal to the centripetal force acting on Venus to make it orbit. 

  

2

Venus
orbit

2 2 3Venus
Venus Venus Venus2 Venus

orbit orbitSun Venus Venus Venus
Sun2 2 2

Venus Venus Venus Venus Venus
orbit orbit orbit

2

4 4
    

r
m

m r rT
GM m m v

M
r r r GT T

π

π π
= = = → =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠  

Then likewise, for Callisto orbiting Jupiter, 

2 3
Callisto
orbit

Jupiter 2
Callisto

4
,

r
M

GT

π
=  and for the Moon orbiting the Earth, 

2 3
Moon
orbit

Earth 2
Moon

4
.

r
M

GT

π
=   To find the density ratios, take the mass ratios with the mass expressed as density 

times volume, and expressed as found above. 

 

( )
( )

( )
( )

2 3
Callisto
orbit

3 24
3Jupiter Jupiter Jupiter Callisto

2 334
Venus3Sun Sun Sun
orbit
2

Venus

3
3 22 3Callisto

orbitJupiter Venus Sun
2 32 3 3

Sun Callisto Venus Jupiter
orbit

4

  
4

0.01253 224.7 1
16.69 0.724

r

M r GT
rM r

GT

r
T r

T r r

π

ρ π
πρ π

ρ
ρ

= = →

= =
( )3 0.948
0.0997

=

 

And likewise for the Earth–Sun combination:  

( )
( )

( )
( ) ( )

3
3 22 3Moon

orbitEarth Venus Sun
2 3 32 3 3

Sun Moon Venus Earth
orbit

0.003069 224.7 1
3.98

27.32 0.724 0.0109

r
T r

T r r
ρ
ρ

= = =  
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73. The initial force of 120 N can be represented as planet
grav 2 120 N.

GM
F

r
= =  

 (a) The new radius is 1.5 times the original radius. 

( )
( )planet planet planet

new 22 2
radius new

1
120 N 53 N

2.25 2.251.5

GM GM GM
F

r rr
= = = = =  

(b) With the larger radius, the period is T = 7200 seconds.  As found in Example 6-6, orbit speed 

can be calculated by .GM
v

r
=  

   
( )

( ) ( )

32 72 3
26

22 11 2 2

4 3.0 10 m2 4
    3.1 10 kg

6.67 10 N m kg 7200s
GM r r

v M
r T GT

ππ π
−

×
= = → = = = ×

× i
 

 

74. The density of the sphere is uniform, and is given by 
34

3

.M
r

ρ
π

=   The mass that was removed to 

make the cavity is ( )( )34 1
cavity cavity 3 834

3

2 .
M

M V r M
r

π π
π

= = =   The net force on the point mass can 

be found by finding the force due to the entire sphere, and then subtracting the force caused by the 
cavity alone. 

  

( )
( ) ( )

( )

1
8

net sphere cavity 2 22 2

22

1 1
2 8 2

1
1

8 1 2
     

G M mGMm
F F F GMm

d dd r d r

GMm
d r d

= − = − = −
− −

= −
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
75. (a) We use the law of universal gravitation to express the force for each mass m.  One mass is  

“near” the Moon, and so the distance from that mass to the center of the Moon is EM E.R R−   
The other mass is “far” from the Moon, and so the distance from that mass to the center of the 
Moon is EM E.R R+  

( ) ( )
Moon Moon

near far2 2
Moon MoonEM E EM E

          
GM m GM m

F F
R R R R

= =
− +

 

( )

( )

Moon
2 22 8 6

EM Enear EM E
8 6

Moonfar EM EMoon
2

EM E

3.84 10 m 6.38 10 m
1.0687

3.84 10 m 6.38 10 m

GM m
R RF R R
GM mF R R
R R

− + × + ×
= = = =

− × − ×
+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 

 (b) We use a similar analysis to part (a). 

( ) ( )
Sun Sun

near far2 2
Sun MoonES E ES E

          
GM m GM m

F F
r r r r

= =
− +

 

( )

( )

Sun
2 22 11 6

ES Enear EM E
11 6

Sunfar EM ESun
2

ES E

1.496 10 m 6.38 10 m
1.000171

1.496 10 m 6.38 10 m

GM m
r rF r r
GM mF r r
r r

− + × + ×
= = = =

− × − ×
+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
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 (c) For the average gravitational force on the large masses, we use the distance between their  
centers. 

Sun Earth Moon Earth
Sun Moon2 2

ES EM

          
GM M GM M

F F
r r

= =  

( )
( )

( )
( )

Sun Earth 230 822
Sun Sun EMES

22 2211
Moon EarthMoon ES Moon

2
EM

1.99 10 kg 3.84 10 m
178

7.35 10 kg1.496 10 m

GM M
F M rr

GM MF r M
r

× ×
= = = =

××
 

 (d) Apply the expression for FΔ as given in the statement of the problem. 

( )
( )

near near
Moon

far farMoon MoonMoon Moon

Sun Sunnear near
Sun

far farSun Sun

1 1
1.0687 11

2.3
178 1.000171 1

1 1

F F
F

F FF F
F FF F

F
F F

− −
−Δ

= = = =
Δ −

− −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  
76. The acceleration is found from the law of universal gravitation.  Using the chain rule, a relationship 

between the acceleration expression and the velocity can be found which is integrated to find the 
velocity as a function of distance.  The outward radial direction is taken to be positive, so the 
acceleration is manifestly negative. 

  
EE

EE

E E E
2 2 2

2E 1
E E 22 2

22 0

          

          
fv rr

f
rr

m m Gm dv dv dr dv Gm dv
F ma G a v v

r r dt dr dt dr r dr

dr dr Gm
Gm vdv Gm vdv v

r r r

= = − → = − = = = → − = →

− = → − = → = →⎡ ⎤
⎢ ⎥⎣ ⎦∫ ∫

 

  2E E E E1
2

E E E E

        
2 f f f

Gm Gm Gm Gm
v v v

r r r r
− = → = ± → = −  

The negative sign is chosen because the object is moving towards the center of the Earth, and the 
outward radial direction is positive. 
 

77. Equate the force of gravity on a mass m at the surface of the Earth as expressed by the acceleration 
due to gravity to that as expressed by Newton’s law of universal gravitation. 

  
( )

( ) ( )

2 2
Earth Earth Earth
2 34

Earth3Earth Earth Earth Earth Earth Earth

2 3 3
10 10

3 7 2 2

3 3 3
    

4 24
2

3 10 m s m m
1.25 10 1 10

2 3000 kg m 4 10 m kg s kg s
                                  

GM m gR gR g g g
mg G

CR M R R Cρ π πρ ρπρ
π

− −

= → = = = = =

= = × ≈ ×
× i i

 

 This is roughly twice the size of the accepted value of G. 
 
78. (a) From Example 6-6, the speed of an object in a circular orbit of radius r about mass M is  

.GM
v

r
=  Use that relationship along with the definition of density to find the speed. 

   
34

2 3      
GM GM G r

v v
r r r

ρ π
= → = = →  
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( )

( ) ( )
22

4
11 2 2 3

3 22 m s3
25330 m 2.5 10 m

4 4 6.67 10 N m kg 2700 kg m
v

r
Gπ ρ π −

= = = ≈ ×
× i

 

 (b) 
( )2 25330 m2 2

    7234s 2.0 h
22 m s

r r
v T

T v
ππ π

= → = = = ≈  

 
79. (a) The graph is shown.     
 

(b) From the graph, we get this 
equation. 

2 3

1/ 32

0.9999 0.3412  

0.3412
0.9999

T r

T
r

= + →

−
=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
 
 
 
 

( )
1/ 32247.7 0.3412

247.7 y 39.44 AU
0.9999

r T
−

= = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

A quoted value for the means distance of Pluto is 39.47 AU.  The spreadsheet used for this 
problem can be found on the Media Manager, with filename “PSE4_ISM_CH06.XLS,” on tab 
“Problem 6.79.” 
 

T 2 = 0.9999 r 3 + 0.3412
R2 = 1.0000

0

5000

10000

15000

20000

25000

30000

0 5000 10000 15000 20000 25000 30000
r 3 (AU3)

T
2  (y

2 )
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CHAPTER 7:  Work and Energy 
 
Responses to Questions 
 
1.  “Work” as used in everyday language generally means “energy expended,” which is similar to the 

way “work” is defined in physics.  However, in everyday language, “work” can involve mental or 
physical energy expended, and is not necessarily connected with displacement, as it is in physics.  So 
a student could say she “worked” hard carrying boxes up the stairs to her dorm room (similar in 
meaning to the physics usage), or that she “worked” hard on a problem set (different in meaning 
from the physics usage). 

 
2.  Yes, she is doing work. The work done by her and the work done on her by the river are opposite in 

sign, so they cancel and she does not move with respect to the shore. When she stops swimming, the 
river continues to do work on her, so she floats downstream. 

 
3.  No, not if the object is moving in a circle. Work is the product of force and the displacement in the 

direction of the force. Therefore, a centripetal force, which is perpendicular to the direction of 
motion, cannot do work on an object moving in a circle. 

 
4.  You are doing no work on the wall. Your muscles are using energy generated by the cells in your 

body and producing byproducts which make you feel fatigued. 
 
5. No. The magnitudes of the vectors and the angle between them are the relevant quantities, and these 

do not depend on the choice of coordinate system.  
 
6.  Yes. A dot product can be negative if corresponding components of the vectors involved point in 

opposite directions.  For example, if one vector points along the positive x-axis, and the other along 
the negative x-axis, the angle between the vectors is 180º.  Cos 180º = –1, and so the dot product of 
the two vectors will be negative. 

  
7.  No. For instance, imagine C

G
 as a vector along the +x axis. A

G
and B

G
 could be two vectors with the 

same magnitude and the same x-component but with y-components in opposite directions, so that 
one is in quadrant I and the other in quadrant IV. Then =A C B C

G G GG
i i  even though A

G
and B

G
 are 

different vectors.  
 
8.  No. The dot product of two vectors is always a scalar, with only a magnitude.  
 
9.  Yes. The normal force is the force perpendicular to the surface an object is resting on. If the object 

moves with a component of its displacement perpendicular to this surface, the normal force will do 
work. For instance, when you jump, the normal force does work on you in accelerating you 
vertically. 

 
10.  (a) If the force is the same, then 1 1 2 2F k x k x= = , so 2 1 1 2x k x k= .  The work done on spring 1 will  

be 21
1 1 12W k x= .  The work done on spring 2 will be ( ) ( )2 2 2 21 1

2 2 2 2 1 1 2 1 1 22 2W k x k k x k W k k= = = . 

Since 1 2k k> , 2 1W W>  , so more work is done on spring 2. 

(b) If the displacement is the same, then 21
1 12W k x=   and 21

2 22W k x= .  Since 1 2k k> , 1 2W W> , so  
more work is done on spring 1. 
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11.  The kinetic energy increases by a factor of 9, since the kinetic energy is proportional to the square of 
the speed. 

 
12.  Until the x = 0 point, the spring has a positive acceleration and is accelerating the block, and 

therefore will remain in contact with it.  After the x = 0 point, the spring begins to slow down, but (in 
the absence of friction), the block will continue to move with its maximum speed and will therefore 
move faster than the spring and will separate from it. 

 
13.  The bullet with the smaller mass has a speed which is greater by a factor of 2 1.4.≈   Since their 

kinetic energies are equal, then 2 21 1
1 1 2 22 2 .m v m v=   If m2 = 2m1, then 2 21 1

1 1 1 22 2 2 ,m v m v= ⋅  so 

1 22 .v v=  They can both do the same amount of work, however, since their kinetic energies are 
the same. (See the work-energy principle.) 

 
14.  The net work done on a particle and the change in the kinetic energy are independent of the choice 

of reference frames only if the reference frames are at rest with respect to each other. The work-
energy principle is also independent of the choice of reference frames if the frames are at rest with 
respect to each other.  

 

 If the reference frames are in relative motion, the net work done on a particle, the kinetic energy, and 
the change in the kinetic energy all will be different in different frames. The work-energy theorem 
will still be true. 

 
15.  The speed at point C will be less than twice the speed at point B. The force is constant and the 

displacements are the same, so the same work is done on the block from A to B as from B to C. 
Since there is no friction, the same work results in the same change in kinetic energy. But kinetic 
energy depends on the square of the speed, so the speed at point C will be greater than the speed at 
point B by a factor of 2,  not a factor of 2. 

 
 
Solutions to Problems 
 
1. The force and the displacement are both downwards, so the angle between them is o0 .  Use Eq. 7-1. 

( )( )( )2 o 3
G cos 280 kg 9.80 m s 2.80 m cos 0 7.7 10 JW mgd θ= = = ×  

 
2. The rock will rise until gravity does –80.0 J of work on the rock.  The displacement is upwards, but 

the force is downwards, so the angle between them is o180 .  Use Eq. 7-1. 

  
( ) ( ) ( )

G
G 2

80.0 J
cos     4.41m

mgcos 1.85 kg 9.80 m s 1
W

W mgd dθ
θ

−
= → = = =

−
 

 
3. The minimum force required to lift the firefighter is equal to his weight.  The force and the 

displacement are both upwards, so the angle between them is 0o.  Use Eq. 7-1. 

( )( )( )2 o 4
climb climb cos cos 75.0 kg 9.80 m s 20.0m cos 0 1.47 10 JW F d mgdθ θ= = = = ×  

 
4. The maximum amount of work would be the work done by gravity.  Both the force and the 

displacement are downwards, so the angle between them is o0 .  Use Eq. 7-1. 
( ) ( ) ( )2 o

G cos 2.0 kg 9.80 m s 0.50 m cos 0 9.8 JW mgd θ= = =  
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This is a small amount of energy.  If the person adds a larger force to the hammer during the fall, 
then the hammer will have a larger amount of energy to give to the nail. 

 
5. The distance over which the force acts is the area to be mowed divided by the width of the mower.  

The force is parallel to the displacement, so the angle between them is o0 .  Use Eq. 7-1. 

  ( )
2200 m

cos cos 15 N 6000 J
0.50 m

A
W Fd F

w
θ θ= = = =  

 
6. Consider the diagram shown.  If we assume that the man pushes 

straight down on the end of the lever, then the work done by the 
man (the “input” work) is given by I I I .W F h=  The object moves a 

shorter distance, as seen from the diagram, and so O O O.W F h=   
Equate the two amounts of work.  

O I
O I O O I I

I O

       
F h

W W F h F h
F h

= → = → =  

 But by similar triangles, we see that I I

O O

h
h

=
l

l
, and so O I

I O

F
F

=
l

l
. 

 
7. Draw a free-body diagram of the car on the incline.  The minimum work 

will occur when the car is moved at a constant velocity.  Write Newton’s 
second law in the x direction, noting that the car is unaccelerated.  Only the 
forces parallel to the plane do work. 

P Psin 0    sinxF F mg F mgθ θ= − = → =∑  

The work done by PF
G

 in moving the car a distance d along the plane 

(parallel to PF
G

) is given by Eq. 7-1. 

( ) ( ) ( )o 2 5
P P cos0 sin 950 kg 9.80 m s 310 m sin 9.0 4.5 10 JW F d mgd θ= = = ° = ×  

 
8. The first book is already in position, so no work is required to position it.  The second book must be 

moved upwards by a distance d, by a force equal to its weight, mg.  The force and the displacement 
are in the same direction, so the work is mgd.  The third book will need to be moved a distance of 2d 
by the same size force, so the work is 2mgd.  This continues through all seven books, with each 
needing to be raised by an additional amount of d by a force of mg.  The total work done is  

2 3 4 5 6 7W mgd mgd mgd mgd mgd mgd mgd= + + + + + +  

( )( )( )2 1   28 28 1.8 kg 9.8m s 0.040 m 2.0 10 Jmgd= = = ×  

 
9. Since the acceleration of the box is constant, use Eq. 2-12b to find the distance moved.  Assume that 

the box starts from rest. 
( ) ( )22 21 1

0 0 2 20 2.0m s 7.0s 49 md x x v t at= − = + = + =  

Then the work done in moving the crate is found using Eq. 7-1. 
( ) ( ) ( )o 2cos 0 6.0 kg 2.0 m s 49 m 590 JW Fd mad= = = =  

 
 
 

OF
G

IF
G

Il

Ol

Ih

Oh

θ θ 

y x 

mgG

NF
G

PF
G
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10. (a) Write Newton’s second law for the vertical direction, with up as positive. 
( )L L0.10     1.10yF F Mg Ma M g F Mg= − = = → =∑  

(b) The work done by the lifting force in lifting the helicopter a vertical distance h 
is given by Eq. 7-1.  The lifting force and the displacement are in the same 
direction. 

L L cos0 1.10W F h Mgh= ° = . 

 
11. The piano is moving with a constant velocity down the plane.  PF

G
 is the  

force of the man pushing on the piano.  

(a) Write Newton’s second law on each direction for the piano, with an  
acceleration of 0. 

( ) ( ) ( )

N N

P

P

2

cos 0    cos

sin 0  

sin sin

    380 kg 9.80 m s sin 27 1691N 1700 N

y

x

F F mg F mg

F mg F

F mg mg

θ θ

θ

θ θ

= − = → =

= − = →

= =

= ° = ≈

∑
∑

 

(b) The work done by the man is the work done by P.F
G

  The angle between PF
G

 and the direction of  
motion is 180 .°   Use Eq. 7-1. 

( ) ( )P P cos180 1691N 3.9 m 6595J 6600JW F d= ° = − = − ≈ − . 

(c) The angle between the force of gravity and the direction of motion is 63 .°   Calculate the work 
done by gravity. 

 
( ) ( ) ( )2cos 63 cos 63 380 kg 9.80 m s 3.9 m cos 63

6594 N 6600 J    

G GW F d mgd= = =

= ≈

° ° °
 

(d) Since the piano is not accelerating, the net force on the piano is 0, and so the net work done on 
the piano is also 0.  This can also be seen by adding the two work amounts calculated.  

3 3
net P G 6.6 10 J 6.6 10 J 0 JW W W= + = − × + × =  

 
12. (a) The motor must exert a force equal and opposite to the force of gravity on the gondola and  

passengers in order to lift it.  The force is in the same direction as the displacement.  Use Eq.  
7-1 to calculate the work. 

 ( ) ( ) ( )2 7
motor motor cos0 2250kg 9.80m s 3345m 2150m 2.63 10 JW F d mgd= ° = = − = ×  

 (b) Gravity would do the exact opposite amount of work as the motor, because the force and  
displacement are of the same magnitude, but the angle between the gravity force and the 
displacement is 180 .°  

( ) ( ) ( )2 7
G G cos180 2250kg 9.80m s 3345m 2150m 2.63 10 JW F d mgd= ° = − = − − = − ×  

 (c) If the motor is generating 10% more work, than it must be able to exert a force that is 10%  
larger than the force of gravity.  The net force then would be as follows, with up the positive 
direction. 

2
net motor G 1.1 0.1     0.1 0.98m sF F F mg mg mg ma a g= − = − = = → = =  

 
 

LF
G

M gG

y 

x
θ θ mgG

PF
G

NF
G
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13. (a) The gases exert a force on the jet in the same direction as the displacement of the jet.  From the  
graph we see the displacement of the jet during launch is 85 m.  Use Eq. 7-1 to find the work. 

   ( ) ( ) 7
gas gas

3cos0 130 10 85m 1.1 10 JNW F d= ° = × = ×  

(b) The work done by catapult is the area underneath the graph in Figure 7-22.  That area is a 
trapezoid. 

   ( ) ( )3 3 71
catapult 2 1100 10 N 65 10 N 85m 5.0 10 JW = × + × = ×  

 
14. (a) See the free-body diagram for the crate as it is being pulled.  Since the  

crate is not accelerating horizontally, P fr 230 N.F F= =   The work done to 
move it across the floor is the work done by the pulling force.  The angle 
between the pulling force and the direction of motion is 0 .°   Use Eq. 7-1.     

( ) ( ) ( )P P cos0 230 N 4.0 m 1 920JW F d= ° = =  

 
(b) See the free-body diagram for the crate as it is being lifted.  Since the crate is not 

accelerating vertically, the pulling force is the same magnitude as the weight.  The 
angle between the pulling force and the direction of motion is 0o.   

( ) ( )o
P P cos0 2200 N 4.0m 8800JW F d mgd= = = =  

 
15. Consider a free-body diagram for the grocery cart being pushed up the 

ramp.  If the cart is not accelerating, then the net force is 0 in all 
directions.  This can be used to find the size of the pushing force.  The 
angles are 17φ = ° and 12 .θ = °  The displacement is in the x-direction.  
The work done by the normal force is 0 since the normal force is 
perpendicular to the displacement.  The angle between the force of 
gravity and the displacement is 90 102 .θ° + = °  The angle between the 
normal force and the displacement is 90 .°  The angle between the 
pushing force and the displacement is total work done is 29 .φ θ+ = °  

  

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2

normal N

P

2

sin
cos sin 0    

cos

cos112 16 kg 9.80 m s 15m cos102 490 J

cos90 0

sin12
cos 29 cos 29 sin12

cos 29

    16 kg 9.80 m s 15m sin12 490J

x P P

mg

P

mg
F F mg F

W mgd

W F d

mg
W F d d mgd

θφ θ θ
φ θ

= + − = → =
+

= ° = ° = −

= ° =

°
= ° = ° = °

°

= ° =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

 

 
16. Use Eq. 7.4 to calculate the dot product. 

  
( )( ) ( ) ( ) ( )( )2 2 2

2

2.0 11.0 4.0 2.5 5.0 0 22 10

       12

x x y y z zA B A B A B x x x x x

x

= + + = + − + = −

=

A B
G G
i

 

 
 

mgG
NF
G

PF
G

frF
G

ΔxG

mgG

PF
G

ΔyG

y 
x 

mgG

NF
G

PF
G

θ θ

φ
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17.  Use Eq. 7.4 to calculate the dot product.  Note that ˆ ˆ ˆ ˆ1 0 0 ,= + +i i j k  ˆ ˆ ˆ ˆ0 1 0 ,= + +j i j k  and 
ˆ ˆˆ ˆ0 0 1 .= + +k i j k  

  ( ) ( ) ( )ˆ 1 0 0x y z xV V V V= + + =i V
G
i   ( ) ( ) ( )ˆ 0 1 0x y z yV V V V= + + =j V

G
i  

  ( ) ( ) ( )ˆ 0 0 1x y z zV V V V= + + =k V
G
i  

 
18. Use Eq. 7.4 and Eq. 7.2 to calculate the dot product, and then solve for the angle. 

  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2 22 2

1 1

6.8 8.2 3.4 2.3 6.2 7.0 91.34

6.8 3.4 6.2 9.81      8.2 2.3 7.0 11.0

91.34
cos     cos cos 32

9.81 11.0

x x y y z zA B A B A B

A B

AB
AB

θ θ − −

= + + = + − + − − =

= + − + − = = + + − =

= → = = = °

A B

A B
A B

G G
i

G G
G G i
i

 

 
19. We utilize the fact that if  ˆ ˆ ˆ ,x y zB B B= + +B i j k

G
 then ( ) ( ) ( )ˆ ˆ ˆ .x y zB B B− = − + − + −B i j k

G
  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )            

x x y y z z

x x y y z z

A B A B A B

A B A B A B

− = − + − + −

= − + − + − = −

A B

A B

G G
i

G G
i

 

 
20. See the diagram to visualize the geometric relationship between the two vectors.  

The angle between the two vectors is 138 .°   
 ( ) ( )1 2 1 2 cos 75 58 cos138 3200VV θ= = ° = −V V

G G
i  

 
 
 
21. If A

G
 is perpendicular to B

G
, then 0.=A B

G G
i   Use this to find .B

G
 

  ( ) ( )3.0 1.5 0    2.0x x y y x y y xA B A B B B B B= + = + = → = −A B
G G
i  

Any vector B
G

 that satisfies 2.0y xB B= −  will be perpendicular to .A
G

 For example, ˆ ˆ1.5 3.0 .= −B i j
G

 
 
22. Both vectors are in the first quadrant, so to find the angle between them, we can simply subtract the 

angles of each of them. 

  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 1 1

2 2 1 1

4.0ˆ ˆ2.0 4.0 N    2.0 N 4.0 N 20 N  ;  tan tan 2.0
2.0

5.0ˆ ˆ1.0 5.0 m    1.0 m 5.0 m 26 m  ;  tan tan 5.0
1.0

F

d

F

d

φ

φ

− −

− −

= + → = + = = =

= + → = + = = =

F i j

d i j

G

G
 

 (a) ( ) ( ) 1 1cos 20 N 26 m cos tan 5.0 tan 2.0 22 JW Fd θ − −= = − =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦  

 (b) ( ) ( ) ( ) ( )2.0 N 1.0 m 4.0 N 5.0 m 22 Jx x y yW F d F d= + = + =  

 
23. (a) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ9.0 8.5 8.0 7.1 4.2 6.8 9.2+ = − − + + + −⎡ ⎤⎣ ⎦A B C i j i j k i j

G GG
i i  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ  9.0 8.5 1.2 2.1 4.2 9.0 1.2 8.5 2.1 0 4.2 7.05 7.1= − − − + = − + − − + = ≈i j i j ki  

 (b) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ9.0 8.5 6.8 9.2 8.0 7.1 4.2+ = − + − − + +⎡ ⎤⎣ ⎦A C B i j i j i j k
G G G

i i  

1V
G

z

x

2V
G
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ15.8 17.7 8.0 7.1 4.2 15.8 8.0 17.7 7.1 0 4.2

                252 250

               = − − + + = − + − +

= − ≈ −

i j i j ki
 

 (c) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ8.0 7.1 4.2 9.0 8.5 6.8 9.2+ = − + + + − −⎡ ⎤⎣ ⎦B A C i j k i j i j
G GG
i i  

  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ1.0 1.4 4.2 6.8 9.2 1.0 6.8 1.4 9.2 4.2 0

19.68 20

               

               

= − + − = + − − +

= ≈

i j k i ji
 

 
24. We assume that the dot product of two vectors is given by Eq. 7-2.  Note that for two unit vectors, 

this gives the following. 
( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ1 1 cos 0 1= ° = = =i i j j k ki i i  and ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ1 1 cos 90 0= ° = = = = = =i j i k j i j k k i k ji i i i i i  

Apply these results to .A B
G G
i  

( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ       

       1 0 0 0 1

0 0              

x y z x y z

x x x y x z y x y y y z z x z y z z

x x x y x z y x y y

y z z x z y

A A A B B B

A B A B A B A B A B A B A B A B A B

A B A B A B A B A B

A B A B A B

= + + + +

= + + + + + + + +

= + + + +

+ + +

A B i j k i j k

i i i j i k j i j j j k k i k j k k

G G
i i

i i i i i i i i i

( ) ( )0 1

       
z z

x x y y z z

A B

A B A B A B

+

= + +

 

 
25. If C

G
 is perpendicular to B

G
, then 0.=C B

G G
i    Use this along with the value of C A

G G
i to find .C

G
 We 

also know that C
G

 has no z-component. 

  
ˆ ˆ  ;  0  ;  20.0  

9.6 6.7 0  ;  4.8 6.8 20.0
x y x x y y x x y y

x y x y

C C C B C B C A C A

C C C C

= + = + = = + = →

+ = − + =

C i j C B C A
G G G GG

i i
 

This set of two equations in two unknowns can be solved for the components of .C
G

 
9.6 6.7 0  ;  4.8 6.8 20.0    1.4 , 2.0  

ˆ ˆ1.4 2.0

x y x y x yC C C C C C+ = − + = → = − = →

= − +C i j
G  

 
26. We are given that the magnitudes of the two vectors are the same, so 2 2 2 2 2 2.x y z x y zA A A B B B+ + = + +   

If the sum and difference vectors are perpendicular, their dot product must be zero. 
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )2 2 2 2 2 2 2 2 2 2 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ

                        0

x x y y z z

x x y y z z

x x x x y y y y z z z z

x x y y z z x y z x y z

A B A B A B

A B A B A B

A B A B A B A B A B A B

A B A B A B A A A B B B

+ = + + + + +

− = − + − + −

+ − = + − + + − + + −

= − + − + − = + + − + + =

A B i j k

A B i j k

A B A B

G G

G G

G GG G
i

 

 
27. Note that by Eq. 7-2, the dot product of a vector A

G
 with a unit vector B

G
 would give the magnitude 

of A
G

 times the cosine of the angle between the unit vector and A
G

.  Thus if the unit vector lies along 
one of the coordinate axes, we can find the angle between the vector and the coordinate axis.  We 
also use Eq. 7-4 to give a second evaluation of the dot product. 

  ˆ cos   x xV Vθ= = →V i
G
i  
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( ) ( ) ( )

1 1 1

2 2 2 2 2 2

20.0
cos cos cos 52.5

20.0 22.0 14.0
x x

x

x y z

V V
V V V V

θ − − −= = = = °
+ + + + −

 

  
( ) ( ) ( )

( ) ( ) ( )

1 1

2 2 2

1 1

2 2 2

22.0
cos cos 48.0

20.0 22.0 14.0

14.0
cos cos 115

20.0 22.0 14.0

y
y

z
z

V
V

V
V

θ

θ

− −

− −

= = = °
+ + −

−
= = = °

+ + −

 

 
28. For the diagram shown, + =B C A

G GG
, or .= −C A B

G G G
 Let the magnitude of each vector 

be represented by the corresponding lowercase letter, so ,c=C
G

 for example.  The 

angle between A
G

 and B
G

 is .θ  Take the dot product .C C
G G
i  

  ( ) ( ) 2 2 22     2 cosc a b ab θ= − − = + − → = + −C C A B A B A A B B A B
G G G G G G GG G G G G
i i i i i  

 
29. The scalar product is positive, so the angle between A

G
 and B

G
 must be acute.  But the direction of 

the angle from A
G

 to B
G

 could be either counterclockwise or clockwise. 

  ( ) ( ) ( ) ( )
1 20.0

cos 12.0 24.0 cos 20.0    cos 86.0
12.0 24.0

AB θ θ θ −= = = → = = °A B
G G
i  

So this angle could be either added or subtracted to the angle of A
G

 to find the angle of .B
G

 
( )27.4 86.0 113.4  or 58.6 301.4B Aθ θ θ= ± = ° ± ° = ° − ° °  

 
30. We can represent the vectors as ˆ ˆ ˆ ˆcos sinx y A AA A α α= + = +A i j i j

G
 and ˆ ˆ

x yB B= +B i j
G

 
ˆ ˆcos sin .B Bβ β= +i j  The angle between the two vectors is .α β−   Use Eqs. 7-2 and 7-4 to express 

the dot product. 

  
( )

( ) ( )
cos cos cos sin sin   

cos cos cos sin sin cos cos cos sin sin    
x x y yAB A B A B A B A B

AB AB AB

α β α β α β

α β α β α β α β α β α β

= − = + = + →

− = + − = +→

A B
G G
i

 

 
31. (a) Use the two expressions for dot product, Eqs. 7-2 and 7-4, to find the angle between the two  

vectors. 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )

1

1
1/ 2 1/ 22 2 2 2 2 2

1 2
3

cos   

cos

1.0 1.0 1.0 1.0 2.0 2.0
  cos

1.0 1.0 2.0 1.0 1.0 2.0

  cos 132 130

x x y y z z

x x y y z z

AB A B A B A B

A B A B A B
AB

θ

θ −

−

−

= = + + →

+ +
=

− + + −
=

+ + − − + +

= − = ° ≈ °

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

A B
G G
i

 

(b) The negative sign in the argument of the inverse cosine means that the angle between the two  
vectors is obtuse. 

 
 
 

A
G

B
G

C
G

θ
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32. To be perpendicular to the given vector means that the dot product will be 0.  Let the unknown 
vector be given as ˆ ˆˆ .x yu u= +u i j  

 ( ) 2 2ˆ ˆˆ 3.0 4.0 3.0 4.0     = 0.75   ;  unit length 1  x y y x x yu u u u u u+ = + → − → + = →u i ji  

 ( )22 2 2 2 1
0.75 1.5625 1    0.8  ,  0.6

1.5625x y x x x x yu u u u u u u+ = + − = = → = ± = ± = ∓  

So the two possible vectors are ˆ ˆˆ 0.8 0.6= −u i j  and ˆ ˆˆ 0.8 0.6 .= − +u i j  
Note that it is very easy to get a non-unit vector perpendicular to another vector in two dimensions, 
simply by interchanging the coordinates and negating one of them.  So a non-unit vector 
perpendicular to ( )ˆ ˆ3.0 4.0+i j could be either ( )ˆ ˆ4.0 3.0−i j  or ( )ˆ ˆ4.0 3.0− +i j .  Then divide each of 

those vectors by its magnitude (5.0) to get the possible unit vectors. 
 
33. From Figure 7-6, we see a graphical interpretation of the scalar product 

as the magnitude of one vector times the projection of the other vector 
onto the first vector.  So to show that ( )+ = +A B C A B A C

G G G G GG G
i i i  is the 

same as showing that ( ) ( ) ( ) ,A A A+ = +B C B C
&& &

G GG G
 where the 

subscript is implying the component of the vector that is parallel to 
vector A

G
.  From the diagram, we see that ( ) ( ) ( ) .+ = +B C B C

&& &

G GG G
  

Multiplying this equation by the magnitude of vector A
G

 gives 
( ) ( ) ( ) .A A A+ = +B C B C

&& &

G GG G
 But from Figure 7-6, this is the same as  

 ( ) .+ = +A B C A B A C
G G G G GG G
i i i  So we have proven the statement. 

 
34. The downward force is 450 N, and the downward displacement would be a diameter of the pedal 

circle.  Use Eq. 7-1. 
( ) ( ) ocos 450 N 0.36 m cos 0 160 JW Fd θ= = =  

 
35. The force exerted to stretch a spring is given by stretchF kx=   

(the opposite of the force exerted by the spring, which is 
given by .F kx= −   A graph of stretchF  vs. x will be a 
straight line of slope k through the origin.  The stretch from 
x1 to x2, as shown on the graph, outlines a trapezoidal area.  
This area represents the work. 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1
1 2 2 1 1 2 2 12 2

1
2   65 N m 0.095m 0.035m 0.11J

W kx kx x x k x x x x= + − = + −

= =
 

 
36. For a non-linear path, the work is found by considering the path to 

be an infinite number of infinitesimal (or differential) steps, each of 
which can be considered to be in a specific direction, namely, the 
direction tangential to the path.  From the diagram, for each step we 
have cos .dW d Fd θ= =F

GG
i l l   But cos ,d dyθ = −l  the projection 

of the path in the direction of the force, and F mg= , the force of  
 

kx2 

x1 x2 

kx1 

F = kx 

Stretch distance 

Force

B
G

C
G+B C

GG

A
G

B&

G
C&

G

( )+B C
&

GG

F
G

d
G
l

θ
h
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gravity.  Find the work done by gravity. 
  ( )g cosW d mg d mg dy mghθ= = = − = −∫ ∫ ∫F

GG
i l l  

This argument could even be extended to going part way up the hill, and then part way back down, 
and following any kind of path.  The work done by gravity will only depend on the height of the 
path. 

 
37. See the graph of force vs. distance.  The work 

done is the area under the graph.  It can be found 
from the formula for a trapezoid.   

( )( )1
2

3

12.0 m 4.0 m 380 N

3040 J 3.0 10 J   

W = +

= ≈ ×
 

 

The spreadsheet used for this problem can be 
found on the Media Manager, with filename 
“PSE4_ISM_CH07.XLS,” on tab “Problem 7.37.” 

 
38. The work required to stretch a spring from equilibrium is proportional to the length of stretch, 

squared.  So if we stretch the spring to 3 times its original distance, a total of 9 times as much work 
is required for the total stretch.  Thus it would take 45.0 J to stretch the spring to a total of 6.0 cm.  
Since 5.0 J of work was done to stretch the first 2.0 cm,  40.0 J  of work is required to stretch it the 
additional 4.0 cm. 

 

This could also be done by calculating the spring constant from the data for the 2.0 cm stretch, and 
then using that spring constant to find the work done in stretching the extra distance. 

 
39. The x-axis is portioned into 7 segments, so each segment is 1/7 of the full 20.0-m width.  The force 

on each segment can be approximated by the force at the middle of the segment.  Thus we are 
performing a simple Riemann sum to find the area under the curve.  The value of the mass does not 
come into the calculation. 

( ) ( )

( ) ( )

7 7
1
7

1 1

1
7

20.0 m 180 N 200 N 175 N 125 N 110 N 100 N 95 N

20.0 m 985 N 2800 J

i i i
i i

W F x x F
= =

= Δ = Δ = + + + + + +

= ≈

∑ ∑
 

Another method is to treat the area as a trapezoid, with sides of 180 N and 100 N, and a base of 20.0 
m.  Then the work is ( ) ( )1

2 20.0 m 180 N 100 N 2800 J .W = + ≈  

 
40. The work done will be the area under the Fx vs. x graph. 
 (a)  From 0.0x =  to 10.0m,x =  the shape under the graph is trapezoidal.  The area is  

( ) ( )1
2400 N 10 m 4 m 2800J .aW = + =  

 (b)  From 10.0 mx =  to 15.0m,x =  the force is in the opposite direction from the direction of  
motion, and so the work will be negative.  Again, since the shape is trapezoidal, we find  

( ) ( )1
2200 N 5m 2 m 700J.aW = − + = −  

Thus the total work from 0.0x =  to 15.0 mx =  is 2800 J 700 J 2100J .− =  

 
 
 
 

0

100

200

300

400

0 2 4 6 8 10 12
x  (m)

F x
 (N

)
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41. Apply Eq. 7-1 to each segment of the motion. 
1 2 3 1 1 1 2 2 2 3 3 3cos cos cosW W W W F d F d F dθ θ θ= + + = + +  

( ) ( ) ( ) ( ) ( ) ( )   22 N 9.0 m cos0 38 N 5.0 m cos12 22 N 13.0 m cos0 670J= ° + ° + ° =  

 
42. Since the force only has an x-component, only the x-displacement is relevant.  The object moves 

from x = 0 to x = d. 

  4 51
5

0 0

d d

xW F dx kx dx kd= = =∫ ∫  

 
43. Since we are compressing the spring, the force and the displacement are in the same direction. 

( )3 4 2 4 51 1 1
2 4 5

0 0

X X

xW F dx kx ax bx dx kX aX bX= = + + = + +∫ ∫  

 
44. Integrate the force over the distance the force acts to find the work.  We assume the displacement is 

all in the x-direction. 

  ( ) ( )
0.20 m0.20 m

2 2 3

00

190
150 190 75 2.49 J

3

f

i

x

x

W F x dx x x dx x x= = − = − =⎛ ⎞
⎜ ⎟
⎝ ⎠∫ ∫  

 
45. Integrate the force over the distance the force acts to find the work. 

( ) ( )
1.0 m 1.0 m

1.0 m 1/21/2
1 0

0 0

2 2 2.0N m 1.0m 4.0 J
A

W F dx dx A x
x

= = = = =∫ ∫ i  

Note that the work done is finite. 
 
46. Because the object moves along a straight line, we know that the x-coordinate increases linearly from 

0 to 10.0 m, and the y-coordinate increases linearly from 0 to 20.0 m.  Use the relationship developed 
at the top of page 170. 

  
( ) ( )

b b

a a

10.0 m 20.0 m
10.0 20.02 21 1

2 20 0
0 0

3.0 4.0 3.0 4.0 150J 800J

   950J

x y

x y
x y

W F dx F dy xdx ydy x y= + = + = + = +

=

∫ ∫ ∫ ∫
 

 
47. Since the force is of constant magnitude and always directed at 30° to the displacement, we have a 

simple expression for the work done as the object moves.  

  
finish finish finish

start start start

3
cos30 cos30 cos30

2
FR

W d F d F d F R
ππ= = ° = ° = ° =∫ ∫ ∫F

GG
i l l l  

 

48. The force on the object is given by Newton’s law of universal gravitation, E
2 .mm

F G
r

=   The force is 

a function of distance, so to find the work, we must integrate.  The directions are tricky.  To use Eq. 

7-7, we have E
2

ˆmm
G

r
= −F r

G
 and ˆ.d dr= r

G
l   It is tempting to put a negative sign with the d

G
l  

relationship since the object moves inward, but since r is measured outward away from the center of 
the Earth, we must not include that negative sign.  Note that we move from a large radius to a small 
radius. 
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  ( )
EE

EE

E E E
2 2

3300 km3300 km

near

far

ˆ ˆ
rr

rr

mm mm mm
W d G dr G dr G

r r r ++

= − == = − ∫∫ ∫F r r
GG

i il  

  ( ) ( ) ( ) ( )

E
E E

11 2 2 24
6 6

10

1 1
3300 km

1 1
6.67 10 N m kg 2800 kg 5.97 10 kg

6.38 10 m 10 m

   6.0 10 J

   

   
6.38 3.30

Gmm
r r

−

= −
+

= × ⋅ × −
× ×

= ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟+⎝ ⎠

 

 
49. Let y represent the length of chain hanging over the table, and let λ  represent the weight per unit 

length of the chain.  Then the force of gravity (weight) of the hanging chain is G .F yλ=  As the next 
small length of chain dy comes over the table edge, gravity does an infinitesimal amount of work on 
the hanging chain given by the force times the distance, G .F dy ydyλ=  To find the total amount of 
work that gravity does on the chain, integrate that work expression, with the limits of integration 
representing the amount of chain hanging over the table. 

  ( ) ( )
final

initial

3.0 m
3.0m2 2 21 1

G 2 21.0 m
1.0 m

18 N m 9.0 m 1.0 m 72 J
y

y

W F dy ydy yλ λ= = = = − =∫ ∫  

 
50. Find the velocity from the kinetic energy, using Eq. 7-10. 

( )21
21

2 26

2 6.21 10 J2
    484 m s

5.31 10
K

K mv v
m

−

−

×
= → = = =

×
 

 
51. (a) Since 21

2 ,K mv=  then 2v K m=  and so .v K∝   Thus if the kinetic energy is  

tripled, the speed will be multiplied by a factor of 3 .  

 (b) Since 21
2 ,K mv=  then 2.K v∝  Thus if the speed is halved, the kinetic energy will be  

multiplied by a factor of 1 4 .  

 
52.  The work done on the electron is equal to the change in its kinetic energy.  

( ) ( )22 2 31 6 191 1 1
2 12 2 20 9.11 10 kg 1.40 10 m s 8.93 10 JW K mv mv − −= Δ = − = − × × = − ×  

 Note that the work is negative since the electron is slowing down. 
 
53. The work done on the car is equal to the change in its kinetic energy.  

( ) ( )
2

2 2 51 1 1
2 12 2 2

1m s
0 1300 kg 95km h 4.5 10 J

3.6 km h
W K mv mv= Δ = − = − = − ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 Note that the work is negative since the car is slowing down. 
 
54. We assume the train is moving 20 m/s (which is about 45 miles per hour), and that the distance of “a 

few city blocks” is perhaps a half-mile, which is about 800 meters.  First find the kinetic energy of 
the train, and then find out how much work the web must do to stop the train.  Note that the web 
does negative work, since the force is in the OPPOSITE direction of the displacement. 
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  ( ) ( )22 2 4 61 1 1
to stop 2 12 2 2
train

0 10 kg 20 m s 2 10 JW K mv mv= Δ = − = − = − ×  

  
( )
( )

6
2 61

web 2 2

2 2 10 J
2 10 J    6 N m

800 m
W kx k

×
= − = − × → = =  

 Note that this is not a very stiff “spring,” but it does stretch a long distance. 
 
55. The force of the ball on the glove will be the opposite of the force of the glove on the ball, by 

Newton’s third law.  Both objects have the same displacement, and so the work done on the glove is 
opposite the work done on the ball.  The work done on the ball is equal to the change in the kinetic 
energy of the ball. 

( ) ( ) ( )22 21 1 1
on ball 2 1 2 12 2 2ball

0 0.145kg 32 m s 74.24 JW K K mv mv= − = − = − = −  

So on glove 74.24 J.W =   But on glove on glove cos 0 ,W F d= °  because the force on the glove is in the same 
direction as the motion of the glove.   

( ) 2
on glove on glove

74.24 J
74.24 J 0.25m     3.0 10 N

0.25m
,F F= → = = × in the direction of the original 

velocity of the ball. 
  
56. The force exerted by the bow on the arrow is in the same direction as the displacement of the arrow.  

Thus ( ) ( )ocos 0 105 N 0.75m 78.75J.W Fd Fd= = = =  But that work changes the kinetic energy of 
the arrow, by the work-energy theorem.  Thus  

( )2 2 21 1
2 1 2 1 2 12 2

2 78.75J2
   0 43m s

0.085kg
Fd

Fd W K K mv mv v v
m

= = − = − → = + = + =  

 
57. (a) The spring constant is found by the magnitudes of the initial force and displacement, and so  

.k F x=  As the spring compresses, it will do the same amount of work on the block as was 
done on the spring to stretch it.  The work done is positive because the force of the spring is 
parallel to the displacement of the block.  Use the work-energy theorem to determine the speed 
of the block.   

   2 2 21 1 1
on block block on spring 2 2 2
during during
compression stretching

        f f

F Fx
W K W mv kx x v

x m
= Δ = → = = → =  

 (b) Now we must find how much work was done on the spring to stretch it from 2x  to x.  This  
will be the work done on the block as the spring pulls it back from x to 2.x  

   

( )22 2 231 1 1
on spring 2 2 2 82
during 2 2
stretching

2 231
2 8

2

3
    

4

x x
x

x
x x

f f

W Fdx kxdx kx kx k x kx

Fx
mv kx v

m

= = = = − =

= → =

∫ ∫
  

 
58.  The work needed to stop the car is equal to the change in the  

car’s kinetic energy.  That work comes from the force of 
friction on the car.  Assume the maximum possible 
frictional force, which results in the minimum braking 

d = stopping distance 

mgG
NF
G

frF
G
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distance.  Thus fr N .sF Fμ=  The normal force is equal to the car’s weight if it is on a level surface, 
and so fr .sF mgμ=   In the diagram, the car is traveling to the right. 

2
o 2 2 2 11 1 1

fr 2 1 12 2 2    cos180         
2s

s

v
W K F d mv mv mgd mv d

g
μ

μ
= Δ → = − → − = − → =  

Since 2
1 ,d v∝  if 1v  increases by 50%, or is multiplied by 1.5, then d  will be multiplied by a factor 

of ( )21.5 ,  or  2.25 . 
 
59. The net work done on the car must be its change in kinetic energy.  By applying Newton’s third law, 

the negative work done on the car by the spring must be the opposite of the work done in 
compressing the spring. 

( )
( )

2 2 21 1 1
spring 2 12 2 2

2

2
41

22

      

1m s
66 km k

3.6 km h
1200 kg 8.3 10 N m

2.2 m

W K W mv mv kx

v
k m

x

= Δ = − → − = − →

= = = ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 
60. The first car mentioned will be called car 1.  So we have these statements: 

( ) ( ) ( )2 22 21 1 1 1 1 1
1 2 1 1 2 2 1,fast 2,fast 1 1 2 22 2 2 2 2 2      ;    7.0 7.0K K m v m v K K m v m v= → = = → + = +  

 Now use the mass information, that 1 22 .m m=  

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2 22 21 1 1 1 1
2 1 2 2 2 1 2 22 2 2 2 2

2 2 2 2
1 2 1 2 1 1

1 1 1 2 1

1 2

2   ;  2 7.0 7.0   

2   ;  2 7.0 7.0     2 7.0 2 7.0   

7.0
2 7.0 2 7.0     4.9497 m s  ; 2 9.8994 m s

2

4.9 m s  ; 9.9 m s

m v m v m v m v

v v v v v v

v v v v v

v v

= + = + →

= + = + → + = + →

+ = + → = = = =

= =

 

 
61. The work done by the net force is the change in kinetic energy. 

  
( ) ( ) ( ) ( ) ( ) ( )

2 21 1
2 12 2

2 2 2 21 1
2 2   4.5kg 15.0 m s 30.0 m s 4.5kg 10.0 m s 20.0 m s 1400J

W K mv mv= Δ = −

= + − + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
 

 
62. (a) From the free-body diagram for the load being lifted, write Newton’s second law for  

the vertical direction, with up being positive. 

( )( )
T

2 3
T

0.150   

1.150 1.150 265 kg 9.80 m s 2.99 10 N

F F mg ma mg

F mg

= − = = →

= = = ×

∑
 

(b)   The net work done on the load is found from the net force.  
( ) ( ) ( )( )o 2

net net

3

cos 0 0.150 0.150 265 kg 9.80 m s 23.0 m

      8.96 10 J

W F d mg d= = =

= ×
 

(c) The work done by the cable on the load is as follows. 

( ) ( ) ( )( )o 2 4
cable T cos 0 1.150 1.15 265 kg 9.80 m s 23.0 m 6.87 10 JW F d mg d= = = = ×  

TF
G

mgG



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

208 

(d) The work done by gravity on the load is as follows. 

( )( )( )o 2 4
G cos180 265 kg 9.80 m s 23.0 m 5.97 10 JW mgd mgd= = − = − = − ×  

 (e) Use the work-energy theorem to find the final speed, with an initial speed of 0. 

( )3
2 2 21 1

net 2 1 2 1 2 12 2

2 8.96 10 J2
   0 8.22 m s

265kg
netW

W K K mv mv v v
m

×
= − = − → = + = + =  

 
63. (a) The angle between the pushing force and the displacement is 32 .°  
   ( ) ( )P P cos 150 N 5.0 m cos32 636.0J 640JW F d θ= = ° = ≈  

 (b) The angle between the force of gravity and the displacement is 122 .°  
   ( ) ( ) ( )2

G G cos cos 18kg 9.80 m s 5.0 m cos122 467.4 J 470JW F d mgdθ θ= = = ° = − ≈ −  

 (c) Because the normal force is perpendicular to the displacement, the work done by the normal  
force is 0 . 

 (d) The net work done is the change in kinetic energy. 

   ( )
( )

2 21 1
P g N 2 2   

2 636.0J 467.4 J2
4.3m s

18kg

f i

f

W W W W K mv mv

W
v

m

= + + = Δ = − →

−
= = =

 

 
64. See the free-body diagram help in the determination of the frictional force. 

  
( )

N P N P

f k N k P

sin cos 0    sin cos

sin cos
yF F F mg F F mg

F F F mg

φ φ φ φ

μ μ φ φ

= − − = → = +

= = +
∑  

 (a) The angle between the pushing force and the displacement is 32 .°  
   ( ) ( )P P cos 150 N 5.0 m cos32 636.0J 640JW F d θ= = ° = ≈  

 (b) The angle between the force of gravity and the displacement is 122 .°  
   ( ) ( ) ( )2

G G cos cos 18kg 9.80 m s 5.0 m cos122 467.4 J 470JW F d mgdθ θ= = = ° = − ≈ −  

 (c) Because the normal force is perpendicular to the displacement, the work done by the normal  
force is 0 . 

 (d) To find the net work, we need the work done by the friction force.  The angle between the  
friction force and the displacement is 180 .°  

   

( )
( ) ( ) ( ) ( ) ( )

f f k P

2

2 21 1
P g N f 2 2

cos sin cos cos

    0.10 150 N sin 32 18kg 9.80 m s cos32 5.0 m cos180 114.5J

  f i

W F d F mg d

W W W W W K mv mv

θ μ φ φ θ= = +

= ° + ° ° = −

= + + + = Δ = − →

⎡ ⎤⎣ ⎦  

   ( )
( )

2 636.0J 467.4 J 114.5J2
2.5m s

18kgf

W
v

m
− −

= = =  

 
65.  The work needed to stop the car is equal to the change  

in the car’s kinetic energy.  That work comes from the force 
of friction on the car, which is assumed to be static friction 
since the driver locked the brakes.  Thus fr N .kF Fμ=  Since 
the car is on a level surface, the normal force is equal to the 

φ

mgG

φfF
G

NF
G

x
y

PF
G

d = stopping distance 

mgG
NF
G

frF
G
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car’s weight, and so fr kF mgμ=  if it is on a level surface.  See the diagram for the car.  The car is 
traveling to the right. 

( ) ( ) ( )

o 2 2 21 1 1
fr 2 1 12 2 2

2
1

    cos180     0   

2 2 0.38 9.80 m s 98 m 27 m s

k

k

W K F d mv mv mgd mv

v gd

μ

μ

= Δ → = − → − = − →

= = =
 

The mass does not affect the problem, since both the change in kinetic energy and the work done by 
friction are proportional to the mass.  The mass cancels out of the equation. 

 
66. For the first part of the motion, the net force doing work is the 225 N force.  For the second part of 

the motion, both the 225 N force and the force of friction do work.  The friction force is the 
coefficient of friction times the normal force, and the normal force is equal to the weight.  The work-
energy theorem is then used to find the final speed. 

  

( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

2 21
total 1 2 pull 1 pull 2 f 2 2

pull 1 2 k 2

2

cos0 cos0 cos180   

2

2 225 N 21.0 m 0.20 46.0 kg 9.80 m s 10.0 m
   13m s

46.0 kg

f i

f

W W W F d F d F d K m v v

F d d mgd
v

m

μ

= + = ° + ° + ° = Δ = − →

+ −
=

−
= =

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

  

 
67. (a) In the Earth frame of reference, the ball changes from a speed of 1v  to a speed of 1 2.v v+  

( ) ( )2 2 2 2 2 21 1 1 1 1
Earth 1 2 1 1 1 2 2 1 1 2 22 2 2 2 2

2 11
22

2

2

          1 2

K m v v mv m v v v v mv mv v mv

v
mv

v

Δ = + − = + + − = +

= +
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) In the train frame of reference, the ball changes from a speed of 0 to a speed of 2.v  

   2 21 1
train 2 22 20K mv mvΔ = − =  

 (c) The work done is the change of kinetic energy, in each case. 

   2 211 1
Earth 2 train 22 2

2

1 2   ;  v
W mv W mv

v
= + =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(d) The difference can be seen as due to the definition of work as force exerted through a distance.  
In both cases, the force on the ball is the same, but relative to the Earth, the ball moves further 
during the throwing process than it does relative to the train.  Thus more work is done in the 
Earth frame of reference.  Another way to say it is that kinetic energy is very dependent on 
reference frame, and so since work is the change in kinetic energy, the amount of work done 
will be very dependent on reference frame as well. 

 
68. The kinetic energy of the spring would be found by adding together the kinetic energy of each 

infinitesimal part of the spring.  The mass of an infinitesimal part is given by S ,
M

dm dx
D

=  and the 

speed of an infinitesimal part is 0.
x

v v
D

=   Calculate the kinetic energy of the mass + spring. 

  
0

2 2
2 2 2 2 2S 0 S1 1 1 1 1 1

speed mass spring 0 0 0 02 2 2 2 2 23
mass 0 0

D D

v

x M v M
K K K mv v dm mv v dx mv x dx

D D D
= + = + = + = +⎛ ⎞

⎜ ⎟
⎝ ⎠∫ ∫ ∫  
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  ( )
2 3

2 20 S1 1 1 1
0 0 S2 2 2 33 3

        v M D
mv v m M

D
= + = +  

So for a generic speed v, we have ( )1 1
speed S2 3

2 .
v

K m M v= +  

 
69. (a) The work done by gravity as the elevator falls is the weight times the displacement.  They are in  

the same direction. 

( ) ( ) ( )2 5 5
G cos0 925kg 9.80 m s 22.5m 2.0396 10 J 2.04 10 JW mgd= ° = = × ≈ ×  

 (b) The work done by gravity on the elevator is the net work done on the elevator while falling, and  
so the work done by gravity is equal to the change in kinetic energy.  

( )
( )

5
2 G1

G 2

2 2.0396 10 J2
0    21.0 m s

925kg
W

W K mv v
m

×
= Δ = − → = = =  

 (c) The elevator starts and ends at rest.  Therefore, by the work-energy theorem, the net work done  
must be 0.  Gravity does positive work as it falls a distance of ( )22.5 m,x+  and the spring will 

do negative work at the spring is compressed.  The work done on the spring is 21
2 ,kx  and so the 

work done by the spring is 21
2 .kx−  

( )

( ) ( )
( )

2 21 1
G spring 2 2

2 2 1
2

1
2

0    0  

4
2

W W W mg d x kx kx mgx mgd

mg m g k mgd
x

k

= + = + − = → − − = →

± − −
=

 

The positive root must be taken since we have assumed x > 0 in calculating the work done by 
gravity.  Using the values given in the problem gives 2.37 m .x =  

 

70. (a) ( ) ( )22 3 2 21 1
2 2 3.0 10 kg 3.0 m s 1.35 10 J 1.4 10 JK mv − − −= = × = × ≈ ×  

(b) 
2

2actual
actual required required

1.35 10 J
0.35     3.9 10 J

0.35 0.35
K

K E E
−

−×
= → = = = ×  

 
71. The minimum work required to shelve a book is equal to the  

weight of the book times the vertical distance the book is moved.   
See the diagram.  Each book that is placed on the lowest shelf has 
its center moved upwards by 23.0 cm (the height of the bottom of 
the first shelf, plus half the height of a book).  So the work to 
move 28 books to the lowest shelf is ( )1 28 0.230m .W mg=  Each 
book that is placed on the second shelf has its center of mass 
moved upwards by 56.0 cm (23.0 cm + 33.0 cm), so the work to 
move 28 books to the second shelf is ( )2 28 0.560 m .W mg=  

Similarly, ( )3 28 0.890 m ,W mg= ( )4 28 1.220 m ,W mg= and ( )5 28 1.550 m .W mg=  The total work 
done is the sum of the five work expressions. 

( )
( ) ( ) ( )2

28 0.230 m .560 m .890 m 1.220 m 1.550 m

   28 1.40 kg 9.80 m s 4.450 m 1710J

W mg= + + + +

= =
 

 

floor

3rd shelf

2rd shelf

1st shelf23.0 cm 

56.0 cm
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72. There are two forces on the meteorite – gravity and the force from the mud.  Take down to be the 
positive direction, and then the net force is 3

net 640 .F mg x= −  Use this (variable) force to find the 
work done on the meteorite as it moves in the mud, and then use the work-energy theorem to find the 
initial velocity of the meteorite. 

  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

5.0
5.0 43 4 2

0
0

4

4
2 21

2

640 160 75kg 9.80 m s 5.0 m 160 5.0 m

   9.625 10 J

2 9.625 10 J2
    51m s

75kg

x
x

x
x

f i i

W mg x dx mgx x

W
W K m v v v

m

=
=

=
=

= − = − = −

= − ×

− − ×−
= Δ = − → = = =

∫
 

 
73. Consider the free-body diagram for the block as it moves up the plane. 

(a) ( ) ( )221 1
1 12 2 6.10 kg 3.25m s 32.22 J 32.2 JK mv= = = ≈  

(b)  ( ) ( )o
P P cos 37 75.0 N 9.25m cos 37.0 554.05JW F d= = ° =  

      554 J≈  

(c) ( ) ( ) ( )2cos127.0 6.10 kg 9.80 m s 9.25m cos127.0GW mgd= ° = °  

     332.78 J 333J= − ≈ −  

(d) o
N N cos 90 0 JW F d= =  

(e) Apply the work-energy theorem. 

( )
total 2 1

2 total 1 P G N 1

  

554.05 332.78 0 32.22 253JJ

W K K

KE W K W W W K

= − →

= + = + + + = − + + ≈
 

 
74. The dot product can be used to find the angle between the vectors. 

  
( ) ( )

( ) ( )

9 9
1 2 1 3

9 9
1 2 1 3

ˆ ˆ ˆ ˆ ˆ0.230 0.133 10 m   ;  0.077 0.133 0.247 10 m

ˆ ˆ ˆ ˆ ˆ0.230 0.133 10 m 0.077 0.133 0.247 10 m

− −
− −

− −
− −

= + × = + + ×

= + × + + ×

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

d i j d i j k

d d i j i j k

G G

G G
i i

 

  

( ) ( )

( ) ( ) ( )

2 18 2

2 2 9 9
1 2

2 2 2 9 9
1 3

1 2 1 3 1 2 1 3

2 18 2
1 11 2 1 3

1 2 1 3

            3.540 10 10 m

0.230 0.133 10 m 0.2657 10 m

0.077 0.133 0.247 10 m 0.2909 10 m

cos   

3.540 10 10 m
cos cos

0.2

d

d

d d

d d

θ

θ

− −

− −
−

− −
−

− − − −

− −
− −− −

− −

= × ×

= + × = ×

= + + × = ×

= →

× ×
= =

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

d d

d d

G G
i

G G
i

( ) ( )9 9
62.7

657 10 m 0.2909 10 m− −
= °

× ×

 

 
75. Since the forces are constant, we may use Eq. 7-3 to calculate the work done. 

  
( ) ( ) ( ) ( )
( ) ( ) ( )

net 1 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ1.50 0.80 0.70 N 0.70 1.20 N 8.0 6.0 5.0 m

ˆ ˆ ˆ ˆˆ ˆ     0.80 0.40 0.70 N 8.0 6.0 5.0 m 6.4 2.4 3.5 J 12.3J

W = + = − + + − + + +

= + + + + = + + =

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

F F d i j k i j i j k

i j k i j k

G G G
i i

i
 

 

d 

θ 
θ mgG

NF
G

PF
G



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

212 

76. The work done by the explosive force is equal to the change in kinetic energy of the shells.  The 
starting speed is 0.  The force is in the same direction as the displacement of the shell. 

( ) ( )
( )

2 2 2 21 1 1 1
2 2 2 2

22
7 7

7 6

 ;  cos       cos   

1250 kg 750 m s
2.344 10 N 2.3 10 N

2 cos 2 15m

1lb
2.344 10 N 5.3 10 lbs

4.45 N

f i f f

f

W K mv mv mv W Fd mv Fd

mv
F

d

θ θ

θ

= Δ = − = = → = →

= = = × ≈ ×

× = ×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
77. We assume the force is in the x-direction, so that the angle between the force and the displacement is 

0.  The work is found from Eq. 7-7. 

  0.10

0.100.10 m

xx
kx kx k

xx

A A
W Ae dx e e

k k

=∞=∞
− − −

==

= = − =∫  

 
78. The force exerted by the spring will be the same magnitude as the force to compress the spring.  The 

spring will do positive work on the ball by exerting a force in the direction of the displacement.  This 
work is equal to the change in kinetic energy of the ball.  The initial speed of the ball is 0. 

  
( ) ( )

( )

2.0 m
2.02 2 2 3 2 41 1 1

2 2 2 0
0

 ;  150 12 75 3 348J

2 348J2
15m s

3.0 kg

x
x

f i f x
x

f

W K mv mv mv W x x dx x x

W
v

m

=
=

=
=

= Δ = − = = + = + =

= = =

∫
 

 
79. The force is constant, and so we may calculate the force by Eq. 7-3.  We may also use that to 

calculate the angle between the two vectors. 

  
( ) ( )

( ) ( ) ( ) ( ) ( )
1/2 1/22 2 2 2 2

ˆ ˆ ˆ ˆˆ10.0 9.0 12.0 kN 5.0 4.0 m 86 kJ

10.0 9.0 12.0 kN 18.0kN  ;  5.0 4.0 m 6.40 m

W

F d

= = + + + =

= + + = = + =

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

F d i j k i j
G G
i i

 

  ( ) ( )
4

1 1
4

8.6 10 J
cos     cos cos 42

1.80 10 N 6.40 m
W

W Fd
Fd

θ θ − − ×
= → = = = °

×
 

 
80. (a) The force and displacement are in the same direction. 

   ( ) ( ) ( )2 2 21 1
2 2

cos   ;    

0.033kg 85m s
372.5 N 370 N

0.32 m
f i

W Fd W K

m v vK
F

d d

θ= = Δ →

−Δ
= = = = ≈

 

 (b) Combine Newton’s second law with Eq. 2-12c for constant acceleration. 

   
( ) ( ) ( )

( )

2 2 20.033kg 85m s
372.5 N 370 N

2 2 0.32 m
f im v v

F ma
x

−
= = = = ≈

Δ
 

81. The original speed of the softball is ( ) 1m s
110 km h 30.56 m s

3.6 km h
.=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 The final speed is 90% of 

this, or 27.50 m/s.  The work done by air friction causes a change in the kinetic energy of the ball, 
and thus the speed change.  In calculating the work, notice that the force of friction is directed 
oppositely to the direction of motion of the ball. 
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( )
( ) ( ) ( ) ( ) ( )

( )

o 2 21
fr fr 2 1 2 12

22 2 2 2 2
2 1 1

fr

cos180   

0.9 1 0.25 kg 30.56 m s 0.9 1
1.5 N

2 2 2 15 m

W F d K K m v v

m v v mv
F

d d

= = − = − →

− − −
= = = =

− − −

 

 
82. (a) The pilot’s initial speed when he hit the snow was 45 m/s.  The work done on him as he fell  

the 1.1 m into the snow changed his kinetic energy.  Both gravity and the snow did work on the 
pilot during that 1.1-meter motion.  Gravity did positive work (the force was in the same 
direction as the displacement), and the snow did negative work (the force was in the opposite 
direction as the displacement). 

  ( ) ( ) ( ) ( ) ( )

21
gravity snow snow 2

22 2 21 1 1
snow 2 2 2

4 4

     

88 kg 45m s 9.80 m s 1.1m

9.005 10 J 9.0 10 J      

i

i i

W W K mgd W mv

W mv mgd m v gd

+ = Δ → + = − →

= − − = − + = − +

= − × ≈ − ×

⎡ ⎤⎣ ⎦  

 (b) The work done by the snowbank is done by an upward force, while the pilot moves down. 
o

snow snow snowcos180   W F d F d= = − →  
4

4 4snow
snow

9.005 10  J
8.186 10 N 8.2 10 N

1.1 m
W

F
d

− ×
= − = − = × ≈ ×  

 (c) During the pilot’s fall in the air, positive work was done by gravity, and negative work by air  
resistance.  The net work was equal to his change in kinetic energy while falling.  We assume he 
started from rest when he jumped from the aircraft. 

   ( ) ( ) ( ) ( ) ( )

21
gravity air air 2

22 2 21 1 1
air 2 2 2

5

    0 

88kg 45m s 9.80 m s 370 m

      2.3 10 J

f

f f

W W K mgh W mv

W mv mgh m v gh

+ = Δ → + = − →

= − = − = −

= − ×

⎡ ⎤⎣ ⎦  

 
83. The (negative) work done by the bumper on the rest of the car must equal the change in the car’s 

kinetic energy.  The work is negative because the force on the car is in the opposite direction to the 
car’s displacement. 

 

( )
( )

( )

2 21 1
bumper 2 2

2

2
7

22

    0   

1m s
8km h

3.6 km h
1050 kg 2 10 N m

0.015m

i

i

W K kx mv

v
k m

x

= Δ = → − = − →

= = = ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 
84. The spring must be compressed a distance such that the work done by the spring is equal to the 

change in kinetic energy of the car.  The distance of compression can then be used to find the spring 
constant.  Note that the work done by the spring will be negative, since the force exerted by the 
spring is in the opposite direction to the displacement of the spring. 

  

( )

2 21 1
spring 2 2    0     

    5.0   

i i

i

m
W K kx mv x v

k

m
F ma kx m g kv

k

= Δ = → − = − → =

= = − → − = − →
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  ( ) ( ) ( )22 2
3

2

9.80 m s5.0
1300 kg 25 5.0 10 N m

1m s
90 km h

3.6 km h
i

g
m

v
k = = = ×

⎛ ⎞
⎜ ⎟

⎡ ⎤⎝ ⎠ ⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 
85. If the rider is riding at a constant speed, then the positive work input by the rider to the (bicycle + 

rider) combination must be equal to the negative work done by gravity as he moves up the incline.  
The net work must be 0 if there is no change in kinetic energy. 
(a) If the rider’s force is directed downwards, then the rider will do an amount of work equal to the 

force times the distance parallel to the force.  The distance parallel to the downward force 
would be the diameter of the circle in which the pedals move.  Then consider that by using 2 
feet, the rider does twice that amount of work when the pedals make one complete revolution.  
So in one revolution of the pedals, the rider does the work calculated below. 

( )rider rider pedal
motion

2 0.90W m g d=  

In one revolution of the front sprocket, the rear sprocket will make 42 19 revolutions, and so 
the back wheel (and the entire bicycle and rider as well) will move a distance of 
( ) ( )wheel42 19 2 .rπ  That is a distance along the plane, and so the height that the bicycle and 

rider will move is ( ) ( )wheel42 19 2 sin .h rπ θ=  Finally, the work done by gravity in moving that 
height is calculated. 

( ) ( ) ( ) ( ) ( )G rider bike rider bike rider bike wheelcos180 42 19 2 sinW m m gh m m gh m m g rπ θ= + ° = − + = − +
Set the total work equal to 0, and solve for the angle of the incline. 

 

[ ] ( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

rider G rider pedal rider bike wheel
motion

rider pedal
motion1 1

rider bike wheel

0    2 0.90 42 19 2 sin 0  

0.90
0.90 65kg 0.36 m

sin sin 6.7
42 19 77 kg 42 19 0.34 m

W W m g d m m g r

m d

m m r

π θ

θ
π π

− −

+ = → − + = →

= = = °
+

 

 (b) If the force is tangential to the pedal motion, then the distance that one foot moves while  
exerting a force is now half of the circumference of the circle in which the pedals move.  The 
rest of the analysis is the same. 

   

( )

( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

rider rider pedal rider G
motion

rider pedal
motion1 1

rider bike wheel

2 0.90   ;  0  

0.90
0.90 65kg 0.18m

  sin sin 10.5 10
42 19 77 kg 42 19 0.34 m

W m g r W W

m r

m m r

π

π
θ

π
− −

= + = →

= = = ° ≈ °
+

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
86. Because the acceleration is essentially 0, the net force on the mass is 0.  The magnitude of F

G
is found 

with the help of the free-body diagram in the textbook. 

  
T T

T T

cos 0    
cos

sin 0    sin sin tan
cos

y

x

mg
F F mg F

mg
F F F F F mg

θ
θ

θ θ θ θ
θ

= − = → =

= − = → = = =

∑

∑
  

(a) A small displacement of the object along the circular path is given by ,dr dθ= l  based on the 
definition of radian measure.  The force F

G
is at an angle θ  to the direction of motion.  We use 

the symbol drG for the infinitesimal displacement, since the symbol l  is already in use as the 
length of the pendulum. 
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( )

( )

0 0 0

0

F
0 0 0

00

cos tan cos sin

cos 1 cos    

W d F d mg d mg d

mg mg

θ θ θ θ θ θ

θ θ θ

θ

θ θ θ θ θ θ θ

θ θ

= = =

= = =

= = = =

= − = −

∫ ∫ ∫ ∫F r
G Gi l l l

l l

 

 (b) The angle between mgG  and the direction of motion is ( )90 .θ+  

   
( )

( )

0 0

0

G
0 0

00

cos 90 sin

    cos cos 1

W m d mg d mg d

mg mg

θ θ θ θ

θ θ

θ

θ θ θ θ

θ θ

= =

= =

= = ° + = −

= = −

∫ ∫ ∫g rG Gi l l

l l

 

Alternatively, it is proven in problem 36 that the shape of the path does not determine the work 
done by gravity – only the height change.  Since this object is rising, gravity will do negative 
work. 

   
( ) ( )

( )
G final 0

0

cos height cos180 cos

cos 1    

W mgd mg mgy mg

mg

φ θ

θ

= = ° = − = − −

= −

l l

l
 

  Since TF
G

 is perpendicular to the direction of motion, it does  0  work on the bob. 
  Note that the total work done is 0, since the object’s kinetic energy does not change. 
 
87. (a) The work done by the arms of the parent will change the kinetic energy of the child.  The force 

 is in the opposite direction of the displacement. 

( ) ( )
( )

21
parent child f i i parent parent2

22
2 i1
i parent parent2

0   ;  cos180   

18 kg 25m s
    125N 130 N 28lbs

2 2 45m

W K K K mv W F d

mv
mv F d F

d

= Δ = − = − = ° →

− = − → = = = ≈ ≈
 

This force is achievable by an average parent. 
 (b) The same relationship may be used for the shorter distance. 

   ( ) ( )
( )

22
i

parent

18 kg 25 m s
469N 470 N 110 lbs

2 2 12 m
mv

F
d

= = = ≈ ≈  

This force may not be achievable by an average parent.  Many people might have difficulty with 
a 110-pound bench press exercise, for example. 

 
88. (a) From the graph, the shape of the force  

function is roughly that of a triangle.  The 
work can be estimated using the formula 
for the area of a triangle of base 20 m and 
height 100 N. 

( ) ( )1 1
2 2 20.0 m 100 N

1000 J

" " " "

  

W b h≈ =

=
 

The spreadsheet used for this problem can 
be found on the Media Manager, with 
filename “PSE4_ISM_CH07.XLS,” on tab “Problem 7.88a.” 

(b) Integrate the force function to find the exact work done. 

( )
20.0 m

2

0.0 m

100 10
f

i

x

x

W Fdx x dx= = − −⎡ ⎤⎣ ⎦∫ ∫  

0

20

40

60

80

100

120

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x  (m)

F
 (N

)
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( )
20.0 m

20.0 m2 2 31
3 0.0 m

0.0 m

20 10 1333J 1330J   x x dx x x= − = − = ≈⎡ ⎤⎣ ⎦∫  

 
89. (a) The work done by gravity is given by Eq. 7-1. 

( ) ( ) ( ) ( )2 o
G

4 4

cos 90 85kg 9.80 m s 250 m cos86.0

1.453 10 J 1.5 10 J    

W mgd θ= − =

= × ≈ ×
 

(b) The work is the change in kinetic energy.  The initial kinetic energy 
is 0. 

( )4
2 G1

G f i f2

2 1.453 10 J2
   18 m s

85kgf

W
W K K K mv v

m

×
= Δ = − = → = = =  

 
90. (a) The work-energy principle says the net work done is the change in kinetic energy.  The  

climber both begins and ends the fall at rest, so the change in kinetic energy is 0.  Thus the total 
work done (by gravity and by the rope) must be 0.  This is used to find x.  Note that the force of 
gravity is parallel to the displacement, so the work done by gravity is positive, but the force 
exerted by the rope is in the opposite direction to the displacement, so the work done by the 
rope is negative. 

   

( )

( ) ( )
( )

2 21 1
net grav rope 2 2

2 2 2 21
2

1
2

2 0    2 0  

4 2 4 4
1 1

2

W W W mg x kx kx mgx mg

mg m g k mg mg m g k mg mg k
x

k k k mg

= + = + − = → − − = →

± − − ± +
= = = ± +

⎛ ⎞
⎜ ⎟
⎝ ⎠

l l

l l l   

We have assumed that x is positive in the expression for the work done by gravity, and so the 
“plus” sign must be taken in the above expression. 

  Thus 4
1 1 .mg k

x
k mg

= + +
⎛ ⎞
⎜ ⎟
⎝ ⎠

l  

 (b) Use the values given to calculate x
l

 and .kx
mg

 

   

( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

2

2

85kg 9.80 m s 4 850 N m 8.0 m4
1 1 1 1 6.665m

850 N m 85kg 9.80 m s

850 N m 6.665m6.665m
0.83   ;  6.8

8.0 m 85kg 9.80 m s

mg k
x

k mg

x kx
mg

= + + = + + =

= = = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

l

l

 

 
91. Refer to the free body diagram.  The coordinates are defined simply to 

help analyze the components of the force.  At any angle ,θ  since the mass 
is not accelerating, we have the following. 

  sin 0    sinxF F mg F mgθ θ= − = → =∑  

 Find the work done in moving the mass from 0θ =  to 0.θ θ=  
0 0

F
0 0

cos 0 sinW d F d mg d
θ θ θ θ

θ θ

θ θ θ
= =

= =

= = ° =∫ ∫ ∫F s
G Gi l l  

( )0

00
cos 1 cos    mg mgθθ θ= − = −l l  

y 

x 
θ  
mgG

NF
G

θ 

mgG
θ

θ

F
G

xy
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See the second diagram to find the height that the mass has risen.  We 
see that ( )0 0cos 1 cos ,h θ θ= − = −l l l  and so 

( )F 01 cos .W mg mghθ= − =l  

 
 
92. For each interval, the average force for that interval was calculated as the numeric average of the 

forces at the beginning and end of the interval.  Then this force was multiplied by 10.0 cm (0.0100 
m) to find the work done on that interval.  The total work is the sum of those work amounts.  That 
process is expressed in a formula below.  The spreadsheet used for this problem can be found on the 
Media Manager, with filename “PSE4_ISM_CH07.XLS,” on tab “Problem 7.92.” 

  ( )
1

1
applied 12

1

102.03J 102 J
n

i i
i

W F F x
−

+
=

= + Δ = ≈∑  

 
93. (a) See the adjacent graph.  The best- 

fit straight line is as follows. 
 ( )applied 10.0 N mF x=  

The spreadsheet used for this 
problem can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH07.XLS,” on tab 
“Problem 7.93a.” 

 
 
 
(b) Since appliedF kx=  for the stretched spring, the slope is the spring constant. 

   10.0 N mk =  

 (c) Use the best-fit equation from the graph. 
   ( ) ( )10.0 N m 0.200m 2.00NF kx= = =  

 
 

 

θ

0θ
l

l

0cosθl

0cosh θ= −l l

F  = 10.02 x  - 0.00
R2 = 1.00
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CHAPTER 8:  Conservation of Energy 
 
Responses to Questions 
 
1.  Friction is not conservative; it dissipates energy in the form of heat, sound, and light. Air resistance 

is not conservative; it dissipates energy in the form of heat and the kinetic energy of fluids. “Human” 
forces, for example, the forces produced by your muscles, are also not conservative. They dissipate 
energy in the form of heat and also through chemical processes. 

 
2.   The two forces on the book are the applied force upward (nonconservative) and the downward force 

of gravity (conservative). If air resistance is non-negligible, it is nonconservative. 
 
3.  (a) If the net force is conservative, the change in the potential energy is equal to the negative of the  

change in the kinetic energy, so ∆U = −300 J. 
(b) If the force is conservative, the total mechanical energy is conserved, so ∆E = 0. 

 
4.  No. The maximum height on the rebound cannot be greater than the initial height if the ball is 

dropped. Initially, the dropped ball’s total energy is gravitational potential energy. This energy is 
changed to other forms (kinetic as it drops, and elastic potential during the collision with the floor) 
and eventually back into gravitational potential energy as the ball rises back up. The final energy 
cannot be greater than the initial (unless there is an outside energy source) so the final height cannot 
be greater than the initial height. Note that if you throw the ball down, it initially has kinetic energy 
as well as potential so it may rebound to a greater height. 

 
5.  (a) No. If there is no friction, then gravity is the only force doing work on the sled, and the system  

is conservative. All of the gravitational potential energy of the sled at the top of the hill will be 
converted into kinetic energy. The speed at the bottom of the hill depends only on the initial 
height h, and not on the angle of the hill.  21

f 2 ,K mv mgh= =  and ( )1/ 22 .v gh=   
(b) Yes. If friction is present, then the net force doing work on the sled is not conservative. Only 

part of the gravitational potential energy of the sled at the top of the hill will be converted into 
kinetic energy; the rest will be dissipated by the frictional force. The frictional force is 
proportional to the normal force on the sled, which will depend on the angle θ of the hill. 

( )21
f 2 cos sin 1 tan ,K mv mgh fx mgh mgh mghμ θ θ μ θ= = − = − = −  and 

( )[ ]1/ 22 1 tan ,v gh μ θ= −  which does depend on the angle of the hill and will be smaller for 
smaller angles. 

 
6.  No work is done on the wall (since the wall does not undergo displacement) but internally your 

muscles are converting chemical energy to other forms of energy, which makes you tired. 
 
7.  At the top of the pendulum’s swing, all of its energy is gravitational potential energy; at the bottom 

of the swing, all of the energy is kinetic. 
(a) If we can ignore friction, then energy is transformed back and forth between potential and  

kinetic as the pendulum swings. 
(b) If friction is present, then during each swing energy is lost to friction at the pivot point and also  

to air resistance. During each swing, the kinetic energy and the potential energy decrease, and 
the pendulum’s amplitude decreases. When a grandfather clock is wound up, the energy lost to 
friction and air resistance is replaced by energy stored as potential energy (either elastic or 
gravitational, depending on the clock mechanism). 
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8.  The drawing shows water falling over a waterfall and then flowing back to the top of the waterfall. 
The top of the waterfall is above the bottom, with greater gravitational potential energy. The optical 
illusion of thhe diagram implies that water is flowing freely from the bottom of the waterfall back to 
the top. Since water won’t move uphill unless work is done on it to increase its gravitational 
potential energy (for example, work done by a pump), the water from the bottom of the waterfall 
would NOT be able to make it back to the top.  

 
9.  For each of the water balloons, the initial energy (kinetic plus potential) will equal the final energy 

(all kinetic).  Since the initial energy depends only on the speed and not on the direction of the initial 
velocity, and all balloons have the same initial speed and height, the final speeds will all be the 
same.  2 21 1

2 2i i f fE mv mgh E mv= + = =⎡ ⎤⎣ ⎦  

 
10.  Yes, the spring can leave the table. When you push down on the spring, you do work on it and it 

gains elastic potential energy, and loses a little gravitational potential energy, since the center of 
mass of the spring is lowered. When you remove your hand, the spring expands, and the elastic 
potential energy is converted into kinetic energy and into gravitational potential energy. If enough 
elastic potential energy was stored, the center of mass of the spring will rise above its original 
position, and the spring will leave the table. 

 
11.  The initial potential energy of the water is converted first into the kinetic energy of the water as it 

falls. When the falling water hits the pool, it does work on the water already in the pool, creating 
splashes and waves. Additionally, some energy is converted into heat and sound. 

 
12.  Stepping on top of a log and jumping down the other side requires you to raise your center of mass 

farther than just stepping over a log does. Raising your center of mass farther requires you to do 
more work, or use more energy. 

 
13. (a) As a car accelerates uniformly from rest, the potential energy stored in the fuel is converted into  

kinetic energy in the engine and transmitted through the transmission into the turning of the 
wheels, which causes the car to accelerate (if friction is present between the road and the tires).  

 (b) If there is a friction force present between the road and the tires, then when the wheels turn, the  
car moves forward and gains kinetic energy. If the static friction force is large enough, then the 
point of contact between the tire and the road is instantaneously at rest – it serves as an 
instantaneous axis of rotation. If the static friction force is not large enough, the tire will begin 
to slip, or skid, and the wheel will turn without the car moving forward as fast. If the static 
friction force is very small, the wheel may spin without moving the car forward at all, and the 
car will not gain any kinetic energy (except the kinetic energy of the spinning tires). 

 
14.  The gravitational potential energy is the greatest when the Earth is farthest from the Sun, or when the 

Northern Hemisphere has summer. (Note that the Earth moves fastest in its orbit, and therefore has 
the greatest kinetic energy, when it is closest to the Sun.) 

 
15. Yes.  If the potential energy U is negative (which it can be defined to be), and the absolute value of 

the potential energy is greater than the kinetic energy K, then the total mechanical energy E will be 
negative. 

 
16.  In order to escape the Earth’s gravitational field, the rocket needs a certain minimum speed with 

respect to the center of the Earth. If you launch the rocket from any location except the poles, then 
the rocket will have a tangential velocity due to the rotation of the Earth. This velocity is towards the 
east and is greatest at the equator, where the surface of the Earth is farthest from the axis of rotation. 
In order to use the minimum amount of fuel, you need to maximize the contribution of this tangential 
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velocity to the needed escape velocity, so launch the rocket towards the east from a point as close as 
possible to the equator. (As an added bonus, the weight of the rocket will be slightly less at the 
equator because the Earth is not a perfect sphere and the surface is farthest from the center at the 
equator.)  

 
17. For every meter the load is raised, two meters of rope must be pulled up.  The work done on the 

piano must be equal to the work done by you. Since you are pulling with half the force (the tension 
in the rope is equal to half of the weight of the piano), you must pull through twice the distance to do 
the same amount of work.  

 
18.  The faster arrow has the same mass and twice the speed of the slower arrow, so will have four times 

the kinetic energy ( )21
2 .K mv=  Therefore, four times as much work must be done on the faster 

arrow to bring it to rest. If the force on the arrows is constant, the faster arrow will travel four times 
the distance of the slower arrow in the hay. 

 
19. When the ball is released, its potential energy will be converted into kinetic energy and then back 

into potential energy as the ball swings. If the ball is not pushed, it will lose a little energy to friction 
and air resistance, and so will return almost to the initial position, but will not hit the instructor. If 
the ball is pushed, it will have an initial kinetic energy, and will, when it returns, still have some 
kinetic energy when it reaches the initial position, so it will hit the instructor in the nose. (Ouch!)   

 
20.  Neglecting any air resistance or friction in the pivot, the pendulum bob will have the same speed at 

the lowest point for both launches. In both cases, the initial energy is equal to potential energy mgh 
plus kinetic energy 21

2 ,mv  with v = 3.0 m/s. (Notice that the direction of the velocity doesn’t matter.) 
Since the total energy at any point in the swing is constant, the pendulum will have the same energy 
at the lowest point, and therefore the same speed, for both launches.  

 
21.   When a child hops around on a pogo stick, gravitational potential energy (at the top of the hop) is 

transformed into kinetic energy as the child moves downward, and then stored as spring potential 
energy as the spring in the pogo stick compresses. As the spring begins to expand, the energy is 
converted back to kinetic and gravitational potential energy, and the cycle repeats. Since energy is 
lost due to friction, the child must add energy to the system by pushing down on the pogo stick while 
it is on the ground to get a greater spring compression. 

 
22.  At the top of the hill, the skier has gravitational potential energy. If the friction between her skis and 

the snow is negligible, the gravitational potential energy is changed into kinetic energy as she glides 
down the hill and she gains speed as she loses elevation. When she runs into the snow bank, work is 
done by the friction between her skis and the snow and the energy changes from kinetic energy of 
the skier to kinetic energy of the snow as it moves and to thermal energy. 

 
23. The work done on the suitcase depends only on (c) the height of the table and (d) the weight of the 

suitcase. 
 
24.   Power is the rate of doing work. Both (c) and (d) will affect the total amount of work needed, and 

hence the power. (b), the time the lifting takes, will also affect the power. The length of the path (a) 
will only affect the power if different paths take different times to traverse.  

 
25.  When you climb a mountain by going straight up, the force needed is large (and the distance traveled 

is small), and the power needed (work per unit time) is also large. If you take a zigzag trail, you will 
use a smaller force (over a longer distance, so that the work done is the same) and less power, since 
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the time to climb the mountain will be longer. A smaller force and smaller power output make the 
climb seem easier. 

 
26. (a) The force is proportional to the negative of the slope of the potential energy curve, so the  

magnitude of the force will be greatest where the curve is steepest, at point C. 
(b) The force acts to the left at points A, E, and F, to the right at point C, and is zero at points B, D,  

and G. 
(c) Equilibrium exists at points B, D, and G. B is a point of neutral equilibrium, D is a point of  

stable equilibrium, and G is a point of unstable equilibrium.  
 
27. (a) If the particle has E3 at x6, then it has both potential and kinetic energy at that point. As the  

particle moves toward x0 , it gains kinetic energy as its speed increases. Its speed will be a 
maximum at x0. As the particle moves to x4, its speed will decrease, but will be larger than its 
initial speed. As the particle moves to x5, its speed will increase, then decrease to zero. The 
process is reversed on the way back to x6. At each point on the return trip the speed of the 
particle is the same as it was on the forward trip, but the direction of the velocity is opposite. 

(b) The kinetic energy is greatest at point x0, and least at x5. 
 
28. A is a point of unstable equilibrium, B is a point of stable equilibrium, and C is a point of neutral 

equilibrium. 
 
 
Solutions to Problems 
 
1. The potential energy of the spring is given by 21

el 2U kx=  where x is the distance of stretching or 
compressing of the spring from its natural length. 

( )el 2 35.0 J2
0.924 m

82.0 N m
U

x
k

= = =  

 
2.   Subtract the initial gravitational potential energy from the final gravitational potential energy. 

( ) ( )( )( )2
grav 2 1 2 1 6.0 kg 9.80 m s 1.3m 76 JU mgy mgy mg y yΔ = − = − = =  

 
3. The spring will stretch enough to hold up the mass.  The force exerted by the spring will be equal to 

the weight of the mass. 

  ( )
( )( )22.5 kg 9.80 m s

    0.39 m
63 N m

mg
mg k x x

k
= Δ → Δ = = =  

 Thus the ruler reading will be 39 cm 15cm 54 cm .+ =  

 
4. (a) The change in gravitational potential energy is given by the following. 

( ) ( ) ( ) ( )2 5
grav 2 1 56.5 kg 9.80 m s 2660 m 1270 m 7.7 10 JU mg y yΔ = − = − = ×  

(b) The minimum work required by the hiker would equal the change in potential energy, which is 
57.7 10 J .×  

(c)  Yes .  The actual work may be more than this, because the climber almost certainly had to 
overcome some dissipative forces such as air friction.  Also, as the person steps up and down, 
they do not get the full amount of work back from each up-down event.  For example, there will 
be friction in their joints and muscles. 
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5. (a) Relative to the ground, the potential energy is given by the following. 
   ( ) ( ) ( ) ( )2

grav book ground 1.95kg 9.80 m s 2.20 m 42.0 JU mg y y= − = =  

 (b) Relative to the top of the person’s head, the potential energy is given by the following. 
( ) ( ) ( ) ( )2

grav book head 1.95kg 9.80 m s 2.20 m 1.60 m 11.47 J 11JU mg y y= − = − = ≈  

(c) The work done by the person in lifting the book from the ground to the final height is the same  
as the answer to part (a), 42.0 J .   In part (a), the potential energy is calculated relative to the 
starting location of the application of the force on the book.  The work done by the person is not 
related to the answer to part (b), because the potential energy is not calculated relative to the 
starting location of the application of the force on the book. 

 
6. Assume that all of the kinetic energy of the car becomes potential energy of the compressed spring. 

( ) ( )

( )

2

2
2 2 501 1
0 final2 2 22

final

1m s
1200 kg 75 km h

3.6 km h
    1.1 10 N m

2.2 m

mv
mv kx k

x
= → = = = ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  

 
7. (a) This force is conservative, because the work done by the force on an object moving from an  

initial position ( )1x  to a final position ( )2x depends only on the endpoints.   

   
( ) ( )

( ) ( )

2 2 2
2

1

1 1 1

3 4 2 4 51 1 1
2 4 5

2 4 5 2 4 51 1 1 1 1 1
2 2 2 1 1 12 4 5 2 4 5   

x x x
x

x x
x x x

W d F dx kx ax bx dx kx ax bx

kx ax bx kx ax bx

= = = − + + = − + +

= − + + − − + +

∫ ∫ ∫F l
G G
i

 

  The expression for the work only depends on the endpoints. 

 (b) Since the force is conservative, there is a potential energy function U such that .x

U
F

x
∂

= −
∂

 

   ( ) ( )3 4 2 4 51 1 1
2 4 5    x

U
F kx ax bx

x
U x kx ax bx C∂

= − + + = − →
∂

= − − +  

 
8. The force is found from the relations on page 189. 

( ) ( )

( ) ( ) ( )

2

2

6 2       2 8       4

ˆ ˆ6 2 2 8 4

x y z

U U U
F x y F x yz F y

x y z

x y x yz y

∂ ∂ ∂
= − = − + = − = − + = − = −

∂ ∂ ∂

= − − + − − + −F i j k
G G

  

 
9. Use Eq. 8-6 to find the potential energy function. 

  
( ) ( )

( )
( )

( )

3 2

2 2 2 2

2

2.0 m 0        
8m 2 8m2 2.0 m

k k
U x F x dx C dx C C

x x
k k k k

U C C U x
x

= − + = − − + = − +

= − + = → = → = − +

∫ ∫
 

 
10. Use Eq. 8-6 to find the potential energy function. 

  ( ) ( ) ( ) ( )sin cos
A

U x F x dx C A kx dx C kx C
k

= − + = − + = +∫ ∫  
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  ( ) ( ) ( )[ ]0 0        cos 1
A A A

U C C U x kx
k k k

= + = → = − → = −  

 
11. The forces on the skier are gravity and the normal force.  The normal force is 

perpendicular to the direction of motion, and so does no work.  Thus the skier’s 
mechanical energy is conserved.  Subscript 1 represents the skier at the top of 
the hill, and subscript 2 represents the skier at the bottom of the hill.  The 
ground is the zero location for gravitational potential energy ( )0 .y =   We have 

1 0,v =  1 125m,y =  and 2 0y =  (bottom of the hill).  Solve for 2 ,v  the speed at the bottom. 
2 2 21 1 1
1 1 2 2 1 22 2 2    0 0  mv mgy mv mgy mgy mv+ = + → + = + →  

( ) ( ) ( )2
2 12 2 9.80 m s 125m 49 m s 110 mi hv gy= = = ≈  

 
12. The only forces acting on Jane are gravity and the vine tension.  The tension 

pulls in a centripetal direction, and so can do no work – the tension force is 
perpendicular at all times to her motion.  So Jane’s mechanical energy is 
conserved.  Subscript 1 represents Jane at the point where she grabs the vine, and 
subscript 2 represents Jane at the highest point of her swing.   The ground is the 
zero location for gravitational potential energy ( )0 .y =   We have 1 5.0 m s,v =  

1 0,y =  and 2 0v =  (top of swing).  Solve for 2 ,y  the height of her swing. 

( )
( )

2 2 21 1 1
1 1 2 2 1 22 2 2

22
1

2 2

    0 0   

5.0 m s
1.276 m 1.3m

2 2 9.80 m s

mv mgy mv mgy mv mgy

v
y

g

+ = + → + = + →

= = = ≈
 

 No , the length of the vine does not enter into the calculation, unless the vine is less than 0.65 m 
long.  If that were the case, she could not rise 1.3 m high. 

 
13. We assume that all the forces on the jumper are conservative, so that the mechanical energy of the 

jumper is conserved.  Subscript 1 represents the jumper at the bottom of the jump, and subscript 2 
represents the jumper at the top of the jump.  Call the ground the zero location for gravitational 
potential energy ( )0 .y =   We have 1 0,y =  2 0.70 m s,v =  and 2 2.10m.y =   Solve for 1,v  the speed 
at the bottom. 

( ) ( )( )

2 2 2 21 1 1 1
1 1 2 2 1 2 22 2 2 2

22 2
1 2 2

    0   

2 0.70 m s 2 9.80 m s 2.10 m 6.454 m s 6.5 m s

mv mgy mv mgy mv mv mgy

v v gy

+ = + → + = + →

= + = + = ≈
 

 
14. The forces on the sled are gravity and the normal force.  The normal force is 

perpendicular to the direction of motion, and so does no work.  Thus the sled’s 
mechanical energy is conserved.  Subscript 1 represents the sled at the bottom of 
the hill, and subscript 2 represents the sled at the top of the hill.  The ground is 
the zero location for gravitational potential energy ( )0 .y =   We have 1 0,y =  

2 0,v =  and 2 1.12 m.y =   Solve for 1,v the speed at the bottom.  Note that the angle is not used. 

( )( )

2 2 21 1 1
1 1 2 2 1 22 2 2

2
1 2

    0 0   

2 2 9.80 m s 1.12 m 4.69 m s

mv mgy mv mgy mv mgy

v gy

+ = + → + = + →

= = =
 

mgG

NF
G

θ

1 1 , v y

2 2, v y

mgG

NF
G

θ
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15. Consider this diagram for the jumper’s fall.   
 (a) The mechanical energy of the jumper is conserved.  Use y  

for the distance from the 0 of gravitational potential energy 
and x for the amount of bungee cord “stretch” from its 
unstretched length.  Subscript 1 represents the jumper at 
the start of the fall, and subscript 2 represents the jumper at 
the lowest point of the fall.  The bottom of the fall is the 
zero location for gravitational potential energy ( )0 ,y =  
and the location where the bungee cord just starts to be 
stretched is the zero location for elastic potential energy 
( )0 .x =   We have 1 0,v =  1 31m,y =  1 0,x =  2 0,v =  

2 0,y =  and 2 19 m.x =   Apply conservation of energy.  

( )( )( )
( )

2 2 2 2 21 1 1 1 1
1 2 1 1 1 2 2 2 1 22 2 2 2 2

2

1
22

2

         

2 55 kg 9.80 m s 31 m2
92.57 N m 93 N m

19 m

E E mv mgy kx mv mgy kx mgy kx

mgy
k

x

= → + + = + + → = →

= = = ≈
 

(b)  The maximum acceleration occurs at the location of the maximum force, which  
occurs when the bungee cord has its maximum stretch, at the bottom of the fall.  
Write Newton’s second law for the force on the jumper, with upward as positive.  

( )( )
( )

net cord 2

2 2 22

  

92.57 N m 19 m
9.80 m s 22.2 m s 22 m s

55 kg

F F mg kx mg ma

kx
a g

m

= − = − = →

= − = − = ≈
 

 
16. (a) Since there are no dissipative forces present, the mechanical energy of the person–trampoline– 

Earth combination will be conserved.  We take the level of the unstretched trampoline as the 
zero level for both elastic and gravitational potential energy.  Call up the positive direction.  
Subscript 1 represents the jumper at the start of the jump, and subscript 2 represents the jumper 
upon arriving at the trampoline.  There is no elastic potential energy involved in this part of the 
problem.  We have 1 4.5m s,v =  1 2.0 m,y =  and 2 0.y =   Solve for 2 ,v  the speed upon arriving 
at the trampoline. 

( ) ( )( )

2 2 2 21 1 1 1
1 2 1 1 2 2 1 1 22 2 2 2

22 2
2 1 1

        0  

2 4.5m s 2 9.80 m s 2.0 m 7.710 m s 7.7 m s

E E mv mgy mv mgy mv mgy mv

v v gy

= → + = + → + = + →

= ± + = ± + = ± ≈
 

The speed is the absolute value of 2v . 
(b) Now let subscript 3 represent the jumper at the maximum stretch of the trampoline, and x 

represent the amount of stretch of the trampoline.  We have 2 7.710m s,v = −  2 0,y =  2 0,x =  

3 0,v =  and 3 3.x y=   There is no elastic energy at position 2, but there is elastic energy at 
position 3.  Also, the gravitational potential energy at position 3 is negative, and so 3 0.y <   A 
quadratic relationship results from the conservation of energy condition. 

( )( )
( )

2 2 2 21 1 1 1
2 3 2 2 2 3 3 32 2 2 2

2 2 2 21 1 1 1
2 3 3 3 3 22 2 2 2

2 2 21 1 2 2 2
22 2 2

3 1
2

      

0 0 0     0  

4

2

E E mv mgy kx mv mgy kx

mv mgy ky ky mgy mv

mg m g k mv mg m g kmv
y

k k

= → + + = + + →

+ + = + + → + − = →

− ± − − − ± +
= =

 

Start of fall

Contact with bungee 
cord, 0 for elastic PE

Bottom of fall, 0 for 
gravitational PE

12 m 

19 m 

mgG

cordF
G
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( ) ( ) ( ) ( ) ( )( )( )
( )

22 22 2 4

4

72 kg 9.80 m s 72 kg 9.80 m s 5.8 10 N m 72 kg 7.71m s
    

5.8 10 N m

− ± + ×
=

×
 

    0.284 m , 0.260 m= −  

Since 3 30 , 0.28m .y y< = − . 
 

The first term under the quadratic is about 500 times smaller than the second term, indicating 
that the problem could have been approximated by not even including gravitational potential 
energy for the final position.  If that approximation were made, the result would have been 
found by taking the negative result from the following solution. 

( )2 21 1
2 3 2 3 3 22 2 4

72 kg
        7.71m s 0.27 m

5.8 10 N m
m

E E mv ky y v
k

= → = → = = = ±
×

 

 
17. Take specific derivatives with respect to position, and note that E is constant. 

  21 1
2 2    2 0dE dv dU dv dU

E mv U m v mv
dx dx dx dx dx

= + → = + = +⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 Use the chain rule to change 
dv

v
dx

 to .dx dv dv
dt dx dt

=  

  0        
dv dU dv dU

mv m ma F
dx dx dt dx

+ = → = − → =  

 The last statement is Newton’s second law. 
 
18. (a) See the diagram for the thrown ball.  The speed at the top of the path  

will be the horizontal component of the original velocity.  
( ) o

top 0 cos 8.5 m s cos36 6.9 m sv v θ= = =  

 (b) Since there are no dissipative forces in the problem, the mechanical  
energy of the ball is conserved.  Subscript 1 represents the ball at the release point, and 
subscript 2 represents the ball at the top of the path.  The ball’s release point is the zero location 
for gravitational potential energy ( )0 .y =   We have 1 8.5m s,v =  1 0,y =  and 2 1 cos .v v θ=   
Solve for 2.y  

( ) ( ) ( )
( )

2 2 2 2 21 1 1 1
1 2 1 1 2 2 1 1 22 2 2 2

22 2 2 o
1

2 2

        0 cos   

1 cos 8.5 m s 1 cos 36
1.3 m

2 2 9.80 m s

E E mv mgy mv mgy mv mv mgy

v
y

g

θ

θ

= → + = + → + = + →

− −
= = =

 

  This is the height above its throwing level. 
 
19. Use conservation of energy.  The level of the ball on the uncompressed 

spring is taken as the zero location for both gravitational potential energy 
( )0y =  and elastic potential energy ( )0 .x =   It is diagram 2 in the figure.   
Take “up” to be positive for both x and y. 
(a) Subscript 1 represents the ball at the launch point, and subscript 2  

represents the ball at the location where it just leaves the spring, at the 
uncompressed length.  We have 1 0,v =  1 1 0.160 m,x y= = −  and 

2 2 0.x y= =   Solve for 2.v  1       2      3

0y =
0,x =

θ 
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2 2 2 21 1 1 1
1 2 1 1 1 2 2 22 2 2 2

2
2 2 1 11 1

1 1 2 22 2

      

2
0 0 0    

E E mv mgy kx mv mgy kx

kx mgy
mgy kx mv v

m

= → + + = + + →

+
+ + = + + → =

 

( ) ( ) ( ) ( ) ( )
( )

2 2

2

875 N m 0.160 m 2 0.380 kg 9.80 m s 0.160 m
7.47 m s

0.380 kg
v

+ −
= =  

(b) Subscript 3 represents the ball at its highest point.  We have 1 0,v =  1 1 0.160 m,x y= = − 3 0,v =  

and 3 0.x =   Solve for 3.y  

( ) ( )
( ) ( )

2 2 2 21 1 1 1
1 3 1 1 1 3 3 32 2 2 2

22
2 11

1 1 2 2 12 2

      

875N m 0.160 m
0 0 0    3.01m

2 2 0.380 kg 9.80m s

E E mv mgy kx mv mgy kx

kx
mgy kx mgy y y

mg

= → + + = + + →

+ + = + + → − = = =
 

 
20. Since there are no dissipative forces present, the mechanical energy of the roller coaster will be 

conserved.  Subscript 1 represents the coaster at point 1, etc.  The height of point 2 is the zero 
location for gravitational potential energy.  We have 1 0v =  and 1 32 m.y =  

 Point 2:  2 2 21 1 1
1 1 2 2 2 1 22 2 2  ;  0     mv mgy mv mgy y mgy mv+ = + = → = →  

   ( ) ( )2
2 12 2 9.80 m s 32 m 25m sv gy= = =  

 

 Point 3:  2 2 21 1 1
1 1 3 3 3 1 3 32 2 2  ;  26 m     mv mgy mv mgy y mgy mv mgy+ = + = → = + →  

   ( ) ( ) ( )2
3 1 32 2 9.80 m s 6 m 11m sv g y y= − = =  

 

 Point 4:  2 2 21 1 1
1 1 4 4 4 1 4 12 2 2  ;  14 m     mv mgy mv mgy y mgy mv mgy+ = + = → = + →  

   ( ) ( ) ( )2
4 1 42 2 9.80 m s 18 m 19 m sv g y y= − = =  

 
21. With the mass at rest on the spring, the upward force due to the spring must be the same as the 

weight of the mass.   

    mgkd mg d
k

= → =  

The distance D is found using conservation of energy.  Subscript 1 represents the mass at the top of 
the uncompressed spring, and subscript 2 represents the mass at the bottom of its motion, where the 
spring is compressed by D.  Take the top of the uncompressed spring to be the zero location for both 
gravitational and elastic potential energy ( )0 .y =   Choose up to be the positive direction.  We have 

1 2 0,v v= =  1 0,y =  and 2 .y D= −   Solve for D. 

 

2 2 2 21 1 1 1
1 2 1 1 1 2 2 22 2 2 2

21
2

      

2
0 0 0 0     

E E mv mgy ky mv mgy ky

mg
mgD kD D

k

= → + + = + + →

+ + = − + → =
  

 We see that 2 ,D d=  and so .D d≠   The reason that the two distances are not equal is that putting 
the mass at rest at the compressed position requires that other work be done in addition to the work 
done by gravity and the spring.  That other work is not done by a conservative force, but done 
instead by an external agent such as your hand. 
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22. (a) Draw a free-body diagram for each block.  Write  
Newton’s second law for each block.  Notice that the 
acceleration of block A in the yA is 0 zero. 

1 N A N Acos 0    cosyF F m g F m gθ θ= − = → =∑
 1 T A A Asinx xF F m g m aθ= =−∑  

( )2 B T B B T B B    y y yF m g F m a F m g a= − = → = +∑
Since the blocks are connected by the cord, 

B A .y xa a a= =   Substitute the expression for the tension force from the last equation into the x 
direction equation for block 1, and solve for the acceleration. 

( )
( )

( ) ( ) ( )
B A A B A A B

B A 2 2

A B

sin     sin

sin 5.0 kg 4.0 kgsin 32
9.80 m s 3.1m s

9.0 kg

m g a m g m a m g m g m a m a

m m
a g

m m

θ θ

θ

+ − = → − = +

− − °
= = =

+

 

(b) Find the final speed of Bm  (which is also the final speed of Am ) using constant acceleration 
relationships. 

   

( )
( )

( )
( ) ( ) ( ) ( )

B A2 2 2
0

A B

B A 2

A B

sin
2     2   

sin 5.0 kg 4.0 kgsin 32
2 2 9.80 m s 0.75m 2.2 m s

9.0 kg

f f

f

m m
v v a y v g h

m m

m m
v gh

m m

θ

θ

−
= + Δ → = →

+

− − °
= = =

+

 

(c) Since there are no dissipative forces in the problem, the mechanical energy of the system is   
conserved.  Subscript 1 represents the blocks at the release point, and subscript 2 represents the 
blocks when Bm  reaches the floor.  The ground is the zero location for gravitational potential 
energy for B,m  and the starting location for Am  is its zero location for gravitational potential 
energy.  Since Bm falls a distance h, Am  moves a distance h along the plane, and so rises a 
distance sin .h θ   The starting speed is 0. 

( ) 21
1 2 22A A B B

A B
2

A B

    0 sin

sin
2

 E E m gh m v m gh

m m
v gh

m

m

m

θ

θ

= → + = +

−

+ →

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 

  This is the same expression found in part (b), and so gives the same numeric result. 
 
23. At the release point the mass has both kinetic energy and elastic potential energy. The total energy is 

2 21 1
0 02 2 .mv kx+   If friction is to be ignored, then that total energy is constant. 

(a) The mass has its maximum speed at a displacement of 0, and so only has kinetic energy at that 
point. 

  2 2 2 2 21 1 1
0 0 max 0 02 2 2 max    kmv kx mv v v x

m
+ = → = +  

(b) The mass has a speed of 0 at its maximum stretch from equilibrium, and so only has potential 
energy at that point. 

  2 2 2 2 21 1 1
0 0 max 0 02 2 2 max    

m
mv kx kx x x

k
v+ = → = +  

 yB
TF
G

yA

xA

Am gG

NF
G

TF
G

θ
θ

Bm gG
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θ 

TF

mg

24. (a) The work done against gravity is the change in potential energy.  

( ) ( ) ( ) ( )2 4
against 2 1
gravity

75.0 kg 9.80 m s 125m 9.19 10 JW U mg y y= Δ = − = = ×   

(b) The work done by the force on the pedals in one revolution is equal to the average tangential 
force times the circumference of the circular path of the pedals.  That work is also equal to the 
potential energy change of the bicycle during that revolution, assuming that the speed of the 
bicycle is constant.  Note that a vertical rise on the incline is related to the distance along the 
incline by ( )rise distance sin .θ= ×  

( )

( ) ( ) ( )
( )

pedal tan grav 1 rev1 rev
force 1 rev

2 o

1 rev
tan

2 sin   

75.0 kg 9.80 m s 5.10 m sin 9.50sin
547 N

2 2 0.180 m

W F r U mg y mgd

mgd
F

r

π θ

θ
π π

= = Δ = Δ = →

= = =
 

 
25. Since there are no dissipative forces in the problem, the mechanical 

energy of the pendulum bob is conserved.  Subscript 1 represents the 
bob at the release point, and subscript 2 represents the ball at some 
subsequent position.  The lowest point in the swing of the pendulum is 
the zero location for potential energy ( )0 .y =   We have 1 0v =  and 

( )1 1 cos .y θ= −l   The “second” point for the energy conservation will 
vary from part to part of the problem. 
(a) The second point is at the bottom of the swing, so 2 0.y =  

( )2 2 21 1 1
1 2 1 1 2 2 22 2 2        1 cos 30.0   E E mv mgy mv mgy mg mv= → + = + → − ° = →l  

( ) ( ) ( ) ( )2
2 2 1 cos30.0 2 9.80 m s 2.00 m 1 cos30.0 2.29 m sv g= − ° = − ° =l  

 (b) The second point is displaced from equilibrium by 15.0° , so ( )2 1 cos15.0 .y = − °l  

   ( ) ( ) ( )

( ) ( ) ( )

2 21 1
1 2 1 1 2 22 2

21
2 22

2

      

1 cos30.0 1 cos15.0     2 cos15.0 cos30.0

2 9.80 m s 2.00 m cos15.0 cos30.0 1.98m s                   

E E mv mgy mv mgy

mg mv mg v g

= → + = + →

− ° = + − ° → = ° − °

= ° − ° =

l l l  

(c) The second point is displaced from equilibrium by 15.0 .− °  The pendulum bob is at the same 
height at 15.0− °  as it was at 15.0 ,°  and so the speed is the same.  Also, since 

( ) ( )cos cos ,θ θ− =  the mathematics is identical.  Thus 2 1.98 m s .v =  

(d) The tension always pulls radially on the pendulum bob, and so is related to the 
centripetal force on the bob.  The net centripetal force is always 2 .mv r  Consider the 
free body diagram for the pendulum bob at each position. 

(a) ( )2 2

T T

2 1 cos30.0
    

gmv v
F mg F m g m g

r
− °

− = → = + = +
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

l

l l
 

( ) ( )( )( )23 2 cos 30.0 0.0700 kg 9.80 m s 3 2 cos 30.0 0.870 N        mg= − ° = − ° =  

   (b) 
2 2

T Tcos     cos
mv v

F mg F m g
r

θ θ− = → = +
⎛ ⎞
⎜ ⎟
⎝ ⎠l

  

l θ 
cosθl

( )1 cosθ−l

TF

mg
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( )

( )
( ) ( ) ( )2

2 cos15.0 cos30.0
cos15.0

3cos15.0 2 cos30.0

0.0700 kg 9.80 m s 3cos15.0 2cos30.0 0.800 N

g
m g

mg

° − °
= ° +

= ° − °

= ° − ° =

⎛ ⎞
⎜ ⎟
⎝ ⎠

l

l

 

(c) Again, as earlier, since the cosine and the speed are the same for 15.0− °  as for 15.0 ,°  
the tension will be the same, 0.800 N .  

 (e) Again use conservation of energy, but now we have 1 0 1.20 m s.v v= =  
  (a) The second point is at the bottom of the swing, so 2 0.y =  

( ) ( )

( ) ( ) ( ) ( )

2 2 21 1
1 2 2 12 2

2 2

1 cos 30.0     2 1 cos 30.0

1.20 m s 2 9.80 m s 2.00 m 1 cos30.0 2.59 m s   

mv mg mv v v g+ − ° = → = + − °

= + − ° =

l l
 

   (b) The second point is displaced from equilibrium by 15.0 ,°  so ( )2 1 cos15.0 .y = − °l  

     

( ) ( )
( )

( ) ( ) ( ) ( )

2 21 1
1 22 2

2
2 1

2 2

1 cos30.0 1 cos15.0   

2 cos15.0 cos30.0

   1.20 m s 2 9.80 m s 2.00 m cos15.0 cos30.0 2.31m s

mv mg mv mg

v v g

+ − ° = + − ° →

= + ° − °

= + ° − ° =

l l

l  

(c) As before, the pendulum bob is at the same height at 15.0− °  as it was at 15.0 ,°  and so 
the speed is the same.  Thus 2 2.31m s .v =  

 
26. The maximum acceleration of 5.0 g occurs where the force is at a maximum.  The maximum force 

occurs at the maximum displacement from the equilibrium of the spring.  The acceleration and the 
displacement are related by Newton’s second law and the spring law, net spring     F F ma kx= → = −  

  .
m

x a
k

→ = −   Also, by conservation of energy, the initial kinetic energy of the car will become the 

final potential energy stored in the spring. 

  ( )
2 2

22 21 1 1 1
initial final 0 max max2 2 2 2    5.0   

m m
E E mv kx k a g

k k
= → = = = →⎛ ⎞

⎜ ⎟
⎝ ⎠

 

  
( ) ( ) ( )222

22
0

1200 kg 25 9.80 m s5.0
4100 N m

1.0 m s
95km h

3.6 km h

m g
k

v
= = =

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 
27. The maximum acceleration of 5.0 g occurs where the force is at a maximum.  The  

maximum force occurs at the bottom of the motion, where the spring is at its 
maximum compression.  Write Newton’s second law for the elevator at the bottom of 
the motion, with up as the positive direction.    

net spring spring5.0       6.0F F Mg Ma Mg F Mg= − = = → =  
 
 
 
 

MgG
springF
G
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Now consider the diagram for the elevator at various points 
in its motion.  If there are no non-conservative forces, then 
mechanical energy is conserved.  Subscript 1 represents the 
elevator at the start of its fall, and subscript 2 represents the 
elevator at the bottom of its fall.  The bottom of the fall is 
the zero location for gravitational potential energy ( )0 .y =   
There is also a point at the top of the spring that is the zero 
location for elastic potential energy (x = 0).  We have 

1 0,v =  1 ,y x h= +  1 0,x =   2 0,v =  2 0,y =  and 2 .x x=   
Apply conservation of energy. 

 

( ) ( )

2 2 2 21 1 1 1
1 2 1 1 1 2 2 22 2 2 2

2 21 1
2 2

2

1
spring 2

      

0 0 0 0     

6.0 6 6 12
6.0             

E E Mv Mgy kx Mv Mgy kx

Mg x h kx Mg x h kx

Mg Mg Mg Mg
F Mg kx x Mg h k k

k k k h

= → + + = + + →

+ + + = + + → + =

= = → = → + = → =⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
28. (a) The skier, while in contact with the sphere, is moving in a circular path, and  

so must have some component of the net force towards the center of the 
circle.  See the free body diagram. 

   
2

radial cos N

v
F mg F m

r
θ= − =  

If the skier loses contact with the sphere, the normal force is 0.  Use that 
relationship to find the critical angle and speed. 

   
2 2
crit crit

crit critcos     cos
v v

mg m
r rg

θ θ= → =  

  Using conservation of mechanical energy, the velocity can be found as a function of angle.  Let  
subscript 1 represent the skier at the top of the sphere, and subscript 2 represent the skier at 
angle .θ   The top of the sphere is the zero location for gravitational potential energy ( )0 .y =   
There is also a point at the top of the spring that is the zero location for elastic potential energy 
(x = 0).  We have 1 0,v =  1 0,y =  and ( )2 cos .y r r θ= − −  

   
( )

( )

2 2 21 1 1
1 2 1 1 2 2 22 2 2

2

        0 cos   

2 cos

E E mv mgy mv mgy mv mg r r

v g r r

θ

θ

= → + = + → = − − →

= −
  

Combine the two relationships to find the critical angle. 

  ( )2
1critcrit 2

crit crit crit 3

2 cos
cos 2 2cos     cos 48

g r rv
rg rg

θ
θ θ θ −−

= = = − → = ≈ °  

(b) If friction is present, another force will be present, tangential to the surface of the sphere.  The  

friction force will not affect the centripetal relationship of 
2
crit

critcos .v
rg

θ =   But the friction will 

reduce the speed at any given angle, and so the skier will be at a  greater  angle before the 
critical speed is reached. 

 
 
 
 

Start of fall

Contact with 
spring, 
0 for elastic PE

Bottom of fall, 0 
for gravitational 

h

x 

mgG

NF
G

θ

r
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29. Use conservation of energy, where all of the kinetic energy is transformed to thermal energy. 

( ) ( ) ( )
2

2 71 1
initial final thermal2 2

1m s
    2 56,000 kg 95km h 3.9 10 J

3.6 km h
E E mv E= → = = = ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 
30. Apply the conservation of energy to the child, considering work done by gravity and thermal energy.   

Subscript 1 represents the child at the top of the slide, and subscript 2 represents the child at the 
bottom of the slide.  The ground is the zero location for potential energy ( )0 .y =   We have 1 0,v =  

1 2.2 m,y =  2 1.25m s,v =  and 2 0.y =   Solve for the work changed into thermal energy. 

( ) ( ) ( ) ( ) ( )

2 21 1
1 2 1 1 2 2 thermal2 2

22 21 1
thermal 1 22 2

      

16.0 kg 9.80 m s 2.20 m 16.0 kg 1.25m s 332 J

E E mv mgy mv mgy E

E mgy mv

= → + = + + →

= − = − =
 

 
31. (a) See the free-body diagram for the ski.  Write Newton’s second law  

for forces perpendicular to the direction of motion, noting that there 
is no acceleration perpendicular to the plane. 

N N

fr N

cos     cos   

cosk k

F F mg F mg

F F mg

θ θ

μ μ θ
⊥ = − → = →

= =
∑  

Now use conservation of energy, including the non-conservative friction force.  Subscript 1 
represents the ski at the top of the slope, and subscript 2 represents the ski at the bottom of the 
slope.  The location of the ski at the bottom of the incline is the zero location for gravitational 
potential energy ( )0 .y =   We have 1 0,v =  1 sin ,y θ= l  and 2 0.y =   Write the conservation of 
energy condition, and solve for the final speed.  Note that fr N cos .k kF F mgμ μ θ= =  

( ) ( ) ( ) ( )

2 2 21 1 1
1 1 2 2 fr 22 2 2

o o
2

   sin cos  

2 sin cos 2 9.80 m s 85 m sin 28 0.090cos 28

   25.49 m s 25m s

k

k

mv mgy mv mgy F mg mv mg

v g

θ μ θ

θ μ θ 2

+ = + + → = + →

= − = −

= ≈

l l l

l  

(b) Now, on the level ground, fr ,kF mgμ=  and there is no change in potential energy.  We again  
use conservation of energy, including the non-conservative friction force, to relate position 2 
with position 3.  Subscript 3 represents the ski at the end of the travel on the level, having 
traveled a distance 3l  on the level.  We have 2 25.49 m s,v =  2 0,y =  3 0,v =  and 3 0.y =  

   2 2 21 1 1
2 2 3 3 fr 22 2 23 3    kmv mgy mv mgy F mv mgμ+ = + + → = →l l  

   ( )
( ) ( )

22
2

3

25.49 m s
368.3m 370 m

2 2 9.80 m s 0.090k

v
gμ 2

= = = ≈l  

 
32. (a) Apply energy conservation with no non-conservative work.  Subscript 1 represents the ball as it  

is dropped, and subscript 2 represents the ball as it reaches the ground.  The ground is the zero 
location for gravitational potential energy.  We have 1 0,v = 1 14.0 m,y =  and 2 0y = .  Solve for 

2.v  

( )( )

2 2 21 1 1
1 2 1 1 2 2 1 22 2 2

2
2 1

          

2 2 9.80 m s 14.0 m 16.6 m s

E E mv mgy mv mgy mgy mv

v gy

= → + = + → = →

= = =
 

l 

θ mgG
NF
GfrF

G
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(b) Apply energy conservation, but with non-conservative work due to friction included.  The 
energy dissipated will be given by fr .F d   The distance d  over which the frictional force acts 
will be the 14.0 m distance of fall.  With the same parameters as above, and 2 8.00m s,v =  
solve for the force of friction. 

( ) ( )
( )

2 2 21 1 1
1 1 2 2 fr 1 2 fr2 2 2

22
21 2

fr

      

8.00 m s
0.145 kg 9.80 m s 1.09 N, upwards

2 2 14.0 m

mv mgy mv mgy F d mgy mv F d

y v
F m g

d d

+ = + → = →

= − = − =

+ +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

 
33. We apply the work-energy theorem.  There is no need to use potential energy 

since the crate moves along the level floor, and there are no springs in the 
problem.  There are two forces doing work in this problem – the pulling force 
and friction.  The starting speed is 0 0.v =   Note that the two forces do work 
over different distances. 

( )

( )

o o 2 21
net P fr P P fr fr 2

1
P P fr P P fr2

2

cos0 cos180   

2    

f i

k f kf

W W W F d F d K m v v

F d mgd m v F d mgd
m

vμ μ

= + = + = Δ = − →

= = −− →
 

  
( ) ( ) ( ) ( ) ( ) ( ) ( )22

   350 N 30 m 0.25 96 kg 9.80 m s 15m 12 m s
96 kg

= − =⎡ ⎤⎣ ⎦  

 
34. Since there is a non-conservative force, apply energy conservation with the dissipative friction term.  

Subscript 1 represents the roller coaster at point 1, and subscript 2 represents the roller coaster at 
point 2.  Point 2 is taken as the zero location for gravitational potential energy.  We have 

1 1.70 m s,v = 1 32 m,y =  and 2 0.y =   Solve for 2.v   Note that the dissipated energy is given by 

fr 0.23 .F d mgd=  
2 2 21 1
1 1 2 2 2 1 12 2 0.23     0.46 2+mv mgy mv mgy mgd v gd v gy+ = + → = − + +  

( ) ( ) ( ) ( ) ( )22 20.46 9.80 m s 45.0 m 1.70 m s 2 9.80 m s 32 m 20.67 m s 21m s   = − + + = ≈  

 
35. Consider the free-body diagram for the skier in the midst of the  

motion.  Write Newton’s second law for the direction perpendicular to the 
plane, with an acceleration of 0.   

  N N

fr N

cos 0    cos   

cosk k

F F mg F mg

F F mg

θ θ

μ μ θ
⊥ = − = → = →

= =
∑  

Apply conservation of energy to the skier, including the dissipative 
friction force.  Subscript 1 represents the skier at the bottom of the slope, 
and subscript 2 represents the skier at the point furthest up the slope.  The location of the skier at the 
bottom of the incline is the zero location for gravitational potential energy ( )0 .y =   We have 

1 9.0 m s,v =  1 0,y =  2 0,v =  and 2 sin .y d θ=  

( )
( ) ( )

2 2 21 1 1
1 1 2 2 fr 12 2 2

22 21
2 1 1

    0 0 sin cos   

9.0 m ssin
tan tan19 0.020

cos 2 cos 2 9.80 m s 12 m cos19

k

k

mv mgy mv mgy F d mv mgd mgd

v gd v
gd gd

θ μ θ

θμ θ
θ θ 2

+ = + → + = + + →

−
= = − = − ° =

°

+
 

mgG
NF
G

f rF
G

PF
G

d

θ mgG

NF
G

frF
G

θ 
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36. (a) Use conservation of energy to equate the potential energy at the top of the circular track to the  
kinetic energy at the bottom of the circular track.  Take the bottom of the track to the be 0 level 
for gravitational potential energy. 

   
( ) ( )

21
top bottom bottom2

2
bottom

      

2 2 9.80 m s 2.0 m 6.261m s 6.3m s

E E mgr mv

v gr

= → = →

= = = ≈
 

 (b) The thermal energy produced is the opposite of the work done by the friction force.  In this  
situation, the force of friction is the weight of the object times the coefficient of kinetic friction. 

   
( )

( ) ( ) ( ) ( )
thermal friction friction friction k k

2

cos cos180

        0.25 1.0 kg 9.80 m s 3.0m 7.35J 7.4 J

E W F x mg x mg xθ μ μ= − = − Δ = − Δ = − Δ ° = Δ

= = ≈

F x
G Gi

 

(c) The work done by friction is the change in kinetic energy of the block as it moves from point B 
to point C. 

   

( )
( )
( ) ( )

2 21
friction C B C B2

22friction
C B

  

2 7.35J2
6.261m s 4.9498m s 4.9 m s

1.0 kg

W K K K m v v

W
v v

m

= Δ = − = − →

−
= + = + = ≈

 

(d) Use conservation of energy to equate the kinetic energy when the block just contacts the spring 
with the potential energy when the spring is fully compressed and the block has no speed.  
There is no friction on the block while compressing the spring. 

   
( ) ( )

( )

2 21 1
initial final contact max2 2

22
contact

22
max

      

4.9498 m s
1.0 kg 612.5 N m 610 N m

0.20 m

E E mv kx

v
k m

x

= → = →

= = = ≈
 

 
37. Use conservation of energy, including the non-conservative frictional force, as developed in Eq. 8-

15.  The block is on a level surface, so there is no gravitational potential energy change to consider.  
The frictional force is given by  fr N ,k kF F mgμ μ= =  since the normal force is equal to the weight.  
Subscript 1 represents the block at the compressed location, and subscript 2 represents the block at 
the maximum stretched position.  The location of the block when the spring is neither stretched nor 
compressed is the zero location for elastic potential energy (x = 0).  Take right to be the positive 
direction.  We have 1 0,v =  1 0.050 m,x = −  2 0,v =  and 2 0.023 m.x =    

( )
( )

2 2 2 21 1 1 1
1 2 fr 1 1 2 2 fr 2 12 2 2 2

2 21 1
1 2 2 12 2

      

  k

E E F mv kx mv kx F x x

kx kx mg x xμ

= + → + = + + − →

= + − →

l
 

( )
( )

( ) ( ) ( ) ( )[ ]
( ) ( )

2 2
1 2 2 1

2
2 1

180 N m 0.050m 0.023m
0.40

2 2 2 0.620 kg 9.80 m sk

k x x k x x
mg x x mg

μ
− − − +− +

= = = =
−

 

 
38. Use conservation of energy, including the non-conservative frictional force, as developed in Eq. 8-

15.  The block is on a level surface, so there is no gravitational potential energy change to consider.  
Since the normal force is equal to the weight, the frictional force is fr N .k kF F mgμ μ= =   Subscript 1 
represents the block at the compressed location, and subscript 2 represents the block at the maximum 
stretched position.  The location of the block when the spring is neither stretched nor compressed is 
the zero location for elastic potential energy (x = 0).  Take right to be the positive direction.  We 
have 1 0,v =  1 0.18 m,x = −  and 2 0.v =   The value of the spring constant is found from the fact that 
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a 25-N force compresses the spring 18 cm, and so 25 N 0.18 m 138.9 N m.k F x= = =   The value 
of 2x  must be positive. 

( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2 21 1 1 1
1 2 fr 1 1 2 2 fr 2 12 2 2 2

2 2 2 21 1
1 2 2 1 2 2 1 12 2

22
2 2

2
2 2

      

2 2
    0  

2 0.30 0.18 9.80 2 0.30 0.18 9.80
0.18 0.18 0  

138.9 138.9

0.00762 0.

k k
k

E E F mv kx mv kx F x x

mg mg
kx kx mg x x x x x x

k k

x x

x x

μ μμ

= + → + = + + − →

= + − → + − + = →

+ − − + − = →

+ −

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

l

2 203103 0    0.1724 m, 0.1800 m   0.17 mx x= → = − → =

 

 
39. (a) Calculate the energy of the ball at the two maximum heights, and subtract to find the amount of  

energy lost.  The energy at the two heights is all gravitational potential energy, since the ball has 
no kinetic energy at those maximum heights. 

 
lost initial final initial final

lost initial final initial final

initial initial initial

2.0 m 1.5 m
0.25 25%

2.0 m

E E E mgy mgy

E mgy mgy y y
E mgy y

= − = −

− − −
= = = = =

 

(b) The ball’s speed just before the bounce is found from the initial gravitational potential energy, 
and the ball’s speed just after the bounce is found from the ball’s final gravitational potential 
energy. 

  
( ) ( )

21
initial before initial before2

2
before initial

      

2 2 9.80 m s 2.0 m 6.3m s

U K mgy mv

v gy

= → = →

= = =
 

( ) ( )

21
final after final after2

2
after final

      

2 2 9.80 m s 1.5 m 5.4 m s

U K mgy mv

v gy

= → = →

= = =
 

(c) The energy “lost” was changed  primarily into heat energy  – the temperature of the ball and the 
ground would have increased slightly after the bounce.  Some of the energy may have been 
changed into acoustic energy (sound waves).  Some may have been lost due to non-elastic 
deformation of the ball or ground. 

 
40. Since there is friction in this problem, there will be energy dissipated by friction. 

  
( ) ( )

( ) ( ) ( ) ( ) ( )

2 21
friction friction 1 2 1 22

2 2 51
2

0    

      56 kg 0 11.0 m s 56 kg 9.80 m s 230 m 1.2 10 J

E K U E K U m v v mg y y+ Δ + Δ = → = −Δ − Δ = − + −

= − + = ×⎡ ⎤⎣ ⎦
 

41. The change in gravitational potential energy is given by .U mg yΔ = Δ  Assume a mass of 75 kg. 

  ( ) ( ) ( )275kg 9.80 m s 1.0 m 740JU mg yΔ = Δ = =  

  
42. (a) Use conservation of energy.  Subscript 1 represents the block at the compressed location, and  

subscript 2 represents the block at its maximum position up the slope.  The initial location of the 
block at the bottom of the plane is taken to be the zero location for gravitational potential 
energy (y = 0).  The variable x will represent the amount of spring compression or stretch.  We 
have 1 0,v =  1 0.50 m,x =  1 0,y =  2 0,v =  and 2 0.x =   The distance the block moves up the 

plane is given by 
sin

,y
d

θ
=  so 2 sin .y d θ=   Solve for d. 
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 ( ) ( )
( ) ( )

2 2 2 21 1 1 1
1 2 1 1 1 2 2 22 2 2 2

22
2 11
1 22 2

      

75 N m 0.50 m
sin     0.73m

2 sin 2 2.0 kg 9.80 m s sin 41

E E mv mgy kx mv mgy kx

kx
kx mgy mgd d

mg
θ

θ

= → + + = + + →

= = → = = =
°

 

 (b) Now the spring will be stretched at the turning point of the motion.  The first half-meter of the  
block’s motion returns the block to the equilibrium position of the spring.  After that, the block 
beings to stretch the spring.  Accordingly, we have the same conditions as before except that 

2 0.5m.x d= −  

   
( )

2 2 2 21 1 1 1
1 2 1 1 1 2 2 22 2 2 2

21 1
12 2

      

sin 0.5m

E E mv mgy kx mv mgy kx

kx mgd k dθ

= → + + = + + →

= + −
 

  This is a quadratic relation in d.  Solving it gives 0.66 m .d =  

 (c) The block now moves 0.50 m,d =  and stops at the equilibrium point of the spring.    
Accordingly, 2 0.x =   Apply the method of Section 8-6. 

   

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2 2 2 21 1
fr 2 1 2 1 2 12 2

2 21
2 1 1

2

2

cos   

sin
tan

cos 2 cos

75 N m 0.50 m
    tan 41 0.40

2 2.0 kg 9.80 m s 0.50 m cos 41

k

k

K U F m v v k x x mg y y mgd

kx mgd kx
mgd mgd

μ θ

θμ θ
θ θ

Δ + Δ + = − + − + − + →

− +
= = −

−

= − ° =
°

l

  

 
43. Because friction does work, Eq. 8-15 applies. 

(a) The spring is initially uncompressed, so 0 0.x =   The block is stopped at the maximum 
compression, so 0.fv =  

( ) ( ) ( )2 2 2 21 1
fr 0 0 k 02 2

2 21 1
k 02 2

0  

0  

f f f

f f

K U F m v v k x x mg x x

kx mg x mv

μ

μ

Δ + Δ + = − + − + − = →

+ − = →

l
 

( ) ( ) ( )
( )

( )

( )

2 2 2 21 1
2 2k k 0 k k 0

1
2

2
k 0

2

k

4

2

   1 1

f

mg mg k mv mg mg kmv
x

k k

mg kmv
k mg

μ μ μ μ

μ
μ

− ± − − − ± +
= =

= − ± +
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

2 2

22 22

2.0 kg 9.80 m s 0.30 120 N m 2.0 kg 1.3m s
   1 1

120 N m 2.0 kg 9.80 m s 0.30

   0.1258 m 0.13m

= − ± +

= ≈

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠  

(b) To remain at the compressed position with the minimum coefficient of static friction, the 
magnitude of the force exerted by the spring must be the same as the magnitude of the 
maximum force of static friction. 

   ( )( )
( )( )s s 2

120 N m 0.1258 m
    0.7702 0.77

2.0 kg 9.80 m s
f

f

kx
kx mg

mg
μ μ= → = = = ≈  
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(c) If static friction is not large enough to hold the block in place, the spring will push the block 
back towards the equilibrium position.  The block will detach from the decompressing spring at 
the equilibrium position because at that point the spring will begin to slow down while the block 
continues moving.  Use Eq. 8-15 to relate the block at the maximum compression position to the 
equilibrium position.  The block is initially at rest, so 0 0v = .  The spring is relaxed at the 
equilibrium position, so 0.fx =  

( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

2 2 2 21 1
fr 0 0 k 02 2

2 21 1
0 k 02 2

22 2
0 k 0

0  

0  

120 N m
2 0.1258 m 2 9.80 m s 0.30 0.1258 m

2.0 kg

    0.458 m s 0.5m s

f f f

f

f

K U F m v v k x x mg x x

mv kx mg x

k
v x g x

m

μ

μ

μ

Δ + Δ + = − + − + − = →

− + = →

= − = −

= ≈

l

 

 
44. (a) If there is no air resistance, then conservation of mechanical energy can be used.  Subscript 1  

represents the glider when at launch, and subscript 2 represents the glider at landing.  The 
landing location is the zero location for elastic potential energy (y = 0).  We have 1 3500 m,y =  

2 0,y =  and 1

1m s
480 km h 133.3m s

3.6 km h
.v = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

  Solve for 2.v    

2 21 1
1 2 1 1 2 22 2      E E mv mgy mv mgy= → + = + →  

( ) ( ) ( )22 2
2 1 1

3.6 km h
2 133.3m s 2 9.80 m s 3500 m 293.8 m s

1m s

   1058 km h 1100 km h

v v gy= + = + =

= ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 (b) Now include the work done by the non-conservative 
frictional force.  Consider the diagram of the glider.  
The distance over which the friction acts is given by 

3500 m
sin12

.=
°

l   Use the same subscript 

representations as above, with 1,y  1,v  and 2y  as before, and 

2

1m s
210 km h 58.33m s

3.6 km h
.v = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

  Write the energy conservation equation and solve for 

the frictional force. 
( )

( ) ( ) ( ) ( ) ( )

2 2
1 2 12 21 1

1 2 fr 1 1 2 2 fr2 2

2 2 2

2
        

2

980 kg 133.3m s 58.33m s 2 9.80 m s 3500 m
    2415 N 2400 N

3500 m
2

sin12

f

m v v gy
E E F mv mgy mv mgy F F

− +
= + → + = + + → =

− +
= = ≈

°

⎡ ⎤⎣ ⎦
⎛ ⎞
⎜ ⎟
⎝ ⎠

l l
l

 

 
 
 
 
 

12o 3500 m
l 
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45. (a) Equate the gravitational force to the expression for centripetal force, since the orbit is circular.   
Let EM  represent the mass of the Earth. 

   
2

2 2E E E1
22

        
2

s s s s s
s s s s

s s s s

m v GM m GM m GM m
m v m v K

r r r r
= → = → = =   

 (b) The potential energy is given by Eq. 8-17, E .s sU GM m r= −   

 (c) 

E

E

12
2

s

s

s

s

GM m
K r

GM mU
r

= = −
−

 

 
46. Since air friction is to be ignored, the mechanical energy will be conserved.  Subscript 1 represents 

the rocket at launch, and subscript 2 represents the rocket at its highest altitude.  We have 
1 850m s,v =  2 0,v =  and we take the final altitude to be a distance h above the surface of the Earth. 

( ) ( ) ( )
( ) ( )

2 2E E1 1
1 2 1 22 2

E E

112
1 E

E E 2
E E E 0

1
11 2 2 24

6 4 4
26

      

1 2
1

2

2 6.67 10 N m kg 5.98 10 kg
  6.38 10 m 1 3.708 10 m 3.7 10 m

6.38 10 m 850 m s

GM m GM m
E E mv mv

r r h

v GM
h r r

r GM r v

−−

−
−

= → + − = + − →
+

= − − = −

× ×
= × − = × ≈ ×

×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

i

 

 If we would solve this problem with the approximate gravitation potential energy of mgh, we would 
get an answer of 43.686 10 m× , which agrees to 2 significant figures. 

 
47. The escape velocity is given by Eq. 8-19. 

  

A B A B
esc esc esc esc
A B A BA B A B

A B A

A B B

2 2 2 2
          2     2   

2 2 1
2     

4

M G M G M G M G
v v v v

r r r r

M G M G r
r r r

= = = → = →

= → =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
48. Note that the difference in the two distances from the center of the Earth, 2 1,r r−  is the same as the 

height change in the two positions, 2 1.y y−   Also, if the two distances are both near the surface of 

the Earth, then 2
1 2 E .r r r≈  

( )

( ) ( ) ( )

E E E E E
E 2 1

2 1 1 2 1 2 1 2

E E
2 1 2 1 2 12 2

E E

1 1

     

GM m GM m GM m GM m GM m
U GM m r r

r r r r r r r r

GM m GM
y y m y y mg y y

r r

Δ = − − − = − = − = −

≈ − = − = −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

 
49. The escape velocity for an object located a distance r from a mass M is given by Eq. 8-19, 

esc

2 .MG
v

r
=   The orbit speed for an object located a distance r from a mass M is orb .MG

v
r

=  
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 (a) ( ) ( )30 11 2 2
5Sun

esc at 8
Sun's Sun
surface

2 2.0 10 kg 6.67 10 N m kg2
6.2 10 m s

7.0 10 m
M G

v
r

−× ×
= = = ×

×

i
 

(b) ( ) ( )30 11 2 2
4Sun

esc at 11
Earth Earth orbit
orbit

2 2.0 10 kg 6.67 10 N m kg2
4.2 10 m s

1.50 10 m
M G

v
r

−

−

× ×
= = = ×

×

i
 

Sunesc at
Earth
orbit Earth orbit

esc at Earth
Earth orbitEarth Sun orbitorbit

Earth orbit

2

2     2

M Gv
r

v v
v M G

r

= = → =   

Since esc at Earth
Earth orbit
orbit

1.4 ,v v≈  the orbiting object will not escape the orbit. 

 
50. (a) The potential energy is given by Eq. 8-17. 

   

( ) ( ) ( )
( )

( ) ( ) ( )
( )

11 2 2 24

E
A 6 6

A

10 10

11 2 2 24

E
B 6 7

B

10 10

6.67 10 N m kg 950 kg 5.98 10 kg

6.38 10 m 4.20 10 m

     3.5815 10 J 3.6 10 J

6.67 10 N m kg 950 kg 5.98 10 kg

6.38 10 m 1.26 10 m

    1.9964 10 J 2.0 10 J

GmM
U

r

GmM
U

r

−

−

× ×
= − = −

× + ×

= − × ≈ − ×

× ×
= − = −

× + ×

= − × ≈ − ×

i

i
  

(b) An expression for the kinetic energy is found by equating the gravitational force to the 
expression for centripetal force, since the satellites are in circular orbits. 

   ( )

( )

2
2E E1 1

2 22

10 10 10E 1
A 2

A

10 10 10E 1
B 2

B

    
2

3.5815 10 J 1.7908 10 J 1.8 10 J
2

1.9964 10 J 0.9982 10 J 1.0 10 J
2

mv GmM GmM
mv K U

r r r
GmM

K
r

GmM
K

r

= → = = = −

= = − − × = × ≈ ×

= = − − × = × ≈ ×

 

 (c) We use the work-energy theorem to calculate the work done to change the orbit. 
   Net orbit gravity orbit gravity orbit gravity

change change change

     W K W W W U W K U= Δ = + = − Δ → = Δ + Δ →  

   
( ) ( ) ( ) ( )

( ) ( )

1 1
orbit gravity B A B A B A B A2 2
change

10 10 91 1
B A2 2 1.9964 10 J 3.5815 10 J 7.9 10 J        

W K U K K U U U U U U

U U

= Δ + Δ = − + − = − + + −

= − = − × − − × = ×
 

 
51. For a circular orbit, the gravitational force is a centripetal force.  The escape velocity is given by Eq. 

8-19. 

  
2
orbit

orbit esc orbit2

2
          2 2

GMm mv MG MG MG
v v v

r r r r r
= → = = = =  
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52. (a) With the condition that 0U =  at ,r = ∞  the potential energy is given by E .GM m
U

r
= −   The  

kinetic energy is found from the fact that for a circular orbit, the gravitational force is a 
centripetal force. 

   

2
2 2E orbit E E1 1
orbit orbit2 22

E E E1 1
2 2

        
GM m mv GM m GM m

mv K mv
r r r r

GM m GM m GM m
E K U

r r r

= → = → = =

= + = − = −

 

(b) As the value of E decreases, since E is negative, the radius r must get smaller.  But as the radius 

gets smaller, the kinetic energy increases, since 1 .K
r

∝   If the total energy decreases by 1 

Joule, the potential energy decreases by 2 Joules and the kinetic energy increases by 1 Joule. 
 
53. The speed of the surface of the Earth at the equator (relative to the center of the Earth) is given by 

the following.  It is an eastward velocity. Call east the x-direction, and up the y-direction. 
( )6

E
2 6.38 10 m2

464 m s
86, 400s

r
v

T

ππ ×
= = =  

The escape velocity from the Earth (relative to the center of the Earth) is given in Eq. 8-19. 

 
( ) ( )11 2 2 24

E
esc 6

E

2 6.67 10 N m kg 5.98 10 kg2
11,182 m s

6.38 10 m
GM

v
r

−× ×
= = =

×

i
 

(a) With the surface of the Earth traveling east and the rocket velocity to the east, the rocket 
velocity and surface velocity will add linearly to give the escape velocity. 

rocket relative rocket relative
to surface of to surface of
Earth Earth

464 m s 11,182 m s     10,700 m sv v+ = → =  

 (b) With the surface of the Earth traveling east and the rocket velocity to the west,  the rocket  
velocity will have to be higher than the nominal escape velocity. 

   rocket relative rocket relative
to surface of to surface of
Earth Earth

464 m s 11,182 m s     11,646 m s 11,600 m sv v+ = − → = ≈  

 (c) When fired vertically upward, the rocket velocity and the Earth’s velocity are at right angles to  
each other, and so add according to the Pythagorean theorem to give the escape velocity. 

   ( ) ( ) rocket relative
to surface of
Earth

2 22
rocket relative
to surface of
Earth

464 m s 11,182 m s     11,172 m s 11, 200 m sv v+ = → = ≈  

 
54. (a) Since air friction is to be ignored, the mechanical energy will be conserved.  Subscript 1  

represents the rocket at launch, and subscript 2 represents the rocket at its highest altitude.  We 
have 1 0,v v=  2 0,v =  1 E ,r r=  and 2 Er r h= +  where we take the final altitude to be a distance h 
above the surface of the Earth. 

2 2E E E1 1
1 2 0 22 2

E E E

112
0 E

E E 2
E E E 0

      

21
1

2

GM m GM m GM m
E E mv mv

r r h r h

v GM
h r r

r GM r v

−−

= → + − = + − = − →
+ +

= − − = −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
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 (b) 
1

E
E 2

E 0

2
1

GM
h r

r v

−

= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( ) ( ) ( )
( ) ( )

1
11 2 2 24

6 6
26

2 6.67 10 N m kg 5.98 10 kg
  6.38 10 m 1 8.0 10 m

6.38 10 m 8350 m s

−
−× ×

= × − = ×
×

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

i
 

 
55. (a) From Eq. 8-19, the escape velocity at a distance Er r≥  from the center of the Earth is 

 E
esc

2 .GM
v

r
=  

   1/ 2 3 / 2E esc E1
esc E E2 3

2
2     2

2
GM dv GM

v r GM r GM
r dr r

− −= = → = − = −  

 (b) ( ) ( )
( )

( )
11 2 2 24

5esc E
esc 33 6

6.67 10 N m kg 5.98 10 kg
3.2 10 m

2 2 6.38 10 m

dv GM
v r r

dr r

−× ×
Δ ≈ Δ = − Δ = − ×

×

i
 

      280 m s= −  
The escape velocity has decreased by 280 m/s, and so is 4

esc 1.12 10 m s 280 m sv = × − =  
41.09 10 m s .×  

 
56. (a) Since air friction is to be ignored, the mechanical energy will be conserved.  Subscript 1  

represents the meteorite at the high altitude, and subscript 2 represents the meteorite just before 
it hits the sand.  We have 1 90.0m sv = , 1 E E 850kmr r h r= + = + , and 2 E.r r=  

 2 2E E1 1
1 2 1 22 2

E E

      
GM m GM m

E E mv mv
r h r

= → + − = + − →
+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 2
2 1 E

E E

1 1
2 3835.1m s 3840 m sv v GM

r r h
= + − = ≈

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) We use the work-energy theorem, where work is done both by gravity (over a short distance)  
and the sand.  The initial speed is 3835.1 m/s, and the final speed is 0. 

   ( )2 21
net G fr fr 2  f iW W W mgd W K m v v= + = + = Δ = − →  

   
( ) ( ) ( ) ( ) ( )22 21 1

fr 2 2

9

575kg 3835.1m s 575kg 9.80 m s 3.25m

    4.23 10 J

iW mv mgd= − − = − −

= − ×
  

 (c) The average force is the magnitude of the work done, divided by the distance moved in the  
sand. 

9
9sand

sand
sand

4.23 10 J
1.30 10 N

3.25m
W

F
d

×
= = = ×  

(d) The work done by the sand shows up as thermal energy, so 94.23 10 J×  of thermal energy is  
produced. 
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57. The external work required ( )otherW  is the change in the mechanical energy of the satellite.  Note the 
following, from the work-energy theorem. 

  ( )total gravity other other other mech        W W W K U W W K U K U E= + → Δ = −Δ + → = Δ + Δ = Δ + = Δ  

 From problem 52, we know that the mechanical energy is given by 1
2 .

GMm
E

r
= −  

  

1 1 1 1 1
2 2 2 2 2

final initial initial final

1 1
2 2

E E Einitial final

    

                                       
2 3 12

GMm GMm GMm GMm GMm
E E

r r r r r

GMm GMm GMm
r r r

= − → Δ = − − − = −

= − =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
58. (a) The work to put 1m  in place is 0, because it is still infinitely distant from the other two masses.   

The work to put 2m  in place is the potential energy of the 2-mass system, 1 2

12

.Gm m
r

−   The work 

to put 3m  in place is the potential energy of the 1 3m m−  combination, 1 3

13

,Gm m
r

−  and the 

potential energy of the 2 3m m−  combination, 2 3

23

.Gm m
r

−   The total work is the sum of all of 

these potential energies, and so 1 3 2 31 2

12 13 23

 Gm m Gm mGm m
W

r r r
= − − − →  

1 2 1 3 2 3

12 13 23

.m m m m m m
W G

r r r
= − + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

  Notice that the work is negative, which is a result of the 

masses being gravitationally attracted towards each other. 
(b) This formula gives the potential energy of the entire system.  Potential energy does not “belong” 

to a single object, but rather to the entire system of objects that interact to give the potential 
energy. 

(c) Actually, 1 3 2 31 2

12 13 23

m m m mm mW G
r r r

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 is the binding energy of the system.  It would take 

that much work (a positive quantity) to separate the masses infinitely far from each other. 
 
59. Since air friction is to be ignored, the mechanical energy will be conserved.  Subscript 1  

represents the asteroid at high altitude, and subscript 2 represents the asteroid at the Earth’s surface.  
We have 1 660 m s,v =  9

1 E 5.0 10 m,r r= + ×  and 2 E.r r=  
 

( )
( ) ( )

2 2 2E E1 1
1 2 1 2 2 1 E2 2

1 2 2 1

11 2 2 24

2 4

6 9 6

1 1
        2

2 6.67 10 N m kg 5.98 10 kg
660 m s 1.12 10 m s1 1

6.38 10 m 5.0 10 m 6.38 10 m

GM m GM m
E E mv mv v v GM

r r r r

−

= → + − = + − → = + −

× ×
= + = ×

−
× + × ×

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎧ ⎫
⎪ ⎪
⎨ ⎬⎛ ⎞
⎜ ⎟⎪ ⎪
⎝ ⎠⎩ ⎭

i i  
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60. Calculate the density of the shell.  Use that density to calculate the potential due to a full sphere of 
radius 1r , and then subtract the potential due to a mass of radius 2r . 

  

( ) ( ) ( )
3 34 4

full 1 inner 23 33 3 3 3 3 34 4 4
sphere sphere3 3 31 2 1 2 1 2

full inner
sphere sphere

shell full inner full inner
sphere sphere sphere sphere

          

        

M M M
M r M r

r r r r r r

GM m GM m
Gm

U U U M M
r r r

G

ρ π π
π π π

= = =
− − −

= − = − − − = − −

= −

⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠

⎝ ⎠

( ) ( ) ( ) ( )
3 3

3 3 1 24 4
1 23 33 3 3 3 3 3 3 34 4

3 31 2 1 2 1 2 1 2

        

m M M GmM r r
r r

r r r r r r r r r r

GmM r

π π
π π

− = − −
− − − −

= −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
61. (a) The escape speed from the surface of the Earth is E E E2 .v GM r=   The escape velocity from  

the gravitational field of the sun, is S S SE2 .v GM r=     In the reference frame of the Earth, if 
the spacecraft leaves the surface of the Earth with speed v (assumed to be greater than the 
escape velocity of Earth), then the speed v′  at a distance far from Earth, relative to the Earth, is 
found from energy conservation. 

 2 2 2 2 2 2 2 2 2E E1 1
E E2 22 2

E E

2
        GM m GM

mv mv v v v v v v v
r r

′ ′ ′− = → = − = − → = +  

The reference frame of the Earth is orbiting the sun with speed 0.v   If the rocket is moving with 
speed v′  relative to the Earth, and the Earth is moving with speed 0v  relative to the Sun, then 
the speed of the rocket relative to the Sun is 0v v′ +  (assuming that both speeds are in the same 
direction).  This is to be the escape velocity from the Sun, and so S 0 ,v v v′= +  or S 0.v v v′ = −   
Combine this with the relationship from above. 

 ( ) ( )2 22 2 2 2 2
E S 0 E S 0 E    v v v v v v v v v v′= + = − + → = − +   

 ( ) ( )11 2 2 24
4E

E 6
E

2 6.67 10 N m kg 5.98 10 kg2
1.118 10 m s

6.38 10 m
GM

v
r

−× ×
= = = ×

×

i
 

 

( ) ( )

( )
( )

11 2 2 30
4S

S 11
SE

11
4SE

0 7
SE

2 6.67 10 N m kg 1.99 10 kg2
4.212 10 m s

1.496 10 m

2 1.496 10 m2
2.978 10 m s

3.156 10 s

GM
v

r

r
v

T

ππ

−× ×
= = = ×

×

×
= = = ×

×

i

 

 
( ) ( ) ( )2 22 2 4 4 4

S 0 E

4

4.212 10 m s 2.978 10 m s 1.118 10 m s

1.665 10 m s 16.7 km s  

v v v v= − + = × − × + ×

= × ≈
 

 (b) Calculate the kinetic energy for a 1.00 kg mass moving with a speed of 41.665 10 m s.×  This is  
the energy required per kilogram of spacecraft mass. 

 ( ) ( )22 4 81 1
2 2 1.00 kg 1.665 10 m s 1.39 10 JK mv= = × = ×  
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62. The work necessary to lift the piano is the work done by an upward force, equal in magnitude to the 
weight of the piano.  Thus cos0 .W Fd mgh= =°  The average power output required to lift the piano 
is the work done divided by the time to lift the piano. 

 
( )( )( )2335 kg 9.80 m s 16.0 m

   30.0s
1750 W

W mgh mgh
P t

t t P
= = → = = =  

 
63. The 18 hp is the power generated by the engine in creating a force on the ground to propel the car 

forward.  The relationship between the power and the force is Eq. 8-21 with the force and velocity in 
the same direction, .P Fv=   Thus the force to propel the car forward is found by .F P v=   If the 
car has a constant velocity, then the total resistive force must be of the same magnitude as the engine 
force, so that the net force is zero.  Thus the total resistive force is also found by .F P v=   

( ) ( )

( )

18 hp 746 W 1 hp
510 N

1m s
95km h

3.6 km h

P
F

v
= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
64. (a) ( ) ( )221 1

2 2 85kg 5.0 m s 1062.5J 1100JK mv= = = ≈  

 (b) The power required to stop him is the change in energy of the player, divided by the time to  
carry out the energy change. 

 
1062.5J

1062.5W 1100 W
1.0s

P = = ≈   

 
65. The energy transfer from the engine must replace the lost kinetic energy.  From the two speeds,  

calculate the average rate of loss in kinetic energy while in neutral. 

( ) ( ) ( )

1 2

2 22 2 51 1 1
2 12 2 2

1m s 1m s
95km h 26.39 m s       65km h 18.06 m s

3.6 km h 3.6 km h

1080 kg 18.06 m s 26.39 m s 1.999 10 J

v v

KE mv mv

= = = =

Δ = − = − = − ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎣ ⎦

 

( )
5

4 41.999 10 J 1 hp
2.856 10 W , or 2.856 10 W 38.29 hp

7.0 s 746 W
W

P
t

×
= = = × × =  

 So 42.9 10 W  or 38 hp×  is needed from the engine. 

 

66. Since 
W

P
t

= , we have ( ) 6746 W 3600 s
3.0 hp 1 hr 8.1 10 J

1 hp 1 h
.W Pt= = = ×⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
67. The power is the force that the motor can provide times the velocity, as given in Eq. 8-21.  The force 

provided by the motor is parallel to the velocity of the boat.  The force resisting the boat will be the 
same magnitude as the force provided by the motor, since the boat is not accelerating, but in the 
opposite direction to the velocity. 

  
( ) ( )

( )

55hp 746 W 1 hp
    4220 N 4200 N

1m s
35km h

3.6 km h

P
P Fv F

v
= = → = = = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠

F v
G Gi  

 So the force resisting the boat is 4200 N, opposing the velocity .  
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68. The average power is the energy transformed per unit time.  The energy transformed is the change in  
kinetic energy of the car. 

( ) ( ) ( )

( )

2

2 21
2 12

4

1m s
1400 kg 95 km h

3.6 km henergy transformed
time 2 7.4 s

   6.6 10 W 88 hp

m v vK
P

t t

−Δ
= = = =

= × ≈

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  

 
69. The minimum force needed to lift the football player vertically is equal to his weight, mg.  The  

distance over which that force would do work would be the change in height, ( )78m sin 33 .yΔ = °   
So the work done in raising the player is W mg y= Δ  and the power output required is the work done 
per unit time. 

 
( ) ( ) ( )292 kg 9.80 m s 78 m sin 33

510 W
75 sec

W mg y
P

t t

°Δ
= = = =  

 
70. The force to lift the water is equal to its weight, and so the work to lift the water is equal to the  

weight times the vertical displacement.  The power is the work done per unit time.  

 
( )( )( )221.0 kg 9.80 m s 3.50 m

12.0 W
60 sec

W mgh
P

t t
= = = =  

 
71. The force to lift a person is equal to the person’s weight, so the work to lift a person up a vertical 

distance h is equal to mgh.  The work needed to lift N people is Nmgh, and so the power needed is 
the total work divided by the total time.  We assume the mass of the average person to be 70 kg. 

( ) ( ) ( )2
6 6

47000 70 kg 9.80 m s 200 m
1.79 10 W 2 10 W

3600 s
W Nmgh

P
t t

= = = = × ≈ × . 

 
72. We represent all 30 skiers as one person on the free-body diagram.  The engine 

must supply the pulling force.  The skiers are moving with constant velocity, 
and so their net force must be 0. 

N N

P fr

P fr k

cos 0    cos

sin 0  

sin sin cos

y

x

F F mg F mg

F F mg F

F mg F mg mg

θ θ

θ

θ θ μ θ

= − = → =

= − − = →

= + = +

∑
∑  

The work done by PF  in pulling the skiers a distance d is PF d  since the force is parallel to the 
displacement.  Finally, the power needed is the work done divided by the time to move the skiers up 
the incline. 

( )

( ) ( ) ( ) ( )

kP

2

sin cos

30 75kg 9.80 m s sin 23 0.10cos 23 220 m 1hp
   19516 W 26 hp

120s 746 W

mg dW F d
P

t t t
θ μ θ+

= = =

° + °
= = =⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
73. The net rate of work done is the power, which can be found by .P Fv mav= =   The velocity is given 

by 215.0 16.0 44
dx

v t t
dt

= = − −  and 30.0 16.0.
dv

a t
dt

= = −  

mgG

PF
G

frF
G

NF
G

θ θ

y 
x 
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 (a) ( ) ( )[ ]( ) ( ) ( )220.28 kg 30.0 2.0 16.0 m s 15.0 2.0 16.0 2.0 44 m sP mav= = − − −⎡ ⎤⎣ ⎦      

      2197.1W 2.0 10 W= − ≈ − ×  

 (b) ( ) ( )[ ]( ) ( ) ( )220.28 kg 30.0 4.0 16.0 m s 15.0 4.0 16.0 4.0 44 m sP mav= = − − −⎡ ⎤⎣ ⎦  

    3844 W 3800 W= ≈  

 The average net power input is the work done divided by the elapsed time.  The work done is the 
change in kinetic energy.  Note ( )0 44 m s,v = −  ( ) ( ) ( )22.0 15.0 2.0 16.0 2.0 44 16 m s,v = − − = −  

and ( ) ( ) ( )24.0 15.0 4.0 16.0 4.0 44 132 m s.v = − − =  

 (c) 
( ) ( ) ( ) ( )2 22 2 11

22
avg
0 to 2.0

0.28 kg 16 m s 44 m s
120 W

2.0s
f im v vK

P
t t

− − −−Δ
= = = = −

Δ Δ

⎡ ⎤⎣ ⎦  

 (d) 
( ) ( ) ( ) ( )2 22 2 11

22
avg
2.0 to 4.0

0.28 kg 132 m s 16 m s
1200 W

2.0s
f im v vK

P
t t

−−Δ
= = = =

Δ Δ

⎡ ⎤⎣ ⎦  

 
74. First, consider a free-body diagram for the cyclist going down hill.  Write 

Newton’s second law for the x direction, with an acceleration of 0 since the 
cyclist has a constant speed. 

fr frsin 0    sinxF mg F F mgθ θ= − = → =∑  
 
 
 
Now consider the diagram for the cyclist going up the hill.  Again, write 
Newton’s second law for the x direction, with an acceleration of 0. 

fr P P frsin 0    sinxF F F mg F F mgθ θ= − + = → = +∑  
Assume that the friction force is the same when the speed is the same, so the 
friction force when going uphill is the same magnitude as when going 
downhill. 

P fr sin 2 sinF F mg mgθ θ= + =  
The power output due to this force is given by Eq. 8-21, with the force and velocity parallel. 

( ) ( ) ( )2 o
P 2 sin 2 75 kg 9.80 m s 4.0 m s sin 6.0 610 WP F v mgv θ= = = =  

 
75. The potential energy is given by ( ) 21

2U x kx=  and so has a parabolic 

shape.  The total energy of the object is 21
02 .E kx=   The object, when 

released, will gain kinetic energy and lose potential energy until it 
reaches the equilibrium at x = 0, where it will have its maximum 
kinetic energy and maximum speed.  Then it continues to move to the 
left, losing kinetic energy and gaining potential energy, until it reaches 
its extreme point of 0.x x=   Then the motion reverses, until the object 
reaches its original position.  Then it will continue this oscillatory 
motion between 0x =  and 0.x x=  

 
 

y 
x 

θ 
θ 

mgG

NF
G

frF
G

PF
G

y

x

θ 

 

 

mgG

NF
G

frF
G

θ 

E

K

x0
x

U(x)

0
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76. (a) The total energy is ( ) ( )221 1
02 2 160 N m 1.0 m 80 J .E kx= = =  The answer has 2 significant  

figures. 
(b) The kinetic energy is the total energy minus the potential energy. 

( ) ( )221 1
2 280 J 160 N m 0.50 m 60 JK E U E kx= − = − = − =  

  The answer has 2 significant figures. 
(c) The maximum kinetic energy is the total energy, 80 J .  

(d) The maximum speed occurs at 0 ,x =  the equilibrium position at the center of the motion.  Use 
the maximum kinetic energy (which is equal to the total energy) to find the maximum speed. 

   ( )2 max1
max max max2

2 80 J2
    5.7 m s

5.0 kg
K

K mv v
m

= → = = =  

(e) The maximum acceleration occurs at the maximum displacement, 1.0 m ,x =  since 

  F ma kx= = − →  .
k x

a
m

=  

   
( ) ( ) 2max

max

160 N m 1.0m
32 m s

5.0 kg
k x

a
m

= = =  

 
77. (a) To find possible minima and maxima, set the first derivative of the function equal to 0 and  

solve for the values of r. 

 ( ) ( )6
6 12 12 7 13

1
    6 12

a b dU a b
U r b ar

r r r dr r r
= − + = − → = −  

 
1/ 6

crit7 13

2
0    2     ,

dU a b b
r

dr r r a
= → = → = ∞⎛ ⎞

⎜ ⎟
⎝ ⎠

 

The second derivative test is used to determine the actual type of critical points found. 

( )

( )
1 / 6

2
6

2 8 14 14

1/ 62

crit14 / 6 14 / 62
2

1
42 156 156 42

1 2 1 2
156 42 156 84 0  

2 2b
a

d U a b
b ar

dr r r r

d U b b
b a b b r

dr a ab b
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

= − + = −

= − = − > → =⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

Thus there is a  minimum at 
1/ 62b

r
a

= ⎛ ⎞
⎜ ⎟
⎝ ⎠

.  We also must check the endpoints of the function.  

We see from the form ( ) ( )6
12

1
U r b ar

r
= −  that as ( )0, ,r U r→ → ∞  and so there is a 

maximum at r = 0. 
 (b) Solve ( ) 0U r =  for the distance. 

   ( ) ( ) ( )6 6
6 12 12 12

1 1
0    0 or 0  

a b
U r b ar b ar

r r r r
= − + = − = → = − = →   

   
1/ 6

 ; 
b

r r
a

= ∞ = ⎛ ⎞
⎜ ⎟
⎝ ⎠
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 (c) See the adjacent graph.  The spreadsheet  
used for this problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH08.XLS,” on tab 
“Problem 8.77c.” 

  

(d) For E < 0, there will be bound oscillatory 
motion between two turning points.  This 
could represent a chemical bond type of 
situation.  For E > 0, the motion will be 
unbounded, and so the atoms will not stay 
together. 

 

 (e) The force is the opposite of the slope of the potential energy graph. 

  
1/ 62

0 for 
b

F r
a

> < ⎛ ⎞
⎜ ⎟
⎝ ⎠

  ; 
1/ 62

0  for 
b

F r
a

< < < ∞⎛ ⎞
⎜ ⎟
⎝ ⎠

  ; 
1/ 62

0  for ,
b

F r r
a

= = = ∞⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (f)  ( ) 13 7

12 6dU b a
F r

dr r r
= − = −  

 
78. The binding energy will be ( ) ( )U minU U r∞ − .  The value of r for which U(r) has a minimum is 

found in problem 77 to be 
1/ 62 .b

r
a

= ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  ( ) ( )
1/ 6 2 2 2

U min 2 2

2
0 0 0

2 2 4 42
b a b a a b a

U U r U r
ba b b bb

a a

∞ − = − = = − − + = − − + =

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥⎛ ⎞⎝ ⎠ ⎢ ⎥ ⎣ ⎦⎛ ⎞⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Notice that this is just the depth of the potential well. 
 
79. The power must exert a force equal to the weight of the elevator, through the vertical height, in the 

given time. 

  
( ) ( ) ( )

( )

2
4

885kg 9.80 m s 32.0 m
2.52 10 W

11.0s
mgh

P
t

= = = ×  

 
80. Since there are no non-conservative forces, the mechanical energy of the projectile will be 

conserved.  Subscript 1 represents the projectile at launch and subscript 2 represents the projectile as 
it strikes the ground.  The ground is the zero location for potential energy ( )0 .y =   We have 

1 165m s,v =  1 135m,y =  and 2 0.y =   Solve for 2.v    

( ) ( ) ( )

2 2 2 21 1 1 1
1 2 1 1 2 2 1 1 22 2 2 2

22 2
2 1 1

          

2 165m s 2 9.80 m s 135m 173m s

E E mv mgy mv mgy mv mgy mv

v v gy

= → + = + → + = →

= + = + =
 

Notice that the launch angle does not enter the problem, and so does not influence the final speed. 
 
 
 
 

r

U
(r

)

1/ 6br
a

⎛ ⎞= ⎜ ⎟
⎝ ⎠ ( )

1/ 62
 minimum

b
r U

a
= ⎛ ⎞
⎜ ⎟
⎝ ⎠
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y 
x 

θ  
mgG

NF
G

P2F
G

θ 
fr2F
G

81. (a) Use conservation of mechanical energy, assuming there are no non-conservative forces.   
Subscript 1 represents the water at the top of the dam, and subscript 2 represents the water as it 
strikes the turbine blades.  The level of the turbine blades is the zero location for potential 
energy ( )0 .y =   Assume that the water goes over the dam with an approximate speed of 0.  We 

have 1 0,v =  1 80 m,y =  and 2 0.y =   Solve for 2.v  

( )( )

2 2 21 1 1
1 2 1 1 2 2 1 22 2 2

2
2 1

          

2 2 9.80 m s 88 m 41.53m s 42 m s

E E mv mgy mv mgy mgy mv

v gy

= → + = + → = →

= = = ≈
 

(b) The energy of the water at the level of the turbine blades is all kinetic energy, and so is given by  
21
22 .mv   55% of that energy gets transferred to the turbine blades.  The rate of energy transfer to 

the turbine blades is the power developed by the water. 
( )( )( )2

2 51
22

0.55 550 kg s 41.53m s
0.55 2.6 10 W

2
m

P v
t

= = = ×⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
82.  First, define three speeds: 

0 12 km hv = =  speed when coasting downhill. 

1 32 km hv = = speed when pedaling downhill. 

2v = Speed when climbing the hill. 
For coasting downhill at a constant speed, consider the first free-body 
diagram shown.  The net force on the bicyclist must be 0.  Write 
Newton’s second law for the x direction. 

fr0 fr0sin 0    sinxF F mg F mgθ θ= − = → =∑  

Note that this occurs at 0.v v=  
 

When pumping hard downhill, the speed is 32 8
1 12 3 .o ov v v= =   Since the 

frictional force is proportional to 2 ,v  the frictional force increases by  
a factor of ( )28

3 : ( )28
fr1 fr03

64
9 sin .F F mg θ= =  See the second free-

body diagram.  There is a new force, P1,F
G

 created by the bicyclist.  
Since the cyclist is moving at a constant speed, the net force in the x 
direction must still be 0.  Solve for P1,F  and calculate the power associated with the force. 

( ) 55
fr1 P1 P1 fr1 9

1 fr1 1 1

64
9

55
9

sin 0    sin sin sin

sin

1xF F mg F F F mg mg mg

P F v mgv

θ θ θ θ

θ

= − − = → = − = =

= =

−∑  

 
Now consider the cyclist going uphill.  The speed of the cyclist going 
up the hill is 2v .  Since the frictional force is proportional to 2 ,v  the 

frictional force is given by  ( )2
fr2 2 0 sin .F v v mg θ=   See the third free-

body diagram.  There is a new force, P2 ,F
G

 created by the bicyclist.  
Since the cyclist is moving at a constant speed, the net force in the x 
direction must still be 0. 

P2 fr 2sin 0xF F mg Fθ= − − =∑  
The power output of the cyclist while pedaling uphill is the same as when pedaling going downhill. 

y 
x 

θ  
mgG

NF
G

fr0F
G

θ 

y 
x 

θ  
mgG

NF
G

fr1F
G

θ 
P1F
G
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( )55 55 55
2 1 1 2 2 1 2 1 29 9 9sin   sin    sinP PP P mgv F v mgv F mg v vθ θ θ= = → = → =  

Combine this information with Newton’s second law equation for the bicyclist going uphill.  
( ) ( )2

P2 fr 2 1 2 2 0
55
9sin sin sin sin 0F mg F mg v v mg v v mgθ θ θ θ− − = − − =  

This simplifies to the following cubic equation:  3 2 255
2 2 0 1 09 0.v v v v v+ − =   Note that since every term 

has speed to the third power, there is no need to do unit conversions.  Numerically, this equation is 
3
2 2144 28160 0,v v+ − =  when the speed is in km/h.  Solving this cubic equation (with a spreadsheet, 

for example) gives 2 28.847 km h 29 km h .v = ≈  

 
83. (a) The speed Bv  can be found from conservation of mechanical energy.  Subscript A represents the  

skier at the top of the jump, and subscript B represents the skier at the end of the ramp.  Point B 
is taken as the zero location for potential energy ( )0 .y =  We have 1 0,v =  1 40.6m,y =  and 

2 0.y =   Solve for 2.v    
2 2 21 1 1

A B A A B B A B2 2 2          E E mv mgy mv mgy mgy mv= → + = + → = →  

( ) ( )2
B A2 2 9.80m s 40.6m 28.209 m s 28.2 m sv gy= = = ≈  

(b) Now we use projectile motion.  We take the origin of coordinates to be the point on the ground 
directly under the end of the ramp.  Then an equation to describe the slope is slope tan 30 .y x= − °   
The equations of projectile motion can be used to find an expression for the parabolic path that 
the skier follows after leaving the ramp.  We take up to be the positive vertical direction.  The 
initial y-velocity is 0, and the x-velocity is Bv  as found above. 

   ( )221 1
B proj 0 0 B2 2  ;  x v t y y gt y g x v= = − = −  

  The skier lands at the intersection of the two paths, so slope projy y= . 

   

( )

( ) ( ) ( ) ( )

2

2 2 21
slope proj 0 B 0 B2

B

2 22 2 2 2 2 2
B B 0 B B B 0 B

    tan 30     2 tan 30 2 0  

2 tan 30 2 tan 30 8 tan 30 tan 30 2

2

x
y y x y g gx x v y v

v

v v gy v v v gy v
x

g g

= → − ° = − → − ° − = →

° ± ° + ° ± ° +
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Solving this with the given values gives 7.09 m, 100.8m.x = −   The positive root is taken.  

Finally, 
100.8m

cos30.0     116m
cos30.0 cos30.0

.x
s x s° = → = = =

° °
 

 
84. (a) The slant of the jump at point B does not affect the energy conservation calculations from  

problem 83, and so this part of the problem is solved exactly as in problem 83, and the answer is 
exactly the same as in problem 83: B 28.209 m s 28.2 m s .v = ≈  

(b) The projectile motion is now different because the velocity at point B is not purely horizontal.  
We have that B 28.209 m sv =  and B 3.0m s.yv =   Use the Pythagorean theorem to find B .xv  

 ( ) ( )2 22 2
B B B 28.209 m s 3.0m s 28.049 m sx yv v v= − = − =  

We take the origin of coordinates to be the point on the ground directly under the end of the 
ramp.  Then an equation to describe the slope is slope tan 30 .y x= − °   The equations of projectile 
motion can be used to find an expression for the parabolic path that the skier follows after 
leaving the ramp.  We take up to be the positive vertical direction. 
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2

21 1
B proj 0 B 0 B2 2

B B

  ;  x y y
x x

x x
x v t y y v t gt y v g

v v
= = + − = + −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  The skier lands at the intersection of the two paths, so slope proj.y y=  

 ( )
( ) ( )

2

1
slope proj 0 B 2

B B

2 2
B B B 0 B

2 2
B B B B B B 0 B

    tan 30   

2 tan 30 2 0  

2 tan 30 2 tan 30 8

2

y
x x

x x y x

x x y x x y x

x x
y y x y v g

v v

gx x v v v y v

v v v v v v gy v
x

g

= → − ° = + − →

− ° + − = →

° + ± ° + −
=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

Solving this with the given values gives 6.09 m, 116.0m.x = −   The positive root is taken.  

Finally, 
116.0m

cos30.0     134 m
cos30.0 cos30.0

.x
s x s° = → = = =

° °
 

 
85. (a) The tension in the cord is perpendicular to the path at all times, and so the tension in the cord  

does not do any work on the ball.  Thus only gravity does work on the ball, and so the 
mechanical energy of the ball is conserved.  Subscript 1 represents the ball when it is horizontal, 
and subscript 2 represents the ball at the lowest point on its path.  The lowest point on the path 
is the zero location for potential energy ( )0 .y =   We have 1 0v = , 1 ,y = l  and 2 0.y =   Solve 

for 2.v    
2 2 21 1 1

1 2 1 1 2 2 2 22 2 2            2E E mv mgy mv mgy mg mv v g= → + = + → = → =l l  

 (b) Use conservation of energy, to relate points 2 and 3.  Point 2 is as described above.  Subscript 3  
represents the ball at the top of its circular path around the peg.  The lowest point on the path is 
the zero location for potential energy ( )0 .y =   We have 2 2 ,v g= l  2 0,y =  and 

( ) ( )3 2 2 0.80 0.40y h= − = − =l l l l .  Solve for 3.v    

( ) ( )2 2 21 1 1 1
2 3 2 2 3 3 32 2 2 2

3

        2 0.40   

1.2

E E mv mgy mv mgy m g mv mg

v g

= → + = + → = + →

=

l l

l
 

 
86. The ball is moving in a circle of radius ( ).h−l   If the ball is to complete the circle with the string 

just going slack at the top of the circle, the force of gravity must supply the centripetal force at the 
top of the circle.  This tells the critical (slowest) speed for the ball to have at the top of the circle. 

( )
2

2crit
crit    

mv
mg v gr g h

r
= → = = −l  

To find another expression for the speed, we use energy conservation.  Subscript 1 refers to the ball 
at the launch point, and subscript 2 refers to the ball at the top of the circular path about the peg.  The 
zero for gravitational potential energy is taken to be the lowest point of the ball’s path.  Let the speed 
at point 2 be the critical speed found above. 

( ) ( )2 21 1 1
1 2 1 1 2 22 2 2        2   

0.6

E E mv mgy mv mgy mg mg h mg h

h

= → + = + → = − + − →

=

l l l

l
 

If h is any smaller than this, then the ball would be moving slower than the critical speed when it 
reaches the top of the circular path, and would not stay in centripetal motion.  
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87. Consider the free-body diagram for the coaster at the bottom of the loop.  The net 
force must be an upward centripetal force.  

2 2
bottom N bottom N bottom

bottom bottom

    F F mg m v R F mg m v R= − = → = +∑  

Now consider the force diagram at the top of the loop.  Again, the net force must be 
centripetal, and so must be downward. 

2 2
top N top top

top top

    NF F mg m v R F m v R mg= + = → = −∑ .   

Assume that the speed at the top is large enough that 
top

0,NF >  and so top .v Rg>   

Now apply the conservation of mechanical energy.  Subscript 1 represents the coaster at the bottom 
of the loop, and subscript 2 represents the coaster at the top of the loop.  The level of the bottom of 
the loop is the zero location for potential energy ( )0 .y =   We have y1 = 0 and y2 = 2R. 

2 2 2 21 1
1 2 1 1 2 2 bottom top2 2        4E E mv mgy mv mgy v v gR= → + = + → = +  

 The difference in apparent weights is the difference in the normal forces. 
( ) ( ) ( )

( )

2 2 2 2
N N bottom top bottom top
bottom top

2

                  2 4 6

F F mg m v R m v R mg mg m v v R

mg m gR R mg

− = + − − = + −

= + =
 

 Notice that the result does not depend on either v or R . 
 
88. The spring constant for the scale can be found from the 0.5 mm compression due to the 760 N force.  

6
4

760 N
1.52 10 N m.

5.0 10 m
F

k
x −

= = = ×
×

  Use conservation of energy for the jump.  Subscript 1 

represents the initial location, and subscript 2 represents the location at maximum compression of the 
scale spring.  Assume that the location of the uncompressed scale spring is the 0 location for 
gravitational potential energy. We have 1 2 0v v= =  and 1 1.0 m.y =   Solve for 2 ,y  which must be 
negative.  

2 2 21 1 1
1 2 1 1 2 2 22 2 2

2 2 2 3 31
1 2 2 2 2 1 2 22

      

    2 2 1.00 10 1.00 10 0

E E mv mgy mv mgy ky

mg mg
mgy mgy ky y y y y y

k k
− −

= → + = + + →

= + → + − = + × − × =
 

( ) ( )

2 2
2

6 2 4
scale

3.21 10 m, 3.11 10 m

1.52 10 N m 3.21 10 m 4.9 10 N

y

F k x

− −

−

= − × ×

= = × × = ×
 

 
89. (a) The work done by the hiker against gravity is the change in gravitational potential energy.   

( ) ( ) ( )2 5 5
G 65 kg 9.80 m s 4200 m 2800 m 8.918 10 J 8.9 10 JW mg y= Δ = − = × ≈ ×  

 (b) The average power output is found by dividing the work by the time taken. 

( ) ( )
5

grav 1
output

2

8.918 10 J
49.54 W 5.0 10 W

5.0 h 3600 s 1 h

1 hp
49.54 W 6.6 10 hp

746 W

W
P

t

−

×
= = = ≈ ×

= ×⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (c) The output power is the efficiency times the input power. 
output

output input input

49.54 W
0.15     330 W 0.44 hp

0.15 0.15
P

P P P= → = = = =  

mgG

N
bottom

F
G

mgGN
top

F
G
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90. (a) Draw a free-body diagram for the block at the top of the curve.  Since the  
block is moving in a circle, the net force is centripetal.  Write Newton’s 
second law for the block, with down as positive.  If the block is to be on 
the verge of falling off the track, then N 0.F =   

2 2
R N top top        F F mg m v r mg m v r v gr= + = → = → =∑  

Now use conservation of energy for the block.  Since the track is frictionless, there are no non-
conservative forces, and mechanical energy will be conserved.  Subscript 1 represents the block 
at the release point, and subscript 2 represents the block at the top of the loop.  The ground is 
the zero location for potential energy ( )0 .y =   We have 1 0,v =  1 ,y h=  2 ,v gr=  and 2 2 .y r=   
Solve for h. 

2 21 1 1
1 2 1 1 2 22 2 2        0 2   

2.5

E E mv mgy mv mgy mgh mgr mgr

h r

= → + = + → + = + →

=
 

 (b) See the free-body diagram for the block at the bottom of the loop.  The net  
force is again centripetal, and must be upwards. 

2 2
R N N bottom    F F mg m v r F mg m v r= − = → = +∑  

The speed at the bottom of the loop can be found from energy conservation, 
similar to what was done in part (a) above, by equating the energy at the 
release point (subscript 1) and the bottom of the loop (subscript 2).  We now have 1 0,v =  

1 2 5 ,y h r= =  and 2 0.y =   Solve for 2.v  

 
2 2 21 1 1

1 2 1 1 2 2 bottom2 2 2

2 2
bottom N bottom

        0 5 0  

10     10 11

E E mv mgy mv mgy mgr mv

v gr F mg m v r mg mg mg

= → + = + → + = + →

= → = + = + =
 

 (c) Again we use the free body diagram for the top of the loop, but now the normal force does not  
vanish.  We again use energy conservation, with 1 0,v =  1 3 ,y r=  and 2 0.y =   Solve for 2.v  

   
2 2

R N N top

2 2 21 1 1
1 2 1 1 2 2 top2 2 2

    

        0 3 0  

F F mg m v r F m v r mg

E E mv mgy mv mgy mgr mv

= + = → = −

= → + = + → + = + →

∑
 

   2 2
top N top6     6 5v gr F m v r mg mg mg mg= → = − = − =  

 (d) On the flat section, there is no centripetal force, and N .F mg=  
 
91. (a) Use conservation of energy for the swinging motion.  Subscript 1  

represents the student initially grabbing the rope, and subscript 2 
represents the student at the top of the swing.  The location where the 
student initially grabs the rope is the zero location for potential 
energy ( )0 .y =   We have 1 5.0 m s ,v =  1 0,y =  and 2 0.v =   Solve 

for 2.y  
2 21 1

1 2 1 1 2 22 2

2
2 11
1 2 22

      

    
2

E E mv mgy mv mgy

v
mv mgy y h

g

= → + = + →

= → = =
 

Calculate the angle from the relationship in the diagram. 
2
1cos 1 1   

2
h h v

g
θ −

= = − = − →
l

l l l
 

mgGNF
G

l 

y2 = h 

l - h 
θ 

mgG

NF
G
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( )
( ) ( )

22
1 11

2

5.0 m s
cos 1 cos 1 29

2 2 9.80 m s 10.0 m
v
g

θ − −= − = − = °
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠l

 

(b) At the release point, the speed is 0, and so there is no radial acceleration,  
since 2

R .a v r=  Thus the centripetal force must be 0.  Use the free-body 
diagram to write Newton’s second law for the radial direction. 

( ) ( )
R T

2 o
T

cos 0  

cos 56 kg 9.80 m s cos 29 480 N

F F mg

F mg

θ

θ

= − = →

= = =

∑
 

 (c) Write Newton’s second law for the radial direction for any angle, and solve for the tension. 
2 2

R T Tcos     cosF F mg m v r F mg m v rθ θ= − = → = +∑  
As the angle decreases, the tension increases, and as the speed increases, the tension increases.  
Both effects are greatest at the bottom of the swing, and so that is where the tension will be at 
its maximum. 

( ) ( ) ( ) ( )2
2 2

T 1
max

56 kg 5.0 m s
cos0 56 kg 9.80 m s 690 N

10.0 m
F mg m v r= + = + =  

 

92. (a) ( ) ( ) ( ) 0 0 00 0 0
0 0 02

0 0

1 1 1r r r r r rdU r r r r
F r U e U e U e

dr r r r r r r
− − −= − = − − − + − − = − +

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 

  

(b) ( ) ( )
0 0

0 0

30
0

20 0 0 2
0 0 9

0
0

0 0 0

1 1
3 3

3 0.03
1 1

r r

r r

r
U e

r r r
F r F r e

r
U e

r r r

−

−

−

− +
= = ≈

− +

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (c) ( ) ( ) ( ) ( ) ( ) ( )

( )

2

0 1
0 0 92 2

2
0

1
31

3 0.1
1

  ;  
C

dU r rC
F r C F r F r

dr r r C
r

−
= − = − − − = − = = ≈

−

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

The Yukawa potential is said to be “short range” because as the above examples illustrate, the 
Yukawa force “drops off” more quickly then the electrostatic force.  The Yukawa force drops by 
about 97% when the distance is tripled, while the electrostatic force only drops by about 89%. 

 
93. Energy conservation can be used to find the speed that the water must leave the ground.  We take the 

ground to be the 0 level for gravitational potential energy.  The speed at the top will be 0. 

( ) ( )2 21
ground top ground top ground top2        2 2 9.80 m s 33m 25.43m sE E mv mgy v gy= → = → = = =  

The area of the water stream times the velocity gives a volume flow rate of water.  If that is 
multiplied by the density, then we have a mass flow rate.  That is verified by dimensional analysis. 

[ ] [ ]2 3    m m s kg m kg sAvρ → =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

Another way to think about it is that Avρ is the mass that flows out of the hose per second.  It takes a 
minimum force of Av gρ  to lift that mass, and so the work done per second to lift that mass to a 
height of topy  is top.Av gyρ  That is the power required. 

θ 

mgG

TF
G

θ 
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( ) ( ) ( ) ( ) ( )22 3 3 2
top 1.5 10 m 25.43m s 1.00 10 kg m 9.80 m s 33m 5813W

   5800 W or 7.8hp

P Av gyρ π −= = × × =

≈
 

 
94. A free-body diagram for the sled is shown as it moves up the hill.  From 

this we get an expression for the friction force. 
  N N fr kcos 0    cos     cosyF F mg F mg F mgθ θ μ θ= − = → = → =∑  

(a) We apply conservation of energy with a frictional force as given in 
Eq. 8-15.  Subscript 1 refers to the sled at the start of its motion, and 
subscript 2 refers to the sled at the top of its motion.  Take the 
starting position of the sled to be the 0 for gravitational potential 
energy.  We have  1 2.4 m s ,v = 1 0,y =  and 2 0.v =   The relationship between the distance 

traveled along the incline and the height the sled rises is 2 sin .y d θ=   Solve for d. 

  
2 21 1

1 2 fr 1 1 2 2 fr2 2

21
1 k2

      

sin cos   

E E F mv mgy mv mgy F d

mv mgd mgdθ μ θ

= + → + = + + →

= + →

l
  

  
( )

( )
( ) ( )

22
1

2
k

2.4 m s
0.4258 m 0.43m

2 sin cos 2 9.80 m s sin 28 0.25cos 28
v

d
g θ μ θ

= = = ≈
+ ° + °

 

(b) For the sled to slide back down, the friction force will now point UP the hill in the free-body 
diagram.  In order for the sled to slide down, the component of gravity along the hill must be 
large than the maximum force of static friction. 

   fr s s ssin     sin cos     tan 28     0.53mg F mg mgθ θ μ θ μ μ> → > → < ° → <   

(c) We again apply conservation of energy including work done by friction.  Subscript 1 refers to 
the sled at the top of the incline, and subscript 2 refers to the sled at the bottom of the incline.  
We have 1 0,v = 1 sin ,y d θ= and 2 0.y =    

   
2 21 1

1 2 fr 1 1 2 2 fr2 2

21
2 k2

      

sin cos   

E E F mv mgy mv mgy F d

mgd mv mgdθ μ θ

= + → + = + + →

= + →

l
 

   
( ) ( ) ( ) ( )2

2 k2 sin cos 2 9.80 m s 0.4258 m sin 28 0.25cos 28

   1.4 m s

v gd θ μ θ= − = ° − °

=
 

 
95. We apply conservation of mechanical energy.  We take the surface of the Moon to be the 0 level for 

gravitational potential energy.  Subscript 1 refers to the location where the engine is shut off, and 
subscript 2 refers to the surface of the Moon.  Up is the positive y-direction. 

 (a) We have 1 0,v =  1 ,y h=  2 3.0 m s ,v =  and 2 0.y =   

   ( )
( )

2 2 21 1 1
1 2 1 1 2 2 22 2 2

22
2

2

          

3.0 m s
2.8 m

2 2 1.62 m s

E E mv mgy mv mgy mgh mv

v
h

g

= → + = + → = →

= = =
 

 (b) We have the same conditions except 1 2.0 m s.v = −  

   ( ) ( )
( )

2 2 2 21 1 1 1
1 2 1 1 2 2 1 22 2 2 2

2 22 2
2 1

2

          

3.0 m s 2.0 m s
1.5m

2 2 1.62 m s

E E mv mgy mv mgy mv mgh mv

v v
h

g

= → + = + → + = →

− −−
= = =

 

mgG

frF
G

NF
G

θ θ

y 
x 
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(c) We have the same conditions except 1 2.0 m s.v =  And since the speeds, not the velocities, are 

used in the energy conservation calculation, this is the same as part (b), and so 1.5m .h =  

   ( ) ( )
( )

2 2 2 21 1 1 1
1 2 1 1 2 2 1 22 2 2 2

2 22 2
2 1

2

          

3.0 m s 2.0 m s
1.5m

2 2 1.62 m s

E E mv mgy mv mgy mv mgh mv

v v
h

g

= → + = + → + = →

− −−
= = =

 

 
96. A free-body diagram for the car is shown.  We apply conservation of energy 

with a frictional force as given in Eq. 8-15.  Subscript 1 refers to the car at the 
start of its motion, and subscript 2 refers to the sled at the end of the motion.  
Take the ending position of the car to be the 0 for gravitational potential 
energy.  We have  1 95km h ,v =  2 0,y =  and 2 35km h.v =   The 
relationship between the distance traveled along the incline and the initial 
height of the car is 1 sin .y d θ=  

  

( ) ( )

( ) ( ) ( )( ) ( ) ( )

2 21 1
1 2 fr 1 1 2 2 fr2 2

2 2 2 21 1
fr 1 2 1 1 22 2

2
2 2 2 21

2

6

      

2 sin

1m s
     1500 kg 95km h 35km h 2 9.80 m s 3.0 10 m sin17

3.6 km h

     1.7 10 J

E E E mv mgy mv mgy E

E m v v mgy m v v gd θ

= + → + = + + →

= − + = − +

= − + × °

= ×

⎡ ⎤⎣ ⎦
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

 

 
97. The energy to be stored is the power multiplied by the time:  .E Pt=   The energy will be stored as 

the gravitational potential energy increase in the water:  ,E U mg y Vg yρ= Δ = Δ = Δ  where ρ  is the 
density of the water, and V  is the volume of the water. 

( ) ( )
( ) ( ) ( )

6
5 3

3 3 2

180 10 W 3600 s
    1.7 10 m

1.00 10 kg m 9.80 m s 380 m
Pt

Pt Vg y V
g y

ρ
ρ

×
= Δ → = = = ×

Δ ×
 

 
98. It is shown in problem 52 that the total mechanical energy for a satellite orbiting in a circular orbit of 

radius r is E1
2 .GmM

E
r

= −  That energy must be equal to the energy of the satellite at the surface of 

the Earth plus the energy required by fuel. 
(a) If launched from the equator, the satellite has both kinetic and potential energy initially.  The  

kinetic energy is from the speed of the equator of the Earth relative to the center of the Earth.  In 
problem 53 that speed is calculated to be 464 m/s. 

( ) ( ) ( ){

( ) ( )

2 E E1
surface fuel orbit 0 fuel2

E

2 11 2 2 241
fuel E 02

E

1
26 6 6

1
2      

1 1
6.67 10 N m kg 1465kg 5.98 10 kg

2

1 1
                    1465kg 46

6.38 10 m 2 6.38 10 m 1.375 10 m

GmM GmM
E E E mv E

R r

E GmM mv
R r

−

+ = → − + = − →

= − − = × ×

− −
× × + ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎫⎛ ⎞⎪
⎜ ⎟⎬⎜ ⎟⎪⎝ ⎠⎭

i

i ( )2

10

4 m s

5.38 10 J= ×

 

θ θ 

 

x 

mgG

NF
G

frF
G

y
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(b) If launched from the North Pole, the satellite has only potential energy initially.  There is no  
initial velocity from the rotation of the Earth. 

( ) ( ) ( ){

( )

E E
surface fuel orbit fuel

E

11 2 2 24
fuel E

E

6 6 6

1
2      

1 1
6.67 10 N m kg 1465kg 5.98 10 kg

2

1 1
                                            

6.38 10 m 2 6.38 10 m 1.375 10 m

GmM GmM
E E E E

R r

E GmM
R r

−

+ = → − + = − →

= − = × ×

−
× × + ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎫⎛ ⎞⎪
⎜ ⎟⎬⎜ ⎟⎪⎝ ⎠⎭

i

i

105.39 10 J= ×

 

 
99. (a) Use energy conservation and equate the energies at A and B.  The distance from the center of  

the Earth to location B is found by the Pythagorean theorem. 

( ) ( )2 2
B

2 2E E1 1
2 2

A B

13,900 km 8230 km 16,150 km

      A B A B

r

GM m GM m
E E mv mv

r r

= + =

= → + − = + − →
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( )
( ) ( )11 2 2 24

22
E

B A 7 6

2 6.67 10 N m kg 5.98 10 kg
1 1

2 8650 m s 1 1
1.615 10 m 8.23 10 m

   5220 m s

B Av v GM
r r

−× ×
= + − = +

−
× ×

=

⎧ ⎫
⎛ ⎞ ⎪ ⎪

⎨ ⎬⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎜ ⎟⎪ ⎪
⎝ ⎠⎩ ⎭

i i

 

 (b) Use energy conservation and equate the energies at A and C. 
   C 16,460 km 8230 km 24,690 kmr = + =  

   ( )
( ) ( )

2 2E E1 1
2 2

A B

11 2 2 24

22
E

B A 7 6

      

2 6.67 10 N m kg 5.98 10 kg
1 1

2 8650 m s 1 1
2.469 10 m 8.23 10 m

   3190 m s

A B A B

B A

GM m GM m
E E mv mv

r r

v v GM
r r

−

= → + − = + − →

× ×
= + − = +

−
× ×

=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎧ ⎫
⎛ ⎞ ⎪ ⎪

⎨ ⎬⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎜ ⎟⎪ ⎪
⎝ ⎠⎩ ⎭

i i
 

 
100. (a) The force is found from the potential function by Eq. 8-7. 

   

( )

( )

2

2
1  

r rr
r

r

r e edU d GMm d e
F e GMm GMm

dr dr r dr r r

GMm
e r

r

α αα
α

α

α

α

− −−
−

−

− −
= − = − − = =

= − +

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

 (b) Find the escape velocity by using conservation of energy to equate the energy at the surface of  
the Earth to the energy at infinity with a speed of 0. 

   
1

EE 2

E

21
esc esc2

E E

2
    0 0    RR

R

GMm GM
E E mv e v e

R R
αα −−

∞= → − = + → =  
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Notice that this escape velocity is smaller than the Newtonian escape velocity by a factor of 
1

E2 Re α− . 
 
101. (a) Assume that the energy of the candy bar is completely converted into a change of potential  

energy. 

( ) ( )
6candy

bar
candy 2
bar

1.1 10 J
    1500 m

76 kg 9.8m s

E
E U mg y y

mg
×

= Δ = Δ → Δ = = =  

 (b) If the person jumped to the ground, the same energy is all converted into kinetic energy. 

( )
( )

6candy
bar21

candy 2
bar

2 2 1.1 10 J
    170 m s

76 kg

E
E mv v

m

×
= → = = =   

 

102. (a) 61000 W 3600 s 1 J/s
1 kW h 1 kW h 3.6 10 J

1 kW 1 h 1 W
= = ×⎛ ⎞⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

i i  

 (b) ( ) ( ) ( ) ( ) 1kW 30d 24 h
580 W 1month 580 W 1month 417.6 kW h

1000 W 1month 1d
= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

i  

420 kW h≈ i  

 (c) 
6

9 93.6 10 J
417.6 kW h 417.6 kW h 1.503 10 J 1.5 10 J

1 kW h
×

= = × ≈ ×
⎛ ⎞
⎜ ⎟
⎝ ⎠

i i
i

 

 (d) ( ) $0.12
417.6 kW h $50.11 $50

1 kW h
= ≈⎛ ⎞

⎜ ⎟
⎝ ⎠

i
i

 

Kilowatt-hours is a measure of energy, not power, and so  no , the actual rate at which the energy is 
used does not figure into the bill.  They could use the energy at a constant rate, or at a widely varying 
rate, and as long as the total used is about 420 kilowatt-hours, the price would be about $50. 

 
103. The only forces acting on the bungee jumper are gravity and the elastic force from the bungee cord, 

so the jumper’s mechanical energy is conserved.  Subscript 1 represents the jumper at the bridge, and 
subscript 2 represents the jumper at the bottom of the jump.  Let the lowest point of the jumper’s 
motion be the zero location for gravitational potential energy ( )0 .y =   The zero location for elastic 
potential energy is the point at which the bungee cord begins to stretch.  See the diagram in the 
textbook.  We have 1 2 0,v v= =  1 ,y h=  2 0,y =  and the amount of stretch of the cord 2 15.x h= −   
Solve for h. 

( )

( )

22 2 2 21 1 1 1 1
1 2 1 1 1 2 2 22 2 2 2 2

2 2

2

        15   

30 2 225 0    59.4 225 0  

59.4 59.4 4 225
55m,4 m      60 m

2

E E mv mgy kx mv mgy kx mgh k h

mg
h h h h

k

h h

= → + + = + + → = − →

− + + = → − + = →

± −
= = → =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 The larger answer must be taken because h > 15 m.  And only 1 significant figure is justified. 
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104. See the free-body diagram for the patient on the treadmill.  We assume that there  
are no dissipative forces.  Since the patient has a constant velocity, the net force 
parallel to the plane must be 0.  Write Newton’s second law for forces parallel to 
the plane, and then calculate the power output of force P.F

G
 

( ) ( ) ( )

parallel P P

2

sin 0    sin

1m s
sin 75kg 9.8 m s 3.3km h sin12

3.6 km h

   140.1W 140 W

P

F F mg F mg

P F v mgv

θ θ

θ

= − = → =

= = = °

= ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

 

 This is 1.5 to 2 times the wattage of typical household light bulbs (60–100 W). 
 
105. (a) Assume that there are no non-conservative forces on the rock, and so its mechanical energy is  

conserved.  Subscript 1 represents the rock as it leaves the volcano, and subscript 2 represents 
the rock at  its highest point.  The location as the rock leaves the volcano is the zero location for 
PE ( )0y = .  We have 1 0,y =  2 500 m,y =  and 2 0.v =   Solve for 1.v  

( ) ( )

2 2 21 1 1
1 2 1 1 2 2 1 22 2 2

2
1 2

          

2 2 9.80 m s 320 m 79.20 m s 79 m s

E E mv mgy mv mgy mv mgy

v gy

= → + = + → = →

= = = ≈
 

(b) The power output is the energy transferred to the launched rocks per unit time.  The launching  
energy of a single rock is 21

12 ,mv  and so the energy of 1000 rocks is ( )21
121000 .mv   Divide this 

energy by the time it takes to launch 1000 rocks (1 minute) to find the power output needed to 
launch the rocks. 

( ) ( ) ( )2 21
2 1 7

1000 500 450 kg 79.20 m s
2.4 10 W

60 sec

mv
P

t
= = = ×  

 
106. Assume that there are no non-conservative forces doing work, so the mechanical energy of the 

jumper will be conserved.  Subscript 1 represents the jumper at the launch point of the jump, and 
subscript 2 represents the jumper at the highest point.  The starting height of the jump is the zero 
location for potential energy ( )0 .y =   We have 1 0,y =  2 1.1m,y =  and 2 6.5m s.v =   Solve for 1.v    

( ) ( )( )

2 21 1
1 2 1 1 2 22 2

22 2
1 2 2

      

2 6.5 m s 2 9.80 m s 1.1 m 8.0 m s

E E mv mgy mv mgy

v v gy

= → + = + →

= + = + =
 

 
107. (a) The work done by gravity as the elevator falls is the opposite of the change in gravitational  

potential energy. 
( ) ( ) ( ) ( )2

grav grav 1 2 1 2

5 5

920 kg 9.8 m s 24 m

       2.164 10 J 2.2 10 J

W U U U mg y y= −Δ = − = − =

= × ≈ ×
 

Gravity is the only force doing work on the elevator as it falls (ignoring friction), so this result 
is also the net work done on the elevator as it falls. 

 (b) The net work done on the elevator is equal to its change in kinetic energy.  The net work done  
just before striking the spring is the work done by gravity found above.  

( )
( ) ( ) ( )

1
G 2 1 1 2 22

2
2 1 2

    0  

2 2 9.80m s 24 m 21.69 m s 22 m s

W K K mg y y mv

v g y y

= − → − = − →

= − = = ≈
 

θ 
θ mgG

NF
G

PF
G
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 (c) Use conservation of energy.  Subscript 1 represents the elevator just before striking the spring,  
and subscript 2 represents the elevator at the bottom of its motion.  The level of the elevator just 
before striking the spring is the zero location for both gravitational potential energy and elastic 
potential energy.  We have 1 21.69m s,v =  1 0,y =  and 2 0.v =   We assume that 2 0.y <    

2 2 2 21 1 1 1
1 2 1 1 1 2 2 22 2 2 2

22 2
1

2 2 22
12 2

2 2 1 2

      

2 4
4

2 0    
2

E E mv mgy ky mv mgy ky

mvmg m g
mg m g mkvmg m k k ky y v y

k k k

= → + + = + + →

− ± + − ± +
+ − = → = =

 

We must choose the negative root so that 2y  is negative.  Thus 

( ) ( ) ( ) ( ) ( ) ( ) ( )22 22 2 5

2 5

920 kg 9.80 m s 920 kg 9.80 m s 920 kg 2.2 10 N m 21.69 m s

2.2 10 N m

   1.4 m

y
− − + ×

=
×

= −

 

 
108. (a) The plot is included here.  To find the  

crossing point, solve ( ) 0U r =  for r. 

   
( ) 0 2

2

2 1
0  

2 1
0    2

U r U
r r

r
r r

= − = →

− = → =

⎡ ⎤
⎢ ⎥⎣ ⎦  

To find the minimum value, set 

0
dU
dr

=  and solve for r. 

   0 3 2 3 2

4 1 4 1
0    0    4

dU
U r

dr r r r r
= − + = → − + = → =⎡ ⎤

⎢ ⎥⎣ ⎦
 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH08.XLS,” on tab “Problem 8.108a.” 

 

 (b) The graph is redrawn with the energy  
value included.  The approximate 
turning points are indicated by the 
small dots.  An analytic solution to 
the relationship ( ) 00.050U r U= −  
gives 2.3 , 17.7.r ≈   The maximum 
kinetic energy of the particle occurs 
at the minimum of the potential 
energy, and is found from 

.E K U= +  
     E K U= + →  

( ) ( )2 1 1
0 0 0 0 016 4 80.050 4     0.050 0.075U K U r K U K U U U− = + = = + − → = − =  

 
 

-0.2

0

0.2

0.4

0.6

0 4 8 12 16 20r

U
(r

)/U
0
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0

0.2

0.4
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U
(r

)/U
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109. A point of stable equilibrium will have 0
dU
dx

=  and 
2

2
0,

d U
dx

>  indicating a minimum in the potential 

equilibrium function. 

  ( ) 2
2

     0        
a dU a a

U x bx b x x a b
x dx x b

= + = − + = → = → = ±  

 But since the problem restricts us to 0x > , the point of must be .x a b=  

( )

2

3/ 22 3 3/ 2

2 2 2
0,

x a bx a b

d U a a
dx x aba b==

= = = >  and so the point x a b= gives a minimum in the 

potential energy function. 
 

110. (a) 
13 7 12 6

0
0 2

6
F

U Fdr C F dr C C
r r r r
σ σ σ σ σ

= − + = − − + = − +
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫  

 (b) The equilibrium distance occurs at the location where the force is 0. 

   ( )
13 7

1/ 6 1/ 6 11 11
0 0

0 0

2 0    2 2 3.50 10 m 3.93 10 mF F r
r r
σ σ σ − −= − = → = = × = ×

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 (c) In order to draw the graphs in terms of 0r , and to scale them to the given constants, the  
functions have been parameterized as follows. 

   

( )

( )

( )

13 713 7 13 7

0 0
0 0

0 0

13 13 7 7

0 0 0 0 0

1212 6

0 0

0

2 2   

2

6 6

r r
F r F F

r r r r r r

F r r r
F r r r r

F F r
U r

r r r r

σ σ σ σ

σ σ

σ σ σ σ σ

− −

= − = − →

= −

= − =

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

( )

12 6 6

0 0 0

12 12 6 612 6

0 0 0 0 0

    

1 1
 

6 6

r
r r

U r r r
F r r r r r r

σ

σ σ σ σ
σ

− −

− −

− →

= − = −

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦
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The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH08.XLS,” on tab “Problem 8.110c.” 
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CHAPTER 9:  Linear Momentum 
 
Responses to Questions 
 
1.  Momentum is conserved if the sum of the external forces acting on an object is zero. In the case of 

moving objects sliding to a stop, the sum of the external forces is not zero; friction is an unbalanced 
force. Momentum will not be conserved in that case. 

 
2.   With the spring stretched, the system of two blocks and spring has elastic potential energy. When the 

blocks are released, the spring pulls them back together, converting the potential energy into kinetic 
energy. The blocks will continue past the equilibrium position and compress the spring, eventually 
coming to rest as the kinetic energy changes back into potential energy. If no thermal energy is lost, 
the blocks will continue to oscillate. The center of mass of the system will stay stationary. Since 
momentum is conserved, and the blocks started at rest, 1 1 2 2m v m v= −  at all times, if we assume a 
massless spring. 

 
3.  The heavy object will have a greater momentum. If a light object m1 and a heavy object m2 have the 

same kinetic energy, then the light object must have a larger velocity than the heavy object. If 

2 21 1
1 1 2 22 2 ,m v m v=  where m1 < m2, then 2

1 2
1

.m
v v

m
=  The momentum of the light object is 

2 1
1 1 1 2 2 2

1 2

.m m
m v m v m v

m m
= =  Since the ratio 1

2

m
m

is less than 1, the momentum of the light object 

will be a fraction of the momentum of the heavy object. 
 
4.  The momentum of the person is changed (to zero) by the force of the ground acting on the person. 

This change in momentum is equal to the impulse on the person, or the average force times the time 
over which it acts.  

 
5. As the fish swishes its tail back and forth, it moves water backward, away from the fish.  If we 

consider the system to be the fish and the water, then, from conservation of momentum, the fish 
must move forward.  

 
6.  (d) The girl moves in the opposite direction at 2.0 m/s. Since there are no external forces on the pair, 

momentum is conserved. The initial momentum of the system (boy and girl) is zero. The final 
momentum of the girl must be the same in magnitude and opposite in direction to the final 
momentum of the boy, so that the net final momentum is also zero. 

 
7.  (d) The truck and the car will have the same change in the magnitude of momentum because 

momentum is conserved. (The sum of the changes in momentum must be zero.)  
 
8.  Yes. In a perfectly elastic collision, kinetic energy is conserved. In the Earth/ball system, the kinetic 

energy of the Earth after the collision is negligible, so the ball has the same kinetic energy leaving 
the floor as it had hitting the floor. The height from which the ball is released determines its potential 
energy, which is converted to kinetic energy as the ball falls. If it leaves the floor with this same 
amount of kinetic energy and a velocity upward, it will rise to the same height as it originally had as 
the kinetic energy is converted back into potential energy. 
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9.  In order to conserve momentum, when the boy dives off the back of the rowboat the boat will move 
forward.  

 
10.  He could have thrown the coins in the direction opposite the shore he was trying to reach. Since the 

lake is frictionless, momentum would be conserved and he would “recoil” from the throw with a 
momentum equal in magnitude and opposite in direction to the coins. Since his mass is greater than 
the mass of the coins, his speed would be less than the speed of the coins, but, since there is no 
friction, he would maintain this small speed until he hit the shore.  

 
11. When the tennis ball rebounds from a stationary racket, it reverses its component of velocity 

perpendicular to the racket with very little energy loss. If the ball is hit straight on, and the racket is 
actually moving forward, the ball can be returned with an energy (and a speed) equal to the energy it 
had when it was served. 

 
12.  Yes. Impulse is the product of the force and the time over which it acts. A small force acting over a 

longer time could impart a greater impulse than a large force acting over a shorter time.  
 
13. If the force is non-constant, and reverses itself over time, it can give a zero impulse. For example, 

the spring force would give a zero impulse over one period of oscillation. 
 
14.  The collision in which the two cars rebound would probably be more damaging. In the case of the 

cars rebounding, the change in momentum of each car is greater than in the case in which they stick 
together, because each car is not only brought to rest but also sent back in the direction from which it 
came. A greater impulse results from a greater force, and so most likely more damage would occur.  

 
15. (a) No. The ball has external forces acting on it at all points of its path. 

(b) If the system is the ball and the Earth, momentum is conserved for the entire path. The forces  
acting on the ball-Earth system are all internal to the system. 

(c) For a piece of putty falling and sticking to a steel plate, if the system is the putty and the Earth,  
momentum is conserved for the entire path. 

 
16.  The impulse imparted to a car during a collision is equal to the change in momentum from its initial 

speed times mass to zero, assuming the car is brought to rest. The impulse is also equal to the force 
exerted on the car times the time over which the force acts. For a given change in momentum, 
therefore, a longer time results in a smaller average force required to stop the car. The “crumple 
zone” extends the time it takes to bring the car to rest, thereby reducing the force.  

 
17. For maximum power, the turbine blades should be designed so that the water rebounds. The water 

has a greater change in momentum if it rebounds than if it just stops at the turbine blade. If the water 
has a greater change in momentum, then, by conservation of momentum, the turbine blades also 
have a greater change in momentum, and will therefore spin faster. 

 
18.  (a)  The direction of the change in momentum of the ball is perpendicular to the wall and away from  

it, or outward. 
(b) The direction of the force on the ball is the same as the direction of its change in momentum.  

Therefore, by Newton’s third law, the direction of the force on the wall will be perpendicular to 
the wall and towards it, or inward. 

 
19. When a ball is thrown into the air, it has only a vertical component of velocity. When the batter hits 

the ball, usually in or close to the horizontal direction, the ball acquires a component of velocity in 
the horizontal direction from the bat. If the ball is pitched, then when it is hit by the bat it reverses its 
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horizontal component of velocity (as it would if it bounced off of a stationary wall) and acquires an 
additional contribution to its horizontal component of velocity from the bat. Therefore, a pitched ball 
can be hit farther than one tossed into the air. 

 
20.  A perfectly inelastic collision between two objects that initially had momenta equal in magnitude but 

opposite in direction would result in all the kinetic energy being lost. For instance, imagine sliding 
two clay balls with equal masses and speeds toward each other across a frictionless surface. Since 
the initial momentum of the system is zero, the final momentum must be zero as well. The balls stick 
together, so the only way the final momentum can be zero is if they are brought to rest. In this case, 
all the kinetic energy would be lost. 

 
21. (b) Elastic collisions conserve both momentum and kinetic energy; inelastic collisions only conserve 

momentum. 
 
22.  Passengers may be told to sit in certain seats in order to balance the plane. If they move during the 

flight, they could change the position of the center of mass of the plane and affect its flight.  
 
23. You lean backward in order to keep your center of mass over your feet. If, due to the heavy load, 

your center of mass is in front of your feet, you will fall forward. 
 
24.   A piece of pipe is typically uniform, so that its center of mass is at its geometric center. Your arm 

and leg are not uniform. For instance, the thigh is bigger than the calf, so the center of mass of a leg 
will be higher than the midpoint.  

 
25.  
 
  
 
 
 
 
 
 
 
 
26.  Draw a line from each vertex to the midpoint of the opposite side. The center of mass will be the 

point at which these lines intersect.  
 
27. When you stand next to a door in the position described, your center of mass is over your heels.  If 

you try to stand on your toes, your center of mass will not be over your area of support, and you will 
fall over backward. 

 
28. If the car were on a frictionless surface, then the internal force of the engine could not accelerate the 

car. However, there is friction, which is an external force, between the car tires and the road, so the 
car can be accelerated.  

 
29. The center of mass of the system of pieces will continue to follow the original parabolic path. 
 
30.  Far out in space there are no external forces acting on the rocket, so momentum is conserved. 

Therefore, to change directions, the rocket needs to expel something (like gas exhaust) in one 
direction so that the rest of it will move in the opposite direction and conserve momentum.  

CM is within the body, 
approximately half-way 
between the head and feet. 

Lying down Sitting up 

CM is outside the 
body. 
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31. If there were only two particles involved in the decay, then by conservation of momentum, the 
momenta of the particles would have to be equal in magnitude and opposite in direction, so that the 
momenta would be required to lie along a line. If the momenta of the recoil nucleus and the electron 
do not lie along a line, then some other particle must be carrying off some of the momentum. 

 
32. Consider Bob, Jim, and the rope as a system. The center of mass of the system is closer to Bob, 

because he has more mass. Because there is no net external force on the system, the center of mass 
will stay stationary. As the two men pull hand-over-hand on the rope they will move toward each 
other, eventually colliding at the center of mass. Since the CM is on Bob’s side of the midline, Jim 
will cross the midline and lose.  

 
33. The ball that rebounds off the cylinder will give the cylinder a larger impulse and will be more likely 

to knock it over. 
 
 
Solutions to Problems 
 
1. The force on the gas can be found from its change in momentum.  The speed of 1300 kg of the gas 

changes from rest to 44.5 10 m s× , over the course of one second.  

( )( )4 74.5 10 m s 1300 kg s 5.9 10 N, opposite to the velocity
p m v m

F v
t t t

Δ Δ
= = = Δ = × = ×

Δ Δ Δ
 

The force on the rocket is the Newton’s third law pair (equal and opposite) to the force on the gas, 

and so is 75.9 10 N in the direction of the velocity .×  
 
2. For a constant force, Eq. 9-2 can be written as .tΔ = Δp F

GG   For a constant mass object, .mΔ = Δp vG G   
Equate the two expressions for .ΔpG  

    
t

t m
m
Δ

Δ = Δ → Δ =
F

F v v
G

G G G  

If the skier moves to the right, then the speed will decrease, because the friction force is to the left.   
( ) ( )25 N 15s

5.8m s
65kg

F t
v

m
Δ

Δ = − = − = −  

The skier loses 5.8 m s  of speed. 
 
3. The force is the derivative of the momentum with respect to time. 

  
( ) ( )

2ˆ4.8 8.0 8.9 ˆ9.6 8.9 N
d t td

t
dt dt

− −
= = = −

i j kp
F i k

G GGG G
 

 
4. The change in momentum is the integral of the force, since the force is the derivative of the 

momentum. 

  ( ) ( ) ( )
2

1

2.0s
2.0s2 3

1.0s
1.0s

ˆ ˆ ˆ    26 12 26 4 26 28 kg m s
t t

t

t
t t

d
dt t dt t t

dt

=
=

=
=

= → = = − = − = −∫ ∫
p

F p F i j i j i j
G G G GG GG i  

 
5. The change is momentum is due to the change in direction. 

  ( ) ( )( ) ( )0
ˆ ˆ ˆ ˆ0.145 kg 30.0 m s 30.0 m s 4.35 kg m sfmΔ = − = − = −p v v j i j iG G G i  

fvG

0vG
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6. The average force is the change in momentum divided by the elapsed time.  Call the direction from 
the batter to the pitcher the positive x direction, and call upwards the positive y direction.  The initial 
momentum is in the negative x direction, and the final momentum is in the positive y direction.  The 
final y-velocity can be found using the height to which the ball rises, with conservation of 
mechanical energy during the rising motion. 

  ( ) ( )2 21
initial final 2        2 2 9.80 m s 36.5m 26.75m sy yE E mv mgh v gh= → = → = = =  

  
( ) ( ) ( ) ( )

( ) ( )

avg 0 3

2 2 1
avg

ˆ ˆ26.75 m s 32.0 m s ˆ ˆ0.145 kg 1856 1552 N
2.5 10 s

1552 N
1856 N 1552 N 2400 N   ;  tan 39.9

1856 N

f

m
t t

F θ

−

−

− −Δ
= = − = = +

Δ Δ ×

= + = = = °

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

j ip
F v v i j

GG G G

 

 
7. To alter the course by 35.0 ,°  a velocity perpendicular to the original velocity must be added.  Call 

the direction of the added velocity, add ,vG  the positive direction.  From the diagram, we see that 

add orig tan .v v θ=   The momentum in the perpendicular direction will be 
conserved, considering that the gases are given perpendicular momentum in the 
opposite direction of add.vG   The gas is expelled oppositely to add ,vG  and so a 
negative value is used for  gas.v⊥  

( )

( )
( )( )

( ) ( )[ ]

gas  gas rocket gas add
before after

2rocket add
gas

add  gas

    0   

3180 kg 115 m s tan 35.0
1.40 10 kg

115 m s tan 35.0 1750 m s

p p m v m m v

m v
m

v v

⊥ ⊥ ⊥

⊥

= → = + − →

°
= = = ×

− ° − −

 

 

8. The air is moving with an initial speed of 
1m s

120 km h 33.33m s
3.6 km h

.=
⎛ ⎞
⎜ ⎟
⎝ ⎠

  Thus, in one second, a 

volume of air measuring 45 m x 65 m x 33.33 m will have been brought to rest.  By Newton’s third 
law, the average force on the building will be equal in magnitude to the force causing the change in 
momentum of the air.  The mass of the stopped air is its volume times its density. 

  
( ) ( ) ( ) ( ) ( )3

6
45m 65m 33.33m 1.3kg m 33.33m s 0

4.2 10 N
1s

p m v V v
F

t t t
ρ −Δ Δ Δ

= = = = = ×
Δ Δ Δ

 

 
9. Consider the motion in one dimension, with the positive direction being the direction of motion of 

the first car.  Let A represent the first car and B represent the second car.  Momentum will be 
conserved in the collision.  Note that B 0.v =  

( )
( ) ( ) ( )

initial final A A B B A B

4A A
B

      

7700 kg 18m s 5.0 m s
2.0 10 kg

5.0 m s

p p m v m v m m v

m v v
m

v

′= → + = + →

′− −
= = = ×

′
 

 
10. Consider the horizontal motion of the objects.  The momentum in the horizontal direction will be 

conserved.  Let A represent the car and B represent the load.  The positive direction is the direction 
of the original motion of the car. 

( )initial final A A B B A B      p p m v m v m m v′= → + = + →  

θ 
origvG

addvG

finalvG
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( ) ( )
( ) ( )

A A B B

A B

9150 kg 15.0 m s 0
10.2 m s

9150 kg 4350 kg
m v m v

v
m m

++′ = = =
+ +

 

 
11. Consider the motion in one dimension, with the positive direction being the direction of motion of 

the alpha particle.  Let A represent the alpha particle, with a mass of A ,m  and let B represent the 
daughter nucleus, with a mass of A57 .m   The total momentum must be 0 since the nucleus decayed 
at rest. 

( )
initial final A A B B

5
AA A

B B
B A

    0   

2.8 10 m s
4900 m s

57
    

p p m v m v

mm v
v v

m m

′ ′= → = + →

×′
′ ′= − = − =→

 

Note that the masses do not have to be converted to kg, since all masses are in the same units, and a 
ratio of masses is what is significant. 

 
12. The tackle will be analyzed as a one-dimensional momentum conserving situation.  Let A represent 

the halfback and B represent the tackler.  We take the direction of the halfback to be the positive 
direction, so A 0v >  and B 0.v <  

( )
( ) ( ) ( ) ( )

initial final A A B B A B

A A B B

A B

      

82 kg 5.0 m s 130 kg 2.5m s
0.401m s 0.4 m s

82 kg 130 kg

p p m v m v m m v

m v m v
v

m m

′= → + = + →

+ −+′ = = = ≈
+ +

 

 They will be moving it the direction that the halfback was running before the tackle. 
 
13. The throwing of the package is a momentum-conserving action, if the water resistance is ignored.  

Let A represent the boat and child together, and let B represent the package.  Choose the direction 
that the package is thrown as the positive direction.  Apply conservation of momentum, with the 
initial velocity of both objects being 0. 

( )
( ) ( )
( )

initial final A B A A B B

B B
A

A

      

5.70 kg 10.0 m s
0.966 m s

24.0 kg 35.0 kg

p p m m v m v m v

m v
v

m

′ ′= → + = + →

′
′ = − = − = −

+

 

The boat and child move in the opposite direction as the thrown package, as indicated by the 
negative velocity. 

 
14. Consider the motion in one dimension, with the positive direction being the direction of motion of 

the original nucleus.  Let A represent the alpha particle, with a mass of 4 u, and let B represent the 
new nucleus, with a mass of 218 u.  Momentum conservation gives the following. 

( )
( ) ( ) ( ) ( ) ( )

initial final A B A A B B

A B B B
A

A

      

222 u 420 m s 218 u 350 m s
4200 m s

4.0 u

p p m m v m v m v

m m v m v
v

m

′ ′= → + = + →

′+ − −′ = = =
 

Note that the masses do not have to be converted to kg, since all masses are in the same units, and a 
ratio of masses is what is significant. 

 
15. Momentum will be conserved in one dimension in the explosion.  Let A represent the fragment with  

the larger kinetic energy. 
A A

initial final A A B B B
B

    0     
m v

p p m v m v v
m

′
′ ′ ′= → = + → = −  
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( )
2

2 2 A A A1 1
A B A A B B B2 2

B B

1
2     2     

2
m v m

K K m v m v m
m m

′
′ ′= → = = − → =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The fragment with the larger kinetic energy has half the mass of the other fragment. 
 
16. Consider the motion in one dimension with the positive direction being the direction of motion of the 

bullet.  Let A represent the bullet and B represent the block.  Since there is no net force outside of the 
block-bullet system (like friction with the table), the momentum of the block and bullet combination 
is conserved.  Note that 0.Bv =  

( ) ( ) ( )
initial final A A B B A A B B

A A A
B

B

      

0.022 kg 210 m s 150 m s
0.66 m s

2.0 kg

p p m v m v m v m v

m v v
v

m

′ ′= → + = + →
′− −′ = = =

 

 
17. Momentum will be conserved in two dimensions.  The fuel was ejected in the y direction as seen by 

an observer at rest, and so the fuel had no x-component of velocity in that reference frame. 
( ) 2

rocket 0 rocket fuel fuel rocket3
3

02:    0     x x x xp m v m m v m m v v v′ ′= − + = → ′ =  

( ) ( )1 2
fuel fuel rocket fuel rocket 0 rocket3 3 0:    0 2     y y y yp m v m m v m v m v v v′ ′= + − = + → ′ = −  

 Thus 3
0 02
ˆ ˆ .v v′ = −v i jG  

 
18. Since the neutron is initially at rest, the total momentum of the three particles after the decay must 

also be zero.  Thus proton electron neutrino0 .= + +p p pG G G   Solve for any one of the three in terms of the other 

two:  ( )proton electron neutrino .= − +p p pG G G   Any two vectors are always coplanar, since they can be translated 
so that they share initial points.  So in this case the common initial point and their two terminal 
points of the electron and neutrino momenta define a plane, which contains their sum.  Then, since 
the proton momentum is just the opposite of the sum of the other two momenta, it is in the same 
plane. 

 
19. Since no outside force acts on the two masses, their total momentum is conserved. 

  

( ) ( ) ( )

( )

( )

1 1 1 1 2 2

1
2 1 1

2

  

2.0 kg ˆ ˆ ˆˆ ˆ4.0 5.0 2.0 m s 2.0 3.0 m s
3.0 kg

2.0 kg ˆ ˆ ˆ6.0 5.0 5.0 m s
3.0 kg

ˆ ˆ ˆ    4.0 3.3 3.3 m s

   

m m m

m
m

′ ′= + →

′ ′= − = + − − − +

= + −

= + −

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

v v v

v v v i j k i k

i j k

i j k

G G G

G G G

 

 
20. (a) Consider the motion in one dimension with the positive direction being the direction of motion  

before the separation.  Let A represent the upper stage (that moves away faster) and B represent 
the lower stage.  It is given that A B,m m=  A B ,v v v= =  and B A rel .v v v′ ′= −   Momentum 
conservation gives the following. 

( ) ( )
( )

( )
( ) ( ) ( ) ( )

( )

initial final A B A A B B A A B A rel

3 31
2A B B rel

A
A B

      

925kg 6.60 10 m s 925kg 2.80 10 m s

925kg

p p m m v m v m v m v m v v

m m v m v
v

m m

′ ′ ′ ′= → + = + = + − →

× + ×+ +′ = =
+
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3

3 3 3
B A rel

    8.00 10 m s  , away from Earth

8.00 10 m s 2.80 10 m s 5.20 10 m s, away from Earthv v v

= ×

′ ′= − = × − × = ×
 

(b) The change in kinetic energy was supplied by the explosion. 

  

( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 21 1 1
final initial A A B B A B2 2 2

2 2 23 3 31 1
2 2

8 8

      462.5kg 8.00 10 m s 5.20 10 m s 925 kg 6.60 10 m s

      9.065 10 J 9 10 J

K K K m v m v m m v′ ′Δ = − = + − +

= × + × − ×

= × ≈ ×

⎡ ⎤
⎣ ⎦  

 
21. (a) For the initial projectile motion, the horizontal velocity is constant.  The velocity at the highest  

point, immediately before the explosion, is exactly that horizontal velocity, 0 cos .xv v θ=   The 
explosion is an internal force, and so the momentum is conserved during the explosion.  Let 3vG  
represent the velocity of the third fragment. 

   

( )
( ) ( )

( ) ( )

1 1 1
before after 0 0 0 33 3 3

3 0 0

ˆ ˆ ˆ    cos cos cos   

ˆ ˆ ˆ ˆ2 cos cos 2 116 m s cos60.0 116 m s cos60.0

ˆ ˆ   116 m s 58.0 m s

mv mv mv m

v v

θ θ θ

θ θ

= → = + − + →

= + = ° + °

= +

p p i i j v

v i j i j

i j

G G G

G  

  This is 130 ms at an angle of 26.6° above the horizontal. 
(b) The energy released in the explosion is after before.K K−   Note that ( ) ( )2 22

3 0 02 cos cosv v vθ θ= +  
2 2
05 cos .v θ=  

   

( ) ( ) ( ) ( ) ( ) ( )

( ){ }
( ) ( )

2 2 221 1 1 1 1 1 1
after before 0 0 3 02 3 2 3 2 3 2

2 2 2 2 2 2 2 21 1 1 1
0 0 0 02 3 3 3

22 2 2 51 4 2
02 3 3

cos cos cos

                    cos cos 5 cos cos

                    cos 224 kg 116 m s cos 60.0 5.02 10

K K m v m v m v m v

m v v v v

mv

θ θ θ

θ θ θ θ

θ

− = + + −

= + + −

= = ° = ×

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

J

 

 
22. Choose the direction from the batter to the pitcher to be the positive direction. Calculate the average 

force from the change in momentum of the ball. 

  
( ) ( )

avg

avg 3

  

56.0 m s 35.0 m s
0.145 kg 2640 N, towards the pitcher

5.00 10 s

p F t m v

v
F m

t −

Δ = Δ = Δ →

− −Δ
= = =

Δ ×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
23. (a) The impulse is the change in momentum.  The direction of travel of the struck ball is the  

positive direction. 
   ( )( )24.5 10 kg 45m s 0 2.0 kg m sp m v −Δ = Δ = × − = i , in the forward direction 

 (b) The average force is the impulse divided by the interaction time. 

   3

2.0 kg m s
580 N

3.5 10 s
p

F
t −

Δ
= = =

Δ ×
i

, in the forward direction 

 
24. (a) The impulse given to the nail is the opposite of the impulse given to the hammer.  This is the  

change in momentum.  Call the direction of the initial velocity of the hammer the positive 
direction.  

( ) ( ) 2
nail hammer 12 kg 8.5 m s 0 1.0 10 kg m si fp p mv mvΔ = −Δ = − = − = × i  
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 (b)  The average force is the impulse divided by the time of contact. 
2

4
avg 3

1.0 10 kg m s
1.3 10 N

8.0 10 s
p

F
t −

Δ ×
= = = ×

Δ ×
i  

 
25. The impulse given the ball is the change in the ball’s momentum.  From the symmetry of the 

problem, the vertical momentum of the ball does not change, and so there is no vertical impulse.  
Call the direction AWAY from the wall the positive direction for momentum perpendicular to the 
wall. 

  
( )

( ) ( )

o o o

final initial

2 o

sin 45 sin 45 2 sin 45

      2 6.0 10 km 25m s sin 45 2.1kg m s, to the left

p mv mv m v v mv⊥ ⊥ ⊥

−

Δ = − = − − =

= × = i
 

 
26. (a) The momentum of the astronaut–space capsule combination will be conserved since the only  

forces are “internal” to that system.  Let A represent the astronaut and B represent the space 
capsule, and let the direction the astronaut moves be the positive direction. Due to the choice of 
reference frame, A B 0.v v= =   We also have A 2.50 m s.v′ =  

   ( )
initial final A A B A A B B

A
B A

B

    0   

130 kg
2.50 m s 0.1912 m s 0.19 m s

1700 kg

Bp p m v m v m v m v

m
v v

m

′ ′= → + = = + →

′ ′= − = − = − ≈ −
 

The negative sign indicates that the space capsule is moving in the opposite direction to the 
astronaut. 

 (b) The average force on the astronaut is the astronaut’s change in momentum, divided by the time  
of interaction. 

   ( ) ( )( ) 2A A
avg

130 kg 2.50 m s 0
6.5 10 N

0.500 s
m v vp

F
t t

′ − −Δ
= = = = ×

Δ Δ
 

 (c) ( )( )2 21
astronaut 2 130 kg 2.50 m s 4.0 10 JK = = ×  

  ( )( )21
capsule 2 1700 kg 0.1912 m s 31JK = − =  

 
27. If the rain does not rebound, then the final speed of the rain is 0.  By Newton’s third law, the force on 

the pan due to the rain is equal in magnitude to the force on the rain due to the pan.  The force on the 
rain can be found from the change in momentum of the rain.  The mass striking the pan is calculated 
as volume times density. 

  

( ) ( )
( ) ( ) ( ) ( )

0
avg 0 0 0 0

2
3 3 2

5.0 10 m
     1.00 10 kg m 1.0 m 8.0 m s 0.11N

3600s
1h

1h

f
f

mv mvp m V Ah h
F v v v v Av

t t t t t t
ρ ρ ρ

−

−Δ
= = = − − = = =

Δ Δ Δ Δ Δ Δ
×

= × =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
28. (a) The impulse given the ball is the area under the F vs. t graph.  Approximate the area as a  

triangle of “height” 250 N, and “width” 0.04 sec.  A width slightly smaller than the base was 
chosen to compensate for the “inward” concavity of the force graph. 

   ( )( )1
2 250 N 0.04 s 5 N spΔ = = i  
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 (b) The velocity can be found from the change in momentum.  Call the positive direction the  
direction of the ball’s travel after being served. 

   ( )i -2

5 N s
    0 80 m s

6.0 10 kgf f i

p
p m v m v v v v

m
Δ

Δ = Δ = − → = + = + =
×
i

 

 
29. Impuse is the change of momentum, Eq. 9-6.  This is a one-dimensional configuration. 
  ( ) ( ) ( )final 0 0.50 kg 3.0 m s 1.5 kg m sJ p m v v= Δ = − = = i  

 
30. (a) See the adjacent graph.  The  

spreadsheet used for this problem 
can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH09.XLS,” on tab 
“Problem 9.30a.” 

 (b) The area is trapezoidal.  We  
estimate values rather than 
calculate them. 

  
( ) ( )1

2 750 N 50 N 0.0030s

1.2N s  

J ≈ +

= i
 

 (c) ( ) ( )
0.0030

0.0030 s5 5 2

0
0

740 2.3 10 740 1.15 10J Fdt t dt t t= = − × = − ×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫  

( ) ( ) ( ) ( )25740 N 0.0030s 1.15 10 N s 0.0030s 1.185 N s 1.2 N s  = − × = ≈i i  

 (d) The impulse found above is the change in the bullet’s momentum 

   31.185N s
    4.558 10 kg 4.6 g

260 m s
J

J m m
v

p v −= = → = = = × ≈
Δ

Δ Δ i  

 (e) The momentum of the bullet–gun combination is conserved during the firing of the bullet.  Use  
this to find the recoil speed of the gun, calling the direction of the bullet’s motion the positive 
direction.  The momentum before firing is 0. 

   ( ) ( )
initial final bullet bullet gun gun

3

bullet bullet
gun

gun

    0   

4.558 10 kg 260 m s
0.26 m s

4.5 kg

p p m v m v

m v
v

m

−

= → = − →

×
= = =

 

 
31. (a) Since the velocity changes direction, the momentum changes.  Take the final velocity to be in  

the positive direction.  Then the initial velocity is in the negative direction.  The average force is 
the change in momentum divided by the time. 

   ( )
avg 2

mv mvp mv
F

t t t
− −Δ

= = =
Δ Δ Δ

 

(b) Now, instead of the actual time of interaction, use the time between collisions in order to get the 
average force over a long time. 

    ( )
avg 2

mv mvp mv
F

t t t
− −Δ

= = =  

 
 
 

0

200

400

600

800

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035
t  (s)

F
 (N

)
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32. (a) The impulse is the change in momentum.  Take upwards to be the positive direction.  The  
velocity just before reaching the ground is found from conservation of mechanical energy. 

   
( ) ( )

( ) ( ) ( )

2 21
initial final 2

2
0

        2 2 9.80 m s 3.0 m 7.668 m s

65kg 7.668 m s 498 kg m s 5.0 10 kg m s, upwards

y y

f

E E mgh mv v gh

m

= → = → = − = − =

= Δ = − = − = ≈ ×J p v v
G G G G i i

 

 (b) The net force on the person is the sum of the upward force from the ground, plus the downward  
force of gravity. 

  ( ) ( ) ( ) ( ) ( )
( )

net ground

2 2 2
0 2

ground

5

  

0 7.668m s
65kg 9.80 m s

2 2 0.010 m

        1.9 10 m s, upwards

f

F F mg ma

v v
F m g a m g

x

= − = →

− − −
= + = + = +

Δ −

= ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 This is about 300 times the jumper’s weight. 
(c) We do this the same as part (b). 

  

( ) ( ) ( ) ( )
( )

2 2 2
0 2

ground

3

0 7.668 m s
65kg 9.80 m s

2 2 0.50 m

        4.5 10 m s, upwards

fv v
F m g

x

− − −
= + = +

Δ −

= ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠  

This is about 7 times the jumper’s weight. 
  
33. Take the upwards direction as positive. 

(a) The scale reading as a function of time will be due to two components – the weight of the 
(stationary) water already in the pan, and the force needed to stop the falling water.  The weight 
of the water in the pan is just the rate of mass being added to the pan, times the acceleration due 
to gravity, times the elapsed time. 

   ( ) ( ) ( ) ( ) ( ) ( )2
water
in pan

0.14 kg s 9.80 m s 1.372 N 1.4 N
m

W g t t t t
t

Δ
= = = ≈

Δ
 

The force needed to stop the falling water is the momentum change per unit time of the water 

striking the pan, to stop
moving
water

.p
F

t
Δ

=
Δ

 The speed of the falling water when it reaches the pan can be 

found from energy conservation.  We assume the water leaves the faucet with a speed of 0, and 
that there is no appreciable friction during the fall. 
 21

water water at2
at faucet at pan pan

        2E E mgh mv v gh= → = → = −  

 The negative sign is because the water is moving downwards. 

   ( ) ( ) ( )( )falling 2
to stop
moving
water

0.14 kg s 0 2 9.80 m s 2.5m 0.98 N
mp

F v
t t

Δ
= = Δ = − − =

Δ Δ
 

This force is constant, as the water constantly is hitting the pan.  And we assume the water level 
is not riding.  So the scale reading is the sum of these two terms. 

   ( )scale to stop water
moving in pan
water

0.98 1.4 NF F W t= + = +  

 (b) After 9.0 s, the reading is ( )( )scale 0.98 1.372 0.9s N 13.3N .F = + =  
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 (c) In this case, the level of the water rises over time.  The height of the water in the cylinder is the  
volume of water divided by the area of the cylinder. 

( )[ ]

( )

3

3water
in tube

in 4 2
tube tube

1m
0.14 kg

1.0 10 kg
0.070 m

20 10 m

tV
h t

A −

×
= = =

×

⎛ ⎞
⎜ ⎟
⎝ ⎠  

The height that the water falls is now ( )2.5 0.070 m.h t′ = −  Following the same analysis as 
above, the speed of the water when it strikes the surface of the already-fallen water is now 

2 ,v gh′ ′= −  and so the force to stop the falling water is given by the following. 

( ) ( ) ( )( ) ( )2
to stop
moving
water

0.14 kg s 0 2 9.80 m s 2.5 .070 m 0.6198 2.5 .070 NF t t= − − − = −  

  The scale reading is again the sum of two terms. 

   

( )( )

( )( )

scale to stop water
moving in cylinder
water

0.6198 2.5 .070 1.372 N

       0.62 2.5 .070 1.4 N

F F W t t

t t

= + = − +

≈ − +

 

  At t = 9.0 s, the scale reading is as follows. 
( )( ) ( )( )scale 0.6198 2.5 .070 9.0 1.372 9.0 N 13.196 N 13.2 NF == − + = ≈  

 
34. Let A represent the 0.060-kg tennis ball, and let B represent the 0.090-kg ball.  The initial direction 

of the balls is the positive direction.  We have A 4.50 m sv =  and B 3.00 m s.v =   Use Eq. 9-8 to 
obtain a relationship between the velocities. 

  ( )A B A B B A    1.50 m sv v v v v v′ ′ ′ ′− = − − → = +  
 Substitute this relationship into the momentum conservation equation for the collision. 

  

( )
( ) ( ) ( ) ( ) ( )

A A B B A A B B A A B B A A B A

A A B B
A

A B

B A

    1.50 m s   

1.50 m s 0.060 kg 4.50 m s 0.090 kg 3.00 m s 1.50 m s
0.150 kg

   2.7 m s

1.50 m s 4.2 m s

m v m v m v m v m v m v m v m v

m v m v
v

m m

v v

′ ′ ′ ′+ = + → + = + + →

+ − + −′ = =
+

=

′ ′= + =

 

 Both balls move in the direction of the tennis ball’s initial motion. 
 
35. Let A represent the 0.450-kg puck, and let B represent the 0.900-kg puck.  The initial direction of 

puck A is the positive direction.  We have A 4.80 m sv =  and B 0.v =   Use Eq. 9-8 to obtain a 
relationship between the velocities. 

  ( )A B A B B A A    v v v v v v v′ ′ ′ ′− = − − → = +  
 Substitute this relationship into the momentum conservation equation for the collision. 

  

( )
( )
( ) ( ) ( )

( )

A A B B A A B B A A A A B A A

A B
A A

A B

B A A

      

0.450 kg
4.80 m s 1.60 m s 1.60 m s west

1.350 kg

4.80 m s 1.60 m s 3.20 m s east

m v m v m v m v m v m v m v v

m m
v v

m m

v v v

′ ′ ′ ′+ = + → = + + →

− −′ = = = − =
+

′ ′= + = − =
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36. (a) Momentum will be conserved in one dimension.  Call the direction of the first ball the  
positive direction.  Let A represent the first ball, and B represent the second ball.  We have 

B 0v =  and 1
B A2 .v v′ =   Use Eq. 9-8 to obtain a relationship between the velocities. 

   ( ) 1
A B A B A A2    v v v v v v′ ′ ′− = − − → = −  

Substitute this relationship into the momentum conservation equation for the collision. 
   1 1

initial final A A B B A A B B A A A A B A2 2          p p m v m v m v m v m v m v m v′ ′= → + = + → = − + →  

( )B A3 3 0.280 kg 0.840 kgm m= = =  

(b) The fraction of the kinetic energy given to the second ball is as follows.  
( )22 11

2A A2B B B
2 21

2A A A A A

3
0.75

m vK m v
K m v m v

′ ′
= = =  

 
37. Let A represent the moving ball, and let B represent the ball initially at rest.  The initial direction of 

the ball is the positive direction.  We have A 7.5m s,v =  B 0,v =  and A 3.8 m s.v′ = −    
(a) Use Eq. 9-8 to obtain a relationship between the velocities. 

   ( )A B A B B A B A    7.5m s 0 3.8m s 3.7 m sv v v v v v v v′ ′ ′ ′− = − − → = − + = − − =  

 (b) Use momentum conservation to solve for the mass of the target ball. 

   ( )
( ) ( ) ( )

A A B B A A B B

A A
B A

B B

  

7.5 m s 3.8m s
0.220 kg 0.67 kg

3.7 m s

m v m v m v m v

v v
m m

v v

′ ′+ = + →
′− − −

= = =
′ −

 

 
38. Use the relationships developed in Example 9-8 for this scenario. 

  
( )

( )

A B
A A

A B

A AA A
B A A A

A A A A

  

0.350 1.350
2.08

0.350 0.650

m m
v v

m m

v vv v
m m m m m

v v v v

−′ = →
+

′ − −−
= = = =

′ + − +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
39. The one-dimensional stationary target elastic collision is analyzed in Example 9-8.  The fraction of 

kinetic energy lost is found as follows. 

( )

2

A
B A2A A B 1 A Binital final final 2 B B A B

22 21
2A A A A A A A B

inital inital

2

4

m
m vK K K m mm v m m

K K m v m v m m

− +′
= = = =

+

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦  

 (a) 
( )

( ) ( )
( )

A B
2 2

A B

4 1.01 1.014
1.00

1.01 1.01
m m

m m
= =

+ +
 

All the initial kinetic energy is lost by the neutron, as expected for the target mass equal to the 
incoming mass. 

 (b)  
( )

( ) ( )
( )

A B
2 2

A B

4 1.01 2.014
0.890

1.01 2.01
m m

m m
= =

+ +
 

 (c) 
( )

( ) ( )
( )

A B
2 2

A B

4 1.01 12.004
0.286

1.01 12.00
m m

m m
= =

+ +
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 (d) 
( )

( ) ( )
( )

A B
2 2

A B

4 1.01 2084
0.0192

1.01 208
m m

m m
= =

+ +
 

Since the target is quite heavy, almost no kinetic energy is lost.  The incoming particle “bounces 
off” the heavy target, much as a rubber ball bounces off a wall with approximately no loss in 
speed. 

 
40. Both momentum and kinetic energy are conserved in this one-dimensional collision.  We start with 

Eq. 9-3 (for a one-dimensional setting) and Eq. 9-8. 
  ( )A A B B A A B B A B A B B A B A  ;      m v m v m v m v v v v v v v v v′ ′ ′ ′ ′ ′+ = + − = − − → = − +  

Insert the last result above back into the momentum conservation equation. 
( ) ( ) ( )

( ) ( ) ( ) ( )
A A B B A A B A B A A B A B A B

A A B B B A B A B A A B A B B A B A

A B B
A A B

A B A B

  

   2   

2

m v m v m v m v v v m m v m v v

m v m v m v v m m v m m v m v m m v

m m m
v v v

m m m m

′ ′ ′+ = + − + = + + − →

′ ′+ − − = + → − + = + →

−′ = +
+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Do a similar derivation by solving Eq. 9-8 for A ,v′  which gives A B A B.v v v v′ ′= − +  

  

( ) ( ) ( )
( ) ( ) ( ) ( )

A A B B A B A B B B A A B A B B

A A B B A A B A B B A A B A B A B B

A B A
B A B

A B A B

  

   2   

2

m v m v m v v v m v m v v m m v

m v m v m v v m m v m v m m v m m v

m m m
v v v

m m m m

′ ′ ′+ = − + + = − + + + →

′ ′+ − − + = + → + − = + →

−′ = +
+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
41. (a) At the maximum compression of the spring, the blocks will not be moving relative to each  

other, and so they both have the same forward speed.  All of the interaction between the blocks 
is internal to the mass-spring system, and so momentum conservation can be used to find that 
common speed.  Mechanical energy is also conserved, and so with that common speed, we can 
find the energy stored in the spring and then the compression of the spring.  Let A represent the 
3.0 kg block, let B represent the 4.5 kg block, and let x represent the amount of compression of 
the spring. 

   

( )

( )

( )

( ) ( )
( ) ( )

A
initial final A A A B A

A B

2 2 21 1 1
initial final A A A B2 2 2

2 2 2A B
A A A B A

A B

2

        

      

1 1

3.0 kg 4.5kg1
8.0 m s 0.37 m

850 N m 7.5kg
 

m
p p m v m m v v v

m m

E E m v m m v kx

m m
x m v m m v v

k k m m

′ ′= → = + → =
+

′= → = + + →

′= − + =
+

= =

⎡ ⎤⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

 (b) This is a stationary target elastic collision in one dimension, and so the results of Example 9-8  
may be used. 

   

( )

( )

A B
A A

A B

A
B A

A B

1.5kg
8.0 m s 1.6 m s

7.5kg

2 6.0 kg
8.0 m s 6.4 m s

7.5kg

m m
v v

m m

m
v v

m m

− −′ = = = −
+

′ = = =
+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
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 (c) Yes, the collision is elastic.  All forces involved in the collision are conservative forces. 
 

42. From the analysis in Example 9-11, the initial projectile speed is given by 2 .m M
v gh

m
+

=   

Compare the two speeds with the same masses. 

2
22 2

2 1
1 11

1

2 5.2
2     2

2.62

m M
gh hv hm v v

m Mv hhgh
m

+

= = = = = → =
+

 

 
43. (a) In Example 9-11, 21

2iK mv=  and ( ) 21
2 .fK m M v′= +   The speeds are related by  

m
v v

m M
′ =

+
. 

( ) ( )
2

2
2 21 1

2 2
2 21

2

2 2
2

2
       1

f i

i i

m
m M v mvK K m M v mvK m M

K K mv mv

m v
mv m Mm M

mv m M m M

+ −′− + −Δ += = =

− −+= = − =
+ +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) For the given values, 380 g
0.96

396 g
M

m M
− −

= = −
+

.  Thus 96% of the energy is lost. 

 
44. From the analysis in the Example 9-11, we know that  

  2   
m M

v gh
m
+

= →  

  ( )
( ) ( ) 22

2

1

0.028 kg 210 m s1 1
2 2 9.80 m s 0.028 kg 3.6kg

0.134 m 1.3 10 m  

mv
h

g m M

−

= =
+ +

= ≈ ×

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠  

 From the diagram we see the following.  

  
( )

( ) ( ) ( )

22 2

2 2 22 2.8m 2.8m 0.134 m 0.86 m

h x

x h

= − +

= − − = − − =

l l

l l
 

 
45. Use conservation of momentum in one dimension, since the particles will separate and travel in 

opposite directions.  Call the direction of the heavier particle’s motion the positive direction.  Let A 
represent the heavier particle, and B represent the lighter particle. We have A B1.5 ,m m=  and  

A B 0.v v= =  

B B 2
initial final A A B B A B3

A

    0     
m v

p p m v m v v v
m

′
′ ′ ′ ′= → = + → = − = −  

The negative sign indicates direction.  Since there was no mechanical energy before the explosion, 
the kinetic energy of the particles after the explosion must equal the energy added. 

l  

x 

l - h 
θ 

h 
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( ) ( ) ( )
( )

22 2 2 25 51 1 1 2 1 1
added 2 2 2 3 2 3 2 3

3 3
added added5 5

1.5

7500J 4500J       7500J 4500J 3000J
A B A A B B B B B B B B B

B A B

E K K m v m v m v m v m v K

K E K E K

′ ′ ′ ′ ′ ′ ′ ′= + = + = + = =

′ ′ ′= = = = − = − =
 

Thus 3 33.0 10 J   4.5 10 J .A BK K′ ′= × = ×  

 
46. Use conservation of momentum in one dimension.  Call the direction of the sports car’s velocity the 

positive x direction.  Let A represent the sports car, and B represent the SUV.  We have 0Bv =  and 

A B.v v′ ′=   Solve for A.v  

  ( ) A B
initial final A A A B A A A

A

    0     
m m

p p m v m m v v v
m
+′ ′= → + = + → =  

The kinetic energy that the cars have immediately after the collision is lost due to negative work 
done by friction.  The work done by friction can also be calculated using the definition of work.  We 
assume the cars are on a level surface, so that the normal force is equal to the weight.  The distance 
the cars slide forward is .xΔ   Equate the two expressions for the work done by friction, solve for A,v′  
and use that to find A.v  

 

( ) ( )

( )
( ) ( )

21
afterfr final initial A B A2
collision

o
fr fr A B

21
A B A A B A2

0

cos180

    2

k

k k

W K K m m v

W F x m m g x

m m v m m g x v g x

μ

μ μ

′= − = − +

= Δ = − + Δ

′ ′− + = − + Δ → = Δ

 

( ) ( ) ( )2A B A B
A A

A A

920 kg 2300 kg
2 2 0.80 9.8 m s 2.8 m

920 kg

    23.191m s 23m s

k

m m m m
v v g x

m m
μ+ + +′= = Δ =

= ≈
 

 
47. The impulse on the ball is its change in momentum.  Call upwards the positive direction, so that the 

final velocity is positive, and the initial velocity is negative.  The speeds immediately before and 
immediately after the collision can be found from conservation of energy.  Take the floor to be the 
zero level for gravitational potential energy. 

  ( ) ( ) ( )
( ) ( ) ( )

21
bottom top down down down down2

21
bottom top up up up up2

up down up down up down

2

Falling:          2

Rising:          2

2 2 2

  0.012 kg 2 9.80 m s 0.75m 1.5m 0.11kg

K U mv mgh v gh

K U mv mgh v gh

J p m v m v v m gh gh m g h h

= → = → = −

= → = → =

= Δ = Δ = − = − − = +

= + = im s

 

 The direction of the impulse is upwards, so the complete specification of the impulse is 
0.11kg m s, upwards .i  

 

48. ( ) ( )
( )

2 22 2 2 21 1
2 2initial final A A B B A B

22 21
2initial A A A

35m s 25m s
Fraction  lost 0.49

35m s
K K m v m v v v

K
K m v v

′ ′ −− − −
= = = = =  
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49. (a) For a perfectly elastic collision, Eq. 9-8 says ( ).A B A Bv v v v′ ′− = − −   Substitute that into the  
coefficient of restitution definition. 

( )
1A BA B

B A B A

v vv v
e

v v v v

′ ′ −−
= = − =

− −
. 

For a completely inelastic collision, A Bv v′ ′= .  Substitute that into the coefficient of restitution 
definition. 

0A B

B A

v v
e

v v

′ ′−
= =

−
 

(b) Let A represent the falling object and B represent the heavy steel plate.  The speeds of the steel  
plate are 0Bv =  and 0.Bv′ =   Thus .A Ae v v′= −   Consider energy conservation during the 
falling or rising path.  The potential energy of body A at height h is transformed into kinetic 
energy just before it collides with the plate.  Choose down to be the positive direction. 

21
A A2     2mgh mv v gh= → =  

The kinetic energy of body A immediately after the collision is transformed into potential 
energy as it rises.  Also, since it is moving upwards, it has a negative velocity. 
 21

A A2     2mgh mv v gh′ ′ ′ ′= → = −  
Substitute the expressions for the velocities into the definition of the coefficient of restitution. 

2
    

2A A

gh
e v v e h h

gh

′−′ ′= − = − → =  

 
50. The swinging motion will conserve mechanical energy.  Take the zero level for gravitational 

potential energy to be at the bottom of the arc.  For the pendulum to swing exactly to the top of the 
arc, the potential energy at the top of the arc must be equal to the kinetic energy at the bottom.   

  ( ) ( ) ( )21
bottom top bottom bottom2    2     2K U m M V m M g L V gL= → + = + → =  

 Momentum will be conserved in the totally inelastic collision at the bottom of the arc.  We assume 
that the pendulum does not move during the collision process. 

  ( )initial final bottom        2
m M m M

p p mv m M V v gL
m m
+ +

= → = + → = =  

 
51. (a) The collision is assumed to happen fast enough that the bullet–block system does not move  

during the collision.  So the totally inelastic collision is described by momentum conservation.  
The conservation of energy (including the non-conservative work done by friction) can be used 
to relate the initial kinetic energy of the bullet–block system to the spring compression and the 
dissipated energy.  Let m represent the mass of the bullet, M represent the mass of the block, 
and x represent the distance the combination moves after the collision 

   

( )

( ) ( )
2

2 21 1
2 2

2

collision:     

after collision:     2

2

m M
mv m M v v v

m

kx
m M v kx m M gx v gx

m M

m M kx
v gx

m m M

μ μ

μ

+′ ′= + → =

′ ′+ = + + → = +
+

+
= +

+
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( ) ( ) ( ) ( ) ( )

2
2

3

120 N m 0.050 m1.000 kg
  2 0.50 9.80 m s 0.050 m 888.8m s

1.0 10 kg 1.000 kg

890 m s  

−
= + =

×

≈

 

 (b) The fraction of kinetic energy dissipated in the collision is initial final

initial

,K K
K

−
where the kinetic  

energies are calculated immediately before and after the collision. 
( ) ( ) ( )2 2 2 21 1

2 2initial final
22 21

2initial

1 1

0.0010 kg
1 1 0.999

1.00 kg
                  

mv m M v m M v m M vK K
K mv mv m M

m v
m

m
m M

′ ′ ′− + + +−
= = − = −

+ ′

= − = − =
+

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 
52. (a) Momentum is conserved in the one-dimensional collision.  Let A represent the baseball and let  

B represent the brick. 

   ( ) ( ) ( ) ( )
A A A A B B

A A B B
A

A

  

0.144 kg 28.0 m s 5.25kg 1.10 m s
12.10 m s

0.144 kg

m v m v m v

m v m v
v

m

′ ′= + →

′ −−′ = = = −
  

  So the baseball’s speed in the reverse direction is 12.1m s .  

 (b) ( ) ( )221 1
before A A2 2 0.144 kg 28.0 m s 56.4 JK m v= = =  

  ( ) ( ) ( ) ( )2 22 21 1 1 1
after A A A B2 2 2 20.144 kg 1.21m s 5.25kg 1.10 m s 13.7 JK m v m v′ ′= = =+ +  

 
53. In each case, use momentum conservation.  Let A represent the 6.0-kg object and let B represent the 

10.0-kg object.  We have A 5.5 m sv =  and B 4.0 m s.v = − . 

 (a) In this totally inelastic case, A B.v v′ ′=  

   
( )

( ) ( ) ( ) ( )
A A B B A B A

2A A B B
B A

A B

  

6.0 kg 5.5m s 8.0 kg 4.0 m s
7.1 10 m s

14.0 kg

m v m v m m v

m v m v
v v

m m
−

′+ = + →

+ −+′ ′= = = = ×
+

 

 (b) In this case, use Eq. 9-8 to find a relationship between the velocities. 

   

( )
( )

( ) ( ) ( ) ( ) ( )

( )

A B A B B A B A

A A B B A A B B A A B A B A

A B A B B
A

A B

B A B A

    

  

2 2.0 kg 5.5m s 2 8.0 kg 4.0 m s
5.4 m s

14.0 kg

5.5m s 4.0 m s 5.4 m s 4.1m s

v v v v v v v v

m v m v m v m v m v m v v v

m m v m v
v

m m

v v v v

′ ′ ′ ′− = − − → = − +

′ ′ ′ ′+ = + = + + + →

− + − + −′ = = = −
+

′ ′= − + = − − − =

 

 (c) In this case, A 0.v′ =  

   ( ) ( ) ( ) ( )
A A B B B B

A A B B
B

B

  

6.0 kg 5.5m s 8.0 kg 4.0 m s
0.13m s

8.0 kg

m v m v m v

m v m v
v

m

′+ = →

+ −+′ = = =
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To check for “reasonableness,” first note the final directions of motion.  A has stopped, and B 
has gone in the opposite direction.  This is reasonable.  Secondly, since both objects are moving 
slower than their original speeds, there has been a loss of kinetic energy.  Since the system has 
lost kinetic energy and the directions are possible, this interaction is “reasonable.” 

 (d) In this case, B 0.v′ =  

   ( ) ( ) ( ) ( )
A A B B A A

A A B B
A

A

  

6.0 kg 5.5m s 8.0 kg 4.0 m s
0.17 m s

6.0 kg

m v m v m v

m v m v
v

m

′+ = →

+ −+′ = = =
 

This answer is not reasonable because A is still moving in its original direction while B has 
stopped.  Thus A has somehow passed through B.  If B has stopped, A should have rebounded 
in the negative direction. 

 (e) In this case, A 4.0 m s.v′ = −   
   A A B B A A B B  m v m v m v m v′ ′+ = + →  

( ) ( ) ( ) ( )
B

6.0 kg 5.5m s 4.0 m s 8.0 kg 4.0 m s
3.1m s

8.0 kg
v

− − + −′ = =  

The directions are reasonable, in that each object rebounds.  Secondly, since both objects are 
moving slower than their original speeds, there has been a loss of kinetic energy.  Since the 
system has lost kinetic energy and the directions are possible, this interaction is “reasonable.”  

 
54. (a) A A A A A B B B:    cos cosxp m v m v m vθ θ′ ′ ′ ′= +  

A A A B B B:    0 sin sinyp m v m vθ θ′ ′ ′ ′= −  

(b) Solve the x equation for Bcosθ′  and the y equation for Bsinθ ′ , and then 
find the angle from the tangent function.  

( ) ( )

A A A

B B B A A
B

A A A AB A A A

B B

sin
sin sin

tan
coscos cos

m v
m v v

m v v v v
m v

θ
θ θθ

θθ θ

′ ′
′ ′ ′ ′

′ = = =′ ′−′ ′ ′−
′

 

( )
( )

1 1 2.10 m s sin 30.0sin
tan tan 46.9

cos 2.80 m s 2.10 m s cos30.0
A A

B
A A A

v
v v

θθ
θ

− −′ ′ °′ = = = °
′ ′− − °

 

With the value of the angle, solve the y equation for the velocity.   
( ) ( )

( )
A A A

B
B B

0.120 kg 2.10 m s sin 30.0sin
1.23m s

sin 0.140 kg sin 46.9
m v

v
m

θ
θ

′ ′ °′ = = =
′ °

 

 
55. Use this diagram for the momenta after the decay.  Since there was no 

momentum before the decay, the three momenta shown must add to 0 in both 
the x and y directions. 

( ) ( )

( ) ( ) ( ) ( )
nucleus neutrino nucleus electron

2 2 2 2

nucleus nucleus nucleus neutrino electron

          
x y

x y

p p p p

p p p p p

= =

= + = +

 ( ) ( )2 223 23 22         6.2 10 kg m s 9.6 10 kg m s 1.14 10 kg m s− − −= × + × = ×i i i  

B′vG

A′vG

Aθ ′
AvG

Am
Bm Bm

Am

Bθ′

θ 

electronpG

nucleuspG

neutrinopG
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( )
( )

( )
( )

( )
( )

23
nucleus1 1 1electron

23
nucleus neutrino

9.6 10 kg m s
tan tan tan 57

6.2 10 kg m s
y

x

p p
p p

θ
−

− − −
−

×
= = = = °

×

i

i
 

The second nucleus’ momentum is 147o from the electron’s momentum  , and is 123o from the 
neutrino’s momentum  . 

 
56. Write momentum conservation in the x and y directions, and kinetic energy conservation.  Note that 

both masses are the same.  We allow A
′vG  to have both x and y components. 

  
B A B A

A A B A A B

2 2 2 2 2 2 2 21 1 1 1
A B A B A B A B2 2 2 2

:        

:        

:       

x x x

y y y

p mv mv v v

p mv mv mv v v v

K mv mv mv mv v v v v

′ ′= → =
′ ′ ′ ′= + → = +

′ ′ ′ ′+ = + → + = +

 

Substitute the results from the momentum equations into the kinetic energy equation. 

  
( ) ( )2 2 2 2 2 2 2 2 2 2

A B A A B A A B B A A B

2 2 2 2 2 2
A A B B A B A B A B

   2   

2     2 0    0 or 0

y x y y y

y y y

v v v v v v v v v v v v

v v v v v v v v v v

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = + → + + + = + →

′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = + → = → = =
 

Since we are given that B 0,v′ ≠  we must have A 0.yv′ =   This means that the final direction of A is 
the x direction.  Put this result into the momentum equations to find the final speeds. 
 A A B B A3.7 m s        2.0 m sxv v v v v′ ′ ′= = = = =  

 
57. (a) Let A represent the incoming nucleus, and B represent the target  

particle.    Take the x direction to be in the direction of the initial 
velocity of mass A (to the right in the diagram), and the y direction to be 
up in the diagram.  Momentum is conserved in two dimensions, and 
gives the following relationships. 

A A B B B

A A B B A B

:    cos     2 cos

:    0 sin     2 sin
x

y

p m v m v v v

p m v m v v v

θ θ
θ θ

′ ′= → =
′ ′ ′ ′= − → =

 

  The collision is elastic, and so kinetic energy is also conserved. 
   2 2 2 2 2 2 2 2 21 1 1

A A A A B B A B A B2 2 2:        2     2K m v m v m v v v v v v v′ ′ ′ ′ ′ ′= + → = + → − =  
  Square the two momentum equations and add them together. 
   2 2 2 2 2 2 2 2 2

B A B B A B A B2 cos  ; 2 sin     4 cos  ; 4 sin     4v v v v v v v v v v vθ θ θ θ′ ′ ′ ′ ′ ′ ′ ′= = → = = → + =  
  Add these two results together and use them in the x momentum expression to find the angle. 

   

2 2 2 2 2 2 2 2
A B A B B B

B

2  ; 4     2 6     
3

3
cos     30

2 22
3

v
v v v v v v v v v

v v
vv

θ θ

′ ′ ′ ′ ′ ′− = + = → = → =

= = = → = °
′

 

 (b) From above, we already have B 3
.v

v′ =   Use that in the y momentum equation. 

   A B A2 sin 2 sin 30
3 3

v v
v v vθ′ ′ ′= = ° = =  

(c) The fraction transferred is the final energy of the target particle divided by the original kinetic 
energy. 

AvG

θ

A′vG

Am
Bm

Am

Bm

B′vG
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( ) ( )2121
2 Atarget 2 B

2 21 1
2 2original A A A

2 3 2
3

B
m vK m v

K m v m v
′

= = =  

 
58. Let n represent the incoming neutron, and let He represent the helium 

nucleus.  We take He n4 .m m=  Take the x direction to be the direction of 
the initial velocity of the neutron (to the right in the diagram), and the y 
direction to be up in the diagram.  Momentum is conserved in two 
dimensions, and gives the following relationships. 

  
n n n n n He He He

n He He n n

n n n He He He He He n n

:    cos cos   

         4 cos cos

:    0 sin sin     4 sin sin

x

y

p m v m v m v

v v v

p m v m v v v

θ θ
θ θ
θ θ θ θ

′ ′ ′ ′= + →
′ ′ ′ ′− =

′ ′ ′ ′ ′ ′ ′ ′= − → =

 

 The collision is elastic, and so kinetic energy is also conserved. 
  2 2 2 2 2 2 2 2 21 1 1

n n n n He He n n He n n He2 2 2:    4 4        K m v m v m v v v v v v v′ ′ ′ ′ ′ ′= + = +→ → = −  
 This is a set of three equations in the three unknowns n He n, , and .v v θ′ ′ ′  We can eliminate nθ ′  by 

squaring and adding the momentum equations.  That can be combined with the kinetic energy 
equation to solve for one of the unknown speeds. 

  

( ) ( ) ( ) ( )2 2 2 2
n He He n n He He n n

2 2 2 2 2 2 2 2 2
n n He He He He He He n n n n

2 2 2 2 2
n n He He He n n He

He n He

4 cos cos  ;   4 sin sin   

8 cos 16 cos 16 sin cos sin   

8 cos 16 4   

0.4 cos 0

v v v v v

v v v v v v v

v v v v v v v

v v

θ θ θ θ

θ θ θ θ θ

θ

θ

′ ′ ′ ′ ′ ′ ′ ′− = = →

′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + = + →

′ ′ ′ ′ ′− + = = − →

′ ′= = ( )5 5.4 6.2 10 m s cos 45 1.754 10 m s× ° = ×

 

  
( ) ( )

( )
( )

22 2 2 2 2 5 5 5
n n He n n He

5
1 1He

He He n n n He 5
n

4     4 6.2 10 m s 4 1.754 10 m s 5.112 10 m s

1.754 10 m s
4 sin sin     sin 4 sin sin 4 sin 45 76

5.112 10 m s

v v v v v v

v
v v

v
θ θ θ θ− −

′ ′ ′ ′= − → = − = × − × = ×

×′
′ ′ ′ ′ ′ ′= → = = ° = °

′ ×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 To summarize: 5 5
n He n5.1 10 m s ,  1.8 10 m s , 76 .v v θ′ ′ ′= × = × = °  

 
59. Let A represent the incoming neon atom, and B represent the target  

atom.  A momentum diagram of the collision looks like the first figure.  
The figure can be re-drawn as a triangle, the second figure, since 

A A A A B B.m m m′ ′= +v v vG G G   Write the law of sines for this triangle, relating  
each final momentum magnitude to the initial momentum magnitude. 

 

A A
A A

A A

B B A
B A

A A B

sin sin
    

sin sin

sin sin
    

sin sin

m v
v v

m v

m v m
v v

m v m

φ φ
α α
θ θ
α α

′
′= → =

′
′= → =

 

 The collision is elastic, so write the kinetic energy conservation equation, 
 and substitute the results from above.  Also note that o o o180.0 55.6 50.0 74.4 .α = − − =  

  
22

2 2 2 2 A1 1 1
A A A A B B A A A A B A2 2 2

B

sin sin
      

sin sin
m

m v m v m v m v m v m v
m

φ θ
α α

′ ′= + → = + →
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

AvG

o50.0φ =

o55.6θ =
A′vG

Am
Bm

Am

Bm

B′vG

A Am vG

B Bm ′vGA Am ′vG α

φθ

nvG

He 45θ′ = °

n′vG

nm
Hem

nm

Hem

He′vG

nθ ′
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( ) 2 o2
A

B 2 2 2 2 o

20.0 u sin 55.6sin
39.9 u

sin sin sin 74.4 sin 50.0
m

m
θ

α φ
= = =

− −
 

 
60. Use the coordinate system indicated in the diagram.  We start 

with the conditions for momentum and kinetic energy 
conservation. 

  

A A A A A B B B

A A A A A B B B

A A A B B B

A A A B B B

:    cos cos   

          cos cos

:    0 sin sin   

          sin sin

x

y

p m v m v m v

m v m v m v

p m v m v

m v m v

θ θ
θ θ

θ θ

θ θ

′ ′ ′ ′= + →
′ ′ ′ ′− =

′ ′ ′ ′= − →

′ ′ ′ ′=

 

  ( ) ( )2 2 2 2 2 2 2 2 2 21 1 1
A A A A B B A A A B B A B A A B B2 2 2:            K m v m v m v m v v m v m m v v m v′ ′ ′ ′ ′ ′= + → − = → − =  

 Note that from the kinetic energy relationship, since the right side of the equation is positive, we 
must have A A 0.v v′≥ ≥  

 Now we may eliminate Bθ ′ by squaring the two momentum relationships and adding them. 

  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2
A A A A A A A A B B B B B B

2 2 22
A A A A A A A A B B

cos sin cos sin   

2 cos

m v m v m v m v m v

m v m v v m v m v

θ θ θ θ

θ

′ ′ ′ ′ ′ ′ ′ ′− + = + →

′ ′ ′ ′− + =
 

 
 Combining the previous result with the conservation of energy result gives the following. 
  ( ) ( ) ( ) ( ) ( )2 2 22 2 2

A A A A A A A A B B A B A A2 cos   m v m v v m v m v m m v vθ′ ′ ′ ′ ′− + = = − →  

  B A B A1
A A A2

A A A A

cos 1 1  ; still with 0
m v m v

v v
m v m v

θ
′

′ ′= − + + ≥ ≥
′

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

 

(a) Consider A B.m m<   If A A ,v v′ =  its maximum value, then  

B A B A1
A A2

A A A A

cos 1 1 1    0.
m v m v
m v m v

θ θ
′

′ ′= − + + = → =
′

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

  As Av′  decreases towards 0, eventually 

the first term in the expression for Acosθ ′  will dominate, since it has A

A

v
v′

 as a factor.  That term 

will also be negative because A B.m m<   The expression for Acosθ ′  will eventually become 

negative and approach −∞  in a continuous fashion.  Thus Acosθ ′ will for some value of A

A

v
v′

 

have the value of –1, indicating that there is some allowable value of Av′  that causes A 180 ,θ ′ = °  
and so all scattering angles are possible.  

A plot of A

A

v
v
′

vs. Aθ ′ is helpful in seeing 

this.  Here is such a plot for A B0.5 .m m=  
Note that it indicates that the speed of the 
incident particle will range from a 
minimum of about A0.35v  for a complete 
backscatter (a one-dimensional collision) 
to A1.00v , which essentially means a 

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120 150 180
Scattering angle (degrees)

v 1
'/v
1

Before
After

x 

y AvG

A′vG

B′vG

Aθ ′

Bθ ′

Am Am

Bm Bm
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“miss” – no collision.  We also see that the graph is monotonically decreasing, which means 
that there are no analytical extrema to consider in the analysis. 

(b) Now consider A B.m m>   If A A ,v v′ =  its maximum value, then again we will have  

B A B A1
A A2

A A A A

cos 1 1 1    0.
m v m v
m v m v

θ θ
′

′ ′= − + + = → =
′

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

  As Av′  decreases towards 0, eventually 

the first term in the expression for Acosθ ′  will dominate, since it has A

A

v
v′

 as a factor.  But both 

terms in the expression are positive, since A B.m m>   So the expression for Acosθ ′  will 
eventually approach +∞  in a continuous fashion, and will never be negative.  Thus there will 
not be any scattering angles bigger than 90°  in any case.  But is there a maximum angle, 
corresponding to a minimum value of Acos ?θ ′   We look for such a point by calculating the 

derivative A
A

cos .d
dv

θ ′
′

 

  

1/ 2

B

AB A B1
A A A2 2

A A A A A B

A

1
1

cos 1 1 0    
1

m
md m v m

v v
dv m v m v m

m

θ
−

′ ′= − − + + = → =
′ ′

+

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎝ ⎠⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎛ ⎞⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

  Using this critical value gives the following value for 1cos ,θ ′  which we label as cos .φ  

   

1/ 2 1/ 2

B B 1/ 22

A AB B B1
2

A A AB B

A A

2

2 B

A

1 1
cos 1 1 1   

1 1

cos 1

m m
m mm m m

m m mm m
m m

m
m

φ

φ

+ −
= − + + = − →

− +

= −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

This gives the largest possible scattering 
angle for the given mass ratio.  Again, a 
plot is instructive.  Here is such a plot 
for A B.2m m=   We find the maximum 
scattering angle according to the 
equation above. 

   

( )

2

2 B

A

2

1 B

A

21

cos 1   

cos 1

cos 1 0.5 30  

m
m

m
m

φ

φ −

−

= − →

= −

= − = °

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎣ ⎦

 

The equation and the graph agree.  The spreadsheet used for this problem can be found on the 
Media Manager, with filename “PSE4_ISM_CH09.XLS,” on tab “Problem 9.60b.” 
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61. To do this problem with only algebraic manipulations is complicated.  We use 
a geometric approach instead.  See the diagram of the geometry. 

  Momentum conservation:  A A B A A B    m m m′ ′ ′ ′= + = +→v v v v v vG G G G G G
 

  Kinetic energy conservation: 2 2 2 2 2 21 1 1
A A B A A B2 2 2     mv mv mv v v v′ ′ ′ ′= + = +→  

 The momentum equation can be illustrated as a vector summation diagram, 
and the kinetic energy equation relates the magnitudes of the vectors in that 
summation diagram.  Examination of the energy equation shows that it is 
identical to the Pythagorean theorem.  The only way that the Pythagorean 
theorem can hold true is if the angle α  in the diagram is a right angle.  If α  is 
a right angle, then 90 ,θ φ+ = °  and so the angle between the final velocity 
vectors must be 90 .°  

 
62. Find the CM relative to the front of the car. 

( )( ) ( )( ) ( )( )
( ) ( )

car car front front back back
CM

car front back

1250 kg 2.50 m 2 70.0 kg 2.80 m 3 70.0 kg 3.90 m
      2.71 m

1250 kg 2 70.0 kg 3 70.0 kg

m x m x m x
x

m m m
+ +

=
+ +

+ +
= =

+ +

 

 
63. Choose the carbon atom as the origin of coordinates.   

( )( ) ( )( )10
11C C O O

CM
C O

12 u 0 16 u 1.13 10 m
6.5 10 m

12 u 16 u
m x m x

x
m m

−
−

+ ×+
= = = ×

+ +
 from the C atom. 

 
64. By the symmetry of the problem, since the centers of the cubes are along a straight line, the vertical 

CM coordinate will be 0, and the depth CM coordinate will be 0.  The only CM coordinate to 
calculate is the one along the straight line joining the centers.  The mass of each cube will be the 
volume times the density, and so ( ) ( ) ( )3 3 3

1 0 2 0 3 0, 2 , 3 .m m mρ ρ ρ= = =l l l   Measuring from the 
left edge of the smallest block, the locations of the CMs of the individual cubes are 1

1 02 ,x = l  

2 0 3 02  , 4.5 .x x= =l l   Use Eq. 9-10 to calculate the CM of the system. 

( ) ( ) ( )3 3 31
20 0 0 0 0 01 1 2 2 3 3

CM 3 3 3
1 2 3 0 0 0

0

8 2 27 4.5
8 27

     3.8  from the left edge of the smallest cube

m x m x m x
x

m m m
ρ ρ ρ

ρ ρ ρ
+ ++ +

= =
+ + + +

=

l l l l l l

l l l

l

    

 
65. Consider this diagram of the cars on the raft.  Notice that the origin of  

coordinates is located at the CM of the raft.  Reference all distances to that 
location. 

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

1350 kg 9 m 1350 kg 9 m 1350 kg 9 m
1.2 m

3 1350 kg 6200 kg

1350 kg 9 m 1350 kg 9 m 1350 kg 9 m
1.2 m

3 1350 kg 6200 kg

CM

CM

x

y

+ + −
= =

+

+ − + −
= = −

+

 

 
 

x

y

AvG

φ

θ
A′vG

m
m

m

m

B′vG

AvG

B′vGA′vG

φθ

α
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66. Consider the following.  We start with a full circle of radius 2R, with its CM at the 
origin.  Then we draw a circle of radius R, with its CM at the coordinates ( )0.80 ,0R .  
The full circle can now be labeled as a “gray” part and a “white” part.  The y 
coordinate of the CM of the entire circle, the CM of the gray part, and the CM of the 
white part are all at 0y =  by the symmetry of the system.  The x coordinate of the 

entire circle is at CM 0,x =  and can be calculated by gray gray white white
CM

total

.
m x m x

x
m
+

=   Rearrange this 

equation to solve for the CM of the “gray” part. 

 

gray gray white white
CM

total

total CM white white total CM white white white white
gray

gray total white total white

  
m x m x

x
m

m x m x m x m x m x
x

m m m m m

+
= →

− − −
= = =

− −

 

This is functionally the same as treating the white part of the figure as a hole of negative mass.  The 
mass of each part can be found by multiplying the area of the part times the uniform density of the 
plate. 

 
( )

( )

2
white white

gray 2 2
total white

0.80 0.80
0.27

32

R Rm x R
x R

m m R R

ρπ
ρπ ρπ
−− −

= = = = −
− −

 

The negative sign indicates that the CM of the “gray” part is to the left of the center of the circle of 
radius 2R. 

 
67. From the symmetry of the wire, we know that CM 0.x =   

Consider an infinitesimal piece of the wire, with mass dm, 
and coordinates ( ) ( ), cos , sin .x y r rθ θ=   If the length of 
that piece of wire is ,dl  then since the wire is uniform, 

we have .
M

dm d
rπ

= l  And from the diagram and the 

definition of radian angle measure, we have .d rdθ=l   

Thus .
M M

dm rd d
r

θ θ
π π

= =   Now apply Eq. 9-13. 

    CM
0 0

1 1 2
sin sin

M r r
y y dm r d d

M M

π π

θ θ θ θ
π π π

= = = =∫ ∫ ∫  

Thus the coordinates of the center of mass are ( )CM CM

2
, 0, .

r
x y

π
= ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
68. From the symmetry of the hydrogen equilateral triangle, and the fact that the nitrogen atom is above 

the center of that triangle, the center of mass will be perpendicular to the plane of the hydrogen 
atoms, on a line from the center of the hydrogen triangle to the nitrogen atom.  We find the height of 
the center of mass above the triangle from the heights of the individual atoms.  The masses can be 
expressed in any consistent units, and so atomic mass units from the periodic table will be used. 

( ) ( ) ( ) ( )
( ) ( )

H H N N
CM

total

3 1.008u 0 14.007 u 0.037 nm3
0.030 nm

3 1.008u 14.007 u
m z m z

z
m

++
= = =

+
 

 
And so the center of mass is 0.030 nm above the center of the hydrogen triangle. 

r

x

y

C

dθ

θ

dm
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69. Let the tip of the cone be at the origin, and the symmetry axis of 
the cone be vertical.  From the symmetry of the cone, we know 
that CM CM 0,x y= =  and so the center of mass lies on the z axis.  

We have from Eq. 9-13 that CM

1 .z z dm
M

= ∫   The mass can be 

expressed as ,M dm= ∫  and so CM .
z dm

z
dm

= ∫
∫

  Since the object 

is uniform, we can express the mass as the uniform density 
ρ times the volume, for any part of the cone.  That results in the 
following. 

CM

z dm z dV
z

dm dV

ρ

ρ
= =∫ ∫
∫ ∫

 

From the diagram, a disk of radius r and thickness dz has a volume of 2 .dV r dzπ=   Finally, the 
geometry of the cone is such that ,r z R h=  and so .r zR h=   Combine these relationships and 
integrate over the z dimension to find the center of mass. 

( )
( )

( )
( )

3
2 22 3 4

0 3
CM 42 2 32 2

2

0

4
3

h

h

z dzz dV z r dz z zR h dz R h z dz h
z h

hdV r dz zR h dz R h z dz z dz

ρ ρ π ρπ ρπ

ρ ρ π ρπ ρπ
= = = = = = =

∫∫ ∫ ∫ ∫
∫ ∫ ∫ ∫ ∫

 

 Thus the center of mass is at ( )3
4

ˆ ˆ ˆ0 0 .h+ +i j k  

 
70. Let the peak of the pyramid be directly above the origin, 

and the base edges of the pyramid be parallel to the x and 
y axes.  From the symmetry of the pyramid, we know 
that CM CM 0,x y= =  and so the center of mass lies on the 

z axis.  We have from Eq. 9-13 that CM

1 .z z dm
M

= ∫   

The mass can be expressed as ,M dm= ∫  and so 

CM .
z dm

z
dm

= ∫
∫

  Since the object is uniform, we can 

express the mass as the uniform density ρ times the volume, for any part of the pyramid.  That 
results in the following. 

  CM

z dm z dV
z

dm dV

ρ

ρ
= =∫ ∫
∫ ∫

 

From the diagram, for the differential volume we use a square disk of side l  and thickness dz, 

which has a volume of 2 .dV dz= l   The geometry of the pyramid is such that ( ).s
h z

h
= −l   That 

can be checked from the fact that l is a linear function of z, s=l  for 0,z =  and 0=l  for .z h=   
We can relate s to h by expressing the length of an edge in terms of the coordinates of the endpoints 

x

y

R

z

dz

r
h

z

s
x

y

L

h

z

s

s dz

l
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y r

R

thickness dr=

of an edge.  One endpoint of each edge is at ( )2,  2, 0 ,x s y s z= ± = ± =  and the other endpoint of 
each edge is at ( )0,  0, .x y z h= = =   Using the Pythagorean theorem and knowing the edge length is 
s gives the following relationship. 
 ( ) ( )2 22 22 2     2s s s h h s= + + → =  
We combine these relationships and integrate over the z dimension to find the center of mass. 

  
( )

( )

( )[ ]

( )[ ]

2
2

2

0 0
CM 22

2

00

h h

hh

s
z h z dz z h z dzz dm z dV z dz h

z
dm dV dz s h z dzh z dz

h

ρρ ρ

ρ ρ
ρ

− −
= = = = =

−−

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

∫ ∫∫ ∫ ∫
∫ ∫ ∫ ∫∫

l

l
 

  
( )

( )
( )

( )

2 2 3
2 2 3 41 2 1

2 3 40 0 1 1
4 42 2 312 2 3 0

0

2
     

2 4 22

h

h

h h

h z hz z dz h z hz z s s
h

h z hz zh hz z dz

− + − +
= = = = =

− +− +

∫

∫
 

 Thus the center of mass is at ˆ ˆ ˆ0 0 .
4 2

s
+ +⎛ ⎞

⎜ ⎟
⎝ ⎠

i j k  

 
71. Let the radius of the semicircular plate be R, with the center at the origin. 

From the symmetry of the semicircle, we know that CM 0,x = and so  
the center of mass lies on the y axis.  We have from Eq. 9-13 that  

CM

1 .y y dm
M

= ∫   The mass can be expressed as ,M dm= ∫  and  

so CM .
y dm

y
dm

= ∫
∫

  Since the object is uniform, we can express the mass as a uniform density σ  

times the area, for any part of the semicircle.  That results in the following. 

  CM

y dm y dA
y

dm dA

σ

σ
= =∫ ∫
∫ ∫

 

From the diagram, for the differential area we use a semicircular strip of width dr and length ,rπ  
which has a differential area of .dA rdrπ=   And from problem 67, the y coordinate of the center of 

mass of that strip is 
2 .r
π

  (Note the discussion immediately before Example 9-17 which mentions 

using the center of mass of individual objects to find the center of mass of an extended object.)  We 
combine these relationships and integrate over the z dimension to find the center of mass. 

  

2
32

30 0
CM 21

2

0 0

2
2

4
3

R R

R R

r
rdr r dry dm y dA R R

y
Rdm dA rdr rdr

σ πσ π
π πσ σ π π

= = = = = =
∫ ∫∫ ∫

∫ ∫ ∫ ∫
 

 Thus the center of mass is at 
4ˆ ˆ0 .
3

R
π

+⎛ ⎞
⎜ ⎟
⎝ ⎠

i j  
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72. From Eq. 9-15, we see that CM

1
.i im

M
= ∑v vG G  

  
( ) ( ) ( ) ( )

( )CM

ˆ ˆ ˆ ˆ35kg 12 16 m s 25kg 20 14 m s

35kg 25kg

− + − +
=

+

i j i j
vG  

  

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( )

( )

ˆ ˆ35 12 25 20 kg m s 35 12 25 24 kg m s
     

60 kg
ˆ ˆ80 kg m s 210 kg m s ˆ ˆ1.3 m s 3.5 m s

60 kg

− + − +
=

− −
= = − −

i j

i j
i j

i i

i i
 

 
73. (a) Find the CM relative to the center of the Earth. 

( ) ( ) ( ) ( )24 22 8

24 22

5.98 10 kg 0 7.35 10 kg 3.84 10 m

5.98 10 kg 7.35 10 kg
E E M M

CM
E M

m x m x
x

m m

× + × ×+
= =

+ × + ×
 

6      4.66 10 m from the center of the Earth= ×  
This is actually inside the volume of the Earth, since 66.38 10 m.ER = ×  

(b) It is this Earth–Moon CM location that actually traces out the orbit as discussed in an earlier 
chapter.  The Earth and Moon will orbit about this orbit path in (approximately) circular orbits.  
The motion of the Moon, for example, around the Sun would then be a sum of two motions: i) 
the motion of the Moon about the Earth–Moon CM; and ii) the motion of the Earth–Moon CM 
about the Sun.  To an external observer, the Moon’s motion would appear to be a small radius, 
higher frequency circular motion (motion about the Earth–Moon CM) combined with a large 
radius, lower frequency circular motion (motion about the Sun).  The Earth’s motion would be 
similar, but since the center of mass of that Earth-Moon motion is inside the Earth, the Earth 
would be observed to “wobble” about that CM. 

 
74. The point that will follow a parabolic trajectory is the center of mass of the mallet.  Find the CM 

relative to the bottom of the mallet.  Each part of the hammer (handle and head) can be treated as a 
point mass located at the CM of the respective piece.  So the CM of the handle is 12.0 cm from the 
bottom of the handle, and the CM of the head is 28.0 cm from the bottom of the handle.   

( ) ( ) ( ) ( )handle handle head head
CM

handle head

0.500 kg 12.0 cm 2.80 kg 28.0 cm
25.6cm

3.30 kg
m x m x

x
m m

++
= = =

+
 

 Note that this is inside the head of the mallet.  The mallet will rotate about this point as it flies 
through the air, giving it a wobbling kind of motion. 

 
75. (a) Measure all distances from the original position of the woman.  

( ) ( ) ( ) ( )W W M M
CM

W M

55 kg 0 72 kg 10.0 m
5.669 m

127 kg

     5.7 m from the woman

m x m x
x

m m
++

= = =
+

≈
  

 (b) Since there is no force external to the man–woman system, the CM will not move, relative to  
the original position of the woman.  The woman’s distance will no longer be 0, and the man’s 
distance has changed to 7.5 m. 

( ) ( ) ( )WW W M M
CM

W M

55 kg 72 kg 7.5 m
5.669 m  

127 kg
xm x m x

x
m m

++
= = = →

+
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( ) ( ) ( ) ( )
W

M W

5.669 m 127 kg 72 kg 7.5 m
3.272 m

55 kg

7.5 m 3.272 m 4.228m 4.2 m

x

x x

−
= =

− = − = ≈

 

 (c) When the man collides with the woman, he will be at the original location of the center of mass. 
M M
final initial

5.669 m 10.0 m 4.331 mx x− = − = −  

He has moved 4.3 m  from his original position. 
 
76. (a) As in Example 9-18, the CM of the system follows the parabolic trajectory.  Part I will again  

fall vertically, the CM will “land” a distance d from part I (as in Fig. 9-32), and part II will land 
a distance x to the right of the CM.  We measure horizontal distances from the point underneath 
the explosion. 

   ( ) ( ) ( )CM I II I I I I II I II II 4
CM II 3

I II II I

3 0
    

3
x m m m x d m m mm x m x

x x d
m m m m

+ − + −+
= → = = =

+
 

  Therefore part II lands a total distance 7
3 d  from the starting point. 

 (b) Use a similar analysis for this case, but with I II3 .m m=  

   ( ) ( ) ( )CM I II I I II II III I II II
CM II

I II II II

3 3 0
    4

x m m m x d m m mm x m x
x x d

m m m m
+ − + −+

= → = = =
+

 

  Therefore part II lands a total distance 5d  from the starting point. 
 
77. Calculate the CM relative to the 55-kg person’s seat, at one end of 

the boat.  See the first diagram.  Be sure to include the boat’s mass. 

( ) ( ) ( ) ( ) ( ) ( )

A A B B C C
CM

A B C

55kg 0 78kg 1.5 m 85kg 3.0 m
      1.706 m

218kg

m x m x m x
x

m m m
+ +

=
+ +

+ +
= =

Now, when the passengers exchange positions, the boat will move some distance “d” as shown, but 
the CM will not move.  We measure the location of the CM from the same place as before, but now 
the boat has moved relative to that origin. 

( ) ( ) ( ) ( ) ( )( )

A A B B C C
CM

A B C

85 kg 78 kg 1.5 m 55 kg 3.0 m 218  kg m 282 kg m
1.706 m

218 kg 218 kg

m x m x m x
x

m m m

d d d d

+ +
=

+ +

+ + + + +
= =

i i
 

0.412 md =  
 Thus the boat will move 0.41 m towards the initial position of the 85 kg person .  
 
78. Because the interaction between the worker and the flatcar is internal to the worker–flatcar system, 

their total momentum will be conserved, and the center of mass of the system will move with a 
constant velocity relative to the ground.  The velocity of the center of mass is 6.0 m/s.  Once the 
worker starts to move, the velocity of the flatcar relative to the ground will be taken as carv and the 
velocity of the worker relative to the ground will then be car 2.0 m s.v +  Apply Eq. 9-15, in one 
dimension.  Letter A represents the worker, and letter B represents the flatcar. 

75 kg 80 kg 60 kg
d 

55 kg 78 kg 85 kg
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( )

( ) ( ) ( )

A BA A B B
CM

A B A B

A
CM

A B

car car

car

2.0 m s
  

95kg
2.0 m s 6.0 m s 2.0 m s 5.493m s

375kg

m v m vm v m v
v

m m m m

m
v v

m m

+ ++
= = →

+ +

= − = − =
+

 

 The flatcar moves this speed while the worker is walking.  The worker walks 25 m along the flatcar 
at a relative speed of 2.0 m/s, and so he walks for 12.5 s. 

  ( ) ( )car car 5.493m s 12.5s 68.66 m 69 mx v tΔ = Δ = = ≈  

 
79. Call the origin of coordinates the CM of the balloon, gondola, and person at rest.  Since the CM is at 

rest, the total momentum of the system relative to the ground is 0.  The man climbing the rope cannot 
change the total momentum of the system, and so the CM must stay at rest.  Call the upward 
direction positive.  Then the velocity of the man with respect to the balloon is v− .  Call the velocity 
of the balloon with respect to the ground BG.v  Then the velocity of the man with respect to the 

ground is MG BG.v v v= − +  Apply conservation of linear momentum in one dimension. 

  ( )MG BG BG BG BG0      , upward
m

mv Mv m v v Mv v v
m M

= + = − + + → =
+

 

 If the passenger stops,  the balloon also stops , and the CM of the system remains at rest. 
 
80. Use Eq. 9-19a.  Call upwards the positive direction.  The external force is gravity, acting downwards.  

The exhaust is in the negative direction, and the rate of change of mass is negative. 

  ( ) ( )
ext rel exhaust

2

exhaust

      

4.0 3500 kg 9.80 m s4.0
5100 m s

27 kg s

d dM dM
M Mg Ma v

dt dt dt

Mg
v

dM dt

= − → − = + →

−−
= = =

−

∑ v
F v

GG G

 

 
81. The external force on the belt is the force supplied by the motor and the oppositely-directed force of 

friction.  Use Eq. 9-19 in one dimension.  The belt is to move at a constant speed, so the acceleration 
of the loaded belt is 0. 

  
( ) ( )

( ) ( ) ( ) ( )

ext rel motor friction

motor friction

    0   

2.20 m s 75.0 kg s 150N 315 N

dv dM dM
M F v M F F v

dt dt dt
dM

F v F
dt

= + → = + + − →

= − = − − =
 

 The required power output from the motor is then found as the product of the force and the velocity. 

( ) ( )motor motor

1hp
315 N 2.20 m s 693W 0.93hp

746 W
P F v= = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 When the gravel drops from the conveyor belt, it is not accelerated in the horizontal direction by the 
belt and so has no further force interaction with the belt.  The “new” gravel dropping on the belt 
must still be accelerated, so the power required is constant. 

 

82. The thrust is, in general, given as rel .dM
v

dt
 

(a) The mass is ejected at a rate of 4.2 kg/s, with a relative speed of 550 m/s opposite to the 
direction of travel. 
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  ( ) ( )fuel
thrust rel
fuel

550 m s 4.2 kg s 2310 N 2300 N
dM

F v
dt

= = − − = ≈  

 (b) The mass is first added at a rate of 120 kg/s, with a relative speed of 270 m/s opposite to the  
direction of travel, and then ejected at a rate of 120 kg/s, with a relative speed of 550 m/s 
opposite to the direction of travel. 

 
( ) ( ) ( ) ( )air

thrust rel
air

4

270 m s 120 kg s 550 m s 120 kg s 33600 N

       3.4 10 N

dM
F v

dt
= = − + − − =

≈ ×

 

 (c) The power developed is the force of thrust times the velocity of the airplane. 

   
( ) ( ) 6

thrust thrust
fuel air

4

1hp
2310 N 33600 N 270 m s 9.696 10 W

746 W

1.3 10 hp  

P F F v= + = + = ×

= ×

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

 
83. We apply Eq. 9-19b in one dimension, with “away” from the Earth as the positive direction, and 

“towards” the Earth as the negative direction.  The external force is the force of gravity at that 
particular altitude, found from Eq. 6-1. 

  

( )
( )

( ) ( )
( )

ext rel

Earth
ext 2

rel rel

11 2 2 24
2

26 6

  

1 1

6.67 10 N m kg 5.98 10 kg25000 kg
      1.5 m s 76 kg s

1300 m s 6.38 10 m 6.4 10 m

dv dM
M F v

dt dt
dM dv dv GM M

M F M
dt v dt v dt r

−

= + →

= − = − −

× ⋅ ×
= + = −

− × + ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 The negative sign means that the mass is being ejected rather than absorbed. 
 
84. Because the sand is leaking out of the hole, rather than being pushed out 

the hole, there is no relative velocity of the leaking sand with respect to 
the sled (during the leaking process).  Thus there is no “thrust” in this 
situation, and so the problem is the same as if there were no hole in the 
sled.  From the free body diagram, we see that the acceleration down the 
plane will be sin ,a g θ=  as analyzed several times in Chapter 4.  Use the 
constant acceleration relationships to find the time. 

( )
( ) ( )

21
0 0 2 2

2 120 m2
    = 6.8s

9.80 m s sin 32y x
x

x
x x v t a t t

a
= + + → = =

°
 

 
85. It is proven in the solution to problem 61 that in an elastic collision 

between two objects of equal mass, with the target object initially 
stationary, the angle between the final velocities of the objects is 90o.    
For this specific circumstance, see the diagram.  We assume that the 
target ball is hit “correctly” so that it goes in the pocket.  Find 1θ  from 

the geometry of the “left’ triangle:  1
1

1.0
tan 30

3.0
.θ −= = °   Find 2θ  from 

1.0 m 3.0 m 

3.0 m

1θ
2θ

y 

x 

θ θ 
mgG

NF
G



Chapter 9  Linear Momentum 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

293 

the geometry of the “right” triangle:  1
2

3.0
tan 60

3.0
.θ −= = °   Since the balls will separate at a 90°  

angle, if the target ball goes in the pocket, this does appear to be a good possibility of a scratch shot .  
 
86. The force stopping the wind is exerted by the person, so the force on the person would be equal in 

magnitude and opposite in direction to the force stopping the wind.  Calculate the force from Eq. 9-2, 
in magnitude only. 

( ) ( )

( ) ( )

wind
wind2

wind wind wind wind
on person on wind wind

45kg s 1m s
1.60 m 0.50 m 36 kg s       120 km h 33.33m s

m 3.6 km h

36 kg s 33.33m s

         1200 N

m
v

t

p m v m
F F v

t t t

= = Δ = =
Δ

Δ Δ
= = = = Δ =

Δ Δ Δ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The typical maximum frictional force is ( ) ( ) ( )2
fr 1.0 75kg 9.80 m s 740 N,sF mgμ= = =  and so we 

see that on person fr .F F>   The wind is literally strong enough to blow a person off his feet. 

 
87. Consider conservation of energy during the rising and falling of the ball, between contacts with the 

floor.  The gravitational potential energy at the top of a path will be equal to the kinetic energy at the 
start and the end of each rising-falling cycle.  Thus 21

2mgh mv=  for any particular bounce cycle, and 
so for an interaction with the floor, the ratio of the energies before and after the bounce is 

after

before

1.20 m
0.80.

1.50 m
K mgh
K mgh

′
= = =   We assume that each bounce will further reduce the energy to 80% 

of its pre-bounce amount.  The number of bounces to lose 90% of the energy can be expressed as 
follows. 

 ( ) log 0.1
0.8 0.1    10.3

log 0.8
n n= → = =  

Thus after 11 bounces, more than 90% of the energy is lost. 
 

As an alternate method, after each bounce, 80% of the available energy is left.  So after 1 bounce, 
80% of the original energy is left.  After the second bounce, only 80% of 80%, or 64% of the 
available energy is left.  After the third bounce, 51 %.  After the fourth bounce, 41%.  After the fifth 
bounce, 33 %. After the sixth bounce, 26%.  After the seventh bounce, 21%.  After the eight bounce, 
17%.  After the ninth bounce, 13%.  After the tenth bounce, 11%.  After the eleventh bounce, 9% is 
left.  So again, it takes 11 bounces. 

 
88. Since the collision is elastic, both momentum (in two dimensions) and kinetic energy are conserved.  

Write the three conservation equations and use them to solve for the desired quantities.  The positive 
x direction in the diagram is taken to the right, and the positive y direction is taken towards the top of 
the picture.  

  ( )

pin ball pin ball
initial final

pin ball
initial final

pin ball

    0 sin 75 sin     sin 75 5 sin

    13.0 m s cos75 cos   

                            65.0 m s cos75 5 cos

x x

y y

p p mv Mv v v

p p M mv Mv

v v

θ θ

θ

θ

= → = ° − → ° =

= → = ° + →

° =−
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( )2 2 2 2 2 2 21 1 1

initial final pin ball pin ball2 2 2

2 2 2 2
pin ball

    13.0 m s     845m s 5

                               845m s 5

  K K M mv Mv v v

v v

= → = + → = + →

− =
 

 Square the two momentum equations and add them to eliminate the dependence on .θ  

  

( ) ( )
( ) ( )

( )

22 2 2 2 2 2 2 2
pin ball pin pin ball

22 2 2 2 2 2 2 2
pin pin pin ball ball

2 2 2
pin pin ball b

sin 75 25 sin   ;  65.0 2 65.0 cos75 cos 75 25 cos   

sin 75 65.0 2 65.0 cos75 cos 75 25 sin 25 cos   

65.0 130 cos75 25 5 5

v v v v v

v v v v v

v v v v

θ θ

θ θ

° = − ° + ° = →

° + − ° + ° = + + →

− ° + = = ( )2
all

 

 Substitute from the kinetic energy equation. 

  

( ) ( )

( ) ( )( )

2 2 2 2 2
pin pin pin pin pin pin

2
pin pin pin

22 2 21 1
pin ball ball pin5 5

pin ball

65.0 130 cos75 5 845     4225 130 cos75 4225 5

6 130 cos75     5.608m s

845 5     845 845 5.608 12.756 m s

sin 75 5 sin    

v v v v v v

v v v

v v v v

v v θ

− ° + = − → − ° + = −

= ° → =

− = → = − = − =

° = →
( )

( )
pin1 1

ball

sin 75 5.608 sin 75
 sin sin 4.87

5 5 12.756
v

v
θ − −° °

= = = °
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

 So the final answers are as follows. 
 (a) pin 5.608m s 5.6 m sv = ≈  

 (b) ball 12.756 m s 13m sv = ≈  

 (c) 4.87 4.9θ = ° ≈ °  
 
89. This is a ballistic “pendulum” of sorts, similar to Example 9-11 in the textbook.  There is no 

difference in the fact that the block and bullet are moving vertically instead of horizontally.  The 
collision is still totally inelastic and conserves momentum, and the energy is still conserved in the 
rising of the block and embedded bullet after the collision.  So we simply quote the equation from 
that example. 

  

( )
( ) ( ) 22

2

2   

0.0240 kg 310 m s1 1
1.4 m

2 2 9.80 m s 0.0240 kg 1.40 kg

m M
v gh

m

mv
h

g m M

+
= →

= = =
+ +

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
90. The initial momentum is 0, and the net external force on the puck is 0.  Thus momentum will be 

conserved in two dimensions. 

  
( )

( ) ( )

initial initial 3 3

2 2 1
3 3

ˆ ˆˆ ˆ    0 2 2     4

4
4 17      tan 256

mvi m v m vi v

v
v v v v

v
θ −

= → = + + → = − −

−
= − + − = = = °

−

p p j v v jG G G G
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91. The fraction of energy transformed is initial final

initial

.K K
K

−
 

( ) ( )
2

2 2A
A A A B A2 21 1

2 2A A A B A Binitial final
2 21

2initial A A A A

A B

A B A B

1
1

2
                  

m
m v m m v

m v m m v m mK K
K m v m v

m m
m m m m

− +
′− + +−

= =

= − = =
+ +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
92. Momentum will be conserved in the horizontal direction.  Let A represent the railroad car, and B 

represent the snow.  For the horizontal motion, 0Bv =  and .B Av v′ ′=   Momentum conservation in the 
horizontal direction gives the following. 

( )
( ) ( )

( )

initial final A A A

A A
A

A B

    

4800 kg 8.60 m s
8.210 m s 8.2 m s

3.80 kg
4800 kg 60.0 min

min

p p m v mt mt v

m v
v

m m

′= → = +

′ = = = ≈
+ + ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
93. (a) We consider only the horizontal direction (the direction of motion of the railroad car).  There is  

no external force in the horizontal direction.  In Eq. 9-19b, the relative velocity (in the 
horizontal direction) of the added mass is the opposite of the horizontal velocity of the moving 
mass, since the added mass is moving straight down. 

   

0 0

ext rel

0

0 0 f

0 0
f 0 0

0

              

ln ln ln   

f fv M

v M

f f

f

dv dM dv dM dv dM dv dM
M F v M v

dt dt dt dt v M v M

v M M
v M M

M M
v v v

dMM M t
dt

= + → = − → = − → = − →

= − = →

= =
+

∫ ∫

 

(b) Evaluate the speed at 60.0 min.t =  

  ( ) ( ) ( )
0

0

0

4800 kg
60.0 8.2 m s

4800 kg 3.80 kg min 60.0 min
M

v t v
dM

M t
dt

= = = =
++

 

This agrees with the previous problem. 
 
94. (a) No, there is no net external force on the system.  In particular, the spring force is internal to the  

system. 
 (b) Use conservation of momentum to determine the ratio of speeds.  Note that the two masses will  

be moving in opposite directions.  The initial momentum, when the masses are released, is 0. 
 initial later A A B B A B B A    0     p p m v m v v v m m= → = − → =   

 (c) 
2 221

2A A A A A A B
B A21

2B B B B B B A

K m v m v m m
m m

K m v m v m m
= = = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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 (d) The center of mass was initially at rest.  Since there is no net external force on the system, the  
center of mass does not move, and so stays at rest. 

(e) With friction present, there could be a net external force on the system, because the forces of 
friction on the two masses would not necessarily be equal in magnitude.  If the two friction 
forces are not equal in magnitude, the ratios found above would not be valid.  Likewise, the 
center of mass would not necessarily be at rest with friction present. 

 
95. We assume that all motion is along a single direction.  The distance of sliding can be related to the 

change in the kinetic energy of a car, as follows. 

  
( )

( )
2 2 o1

fr fr fr N2

2 21
2

       cos180   f i k k

k f i

W K m v v W F x F x mg x

g x v v

θ μ μ

μ

= Δ = − = Δ = − Δ = − Δ →

− Δ = −
 

 For post-collision sliding, 0fv =  and iv  is the speed immediately after the collision, v′ .  Use this 
relationship to find the speed of each car immediately after the collision. 

  Car A: ( )( )( )2 21
A A A A2     2 2 0.60 9.80 m s 18 m 14.55m sk kg x v v g xμ μ′ ′ ′ ′− Δ = − → = Δ = =  

  Car B: ( ) ( )( )2 21
B B B B2     2 2 0.60 9.80 m s 30 m 18.78m sk kg x v v g xμ μ′ ′ ′ ′− Δ = − → = Δ = =  

 During the collision, momentum is conserved in one dimension.  Note that B 0.v =  

  ( ) ( ) ( ) ( )
initial final A A A A B B

A A B B

A

    

1500kg 14.55m s 1100kg 18.78m s
28.32 m s

1500kgA

p p m v m v m v

m v m v
v

m

′ ′= → = +

′ ′ ++
= = =

 

 For pre-collision sliding, again apply the friction–energy relationship, with Afv v=  and iv  is the 
speed when the brakes were first applied. 

 
( ) ( ) ( )( )( )22 2 2 21

A A2     2 28.32 m s 2 0.60 9.80 m s 15m

1mi h
31.23m s 70 mi h

0.447 m s

k i i A k Ag x v v v v g xμ μ− Δ = − → = + Δ = +

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 This is definitely over the speed limit. 
 
96. (a) The meteor striking and coming to rest in the Earth is a totally inelastic collision.  Let A  

represent the Earth and B represent the meteor.  Use the frame of reference in which the Earth is 
at rest before the collision, and so A 0.v =   Write momentum conservation for the collision. 

   ( )B B B   m v m m vΑ
′= + →  

   ( )
8

4 13B
B 24 8

A B

2.0 10 kg
2.5 10 m s 8.3 10 m s

6.0 10 kg 2.0 10 kg
m

v v
m m

−×′ = = × = ×
+ × + ×

 

  This is so small as to be considered 0. 
 

(b) The fraction of the meteor’s kinetic energy transferred to the Earth is the final kinetic energy of 
the Earth divided by the initial kinetic energy of the meteor. 

   
( )( )
( )( )

224 1312final 1
2Earth 172

221 8 41
initial B B2 2
meteor

6.0 10 kg 8.3 10 m s
3.3 10

2.0 10 kg 2.5 10 m s

K
m v

K m v

−
−Α

× ×′
= = = ×

× ×
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 (c) The Earth’s change in kinetic energy can be calculated directly. 

   ( )( )22 24 131 1
Earth final initial 2 2

Earth Earth

0 6.0 10 kg 8.3 10 m s 2.1 JK K K m v −
Α

′Δ = − = − = × × =  

 
97. Since the only forces on the astronauts are internal to the 2-astronaut system, their CM will not 

change.  Call the CM location the origin of coordinates.  That is also the original location of the two 
astronauts. 

( )( ) ( ) BA A B B
CM

A B

60 kg 12 m 80 kg
    0     9 m

140 kg
xm x m x

x x
m m

++
= → = → = −

+
 

 Their distance apart is ( )A B 12 m 9 m 21m .x x− = − − =  

 
98. This is a ballistic “pendulum” of sorts, similar to Example 9-11 in the textbook.  The mass of the 

bullet is m, and the mass of the block of wood is M.  The speed of the bullet before the collision is ,v  
and the speed of the combination after the collision is .v′   Momentum is conserved in the totally 
inelastic collision, and so ( ) .mv m M v′= +  The kinetic energy present immediately after the 
collision is lost due to negative work being done by friction. 

( )
( )

2 2 o1
afterfr fr fr N2
collision

2 2 21 1
2 2

      cos180   

    2

f i k k

k f i k

W K m v v W F x F x mg x

g x v v v v g x

θ μ μ

μ μ

= Δ = − = Δ = − Δ = − Δ →

′ ′− Δ = − = − → = Δ
 

 Use this expression for v′  in the momentum conservation equation in one dimension in order to 
solve for .v  

  

( ) ( )

( ) ( )( )2

2

2   

0.022 kg 1.35 kg
2 2 0.28 9.80 m s 8.5 m

0.022 kg

4.3 10 m s 

k

k

mv m M v m M g x

m M
v g x

m

μ

μ

′= + = + Δ →

+ +
= Δ =

= ×

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
99. (a) Conservation of mechanical energy can be used to find the velocity  

of the lighter ball before impact.  The potential energy of the ball at 
the highest point is equal to the kinetic energy of the ball just 
before impact.  Take the lowest point in the swing as the zero 
location for gravitational potential energy. 

( ) 21
initial final A2A A    1 cos   E E m g m vθ= → − = →l  

( ) ( ) ( ) ( )2
A 2 1 cos 2 9.80 m s 0.30 m 1 cos66

1.868 m s 1.9 m s  

v g θ= − = − °

= ≈

l
 

 
 (b) This is an elastic collision with a stationary target.  Accordingly, the relationships developed in  

Example 9-8 are applicable. 

   ( )A B
A A

A B

0.045kg 0.065kg
1.868m s 0.3396 m s 0.34 m s

0.045kg 0.065kg
m m

v v
m m

− −′ = = = − = −
+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

   ( ) ( )A
B A

A B

22
1.868m s 1.528m s 1.5m s

0.045kg 0.065kg
0.045kgm

v v
m m

′ = = = =
+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

cosθl

( )1 cosθ−l

θl
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 (c) We can again use conservation of energy for each ball after the collision.  The kinetic energy of  
each ball immediately after the collision will become gravitational potential energy as each ball 
rises. 

2
21

initial final 2        
2
v

E E mv mgh h
g

= → = → =  

( )
( )

( )
( )

2 22 2
3A B

A B2 2

0.3396 m s 1.528 m s
5.9 10 m   ;  0.12 m

2 2 9.80 m s 2 2 9.80 m s
v v

h h
g g

−−
= = = × = = =  

 
100. (a) Use conservation of energy to find the speed of mass m before the collision.  The potential  

energy at the starting point is all transformed into kinetic energy just before the collision. 

( )( )2 21
A A A A2     2 2 9.80 m s 3.60 m 8.40 m smgh mv v gh= → = = =  

Use Eq. 9-8 to obtain a relationship between the velocities, noting that 0.Bv =  

A B B A B A A    v v v v v v v′ ′ ′ ′− = − → = +  
Apply momentum conservation for the collision, and substitute the result from Eq. 9-8. 

   

( )

( )

A A B A A A

A A

B A A

  

2.20 kg 7.00 kg
8.4 m s 4.38 m s 4.4 m s

9.20 kg

4.4 m s 8.4 m s 4.0 m s

mv mv Mv mv M v v

m M
v v

m M

v v v

′ ′ ′ ′= + = + + →

− −′ = = = − ≈ −
+

′ ′= + = − + =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(b) Again use energy conservation to find the height to which mass m rises after the collision.  The 
kinetic energy of m immediately after the collision is all transformed into potential energy.  Use 
the angle of the plane to change the final height into a distance along the incline. 

   
( )

( )

2
2 A1

A A A2

22
A A

A 2

    
2

4.38m s
1.96 m 2.0 m

sin 30 2 sin 30 2 9.8m s sin 30

v
mv mgh h

g

h v
d

g g

′
′ ′ ′= → =

′ ′ −′ = = = = ≈
° ° °

 

 
101. Let A represent mass m and B represent mass M.  Use Eq. 9-8 to obtain a relationship between the 

velocities, noting that B 0.v =  

A B B A A B A    v v v v v v v′ ′ ′ ′− = − → = − . 
After the collision, A 0v′ <  since m is moving in the negative direction.  For there to be a second 
collision, then after m moves up the ramp and comes back down, with a positive velocity at the 
bottom of the incline of A ,v′−  the speed of m must be greater than the speed of M so that m can catch 

M.  Thus A Bv v′ ′− > , or A B.v v′ ′< −   Substitute the result from Eq. 9-8 into the inequality. 
1

B A B B A2    v v v v v′ ′ ′− < − → <  
 Now write momentum conservation for the original collision, and substitute the result from Eq. 9-8. 

  ( )A A B B A B B A

2
    

m
mv mv Mv m v v Mv v v

m M
′ ′ ′ ′ ′= + = − + → =

+
 

 Finally, combine the above result with the inequality from above. 

  1 1
A A2 3

2
   4     2.33 kg

m
v v m m M m M

m M
< → < + → < =

+
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102. Call the final direction of the joined objects the positive x axis.  A diagram of 
the collision is shown.  Momentum will be conserved in both the x and y 
directions.  Note that A Bv v v= =  and 3.v v′ =  

( )( )
1 2 1 2 1 2

2
1 2 1 2 3

1 o2 1
1 2 1 1 23 3

o
1 2

:    sin sin 0    sin sin     

:    cos cos 2 3     cos cos

cos cos 2 cos     cos 70.5

141

y

x

p mv mv

p mv mv m v

θ θ θ θ θ θ

θ θ θ θ

θ θ θ θ θ

θ θ

−

− + = → = → =

+ = → + =

+ = = → = = =

+ =

 

 
103. The original horizontal distance can be found from the range formula from Example 3-10. 

( ) ( ) ( )22 2
0 0sin 2 25m s sin 56 9.8 m s 52.87 mR v gθ= = ° =  

The height at which the objects collide can be found from Eq. 2-12c for the vertical motion, with 
0yv =  at the top of the path.  Take up to be positive. 

( ) ( ) ( )[ ]
( )

22 2
02 2

0 0 0 2

0 25m s sin 28
2     7.028 m

2 2 9.80 m s
y y

y y

v v
v v a y y y y

a
− − °

= + − → − = = =
−

 

Let m represent the bullet and M the skeet.  When the objects collide, the skeet is moving 
horizontally at ( )0 cos 25m s cos 28 22.07 m s ,xv vθ = = =°  and the bullet is moving vertically at 

230 m s.yv =   Write momentum conservation in both directions to find the velocities after the 
totally inelastic collision. 

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

0.25 kg 22.07 m s
:        20.82 m s

0.25 0.015 kg

0.015 kg 230 m s
:        13.02 m s

0.25 0.015 kg

x
x x x x

y
y y y y

Mv
p Mv M m v v

M m

mv
p mv M m v v

M m

′ ′= + → = = =
+ +

′ ′= + → = = =
+ +

 

(a) The speed yv′  can be used as the starting vertical speed in Eq. 2-12c to find the height that the 
skeet–bullet combination rises above the point of collision.   

 

( )

( ) ( )
( )

2 2
0 0 extra

22 2
0

0 2extra

2   

0 13.02 m s
8.649m 8.6 m

2 2 9.80 m s

y y

y y

v v a y y

v v
y y

a

= + − →

− −
− = = = ≈

−

 

(b) From Eq. 2-12b applied to the vertical motion after the collision, we can find the time for the  
skeet–bullet combination to reach the ground. 

  
( ) ( )2 2 21 1

0 2 2

2

    0 8.649 m 13.02 m s 9.80 m s   

4.9 13.02 8.649 0    3.207 s , 0.550s

yy y v t at t t

t t t

′= + + → = + + − →

− − = → = −
 

The positive time root is used to find the horizontal distance traveled by the combination after 
the collision. 

  ( ) ( )after 20.82 m s 3.207s 66.77 mxx v t′= = =  
 If the collision would not have happened, the skeet would have gone 1

2 R  horizontally from this  
point. 

( )1 1
after 2 266.77 m 52.87 m 40.33m 40 mx x RΔ = − = − = ≈  

  Note that the answer is correct to 2 significant figures. 
 

θ2 
θ1 

AmvG

BmvG
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104. In this interaction, energy is conserved (initial potential energy of mass - compressed spring system 
= final kinetic energy of moving blocks) and momentum is conserved, since the net external force is 
0.  Use these two relationships to find the final speeds. 

  ( )
initial final 3 3

22 2 2 2 21 1 1 1 1
initial final spring final 3 3 3 32 2 2 2 2

initial

2 21
3 32

    0 3     3

    3 3 3 6

6       ;  3
12 12

m m m m

m m m m m

m m m

p p mv mv v v

E E U K kD mv mv m v mv mv

k k
kD mv v D v D

m m

= → = − → =

= → = → = + = + =

= → = =

 

 
105. The interaction between the planet and the spacecraft is elastic, because the force of gravity is 

conservative. Thus kinetic energy is conserved in the interaction.  Consider the problem a 1-
dimensional collision, with A representing the spacecraft and B representing Saturn.  Because the 
mass of Saturn is so much bigger than the mass of the spacecraft, Saturn’s speed is not changed 
appreciably during the interaction.  Use Eq. 9-8, with A 10.4 km sv =  and B B 9.6 km s.v v′= = −  

( )A B A B A B A    2 2 9.6 km s 10.4 km s 29.6 km sv v v v v v v′ ′ ′− = − + → = − = − − = −   

 Thus there is almost a threefold increase in the spacecraft’s speed, and it reverses direction. 
 
106. Let the original direction of the cars be the positive direction.  We have A 4.50 m sv =  and 

B 3.70 m s.v =  
(a) Use Eq. 9-8 to obtain a relationship between the velocities. 

   ( )A B A B B A B A A    0.80 m sv v v v v v v v v′ ′ ′ ′ ′− = − − → = − + = +  
Substitute this relationship into the momentum conservation equation for the collision. 

   

( )
( ) ( ) ( ) ( ) ( )

A A B B A A B B A A B B A A B A

A A B B
A

A B

B A

    0.80 m s   

0.80 m s 450 kg 4.50 m s 490 kg 2.90 m s
3.666 m s

940 kg

3.67 m s 0.80 m s 4.466 m s 4.47 m s     ;  

m v m v m v m v m v m v m v m v

m v m v
v

m m

v v

′ ′ ′ ′+ = + → + = + + →

+ − +′ = = =
+

′ ′= + =≈ ≈
 (b) Calculate p p p′Δ = −  for each car. 

   

( ) ( )

( ) ( )

2
A A A A A

2
B B B B B

450 kg 3.666 m s 4.50 m s 3.753 10 kg m s

      380 kg m s

490 kg 4.466 m s 3.70 m s 3.753 10 kg m s

      380 kg m s

p m v m v

p m v m v

′Δ = − = − = − ×

≈ −

′Δ = − = − = ×

≈

i

i

i

i

 

  The two changes are equal and opposite because momentum was conserved. 
 
107. Let A represent the cube of mass M and B represent the cube of mass m.  Find the speed of A 

immediately before the collision, A ,v  by using energy conservation. 

( ) ( )2 21
A A2     2 2 9.8m s 0.35 m 2.619 m sMgh Mv v gh= → = = =  

Use Eq. 9-8 for elastic collisions to obtain a relationship between the velocities in the collision.  We 
have B 0v =  and 2 .M m=  
 ( )A B A B B A A    v v v v v v v′ ′ ′ ′− = − − → = +  

 Substitute this relationship into the momentum conservation equation for the collision. 
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( )

( )
( ) ( )

A A B B A A B B A A A A B A A

2

A
A A A A A

4
B A A A3

      

2 9.80 m s 0.35m2
2 2     0.873m s

3 3 3
3.492 m s

m v m v m v m v m v m v m v v

ghv
mv mv m v v v

v v v v

′ ′ ′ ′+ = + → = + + →

′ ′ ′= + + → = = = =

′ ′= + = =

 

Each mass is moving horizontally initially after the collision, and so each has a vertical velocity of 0 
as they start to fall.  Use constant acceleration Eq. 2-12b with down as positive and the table top as 
the vertical origin to find the time of fall. 

2 21 1
0 0 2 2    0 0     2y y v t at H gt t H g= + + → = + + → =  

 Each cube then travels a horizontal distance found by xx v tΔ = Δ . 

  
( ) ( )

( ) ( )

2 2
3 3

8 8
3 3

2 2
0.35m 0.95m 0.3844 m 0.38m

3

4 2 2
0.35m 0.95m 1.538m 1.5m

3

m A

M B

gh H
x v t hH

g

gh H
x v t hH

g

′Δ = Δ = = = = ≈

′Δ = Δ = = = = ≈

  

 
108. (a) Momentum is conserved in the z direction.  The initial z-momentum is 0. 

( )

satellite  satellite shuttle  shuttle
before after

3satellite  satellite
 shuttle

shuttle

    0   

850 kg
0.30 m s 2.8 10 m s

92,000 kg

z z z z

z
z

p p m v m v

m v
v

m
−

= → = + →

= − = − = − ×
 

And so the component in the minus z direction is 32.8 10 m s .−×  

 (b) The average force is the change in momentum per unit time.  The force on the satellite is in the  
positive z direction. 

   ( ) ( )
avg

850 kg 0.30 m s
64 N

4.0s
p m v

F
t t

Δ Δ
= = = =

Δ Δ
 

 
109. (a) The average force is the momentum change divided by the elapsed time. 

( ) ( )
5 5

avg

1m s
1500 kg 0 45km h

3.6 km h
1.25 10 N 1.3 10 N

0.15s
p m v

F
t t

−
Δ Δ

= = = = − × ≈ − ×
Δ Δ

⎛ ⎞
⎜ ⎟
⎝ ⎠  

The negative sign indicates direction – that the force is in the opposite direction to the original 
direction of motion. 

 (b) Use Newton’s second law. 

   
5

avg 2 2
avg avg avg

1.25 10 N
    83.33m s 83m s

1500 kg
F

F ma a
m

− ×
= → = = = − ≈ −  

 
110. (a) In the reference frame of the Earth, the final speed of the Earth–asteroid system is essentially 0,  

because the mass of the Earth is so much greater than the mass of the asteroid.  It is like 
throwing a ball of mud at the wall of a large building – the smaller mass stops, and the larger 
mass doesn’t move appreciably.  Thus all of the asteroid’s original kinetic energy can be 
released as destructive energy. 

 ( ) ( ) ( )3 22 3 3 4 211 1 4
orig 02 2 33200 kg m 1.0 10 m 1.5 10 m s 1.507 10 JK mv π= = × × = ×⎡ ⎤

⎣ ⎦  
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21      1.5 10 J≈ ×  

(b) 21
16

1bomb
1.507 10 J 38,000 bombs

4.0 10 J
× =

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
111. We apply Eq. 9-19b, with no external forces.  We also assume that the motion is all in one 

dimension. 

  rel rel
rel

1 1
          

d dM
M Mdv v dM dv dM

dt dt v M
= → = → = →

v
v

G
G   

( ) ( ) ( )( )

final final

final rel

0

final rel

final final
final 0

rel rel 00

2.0 35
ejected 0 final 0

1 1
    ln       

1 210 kg 1 11.66 kg 12 kg

v M
v v

M

v v

v M
dv dM M M e

v M v M

M M M M e e −

= → = → = →

= − = − = − = ≈

∫ ∫
 

 
112. (a) We take the CM of the system as the origin of  

coordinates.  Then at any time, we consider the  
x axis to be along the line connecting the star and the 
planet.  Use the definition of center of mass: 

 
( )A A B B B

CM A B
A B A

0    
m r m r m

x r r
m m m

+ −
= = → =

+
 

 (b) ( )
3

11 8B A
A B

A A

1.0 10
8.0 10 m 8.0 10 m

m m
r r

m m

−×
= = × = ×  

 (c) The geometry of this situation is illustrated  
in the adjacent diagram.  For small angles in 
radian measure, tan sin .θ θ θ≈ ≈  

   
( )

( ) ( )

8
17A A

15
1 1

1000 3600

2 8.0 10 m2 2 1 ly
tan     3.30 10 m 35ly

9.46 10 m
180

r r
d

d
θ θ πθ

×
≈ ≈ → = = = × =

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

 (d) We assume that stars are distributed uniformly, with an average interstellar distance of 4 ly.  If  
we think about each star having a spherical “volume” associated with it, that volume would 
have a radius of 2 ly (half the distance to an adjacent star).  Each star would have a volume of 

( )334 4
star3 3
to
star

2 ly .rπ π=   If wobble can be detected from a distance of 35 ly, the volume over which 

wobble can be detected is ( )334 4
detectable3 3
wobble

35ly .rπ π=  

 ( )
( )

34
33 detectable

wobble
334

3 star
to star

35ly
#  stars 5400 stars

2 ly

r

r

π

π
= = ≈  

 
113. This is a totally inelastic collision in one dimension.  Call the direction of the Asteroid A the positive  

direction. 
 ( )initial final A A B B A B      p p m v m v m m v′= → + = + →  

Am
Bm

ArBr

θ A2r
d
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( ) ( ) ( ) ( )12 13

A A B B
12 13

A B

7.5 10 kg 3.3km s 1.45 10 kg 1.4 km s

7.5 10 kg 1.45 10 kg

0.2 km s, in the original direction of asteroid A  

m v m v
v

m m

× + × −+′ = =
+ × + ×

=

  

 
114. (a) The elastic, stationary-target one-dimensional collision is analyzed in Example 9-8.  We can use  

the relationships derived there to find the final velocity of the target. 

   A A A A
B A

A B A B B A

2 2 2
1

m m v v
v v

m m m m m m
′ = = =

+ + +
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  Note that since B A ,m m<  B A.v v′ >  
 (b) In this scenario, the first collision would follow the same calculation as above, giving C.v′   Then  

particle C is incident on particle B, and using the same calculation as above, would give B.v′  

   

( ) ( )

A
C A

A C

C A C A C
B C A A

B C A C B C A C B C

2

2 2 2
4

m
v v

m m

m m m m m
v v v v

m m m m m m m m m m

′ =
+

′ ′= = =
+ + + + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 (c) To find the value of Cm  that gives the maximum B,v′ set B

C

0
dv
dm

′
=  and solve for C.m  

   

( ) ( ) ( )[ ]
( ) ( )

( ) ( ) ( )

A C B C C A B CB
A A 2 2

C A C B C

A C B C C A B C

2
A B C C A B

2
4 0  

2 0  

0    

m m m m m m m mdv
v m

dm m m m m

m m m m m m m m

m m m m m m

′ + + − + +
= = →

+ +

+ + − + + = →

− = → =

 

(d) The graph is shown here.  The numeric maximum of the graph has B 4.5m sv′ =  and occurs at  

C 6.0 kg .m =   According to the analysis from part (c), the value of C A Bm m m= =   

( ) ( )18.0 kg 2.0 kg 6.0 kg,=  and gives a speed of 
( ) ( )

A A C
B

A C B C

4v m m
v

m m m m
′ =

+ +
 

( ) ( ) ( )
( ) ( )

4 2.0 m s 18.0 kg 6.0 kg
24.0 kg 8.0 kg

4.5m s.=

=
. 

The numeric results agree with the 
analytical results.  The spreadsheet 
used for this problem can be found on 
the Media Manager, with filename 
“PSE4_ISM_CH09.XLS,” on tab 
“Problem 9.114d.” 
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CHAPTER 10:  Rotational Motion 
 
Responses to Questions 
 
1.  The odometer will register a distance greater than the distance actually traveled. The odometer 

counts the number of revolutions and the calibration gives the distance traveled per revolution (2πr). 
The smaller tire will have a smaller radius, and a smaller actual distance traveled per revolution. 

 
2.   A point on the rim of a disk rotating with constant angular velocity has no tangential acceleration 

since the tangential speed is constant. It does have radial acceleration. Although the point’s speed is 
not changing, its velocity is, since the velocity vector is changing direction. The point has a 
centripetal acceleration, which is directed radially inward. If the disk’s angular velocity increases 
uniformly, the point on the rim will have both radial and tangential acceleration, since it is both 
moving in a circle and speeding up. The magnitude of the radial component of acceleration will 
increase in the case of the disk with a uniformly increasing angular velocity, although the tangential 
component will be constant. In the case of the disk rotating with constant angular velocity, neither 
component of linear acceleration will change. 

 
3.  No. The relationship between the parts of a non-rigid object can change. Different parts of the object 

may have different values of ω. 
 
4.  Yes. The magnitude of the torque exerted depends not only on the magnitude of the force but also on 

the lever arm, which involves both the distance from the force to the axis of rotation and the angle at 
which the force is applied. A small force applied with a large lever arm could create a greater torque 
than a larger force with a smaller lever arm.   

 
5. When you do a sit-up, you are rotating your trunk about a horizontal axis through your hips. When 

your hands are behind your head, your moment of inertia is larger than when your hands are 
stretched out in front of you. The sit-up with your hands behind your head will require more torque, 
and therefore will be “harder” to do. 

 
6.  Running involves rotating the leg about the point where it is attached to the rest of the body. 

Therefore, running fast requires the ability to change the leg’s rotation easily. The smaller the 
moment of inertia of an object, the smaller the resistance to a change in its rotational motion. The 
closer the mass is to the axis of rotation, the smaller the moment of inertia. Concentrating flesh and 
muscle high and close to the body minimizes the moment of inertia and increases the angular 
acceleration possible for a given torque, improving the ability to run fast. 

 
7.  No. If two equal and opposite forces act on an object, the net force will be zero. If the forces are not 

co-linear, the two forces will produce a torque. No. If an unbalanced force acts through the axis of 
rotation, there will be a net force on the object, but no net torque.  

 
8.  The speed of the ball will be the same on both inclines. At the top of the incline, the ball has 

gravitational potential energy. This energy becomes converted to translational and rotational kinetic 
energy as the ball rolls down the incline. Since the inclines have the same height, the ball will have 
the same initial potential energy and therefore the same final kinetic energy and the same speed in 
both cases. 

 
9. Roll the spheres down an incline. The hollow sphere will have a great moment of inertia and will 

take longer to reach the bottom of the incline. 
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10.  The two spheres will reach the bottom at the same time with the same speed. The larger, more 
massive sphere will have the greater total kinetic energy at the bottom, since the total kinetic energy 
can be stated in terms of mass and speed. 

 
11.  A tightrope walker carries a long, narrow beam in order to increase his or her moment of inertia, 

making rotation (and falling off the wire) more difficult. The greater moment of inertia increases the 
resistance to change in angular motion, giving the walker more time to compensate for small shifts 
in position. 

 
12.  The moment of inertia of a solid sphere is given by 22

5 MR and that of a solid cylinder is given 

by 21
2 MR . The solid sphere, with a smaller moment of inertia and therefore a smaller resistance to 

change in rotational motion, will reach the bottom of the incline first and have the greatest speed. 
Since both objects begin at the same height and have the same mass, they have the same initial 
potential energy. Since the potential energy is completely converted to kinetic energy at the bottom 
of the incline, the two objects will have the same total kinetic energy. However, the cylinder will 
have a greater rotational kinetic energy because its greater moment of inertia more than compensates 
for its lower velocity. At the bottom, 10

sphere 7v gh= and 4
cylinder 3 .v gh=  Since rotational kinetic 

energy is 21
rot 2 ,K Iω=  then 2

rot 7
sphere

K mgh=  and 1
rot 3
cylinder

.K mgh=  

 
13. The moment of inertia will be least about an axis parallel to the spine of the book, passing through 

the center of the book. For this choice, the mass distribution for the book will be closest to the axis. 
 
14.  Larger. The moment of inertia depends on the distribution of mass. Imagine the disk as a collection 

of many little bits of mass. Moving the axis of rotation to the edge of the disk increases the average 
distance of the bits of mass to the axis, and therefore increases the moment of inertia. (See the 
Parallel Axis theorem.) 

 
15. If the angular velocity vector of a wheel on an axle points west, the wheel is rotating such that the 

linear velocity vector of a point at the top of the wheel points north. If the angular acceleration 
vector points east (opposite the angular velocity vector), then the wheel is slowing down and the 
linear acceleration vector for the point on the top of the wheel points south. The angular speed of the 
wheel is decreasing. 

 
 
Solutions to Problems 
 
1. (a) ( ) ( )45.0 2  rad 360 4 rad 0.785radπ π° ° = =  

 (b) ( ) ( )60.0 2  rad 360 3rad 1.05radπ π° ° = =  

 (c) ( ) ( )90.0 2  rad 360 2 rad 1.57 radπ π° ° = =  

(d) ( ) ( )o360.0 2  rad 360 2 rad 6.283radπ π° = =  

(e) ( ) ( )445 2  rad 360 89 36 rad 7.77 radπ π° ° = =  
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2. The subtended angle (in radians) is the diameter of the Sun divided by the Earth – Sun distance. 
   

  

( ) ( )
Earth Sun

11 8 81 1
Earth Sun2 2

diameter of Sun
  

rad
radius of Sun 0.5 1.5 10 m 6.545 10 m 7 10 m

180

r

r

θ

πθ

−

−

= →

= = ° × = × ≈ ×
°

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
3. We find the diameter of the spot from the definition of radian angle measure. 

( ) ( )5 8
Earth Moon

Earth Moon

diameter
    diameter 1.4 10 rad 3.8 10 m 5300 mr

r
θ θ −

−
−

= → = = × × =  

 

4. The initial angular velocity is 
rev 2  rad 1 min

6500 681rad s
min 1 rev 60 sec

.o

πω = =⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

  Use the   

definition of angular acceleration. 
20 681rad s

170 rad s
4.0 st

ωα Δ −
= = = −

Δ
 

 

5. (a) 
2500 rev 2 rad 1min

261.8 rad sec 260 rad sec
1min 1rev 60s

πω = = ≈
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

 (b) ( )( )261.8 rad sec 0.175 m 46 m sv rω= = =  

  ( ) ( )22 4 2
R 261.8 rad sec 0.175 m 1.2 10 m sa rω= = = ×  

 
6. In each revolution, the wheel moves forward a distance equal to its circumference, .dπ  

  ( ) ( )rev

7200 m
    3400 rev

0.68 m
x

x N d N
d

π
π π
Δ

Δ = → = = =  

 
7. The angular velocity is expressed in radians per second.  The second hand makes 1 revolution every 

60 seconds, the minute hand makes 1 revolution every 60 minutes, and the hour hand makes 1 
revolution every 12 hours. 

 (a) Second hand: 11 rev 2  rad rad
rad sec 1.05 10

60sec 1 rev 30 sec
π πω −= = ≈ ×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 (b) Minute hand: 31 rev 2 rad 1min rad rad
1.75 10

60 min 1 rev 60 s 1800 sec sec
π πω −= = ≈ ×

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

 (c) Hour hand: 41 rev 2 rad 1h rad rad
1.45 10

12 h 1 rev 3600 s 21,600 sec sec
π πω −= = ≈ ×

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

 (d) The angular acceleration in each case is  0 , since the angular velocity is constant. 
 
8. The angular speed of the merry-go-round is 2 rad 4.0s 1.57 rad s.π =  

 (a) ( )( )1.57 rad sec 1.2 m 1.9 m sv rω= = =  
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 (b) The acceleration is radial.  There is no tangential acceleration. 

   ( ) ( )22 2
R 1.57 rad sec 1.2 m 3.0 m s towards the centera rω= = =  

 
9. Each location will have the same angular velocity (1 revolution per day), but the  

radius of the circular path varies with the location.  From the diagram, we see  
cos ,r R θ=  where R is the radius of the Earth, and r is the radius at latitude .θ  

 (a) ( )62 2 rad 1day
6.38 10 m 464 m s

1day 86400s
v r r

T
π πω= = = × =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 (b) ( )62 2 rad 1day
6.38 10 m cos66.5 185m s

1day 86400s
v r r

T
π πω= = = × ° =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 (c) ( )62 2 rad 1day
6.38 10 m cos 45.0 328 m s

1day 86400s
v r r

T
π πω= = = × ° =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
10. (a) The Earth makes one orbit around the Sun in one year. 

   7
orbit 7

2 rad 1 year
1.99 10 rad s

1year 3.16 10 st
θ πω −Δ

= = = ×
Δ ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 (b) The Earth makes one revolution about its axis in one day. 

   5
rotation

2 rad 1day
7.27 10 rad s

1day 86,400st
θ πω −Δ

= = = ×
Δ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
11. The centripetal acceleration is given by 2 .a rω=    Solve for the angular velocity. 

  
( ) ( )2

4
100,000 9.80 m s rad 1rev 60s

3741 3.6 10 rpm
0.070 m s 2 rad 1 min

a
r

ω
π

= = = = ×
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
12. Convert the rpm values to angular velocities. 

0

rev 2  rad 1 min
130 13.6 rad s

min 1 rev 60 sec
rev 2  rad 1 min

280 29.3 rad s
min 1 rev 60 sec

πω

πω

= =

= =

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

  

(a) The angular acceleration is found from Eq. 10-3a. 

   2 20 29.3rad s 13.6 rad s
3.93rad s 3.9 rad s

4.0 st
ω ωα − −

= = = ≈  

 (b) To find the components of the acceleration, the instantaneous angular velocity is needed. 
( ) ( )2

0 13.6 rad s 3.93rad s 2.0s 21.5 rad stω ω α= + = + =  

The instantaneous radial acceleration is given by 2
R .a rω=  

   ( ) ( )22 2
R 21.5rad s 0.35m 160 m sa rω= = =  

  The tangential acceleration is given by tana rα= . 

   ( ) ( )2 2
tan 3.93rad s 0.35m 1.4 m sa rα= = =  

 
 

θ 
θ 

R 

r 
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13. (a) The angular rotation can be found from Eq. 10-3a.  The initial angular frequency is 0 and the  
final frequency is 1 rpm. 

   4 2 4 20

rev 2 rad 1.0 min
1.0 0

min 1 rev 60 s 1.454 10 rad s 1.5 10 rad s
720 st

π
ω ωα − −

−
−

= = = × ≈ ×

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

(b) After 7.0 min (420 s), the angular speed is as follows. 
( ) ( )4 2 2

0 0 1.454 10 rad s 420s 6.107 10 rad stω ω α − −= + = + × = ×  

  Find the components of the acceleration of a point on the outer skin from the angular speed and  
the radius. 

   
( ) ( )

( ) ( )

4 2 4 2
tan

22 2 2 2
rad

1.454 10 rad s 4.25m 6.2 10 m s

6.107 10 rad s 4.25m 1.6 10 m s

a R

a R

α

ω

− −

− −

= = × = ×

= = × = ×
 

 
14. The tangential speed of the turntable must be equal to the tangential speed of the roller, if there is no  

slippage. 
  1 2 1 1 2 2 1 2 2 1        v v R R R Rω ω ω ω= → = → =  

 

15. (a) The direction of 1ω is along the axle of the wheel, to the left.  That is the ˆ−i direction.  The  

direction of 2ω is also along its axis of rotation, so it is straight up.  That is the ˆ+k direction.  
That is also the angular velocity of the axis of the wheel. 

(b) At the instant shown in the textbook, we have the vector relationship  
as shown in the diagram. 

( ) ( )2 22 2
1 2

1 12

2

44.0 rad s 35.0 rad s 56.2 rad s

35.0
tan tan 38.5

44.0

ω ω ω

ωθ
ω

− −

= + = + =

= = = °
 

(c) Angular acceleration is given by .d
dt

=
ω

α
G

G   Since  1 2 ,= +ω ω ωG G G  and 2ωG  is a constant 

ˆ35.0 rad s ,k  1 .d
dt

=
ω

α
G

G   1ω
G  is rotating counterclockwise about the z axis with the angular 

velocity of 2 ,ω  and so if the figure is at t = 0, then ( )1 1 2 2
ˆ ˆcos sin .t tω ω ω= − −ω i jG   

( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 21 2 1
1 2 2 2

2
1 2

ˆ ˆcos sin ˆ ˆsin cos

ˆ ˆ ˆ0 44.0 rad s 35.0 rad s 1540 rad s

d t tdd d
t t

dt dt dt dt

t

ω ω ω
ω ω ω ω

ω ω

− −+
= = = = = −

= = − = − = −

⎡ ⎤⎣ ⎦i jω ωω ω
α i j

α j j j

G GG G
G

G
    

 
16. (a) For constant angular acceleration: 

   
22

1200 rev min 3500 rev min 2300 rev min 2  rad 1 min
2.5 s 2.5s 1 rev 60 s

   96.34 96 rad srad s

o

t
ω ω πα − − −

= = =

= − −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

≈
  

 
 
 

 

x

z

ω 1 

ω 2 
ω 

θ 
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 (b) For the angular displacement, given constant angular acceleration: 

( ) ( ) ( )1 1
2 2

1 min
3500 rev min 1200 rev min 2.5 s 98 rev

60 so tθ ω ω= + = + =⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
17. The angular displacement can be found from Eq. 10-9d. 

    ( ) ( ) ( ) ( ) 41 1
2 2 0 15000 rev min 220s 1min 60s 2.8 10 revot tθ ω ω ω= = + = + = ×  

 
18. (a) The angular acceleration can be found from Eq. 10-9b with 0.oω =  

( )
( )

1 2
22

2 20 rev2
4.0 10 rev min

1.0 mint
θα = = = ×  

 (b) The final angular speed can be found from ( )1
2 ,o tθ ω ω= +  with 0.oω =  

   ( ) 12 20 rev2
4.0 10 rpm

1.0 minot
θω ω= − = = ×  

 
19. (a) The angular acceleration can be found from Eq. 10-9c. 

   
( )
( )

2 22 2

2 2

0 850 rev min rev 2  rad 1 min rad
267.6 0.47

2 2 1350 rev min 1 rev 60 s s
oω ω πα

θ
−−

= = = − = −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

(b) The time to come to a stop can be found from ( )1
2 .o tθ ω ω= +  

( )2 1350 rev2 60s
190s

850 rev min 1mino

t
θ

ω ω
= = =

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

20. We start with .d
dt
ωα =   We also assume that α  is constant, that the angular speed at time 0t =  is 

0 ,ω  and that the angular displacement at time 0t =  is 0. 

  

( ) ( )

0

0 0
0

21
0 0 0 0 2

0 0

                

            

t

t

d
d dt d dt t t

dt

d
t d t dt d t dt t t

dt

ω

ω

θ

ωα ω α ω α ω ω α ω ω α

θω ω α θ ω α θ ω α θ ω α

= → = → = → − = → = +

= + = → = + → = + → = +

∫ ∫

∫ ∫
 

 
21. Since there is no slipping between the wheels, the tangential component of the linear acceleration of 

each wheel must be the same. 
 (a) tan tan small small large large

small large

      a a r rα α= → = →  

( )2 2 2small
large small

large

2.0 cm
7.2 rad s 0.6857 rad s 0.69 rad s

21.0 cm
r
r

α α= = = ≈⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) Assume the pottery wheel starts from rest.  Convert the speed to an angular speed, and  
then use Eq. 10-9a. 

   
rev 2  rad 1 min

65 6.807 rad s
min 1 rev 60 s

πω = =⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

   0
0 2

6.807 rad s
    9.9s

0.6857 rad s
t t

ω ωω ω α
α
−

= + → = = =  
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22. We are given that 2 48.5 15.0 1.6 .t t tθ = − +  

 (a) 38.5 30.0 6.4 ,d
t t

dt
θω = = − +  where ω  is in rad/sec and t is in sec. 

 (b) 230.0 19.2 ,d
t

dt
ωα = = − +  where α  is in 2rad sec and t is in sec. 

 (c) ( ) ( ) ( )33.0 8.5 30.0 3.0 6.4 3.0 91rad sω = − + =  

( ) ( )2 23.0 30.0 19.2 3.0 140 rad sα = − + =  

 (d) The average angular velocity is the angular displacement divided by the elapsed time. 

   

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

avg

2 4 2 4

3.0 2.0
3.0s 2.0s

8.5 3.0 15.0 3.0 1.6 3.0 8.5 2.0 15.0 2.0 1.6 2.0
     

1.0s

38 rad s    

t
θ θθω

−Δ
= =

Δ −

− + − − +
=

=

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

 (e) The average angular acceleration is the change in angular velocity divided by the elapsed time. 

   

( ) ( )

( ) ( ) ( ) ( )

avg

3 3

2

3.0 2.0
3.0s 2.0s

8.5 30.0 3.0 6.4 3.0 8.5 30.0 2.0 6.4 2.0
     92 rad s

1.0s

t
ω ωωα

−Δ
= =

Δ −

− + − − +
= =
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

 
23. (a) The angular velocity is found by integrating the angular acceleration function. 

   ( )2 3 21 1
3 2

0 0 0

        5.0 8.5     5.0 8.5
t td

d dt d dt t t dt t t
dt

ωωα ω α ω α ω= → = → = = − → = −∫ ∫ ∫  

 (b) The angular position is found by integrating the angular velocity function. 

   
( )3 21 1

3 2
0 0 0

4 31 1
12 6

        5.0 8.5   

5.0 8.5

t td
d dt d dt t t dt

dt

t t

θθω θ ω θ ω

θ

= → = → = = − →

= −

∫ ∫ ∫
 

 (c) ( ) ( ) ( )3 21 1
3 22.0s 5.0 2.0 8.5 2.0 3.7 rad s 4 rad sω = − = − ≈ −  

  ( ) ( ) ( )4 31 1
12 62.0s 5.0 2.0 8.5 2.0 4.67 rad 5radθ = − = − ≈ −  

 
24. (a) The maximum torque will be exerted by the force of her weight, pushing tangential to the circle  

in which the pedal moves. 

   ( ) ( ) ( )2 20.17 m 62 kg 9.80 m s 1.0 10 m Nr F r mgτ ⊥ ⊥= = = = × i  

(b) She could exert more torque by pushing down harder with her legs, raising her center of mass.   
She could also pull upwards on the handle bars as she pedals, which will increase the downward 
force of her legs. 
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25. Each force is oriented so that it is perpendicular to its lever arm.  Call counterclockwise torques 
positive.  The torque due to the three applied forces is given by the following. 

( )( ) ( )( ) ( )( )applied
forces

28 N 0.24 m 18 N 0.24 m 35 N 0.12 m 1.8 m Nτ = − − = − i  

Since this torque is clockwise, we assume the wheel is rotating clockwise, and so the frictional  
torque is counterclockwise.  Thus the net torque is as follows. 

( )( ) ( )( ) ( )( )net 28 N 0.24 m 18 N 0.24 m 35 N 0.12 m 0.40 m N 1.4 m N

     1.4 m N , clockwise

τ = − − + = −

=

i i

i
 

 
26. The torque is calculated by sin .rFτ θ=   See the diagram, from the top view. 
 (a) For the first case, 90 .θ = °  

( ) ( )sin 0.96 m 32 N sin 90 31m NrFτ θ= = ° = i  

 (b) For the second case, 60.0 .θ = °  
( ) ( )sin 0.96 m 32 N sin 60.0 27 m NrFτ θ= = ° = i  

 
27. There is a counterclockwise torque due to the force of gravity on the left block, and a clockwise 

torque due to the force of gravity on the right block.  Call clockwise the positive direction. 
( )2 1 2 1 , clockwisemg mg mgτ = − = −∑ l l l l  

 
28. The lever arm to the point of application of the force is along the x axis.  Thus the perpendicular part 

of the force is the y component.  Use Eq. 10-10b. 
 ( ) ( )0.135m 43.4 N 5.86 m N, counterclockwiseRFτ ⊥= = = i  

 
29. The force required to produce the torque can be found from sin .rFτ θ=   The force is applied  

perpendicularly to the wrench, so 90 .θ = °   

  
75m N

270 N
0.28 m

F
r
τ

= = =
i

 

The net torque still must be 75m N.i   This is produced by 6 forces, one at each of the 6 points.  We 
assume that those forces are also perpendicular to their lever arms. 

  ( ) ( )net point point point

75 m N
6     1700 N

6 6 0.0075m
F r F

r
ττ = → = = =

i
 

 
30. For each torque, use Eq. 10-10c.  Take counterclockwise torques to be positive. 
 (a) Each force has a lever arm of 1.0 m. 

( ) ( ) ( ) ( )about
C

1.0 m 56 N sin 30 1.0 m 52 N sin 60 17m Nτ = − ° + ° = i  

 (b) The force at C has a lever arm of 1.0 m, and the force at the top has a lever arm of 2.0 m. 
( ) ( ) ( ) ( )about

P

2.0 m 56 N sin 30 1.0 m 65 N sin 45 10 m Nτ = − ° + ° = − i  (2 sig fig) 

  The negative sign indicates a clockwise torque. 
 
31. For a sphere rotating about an axis through its center, the moment of inertia is as follows.  

  ( ) ( )22 22 2
5 5 10.8 kg 0.648 m 1.81 kg mI MR= = = i  

 

θ 

r 

F
G
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32. Since all of the significant mass is located at the same distance from the axis of rotation, the moment  
of inertia is given by 2.I MR=  

  ( ) ( )( )22 21
21.1kg 0.67m 0.12 kg mI MR= = = i  

The hub mass can be ignored because its distance from the axis of rotation is very small, and so it 
has a very small rotational inertia. 

 
33. (a) The torque exerted by the frictional force is fr sin .rFτ θ=   The force of  

friction is assumed to be tangential to the clay, and so 90 .θ = °  
( )( ) ( )1

total fr 2sin 0.12 m 1.5 N sin 90 0.090 m NrFτ θ= = ° = i  

(b) The time to stop is found from ,o tω ω α= +  with a final angular  

velocity of 0.  The angular acceleration can be found from total .Iτ α=   
The net torque (and angular acceleration) is negative since the object is slowing. 

 ( ) ( )
( ) ( )2

0 1.6 rev s 2 rad rev
12s

0.090 m N 0.11kg m
o ot

I
πω ω ω ω

α τ
−− −

= = = =
− i i

 

 
34. The oxygen molecule has a “dumbbell” geometry, rotating about the dashed line, as 

shown in the diagram.  If the total mass is M, then each atom has a mass of M/2.  If 
the distance between them is d, then the distance from the axis of rotation to each 
atom is d/2.  Treat each atom as a particle for calculating the moment of inertia. 

  
( )( ) ( )( ) ( )( )

( ) ( )

2 2 2 21
4

46 2 26 10

2 2 2 2 2 2 2   

4 4 1.9 10 kg m 5.3 10 kg 1.2 10 m

I M d M d M d Md

d I M − − −

= + = = →

= = × × = ×i
 

 
35. The torque can be calculated from .Iτ α=   The rotational inertia of a rod about its end is given by 

21
3 .I ML=  

  ( ) ( ) ( ) ( )221 1
3 3

2.7 rev s 2 rad rev
2.2 kg 0.95m 56 m N

0.20s
I ML

t
πωτ α Δ

= = = =
Δ

i  

 
36. (a) The moment of inertia of a cylinder is 21

2 .MR  

   ( ) ( )22 3 2 3 21 1
2 2 0.380 kg 0.0850 m 1.373 10 kg m 1.37 10 kg mI MR − −= = = × ≈ ×i i  

 (b) The wheel slows down “on its own” from 1500 rpm to rest in 55.0s.  This is used to calculate  
the frictional torque. 

   ( ) ( ) ( ) ( )3 2
fr fr

0 1500 rev min 2  rad rev 1 min 60 s
1.373 10 kg m

55.0 s
I I

t
πωτ α − −Δ

= = = ×
Δ

i  

3   3.921 10 m N−= − × i  
The net torque causing the angular acceleration is the applied torque plus the (negative) 
frictional torque. 

applied fr applied fr fr    I I I
t
ωτ τ τ α τ α τ τΔ

= + = → = − = −
Δ∑  

( ) ( ) ( ) ( ) ( )3 2 3

2

1750 rev min 2 rad rev 1 min 60 s
     1.373 10 kg m 3.921 10 m N

5.00 s

     5.42 10 m N

π− −

−

= × − ×

= ×

−i i

i

 

direction of 
rotation 

frF
G
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37. (a) The small ball can be treated as a particle for calculating its moment of inertia. 

   ( ) ( )22 20.650 kg 1.2 m 0.94 kg mI MR= = = i  

(b) To keep a constant angular velocity, the net torque must be zero, and so the torque needed is the  
same magnitude as the torque caused by friction. 

   ( ) ( ) 2
applied fr applied fr fr0    0.020 N 1.2 m 2.4 10 m NF rτ τ τ τ τ −= = → = = = = ×−∑ i  

 
38. (a) The torque gives angular acceleration to the ball only, since the arm is considered massless.   

The angular acceleration of the ball is found from the given tangential acceleration. 

   
( ) ( ) ( )2 2 2tan

tan 3.6 kg 0.31m 7.0 m s

  7.812 m N 7.8 m N

a
I MR MR MRa

R
τ α α= = = = =

= ≈i i
 

(b) The triceps muscle must produce the torque required, but with a lever arm of only 2.5 cm, 
 perpendicular to the triceps muscle force. 

   ( )2    7.812 m N 2.5 10 m 310 NFr F rτ τ −
⊥ ⊥= → = = × =i  

 
39. (a) The angular acceleration can be found from the following. 

( ) ( ) 2 28.5m s 0.31m
78.34 rad s 78 rad s

0.35 s
v r

t t t
ω ωα Δ

= = = = = ≈
Δ

 

(b) The force required can be found from the torque, since sin .Frτ θ=   In this situation the force 
is perpendicular to the lever arm, and so 90 .θ = °   The torque is also given by ,Iτ α=  where I  
is the moment of inertia of the arm-ball combination.  Equate the two expressions for the torque, 
and solve for the force. 

 

( ) ( ) ( ) ( )
( ) ( )

2 21
3ball ball arm arm

o

2 21
23

sin

sin sin 90

1.00 kg 0.31m 3.7 kg 0.31 m
   78.34 rad s 670 N

0.025m

Fr I

I m d m L
F

r r

θ α

α α
θ

=

+
= =

+
= =

 

 
40. (a) To calculate the moment of inertia about the y axis (vertical), use the following. 
   ( ) ( ) ( ) ( )2 2 2 22 0.50 m 0.50 m 1.00 m 1.00 mi ixI M R m M m M= = + + +∑  

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 0.50 m 1.00 m 5.3kg 0.50 m 1.00 m 6.6 kg mm M= + + = + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ i  

 (b) To calculate the moment of inertia about the x-axis (horizontal), use the following. 

   ( ) ( )22 22 2 0.25m 0.66 kg mi iyI M R m M= = + =∑ i  

(c) Because of the larger I value, it is ten times harder to accelerate the array about  
the vertical axis .  

 
41. The torque required is equal to the angular acceleration times the moment of inertia.  The angular 

acceleration is found using Eq. 10-9a.  Use the moment of inertia of a solid cylinder. 
  0     t tω ω α α ω= + → =  

  ( ) ( ) ( ) ( )
( )

22
2 401
02

31000 kg 7.0 m 0.68 rad s
2.2 10 m N

2 2 24 s
MR

I MR
t t
ω ωτ α= = = = = ×⎛ ⎞

⎜ ⎟
⎝ ⎠

i  
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42. The torque supplied is equal to the angular acceleration times the moment of inertia.  The angular 
acceleration is found using Eq. 10-9b, with 0 0.ω =   Use the moment of inertia of a sphere. 

  
( )

( ) ( )
( ) ( )

2 21 2
0 02 52 2

22

22
0

2 2
      ;    

5 10.8 m N 15.0s5
21kg

4 4 0.36 m 360 rad

t I Mr
t t

t
M

r

θ θθ ω α α τ α

τ
θ π

= + → = = = →

= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

i
  

 
43. The applied force causes torque, which gives the pulley an angular acceleration.  Since the applied 

force varies with time, so will the angular acceleration.  The variable acceleration will be integrated 
to find the angular velocity.  Finally, the speed of a point on the rim is the tangential velocity of the 
rim of the wheel. 

  

( ) ( )

( ) ( )
( ) ( )

0

0 T 0 T 0 T
0

0

0 0
0 T T

0 0 0

2 2 2
2 2 30 0 0 3 0.20

T 2 3
0 0

2
23 0.

22

T 0

              

  

3.00 0.20  N s

0.330 m
8.0s 8.0s

0.385 kg m

t

T

t t

t t

R F d R F R F
R F I d dt d dt

I dt I I

v R R
F dt F dt

R I I

R R R
v R F dt t t dt t t

I I I

v t

ω

ω

ωτ α α ω ω

ω ω

ω

= = → = = → = → = →

= = + = →

= = − = −

= = −

⎡ ⎤= ⎣ ⎦

∑ ∫ ∫

∫ ∫

∫ ∫ i

i
( )( )320

3 8.0s N s 17.499 m s 17 m s= ≈⎡ ⎤⎣ ⎦i

 

 
44. The torque needed is the moment of inertia of the system (merry-go-round and children) times the 

angular acceleration of the system.  Let the subscript “mgr” represent the merry-go-round. 

  

( ) ( )

( ) ( )[ ]( ) ( ) ( ) ( )

2 2 01
mgr children mgr child2

21
2

2

15 rev min 2 rad rev 1min 60 s
 760 kg 2 25kg 2.5 m

10.0s

 422.15m N 420 m N

I I I M R m R
t t
ω ω ωτ α

π

Δ −
= = + = +

Δ

= +

= ≈i i

 

The force needed is calculated from the torque and the radius.  We are told that the force is directed 
perpendicularly to the radius. 

  sin     422.15m N 2.5 m 170 NF R F Rτ θ τ⊥ ⊥= → = = =i  

 
45. Each mass is treated as a point particle.  The first mass is at the 

axis of rotation; the second mass is a distance l  from the axis of 
rotation; the third mass is 2l  from the axis, and the fourth mass 
is 3l from the axis. 

 (a) ( ) ( )2 22 22 3 14I M M M M= + + =l l l l  
 (b) The torque to rotate the rod is the perpendicular component of force times the lever arm, and is  

also the moment of inertia times the angular acceleration. 

   
2

14
3

14
    

3
I M

I F r F M
r
α ατ α α⊥ ⊥= = → = = =

l
l

l
  

 

l l l

F
G



Chapter 10  Rotational Motion 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

315 

 (c) The force must be perpendicular to the rod connecting the masses, and perpendicular to the axis  
of rotation.  An appropriate direction is shown in the diagram. 

 
46. (a) The free body diagrams are shown.  Note that only the forces producing  

torque are shown on the pulley.  There would also be a gravity force on 
the pulley (since it has mass) and a normal force from the pulley’s 
suspension, but they are not shown. 

(b) Write Newton’s second law for the two blocks, taking the positive x 
direction as shown in the free body diagrams.  

( )
( ) ( )

( )

( )

A TA A A A

TA A A

2 2

B B B TB B

TB B B

:   sin   

         sin

              8.0kg 9.80 m s sin 32 1.00 m s 49.55 N

              50 N  2 sig fig

:   sin   

          sin

              10

x

x

m F F m g m a

F m g a

m F m g F m a

F m g a

θ

θ

θ

θ

= − = →

= +

= ° + =

≈

= − = →

= −

=

⎡ ⎤⎣ ⎦

∑

∑

( ) ( )2 2.0kg 9.80 m s sin 61 1.00 m s 75.71N

              76 N

° − =

≈

⎡ ⎤⎣ ⎦

 

(c) The net torque on the pulley is caused by the two tensions.  We take clockwise torques as 
positive. 

( ) ( ) ( )TB TB 75.71N 49.55 N 0.15m 3.924m N 3.9m NF F Rτ = − = − = ≈∑ i i  
Use Newton’s second law to find the rotational inertia of the pulley.  The tangential acceleration 
of the pulley’s rim is the same as the linear acceleration of the blocks, assuming that the string 
doesn’t slip. 

   
( )

( ) ( ) ( )

TB TB

22
2TB TB

2

  

75.71N 49.55 N 0.15m
0.59 kg m

1.00 m s

a
I I F F R

R
F F R

I
a

τ α= = = − →

− −
= = =

∑

i
 

 
47. (a) The moment of inertia of a thin rod, rotating about its end, is 21

3 .ML   There are three blades to  
add together. 

 ( ) ( ) ( )22 2 2 3 21
total 33 135kg 3.75m 1898kg m 1.90 10 kg mI M M= = = = ≈ ×i il l  

 
 (b) The torque required is the rotational inertia times the angular acceleration, assumed constant. 

   ( ) ( ) ( )20
total total

5.0 rev/sec 2 rad rev
1898 kg m 7500 m N

8.0s
I I

t
πω ωτ α −

= = = =i i  

 
48.  The torque on the rotor will cause an angular acceleration given by .Iα τ=  The torque and angular  

acceleration will have the opposite sign of the initial angular velocity because the rotor is being 
brought to rest.  The rotational inertia is that of a solid cylinder.  Substitute the expressions for 
angular acceleration and rotational inertia into the equation 2 2 2 ,oω ω αθ= +  and solve for the 
angular displacement. 

NAF
G TAF

G

Am gG
Aθ

xy

Aθ

Bθ

Bm gG

TBF
G

Bθ

NBF
G

x

y

TAF
G

TBF
G
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( ) ( )

2 2
2 2

21
2

0
2

2 2 2 4
    o

MR
I MR

ο ο ο οω ω ω ω ωω ω αθ θ
α τ τ τ

2 2 2 2− − − −
= + = = = =→  

  

( ) ( )

( )

2
2 rev 2 rad 1min

3.80 kg 0.0710 m 10,300
min 1rev 60s 1rev

  4643rad
4 1.20 N m 2 rad

  739 rev

π

π

−
= =

−

=

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎛ ⎞⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎜ ⎟
⎝ ⎠i

 

The time can be found from ( )1
2 .o tθ ω ω= +  

( )2 739 rev2 60s
8.61s

10,300 rev min 1mino

t
θ

ω ω
= = =

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
49. (a) Thin hoop, radius 0R     2 2

0 0    I Mk MR k R= = → =  

(b) Thin hoop, radius 0R , width w 2 2 2 2 21 1 1 1
0 02 12 2 12    I Mk MR Mw k R w= = + → = +  

(c) Solid cylinder     2 21 1
0 02 2    I Mk MR k R= = → =  

(d) Hollow cylinder    ( ) ( )1 1
2 2

2 2 2 2 2    1 2 1 2I Mk M R R k R R= = + → = +  

 (e) Uniform sphere    2 22
05

2
05    I Mk Mr k r= = → =  

 (f) Long rod, through center  2 1
12

2 1
12    I Mk M k= = → =l l  

 (g) Long rod, through end   2 1
3

2 1
3    I Mk M k= = → =l l  

 (h) Rectangular thin plate   ( ) ( )2 2 2 2 21 1
12 12    I Mk M w k w= = + → = +l l  

 
50. The firing force of the rockets will create a net torque, but no net force.  Since each rocket fires 

tangentially, each force has a lever arm equal to the radius of the satellite, and each force is 
perpendicular to the lever arm.  Thus net 4 .FRτ =   This torque will cause an angular acceleration 

according to ,Iτ α=  where 2 21
2 4 ,I MR mR= +  combining a cylinder of mass M and radius R with 

4 point masses of mass m and lever arm R each.  The angular acceleration can be found from the 

kinematics by .
t
ωα Δ

=
Δ

  Equating the two expressions for the torque and substituting enables us to 

solve for the force.  

( ) ( )1
2 21

2

4
4 4

4
    M m R

FR I M m R F
t

ωωα
τ

+ ΔΔ
= = + =

Δ Δ
→     

( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )

1
2 3600kg 4 250 kg 4.0 m 32 rev min 2  rad rev 1 min 60 s

31.28 N
4 5.0 min 60s min

31N

π+
= =

≈
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51. We assume that B A ,m m>  and so Bm  will accelerate down, Am  will 
accelerate up, and the pulley will accelerate clockwise.  Call the direction of 
acceleration the positive direction for each object.  The masses will have the 
same acceleration since they are connected by a cord.  The rim of the pulley 
will have that same acceleration since the cord is making it rotate, and so 

pulley .a Rα =   From the free-body diagrams for each object, we have the 
following. 

  A TA A A TA A A

B B TB B TB B B

    

    
y

y

F F m g m a F m g m a

F m g F m a F m g m a

= − = → = +

= − = → = −
∑
∑

 

  TB TA

a
F r F r I I

R
τ α= − = =∑  

Substitute the expressions for the tensions into the torque equation, and solve for the acceleration. 

  

( ) ( )

( )
( )

TB TA B B A A

B A
2

A B

      
a a

F R F R I m g m a R m g m a R I
R R

m m
a g

m m I R

− = → − − + = →

−
=

+ +

 

If the moment of inertia is ignored, then from the torque equation we see that TB TA ,F F=  and the 

acceleration will be ( )
( )

B A
0

A B

.I

m m
a g

m m=

−
=

+
  We see that the acceleration with the moment of inertia 

included will be smaller than if the moment of inertia is ignored. 
 
52. (a) The free body diagram and analysis from problem 51 are applicable here, for the no-friction  

case. 
( )

( )
( )

( )
( )

( )
( )

( ) ( )

B A B A B A
2 2 21 1

2 2A B A B P A B P

2 2 23.80 kg 3.15kg
 9.80 m s 0.8667 m s 0.87 m s

3.80 kg 3.15kg 0.40 kg

m m m m m m
a g g g

m m I r m m m r r m m m
− − −

= = =
+ + + + + +

−
= = ≈

+ +

 

 (b) With a frictional torque present, the torque equation from problem 51 would be modified, and  
the analysis proceeds as follows. 

( ) ( )

( ) ( ) ( )

TB TA fr B B A A fr

1
fr B A B A B A B A p22

     
a a

F r F r I I m g m a r m g m a r I
r r

I
r m m g m m a r m m g m m m a

r

τ τ α τ

τ

= − − = = → − − + − = →

= − − + + = − − + +⎡ ⎤⎛ ⎞ ⎡ ⎤⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

∑
 

  The acceleration can be found from the kinematical data and Eq. 2-12a. 

( ) ( )
( ) ( ) ( ) ( ) ( )

20
0

1
fr B A B A p2

2 2

0 0.20 m s
    0.03226 m s

6.2s

   0.040 m 0.65kg 9.80 m s 7.35kg 0.03226 m s 0.26 m N

v v
v v at a

t

r m m g m m m aτ

− −
= + → = = = −

= − − + +

= − − =

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦ i

 

 
 
 

RI
θ+

TAF
G

TBF
G

TAF
G

Am Bmy+ y+

Am gG Bm gG

TBF
G
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tanaG

radaG
θ

netaG

53. A top view diagram of the hammer is shown, just at the instant of release, 
along with the acceleration vectors. 

 (a) The angular acceleration is found from Eq. 10-9c. 

   

( )

( ) ( )[ ]
( )

22 2
2 2 0

0

2

2 2

0
2     

2 2

26.5m s 1.20 m
             9.702 rad s 9.70 rad s

2 8 rad

v rω ωω ω α θ α
θ θ

π

−−
= + Δ → = =

Δ Δ

= = ≈

 

 (b) The tangential acceleration is found from the angular acceleration and the radius. 

   ( ) ( )2 2 2
tan 9.702 rad s 1.20 m 11.64 m s 11.6 m sa rα= = = ≈  

 (c) The centripetal acceleration is found from the speed and the radius. 

   ( ) ( )22 2 2
rad 26.5m s 1.20 m 585.2 m s 585m sa v r= = = ≈  

 (d) The net force is the mass times the net acceleration.  It is in the same direction as the net  
acceleration. 

   ( ) ( ) ( )2 22 2 2 2
net net tan rad 7.30 kg 11.64 m s 585.2 m s 4270 NF ma m a a= = + = + =  

 (e) Find the angle from the two acceleration vectors. 

   
2

1 1tan
2

rad

11.64 m s
tan tan 1.14

585.2 m s
a
a

θ − −= = = °  

 
54. (a) See the free body diagram for the falling rod.  The axis of rotation would  

be coming out of the paper at the point of contact with the floor.  There are 
contact forces between the rod and the table (the friction force and the 
normal force), but they act through the axis of rotation and so cause no 
torque.  Thus only gravity causes torque.  Write Newton’s second law for 
the rotation of the rod.  Take counterclockwise to be the positive direction 
for rotational quantities.  Thus in the diagram, the angle is positive, but the 
torque is negative. 

   
( ) 21 1

2 3cos   

3 3
cos cos

2 2
     

d
I mg m

dt
g d d d d g

d d
dt d dt d

ωτ α φ

ω ω φ ω ω ω
φ φ

φ φ φ φ

= = − = →

− = = = = −→ →

∑ l l

l l

 

   ( ) ( )21
2

/ 2 0

3 3 3
cos     sin 1     1 sin

2 2
g g g

d d
φ ω

π

φ φ ω ω φ ω ω φ= − → − = − → = −∫ ∫
l l l

 

(b) The speed of the tip is the tangential speed of the tip, since the rod is rotating.  At the tabletop, 
0.φ =  

   ( ) ( )3 1 sin     0 3v g v gω φ= = − → =l l l  

 
55. The parallel axis theorem is given in Eq. 10-17.  The distance from the center of mass of the rod to 

the end of the rod is 1
2 .h = l  

  ( ) ( )22 2 2 21 1 1 1 1
CM 12 2 12 4 3I I Mh M M M M= + = + = + =l l l l  

 

mgG

φ

l

NF
G

frF
G
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56. We can consider the door to be made of a large number of thin horizontal rods, 
each of length 1.0 m,=l and rotating about one end.  Two such rods are shown 
in the diagram.  The moment of inertia of one of these rods is 21

3 ,im l  where 

im  is the mass of a single rod.  For a collection of identical rods, then, the 

moment of inertia would be 2 21 1
3 3 .i

i

I m M= =∑ l l   The height of the door 

does not enter into the calculation directly. 

  ( ) ( )22 21 1
3 3 19.0 kg 1.0 m 6.3kg mI M= = = il  

 
57. (a) The parallel axis theorem (Eq. 10-17) is to be applied to each sphere.  The distance from the  

center of mass of each sphere to the axis of rotation is 01.5 .h r=  

  ( )22 2 2 22
for one CM 0 0 0 total 05
sphere

1.5 2.65     5.3I I Mh Mr M r Mr I Mr= + = + = → =  

(b) Treating each mass as a point mass, the point mass would be a distance of 01.5r  from the axis of 
rotation.  

  

( )

( ) ( ) ( )

2 2
approx 0 0

2 2
approx exact 0 0

2
exact 0

2 1.5 4.5

4.5 5.3 4.5 5.3
% error 100 100 100

5.3 5.3

15%           

I M r Mr

I I Mr Mr
I Mr

= =

− − −
= = =

= −

⎡ ⎤⎣ ⎦
⎛ ⎞ ⎡ ⎤ ⎡ ⎤
⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎣ ⎦

 

  The negative sign means that the approximation is smaller than the exact value, by about 15%. 
 

58. (a) Treating the ball as a point mass, the moment of inertia about AB is 2
0 .I MR=  

 (b) The parallel axis theorem is given in Eq. 10-17.  The distance from the center of mass of the  
ball to the axis of rotation is 0.h R=  

   2 2 22
CM 1 05I I Mh Mr MR= + = +  

 (c) ( ) ( ) ( ) ( )
2 2 22 22

50 1 0approx exact 5 1
2 2 2 22 2

5 5exact 1 0 1 0

% error 100 100 100
MR Mr MRI I Mr

I Mr MR Mr MR

− +− −
= = =

+ +

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠ ⎣ ⎦

 

  
( )

( )
( )

( )2 25 5
2 20 1

1 1
100 100 0.32295 0.32

1 1 1.0 0.090
           

R r
− −

= = − = − ≈ −
+ +

 

  The negative sign means that the approximation is smaller than the exact value, by about 0.32%. 
 
 
59. The 1.50-kg weight is treated as a point mass.  The origin is placed at  

the center of the wheel, with the x direction to the right.  Let A represent the 
wheel and B represent the weight. 

(a)  ( ) ( ) ( ) ( )A A B B
CM

A B

7.0 kg 0 1.50 kg 0.22 m
8.50 kg

m x m x
x

m m
++

= =
+

 

23.88 10 m 0.039 m−= × ≈  

 
 

0.22 m

0.32 m

l
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(b) The moment of inertia of the wheel is found from the parallel axis  
theorem. 

  
( )

( )

22
wheel weight wheel wheel CM weight weight CM

CM

22 21
wheel wheel CM weight weight CM2  

I I I I M x M x x

M R M x M x x

= + = + + −

= + + −
 

( ) ( ) ( )( ) ( ) ( )2 2 2 21
2  7.0 kg 0.32 m 0.0388 m 1.50 kg 0.22 m 0.0388 m 0.42 kg m= + + − = i  

 
60. We calculate the moment of inertia about one end, and then 

use the parallel axis theorem to find the moment of inertia 
about the center.  Let the mass of the rod be M, and use Eq. 
10-16.  A small mass dM can be found as a small length dx 
times the mass per unit length of the rod. 

  

( ) ( )

3
2 2 21

end 3
0

2 2 2 2 21 1 1 1 1
end CM CM end2 2 3 4 12

3

    

M M
I R dM x dx M

I I M I I M M M M

= = = =

= + → = − = − =

∫ ∫
l

l
l

l l

l l l l l

 

 
61. (a) We choose coordinates so that the center of the plate is at the  

origin.  Divide the plate up into differential rectangular elements, 
each with an area of .dA dxdy=   The mass of an element is 

.
M

dm dxdy
w

= ⎛ ⎞
⎜ ⎟
⎝ ⎠l

  The distance of that element from the axis of 

rotation is 2 2 .R x y= +   Use Eq. 10-16 to calculate the 
moment of inertia. 

   

( ) ( )

( ) ( )

( ) ( ) ( )

/ 2 / 2 / 2 / 2
2 2 2 2 2

center
/ 2 / 2 0 0

/ 2 / 2
3 2 2 21 1 1 1

3 2 2 12
0 0

32 2 21 1 1 1 1
12 2 3 2 12

4

4 2
      

2
     

w w

w

w w

M M
I R dM x y dxdy x y dxdy

w w

M M
y dy y dy

w w

M
w w M w

w

− −

= = + = +

= + = +

= + = +

⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤⎣ ⎦

∫ ∫ ∫ ∫ ∫

∫ ∫

l l

l
l l

l l l
l

l l

 

(b) For the axis of rotation parallel to the w  dimension (so the rotation axis 
is in the y direction), we can consider the plate to be made of a large 
number of thin rods, each of length ,l  rotating about an axis through 
their center.  The moment of inertia of one of these rods is 21

12 ,im l  
where im  is the mass of a single rod.  For a collection of identical rods, 

then, the moment of inertia would be 2 21 1
12 12 .y i

i

I m M= =∑ l l   A similar argument would 

give 21
12 .xI Mw=   This illustrates the perpendicular axis theorem, Eq. 10-18, .z x yI I I= +  

 

dx

x

y
¬

x
x dx

dy

y
w

l

w
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62. Work can be expressed in rotational quantities as ,W τ θ= Δ  and so power can be expressed in 

rotational quantities as .
W

P
t t

θτ τωΔ
= = =

Δ Δ
 

  ( ) rev 2 rad 1min 1hp
255m N 3750 134 hp

min 1rev 60s 746 W
P

πτω= = =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
i  

 
63. The energy required to bring the rotor up to speed from rest is equal to the final rotational kinetic 

energy of the rotor. 

  ( )
2

2 2 2 41 1
rot 2 2

rev 2 rad 1min
4.25 10 kg m 9750 2.22 10 J

min 1rev 60s
K I

πω −= = × = ×
⎡ ⎤⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

i  

 
64. To maintain a constant angular speed steadyω  will require a torque motorτ  to oppose the frictional 

torque.  The power required by the motor is motor steady friction steady.P τ ω τ ω= = −  

( ) ( )
( )

021
friction friction 2

2

202 51 1
motor steady2 2

5

  

2 rad
3.8 rev s

rev220 kg 5.5m 1.186 10 W
16s

1hp
        1.186 10 W 158.9 hp 160 hp

746 W

f

f

I MR
t

P MR
t

ω ω
τ α

π
ω ω

ω

−
= = →

−
= = = ×

= × = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠⎣ ⎦

⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
65. The work required is the change in rotational kinetic energy.  The initial angular velocity is 0. 

  ( ) ( ) ( )
2

22 2 2 2 41 1 1 1 1
rot 2 2 2 2 4

2 rad
1640 kg 7.50 m 1.42 10 J

8.00 sf i fW K I I MR
πω ω ω= Δ = − = = = ×⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
66. Mechanical energy will be conserved.  The rotation is about a 

fixed axis, so 21
tot rot 2 .K K Iω= =   For gravitational potential 

energy, we can treat the object as if all of its mass were at its 
center of mass.  Take the lowest point of the center of mass as the 
zero location for gravitational potential energy.   

  
( ) ( )

initial final initial final

2 2 21 1 1 1
bottom bottom2 2 2 3

      

1 cos   

E E U K

Mg I Mθ ω ω

= → = →

− = = →l l
 

( ) ( )bottom bottom bottom

3
1 cos   ;  3 1 cos

g
v gω θ ω θ= − = = −l l

l
 

 
67. The only force doing work in this system is gravity, so mechanical energy is conserved.  The initial 

state of the system is the configuration with Am  on the ground and all objects at rest.  The final state 

of the system has Bm  just reaching the ground, and all objects in motion.  Call the zero level of 
gravitational potential energy to be the ground level.  Both masses will have the same speed since  
 

θ
2l

2l

( )2 1 cosθ−l
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they are connected by the rope.  Assuming that the rope does not slip on the 
pulley, the angular speed of the pulley is related to the speed of the masses 
by .v Rω =   All objects have an initial speed of 0. 

  i fE E= →  
2 2 2 2 2 21 1 1 1 1 1

A B A 1 B 2 A B2 2 2 2 2 2

A 1 B 2                                                                    
i i i i i f f f

f f

m v m v I m gy m gy m v m v I

m gy m gy

ω ω+ + + + = + +

+ +
 

( )
2

2 2 21 1 1 1
B A B A2 2 2 2 2

f
f f

v
m gh m v m v MR m gh

R
= + + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

( )
( )

( ) ( ) ( )
( )( )

2

B A

1 1
2 2A B

2 38.0 kg 35.0 kg 9.80 m s 2.5m2
1.4 m s

38.0 kg 35.0 kg 3.1 kgf

m m gh
v

m m M

−−
= = =

+ + + +
 

 
68. (a) The kinetic energy of the system is the kinetic energy of the two masses, since the rod is treated  

as massless.  Let A represent the heavier mass, and B the lighter mass. 

 
( )

( ) ( ) ( )

2 2 2 2 2 2 2 21 1 1 1 1
A A B B A A A B B A A B2 2 2 2 2

2 21
2   0.210 m 5.60 rad s 7.00 kg 4.84 J

K I I m r m r r m mω ω ω ω ω= + = + = +

= =
  

(b) The net force on each object produces centripetal motion, and so can be expressed as 2.mrω  
( ) ( ) ( )
( ) ( ) ( )

22
A A A A

22
B B B B

4.00 kg 0.210 m 5.60 rad s 26.3 N

3.00 kg 0.210 m 5.60 rad s 19.8 N

F m r

F m r

ω

ω

= = =

= = =
 

These forces are exerted by the rod.  Since they are unequal, there would be a net horizontal 
force on the rod (and hence the axle) due to the masses.  This horizontal force would have to be 
counteracted by the mounting for the rod and axle in order for the rod not to move horizontally.  
There is also a gravity force on each mass, balanced by a vertical force from the rod, so that 
there is no net vertical force on either mass. 

 (c) Take the 4.00 kg mass to be the origin of coordinates for determining the center of mass. 
( ) ( ) ( ) ( )A A B B

CM
A B

4.00 kg 0 3.00 kg 0.420 m
0.180 m from mass A

7.00 kg
m x m x

x
m m

++
= = =

+
 

So the distance from mass A to the axis of rotation is now 0.180 m, and the distance from mass 
B to the axis of rotation is now 0.24 m.  Re-do the above calculations with these values. 

 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2 2 2 21 1 1 1 1
A A B B A A A B B A A A B B2 2 2 2 2

2 2 21
2

22
A A A A

22
B B B B

   5.60 rad s 4.00 kg 0.180 m 3.00 kg 0.240 m 4.74 J

4.00 kg 0.180 m 5.60 rad s 22.6 N

3.00 kg 0.240 m 5.60 rad s 22.6 N

K I I m r m r m r m r

F m r

F m r

ω ω ω ω ω

ω

ω

= + = + = +

= + =

= = =

= = =

⎡ ⎤⎣ ⎦  

Note that the horizontal forces are now equal, and so there will be no horizontal force on the rod 
or axle. 

 
69. Since the lower end of the pole does not slip on the ground, the friction does no work, and so 

mechanical energy is conserved.  The initial energy is the potential energy, treating all the mass as if 
it were at the CM.  The final energy is rotational kinetic energy, for rotation about the point of 
contact with the ground.  The linear velocity of the falling tip of the rod is its angular velocity  

mA 

mB 

h 

R 
M 
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 divided by the length. 

   
( ) ( )

( ) ( )

22 21 1 1
intial final initial final end2 2 3

2
end

            2   

3 3 9.80 m s 2.30 m 8.22 m s

E E U K mgh I mg L mL v L

v gL

ω= → = → = → = →

= = =

  
70. Apply conservation of mechanical energy.  Take the bottom of the incline to be the zero location for 

gravitational potential energy.  The energy at the top of the incline is then all gravitational potential 
energy, and at the bottom of the incline, there is both rotational and translational kinetic energy.  
Since the cylinder rolls without slipping, the angular velocity is given by .v Rω =    

  

( ) ( )

2
2 2 2 2 231 1 1 1 1

top bottom CM2 2 2 2 2 42

24 4
3 3

      

9.80 m s 7.20 m 9.70 m s

v
E E Mgh Mv I Mv MR Mv

R

v gh

ω= → = + = + = →

= = =
 

 
71. The total kinetic energy is the sum of the translational and rotational kinetic energies.  Since the ball  

is rolling without slipping, the angular velocity is given by .v Rω =   The rotational inertia of a 
sphere about an axis through its center is 22

5 .I mR=  

  

( ) ( )

2
2 2 2 2 271 1 1 1 2

total trans rot 2 2 2 2 5 102

2 1       0.7 7.3 kg 3.7 m s 7.0 10 J

v
K K K mv I mv mR mv

R
ω= + = + = + =

= = ×
 

 
72. (a) For the daily rotation about its axis, treat the Earth as a uniform sphere, with an angular  

frequency of one revolution per day. 
 ( )2 2 21 1 2

daily daily Earth daily2 2 5K I MRω ω= =  

( ) ( )
2

224 6 291
5

2 rad 1day
          6.0 10 kg 6.4 10 m 2.6 10 J

1day 86,400s
π

= × × = ×
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 (b) For the yearly revolution about the Sun, treat the Earth as a particle, with an angular frequency  
of one revolution per year. 

   2 2 21 1
yearly yearly Sun- yearly2 2

Earth

K I MRω ω= = ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

   ( ) ( )
2

224 11 331
2

2 rad 1day
          6.0 10 kg 1.5 10 m 2.7 10 J

365day 86,400s
π

= × × = ×
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Thus the total kinetic energy is 29 33 33
daily yearly 2.6 10 J 2.7 10 J 2.7 10 J .K K+ = × + × = ×   The 

kinetic energy due to the daily motion is about 10,000 times smaller than that due to the yearly 
motion. 

 
73. (a) Mechanical energy is conserved as the sphere rolls  

without slipping down the plane.  Take the zero 
level of gravitational potential energy to the level of 
the center of mass of the sphere when it is on the 
level surface at the bottom of the plane.  All of the 
energy is potential energy at the top, and all is 
kinetic energy (of both translation and rotation) at the bottom. 

sinθl l

θ
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( )

( ) ( )

intial final initial final CM rot

2

2 2 2 2 bottom1 1 1 1 2
bottom bottom bottom 02 2 2 2 5

0

210 10 10
bottom 7 7 7

b
bottom

      

sin   

sin 9.80 m s 10.0 m sin 30.0 8.367 m s

       8.37 m s

E E U K K K

v
mgh mg mv I mv mr

r

v gh g

v

θ ω

θ

ω

= → = →

= = + = + →

= = = ° =

≈

=

= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

l

l

ottom

0

8.367 m s
32.9 rad s

0.254 mr
= =

  

 (b) 

( )

2 21 1
2 2CM bottom bottom

221
2rot bottom 2 bottom1 2

2 5 0
0

5
2

K mv mv
K I v

mr
r

ω
= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (c) The translational speed at the bottom, and the ratio of kinetic energies, are both independent of  
the radius and the mass.  The rotational speed at the bottom depends on the radius. 

 
74. (a) Since the center of mass of the spool is stationary, the net force must be 0.  Thus the force on  

the thread must be equal to the weight of the spool and so thread .F Mg=  

(b) By the work–energy theorem, the work done is the change in kinetic energy of the spool   The 
spool has rotational kinetic energy. 

  ( )2 2 2 2 21 1 1 1
final initial 2 2 2 4W K K I MR MRω ω ω= − = = =  

 
75. Use conservation of mechanical energy to equate the energy at points 

A and B .  Call the zero level for gravitational potential energy to be 
the lowest point on which the ball rolls.  Since the ball rolls without 
slipping, 0 .v rω =  

A B A B B final B B CM B rot

2 21 1
0 0 B B2 2

      E E U U K U K K

mgR mgr mv Iω

= → = + = + + →

= + +
 

( ) ( )
2

2 2 B 101 1 2
0 B 0 B 0 02 2 5 7

0

           v
mgr mv mr v g R r

r
= + + → = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
76. (a) We work in the accelerating reference frame of the car.  In the  

accelerating frame, we must add a fictitious force of magnitude 
train rel
ground

,Ma  in the opposite direction to the acceleration of the train.  This 

is discussed in detail in section 11-8 of the textbook.  Since the ball is 
rolling without slipping, ball rel

train

.a Rα =   See the free-body diagram for 

the ball in the accelerating reference frame.  Write Newton’s second law 
for the horizontal direction and for torques, with clockwise torques as 
positive.   Combine these relationships to find ball rel

train
,a  the acceleration of 

the ball in the accelerated frame. 

MgG
R

frF
G

NF
G

x

y

trainMaG

y = 0 

R0 

A

B 

C
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ball rel
train 2

fr fr ball rel5
train

2
fr train rel ball rel ball rel train rel ball rel5

ground train train ground train

5
ball rel train rel7
train ground

    

     x

a
F R I I F Ma

R

F F Ma Ma Ma Ma Ma

a a

τ α= − = = → = −

= − = → − − = →

= −

∑

∑  

  And so as seen from inside the train, the ball is accelerating backwards. 
 (b) Use the relative acceleration relationship. 

5 2
ball rel ball rel train rel train rel train rel train7 7
ground train ground ground ground

a a a a a a= + = − + =  

And so as seen from outside the train, the ball is accelerating forwards, but with a smaller 
acceleration than the train. 

 
77. (a) Use conservation of mechanical energy.  Call the zero level for  

gravitational potential energy to be the lowest point on which 
the pipe rolls.  Since the pipe rolls without slipping, .v Rω =   
See the attached diagram. 

( )

initial final initial final CM rot

2 21 1
bottom bottom2 2

2
2 2 2bottom1 1
bottom bottom2 2 2

    

sin

              

E E U K K K

mgD mv I

v
mv mR mv

R

θ ω

= → = = +

= +

= + = →
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( ) ( )2
bottom sin 9.80 m s 5.60 m sin17.5 4.06 m sv gD θ= = ° =  

 (b) The total kinetic energy at the base of the incline is the same as the initial potential energy. 
   ( ) ( ) ( )2

final initial sin 0.545kg 9.80 m s 5.60 m sin17.5 8.99 JK U mgD θ= = = ° =  

(c) The frictional force supplies the torque for the object to roll without slipping, and the frictional 
force has a maximum value.  Since the object rolls without slipping, .a Rα =   Use Newton’s 
second law for the directions parallel and perpendicular to the plane, and for the torque, to solve 
for the coefficient of friction. 

   
2

fr fr

N N

    

cos     cos

a
F R I mR maR F ma

R
F F mg F mg

τ α

θ θ⊥

= = = = → =

= − → =

∑
∑

 

1
fr fr 2

1 1
fr static s s s2 2

max

1 1
s 2 2
min

sin     sin

    sin cos     tan   

tan tan17.5 0.158

N

F mg F ma F mg

F F mg F mg

θ θ

θ μ μ θ μ θ

μ θ

= − = → =

≤ → ≤ = → ≥ →

= = ° =

∑ &

 

 
78. (a) While the ball is slipping, the acceleration of the center of mass is constant, and so constant  

acceleration relationships may be used.  Use Eq. 2-12b with results from Example 10-20. 

   ( )
2 2

2 0 0 01 1
0 0 0 k2 2

2 2 12
7 7 49k k k

v v v
x x v t at v g

g g g
μ

μ μ μ
− = + = + − =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

θ
y = 0

DR

Ffr

mg

FN
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 (b) Again make use of the fact that the acceleration is constant.  Once the final speed is reached, the  
angular velocity is given by 0 .v rω =  

   ( ) 0 5
0 0 k 07

5
0 07

2
 ; 

7 k

v
v v at v g v

g
v rμ ω

μ
= + = + − = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
79. (a) The total kinetic energy included the translational kinetic energy of the car’s total mass, and the  

rotational kinetic energy of the car’s wheels.  The wheels can be treated as one cylinder.  We 
assume the wheels are rolling without slipping, so that CM wheels .v Rω=  

   

( )

( ) ( ) ( )

2
2 2 2 2 CM1 1 1 1 1

tot CM rot tot CM wheels tot CM wheels wheels2 2 2 2 2 2
wheels

2

2 51 1 1
tot wheels CM2 2 2

5

1m s
     1170 kg 95km h 4.074 10 J

3.6 km h

     4.1 10 J

v
K K K M v I M v M R

R

M M v

ω= + = + = +

= + = = ×

≈ ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 (b) The fraction of kinetic energy in the tires and wheels is 
rot trans

wheels

tot

.
K K

K

+
 

   

( )
( )

( )
( )

22 2 31 11 1
2 2 2wheels wheels CM wheels2 2rot wheels wheels CM

2 2 21 1 1 1 1
2 2 2 2 2tot tot CM wheels tot wheels CM tot wheels

210 kg
0.18

1170 kg
      

M M v MK I M v
K M v I M M v M M

ω
ω

++
= = =

+ + +

= =

 

 (c) A free body diagram for the car is shown, with the frictional force of  

frF
G

at each wheel to cause the wheels to roll.  A separate diagram of one 
wheel is also shown.  Write Newton’s second law for the horizontal 
motion of the car as a whole, and the rotational motion of one wheel.  
Take clockwise torques as positive.  Since the wheels are rolling without 
slipping, CM wheels .a Rα=  

   
2 CM1

fr wheels wheels wheels2
wheels

1
fr wheels CM8

4   

       

a
F R I M R

R

F M a

τ α= = = →

=

∑  

   ( )

( ) ( )

tow fr tot CM

1
tow wheels CM tot CM8

2 2tow
CM 1

2tot wheels

4   

       4   

1500 N
       1.282 m s 1.3m s

1170 kg

xF F F M a

F M a M a

F
a

M M

= − = →

− = →

= = = ≈
+

∑
 

 (d) If the rotational inertia were ignored, we would have the following. 

   

2tow
tow tot CM CM

tot

2 2
CM

2
CM

1500 N
    1.364 m s

1100 kg

1.364 m s 1.282 m s
% error 100 100 6%

1.282 m s

x

F
F F M a a

M

a
a

= = → = = =

Δ −
= × = × =

∑
 

 
 

friction4F
G

mgG

NF
G

towF
G

frictionF
G

R
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80. (a) The friction force accelerates the center of mass  of the wheel.  If the  
wheel is spinning (and slipping) clockwise in the diagram, then the 
surface of the wheel that touches the ground is moving to the left, and 
the friction force is to the right or forward.  It acts in the direction of 
motion of the velocity of the center of mass of the wheel. 

(b) Write Newton’s second law for the x direction, the y direction, and the 
rotation.  Take clockwise torques (about the center of mass) as positive.  

   

N N

fr k N k
fr k

fr k
fr 21

2

0    

    

2 2
    

y

x

F F Mg F Mg

F F Mg
F F Ma a g

M M M
F R Mg g

F R I
MR MR R

μ μ μ

μτ α α

= − = → =

= = → = = = =

= − = → = − = − = −

∑

∑

∑

 

Both the acceleration and angular acceleration are constant, and so constant acceleration 
kinematics may be used to express the velocity and angular velocity. 

   k
0 k 0 0

2
  ;  

g
v v at gt t t

R
μμ ω ω α ω= + = = + = −  

Note that the velocity starts at 0 and increases, while the angular velocity starts at 0ω  and 
decreases.  Thus at some specific time ,T the velocity and angular velocity will be v Rω = , 
and the ball will roll without slipping.  Solve for the value of T  needed to make that true.   

 k 0
0 k

k

2
        

3
g R

v R T gT R T
R g
μ ωω ω μ

μ
= → − = → =  

 (c) Once the ball starts rolling without slipping, there is no more frictional sliding force, and so the  
velocity will remain constant. 

 0 1
final k k 03

k3
R

v gT g R
g

ωμ μ ω
μ

= = =  

 
81. (a)  Use conservation of mechanical energy to  

equate the energy at point A to the energy at 
point C.  Call the zero level for gravitational 
potential energy to be the lowest point on 
which the ball rolls.  Since the ball rolls 
without slipping, 0 .v rω =   All locations 
given for the ball are for its center of mass.  

A C

A C C C C C
CM rot

  

 

E E

U U K U K K

= →

= + = + + →  

   

( )[ ]

( )[ ] ( )

( ) ( ) ( )

2 21 1
0 0 0 0 C C2 2

2
2 2 C1 1 2

0 0 0 C 02 2 5 2
0

210 10
C 0 07 7

cos

       cos   

cos 9.80 m s 0.245m cos 45 1.557 m s 1.6 m s

mgR mg R R r mv I

v
mg R R r mv mr

r

v g R r

θ ω

θ

θ

= − − + +

= − − + + →

= − = ° = ≈

 

 (b) Once the ball leaves the ramp, it will move as a projectile under the influence of gravity, and the  
constant acceleration equations may be used to find the distance.  The initial location of the ball 
is given by ( )0 0 0 sin 45x R r= − °  and ( )0 0 0 0 cos 45 .y R R r= − − °   The initial velocity of the ball 

MgG
R

frF
G

NF
G

x

y

y = 0

θ

D

R0

A

B

C

x = 0
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is given by 0 C cos 45xv v= ° and 0 C sin 45 .yv v= °   The ball lands when 0 0.015m.y r= =   Find 
the time of flight from the vertical motion, and then find D from the horizontal motion.  Take 
the upward direction as positive for the vertical motion. 

   
( )2 21 1

0 0 0 0 0 C2 2

2

cos 45 sin 45   

4.90 1.101 0.07178 0    0.277s, 0.0528s
yy y v t at R R r v t gt

t t t

= + + = − − ° + ° − →

− − = → = −
 

  We use the positive time. 

   
( )

( ) ( ) ( )
0 0 0 0 Csin 45 cos 45

   0.245m sin 45 1.557 m s cos 45 0.277s 0.4782 m 0.48 m

xD x x v t R r v t= = + = − ° + °

= ° + ° = ≈
 

 
82. Write the rotational version of Newton’s second law, with counterclockwise torques as positive. 

 22
net N fr N CN CM CM5F FR I MRτ τ τ α α= − = − = =l  

Newton’s second law for the translational motion, with left as the positive direction, gives the 
following. 

  net     
F

F F ma a
m

= = → =  

If the sphere is rolling without slipping, we have CM .a Rα =   Combine these relationships to 
analyze the relationship between the torques. 

  
2 2 72 2 2 2

N CM5 5 5 5 5

7
N fr5

  
a

F FR MR FR MR FR MaR FR FR FR
R

α

τ τ

= + = + = + = + = →

=

l
 

And since the torque due to the normal force is larger than the torque due to friction, the sphere has a 
counterclockwise angular acceleration, and thus the rotational velocity will decrease. 

 
83. Since the spool rolls without slipping, each point on the edge of the spool moves with a speed of  

CMv r vω= =  relative to the center of the spool, where CMv  is the speed of the center of the spool 
relative to the ground.  Since the spool is moving to the right relative to the ground, and the top of 
the spool is moving to the right relative to the center of the spool, the top of the spool is moving with 
a speed of CM2v  relative to the ground.  This is the speed of the rope, assuming it is unrolling 
without slipping and is at the outer edge of the spool.  The speed of the rope is the same as the speed 
of the person, since the person is holding the rope.  So the person is walking with a speed of twice 
that of the center of the spool.  Thus if the person moves forward a distance ,l  in the same time the 
center of the spool, traveling with half the speed, moves forward a distance 2 .l   The rope, to stay 

connected both to the person and to the spool, must therefore unwind by an amount 2l  also.  

 
84. The linear speed is related to the angular velocity by ,v Rω=  and the angular velocity (rad / sec) is 

related to the frequency (rev / sec) by Eq. 10-7, 2 .fω π=   Combine these relationships to find 
values for the frequency. 

  
( )

( )

1
1

2
2

1.25m s 60s
2       ;  480 rpm

2 2 2 0.025m 1min

1.25m s 60s
210 rpm

2 2 0.058 m 1min

v v v
f f f

R R R

v
f

R

ω π
π π π

π π

= = → = = = =

= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠
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85. (a) There are two forces on the yo-yo: gravity and string  
tension.  If the top of the string is held fixed, then the tension 
does no work, and so mechanical energy is conserved.  The 
initial gravitational potential energy is converted into 
rotational and translational kinetic energy.  Since the yo-yo 
rolls without slipping at the point of contact of the string, the 
velocity of the CM is related to the angular velocity of the 
yo-yo by CMv rω= , where r is the radius of the inner hub.  Let m be the mass of the inner hub, 
and M and R be the mass and radius of each outer disk.  Calculate the rotational inertia of the 
yo-yo about its CM, and then use conservation of energy to find the linear speed of the CM.  
We take the 0 of gravitational potential energy to be at the bottom of its fall. 

   

( )
( )( ) ( )( )

( )

2 2 2 21 1 1
CM 2 2 2

2 23 3 2 2 5 21
2

3 2
total

2

     5.0 10 kg 5.0 10 m 5.0 10 kg 3.75 10 m 7.038 10 kg m

2 5.0 10 kg 2 5.0 10 kg 0.105 kg

I mr MR mr MR

m m M

− − − − −

− −

= + = +

= × × + × × = ×

= + = × + × =

i  

initial final

2 2 2 2 2CM CM1 1 1 1 1 1
total total CM CM total CM CM total CM2 2 2 2 2 22 2

  

  

U K

I I
m gh m v I m v v m v

r r
ω

= →

= + = + = + →⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( )( )( )

( ) ( )
( )

2

total
CM

5 2
CM1

1total2 2
2 23

0.105 kg 9.80 m s 1.0 m
0.8395 0.84 m s

7.038 10 kg m
0.105 kg

5.0 10 m

m gh
v

I
m

r
−

−

= = = =
×+ +
×

⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎢ ⎥⎣ ⎦

i
 

 (b) Calculate the ratio rot tot .K K  

   
( ) ( )

( ) ( ) ( ) ( )

2CM1
2 21 2 CM2

2rot rot CM CM CM
2

tot initial total total total

25 2

23 2

2

7.038 10 kg m 0.8395m s
         0.96 96%

2 5.0 10 m 0.105 kg 9.8 m s 1.0 m

I
vK K I I vr

K U m gh m gh r m gh
ω

−

−

= = = =

×
= = =

×

i
 

 
86. As discussed in the text, from the reference frame of the axle of the wheel, the points on the wheel  

are all moving with the same speed of ,v rω=  where v  is the speed of the axle of the wheel relative 
to the ground.  The top of the tire has a velocity of v  to the right relative to the axle, so it has a 
velocity of 2v  to the right relative to the ground. 

  
( ) ( )

( ) ( ) ( )

top rel top rel center rel
ground center ground

2
top rel 0
ground

 to the right  to the right 2  to the right

2 2 2 2 1.00 m s 2.5s 5.0 m s

v v v

v v v at at

= + = + =

= = + = = =

v v vG G G

 

 
87. Assume that the angular acceleration is uniform.  Then the torque required to whirl the rock is the 

moment of inertia of the rock (treated as a particle) times the angular acceleration. 

  ( ) ( ) ( )2
2 0 0.50 kg 1.5m rev 2 rad 1min

85 2.0 m N
5.0s min rev 60s

I mr
t

ω ω πτ α −
= = = =

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

i  

 That torque comes from the arm swinging the sling, and so comes from the arm muscles. 

mgG

TF
G
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88. The torque is found from .Iτ α=   The angular acceleration can be found from o tω ω α= + , with an  
initial angular velocity of 0.  The rotational inertia is that of a cylinder. 

  ( ) ( ) ( ) ( )221
2

1800 rev s 2 rad rev
0.5 1.4 kg 0.20 m 53m N

6.0s
oI MR

t
πω ωτ α −

= = = =⎛ ⎞
⎜ ⎟
⎝ ⎠

i  

 
89. (a) The linear speed of the chain must be the same as it passes over both sprockets.  The linear  

speed is related to the angular speed by ,v Rω=  and so .R R F FR Rω ω=   If the spacing of the 
teeth on the sprockets is a distance d, then the number of teeth on a sprocket times the spacing 
distance must give the circumference of the sprocket. 

2Nd Rπ=  and so 
2
Nd

R
π

= .  Thus      
2 2

R F R F
R F

F R

N d N d N
N

ωω ω
π π ω

= → =  

 (b) 52 13 4.0R Fω ω = =  
 

 (c) 42 28 1.5R Fω ω = =  

 
90. The mass of a hydrogen atom is 1.01 atomic mass units.  The atomic mass unit 

is 271.66 10 kg.−×  Since the axis passes through the oxygen atom, it will have 
no rotational inertia. 
(a) If the axis is perpendicular to the plane of the molecule, then each 

hydrogen atom is a distance l from the axis of rotation. 

( ) ( ) ( )22 27 9
perp

45 2

2 2 1.01 1.66 10 kg 0.96 10 m

      3.1 10 kg m

HI m − −

−

= = × ×

= × i

l
 

(b) If the axis is in the plane of the molecule, bisecting the H-O-H bonds, 
each hydrogen atom is a distance of ( )10 osin 9.6 10 m sin 52y θ −= = ×l l  

107.564 10 m.−= ×  Thus the moment of inertia is as follows. 

   ( ) ( ) ( )22 27 10 45 2
plane 2 2 1.01 1.66 10 kg 7.564 10 m 1.9 10 kg mH yI m − − −= = × × = × il  

 
91. (a) The initial energy of the flywheel is used for two purposes – to give the car translational kinetic  

energy 20 times, and to replace the energy lost due to friction, from air resistance and from 
braking.  The statement of the problem leads us to ignore any gravitational potential energy 
changes. 

( ) ( ) ( ) ( ) ( )

o 21
fr final initial fr car car flywheel2

21
flywheel fr car car2

2

5 1
2

8 8

   cos180

1m s
          450 N 3.5 10 m 20 1100 kg 95km h

3.6 km h

          1.652 10 J 1.7 10 J

W K K F x M v K

K F x M v

= − → Δ = −

= Δ +

= × +

= × ≈ ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 (b) 21
flywheel 2K Iω=  

( )
( ) ( )

8

221 1
2 flywheel flywheel 2

2 1.652 10 J2 2
2200 rad s

240 kg 0.75m
KE KE
I M R

ω
×

= = = =  

yl

θ

l

H

H

O
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 (c) To find the time, use the relationship that 
work

power
time

= , where the work done by the motor  

will be equal to the kinetic energy of the flywheel. 

   
( )

( ) ( )

8
3

1.652 10 J
    1.476 10 s 25min

150 hp 746 W hp
W W

P t
t P

×
= → = = = × ≈  

 
92. (a) Assuming that there are no dissipative forces doing work,  

conservation of mechanical energy may be used to find the final 
height h of the hoop.  Take the bottom of the incline to be the 
zero level of gravitational potential energy.  We assume that the 
hoop is rolling without sliding, so that .v Rω =   Relate the 
conditions at the bottom of the incline to the conditions at the top by conservation of energy.  
The hoop has both translational and rotational kinetic energy at the bottom, and the rotational 
inertia of the hoop is given by 2.I mR=  

( )

2
2 2 2 21 1 1 1

bottom top 2 2 2 2 2

22

2

            

3.3m s
1.111 m

9.80 m s

v
E E mv I mgh mv mR mgh

R

v
h

g

ω= → + = → + = →

= = =
 

  The distance along the plane is given by o

1.111 m
4.293 m 4.3 m

sin sin15
h

d
θ

= = = ≈  

 (b) The time can be found from the constant acceleration linear motion.  

( ) ( )1
2

2 4.293 m2
    2.602 s

0 3.3m so
o

x
x v v t t

v v
Δ

Δ = + → = = =
+ +

 

This is the time to go up the plane.  The time to come back down the plane is the same, and so 
the total time is 5.2s .  

 
93. The wheel is rolling about the point of contact with the step, and so 

all torques are to be taken about that point.  As soon as the wheel is 
off the floor, there will be only two forces that can exert torques on 
the wheel – the pulling force and the force of gravity.  There will 
not be a normal force of contact between the wheel and the floor 
once the wheel is off the floor, and any force on the wheel from the 
point of the step cannot exert a torque about that very point.  
Calculate the net torque on the wheel, with clockwise torques 
positive.  The minimum force occurs when the net torque is 0. 

  

( ) ( )

( )

22

22 2

0

2

F R h mg R R h

Mg R R h Mg Rh h
F

R h R h

τ = − − − − =

− − −
= =

− −

∑
 

 
94. Since frictional losses can be ignored, energy will be conserved for the marble.  Define the 0 position 

of gravitational potential energy to be the bottom of the track, so that the bottom of the ball is 
initially a height h above the 0 position of gravitational potential energy.  We also assume that the 

h
θ 

( )22R R h− −mgG

F
G

R h− R

h
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marble is rolling without slipping, so ,v rω =  and that the marble is released from rest.  The marble 
has both translational and rotational kinetic energy. 
(a) Since ,r R�  the marble’s CM is very close to the surface of the track.  While the marble is on 

the loop, we then approximate that its CM will be moving in a circle of radius R.   When the 
marble is at the top of the loop, we approximate that its CM is a distance of 2R above the 0 
position of gravitational potential energy.  For the marble to just be on the verge of leaving the 
track means the normal force between the marble and the track is zero, and so the centripetal 
force at the top must be equal to the gravitational force on the marble.  

   

2
top of
loop 2

top of
loop

    
mv

mg v gR
R

= → =  

Use energy conservation to relate the release point to the point at the top of the loop. 

   ( )

release top of release release top of top of
loop loop loop

2
top of
loop2 2 2 21 1 1 1 2

top of top of top of2 2 2 2 5 2
loop loop loop

27 7
top of10 10
loop

    

0 2 2

2 2 2.7     

E E K U K U

v
mgh mv I mg R mv mr mgR

r

mgh mv mgR mgR mgR mgR

ω

= → + = +

+ = + + = + +

= + = + = → 2.7h R=

 

(b) Since we are not to assume that ,r R�  then while the marble is on the loop portion of the 
track, it is moving in a circle of radius ,R r−  and when at the top of the loop, the bottom of the 
marble is a height of ( )2 R r−  above the 0 position of gravitational potential energy (see the 
diagram).  For the marble to just be on the verge of leaving the track means the normal force 
between the marble and the track is zero, and so the centripetal force at the top must be equal to 
the gravitational force on the marble.   

( )
2
top of
loop 2

top of
loop

    
mv

mg v g R r
R r

= → = −
−

 

Use energy conservation to equate the energy at the release point to  
the energy at the top of the loop. 

( ) ( ) ( )

( ) ( ) ( )

release top of release release top of top of
loop loop loop

2
top of
loop2 2 2 21 1 1 1 2

top of top of top of2 2 2 2 5 2
loop loop loop

27 7
top of10 10
loop

    

0 2 2

2 2 2

E E K U K U

v
mgh mv I mg R r mv mr mg R r

r

mgh mv mg R r mg R r mg R r

ω

= → + = +

+ = + + − = + + −

= + − = − + − = ( )

( )

.7

2.7

mg R r

h R r

−

= −

 

 
95. We calculate the moment of inertia about an axis through 

the geometric center of the rod.  Select a differential 
element of the rod of length ,dx  a distance x from the 
center of the rod.  Because the mass density changes 

uniformly from 0λ  at 1
2x = − l to 03λ  at 1

2 ,x = l the mass density function is 02 1 .
xλ λ= +⎛ ⎞

⎜ ⎟
⎝ ⎠l

 

2 2R r−

0y =

dx

x1
2− l 1

2 l
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The mass of the differential element is then 02 1 .
x

dM dx dxλ λ= = +⎛ ⎞
⎜ ⎟
⎝ ⎠l

  Use Eq. 10-16 to calculate 

the moment of inertia. 

  
/ 2/ 2 / 2 3 4

2 2 2 3 31 1 1
end 0 0 0 03 4 6

/ 2 / 2 / 2

2 1 2 2
x x x

I R dM x dx x dx xλ λ λ λ
− − −

= = + = + = + =
⎛ ⎞ ⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫ ∫

ll l

l l l

l
l l l

 

 
96. A free body diagram for the ball while the stick is in contact is shown.  

Write Newton’s second law for the x direction, the y direction, and the 
rotation.  Take clockwise torques (about the center of mass) as positive. 

 
( ) ( )
( )

N N

fr N k k

fr k

k

0    

    

  

     

y

x k

F F Mg F Mg

F
F F F F F F Mg Ma a g

M
F h r F r F h r Mgr I

F h r Mgr
I

μ μ μ

τ μ α

μ
α

= − = → =

= − = − = − = → =

= − + = − + = →

− +
=

−

∑

∑
∑

 

The acceleration and angular acceleration are constant, and so constant acceleration kinematics may 
be used to find the velocity and angular velocity as functions of time.  The object starts from rest. 

  
( ) k

0 k 0CM   ;  
F h r MgrF

v v at g t t t
M I

μ
μ ω ω α

− +
= + = − = + = ⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

At a specific time release ,t  when the ball loses contact with the pushing stick, the ball is rolling 
without slipping, and so at that time CM .v rω =   Solve for the value of h needed to make that true.  

The moment of inertia is 22
5 .I Mr=  

  

( )

( )

k
CM release k release

7
k k k5

1
      

1

F h r Mgr F
v r t g t

I r M

I F r
h g Mgr Fr F Mg

F r M F

μ
ω μ

μ μ μ

− +
= → = − →

= − − + = −

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
97. Each wheel supports ¼ of the weight of the car.  For rolling without 

slipping, there will be static friction between the wheel and the pavement.  
So for the wheel to be on the verge of slipping, there must be an applied 
torque that is equal to the torque supplied by the static frictional force.  We 
take counterclockwise torques to the right in the diagram.  The bottom 
wheel would be moving to the left relative to the pavement if it started to 
slip, so the frictional force is to the right.  See the free-body diagram. 

  
( ) ( ) ( ) ( )

1
applied static fr s N s 4
min friction

2 21
4        0.33m 0.65 950 kg 9.80 m s 5.0 10 m N

RF R F R mgτ τ μ μ= = = =

= = × i
 

 
98. (a) If there is no friction, then conservation of mechanical energy can be used to find the speed of  

the block.  We assume the cord unrolls from the cylinder without slipping, and so 
block cord cord .v v Rω= =   We take the zero position of gravitational potential energy to be the 

1
4 mgG

R
appliedτ

frF
G

NF
G

MgG
r

frF
G

NF
G

F
G

h

x

y
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bottom of the motion of the block.  Since the cylinder does not move vertically, we do not have 
to consider its gravitational potential energy. 

   ( )

( )
( ) ( ) ( )

( )

initial final initial final block cylinder

2
2 2 2 21 1 1 1 1

2 2 2 2 2 2

2

1
2

      

    sin   

2 3.0 kg 9.80 m s 1.80 m sin 272 sin
1.570 m s 1.6 m s

19.5kg

E E U K K K

v
mgh mv I mgD mv MR

R

mgD
v

m M

ω θ

θ

= → = = + →

= + → = + →

°
= = = ≈

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

 

 (b) The first printing of the textbook has 0.055,μ =  while later printings  
will have 0.035.μ =   The results are fundamentally different in the 
two cases.  Consider the free body diagrams for both the block and the 
cylinder.  We make the following observations and assumptions.  Note 
that for the block to move down the plane from rest, T .F mg<   Also 
note that 0.1mg Mg<  due to the difference in masses.  Thus 

T 0.1 .F Mg<   Accordingly, we will ignore TF  when finding the net 
vertical and horizontal forces on the cylinder, knowing that we will make less than 
a 10% error.  Instead of trying to assign a specific direction for the force of 
friction between the cylinder and the depression ( )fr 2 ,F  we show a torque in the 
counterclockwise direction (since the cylinder will rotate clockwise).  Finally, we 
assume that fr 2 N2 .F F Mgμ μ= =    
 

Write Newton’s second law to analyze the linear motion of the block and the rotational motion 
of the cylinder, and solve for the acceleration of the block.  We assume the cord unrolls without 
slipping. 

N N

T fr 1 T

1
T fr 2 T N2 T 2

1
T 2

cos 0    cos

sin sin cos

  

              

y

x

F F mg F mg

F mg F F mg F mg ma

a
F R F R F R F R MgR I I MRa

R
F Mg Ma

θ θ

θ θ μ θ

τ τ μ μ α

μ

= − = → =

= − − = − − =

= − = − = − = = = →

− =

∑
∑

∑
 

  Add the x equation to the torque equation. 

   

( )
( )

1
T T 2

1
2

1
2

sin cos   ;  

sin cos

sin cos

 
  

mg F mg ma F Mg Ma

mg Mg mg ma Ma

m M
m M

a g

θ μ θ μ
θ μ μ θ

θ μ θ μ

− − = − =

− − = +

− −
+

→
→

=

 

If 0.055,μ =  ( ) ( ) ( ) ( )
( )

23.0 kg sin 27 0.055cos 27 0.055 33kg
0.302 m s

19.5kg
.a g

° − ° −
= = −   But the 

object cannot accelerate UP the plane from rest.  So the conclusion is that object will not move 
with 0.055.μ =   The small block is not heavy enough to move itself, rotate the cylinder, and 
overcome friction. 
 

If 0.035,μ =  
( ) ( ) ( ) ( )

( )
23.0 kg sin 27 0.035cos 27 0.035 33kg

0.057 m s
19.5kg

.a g
° − ° −

= =  

mgG

N1F
G

θθ

TF
G

fr 1F
G

x

y

MgG

TF
G

fr 2τ

N2F
G
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Use Eq. 2-12c to find the speed after moving 1.80 m. 

( ) ( )2 2 2
0 2     2 0.057 m s 1.80 m 0.45m sv v a x v= + Δ → = = . 

 
99. (a) See the free body diagram.  Take clockwise torques as positive.  Write  

Newton’s second law for the rotational motion.  The angular acceleration is 
constant, and so constant acceleration relationships can be used.  We also 

use the definition of radian angles, .s
R

θ Δ
Δ =  

   2 21 1
fr 1 1 0 1 1 1 1 1 1 12 2  ;    ;  FR I t t t s Rτ τ α θ ω α α θ= − = Δ = + = Δ = Δ∑  

  Combine the relationships to find the length unrolled, 1.sΔ  

   
( ) ( )

( ) ( )
( ) ( ) ( ) ( )[ ]

2
2 11

1 1 1 1 fr2

2

3 2

2
0.076 m 1.3s

   2.5 N 0.076 m 0.11m N 1.557m 1.6 m
2 3.3 10 kg m

Rt
s R R t FR

I
θ α τ

−

Δ = Δ = = −

= − = ≈
×

i
i

 

 (b) Now the external force is removed, but the frictional torque is still present.  The analysis is very  
similar to that in part (a), except that the initial angular velocity is needed.  That angular 
velocity is the final angular velocity from the motion in part (a). 

   
( ) ( ) ( )[ ]

( ) ( )fr
1 0 1 1 1 3 2

2.5 N 0.076 m 0.11m N
1.3s 31.515rad s

3.3 10 kg m
FR

t t
I

τω ω α
−

−−
= + = = =

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

i
i

 

   2 2 2
fr 2 2 1 2 2 1 2 2  ;  2   ;  I s Rτ τ α ω ω α θ ω θ= − = − = Δ = − Δ = Δ∑  

  Combine the relationships to find the length unrolled, 2.sΔ  

   
( ) ( ) ( )

( )

2 3 22 2
1 1

2 2
2 fr

0.076 m 31.515rad s 3.3 10 kg m

2 2 2 0.11m N

     1.13m 1.1m

I
s R R R

ω ωθ
α τ

−×− −
Δ = Δ = = =

−

= ≈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i

i  

 
100. (a) The disk starts from rest, and so the velocity of the center of mass is in the direction of the net  

force:  0 net    .t
t

m
= + → =v v a v F

GGG G G   Thus the center of mass moves to the right. 

(b) For the linear motion of the center of mass, we may apply constant acceleration equations, 

where the acceleration is .
F
m

 

   ( )
( ) ( )2 2

0

35 N
2     2 2 5.5m 4.282 m s 4.3m s

21.0 kg
F

v v a x v x
m

= + Δ → = Δ = = ≈  

(c) The only torque is a constant torque caused by the constant string tension.  That can be used to 
find the angular velocity. 

   0
21

2

2
    

I Frt Frt Ft
I I Fr

t t I mr mr
ω ω ωτ α ω−

= = = = → = = =⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  The time can be found from the center of mass motion under constant acceleration. 

   2 21 1
0 2 2

2
    

F m x
x v t at t t

m F
Δ

Δ = + = → =  

Rfrτ

F
G



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

336 

   ( )
( ) ( )

( )
( )

2 35.0 N 5.5m2 2 2 2 2 2
0.850 m 21.0 kg

  10.07 rad s 10 rad s  2 sig fig

Ft F m x F x
mr mr F r m

ω Δ Δ
= = = =

= ≈

 

  Note that v rω≠ since the disk is NOT rolling without slipping. 
(d) The amount of string that has unwrapped is related to the angle through which the disk has 

turned, by the definition of radian measure, .s r θ= Δ   The angular displacement is found from 
constant acceleration relationships. 

   
( )

2
1 1 1

02 2 2

2
2 2

2
2 11m

m x
FFt Ft xFt t t

mr mr mr r
x

s r r x
r

θ ω ω ω

θ

Δ
Δ

Δ = + = = = = =

Δ
= Δ = = Δ =

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 
101. (a) We assume that the front wheel is barely lifted off the ground, so  

that the only forces that act on the system are the normal force on the 
bike’s rear wheel, the static frictional force on the bike’s wheel, and 
the total weight of the system.  We assume that the upward 
acceleration is zero and the angular acceleration about the center of 
mass is also zero.  Write Newton’s second law for the x direction, the y 
direction, and rotation.  Take positive torques to be clockwise. 

N N

fr

fr

fr

NCM

0    

    

0

y

x

F F Mg F Mg

F
F F Ma a

M
F x F yτ

= − = → =

= = → =

= =−

∑

∑
∑

 

Combine these equations to solve for the acceleration. 

 N fr 0        
x

F x F y Mgx May a g
y

− = → = → =  

(b) Based on the form of the solution for the acceleration, ,
x

a g
y

= to minimize the acceleration    

x should be as small as possible and y should be as large as possible.  The rider should move 
upwards and towards the rear of the bicycle. 

 (c) ( )2 20.35m
9.80 m s 3.6 m s

0.95m
x

a g
y

= = =  

 
102. We follow the hint given in the problem.  The mass of the cutout piece is proportional by area to the 

mass of the entire piece. 

  

( ) ( )

2 21 1
total 0 remainder cutout remainder 0 cutout2 2

2
2 2 2 11

cutout cutout 1 cutout cutout 12 2 2
0 0

2
2 2 2 2 2 211 1 1 1

remainder 0 cutout 1 cutout 0 12 2 2 22
0

    

  ;    

I MR I I I MR I

M R
I m R m h m R M

R R

R
I MR m R m h MR M R h

R

π
π

= = + → = −

= + = = →

= − + = − +

 

x

y

MgG

frF
G

NF
G

x

y
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  ( )4 4 2 21
0 1 12 2

0

          2
M

R R R h
R

= − −   

 
103. Since there is no friction at the table, there are no horizontal forces on the rod, and so the center of 

mass will fall straight down.  The moment of inertia of the rod about its center of mass is 21
12 .M l   

Since there are no dissipative forces, energy will be conserved during the fall.  Take the zero level of 
gravitational potential energy to be at the tabletop.   The angular velocity and the center of mass 

velocity are related by 
( )

CM
CM 1

2

.vω =
l

 

  o

( )

( ) ( ) ( )

2 21 1 1
initial final release final CM CM2 2 2

2

2 2 2CM 31 1 1 1 4
CM CM CM2 2 2 12 3 41

2

          

        

E E U K Mg Mv I

v
Mg Mv M g v v g

ω= → = → = + →

= + → = → =
⎡ ⎤
⎢ ⎥
⎣ ⎦

l

l l l l
l

 

 
104. (a) The acceleration is found in Example 10-19 to be a constant value, 2

3 ,a g=  and so constant  
acceleration kinematics can be used.  Take downward to be the positive direction. 

   2 2 2 4
0 3 32     2 2y y y y yv v a y v a y gh gh= + Δ → = Δ = =  

(b) We take the zero level for gravitational potential energy to be the starting height of the yo-yo.  
Then the final gravitational potential energy is negative. 

   
( )

2 21 1
initial final final final CM CM2 2

2
2 2 CM1 1 1 4
CM CM2 2 2 3

    0   

    

E E U K Mgh Mv I

v
Mgh Mv MR v gh

R

ω= → = + = − + + →

= + → =⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
105. From the diagram, we see that the torque about the support A 

is as follows. 

  
( )

( )[ ]( )
1 2cos

  0.300 m cos 0.200 m 500 N

R F Fτ θ

θ

⊥= = +

= +

l l

 

 The graph of torque as a function of angle is shown. 

0

50

100

150

200

250

0 15 30 45 60 75 90
Angle (degrees)

To
rq

ue
 (m

-N
)

 
The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH10.XLS,” on tab “Problem 10.105.” 

 
 
 

1l

2l

F
G

θ θ

2l

1 cosθl

R⊥

A
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106. From problem 51, the acceleration is as follows. 

  ( )
( )

( )
( )( ) ( )2B A

22
A B

0.200 kg
9.80 m s

0.500 kg 0.040 m

m m
a g

m m I R I

−
= =

+ + +
 

(a) The graph is shown here.  The 
spreadsheet used for this 
problem can be found on the 
Media Manager, with 
filename 
“PSE4_ISM_CH10.XLS,” on 
tab “Problem 10.106a.” 

 (b) The value of the acceleration 
with a zero moment of inertia 
is found as follows. 

  
 
 
 
 
 (c) A 2.0% decrease in the acceleration means the acceleration is as follows. 

( )2 23.92 m s 0.98 3.84 m s .a = =   Looking at the graph, that would occur roughly for a 

moment of inertia of 5 21.6 10 kg m .−× i  
 

 (d) Using the value above gives the following pulley mass. 

   
( )

5 2
2 5 21

2 22

2 1.6 10 kg m
1.6 10 kg m     2 0.020 kg 20 grams

0.040 m
I

I mr m
R

−
− ×

= = × → = = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

i
i  

( )
( ) ( )2

2

0.200 kg
9.80 m s

0.500 kg

  3.92 m s

a =

=

3.3
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CHAPTER 11:  Angular Momentum; General Rotation 
 
Responses to Questions 
 
1.  (a) With more people at the equator, more mass would be farther from the axis of rotation, and the 

moment of inertia of the Earth would increase. Due to conservation of angular momentum, the 
Earth’s angular velocity would decrease. The length of the day would increase. 

 
2.   No. Once the diver is in the air, there will be no net torque on her and therefore angular momentum 

will be conserved. If she leaves the board with no initial rotation, her initial angular momentum will 
be zero. Conservation of angular momentum requires that her final angular momentum will also be 
zero, so she will not be able to do a somersault. 

 
3.  Your angular velocity will stay the same. The angular momentum of the system of you and the stool 

and the masses is conserved. The masses carry off their angular momentum (until they hit 
something); you and the stool continue to rotate as before.  

  
4.  Once the motorcycle leaves the ground, there is no net torque on it and angular momentum must be 

conserved. If the throttle is on, the rear wheel will spin faster as it leaves the ground because there is 
no torque from the ground acting on it. The front of the motorcycle must rise up, or rotate in the 
direction opposite the rear wheel, in order to conserve angular momentum. 

 
5. As you walk toward the center, the moment of inertia of the system of you + the turntable will 

decrease. No external torque is acting on the system, so angular momentum must be conserved, and 
the angular speed of the turntable will increase. 

 
6.  When the player is in the air, there is no net torque on him so his total angular momentum must be 

conserved. If his upper body rotates one direction, his lower body will rotate the other direction to 
conserve angular momentum. 

 
7.  The cross product remains the same. 1 2 1 2( ) ( )× = − × −V V V V

G G G G
 

 
8.  The cross product of the two vectors will be zero if the magnitude of either vector is zero or if the 

vectors are parallel or anti-parallel to each other. 
 
9. The torque about the CM, which is the cross product between r and F, depends on x and z, but not on 

y. 
 
10.  The angular momentum will remain constant. If the particle is moving in a straight line at constant 

speed, there is no net torque acting on it and therefore its angular momentum must be conserved. 
  
11.  No. If two equal and opposite forces act on an object, the net force will be zero. If the forces are not 

co-linear, the two forces will produce a torque. No. If an unbalanced force acts through the axis of 
rotation, there will be a net force on the object, but no net torque. 

 
12.  At the forward peak of the swinging motion, the child leans forward, increasing the gravitational 

torque about the axis of rotation by moving her center of mass forward. This increases the angular 
momentum of the system. At the back peak of the swinging motion, the child leans backward, 
increasing the gravitational torque about the axis of rotation by moving her center of mass backward. 
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This again increases the angular momentum of the system. As the angular momentum of the system 
increases, the swing goes higher. 

 
13. A force directed to the left will produce a torque that will cause the axis of the rotating wheel to 

move directly upward. 
 
14.  In both cases, angular momentum must be conserved. Assuming that the astronaut starts with zero 

angular momentum, she must move her limbs so that her total angular momentum remains zero. The 
angular momentum of her limbs must be opposite the angular momentum of the rest of her body. 
(a) In order to turn her body upside down, the astronaut could hold her arms straight out from her 

sides and rotate them from the shoulder in vertical circles. If she rotates them forward, her body 
will rotate backwards. 

(b) To turn her body about-face, she could hold her arms straight out from her sides and then pull 
one across the front of her body while she pulls the other behind her back. If she moves her 
arms counterclockwise, her body will twist clockwise.  

 
15. Once the helicopter has left the ground, no external torques act on it and angular momentum must be 

conserved. If there were only one propeller, then when the angular velocity of the propeller changed, 
the body of the helicopter would begin to rotate in a direction so as to conserve angular momentum. 
The second propeller can be in the same plane as the first, but spinning in the opposite direction, or 
perpendicular to the plane of the first. Either case will stabilize the helicopter. 

 
16. The rotational speed of the wheel will not change. Angular momentum of the entire system is 

conserved, since no net torque operates on the wheel. The small parts of the wheel that fly off will 
carry angular momentum with them. The remaining wheel will have a lower angular momentum and 
a lower rotational kinetic energy since it will have the same angular velocity but a smaller mass, and 
therefore a smaller moment of inertia. The kinetic energy of the total system is not conserved. 

 
17. (a) Displacement, velocity, acceleration, and momentum are independent of the choice of origin. 

(b) Displacement, acceleration, and torque are independent of the velocity of the coordinate system. 
 
18.  Turning the steering wheel changes the axis of rotation of the tires, and makes the car turn. The 

torque is supplied by the friction between the tires and the pavement. (Notice that if the road is 
slippery or the tire tread is worn, the car will not be able to make a sharp turn.) 

 
19. The Sun will pull on the bulge closer to it more than it pulls on the opposite bulge, due to the 

inverse-square law of gravity. These forces, and those from the Moon, create a torque which causes 
the precession of the axis of rotation of the Earth. The precession is about an axis perpendicular to 
the plane of the orbit. During the equinox, no torque exists, since the forces on the bulges lie along a 
line. 

 
20. Because of the rotation of the Earth, the plumb bob will be slightly deflected by the Coriolis force, 

which is a “pseudoforce.”  
 
21. Newton’s third law is not valid in a rotating reference frame, since there is no reaction to the 

pseudoforce. 
 
22. In the Northern Hemisphere, the shots would be deflected to the right, with respect to the surface of 

the Earth, due to the Coriolis effect. In the Southern Hemisphere, the deflection of the shots would 
be to the left. The gunners had experience in the Northern Hemisphere and so miscalculated the 
necessary launch direction.  
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Solutions to Problems 
 
1. The angular momentum is given by Eq. 11-1. 

  ( ) ( ) ( )22 20.210 kg 1.35m 10.4 rad s 3.98kg m sL I MRω ω= = = = i  

 
2. (a) The angular momentum is given by Eq. 11-1. 

   
( )( )221 1

2 2

2 2

1300 rev 2  rad 1 min
2.8 kg 0.18 m

1 min 1 rev 60 s

  6.175 kg m s 6.2 kg m s

L I MR
π

ω ω= = =

= ≈

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

i i

 

 (b) The torque required is the change in angular momentum per unit time.  The final angular  
momentum is zero. 

   
2

0 0 6.175 kg m s
1.0 m N

6.0 s
L L

t
τ

− −
= = = −

Δ
i

i  

  The negative sign indicates that the torque is used to oppose the initial angular momentum. 
 
3. (a) Consider the person and platform a system for angular momentum analysis.  Since the force and  

torque to raise and/or lower the arms is internal to the system, the raising or lowering of the 
arms will cause no change in the total angular momentum of the system.  However, the 
rotational inertia increases when the arms are raised.  Since angular momentum is conserved, an 
increase in rotational inertia must be accompanied by a decrease in angular velocity. 

 (b) 
0.90 rev s

        1.286 1.3
0.70 rev s

i
i f i i f f f i i i i

f

L L I I I I I I I
ωω ω
ω

= → = → = = = ≈  

  The rotational inertia has increased by a factor of 1.3 .  
 
4. The skater’s angular momentum is constant, since no external torques are applied to her.   

( )2 21.0 rev 1.5s
        4.6 kg m 1.2 kg m

2.5rev s
i

i f i i f f f i
f

L L I I I I
ωω ω
ω

= → = → = = =i i   

She accomplishes this by starting with her arms extended (initial angular velocity) and then  
pulling her arms in to the center of her body  (final angular velocity). 

 
5. There is no net torque on the diver because the only external force (gravity) passes through the center 

of mass of the diver.  Thus the angular momentum of the diver is conserved.  Subscript 1 refers to 
the tuck position, and subscript 2 refers to the straight position. 

  1
1 2 1 1 2 2 2 1

2

2 rev 1
        0.38 rev s

1.5 sec 3.5
I

L L I I
I

ω ω ω ω= → = → = = =⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
6. The angular momentum is the total moment of inertia times the angular velocity. 

  ( ) ( )22 21 1 1 1
12 2 12 22L I M m M mω ω ω= = + = +⎡ ⎤⎣ ⎦l l l  

 
7. (a) For the daily rotation about its axis, treat the Earth as a uniform sphere, with an angular  

frequency of one revolution per day. 
( )22

daily daily Earth daily5L I MRω ω= =  
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60o 

LW = IW ωW 

( ) ( )224 6 33 22
5

2  rad 1 day
       6.0 10 kg 6.4 10 m 7.1 10 kg m s

1 day 86,400 s
π

= × × = ×
⎡ ⎤⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
i  

 (b) For the yearly revolution about the Sun, treat the Earth as a particle, with an angular frequency  
of one revolution per year. 

   

( )( )

2
daily daily Sun- daily

Earth

224 11 40 22  rad 1 day
          6.0 10 kg 1.5 10 m 2.7 10 kg m s

365 day 86,400 s

L I MRω ω

π

= =

= × × = ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

i
 

 

8. (a) ( )( )22 2 21 1
2 2

rev 2 rad
48kg 0.15m 2.8 9.50 kg m s 9.5kg m s

s 1rev
L I MR

π
ω ω= = = = ≈

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

i i  

 (b) If the rotational inertia does not change, then the change in angular momentum is strictly due to  
a change in angular velocity. 

2
final 0 0 9.50 kg m s

1.9 m N
5.0 s

I IL
t t

ω ω
τ

−Δ −
= = = = −
Δ Δ

i
i  

  The negative sign indicates that the torque is in the opposite direction as the initial angular  
momentum. 

 
9. When the person and the platform rotate, they do so about the vertical axis.  Initially there is no 

angular momentum pointing along the vertical axis, and so any change that the person–wheel–
platform undergoes must result in no net angular momentum along the vertical axis. 
(a) If the wheel is moved so that its angular momentum points upwards, then the person and 

platform must get an equal but opposite angular momentum, which will point downwards.  
Write the angular momentum conservation condition for the vertical direction to solve for the 
angular velocity of the platform. 

   W
W W P P P W

P

    0     i f

I
L L I I

I
ω ω ω ω= → = + → = −  

The negative sign means that the platform is rotating in the opposite direction of the wheel.  If 
the wheel is spinning counterclockwise when viewed from above, the platform is spinning 
clockwise. 

(b) If the wheel is pointing at a 60o angle to the vertical, then the component 
of its angular momentum that is along the vertical direction is 

W W cos60I ω ° .  See the diagram.  Write the angular momentum 
conservation condition for the vertical direction to solve for the angular 
velocity of the platform. 

  W
W W P P P W

P

    0 cos60     
2i f

I
L L I I

I
ω ω ω ω= → = ° + → = −  

Again, the negative sign means that the platform is rotating in the opposite direction of the 
wheel. 

(c) If the wheel is moved so that its angular momentum points downwards, then the person and  
platform must get an equal but opposite angular momentum, which will point upwards.  Write 
the angular momentum conservation condition for the vertical direction to solve for the angular 
velocity of the platform. 

   W W P P P W W P    0     i fL L I I I Iω ω ω ω= → = − + → =  
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The platform is rotating in the same direction as the wheel.  If the wheel is spinning 
counterclockwise when viewed from above, the platform is also spinning counterclockwise. 

(d) Since the total angular momentum is 0, if the wheel is stopped from rotating, the platform will 
also stop.  Thus P 0ω = . 

 
10. The angular momentum of the disk–rod combination will be conserved because there are no external 

torques on the combination.  This situation is a totally inelastic collision, in which the final angular 
velocity is the same for both the disk and the rod.  Subscript 1 represents before the collision, and 
subscript 2 represents after the collision.  The rod has no initial angular momentum. 

  1 2 1 1 2 2      L L I Iω ω= → = →  

  
( )

( )
21

disk1 2
2 1 1 1 221 1

2 disk rod 2 12

3
3.7 rev s 2.2 rev s

52

MRII
I I I MR M R

ω ω ω ω= = = = =
+ +

⎡ ⎤ ⎛ ⎞
⎢ ⎥ ⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 

 
11. Since the person is walking radially, no torques will be exerted on the person–platform system, and 

so angular momentum will be conserved.  The person will be treated as a point mass.  Since the 
person is initially at the center, they have no initial rotational inertia. 

 (a) ( )platform platform person    i f i fL L I I Iω ω= → = +  

( ) ( )
( )

2
platform

22 2
platform

920 kg m
0.95rad s 0.548rad s 0.55rad s

920 kg m 75kg 3.0 mf i

I
I mR

ω ω= = = ≈
+ +

i
i

 

 (b) ( ) ( )22 21 1
platform2 2 920 kg m 0.95rad s 420Ji iKE I ω= = =i  

( ) ( )
( ) ( ) ( )

2 2 21 1
platform person platform person person2 2

2 221
2       920 kg m 75kg 3.0 m 0.548rad s 239 J 240J

f f fKE I I I m rω ω= + = +

= + = ≈⎡ ⎤⎣ ⎦i
 

 
12. Because there is no external torque applied to the wheel–clay system, the angular momentum will be 

conserved.  We assume that the clay is thrown with no angular momentum so that its initial angular 
momentum is 0.  This situation is a totally inelastic collision, in which the final angular velocity is 
the same for both the clay and the wheel.  Subscript 1 represents before the clay is thrown, and 
subscript 2 represents after the clay is thrown.   

  1 2 1 1 2 2      L L I Iω ω= → = →   

  

( ) ( )( )
( )( ) ( )( )

2 21
wheel wheelwheel wheel wheel1 2

2 1 1 12 2 2 21 1
2 wheel clay wheel wheel clay clay wheel wheel clay clay2 2

2

22 2

5.0 kg 0.20 m
   1.5 rev s 1.385 rev s

5.0 kg 0.20 m 2.6 kg 8.0 10 m

M RI M RI
I I I M R M R M R M R

ω ω ω ω

−

= = = =
+ + +

= =
+ ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

1.4 rev s≈

 

 
13. The angular momentum of the merry-go-round and people combination will be conserved because 

there are no external torques on the combination.  This situation is a totally inelastic collision, in 
which the final angular velocity is the same for both the merry-go-round and the people.  Subscript 1 
represents before the collision, and subscript 2 represents after the collision.  The people have no 
initial angular momentum. 

1 2 1 1 2 2      L L I Iω ω= → = →  
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( )
( ) ( )

m-g-r m-g-r1
2 1 1 1 2

2 m-g-r people m-g-r person

2

22

4

1760 kg m
    0.80 rad s 0.48 rad s

1760 kg m 4 65kg 2.1m

I II
I I I I M R

ω ω ω ω= = =
+ +

= =
+

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

i
i

 

 If the people jump off the merry-go-round radially, then they exert no torque on the merry-go-round, 
and thus cannot change the angular momentum of the merry-go-round.  The merry-go-round would 
continue to rotate at 0.80 rad s .  

 
14. (a) The angular momentum of the system will be conserved as the woman walks.  The woman’s  

distance from the axis of rotation is .r R vt= −   

   

( )

( ) ( )( )
( )

( )( )
( )

platform 0 0 platform woman
woman

22 2 21 1
02 2

2 21 1
2 0 2 0

2221
2 1

2

      

  

1

i fL L I I I I

MR mR MR m R vt

MR mR M m
vtMR m R vt M m
R

ω ω

ω ω

ω ω
ω

= → + = + →

+ = + − →

+ +
= =

+ − + −

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) Evaulate at 0    .r R vt R vt= − = → =  

   
( )1

2 0
01

2

2
1

M m m
M M

ω
ω ω

+
= = +⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
15. Since there are no external torques on the system, the angular momentum of the 2-disk system is 

conserved.  The two disks have the same final angular velocity. 
  ( ) 1

2    0 2     i f f fL L I I Iω ω ω ω= → + = → =  

 
16. Since the lost mass carries away no angular momentum, the angular momentum of the remaining 

mass will be the same as the initial angular momentum. 

  
( )( )

2 22
45

222
5

4 4 2 2

        2.0 10
0.5 0.01

2 rad 1 d
2.0 10 2.0 10 4.848 10 rad s 5 10 rad s

30 day 86400 s

f i ii i i
i f i i f f

i f f f i f

f i

M RI M R
L L I I

I M R M R

ω
ω ω

ω

πω ω − −

= → = → = = = = ×

= × = × = × ≈ ×⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 The period would be a factor of 20,000 smaller, which would make it about 130 seconds. 
 The ratio of angular kinetic energies of the spinning mass would be as follows. 

  

( ) ( ) ( )
( )

22 41 221
2 52 4final

2 2 21 1 2
2 2 5initial

4
final initial

0.5 0.01 2.0 10
2.0 10   

2 10

i i if f

i i i i i

M RIK
K I M R

K K

ωω
ω ω

×
= = = × →

= ×

⎡ ⎤⎣ ⎦
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17. For our crude estimate, we model the hurricane as a rigid cylinder of air.  Since the “cylinder” is 
rigid, each part of it has the same angular velocity.  The mass of the air is the product of the density 
of air times the volume of the air cylinder. 

  ( ) ( ) ( )22 3 4 3 141.3kg m 8.5 10 m 4.5 10 m 1.328 10 kgM V R hρ ρπ π= = = × × = ×  

 (a) ( ) ( )22 2 21 1 1 1
edge edge2 2 2 4K I MR v R Mvω= = =  

  ( ) ( )
2

14 16 161
4

1m s
     1.328 10 kg 120 km h 3.688 10 J 3.7 10 J

3.6 km h
= × = × ≈ ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 (b) ( )( )21 1
edge edge2 2L I MR v R MRvω= = =  

( ) ( ) ( )14 4 20 21
2

20 2

1m s
  1.328 10 kg 8.5 10 m 120 km h 2.213 10 kg m s

3.6 km h

  1.9 10 kg m s

= × × = ×

≈ ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

i

i

 

 
18. Angular momentum will be conserved in the Earth–asteroid system, since all forces and torques are 

internal to the system.  The initial angular velocity of the satellite, just before collision, can be found 
from asteroid asteroid Earth .v Rω =   Assuming the asteroid becomes imbedded in the Earth at the surface, 
the Earth and the asteroid will have the same angular velocity after the collision.  We model the 
Earth as a uniform sphere, and the asteroid as a point mass. 

  ( )Earth Earth asteroid asteroid Earth asteroid    i f fL L I I I Iω ω ω= → + = +  
 The moment of inertia of the satellite can be ignored relative to that of the Earth on the right side of 

the above equation, and so the percent  change in Earth’s angular velocity is found as follows. 

  
( )Earth asteroid asteroid

Earth Earth asteroid asteroid Earth
Earth Earth Earth

    f
f

I
I I I

I

ω ω ω
ω ω ω

ω ω
−

+ = → =  

  

( ) ( ) ( )

( )( )
( )( )

asteroid
2

Earth asteroid Earth Earth asteroid asteroid
22 2

Earth Earth Earth Earth Earth Earth Earth5 5

5 4

24

% change 100 100

1.0 10 kg 3.5 10 m s
                    

2  rad
0.4 5.97 10 kg 6.38 10

86400s

f

v
m R R m v
M R M R

ω ω
ω ω ω

π

−
= = =

× ×
=

× ×
⎛ ⎞
⎜ ⎟
⎝ ⎠

( )
( ) 16

6

100 3.2 10 %
m

−= ×

 

 
19. The angular momentum of the person–turntable system will be conserved.  Call the direction of the 

person’s motion the positive rotation direction.  Relative to the ground, the person’s speed will be 
T ,v v+  where v  is the person’s speed relative to the turntable, and Tv  is the speed of the rim of the 

turntable with respect to the ground.  The turntable’s angular speed is T T ,v Rω =  and the person’s 

angular speed relative to the ground is T
P T.v v v

R R
ω ω+

= = +   The person is treated as a point 

particle for calculation of the moment of inertia. 

  2
T T P P T T T    0   i f

v
L L I I I mR

R
ω ω ω ω= → = + = + + →⎛ ⎞

⎜ ⎟
⎝ ⎠
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  ( ) ( ) ( )
( ) ( )T 22 2

T

65 kg 3.25 m 3.8 m s
0.32 rad s

1850 kg m 65 kg 3.25 m
mRv

I mR
ω = − = − = −

+ +i
 

 
20. We use the determinant rule, Eq. 11-3b. 

 (a) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
ˆ ˆ ˆ

ˆ ˆ ˆ0 0 0 0 0 0 0 0 0 0
0 0
A B A B A

B
× = − = − + − − + − −

i j k
A B i j k
G G

 

  ˆ        AB= j  

  So the direction of ×A B
G G

 is in the ĵ  direction. 
(b) Based on Eq. 11-4b, we see that interchanging the two vectors in a cross product reverses the 

direction.  So the direction of ×B A
GG

 is in the ˆ−j  direction. 

 (c) Since A
G

 and B
G

are perpendicular, we have sin 90 .AB AB× = × = ° =A B B A
G GG G

 
 
21. (a) For all three expressions, use the fact that sin .AB θ× =A B

G G
  If both vectors in the cross  

product point in the same direction, then the angle between them is 0 .θ = °   Since sin 0 0° = , a 

vector crossed into itself will always give 0.  Thus ˆ ˆ ˆ ˆ ˆ ˆ 0 .× = × = × =i i j j k k  
 (b) We use the determinant rule (Eq. 11-3b) to evaluate the other expressions. 

   

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]

ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ1 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 1 0

ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ1 0 0 0 1 0 0 0 0 1 1 1 0 0 0

0 0 1

ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ0 1 0 1 1 0 0 0 0 0 1 0 0 0 1

0 0 1

× = = − + − + − =

× = = − + − + − = −

× = = − + − + − =

i j k
i j i j k k

i j k
i k i j k j

i j k
j k i j k i

 

 
22. (a) East cross south is into the ground.  
 (b) East cross straight down is north. 
 (c) Straight up cross north is west. 
 (d) Straight up cross straight down is 0 (the vectors are anti-parallel). 
 
23. Use the definitions of cross product and dot product, in terms of the angle between the two vectors. 

    sin cos     sin cosAB ABθ θ θ θ× = → = → =A B A B
G GG G

i  
 This is true only for angles with positive cosines, and so the angle must be in the first or fourth 

quadrant.  Thus the solutions are 45 ,315 .θ = ° °   But the angle between two vectors is always taken 

to be the smallest angle possible, and so 45 .θ = °  
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24. We use the determinant rule, Eq. 11-3b, to evaluate the torque. 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]{ }
( )

ˆ ˆ ˆ

4.0 3.5 6.0 m N
0 9.0 4.0

ˆ ˆ ˆ  3.5 4.0 6 9 6 0 4 4 4 9 3 5 m N

ˆ ˆ ˆ  68 16 36 m N

= × =

−

= − − + − − + −

= − + +

i j k
τ r F

i j k

i j k

GGG i

i

i

 

 
25. We choose coordinates so that the plane in which the particle 

rotates is the x-y plane, and so the angular velocity is in the z 
direction.  The object is rotating in a circle of radius sinr θ , 
where θ is the angle between the position vector and the axis of 
rotation.  Since the object is rigid and rotates about a fixed axis, 
the linear and angular velocities of the particle are related by 

sin .v rω θ=   The  magnitude of the tangential acceleration is 
tan sin .a rα θ=   The radial acceleration is given by 

2

R .
sin sin
v v

a v v
r r

ω
θ θ

= = =   We assume the object is gaining 

speed.  See the diagram showing the various vectors involved. 
 

The velocity and tangential acceleration are parallel to each other, and the angular velocity and 
angular acceleration are parallel to each other.  The radial acceleration is perpendicular to the 
velocity, and the velocity is perpendicular to the angular velocity. 

 

 We see from the diagram that, using the right hand rule, the direction of RaG is in the direction of 

.×ω vG G   Also, since ωG  and  vG  are perpendicular, we have vω× =ω vG G  which from above is 

R .v aω =   Since both the magnitude and direction check out, we have R .= ×a ω vG G G  
 

 We also see from the diagram that, using the right hand rule, the direction of tanaG is in the direction 

of .×α rG G
  The magnitude of ×α rG G

is sin ,rα θ× =α rG G
 which from above is tansin .r aα θ =   Since 

both the magnitude and direction check out, we have tan .= ×a α rG G G
 

 
26. (a) We use the distributive property, Eq. 11-4c, to obtain 9 single-term cross products. 

   

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ         

ˆ ˆˆ ˆ ˆ ˆ            

x y z x y z

x x x y x z y x y y y z

z x z y z z

A A A B B B

A B A B A B A B A B A B

A B A B A B

× = + + × + +

= × + × + × + × + × + ×

+ × + × + ×

A B i j k i j k

i i i j i k j i j j j k

k i k j k k

G G

 
 Each of these cross products of unit vectors is evaluated using the results of Problem 21 and Eq.  

11-4b. 

   

( ) ( ) ( ) ( )
( ) ( )

ˆ ˆˆ ˆ0 0

ˆ ˆ                           0

ˆ ˆ ˆ ˆˆ ˆ         

x x x y x z y x y y y z

z x z y z z

x y x z y x y z z x z y

A B A B A B A B A B A B

A B A B A B

A B A B A B A B A B A B

× = + + − + − + +

+ + − +

= − − + + −

A B k j k i

j i

k j k i j i

G G

 

ωG rG

vG

αG

tanaG

RaG

θ
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   ( ) ( ) ( )ˆ ˆ ˆ         y z z y z x x z x y y xA B A B A B A B A B A B= − + − + −i j k  

 (b) The rules for evaluating a literal determinant of a 3 x 3 matrix are as follows.  The indices on  
the matrix elements identify the row and column of the element, respectively. 

   ( ) ( ) ( )
11 12 13

21 22 23 11 22 33 23 32 12 23 31 21 33 13 21 32 22 31

31 32 33

a a a
a a a a a a a a a a a a a a a a a a
a a a

= − + − + −  

  Apply this as a pattern for finding the cross product of two vectors. 

   ( ) ( ) ( )
ˆ ˆ ˆ

ˆ ˆ ˆ
x y z y z z y z x x z x y y x

x y z

A A A A B A B A B A B A B A B
B B B

× = = − + − + −

i j k
A B i j k
G G

 

  This is the same expression as found in part (a). 
 
27. We use the determinant rule, Eq. 11-3b, to evaluate the torque. 

  ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]{ }
( ) ( ) 4

ˆ ˆ ˆ

0 8.0 6.0 m kN
2.4 4.1 0

ˆ ˆ ˆ             6.0 4.1 6.0 2.4 8.0 2.4 m kN

ˆ ˆ ˆ ˆˆ ˆ             24.6 14.4 19.2 m kN 2.5 1.4 1.9 10 m N

= × =

± −

= − − + ± + − ±

= ± ≈ ± ×

i j k
τ r F

i j k

i j k i j k

GGG i

i

∓ i ∓ i

 

 The magnitude of this maximum torque is also found. 

  ( ) ( ) ( )2 2 2 4 42.46 1.44 1.92 10 m N 3.4 10 m N= + + × = ×τG i i  

 
28. We use the determinant rule, Eq. 11-3b, to evaluate the torque. 

  ( ) ( ) ( ) ( )[ ]

ˆ ˆ ˆ

0.280 0.335 0 m N
215cos33.0 215sin 33.0 0

ˆ             0.280 215sin 33.0 0.335 215cos33.0 m N

ˆ             27.6 m N 27.6 m N in the  directionz

= × =

° °

= ° − °

= − = −

i j k
τ r F

k

k

GGG i

i

i i

 

 This could also be calculated by finding the magnitude and direction of rG , and then using Eq. 11-3a 
and the right-hand rule. 

 
29. (a) We use the determinant rule, Eq. 11-3b, to evaluate the cross product. 

   

ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ5.4 3.5 0 7.0 10.8 0.49 7.0 11 0.5

8.5 5.6 2.0
× = − = − − + ≈ − − +

−

i j k

A B i j k i j k
G G

 

 (b) Now use Eq. 11-3a to find the angle between the two vectors. 

   ( ) ( ) ( )2 2 27.0 10.8 0.49 12.88× = − + − + =A B
G G
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( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2 2 2

1 1

5.4 3.5 6.435 ; 8.5 5.6 2.0 10.37

12.88
sin     sin sin 11.1 or 168.9

6.435 10.37

A B

AB
AB

θ θ − −

= + = − + + =

×
× = → = = = ° °

A B
A B

G G
G G  

  Use the dot product to resolve the ambiguity. 
   ( ) ( ) ( ) ( ) ( )5.4 8.5 3.5 5.6 0 2.0 26.3= − + + = −A B

G G
i  

  Since the dot product is negative, the angle between the vectors must be obtuse, and so  
168.9 170 .θ = ° ≈ °  

 
30. We choose the z axis to be the axis of rotation, and so ˆ .ω=ω kG   We describe the location of the 

point as 0
ˆ ˆ ˆcos sin .R t R t zω ω= + +r i j kG   In this description, the point is moving counterclockwise in a 

circle of radius R centered on the point ( )00,0, ,z  and is located at ( )0,0,R z  at t = 0. 

ˆ ˆsin cos
d

R t R t
dt

ω ω ω ω= = − +
r

v i j
G

G
 

  

0

ˆ ˆ ˆ
ˆ ˆ0 0 sin cos

cos sin
R t R t

R t R t z
ω ω ω ω ω

ω ω
× = = − + =

i j k
ω r i j vG G G  

 And so we see that .= ×v ω rG GG  
 

If the origin were moved to a different location on the axis of rotation (the z axis) that would simply 
change the value of the z coordinate of the point to some other value, say 1z .  Changing that value 
will still lead to .= ×v ω rG GG    
 
But if the origin is moved from the original point to something off the rotation axis, then the position 
vector will change.  If the new origin is moved to ( )22 2, , ,x y z  then the position vector will change 

to ( ) ( ) ( )2 2 0 2
ˆ ˆ ˆcos sin .R t x R t y z zω ω= − + − + −r i j kG   See how that affects the relationships. 

 ˆ ˆsin cos
d

R t R t
dt

ω ω ω ω= = − +
r

v i j
G

G  

 ( ) ( )
0

2 2

2 2 2

ˆ ˆ ˆ
ˆ ˆ0 0 sin cos

cos sin
R t y R t x

R t x R t y z z
ω ω ω ω ω ω ω

ω ω
× = = − + + − =

− − −

i j k
ω r i j vG G G  

We see that with this new off-axis origin, .≠ ×v ω rG GG  
 
31. Calculate the three “triple products” as requested. 

( ) ( ) ( )
ˆ ˆ ˆ

ˆ ˆ ˆ
x y z y z z y z x x z x y y x

x y z

A A A A B A B A B A B A B A B
B B B

× = = − + − + −

i j k

A B i j k
G G

 

  ( ) ( ) ( )
ˆ ˆ ˆ

ˆ ˆ ˆ
x y z y z z y z x x z x y y x

x y z

B B B B C B C B C B C B C B C
C C C

× = = − + − + −

i j k

B C i j k
GG
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  ( ) ( ) ( )
ˆ ˆ ˆ

ˆ ˆ ˆ
x y z y z z y z x x z x y y x

x y z

C C C C A C A C A C A C A C A
A A A

× = = − + − + −

i j k

C A i j k
G G

 

  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
ˆ ˆ ˆ ˆˆ ˆ

                

                

x y z y z z y z x x z x y y x

x y z z y y z x x z z x y y x

x y z x z y y z x y x z z x y z y x

A A A B C B C B C B C B C B C

A B C B C A B C B C A B C B C

A B C A B C A B C A B C A B C A B C

× = + + − + − + −

= − + − + −

= − + − + −

⎡ ⎤⎣ ⎦A B C i j k i j k
G GG
i i

 

  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
ˆ ˆ ˆ ˆˆ ˆ

                

                

x y z y z z y z x x z x y y x

x y z z y y z x x z z x y y x

x y z x z y y z x y x z z x y z y x

B B B C A C A C A C A C A C A

B C A C A B C A C A B C A C A

B C A B C A B C A B C A B C A B C A

× = + + − + − + −

= − + − + −

= − + − + −

⎡ ⎤⎣ ⎦B C A i j k i j k
G GG

i i

 

  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
ˆ ˆ ˆ ˆˆ ˆ

                

                

x y z y z z y z x x z x y y x

x y z z y y z x x z z x y y x

x y z x z y y z x y x z z x y z y x

C C C A B A B A B A B A B A B

C A B A B C A B A B C A B A B

C A B C A B C A B C A B C A B C A B

× = + + − + − + −

= − + − + −

= − + − + −

⎡ ⎤⎣ ⎦C A B i j k i j k
G G G
i i

 

 A comparison of three results shows that they are all the same. 
 
32. We use the determinant rule, Eq. 11-3b, to evaluate the angular momentum. 

  ( ) ( ) ( )
ˆ ˆ ˆ

ˆ ˆ ˆ
z y x z y x

x y z

x y z yp zp zp xp xp yp
p p p

= × = = − + − + −

i j k
L r p i j k
G G G  

 
33. The position vector and velocity vectors are at right angles to each other for circular motion.  The 

angular momentum for a particle moving in a circle is sin sin 90 .L rp rmv mrvθ= = ° =   The moment 
of inertia is 2.I mr=  

  ( )22 2 2 2 2
21

22 22 2 2 2
mrvL m r v mv

mv K
I mr mr
= = = = =  

 This is analogous to 
2

2
p

K
m

=  relating kinetic energy, linear momentum, and mass. 

 
34. (a) See Figure 11-33 in the textbook.  We have that .L r p dmv⊥= =   The direction is into the plane  

of the page. 
 

 (b) Since the velocity (and momentum) vectors pass through O′ , rG  and pG  are parallel, and so  
0= × =L r p

G G G .  Or, 0r⊥ = , and so 0.L =  
 
35. See the diagram.  Calculate the total angular momentum about the origin. 
  ( ) ( )1 2 1 2= × + × − = − ×L r p r p r r p

G G G G G G G G  
The position dependence of the total angular momentum only depends on 
the difference in the two position vectors.  That difference is the same no 
matter where the origin is chosen, because it is the relative distance 
between the two particles. 

−pG

pG

1r
G

2rG
1 2−r rG G
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36. Use Eq. 11-6 to calculate the angular momentum. 

  
( ) ( )

( ) ( ) ( )

2

2 2

ˆ ˆ ˆ

0.075kg 4.4 6.0 0 m s
3.2 0 8.0

ˆ ˆ ˆ ˆˆ ˆ0.075 48 35.2 19.2 kg m s 3.6 2.6 1.4 kg m s  

m= × = × = −

−

= + + = + +

i j k
L r p r v

i j k i j k

G G G G G

i i

 

 
37. Use Eq. 11-6 to calculate the angular momentum. 

  
( ) ( )

( ) ( ) ( )

2

2 2

ˆ ˆ ˆ

3.8kg 1.0 2.0 3.0 m s
5.0 2.8 3.1

ˆ ˆ ˆ ˆˆ ˆ  3.8 14.6 11.9 12.8 kg m s 55 45 49 kg m s

m= × = × =

− −

= − − + = − − +

i j k
L r p r v

i j k i j k

G G G G G

i i

 

 

38. (a) From Example 11-8, 
( )

( )
B A

2
A B 0

.m m g
a

m m I R
−

=
+ +

 

( )
( )

( )
( )

( )

( ) ( )

B A B A B A
2 2 21 1

2 2A B 0 A B 0 0 A B

2
2 2

1.2 kg 9.80 m s
0.7538m s 0.75m s

15.6 kg
 

m m g m m g m m g
a

m m I R m m mR R m m m
− − −

= = =
+ + + + + +

= = ≈

 

(b) If the mass of the pulley is ignored, then we have the following. 

( )
( )

( ) ( )2
2B A

A B

2 2

2

1.2 kg 9.80 m s
0.7737 m s

15.2 kg

0.7737 m s 0.7538m s
% error 100 2.6%

0.7538m s

m m g
a

m m
−

= = =
+

−
= × =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
39. The rotational inertia of the compound object is the sum of the individual moments of inertia. 
  ( ) ( ) ( ) ( )2 22 2 2 21 2 1 14 1

particles rod 3 3 3 9 30I I I m m m m M m M= + = + + + + = +l l l l l  

 (a) ( ) ( )2 2 2 2 271 1 14 1 1
2 2 9 3 9 6K I m M m Mω ω ω= = + = +l l   

 (b) ( ) 214 1
9 3L I m Mω ω= = + l   

 
40. (a) We calculate the full angular momentum vector about the center of mass of the system.  We  

take the instant shown in the diagram, with the positive x axis to the right, the positive y axis up 
along the axle, and the positive z axis out of the plane of the diagram towards the viewer.  We 
take the upper mass as mass A and the lower mass as mass B.  If we assume that the system is 
rotating counterclockwise when viewed from above along the rod, then the velocity of mass A 
is in the positive z direction, and the velocity of mass B is in the negative z direction.  The speed 
is given by ( ) ( )4.5rad s 0.24 m 1.08 m s.v rω= = =  

   { }A A B B A A B Bm= × + × = × + ×L r p r p r v r v
G G G G G G GG G  
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   ( ) ( ){ } ( ) ( ){ }
( ) ( ) ( ) ( ){ } ( ) ( ) 2

ˆ ˆ ˆ ˆˆ ˆ

  0.24 m 0.21m 0 0.24 m 0.21m 0
0 0 0 0

ˆ ˆ ˆ ˆ  2 0.21m 2 0.24 m 2 0.21m 0.24 m

ˆ ˆ ˆ ˆ  2 0.48 kg 1.08m s 0.21m 0.24 m 0.2177 0.2488 kg m s

m
v v

m v v mv

= − + −

−

= + = +

= + = +

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

⎡ ⎤⎣ ⎦

i j k i j k

i j i j

i j i j i

 

  The component along the axis is the ĵ component, 20.25kg m s .i  

 (b) The angular momentum vector will precess about the axle.  The tip of the  
angular momentum vector traces out the dashed circle in the diagram.   

   
2

1 1
2

0.2177 kg m s
tan tan 41

0.2488kg m s
x

y

L
L

θ − −= = = °
i
i

 

 
 
41. (a) We assume the system is moving such that mass B is moving down, mass A is moving to the  

left, and the pulley is rotating counterclockwise.  We take those as positive directions.  The 
angular momentum of masses A and B is the same as that of a point mass.  We assume the rope 
is moving without slipping, so pulley 0.v Rω=  

   

( )

A B pulley A 0 B 0 A 0 B 0
0

A B 0
0

  

v
L L L L M vR M vR I M vR M vR I

R

I
M M R v

R

ω= + + = + + = + +

= + +
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

 (b) The net torque about the axis of the pulley is that provided by gravity, B 0.M gR   Use Eq. 11-9,  
which is applicable since the axis is fixed. 

   

( ) ( )

( )

B 0 A B 0 A B 0
0 0

B 0 B

A B 2A B 0
00

     
dL d I I

M gR M M R v M M R a
dt dt R R

M gR M g
a

II M MM M R RR

τ = → = + + = + + →

= =
+ ++ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
 

 
42. Take the origin of coordinates to be at the rod’s center, and the axis of  

rotation to be in the z direction.  Consider a differential element 
M

dm dr=
l

of the rod, a distance r from the center.  That element rotates 

in a circle of radius sinr φ , at a height of cos .r φ   The position and 
velocity of this point are given by the following. 

ˆ ˆ ˆsin cos sin sin cos
ˆ ˆ ˆ  sin cos sin sin cos

r t r t r

r t t

φ ω φ ω φ

φ ω φ ω φ

= + +

= + +⎡ ⎤⎣ ⎦

r i j k

i j k

G
 

θ L
G

ω

dm

rG

dL
H

φ

φ
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ˆ ˆsin sin sin cos

ˆ ˆ  sin sin sin cos

d
r t r t

dt
r t t

ω φ ω ω φ ω

ω φ ω φ ω

= = − +

= − +⎡ ⎤⎣ ⎦

r
v i j

i j

G
G

 

 Calculate the angular momentum of this element. 

  

( )

( ) ( ) ( )

( ) ( )

2

2 2 2 2

2

ˆ ˆ ˆ

sin cos sin sin cos
sin sin sin cos 0

ˆ ˆ ˆ    sin cos cos sin cos sin sin cos sin sin

sin ˆ ˆ ˆ    cos cos cos sin sin

M
d dm r dr t t

t t

M
dr t t t t

Mr
dr t t

ω φ ω φ ω φ
φ ω φ ω

φ φ ω φ φ ω φ ω φ ω

ω φ φ ω φ ω φ

= × =

−

= − + − + +

= − + − +

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

i j k
L r v

i j k

i j k

G G G
l

l

l

 

 Note that the directional portion has no r dependence.  Thus dL
G

for every piece of mass has the same 
direction.  What is that direction?  Consider the dot product .dr L

GGi  

  ( ) ( )

( ) ( )[ ]

2

3

ˆ ˆ ˆsin cos sin sin cos

sin ˆ ˆ ˆ              cos cos cos sin sin

sin
      sin cos cos cos sin sin cos sin cos sin 0

d r t t

Mr dr
t t

Mr dr
t t t t

φ ω φ ω φ

ω φ φ ω φ ω φ

ω φ φ ω φ ω φ ω φ ω φ φ

= + +

− + − +

= − + − + =

⎡ ⎤⎣ ⎦
⎡ ⎤

⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

r L i j k

i j k

GGi

i
l

l

 

Thus d ⊥L r
G G for every point on the rod.  Also, if φ is an acute angle, the z component of dL

G
 is 

positive.  The direction of dL
G

is illustrated in the diagram. 
 

 Integrate over the length of the rod to find the total angular momentum.  And since the direction of 
dL
G

is not dependent on r, the direction of L
G

 is the same as the direction of .dL
G

 

( ) ( )

( ) ( )

/ 2
2

/ 2

2

sin ˆ ˆ ˆcos cos cos sin sin

sin ˆ ˆ ˆ   cos cos cos sin sin
12

M
d t t r dr

M
t t

ω φ φ ω φ ω φ

ω φ φ ω φ ω φ

−

= = − + − +

= − + − +

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

∫ ∫L L i j k

i j k

G G l

l
l

l

 

Find the magnitude using the Pythagorean theorem. 

 ( ) ( )
2 21/ 22 2 2sin sin

cos cos cos sin sin
12 12

M M
L t t

ω φ ω φφ ω φ ω φ= − + − + =⎡ ⎤⎣ ⎦
l l

  

L
G

 is inclined upwards an angle of φ  from the x-y plane, perpendicular to the rod. 
 
43. We follow the notation and derivation of Eq. 11-9b.  Start with the general definition of angular 

momentum, .i i
i

= ×∑L r p
G G G   Then express position and velocity with respect to the center of mass. 

  *
CMi i= +r r rG G G

, where *
irG is the position of the ith particle with respect to the center of mass 

  *
CMi i= +v v vG G G

, which comes from differentiating the above relationship for position 

  ( ) ( )* *
CM CMi i i i i i i i

i i i

m m= × = × = + × +∑ ∑ ∑L r p r v r r v v
G G G G G GG G G  
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  * * * *
CM CM CM CM  i i i i i i i i

i i i i

m m m m= × + × + × + ×∑ ∑ ∑ ∑r v r v r v r vG G G GG G G G  

Note that the center of mass quantities are not dependent on the summation subscript, and so they 
may be taken outside the summation process. 

  ( ) * * * *
CM CM CM CMi i i i i i i i

i i i i

m m m m= + + + ×⎛ ⎞× × ×⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑L v r r vr v r v
G G GG GG GG G

 

 In the first term, .i
i

m M=∑   In the second term, we have the following. 

( )*
CM CM CM 0i i i i i i i i i

i i i i i

m m m m m M= − = − = − =∑ ∑ ∑ ∑ ∑v v v v v v vG G G G G G G  

 This is true from the definition of center of mass velocity:  CM

1 .i i
i

m
M

= ∑v vG G  

 Likewise, in the third term, we have the following. 
  ( )*

CM CM CM 0i i i i i i i i i
i i i i i

m m m m m M= − = − = − =∑ ∑ ∑ ∑ ∑r r r r r r rG G G G G G G  

 This is true from the definition of center of mass:  CM

1 .i i
i

m
M

= ∑r rG G  

 Thus ( ) ( )* * *
CM CM CM CMi i i

i

M m M= × + × = + ×∑L r v r v L r v
G GG G GG G G  as desired. 

 
44. The net torque to maintain the rotation is supplied by the forces at the bearings.  From Figure 11-18 

we see that the net torque is 2Fd, where d is the distance from the bearings to the center of the axle.  
The net torque is derived in Example 11-10. 

  
( ) ( )2 2 2 22 2

A A B B
net

sin
2     

tan 2 tan 2 tan

m r m rI I
Fd F

d d

ω φω ωτ
φ φ φ

+
= = → = =   

 
45. As in problem 44, the bearings are taken to be a distance d from point 

O.  We choose the center of the circle in which Am  moves as the 
origin, and label it O′  in the diagram.  This choice of origin makes the 
position vector and the velocity vector always perpendicular to each 
other, and so makes L

G
 point along the axis of rotation at all times.  So 

L
G

 is parallel to .ωG   The magnitude of the angular momentum is as 
follows. 

( ) ( ) 2 2
A A A A A A Asin sin sinL m r v m r r m rφ ω φ ω φ⊥= = =  

 L
G

is constant in both magnitude and direction, and so net 0
d
dt

= =
L

τ
G

G .  

Be careful to take torques about the same point used for the angular momentum. 

  ( ) ( ) ( )
( )

A
net A A B A B A

A

cos
0 cos cos 0    

cos
d r

F d r F d r F F
d r

φ
τ φ φ

φ
−

= = − + + = → = −
+

 

 The mass is moving in a circle and so must have a net centripetal force pulling in on the mass (if 
shown, it would point to the right in the diagram).  This force is given by 2

C A A sinF m rω φ= .  By 
Newton’s third law, there must be an equal but opposite force (to the left) on the rod and axle due to 
the mass.  But the rod and axle are massless, and so the net force on it must be 0. 

O

O′ d

d

AF
G

BF
G

CF
G

Am

Ar φ
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( )
( )

( )

( )
( )

( )

2A
net A B C A A A A
on axle A

2
A A A

A

2
A A A A

B A
A

cos
sin 0  

cos

sin cos
2

cos sin cos
cos 2

d r
F F F F F F m r

d r

m r d r
F

d

d r m r d r
F F

d r d

φ
ω φ

φ

ω φ φ

φ ω φ φ
φ

−
= − − = − − − = →

+

+
=

− −
= − = −

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 We see that BF
G

 points in the opposite direction as shown in the free-body diagram. 
 
46. We use the result from Problem 44, 

  

( ) ( ) ( ) ( ) ( )
( )

2 2 2 2 2 2 22 2 2
A A B B sin 0.60 kg 0.30 m 11.0 rad s sin 34.0sin

2 tan tan 0.115m tan 34.0

26 N   

m r m r mr
F

d d

ω φ ω φ
φ φ

+ °
= = =

°

=

 

 
47. This is a variation on the ballistic pendulum problem.  Angular momentum is conserved about the 

pivot at the upper end of the rod during the collision, and this is used to find the angular velocity of 
the system immediately after the collision.  Mechanical energy is then conserved during the upward 
swing.  Take the 0 position for gravitational potential energy to be the original location of the center 
of mass of the rod.  The bottom of the rod will rise twice the distance of the center of mass of the 
system, since it is twice as far from the pivot. 

  

( ) ( ) ( )
( ) ( )

( )
( )

1
before after rod putty2
collision collision rod putty

21
after top of after top of rod putty2
collision swing collision swing

2
rod putty rod putt

CM

        
2

          

2

m v
L L m v I I

I I

E E K U I I m M gh

I I I I
h

m M g

ω ω

ω

ω

= → = + → =
+

= → = → + = + →

+ +
= =

+

l
l

( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )

2
2 2 2

y

rod putty rod putty

2 2 2 2 2

22 41 1
33 2

2 2

bottom CM 4
3

2 2 8

  
28

2

m v m v
m M g I I g m M I I

m v m v
g m M M mg m M M m

m v
h h

g m M M m

=
+ + + +

= =
+ ++ +

= =
+ +

⎡ ⎤
⎢ ⎥
⎣ ⎦

l l

l

l l

 

 
48. Angular momentum about the pivot is conserved during this collision.  Note that both objects have 

angular momentum after the collision. 

  

( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
before after bullet stick bullet bullet 0 stick bullet f4 4
collision collision initial final final

1 1
4 4bullet 0 f bullet 0 f bullet 0 f

21
12stick stick stick stick stick

          

3 3

L L L L L m v I m v

m v v m v v m v v
I M M

ω

ω

= → = + → = + →

− − −
= = = =

l l

l l

l l

( ) ( )
( ) ( )

0.0030 kg 110 m s
0.27 kg 1.0 m

3.7 rad s  =

 

 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

356 

49. The angular momentum of the Earth–meteorite system is conserved in the collision.  The Earth is 
spinning counterclockwise as viewed in the diagram.  We take that direction as the positive direction 
for rotation about the Earth’s axis, and so the initial angular momentum of the meteorite is negative.   

( )

( ) ( )

( ) ( )

initial final Earth 0 E Earth meteorite

22
5Earth 0 E E E 0 E

2 22
5Earth meteorite E E E

22 2 22
5 5E E E5 E E E

0 E0
2 22 2

5 50 E E E E

    sin 45     

sin 45 sin 45

1
22

L L I mR v I I

I mR v M R mR v
I I M R mR

mvv R M MM R mR
R

R M m R m M

ω ω

ω ωω

ωω ω
ω

= → − ° = + →

− ° − °
= =

+ +

− −−
= = =

+ +

⎛ ⎞
⎜ ⎟
⎝ ⎠

( )
0 E

2
5 E

2
mv

R
m M

ω
+

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  

( )

( )

2
5 E

0 E 0 E0

2
E250 0 0 E

5

4

6

13 13
24

2
5 10

1
2 2

1 1
1

2.2 10 m s
1

2
2 rad s 6.38 10 m

86,400     8.387 10 8.4 10
5.97 10 kg

1
5.8 10 kg

mv v
M

R R
Mm M
m

ω ωω ω ω ω
ω ω ω

π
− −

− +
Δ −

= = − = − =
+ +

×
+

×
= − = − × ≈ − ×

×
+

×

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
50. (a) Linear momentum of the center of mass is conserved in the totally inelastic collision. 

   
( )

( )
( ) ( )

( )

initial final beam 0 beam man final

beam 0
final

beam man

      

230 kg 18m s
14 m s

295kg

p p m v m m v

m v
v

m m

= → = + →

= = =
+

  

 (b) Angular momentum about the center of mass of the system is conserved.  First  
we find the center of mass, relative to the center of mass of the rod, taking down 
as the positive direction.  See the diagram. 

   
( ) ( )

( )
( ) ( )

( )
1
2beam man

CM
beam man

0 65kg 1.35m
295kg

      0.2975m below center of rod

m m
y

m m
+

= =
+

=

l

 

  We need the moment of inertia of the beam about the center of mass of the entire  
system.  Use the parallel axis theorem. 

( )22 21 1
beam beam beam beam man man beam12 2  ;  I m m r I m r= + = −l l  

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

initial final beam 0 beam beam man final

beam 0 beam beam 0 beam
final 2 221 1 1

beam man 12 2 2beam beam beam man beam

2 2 21
12

      

230 kg 18m s 0.2975m
      

230 kg 2.7 m 230 kg 0.2975m 65kg 1.0525m

    

L L m v r I I

m v r m v r
I I m m r m r

ω

ω

= → = + →

= =
+ + + −

=
+ +

l l

 5.307 rad s 5.3rad s= ≈

 

rodCM

rod +
man

CM

0.2975m
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NF
G

mgG
frF
G

O

CMvG

r

ω
R

51. Linear momentum of the center of mass is conserved in the totally inelastic collision. 

  ( )initial final CM CM
final final

        
mv

p p mv m M v v
m M

= → = + → =
+

  

Angular momentum about the center of mass of the system is conserved.  First we find the center of 
mass, relative to the center of mass of the rod, taking up as the positive direction.  See the diagram. 

  ( ) ( )
( ) ( )
1
4

CM

0
4

m M m
y

m M m M
+

= =
+ +
l l  

 The distance of the stuck clay ball from the system’s center of mass is found. 

( ) ( )
1 1

clay CM4 4 4 4
m M

y y
m M m M

= − = − =
+ +
l l

l l  

We need the moment of inertia of the rod about the center of mass of the entire system.  Use the 
parallel axis theorem.  Treat the clay as a point mass. 

( )

2

21
rod 12 4

m
I M M

m M
= +

+
⎡ ⎤
⎢ ⎥
⎣ ⎦

l
l  

 Now express the conservation of angular momentum about the system’s center of mass. 
( )

( )
( )

( )

( ) ( )

( )
( )

initial final clay rod clay final

clay clay
final 2

rod clay 2 21
12 clay

2 22 2

21
12

      

4

4 12
     

7 11 4

4 4

     

L L mvy I I

mvy mvy
I I m

M M my
m M

M
mv

m M mv m M
m mM Mm M

M M m
m M m M

ω

ω

= → = + →

= =
+

+ +
+

+ +
= =

+ +
+ +

+ +

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

l
l

l

ll l
l

( )
12

7 4
mv

m M
=

+l

 

 
52. (a) See the free-body diagram for the ball, after it has moved  

away from the initial point.  There are three forces on the 
ball.  NF

G
 and mgG  are in opposite directions and each has 

the same lever arm about an axis passing through point 
O perpendicular to the plane of the paper.  Thus they 
cause no net torque.  frF

G
 has a 0 lever arm about an axis  

through O, and so also produces no torque.  Thus the  
net torque on the ball is 0.  Since we are calculating  
torques about a point fixed in an inertial reference frame,  

we may say that 0
d
dt

= =∑ L
τ

G
G  and so L

G
 is constant.  Note that the ball is initially slipping 

while it rolls, and so we may NOT say that 0 0v Rω=  at the initial motion of the ball.   
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(b) We follow the hint, and express the total angular momentum as a sum of two terms.  We take  
clockwise as the positive rotational direction. 

  
CM CMv mRv Iω ω= + = −L L L

G G G
 

The angular momentum is constant.  We equate the angular momentum at the initial motion, 
with 

CM 0v v=  and 0 C,ω ω ω= =  to the final angular momentum, with 
CM

0v =  and 0.ω =  

  ( ) ( ) 0 0 0
initial final    0 C 22

5CM

5
0 0 0    

2C

mRv mRv v
mRv I mR I

I mR R
ω ω→= = − = − = → = = =L L

G G
 

(c) Angular momentum is again conserved.  In the initial motion, 
CM 0v v=  and C0 0.90 .ω ω=   Note  

that in the final state, CM ,v Rω =  and the final angular momenta add to each other. 

 ( ) ( )

CM
initial final 0 C CM

2 20 CM 72 2 1
0 CM 0 CM5 5 10 5

1
CM 014

    0.90   

5
0.90       

2

v
L L mRv I mRv I

R
v v

mRv mR mRv mR v v
R R

v v

ω= → − = + →

− = + → = →

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

This answer is reasonable.  There is not enough “backspin” since C0 ,ω ω<  and so the ball’s 
final state is rolling forwards. 

(d) Angular momentum is again conserved.  In the initial motion, 
CM 0v v=  and C0 1.10 .ω ω=   Note  

that in the final state, CM ,v Rω =  and the final angular momenta add to each other. 

 ( ) ( )

CM
initial final 0 C CM

2 20 CM 72 2 1
0 CM 0 CM5 5 10 5

1
CM 014

    1.10   

5
1.10       

2

v
L L mRv I mRv I

R
v v

mRv mR mRv mR v v
R R

v v

ω= → − = + →

− = + → − = →

= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

This answer is reasonable.  There is more than enough “backspin” since C0 ,ω ω>  and so the 
ball’s final state is rolling backwards. 

 
53. Use Eq. 11-13c for the precessional angular velocity. 

  
( ) ( ) ( )2

4 2
0.22 kg 9.80 m s 0.035m

    8.3 10 kg m
1rev 2 rad 15rev 2 rad
6.5s rev 1s rev

Mgr Mgr
I

Iω ω π π
−Ω = → = = = ×

Ω ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

i  

 
54. (a) The period of precession is related to the reciprocal of the angular precessional frequency. 

   

( ) ( )
( ) ( )

2 221 2 2
2 disk disk

2

2 2 2 45rev s 0.055m2 2 2
9.80 m s 0.105m

2.611s 2.6s  

Mr fI fr
T

Mgr Mgr gr

π π ππ π ω π
= = = = =
Ω

= ≈

⎡ ⎤⎣ ⎦
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 (b) Use the relationship 
2 2

disk2 fr
T

gr
π

=  derived above to see the effect on the period. 

   

2 2 2
disk disk

2new new
2disk

newnew new new
2 2 2

disk diskoriginal disk new

2

2 1
2

2 1 2

fr r
r

T rgr r
fr rT r r

gr r

π

π
= = = = =

⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟

⎝ ⎠

  

  So the period would double, and thus be ( )new original2 2 2.611s 5.222s 5.2s .T T= = = ≈  

 
55. Use Eq. 11-13c for the precessional angular velocity. 

  
( ) ( ) ( )

( ) ( )
( )

2

axle
22 21

2 wheel wheel

1
2 axle 9.80 m s 0.25m

8.0 rad s   1.3rev s
0.060 m 85rad s

MgMgr g
I Mr rω ω ω

Ω = = = = =
ll

 

 
56. The mass is placed on the axis of rotation and so does not change the moment of inertia.  The 

addition of the mass does change the center of mass position r, and it does change the total mass, M, 
to 3

2 .M  

  
( )1 1

2 2axle axle axle 2
new axle331

2 2

M
r

M M
M M M

=
+

= =
+

l l l
l  

( )
( )

( )

new new
3 2
2 3 axlenew

1
original original 2original axle

new original

2  

2 2 8.0 rad s 16 rad s

M gr
MI

M gr M
I

ω

ω

Ω
= = = →

Ω

Ω = Ω = =

l

l  

 
57. The spinning bicycle wheel is a gyroscope.  The angular frequency of  

precession is given by Eq. 11-13c.   

  

( ) ( )
( ) ( )

2

22 2
wheel wheel

9.80 m s 0.20 m

0.325m 4.0 rad s

1rev 60s
1.477 rad s 14 rev min

2 rad 1min
   

Mgr Mgr gr
I Mr rω ω ω π

π

Ω = = = =

= =
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  

 
In the figure, the torque from gravity is directed back into the paper.  This gives the direction of 
precession.  When viewed from above, the wheel will precess counterclockwise. 

 
58. We assume that the plant grows in the direction of the local “normal” force.  In 

the rotating frame of the platform, there is an outward fictitious force of 

magnitude 
2

2.v
m mr

r
ω=   See the free body diagram for the rotating frame of 

reference.  Since the object is not accelerated in that frame of reference, the 
“normal” force must be the vector sum of the other two forces.  Write Newton’s 
second law in this frame of reference. 

mg

2mrω
N" "F θ

ω

L
G

mgG
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vertical N N

2
2

horizontal N N

2 2 2
1

cos 0    
cos

sin 0    
sin

    tan     tan
cos sin

mg
F F mg F

mr
F F mr F

mg mr r r
g g

θ
θ
ωθ ω
θ

ω ω ωθ θ
θ θ

−

= − = → =

= − = → =

= → = → =

∑

∑  

In the inertial frame of reference, the “normal” force still must point inward.  The horizontal 
component of that force is providing the centripetal acceleration, which points inward. 

 
59. (a) At the North Pole, the factor  2m rω is zero, and so there is no effect from the rotating reference  

frame.   
2 20 9.80 m s , inward along a radial lineg g r gω′ = − = − =  

 (b) To find the direction relative to a radial line, we orient  
the coordinate system along the tangential (x) and radial 
(y, with inward as positive) directions.  See the diagram.  
At a specific latitude φ , the “true” gravity will point 

purely in the positive y direction, ˆ.g=g jG   We label the 
effect of the rotating reference frame as rot .gG  The effect 
of rotgG can be found by decomposing it along the axes.  
Note that the radius of rotation is not the radius of the 
Earth, but E cos .r R φ=    

( )

2 2
rot

2 2 2
E E

2 2 2
rot E E

ˆ ˆsin cos
ˆ ˆ     cos sin cos

ˆ ˆcos sin cos

r r

R R

R g R

ω φ ω φ

ω φ φ ω φ

ω φ φ ω φ

= −

= −

′ = + = + −

g i j

i j

g g g i j

G

G G G

The angle of deflection from the vertical ( )θ  can be found from the components of .′gG    

   ( )

( )

2
1 1 E

2 2
E

2

6
2 2

1 1
2 2

2 6 2

cos sin
tan tan

cos

2 rad
6.38 10 m cos 45 sin 45

86,400s 1.687 10 m s
 tan tan 0.988

9.783m s2 rad
9.80 m s 6.38 10 m cos 45

86,400s

x

y

g R
g g R

ω φ φθ
ω φ

π

π

− −

−
− −

′
= =

′ −

× ° °
×

= = = °

− × °

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  The magnitude of ′gG is found from the Pythagorean theorem. 

   ( ) ( )2 22 2 2 2 2 21.687 10 m s 9.783m s 9.78m sx yg g g −′ ′ ′= + = × + =  

  And so 29.78m s , 0.0988  south from an inward radial line .g′ = °  

  
 
 
 
 

gG
rotgG

′gGφ

r

N pole

x

y

ER
φ
θ

φ
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(c) At the equator, the effect of the rotating reference frame is directly opposite to the “true”  
acceleration due to gravity.  Thus the values simply subtract. 

   ( )
2

2 2 2 6
Earth

2 rad
9.80 m s 6.38 10 m

86.400s
g g r g R

πω ω′ = − = − = − ×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

   29.77 m s , inward along a radial line  =  

 
60. (a) In the inertial frame, the ball has the tangential speed of point B,  

B B .v r ω=   This is greater than the tangential speed of the women at 
A, A A ,v r ω=  so the ball passes in front of the women.  The ball 
deflects to the right of the intended motion.  See the diagram. 

(b) We follow a similar derivation to that given in section 11-9.  In the 
inertial frame, the ball is given an inward radial velocity v by the 
man at B.  The ball moves radially inward a distance B Ar r−  during 
a short time t, and so B A .r r vt− =   During this time, the ball moves sideways a distance  

B B ,s v t=  while the woman moves a distance A A .s v t=   The ball will pass in front of the woman 
a distance given by the following. 

( ) ( ) 2
B A B A B As s s v v t r r t v tω ω= − = − = − =  

This is the sideways displacement as seen from the noninertial frame, and so the deflection is 
2 .v tω   This has the same form as motion at constant acceleration, with 2 21

Cor2 .s v t a tω= =   

Thus the Coriolis acceleration is Cor 2 .a vω=  
 
61. The footnote on page 302 gives the Coriolis acceleration as Cor 2 .= ×a ω vG G G

  The angular velocity 
vector is parallel to the axis of rotation of the Earth.  For the Coriolis acceleration to be 0, then, the 
velocity must be parallel to the axis of rotation of the Earth.  At the equator this means moving either 
due north or due south. 

 
62. The Coriolis acceleration of the ball is modified to Cor 2 2 cos ,a v vω ω λ⊥= =  where v is the vertical 

speed of the ball.  The vertical speed is not constant as the ball falls, but is given by 0 .v v gt= +   
Assuming the ball starts from rest, then Cor 2 cos .a gtω λ=   That is not a constant acceleration, and so 
to find the deflection due to this acceleration, we must integrate twice. 

  

Cor

Cor

v
Cor

Cor Cor Cor
0 0

2 2 2Cor
Cor Cor Cor

0 0

2 cos     2 cos     2 cos   

cos     cos     cos   

t

x t

dv
a gt dv gt dt dv g tdt

dt

dx
v gt dx gt dt dx gt dt

dt

ω λ ω λ ω λ

ω λ ω λ ω λ

= = → = → = →

= = → = → = →

∫ ∫

∫ ∫
 

  31
Cor 3 cosx gtω λ=  

So to find the Coriolis deflection, we need the time of flight.  The vertical motion is just uniform 
acceleration, for an object dropped from rest.  Use that to find the time. 

( )2 01
0 0 2

2 2
    y

y y h
y y v t gt t

g g
−

= + + → = =  

A B

ω



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

362 

( ) ( )

1/ 23 / 2 3
31 1 1

Cor 3 3 3

1/ 23

1
3 2

2 8
cos cos cos

8 110 m2 rad
     cos 44 0.018m

86,400s 9.80 m s

h h
x gt g

g g
ω λ ω λ ω λ

π

= = =

= ° =

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

 The ball is deflected by about 2 cm in falling 110 meters. 
 
63. The diagram is a view from above the wheel.  The ant is 

moving in a curved path, and so there is a fictitious outward 
radial force of 2 ˆ.m rω i   The ant is moving away from the axis 
of rotation, and so there is a fictitious Coriolis force of  

ˆ2 .m vω− j   The ant is moving with a constant speed, and so in 
the rotating reference frame the net force is 0.  Thus there 
must be forces that oppose these fictitious forces.  The ant is 
in contact with the spoke, and so there can be components of 
that contact force in each of the coordinate axes.  The force 
opposite to the local direction of motion is friction, and so is 

fr
ˆ.F− i   The spoke is also pushing in the opposite direction to 

the Coriolis force, and so we have spoke
ˆ.F j   Finally, in the vertical direction, there is gravity ( )ˆmg− k  

and the usual normal force ( )N
ˆ .F k   These forces are not shown on the diagram, since it is viewed 

from above. 

  ( ) ( ) ( )2
rotating Fr spoke N
frame

ˆ ˆ ˆ2m r F F m v F mgω ω= − + − + −F i j k
G

 

 
64. (a) Because the hoop is rolling without slipping, the acceleration of the center of  

the center of mass is related to the angular acceleration by CM .a Rα=   From the 
free-body diagram, write Newton’s second law for the vertical direction and for 
rotation.  We call down and clockwise the positive directions.  Combine those 
equations to find the angular acceleration. 

( )

( ) ( )

vertical T CM T CM

2 CM
T CM

1 1
CM CM CM CM CM 2 2

2 1 1 1
2 2 2

    

        

    

F Mg F Ma F M g a

a
F R I MR MRa

R
g

M g a R MRa g a a a g
R

g dL
I MR MRg L MRgt

R dt

τ α

α

τ α

= − = → = −

= = = =

− = → − = → = → =

= = = = → =

∑

∑
 

(b) ( ) 1
T CM 2 ,F M g a Mg= − =  and is constant in time. 

 
65. (a) Use Eq. 11-6 to find the angular momentum. 

  ( ) ( ) ( )2 2

ˆ ˆ ˆ
ˆ ˆ ˆ1.00 kg 0 2.0 4.0 kg m s 24 28 14 kg m s

7.0 6.0 0
m= × = × = = − + −

i j k
L r p r v i j k
G G G G G i i  

ˆm rω2 i
fr
ˆF− i

spoke
ˆF j

ˆ2m vω− jω

x

y

mgG

TF
G

R
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 (b) ( )
ˆ ˆ ˆ

ˆ ˆ0 2.0 4.0 m N 16 8.0 m N
4.0 0 0

= × = = −

i j k
τ r F j k

GGG i i  

 
66. Angular momentum is conserved in the interaction between the child and the merry-go-round. 

( ) ( )
( ) ( ) ( )

( ) ( )

2
initial final 0 f f mgr 0 mgr child mgr child mgr

mgr child mgr

2
mgr 0

child 22
mgr

           

1260 kg m 0.45rad s
73kg

2.5m 1.25rad s

L L L L L I I I I m R

I
m

R

ω ω ω

ω ω
ω

= → = + → = + = + →

−
= = =

i  

 
67. (a) See the free-body diagram for the vehicle, tilted up on 2 wheels, on the  

verge of rolling over.   The center of the curve is to the left in the 
diagram, and so the center of mass is accelerating to the left.  The force 
of gravity acts through the center of mass, and so causes no torque about 
the center of mass, but the normal force and friction cause opposing 
torques about the center of mass.  The amount of tilt is exaggerated.  
Write Newton’s second laws for the horizontal and vertical directions 
and for torques, taking left, up, and counterclockwise as positive. 

( ) ( )

( )

vertical N N

2
C

horizontal fr

1 1
N fr N fr2 2

2
C1

C2

0    

0    

    
2

F F Mg F Mg

v
F F M

R
F w F h F w F h

v w
Mg w M h v Rg

R h

τ

= − = → =

= =

= − = → =

= → = ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
∑  

 (b) From the above result, we see that 
( )

2 2
C C2

SSF
v h v

R
g w g

= = . 

   
( )

( )

( )
( )

2
C

car car SUV
2
CSUV car

SUV

SSF SSF 1.05
0.750

SSF 1.40
SSF

v
gR

vR
g

= = = =  

 
68. The force applied by the spaceship puts a torque on the asteroid which changes  

its angular momentum.  We assume that the rocket ship’s direction is adjusted to 
always be tangential to the surface.  Thus the torque is always perpendicular to 
the angular momentum, and so will not change the magnitude of the angular 
momentum, but only its direction, similar to the action of a centripetal force on 
an object in circular motion.  From the diagram, we make an approximation. 

22
5

  

2
5

dL L L
dt t t
L I mr mr

t
Fr Fr F

θτ

θ ω θ ω θ ω θ
τ

Δ Δ
= ≈ ≈ →

Δ Δ
Δ Δ Δ Δ

Δ = = = =
 

L
G

L
G

ΔL
G

θ

mgG

NF
G

frF
G

w

h
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( ) ( )

( )

( )

10

5

4 rev 2 rad 1day 2 rad
2 2.25 10 kg 123m 10.0

1day 1rev 86400s 360
   

5 265 N

1hr
   2.12 10 s 58.9 hr

3600s

π π
× °

°
=

= × =

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞ ⎡ ⎤⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

 

Note that, in the diagram in the book, the original angular momentum is “up” and the torque is into 
the page.  Thus the planet’s axis would actually tilt backwards into the plane of the paper, not rotate 
clockwise as shown in the figure above. 

 
69. The velocity is the derivative of the position. 

  
( ) ( ) ( ) ( )

( ) ( )

ˆ ˆ ˆ ˆcos sin sin cos

ˆ ˆ  sin cos

d d
R t R t R t R t

dt dt

v t t

ω ω ω ω ω ω

ω ω

= = + = − +

= − +

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

r
v i j i j

i j

G
G

 

From the right hand rule, a counterclockwise rotation in the x - y  plane produces an angular velocity 

in the ˆ+k -direction. Thus ˆ .v
R

= ⎛ ⎞
⎜ ⎟
⎝ ⎠

k
G
ω   Now take the cross product .× r

G Gω   

( ) ( )

( ) ( )
( ) ( )

ˆ ˆ ˆ

ˆ ˆˆ cos sin 0 0

cos sin 0

ˆ ˆ        sin cos

v v
R t R t

R R
R t R t

v t v t

ω ω

ω ω

ω ω

× = × + =

= − + =

⎡ ⎤ ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

i j k

r k i j

i j v

G G

G

ω
 

 Thus we see that .= ×v rG GG ω  
 

70. Note that ,zz v t=  and so .z
dz

v
dt

=   To find the angular momentum, use Eq. 11-6, .= ×L r p
G G G    

2 2 2 2ˆ ˆ ˆ ˆˆ ˆcos sin cos sin

2 2 2 2ˆ ˆ ˆsin cos

z z
z

z z z z
z

z z v t v t
R R z R R v t

d d d d
d v v t v v t

R R v
dt d d d d

π π π π

π π π π

= + + = + +

= = − + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r i j k i j k

r
v i j k

G

G
G

 

To simplify the notation, let 
2 .zv

d
πα ≡   Then the kinematical expressions are as follows. 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆcos sin  ; sin cosz zR t R t v t R t R vα α α α α α= + + = − + +r i j k v i j kG G  

( ) ( )
( ) ( )

( ) ( )[ ] ( ) ( )[ ]
( ) ( )2 2 2 2

ˆ ˆ ˆ

cos sin
sin cos

ˆ ˆ  sin cos sin cos

ˆ      cos sin

z

z

z z z z

m m R t R t v t
R t R t v

m Rv t R v t t m R v t t Rv t

m R t R t

α α
α ω α α

α α α α α α

α α α α

= × = × =

−

= − + − −

+ +⎡ ⎤
⎣ ⎦

i j k
L r p r v

i j

k

G G G G G
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( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ]

2ˆ ˆ ˆ  sin cos sin cos

ˆ ˆ ˆ  sin cos sin cos

2 2 2 2 2 2 2ˆ ˆ  sin cos sin cos

z z

z
z

z

mRv t t t mRv t t t mR

R
mRv t t t t t t

v

z z z z z z R
mRv

d d d d d d d

α α α α α α α

αα α α α α α

π π π π π π π

= − + − − +

= − + − − +

= − + − − +

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩

i j k

i j k

i j k
⎭

 

 
71. (a) From the free-body diagram, we see that the normal force will produce a torque  

about the center of mass.  That torque, N= ×τ r F
GGG , is clockwise in the diagram 

and so points into the paper, and will cause a change tΔ = ΔL τ
G G  in the tire’s 

original angular momentum. ΔL
G

 also points into the page, and so the angular 
momentum will change to have a component into the page.  That means that the 
tire will turn to the right in the diagram. 

 (b) The original momentum is the moment of inertia times the angular velocity.   
We assume the wheel is rolling without slipping. 

( )
( ) ( ) ( ) ( )

( ) ( )

N 0

2 22

2
0

sin sin   ;  

0.32 m 8.0 kg 9.80 m s sin12 0.20ssin
0.19

0.83kg m 2.1m s

L t rF t rmg t L I I v r

L r mg t
L Iv

θ θ ω

θ

Δ = Δ = Δ = Δ = =

°Δ Δ
= = =

τG

i

 

 
72. (a) See the diagram.  The parallel axis theorem is used to  

find the moment of inertia of the arms. 

   ( )
( ) ( )

body arms

22 21 1 1
body body arm arm arm body arm2 12 2

21
2

2

   60 kg 0.12 m

   

aI I I

M R M M R

= +

= + + +

=

⎡ ⎤
⎣ ⎦l l  

( ) ( ) ( ) ( )2 2 2 21
122 5.0 kg 0.60 m 5.0 kg 0.42 m 2.496 kg m 2.5kg m          + + = ≈⎡ ⎤⎣ ⎦ i i  

 (b) Now the arms can be treated like particles, since all of the mass of the  
arms is the same distance from the axis of rotation. 

   ( ) ( ) ( ) ( )

2 21
body arms body body arm body2

2 2 21
2

2

2

   60 kg 0.12 m 2 5.0 kg 0.12 m 0.576 kg m

0.58 kg m   

bI I I M R M R= + = +

= + =

≈

i

i

 

 (c) Angular momentum is conserved through the change in posture. 

   

( )

initial final

2

2

2 2
          

0.576 kg m
1.5s 0.3462s 0.35s

2.496 kg m

a a b b a b
a b

b
b a

a

L L I I I I
T T

I
T T

I

π πω ω= → = → = →

= = = ≈
i
i

 

 
 
 
 
 

R

M

mm

ll

R

M mm

mgG

NF
G

0L
G
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 (d) The change in kinetic energy is the final kinetic energy (arms horizontal) minus the initial  
kinetic energy (arms at sides). 

( ) ( )
2 2

2 2 2 21 1 1 1
2 2 2 2

2 2
2.496 kg m 0.576 kg m

1.5s 0.3462s

     73J

a b a a b bK K K I I
π πω ωΔ = − = − = −

= −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i i
 

 (e) Because of the decrease in kinetic energy, it is easier to lift the arms when rotating.  There is no  
corresponding change in kinetic energy if the person is at rest.  In the rotating system, the arms 
tend to move away from the center of rotation.  Another way to express this is that it takes work 
to bring the arms into the sides when rotating. 

 
73. (a) The angular momentum delivered to the waterwheel is that lost by the water. 

   ( ) ( ) ( ) ( )

wheel water initial final 1 2
water water

2 2wheel 1 2
1 2

2 2

    

85kg s 3.0 m 3.2 m s 816 kg m s

820 kg m s         

L L L L mv R mv R

L mv R mv R mR
v v

t t t

Δ = −Δ = − = − →

Δ −
= = − = =

Δ Δ Δ

≈

i

i

  

 (b) The torque is the rate of change of angular momentum, from Eq. 11-9. 

   2 2wheel
on
wheel

816 kg m s 816m N 820 m N
L

t
τ Δ

= = = ≈
Δ

i i i  

 (c) Power is given by Eq. 10-21, .P τω=  

   ( ) 2 rev
816m N 930 W

5.5s
P

πτω= = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

i  

 
74. Due to the behavior of the Moon, the period for the Moon’s rotation about its own axis is the same as 

the period for the Moon’s rotation about the Earth.  Thus the angular velocity is the same in both 
cases. 

( )
( )

262 22
spin spin spin 65 Moon Moon

22 2 6
orbit orbit orbit orbit orbit

2 1.74 10 m2
8.21 10

5 5 384 10 m

L I I MR R
L I I MR R

ω
ω

−
×

= = = = = = ×
×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
75. From problem 25, we have that tan .= ×a α rG G G   For this object, rotating counterclockwise and gaining 

angular speed, the angular acceleration is ˆ .α=α kG  

  tan

ˆ ˆ ˆ
ˆ ˆ0 0 sin cos

cos sin 0
R R

R R
α α θ α θ

θ θ
= × = = − +

i j k
a α r i jG G G  

(a) We need the acceleration in order to calculate .= ×τ r F
GGG   The force consists of two components, 

a radial (centripetal) component and a tangential component.  There is no torque associated with 
the radial component since the angle between rG  and centripF

G
is 180 .°   Thus tan= × = ×τ r F r F

G GG GG  

tan tan.m m= × ×=r a r aG G G G  
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( )2 2 2 2 2
tan

ˆ ˆ ˆ
ˆ ˆcos sin 0 cos sin

sin cos 0
m m R R m R R mR

R R
θ θ α θ α θ α

α θ α θ
= × = = + =

−

i j k
τ r a k kG GG  

 (b) The moment of inertia of the particle is 2.I mR=  

   2 ˆI mR α= =τ α kGG  
 
76. (a) The acceleration is needed since .m=F a

G G  

( ) ( ) ( )21
0 0 0 02

ˆ ˆ ˆ ˆ ˆ  ;    ;  x y x y

d d
v t v t gt v v gt g

dt dt
= + − = = + − = = −

r v
r i j v i j a j

G G
G GG  (as expected) 

21
0 0 02

ˆ ˆ ˆ
ˆ0

0 0
x y xm m m v t v t gt gv t

g
= × = × = × = − = −

−

i j k
τ r F r a r a k

GG G G G GG  

(b) Find the angular momentum from ( ) ,m= × = ×L r p r v
G G G G G  and then differentiate with respect to  

time. 

  

( ) ( ) ( )

( )

2 21 1
0 0 0 0 0 02 2

0 0

21
02

21
0 02

ˆ ˆ ˆ
ˆ0

0

ˆ  

ˆ ˆ

x y x y x y

x y

x

x x

m m v t v t gt v t v gt v v t gt
v v gt

v gt

d d
v gt v gt

dt dt

= × = × = − = − − −

−

= −

= − = −

⎡ ⎤⎣ ⎦

i j k
L r p r v k

k

L
k k

G G G G G

G
 

 
77. We calculate spin angular momentum for the Sun, and orbital angular momentum for the planets, 

treating them as particles relative to the size of their orbits.  The angular velocities are calculated by 
2 .
T
πω =  

  

( ) ( ) ( )

( ) ( )

22 30 82 2
Sun Sun Sun Sun Sun5 5

Sun

22 25 9
Jupiter Jupiter Jupiter 7

orbit Jupiter

42

2 2 1 day
1.99 10 kg 6.96 10 m

25 days 86,400 s

      1.1217 10 kg m s

2 2 1 y
190 10 kg 778 10 m

11.9 y 3.156 10 s

       

L I M R
T

L M R
T

π πω

π π

= = = × ×

= ×

= = × ×
×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

i

43 1.9240 10 kg m s= × i

 

 In a similar fashion, we calculate the other planetary orbital angular momenta. 

  2 42
Saturn Saturn Saturn

orbit Saturn

2
7.806 10 kg m sL M R

T
π

= = × i  

  

2 42
Uranus Uranus Uranus

orbit Uranus

2 42
Neptune Neptune Neptune

orbit Neptune

2
1.695 10 kg m s

2
2.492 10 kg m s

L M R
T

L M R
T

π

π

= = ×

= = ×

i

i
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( )

( )
42

planets
42

planets Sun

19.240 7.806 1.695 2.492 10 kg m s
0.965

19.240 7.806 1.695 2.492 1.122 10 kg m s
L

f
L L

+ + + ×
= = =

+ + + + + ×
i

i
 

 
78. (a) In order not to fall over, the net torque on the cyclist about an axis  

through the CM and parallel to the ground must be zero.  Consider the 
free-body diagram shown.  Sum torques about the CM, with 
counterclockwise as positive, and set the sum equal to zero. 

   fr
N fr

N

0    tan
F x

F x F y
F y

τ θ= − = → = =∑  

(b) The cyclist is not accelerating vertically, so N .F mg=   The cyclist is  
accelerating horizontally, because he is traveling in a circle.  Thus the 
frictional force must be supplying the centripetal force, so 2

fr .F m v r=  

   
( )

( )( )
22 2 2

1 1fr
2

N

9.2 m s
tan     tan tan 35.74 36

12 m 9.80 m s
F m v r v v
F mg rg rg

θ θ − −= = = → = = = ° ≈ °  

 (c) From 2
fr ,F m v r=  the smallest turning radius results in the maximum force.  The maximum  

static frictional force is fr N .F Fμ=   Use this to calculate the radius. 

   
( )

( ) ( )
22

2
min N min 2s s

s

9.2 m s
   13m

0.65 9.80 m s
v

m v r F mg r
g

μ μ
μ

= = → = = =  

 
79. (a) During the jump (while airborne), the only force on the skater is gravity, which acts through the  

skater’s center of mass.  Accordingly, there is no torque about the center of mass, and so 
angular momentum is conserved during the jump. 

 (b) For a single axel, the skater must have 1.5 total revolutions.  The number of revolutions during  
each phase of the motion is the rotational frequency times the elapsed time.  Note that the rate 
of rotation is the same for both occurrences of the “open” position. 

   

( ) ( ) ( ) ( ) ( )
( ) ( )
( )

single

single

1.2 rev s 0.10s 0.50s 1.2 rev s 0.10s 1.5 rev  

1.5 rev 2 1.2 rev s 0.10s
2.52 rev s 2.5rev s

0.50s

f

f

+ + = →

−
= = ≈

 

The calculation is similar for the triple axel. 
( ) ( ) ( ) ( ) ( )

( ) ( )
( )

triple

triple

1.2 rev s 0.10s 0.50s 1.2 rev s 0.10s 3.5 rev  

3.5rev 2 1.2 rev s 0.10s
6.52 rev s 6.5 rev s

0.50s

f

f

+ + = →

−
= = ≈

 

 (c) Apply angular momentum conservation to relate the moments of inertia. 
single single single single single single
open closed open open closed closed

      L L I Iω ω= → = →  

single single single
closed open open 1

2
single single single
open closed closed

1.2 rev s
0.476

2.52 rev s

I f

I f

ω

ω
= = = = ≈  

  Thus the single axel moment of inertia must be reduced by a factor of about 2. 
  For the triple axel, the calculation is similar. 

mgG

NF
G

frF
G

θ y

x
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triple single
closed open 1

5
triple single
open closed

1.2 rev s
0.184

6.52 rev s

I f

I f
= = = ≈  

  Thus the triple axel moment of inertia must be reduced by a factor of about 5. 
 
80. We assume that the tensions in the two unbroken cables immediately become zero, and so they have 

no effect on the motion. The forces on the tower are the forces at the base joint, and the weight.  The 
axis of rotation is through the point of attachment to the ground.  Since that axis is fixed in an inertial 

system, we may use Eq. 11-9 in one dimension, .dL
dt

τ =∑   See the free-body diagram in the text to 

express the torque. 

  ( ) ( ) 2
21 1 1 1 1

2 3 2 3 3 2
    sin     sin

d IdL d d d
mg m g

dt dt dt dt dt
ω ω ω θτ θ θ= → = = → = =∑ l l l l  

 This equation could be considered, but it would yield θ as a function of time.  Use the chain rule to 
eliminate the dependence on time. 

  ( ) ( )

( ) ( ) ( ) ( )

31 1 1 1
2 3 3 3 2

23 3 1
2 2 2

0 0

2

sin     sin   

sin     1 cos     3 1 cos   

3 1 cos 3 9.80 m s 12 m 1 cos 19 1 cos

d d d d g
g d d

dt d dt d
g g g v

d d

v g

θ ω

ω ω θ ωθ ω θ θ ω ω
θ θ

θ θ ω ω θ ω ω θ

θ θ θ

= = = → = →

= → − = → = − = →

= − = − = −

∫ ∫

l l l
l

l l l l

l

 

Note that the same result can be obtained from conservation of energy, since the forces at the ground 
do no work. 

 
81. (a) We assume that no angular momentum is in the thrown-off mass, so the final angular  

momentum of the neutron star is equal to the angular momentum before collapse. 

   

( ) ( )

( )
( )

( )
( )

( )

2 22 2 1
0 f 0 0 f f Sun Sun 0 Sun f5 5 4

22 82 2
5 Sun Sun Sun

0 0 2222 1 3
5 4 fSun f

9

        8.0 8.0   

8.0 4 6.96 10 m4 1.0 rev
9.0days8.0 12 10 m

1day
    1.495 10 rev day 1.7

86400s

f

f

L L I I M R M R

M R R
RM R

ω ω ω ω

ω ω ω

= → = → = →

×
= = =

×

= × =

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎛ ⎞⎣ ⎦
⎜ ⎟⎡ ⎤ ⎝ ⎠⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠

430 10 rev s 17,000 rev s× ≈

 

 (b) Now we assume that the final angular momentum of the neutron star is only ¼ of the angular  
momentum before collapse.  Since the rotation speed is directly proportional to angular 
momentum, the final rotation speed will be ¼ of that found in part (a). 

   ( )41
4 1.730 10 rev s 4300 rev sfω = × =  

 
82. The desired motion is pure rotation about the handle grip.  Since the grip is not to have any linear 

motion, an axis through the grip qualifies as an axis fixed in an inertial reference frame.  The pure 
rotation condition is expressed by ( )CM bat CM grip ,a d dα= −  where gripd  is the 0.050 m distance from 
the end of the bat to the grip.  Apply Newton’s second law for both the translational motion of the 
center of mass, and rotational motion about the handle grip. 
 CM grip CM grip ;        F F ma Fd I ma d Iτ α α= = = = → = →∑ ∑   
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 ( ) ( )
grip

CM grip grip
CM grip

    
I

m d d d I d
m d d

α α− = → =
−

 

So we must calculate the moment of inertia of the bat about an axis through the grip, the mass of the 
bat, and the location of the center of mass.  An infinitesimal element of mass is given by dm dxλ= , 
where λ  is the linear mass density. 

 

( ) ( ) ( )

( )

( )

( )

0.84m 0.84m
2 22 2

grip grip
0 0

0.84m
4 3 2

0

0.845 4 3 2 21 1 1 1
5 4 3 2 0

2

0.050 0.61 3.3

 3.3 0.33 0.61825 0.061 0.001525

 3.3 0.33 0.61825 0.061 0.001525 0.33685kg m

0.61 3.3 kg m

I r dm x d dx x x dx

x x x x dx

x x x x x

m dm dx x

λ

λ

= = − = − +

= − + − +

= − + − + =

= = = +⎡

∫ ∫ ∫

∫

∫ ∫

i

( )

( ) ( )

0.84 m
0.843

0
0

0.842 41 10.84m
2 43 0

CM
0

0.61 1.1 1.1644 kg

0.61 3.31 1 1
0.61 3.3 kg m

1.1644 kg

     0.53757 m

dx x x

x x
x xdm x dx x x dx

m m m
λ

= + =

+
= = = + =

=

⎤⎣ ⎦

⎡ ⎤⎣ ⎦

∫

∫ ∫ ∫

 

 
( ) ( )

20.33685kg m
0.59333m 0.593m

1.1644 kg 0.53757 m 0.050 m
d = = ≈

−
i

 

 So the distance from the end of the bat to the “sweet spot” is 0.050 m=0.643m 0.64 m .d + ≈  

 
83. (a) Angular momentum about the pivot is conserved during this collision.  Note that both objects  

have angular momentum after the collision. 

   
( ) ( ) ( )

before after bullet stick bullet bullet 0 stick bullet f
collision collision initial final final

bullet 0 f bullet 0 f bullet 0 f
2 21

12stick stick stick stick stick

          

12 12 0.00

L L L L L m v x I m v x

m v v x m v v x m v v x
I M M

ω

ω

= → = + → = + →

− − −
= = = =

l l

( ) ( )
( ) ( )2

30 kg 110 m s
0.33kg 1.00 m

rad s
  12

m

x

x= ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
  (b) The spreadsheet used for  

this problem can be found 
on the Media Manager, 
with filename  
“PSE4_ISM_CH11.XLS,” 
on tab “Problem 11.83b.” 

 
 
 
 
 
 
 

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5
x  (m)

ω 
(r

ad
/s

)
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84. (a) Angular momentum about the center of mass of the system is conserved.   

First we find the center of mass, relative to the center of mass of the rod, 
taking up as the positive direction.  See the diagram. 

 ( )
( )CM

0mx M mx
x

m M m M
+

= =
+ +

 

The distance of the stuck clay ball from the system’s center of mass is 
found. 

clay CM
from CM

mx Mx
x x x x

m M m M
= − = − =

+ +
 

Calculate the moment of inertia of the rod about the center of mass of the entire system.  Use 
the parallel axis theorem.  Treat the clay as a point mass. 

2
21

rod 12I M M
mx

m M
= + ⎛ ⎞

⎜ ⎟+⎝ ⎠
l  

  Now express the conservation of angular momentum about the system’s center of mass. 
( )

( )

initial final clay rod clay final

clay clay
final 2

rod clay 2 21
12 clay

2 2
2 2121

1212

      

     
1

L L mvx I I

mvx mvx
I I mx

M M mx
m M

Mx
mv vxm M

Mmx Mx xM M m mm M m M

ω

ω

= → = + →

= =
+

+ +
+

+= =
+ ++ +

+ +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

l

ll

 

 (b) Graph this function with  
the given values, from x = 
9 to x = 0.60 m. 

  

final
2 21

12

2

1

12
rad s

3.72
     

vx
M

x
m

x
x

ω =
+ +

=
+

⎛ ⎞
⎜ ⎟
⎝ ⎠

l
 

 
The spreadsheet used for 
this problem can be found 
on the Media Manager, 
with filename “PSE4_ISM_CH11.XLS,” on tab “Problem 11.84b.” 

 
(c) Linear momentum of the center of mass is conserved in the totally inelastic collision. 

  ( )initial final CM CM
final final

        
mv

p p mv m M v v
m M

= → = + → =
+

  

We see that the translational motion (the velocity of the center of mass) is NOT dependent on x.   
 

rodCM

x

0.0

0.5

1.0

1.5

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6
x  (m)

ω 
(r

ad
/s

)
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CHAPTER 12:  Static Equilibrium; Elasticity and Fracture 
 
Responses to Questions 
 
1.  Equilibrium requires both the net force and net torque on an object to be zero. One example is a 

meter stick with equal and opposite forces acting at opposite ends. The net force is zero but the net 
torque is not zero, because the forces are not co-linear. The meter stick will rotate about its center. 

 
2. No. An object in equilibrium has zero acceleration. At the bottom of the dive, the bungee jumper 

momentarily has zero velocity, but not zero acceleration. There is a net upward force on the bungee 
jumper so he is not in equilibrium.  

    
3.  The meter stick is originally supported by both fingers. As you start to slide your fingers together, 

more of the weight of the meter stick is supported by the finger that is closest to the center of 
gravity, so that the torques produced by the fingers are equal and the stick is in equilibrium. The 
other finger feels a smaller normal force, and therefore a smaller frictional force, and so slides more 
easily and moves closer to the center of gravity. The roles switch back and forth between the fingers 
as they alternately move closer to the center of gravity. The fingers will eventually meet at the center 
of gravity. 

 
4.  The sliding weights on the movable scale arm are positioned much farther from the pivot point than 

is the force exerted by your weight. In this way, they can create a torque to balance the torque caused 
by your weight, even though they weigh less. When the torques are equal in magnitude and opposite 
in direction, the arm will be in rotational equilibrium.  

 
5. (a) The wall remains upright if the counterclockwise and clockwise torques about the lower left  

corner of the wall are equal. The counterclockwise torque is produced by .F
G

 The clockwise 
torque is the sum of the torques produced by the normal force from the ground on the left side 
of the wall and the weight of the wall. F

G
and its lever arm are larger than the force and lever 

arm for the torque from the ground on the left. The lever arm for the torque generated by the 
weight is small, so the torque will be small, even if the wall is very heavy. Case (a) is likely to 
be an unstable situation. 

(b) In this case, the clockwise torque produced by the weight of the ground above the horizontal  
section of the wall and clockwise torque produced by the larger weight of the wall and its lever 
arm balance the counterclockwise torque produced by .F

G
 

 
6.  Yes. For example, consider a meter stick lying along the x-axis. If you exert equal forces downward 

(in the negative y-direction) on the two ends of the stick, the torques about the center of the stick will 
be equal and opposite, so the net torque will be zero. However, the net force will not be zero; it will 
be in the negative y-direction. Also, any force through the pivot point will supply zero torque. 

 
7.  The ladder is more likely to slip when a person stands near the top of the ladder. The torque 

produced by the weight of the person about the bottom of the ladder increases as the person climbs 
the ladder, because the lever arm increases. 

 
8. The mass of the meter stick is equal to the mass of the rock. Since the meter stick is uniform, its 

center of mass is at the 50-cm mark, and in terms of rotational motion about a pivot at the 25-cm 
mark, it can be treated as though its entire mass is concentrated at the center of mass. The meter 
stick’s mass at the 50-cm mark (25 cm from the pivot) balances the rock at the 0-cm mark (also 25 
cm from the pivot) so the masses must be equal.  
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9. You lean backward in order to keep your center of mass over your feet. If, due to the heavy load, 
your center of mass is in front of your feet, you will fall forward. 

 
10.  (a) The cone will be in stable equilibrium if it is placed flat on its base. If it is tilted slightly from this 

position and then released, it will return to the original position. (b) The cone will be in unstable 
equilibrium if it is balanced on its tip. A slight displacement in this case will cause the cone to topple 
over. (c) If the cone is placed on its side (as shown in Figure 12-42) it will be in neutral equilibrium. 
If the cone is displaced slightly while on its side, it will remain in its new position. 

 
11.  When you stand next to a door in the position described, your center of mass is over your heels.  If 

you try to stand on your toes, your center of mass will not be over your area of support, and you will 
fall over backward. 

 
12. Once you leave the chair, you are supported only by your feet. In order to keep from falling 

backward, your center of mass must be over your area of support, so you must lean forward so that 
your center of mass is over your feet.  

   
13. When you do a sit-up, you generate a torque with your abdominal muscles to rotate the upper part of 

your body off the floor while keeping the lower part of your body on the floor. The weight of your 
legs helps produce the torque about your hips. When your legs are stretched out, they have a longer 
lever arm, and so produce a larger torque, than when they are bent at the knee. When your knees are 
bent, your abdominal muscles must work harder to do the sit-up. 

 
14.  Configuration (b) is likely to be more stable. Because of the symmetry of the bricks, the center of 

mass of the entire system (the two bricks) is the midpoint between the individual centers of mass 
shown on the diagram. In figure (a), the center of mass of the entire system is not supported by the 
table.    

 
15. A is a point of unstable equilibrium, B is a point of stable equilibrium, and C is a point of neutral 

equilibrium. 
 
16. The Young’s modulus for the bungee cord will be smaller than that for an ordinary rope. The 

Young’s modulus for a material is the ratio of stress to strain. For a given stress (force per unit area), 
the bungee cord will have a greater strain (change in length divided by original length) than the rope, 
and therefore a smaller Young’s modulus.   

 
17. An object under shear stress has equal and opposite forces applied across its opposite faces. This is 

exactly what happens with a pair of scissors. One blade of the scissors pushes down on the 
cardboard, while the other blade pushes up with an equal and opposite force, at a slight 
displacement. This produces a shear stress in the cardboard, which causes it to fail. 

 
18.  Concrete or stone should definitely not be used for the support on the left. The left-hand support 

pulls downward on the beam, so the beam must pull upward on the support. Therefore, the support 
will be under tension and should not be made of ordinary concrete or stone, since these materials are 
weak under tension. The right-hand support pushes up on the beam and so the beam pushes down on 
it; it will therefore be under a compression force.  Making this support of concrete or stone would be 
acceptable.   
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Solutions to Problems 
 
1. If the tree is not accelerating, then the net force in all directions is 0. 

( )

( )

A B C

C A B

B C

C B

cos105 0  

cos105 385 N 475 N cos105 262.1N

sin105 0  

sin105 475 N sin105 458.8 N

x x

x

y y

y

F F F F

F F F

F F F

F F

= + ° + = →

= − − ° = − − ° = −

= ° + = →

= − ° = − ° = −

∑

∑

 

( ) ( )2 22 2
C C C

C1 1

C

262.1 N 458.8 N 528.4 N 528 N

458.8 N
tan tan 60.3  , 180 60.3 120

262.1 N

x y

y

x

F F F

F

F
θ φ− −

= + = − + − = ≈

−
= = = ° = ° − ° = °

−

  

  And so CF
G

 is 528 N, at an angle of 120°  clockwise from A.F
G

 The angle has 3 sig. fig. 
 
2. Calculate the torques about the elbow joint (the dot in the free body 

diagram).  The arm is in equilibrium.  Counterclockwise torques are 
positive. 

M 0F d mgD MgLτ = − − =∑  

( ) ( ) ( ) ( ) ( )

M

22.3kg 0.12 m 7.3kg 0.300 m
     9.80 m s 970 N

0.025m

mD ML
F g

d
+

=

+
= =

 
3. Because the mass m is stationary, the tension in the rope  

pulling up on the sling must be mg, and so the force of the 
sling on the leg must be mg, upward.  Calculate torques about 
the hip joint, with counterclockwise torque taken as positive.  
See the free-body diagram for the leg.  Note that the forces on 
the leg exerted by the hip joint are not drawn, because they do 
not exert a torque about the hip joint. 

 ( ) ( )
( )

1
2 1

2

35.0cm
0    15.0 kg 6.73kg

78.0cm
x

mgx Mgx m M
x

τ = − = → = = =∑  

 
4. (a) See the free-body diagram.  Calculate torques about the pivot  

point P labeled in the diagram.  The upward force at the pivot 
will not have any torque.  The total torque is zero since the 
crane is in equilibrium. 

   ( ) ( )
( )

0  

2800 kg 7.7 m
2.3m

9500 kg

Mgx mgd

md
x

M

τ = − = →

= = =

∑
 

 
 
 

BF
G

CF
G

AF
G

θ φ

105°

d 

mgG MgG
MF
G

  L
D

x1 

x2 mgG

M gG

PF
G

mgG

x

MgG

d

P
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(b) Again we sum torques about the pivot point.  Mass m is the unknown in this case, and the  
counterweight is at its maximum distance from the pivot. 

   
( ) ( )

( )
max

max max max

9500 kg 3.4 m
0    4200 kg

7.7 kg
Mx

Mgx m gd m
d

τ = − = → = = =∑  

 
5. (a) Let m = 0.  Calculate the net torque about the left end of the  

diving board, with counterclockwise torques positive.  Since the 
board is in equilibrium, the net torque is zero. 

  

 
( ) ( )

( ) ( )
B

2 3
B

1.0 m 4.0 m 0  

4 4 52 kg 9.80 m s 2038 N 2.0 10 N, up

F Mg

F Mg

τ = − = →

= = = ≈ ×

∑
   

  Use Newton’s second law in the vertical direction to find A.F  

   
( ) ( )

B A

2
A B

0  

4 3 3 52 kg 9.80 m s 1529 N 1500 N, down

yF F Mg F

F F Mg Mg Mg Mg

= − − = →

= − = − = = = ≈

∑
 

 (b) Repeat the basic process, but with m = 28 kg.  The weight of the board will add more clockwise  
torque. 

   

( ) ( ) ( )
( ) ( )[ ]( )

( )[ ]( )

B

2
B

B A

A B

2

1.0 m 2.0 m 4.0 m 0  

4 2 4 52 kg 2 28 kg 9.80 m s 2587 N 2600 N, up

  

4 2 3

    3 52 kg 28kg 9.80 m s 1803N 1800 N, down

y

F mg Mg

F Mg mg

F F Mg mg F

F F Mg mg Mg mg Mg mg Mg mg

τ = − − = →

= + = + = ≈

= − − − →

= − − = + − − = +

= + = ≈

∑

∑  

 
6. Write Newton’s second law for the junction, in both the x and y directions. 
  o

B A cos 45 0xF F F= − =∑  

 From this, we see that A BF F> .  Thus set A 1660 NF = . 

  o
A sin 45 0yF F mg= − =∑  

( )o o
A sin 45 1660 N sin 45 1174 N 1200 Nmg F= = = ≈  

 
7. Since the backpack is midway between the two trees, the angles in the 

diagram are equal.  Write Newton’s second law for the vertical direction 
for the point at which the backpack is attached to the cord, with the weight 
of the backpack being the downward vertical force.  The angle is 
determined by the distance between the trees and the amount of sag at the 
midpoint, as illustrated in the second diagram. 

 (a) 1 1 1.5 m
tan tan 24.4

2 3.3 m
y

L
θ − −= = = °  

( ) ( )
T 1

2

T
1

2 sin 0  

19 kg 9.80m s
225.4 N 230 N

2sin 2sin 24.4

yF F mg

mg
F

θ

θ

= − = →

= = = ≈
°

∑
 

45ο 

mgG

AF
G

BF
G

mgG
TF
G

TF
G

θθ

θθ
L

y

AF
G

BF
G

mgG MgG1.0 m

2.0 m
4.0 m
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 (b) 1 1 0.15 m
tan tan 2.60

2 3.3 m
y

L
θ − −= = = °  

  
( ) ( )2

T
1

19 kg 9.80m s
2052 N 2100 N

2sin 2sin 2.60
mg

F
θ

= = = ≈
°

 

 
8. Let m be the mass of the beam, and M be the mass of the 

piano.  Calculate torques about the left end of the beam, with 
counterclockwise torques positive.  The conditions of 
equilibrium for the beam are used to find the forces that the 
support exerts on the beam. 

  ( ) ( )1 1
2 4 0RF L mg L Mg Lτ = − − =∑  

( ) ( ) ( )[ ]( )

( ) ( ) ( )

2 31 1 1 1
2 4 2 4

2 3 3

110 kg 320 kg 9.80m s 1.32 10 N

0

430 kg 9.80 m s 1.32 10 N 2.89 10 N

R

y L R

L R

F m M g

F F F mg Mg

F m M g F

= + = + = ×

= + − − =

= + − = − × = ×

∑  

 The forces on the supports are equal in magnitude and opposite in direction to the above two results. 
  R 1300 N downF =   L 2900 N downF =  

 
9. Calculate torques about the left end of the beam, with counter-

clockwise torques positive.  The conditions of equilibrium for the 
beam are used to find the forces that the support exerts on the beam. 

  
( ) ( )

( ) ( ) ( )
B

2 4
B

20.0 m 25.0 m 0  

25.0
1.25 1200 kg 9.80 m s 1.5 10 N

20.0

F mg

F mg

τ = − = →

= = = ×

∑
 

( ) ( ) ( )
A B

2
A B

0

1.25 0.25 0.25 1200 kg 9.80 m s 2900 N

yF F F mg

F mg F mg mg mg

= + − =

= − = − = − = − = −

∑
 

 Notice that AF
G

 points down. 
 
10. The pivot should be placed so that the net torque on the board is 

zero.  We calculate torques about the pivot point, with 
counterclockwise torques positive.  The upward force PF

G
 at the 

pivot point is shown, but it exerts no torque about the pivot 
point.  The mass of the child is m, the mass of the adult is M, 
the mass of the board is B,m  and the center of gravity is at the 
middle of the board. 

 (a) Ignore the force Bm g . 

   
( )

( )
( ) ( )

0  

25 kg
9.0 m 2.25m 2.3 m from adult

25 kg 75 kg

Mgx mg L x

m
x L

m M

τ = − − = →

= = = ≈
+ +

∑
 

 
 
  (b) Include the force B .m g  

L/4 
L 

mgGM gGLF
G

RF
G

AF
G

BF
G

mgG
20.0 m

25.0 m

L/2 – x 

mgG
Bm gGMgG

PF
G

 x L x−
L
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   ( ) ( )B 2 0Mgx mg L x m g L xτ = − − − − =∑  

( )
( )

( )
( ) ( )B

B

2 25kg 7.5 kg
9.0 m 2.54 m 2.5 m from adult

75kg 25 kg 15kg
m m

x L
M m m

+ +
= = = ≈

+ + + +
 

 
11. Using the free-body diagram, write Newton’s second law for both the 

horizontal and vertical directions, with net forces of zero.   

  
T2 T1 T2 T1

T1 T1

cos 0    cos

sin 0    
sin

x

y

F F F F F

mg
F F mg F

θ θ

θ
θ

= − = → =

= − = → =

∑

∑
 

( ) ( )

( ) ( )

2

T2 T1

2

T1

190kg 9.80 m s
cos cos 2867N 2900 N

sin tan tan 33
190 kg 9.80 m s

3418 N 3400 N
sin sin 33

mg mg
F F

mg
F

θ θ
θ θ

θ

= = = = = ≈
°

= = = ≈
°

 

 
12. Draw a free-body diagram of the junction of the three wires. 

The tensions can be found from the conditions for force  
equilibrium. 

  T1 T2 T2 T1

T1 T2

cos37
cos37 cos53 0    

cos53
sin 37 sin53 0

x

y

F F F F F

F F F mg

°
= ° − ° = → =

°
= ° + ° − =

∑
∑

 

T1 T1

cos37
sin 37 sin 53 0  

cos53
F F mg

°
° + ° − = →

°
 

( ) ( )2

T1

33 kg 9.80 m s
194.6 N 190 N

cos37
sin 37 sin 53

cos53

F = = ≈
°

° + °
°

 

( )2
T2 T1

cos 37 cos37
1.946 10 N 258.3N 260 N

cos53 cos53
F F

° °
= = × = ≈

° °
 

 
13. The table is symmetric, so the person can sit near either edge and 

the same distance will result.  We assume that the person (mass 
M) is on the right side of the table, and that the table (mass m) is  
on the verge of tipping, so that the left leg is on the verge of 
lifting off the floor.  There will then be no normal force between 
the left leg of the table and the floor.   Calculate torques about the 
right leg of the table, so that the normal force between the table 
and the floor causes no torque.  Counterclockwise torques are 
taken to be positive.  The conditions of equilibrium for the table are used to find the person’s 
location. 

  ( ) ( ) ( ) 24.0 kg
0.60 m 0    0.60 m 0.60 m 0.218m

66.0 kg
m

mg Mgx x
M

τ = − = → = = =∑  

 Thus the distance from the edge of the table is 0.50 m 0.218 m 0.28 m .− =  

mgG
T2F
Gθ

T1F
G

T1F
G

T2F
G

mgG

o37o53

mgG M gG

x0.60 m

NF
G
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14. The cork screw will pull upward on the cork with a force of magnitude cork ,F  and so there is a 
downward force on the opener of magnitude cork.F  We assume that there is no net torque on the 
opener, so that it does not have an angular acceleration.  Calculate torques about the rim of the bottle 
where the opener is resting on the rim. 

( ) ( )

( ) ( )

cork

cork

79 mm 9 mm 0  

9 9 9
200 N  to 400 N 22.8 N to 45.6 N 20 N to50 N

70 79 79

F F

F F

τ = − = →

= = = ≈

∑
 

 
15. The beam is in equilibrium, and so both the net torque and 

net force on it must be zero.  From the free-body diagram, 
calculate the net torque about the center of the left support, 
with counterclockwise torques as positive.  Calculate the 
net force, with upward as positive.  Use those two 
equations to find AF  and B.F  

( ) ( ) ( )
( ) ( )

( )

B 1 2 3 4 1 1 2 1 2 3 1 2 3 5

1 1 2 1 2 3 1 2 3 5
B

1 2 3 4

F x x x x F x F x x F x x x mgx

F x F x x F x x x mgx
F

x x x x

τ = + + + − − + − + + −

+ + + + + +
=

+ + +

∑
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )24300 N 2.0 m 3100 N 6.0 m 2200 N 9.0 m 280 kg 9.80 m s 5.0 m
    

10.0 m

+ + +
=  

    6072 N 6100 N= ≈  

( ) ( )
A B 1 2 3

2
A 1 2 3 B

0

9600 N 280 kg 9.80 m s 6072 N 6272 N 6300 N

F F F F F F mg

F F F F mg F

= + − − − − =

= + + + − = + − = ≈

∑
 

 
16. (a) Calculate the torques about the elbow joint (the dot in the free-  

body diagram).  The arm is in equilibrium.  Take counterclockwise 
torques as positive. 

   

( )
( ) ( ) ( )

( )

M

2

M o

sin 0  

3.3 kg 9.80m s 0.24 m
249.9 N

sin 0.12 m sin15

    250 N

F d mgD

mgD
F

d

τ θ

θ

= − = →

= = =

≈

∑

 

(b) To find the components of J ,F  write Newton’s second law for both the x and y directions.  Then  
combine them to find the magnitude. 

   

( )

( ) ( ) ( )
( ) ( )

J M J M

M J

2
J M

2 22 2
J J J

cos 0    cos 249.9 N cos15 241.4 N

sin 0  

     sin 249.9 N sin15 3.3kg 9.80 m s 32.3N

F 241.4 N 32.3N 243.6 N 240 N

x x x

y y

y

x y

F F F F F

F F mg F

F F mg

F F

θ θ

θ

θ

= − = → = = =

= − − = →

= − = ° − =

= + = + = ≈

°∑
∑

 

 
 

x1 x2 x3 x4

mgG

AF
G

BF
G

1F
G

2F
G

3F
G

5  x

mgG

MF
G

JF
G

θ

D
d
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17. Calculate the torques about the shoulder joint, which is at the left 
end of the free-body diagram of the arm.  Since the arm is in 
equilibrium, the sum of the torques will be zero.  Take 
counterclockwise torques to be positive.  The force due to the 
shoulder joint is drawn, but it does not exert any torque about the 
shoulder joint. 

  sin 0mF d mgD MgLτ θ= − − =∑  

( ) ( ) ( ) ( )
( ) ( )23.3kg 0.24cm 8.5kg 0.52 m

9.80m s 1600 N
sin 0.12 m sin15m

mD ML
F g

d θ
++

= = =
°

 

 
18. From the free-body diagram, the conditions of equilibrium 

are used to find the location of the girl (mass Cm ).  The 45-

kg boy is represented by A,m  and the 35-kg girl by B.m   
Calculate torques about the center of the see-saw, and take 
counterclockwise torques to be positive.  The upward force 
of the fulcrum on the see-saw ( )F

G
 causes no torque about the center. 

  
( ) ( )

( ) ( ) ( ) ( )

1 1
A C B2 2

A B 1 1
2 2

C

0

45kg 35kg
3.2 m 0.64 m

25kg

m g L m gx m g L

m m
x L

m

τ = − − =

− −
= = =

∑
 

 
19. There will be a normal force upwards at the ball of the foot, equal 

to the person’s weight ( )N .F mg=   Calculate torques about a 
point on the floor directly below the leg bone (and so in line with 
the leg bone force, BF

G
).  Since the foot is in equilibrium, the sum 

of the torques will be zero.  Take counterclockwise torques as 
positive. 

  
( )

( ) ( )
N A

2
A N

2 0  

2 2 2 72 kg 9.80 m s 1400 N

F d F d

F F mg

τ = − = →

= = = =

∑
 

 The net force in the y direction must be zero.  Use that to find B.F   

  N A B B N A0    2 3 2100 NyF F F F F F F mg mg mg= + − = → = + = + = =∑  

 
20. The beam is in equilibrium.   Use the conditions of equilibrium to 

calculate the tension in the wire and the forces at the hinge.  Calculate 
torques about the hinge, and take counterclockwise torques to be positive. 

  

( )
( ) ( ) ( ) ( )

( ) ( )

T 2 1 1 2 1

11
22 1 1 2 1

T
2

sin 2 0  

155 N 1.70 m 215 N 1.70 m
sin 1.35m sin 35.0

    642.2 N 642 N

F l m g l m gl

m gl m gl
F

l

τ θ

θ

= − − = →

++
= =

°

= ≈

∑
 

  ( )H T H Tcos 0    cos 642.2 N cos35.0 526.1N 526 Nx x xF F F F Fθ θ= − = → = = = ≈°∑  

Cm gGAm gG
Bm gGF

G

  L

  x

mgG M gG

MF
G

JF
G

θ

d
D

L

NF
G

d 2D d=

AF
G

BF
G

1m gG

TF
G

θ
HF
G

1 2l

2  l

1  l

2m gG
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( )

H T 1 2

H 1 2 T

sin 0  

sin 155N 215N 642.2 N sin 35.0 1.649 N 2 N

y y

y

F F F m g m g

F m g m g F

θ

θ

= + − − = →

= + − = + − ° = ≈

∑
 

 
21. (a) The pole is in equilibrium, and so the net torque on it must  

be zero.  From the free-body diagram, calculate the net 
torque about the lower end of the pole, with 
counterclockwise torques as positive.  Use that calculation to 
find the tension in the cable.  The length of the pole is l. 

   
( )

( )
T

T

2 cos cos 0

2 cos

F h mg Mg

m M g
F

h

τ θ θ

θ

= − − =

+
=

∑ l l

l  

( ) ( ) ( )26.0 kg 21.5kg 9.80 m s 7.20 m cos37
    407.8 N 410 N

3.80 m

+ °
= = ≈  

 (b) The net force on the pole is also zero since it is in equilibrium.  Write Newton’s second law in  
both the x and y directions to solve for the forces at the pivot. 

   P T P T0    410 Nx x xF F F F F= − = → = =∑  

   ( ) ( ) ( )2
P P0    33.5 kg 9.80m s 328 Ny y yF F mg Mg F m M g= − − = → = + = =∑  

 
22. The center of gravity of each beam is at its geometric center.  

Calculate torques about the left end of the beam, and take 
counterclockwise torques to be positive.  The conditions of 
equilibrium for the beam are used to find the forces that the 
support exerts on the beam. 

( ) ( )
( ) ( )

1
B 2

25 5
B 8 8

2 4 0  

940 kg 9.80 m s 5758 N 5800 N

F Mg Mg

F Mg

τ = − − = →

= = = ≈

∑ l l l

( ) ( )
1

A B 2

23 7 7
A B2 8 8

0  

940 kg 9.80 m s 8061N 8100 N

yF F F Mg Mg

F Mg F Mg

= + − − = →

= − = = = ≈

∑
 

 
23. First consider the triangle made by the pole and one of the wires (first 

diagram).  It has a vertical leg of 2.6 m, and a horizontal leg of 2.0 m.  The 
angle that the tension (along the wire) makes with the vertical is 

1 o2.0
tan 37.6

2.6
θ −= = .  The part of the tension that is parallel to the ground is 

therefore T h T sin .F F θ=  
 

Now consider a top view of the pole, showing only force parallel to the ground 
(second diagram).  The horizontal parts of the tension lie as the sides of an 
equilateral triangle, and so each make a 30o angle with the tension force of the net.  
Write the equilibrium equation for the forces along the direction of the tension in 
the net. 

 
( )

net T h

net T

2 cos30 0  

2 sin cos30 2 115 N sin 37.6 cos30 121.5 N 120 N

F F F

F F θ

= − ° = →

= ° = ° ° = ≈

∑
 

θ 

θ 

x 

y mgG

M gGTF
G

P xF
G

P yF
G

h

cosθl

AF
G

BF
G1

2 M gG

MgG4l

l

2l

2.6 m

2.0 m

θ

o30 o30

netF
G

T hF
G

T hF
G
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mgG

W
G

hinge
horiz

F
G

ropeF
G

hinge
vert

F
G

φ

θ
x

l

x
y

( )θ φ−

24. See the free-body diagram.  We assume that the board is at the edge of 
the door opposite the hinges, and that you are pushing at that same edge 
of the door.  Then the width of the door does not enter into the problem.  
Force pushF

G
 is the force of the door on the board, and is the same as the 

force the person exerts on the door.  Take torques about the point A in 
the free-body diagram, where the board rests on the ground.  The board 
is of length l. 

  
( )

( ) ( )
1

push 2

2

push
2

sin cos 0  

62.0 kg 9.80 m s
303.8 N 3.0 10 N

2 tan 2 tan 45

F mg

mg
F

τ θ θ

θ

= − = →

= = = ≈ ×
°

∑ l l

 

 
25. Because the board is firmly set against the ground, the top of the board 

would move upwards as the door opened.  Thus the frictional force on 
the board at the door must be down.  We also assume that the static 
frictional force is a maximum, and so is given by fr N push.F F Fμ μ= =   
Take torques about the point A in the free-body diagram, where the 
board rests on the ground.  The board is of length l. 

  
( )

( )

1
push fr2

1
push push2

sin cos cos 0  

sin cos cos 0  

F mg F

F mg F

τ θ θ θ

θ θ μ θ

= − − = →

− − = →
∑ l l l

l l l
 

( ) ( )
( ) ( )

( )

2

push

62.0 kg 9.80 m s
552.4 N 550 N

2 tan 2 tan 2 tan 45 0.45
mg mg

F
θ μ θ μ

= = = = ≈
− − ° −

 

 
26. Draw the free-body diagram for the sheet, and write 

Newton’s second law for the vertical direction.  Note 
that the tension is the same in both parts of the 
clothesline. 

( )
( ) ( )

( )
( )

T T

2

T

sin 3.5 sin 3.5 0  

0.75kg 9.80 m s

2 sin 3.5 2 sin 3.5

60 N  2 sig. fig.    

yF F F mg

mg
F

= ° + ° − = →

= =
° °

=

∑

 

 The 60-N tension is much higher than the ~ 7.5-N weight of the sheet because of the small angle.  
Only the vertical components of the tension are supporting the sheet, and since the angle is small, the 
tension has to be large to have a large enough vertical component to hold up the sheet. 

 
27. (a) Choose the coordinates as shown in the free-body diagram. 

(b) Write the equilibrium conditions for the horizontal and vertical forces. 

( )

rope hinge
horiz

hinge rope
horiz

sin 0  

sin 85N sin 37 51N

xF F F

F F

φ

φ

= − = →

= = ° =

∑
 

mgG

pushF
G

θ

G yF
G

G xF
G

A

mgG

pushF
G

θ

G yF
G

G xF
G

A

frF
G

TF
G

TF
G

mgG

o3.5o3.5
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( ) ( ) ( )

rope hinge
vert

2
hinge rope
vert

cos 0  

cos 3.8kg 9.80 m s 22 N 85 N cos37

       8.6 N 9 N

yF F F mg W

F mg W F

φ

φ

= + − − = →

= + − = + − °

= − ≈ −

∑

 

  And so the vertical hinge force actually points downward. 
 (c) We take torques about the hinge point, with clockwise torques as positive. 

   

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( )

1
rope2

1
2rope

2

sin sin sin 0    

sin sin
sin

85N 5.0 m sin16 3.8kg 9.80 m s 2.5m sin 53
2.436 m 2.4 m

22 N sin 53
  

Wx mg F

F mg
x

W

τ θ θ θ φ

θ φ θ
θ

= + − − = →

− −
=

° − °
= = ≈

°

∑ l l

l l
 

 
28. (a) Consider the free-body diagram for each side of the ladder.   

Because the two sides are not identical, we must have both 
horizontal and vertical components to the hinge force of one 
side of the ladder on the other.   

First determine the angle from 
1
2cos

2
.d dθ = =

l l
 

 
1

1 12 0.9 m
cos cos 68.9

2.5m
dθ − −= = = °
l

 

Write equilibrium equations for the following conditions: 
Vertical forces on total ladder:   

vert N hinge hinge N
left vert vert right

N N
left right

0  F F mg F F F

F F mg

= − + − + = →

+ =

∑
 

  Torques on left side, about top, clockwise positive.  
   ( ) ( ) ( )1

N T 2
left

cos 0.2 cos sin 0F mg Fτ θ θ θ= − − =∑ l l l  

  Torques on right side, about top, clockwise positive. 
   ( ) ( )1

N T 2
right

cos sin 0F Fτ θ θ= − + =∑ l l  

  Subtract the second torque equation from the first. 

   ( ) ( ) ( )1
N N T 2
left right

cos 0.2 cos 2 sin 0F F mg Fθ θ θ+ − − =⎛ ⎞
⎜ ⎟
⎝ ⎠

l l l  

Substitute in from the vertical forces equation, and solve for the tension. 

   
( ) ( ) ( )

( ) ( ) ( )
1

T 2

2

T

cos 0.2 cos 2 sin 0  

0.8 56.0 kg 9.80 m s0.8
0.8cos 169.4 N 170 N

sin tan tan 68.9

mg mg F

mg mg
F

θ θ θ

θ
θ θ

− − = →

= = = = ≈
°

l l l

 

  
 
 
 

mgG

θ

N
left

F
G

cosθl

hinge
horiz

F
G

hinge
vert

F
G

TF
G0.8l

l

θ N
right

F
G

1
2 d

hinge
horiz

F
G

hinge
vert

F
G

TF
G

hingeφ
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(b) To find the normal force on the right side, use the torque equation for the right side. 

   

( ) ( )

( )

1
N T 2
right

1 1
N T2 2
right

cos sin 0  

tan 169.4 N tan 68.9 219.5 N 220 N

F F

F F

θ θ

θ

− + = →

= = ° = ≈

l l

 

  To find the normal force on the left side, use the vertical force equation for the entire ladder. 

   
( ) ( )

N N
left right

2
N N
left right

  

56.0 kg 9.80 m s 219.5N 329.3N 330 N

F F mg

F mg F

+ = →

= − = − = ≈
 

 (c) We find the hinge force components from the free-body diagram for the right side. 

( ) ( )

vert N hinge hinge N
right vert vert right

horiz hinge T hinge T
horiz horiz

2 22 2
hinge hinge hinge

horiz vert

hinge
vert1

hinge
hinge
horiz

0    219.5N

0    169.4 N

169.4 N 219.5N 277.3N 280 N

tan

F F F F F

F F F F F

F F F

F

F
φ −

= − = → = =

= − = → = =

= + = + = ≈

= =

∑

∑

1 219.5N
tan 52

169.4 N
− = °

 

 
29. The forces on the door are due to gravity and the hinges.  Since the door  

is in equilibrium, the net torque and net force must be zero.  Write the 
three equations of equilibrium.  Calculate torques about the bottom 
hinge, with counterclockwise torques as positive.  From the statement of 
the problem, 1

A B 2 .y yF F mg= =  

  

( )

( )
( )( )( )

( )

2

2 0
2

13.0 kg 9.80 m s 1.30 m
55.2 N

2 2 2 2.30 m 0.80 m

0    55.2 N

Ax

Ax

x Ax Bx Bx Ax

w
mg F h d

mgw
F

h d

F F F F F

τ = − − =

= = =
− −

= − = → = =

∑

∑

 

( ) ( )21 1
2 20    13.0 kg 9.80m s 63.7 Ny Ay By Ay ByF F F mg F F mg= + − = → = = = =∑  

 
30. See the free–body diagram for the crate on the verge of  

tipping.  From the textbook Figure 12-12 and the associated 
discussion, if a vertical line projected downward from the center of 
gravity falls outside the base of support, then the object will topple.  
So the limiting case is for the vertical line to intersect the edge of 
the base of support.  Any more tilting and the gravity force would 
cause the block to tip over, with the axis of rotation through the 
lower corner of the crate. 

  ( )11.00 1.00
tan     tan 40  2 sig fig

1.18 1.18
θ θ −= → = = °  

 

d 

h 

w 

 d 

x 
y 

mgG

B xF
G

B yF
G

A xF
G
A yF
G

mgG
1.18m

1.00 m

θ

θ



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

384 

The other forces on the block, the normal force and the frictional force, would be acting at the lower 
corner and so would not cause any torque about the lower corner.  The gravity force causes the 
tipping.  It wouldn’t matter if the block were static or sliding, since the magnitude of the frictional 
force does not enter into the calculation. 

  
31. We assume the truck is accelerating to the right.  We want the refrigerator to not 

tip in the non-inertial reference frame of the truck.  Accordingly, to analyze the 
refrigerator in the non-inertial reference frame, we must add a pseudoforce in 
the opposite direction of the actual acceleration.  The free-body diagram is for a 
side view of the refrigerator, just ready to tip so that the normal force and 
frictional force are at the lower back corner of the refrigerator.  The center of 
mass is in the geometric center of the refrigerator.  Write the conditions for 
equilibrium, taking torques about an axis through the center of mass, 
perpendicular to the plane of the paper.  The normal force and frictional force 
cause no torque about that axis. 

  ( ) ( )

( )

horiz fr truck fr truck

vert N N

N1 1
N fr2 2

fr

2 2N
truck

fr truck

0    

0    

0    

1.0 m
    9.80 m s 5.2 m s

1.9 m

F F ma F ma

F F mg F mg

F h
F w F h

F w

F h mg w
a g

F w ma h

τ

= − = → =

= − = → =

= − = → =

= = → = = =

∑
∑

∑  

 
32. Write the conditions of equilibrium for the ladder, with torques taken 

about the bottom of the ladder, and counterclockwise torques as 
positive. 

( ) 1
W W 2

1
G W G W 2

G G

1
2sin cos 0    

tan

0    
tan

0    

x x x

y y y

mg
F mg F

mg
F F F F F

F F mg F mg

τ θ θ
θ

θ

= − = → =

= − = → = =

= − = → =

∑

∑
∑

l l

 

 For the ladder to not slip, the force at the ground G xF  must be less than 
or equal to the maximum force of static friction. 

  11
G N G 2

1 1
        tan     tan

tan 2 2x y

mg
F F F mgμ μ μ θ θ

θ μ μ
−≤ = → ≤ → ≤ → ≥ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 Thus the minimum angle is 1
min

1
tan

2
.θ

μ
−= ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
 
 
 
 
 
 
 

x
y 

mgG

WF
G

θ

G yF
G

G xF
G

sinθl

cosθl

h

w

mgG

frF
G

NF
G

truckmaG
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33. The tower can lean until a line projected downward through its center of 
gravity will fall outside its base of support.  Since we are assuming that the 
tower is uniform, its center of gravity (or center of mass) will be at its 
geometric center.  The center of mass can move a total of 3.5 m off of 
center and still be over the support base.  It has currently moved 2.25 m 
off of center.  So it can lean over another 1.25 m at the center, or 2.5 m at 
the top.  Note that the diagram is NOT to scale.  The tower should be 
twice as tall as shown to be to scale. 

 
 
 
 
 
 
34. The amount of stretch can be found using the elastic modulus in Eq. 12-4. 

  
( )

( ) 2
0 29 2 4

1 1 275 N
0.300 m 2.10 10 m

5 10 N m 5.00 10

F
E A π

−

−
Δ = = = ×

× ×
l l  

 

35. (a) 
( ) ( )2

2 5 2
2

25000 kg 9.80 m s
Stress 175,000 N m 1.8 10 N m

1.4 m
F mg
A A

= = = = ≈ ×  

 (b) 
5 2

6
9 2

Stress 175,000 10 N m
Strain 3.5 10

Young's Modulus 50 10 N m
−×

= = = ×
×

 

 
36. The change in length is found from the strain. 

  ( ) ( ) ( )6 5
0

0

Strain     Strain 8.6 m 3.5 10 3.0 10 m− −Δ
= → Δ = = × = ×
l

l l
l

 

 

37. (a) 
( ) ( )2

6 2 6 2
2

1700 kg 9.80 m s
Stress 1.388 10 N m 1.4 10 N m

0.012 m
F mg
A A

= = = = × ≈ ×  

 (b) 
6 2

6 6
9 2

Stress 1.388 10 N m
Strain 6.94 10 6.9 10

Young's Modulus 200 10 N m
− −×

= = = × ≈ ×
×

 

 (c) ( ) ( ) ( ) ( )6 5 5
0Strain 6.94 10 9.50 m 6.593 10 m 6.6 10 m− − −Δ = = × = × ≈ ×l l  

 
38. The relationship between pressure change and volume change is given by Eq. 12-7. 

  
( ) ( )2 9 2 7 2

0
0

7 2
2

5 2
atm

    0.10 10 90 10 N m 9.0 10 N m

9.0 10 N m
9.0 10  , or 900 atmospheres

1.0 10 N m

P V
V V P B

B V

P
P

−Δ Δ
Δ = − → Δ = − = − × × = ×

Δ ×
= = ×

×

 

 
39. The Young’s Modulus is the stress divided by the strain. 

( ) ( )
( ) ( )

231
2 6 2

3 2
0

13.4 N 8.5 10 mStress
Young's Modulus 9.6 10 N m

Strain 3.7 10 m 15 10 m
F A π −

− −

× ×
= = = = ×

Δ × ×

⎡ ⎤
⎣ ⎦

l l
  

Vertical Ready to fall
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40. The percentage change in volume is found by multiplying the relative change in volume by 100.  The  
change in pressure is 199 times atmospheric pressure, since it increases from atmospheric pressure to 
200 times atmospheric pressure.  Use Eq. 12-7. 

  
( )5 2

2
9 2

199 1.0 10 N m
100 100 100 2 10 %

90 10 N mo

V P
V B

−
×Δ Δ

= − = − = − ×
×

 

 The negative sign indicates that the interior space got smaller. 
 
41. (a) The torque due to the sign is the product of the weight of the sign  

and the distance of the sign from the wall.   
   ( ) ( ) ( )26.1kg 9.80 m s 2.2 m 130 m N , clockwisemgdτ = = = i  

 (b) Since the wall is the only other object that can put force on the pole  
(ignoring the weight of the pole), then the wall must put a torque on 
the pole.  The torque due to the hanging sign is clockwise, so the torque due to the wall must be 
counterclockwise.  See the diagram.  Also note that the wall must put a net upward force on the 
pole as well, so that the net force on the pole will be zero. 

 (c) The torque on the rod can be considered as the wall pulling horizontally to the left on the top  
left corner of the rod and pushing horizontally to the right at the bottom left corner of the rod.  
The reaction forces to these put a shear on the wall at the point of contact.  Also, since the wall 
is pulling upwards on the rod, the rod is pulling down on the wall at the top surface of contact, 
causing tension.  Likewise the rod is pushing down on the wall at the bottom surface of contact, 
causing compression.  Thus all three are present. 

 
42. Set the compressive strength of the bone equal to the stress of the bone. 

  ( )( )6 2 4 2 4max
maxCompressive Strength     170 10 N m 3.0 10 m 5.1 10 N

F
F

A
−= → = × × = ×  

 
43. (a) The maximum tension can be found from the ultimate tensile strength of the material. 

   
( ) ( ) ( )

max

26 2 4
max

Tensile Strength   

Tensile Strength 500 10 N m 5.00 10 m 393 N

F
A

F A π −

= →

= = × × =
 

(b) To prevent breakage, thicker strings should be used, which will increase the cross-sectional area  
of the strings, and thus increase the maximum force.  Breakage occurs because when the strings 
are hit by the ball, they stretch, increasing the tension.  The strings are reasonably tight in the 
normal racket configuration, so when the tension is increased by a particularly hard hit, the 
tension may exceed the maximum force. 

 
44. (a) Compare the stress on the bone to the compressive strength to see if the bone breaks. 

   
( )

4

4 2

7 2 8 2

3.3 10 N
Stress

3.6 10 m
9.167 10 N m <1.7 10 N m Compressive Strength of bone        

F
A −

×
= =

×
= × ×

 

  The bone will not break.  
 (b) The change in length is calculated from Eq. 12-4. 

   ( )7 2 30
9 2

0.22 m
9.167 10 N m 1.3 10 m

15 10 N m
F

E A
−Δ = = × = ×

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

l
l  

 

mgGwallτ
wallF
G
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45. (a) The area can be found from the ultimate tensile strength of the material. 

   
( ) ( )2 5 2 5 2

6 2

Tensile Strength Safety Factor
Safety Factor Tensile Strength

7.0
270 kg 9.80 m s 3.704 10 m 3.7 10 m

500 10 N m

      F
A F

A

A − −

= =

= × ≈ ×
×

⎛ ⎞→ →⎜ ⎟
⎝ ⎠

=
 

(b) The change in length can be found from the stress-strain relationship, Eq. 12-5. 

   
( ) ( ) ( )

( ) ( )
2

30
5 2 9 2

0

7.5m 320 kg 9.80 m s
    2.7 10 m

3.704 10 m 200 10 N m
F F

E
A AE

−
−

Δ
= → Δ = = = ×

× ×
l l

l
l

  

 
46. For each support, to find the minimum cross-sectional area with a  

safety factor means that 
Strength

Safety Factor
,F

A
=  where either the tensile or 

compressive strength is used, as appropriate for each force.  To find the 
force on each support, use the conditions of equilibrium for the beam.  
Take torques about the left end of the beam, calling counterclockwise 
torques positive, and also sum the vertical forces, taking upward forces as positive. 

 
( ) ( ) 25.0

2 2 20.0

1 2 1 2

20.0 m 25.0 m 0    1.25

0    1.25 0.25y

F mg F mg mg

F F F mg F mg F mg mg mg

τ = − = → = =

= + − = → = − = − = −
∑
∑

 

Notice that the forces on the supports are the opposite of 1F
G

 and 2.F
G

  So the force on support # 1 is 
directed upwards, which means that support # 1 is in tension.  The force on support # 2 is directed 
downwards, so support # 2 is in compression. 

  
( ) ( ) ( ) ( )

1

1

3 2
3 2

1 6 2

Tensile Strength
  

9.0

0.25 2.9 10 kg 9.80 m s0.25
9.0 9.0 1.6 10 m

Tensile Strength 40 10 N m

F
A

mg
A −

= →

×
= = = ×

×

 

  
( ) ( ) ( ) ( )

2

2

3 2
3 2

1 6 2

Compressive Strength
  

9.0

1.25 2.9 10 kg 9.80 m s1.25
9.0 9.0 9.1 10 m

Compressive Strength 35 10 N m

F
A

mg
A −

= →

×
= = = ×

×

 

 
47. The maximum shear stress is to be 1/7th of the shear strength for iron.  The maximum stress will 

occur for the minimum area, and thus the minimum diameter. 

  

( )

( )
( )

( )
( )

21
max 1 2

min

2
6 2

shear strength 7.0
stress       

7.0 shear strength

4 7.0 28 3300 N
1.3 10 m 1.3cm

shear strength 170 10 N m

F F
A d

A

F
d

π

π π
−

= = → = = →

= = = × =
×

 

 
 
 

1F
G

2F
G

mgG20.0 m

25.0 m
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48. From the free-body diagram, write Newton’s second law for the vertical direction.  Solve 
for the maximum tension required in the cable, which will occur for an upwards 
acceleration. 

  ( )T     y TF F mg ma F m g a= − = → = +∑  
The maximum stress is to be 1/8th of the tensile strength for steel.  The maximum stress 
will occur for the minimum area, and thus the minimum diameter. 

  

( )

( ) ( )
( )

( ) ( )
( )

2T T1
max 1 2

min

2
2

6 2

tensile strength 8.0
stress       

8.0 tensile strength

32 3100 kg 11.0 m s4 8.0
2.6 10 m 2.6cm

tensile strength 500 10 N m

F F
A d

A

m g a
d

π

π π
−

= = → = = →

+
= = = × =

×

 

 
49. (a) The three forces on the truss as a whole are the tension force  

at point B, the load at point E, and the force at point A.  Since 
the truss is in equilibrium, these three forces must add to be 0 
and must cause no net torque.  Take torques about point A, 
calling clockwise torques positive.  Each member is 3.0 m in 
length. 

   ( ) ( )T 3.0 m sin 60 6.0 m 0  F Mgτ = ° − = →∑   

( )
( )

( ) ( )
( )

6.0 m 66.0 kN 6.0 m
152 kN 150 kN

3.0 m sin 60 3.0 m sin 60T

Mg
F = = = ≈

° °
 

The components of AF
G

 are found from the force equilibrium equations, and then the magnitude 
and direction can be found. 

   ( ) ( )

horiz T A horiz A horiz T

vert A vert A vert

2 22 2
A A horiz A vert

1 1A vert
A

A horiz

0    152 kN

0    66.0 kN

152 kN 66.0 kN 166 kN 170 kN

66.0 kN
tan tan 23.47 23  above AC

152 kN

F F F F F

F F Mg F Mg

F F F

F
F

θ − −

= − = → = =

= − = → = =

= + = + = ≈

= = = ° ≈ °

∑
∑

  

(b) Analyze the forces on the pin at point E.  See the second free-body diagram.   
Write equilibrium equations for the horizontal and vertical directions. 

   
vert DE

DE

sin 60 0  

66.0 kN
76.2 kN 76 kN, in tension

sin 60 sin 60

F F Mg

Mg
F

= ° − = →

= = = ≈
° °

∑
  

   
( )

horiz DE CE

CE DE

cos60 0  

cos60 76.2 kN cos60 38.1kN 38kN, in compression

F F F

F F

= ° − = →

= ° = ° = ≈

∑
 

 Analyze the forces on the pin at point D.  See the third free-body diagram.   
Write equilibrium equations for the horizontal and vertical directions. 

   
vert DC DE

DC DE

sin 60 sin 0 0  

76.2 kN 76 kN, in compression

F F F

F F

= ° − 6 ° = →

= = ≈

∑
   

mgG

TF
G

AF
GTF

G

E

B

C A

D

MgG

Aθ

DEF
G

E
MgG

CEF
G

60°

DEF
G

D

DBF
G

60°

DCF
G

60°
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   ( ) ( )
horiz DB DE DC

DB DE DC

cos60 cos60 0  

cos60 2 76.2 kN cos60 76.2 kN

     76 kN, in tension

F F F F

F F F

= − ° − ° = →

= + ° = ° =

≈

∑
 

Analyze the forces on the pin at point C.  See the fourth free-body  
diagram.  Write equilibrium equations for the horizontal and vertical 
directions. 

   
vert BC DC

BC DC

sin 60 sin 0 0  

76.2 kN 76kN, in tension

F F F

F F

= ° − 6 ° = →

= = ≈

∑
 

   ( ) ( )
horiz CE BC DC CA

CA CE BC DC

cos60 cos60 0  

cos60 38.1kN 2 76.2 kN cos60

     114.3kN 114 kN, in compression

F F F F F

F F F F

= + ° + ° − = →

= + + ° = + °

= ≈

∑
 

Analyze the forces on the pin at point B.  See the fifth free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

   
vert AB BC

AB BC

sin 60 sin 0 0  

76.2 kN 76kN, in compression

F F F

F F

= ° − 6 ° = →

= = ≈

∑
 

   horiz T BC AB DBcos60 cos60 0  F F F F F= − ° − ° − = →∑  

( ) ( )T BC AB DBcos60 2 76.2 kN cos60 76.2kN 152 kNF F F F= + ° + = ° + =  
This final result confirms the earlier calculation, so the results are consistent.  We could also 
analyze point A to check for consistency. 

 
50. There are upward forces at each support (points A and D) and a 

downward applied force at point C.  Write the conditions for equilibrium 
for the entire truss by considering vertical forces and the torques about 
point A.  Let clockwise torques be positive.  Let each side of the 
equilateral triangle be of length .l  

( ) ( )
vert A D

41 1 1
D D2 2 2

4
A D

0

0    1.35 10 N 6750 N

1.35 10 N 6750 N 6750 N

F F F F

F F F F

F F F

τ

= + − =

= − = → = = × =

= − = × − =

∑
∑ l l  

(a) Analyze the forces on the pin at point A.  See the second free-body  
diagram.  Write equilibrium equations for the horizontal and vertical 
directions. 

   

( )

vert A AB

A
AB

horiz AC AB

AC AB

sin 60 0  

6750 N
7794 N 7790 N, compression

sin 60 sin 60
cos60 0  

cos60 7794 N cos60 3897 N 3900 N, tension

F F F

F
F

F F F

F F

= − ° = →

= = = ≈
° °

= − ° = →

= ° = ° = ≈

∑

∑
 

By the symmetry of the structure, we also know that DB 7794 N 7790 N, compressionF = ≈ and  

DC 3897 N 3900 N, tensionF = ≈ .  Finally, from consideration of the vertical forces on pin C, we  

C
CEF
G60°

DCF
G

60°

BCF
G

CAF
G

ABF
G

B
TF
G

60°
60°

BCF
G

DBF
G

60°

l

2l

AF
G

DF
G

F
G

A

B

C D
60°

2l

l

AF
G

ABF
G

ACF
G

60°
A
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see that BC
41.35 10 N, tensionF = × . 

 (b) As listed above, we have struts AB and DB under compression, and struts AC, DC, and BC  
under compression . 

 
51. (a) We assume that all of the trusses are of the same cross-sectional area, and so to find the  

minimum area needed, we use the truss that has the highest force in it.  That is AB

1
.

3
F Mg=   

Apply the safety condition to find the area. 

   
( )

( ) ( )
( )

AB

5 2

AB
6 2

2 2

Ultimate strength
  

7.0
7.0 7.0 10 kg 9.80 m s7.0 7.0

Ultimate strength 3 Ultimate strength 3 500 10 N m

5.5 10 m   

F
A

F Mg
A

−

= →

×
= = =

×

= ×

 

(b) Recall that each truss must carry half the load, and so we need to add in an additional mass 
equal to 30 trucks.  As in Example 12-11, we will assume that the mass of the trucks acts 
entirely at the center, so the analysis of that example is still valid.  Let m represent the mass of a 
truck. 

( )
( )

( ) ( )
( )

5 4 2

6 2

2 2

7.0 7.0 10 kg+30 1.3 10 kg 9.80 m s7.0 30
3 Ultimate strength 3 500 10 N m

   8.6 10 m

M m g
A

−

× ×+
= =

×

= ×

⎡ ⎤⎣ ⎦
 

 
52.  See the free-body diagram from Figure 12-29, as modified to indicate  

the changes in the roadway mass distribution.  As in that example, if the 
roadway mass is 61.40 10 kg,×  then for one truss, we should use 

57.0 10 kg.M = ×  Write the conditions for equilibrium for the entire 
truss by considering vertical forces and the torques about point A.  Let 
clockwise torques be positive.   

  ( ) ( ) ( )
vert 1 2

1 1 1
2 22 4 2

1
1 22

0

32 m 64 m 64 m 0    

F F F Mg

Mg Mg F F Mg

F Mg F Mg

τ

= + − =

= + − = → =

−= =

∑
∑  

Note that the problem is still symmetric about a vertical line through pin C.  Also note that the forces 
at the ends each bear half of the weight of that side of the structure. 
 

Analyze the forces on the pin at point A.  See the second free-body diagram.   
Write equilibrium equations for the horizontal and vertical directions. 

  

1 1
vert AB2 4

1 1
4 4

AB 1
2

sin 60 0  

, in compression
sin 60 3 2 3

F Mg Mg F

Mg Mg Mg
F

= − − ° = →

= = =
°

∑
  

  horiz AC AB AC AB

1
cos60 0    cos60 , in tension

22 3 4 3
Mg Mg

F F F F F= − ° = → = ° = =∑  

2F
G

1F
G

A

B

C E

D

1
2 MgG

60°

1
4 MgG 1

4 MgG

60°

1
2 MgG

ABF
G

ACF
G

60°
A

1
4 MgG
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Analyze the forces on the pin at point B.  See the third free-body diagram.  Write 
equilibrium equations for the horizontal and vertical directions. 

  
vert AB BC

BC AB

sin 60 sin 0 0  

, in tension
2 3

F F F

Mg
F F

= ° − 6 ° = →

= =

∑
   

  
( )

horiz AB BC DB

DB AB BC

cos60 cos60 0  

cos60 2 cos60 , in compression
2 3 2 3

F F F F

Mg Mg
F F F

= ° + ° − = →

= + ° = ° =⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
 

By the symmetry of the geometry, we can determine the other forces.  

DE AB , in compression
2 3
Mg

F F= = , DC BC , in tension
2 3
Mg

F F= = , CE AC , in tension
4 3
Mg

F F= = . 

Note that each force is reduced by a factor of 2 from the original solution given in Example 12-11. 
 
53. See the free-body diagram from Figure 12-29.  M represents the mass of 

the train, and each member has a length of .l  Write the conditions for 
equilibrium for the entire truss by considering vertical forces and the 
torques about point A.  Let clockwise torques be positive.   

( ) ( )

1
vert 1 2 2

1 1 1
2 22 2 8

31
1 22 8

0

2 0    

F F F Mg

Mg F F Mg

F Mg F Mg

τ

= + − =

= − = → =

= − =

∑
∑ l l  

Analyze the forces on strut AC, using the free-body diagram given in 
Figure 12-29b.  Note that the forces at the pins are broken up into 
components.  See the second free-body diagram.  Write equilibrium 
equations for the horizontal and vertical directions, and for torques 
about point A. 

  
( ) ( )

1
vert A C 2

horiz A C C A

1 1 1
C C2 2 4

1 1
A C2 4

0

0    

    

y y

x x x x

y y

y y

F F F Mg

F F F F F

Mg F F Mg

F Mg F Mg

τ

= + − =

= − + = → =

= − = → =

= − =

∑
∑
∑ l l

  

 Since their x components are equal and their y components are equal, A C AC.F F F= =  
 

Analyze the forces on the pin at point A.  The components found above are forces 
of the pin on the strut, so we put in the opposite forces, which are the forces of the 
strut on the pin.  See the third free-body diagram.  Write equilibrium equations for 
the horizontal and vertical directions. 

( ) ( )
3

vert AC AB8

3 23 3 1
8 AC 8 4

AB 1
2

sin 60 0  

53 10 kg 9.80 m s

sin 60 3 4 3 4 3

y

y

F Mg F F

Mg F Mg Mg Mg
F

= − − ° = →

×− −
= = = =

°

∑
 

 4 4     7.497 10 N 7.5 10 N,  in compression= × ≈ ×  

B

DBF
G

60°
ABF
G

60°

BCF
G

2F
G1F

G

A

B

C E

D

60°

1
2 MgG

60°

AyF
G

A
1
2 MgG

C

C yF
G

AxF
G

CxF
G

3
8 MgG

ABF
G

ACxF
G

60°
A

ACyF
G
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horiz AC AB

4 41
AC AB2

cos60 0  

3.7485 10 N 3.7 10 N, in tension
8 3

x

x

F F F

Mg
F F

= − ° = →

= = = × ≈ ×

∑
 

The actual force ACF  has both a tension component ACxF  and a shearing component AC .yF  Since the 

problem asks for just the compressive or tension force, only ACxF is included in the answer. 
 

Analyze the forces on the pin at point B.  See the fourth free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

  
vert AB BC

4
BC AB

sin 60 sin 0 0  

7.5 10 N,  in tension
4 3

F F F

Mg
F F

= ° − 6 ° = →

= = = ×

∑
   

  
( )

horiz AB BC DB

4
DB AB BC

cos60 cos60 0  

cos60 2 cos60 7.5 10 N,  in compression
4 3 4 3

F F F F

Mg Mg
F F F

= ° + ° − = →

= + ° = ° = = ×⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
 

Analyze the forces on the pin at point C.  See the fifth free-body diagram.  Write 
equilibrium equations for the horizontal and vertical directions. 

  

vert BC DC AC

1 1
AC 4 4

DC BC 1 1
2 2

4

sin 60 sin 0 0  

sin 60 3 4 3 3 4 3

7.5 10 N, in tension
4 3

     

y

y

F F F F

F Mg Mg Mg Mg
F F

Mg

= ° + 6 ° − = →

= − = − = −
°

= ≈ ×

∑
 

  
( )

horiz CE DC BC AC

4
CE AC BC DC

cos60 cos60 0  

cos60 3.7 10 N, in tension
8 3

0

x

x

F F F F F

Mg
F F F F

= + ° − ° − = →

= + − ° = ≈ ×+

∑
 

Analyze the forces on the pin at point D.  See the sixth free-body diagram.  Write 
the equilibrium equation for the vertical direction. 

   
vert DE DC

4
DE DC

sin 60 sin 0 0  

7.5 10 N, in compression
4 3

F F F

Mg
F F

= ° − 6 ° = →

= = ≈ ×

∑
 

 This could be checked by considering the forces on pin E.   
 
54. See the free-body diagram from Figure 12-29.  We let m be the mass of 

the truck, x be the distance of the truck from the left end of the bridge, 
and 2l be the length of the bridge.  Write the conditions for equilibrium 
for the entire truss by considering vertical forces and the torques about 
point A.  Let clockwise torques be positive.  And we use half of the 
mass of the truck, because there are 2 trusses. 

  ( )
( ) ( ) ( )

( )

1
vert 1 2 2

1
22

2

2

0

2 0  

23000 kg 9.80 m s 22 m
38740 N

4 4 32 m

F F F mg

mgx F

mgx
F

τ

= + − =

= − = →

= = =

∑
∑ l

l

 

B

DBF
G

60°
ABF
G

60°

BCF
G

CEF
G

60°
DCF
G

60°
BCF
G

ACxF
G

ACyF
G

C

D

DBF
G

60°

DCF
G

60°

DEF
G

2F
G1F

G

A

B

C E

D

60°

1
2 mgG

60°

x

2l
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  ( ) ( )21 1
1 22 2 23000 kg 9.80m s 38740 73960 NF mg F= − = − =  

Analyze the forces on strut AC, using the free-body diagram given in 
Figure 12-29b.  Note that the forces at the pins are broken up into 
components.  See the second free-body diagram.  Write equilibrium 
equations for the horizontal and vertical directions, and for torques 
about point A. 

  

( )

1
vert A C 2

horiz A C C A

1
C2

0

0    

  

y y

x x x x

y

F F F mg

F F F F F

mgx Fτ

= + − =

= − + = → =

= − = →

∑
∑
∑ l

 

( ) ( )

( ) ( )

21 1
C 2 2

21 1
A C2 2

22 m
23000 kg 9.80 m s 77480 N 77,000 N

32 m

23000 kg 9.80 m s 77480 N 35220 N 35,000 N

y

y y

x
F mg

F mg F

= = = ≈

= − = − = ≈

l   

Since their x components are equal, AC CAF F=  for tension or compression along the beams. 
 

Analyze the forces on the pin at point A.  The components found above are forces 
of the pin on the strut, so we put in the opposite forces, which are the forces of the 
strut on the pin.  See the third free-body diagram.  Write equilibrium equations for 
the horizontal and vertical directions. 

vert A AB1 sin 60 0  yF F F F= − − ° = →∑  

  

( )

1 A 4
AB

horiz AC AB

4
AC AB

73960 N 35220 N
44730 N 4.5 10 N,  in compression

sin 60 sin 60
cos60 0  

cos60 44730 N cos60 22365N 2.2 10 N, in tension

y

x

x

F F
F

F F F

F F

− −
= = = ≈ ×

° °
= − ° = →

= ° = ° = ≈ ×

∑  

Analyze the forces on the pin at point B.  See the fourth free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

  
vert AB BC

4
BC AB

sin 60 sin 0 0  

4.5 10 N,  in tension

F F F

F F

= ° − 6 ° = →

= = ×

∑
   

  
( )

horiz AB BC DB

4
DB AB BC AB

cos60 cos60 0  

cos60 4.5 10 N,  in compression

F F F F

F F F F

= ° + ° − = →

= + ° = = ×

∑
 

Analyze the forces on the pin at point C.  See the fifth free-body diagram.  Write 
equilibrium equations for the horizontal and vertical directions. 

  vert BC DC Csin 60 sin 0 0  yF F F F= ° + 6 ° − = →∑  

C 4
DC BC

77480 N
44730N 44740 N 4.5 10 N, in tension

sin 60 sin 60
yF

F F= − = − = ≈ ×
° °

 

  
( )

horiz CE DC BC AC

4
CE AC BC DC AC

cos60 cos60 0  

cos60 2.2 10 N, in tension

x

x x

F F F F F

F F F F F

= + ° − ° − = →

= + − ° = ≈ ×

∑
 

 
 

AyF
G

A
1
2 mgG

C

C yF
G

AxF
G

CxF
G

x

ABF
G

ACxF
G

60°
A

AyF
G

1F
G

B

DBF
G

60°
ABF
G

60°

BCF
G

CEF
G

60°
DCF
G

60°
BCF
G

ACxF
G

C yF
G

C
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Analyze the forces on the pin at point D.  See the sixth free-body diagram.  Write 
the equilibrium equation for the vertical direction. 

   
vert DE DC

4
DE DC

sin 60 sin 0 0  

4.5 10 N, in compression

F F F

F F

= ° − 6 ° = →

= ≈ ×

∑
 

 This could be checked by considering the forces on pin E.   
 
55. We first show a free-body diagram for the entire 

structure.  All acute angles in the structure are 45 .°  
Write the conditions for equilibrium for the entire truss 
by considering vertical forces and the torques about 
point A.  Let clockwise torques be positive.   

  vert 1 2 5 0F F F F= + − =∑  

( ) ( ) ( ) ( )2

2 1 2

2 3 4 4 0

10
2.5   ;  5 2.5

4

Fa F a F a F a F a

a
F F F F F F F

a

τ = + + + − =

= = = − =

∑
 

Note that the forces at the ends each support half of the load.  Analyze the forces 
on the pin at point A.  See the second free-body diagram.  Write equilibrium 
equations for the horizontal and vertical directions. 

  
vert 1 AB

3
21

AB 1
2

sin 45 0  

3
, in compression

sin 45 2 2

F F F F

F F F F
F

= − − ° = →

−
= = =

°

∑
  

  3
horiz AC AB AC AB 2

3 2
cos 45 0    cos45 , in tension

22
F

F F F F F F= − ° = → = ° = =∑  

Analyze the forces on the pin at point C.  See the third free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

  
vert BC BC

3
horiz CE AC CE AC 2

0    , tension

0    , in tension

F F F F F

F F F F F F

= − = → =

= − = → = =

∑
∑

 

Analyze the forces on the pin at point B.  See the fourth free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

  
vert AB BE BC

BC
BE AB 1

2

sin 45 sin 45 0  

3
,  tension

sin 45 2 2 2

F F F F

F F FFF F

= ° − ° − = →

= − = − =
°

∑
   

  
( )

horiz AB BE DB

DB AB BE

cos45 cos 45 0  

3 2
cos45 2 , in compression

22 2

F F F F

F F
F F F F

= ° + ° − = →

= + ° = + =⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
 

 
Analyze the forces on the pin at point D.  See the fifth free-body diagram.  Write 
equilibrium equations for the vertical direction. 

  vert DE DE    0F F F= − → =∑  
 All of the other forces can be found from the equilibrium of the structure. 

2F
G

1F
G

A

B

C E

D G

JH
F
G

F
G

F
G

F
G

F
G

ABF
G

ACF
G

45°
A

F
G

1F
G

BCF
G

CEF
G

CACF
G

F
G

B

DBF
G

45°

ABF
G

45°

BCF
G

BEF
G

D

DBF
G

DEF
GDGF

G

D

DBF
G

60°

DCF
G

60°

DEF
G
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  DG DB 2 , in compressionF F F= =  , GE BE ,  tension
2

F
F F ==  ,  

3
EH CE 2 , in tensionF F F= =  , GH BC , tensionF F F= =  , 3

HJ AC 2 , in tensionF F F= = ,  

  GJ AB

3
, in compression

2
F

F F= =  

 
56. Draw free-body diagrams similar to Figures 12-36(a) and 12-36(b) for the  

forces on the right half of a round arch and a pointed arch.  The load force  
is placed at the same horizontal position on each arch.  For each half-arch,  
take torques about the lower right hand corner, with counterclockwise as 
positive. 
 

 For the round arch:   

  ( )Load H H Load
round round

0    
R x

F R x F R F F
R

τ −
= − − = → =∑  

 For the pointed arch: 

  ( )Load H H Load
pointed pointed

0    
R x

F R x F y F F
y

τ −
= − − = → =∑  

 Solve for y , given that 1
H H3
pointed round

F F= . 

  
( )

1 1
H H Load Load3 3
pointed round

1
2

      

3 3 8.0 m 12 m

R x R x
F F F F

y R

y R

− −
= → = →

= = =
 

 
57. Each crossbar in the mobile is in equilibrium, and so the net torque about the suspension point for 

each crossbar must be 0.  Counterclockwise torques will be taken as positive.  The suspension point 
is used so that the tension in the suspension string need not be known initially.  The net vertical force 
must also be 0. 

 The bottom bar: 

  

( )

D D C C

D
C D D D

C

CD C D CD C D D

0  

17.50cm
3.50

5.00cm

0    4.50y

m gx m gx

x
m m m m

x

F F m g m g F m m g m g

τ = − = →

= = =

= − − = → = + =

∑

∑

 

 

The middle bar: 

  
( ) ( )

( ) ( )

B B
CD CD B B CD B D B

CD CD

2BB
D

CD

0    4.50

0.748kg 5.00cm
0.05541 5.54 10 kg

4.50 4.50 15.00cm

x x
F x m gx F m g m g m g

x x

xmm
x

τ

−

= − = → = → =

= = = ≈ ×

∑
 

  
( ) ( )

( )
C D

BCD CD B BCD CD B D B

3.50 3.50 0.05541kg 0.194 kg

0    4.50y

m m

F F F c m g F F m g m m g

= = =

= − − = → = + = +∑
 

 
 

H
round

F
G

H
round

F
G

VF
G

LoadF
G

R

R

x

H
pointed

F
G

H
pointed

F
G

VF
G

LoadF
G

R

y

x

Cm gG
Dm gG

CxDx

CDF
G

Bm gG
BxCDx

BCDF
G

CDF
G
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 The top bar: 

  ( ) ( )

A A BCD BCD

D B BCD BCD
A D B

A A

0 

4.50
4.50

m gx F x

m m gx x
m m m

gx x

τ = − = →

+
= = +

∑
 

  ( ) ( )[ ] 7.50cm
     4.50 0.05541 kg 0.748kg 0.249 kg

30.00cm
= + =  

 
58. From the free-body diagram (not to scale), write the 

force equilibrium condition for the vertical direction. 
  T2 sin 0yF F mgθ= − =∑  

( ) ( )260.0kg 9.80m s

2sin 2 tan 2.1m
2

18m

2500 N   

T
mg mg

F
θ θ

=

=

≈ =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Note that the angle is small enough (about 7o) that we have made the substitution of sin tanθ θ≈ .   
 

It is not possible to increase the tension so that there is no sag.   There must always be a vertical 

component of the tension to balance the gravity force.  The larger the tension gets, the smaller the 
sag angle will be, however. 

 
59. (a) If the wheel is just lifted off the lowest level, then the only  

forces on the wheel are the horizontal pull, its weight, and the 
contact force NF

G
at the corner.  Take torques about the corner 

point, for the wheel just barely off the ground, being held in 
equilibrium.  The contact force at the corner exerts no torque 
and so does not enter the calculation.  The pulling force has a 
lever arm of 2 ,R R h R h+ − = −  and gravity has a lever arm of 
x , found from the triangle shown. 

 ( ) ( )22 2x R R h h R h= − − = −  

   

( )
( )

2 0  

2

2 2 2

Mgx F R h

h R hMgx h
F Mg Mg

R h R h R h

τ = − − = →

−
= = =

− − −

∑
 

. (b) The only difference is that now the pulling force has a lever arm  
of .R h−  

   

( )

( )

0  

2

Mgx F R h

h R hMgx
F Mg

R h R h

τ = − − = →

−
= =

− −

∑
 

 
 
 
 

Am gG
BCDxAx

ABCDF
G

BCDF
G

2.1 m 

18 m 

θ θ 

mgG
TF
G

TF
G

R h−

x

R

MgG
F
G

R h−

x

MgG

F
G

2R h−

x

NF
G
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60. The mass is to be placed symmetrically between two legs of the table.   
When enough mass is added, the table will rise up off of the third leg, 
and then the normal force on the table will all be on just two legs.  
Since the table legs are equally spaced, the angle marked in the 
diagram is 30o.  Take torques about a line connecting the two legs 
that remain on the floor, so that the normal forces cause no torque.  It 
is seen from the second diagram (a portion of the first diagram but 
enlarged) that the two forces are equidistant from the line joining the 
two legs on the floor.  Since the lever arms are equal, then the torques 
will be equal if the forces are equal.  Thus, to be in equilibrium, the two 
forces must be the same.  If the force on the edge of the table is any 
bigger than the weight of the table, it will tip.  Thus 28kgM >  will 

cause the table to tip. 
 
 
61. (a) The weight of the shelf exerts a downward force and a  

clockwise torque about the point where the shelf 
touches the wall.  Thus there must be an upward force 
and a counterclockwise torque exerted by the slot for 
the shelf to be in equilibrium.  Since any force exerted 
by the slot will have a short lever arm relative to the 
point where the shelf touches the wall, the upward force 
must be larger than the gravity force.  Accordingly, there then must be a downward force 
exerted by the slot at its left edge, exerting no torque, but balancing the vertical forces. 

 (b) Calculate the values of the three forces by first taking torques about the left end of the shelf,  
with the net torque being zero, and then sum the vertical forces, with the sum being zero. 

   

( ) ( )

( ) ( )

( ) ( )
( ) ( )

2 2
Right

2
2

Right 2

Right Left

2
Left Right

2

2.0 10 m 17.0 10 m 0  

17.0 10 m
6.6 kg 9.80 m s 549.8 N 550 N

2.0 10 m

  

549.8 N 6.6 kg 9.80 m s 490 N

6.6 kg 9.80 m s 65 N

y

F mg

F

F F F mg

F F mg

mg

τ − −

−

−

= × − × = →

×
= = ≈

×

= − − →

= − = − =

= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑  

 (c) The torque exerted by the support about the left end of the rod is    
   ( ) ( ) ( )2 2

Right 2.0 10 m 549.8 N 2.0 10 m 11m NFτ − −= × = × = i  

 
62. Assume that the building has just begun to tip, so that it is 

essentially vertical, but that all of the force on the building due to 
contact with the Earth is at the lower left corner, as shown in the 
figure.  Take torques about that corner, with counterclockwise 
torques as positive. 
 

 

Ro30

mgG

2R 2R

M gG

( )downmgG

( )down
MgG

o30

mgG

32.0cmLeftF
G

RightF
G

2.0cm

mgG
AF
G

90.0 m

23.0 m

E xF
G

E yF
G
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mgG

T2 xF

h
1d

T2 yF

mgG

o60

T1F
G

T2F
G

o19

h

1d

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
A

2 7 2

9

90.0 m 23.0 m

      950 N m 180.0 m 76.0 m 90.0 m 1.8 10 kg 9.80 m s 23.0 m

      2.9 10 m N

F mgτ = −

= − ×

= − ×

⎡ ⎤⎣ ⎦

∑

i

 

 Since this is a negative torque, the building will tend to rotate clockwise, which means it will rotate 
back down to the ground.  Thus the building will not topple .  

 
63. The truck will not tip as long as a vertical line down from the CG is between 

the wheels.  When that vertical line is at the wheel, it is in unstable equilibrium 
and will tip if the road is inclined any more.  See the diagram for the truck at 
the tipping angle, showing the truck’s weight vector. 

  1 1 o1.2 m
tan     tan tan 29

2.2 m
x x
h h

θ θ − −= → = = =  

 
64. Draw a force diagram for the cable that is supporting the right-hand section.  The forces will be the 

tension at the left end, T2 ,F
G

 the tension at the right end, T1,F
G

 and the weight of the section, .mgG   The 
weight acts at the midpoint of the horizontal span of 
the cable.  The system is in equilibrium.  Write 
Newton’s second law in both the x and y directions to 
find the tensions.  

 

o o
T1 T2

o

T2 T1 o

o o
T2 T1

cos19 sin 60 0  

cos19
sin 60

cos 60 sin19 0  

x

y

F F F

F F

F F F mg

= − = →

=

= − − = →

∑

∑
o

o
o T1 o

T2
T1 o o

cos19
cos 60cos 60 sin 60  

sin19 sin19

F mgF mg
F

−−
= = →

( )
o

T1 o o o o

o o

T2 T1 o o

sin 60
4.539 4.5

cos19 cos 60 sin19 sin 60

cos19 cos19
4.539 4.956 5.0

sin 60 sin 60

F mg mg mg

F F mg mg mg

= = ≈
−

= = = ≈

 

 

 To find the height of the tower, take torques about the point  
where the roadway meets the ground, at the right side of the  
roadway.  Note that then T1F

G
 will exert no torque.  Take  

counterclockwise torques as positive.  For purposes of  
calculating the torque due to T2 ,F

G
 split it into x and y components.  

( )
( ) ( ) ( ) ( )

1
1 T2 T2 12

o o11
T2 2T2 2

1 1o o
T2 T2

0  

cos 60 4.956 cos 60 0.50
343 m

sin 60 4.956 sin 60

  158 m

x y

y

x

mg d F h F d

F mg mg mgF mg
h d d

F F mg

τ = + − = →

− −−
= = =

=

∑

 

 

θ 
θ 

h x 
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65. We consider the right half of the bridge in the diagram in the book.  We divide it into two segments 
of length 1d  and 1

22 d , and let the mass of those two segments be M.  Since the roadway is uniform, 
the mass of each segment will be in proportion to the length of the 
section, as follows. 

1
22 2 2 2

1 1 1 1

    2
m d d m
m d d m

= → =  

The net horizontal force on the right tower is to be 0.  From the force 
diagram for the tower, we write this. 
 T3 3 T2 2sin sinF Fθ θ=  
From the force diagram for each segment of the cable, write Newton’s second law for both the 
vertical and horizontal directions. 

Right segment: 

T1 1 T2 2

T1 1 T2 2

T2 2 T1 1 1

1 T2 2 T1 1

cos sin 0  

         cos sin

cos sin 0  

        cos sin

x

y

F F F

F F

F F F m g

m g F F

θ θ

θ θ

θ θ

θ θ

= − = →

=

= − − = →

= −

∑

∑
 

 

Left segment: 

T3 3 T4 T3 3 T4

T3 3 2

2 T3 3

sin 0    sin

cos 0  

        cos

x

y

F F F F F

F F m g

m g F

θ θ

θ

θ

= − = → =

= − = →

=

∑
∑  

 
We manipulate the relationships to solve for the ratio of the 
masses, which will give the ratio of the lengths. 

2
T1 1 T2 2 T1 T2

1

2 2
1 T2 2 T1 1 T2 2 T2 1 T2 2 1

1 1

sin
cos sin     

cos

sin sin
cos sin cos sin cos sin

cos cos

F F F F

m g F F F F F

θθ θ
θ

θ θθ θ θ θ θ θ
θ θ

= → =

= − = − = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

2 2
T3 3 T2 2 T3 T2 2 T3 3 T2 3

3 3

sin sin
sin sin     cos cos

sin sin
    F F F F m g F F

θ θθ θ θ θ
θ θ

= → = = =→  

( )

( )

2
T2 3

2 2 2 2 3 13

1 1 1 2 1 2 1 32
T2 2 1

1

2 1

1 2 3

sin
2 cos

2sin cos cossin
2 2

cos cos sin sin sinsin
cos sin

cos

2sin cos 2sin 60 cos19
3.821 3.8

cos tan cos79 tan 66
    

F
d m m g
d m m g

F

θ θ
θ θ θθ

θ θ θ θ θθθ θ
θ

θ θ
θ θ θ

= = = =
−

−

° °
= = = ≈

+ ° °

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
66. The radius of the wire can be determined from the  

relationship between stress and strain, expressed by Eq. 12-5. 

  20 0

0

1
       

F F F
E A r r

A E E
π

π
Δ

= → = = → =
Δ Δ

l l l

l l l
 

 

θ θ 

mgG
TF
G

TF
G

T3F
G

T2F
G

2θ3θ

NF
G

1m gG

2θ

T1F
G

T2F
G

1θ

1right segment, d

2left segment, 2d
3θ

2m gG

T4F
G

T3F
G
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Use the free-body diagram for the point of connection of the mass to the wire to determine the 
tension force in the wire. 

  
( ) ( )2

T T o

25 kg 9.80m s
2 sin 0    589.2 N

2sin 2sin12y

mg
F F mg Fθ

θ
= − = → = = =∑  

The fractional change in the length of the wire can be found from the geometry 
of the problem. 

  20
o

0 0

2 1 1
cos     1 1 2.234 10

cos cos12
2

θ
θ

−Δ
= → = − = − = ×

+ Δ
l l

l l l
 

 Thus the radius is  

  ( )
4T 0

9 2 2

1 1 589.2 N 1
3.5 10 m

70 10 N m 2.234 10
F

r
Eπ π

−
−

= = = ×
Δ × ×
l

l
 

 
67. The airplane is in equilibrium, and so the net force in 

each direction and the net torque are all equal to zero.  
First write Newton’s second law for both the horizontal 
and vertical directions, to find the values of the forces. 

( ) ( )

5

4 2 5

0    5.0 10 N

0

7.7 10 kg 9.80 m s 7.546 10 N

x D T D T

y L

L

F F F F F

F F mg

F mg

= − = → = = ×

= − =

= = × = ×

∑
∑

Calculate the torques about the CM, calling counterclockwise torques positive. 

 ( ) ( ) ( ) ( )
( )

1 2

5 5

2
1 5

0

7.546 10 N 3.2 m 5.0 10 N 1.6 m
3.2 m

5.0 10 N

L D T

L T

D

F d F h F h

F d F h
h

F

τ = − − =

× − ×−
= = =

×

∑
 

 
68. Draw a free-body diagram for half of the cable. Write Newton’s 

second law for both the vertical and horizontal directions, with the 
net force equal to 0 in each direction. 

1 1
T1 T12 2sin 56 0    0.603

sin 56y

mg
F F mg F mg= ° − = → = =

°∑

( )
T2 T1

T2

cos56 0  

0.603 cos56 0.337
xF F F

F mg mg

= − ° = →

= ° =
∑  

So the results are: 
 (a) T2 0.34F mg=   

 (b) T1 0.60F mg=  

 (c) The direction of the tension force is tangent to the cable at all points on the cable.  Thus the  
direction of the tension force is horizontal at the lowest point ,  and is  

56 above the horizontal at the attachment point .°  

 
 
 

l0/2
θ 

0

2
+ Δl l

h1 

h2 

d 

mgG
TF
G

LF
G

DF
G

1
2 mgG

56°

T2F
G

T1F
G
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69. (a) For the extreme case of the beam being ready to tip,  
there would be no normal force at point A from the 
support.  Use the free-body diagram to write the 
equation of rotational equilibrium under that 
condition to find the weight of the person, with 

0.AF =   Take torques about the location of support 

B, and call counterclockwise torques positive.  W
G

 is the weight of the person. 

   
( ) ( )5.0 m 5.0 m 0  

650 N

B

B

m g W

W m g

τ = − = →

= =

∑
 

 (b) With the person standing at point D, we have already assumed that 0 .AF =     The net force in  

the vertical direction must also be zero. 
 0    650 N 650 N 1300 Ny A B B B BF F F m g W F m g W= + − − = → = + = + =∑  

 (c) Now the person moves to a different spot, so the  
free-body diagram changes as shown.  Again use the 
net torque about support B and then use the net 
vertical force. 

( ) ( ) ( )
( ) ( ) ( ) ( )

5.0 m 2.0 m 12.0 m 0

5.0 m 2.0 m 650 N 3.0m
12.0 m 12.0 m

    162.5N 160 N

B A

B
A

m g W F

m g W
F

τ = − − =

−
= =

= ≈

∑

 0    1300 N 160 N 1140 Ny A B B B B AF F F m g W F m g W F= + − − = → = + − = − =∑  
 (d) Again the person moves to a different spot, so the  

free-body diagram changes again as shown.  Again  
use the net torque about support B and then use the 
 net vertical force. 

   ( ) ( ) ( )5.0 m 10.0 m 12.0 m 0B Am g W Fτ = + − =∑   

( ) ( ) ( ) ( ) ( ) ( )5.0 m 10.0 m 650 N 5.0 m 650 N 10.0 m
810 N

12.0 m 12.0 m
0    1300 N 810 N 490 N

B
A

y A B B B B A

m g W
F

F F F m g W F m g W F

+ +
= = =

= + − − = → = + − = − =∑
 

 
70. If the block is on the verge of tipping, the normal force will be acting at the  

lower right corner of the block, as shown in the free-body diagram.  The 
block will begin to rotate when the torque caused by the pulling force is 
larger than the torque caused by gravity.  For the block to be able to slide, 
the pulling force must be as large as the maximum static frictional force.  
Write the equations of equilibrium for forces in the x and y directions and 
for torque with the conditions as stated above. 

  
N N

fr fr s N s

s

0    

0    

0    
2 2

y

x

F F mg F mg

F F F F F F mg

mg
mg Fh Fh mgh

μ μ

τ μ

= − = → =

= − = → = = =

= − = → = =

∑
∑

∑ l l

 

3.0 m 7.0 m 5.0 m 5.0 m 

AF
G

BF
G

W
G

Bm gG

C A B D

3.0 m 7.0 m 5.0 m 

2.0 m

AF
G

BF
G

W
G

Bm gG

C A B D

3.0 m 5.0 m 5.0 m 

2.0 m

AF
G BF

G

W
G

Bm gG

C A B D

h 

L /2 

mgG
frF
G

NF
G

F
G
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Solve for the coefficient of friction in this limiting case, to find s 2
.

h
μ =

l
 

(a) If s 2 ,hμ < l  then sliding will happen before tipping. 

(b) If s 2 ,hμ > l  then tipping will happen before sliding. 

 
71. The limiting condition for the safety of the painter is the  

tension in the ropes.  The ropes can only exert an upward 
tension on the scaffold.  The tension will be least in the 
rope that is farther from the painter.  The mass of the pail is 

p ,m the mass of the scaffold is ,m  and the mass of the 
painter is .M  
  

Find the distance to the right that the painter can walk before the tension in the left rope becomes 
zero.  Take torques about the point where the right-side rope is attached to the scaffold, so that its 
value need not be known.  Take counterclockwise torques as positive. 
 ( ) ( )p2.0 m 3.0 m 0  mg m g Mgxτ = + − = →∑

 
( ) ( ) ( ) ( ) ( ) ( )p2.0 m 3.0 m 25kg 2.0 m 4.0 kg 3.0 m

0.9538m 0.95m
65.0 kg

m m
x

M
+ +

= = = ≈  

 The painter can walk to within 5 cm of the right edge of the scaffold. 
 

Now find the distance to the left that the painter can walk 
before the tension in the right rope becomes zero.  Take 
torques about the point where the left-side tension is 
attached to the scaffold, so that its value need not be 
known.  Take counterclockwise torques as positive. 

  ( ) ( )p 1.0 m 2.0 m 0  Mgx m g mgτ = − − = →∑  

  
( ) ( ) ( ) ( ) ( ) ( )p2.0 m 1.0 m 25kg 2.0m 4.0kg 1.0m

0.8308m 0.83m
65.0 kg

m m
x

M
+ +

= = = ≈  

The painter can walk to within 17 cm of the left edge of the scaffold.  We found that both ends are 
dangerous.   

 
72. (a) The man is in equilibrium, so the net force and the net torque on him must  

be zero.  We use half of his weight, and then consider the force just on 
one hand and one foot, considering him to be symmetric.  Take torques 
about the point where the foot touches the ground, with counterclockwise 
as positive. 

   

( )

( )
( ) ( ) ( )

( )

1
2 h 1 22

2

2
h

1 2

0

68kg 9.80 m s 0.95m
231N 230 N

2 2 1.37 m

mgd F d d

mgd
F

d d

τ = + =

= = = ≈
+

−∑
 

 (b) Use Newton’s second law for vertical forces to find the force on the feet. 

   
( ) ( )

h f

21 1
f h2 2

2 2 0

68kg 9.80 m s 231N 103N 100 N

yF F F mg

F mg F

= + − =

= − = − = ≈

∑
  

  The value of 100 N has 2 significant figures. 
 

1.0 m 2.0 m 

left 0=F
G

rightF
G

mgG
1.0 m

pm gG
1.0 m 

1.0 m

M gG
x

1.0 m

2.0 m 

leftF
G

right 0=F
G

mgG
1.0 m

pm gG
1.0 m 1.0 m

M gG
x

d1 d2 

1
2 mgG

hF
G

fF
G
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73. The force on the sphere from each plane is a normal force, and so is perpendicular 
to the plane at the point of contact.  Use Newton’s second law in both the  
horizontal and vertical directions to determine the magnitudes of the forces. 

L
L L R R R L L

R

sin sin 67
sin sin 0    

sin sin 32xF F F F F F
θθ θ
θ

°
= − = → = =

°∑  

L L R R L

sin 67
cos cos 0  cos67 cos32

sin 32yF F F mg F mgθ θ °
= + − = → ° + ° =

°
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

( ) ( )

( )

2

L

R L

23kg 9.80 m s
120.9 N 120 N

sin 67 sin 67
cos67 cos32 cos67 cos32

sin 32 sin 32
sin 67 sin 67

 120.9 N 210.0 N 210 N
sin 32 sin 32

mg
F

F F

= = = ≈
° °

° + ° ° + °
° °

° °
= = = ≈

° °

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

 
74. See the free-body diagram.  The ball is at rest, and so is in equilibrium.  Write 

Newton’s second law for the horizontal and vertical directions, and solve for the 
forces. 

  

A
horiz B B A A B A

B

vert A A B B A A B B

A A
A A A B A A B

B B

sin
sin sin 0    

sin

cos cos 0    cos cos   

sin sin
cos cos     cos cos   

sin sin

F F F F F

F F F mg F F mg

F F mg F mg

θθ θ
θ

θ θ θ θ

θ θθ θ θ θ
θ θ

= − = → =

= − − = → = + →

= + → − = →
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑  

( ) ( ) ( ) ( )

( )

2B B
A

A B A B B A

A
B A

B

sin sin sin 53
15.0kg 9.80m s

cos sin sin cos sin sin 31

    228N 230N
sin sin 22

228 N 107 N 110 N
sin sin53

F mg mg

F F

θ θ
θ θ θ θ θ θ

θ
θ

°
= = =

− − °

= ≈

°
= = = ≈

°

 

 
75. Assume a constant acceleration as the person is brought to rest, with up as the positive 

direction.  Use Eq. 2-12c to find the acceleration.  From the acceleration, find the average 
force of the snow on the person, and compare the force per area to the strength of body 
tissue. 

  
( ) ( )

( )
( )

( ) ( )

22 2
2 2 20

0 0
0

2
5 2 5 2

2

0 55m s
2     1513m s

2 2 1.0 m

75kg 1513m s
3.78 10 N m  Tissue strength 5 10 N m

0.30m

v v
v v a x x a

x x

F ma
A A

−−
= − − → = = =

− −

= = = × < = ×

 

 Since the average force on the person is less than the strength of body tissue, the person may escape 
serious injury.  Certain parts of the body, such as the legs if landing feet first, may get more than the 
average force, though, and so still sustain injury. 

 
 
 
 

mgG

LF
G Lθ Rθ

RF
G

mgG

snowF
G

Aθ

Bθ

AF
G

BF
G

mgG
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76. The mass can be calculated from the equation for the relationship between stress and strain.  The  
force causing the strain is the weight of the mass suspended from the wire.  Use Eq. 12-4. 

  ( ) ( )
( )

23
9 2

2
0 0

1.15 10 m1 0.030
    200 10 N m 25kg

9.80 m s 100
F mg EA

m
E A EA g

π −×Δ Δ
= = → = = × =
l l

l l
 

 
77. To find the normal force exerted on the road by the trailer tires, take the 

torques about point B, with counterclockwise torques as positive. 
  ( ) ( )A5.5 m 8.0 m 0  mg Fτ = − = →∑  

( ) ( )2
A

4

5.5m 5.5m
2500 kg 9.80m s 16,844 N

8.0 m 8.0 m

    1.7 10 N

F mg= = =

≈ ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

 The net force in the vertical direction must be zero. 

  
( ) ( )

B A

2 3
B A

0  

2500 kg 9.80 m s 16,844 N 7656 N 7.7 10 N

yF F F mg

F mg F

= + − = →

= − = − = ≈ ×

∑
 

 
78. The number of supports can be found from the compressive strength of the wood.  Since the wood 

will be oriented longitudinally, the stress will be parallel to the grain. 

( ) ( )

( ) ( )

Compressive Strength Load force on supports Weight of roof
Safety Factor Area of supports # supports area per support

Weight of roof Safety Factor
# supports

area per support Compressive Strength

             

= =

=

( )( )
( ) ( ) ( )

4 2

6 2

1.36 10 kg 9.80m s 12
      12.69 supports

0.040 m 0.090m 35 10 N m

×
= =

×

 

 Since there are to be more than 12 supports, and to have the same number of supports on each side, 
there will be 14 supports, or 7 supports on each side .  That means there will be 6 support-to-support 

spans, each of which would be given by 
10.0 m

Spacing 1.66m gap
6 gaps

= = . 

 
79. The tension in the string when it breaks is found from the ultimate strength of nylon under tension, 

from Table 12-2. 

  ( )

( ) ( )

T

T

23 6 21
2

Tensile Strength  

Tensile Strength

   1.15 10 m 500 10 N m 519.3N

F
A

F A

π −

= →

=

= × × =⎡ ⎤⎣ ⎦

 

From the force diagram for the box, we calculate the angle of the rope relative to the horizontal from 
Newton’s second law in the vertical direction.  Note that since the tension is the same throughout the 
string, the angles must be the same so that the object does not accelerate horizontally. 

mgG

AF
G

BF
G

2.5 m 5.5 m

mgG
TF
G

TF
G θ θ
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( ) ( )
( )

T

2
1 1

T

2 sin 0  

25kg 9.80m s
sin sin 13.64

2 2 519.3N

yF F mg

mg
F

θ

θ − −

= − = →

= = = °

∑
 

 To find the height above the ground, consider the second 
diagram. 

  ( ) ( )3.00 m
tan     3.00 m 2.00 m tan 3.00 m 2.00 m tan13.64 2.5m

2.00 m
h

hθ θ−
= → = − = − ° =  

 
80.  See the free-body diagram.  Assume that the ladder is just ready to slip, so  

the force of static friction is fr N.F Fμ=   The ladder is of length l, and so 
1

1 2 sin ,d θ= l  3
2 4 sin ,d θ= l  and 3 cos .d θ= l   The ladder is in 

equilibrium, so the net vertical and horizontal forces are 0, and the net 
torque is 0.  We express those three equilibrium conditions, along with the 
friction condition.  Take torques about the point where the ladder rests on 
the ground, calling clockwise torques positive.   

  

( )vert G G

horiz G W G W

1 2
1 2 W 3 W

3

fr N G G

0    

0    

0    

    

y y

x x

x y

F F mg Mg F m M g

F F F F F

mgd Mgd
mgd Mgd F d F

d

F F F F

τ

μ μ

= − − = → = +

= − = → =

+
= + − = → =

= → =

∑
∑

∑
 

 These four equations may be solved for the coefficient of friction. 

  ( ) ( ) ( )
( ) ( )

( ) ( )
( )

( )
( ) ( )[ ]

( )

1 2
31

2 4G W 1 23

G 3

3131
2 42 4

sin sin
cos

16.0 kg 76.0 kg tan 20.0tan
  0.257

92.0 kg

x

y

mgd Mgd
m MF F md Mdd

F m M g m M g d m M m M

m M
m M

θ θ
μ

θ

θ

+
++

= = = = =
+ + + +

+ °+
= = =

+

l l

l  

 
81. The maximum compressive force in a column will occur at the bottom.  The bottom layer supports 

the entire weight of the column, and so the compressive force on that layer is mg .  For the column to 
be on the verge of buckling, the weight divided by the area of the column will be the compressive 
strength of the material.  The mass of the column is its volume (area x height) times its density. 

Compressive Strength
Compressive Strength     

mg hA g
h

A A g
ρ

ρ
= = → =  

Note that the area of the column cancels out of the expression, and so the height does not depend on 
the cross-sectional area of the column. 

 (a) ( ) ( )
6 2

steel 3 3 2

Compressive Strength 500 10 N m
6500 m

7.8 10 kg m 9.80 m s
h

gρ
×

= = =
×

 

 (b) ( ) ( )
6 2

granite 3 3 2

Compressive Strength 170 10 N m
6400 m

2.7 10 kg m 9.80 m s
h

gρ
×

= = =
×

 

 

θ θ3 h−

h
2.0 m

θ

G yF
G

G xF
G

WF
G

MgG

1d

mgG

2d

3d
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82. See the free–body diagram.  Let M represent the mass of the train, and 
m represent the mass of the bridge.  Write the equilibrium conditions 
for torques, taken about the left end, and for vertical forces.  These 
two equations can be solved for the forces.  Take counterclockwise 
torques as positive.  Note that the position of the train is given by 

.x vt=  
( )1

B2 0  Mgx mg Fτ = + − = →∑ l l

 

( ) ( ) ( )
( ) ( )

( ) ( )

( )

1 1
B 2 2

2

21
2

4 5 4 5

vert A B

A B

1m s
95000 kg 9.80 m s 80.0 km h

3.6 km h
   23000 kg 9.80m s

280 m

   7.388 10 N s 1.127 10 N 7.4 10 N s 1.1 10 N

0  

1.18

x Mgv
F Mg mg t mg

t

t t

F F F Mg mg

F M m g F

= + = +

= +

= × + × ≈ × + ×

= + − − = →

= + − =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

l l

( ) ( ) ( )
( ) ( )

5 2 4 5

4 6 4 6

10 kg 9.80 m s 7.388 10 N s 1.127 10 N

    7.388 10 N s 1.044 10 N 7.4 10 N s 1.0 10 N

t

t t

× − × + ×

= − × + × ≈ − × + ×

⎡ ⎤⎣ ⎦

 

 
83. Since the backpack is midway between the two trees, the angles in the 

free-body diagram are equal.  Write Newton’s second law for the vertical 
direction for the point at which the backpack is attached to the cord, with 
the weight of the backpack being the original downward vertical force. 

T0 0 T0
0

2 sin 0    
2siny

mg
F F mg Fθ

θ
= − = → =∑  

 Now assume the bear pulls down with an additional force, bearF .  The force equation would be 
modified as follows. 

  ( )

( ) ( )

T final final bear

bear T final final T0 final final
0

2final

0

2 sin 0  

2 sin 2 2 sin 4 sin
2sin

2sin 2sin 27
       1 23.0 kg 9.80 m s 1 565.3N 570 N

sin sin15

yF F mg F

mg
F F mg F mg mg

mg

θ

θ θ θ
θ

θ
θ

= − − = →

= − = − = −

°
= − = − = ≈

°

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑

 

 
84.  (a) See the free-body diagram.  To find the tension in 

the wire, take torques about the left edge of the 
beam, with counterclockwise as positive.  The net 
torque must be 0 for the beam to be in equilibrium. 

   

( )
( )

1
T2

T

sin 0  

2
2 sin sin 2sin

mgx Mg F

g mx M mg Mg
F x

τ θ

θ θ θ

= + − = →

+
= = +

∑ l l

l

l l

 

  We see that the tension force is linear in x. 

hinge
horiz

F
G

hinge
vert

F
G

l

mgG
θ

x MgG

TF
G

mgGMgG

AF
G

x

BF
G

l

mgG
T0F
G

T0F
G

0θ0θ
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 (b) Write the equilibrium condition for vertical and horizontal forces. 

   

( ) ( )

( )

( ) ( ) ( )

hinge T hinge T
horiz horiz

hinge T
vert

1
hinge T 2
vert

2 2
cos 0    cos cos

2 sin 2 tan

sin 0  

2
sin sin 1

2 sin

x

y

g mx M g mx M
F F F F F

F F F m M g

g mx M x
F m M g F m M g mg Mg

θ θ θ
θ θ

θ

θ θ
θ

+ +
= − = → = = =

= + − + = →

+
= + − = + − = − +⎛ ⎞

⎜ ⎟
⎝ ⎠

∑

∑

l l

l l

l

l l

 

 
85. Draw a free-body diagram for one of the beams.  By Newton’s third 

law, if the right beam pushes down on the left beam, then the left beam 
pushes up on the right beam.  But the geometry is symmetric for the 
two beams, and so the beam contact force must be horizontal.  For the 
beam to be in equilibrium, NF mg=  and so fr NsF F mgμ μ= =  is the 
maximum friction force.  Take torques about the top of the beam, so 
that beamF

G
 exerts no torque.  Let clockwise torques be positive. 

  
( )

( )

1
N fr2

1 1

s

cos cos sin 0  

1 1
tan tan 45

2 2 0.5

F mg Fτ θ θ θ

θ
μ

− −

= − − = →

= = = °

∑ l l l

 

 
86. Take torques about the elbow joint.  Let clockwise torques be positive.  Since the arm is in 

equilibrium, the total torque will be 0. 

  
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

max

max

2.0 kg 0.15m 35kg 0.35m 0.050 m sin105 0    

2.0 kg 0.15m 35kg 0.35m
2547 N 2500 N

0.050 m sin105

g g F

g g
F

τ = + − ° = →

+
= = ≈

°

∑
 

 
87. (a) Use the free-body diagram in the textbook.  To find the magnitude of M ,F

G
 take torques about an  

axis through point S and perpendicular to the paper.  The upper body is in equilibrium, so the 
net torque must be 0.  Take clockwise torques as positive. 

 
( ) ( ) ( )[ ] ( )

( ) ( ) ( )[ ]
( )

T A H M

T A H
M

0.36 m 0.48m 0.72 m cos30 0.48m sin12 0  

0.36 m 0.48m 0.72 m cos30
0.48m sin12

w w w F

w w w
F

τ = + + ° − ° = →

+ + °
=

°

∑
 

 
( ) ( ) ( ) ( ) ( ) ( )[ ]

( )
0.46 0.36 m 0.12 0.48m 0.07 0.72 m cos30

    2.374 2.4
0.48m sin12

w
w w

+ + °
= = ≈

°
 

 (b) Write equilibrium conditions for the horizontal and vertical forces.   
Use those conditions to solve for the components of V ,F

G
 and then 

find the magnitude and direction.  Note the free–body diagram for 
determining the components of M.F

G
 The two dashed lines are 

parallel, and so both make an angle of θ  with the heavy line 
representing the back. 

mgG

beamF
G

θ

NF
G

frF
G

sinθl

cosθl

MF
G

θ

φ
θ φ−
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( )
( )

( )
( )

( ) ( )

horiz V horiz M

V horiz M

vert V vert M T A H

V vert M T A H

2 22 2
V V horiz V vert

cos 30 12 0  

cos18 2.374 cos18 2.258

sin 30 12 0  

sin18 2.374 sin18 0.65 1.384

2.258 1.384

F F F

F F w w

F F F w w w

F F w w w w w w

F F F w w

= − ° − ° = →

= ° = ° =

= − ° − ° − − − = →

= ° + + + = ° + =

= + = +

∑

∑

1 1V vert
V

V horiz

2.648 2.6

1.384
tan tan 31.51 32  above the horizontal

2.258

w w

F w
F w

θ − −

= ≈

= = = ° ≈ °

 

    
88. We are given that rod AB is under a compressive force F.  Analyze the forces on 

the pin at point A.  See the first free-body diagram.  Write equilibrium equations 
for the horizontal and vertical directions. 

  

AB
horiz AD AB AD

vert AC AD

AC AD

cos45 0    2 ,  in tension
cos 45

sin 45 0  

2
sin 45 2 , in compression

F
F F F F F

F F F

F F F F
r

= ° − = → = =
°

= − ° = →

= ° = =

∑
∑  

By symmetry, the other outer forces must all be the same magnitude as ABF , and the other diagonal 
force must be the same magnitude as ABF . 

  AC AB BD CD , in compressionF F FF F= == =  ; AD BC 2 ,  in tensionF F F= =  
 
89. (a) The fractional decrease in the rod’s length is the strain  Use Eq. 12-5.  The force applied is the  

weight of the man. 
( ) ( )

( ) ( ) ( )
2

8 6
22 9 2

0

65kg 9.80 m s
4.506 10 4.5 10 %

0.15 200 10 N m
F mg

AE r Eπ π
− −Δ

= = = = × = ×
×

l

l
 

(b) The fractional change is the same for the atoms as for the macroscopic material.  Let d represent 
the interatomic spacing. 

( ) ( ) ( )

8

0 0

8 8 10 18
0

4.506 10   

4.506 10 4.506 10 2.0 10 m 9.0 10 m

d
d

d d

−

− − − −

Δ Δ
= = × →

Δ = × = × × = ×

l

l

 
90. (a) See the free-body diagram for the system, showing forces on the engine  

and the forces at the point on the rope where the mechanic is pulling (the 
point of analysis).  Let m represent the mass of the engine.  The fact that 
the engine was raised a half-meter means that the part of the rope from 
the tree branch to the mechanic is 3.25 m, as well as the part from the 
mechanic to the bumper.  From the free-body diagram for the engine, we 
know that the tension in the rope is equal to the weight of the engine.  
Use this, along with the equations of equilibrium at the point where the 
mechanic is pulling, to find the pulling force by the mechanic. 

A

ABF
G

45°

ACF
G

ADF
G

mgG

TF
G

3.0 m
3.25m

F
G

TF
G

TF
G

θ
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1

T T

T

3.0 m
Angle:  cos 22.62

3.25m

Engine: 0    

Point:   2 sin 0  
y

x

F F mg F mg

F F F

θ

θ

−= = °

= − = → =

= − = →

∑
∑

 

( ) ( )22 sin 2 280kg 9.80m s sin 22.62 2111N 2100 NF mg θ= = ° = ≈  

 (b) 
( ) ( )2280kg 9.80m sLoad force

Mechanical advantage 1.3N
Applied force 2111N

mg
F

= = = =  

 
91. Consider the free-body diagram for the box.  The box is assumed to 

be in equilibrium, but just on the verge of both sliding and tipping.  
Since it is on the verge of sliding, the static frictional force is at its 
maximum value.  Use the equations of equilibrium.  Take torques 
about the lower right corner where the box touches the floor, and 
take clockwise torques as positive.  We also assume that the box is 
just barely tipped up on its corner, so that the forces are still parallel 
and perpendicular to the edges of the box. 

( ) ( )
N N

fr fr

0    

0    0.60 250 N 150 N

y

x

F F W F W

F F F F F Wμ

= − = → =

= − = → = = = =

∑
∑

( ) ( ) ( ) 250 N
0.5m 0    0.5m 0.5m 0.83m

150 N
W

Fh W h
F

τ = − = → = = =∑  

 
92. See the free-body diagram.  Take torques about the pivot 

point, with clockwise torques as positive.  The plank is in 
equilibrium.  Let m represent the mass of the plank, and M 
represent the mass of the person.  The minimum nail force 
would occur if there was no normal force pushing up on the 
left end of the board. 

  

( ) ( )
( )

( ) ( )
( )

nails

nails

0.75m cos 2.25m cos

              0.75m cos 0  

0.75m 2.25m
3

0.75m

mg Mg

F

mg Mg
F mg Mg

τ θ θ

θ

= +

− = →

+
= = +

∑
 

( )( ) ( )2       45kg 3 65kg 9.80 m s 2352 N 2400 N= + = ≈  

 
93. (a) Note that since the friction is static friction, we may NOT  

use fr N.F Fμ=   It could be that fr N.F Fμ<   So, we must 
determine frF  by the equilibrium equations.  Take an axis of 
rotation to be out of the paper, through the point of contact of 
the rope with the wall.  Then neither TF  nor frF  can cause 
any torque.  The torque equilibrium equation is as follows. 

   0
N 0 N    

mgr
F h mgr F

h
= → =  

  Take the sum of the forces in the horizontal direction. 

mgG
NF
G

frF
G

TF
G

θ

h

l

pivotF
G

θ
mgG

MgG

nailsF
G

0.75 m 0.75 m 1.50 m

F
G

W
G NF

G

frF
G

h

1.0 m

h

2.0 m
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   N 0
N T Tsin     

sin sin
F mgr

F F F
h

θ
θ θ

= → = =  

  Take the sum of the forces in the vertical direction. 

   
T fr

0 0
fr T

cos   

cos
cos 1 cot

sin

F F mg

mgr r
F mg F mg mg

h h

θ

θθ θ
θ

+ = →

= − = − = −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) Since the sphere is on the verge of slipping, we know that fr N .F Fμ=  

   0 0
fr N

0 0

    1 cot     cot cot
r mgr h h

F F mg
h h r r

μ θ μ θ μ θ= → − = → − = = −
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
94. There are upward forces at each support (points A and D) and a 

downward applied force at point C.  To find the angles of members 
AB and BD, see the free-body diagram for the whole truss. 

  1 1
A

6.0 6.0
tan 56.3   ;  tan 45

4.0 6.0Bθ θ− −= = ° = = °  

 Write the conditions for equilibrium for the entire truss by 
considering vertical forces and the torques about point A.  Let 
clockwise torques be positive. 

vert A D 0F F F F= + − =∑  

( ) ( ) ( )D D

A D

4.0 4.0
4.0m 10.0 m 0    12,000 N 4800 N

10.0 10.0
12,000 N 4800 N 7200 N

F F F F

F F F

τ = − = → = = =

= − = − =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑  

Analyze the forces on the pin at point A.  See the second free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

  

( )

vert A AB A

A
AB

A

horiz AC AB A

AC AB A

sin 0  

7200 N
8654 N 8700 N, compression

sin sin56.3

cos 0  

cos 8654 N cos56.3 4802 N 4800 N, tension

F F F

F
F

F F F

F F

θ

θ

θ

θ

= − = →

= = = ≈
°

= − = →

= = ° = ≈

∑

∑
 

 
Analyze the forces on the pin at point C.  See the third free-body diagram.  
Write equilibrium equations for the horizontal and vertical directions. 

  
vert BC BC

horiz CD AC CD AC

0    12,000 N, tension

0    4800 N, tension

F F F F F

F F F F F

= − = → = =

= − = → = =

∑
∑

 

 Analyze the forces on the pin at point D.  See the fourth free-body diagram.  
Write the equilibrium equation for the horizontal direction. 

  
vert BD D CD

CD
BD

D

cos 0  

4800 N
6788 N 6800 N, compression

cos cos 45

F F F

F
F

θ

θ

= − = →

= = = ≈
°

∑
 

 

Aθ Dθ
4.0 m

6.0 m

6.0 m

AF
G

DF
G

F
GA

B

C
D

AF
G

ABF
G

ACF
G

Aθ
A

BCF
G

CDF
G

CACF
G

F
G

Dθ

DF
G

D
CDF
G

BDF
G
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TF
G

mgG

θ θ12.5m
x

TF
G

12.5m

95. (a) See the free-body diagram.  We write the equilibrium conditions for  
horizontal and vertical forces, and for rotation.  We also assume that 
both static frictional forces are at their maximum values.  Take 
clockwise torques as positive.  We solve for the smallest angle that 
makes the ladder be in equilibrium. 

   
( )

horiz G W G W

vert G W G W

1
W W2

G G G W W W

0    

0    

cos sin cos 0

  ;  

x x x x

y y y y

x y

x y y x

F F F F F

F F F mg F F mg

mg F F

F F F F

τ θ θ θ

μ μ

= − = → =

= + − = → + =

= − − =

= =

∑
∑
∑ l l l

  

Substitute the first equation above into the fourth equation, and simplify 
the third equation, to give this set of equations. 

   ( )G W W W W G G W W W  ;  2 tan   ;    ;  y y x y x y y xF F mg mg F F F F F Fθ μ μ+ = = + = =  

  Substitute the third equation into the second and fourth equations. 
   ( )G W G G W W W G G  ;  2 tan   ;  y y y y y yF F mg mg F F F Fμ θ μ μ+ = = + =  

  Substitute the third equation into the first two equations. 
   ( )G W G G G G W G G  ;  2 tany y y yF F mg mg F Fμ μ μ θ μ μ+ = = +  

  Now equate the two expressions for mg, and simplify. 

   ( ) W G
G W G G G G W G G min

G

1
2 tan     tan

2y y y yF F F F
μ μμ μ μ θ μ μ θ
μ

−
+ = + → =  

(b) For a frictional wall:  ( )
( )

2
1 1W G

min
G

1 0.401
tan tan 46.4 46

2 2 0.40
μ μθ
μ

− − −−
= = = ° ≈ °  

 For a frictionless wall:  ( )
( )

2
1 1W G

min
G

1 01
tan tan 51.3 51

2 2 0.40
μ μθ
μ

− − −−
= = = ° ≈ °  

  51.3 46.4
%diff 100 10.6% 11%

46.4
° − °

= = ≈
°

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
96. (a) See the free-body diagram for the Tyrolean  

traverse technique.  We analyze the point on  
the rope that is at the bottom of the “sag.”  To  
include the safety factor, the tension must be no 
more than 2900 N. 

   
( ) ( )

( )

( ) ( )

vert T

2
1 1

min
T
max

min
min min

2 sin 0  

75kg 9.80 m s
sin sin 7.280

2 2 2900 N

tan     12.5m tan 7.280 1.597 m 1.6 m
12.5m

F F mg

mg
F

x
x

θ

θ

θ

− −

= − = →

= = = °

= → = ° = ≈

∑

 

 (b) Now  the sag amount is  ( )1 1
min4 4 1.597 m 0.3992 mx x= = = .  Use that distance to find the  

tension in the rope. 

mgG

θ

GyF
G

GxF
G

sinθl

cosθl

WxF
G

WyF
G



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

412 

   
( ) ( )

1 1

2

T

0.3992 m
tan tan 1.829

12.5m 12.5m

75kg 9.80 m s
11,512 N 12,000 N

2sin 2sin1.829

x

mg
F

θ

θ

− −= = = °

= = = ≈
°

 

  The rope will not break, but the safety factor will only be about 4 instead of 10. 
 

97. (a) The stress is given by 
F
A

, the applied force divided by the cross-sectional area, and the strain is  

given by 
0

Δl
l

, the elongation over the original length. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Strain

St
re

ss
 (1

08  N
/m

2 )

 
The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH12.XLS,” on tab “Problem 12.97a.” 

 
 (b) The elastic  

region is shown 
in the graph. 
 

The slope of the 
stress vs. strain 
graph is the 
elastic modulus, 
and is 

11 22.02 10 N m .×

 
The spreadsheet 
used for this 
problem can be 
found on the 
Media Manager, 
with filename “PSE4_ISM_CH12.XLS,” on tab “Problem 12.97b.” 

 

stress = [2.02 x 1011(strain) - 6.52 x 105] N/m2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008
Strain

St
re

ss
 (1

08  N
/m

2 )
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98. See the free-body diagram.  We assume that point C is not 
accelerating, and so the net force at point C is 0.  That net force is 
the vector sum of applied force F

G
 and two identical spring forces 

elas.F
G

  The elastic forces are given by  ( )elas amount of stretch .F k=   
If the springs are unstretched for 0θ = , then 2.0 m must be 
subtracted from the length of AC and BC to find the amount the 
springs have been stretched.  Write Newton’s second law for the 

vertical direction in order to obtain a relationship between F and .θ   Note that 
2.0m

cos .θ =
l

 

  
( )

( ) ( )

( )

vert elas elas

elas

elas

2 sin 0    2 sin

2.0m
2.0 m 2.0 m   

cos
2.0 m 1

2 sin 2 2.0 m sin 2 20.0 N m 2.0m 1 sin
cos cos

   80 N tan sin

F F F F F

F k k

F F k

θ θ

θ

θ θ θ
θ θ

θ θ

= − = → =

= − = − →

= = − = −

= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
l

   

 

 This gives F as a function of ,θ  but we 
require a graph of θ  as a function of F.  
To graph this, we calculate F for 
0 75 ,θ≤ ≤ °  and then simply interchange 
the axes in the graph. 

 

The spreadsheets used for this problem 
can be found on the Media Manager, 
with filename “PSE4_ISM_CH12.XLS”, 
on tab “Problem 12.98”. 
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CHAPTER 13:  Fluids 
 
Responses to Questions 
 
1.  No. If one material has a higher density than another, then the molecules of the first could be heavier 

than those of the second, or the molecules of the first could be more closely packed together than the 
molecules of the second. 

 
2.   The cabin of an airplane is maintained at a pressure lower than sea-level atmospheric pressure, and 

the baggage compartment is not pressurized. Atmospheric pressure is lower at higher altitudes, so 
when an airplane flies up to a high altitude, the air pressure outside a cosmetics bottle drops, 
compared to the pressure inside. The higher pressure inside the bottle forces fluid to leak out around 
the cap.  

 
3.  In the case of the two non-cylindrical containers, perpendicular forces from the sides of the 

containers on the fluid will contribute to the net force on the base. For the middle container, the 
forces from the sides (perpendicular to the sides) will have an upward component, which helps 
support the water and keeps the force on the base the same as the container on the left. For the 
container on the right, the forces from the sides will have a downward component, increasing the 
force on the base so that it is the same as the container on the left.  

 
4.  The pressure is what determines whether or not your skin will be cut. You can push both the pen and 

the pin with the same force, but the pressure exerted by the point of the pin will be much greater than 
the pressure exerted by the blunt end of the pen, because the area of the pin point is much smaller. 

 
5. As the water boils, steam displaces some of the air in the can. When the lid is put on, and the water 

and the can cool, the steam that is trapped in the can condenses back into liquid water.  This reduces 
the pressure in the can to less than atmospheric pressure, and the greater force from the outside air 
pressure crushes the can. 

 
6.  If the cuff is held below the level of the heart, the measured pressure will be the actual blood 

pressure from the pumping of the heart plus the pressure due to the height of blood above the cuff. 
This reading will be too high. Likewise, if the cuff is held above the level of the heart, the reported 
pressure measurement will be too low.    

 
7.  Ice floats in water, so ice is less dense than water. When ice floats, it displaces a volume of water 

that is equal to the weight of the ice. Since ice is less dense than water, the volume of water 
displaced is smaller than the volume of the ice, and some of the ice extends above the top of the 
water. When the ice melts and turns back into water, it will fill a volume exactly equal to the original 
volume of water displaced. The water will not overflow the glass as the ice melts. 

 
8.  No. Alcohol is less dense than ice, so the ice cube would sink. In order to float, the ice cube would 

need to displace a weight of alcohol equal to its own weight. Since alcohol is less dense than ice, this 
is impossible.  

 
9. All carbonated drinks have gas dissolved in them, which reduces their density to less than that of 

water. However, Coke has a significant amount of sugar dissolved in it, making its density greater 
than that of water, so the can of Coke sinks. Diet Coke has no sugar, leaving its density, including 
the can, less that the density of water. The can of Diet Coke floats. 
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10.  In order to float, a ship must displace an amount of water with a weight equal to its own weight. An 
iron block would sink, because it does not have enough volume to displace an amount of water equal 
to its weight. However, the iron of a ship is shaped more like a bowl, so it is able to displace more 
water. If you were to find the average density of the ship and all its contents, including the air it 
holds, you would find that this density would be less than the density of water. 

  
11.  The liquid in the vertical part of the tube over the lower container will fall into the container through 

the action of gravity. This action reduces the pressure in the top of the tube and draws liquid through 
the tube, and into the tube from the upper container. As noted, the tube must be full of liquid initially 
for this to work. 

 
12.  Sand must be added to the barge. If sand is removed, the barge will not need to displace as much 

water since its weight will be less, and it will rise up in the water, making it even less likely to fit 
under the bridge. If sand is added, the barge will sink lower into the water, making it more likely to 
fit under the bridge.  

 
13. As the weather balloon rises into the upper atmosphere, atmospheric pressure on it decreases, 

allowing the balloon to expand as the gas inside it expands. If the balloon were filled to maximum 
capacity on the ground, then the balloon fabric would burst shortly after take-off, as the balloon 
fabric would be unable to expand any additional amount. Filling the balloon to a minimum value on 
take-off allows plenty of room for expansion as the balloon rises. 

 
14.  The water level will fall in all three cases. 

(a) The boat, when floating in the pool, displaces water, causing an increase in the overall level of 
water in the pool. Therefore, when the boat is removed, the water returns to its original (lower) 
level. 

(b) The boat and anchor together must displace an amount of water equal to their combined weight. 
If the anchor is removed, this water is no longer displaced and the water level in the pool will go 
down. 

(c) If the anchor is removed and dropped in the pool, so that it rests on the bottom of the pool,  the 
water level will again go down, but not by as much as when the anchor is removed from the 
boat and pool altogether. When the anchor is in the boat, the combination must displace an 
amount of water equal to their weight because they are floating. When the anchor is dropped 
overboard, it can only displace an amount of water equal to its volume, which is less than the 
amount of water equal to its weight. Less water is displaced so the water level in the pool goes 
down.  

 
15. No. If the balloon is inflated, then the air inside the balloon is slightly compressed by the balloon 

fabric, making it more dense than the outside air. The increase in the buoyant force, present because 
the balloon is filled with air, is more than offset by the increase in weight due to the denser air filling 
the balloon. The apparent weight of the filled balloon will be slightly greater than that of the empty 
balloon. 

 
16.  In order to float, you must displace an amount of water equal to your own weight. Salt water is more 

dense than fresh water, so the volume of salt water you must displace is less than the volume of fresh 
water. You will float higher in the salt water because you are displacing a lower volume of water.  

 
17. The papers will move toward each other. When you blow between the sheets of paper, you reduce 

the air pressure between them (Bernoulli’s principle). The greater air pressure on the other side of 
each sheet will push the sheets toward each other. 
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18.  As the water falls, it speeds up because of the acceleration due to gravity. Because the volume flow 
rate must remain constant, the faster-moving water must have a smaller cross-sectional area 
(equation of continuity). Therefore the water farther from the faucet will have a narrower stream 
than the water nearer the faucet.  

 
19. As a high-speed train travels, it pulls some of the surrounding air with it, due to the viscosity of the 

air.  The moving air reduces the air pressure around the train (Bernoulli’s principle), which in turn 
creates a force toward the train from the surrounding higher air pressure. This force is large enough 
that it could push a light-weight child toward the train. 

 
20. No. Both the cup and the water in it are in free fall and are accelerating downward because of 

gravity. There is no “extra” force on the water so it will not accelerate any faster than the cup; both 
will fall together and water will not flow out of the holes in the cup. 

 
21. Taking off into the wind increases the velocity of the plane relative to the air, an important factor in 

the creation of lift. The plane will be able to take off with a slower ground speed, and a shorter 
runway distance. 

 
22. As the ships move, they drag water with them. The moving water has a lower pressure than 

stationary water, as shown by Bernoulli’s principle. If the ships are moving in parallel paths fairly 
close together, the water between them will have a lower pressure than the water to the outside of 
either one, since it is being dragged by both ships. The ships are in danger of colliding because the 
higher pressure of the water on the outsides will tend to push them towards each other.  

 
23. Air traveling over the top of the car is moving quite fast when the car is traveling at high speed, and, 

due to Bernoulli’s principle, will have a lower pressure than the air inside the car, which is stationary 
with respect to the car. The greater air pressure inside the car will cause the canvas top to bulge out. 

 
24. The air pressure inside and outside a house is typically the same. During a hurricane or tornado, the 

outside air pressure may drop suddenly because of the high wind speeds, as shown by Bernoulli’s 
principle. The greater air pressure inside the house may then push the roof off.  

 
 
Solutions to Problems 
 
1. The mass is found from the density of granite (found in Table 13-1) and the volume of granite. 

( )( )3 3 8 3 11 112.7 10 kg m 10 m 2.7 10 kg 3 10 kgm Vρ= = × = × ≈ ×  

 
2. The mass is found from the density of air (found in Table 13-1) and the volume of air. 

( ) ( ) ( ) ( )31.29 kg m 5.6m 3.8m 2.8m 77 kgm Vρ= = =   

 
3. The mass is found from the density of gold (found in Table 13-1) and the volume of gold. 

( ) ( ) ( ) ( ) ( )3 319.3 10 kg m 0.56m 0.28m 0.22m 670kg   1500lbm Vρ= = × = ≈  

 
4. Assume that your density is that of water, and that your mass is 75 kg. 

2 3
3 3

75 kg
7.5 10 m 75 L

1.00 10 kg m
m

V
ρ

−= = = × =
×
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5. To find the specific gravity of the fluid, take the ratio of the density of the fluid to that of water, 
noting that the same volume is used for both liquids. 

( )
( )

fluid fluidfluid
fluid

water waterwater

89.22g 35.00g
0.8547

98.44g 35.00g
m V m

SJ
m V m

ρ
ρ

−
= = = = =

−
 

 
6. The specific gravity of the mixture is the ratio of the density of the mixture to that of water.  To find 

the density of the mixture, the mass of antifreeze and the mass of water must be known. 

  
antifreeze antifreeze antifreeze antifreeze water antifreeze water water water

mixture mixture mixture antifreeze water antifreeze water antifre
mixture

water water water mixture

          m V SG V m V

m V m m SG V
SG

V

ρ ρ ρ
ρ ρ
ρ ρ ρ

= = =

+
= = = = eze water water

water mixture

V
V

ρ
ρ

+  

( )( )antifreeze antifreeze water

mixture

0.80 5.0 L 4.0 L
            0.89

9.0 L
SG V V

V
++

= = =  

 
7. (a) The density from the three-part model is found from the total mass divided by the total volume.   

Let subscript 1 represent the inner core, subscript 2 represent the outer core, and subscript 3 
represent the mantle.  The radii are then the outer boundaries of the labeled region. 

   

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )

3 3 3 3 34 4 4
3 3 31 1 2 2 1 3 3 21 2 3 1 1 2 2 3 3

three 3 3 3 3 34 4 4
layers 3 3 31 2 3 1 2 3 1 2 1 3 2

3 3 3 3 3 3 3 3
1 1 2 2 1 3 3 2 1 1 2 2 2 3 3 3

3 3
3 3

3 3

      

1220km 1900kg m
      

r r r r rm m m m m m
V V V V V V r r r r r

r r r r r r r r
r r

ρ π ρ π ρ πρ ρ ρρ
π π π

ρ ρ ρ ρ ρ ρ ρ ρ

+ − + −+ + + +
= = =

+ + + + + − + −

+ − + − − + − +
= =

+
=

( ) ( ) ( ) ( )
( )

3 33 3

3

3 3

3480km 6700kg m 6371km 4400kg m

6371km

5505.3kg m 5510kg m      

+

= ≈

 

 (b) 
( )

24
3 3

one 334 34density 3 3

5.98 10 kg
5521kg m 5520kg m

6371 10 m

M M
V R

ρ
π π

×
= = = = ≈

×
 

  
3 3one three

density layers

3
three
layers

5521kg m 5505kg m
%diff 100 100 0.2906 0.3%

5505kg m

ρ ρ

ρ

−
−

= = = ≈
⎛ ⎞

⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟

⎝ ⎠

 

 
8. The pressure is given by Eq. 13-3. 

  ( ) ( ) ( )2 5 21000 9.80m s 35m 3.4 10 N m 3.4atmP ghρ= = = × ≈  

 
9. (a) The pressure exerted on the floor by the chair leg is caused by the chair pushing down on the  

floor.  That downward push is the reaction to the normal force of the floor on the leg, and the 
normal force on one leg is assumed to be one-fourth of the weight of the chair.  

( ) ( )
( )

21
4leg 7 2 7 2

chair 2

2

66kg 9.80m s
8.085 10 N m 8.1 10 N m

1m
0.020cm

100cm

W
P

A
= = = × ≈ ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

(b) The pressure exerted by the elephant is found in the same way, but with ALL of the weight  
being used, since the elephant is standing on one foot. 
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( ) ( )
( )

2
elephant 5 2 5 2

elephant 2
2

1300kg 9.80m s
1.59 10 N m 2 10 N m

1 m
800cm

100 cm

W
P

A
= = = × ≈ ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

Note that the chair pressure is larger than the elephant pressure by a factor of about 400. 
 
10. Use Eq. 13-3 to find the pressure difference.  The density is found in Table 13-1. 

( ) ( ) ( )3 3 2

4 2
2

    1.05 10 kg m 9.80m s 1.70m

1 mm-Hg
                            1.749 10 N m 132 mm-Hg

133N m

P gh P g hρ ρ= → Δ = Δ = ×

= × =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
11. The height is found from Eq. 13-3, using normal atmospheric pressure.  The density is found in 

Table 13-1. 

  ( ) ( )
5 2

3 3 2

1.013 10 N m
    13m

0.79 10 kg m 9.80m s
P

P gh h
g

ρ
ρ

×
= → = = =

×
 

 That is so tall as to be impractical in many cases.   
 
12. The pressure difference on the lungs is the pressure change from the depth of water. 

  
( )

( ) ( )

2

3 3 2

133N m
85mm-Hg

1 mm-Hg
    1.154m 1.2m

1.00 10 kg m 9.80m s
P

P g h h
g

ρ
ρ
Δ

Δ = Δ → Δ = = = ≈
×

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 
13. The force exerted by the gauge pressure will be equal to the weight of the vehicle. 

  

( )
( ) ( )

( )

2

5 2

2

2

21
2

  

1.013 10 N m
17.0atm

1 atm
6990kg

9.80m s

0.225m

mg PA P r

P r
m

g

π

π
π

= = →

×

= = =

⎛ ⎞
⎡ ⎤⎜ ⎟ ⎣ ⎦

⎝ ⎠
 

 
14. The sum of the force exerted by the pressure in each tire is equal to the weight of the car. 

  
( ) ( )

( )

2
5 2 2

4 2

2

1 m
4 2.40 10 N m 220cm

10 cm4
4     2200kg

9.80m s
PA

mg PA m
g

×
= → = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 
15. (a) The absolute pressure is given by Eq. 13-6b, and the total force is the absolute pressure times  

the area of the bottom of the pool. 

   

( ) ( ) ( )

( ) ( ) ( )

5 2 3 3 2
0

2 5 2

5 2 7

5

1.013 10 N m 1.00 10 kg m 9.80m s 1.8m

   1.189 10 N m 1.2 10 N m

1.189 10 N m 28.0m 8.5m 2.8 10 N

P P gh

F PA

ρ= + = × + ×

= × ×

= = × = ×

≈  

 (b) The pressure against the side of the pool, near the bottom, will be the same as the pressure at the  

bottom.  Pressure is not directional.  5 21.2 10 N mP = ×   

 



Chapter 13  Fluids 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

419 

16. (a) The gauge pressure is given by Eq. 13-3.  The height is the height from the bottom of the hill  
to the top of the water tank. 

   ( )( ) ( )3 3 2 o 5 2
G 1.00 10 kg m 9.80m s 5.0 m 110 m sin58 9.6 10 N mP ghρ= = × + = ×⎡ ⎤⎣ ⎦  

 (b) The water would be able to shoot up to the top of the tank (ignoring any friction). 
   ( ) o5.0m 110m sin58 98mh = + =  

 
17. The pressure at points a and b are equal since they are the same height in the same fluid.  If they 

were unequal, the fluid would flow.  Calculate the pressure at both a and b, starting with atmospheric 
pressure at the top surface of each liquid, and then equate those pressures. 

  ( ) ( )
( )

0 oil oil 0 water water oil oil water water

3 3
3water water

oil
oil

          

1.00 10 kg m 0.272 m 0.0862 m
683kg m

0.272m

a bP P P gh P gh h h

h
h

ρ ρ ρ ρ

ρρ

= → + = + → = →

× −
= = =

 

 
18. (a) The mass of water in the tube is the volume of the tube times the density of water. 

   ( ) ( ) ( )22 3 3 21.00 10 kg m 0.30 10 m 12 m 0.3393kg 0.34 kgm V r hρ ρπ π −= = = × × = ≈  

 (b) The net force exerted on the lid is the gauge pressure of the water times the area of the lid.  The  
gauge pressure is found from Eq. 13-3. 

   ( )( )( ) ( )22 3 3 2 4
gauge 1.00 10 kg m 9.80m s 12m 0.21m 1.6 10 NF P A gh Rρ π π= = = × = ×  

 
19. We use the relationship developed in Example 13-5. 

( ) ( ) ( )( )4 1
0 0

1.25 10 m 8850m5 2 4 2
0 1.013 10 N m 3.35 10 N m 0.331atmg P yP Pe eρ

− −− ×−= = × = × ≈  

 Note that if we used the constant density approximation, 0 ,P P ghρ= +  a negative pressure would 
result. 

 
20. Consider the lever (handle) of the press.  The net torque 

on that handle is 0.  Use that to find the force exerted by 
the hydraulic fluid upwards on the small cylinder (and 
the lever).  Then Pascal’s principle can be used to find 
the upwards force on the large cylinder, which is the 
same as the force on the sample. 

  

( )

( ) ( )
( ) ( )

1 1

1 2
1 2 2 21 1

2 21 2

2 2
2 1 2 1 2 1 sample

2 0    2

      

2   

F F F F

F F
P P

d d

F F d d F d d F

τ

π π

= − = → =

= → = →

= = = →

∑ l l

 

( ) ( ) ( )2 2
sample 7 22 1

sample 4 2
sample sample

2 2 350 N 5
4.4 10 N m 430atm

4.0 10 m
F F d d

P
A A −

= = = = × ≈
×

 

 
21. The pressure in the tank is atmospheric pressure plus the pressure difference due to the column of 

mercury, as given in Eq. 13-6b. 
 (a) 0 Hg1.04barP P gh ghρ ρ= + = +  

D1

D1 B

F
G

1F
G

2F
G

sampleF
G

l l
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( ) ( ) ( ) ( )
5 2

3 3 2 5 21.00 10 N m
   1.04bar 13.6 10 kg m 9.80m s 0.210m 1.32 10 N m

1bar
×

= + × = ×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) ( ) ( ) ( ) ( )
5 2

3 3 2 4 21.00 10 N m
1.04bar 13.6 10 kg m 9.80m s 0.052m 9.7 10 N m

1bar
P

×
= + × − = ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
22. (a) See the diagram.  In the accelerated frame of the beaker, there is a  

pseudoforce opposite to the direction of the acceleration, and so there is 
a pseudo acceleration as shown on the diagram.  The effective 
acceleration, ′gG , is given by .′ = +g g aG G G   The surface of the water will be 
perpendicular to the effective acceleration, and thus makes an angle 

1tan .a
g

θ −=  

 (b) The left edge of the water surface, opposite to the direction of the  
acceleration, will be higher. 

(c) Constant pressure lines will be parallel to the surface.  From the second 
diagram, we see that a vertical depth of h  corresponds to a depth of h′   
perpendicular to the surface, where cos ,h h θ′ =  and so we have the 
following. 

   

( )2 2
0 0

2 2
0 02 2

cos

  

P P g h P g a h

g
P g a h P hg

g a

ρ ρ θ

ρ ρ

′ ′= + = + +

= + + =
+

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

 

  And so 0P P hgρ= + , as in the unaccelerated case. 

  
23. (a) Because the pressure varies with depth, the force on the wall  

will also vary with depth.  So to find the total force on the 
wall, we will have to integrate.  Measure vertical distance y 
downward from the top level of the water behind the dam.  
Then at a depth y, choose an infinitesimal area of width b 
and height dy.  The pressure due to the water at that depth is 
P gyρ= . 

   
( ) ( )

( ) ( ) 21
20

 ;  
h

P gy dF PdA gy bdy

F dF gy bdy gbh

ρ ρ

ρ ρ

= = =

= = =

→

∫ ∫
 

 (b) The lever arm for the force dF about the bottom of the dam  
is ,h y−  and so the torque caused by that force is 

( )d h y dFτ = − .  Integrate to find the total torque. 

   
( ) ( ) ( ) ( )

( )

2

0 0

2 3 31 1 1
2 3 60

  

h h

h

d h y gy bdy gb hy y dy

gb hy y gbh

τ τ ρ ρ

ρ ρ

= = − = −

= − =

∫ ∫ ∫
 

  Consider that torque as caused by the total force, applied at a single distance from the bottom d.  
   3 21 1 1

6 2 3    gbh Fd gbh d d hτ ρ ρ= = = → =  

 
 

b

y

d y

d F

h

t

gG′gG
θ

θaG

h θ
h′
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 (c) To prevent overturning, the torque caused by gravity about the lower right front corner in the  
diagram must be at least as big as the torque caused by the water.  The lever arm for gravity is 
half the thickness of the dam. 

   

( ) ( ) ( )3 31 1 1 1
concrete water2 6 2 6

3 3
water1 1

3 3 3 3
concrete

      

1.00 10 kg m
0.38

2.3 10 kg m

mg t gbh hbt g t gbh

t
h

ρ ρ ρ

ρ
ρ

≥ → ≥ →

×
≥ = =

×

 

So we must have 0.38t h≥  to prevent overturning.  Atmospheric pressure need not be added in 
because it is exerted on BOTH sides of the dam, and so causes no net force or torque.  In part 
(a), the actual pressure at a depth y is 0P P gyρ= + , and of course air pressure acts on the 
exposed side of the dam as well. 

 

24. From section 9-5, the change in volume due to pressure change is 
0

V P
V B
Δ Δ

= − , where B is the bulk 

modulus of the water, given in Table 12-1.  The pressure increase with depth for a fluid of constant 
density is given by P g hρΔ = Δ , where hΔ  is the depth of descent.  If the density change is small, 
then we can use the initial value of the density to calculate the pressure change, and so 0P g hρΔ ≈ Δ .  
Finally, consider a constant mass of water.  That constant mass will relate the volume and density at 
the two locations by 0 0M V Vρ ρ= = .  Combine these relationships and solve for the density deep in 
the sea, ρ . 

  ( ) ( ) ( )

0 0

3
0 0 0 0 0 0 0

3 2 3
00

0 0
9 2

3 3 3

  

1025kg m
1025kg m 9.80m s 5.4 10 m1 1

2.0 10 N m

   1054kg m 1.05 10 kg m

V V

V V V
ghPV V V V V

BB

ρ ρ

ρ ρ ρ ρρ ρ

= →

= = = = =
Δ+ Δ ×−+ − −

×

= ≈ ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  0

1054
1.028

1025
ρ ρ = =  

 The density at the 6 km depth is about  3% larger  than the density at the surface. 
 
25. Consider a layer of liquid of (small) height hΔ , and ignore the 

pressure variation due to height in that layer.  Take a cylindrical 
ring of water of height hΔ , radius r, and thickness dr.  See the 
diagram (the height is not shown).  The volume of the ring of 
liquid is ( )2 r h drπ Δ , and so has a mass of ( )2dm r h drπρ= Δ .  
That mass of water has a net centripetal force on it of magnitude 

( )2
radialdF r dmω=  ( )2 2r r h drω ρ π= Δ .  That force comes from a 

pressure difference across the surface area of the liquid.  Let the 
pressure at the inside surface be P , which causes an outward 
force, and the pressure at the outside surface be P dP+ , which 
causes an inward force.  The surface area over which these 
pressures act is 2 r hπ Δ , the “walls” of the cylindrical ring.  Use Newton’s second law. 

  ( ) ( ) ( )2
radial outer inner

wall wall

    2 2 2   dF dF dF r r h dr P dP r h P r hω ρ π π π= − → Δ = + Δ − Δ →  

r

dr
P
P dP+

ω

radialdF
G
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0

2 2 2 2 2 21 1
0 02 2

0

            
P r

P

dP r dr dP r dr P P r P P rω ρ ω ρ ρω ρω= → = → − = → = +∫ ∫  

 
26. If the iron is floating, then the net force on it is zero.  The buoyant force on the iron must be equal to 

its weight.  The buoyant force is equal to the weight of the mercury displaced by the submerged iron. 

  
buoyant Fe Hg submerged Fe total

3 3
submerged Fe

3 3
total Hg

      

7.8 10 kg m
0.57 57%

13.6 10 kg m

F m g gV gV

V
V

ρ ρ

ρ
ρ

= → = →

×
= = = ≈

×

 

 
27. The difference in the actual mass and the apparent mass is the mass of the water displaced by the 

rock.  The mass of the water displaced is the volume of the rock times the density of water, and the 
volume of the rock is the mass of the rock divided by its density.  Combining these relationships 
yields an expression for the density of the rock. 

( )

rock
actual apparent water rock water

rock

3 3 3rock
rock water

  

9.28 kg
1.00 10 kg m 2990 kg m

9.28 kg 6.18 kg

m
m m m V

m
m

ρ ρ
ρ

ρ ρ

− = Δ = = →

= = × =
Δ −

 

 
28. (a) When the hull is submerged, both the buoyant force and the tension force act upward on  

the hull, and so their sum is equal to the weight of the hull, if the hill is not accelerated as it is 
lifted.  The buoyant force is the weight of the water displaced. 

   

( ) ( )

buoyant

hull water
buoyant hull water sub hull water hull

hull hull

3 3
4 2 5 5

3 3

  

1

1.00 10 kg m
  1.6 10 kg 9.80 m s 1 1.367 10 N 1.4 10 N

7.8 10 kg m

T F mg

m
T mg F m g V g m g g m g

ρρ ρ
ρ ρ

+ = →

= − = − = − = −

×
= × − = × ≈ ×

×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) When the hull is completely out of the water, the tension in the crane’s cable must be  
equal to the weight of the hull. 

   ( ) ( )4 2 5 51.6 10 kg 9.80 m s 1.568 10 N 1.6 10 NT mg= = × = × ≈ ×  

 
29. The buoyant force of the balloon must equal the weight of the balloon plus the weight of the helium 

in the balloon plus the weight of the load.  For calculating the weight of the helium, we assume it is 
at 0oC and 1 atm pressure.  The buoyant force is the weight of the air displaced by the volume of the 
balloon. 

  ( )
( ) ( )

buoyant air balloon He balloon cargo

cargo air balloon He balloon air balloon He balloon balloon air He balloon balloon

33 3 34
3

  

        1.29 kg m 0.179 kg m 7.35m 930 kg 920 kg 9.0 10 N

F V g m g m g m g

m V m m V V m V m

ρ

ρ ρ ρ ρ ρ

π

= = + + →

= − − = − − = − −

= − − = = ×

 

 
30. The difference in the actual mass and the apparent mass is the mass of the water displaced by the 

legs.  The mass of the water displaced is the volume of the legs times the density of water, and the 
volume of the legs is the mass of the legs divided by their density.  The density of the legs is 
assumed to be the same as that of water.  Combining these relationships yields an expression for the 
mass of the legs. 
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( ) ( )

legs
actual apparent water legs water leg

legs

1 1
leg 2 2

2   

74 kg 54 kg 10 kg  2 sig. fig.

m
m m m V m

m m

ρ ρ
ρ

− = Δ = = = →

= Δ = − =

 

 
31. The apparent weight is the actual weight minus the buoyant force.  The buoyant force is weight of a 

mass of water occupying the volume of the metal sample. 

( ) ( ) ( )

2 2

2

2

metal
apparent metal B metal metal H O metal H O

metal

metal
apparent metal H O

metal

3 3metal
metal H O

metal apparent

 

  

63.5g
1000 kg m 7840 kg m

63.5g 55.4 g

m
m g m g F m g V g m g g

m
m m

m
m m

ρ ρ
ρ

ρ
ρ

ρ ρ

= − = − = − →

= − →

= = =
− −

 

Based on the density value, the metal is probably  iron or steel  . 
 
32. The difference in the actual mass and the apparent mass of the aluminum is the mass of the air 

displaced by the aluminum.  The mass of the air displaced is the volume of the aluminum times the 
density of air, and the volume of the aluminum is the actual mass of the aluminum divided by the 
density of aluminum.  Combining these relationships yields an expression for the actual mass. 

  

actual
actual apparent air Al air

Al

apparent
actual 3

air
3 3

Al

  

3.0000 kg
3.0014 kg

1.29 kg m1 1
2.70 10 kg m

m
m m V

m
m

ρ ρ
ρ

ρ
ρ

− = = →

= = =
− −

×

 

 
33. The buoyant force on the drum must be equal to the weight of the steel plus the weight of the 

gasoline.  The weight of each component is its respective volume times density.  The buoyant force 
is the weight of total volume of displaced water.  We assume that the drum just “barely” floats – in 
other words, the volume of water displaced is equal to the total volume of gasoline and steel. 

( )B steel gasoline gasoline steel water steel steel gasoline gasoline

gasoline water steel water steel steel gasoline gasoline

water gasoline
steel gasoline

steel water

      

  

2

F W W V V g V g V g

V V V V

V V

ρ ρ ρ

ρ ρ ρ ρ

ρ ρ
ρ ρ

= + → + = + →

+ = + →

−
= =

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

( )
3 3

2 3
3 3

1000kg m 680kg m
30L 10.82L 1.1 10 m

7800kg m 1000kg m
−−

= ≈ ×
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
34. (a) The buoyant force is the weight of the water displaced, using the density of sea water. 
   buoyant water water displaced

displaced

F m g V gρ= =  

   ( )( ) ( )
3 3

3 3 21 10 m
          1.025 10 kg m 65.0 L 9.80 m s 653 N

1 L

−×
= × =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) The weight of the diver is ( )( )2
diver 68.0 kg 9.80 m s 666 Nm g = = .  Since the buoyant  

force is not as large as her weight, she will sink , although it will be very gradual since the two 
forces are almost the same. 
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35. The buoyant force on the ice is equal to the weight of the ice, since it floats. 

  

( ) ( )

( ) ( )

buoyant ice seawater ice seawater ice
submerged submerged

seawater seawater ice ice water submerged water iceseawater ice
ice

submerged iceseawater ice
ice

submerged

          

      

  

F W m g m g m m

V V SG V SG V

SG V SG V

V

ρ ρ ρ ρ

= → = → = →

= → = →

= →

( )
( )

ice
ice ice ice

ice seawater

0.917
0.895

1.025

SG
V V V

SG
= = =

 

 Thus the fraction above the water is above ice submerged ice0.105  or 10.5%V V V V= − =  
 
36. (a) The difference in the actual mass and the apparent mass of the aluminum ball is the mass of the  

liquid displaced by the ball.  The mass of the liquid displaced is the volume of the ball times the 
density of the liquid, and the volume of the ball is the mass of the ball divided by its density.  
Combining these relationships yields an expression for the density of the liquid. 

( ) ( )

ball
actual apparent liquid ball liquid

Al

3 3 3
liquid Al

ball

  

3.80 kg 2.10 kg
2.70 10 kg m 1210 kg m

3.80 kg

m
m m m V

m
m

ρ ρ
ρ

ρ ρ

− = Δ = = →

−Δ
= = × =

 

 (b) Generalizing the relation from above, we have object apparent
liquid object

object

m m
m

ρ ρ
−

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
37. (a) The buoyant force on the object is equal to the weight of the fluid displaced.  The force of  

gravity of the fluid can be considered to act at the center of gravity of the fluid (see section 9-8).  
If the object were removed from the fluid and that space re-filled with an equal volume of fluid, 
that fluid would be in equilibrium.  Since there are only two forces on that volume of fluid, 
gravity and the buoyant force, they must be equal in magnitude and act at the same point.  
Otherwise they would be a couple (see Figure 12-4), exert a non-zero torque, and cause rotation 
of the fluid.  Since the fluid does not rotate, we may conclude that 
the buoyant force acts at the center of gravity. 

(b) From the diagram, if the center of buoyancy (the point where the 
buoyancy force acts) is above the center of gravity (the point where 
gravity acts) of the entire ship, when the ship tilts, the net torque 
about the center of mass will tend to reduce the tilt.  If the center of 
buoyancy is below the center of gravity of the entire ship, when the 
ship tilts, the net torque about the center of mass will tend to increase the tilt.  Stability is 
achieved when the center of buoyancy is above the center of gravity. 

 
38. The weight of the object must be balanced by the two buoyant forces, one from the water and one 

from the oil.  The buoyant force is the density of the liquid, times the volume in the liquid, times the 
acceleration due to gravity.  We represent the edge length of the cube by l. 

  ( ) ( )2 2
B B oil oil water water oil water
oil water

0.28 0.72   mg F F V g V g g gρ ρ ρ ρ= + = + = + →l l l l  

  
( ) ( ) ( ) ( )33 2 2

oil water0.28 0.72 0.100m 0.28 810kg m 0.72 1000kg m

   0.9468kg 0.95kg

m ρ ρ= + = +

= ≈

⎡ ⎤⎣ ⎦l

 

mgG

buoyF
G

mgG

buoyF
G
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 The buoyant force is the weight of the object, ( ) ( )20.9468kg 9.80m s 9.3Nmg = =  

 
39. The buoyant force must be equal to the combined weight of the helium balloons and the person.  We 

ignore the buoyant force due to the volume of the person, and we ignore the mass of the balloon 
material. 

  

( ) ( ) ( )

( )
( )

( ) ( )

person34
B person He air He person He He He 3

air He

person
33 3 3

air He

          

3 3 75kg
3587 3600balloons

4 4 0.165m 1.29kg m 0.179kg m

m
F m m g V g m V g V N r

m
N

r

ρ ρ π
ρ ρ

π ρ ρ π

= + → = + → = = →
−

= = = ≈
− −

 

 
40. There will be a downward gravity force and an upward buoyant force on the fully submerged tank.   

The buoyant force is constant, but the gravity force will decrease as the air is removed.  Take 
upwards to be positive. 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

full B total water tank tank air

3 3 2

empty B total water tank tank air

3 3 2

     1025kg m 0.0157m 17.0kg 9.80m s 8.89 N 9N downward

     1025kg m 0.0157m 14.0kg 9.80m s 20.51N 21N upward

F F m g V g m m g

F F m g V g m m g

ρ

ρ

= − = − +

= − = − ≈

= − = − +

= − = ≈

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

 

 
41. The apparent weight is the force required to hold the 

system in equilibrium.  In the first case, the object is 
held above the water.  In the second case, the object 
is allowed to be pulled under the water.  Consider 
the free-body diagram for each case. 

 Case 1: 1 buoy sinker
sinker

0F w w F w= − + − =∑   

 Case 2: 2 buoy buoy sinker
object sinker

0F w F w F w= − + − =+∑  

Since both add to 0, equate them.  Also note that the 
specific gravity can be expressed in terms of the 
buoyancy force. 

  object water
buoy object water water object
object object object S.G.

m w
F V g g m g

ρρ ρ
ρ ρ

= = = =  

  

( )

1 buoy sinker 2 buoy buoy sinker
sinker object sinker

1 2 buoy 2
object 1 2

0   

    S.G.
S.G.

w w F w w F w F w

w w
w w F w

w w

− + − = = + − + − →

= + = + → =
−

 

  
42. For the combination to just barely sink, the total weight of the wood and lead must be equal to the 

total buoyant force on the wood and the lead. 

  
weight buoyant wood Pb wood water Pb water

wood Pb water water
wood Pb water water Pb wood

wood Pb Pb wood

      

   1 1   

F F m g m g V g V g

m m
m m m m

ρ ρ

ρ ρ
ρ ρ

ρ ρ ρ ρ

= → + = + →

+ = + → − = − →
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

sinkerw

w

buoy
sinker

F

apparent 1F w=

sinkerw

w

buoy
sinker

F

apparent 2F w=buoy
object

F
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  ( )
water

wood wood
Pb wood wood

water

Pb Pb

1 11 1 1
0.503.25kg 3.57 kg

11 11 1
11.3

SG
m m m

SG

ρ
ρ

ρ
ρ

− − −
= = = =

−− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
43. We apply the equation of continuity at constant density, Eq. 13-7b. 
  Flow rate out of duct = Flow rate into room 

( ) ( ) ( )
( ) ( )

2 room room
duct duct duct duct 2

2to fill to fill
room room

8.2 m 5.0 m 3.5m
    2.8 m s

60s
0.15m 12 min

1 min

V V
A v r v v

t r t
π

π π
= = → = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
44. Use Eq. 13-7b, the equation of continuity for an incompressible fluid, to compare blood flow in the  

aorta and in the major arteries. 

  

( ) ( )
( ) ( )

aorta arteries

2

aorta
arteries aorta 2

arteries

  

1.2 cm
40 cm s 90.5cm s 0.9 m s

2.0 cm

Av Av

A
v v

A
π

= →

= = = ≈
 

 
45. We may apply Torricelli’s theorem, Eq. 13-9. 

( ) ( ) ( ) ( )2
1 2 12 2 9.80 m s 5.3m 10.2 m s 10 m s  2 sig. fig.v g y y= − = = ≈  

 
46. The flow speed is the speed of the water in the input tube.  The entire volume of the water in the tank 

is to be processed in 4.0 h.  The volume of water passing through the input tube per unit time is the 
volume rate of flow, as expressed in the text immediately after Eq. 13-7b. 

  ( ) ( ) ( )

( ) ( )
2

2

0.36 m 1.0 m 0.60 m
    0.02122 m s 2.1cm s

3600s
0.015 m 4.0 h

1h

V V wh
Av v

t A t r tπ π
= → = = = = ≈

Δ Δ Δ ⎛ ⎞
⎜ ⎟
⎝ ⎠

l
 

 
47. Apply Bernoulli’s equation with point 1 being the water main, and point 2 being the top of the spray.  

The velocity of the water will be zero at both points.  The pressure at point 2 will be atmospheric 
pressure.  Measure heights from the level of point 1. 

  2 21 1
1 1 1 2 2 22 2  P v gy P v gyρ ρ ρ ρ+ + = + + →  

  ( ) ( ) ( )3 3 2 5 2
1 atm 2 1.00 10 kg m 9.80 m s 18 m 1.8 10 N mP P gyρ− = = × = ×  

 
48. The volume flow rate of water from the hose, multiplied times the time of filling, must equal the 

volume of the pool. 

  

( ) ( ) ( )

( ) ( )

2
pool pool 5

2hose
"hose hose 51

2 8 "

5

3.05 m 1.2 m
    4.429 10 s

1m
0.40 m s

39.37

1day
4.429 10 s 5.1 days

60 60 24s

V V
Av t

t A v
π

π
= → = = = ×

× =
× ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠
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49. We assume that there is no appreciable height difference between the two sides of the roof.  Then the 
net force on the roof due to the air is the difference in pressure on the two sides of the roof, times the 
area of the roof.  The difference in pressure can be found from Bernoulli’s equation. 

2 21 1
inside inside inside outside outside outside2 2  P v gy P v gyρ ρ ρ ρ+ + = + + →  

( ) ( ) ( ) ( )

2 air1
inside outside air outside2

roof

2

2 31 1
air air outside roof2 2

5

  

1m s
1.29 kg m 180 km h 6.2 m 12.4 m

3.6 km h

1.2 10 N    

F
P P v

A

F v A

ρ

ρ

− = = →

= =

= ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 
50. Use the equation of continuity (Eq. 13-7b) to relate the volume flow of water at the two locations, 

and use Bernoulli’s equation (Eq. 13-8) to relate the pressure conditions at the two locations.  We 
assume that the two locations are at the same height.  Express the pressures as atmospheric pressure 
plus gauge pressure.  Use subscript “1” for the larger diameter, and “2” for the smaller diameter. 

  ( )

( ) ( )

2 2
1 1 1

1 1 2 2 2 1 1 12 2
2 2 2

2 21 1
0 1 1 1 0 2 2 22 2

4
2 2 2 1 211 1 1

1 1 2 2 2 1 12 2 2 4 4
2 1

4
2

3
22 21 2

1 1 1 4
1
4

2

    

  

2
      

1

2 32.0 10 P2
3.0 10 m

1

A r r
A v A v v v v v

A r r

P P v gy P P v gy

P Pr
P v P v P v v

r r
r

P P
A v r

r
r

π
π

ρ ρ ρ ρ

ρ ρ ρ
ρ

π π
ρ

−

= → = = =

+ + + = + + + →

−
+ = + = + → = →

−

×−
= = ×

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

( )

( ) ( )
( )

3

42
3 3

42

3 3

a 24.0 10 Pa

3.0 10 m
1.0 10 kg m 1

2.25 10 m

      7.7 10 m s

−

−

−

− ×

×
× −

×

= ×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
51. The air pressure inside the hurricane can be estimated using Bernoulli’s equation.  Assume the  

pressure outside the hurricane is air pressure, the speed of the wind outside the hurricane is 0, and 
that the two pressure measurements are made at the same height. 

  
( ) ( )

2 21 1
inside inside inside outside outside outside2 2

21
inside outside air inside2

2

5 31
2

4

  

1000 m 1h
       1.013 10 Pa 1.29 kg m 300 km h

km 3600s

       9.7 10 Pa 0.96atm

P v gy P v gy

P P v

ρ ρ ρ ρ

ρ

+ + = + + →

= −

= × −

= × ≈

⎡ ⎤⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
52. The lift force would be the difference in pressure between the two wing surfaces, times the area of 

the wing surface.  The difference in pressure can be found from Bernoulli’s equation.  We consider 
the two surfaces of the wing to be at the same height above the ground.  Call the bottom surface of 
the wing point 1, and the top surface point 2. 
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( )
( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 21 1 1
1 1 1 2 2 2 1 2 2 12 2 2

2 21
lift 1 2 2 12

2 23 2 61
2

    

Area of wing

     1.29 kg m 280 m s 150 m s 88 m 3.2 10 N

P v gy P v gy P P v v

F P P v v A

ρ ρ ρ ρ ρ

ρ

+ + = + + → − = −

= − = −

= − = ×⎡ ⎤⎣ ⎦

 

 
53. Consider the volume of fluid in the pipe.  At each end of the pipe there is a force towards the 

contained fluid, given by F PA= .  Since the area of the pipe is constant, we have that 
( )net 1 2F P P A= − .  Then, since the power required is the force on the fluid times its velocity, and 

AV Q= = volume rate of flow, we have ( ) ( )net 1 2 1 2 .P F v P P Av P P Q= = − = −  

 
54. Use the equation of continuity (Eq. 13-7b) to relate the volume flow of water at the two locations,  

and use Bernoulli’s equation (Eq. 13-8) to relate the conditions at the street to those at the top floor.  
Express the pressures as atmospheric pressure plus gauge pressure. 

  

( )
( )
( )

street street top top

221
2street

top street 221top 2

2 21 1
0 gauge street street 0 gauge top top2 2

street top

1
gauge gauge 2
top street

  

5.0 10 m
0.68 m s 2.168 m s 2.2 m s

2.8 10 m

  

A v A v

A
v v

A

P P v gy P P v gy

P P v

π

π

ρ ρ ρ ρ

ρ

−

−

= →

×
= = = ≈

×

+ + + = + + + →

= +

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
street top street top

5
2 23 31

2

3 3 2

5
5

1.013 10 Pa
       3.8atm 1.00 10 kg m 0.68 m s 2.168 m s

atm

               1.00 10 kg m 9.80 m s 18 m

1atm
       2.064 10 Pa 2.0atm

1.013 10 Pa

v gy y yρ− + −

×
= + × −

+ × −

= × ≈
×

⎛ ⎞ ⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
55. Apply both Bernoulli’s equation and the equation of continuity between the two openings of the  

tank.  Note that the pressure at each opening will be atmospheric pressure. 

  ( )

( )

1
2 2 1 1 2 1

2

2 2 2 21 1
1 1 1 2 2 2 1 2 2 12 2

2
2 21 1
1 1 1 12 2 2

2 2 1 2

    

   2 2

2
2     1 2     

1

A
A v A v v v

A

P v gy P v gy v v g y y gh

A A gh
v v gh v gh v

A A A A

ρ ρ ρ ρ

= → =

+ + = + + → − = − =

− = → − = → =
−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
56. (a) Relate the conditions at the top surface and at the opening by Bernoulli’s equation. 

   

( )

( )

2 2 21 1 1
top 2 2 opening 1 1 2 0 2 1 0 12 2 2

2
1 2 1

     

2
2

P v gy P v gy P P g y y P v

P
v g y y

ρ ρ ρ ρ ρ ρ

ρ

+ + = + + → + + − = + →

= + −
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 (b) ( )
( )

( ) ( ) ( )

5

22
1 2 1 33

1.013 10 Pa
2 0.85atm

atm2
2 2 9.80 m s 2.4 m 15m s

1.00 10 kg m
P

v g y y
ρ

×

= + − = + =
×

⎛ ⎞
⎜ ⎟
⎝ ⎠  

  
57. We assume that the water is launched from the same level at which it lands.  Then the level range 

formula, derived in Example 3-10, applies. That formula is 
2
0 0sin 2 .v

R
g

θ
=   If the range has 

increased by a factor of 4, then the initial speed has increased by a factor of 2.  The equation of 
continuity is then applied to determine the change in the hose opening.  The water will have the same 
volume rate of flow, whether the opening is large or small. 

  ( ) ( )
fully
open

fully partly partly fully fully
open open open open openpartly

open

1
    

2

v
Av Av A A A

v
= → = = ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 Thus 1 2 of the hose opening was blocked. 

 
58. Use Bernoulli’s equation to find the speed of the liquid as it leaves the opening, assuming that the 

speed of the liquid at the top is 0, and that the pressure at each opening is air pressure. 

( )2 21 1
1 1 1 2 2 2 1 2 12 2     2P v gy P v gy v g h hρ ρ ρ ρ+ + = + + → = −  

(a) Since the liquid is launched horizontally, the initial vertical speed is zero.  Use Eq. 2-12b for  
constant acceleration to find the time of fall, with upward as the positive direction.  Then 
multiply the time of fall times 1v , the (constant) horizontal speed. 

   

( ) ( )

2 2 11 1
0 0 12 2

1
1 2 1 2 1 1

2
    0 0     

2
2 2

y y

h
y y v t a t h gt t

g

h
x v t g h h h h h

g

= + + → = + − → =

Δ = = − = −

 

 (b) We seek some height 1h′  such that ( ) ( )2 1 1 2 1 12 2 .h h h h h h′ ′− = −  

( ) ( ) ( ) ( )2 1 1 2 1 1 2 1 1 2 1 12 2       h h h h h h h h h h h h′ ′ ′ ′− = − → − = − →   

   

( )
( ) ( )

2
1 2 1 2 1 1

2 2 2
2 2 2 1 1 2 2 1 2 1 2 2 1 2 1 1

1

1 2 1

0  

4 4 4 2 2 2 2
,

2 2 2 2 2

h h h h h h

h h h h h h h h h h h h h h h h
h

h h h

′ ′− + − = →

± − − ± − + ± − −′ = = = =

′ = −

  
59. (a) Apply Bernoulli’s equation to point 1, the exit hole, and point 2, the top surface of the liquid in  

the tank.  Note that both points are open to the air and so the pressure is atmospheric pressure.  
Also apply the equation of continuity ( )1 1 2 2A v A v= to the same two points. 

   
( ) ( )

( ) ( )

2 2 2 21 1 1
1 1 1 2 2 2 atm 1 2 atm 2 12 2 2

2
2 2 2 2 221
1 2 1 2 22 2

1

     

    2     1 2   

P v gy P v gy P v v P g y y

A
v v gh v v gh v gh

A

ρ ρ ρ ρ ρ ρ

ρ ρ

+ + = + + → + − = + − →

− = → − = → − = →
⎛ ⎞
⎜ ⎟
⎝ ⎠
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   ( )
2
1

2 2 22
2 12

2
1

2 2

1

gh ghA
v

A AA
A

= =
−

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  Note that since the water level is decreasing, we have 2

dh
v

dt
= − , and so ( )

2
1

2 2
2 1

2 .dh ghA
dt A A

= −
−

 

 (b) Integrate to find the height as a function of time. 

   
( ) ( ) ( )

( ) ( ) ( )

0

2 2 2
1 1 1

2 2 2 2 2 2
2 1 2 1 2 1 0

2
2 2
1 1

0 02 2 2 2
2 1 2 1

2 2 2
          

2
2     

2

h t

h

dh ghA dh gA dh gA
dt dt

dt A A A A A Ah h

gA gA
h h t h h t

A A A A

= − → = − → = − →
− − −

− = − → = −
− −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫
 

 (c) We solve for the time at which 0,h =  given the other parameters.  In particular,  

   

( )

( )

( ) ( ) ( ) ( )
( ) ( )

3 3
22 5 2 2 2

1 2

2
2
1

0 2 2
2 1

2 22 2 5 22 2
0 2 1

22 2 5 2
1

1.3 10 m
0.25 10 m 1.963 10 m   ;  1.226 10 m

0.106 m

0  
2

2 0.106 m 1.226 10 m 1.963 10 m2
92s

9.80 m s 1.963 10 m

A A

gA
h t

A A

h A A
t

gA

π
−

− − −

− −

−

×
= × = × = = ×

− = →
−

× − ×−
= = =

×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎣ ⎦

 

 
60. (a) Apply the equation of continuity and Bernoulli’s equation at the same height to the wide and  

narrow portions of the tube. 

( )

( ) ( )

1
2 2 1 1 2 1

2

2 2 2 21 21 1
1 1 2 2 2 12 2

2 2 2
2 21 2 1 21 1 2

1 1 1 2 2
2 2 2

    

2
      

2 2
     

A
A v A v v v

A

P P
P v P v v v

P P P PA A A
v v v

A A A

ρ ρ
ρ

ρ ρ

= → =

−
+ = + → = − →

− −
− = → − = →

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( )
( )

( )
( )

2
2 2 1 2 1 2
1 1 22 2 2 2

1 2 1 2

2 2
    

A P P P P
v v A

A A A Aρ ρ
− −

= → =
− −

 

 (b) 
( )
( )

1 2
1 2 2 2

1 2

2 P P
v A

A Aρ
−

=
−

 

  ( )[ ]
( )

( ) ( )[ ] ( )[ ]( )

2

21
2 4 43 2 21 1

2 2

133 N m
2 18 mm Hg

mm Hg
0.010 m 0.24 m s

1000 kg m 0.030 m 0.010 m
  π

π π
= =

−

⎛ ⎞
⎜ ⎟
⎝ ⎠  
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61. (a) Relate the conditions inside the rocket and just outside the exit orifice by means of Bernoulli’s  
equation and the equation of continuity.  We ignore any height difference between the two 
locations. 

  ( )

2 2 2 21 1 1 1
in in in out out out in 0 out2 2 2 2

2

2 2 20 in
out in out

out

     

2
1

P v gy P v gy P v P v

P P v
v v v

v

ρ ρ ρ ρ ρ ρ

ρ

+ + = + + → + = + →

−
= − = −

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

  

  
( ) ( )

in 0
in in out out in 0 out

out

2

2 20 0in
out out out

out

        1  

2 2
1     

v A
A v A v Av A v

v A

P P P Pv
v v v v

vρ ρ

= → = → = →

− −
= − ≈ → = =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

�

 

(b) Thrust is defined in section 9-10, by thrust rel

dm
F v

dt
= , and is interpreted as the force on the rocket 

due to the ejection of mass. 

  

( ) ( ) ( )

( )

2 0
thrust rel out out out out out 0 0

0 0

2

2       

d V P Pdm dV
F v v v v v A v A A

dt dt dt

P P A

ρ
ρ ρ ρ ρ

ρ
−

= = = = = =

= −
 

 
62. There is a forward force on the exiting water, and so by Newton’s third law there is an equal force 

pushing backwards on the hose.  To keep the hose stationary, you push forward on the hose, and so 
the hose pushes backwards on you.  So the force on the exiting water is the same magnitude as the 
force on the person holding the hose.  Use Newton’s second law and the equation of continuity to find 
the force.  Note that the 450 L/min flow rate is the volume of water being accelerated per unit time.  
Also, the flow rate is the product of the cross-sectional area of the moving fluid, times the speed of 

the fluid, and so 1 1 2 2

V
A v A v

t
= = . 

  

( )

( )
( ) ( )

2

2 1 2 2 1 1
2 1

2 1 2 1

2

2 2
2 1

23
3 3

2 22 21 1
2 2

1 1

1 1
   

450 L 1min 1m 1 1
  1.00 10 kg m

min 60 s 1000 L 0.75 10 m 7.0 10 m

 

v v v V V A v A v V
F m m v v

t t t t A A t A A

V
t r r

ρ ρ ρ

ρ
π π

π π− −

Δ −
= = = − = − = −

Δ

= −

= × × × −
× ×

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 1259 N 1300 N= ≈

 

 
63. Apply Eq. 13-11 for the viscosity force.  Use the average radius to calculate the plate area. 

( )

( ) ( )

outer inner
inner

avg inner

    
2

r r
rv F

F A
Av r h r

τ

η η
π ω

−
= → = =

⎛ ⎞
⎜ ⎟
⎝ ⎠l

l
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( )

( ) ( ) ( )

2

2

0.024 m N
0.20 10 m

0.0510 m
          7.9 10 Pa s

rev 2 rad 1min
2 0.0520 m 0.120 m 57 0.0510 m

min rev 60 s
ππ

−

−

×
= = ×

× ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

i

i  

 
64. The relationship between velocity and the force of viscosity is given by Eq. 

13-11, vis .v
F Aη=

l
 The variable A is the area of contact between the 

moving surface and the liquid.  For a cylinder, 2 .A rhπ=   The variable l is 
the thickness of the fluid layer between the two surfaces.  See the diagram.  
If the object falls with terminal velocity, then the net force must be 0, and so 
the viscous force will equal the weight.  Note that 

( )1
2 1.00cm 0.900cm 0.05cm.= − =l  

weight vis       
v

F F mg Aη= → = →
l

 

( ) ( ) ( )
( ) ( ) ( )

2 2

2 3 2

0.15kg 9.80 m s 0.050 10 m

2 2 0.450 10 m 0.300 m 200 10 N s m

0.43m s  

mg mg
v

A rhη π η π

−

− −

×
= = =

× ×

=

i
l l

 

 
65. Use Poiseuille’s equation (Eq. 13-12) to find the pressure difference. 

( )4
2 1   

8
R P P

Q
π

η
−

= →
l

 

( )
( ) ( )

( )

3 3 3
2

2 1 44 3

6.2 10 L 1min 1 10 m
8 0.2 Pa s 8.6 10 m

min 60s 1L

0.9 10 m

           6900 Pa

Q
P P

R
η

π π

− −
−

−

× ×
× × ×

8
− = =

×

=

⎡ ⎤
⎢ ⎥⎣ ⎦

i
l

 

 
66. From Poiseuille’s equation, the volume flow rate Q is proportional to 4R if all other factors are the 

same.  Thus 4
4

1V
Q R

t R
= is constant.  If the volume of water used to water the garden is to be the 

same in both cases, then 4tR  is constant. 
4 4

4 4 1
1 1 2 2 2 1 1 1

2

3 8
    0.13

5 8
R

t R t R t t t t
R

= → = = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

Thus the  time has been cut by 87%  . 
 
67. Use Poiseuille’s equation to find the radius, and then double the radius to the diameter. 

  
( )4

2 1   
8

R P P
Q

π
η

−
= →

l
 

h

r

l

mgG

visF
G
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( )

( ) ( )

( ) ( )

1/ 43
5

1/ 4

3 5
2 1

8.0 14.0 4.0 m
8 1.8 10 Pa s 15.5m

720 s8
2 2 2 0.10 m

0.71 10 atm 1.013 10 Pa atm
Q

d R
P P
η

π π

−

−

× ×
×

= = = =
− × ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎡ ⎤ ⎝ ⎠⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

i
l

 

 
68. Use Poiseuille’s equation to find the pressure difference. 

( )

( ) ( ) ( ) ( ) ( )
( )

4
2 1

3 6 3 3 3

2 1 44

  
8

8 650cm s 10 m cm 0.20 Pa s 1.9 10 m

0.145m

1423Pa 1400 Pa            

R P P
Q

Q
P P

R

π
η

η
π π

−

−
= →

×8
− = =

= ≈

i

l

l
 

 

69. (a) 
( ) ( ) ( )3

3

22 0.35m s 0.80 10 m 1.05 10 kg m2
1470

4 10 Pa s
vr

Re
ρ

η −

− 3× ×
= = =

× i
 

The flow is  laminar  at this speed. 
(b) Since the velocity is doubled the Reynolds number will double to 2940. The flow is  turbulent    

at this speed. 
 
70. From Poiseuille’s equation, Eq. 13-12, the volume flow rate Q  is proportional to 4R if all other 

factors are the same.  Thus 4Q R is constant. 

  ( )
1/ 4

1/ 4final initial final
final initial initial initial4 4

final initial initial

    0.15 0.622
Q Q Q

R R R R
R R Q

= → = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

, a  38%  reduction. 

 
71. The fluid pressure must be 78 torr higher than air pressure as it exits the needle, so that the blood will 

enter the vein.  The pressure at the entrance to the needle must be higher than 78 torr, due to the 
viscosity of the blood.  To produce that excess pressure, the blood reservoir is placed above the level 
of the needle.  Use Poiseuille’s equation to calculate the excess pressure needed due to the viscosity, 
and then use Eq. 13-6b to find the height of the blood reservoir necessary to produce that excess 
pressure. 

  

( )4
2 1 blood

2 1 blood4
blood

blood
1 4

blood

8
      

8

1 8

R P P Q
Q P P g h

R

Q
h P

g R

π η ρ
η π

η
ρ π

−
= → = + = Δ →

Δ = +⎛ ⎞
⎜ ⎟
⎝ ⎠

l

l

l
 

( )

( )

( ) ( )
( )

2

6 3
3 2

3 2
3

43

133 N m
78 mm-Hg

1mm-Hg
1

    2.0 10 mkg 8 4 10 Pa s 2.5 10 m1.05 10 9.80 m s 60 sm
0.4 10 m

    1.04 m 1.0 m

π

−
− −

−

+

= ×
× ××

×

= ≈

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟
⎜ ⎟⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎝ ⎠
⎜ ⎟
⎝ ⎠

i    
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72. In Figure 13-35, we have 2Fγ = l .  Use this to calculate the force. 

  
( )

3
23.4 10 N

2.4 10 N m
2 2 0.070 m
Fγ

−
−×

= = = ×
l

 

 
73. In Figure 13-35, we have 2Fγ = l .  Use this relationship to  

calculate the force. 

  ( ) ( ) 22     2 2 0.025 N m 0.245m 1.2 10 NF Fγ γ −= → = = = ×l l  
 
74. (a) We assume that the weight of the platinum ring is negligible.  Then the surface tension is the  

force to lift the ring, divided by the length of surface that is being pulled.  Surface tension will 

act at both edges of the ring, as in Figure 13-35b.  Thus 
( )2 2 4

F F
r r

γ
π π

= =  

(b) ( )
3

2
2

5.80 10 N
1.6 10 N m

4 4 2.8 10 m
F

r
γ

π π

−
−

−

×
= = = ×

×
 

 
75. As an estimate, we assume that the surface tension force acts vertically.  We assume that the free-

body diagram for the cylinder is similar to Figure 13-37(a) in the text.  The weight must equal the 
total surface tension force.  The needle is of length l. 

  

( )
( )

( ) ( )

21
T needle needle2

3
needle 3 2

needle

2     2   

8 0.072 N m8
1.55 10 m 1.5mm

7800 kg m 9.80 m s

mg F d g

d
g

ρ π γ

γ
ρ π π

−

= → = →

= = = × ≈

l l

 

 
76. Consider half of the soap bubble – a hemisphere.  The forces on the 

hemisphere will be the surface tensions on the two circles and the net 
force from the excess pressure between the inside and the outside of 
the bubble.  This net force is the sum of all the forces perpendicular 
to the surface of the hemisphere, but must be parallel to the surface 
tension.  Therefore we can find it by finding the force on the circle 
that is the base of the hemisphere.  The total force must be zero.  
Note that the forces T outerF

G
 and T innerF

G
 act over the entire length of the 

circles to which they are applied.  The diagram may look like there 
are 4 tension forces, but there are only 2.  Likewise, there is only 1 
pressure force, PF

G
, but it acts over the area of the hemisphere.  

  ( ) 2
T P

4
2     2 2     F F r r P P

r
γπ γ π= → = Δ → Δ =  

 
77. The mass of liquid that rises in the tube will have the force of gravity acting down on it, and the 

force of surface tension acting upwards.  The two forces must be equal for the liquid to be in 
equilibrium.    The surface tension force is the surface tension times the circumference of the tube, 
since the tube circumference is the length of the “cut” in the liquid surface.  The mass of the risen 
liquid is the density times the volume. 

  2
T     2     2F mg r r hg h grγ π ρπ γ ρ= → = → =  

 

r 

T outerF
G

T outerF
G

T innerF
G

T innerF
G

PF
G
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78. (a) The fluid in the needle is confined, and so Pascal’s principle may be applied. 

( ) ( )
( )

plunger needle
plunger needle

plunger needle

232 2
needle needle needle

needle plunger plunger plunger 22 2 2
plunger plunger plunger

4 4

      

0.10 10 m
2.8 N

0.65 10 m

6.627 10 N 6.6 10 N       

F F
P P

A A

A r r
F F F F

A r r
π
π

−

−

− −

= → = →

×
= = = =

×

= × ≈ ×

 

(b) ( ) ( )
2

22
plunger plunger plunger

133 N m
75mm-Hg 0.65 10 m 1.3 N

1mm-Hg
F P A π −= × =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
79. The pressures for parts (a) and (b) stated in this problem are gauge pressures, relative to atmospheric  

pressure.  The pressure change due to depth in a fluid is given by P g hρΔ = Δ . 

  (a) 
( )

( )

2

6 3
2

3 3

133N m
55mm-Hg

1mm-Hg
0.75m

g 1kg 10 cm
1.00 9.80m s

cm 1000g 1m

P
h

gρ
Δ

Δ = = =
× ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  (b) 
( )

( )

2

2
2

6 3
2

3 3

9.81N m
650mm-H O

1mm-H O
0.65m

g 1kg 10 cm
1.00 9.80m s

cm 1000g 1m

P
h

gρ
Δ

Δ = = =
× ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  (c) For the fluid to just barely enter the vein, the fluid pressure must be the same as the blood  
pressure. 

    
( )

( )

2

6 3
2

3 3

133N m
78mm-Hg

1mm-Hg
1.059m 1.1m

g 1kg 10 cm
1.00 9.80m s

cm 1000g 1m

P
h

gρ
Δ

Δ = = = ≈
× ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
80. The ball has three vertical forces on it – string tension, buoyant force, and gravity.  See 

the free-body diagram for the ball.  The net force must be 0. 

  ( )
( ) ( ) ( )

net T B

3 3 34 4 4
T B Cu water Cu water3 3 3

3 2 3 34
3

0  

    0.013m 9.80 m s 8900 kg m 1000 kg m 0.7125 N 0.71N

F F F mg

F mg F r g r g r gπ ρ π ρ π ρ ρ

π

= + − = →

= − = − = −

= − = ≈

 

Since the water pushes up on the ball via the buoyant force, there is a downward force on the water 
due to the ball, equal in magnitude to the buoyant force.  That mass-equivalent of that force 
(indicated by B Bm F g= ) will show up as an increase in the balance reading. 

  
( ) ( )

34
B water3

33 3 3B 4 4
B water3 3

  

0.013m 1000 kg m 9.203 10 kg 9.203g

F r g

F
m r

g

π ρ

π ρ π −

= →

= = = = × =
 

 Balance reading = 998.0g 9.2 g 1007.2 g+ =  

 

mgG

TF
G

BF
G
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81. The change in pressure with height is given by P g hρΔ = Δ . 

  

( )( )( )3 2

5
0 0

1.29 kg m 9.80 m s 380 m
    0.047  

1.013 10 Pa

0.047 atm

P g h
P g h

P P

P

ρρ Δ Δ
Δ = Δ → = = = →

×

Δ =

 

 
82. (a) The input pressure is equal to the output pressure. 

   ( ) ( ) ( )

input output
input output

input output

2input 2 4 2
input output 2

output

4 2

      

350 N
9.0 10 m 9.878 10 m

920 kg 9.80 m s

9.9 10 m      

F F
P P

A A

F
A A

F
π − −

−

= → = →

= = × = ×

≈ ×

 

(b) The work is the force needed to lift the car (its weight) times the vertical distance lifted. 
  ( ) ( ) ( )2920 kg 9.80 m s 0.42 m 3787 J 3800JW mgh= = = ≈  

(c) The work done by the input piston is equal to the work done in lifting the car. 

  ( ) ( )
( ) ( )

input output input input output ouptut

input input 3 3
2

      

350 N 0.13m
5.047 10 m 5.0 10 m

920 kg 9.80 m s

W W F d F d mgh

F d
h

mg
− −

= → = = →

= = = × ≈ ×
 

(d) The number of strokes is the full distance divided by the distance per stroke. 

  full
full stroke 3

stroke

0.42 m
    83strokes

5.047 10 m
h

h Nh N
h −

= → = = =
×

 

(e) The work input is the input force times the total distance moved by the input piston. 
  ( ) ( )input input input     83 350 N 0.13m 3777 J 3800 JW NF d= → = ≈  

 Since the work input is equal to the work output, energy is conserved. 
 
83. The pressure change due to a change in height is given by P g hρΔ = Δ .  That pressure is the excess 

force on the eardrum, divided by the area of the eardrum. 

( ) ( ) ( ) ( )3 2 4 2

  

1.29 kg m 9.80 m s 950 m 0.20 10 m 0.24 N

F
P g h

A
F g hA

ρ

ρ −

Δ = Δ = →

= Δ = × =
 

 
84. The change in pressure with height is given by P g hρΔ = Δ . 

  

( )( )( )3 3 2

5
0 0

1.05 10 kg m 9.80 m s 6 m
    0.609  

1.013 10 Pa

0.6 atm

P g h
P g h

P P

P

ρρ
×Δ Δ

Δ = Δ → = = = →
×

Δ =
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85. The pressure difference due to the lungs is the pressure change in the column of water. 

  
( )

( ) ( )

2

3 3 2

133N m
75mm-Hg

1 mm-Hg
    1.018 m 1.0 m

1.00 10 kg m 9.80m s
P

P g h h
g

ρ
ρ
Δ

Δ = Δ → Δ = = = ≈
×

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 
86. We use the relationship developed in Example 13-5. 

( ) ( ) ( )( )4 1
0 0

1.25 10 m 2400 m

0 1.0atm 0.74atmg P yP P e eρ
− −− ×−= = =  

 
87. The buoyant force, equal to the weight of mantle displaced, must be equal to the weight of the 

continent.  Let h represent the full height of the continent, and y represent the height of the continent 
above the surrounding rock. 

  

( )

( )

continent displaced continent mantle
mantle

3
continent

3
mantle

      

2800 kg m
1 35 km 1 5.3km

3300 kg m

W W Ah g A h y g

y h

ρ ρ

ρ
ρ

= → = − →

= − = − =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 

 
88. The “extra” buoyant force on the ship, due to the loaded fresh water, is the weight of “extra” 

displaced seawater, as indicated by the ship floating lower in the sea.  This buoyant force is given by 
buoyant displaced sea

water

.F V gρ=  But this “extra” buoyant force is what holds up the fresh water, and so must 

also be equal to the weight of the fresh water. 

 ( ) ( ) ( )2 3 7
buoyant displaced sea fresh fresh

water

    2240m 8.50m 1025kg m 1.95 10 kgF V g m g mρ= = → = = ×  

This can also be expressed as a volume. 

 
7

4 3 7fresh
fresh 3 3

fresh

1.95 10 kg
1.95 10 m 1.95 10 L

1.00 10 kg m
m

V
ρ

×
= = = × = ×

×
 

 
89. (a) We assume that the one descending is close enough to the surface of the Earth that constant  

density may be assumed.  Take Eq. 13-6b, modify it for rising, and differentiate it with respect 
to time. 

 ( ) ( ) ( )
0

3 2

  

1.29kg m 9.80m s 7.0m s 88.49 Pa s 88Pa s

P P gy

dP dy
g

dt dt

ρ

ρ

= − →

= − = − − = ≈
 

 (b) ( )350m
    50s 2 sig. fig.

7.0m s
y

y vt t
v
Δ

Δ = → = = =  

 
90. The buoyant force must be equal to the weight of the water displaced by the full volume of the logs,  

and must also be equal to the full weight of the raft plus the passengers.  Let N represent the number  
of passengers. 

  ( ) ( )
( ) ( ) ( )

log water person log log

2 2
log water log log log water log water log log water log

person person person

weight of water displaced by logs weight of people weight of logs

12 12   

12 12 12 1

V g Nm g V g

V r l SG r l SG
N

m m m

ρ ρ

ρ ρ π ρ ρ π ρ

= +

= + →

− − −
= = =
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( ) ( ) ( ) ( )2 312 0.225m 6.1m 1000 kg m 1 0.60

    68.48
68 kg

π −
= =  

Thus  68  people can stand on the raft without getting wet.  When the 69th person gets on, the raft 
will go under the surface. 

 
91. We assume that the air pressure is due to the weight of the atmosphere, with the area equal to the 

surface area of the Earth. 

  ( ) ( )26 5 22
18 18Earth

2

      

4 6.38 10 m 1.013 10 N m4
5.29 10 kg 5 10 kg

9.80m s

F
P F PA mg

A

PA R P
m

g g

ππ

= → = = →

× ×
= = = = × ≈ ×

 

 
92. The work done during each heartbeat is the force on the fluid times the distance that the fluid moves 

in the direction of the force. 

  ( ) ( )
2

6 3

  

133 N m
105mm-Hg 70 10 m

1 mm-Hg
Power 1.1W 1W

1 60 s
min

70 min

W F l PA l PV

W PV
t t

−

= Δ = Δ = →

×
= = = = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
93. (a) We assume that the water is launched at ground level.  Since it also lands at ground level, the  

level range formula from Example 3-10 may be used. 

   
( ) ( )22

0
0 o

7.0 m 9.80 m ssin 2
    8.544 m s 8.5m s

sin 2 sin 70
v Rg

R v
g

θ
θ

= → = = = ≈  

 (b) The volume rate of flow is the area of the flow times the speed of the flow.  Multiply by 4 for  
the 4 heads. 

   ( ) ( )22 3Volume flow rate 4 4 1.5 10 m 8.544 m sAv r vπ π −= = = ×  

   4 3
3 3

1 L
                        2.416 10 m s 0.24 L s

1.0 10 m
−

−
= × ≈

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (c) Use the equation of continuity to calculate the flow rate in the supply pipe. 

   ( ) ( ) ( )
( )

4 3
heads

supply 2supply heads 2
supply

2.416 10 m s
    0.85m s

0.95 10 m

Av
Av Av v

A π

−

−

×
= → = = =

×
 

 
94. The buoyant force on the rock is the force that would be on a mass of water with the same volume as 

the rock.  Since the equivalent mass of water is accelerating upward, that same acceleration must be 
taken into account in the calculation of the buoyant force. 

  ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

buoyant water water

rock
buoyant water water water rock water water

rock

2

rock

rock

  

3.0 kg 2.8 9.80 m s
        1.8 30.49 N 30 N 2 sig. fig.

2.7

F m g m a

m
F m g a V g a V g a g a

m
g g

SG

ρ ρ ρ
ρ

− = →

= + = + = + = +

= + = = ≈
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 For the rock to not sink, the upward buoyant force on the rock minus the weight of the rock must be 
equal to the net force on the rock. 

  ( ) ( ) ( )2
buoyant rock rock buoyant rock    3.0kg 2.8 9.80m s 82 NF m g m a F m g a− = → = + = =  

  The rock will sink , because the buoyant force is not large enough to “float” the rock. 
 
95. Apply both Bernoulli’s equation and the equation of continuity at the two locations of the stream,  

with the faucet being location 0 and the lower position being location 1.  The pressure will be air 
pressure at both locations.  The lower location has 1 0y =  and the faucet is at height 0y y= . 

  
( )
( )

2 2
00 0

0 0 1 1 1 0 0 02 2
1 11

2
      

2

dA d
A v A v v v v v

A dd

π
π

= → = = = →  

  

4
2 2 2 2 2 01 1

0 0 0 1 1 1 0 1 02 2 4
1

1/ 42
0

1 0 2
0

   2   

2

d
P v gy P v gy v gy v v

d

v
d d

v gy

ρ ρ ρ ρ+ + = + + → + = = →

=
+

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
96. (a) Apply Bernoulli’s equation between the surface of the water in the sink and the lower end of the  

siphon tube.  Note that both are open to the air, and so the pressure at both is air pressure. 

  
( ) ( ) ( )

2 21 1
top top top bottom bottom bottom2 2

2
bottom top bottom

  

2 2 9.80 m s 0.44 m 2.937 m s 2.9 m s

P v gy P v gy

v g y y

ρ ρ ρ ρ+ + = + + →

= − = = ≈
 

(b) The volume flow rate (at the lower end of the tube) times the elapsed time must equal the 
volume of water in the sink. 

( ) ( )
( ) ( )
( ) ( )

2 2

sink
sink 2lower 2

lower

0.38 m 4.0 10 m
    16.47 s 16s

1.0 10 m 2.937 m s

V
Av t V t

Av π

−

−

×
Δ = → Δ = = = ≈

×
 

 
97. The upward force due to air pressure on the bottom of the wing must be equal to the weight of the 

airplane plus the downward force due to air pressure on the top of the wing.  Bernoulli’s equation 
can be used to relate the forces due to air pressure.  We assume that there is no appreciable height 
difference between the top and the bottom of the wing. 

  

( )

( )

( ) ( ) ( )
( )

top bottom bottom top

2 21 1
0 bottom bottom bottom 0 top top top2 2

bottom top2 2
top bottom

6 2
bottom top 2 2

top bottom bottom 3

    

2
  

2 1.7 10 kg 9.80 m s2 2
1.29 kg m 1200 m

mg
P A mg P A P P

A
P P v gy P P v gy

P P
v v

P P mg
v v v

A

ρ ρ ρ ρ

ρ

ρ ρ

+ = → − =

+ + + = + + +

−
= + →

×−
= + = + = ( ) ( )2

2
95m s

     174.8 m s 170 m s

+

= ≈
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98. We label three vertical levels.  Level 0 is at the pump, and the supply tube 

has a radius of 0r  at that location.  Level 1 is at the nozzle, and the nozzle 
has a radius of 1r .  Level 1 is a height 1h  above level 0.  Level 2 is the 
highest point reached by the water.  Level 2 is a height 2h above level 1.  We 
may write Bernoulli’s equation relating any 2 of the levels, and we may 
write the equation of continuity relating any 2 of the levels.  The desired 
result is the gauge pressure of the pump, which would be 0 atm .P P−   Start by 
using Bernoulli’s equation to relate level 0 to level 1. 

  2 21 1
0 0 0 1 1̀ 12 2P gh v P gh vρ ρ ρ ρ+ + = + +  

 Since level 1 is open to the air, 1 atm .P P=   Use that in the above equation. 

  2 21 1
0 atm `1 1 02 2P P gh v vρ ρ ρ− = + −  

Use the equation of continuity to relate level 0 to level 1, and then use that result in the Bernoulli 
expression above. 

  
2 2

2 2 1 1
0 0 1 1 0 0 1 1 0 1 12 2

0 0

        
r d

A v A v r v r v v v v
r d

π π= → = → = =  

  
22 4

2 21 11 1 1
0 atm `1 1 1 `1 12 2 22 4

0 0

1
d d

P P gh v v gh v
d d

ρ ρ ρ ρ ρ− = + − = + −
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Use Bernoulli’s equation to relate levels 1 and 2.  Since both levels are open to the air, the pressures 
are the same.  Also note that the speed at level 2 is zero.  Use that result in the Bernoulli expression 
above. 

  

( )

( ) ( ) ( ) ( )

2 2 21 1
1 1 1 2 1 2 2 1 22 2

4 4
2 1 11

0 atm 1̀ 1 `1 22 4 4
0 0

3 3 2 4

2 4 2

    2

1 1

            1.00 10 kg m 9.80 m s 1.1m 0.14 m 1 0.5

            12066 N m 1.2 10 N m

P gh v P g h h v v gh

d d
P P gh v g h h

d d

ρ ρ ρ ρ

ρ ρ ρ

+ + = + + + → =

− = + − = + −

= × + −

= ≈ ×

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎣ ⎦

 

 
99. We assume that there is no appreciable height difference to be considered between the two sides of  

the window.  Then the net force on the window due to the air is the difference in pressure on the two 
sides of the window, times the area of the window.  The difference in pressure can be found from 
Bernoulli’s equation. 

2 21 1
inside inside inside outside outside outside2 2  P v gy P v gyρ ρ ρ ρ+ + = + + →  

( ) ( ) ( )

2 air1
inside outside air outside2

roof

2

2 3 41 1
air air outside roof2 2

2

  

1m s
1.29 kg m 200 km h 6.0 m 1.2 10 N

3.6 km h

F
P P v

A

F v A

ρ

ρ

− = = →

= = = ×
⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 
100. From Poiseuille’s equation, the viscosity can be found from the volume flow rate, the geometry of 

the tube, and the pressure difference.  The pressure difference over the length of the tube is the same 
as the pressure difference due to the height of the reservoir, assuming that the open end of the needle 
is at atmospheric pressure. 

1h

2h

1r

0r
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( )4

2 1
2 1 blood  ;    

8
R P P

Q P P gh
π

ρ
η

−
= − = →

l
 

  

( ) ( ) ( ) ( ) ( )

( )

43 3 3 24 4
2 1 blood

3 6 3
2

3

3

0.20 10 m 1.05 10 kg m 9.80 m s 1.30 m

8 8 cm 1 min 10 m
8 4.1 3.8 10 m

min 60 s cm

3.2 10 Pa s

R P P R gh
Q Q

ππ π ρη
−

−
−

−

× ×−
= = =

× × ×

= ×

⎡ ⎤
⎢ ⎥⎣ ⎦

i

l l
 

 
101. The net force is 0 if the balloon is moving at terminal velocity.  Therefore the upwards buoyancy 

force (equal to the weight of the displaced air) must be equal to the net downwards force of the 
weight of the balloon material plus the weight of the helium plus the drag force at terminal velocity.  
Find the terminal velocity, and use that to find the time to rise 12 m. 

  

( )
( )

3 3 2 24 4 1
B balloon Helium D air balloon He D air T3 3 2

34 2
3 air He D air

T 2 34
D air 3 air He

      

2
      

2

F m g m g F r g m g r g C r v

r m g h C r
v t h

C r t r m g

π ρ π ρ ρ π

π ρ ρ ρ π
ρ π π ρ ρ

= + + → = + + →

− −
= = → = →

− −

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

 

  ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

23

3 3 3 24
3

0.47 1.29 kg m 0.15m
12 m 4.9s

2 0.15m 1.29 kg m 0.179kg m 0.0028 kg 9.80 m s
t

π

π
= =

− −⎡ ⎤⎣ ⎦
 

 
102. From Poiseuille’s equation, the volume flow rate Q  is proportional to 4R if all other factors are the 

same.  Thus 4Q R is constant.  Also, if the diameter is reduced by 15%, so is the radius. 

  ( )
4

4final initial final final
4 4 4
final initial initial initial

    0.85 0.52
Q Q Q R
R R Q R

= → = = =  

 The flow rate is 52% of the original value. 
 
103. Use the definition of density and specific gravity, and then solve for the fat fraction, f. 

( )

( ) ( )

fat fat fat fat fat fat
free free free

fat fat
freetotal

body water
total fat fat

free
fat fat fat fat

free free

fat fat
free fat

water fat fat fat
free free

  ;  1

1
  

1 1

m mf V m m f V

m m
m m

X
m f fmf fV V V

f
X

ρ ρ

ρ ρ

ρ ρ ρ ρ

ρ ρ
ρ

ρ ρ ρ ρ

= = = − =

+
= = = = = →

− −+ + +

= −
−⎛ ⎞

⎜ ⎟
⎝ ⎠

( ) ( )
( ) ( )

( )
( )

3 3 3

3 3 3

fat

0.90 g cm 1.10 g cm 0.90 g cm

1.0 g cm 0.20 g cm 0.20 g cm

4.95 4.95 495
  4.5    % Body fat 100 100 4.5 450

X

f
X X X

ρ
= −

−

= − → = = − = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠
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104. The graph is shown.  The best-fit 
equations as calculated by Excel are 
also shown.  Let P represent the 
pressure in kPa and y the altitude in m. 

 
The spreadsheet used for this problem 
can be found on the Media Manager, 
with filename 
“PSE4_ISM_CH13.XLS,” on tab 
“Problem 13.104.” 

 
 
 (a) Quadratic fit:  ( ) ( )7 2 2

quad 3.9409 10 1.1344 10 100.91P y y− −= × − × + ,  
 

 (b) Exponential fit: ( )41.3390 10
exp 103.81

y
P e

−− ×
=  

 

 (c) ( ) ( ) ( ) ( )27 2
quad 3.9409 10 8611 1.1344 10 8611 100.91 32.45kPaP − −= × − × + =  

  ( )( )41.3390 10 8611

exp 103.81 32.77 kPaP e
−− ×= =  

  
( )
( )

( )
( )

( )
( )

exp quad exp quad

1
2 exp quad exp quad

100 200 200 32.77 kPa 32.45kPa
% diff 0.98%

32.77 kPa 32.45kPa

P P P P

P P P P

− − −
= = = =

+ + +
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CHAPTER 14:  Oscillations 
 
Responses to Questions 
 
1.  Examples are: a child’s swing (SHM, for small oscillations), stereo speakers (complicated motion, 

the addition of many SHMs), the blade on a jigsaw (approximately SHM), the string on a guitar 
(complicated motion, the addition of many SHMs). 

 
2.   The acceleration of a simple harmonic oscillator is momentarily zero as the mass passes through the 

equilibrium point. At this point, there is no force on the mass and therefore no acceleration. 
 
3.  When the engine is running at constant speed, the piston will have a constant period. The piston has 

zero velocity at the top and bottom of its path. Both of these properties are also properties of SHM. 
In addition, there is a large force exerted on the piston at one extreme of its motion, from the 
combustion of the fuel–air mixture, and in SHM the largest forces occur at the extremes of the 
motion. 

 
4.  The true period will be larger and the true frequency will be smaller. The spring needs to accelerate 

not only the mass attached to its end, but also its own mass. As a mass on a spring oscillates, 
potential energy is converted into kinetic energy. The maximum potential energy depends on the 
displacement of the mass. This maximum potential energy is converted into the maximum kinetic 
energy, but if the mass being accelerated is larger then the velocity will be smaller for the same 
amount of energy. A smaller velocity translates into a longer period and a smaller frequency. 

 

5. The maximum speed of a simple harmonic oscillator is given by
k

v A
m

= .  The maximum speed 

can be doubled by doubling the amplitude, A. 
 
6.  Before the trout is released, the scale reading is zero. When the trout is released, it will fall 

downward, stretching the spring to beyond its equilibrium point so that the scale reads something 
over 5 kg. Then the spring force will pull the trout back up, again to a point beyond the equilibrium 
point, so that the scale will read something less than 5 kg. The spring will undergo damped 
oscillations about equilibrium and eventually come to rest at equilibrium. The corresponding scale 
readings will oscillate about the 5-kg mark, and eventually come to rest at 5 kg.  

 
7.  At high altitude, g is slightly smaller than it is at sea level. If g is smaller, then the period T of the 

pendulum clock will be longer, and the clock will run slow (or lose time). 
 
8.  The tire swing is a good approximation of a simple pendulum. Pull the tire back a short distance and 

release it, so that it oscillates as a pendulum in simple harmonic motion with a small amplitude. 
Measure the period of the oscillations and calculate the length of the pendulum from the expression 

2T
g

π=
l

. The length, l, is the distance from the center of the tire to the branch. The height of the 

branch is l plus the height of the center of the tire above the ground.  
 
9. The displacement and velocity vectors are in the same direction while the oscillator is moving away 

from its equilibrium position. The displacement and acceleration vectors are never in the same 
direction. 
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10.  The period will be unchanged, so the time will be (c), two seconds. The period of a simple pendulum 
oscillating with a small amplitude does not depend on the mass. 

  
11. The two masses reach the equilibrium point simultaneously. The angular frequency is independent of 

amplitude and will be the same for both systems. 
 
12.  Empty. The period of the oscillation of a spring increases with increasing mass, so when the car is 

empty the period of the harmonic motion of the springs will be shorter, and the car will bounce 
faster.  

 
13. When walking at a normal pace, about 1 s (timed). The faster you walk, the shorter the period. The 

shorter your legs, the shorter the period. 
 
14. When you rise to a standing position, you raise your center of mass and effectively shorten the 

length of the swing.  The period of the swing will decrease. 
 
15. The frequency will decrease. For a physical pendulum, the period is proportional to the square root 

of the moment of inertia divided by the mass. When the small sphere is added to the end of the rod, 
both the moment of inertia and the mass of the pendulum increase. However, the increase in the 
moment of inertia will be greater because the added mass is located far from the axis of rotation. 
Therefore, the period will increase and the frequency will decrease. 

 
16. When the 264-Hz fork is set into vibration, the sound waves generated are close enough in frequency 

to the resonance frequency of the 260-Hz fork to cause it to vibrate. The 420-Hz fork has a 
resonance frequency far from 264 Hz and far from the harmonic at 528 Hz, so it will not begin to 
vibrate. 

 
17.  If you shake the pan at a resonant frequency, standing waves will be set up in the water and it will 

slosh back and forth. Shaking the pan at other frequencies will not create large waves. The individual 
water molecules will move but not in a coherent way.  

 
18. Examples of resonance are: pushing a child on a swing (if you push at one of the limits of the 

oscillation), blowing across the top of a bottle, producing a note from a flute or organ pipe. 
 
19. Yes. Rattles which occur only when driving at certain speeds are most likely resonance phenomena. 
 
20. Building with lighter materials doesn’t necessarily make it easier to set up resonance vibrations, but 

it does shift the fundamental frequency and decrease the ability of the building to dampen 
oscillations. Resonance vibrations will be more noticeable and more likely to cause damage to the 
structure. 

 
 
Solutions to Problems 
 
1. The particle would travel four times the amplitude: from x A=  to 0x =  to x A= −  to 0x =  to  

x A= .  So the total distance ( )4 4 0.18m 0.72 mA= = = . 

 
2. The spring constant is the ratio of external applied force to displacement. 

ext 180 N 75 N 105 N
525N m 530 N m

0.85 m 0.65 m 0.20 m
F

k
x

−
= = = = ≈

−
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3. The spring constant is found from the ratio of applied force to displacement. 
( ) ( )2

5
3

ext
68 kg 9.80 m s

1.333 10 N m
5.0 10 m

F mg
k

x x −
= = = = ×

×
 

The frequency of oscillation is found from the total mass and the spring constant. 
51 1 1.333 10 N m

1.467 Hz 1.5 Hz
2 2 1568 kg

k
f

mπ π
×

= = = ≈  

 
4. (a) The motion starts at the maximum extension, and so is a cosine.  The amplitude is the  

displacement at the start of the motion. 

   
( ) ( ) ( ) ( )

( ) ( )

2 2
cos cos 8.8cm cos 8.8cm cos 9.520

0.66

 8.8cm cos 9.5

x A t A t t t
T

t

π πω= = = =

≈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

 (b) Evaluate the position function at t = 1.8 s. 
   ( ) ( )( )18.8cm cos 9.520s 1.8s 1.252cm 1.3cmx −= = − ≈ −  

 
5. The period is 2.0 seconds, and the mass is 35 kg.  The spring constant can be calculated from Eq. 14-

7b. 

  
( )

2 2 2 2
22

35kg
2     4     4 4 350 N m

2.0s
m m m

T T k
k k T

π π π π= → = → = = =  

 
6. (a) The spring constant is found from the ratio of applied force to displacement. 

( ) ( )2

ext
2.4 kg 9.80m s

653N m 650 N m
0.036 m

F mg
k

x x
= = = = ≈  

 (b) The amplitude is the distance pulled down from equilibrium, so 2.5cmA =  

 The frequency of oscillation is found from the oscillating mass and the spring constant. 
1 1 653N m

2.625Hz 2.6 Hz
2 2 2.4 kg

k
f

mπ π
= = = ≈  

 
7. The maximum velocity is given by Eq. 14-9a. 

  ( )
max

2 0.15m2
0.13m s

7.0s
A

v A
T

ππω= = = =  

 The maximum acceleration is given by Eq. 14-9b. 

  

( )
( )

22
2 2 2

max 22

2
2max

2

4 0.15m4
0.1209 m s 0.12 m s

7.0s

0.1209 m s
1.2 10 1.2%

9.80 m s

A
a A

T

a
g

ππω

−

= = = = ≈

= = × =
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8. The table of data is 
shown, along with 
the smoothed graph.  
Every quarter of a 
period, the mass 
moves from an 
extreme point to the 
equilibrium.  The 
graph resembles a cosine wave (actually, 
the opposite of a cosine wave). 

 
 

9. The relationship between frequency, mass, and spring constant is Eq. 14-7a,
1

2
k

f
mπ

= . 

 (a) ( ) ( )22 2 2 41
    4 4 4.0 Hz 2.5 10 kg 0.1579 N m 0.16 N m

2
k

f k f m
m

π π
π

−= → = = × = ≈  

 (b) 
4

1 1 0.1579 N m
2.8 Hz

2 2 5.0 10 kg
k

f
mπ π −

= = =
×

 

 
10. The spring constant is the same regardless of what mass is attached to the spring. 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 2
1 1 2 12

2
2 2

2 2

1
    constant      

2 4

0.68kg 0.60 Hz
 kg 0.83Hz  kg 0.68 kg 0.60 Hz     0.74 kg

0.83Hz 0.60 Hz

k k
f mf m f m f

m

m m m

π π
= → = = → = →

= + → = =
−

 

 
11. We assume that the spring is stretched some distance 0y  while the 

rod is in equilibrium and horizontal.  Calculate the net torque 
about point A while the object is in equilibrium, with clockwise 
torques as positive. 

  ( )1 1
s 02 2 0Mg F g kyMτ = − = − =∑ l l l l  

Now consider the rod being displaced an additional distance y  
below the horizontal, so that the rod makes a small angle of θ  as shown in the free-body diagram.  
Again write the net torque about point A.  If the angle is small, then there has been no appreciable 
horizontal displacement of the rod. 

  ( ) ( )
2

21 1 1
s 02 2 3 2

d
Mg F Mg k y y I M

dt
θτ α= − = − + = =∑ l l l l l  

 Include the equilibrium condition, and the approximation that sin .y θ θ= ≈l l  

  

2 2
2 21 1 1 1 1

02 3 2 2 32 2

2 2
2 21

3 2 2

     

3
    0

d d
Mg ky ky M Mg ky Mg M

dt dt
d d k

k M
dt dt M

θ θ

θ θθ θ

− − = → − − = →

− = → =+

l l l l l l l l

l l

 

 This is the equation for simple harmonic motion, corresponding to Eq. 14-3, with 2 3 .k
M

ω =  

-1

0

1

0 0.25 0.5 0.75 1 1.25

time / T

po
si

tio
n 

/ A

time position
0 - A

T/4 0
T/2 A
3T/4 0

T - A
5T/4 0

θ A

MgG

sF
G
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  2 2 2 3 1 3
4     

2
k k

f f
M M

ω π
π

= = → =  

   
12. (a) We find the effective spring constant from the mass and the frequency of oscillation. 

( ) ( ) ( )22 2 2

1
  

2

4 4 0.055kg 3.0 Hz 19.54 N m 20 N m 2 sig fig

k
f

m

k mf

π

π π

= →

= = = ≈
 

 (b) Since the objects are the same size and shape, we anticipate that the spring constant is the same. 

 
1 1 19.54 N m

1.4 Hz
2 2 0.25kg

k
f

mπ π
= = =  

 
13. (a) For A, the amplitude is A 2.5mA = .  For B, the amplitude is B 3.5mA = . 

(b) For A, the frequency is 1 cycle every 4.0 seconds, so A 0.25Hzf = .  For B, the frequency is 1  

cycle every 2.0 seconds, so B 0.50 Hzf = . 

 (c) For C, the period is A 4.0sT = .  For B, the period is B 2.0sT =  

 (d) Object A has a displacement of 0 when 0t = , so it is a sine function.   

( ) ( ) ( )1
A A A A 2sin 2     2.5m sinx A f t x tπ π= → =  

Object B has a maximum displacement when 0t = , so it is a cosine function.   

( ) ( ) ( )B B B Bcos 2     3.5m cosx A f t x tπ π= → =  

 
14. Eq. 14-4 is ( )cosx A tω φ= + . 

 (a) If ( )0x A= − , then ( )1cos     cos 1     .A A φ φ φ π−− = → = − → =  

 (b) If ( )0 0x = , then ( )1 1
20 cos     cos 0     .A φ φ φ π−= → = → = ±  

 (c) If ( )0x A= , then ( )1cos     cos 1     0 .A A φ φ φ−= → = → =  

 (d) If ( ) 1
20x A= , then ( )11 1 1

2 2 3cos     cos     .A A φ φ φ π−= → = → = ±  

 (e) If ( ) 1
20x A= − , then ( )11 1 2

2 2 3cos     cos     .A A φ φ φ π−− = → = − → = ±  

 (f) If ( )0 2x A= , then ( )1 1 1
42

2 cos     cos     .A A φ φ φ π−= → = → = ±  

 The ambiguity in the answers is due to not knowing the direction of motion at t = 0. 
 
15. We assume that downward is the positive direction of motion.  For this motion, we have  

305 N mk = , 0.280 m, 0.260 kg,A m= =  and ( )305 N m 0.260 kg 34.250 rad sk mω = = = . 
 (a) Since the mass has a zero displacement and a positive velocity at t = 0, the equation is a sine  

function. 
   ( ) ( ) ( )[ ]0.280 m sin 34.3rad sy t t=  
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 (b) The period of oscillation is given by 
2 2

0.18345s
34.25 rad s

T
π π
ω

= = = .  The spring will have  

its maximum extension at times given by the following. 

 ( )2
max 4.59 10 s 0.183 s , 0,1, 2,

4
T

t nT n n−= + = × + = "  

  The spring will have its minimum extension at times given by the following. 

 ( )1
min

3
1.38 10 s 0.183 s , 0,1, 2,

4
T

t nT n n−= + = × + = "  

 
16. (a) From the graph, the period is 0.69 s.  The period and the mass can be used to find the spring  

constant. 

   
( )

2 2
22

0.0095kg
2     4 4 0.7877 N m 0.79 N m

0.69s
m m

T k
k T

π π π= → = = = ≈   

 (b) From the graph, the amplitude is 0.82 cm.  The phase constant can be found from the initial  
conditions. 

   
( )

( ) ( ) 1

2 2cos 0.82cm cos
0.69

0.43
0 0.82cm cos 0.43cm    cos 1.02 rad

0.82

x A t t
T

x

π πφ φ

φ φ −

= + = +

= = → = = ±

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

Because the graph is shifted to the RIGHT from the 0-phase cosine, the phase constant must be 
subtracted. 

   ( ) ( ) ( )20.82cm cos 1.0  or 0.82cm cos 9.1 1.0
0.69

x t tπ= − −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
17. (a) The period and frequency are found from the angular frequency. 

 
1 1 5 5 1

2     Hz    1.6 s
2 2 4 8

f f T
f

πω π ω
π π

= → = = = = =  

 (b) The velocity is the derivative of the position. 

   
( ) ( )

( ) ( ) ( ) ( )

5 5 5
3.8m cos         3.8m sin

4 6 4 4 6
5

0 3.8m cos 3.3m         0 3.8m sin 7.5m s
6 4 6

dx
x t v t

dt

x v

π π π π π

π π π

= + = = − +

= = = − = −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 (c) The acceleration is the derivative of the velocity. 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

2
2

5 5 5 5
3.8m sin         3.8m cos

4 4 6 4 4 6
5 5

2.0 3.8m sin 2.0 13m s
4 4 6

5 5
3.8m cos 2.0 29 m s

4 4 6
2.0

dv
v t a t

dt

v

a

π π π π π π

π π π

π π π

= − + = = − +

= − + = −

= − + =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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18. (a) The maximum speed is given by Eq. 14-9a. 
( ) ( )3

max 2 2 441Hz 1.5 10 m 4.2m sv f Aπ π −= = × = . 

 (b) The maximum acceleration is given by Eq. 14-9b. 

   ( ) ( )22 2 2 3 4 2
max 4 4 441Hz 1.5 10 m 1.2 10 m sa f Aπ π −= = × = × . 

 
19. When the object is at rest, the magnitude of the spring force is equal to the force of gravity.  This 

determines the spring constant.  The period can then be found. 

  

vertical 0
0

0
2

0

    

0.14m
2 2 2 2 0.75s

9.80m s

mg
F kx mg k

x

m m x
T

mgk g
x

π π π π

= − → =

= = = = =

∑
 

 
20. The spring constant can be found from the stretch distance corresponding to the weight suspended on  

the spring. 

  
( ) ( )2

ext
1.62kg 9.80m s

73.84 N m
0.215m

F mg
k

x x
= = = =  

After being stretched further and released, the mass will oscillate.  It takes one-quarter of a period for 
the mass to move from the maximum displacement to the equilibrium position. 

 1 1
4 4

1.62 kg
2 0.233s

2 73.84 N m
T m k

ππ= = =  

 
21. Each object will pass through the origin at the times when the argument of its sine function is a 

multiple of .π  
3 5 71 1

A A A A A A2 2 2 2 2

5 7 81 1 2 4
B B B B B B3 3 3 3 3 3 3

A:  2.0     ,  1,2,3,  so , , ,2 , ,3 , ,4 ,

B:  3.0     ,  1,2,3,  so , , , , ,2 , , ,3 ,

t n t n n t

t n t n n t

π π π π π π π π π π
π π π π π π π π π π π

= → = = =

= → = = =

… …

… …
 

 Thus we see the first three times are s, 2 s, 3 sπ π π  or 3.1s, 6.3s, 9.4s .  

 
22. (a) The object starts at the maximum displacement in the positive direction, and so will be  

represented by a cosine function.  The mass, period, and amplitude are given. 

   ( ) ( )2
0.16m ; 11.4 rad s     0.16m cos 11

0.55s
A y t

T
π πω 2

= = = = → =  

 (b) The time to reach the equilibrium is one-quarter of a period, so ( )1
4 0.55s 0.14s .=  

 (c) The maximum speed is given by Eq. 14-9a. 
   ( ) ( )max 11.4 rad s 0.16m 1.8m sv Aω= = =  

 (d) The maximum acceleration is given by Eq. 14-9b. 

   ( ) ( )22 2
max 11.4 rad s 0.16m 2.1m sa Aω= = =  

The maximum acceleration occurs at the endpoints of the motion, and is first attained at the 
release point. 
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23. The period of the jumper’s motion is 
43.0 s

5.375 s
8 cycles

T = = .  The spring constant can then be found  

from the period and the jumper’s mass. 

  
( )

( )

22

22

4 65.0kg4
2     88.821N m 88.8N m

5.375s
m m

T k
k T

πππ= → = = = ≈  

The stretch of the bungee cord needs to provide a force equal to the weight of the jumper when he is 
at the equilibrium point.   

( ) ( )265.0 kg 9.80m s
    7.17m

88.821N m
mg

k x mg x
k

Δ = → Δ = = =  

 Thus the unstretched bungee cord must be 25.0 m 7.17 m 17.8m− = .  

 
24. Consider the first free-body diagram for the block while it is 

at equilibrium, so that the net force is zero.  Newton’s 
second law for vertical forces, with up as positive, gives this. 

  A B A B0    yF F F mg F F mg= + − = → + =∑  
Now consider the second free-body diagram, in which the 
block is displaced a distance x  from the equilibrium point.  
Each upward force will have increased by an amount kx− , 
since 0x < .  Again write Newton’s second law for vertical forces. 

  ( )A B A B A B2 2y netF F F F mg F kx F kx mg kx F F mg kx′ ′= = + − = − + − − = − + + − = −∑  
This is the general form of a restoring force that produces SHM, with an effective spring constant of 
2k .  Thus the frequency of vibration is as follows.  

  effective

1 1 2
2 2

k
f k m

mπ π
= =  

 
25. (a) If the block is displaced a distance x to the right in Figure 14-32a, then the length of spring # 1  

will be increased by a distance 1x  and the length of spring # 2 will be increased by a distance 

2x , where 1 2.x x x= +   The force on the block can be written eff .F k x= −   Because the springs 
are massless, they act similar to a rope under tension, and the same force F is exerted by each 
spring.  Thus eff 1 1 2 2.F k x k x k x= − = − = −  

1 2
1 2 1 2 eff eff 1 2

eff 1 2

1 1 1 1 1
    

1 1
2 2

F F F
x x x F

k k k k k k k k

m
T m

k k k
π π

= + = − − = − + = − → = +

= = +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) The block will be in equilibrium when it is stationary, and so the net force at that location is  
zero.  Then, if the block is displaced a distance x to the right in the diagram, then spring # 1 will 
exert an additional force of 1 1F k x= − , in the opposite direction to x.  Likewise, spring # 2 will 
exert an additional force 2 2F k x= − , in the same direction as 1F .  Thus the net force on the 

AF
G

mgG
mgG

BF
G

A′F
G

B′F
G

x 
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displaced block is ( )1 2 1 2 1 2F F F k x k x k k x= + = − − = − + .  The effective spring constant is thus 

1 2k k k= + , and the period is given by 
1 2

2 2
m m

T
k k k

π π= =
+

. 

 
26. The impulse, which acts for a very short time, changes the momentum of the mass, giving it an initial 

velocity 0.v   Because this occurs at the equilibrium position, this is the maximum velocity of the 
mass.  Since the motion starts at the equilibrium position, we represent the motion by a sine function. 

  

0 0 0 max0       

        sin sin

J k
J p m v mv mv v v A A

m m

J k J J k
A A x A t t

m m mkm km

ω

ω

= Δ = Δ = − = → = = = = →

= → = → = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
27. The various values can be found from the equation of motion, cos 0.650cos 7.40 .x A t tω= =  

(a) The amplitude is the maximum value of x, and so 0.650 m .A =  

(b) The frequency is 7.40 rad s
1.18 Hz .

2 2 rad
f

ω
π π

= = =  

(c) The total energy can be found from the maximum potential energy. 
  ( ) ( ) ( )2 22 2 21 1 1

max 2 2 2 1.15kg 7.40 rad s 0.650 m 13.303J 13.3JE U kA m Aω= = = = = ≈  

(d) The potential energy can be found from 21
2U kx= , and the kinetic energy from .E U K= +  

  
( ) ( ) ( )2 22 2 21 1 1

2 2 2 1.15kg 7.40 rad s 0.260 m 2.1J

13.3J 2.1J 11.2 J

U kx m x

K E U

ω= = = =

= − = − =
 

 
28. (a) The total energy is the maximum potential energy. 

   ( )2 21 1 1 1
2 2 2 2        2 0.707U E kx kA x A A= → = → = ≈  

 (b) Now we are given that 1
3 .x A=  

   
2 21

2
2 21

2

1
9

U kx x
E kA A
= = =  

  Thus the energy is divided up into 81
9 9potential and  kinetic .  

 
29. The total energy can be found from the spring constant and the amplitude. 
  ( ) ( )221 1

2 2 95 N m 0.020 m 0.019 JE kA= = =  
That is represented by the horizontal line on the graph. 

 (a) From the graph, at 1.5cm,x =  we have 0.011J .U ≈  

(b) From energy conservation, at 1.5cm,x =  we have 0.008J .K E U= − =  
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(c) Find the speed from the  
estimated kinetic energy. 

( )

21
2   

2 0.008J2
0.055kg

0.5m s  

K mv

K
v

m

= →

= =

=

 

 
The spreadsheet used for this problem 
can be found on the Media Manager, 
with filename 
“PSE4_ISM_CH14.XLS,” on tab “Problem 14.29.” 

 
30. (a) At equilibrium, the velocity is its maximum.  Use Eq. 14-9a, and realize that the object can be  

moving in either direction. 
   ( ) ( )max equib2 2 2.5Hz 0.15m 2.356m s     2.4 m sv A fA vω π π= = = = → ≈ ±  

 (b) From Eq. 14-11b, we find the velocity at any position. 

   ( ) ( )
( )

22

max 22

0.10m
1 2.356m s 1 1.756m s 1.8m s

0.15m
x

v v
A

= ± − = ± − = ± ≈ ±  

 (c) ( ) ( )221 1
total max2 2 0.35kg 2.356 m s 0.9714 J 0.97 JE mv= = = ≈  

 (d) Since the object has a maximum displacement at t = 0, the position will be described by the  
cosine function. 

   ( ) ( )( ) ( ) ( )0.15m cos 2 2.5 Hz     0.15m cos 5.0x t x tπ π= → =  

 
31. The spring constant is found from the ratio of applied force to displacement. 

95.0 N
542.9 N m

0.175 m
F

k
x

= = =  

Assuming that there are no dissipative forces acting on the ball, the elastic potential energy in the 
loaded position will become kinetic energy of the ball. 

  ( )2 21 1
max max max max2 2

542.9 N m
        0.175m 10.2 m s

0.160 kgi f

k
E E kx mv v x

m
= → = → = = =  

 
32. The energy of the oscillator will be conserved after the collision.  
  ( ) ( )2 21 1

max max2 2     E kA m M v v A k m M= = + → = +  
This speed is the speed that the block and bullet have immediately after the collision.  Linear 
momentum in one dimension will have been conserved during the (assumed short time) collision, 
and so the initial speed of the bullet can be found. 

  

( )

( )

before after max    

0.2525kg 2250 N m
0.124 m 236 m s

0.0125kg 0.2525kg

o

o

p p mv m M v

m M k
v A

m m M

= → = +

+
= = =

+

 

 
 
 

0.000

0.005

0.010

0.015

0.020

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x  (cm)

U
 (J

)
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33. To compare the total energies, we can compare the maximum potential energies.  Since the 
frequencies and the masses are the same, the spring constants are the same. 

  

2 21
2high high high high

energy energy energy energy

2 21
2low low low low

energy energy energy energy

5    5
E kA A A

E kA A A
= = = → =  

 
34. (a) The spring constant can be found from the mass and the frequency of oscillation. 

( ) ( )22 2 22     4 4 3.0 Hz 0.24 kg 85.27 N m 85 N m
k

f k f m
m

ω π π π= = → = = = ≈  

(b) The energy can be found from the maximum potential energy. 
  ( ) ( )22 21 1

2 2 85.27 N m 0.045m 8.634 10 J 0.086JE kA −= = = × ≈  

 
35. (a) The work done in compressing the spring is stored as potential energy.  The compressed  

location corresponds to the maximum potential energy and the amplitude of the ensuing motion. 

   ( )
( )

21
2 22

2 3.6J2
    426 N m 430 N m

0.13m
W

W kA k
A

= → = = = ≈  

(b) The maximum acceleration occurs at the compressed location, where the spring is exerting the  
maximum force.  If the compression distance is positive, then the acceleration is negative. 

   ( ) ( )
2

426 N m 0.13m
    3.7 kg

15m s
kx

F kx ma m
a

= − = → = − = − =  

 
36. (a) The total energy of an object in SHM is constant.  When the position is at the amplitude, the  

speed is zero.  Use that relationship to find the amplitude. 

   
( ) ( )

2 2 21 1 1
tot 2 2 2

2 22 2 2 2

  

2.7 kg
0.55m s 0.020 m 5.759 10 m 5.8 10 m

280 N m

E mv kx kA

m
A v x

k
− −

= + = →

= + = + = × ≈ ×
 

 (b) Again use conservation of energy.  The energy is all kinetic energy when the object has its  
maximum velocity. 

( )

2 2 2 21 1 1 1
tot max2 2 2 2

2
max

  

280 N m
5.759 10 m 0.5865m s 0.59 m s

2.7 kg

E mv kx kA mv

k
v A

m
−

= + = = →

= = × = ≈
 

 
37. We assume that the collision of the bullet and block is so quick that there is no significant motion of 

the large mass or spring during the collision.  Linear momentum is conserved in this collision.  The 
speed that the combination has right after the collision is the maximum speed of the oscillating 
system. Then, the kinetic energy that the combination has right after the collision is stored in the 
spring when it is fully compressed, at the amplitude of its motion. 

  
( )

( ) ( )

before after 0 max max 0

2
2 2 21 1 1 1
max 02 2 2 2

        

      

m
p p mv m M v v v

m M

m
m M v kA m M v kA

m M

= → = + → =
+

+ = → + = →
+

⎛ ⎞
⎜ ⎟
⎝ ⎠
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( ) ( )

( ) ( ) ( )
2

3
0 3

9.460 10 m
142.7 N m 7.870 10 kg 4.648kg

7.870 10 kg

   309.8m s

A
v k m M

m

−
−

−

×
= + = × +

×

=

 

 
38. The hint says to integrate Eq. 14-11a, which comes from the conservation of energy.  Let the initial 

position of the oscillator be 0.x   

  

( )
( ) ( )0

0

2 2

2 2 2 2
0

1 1 1 0

          

cos cos cos

x t

x

x

x

k dx dx k dx k
v A x dt dt

m dt m mA x A x

x x x k
t

A A A m
− − −

= ± − = → = ± → = ± →
− −

− = − + = ±⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫
  

 Make these definitions:  1 0 ; cos .
k x
m A

ω φ−≡ ≡   Then we have the following. 

  ( )1 1 10cos cos     cos     cos
x x k x

t t x A t
A A m A

φ ω ω φ− − −− + = ± → − + = ± → = ± +  

The phase angle definition could be changed so that the function is a sine instead of a cosine.  And 
the ±  sign can be resolved if the initial velocity is known. 

 
39. (a) Find the period and frequency from the mass and the spring constant. 

0.785kg
2 2 0.4104s 0.410s

184 N m

1 1 1 184 N m
2.437 Hz 2.44 Hz

2 2 0.785kg

m
T

k

k
f

T m

π π

π π

= = = ≈

= = = = ≈

 

 (b) The initial speed is the maximum speed, and that can be used to find the amplitude. 

   
( ) ( )

max

max

  

2.26m s 0.785kg 184 N m 0.1476m 0.148m

v A k m

A v m k

= →

= = = ≈
 

 (c) The maximum acceleration can be found from the mass, spring constant, and amplitude 

   ( ) ( ) ( ) 2
max 0.1476m 184 N m 0.785kg 34.6m sa Ak m= = =  

 (d) Because the mass started at the equilibrium position of x = 0, the position function will be  
proportional to the sine function. 

   ( ) ( )[ ] ( ) ( )0.148m sin 2 2.437 Hz     0.148m sin 4.87x t x tπ π= → =  

 (e) The maximum energy is the kinetic energy that the object has when at the equilibrium position. 
   ( ) ( )221 1

max2 2 0.785kg 2.26m s 2.00JE mv= = =  

(f) Use the conservation of mechanical energy for the oscillator. 

  
( )

( ) ( ) ( )

22 2 2 21 1 1 1 1
2 2 2 2 2

2 21
2

    0.40   

1 0.40 2.00J 0.84 1.68J

E kx mv kA k A K kA

K kA

= + = → + = →

= − = =
 

 
 
 



Chapter 14  Oscillations 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

455 

40. We solve this using conservation of energy, equating the energy at the compressed point with the 
energy as the ball leaves the launcher.  Take the 0 location for gravitational potential energy to be at 
the level where the ball is on the compressed spring.  The 0 location for elastic potential energy is the 
uncompressed position of the spring.  Initially, the ball has only elastic potential energy.  At the point 
where the spring is uncompressed and the ball just leaves the spring, there will be gravitational 
potential energy, translational kinetic energy, and rotational kinetic energy.  The ball is rolling 
without slipping. 

  

( )

( ) ( ) ( ) ( ) ( )

( )

2
2 2 2 2 21 1 1 1 1 2

i f 2 2 2 2 2 5 2

22 27 7
10 1022

    sin   

0.025kg
2 sin 2 9.80 m s 0.060 m sin15 3.0 m s

0.060 m

  89.61N m 90 N m 2 sig. fig.

v
E E kx mgh mv I mgx mv mr

r
m

k gx v
x

ω θ

θ

= → = + + = + + →

= + = ° +

= ≈

⎡ ⎤⎣ ⎦  

 
41. The period of a pendulum is given by 2T L gπ= .  The length is assumed to be the same for the 

pendulum both on Mars and on Earth. 

  

( )

MarsMars Earth

Earth MarsEarth

Earth
Mars Earth

Mars

2
2       

2

1
1.35s 2.2s

0.37

L gT g
T L g

T gL g

g
T T

g

π
π

π
= → = = →

= = =

 

 

42. (a) The period is given by 
50s

1.6s
32cycles

T = = . 

 (b) The frequency is given by 
32cycles

0.64 Hz
50s

f = = . 

 
43. We consider this a simple pendulum.  Since the motion starts at the amplitude position at t = 0, we 

may describe it by a cosine function with no phase angle, max cos tθ θ ω= .  The angular velocity can 

be written as a function of the length, max cos .g
tθ θ=

⎛ ⎞
⎜ ⎟
⎝ ⎠l

 

 (a) ( ) ( )
29.80m s

0.35s 13 cos 0.35s 5.4
0.30m

tθ = = ° = − °
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 (b) ( ) ( )
29.80m s

3.45s 13 cos 3.45s 8.4
0.30m

tθ = = ° = °
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 (c) ( ) ( )
29.80m s

6.00s 13 cos 6.00s 13
0.30m

tθ = = ° = − °
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
 
 
 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

456 

44. The period of a pendulum is given by 2T L gπ= . 

 (a) 2

0.53m
2 2 1.5s

9.80m s
T L gπ π= = =  

 (b) If the pendulum is in free fall, there is no tension in the string supporting the pendulum bob, and  
so no restoring force to cause oscillations.  Thus there will be no period – the pendulum will not 
oscillate and so no period can be defined. 

 
45. If we consider the pendulum as starting from its maximum displacement, then the equation of motion 

can be written as 0 0

2
cos cos .

t
t

T
πθ θ ω θ= =   Solve for the time for the position to decrease to half the 

amplitude. 

  11/ 2 1/ 21 1 1
1/ 2 0 0 1/ 22 2 6

2 2
cos     cos     

3
t t

t T
T T
π π πθ θ θ −= = → = = → =   

It takes 1
6 T for the position to change from 10+ °  to 5+ ° .  It takes 1

4 T for the position to change from 

10+ °  to 0.  Thus it takes 1 1 1
4 6 12T T T− = for the position to change from 5+ ° to 0.  Due to the 

symmetric nature of the cosine function, it will also take 1
12 T for the position to change from 0 to 

5− ° , and so from 5+ °  to 5− ° takes 1
6 .T   The second half of the cycle will be identical to the first, 

and so the total time spent between 5+ °  and 5− ° is 1
3 .T   So the pendulum spends one-third of its 

time between 5+ °  and 5 .− °  
 
46. There are ( ) ( ) ( )24h 60min h 60s min 86,400s=  in a day.  The clock should make one cycle in 

exactly two seconds (a “tick” and a “tock”), and so the clock should make 43,200 cycles per day.  
After one day, the clock in question is 26 seconds slow, which means that it has made 13 less cycles 
than required for precise timekeeping.  Thus the clock is only making 43,187 cycles in a day. 

Accordingly, the period of the clock must be decreased by a factor of 
43,187
43,200

. 

 

( )

new old new old

2 2

new old

43,187 43,187
    2 2   

43,200 43,200

43,187 43,187
0.9930m 0.9924m

43,200 43,200

T T g gπ π= → = →

= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

l l

l l

 

Thus the pendulum should be shortened by 0.6 mm. 
 
47.  Use energy conservation to relate the potential energy at the  

maximum height of the pendulum to the kinetic energy at the 
lowest point of the swing.  Take the lowest point to be the zero 
location for gravitational potential energy.  See the diagram. 

  
( )

top bottom top top bottom bottom

21
max max2

      

0     2 2 1 cos

E E K U K U

mgh mv v gh g θ

= → + = + →

+ = → = = −l
 

 
 
 
 

l 
θ 

cosh θ= −l l

cosθl
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48. (a) For a physical pendulum with the small angle approximation, we may apply Eq. 14- 
14.  We need the moment of inertia and the distance from the suspension point to the 
center of mass.  We approximate the cord as a rod, and find the center of mass 
relative to the stationary end of the cord. 

   

( )
( )

( )
( )

( )
( )

2 2 21 1
bob cord 3 3

1 1
2 2

CM

21 1
3 3

1 1
2 2total

2 2 2

I I I M m M m

M m M m
h x

M m M m

M m M mI
T

M mm gh M m gM m g
M m

π π π

= + = + = +

+ +
= = =

+ +

+ +
= = =

+ ++
+

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

l l l

l l
l

l l

l

 

(b) If we use the expression for a simple pendulum we would have simple 2 .T gπ= l   Find the 
fractional error. 

   

( )
( )

( )
( )

( )
( )
( )
( )

( )
( )

1 1
3 3

1 1 1
2 2simple 2

11 1
33 3

1 1
2 2

2 2 1
error 1

2

M m M m
M m g g M mT T M m

T M mM m M m
M m g M m

π π

π

+ +
− −

+ +− +
= = = = −

++ +
+ +

l l

l
 

  Note that this is negative, indicating that the simple pendulum approximation is too large. 
 
49. The balance wheel of the watch is a torsion pendulum, described by Kτ θ= − .  A specific torque and 

angular displacement are given, and so the torsional constant can be determined.  The angular 
frequency is given by .K Iω =   Use these relationships to find the mass. 

( ) ( )

5

2

5

4
22 2 2 22 2

1.1 10 m N
    

4 rad

2   

1.1 10 m N
4rad 4.1 10 kg 0.41g

4 4 3.10Hz 0.95 10 m

K K

K K
f

I mr

K
m

f r

θτ θ
τ π

ω π

π
π π

−

−

−

−

×
= − → = =

= = = →

×

= = = × =
×

i

i

 

 
50. (a) We call the upper mass M and the lower mass m.  Both masses have length  

l.  The period of the physical pendulum is given by Eq. 14-14.  Note that we 
must find both the moment of inertia of the system about the uppermost 
point, and the center of mass of the system.  The parallel axis theorem is 
used to find the moment of inertia. 

   
( ) ( )

( ) ( )

22 2 23 71 1 1
upper lower 3 12 2 3 3

31 31
2 2 2 2

CM

I I I M m m M m

M m M m
h x

M m M m

= + = + + = +

+ +
= = =

+ +
⎛ ⎞
⎜ ⎟
⎝ ⎠

l l l l

l l
l

 

   ( )
( )

( )
( )

27 71 1
3 3 3 3

31 31
2 2 2 2total

2 2 2
M m M mI

T
M mm gh M m gM m g
M m

π π π
+ +

= = =
+ ++
+

⎛ ⎞
⎜ ⎟
⎝ ⎠

l l

l

 

L

m

M

lM 

m 
l
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( ) ( )[ ]( )

( ) ( )[ ]( )
71

3 3
231

2 2

7.0kg 4.0kg 0.55m
  2 1.6495s 1.6s

7.0kg 4.0kg 9.80m s
π

+
= = ≈

+
 

 (b) It took 7.2 seconds for 5 swings, which gives a period of 1.4 seconds.  That  
is reasonable qualitative agreement. 

 
51. (a) In the text, we are given that .Kτ θ= −   Newton’s second law for rotation,  

Eq. 10-14, says that 
2

2
.

d
I I

dt
θτ α= =∑   We assume that the torque applied by the twisting of 

the wire is the only torque. 

   
2 2

2
2 2

    
d d K

I I K
dt dt I
θ θτ α θ θ ω θ= = = − → = − = −∑  

This is the same form as Eq. 14-3, which is the differential equation for simple harmonic 
oscillation.  We exchange variables with Eq. 14-4, and write the equation for the angular 
motion. 

   ( ) ( ) 2
0cos     cos , 

K
x A t t

I
ω φ θ θ ω φ ω= + → = + =  

(b) The period of the motion is found from the angular velocity .ω  

   2 2
        2

K K I
T

I I T K
πω ω π= → = = → =  

 
52. The meter stick used as a pendulum is a physical pendulum.  The period is given by Eq. 14-14, 

2 .I
T

mgh
π=   Use the parallel axis theorem to find the moment of inertia about the pin.  Express 

the distances from the center of mass. 

  ( )

1/ 22 2 21
2 2 2 121 1

CM 12 12

1/ 22 2
1 1 1 1
2 12 12 122

1
2

2
    2 2

2 1 0    0.2887 m

0.500 0.2887 0.211m  from the end

I m mh
I I mh m mh T h

mgh mgh hg

dT
h h

dh h h

x h

ππ π

π
−

+
= + = + → = = = +

= + − + = → = =

= − = − ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

l l
l

l l
l

l

 

 Use the distance for h to calculate the period. 

  ( )
1/ 21/ 2 22

1 1
12 122

1.00m2 2
0.2887 m 1.53s

0.2887 m9.80m s
T h

hg
π π

= + = + =
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

l  

 
53. This is a torsion pendulum.  The angular frequency is given in the text as K Iω = , where K is the 

torsion constant (a property of the wire, and so a constant in this problem).  The rotational inertia of a 
rod about its center is 21

12 .Ml  

  
2

    2   
K I

T
I T K

πω π= = → = →  
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( ) ( )

( ) ( ) ( )

221
0 012

2 21
120 0 0 0 0 00

0

2 0.700 0.700
0.58566

2

0.58566 0.58566 5.0s 2.9s

I
MT I MK

T I M MI
K

T T

π

π
= = = = =

= = =

ll

l l  

 
54. The torsional constant is related to the period through the relationship given in problem 51.  The 

rotational inertia of a disk in this configuration is 21
2 .I MR=  

  
( ) ( ) ( )

2 2 21
2 22 2 2 22

2 2

3

4 4
2     2 2 0.375kg 0.0625m 0.331Hz

3.17 10 m N rad                             

I I MR
T K MR f

K T T
π ππ π π

−

= → = = = =

= × i

 

 
55. This is a physical pendulum.  Use the parallel axis theorem to find the 

moment of inertia about the pin at point A, and then use Eq. 14-14 to 
find the period. 

  

( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2 21 1
pin CM 2 2

2 2 2 21 1
2 2

2 21
2

2

2 2 2

0.200m 0.180m
  2 1.08s

9.80m s 0.180m

I I Mh MR Mh M R h

M R h R hI
T

Mgh Mgh gh
π π π

π

= + = + = +

+ +
= = =

+
= =

 

 
56. (a) The period of the motion can be found from Eq. 14-18, giving the angular frequency for the  

damped motion. 

 

( )
( )

( )
( )

22

22

41.0 N m 0.662 N s m
6.996rad s

4 0.835kg 4 0.835kg

2 2
0.898s

6.996rad s

k b
m m

T

ω

π π
ω

′ = − = − =

= = =

i

   

(b) If the amplitude at some time is ,A then one cycle later, the amplitude will be TAe γ− .  Use this  
to find the fractional change. 

  
( )
( )

( )0.662N s m
0.898s

2 0.835kg2fractional change 1 1 1 0.300
bT TT mAe A

e e e
A

γ
γ

− −−−−
= = − = − = − = −

i

 

 And so the amplitude decreases by 30% from the previous amplitude, every cycle. 
(c) Since the object is at the origin at t = 0, we will use a sine function to express the equation of 

motion. 

  
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

0.662N s m
1.00s

2 0.835kg

1
0.662N s m

1.00s
2 0.835kg

sin     0.120m sin 6.996rad   

0.662 N s m0.120m
0.273m  ;  0.396s

2 2 0.835kg
sin 6.996rad

tx Ae t Ae

b
A

m
e

γ ω

γ

−
−

−

−

′= → = →

= = = = =

i

i

i  

A

h

M
R 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

460 

  ( ) ( ) ( )[ ]
10.396s0.273m sin 7.00rad stx e t
−−=  

 
57. We assume that initially, the system is critically damped, so 2

critical 4 .b mk=   Then, after aging, we 
assume that after 3 cycles, the car’s oscillatory amplitude has dropped to 5% of its original 

amplitude.  That is expressed by 2
0 .

bt
mA A e

−
=  

  

( )

( )

( )

( )

33
22 2

0 0

2 2 2 2 2
critical critical

2 2 2

1/ 2
2

2
critical

3 1
    0.05     ln 0.05   

2
3 1 3 2 6

ln 0.05   
2 21

2 4 4 4

361 0.16
ln 0.05

bb Tbt
m fm m b

A A e A Ae Ae
m f

b b b
m mk b b b b b

m m m m

b
b

π π

π

π

−− −

−

= → = = → = − →

= − = − = − →
−

− −

⎛ ⎞
⎜ ⎟= + =
⎜ ⎟⎡ ⎤⎣ ⎦⎝ ⎠

 

And so b has decreased to about 16% of its original value, or decreased by a factor of 6.  If we used 
2% instead of 5%, we would have found that b decreased to about 20% of its original value.  And if 
we used 10% instead of 5%, we would have found that b decreased to about 6% of its original value. 

 
58. (a) Since the angular displacement is given as ( )cos ,tAe tγθ ω− ′=  we see that the displacement at t  

= 0 is the initial amplitude, so 15 .A = °   We evaluate the amplitude 8.0 seconds later. 

  ( )8.0s 1 11 5.5
5.5 15     ln 0.1254s 0.13s

8.0s 15
e γ γ− − −−

° = ° → = = ≈⎛ ⎞
⎜ ⎟
⎝ ⎠

  

(b) The approximate period can be found from the damped angular frequency.  The undamped  
angular frequency is also needed for the calculation. 

  

( )

( )
( ) ( )

1
2

0 21
3

2
22 2 2 1

0

3
2

3 9.80m s3
0.1254s 4.157 rad s

2 2 0.85m

2 2 rad
1.5s

4.157 rad s

mgmgh g
I m

g

T

ω

ω ω γ γ

π π
ω

−

= = =

′ = − = − = − =

′ = = =
′

l

l l

l
 

(c) We solve the equation of motion for the time when the amplitude is half the original amplitude. 

  1/ 2 1

ln 2 ln 2
7.5 15     5.5s

0.1254s
te tγ

γ
−

−
° = ° → = = =  

59. (a) The energy of the oscillator is all potential energy when the cosine (or sine) factor is 1, and so  

2 21 1
02 2 .

bt
mE kA kA e

−
= =   The oscillator is losing 6.0% of its energy per cycle.  Use this to find the 

actual frequency, and then compare to the natural frequency. 

 ( ) ( )
( )

2 21 1
0 02 20.94     0.94     0.94  

b t T bt bT
m m mE t T E t kA e kA e e
+

− − −
+ = → = → = →

⎛ ⎞
⎜ ⎟
⎝ ⎠

 



Chapter 14  Oscillations 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

461 

 

( ) ( )

( )[ ] ( )[ ]

( )[ ] ( )

0

2
2 0 2 220 2

0 1
22 2 2 2

00 0

2

5 301
2 2

0

1
ln 0.94 ln 0.94

2 2 4

1
ln 0.94 ln 0.942 4 2 1 1 1 1 1 1

4 16 16
2

ln 0.94
            1.2 10     % diff 100 1.2 10 %

16

b
m T

b
f f bm

f m

f f
f

ω
π

ωω
π π

ω ω π π
π

π
− −

= − = −

− −′−
= = − − = − − ≈ − −

′−
= − = − × → = = − ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(b) The amplitude’s decrease in time is given by 2
0 .

bt
mA A e

−
=   Find the decrease at a time of nT, and  

solve for n.  The value of 
2
b
m

 was found in part (a). 

  
( )

( )

12 2
0 0 0

1
        1 ln 0.94   

2 2
2

32.32 32 periods
ln 0.94

bt bnT
m m b

A A e A e A e nT nT
m T

n

− −−= → = → = = − →

= − = ≈
 

 

60. The amplitude of a damped oscillator decreases according to 2
0 0 .

bt
t mA A e A eγ −−= =   The data can be 

used to find the damping constant. 

  ( )
( )

02
0

2 0.075kg2 5.0
    ln ln 0.039kg s

3.5s 2.0

bt
m m A

A A e b
t A

−
= → = = =⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

61. (a) For the “lightly damped” harmonic oscillator, we have 
2

2
02

4         .
4
b k

b mk
m m

ω ω′→ → ≈� �    

We also assume that the object starts to move from maximum displacement, and so 

2
0 cos

bt
mx A e tω

−
′=  and 2 2 2

0 0 0 0cos sin sin .
2

bt bt bt
m m mdx b

v A e t A e t A e t
dt m

ω ω ω ω ω
− − −

′ ′ ′ ′= = − − ≈ −   

 
2 2 2 2 2 2 21 1 1 1

0 0 02 2 2 2

2 2 2 2 21 1 1
0 0 0 02 2 2

cos sin

   cos sin

bt bt
m m

bt bt bt bt
m m m m

E kx mv kA e t m A e t

kA e t kA e t kA e E e

ω ω ω

ω ω

− −

− − − −

′ ′= + = +

′ ′= + = =

 

(b) The fractional loss of energy during one period is as follows.  Note that we use the  

approximation that 0

2
   4     1.

2
b bT bT
m T m m

πω π= → →� � �  

( ) ( )
( )

0 0 0

0

0
0

1   

1
2 2

1 1 1

b t Tbt bt bT
m m m m

bt bT
m m

bT
m

bt
m

E E t E t T E e E e E e e

E e e
E bT bT b

e
E m m m Q

E e

π π
ω

+
− − − −

− −

−

−

Δ = − + = − = − →

−
Δ

= = − ≈ − − = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟

⎛ ⎞⎝ ⎠
⎜ ⎟
⎝ ⎠
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62. (a) From problem 25 (b), we can calculate the frequency of the undamped motion. 

( )

1 2

2 2

2 2   
2

1 2 125N s
5.43Hz

2 2 2 0.215kg

m m
T

k k k

k k
f

m m

π π

π π π

= = →
+

= = = =

 

(b) Eq. 14-16 says cos ,tx Ae tγ ω− ′= which says the amplitude follows the relationship max .tx Ae γ−=   
Use the fact that 1

max 2x A=  after 55 periods have elapsed, and assume that the damping is light 
enough that the damped frequency is the same as the natural frequency. 

( )55 1 11
2

ln 2 5.43Hz
    ln 2 ln 2 0.06843s 0.0684s

55 55 55
T f

A Ae
T

γ γ− − −= → = = = = ≈  

 (c) Again use max .tx Ae γ−=  

1
max 4 1

ln4 ln 4
        20.3s

0.06843s
t tx Ae A Ae tγ γ

γ
− −

−
= → = → = = =  

  This is the time for 110 oscillations, since 55 oscillations corresponds to a “half-life.” 
 
63. (a) Eq. 14-24 is used to calculate 0.φ  

   
( ) ( )
2 2 2 2

1 10 0 0
0 0tan     if ,   tan 0

b m b m
ω ω ω ωφ ω ω φ
ω ω

− −− −
= → = = =   

(b) With 0,ω ω=  we have ext 0 0cosF F tω=  and 0 0sin .x A tω=   The displacement and the driving  
force are one-quarter cycle ( )1

2 rad or 90π °  out of phase with each other.  The displacement is 0 
when the driving force is a maximum, and the displacement is a maximum (+A or –A) when the 
driving force is 0. 

 (c) As mentioned above, the phase difference is 90 .°  
 
64. Eq. 14-23 gives the amplitude 0A  as a function of driving frequency ω .  To find the frequency for 

maximum amplitude, we set 0 0
dA
dω

=  and solve for .ω  

  ( )
( )

( ) ( ) ( )

1/ 222 2 2 2 20 0
0 022 2 2 2 2

0

3/ 222 2 2 2 2 2 2 2 20 0 1
0 02 2 2 2 0  

F F
A b m

mm b m

dA F
b m b m

d m

ω ω ω
ω ω ω

ω ω ω ω ω ω ω
ω

−

−

= = − +
− +

= − − + − + = →

⎡ ⎤
⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦

 

  

( )
( )

( )
2 2 2 2

0 2 2 2 201
02 3/ 222 2 2 2 2

0

2 2
2 2 2

0 02 2

2 2 2
0    2 2 2 0  

    
2 2

b mF
b m

m b m

b b
m m

ω ω ω ω
ω ω ω ω

ω ω ω

ω ω ω ω

− +
− = → − + = →

− +

= − → = −

⎡ ⎤⎣ ⎦
⎡ ⎤
⎣ ⎦  
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65. We approximate that each spring of the car will effectively support one-fourth of the mass.  The 
rotation of the improperly-balanced car tire will force the spring into oscillation.  The shaking will be 
most prevalent at resonance, where the frequency of the tire matches the frequency of the spring.  At 

resonance, the angular velocity of the car tire, ,
v
r

ω =  will be the same as the angular frequency of 

the spring system, .k
m

ω =  

( ) ( )1
4

16,000 N m
    0.42 m 3.1m s

1150 kg
v k k

v r
r m m

ω = = → = = =  

 
66. First, we put Eq. 14-23 into a form that explicitly shows 0A  as a function of Q and has the ratio  

0 .ω ω  

  

( )

( )

( ) ( )( )

0 0
0 2 22 2 2 2 2 2 2 2 2

2 20 0 0
02 2 2

0 0

2
0 00 0

2 2 22 2 2 2 2 2 2
4 4 2
0 0 02 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0

0 0

22 22 2 2 2 0
0 0 02

    
1 1

1 1 1

1
       

1
1 1

F F
A

m b m b
m

m

F mF F

b
m m

m Q Q

F k A
F k

Q

ω ω ω ω ω ωω ω
ω ω

ω

ω ω ω ω ω ωω ω ω
ω ω ω ω ω ω ω

ω ω ω ω ω ω

= =
− +

− +

= = =

− + − + − +

= → =
− + −

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

( )2
0 2

1
Q

ω ω+

 

 For a value of Q = 6.0, the following graph is obtained. 
 

The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH14.XLS,” on 
tab “Problem 14.66.” 

 
 
 
 
 
 
 
 
67. Apply the resonance condition, 0 ,ω ω= to Eq. 14-23, along with the given condition of 

0
0 23.7 .F

A
m

=   Note that for this condition to be true, the value of 23.7 must have units of 2s .  

  
( )

0
0 22 2 2 2 2

0

 
F

A
m b mω ω ω

= →
− +

 

0

1
2

3

4

5
6

7

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

0

A
F k

0ω ω
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  ( ) 0 0 0 0 0 0
0 0 2 22 2 2

0 0 00

0

23.7     23.7
F F F F F F

A Q Q
b b m k km b m m m
m m Q

ω ω ω ω ωω
ω

= = = = = = = → =  

 

68. We are to show that ( )0 0sinx A tω φ= +  is a solution of 
2

02
cos

dx dx
m b kx F t

dt dt
ω+ + = by direct 

substitution. 

  

( ) ( ) ( )

( ) ( )[ ] ( )[ ]

2
2

0 0 0 0 0 02

2

02

2
0 0 0 0 0 0 0

sin  ; cos  ; sin

cos   

sin cos sin cos

dx d x
x A t A t A t

dt dt
dx dx

m b kx F t
dt dt

m A t b A t k A t F t

ω φ ω ω φ ω ω φ

ω

ω ω φ ω ω φ ω φ ω

= + = + = − +

+ + = →

− + + + + + =⎡ ⎤⎣ ⎦

   

 Expand the trig functions. 
  ( )[ ] [ ]2

0 0 0 0 0 0 0 0sin cos cos sin cos cos sin sin coskA m A t t b A t t F tω ω φ ω φ ω ω φ ω φ ω− + + − =  

 Group by function of time. 

  
( ) ( )2 2

0 0 0 0 0 0 0 0 0 0

0

cos sin sin sin cos cos

     cos

kA m A b A t kA m A b A t

F t

ω φ ω φ ω ω φ ω φ ω

ω

− − + − +

=

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

 The equation has to be valid for all times, which means that the coefficients of the functions of time 
must be the same on both sides of the equation.  Since there is no sin tω on the right side of the 
equation, the coefficient of sin tω must be 0. 

  

( )2
0 0 0 0 0

2 2 2 2 2 2 2 2
10 0 0 0 0 0

0 0
0 0

cos sin 0  

sin
tan   tan

cos

kA m A b A

kA m A k m m m
b A b b b m b m

ω φ ω φ

φ ω ω ω ω ω ω ω ωφ φ
φ ω ω ω ω ω

−

− − = →

− − − − −
= = = = = → =

 

 Thus we see that Eq. 14-24 is necessary for ( )0 0sinx A tω φ= +  to be 
the solution.  This can be illustrated with the diagram shown. 

 
 Equate the coefficients of cos .tω  
  ( )2

0 0 0 0 0 0sin cos   kA m A b A Fω φ ω φ− + = →  

( ) ( )
( ) ( )

2 2
02

0 02 2 2 2
2 22 2 2 2

0 02 2

 

b
mA k m b F

b b
m m

ω
ω ω

ω ω
ω ωω ω ω ω

−
− + = →

− + − +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

( )
( ) ( ) ( )

2 2
22 2

20 0
0 0 02 2 2 2 2 2

2 2 22 2 2 2 2 2
0 0 02 2 2

  

b
FmA m F A

b b b
m

m m m

ω
ω ω

ω ω ωω ω ω ω ω ω

−
+ = → =

− + − + − +

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 Thus we see that Eq. 14-23 is also necessary for ( )0 0sinx A tω φ= +  to be the solution. 
 

0φ b mω

2 2
0ω ω−

( )
2 2

22 2
0 2

b
m
ωω ω− +
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69. (a) For the damped oscillator, the amplitude decays according to 2
0 .

bt
mA A e

−
=   We are also given the  

Q value, and 0 .
m

Q
b
ω

=   We use these relationships to find the time for the amplitude to 

decrease to one-third of its original value. 

 ( )
( ) ( )

1/ 3

0 0 12
0 03

1/ 3 2
0

     ;    

2 3502 2 2
ln3 ln3 ln 3 ln3 173.7s 170s

9.80m s 0.50m

bt
m

gm b
Q A A e A

b m Q Q

m Q Q
t

b g

ω ω

ω

−
= → = = = = →

= = = = = ≈

l

l

 

(b) The energy is all potential energy when the displacement is at its maximum value, which is the  
amplitude.  We assume that the actual angular frequency is very nearly the same as the natural 
angular frequency. 

  
( ) ( )

( )

2

2 2 2 21 1 2
0 0 02 2

3/ 223/ 22 2
50

0

  
2 2

0.27 kg 0.020m 9.80m s
1.3 10 W

2 2 2 350 0.50m

  ;  
bt bt bt
m m m

t

mg dE b mg
E kA m A e A e A e

dt m

gdE mg mA g
dt Q Q

ω
− − −

−

=

= = = = − →

= − = = = ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

l l

l

l l

 

(c) Use Eq. 14-26 to find the frequency spread. 

  ( ) ( )
( )

0 0 0

2

30 0

2 1
      

2

9.80m s 0.50m
2.0 10 Hz

2 2 2 350

f f
Q

f f Q

gf
f

Q Q Q

ω π
ω π

ω
π π π

−

Δ Δ Δ
= → = = →

Δ = = = = = ×
l

 

Since this is the total spread about the resonance frequency, the driving frequency must be 

within 31.0 10 Hz−× on either side of the resonance frequency. 
 
70. Consider the conservation of energy for the person.  Call the unstretched position of the fire net the 

zero location for both elastic potential energy and gravitational potential energy.  The amount of 
stretch of the fire net is given by x, measured positively in the downward direction.  The vertical 
displacement for gravitational potential energy is given by the variable y, measured positively for the 
upward direction.  Calculate the spring constant by conserving energy between the window height 
and the lowest location of the person.  The person has no kinetic energy at either location. 

  ( ) ( ) ( ) ( )[ ]
( )

21
top bottom top bottom bottom2

bottom 2 4
22

bottom

    

20.0m 1.1m2 2 62 kg 9.80 m s 2.119 10 N m
1.1m

top

E E mgy mgy kx

y y
k mg

x

= → = +

− − −= = = ×
       

(a) If the person were to lie on the fire net, they would stretch the net an amount such that the 
upward force of the net would be equal to their weight. 

   
( ) ( )2

2
4ext

62 kg 9.80 m s
    2.9 10 m

2.1198 10 N m
mg

F kx mg x
k

−= = → = = = ×
×

 

(b) To find the amount of stretch given a starting height of 38 m, again use conservation of energy.  
Note that bottomy x= − , and there is no kinetic energy at the top or bottom positions. 
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( ) ( ) ( ) ( ) ( )

2 21
top bottom top bottom 2

2 2
2

4 4

2

        2 2 0

62 kg 9.80 m s 62 kg 9.80 m s
2 2 38m 0  

2.1198 10 N m 2.1198 10 N m

0.057326 2.1784 0    1.5049 m , 1.4476 m

top

mg mg
E E mgy mgy kx x x y

k k

x x

x x x

= → = + → − − =

− − = →
× ×

− − = → = −

 

This is a quadratic equation.  The solution is the positive root, since the net must be below the 
unstretched position.  The result is 1.5 m . 

 
71. Apply the conservation of mechanical energy to the car, calling condition # 1 to be before the 

collision and condition # 2 to be after the collision.  Assume that all of the kinetic energy of the car is 
converted to potential energy stored in the bumper.  We know that 1 0x =  and 2 0v = . 

  
( )

2 2 2 2 2 21 1 1 1 1 1
1 2 1 1 2 2 1 22 2 2 2 2 2

2 1 3

          

1300 kg
2.0 m s 0.11m

430 10 N m

E E mv kx mv kx mv kx

m
x v

k

= → + = + → = →

= = =
×

 

 
72. (a) The frequency can be found from the length of the  

pendulum, and the acceleration due to gravity. 

   
21 1 9.80m s

0.6277 Hz 0.63Hz
2 2 0.63m

g
f

π π
= = = ≈

l
 

 (b) To find the speed at the lowest point, use the conservation of  
energy relating the lowest point to the release point of the 
pendulum.  Take the lowest point to be the zero level of 
gravitational potential energy. 

   
( )

top bottom top top bottom bottom

21
bottom2

    

0 cos 0

E E KE PE KE PE

mg L L mvθ

= → + = +

+ − = +
 

( ) ( ) ( ) ( )2
bottom 2 1 cos 2 9.80m s 0.63m 1 cos15 0.6487 m s 0.65m sv gL θ= − = − ° = ≈  

 (c) The total energy can be found from the kinetic energy at the bottom of the motion. 

   ( ) ( )22 21 1
total bottom2 2 0.295kg 0.6487m s 6.2 10 JE mv −= = = ×  

 

73. The frequency of a simple pendulum is given by 
1

2
g

f
Lπ

= .  The pendulum is accelerating 

vertically which is equivalent to increasing (or decreasing) the acceleration due to gravity by the 
acceleration of the pendulum.  

 (a) new

1 1 1.50 1
1.50 1.50 1.22

2 2 2
g a g g

f f f
L L Lπ π π
+

= = = = =  

(b) new

1 1 0.5 1
0.5 0.5 0.71

2 2 2
g a g g

f f f
L L Lπ π π
+

= = = = =  

 
74. The equation of motion is 0.25sin 5.50 sinx t A tω= = .  

(a) The amplitude is max 0.25mA x= = . 

l 
θ 

cosh θ= −l l

cosθl



Chapter 14  Oscillations 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

467 

 (b) The frequency is found by 
1

1 5.50s
2 5.50s     0.875Hz

2
f fω π

π

−
−= = → = =  

 (c) The period is the reciprocal of the frequency.  
1

2
1 1.14s

s
T f

π
−

= = =
5.50

. 

 (d) The total energy is given by  

( ) ( ) ( ) ( ) 222 11 1 1
total max2 2 2 0.650kg 5.50s 0.25m 0.6145J 0.61JE mv m Aω −= = = = ≈⎡ ⎤⎣ ⎦ . 

 (e) The potential energy is given by  

( ) ( ) ( )2 22 2 2 11 1 1
potential 2 2 2 0.650kg 5.50s 0.15m 0.2212J 0.22JE kx m xω −= = = = ≈ . 

  The kinetic energy is given by  
   kinetic total potential 0.6145J 0.2212 J 0.3933J 0.39 JE E E= − = − = ≈ . 

 
75. (a) The car on the end of the cable produces tension in the cable, and stretches the cable according  

to Equation (12-4), 
1

o

F
E A

Δ =l l , where E  is Young’s modulus.  Rearrange this equation to 

see that the tension force is proportional to the amount of stretch, 
o

EA
F = Δl

l
, and so the 

effective spring constant is 
o

EA
k =
l

.  The period of the bouncing can be found from the spring 

constant and the mass on the end of the cable. 

   
( ) ( )

( ) ( )29 2 3

1350 kg 20.0 m
2 2 2 0.407s 0.41s

200 10 N m 3.2 10 m
om m

T
k EA

π π π
π −

= = = = ≈
× ×

l
 

 (b) The cable will stretch some due to the load of the car, and then the amplitude of the bouncing  
will make it stretch even farther.  The total stretch is to be used in finding the maximum 
amplitude.  The tensile strength is found in Table 12-2. 

   
( ) ( )static amplitude

2
tensile strength abbrev T.S.   

k x xF
A rπ

+
= = →  

  

( ) ( ) ( )

( )
( )

( ) ( )
( )

2 2
0 0

amplitude 2 2 2

0

2
6 2 3

29 2

T.S. T.S.
T.S.

1350 kg 9.80 m s20.0 m
           500 10 N m 9 10 m 9 mm

200 10 N m 0.0032 m

r r mg mg
x

E rk E r E r
π π

π π π

π
−

= − Δ = − = −

= × − = × =
×

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

l l
l

l  

 
76. The spring constant does not change, but the mass does, and so the frequency will change.  Use Eq. 

14-7a to relate the spring constant, the mass, and the frequency. 

  

( )

2 2 2
O O S S2

13 13O
S O

S

1
    constant      

2 4

6.0
 3.7 10 Hz 2.6 10 Hz

32.0

k k
f f m f m f m

m

m
f f

m

π π
= → = = → = →

1
= = × = ×
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77. The period of a pendulum is given by 2T gπ= l , and so the length is 
2

24
T g
π

=l . 

(a) 
( ) ( )2 22

Austin
Austin 2 2

2.000 s 9.793m s
0.992238m 0.9922 m

4 4
T g

π π
= = = ≈l  

(b) 
( ) ( )2 22

Paris
Paris 2 2

2.000 s 9.809m s
0.993859 m 0.9939 m

4 4
T g
π π

= = = ≈l  

Paris Austin 0.993859 m 0.992238 m 0.001621 m 1.6 mm− = − = ≈l l  

(c) 
( ) ( )2 22

Moon
Moon 2 2

2.00 s 1.62m s
0.164 m

4 4
T g

π π
= = =l  

 
78. The force of the man’s weight causes the raft to sink, and that causes the water to put a larger upward 

force on the raft.  This extra buoyant force is a restoring force, because it is in the opposite direction 
of the force put on the raft by the man.  This is analogous to pulling down on a mass–spring system 
that is in equilibrium, by applying an extra force.  Then when the man steps off, the restoring force 
pushes upward on the raft, and thus the raft–water system acts like a spring, with a spring constant 
found as follows.  

  
( ) ( )2

4
2

ext
75kg 9.80 m s

2.1 10 N m
3.5 10 m

F
k

x −
= = = ×

×
 

 (a) The frequency of vibration is determined by the “spring constant” and the mass of the raft.  

   
41 1 2.1 10 N m

1.289 Hz 1.3Hz
2 2 320 kgn

k
f

mπ π
×

= = = ≈  

 (b) As explained in the text, for a vertical spring the gravitational potential energy can be ignored if  
the displacement is measured from the oscillator’s equilibrium position.  The total energy is 
thus 

 ( ) ( )22 4 21 1
total 2 2 2.1 10 N m 3.5 10 m 12.86J 13JE kA −= = × × = ≈ . 

 
79. The relationship between the velocity and the position of a SHO is given by Eq. 14-11b.  Set that 

expression equal to half the maximum speed, and solve for the displacement. 

  
2 2 2 2 2 2 2 2 31 1 1

max max2 2 4 41     1     1       

3 2 0.866

v v x A v x A x A x A

x A A

= ± − = → ± − = → − = → = →

= ± ≈ ±
 

 
80. For the pebble to lose contact with the board means that there is no normal force of the board on the 

pebble.  If there is no normal force on the pebble, then the only force on the pebble is the force of 
gravity, and the acceleration of the pebble will be g downward, the acceleration due to gravity.  This 
is the maximum downward acceleration that the pebble can have.  Thus if the board’s downward 
acceleration exceeds g, then the pebble will lose contact.  The maximum acceleration and the 
amplitude are related by 2 2

max 4a f Aπ= . 

  
( )

2
2 2 2

max 22 2 2

9.80m s
4     4.0 10 m

4 4 2.5 Hz
g

a f A g A
f

π
π π

−= ≤ → ≤ ≤ ≤ ×  
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81. Assume the block has a cross-sectional area of A.  In the equilibrium position, the net force on the 
block is zero, and so buoy .F mg=   When the block is pushed into the water (downward) an additional 

distance ,xΔ  there is an increase in the buoyancy force ( extraF ) equal to the weight of the additional 
water displaced.  The weight of the extra water displaced is the density of water times the volume 
displaced. 

  ( )extra add. water add. water water
water water

F m g V g gA x gA xρ ρ ρ== = Δ = Δ  

This is the net force on the displaced block.  Note that if the block is pushed down, the additional 
force is upwards.  And if the block were to be displaced upwards by a distance xΔ , the buoyancy 
force would actually be less than the weight of the block by the amount extraF  , and so there would be 
a net force downwards of magnitude extraF .  So in both upward and downward displacement, there is 

a net force of magnitude ( )watergA xρ Δ  but opposite to the direction of displacement.  As a vector, we 
can write the following.   

  ( )net watergAρ= − ΔF x
G G

 

 This is the equation of simple harmonic motion, with a “spring constant” of waterk gAρ=  

 
82. (a) From conservation of energy, the initial kinetic energy of the car will all be changed into elastic  

potential energy by compressing the spring. 
2 2 2 2 2 21 1 1 1 1 1

1 2 1 1 2 2 1 22 2 2 2 2 2          E E mv kx mv kx mv kx= → + = + → = →   

( ) ( )
( )

22
4 41

22
2

25m s
950 kg 2.375 10 N m 2.4 10 N m

5.0 m
v

k m
x

= = = × ≈ ×  

(b) The car will be in contact with the spring for half a period, as it moves from the equilibrium 
location to maximum displacement and back to equilibrium. 

   
( )1 1

2 2 4

950 kg
2 0.63s

2.375 10 N m
m

T
k

π π= = =
×

 

 
83. (a) The effective spring constant is found from the final displacement caused by the additional mass  

on the table.  The weight of the mass will equal the upward force exerted by the compressed 
springs. 

 ( ) ( )
( )

grav springs

2

      

0.80 kg 9.80 m s
130.67 N m 130 N m

0.060 m

F F mg k y

mg
k

y

= → = Δ →

= = = ≈
Δ

 

(b) We assume the collision takes place in such a short time that the springs do not compress a  
significant amount during the collision.  Use momentum conservation to find the speed 
immediately after the collision. 

  

( )

( ) ( )

before after clay clay clay table after

clay
after clay

clay table

      

0.80 kg
1.65m s 0.55m s

2.40 kg

p p m v m m v

m
v v

m m

= → = + →

= = =
+

 

As discussed in the text, if we measure displacements from the new equilibrium position, we 
may use an energy analysis of the spring motion without including the effects of gravity.  The 
total elastic and kinetic energy immediately after the collision will be the maximum elastic 
energy, at the amplitude location. 
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( ) ( )

2 2 21 1 1
1 2 total after after2 2 2

2 22 2total
after after

        

2.40 kg
0.55m s 0.060 m 0.096 m 9.6cm

130.67 N m

E E m v kx kA

m
A v x

k

= → + = →

= + = + = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
84. (a) The graph is shown.  The  

spreadsheet used for this problem 
can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH14.XLS,” on tab 
“Problem 14.84a.” 

 

 (b) Equilibrium occurs at the location  
where the force is 0.  Set the force 
equal to 0 and solve for the 
separation distance r. 

   ( )0 2 3
0 0

0  
C D

F r
r r

= − + = →  

3 2
0 0 02 3

0 0

    =     
C D D

Cr Dr r
r r C

= → → =  

  This does match with the graph, which shows F = 0 at r = D/C. 
 (c) We find the net force at 0 .r r r= + Δ   Use the binomial expansion. 

   
( ) ( ) ( )

2 3
2 3 2 3

0 0 0 0 0
0 0

02 3 3
0 0 0 0 0 0 0

1 1

                  1 2 1 3 1 2 1 3

r r
F r r C r r D r r Cr Dr

r r

C r D r C r D r
r

r r r r r r C r

− −
− − − −Δ Δ

+ Δ = − + Δ + + Δ = − + + +

Δ Δ Δ Δ
≈ − − + − = − − + −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 [ ] [ ] ( )0 0 03 3 3
0 0 0

                  2 3     
C C C

r r r r r F r r r
r r r

= − + Δ + − Δ = −Δ → + Δ = − Δ  

We see that the net force is proportional to the displacement and in the opposite direction to the 
displacement.  Thus the motion is simple harmonic. 

(d) Since for simple harmonic motion, the general form is ,F kx= −  we see that for this situation, 

the spring constant is given by 
4

3 3
0

 .C C
k

r D
= =  

 
 (e) The period of the motion can be found from Eq. 14-7b. 

   
3

4
2 2

m mD
T

k C
π π= =  

 
85. (a) The relationship between the velocity and the position of a SHO is given by Eq. 14-11b.   

Set that expression equal to half the maximum speed, and solve for the displacement. 

   2 2 2 2 2 21 1 1
max 0 max 0 02 2 41     1     1   v v x x v x x x x= ± − = → ± − = → − = →  

   2 2 3
0 0 04     3 2 0.866x x x x x= → = ± ≈ ±  

-0.2

-0.1

0

0.1

0.2

0.3

0 0.5 1 1.5 2 2.5 3 3.5 4
r  as a fraction of D/C

F
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 (b) Since F kx ma= − =  for an object attached to a spring, the acceleration is proportional to the  
displacement (although in the opposite direction), as a x k m= − .  Thus the acceleration will 

have half its maximum value where the displacement has half its maximum value, at 1
02 x±  

 
86. The effective spring constant is determined by the frequency of vibration and the mass of the 

oscillator.  Use Eq. 14-7a. 

  

( ) ( ) ( )
27

2 2 2 13

1
  

2

1.66 10 kg
4 4 2.83 10 Hz 16.00u 840 N m 3 sig. fig.

1u

k
f

m

k f m

π

π π
−

= →

×
= = × =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
87. We quote from the next to last paragraph of Appendix D:  “… we see that  

at points within a solid sphere, say 100 km below the Earth’s surface, only 
the mass up to that radius contributes to the net force.  The outer shells 
beyond the point in question contribute zero net gravitational effect.”  So 
when the mass is a distance r from the center of the Earth, there will be a 
force toward the center, opposite to r, due only to the mass within a sphere 
of radius r.  We call that mass .rm   It is the density of the (assumed 
uniform) Earth, times the volume within a sphere of radius r. 

 

3
3Earth Earth 4

Earth33 34
3Earth Earth Earth

3

Earth 3
EarthEarth

2 2 3
Earth

r r r

r

M M r
m V V r M

V R R

r
GmM

Gmm GmMR
F r

r r R

ρ π
π

= = = =

= − = − = −

 

The force on the object is opposite to and proportional to the displacement, and so will execute 

simple harmonic motion, with a “spring constant” of Earth
3
Earth

.GmM
R

k =   The time for the apple to return 

is the period, found from the “spring constant.” 

 

( )
( ) ( )

363
Earth

11 2 2 24
Earth Earth

3
Earth

6.38 10 m
2 2 2 2

6.67 10 N m kg 5.98 10 kg

507s or 84.5min  

m m R
T

GmMk GM
R

π π π π
−

×
= = = =

× ×

=

i  

 
88. (a) The rod is a physical pendulum.  Use Eq. 14-14 for the period of a physical pendulum. 

( )
( )

( )
21

3
21

2

2 1.00m2
2 2 2 2 1.64s

3 3 9.80m s
I m

T
mgh mg g

π π π π= = = = =
l l

l
 

 (b) The simple pendulum has a period given by 2 .T gπ= l   Use this to find the length. 

 ( )simple 2 2
simple 3 3

2
2 2     1.00m 0.667m

3
T

g g
π π= = → = = =
l l

l l  

 

m

r

EarthR
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89. Consider energy conservation for the mass over the range of motion from 
“letting go” (the highest point) to the lowest point.  The mass falls the 
same distance that the spring is stretched, and has no kinetic energy at 
either endpoint.  Call the lowest point the zero of gravitational potential 
energy.  The variable “x” represents the amount that the spring is stretched 
from the equilibrium position. 

  2 2 2 21 1 1 1
top bottom top top top bottom bottom bottom2 2 2 2  E E mv mgy kx mv mgy kx= + + = + +→  

( )

2 2 2 21 1 1 1
top top top bottom bottom bottom2 2 2 2

2 21
2

2

2 2
0 0 0 0         

2 9.80m s1 2 1
1.25Hz

2 2 2 0.320m

mv mgy kx mv mgy kx

k g g
mgH kH

m H H

g
f

H

ω ω

ω
π π π

+ + = + +

+ + = + + → = = → =

= = = =

 

 
90. For there to be no slippage, the child must have the same acceleration as the slab.  This will only 

happen if the force of static friction is big enough to provide the child with an acceleration at least as 
large as the maximum acceleration of the slab.  The maximum force of static friction is given by 

fr s N
max

.F Fμ=   Since the motion is horizontal and there are not other vertical forces besides gravity 

and the normal force, we know that N .F mg=   Finally, the maximum acceleration of the slab will 
occur at the endpoints, and is given by Eq. 14-9b.  The mass to use in Eq. 14-9b is the mass of the 
oscillating system, .m M+  

  s N s
fr elastic s
max max

      
F mg k

a a g A
m m m M

μ μ μ≥ → = = ≥ →
+

 

  
( ) ( ) ( ) ( )2

s

430 N m
0.50m 35kg 19.8kg 20kg 2 sig. fig.

0.40 9.80m s
k

m A M
gμ

≥ − = − = ≈  

 And so the child must have a minimum mass of 20 kg (about 44 lbs) in order to ride safely. 
 
91. We must make several assumptions.  Consider a static displacement of the trampoline, by someone 

sitting on the trampoline mat.  The upward elastic force of the trampoline must equal the downward 
force of gravity.  We estimate that a 75-kg person will depress the trampoline about 25 cm at its 
midpoint. 

  
( ) ( )275kg 9.80m s

    2940 N m 3000 N m
0.25m

mg
kx mg k

x
= → = = = ≈   

 
92. We may use Eq. 10-14, ,Iτ α=∑  as long as the axis of rotation is fixed in an 

inertial frame.  We choose the axis to be at the point of support, perpendicular 
to the plane of motion of the pendulum.  There are two forces on the 
pendulum bob, but only gravity causes any torque.  Note that if the pendulum 
is displaced in the counterclockwise direction (as shown in Fig. 14-46), then 
the torque caused by gravity will be in the clockwise direction, and vice versa.  
See the free-body diagram in order to write Newton’s second law for rotation, 
with counterclockwise as the positive rotational direction. 

  
2

2
sin

d
mg I I

dt
θτ θ α= − = =∑ l  

x = 0

x = H y = 0

y = H

mgG

TF
G

θ
l

sinθl
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 If the angular displacement is limited to about 15 ,°  then sin .θ θ≈  

  
2 2

2 2 2
    

d d mg mg g
mg I

dt dt I m
θ θθ θ θ θ− = → = − = − = −

l l
l

l l
 

This is the equation of simple harmonic motion, with 2 .gω = l   Thus we can write the 
displacement of the pendulum as follows, imitating Eq. 14-4. 

  ( )max maxcos     cos
g

t tθ θ ω φ θ θ φ= + → = +
⎛ ⎞
⎜ ⎟
⎝ ⎠l

 

  

93. (a) Start with Eq. 14-7b, 
2

2 4
2     .

m
T T m

k k
ππ= → =   This fits the straight-line equation form of  

( ) ( )slope intercepty x y= + − , if we plot 2 vs. .T m   The slope is 24 ,kπ  and so 
24

.
slope

k
π

=   

The y-intercept is expected to be 0. 

(b) The graph is included on the next page.  The slope is 2 20.1278s kg 0.13s kg ,≈  and the y- 

intercept is 2 20.1390s 0.14s .≈   The spreadsheet used for this problem can be found on the 

Media Manager, with filename “PSE4_ISM_CH14.XLS,” on tab “Problem 14.93b.” 
(c) Start with the modified Eq. 14-7b.  

0

2 2
2 0

2   

4 4

m m
T

k
m

T m
k k

π

π π

+
= →

= +

 

The spring constant is still given 

by 
24

slope
k

π
=  and the y-intercept is 

expected to be 
2

04
.

m
k
π

 

  

2

2

2 2
0 0 0

0 0 2 2

4
308.9 N m 310 N m

0.1278s kg

4 0.1390s
intercept    1.088kg 1.1kg

4 slope 0.1278s kg

k

m ky y
y y m

k

π

π
π

= = ≈

= = − → = = = = ≈

 

(d) The mass 0m  can be interpreted as the effective mass of the spring.  The mass of the spring  

does oscillate, but not all of the mass has the same amplitude of oscillation, and so 0m is likely 

less than the mass of the spring.  One straightforward analysis predicts that 1
0 spring3 .m M=  

 
94. There is a subtle point in the modeling of this problem.  It would be easy to assume that the net force 

on the spring is given by 2
netF kx cv ma= − − = .  But then the damping force would always be in the 

negative direction, since 2 0.cv ≥   So to model a damping force that is in the opposite direction of 
the velocity, we instead must use net .F kx cv mav= − − =   Then the damping force will be in the 

T 2 = 0.13 m  + 0.14
R2 = 0.9997

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0 1.0 2.0 3.0 4.0 5.0
m  (kg)

T
2  (s

2 )
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opposite direction of the velocity, and have a magnitude of 2.cv   We find the acceleration as a 
function of velocity, and then use numeric integration with a constant acceleration approximation to 
estimate the speed and position of the oscillator at later times.  We take the downward direction to be 
positive, and the starting position to be y = 0. 

      
k c

F kx cv v ma a x v v
m m

= − − = → = − −  

From Example 14-5, we have ( ) 00 0.100 mx x= = −  and ( ) 00 0.v v= =   We calculate the initial 

acceleration, 0 0 0 0 ,
k c

a x v v
m m

= − −  and assume that acceleration is constant over the next time 

interval.  Then  ( )21
1 0 0 02 ,x x v t a t= + Δ + Δ  1 0 0 ,v v a t= + Δ  and 1 1 1 1 .

k c
a x v v

m m
= − −   This continues 

for each successive interval.  We apply this method first for a time interval of 0.01 s, and record the 
position, velocity, and acceleration t = 2.00 s.  Then we reduce the interval to 0.005 s and again find 
the position, velocity, and acceleration at t = 2.00 s.  We compare the results from the smaller time 
interval with those of the larger time interval to see if they agree within 2%.  If not, a smaller interval 
is used, and the process repeated.  For this problem, the results for position, velocity, and 
acceleration for time intervals of 0.001 s and 0.0005 s agree to within 2%.  Here are the results for 
various intervals. 

  0.01s:tΔ =   ( )2.00s 0.0713mx =  ( )2.00s 0.291m sv = −    ( ) 22.00s 4.58m sa = −  

  0.005s:tΔ =   ( )2.00s 0.0632 mx =  ( )2.00s 0.251m sv = −    ( ) 22.00s 4.07 m sa = −  
  0.001s:tΔ =   ( )2.00s 0.0574 mx =  ( )2.00s 0.222 m sv = −     ( ) 22.00s 3.71m sa = −  

  0.0005s:tΔ =   ( )2.00s 0.0567 mx =  ( )2.00s 0.218m sv = −    ( ) 22.00s 3.66 m sa = −  
The graphs of position, velocity, and acceleration are shown below.  The spreadsheet used can be 
found on the Media Manager, with filename “PSE4_ISM_CH14.XLS”, on tab “Problem 14.94”. 
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CHAPTER 15:  Wave Motion 
 
Responses to Questions 
 
1.  Yes. A simple periodic wave travels through a medium, which must be in contact with or connected 

to the source for the wave to be generated. If the medium changes, the wave speed and wavelength 
can change but the frequency remains constant. 

 
2.   The speed of the transverse wave is the speed at which the wave disturbance propagates down the 

cord. The individual tiny pieces of cord will move perpendicular to the cord with an average speed 
of four times the amplitude divided by the period. The average velocity of the individual pieces of 
cord is zero, but the average speed is not the same as the wave speed. 

 
3.  The maximum climb distance (4.3 m) occurs when the tall boat is at a crest and the short boat is in a 

trough. If we define the height difference of the boats on level seas as Δh and the wave amplitude as 
A, then Δh + 2A = 4.3 m. The minimum climb distance (2.5 m) occurs when the tall boat is in a 
trough and the short boat is at a crest.  Then Δh – 2A = 2.5 m. Solving these two equations for A 
gives a wave amplitude of 0.45 m. 

 
4. (a) Striking the rod vertically from above will displace particles in a direction perpendicular to the  

rod and will set up primarily transverse waves. 
(b) Striking the rod horizontally parallel to its length will give the particles an initial displacement  

parallel to the rod and will set up primarily longitudinal waves. 
 
5. The speed of sound in air obeys the equation .v B ρ=  If the bulk modulus is approximately 

constant and the density of air decreases with temperature, then the speed of sound in air should 
increase with increasing temperature. 

 
6.  First, estimate the number of wave crests that pass a given point per second. This is the frequency of 

the wave. Then, estimate the distance between two successive crests, which is the wavelength. The 
product of the frequency and the wavelength is the speed of the wave. 

 
7.  The speed of sound is defined as v B ρ= , where B is the bulk modulus and ρ is the density of the 

material. The bulk modulus of most solids is at least 106 times as great as the bulk modulus of air. 
This difference overcomes the larger density of most solids, and accounts for the greater speed of 
sound in most solids than in air. 

 
8.  One reason is that the wave energy is spread out over a larger area as the wave travels farther from 

the source, as can be seen by the increasing diameter of the circular wave. The wave does not gain 
energy as it travels, so if the energy is spread over a larger area, the amplitude of the wave must be 
smaller. Secondly, the energy of the wave dissipates due to damping, and the amplitude decreases.  

 
9. If two waves have the same speed but one has half the wavelength of the other, the wave with the 

shorter wavelength must have twice the frequency of the other. The energy transmitted by a wave 
depends on the wave speed and the square of the frequency. The wave with the shorter wavelength 
will transmit four times the energy transmitted by the other wave. 

 
10.  Yes. Any function of (x - vt) will represent wave motion because it will satisfy the wave equation, 

Eq. 15-16.  
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11.  The frequency does not change at the boundary because the two sections of cord are tied to each 
other and they must oscillate together.  The wavelength and wave speed can be different, but the 
frequency must remain constant across the boundary. 

 
12.  The transmitted wave has a shorter wavelength. If the wave is inverted upon reflection at the 

boundary between the two sections of rope, then the second section of rope must be heavier. 
Therefore, the transmitted wave (traveling in the heavier rope) will have a lower velocity than the 
incident wave or the reflected wave. The frequency does not change at the boundary, so the 
wavelength of the transmitted wave must also be smaller.  

 
13. Yes, total energy is always conserved. The particles in the medium, which are set into motion by the 

wave, have both kinetic and potential energy. At the instant in which two waves interfere 
destructively, the displacement of the medium may be zero, but the particles of the medium will 
have velocity, and therefore kinetic energy.  

 
14.  Yes. If you touch the string at any node you will not disturb the motion. There will be nodes at each 

end as well as at the points one-third and two-thirds of the distance along the length of the string.   
 
15. No. The energy of the incident and reflected wave is distributed around the antinodes, which exhibit 

large oscillations. The energy is a property of the wave as a whole, not of one particular point on the 
wave. 

 
16. Yes. A standing wave is an example of a resonance phenomenon, caused by constructive 

interference between a traveling wave and its reflection. The wave energy is distributed around the 
antinodes, which exhibit large amplitude oscillations, even when the generating oscillations from the 
hand are small. 

 
17. When a hand or mechanical oscillator vibrates a string, the motion of the hand or oscillator is not 

exactly the same for each vibration. This variation in the generation of the wave leads to nodes 
which are not quite “true” nodes.  In addition, real cords have damping forces which tend to reduce 
the energy of the wave. The reflected wave will have a smaller amplitude than the incident wave, so 
the two waves will not completely cancel, and the node will not be a true node. 

 
18.  AM radio waves have a much longer wavelength than FM radio waves. How much waves bend, or 

diffract, around obstacles depends on the wavelength of the wave in comparison to the size of the 
obstacle. A hill is much larger than the wavelength of FM waves, and so there will be a “shadow” 
region behind the hill. However, the hill is not large compared to the wavelength of AM signals, so 
the AM radio waves will bend around the hill. 

 
19. Waves exhibit diffraction.  If a barrier is placed between the energy source and the energy receiver, 

and energy is still received, it is a good indication that the energy is being carried by waves. If 
placement of the barrier stops the energy transfer, it may be because the energy is being transferred 
by particles or that the energy is being transferred by waves with wavelengths smaller than the 
barrier. 

 
Solutions to Problems 
 
1. The wave speed is given by v fλ= .  The period is 3.0 seconds, and the wavelength is 8.0 m. 

  ( ) ( )8.0m 3.0s 2.7m sv f Tλ λ= = = =  
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2. The distance between wave crests is the wavelength of the wave. 
  343m s 262 Hz 1.31 mv fλ = = =  
 
3. The elastic and bulk moduli are taken from Table 12-1.  The densities are taken from Table 13-1. 

(a) For water: 
9 2

3 3

2.0 10 N m
1400m s

1.00 10 kg m
v B ρ ×
= = =

×
 

 (b) For granite: 
9 2

3 3

45 10 N m
4100m s

2.7 10 kg m
v E ρ ×
= = =

×
 

 (c) For steel:  
9 2

3 3

200 10 N m
5100m s

7.8 10 kg m
v E ρ ×
= = =

×
 

 
4. To find the wavelength, use v fλ = . 

 AM:     
8 8

1 23 3
1 2

3.00 10 m s 3.00 10 m s
545 m      188 m    AM: 190 m to 550 m

550 10 Hz 1600 10 Hz
v v
f f

λ λ× ×
= = = = = =

× ×
 

FM:    
8 8

1 26 6
1 2

3.00 10 m s 3.00 10 m s
3.41m      2.78m    FM: 2.8m to 3.4m

88 10 Hz 108 10 Hz
v v
f f

λ λ× ×
= = = = = =

× ×
 

 
5. The speed of the longitudinal wave is given by Eq. 15-3, v E ρ= .  The speed and the frequency 

are used to find the wavelength.  The bulk modulus is found in Table 12-1, and the density is found 
in Table 13-1. 

  

9 2

3 3

100 10 N m
7.8 10 kg m

0.62m
5800Hz

E
v
f f

ρλ

×
×

= = = =  

 
6. To find the time for a pulse to travel from one end of the cord to the other, the velocity of the pulse 

on the cord must be known.  For a cord under tension, we have Eq. 15-2, .Tv F μ=  

  

( ) ( )

8.0m
    0.19s

140 N
0.65kg 8.0m

T

T

x F x
v t

t Fμ
μ

Δ Δ
= = → Δ = = =
Δ

 

 
7. For a cord under tension, we have from Eq. 15-2 that .Tv F μ=   The speed is also the 

displacement divided by the elapsed time, v
x
t

=
Δ
Δ

.  The displacement is the length of the cord. 

  
( ) ( ) ( )

( ) ( )
( )

2 2

2 2 2 2

0.40kg 7.8m
    4.3N

0.85s
T

T

F x m m
v F

t t t t
μ

μ
Δ

= = → = = = = =
Δ Δ Δ Δ

l l l

l
 

 
8. The speed of the water wave is given by v B ρ= , where B  is the bulk modulus of water, from 

Table 12-1, and ρ  is the density of sea water, from Table 13-1.  The wave travels twice the depth of 
the ocean during the elapsed time. 
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9 2

3
3 3

2 2.8s 2.0 10 N m
    2.0 10 m

2 2 2 1.025 10 kg m
vt t B

v
t ρ

×
= → = = = = ×

×
l

l  

 
9. (a) The speed of the pulse is given by 

   
( )2 660m

77.65m s 78m s
17s

x
v

t
Δ

= = = ≈
Δ

 

 (b) The tension is related to the speed of the pulse by  T .v F μ=   The mass per unit length of the  
cable can be found from its volume and density. 

 
( )

( )

2

22 2
3 3

  
2

1.5 10 m
7.8 10 kg m 1.378kg m

2 2

m m
V d

m d

ρ
π

μ πρ π
−

= = →

×
= = = × =

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

l

l

 

 ( ) ( )22
T T    77.65m s 1.378kg m 8300Nv F F vμ μ= → = = =  

 
10. (a) Both waves travel the same distance, so 1 1 2 2x v t v tΔ = = .  We let the smaller speed be 1v , and  

the larger speed be 2v .  The slower wave will take longer to arrive, and so 1t  is more than 2t . 

( )

( ) ( )

( ) ( )

1 2 2 1 2 2 2

1
2

2 1

2 2

1.7min 102s    102s   

5.5km s
102s 102s 187s

8.5km s 5.5km s

8.5km s 187s 1600km

t t t v t v t

v
t

v v

x v t

= + = + → + = →

= = =
− −

Δ = = =

 

(b) This is not enough information to determine the epicenter.  All that is known is the distance of  
the epicenter from the seismic station.  The direction is not known, so the epicenter lies on a 
circle of radius 31.9 10 km×  from the seismic station.  Readings from at least two other seismic 
stations are needed to determine the epicenter’s position. 

 
11. (a) The shape will not change.  The wave will move 1.10 meters to the right in 1.00 seconds.  See  

the graph.  The parts of the string that are moving up or down are indicated. 
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 (b) At the instant shown, the string at point A will be moving down.  As the wave moves to the 
right, the string at point A will move down by 1 cm in the time it takes the “valley” between 1 
m and 2 m to move to the right by about 0.25 m. 

   
1cm

4cm s
0.25m 1.10m s

y
v

t
Δ −

= = ≈ −
Δ

 

  This answer will vary depending on the values read from the graph. 
 
12. We assume that the wave will be transverse.  The speed is given by Eq. 15-2.  The tension in the 

wire is equal to the weight of the hanging mass.  The linear mass density is the volume mass density 
times the cross-sectional area of the wire.  The volume mass density is found in Table 13-1. 

  
( ) ( )

( ) ( )
2

ball ball
23 3

5.0kg 9.80m s
89 m s

7800kg m 0.50 10 m
TF m g m g

v
V Aρμ πρ

−
= = = = =

×l

l l

 

 
13. The speed of the waves on the cord can be found from Eq. 15-2, T .v F μ=   The distance between 

the children is the wave speed times the elapsed time. 

  ( ) ( )2 2T T 35N
    0.50s 18m

0.50kg
F F

x v t t x t
m x m

Δ = Δ = Δ → Δ = Δ = =
Δ

 

 
14. (a) We are told that the speed of the waves only depends on the acceleration due to gravity and the  

wavelength. 

[ ]2
         : 1 2     1 2

L L
v kg L T

T T

α
γα γλ α α= → = − = − → =⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

: 1     1 1 2           L v k gα γ γ α λ= + → = − = =  

 (b) Here the speed of the waves depends only on the acceleration due to gravity and the depth of the  
water. 

[ ]2         : 1 2     1 2L Lv kg h L T
T T

α
βα β α α⎡ ⎤ ⎡ ⎤= → = − = − → =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

   : 1     1 1 2           L v k ghα β β α= + → = − = =  

 
15. From Eq. 15-7, if the speed, medium density, and frequency of the two waves are the same, then the 

intensity is proportional to the square of the amplitude. 
  2 2

2 1 2 1 2 1 2 13    3 1.73I I E E A A A A= = = → = =  
 The more energetic wave has the larger amplitude. 
 
16. (a) Assume that the earthquake waves spread out spherically from the source.  Under those  

conditions, Eq. (15-8ab) applies, stating that intensity is inversely proportional to the square of 
the distance from the source of the wave. 

( ) ( )2 2
45km 15km 15km 45km 0.11I I = =  
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 (b) The intensity is proportional to the square of the amplitude, and so the amplitude is inversely  
proportional to the distance from the source of the wave. 

   45km 15km 15km 45km 0.33A A = =  
 
17. We assume that all of the wave motion is outward along the surface of the water – no waves are 

propagated downwards.  Consider two concentric circles on the surface of the water, centered on the 
place where the circular waves are generated.  If there is no damping, then the power (energy per 
unit time) being transferred across the boundary of each of those circles must be the same.  Or, the 
power associated with the wave must be the same at each circular boundary.  The intensity depends 
on the amplitude squared, so for the power we have this. 

( ) 2 2 constant 1
2 2 constant        

2
P I r kA r A A

rk r
π π

π
= = = → = → ∝  

 
18. (a) Assuming spherically symmetric waves, the intensity will be inversely proportional to the  

square of the distance from the source.  Thus 2Ir  will be constant. 

 ( ) ( )
( )

2 2
near near far far

22
6 2 9 2 9 2far

near far 22
near

  

48km
3.0 10 W m 6.912 10 W m 6.9 10 W m

1.0km

I r I r

r
I I

r

= →

= = × = × ≈ ×
 

 (b) The power passing through an area is the intensity times the area. 

   ( ) ( )9 2 2 106.912 10 W m 2.0m 1.4 10 WP IA= = × = ×  

 
19. (a) The power transmitted by the wave is assumed to be the same as the output of the oscillator.   

That power is given by Eq. 15-6.  The wave speed is given by Eq. 15-2.  Note that the mass per 
unit length can be expressed as the volume mass density times the cross sectional area. 

   

( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2 2 2 2 2T T
T

22 22 3 3

2 2 2 2

   2 60.0Hz 0.0050m 5.0 10 m 7800kg m 7.5N 0.38W

F F
P Svf A S f A S f A f A S F

S
π ρ π ρ π ρ π ρ

μ ρ

π π −

= = = =

= × =

 

(b) The frequency and amplitude are both squared in the equation.  Thus is the power is constant, 
and the frequency doubles, the amplitude must be halved, and so be 0.25cm .  

 
20. Consider a wave traveling through an area S with speed v, much like Figure 15-11.  Start with Eq. 

15-7, and use Eq. 15-6. 

  
energy
volume

P E E E
I v

S St S t S t
= = = = = ×

l l

l l
 

 
21. (a) We start with Eq. 15-6.  The linear mass density is the mass of a given volume of the cord  

divided by the cross-sectional area of the cord. 

   2 2 2 2 2 22   ;      2
m V S

P Svf A S P vf A
ρ ρπ ρ μ ρ π μ= = = = = → =

l

l l l
 

 (b) The speed of the wave is found from the given tension and mass density, according to Eq. 15-2. 

( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2 2
T T

2 22

2 2 2

   2 120Hz 0.020m 0.10kg m 135N 420W

P vf A f A F f A Fπ μ π μ μ π μ

π

= = =

= =
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22. (a) The only difference is the direction of motion. 
( ) ( ), 0.015sin 25 1200D x t x t= +  

 (b) The speed is found from the wave number and the angular frequency, Eq. 15-12. 

   
1200rad s

48m s
25rad m

v
k
ω

= = =  

 
23. To represent a wave traveling to the left, we replace x  by .x vt+   The resulting expression can be 

given in various forms. 

  
( )[ ]

( )

sin 2 sin 2 sin 2

sin   

x vt x t
D A x vt A A

T
A kx t

π λ φ π φ π φ
λ λ λ

ω φ

= + + = + + = + +

= + +

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦   

 
24. The traveling wave is given by ( )0.22sin 5.6 34 .D x t= +  

(a) The wavelength is found from the coefficient of x. 

  1
1

2 2
5.6m     1.122 m 1.1m

5.6m
π πλ
λ

−
−

= → = = ≈  

(b) The frequency is found from the coefficient of t. 

  
1

1 34s
34 2     5.411Hz 5.4 Hz

2
s f fπ

π

−
− = → = = ≈  

(c) The velocity is the ratio of the coefficients of t and x. 

  
1

1

2 34s
6.071m s 6.1m s

5.6m 2
v f

πλ
π

−

−
= = = ≈  

 Because both coefficients are positive, the velocity is in the negative x direction. 
(d) The amplitude is the coefficient of the sine function, and so is 0.22m .  

(e) The particles on the cord move in simple harmonic motion with the same frequency as the  
wave.  From Chapter 14, max 2 .v D fDω π= =  

 ( )
1

max

34s
2 2 0.22m 7.5m s

2
v fDπ π

π

−

= = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The minimum speed is when a particle is at a turning point of its motion, at which time the 
speed is 0. 

  min 0v =  
 
25. The traveling wave is given by ( ) ( ) ( ) ( )1 1, 0.026m sin 45m 1570s 0.66 .D x t x t− −= ⎡ ⎤− +⎣ ⎦  

 (a) ( ) ( ) ( ) ( ) ( )1 1 1,
1570s 0.026m cos 45m 1570s 0.66   x

D x t
v x t

t
− − −∂

= = − − + →
∂

⎡ ⎤⎣ ⎦  

  ( ) ( ) ( )1
max

1570s 0.026m 41m sxv −= =  

 (b) ( ) ( ) ( ) ( ) ( )
2

21 1 1
2

,
1570s 0.026m sin 45m 1570s 0.66   x

D x t
a x t

t
− − −∂

= = − − + →
∂

⎡ ⎤⎣ ⎦   

  ( ) ( ) ( )21 4 2
max

1570s 0.026m 6.4 10 m sxa −= = ×  
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 (c) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 11.00m,2.50s 1570s 0.026m cos 45m 1.00m 1570s 2.50s 0.66xv − − −= − − +⎡ ⎤⎣ ⎦  

                             35m s=  

  ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 12
1.00m,2.50s 1570s 0.026m 45m 1.00m 1570s 2.50s 0.66sinxa − − −= − − +⎡ ⎤⎣ ⎦  

  24                           3.2 10 m s= ×  

 
26. The displacement of a point on the cord is given by the wave, ( ) ( ), 0.12sin 3.0 15.0 .D x t x t= −   The 

velocity of a point on the cord is given by .
D
t

∂
∂

 

  ( ) ( ) ( ) ( ) ( ) ( )1 10.60m,0.20s 0.12m sin 3.0m 0.60m 15.0s 0.20s 0.11mD − −= − = −⎡ ⎤⎣ ⎦  

  
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 1 1

0.12m 15.0s cos 3.0 15.0

0.60m,0.20s 0.12m 15.0s cos 3.0m 0.60m 15.0s 0.20s 0.65m s

D
x t

t
D
t

−

− − −

∂
= − −

∂
∂

= − − = −
∂

⎡ ⎤⎣ ⎦

 

 
27. (a) The spreadsheet used for  

this problem can be found 
on the Media Manager, 
with filename 
“PSE4_ISM_CH15.XLS,” 
on tab “Problem 15.27a.” 

 
 
 
 
 
 (b) For motion to the right, replace x  by .x vt−  
   ( ) ( ) ( )[ ], 0.45m cos 2.6 2.0 1.2D x t x t= − +  

 (c) See the graph above. 
 (d) For motion to the left, replace x  by .x vt+   Also see the graph above. 
   ( ) ( ) ( )[ ], 0.45m cos 2.6 2.0 1.2D x t x t= + +  

 
28. (a) The wavelength is the speed divided by the frequency. 

   
345m s

0.658m
524 Hz

v
f

λ = = =  

 (b) In general, the phase change in degrees due to a time difference is given by .
360

t
T

φΔ Δ
=

°
 

41 1 90
    4.77 10 s

360 360 524 Hz 360
t

f t t
T f

φ φ −Δ Δ Δ °
= = Δ → Δ = = = ×

° ° °
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
 
 

-0.50

-0.25

0.00
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0.50
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(c) In general, the phase change in degrees due to a position difference is given by  .
360

xφ
λ

Δ Δ
=

°
 

   ( ) ( )0.044m
    360 360 24.1

360 0.658m
x xφ φ
λ λ

Δ Δ Δ
= → Δ = ° = ° = °

°
 

 
29. The amplitude is 0.020 cm, the wavelength is 0.658 m, and the frequency is 524 Hz.  The 

displacement is at its most negative value at x = 0, t = 0, and so the wave can be represented by a 
cosine that is phase shifted by half of a cycle. 

  

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1

1

, cos

2 524 Hz2 2
0.020cm ; 9.54m  ; 2 2 524 Hz 3290rad s

345m s

, 0.020cm cos 9.54m 3290rad s  ,  in m,  in s

D x t A kx t

f
A k f

v

D x t x t x t

ω φ

ππ π ω π π
λ

π

−

−

= − +

= = = = = = = =

= − +⎡ ⎤⎣ ⎦

  

 Other equivalent expressions include the following. 

  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

1 3
2

, 0.020cm cos 9.54m 3290rad s

, 0.020cm sin 9.54m 3290rad s

D x t x t

D x t x t π

−

−

= − −

= − +

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

 

 
30. (a) For the particle of string at x = 0,  

the displacement is not at the 
full amplitude at t = 0.  The 
particle is moving upwards, and 
so a maximum is approaching 
from the right.  The general form 
of the wave is given by 
( ) ( ), sinD x t A kx tω φ= + + .  At 

x = 0 and t = 0, ( )0,0 sinD A φ=  
and so we can find the phase 
angle. 
 ( ) ( ) ( )10,0 sin     0.80cm 1.00cm sin     sin 0.80 0.93D A φ φ φ −= → = → = =  

So we have ( ) 2
,0 sin 0.93 ,  in cm.

3.0
D x A x x

π
= +⎛ ⎞

⎜ ⎟
⎝ ⎠

  See the graph.  It matches the description 

given earlier.  The spreadsheet used for this problem can be found on the Media Manager, with 
filename “PSE4_ISM_CH15.XLS,” on tab “Problem 15.30a.” 

 (b) We use the given data to write the wave function.  Note that the wave is moving to the right,  
and that the phase angle has already been determined. 

( ) ( )

( )

( ) ( ) ( ) ( )

1

1

, sin

2
1.00cm ; 2.09cm  ; 2 2 245Hz 1540rad s

3.00cm

, 1.00cm sin 2.09cm 1540rad s 0.93  ,  in cm,  in s

D x t A kx t

A k f

D x t x t x t

ω φ
π ω π π−

−

= + +

= = = = = =

= + +⎡ ⎤⎣ ⎦
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31. To be a solution of the wave equation, the function must satisfy Eq. 15-16, 
2 2

2 2 2

1
.

D D
x v t

∂ ∂
=

∂ ∂
 

  
2

2
2

2
2

2

sin cos

cos cos   ;  sin cos

sin sin   ;  sin cos

D A kx t

D D
kA kx t k A kx t

x x
D D

A kx t A kx t
t t

ω

ω ω

ω ω ω ω

=

∂ ∂
= = −

∂ ∂
∂ ∂

= − = −
∂ ∂

 

 This gives 
2 2 2

2 2 2 ,
D k D

x tω
∂ ∂

=
∂ ∂

 and since v
k
ω

=  from Eq. 15-12, we have 
2 2

2 2 2

1
.

D D
x v t

∂ ∂
=

∂ ∂
 

Yes, the function is a solution. 
 

32. To be a solution of the wave equation, the function must satisfy Eq. 15-16, 
2 2

2 2 2

1
.

D D
x v t

∂ ∂
=

∂ ∂
 

 (a) ( )lnD A x vt= +  

( ) ( )
2 2

2 2

2

2 2  ;    ;    ;  D D D Av D
x x t t

A A Av
x vt x vtx vt x vt

∂ ∂ ∂ ∂
= = − = = −

∂ ∂ ∂ ∂+ ++ +
 

  This gives 
2 2

2 2 2

1 ,D D
x v t

∂ ∂
=

∂ ∂
 and so yes, the function is a solution. 

 (b) ( )4D x vt= −  

  ( ) ( ) ( ) ( )
2 2

2 2

3 2 3 224   ;  12 4   ;  12  ;  D D D D
v v

x x t t
x vt x vt x vt x vt∂ ∂ ∂ ∂

= = = − =
∂ ∂ ∂ ∂

− − − −  

  This gives 
2 2

2 2 2

1 ,D D
x v t

∂ ∂
=

∂ ∂
 and so yes, the function is a solution. 

 
33. We find the various derivatives for the function from Eq. 15-13c. 

  
( ) ( ) ( ) ( )

( ) ( )

2
2

2

2
2

2

, sin   ;  cos   ;  sin ;

    cos   ;  sin

D D
D x t A kx t Ak kx t Ak kx t

x x
D D

A kx t A kx t
t t

ω ω ω

ω ω ω ω

∂ ∂
= + = + = − +

∂ ∂
∂ ∂

= + = − +
∂ ∂

 

 To satisfy the wave equation, we must have 
2 2

2 2 2

1 .D D
x v t

∂ ∂
=

∂ ∂
 

  ( ) ( )( )
2 2 2

2 2 2
2 2 2 2 2

1
sin sin

1        D D
Ak kx t A kx t k

x v t v v
ωω ω ω∂ ∂

= − + − +
∂ ∂

→ = → =  

 Since ,v kω=  the wave equation is satisfied. 
 
 We find the various derivatives for the function from Eq. 15-15.  Make the substitution that 

,u x vt= +  and then use the chain rule. 
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( ) ( ) ( )

2 2

2 2

2 2 2
2

2 2 2

,   ;    ;  

            ;  

D dD u dD D dD d dD u d D
D x t D x vt D u

x du x du x x du dx du x du

D dD u dD D dD dD d dD u d D d D
v v v v v v v

t du t du t t du t du du du t du du

∂ ∂ ∂ ∂ ∂
= + = = = = = =

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
= = = = = = =

∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 To satisfy the wave equation, we must have 
2 2

2 2 2

1 .D D
x v t

∂ ∂
=

∂ ∂
 

  
2 2 2 2 2

2
2 2 2 2 2 22

1 1    D D d D d D d D
v

x v t du du duv
∂ ∂

=
∂ ∂

→ = =  

 Since we have an identity, the wave equation is satisfied. 
 
34. Find the various derivatives for the linear combination. 

  

( ) ( ) ( )1 1 2 2 1 1 2 2

2 2 2
1 2 1 2

1 2 1 22 2 2

2 2 2
1 2 1 2

1 2 1 22 2 2

, , ,

  ;  

  ;  

D x t C D C D C f x t C f x t

D f f D f f
C C C C

x x x x x x
D f f D f f

C C C C
t t t t t t

= + = +

∂ ∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= + = +
∂ ∂ ∂ ∂ ∂ ∂

    

 To satisfy the wave equation, we must have 
2 2

2 2 2

1 .D D
x v t

∂ ∂
=

∂ ∂
  Use the fact that both 1f  and 2f  satisfy 

the wave equation. 

  
2 2 2 2 2 2 2 2

1 2 1 2 1 2
1 2 1 2 1 22 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1D f f f f f f D
C C C C C C

x x x v t v t v t t v t
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + = + = + =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 Thus we see that 
2 2

2 2 2

1 ,D D
x v t

∂ ∂
=

∂ ∂
 and so D satisfies the wave equation. 

 

35. To be a solution of the wave equation, the function must satisfy Eq. 15-16, 
2 2

2 2 2

1
.

D D
x v t

∂ ∂
=

∂ ∂
 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2

2 2 2

2

2
22 2

2

2

2 2 2 2 2 1

2

  ;  kx t kx t

kx t kx t kx t

kx t

D
D e k kx t e

x
D

k kx t k kx t e k e k kx t e
x
D

kx t e
t

ω ω

ω ω ω

ω

ω

ω ω ω

ω ω

− − − −

− − − − − −

− −

∂
= = − −

∂
∂

= − − − − + − = − −
∂
∂

= −
∂

⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2

2 2

2
22 2

2

2 2
2 22 2

2 2 2 2

2
2

2

2 2 2 2 2 1

1 1
    2 2 1 2 2 1   

       

kx t kx t kx t

kx t kx t

D
kx t kx t e e kx t e

t
D D

k kx t e kx t e
x v t v

k
v

ω ω ω

ω ω

ω ω ω ω ω ω ω

ω ω ω

ω

− − − − − −

− − − −

∂
= − − + − = − −

∂
∂ ∂

= → − − = − − →
∂ ∂

=

⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

 Since ,v
k
ω

=  we have an identity.  Yes, the function is a solution. 
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36. We assume that A λ�  for the wave given by ( )sin .D A kx tω= −  

  

( ) ( ) max

max
max wave max wave

max

sin     cos     

            

22 100 0.063
50

D
D A kx t v A kx t v A

t
v

A v v v v

fv A fA
v v v f

ω ω ω ω

λ λ ωλ
ω

λπω π π
λ

∂′ ′= − → = = − − → =
∂

′
′ ′→ → = →

′
= = = = ≈

� � � �  

  
37. (a) For the wave in the lighter cord, ( ) ( ) ( ) ( )-1 1, 0.050m sin 7.5m 12.0s .D x t x t−= −⎡ ⎤⎣ ⎦  

   ( )1

2 2
0.84m

7.5mk
π πλ

−
= = =  

 (b) The tension is found from the velocity, using Eq. 15-2. 

   ( ) ( )
( )

212
2T

T 22 1

12.0s
    0.10kg m 0.26 N

7.5m

F
v F v

k
ωμ μ

μ

−

−
= → = = = =  

 (c) The tension and the frequency do not change from one section to the other. 

   ( )
2 2
1 2 1 1

T1 T2 1 2 2 12 2 1
1 2 2 1 2

2 2
        0.5 0.59m

7.5m
F F

k k k
ω ω μ π μ πμ μ λ λ

μ μ −
= → = = → = = = =  

 
38. (a) The speed of the wave in a stretched cord is given by Eq. 15-2, T .v F μ=   The tensions must  

be the same in both parts of the cord.  If they were not the same, then the net longitudinal force 
on the joint between the two parts would not be zero, and the joint would have to accelerate 
along the length of the cord. 

   T HH L
T

L HT L

    
Fv

v F
v F

μ μμ
μμ

= → = =  

 (b) The frequency must be the same in both sections.  If it were not, then the joint between the two  
sections would not be able to keep the two sections together.  The ends could not stay in phase 
with each other if the frequencies were different. 

 H L H H L

H L L L H

        
v v v v

f
v

λ μ
λ λ λ λ μ

= → = → = =  

 (c) The ratio under the square root sign is less than 1, and so the lighter cord has the greater  
wavelength. 

 
39. (a) The distance traveled by the reflected sound wave is found from the Pythagorean theorem. 

   ( ) ( )2 22 21 1
2 2

2
2     d D x vt t D x

v
= + = → = +  

 (b) Solve for 2t . 

   ( )
2

22 2 21
22 2 2

4 4x
t D D

v v v
x= + = +⎡ ⎤⎣ ⎦  
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A plot of 2 2vst x  would have a slope of 21 v , which can be used to determine the value of v.  

The y intercept of that plot is 2
2

4
D

v
.  Knowing the y intercept and the value of v, the value of D 

can be determined. 
 
40. The tension and the frequency do not change from one side of the knot to the other. 

(a) We force the cord to be continuous at 0x =  for all times.  This is done by setting the initial 
wave plus the reflected wave (the displacement of a point infinitesimally to the LEFT of 0x = ) 
equal to the transmitted wave (the displacement of a point infinitesimally to the RIGHT of 

0x = ) for all times.  We also use the facts that ( )sin sinθ θ− = − and 1 1 2 2.k v k v=  

   

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

R T 1 1 R 1 1 T 2 2

1 1 R 1 1 T 2 2 T 1 1

R T T R

0, 0, 0,     sin sin sin   

sin sin sin sin   

    

D t D t D t A k v t A k v t A k v t

A k v t A k v t A k v t A k v t

A A A A A A

+ = → − + = − →

− + = − = − →

− + = − → = +

 

 (b) To make the slopes match for all times, we must have ( ) ( )[ ] ( )[ ]R T, , ,D x t D x t D x t
x x

+ =
∂ ∂
∂ ∂

  

when evaluated at the origin. We also use the result of the above derivation, and the facts that  
( )cos cosθ θ− = and 1 1 2 2.k v k v=  

 

( ) ( )[ ] ( )[ ]

( ) ( ) ( )
( ) ( ) ( )

( )

R T
0 0

1 1 1 1 R 1 1 2 T 2 2

1 1 1 1 R 1 1 2 T 2 2

2 1
1 1 R 2 T 2 R R

2 1

, , ,   

cos cos cos   

cos cos cos   

    

x x

D x t D x t D x t
x x

k A k v t k A k v t k A k v t

k A k v t k A k v t k A k v t

k k
k A k A k A k A A A A

k k

= =

∂ ∂
+ = →

∂ ∂
− + = − →

+ = →

−
+ = = − → =

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  Use 1
2 1

2

.vk k
v

=  

 

1 1 1 2
1 1

2 1 1 1 22 2 2 2
R

1 1 1 22 1 1 1 2
1 1

2 2 2 2

1

1

v v v v
k k

k k k v vv v v v
A A A A A A

v v v vk k k v vk k
v v v v

− − −
− −

= = = = =
+ ++ + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 (c) Combine the results from the previous two parts. 
  

 

2 1 2 1 2 1 2 1 1
T R

2 1 2 1 2 1 2 1 2 1

1 2

1 1 2
1 1

2

2
1

2 2
   

k k k k k k k k k
A A A A A A A A

k k k k k k k k k k

k v
A A

v v vk k
v

− − + −
= − = − = − = − =

+ + + + +

= =
++

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠
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41. (a)
 
  
 
(b)
  

  
  

 (c) The energy is all kinetic energy at the moment when the string has no displacement.  There is  
no elastic potential energy at that moment.   Each piece of the string has speed but no  
displacement. 

 
42. (a) The resultant wave is the algebraic sum of the two component waves. 

   

( ) ( ) ( ) ( )[ ]
( ) ( )[ ]{ } ( ) ( )[ ]{ }

( ){ } ( ){ }

1 2

1 1
2 2

1 1
2 2

sin sin sin sin

2sin cos

2 sin 2 2 cos 2 cos sin
2 2

D D D A kx t A kx t A kx t A kx t

A kx t kx t kx t kx t

A kx t A kx t

ω ω φ ω ω φ

ω ω φ ω ω φ

φ φω φ φ ω

= + = − + − + = − + − +

= − + − + − − − +

= − + = − +⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) The amplitude is the absolute value of the coefficient of the sine function, 2 cos
2

.A
φ

  The 

wave is purely sinusoidal  because the dependence on x and t is sin
2

.kx t
φω− +⎛ ⎞

⎜ ⎟
⎝ ⎠

   

 (c) If 0,2 , 4 , , 2nφ π π π= " , then the amplitude is ( )2
2 cos 2 cos 2 cos 2 1

2 2
n

A A A n A
φ π

π= = = ±   

2A=  , which is constructive interference.  If ( ),3 ,5 , , 2 1nφ π π π π= +" , then the amplitude 

is 
( ) ( )1

22 cos 2 cos 2 cos 0
2 2

2 1
A A A

n
n

πφ π= = =
+

⎡ ⎤+⎣ ⎦ , which is destructive interference. 

 (d) If 
2
πφ = , then the resultant wave is as follows. 

2 cos sin 2 cos sin 2 sin
2 2 4 4 4

D A kx t A kx t A kx t
φ φ π π πω ω ω= − + = − + = − +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

This wave has an amplitude of 2A , is traveling in the positive x direction, and is shifted to the 
left by an eighth of a cycle.  This is “halfway” between the two original waves.  The 
displacement is 1

2 A  at the origin at t = 0. 
 

43. The fundamental frequency of the full string is given by unfingered 441Hz
2
v

f = =
l

.  If the length is 

reduced to 2/3 of its current value, and the velocity of waves on the string is not changed, then the 
new frequency will be as follows. 

  
( ) ( )fingered unfingered2

3

3 3 3
441Hz 662 Hz

2 2 2 2 2
v v

f f= = = = =⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠l l
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44. The frequencies of the harmonics of a string that is fixed at both ends are given by 1nf nf= , and so 

the first four harmonics are 1 2 3 4294 Hz , 588Hz , 882 Hz , 1176Hzf f f f= = = = . 

 
45. The oscillation corresponds to the fundamental.  The frequency of that oscillation is 

1

1 1 2
Hz.

1.5s 3
f

T
= = =   The bridge, with both ends fixed, is similar to a vibrating string, and so 

1

2
Hz, 1,2,3 .

3n

n
f nf n= = = …   The periods are the reciprocals of the frequency, and so 

1.5s
, 1,2,3 .nT n

n
= = …  

 
46. Four loops is the standing wave pattern for the 4th harmonic, with a frequency given by 

4 14 280 Hzf f= = .  Thus 1 2 3 570 Hz , 140 Hz ,  210 Hz, and  350 Hzf f f f= = = =  are all other 

resonant frequencies. 
 
47. Each half of the cord has a single node, at the center of the cord.  Thus each half of the cord is a half 

of a wavelength, assuming that the ends of the cord are also nodes.  The tension is the same in both 
halves of the cord, and the wavelengths are the same based on the location of the node.  Let subscript 
1 represent the lighter density, and subscript 2 represent the heavier density. 

  

T1 T2
1 1 1 2 2 2 1 2 T1 T2

1 2

T1

1 11 2

2 1T2

2 2

  ;  =   ;    ;  

1

2
1

F F
v f v f F F

F
f
f F

λ λ λ λ
μ μ

λ μ μ
μ

λ μ

= = = = =

= = =

 

 The frequency is higher on the lighter portion. 
 
48. Adjacent nodes are separated by a half-wavelength, as examination of Figure 15-26 will show. 

  
( )

1
node 2

96m s
    0.11m

2 2 445Hz
v v

x
f f

λ λ= → Δ = = = =  

 
49. Since 1nf nf= , two successive overtones differ by the fundamental frequency, as shown below. 

  ( )1 1 1 11 320Hz 240 Hz 80Hzn nf f f n f nf f+Δ = − = + − = = − =  

 
50. The speed of waves on the string is given by Eq. 15-2, T .v F μ=   The resonant frequencies of a 

string with both ends fixed are given by Eq. 15-17b, 
vib2n

nv
f =

l
, where vibl  is the length of the 

portion that is actually vibrating. Combining these relationships allows the frequencies to be 
calculated. 
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  ( ) ( ) ( )
T

1 3
vib

2 1 3 1

1 520 N
        320.7 Hz

2 2 0.600m 3.16 10 kg 0.900m

2 641.4 Hz     3 962.1Hz

n

n F
f f

f f f f

μ −
= = =

×

= = = =

l  

 So the three frequencies are 320Hz , 640Hz , 960Hz , to 2 significant figures. 

 
51. The speed of the wave is given by Eq. 15-2, T .v F μ=   The wavelength of the fundamental is 

1 .2λ = l   Thus the frequency of the fundamental is T
1

1

1 .
2

v
f

F
λ μ

==
l

  Each harmonic is present in 

a vibrating string, and so T
1 2

,  1,2,3,n

n F
f nf n

μ
= = = …

l
. 

 
52. The string must vibrate in a standing wave pattern to have a certain number of loops.  The frequency 

of the standing waves will all be 120 Hz, the same as the vibrator.  That frequency is also expressed 

by Eq. 15-17b, 
2n

nv
f =

l
.  The speed of waves on the string is given by Eq. 15-2, T .v F μ=   The 

tension in the string will be the same as the weight of the masses hung from the end of the string,  
TF mg= , ignoring the mass of the string itself.  Combining these relationships gives an expression 

for the masses hung from the end of the string. 

 (a) 
2 2

T
2

4
    

2 2 2
n

n

nv n F n mg f
f m

n g
μ

μ μ
= = = → =

l

l l l
 

( ) ( ) ( )
( )

2 2 4

1 2 2

4 1.50m 120Hz 6.6 10 kg m
8.728kg 8.7kg

1 9.80m s
m

−×
= = ≈  

 (b) 1
2 2

8.728kg
2.2 kg

2 4
m

m = = =  

 (c) 1
5 2

8.728kg
0.35kg

5 25
m

m = = =  

 
53. The tension in the string is the weight of the hanging mass, TF mg= .  The speed of waves on the 

string can be found by T ,F mg
v

μ μ
= =  and the frequency is given as 120 Hzf = .  The wavelength 

of waves created on the string will thus be given by  

  
( ) ( )
( )

2

4

0.070kg 9.80m s1 1
0.2687 m

120 Hz 6.6 10 kg m
v mg
f f

λ
μ −

= = = =
×

. 

 The length of the string must be an integer multiple of half of the wavelength for there to be nodes at 
both ends and thus form a standing wave.  Thus 2, , 3 2, 2.nλ λ λ λ= "l   The number of 
standing wave patterns is given by the number of integers that satisfy 0.10 m 2 1.5m.nλ< <  

  
( ) ( )2 0.10 m 2 0.10 m

0.10 m 2     0.74
0.2687 m

n nλ
λ

< → > = =  
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( ) ( )2 1.5m 2 1.5m

2 1.5m    11.1
0.2687 m

n nλ
λ

< → < = =  

Thus we see that we must have n from 1 to 11, and so there are 11  standing wave patterns that may 
be achieved. 

 
54. The standing wave is given by ( ) ( ) ( )2.4cm sin 0.60 cos 42 .D x t=  
 (a)  The distance between nodes is half of a wavelength. 

1 1
2 2 1

2
5.236cm 5.2 cm

0.60cm
d

k
π πλ

−
= = = = ≈  

(b) The component waves travel in opposite directions.  Each has the same frequency and speed, 
and each has half the amplitude of the standing wave. 

( )

( ) ( ) ( )

1
1
2

node

42s
2.4 cm 1.2 cm   ;  6.685Hz 6.7 Hz   ;

2 2
2 2 5.236cm 6.685Hz 70.01cm s 70cm s  2 sig. fig.

A f

v f d f

ω
π π

λ

−

= = = = = ≈

= = = = ≈
 

 (c) The speed of a particle is given by .D
t

∂
∂

 

   

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]1

2.4cm sin 0.60 cos 42 42rad s 2.4cm sin 0.60 sin 42

3.20cm, 2.5s 42 rad s 2.4cm sin 0.60cm 3.20cm sin 42rad s 2.5s

                           92cm s

D
x t x t

t t
D
t

−

∂ ∂
= = −

∂ ∂
∂

= −
∂

=

⎡ ⎤⎣ ⎦  

 
55. (a) The given wave is ( )1 4.2sin 0.84 47 2.1D x t= − + .  To produce a standing wave, we simply need  

to add a wave of the same characteristics but traveling in the opposite direction.  This is the 
appropriate wave. 

   ( )2 4.2sin 0.84 47 2.1D x t= + +  

 (b) The standing wave is the sum of the two component waves.  We use the trigonometric identity  
that ( ) ( )1 1

1 2 1 2 1 22 2sin sin 2sin cosθ θ θ θ θ θ+ = + − . 

( ) ( )
( ) ( ) ( )[ ]{ }

( ) ( )[ ]{ }
( ) ( ) ( ) ( )

1 2

1
2

1
2

4.2sin 0.84 47 2.1 4.2sin 0.84 47 2.1

   4.2 2 sin 0.84 47 2.1 0.84 47 2.1

                cos 0.84 47 2.1 0.84 47 2.1

   8.4sin 0.84 2.1 cos 47 8.4sin 0.84 2.1 cos 47

D D D x t x t

x t x t

x t x t

x t x t

= + = − + + + +

= − + + + +

− + − + +

= + − = +

  

  We note that the origin is NOT a node. 
 
56. From the description of the water’s behavior, there is an antinode at each end of the tub, and a node 

in the middle.  Thus one wavelength is twice the tub length. 
  ( ) ( ) ( )tub2 2 0.45m 0.85 Hz 0.77m sv f fλ= = = =l  
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57. The frequency is given by 1 .f
v F
λ λ μ

= =   The wavelength and the mass density do not change 

when the string is tightened. 

  ( )
2

2 2 2
2 1

1 1 11

1
1

       294 Hz 1.15 315Hz
1

F
v F f F F

f f f
f F FF

λ μ
λ λ μ

λ μ

= = → = = → = = =  

 
58. (a) Plotting one full wavelength  

means from 0x = to 

1

2 2
1.795m

3.5m
x

k
π πλ

−
= = = =

1.8m.≈   The functions to be 
plotted are given below.  The 
spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH15.XLS,” on 
tab “Problem 15.58.” 

( ) ( )1
1 0.15m sin 3.5m 1.8D x−= −⎡ ⎤⎣ ⎦  and ( ) ( )1

2 0.15m sin 3.5m 1.8D x−= +⎡ ⎤⎣ ⎦  
 

 (b) The sum 1 2D D+  is plotted,  
and the nodes and antinodes 
are indicated.  The analytic 
result is given below.  The 
spreadsheet used for this 
problem can be found on the 
Media Manager, with 
filename 
“PSE4_ISM_CH15.XLS,” on 
tab “Problem 15.58.” 
 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1
1 2

1

0.15m sin 3.5m 1.8 0.15m sin 3.5m 1.8

0.30 m sin 3.5m cos 1.8           

D D x x

x

− −

−

+ = − + −

=

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

  This expression should have nodes and antinodes at positions given by the following. 

( ) ( )

1
node

1
antinode

1
21

2

3.5m , 0,1,2     0,  0.90 m, 1.80 m
3.5

3.5m , 0,1,2     0.45m, 1.35 m
3.5

n
x n n x

x n n x
n

ππ

π
π

−

−

= = → = =

= + = → = =
+

…

…
 

  The graph agrees with the calculations. 
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-0.05
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D
1,

 D
2  (

m
)

D1
D2

-0.15

-0.10

-0.05

0.00
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D
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D
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m
)

node

antinode

antinode



Chapter 15  Wave Motion 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

493 

59. The standing wave formed from the two individual waves is given below.  The period is given by 
12 2 1.8s 3.5s.T π ω π −= = =   

  ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
1 2 0.15m sin 3.5m 1.8s 0.15m sin 3.5m 1.8sD D x t x t− − − −+ = − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

  ( ) ( ) ( )1 1           0.30 m sin 3.5m cos 1.8sx t− −=  

 (a) For the point x =  
0, we see that the 
sum of the two 
waves is 
identically 0.  
This means that 
the point x = 0 is 
a node of the 
standing wave.   
The spreadsheet 
used for this 
problem can be 
found on the 
Media Manager, with filename “PSE4_ISM_CH15.XLS,” on tab “Problem 15.59.” 

  

 (b) For the point  
4,x λ=  we see 

that the ampli-
tude of that point 
is twice the 
amplitude of 
either wave.  
Thus this point is 
an antinode of 
the standing 
wave.  The 
spreadsheet used 
for this problem 
can be found on the Media Manager, with filename “PSE4_ISM_CH15.XLS,” on tab “Problem 
15.59.” 

 
60. (a) The maximum swing is twice the amplitude of the standing wave.  Three loops is 1.5  

wavelengths, and the frequency is given. 

   

( ) ( )

( ) ( ) ( ) ( ) ( )[ ]

1
2

13
2

1

8.00cm 4.00cm  ; 2  2 120 Hz 750 rad s  ;

2 2
      ;  1.64 m    1.09 m  ;  5.75m

1.09 m

sin cos 4.00cm sin 5.75m cos 750 rad s

A f

k k

D A kx t x t

ω π π
π πλ λ
λ

ω

−

−

= = = = =

= → = → = = =

= = ⎡ ⎤⎣ ⎦

 

 (b) Each component wave has the same wavelength, the same frequency, and half the amplitude of  
the standing wave. 

   
( ) ( ) ( )
( ) ( ) ( )

1

1

1

2

2.00cm sin 5.75m 750 rad s

2.00cm sin 5.75m 750 rad s

D x t

D x t

−

−

= −

= +

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦
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0
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D
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61. Any harmonic with a node directly above the pickup will NOT be “picked up” by the pickup.  The 
pickup location is exactly 1/4 of the string length from the end of the string, so a standing wave with 
a frequency corresponding to 4 (or 8 or 12 etc.) loops will not excite the pickup.  So n = 4, 8, and 12 
will not excite the pickup. 

 
62. The gap between resonant frequencies is the fundamental frequency (which is thus 300 Hz for this 

problem), and the wavelength of the fundamental is twice the string length. 
  ( ) ( ) ( ) ( )12 2 0.65m 300 Hz 390 m sn nv f f fλ += = − = =l   

 
63. The standing wave is the sum of the two individual standing waves.  We use the trigonometric 

identities for the cosine of a difference and a sum. 
( )1 2 1 2 1 2cos cos cos sin sinθ θ θ θ θ θ− = +  ; ( )1 2 1 2 1 2cos cos cos sin sinθ θ θ θ θ θ+ = −  

  
( ) ( ) ( ) ( )[ ]

[ ]
1 2 cos cos cos cos

   cos cos sin sin cos cos sin sin

   2 cos cos

D D D A kx t A kx t A kx t kx t

A kx t kx t kx t kx t

A kx t

ω ω ω ω

ω ω ω ω
ω

= + = − + + = − + +

= + + −

=

 

Thus the standing wave is 2 cos cos .D A kx tω=  The nodes occur where the position term forces 

2 cos cos 0D A kx tω= =  for all time.  Thus ( )cos 0    2 1 , 0,1,2,
2

kx kx n n
π

= → = ± + = " .  Thus, 

since 12.0 mk −= , we have ( )1
2 m, 0,1,2,

2
x n n

π
= ± + = " . 

 
64. The frequency for each string must be the same, to ensure continuity of the string at its junction.   

Each string will obey these relationships: T 2
,   ,  .

F
f v v

n
λ λ

μ
= = =

l   Combine these to find the 

nodes.  Note that n is the number of “loops” in the string segment, and that n loops requires 1n +  
nodes. 

  T T T2 2
 ,   ,          

2
F F n F

f v v f f
n n

λ λ
μ μ μ

= = = → = → =
l l

l
 

  Al T Fe T Al Al Al

Al Al Fe Fe Fe Fe Fe

0.600 m 2.70g m 2
    0.400

2 2 0.882 m 7.80g m 5
n F n F n

n
μ

μ μ μ
= → = = = =

l

l l l
 

Thus there are 3 nodes on the aluminum, since Al 2,n =  and 6 nodes on the steel, since Fe 5,n = but 
one node is shared so there are 8 total nodes.  Use the formula derived above to find the lower 
frequency. 

  
( )

Al Al
3

Al Al

2 135 N
 373Hz

2 2 0.600 m 2.70 10 kg m
n F

f
μ −

= = =
×l

 

 
65. The speed in the second medium can be found from the law of refraction, Eq. 15-19. 

  ( )2 2 2
2 1

1 1 1

sin sin sin31
    8.0km s 5.2km s

sin sin sin52
v

v v
v

θ θ
θ θ

°
= → = = =

°
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
66. The angle of refraction can be found from the law of refraction, Eq. 15-19. 

  12 2 2
2 1 2

1 1 1

sin 2.5m s
    sin sin sin35 0.512    sin 0.419 31

sin 2.8m s
v v
v v

θ θ θ θ
θ

−= → = = = → = = °°  
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67. The angle of refraction can be found from the law of refraction, Eq. 15-19.  The relative velocities 
can be found from the relationship given in the problem. 

  

( )
( )

( )

2 2 2
2

1 1 1

1
2

331 0.60 15sin 331 0.60 322
    sin sin33 sin33 0.5069

sin 331 0.60 331 0.60 25 346

sin 0.5069 30  2 sig. fig.

v T
v T

θ θ
θ

θ −

+ −+
= = → = ° = ° =

+ +

= = °

 

 
68. (a) Eq. 15-19 gives the relationship between the angles and the speed of sound in the two media.   

For total internal reflection (for no sound to enter the water), water 90θ = °  or watersin 1θ = .  The air 
is the “incident” media.  Thus the incident angle is given by the following. 

   1 1 1air air air air i
air i water iM

water water water water r

sin
  ;  sin sin     sin sin

sin
v v v v

v v v v
θ θ θ θ θ
θ

− − −= = = → = =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
 

 (b) From the angle of incidence, the distance is found.  See the diagram. 

( )

1 1air
air M

water

air M

343m s
sin sin 13.8

1440 m s

tan     1.8m tan13.8 0.44 m
1.8m

v
v

x
x

θ

θ

− −= = = °

= → = ° =
 

  
69. The angle of refraction can be found from the law of refraction, Eq. 15-19.  The relative velocities 

can be found from Eq. 15-3. 

  

22 2 1 1 water 1

1 1 2 2 water 21

11
2 1 2

2

sin
sin

3.6
sin sin sin38 0.70    sin 0.70 44

2.8

Ev SG SG
v SG SGE

SG
SG

ρθ ρ ρ
θ ρ ρρ

θ θ θ −

= = = = =

= = ° = → = = °

 

 
70. The error of 2o is allowed due to diffraction of the waves.  If the waves are incident at the “edge” of 

the dish, they can still diffract into the dish if the relationship θ λ≈ l  is satisfied.   

  ( ) o 2 2
o

 rad
    0.5 m 2 1.745 10 m 2 10 m

180
λ πθ λ θ − −≈ → = = × = × ≈ ×⎛ ⎞

⎜ ⎟
⎝ ⎠

l
l

 

 If the wavelength is longer than that, there will not be much diffraction, but “shadowing” instead. 
 
71. The frequency is 880 Hz and the phase velocity is 440 m/s, so the wavelength is  

440 m s
0.50 m.

880 Hz
v
f

λ = = =  

 (a) Use the ratio of distance to wavelength to define the phase difference. 

   
6 0.50 m

    0.042 m
2 12 12

x
x

π λ
λ π
= → = = =  

 (b) Use the ratio of time to period to define the phase difference. 
   

 ( ) ( )42
    2 2 1.0 10 s 880 Hz 0.55rad

2
t t

tf
T T

φ πφ π π
π

−= → = = = × =  

 

1.8m

x

air Mθ
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72. The frequency at which the water is being shaken is about 1 Hz.  The sloshing coffee is in a standing 
wave mode, with antinodes at each edge of the cup.  The cup diameter is thus a half-wavelength, or 

16 cm.λ =   The wave speed can be calculated from the frequency and the wavelength. 
  ( ) ( )16 cm 1 Hz 16 cm sv fλ= = =  

 
73. The speed of a longitudinal wave in a solid is given by Eq. 15-3, .v E ρ=   Let the density of the 

less dense material be 1ρ , and the density of the more dense material be 2ρ .  The less dense material 
will have the higher speed, since the speed is inversely proportional to the square root of the density. 

  11 2

2 12

2.5 1.6
Ev

v E

ρ ρ
ρρ

= = = ≈  

   
74. From Eq. 15-7, if the speed, medium density, and frequency of the two waves are the same, then the 

intensity is proportional to the square of the amplitude. 
  2 2

2 1 2 1 2 1 2 12.5    2.5 1.6I I P P A A A A= = = → = =  
 The more energetic wave has the larger amplitude. 
 
75. (a) The amplitude is half the peak-to-peak distance, so 0.05m . 

(b) The maximum kinetic energy of a particle in simple harmonic motion is the total energy, which 
is given by 21

total 2E kA= .   
Compare the two kinetic energy maxima. 

   
2 221

22 max 2 2
21

21 max 1 1

0.075m
2.25

0.05m
K kA A
K kA A

= = = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

76. From Eq. 15-17b, 
2

,n

nv
f

L
=  we see that the frequency is proportional to the wave speed on the 

stretched string.  From Eq. 15-2, T ,v F μ=  we see that the wave speed is proportional to the 
square root of the tension.  Thus the frequency is proportional to the square root of the tension. 

  
2 2

T 2 2 2
T 2 T 1 T 1 T 1

T 1 1 1

247 Hz
    0.938  

255Hz
F f f

F F F F
F f f

= → = = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 Thus the tension should be decreased by 6.2% . 
 
77.  We assume that the earthquake wave is moving the ground vertically, since it is a transverse wave.  

An object sitting on the ground will then be moving with SHM, due to the two forces on it – the 
normal force upwards from the ground and the weight downwards due to gravity.  If the object loses 
contact with the ground, then the normal force will be zero, and the only force on the object will be 
its weight.  If the only force is the weight, then the object will have an acceleration of g downwards.  
Thus the limiting condition for beginning to lose contact with the ground is when the maximum 
acceleration caused by the wave is greater than g.  Any larger downward acceleration and the ground 
would “fall” quicker than the object.  The maximum acceleration is related to the amplitude and the 
frequency as follows. 

  
( )

2
2

max 22 2 2 2

9.80m s
    0.69m

4 4 0.60Hz
g g

a A g A
f

ω
ω π π

= > → > = = =  
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78. (a) The speed of the wave at a point h above the lower end depends on the tension at that point and  
the linear mass density of the cord.  The tension must equal the mass of the lower segment if the 
lower segment is in equilibrium.  Use Eq. 15-2 for the wave speed. 

 T
T segment   ;  

h
mgh F

F m g mg v hg
mμ

= = = = =l

l

l

  

 (b) We treat h as a variable, measured from the bottom of the cord.  The wave speed at that point is  
given above as .v hg=   The distance a wave would travel up the cord during a time dt is then 

.dh vdt hg dt= =  To find the total time for a wave to travel up the cord, integrate over the 
length of the cord. 

   

total

0 0

total
0 0

          

2 2

t L

LL

dh dh
dh vdt hgdt dt dt

hg hg

dh h L
t

g ghg

= = → = → = →

= = =

∫ ∫

∫
 

 
79. (a) The spreadsheet used for this  

problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH15.XLS,” on 
tab “Problem 15.79.” 

 
 
 
 
 
 
 
  (b) The wave function is found by replacing x in the pulse by .x vt−   

( )
( )[ ]

3

2 2

4.0m

2.4m s 2.0m
,D

x t
x t =

− +
 

 (c) The spreadsheet used for this  
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH15.XLS,” on 
tab “Problem 15.79.” 

   
 
 
 
 
 
 
 
 
 

t  = 0 sec

0.0

0.5

1.0

1.5

2.0

-10 -5 0 5 10
x  (m)

D
 (m

)

t  = 1.0 sec, moving right

0.0

0.5

1.0

1.5

2.0

-10 -5 0 5 10
x  (m)

D
 (m

)
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(d) The wave function is found by  
replacing x in the pulse by 

.x vt+   The spreadsheet used 
for this problem can be found 
on the Media Manager, with 
filename 
“PSE4_ISM_CH15.XLS,” on 
tab “Problem 15.79.” 

( )[ ]
3

2 2

4.0m

2.4m s 2.0m
D

x t
=

+ +
 

 
80. (a) The frequency is related to the tension by Eqs. 15-1 and 15-2. 

   

T T

T T T T

T1
2

T T T

1 1 1 1 1
    

2 2 2

    
2

v F df F f
f

dF F F F

f f F
f f

F F F

λ λ μ λ μ λ μ
= = → = = =

Δ Δ
≈ → Δ ≈

Δ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) T

T T T

6
    2 2 0.0275 3%

2 436
f f F f
F F F f
Δ Δ Δ

≈ → ≈ = = =
Δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(c) The only change in the expression T1 F
λ μ

 as the overtone changes is the wavelength, and the 

wavelength does not influence the final result.  So yes, the formula still applies. 
 
81. (a) The overtones are given by 1, 2,3, 4nf nf n= = …  

   
( ) ( )
( ) ( )

2 3

2 3

G :    2 392 Hz 784 Hz      3 392 Hz 1176 Hz 1180 Hz

B :    2 494 Hz 988 Hz      3 440 Hz 1482 Hz 1480 Hz

f f

f f

= = = = ≈

= = = = ≈
 

 (b) If the two strings have the same length, they have the same wavelength.  The frequency  
difference is then due to a difference in wave speed caused by different masses for the strings. 

   

T
2 2

GG G G A G A

A A A G A GT

A

494
   1.59

392

F
mf v v m m f

f v v m m fF
m

λ
λ

= = = = → = = =
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

l

l

 

 (c) If the two strings have the same mass per unit length and the same tension, then the wave speed  
on both strings is the same.  The frequency difference is then due to a difference in wavelength.  
For the fundamental, the wavelength is twice the length of the string. 

   G B B G BG

B G G B GB

2 494
    1.26

2 392
vf f

f v f
λ λ
λ λ

= = = → = = =
l l

l l
 

 (d) If the two strings have the same length, they have the same wavelength.  The frequency 
difference is then due to a difference in wave speed caused by different tensions for the strings. 

t  = 1.0 sec, moving left

0.0

0.5

1.0

1.5

2.0

-10 -5 0 5 10
x  (m)

D
 (m

)



Chapter 15  Wave Motion 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

499 

   

TB
2 2

B B B TB TB B

A A A TA TA ATA

392
   0.630

494

F
m Lf v v F F f

f v v F F fF
m L

λ
λ

= = = = → = = =
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
82. Relative to the fixed needle position, the ripples are moving with a linear velocity given by  

( )2 0.108 mrev 1min
33 0.3732 m s

min 60 s 1 rev
v

π
= =⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 This speed is the speed of the ripple waves moving past the needle.  The frequency of the waves is 

  3

0.3732 m s
240.77 Hz 240 Hz

1.55 10 m
v

f
λ −

= = = ≈
×

 

 
83. The speed of the pulses is found from the tension and mass per unit length of the wire. 

  T 255 N
129.52 m s

0.152 kg 10.0 m
F

v
μ

= = =  

 The total distance traveled by the two pulses will be the length of the wire.  The second pulse has a 
shorter time of travel than the first pulse, by 20.0 ms. 

  

( )
( ) ( )

( )
( ) ( )

2
1 2 1 2 1 1

22
2

1

2
1 1

2.00 10

10.0m 2.00 10 129.52m s2.00 10
4.8604 10 s

2 2 129.52 m s

129.52m s 4.8604 10 s 6.30m

d d vt vt vt v t

v
t

v

d vt

−

−−
−

−

= + = + = + − ×

+ ×+ ×
= = = ×

= = × =

l

l
 

 The two pulses meet 6.30m  from the end where the first pulse originated. 

 

84. We take the wave function to be ( ) ( ), sinD x t A kx tω= − .  The wave speed is given by ,v
k f
ω λ

= =  

while the speed of particles on the cord is given by .
D
t

∂
∂

 

( )
max

cos     

1 10.0cm
    1.59cm

2 2

D D
A kx t A

t t

A v A
k k

ω ω ω

ω λω
π π

∂ ∂
= − − → =

∂ ∂

= = → = = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 
85. For a resonant 

condition, the free 
end of the string 
will be an 
antinode, and the 
fixed end of the 
string will be a 
node.  The 
minimum distance 
from a node to an antinode is 4λ .  Other wave patterns that fit the boundary conditions of a node at 

-1

0

1

0 1n = 5 
n = 3

n = 1
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one end and an antinode at the other end include 3 4  , 5 4  , λ λ … .  See the diagrams.  The general 
relationship is ( )2 1 4  , 1,2,3,n nλ= − = "l .  Solving for the wavelength gives 

4
 , 1,2,3,

2 1
n

n
λ = =

−
"

l
. 

 
86. The addition of the support will force the bridge to have its lowest mode of oscillation to have a node 

at the center of the span, which would be the first overtone of the fundamental frequency.  If the 
wave speed in the bridge material remains constant, then the resonant frequency will double, to 
6.0 Hz.  Since earthquakes don’t do significant shaking at that frequency, the modifications would be 
effective at keeping the bridge from having large oscillations during an earthquake. 

 
87. From the figure, we can see that the amplitude is 3.5 cm, and the wavelength is 20 cm.  The 

maximum of the wave at x = 0 has moved to x = 12 cm at t = 0.80 s, which is used to find the 
velocity.  The wave is moving to the right.  Finally, since the displacement is a maximum at x = 0 
and t = 0, we can use a cosine function without a phase angle. 

  
( ) ( ) ( ) ( )

1 12cm
3.5cm;  20cm    0.10 cm ;   15cm s;  1.5 rad s

0.80s

, cos 3.5cm cos 0.10 1.5 ,  in cm,  in s

A k v vk

D x t A kx t x t x t

πλ π ω π
λ

ω π π

−2
= = → = = = = = =

= − = −
 

 
88. From the given data, 0.50 mA =  and 2.5m 4.0s 0.625m s.v = =   We use Eq. 15-6 for the average 

power, with the density of sea water from Table 13-1.  We estimate the area of the chest as 
( )20.30m .   Answers may vary according to the approximation used for the area of the chest. 

  
( ) ( ) ( ) ( ) ( )2 2 22 2 2 2 32 2 1025kg m 0.30m 0.625m s 0.25Hz 0.50m

  18W

P Svf Aπ ρ π= =

=
   

 
89. The unusual decrease of water corresponds to a trough in Figure 15-4.  The crest or peak of the wave 

is then one-half wavelength from the shore.  The peak is 107.5 km away, traveling at 550 km/hr. 

  
( )1

2 215km 60 min
    11.7 min 12 min

550 km hr 1hr
x

x vt t
v
Δ

Δ = → = = = ≈
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
90. At t = 1.0 s, the leading edge of 

each wave is 1.0 cm from the 
other wave.  They have not yet 
interfered.  The leading edge of 
the wider wave is at 22 cm, and 
the leading edge of the narrower 
wave is at 23 cm. 

 
 
 
 
 
 
 
 

t  = 1.0 s

0 5 10 15 20 25 30 35 40

x  (cm)
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 At t = 2.0 s, the waves are 
overlapping.  The diagram uses 
dashed lines to show the parts of 
the original waves that are 
undergoing interference. 

 
 
 
 
 
 
 
 
 

At t = 3.0 s, the waves have 
“passed through” each other, 
and are no longer interfering. 
 
 
 
 
 
 
 
 
 

 
91. Because the radiation is uniform, the same energy must pass through every spherical surface, which 

has the surface area 24 .rπ   Thus the intensity must decrease as 21 .r   Since the intensity is 
proportional to the square of the amplitude, the amplitude will decrease as 1 .r   The radial motion 

will be sinusoidal, and so we have ( )sin .
A

D kr t
r

ω= −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
92. The wavelength is to be 1.0 m.  Use Eq. 15-1. 

344m s
    340Hz

1.0m
v

v f fλ
λ

= → = = =  

There will be significant diffraction only for wavelengths larger than the width of the window, and 
so waves with frequencies lower than 340 Hz would diffract when passing through this window. 

 
93. The value of k was taken to be 11.0m−  for this problem.  The peak of the wave moves to the right by 

0.50 m during each second that elapses.  This can be seen qualitatively from the graph, and 
quantitatively from the spreadsheet data.  Thus the wave speed is given by the constant c, 0.50m s .   

The direction of motion is in the positive x direction.  The wavelength is seen to be m .λ π=   Note 

that this doesn’t agree with the relationship 
2

.
k
πλ =   The period of the function 2sin θ  is π , not 2π  

as is the case for sinθ .  In a similar fashion the period of this function is 2 s .T π=  Note that this 

t  = 2.0 s

0 5 10 15 20 25 30 35 40

x  (cm)

t  = 3.0 s

0 5 10 15 20 25 30 35 40

x  (cm)
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doesn’t agree with the relationship 
2 ,kv
T
πω= =  again because of the 

behavior of the 2sin θ  function.  But 

the relationship v
T
λ
=  is still true for 

this wave function.  The spreadsheet 
used for this problem can be found 
on the Media Manager, with 
filename “PSE4_ISM_CH15.XLS,” 
on tab “Problem 15.93.” 

 
Further insight is gained by re-writing the function using the trigonometric identity 

2 1 1
2 2sin cos2 ,θ θ= −  because function cos2θ  has a period of .π  

 
94. (a) The graph shows the wave moving  

3.0 m to the right each second, which 
is the expected amount since the 
speed of the wave is 3.0 m/s and the 
form of the wave function says the 
wave is moving to the right.  The 
spreadsheet used for this problem 
can be found on the Media Manager, 
with filename 
“PSE4_ISM_CH15.XLS,” on tab 
“Problem 15.94a.” 

 
 
 
 (b) The graph shows the wave moving  

3.0 m to the left each second, which 
is the expected amount since the 
speed of the wave is 3.0 m/s and the 
form of the wave function says the 
wave is moving to the left.  The 
spreadsheet used for this problem 
can be found on the Media Manager, 
with filename 
“PSE4_ISM_CH15.XLS,” on tab 
“Problem 15.94b.” 
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CHAPTER 16:  Sound 
 
Responses to Questions 
 
1.  Sound exhibits diffraction, refraction, and interference effects that are characteristic of waves. Sound 

also requires a medium, a characteristic of mechanical waves. 
 
2.   Sound can cause objects to vibrate, which is evidence that sound is a form of energy. In extreme 

cases, sound waves can even break objects. (See Figure 14-24 showing a goblet shattering from the 
sound of a trumpet.) 

 
3.  Sound waves generated in the first cup cause the bottom of the cup to vibrate. These vibrations 

excite vibrations in the stretched string which are transmitted down the string to the second cup, 
where they cause the bottom of the second cup to vibrate, generating sound waves which are heard 
by the second child. 

 
4.  The wavelength will change. The frequency cannot change at the boundary since the media on both 

sides of the boundary are oscillating together. If the frequency were to somehow change, there 
would be a “pile-up” of wave crests on one side of the boundary.  

 
5. If the speed of sound in air depended significantly on frequency, then the sounds that we hear would 

be separated in time according to frequency. For example, if a chord were played by an orchestra, we 
would hear the high notes at one time, the middle notes at another, and the lower notes at still 
another. This effect is not heard for a large range of distances, indicating that the speed of sound in 
air does not depend significantly on frequency. 

 
6.  Helium is much less dense than air, so the speed of sound in the helium is higher than in air. The 

wavelength of the sound produced does not change, because it is determined by the length of the 
vocal cords and other properties of the resonating cavity. The frequency therefore increases, 
increasing the pitch of the voice.  

 
7.  The speed of sound in a medium is equal to ,v B ρ=  where B is the bulk modulus and ρ is the 

density of the medium. The bulk moduli of air and hydrogen are very nearly the same. The density 
of hydrogen is less than the density of air.  The reduced density is the main reason why sound travels 
faster in hydrogen than in air. 

 
8.  The intensity of a sound wave is proportional to the square of the frequency, so the higher-frequency 

tuning fork will produce more intense sound.  
 
9. Variations in temperature will cause changes in the speed of sound and in the length of the pipes. As 

the temperature rises, the speed of sound in air increases, increasing the resonance frequency of the 
pipes, and raising the pitch of the sound. But the pipes get slightly longer, increasing the resonance 
wavelength and decreasing the resonance frequency of the pipes and lowering the pitch. As the 
temperature decreases, the speed of sound decreases, decreasing the resonance frequency of the 
pipes, and lowering the pitch of the sound. But the pipes contract, decreasing the resonance 
wavelength and increasing the resonance frequency of the pipes and raising the pitch. These effects 
compete, but the effect of temperature change on the speed of sound dominates. 

 
10.  A tube will have certain resonance frequencies associated with it, depending on the length of the 

tube and the temperature of the air in the tube. Sounds at frequencies far from the resonance 
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frequencies will not undergo resonance and will not persist. By choosing a length for the tube that 
isn’t resonant for specific frequencies you can reduce the amplitude of those frequencies.  

  
11.  As you press on frets closer to the bridge, you are generating higher frequency (and shorter 

wavelength) sounds. The difference in the wavelength of the resonant standing waves decreases as 
the wavelengths decrease, so the frets must be closer together as you move toward the bridge. 

 
12.  Sound waves can diffract around obstacles such as buildings if the wavelength of the wave is large 

enough in comparison to the size of the obstacle. Higher frequency corresponds to shorter 
wavelength. When the truck is behind the building, the lower frequency (longer wavelength) waves 
bend around the building and reach you, but the higher frequency (shorter wavelength) waves do 
not. Once the truck has emerged from behind the building, all the different frequencies can reach 
you.  

 
13. Standing waves are generated by a wave and its reflection.  The two waves have a constant phase 

relationship with each other. The interference depends only on where you are along the string, on 
your position in space. Beats are generated by two waves whose frequencies are close but not equal. 
The two waves have a varying phase relationship, and the interference varies with time rather than 
position. 

 
14.  The points would move farther apart. A lower frequency corresponds to a longer wavelength, so the 

distance between points where destructive and constructive interference occur would increase.  
 
15. According to the principle of superposition, adding a wave and its inverse produces zero 

displacement of the medium. Adding a sound wave and its inverse effectively cancels out the sound 
wave and substantially reduces the sound level heard by the worker. 

 
16. (a) The closer the two component frequencies are to each other, the longer the wavelength of the 

beat. If the two frequencies are very close together, then the waves very nearly overlap, and the 
distance between a point where the waves interfere constructively and a point where they interfere 
destructively will be very large.  

 
17. No. The Doppler shift is caused by relative motion between the source and observer. 
 
18.  No. The Doppler shift is caused by relative motion between the source and observer. If the wind is 

blowing, both the wavelength and the velocity of the sound will change, but the frequency of the 
sound will not. 

 
19. The child will hear the highest frequency at position C, where her speed toward the whistle is the 

greatest. 
 
20. The human ear can detect frequencies from about 20 Hz to about 20,000 Hz. One octave corresponds 

to a doubling of frequency. Beginning with 20 Hz, it takes about 10 doublings to reach 20,000 Hz. 
So, there are approximately 10 octaves in the human audible range.  

 
21. If the frequency of the sound is halved, then the ratio of the frequency of the sound as the car recedes 

to the frequency of the sound as the car approaches is equal to ½. Substituting the appropriate 
Doppler shift equations in for the frequencies yields a speed for the car of 1/3 the speed of sound. 
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Solutions to Problems 
 
In these solutions, we usually treat frequencies as if they are significant to the whole number of units.  For 
example, 20 Hz is taken as to the nearest Hz, and 20 kHz is taken as to the nearest kHz.  We also treat all 
decibel values as good to whole number of decibels.  So 120 dB is good to the nearest decibel. 
 
1. The round trip time for sound is 2.0 seconds, so the time for sound to travel the length of the lake is  

1.0 seconds.  Use the time and the speed of sound to determine the length of the lake. 
  ( ) ( )343m s 1.0 s 343 m 340md vt= = = ≈  

 
2. The round trip time for sound is 2.5 seconds, so the time for sound to travel the length of the lake is  

1.25 seconds.  Use the time and the speed of sound in water to determine the depth of the lake. 

  ( )( ) 31560m s 1.25 s 1950 m 2.0 10 md vt= = = = ×  
 

3. (a) 2
20 Hz 20 kHz 4

343m s 343m s
17 m      1.7 10 m

20 Hz 2.0 10 Hz
v v
f f

λ λ −= = = = = = ×
×

 

So the range is from 1.7 cm to 17 m. 

(b) 5
6

343m s
2.3 10 m

15 10 Hz
v
f

λ −= = = ×
×

 

 
4. The distance that the sounds travels is the same on both days.  That distance is equal to the speed of 

sound times the elapsed time.  Use the temperature-dependent relationships for the speed of sound in 
air. 

( )( )[ ]( ) ( )( )[ ]( )1 1 2 2 2

2

    331 0.6 27 m s 4.70s 331 0.6 m s 5.20s   

29 C

d v t v t T

T

= = → + = + →

= − °
 

 
5. (a) The ultrasonic pulse travels at the speed of sound, and the round trip distance is twice the  

distance d to the object. 
( ) ( )31 1

min min min min2 22     343m s 1.0 10 s 0.17 md vt d vt −= → = = × =  

 (b) The measurement must take no longer than 1/15 s.  Again, the round trip distance is twice the  
distance to the object. 

( ) ( )1 1 1
max max max max2 2 152     343m s s 11md vt d vt= → = = =  

(c) The distance is proportional to the speed of sound.  So the percentage error in distance is the  
same as the percentage error in the speed of sound.  We assume the device is calibrated to work 
at 20 C.°  

  
( )[ ]23 C 20 C

20 C

331 0.60 23 m s 343m s
0.005248 0.5%

343m s
d v v v

d v v
° °

°

+ −Δ Δ −
= = = = ≈     

 
6. (a) For the fish, the speed of sound in seawater must be used. 

   
1350m

    0.865s
1560m s

d
d vt t

v
= → = = =  

 (b) For the fishermen, the speed of sound in air must be used. 

   
1350m

    3.94s
343m s

d
d vt t

v
= → = = =  
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7. The total time T is the time for the stone to fall ( )downt  plus the time for the sound to come back to 

the top of the cliff ( )upt :  up downT t t= + .  Use constant acceleration relationships for an object 

dropped from rest that falls a distance h in order to find downt , with down as the positive direction.  

Use the constant speed of sound to find upt  for the sound to travel a distance h. 

  

( )

2 21 1
0 0 down down down snd up up2 2

snd

2
22 2 2 2snd1 1 1

down up snd snd2 2 2
snd

down:               up:      

      2 0

h
y y v t at h gt h v t t

v

vh
h gt g T t g T h v T h T v

v g

= + + → = = → =

= = − = − → − + + =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 

This is a quadratic equation for the height.  This can be solved with the quadratic formula, but be 
sure to keep several significant digits in the calculations. 

  
( ) ( ) ( )

( )

2 22
2

2 6 2

343m s
2 343m s 3.0s 3.0s 343m s 0  

9.80 m s

26068 m 1.0588 10 m 0    26028 m , 41m

h h

h h h

− + + = →

− + × = → =

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 The larger root is impossible since it takes more than 3.0 sec for the rock to fall that distance, so the  
correct result is 41mh = . 

 
8. The two sound waves travel the same distance.  The sound will travel faster in the concrete, and thus 

take a shorter time. 

( ) concrete
air air concrete concrete concrete air air

concrete air

concrete
air air air

concrete air

0.75s     0.75s

0.75s

v
d v t v t v t t

v v

v
d v t v

v v

= = = − → =
−

= =
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The speed of sound in concrete is obtained from Table 16-1 as 3000 m/s. 

  ( ) ( )3000m s
343m s 0.75s 290m

3000m s 343m s
d = =

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
9. The “5 second rule” says that for every 5 seconds between seeing a lightning strike and hearing the 

associated sound, the lightning is 1 mile distant.  We assume that there are 5 seconds between seeing 
the lightning and hearing the sound. 
(a) At 30oC, the speed of sound is ( )[ ]331 0.60 30 m s 349m s+ = .  The actual distance to the  

lightning is therefore ( )( )349 m s 5s 1745 md vt= = = .  A mile is 1610 m. 

( )1745 1610
% error 100 8%

1745
−

= ≈  

(b) At 10oC, the speed of sound is ( )[ ]331 0.60 10 m s 337 m s+ = .  The actual distance to the  

lightning is therefore ( )( )337 m s 5s 1685 md vt= = = .  A mile is 1610 m. 

( )1685 1610
% error 100 4%

1685
−

= ≈  
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10. The relationship between the pressure and displacement amplitudes is given by Eq. 16-5. 

(a) ( ) ( ) ( )
3

9M
M 3

3.0 10 Pa
2     7.5 10 m

2 2 1.29 kg m 331m s 150 Hz
P

P vAf A
vf

πρ
πρ π

−
−Δ ×

Δ = → = = = ×   

(b) ( ) ( ) ( )
3

11M
3 3

3.0 10 Pa
7.5 10 m

2 2 1.29 kg m 331m s 15 10 Hz
P

A
vfπρ π

−
−Δ ×

= = ×
×

=  

 
11. The pressure amplitude is found from Eq. 16-5. The density of air is 31.29 kg m .  

 (a) ( ) ( ) ( ) ( )3 10 5
M 2 2 1.29 kg m 331m s 3.0 10 m 55Hz 4.4 10 PaP vAfπρ π − −Δ = = × = ×  

 (b) ( ) ( ) ( ) ( )3 10 3
M 2 2 1.29 kg m 331m s 3.0 10 m 5500 Hz 4.4 10 PaP vAfπρ π − −Δ = = × = ×  

 
12. The pressure wave can be written as Eq. 16-4. 
 (a) ( )M cosP P kx tωΔ = −Δ −  

( )

( ) ( ) ( )

5 1
M

5 1

110 rad s
4.4 10 Pa ; 2 2 55Hz 110 rad s  ; 0.33 m

331m s

4.4 10 Pa cos 0.33 m 110 rad s

P f k
v

P x t

ω πω π π π π

π π

− −

− −

Δ = × = = = = = =

Δ = − × −⎡ ⎤⎣ ⎦

 

 (b) All is the same except for the amplitude and ( ) 42 2 5500 Hz 1.1 10 rad s.fω π π π= = = ×   

  ( ) ( ) ( )3 1 44.4 10 Pa cos 0.33 m 1.1 10 rad sP x tπ π− −Δ = − × − ×⎡ ⎤⎣ ⎦  

 
13. The pressure wave is ( ) ( ) ( )1 10.0035Pa sin 0.38 m 1350 s .P x tπ π− −Δ = ⎡ ⎤−⎣ ⎦  

 (a) 1

2 2
5.3m

0.38 mk
π πλ

π −
= = =  

 (b) 
11350 s

675Hz
2 2

f
ω π
π π

−

= = =  

 (c) 1

11350 s
3553 3600 m s

0.38 m
m sv

k
ω π

π −

−

= = = ≈  

 (d) Use Eq. 16-5 to find the displacement amplitude. 

   ( )
( ) ( ) ( )

M

13M
3

2   

0.0035Pa
1.0 10 m

2 2 2300 kg m 3553m s 675Hz

P vAf

P
A

vf

πρ

πρ π
−

Δ = →

Δ
= = = ×

 

 

14. ( )12 12 12 2 2120
120 0

0

120 dB 10log     10 10 1.0 10 W m 1.0 W m
I

I I
I

−= → = = × =  

( )2 2 12 2 10 220
20 0

0

20 dB 10log     10 10 1.0 10 W m 1.0 10 W m
I

I I
I

− −= → = = × = ×  

The pain level is 1010  times more intense than the whisper. 
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15. 
6 2

12 2
0

2.0 10 W m
10log 10log 63 dB

1.0 10 W m
I
I

β
−

−

×
= = =

×
 

 
16. From Figure 16-6, at 40 dB the low frequency threshold of hearing is about 70 80 Hz− .  There is  

no intersection of the threshold of hearing with the 40 dB level on the high frequency side of the 
chart, and so a 40 dB signal can be heard all the way up to the highest frequency that a human can 
hear, 20, 000 Hz . 

 
17. (a) From Figure 16-6, at 100 Hz, the threshold of hearing (the lowest detectable intensity by the  

ear) is approximately 9 25 10 W m−× .  The threshold of pain is about 25 W m .  The ratio of 

highest to lowest intensity is thus 
2

9
9 2

5 W m
10

5 10 W m−
=

×
. 

 (b) At 5000 Hz, the threshold of hearing is about 13 210 W m− , and the threshold of pain is about  

1 210 W m− .  The ratio of highest to lowest intensity is 
1 2

12
13 2

10 W m
10

10 W m

−

−
= . 

 Answers may vary due to estimation in the reading of the graph. 
 
18. Compare the two power output ratings using the definition of decibels. 

  150

100

150 W
10log 10log 1.8dB

100 W
P
P

β = = =  

 This would barely be perceptible. 
 
19. The intensity can be found from the decibel value. 

  ( )/10 12 12 2 2
0

0

10 log     10 10 10 W m 1.0 W m
I

I I
I

ββ −= → = = =  

Consider a square perpendicular to the direction of travel of the sound wave.  The intensity is the 
energy transported by the wave across a unit area perpendicular to the direction of travel, per unit 

time.  So I
E

S t
=
Δ
Δ

, where S is the area of the square.  Since the energy is “moving” with the wave, 

the “speed” of the energy is v, the wave speed.  In a time tΔ , a volume equal to V Sv tΔ = Δ  would 
contain all of the energy that had been transported across the area S.  Combine these relationships to 
find the energy in the volume. 

  
( ) ( )32

9
1.0 W m 0.010 m

    2.9 10 J
343m s

E I V
I E IS t

S t v
−Δ Δ

= → Δ = Δ = = = ×
Δ

 

 
20. From Example 12-4, we see that a sound level decrease of 3 dB corresponds to a halving of intensity.   

Thus the sound level for one firecracker will be 95 dB 3 dB 92 dB− = . 
 
21. From Example 16-4, we see that a sound level decrease of 3 dB corresponds to a halving of intensity.   

Thus, if two engines are shut down, the intensity will be cut in half, and the sound level will be 127  
dB.  Then, if one more engine is shut down, the intensity will be cut in half again, and the sound  
level will drop by 3 more dB, to a final value of 124 dB . 
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22. ( ) ( ) 6.2 6
Signal Noise Signal Noisetape tape

62dB 10log     10 1.6 10I I I I= → = = ×  

( ) ( ) 9.8 9
Signal Noise Signal Noisetape tape

98dB 10log     10 6.3 10I I I I= → = = ×  

 
23. (a) According to Table 16-2, the intensity in normal conversation, when about 50 cm from the  

speaker, is about 6 23 10 W m−× .  The intensity is the power output per unit area, and so the 
power output can be found.  The area is that of a sphere. 

   ( ) ( ) ( )22 6 2 6 6    4 3 10 W m 4 0.50 m 9.425 10 W 9.4 10 W
P

I P IA I r
A

π π− − −= → = = = × = × ≈ ×  

 (b) 6 6
6

1 person
75W 7.96 10 8.0 10 people

9.425 10 W−
= × ≈ ×

×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
24. (a) The energy absorbed per second is the power of the wave, which is the intensity times the area. 

   
( )

( )( )

5 5 12 2 7 2
0

0

7 2 5 2 12

50 dB 10log     10 10 1.0 10 W m 1.0 10 W m

1.0 10 W m 5.0 10 m 5.0 10 W

I
I I

I

P IA

− −

− − −

= → = = × = ×

= = × × = ×

 

 (b) 3
12 7

1 s 1 yr
1 J 6.3 10 yr

5.0 10 J 3.16 10 s−
= ×

× ×
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
25. The intensity of the sound is defined to be the power per unit area.  We assume that the sound  

spreads out spherically from the loudspeaker. 

(a) 
( )

2
2 250

250 2502 12 2
0

250W 1.624 W m
1.624 W m      10log 10log 122dB

1.0 10 W m4 3.5m
I

I
I

β
π −

= = = = =
×

 

( )

2
2 45

45 452 12 2
0

45W 0.2923W m
0.2923W m       10log 10log 115dB

1.0 10 W m4 3.5m
I

I
I

β
π −

= = = = =
×

 

(b) According to the textbook, for a sound to be perceived as twice as loud as another means that  
the intensities need to differ by a factor of 10.  That is not the case here – they differ only by a 

factor of 
1.624

6
0.2598

≈ .  The expensive amp will not sound twice as loud as the cheaper one.  

 
26. (a) Find the intensity from the 130 dB value, and then find the power output corresponding to that  

intensity at that distance from the speaker. 

   ( )13 13 12 2 22.8m
2.8m 0

0

130 dB 10log     10 10 1.0 10 W m 10W m
I

I I
I

β −= = → = = × =  

   ( ) ( )22 24 4 2.2 m 10W m 608W 610WP IA r Iπ π= = = = ≈  

 (b) Find the intensity from the 85 dB value, and then from the power output, find the distance  
corresponding to that intensity. 

   

( )

( )

8.5 8.5 12 2 4 2
0

0

2
4 2

85dB 10log     10 10 1.0 10 W m 3.16 10 W m

608W
4     390m

4 4 3.16 10 W m

I
I I

I

P
P r I r

I

β

π
π π

− −

−

= = → = = × = ×

= → = = =
×
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27. The first person is a distance of 1 100mr = from the explosion, while the second person is a distance  

( )2 5 100mr =  from the explosion.  The intensity detected away from the explosion is inversely 
proportional to the square of the distance from the explosion. 

 
( )

2
2

1 2 1
2

2 1 2

5 100m
5  ;  10log 10log5 7.0dB

100m
I r I
I r I

β= = = = = =
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
28. (a) The intensity is proportional to the square of the amplitude, so if the amplitude is 2.5 times  

greater, the intensity will increase by a factor of 6.25 6.3≈ . 

 (b) 010log 10log6.25 8dBI Iβ = = =  

 
29. (a) The pressure amplitude is seen in Eq. 16-5 to be proportional to the displacement amplitude and  

to the frequency.  Thus the higher frequency wave has the larger pressure amplitude, by a factor 
of 2.6. 

(b) The intensity is proportional to the square of the frequency.  Thus the ratio of the intensities is  
the square of the frequency ratio. 

 ( )2
2.6

2

2.6
6.76 6.8f

f

I f
I f

= = ≈  

 
30. The intensity is given by Eq. 15-7, 2 2 22 ,I v f Aπ ρ=  using the density of air and the speed of sound  

in air. 

  
( ) ( ) ( ) ( )222 2 2 3 2 4 2

2

12 2
0

2 2 1.29 kg m 343m s 380 Hz 1.3 10 m 21.31W m

21.31W m
10log 10log 133dB 130dB

1.0 10 W m

I v f A

I
I

ρ π π

β

−

−

= = × =

= = = ≈
×

 

 Note that this is above the threshold of pain. 
 
31. (a) We find the intensity of the sound from the decibel value, and then calculate the displacement  

amplitude from Eq. 15-7. 

   

( )

( ) ( ) ( )

/10 12 12 2 2
0

0

2 2 2

2
5

3

10 log     10 10 10 W m 1.0 W m

2   

1 1 1.0 W m
3.2 10 m

2 330 Hz 2 1.29 kg m 343m s

I
I I

I

I v f A

I
A

f v

ββ

π ρ

π ρ π

−

−

= → = = =

= →

= = = ×

  

 (b) The pressure amplitude can be found from Eq. 16-7. 

   

( )

( ) ( ) ( ) ( )

2
M

3 2
M

  
2

2 2 343m s 1.29 kg m 1.0 W m 30 Pa 2 sig. fig.

P
I

v

P v I

ρ

ρ

Δ
= →

Δ = = =

 

 
32. (a) We assume that there has been no appreciable absorption in this 25 meter distance.  The  

intensity is the power divide by the area of a sphere of radius 25 meters.  We express the sound 
level in dB. 
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( )

( ) ( )
5

22 2 12 2
0 0

5.0 10 W
 ; 10 log 10log 10log 138dB

4 4 4 25m 10 W m
P I P

I
r I r I

β
π π π −

×
= = = = =   

(b) We find the intensity level at the new distance, and subtract due to absorption. 

  

( )
( ) ( )

( ) ( )

5

22 12 2
0

with
absorption

5.0 10 W
10log 10log 106dB

4 4 1000 m 10 W m

106dB 1.00 km 7.0dB km 99 dB

P
r I

β
π π

β

−

×
= = =

= − =

 

(c) We find the intensity level at the new distance, and subtract due to absorption. 

  

( )
( ) ( )

( ) ( )

5

22 12 2
0

with
absorption

5.0 10 W
10log 10log 88.5dB

4 4 7500 m 10 W m

88.5dB 7.50 km 7.0dB km 36dB

P
r I

β
π π

β

−

×
= = =

= − =

 

 

33. For a closed tube, Figure 16-12 indicates that 1 4
.v

f =
l

  We assume the bass clarinet is at room 

temperature. 

   
( )1

1

343m s
    1.24 m

4 4 4 69.3Hz
v v

f
f

= → = = =l
l

 

 

34. For a vibrating string, the frequency of the fundamental mode is given by T1
2 2

Fv
f

L L m L
= = . 

  ( )( ) ( )22 4T
T

1
    =4 4 0.32 m 440 Hz 3.5 10 kg 87 N

2
F

f F Lf m
L m L

−= → = × =  

 
35. (a) If the pipe is closed at one end, only the odd harmonic frequencies are present, and are given by  

1, 1,3,5
4n

nv
f nf n

L
= = = " . 

( )1

343m s
69.2 Hz

4 4 1.24 m
v

f
L

= = =  

3 1 5 1 7 13 207 Hz      5 346 Hz      7 484 Hzf f f f f f= = = = = =  

 (b) If the pipe is open at both ends, all the harmonic frequencies are present, and are given by   

12n

nv
f nf= =

l
.  

 
( )1

343m s
138.3Hz 138 Hz

2 2 1.24 m
v

f = = = ≈
l

 

   2 1 3 1 4 1

3 2
2 277 Hz      3 415Hz      4 553Hz

2
v v v

f f f f f f= = = = = = = = =
l l l

 

 
36. (a) The length of the tube is one-fourth of a wavelength for this (one end closed) tube, and so the  

wavelength is four times the length of the tube. 
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( )
343m s

410 Hz
4 0.21m

v
f

λ
= = =  

 (b) If the bottle is one-third full, then the effective length of the air column is reduced to 14 cm. 

   
( )
343m s

610 Hz
4 0.14 m

v
f

λ
= = =  

37. For a pipe open at both ends, the fundamental frequency is given by 1 2
v

f =
l

, and so the length for a  

given fundamental frequency is 
12

v
f

=l . 

 
( ) ( )

3
20 Hz 20 kHz

343m s 343m s
8.6 m           8.6 10 m

2 20 Hz 2 20,000 Hz
−= = = = ×l l  

 
38. We approximate the shell as a closed tube of length 20 cm, and calculate the fundamental frequency. 

( )
343m s

429 Hz 430 Hz
4 4 0.20 m
v

f = = = ≈
l

 

 
39. (a) We assume that the speed of waves on the guitar string does not change when the string is  

fretted.  The fundamental frequency is given by 
2
v

f =
l

, and so the frequency is inversely 

proportional to the length. 

   
1

    constantf f∝ → =
l

l  

( )E
E E A A A E

A

330 Hz
    0.73 m 0.5475 m

440 Hz
f

f f
f

= → = = =⎛ ⎞
⎜ ⎟
⎝ ⎠

l l l l  

  The string should be fretted a distance 0.73 m 0.5475 m 0.1825 m 0.18 m− = ≈  from the nut  
of the guitar. 

 

 (b) The string is fixed at both ends and is vibrating in its fundamental mode.  Thus the wavelength  
is twice the length of the string (see Fig. 16-7).   

( )2 2 0.5475 m 1.095m 1.1 mλ = = = ≈l  

(c) The frequency of the sound will be the same as that of the string, 440 Hz .  The wavelength is  
given by the following. 

 
343m s

0.78 m
440 Hz

v
f

λ = = =   

 
40. (a) At o15 CT = , the speed of sound is given by ( )( )331 0.60 15 m s 340 m sv = + =  (with 3  

significant figures).  For an open pipe, the fundamental frequency is given by 
2
v

f =
l

. 

 
( )
340 m s

    0.649 m
2 2 2 262 Hz
v v

f
f

= → = = =
l

l  

 (b) The frequency of the standing wave in the tube is 262 Hz .  The wavelength is twice the  

length of the pipe, 1.30 m . 
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 (c) The wavelength and frequency are the same in the air, because it is air that is resonating in the  
organ pipe.  The frequency is 262 Hz  and the wavelength is 1.30 m .  

 
41. The speed of sound will change as the temperature changes, and that will change the frequency of  

the organ.  Assume that the length of the pipe (and thus the resonant wavelength) does not change.  

  ( )
( )

22 5.0 5.0 22
22 5.0 5.0 22

5.0 22

25.0

22 22

          

331 0.60 5.0
1 1 2.96 10 3.0%

331 0.60 22

v v v v
f f f f f

v v
f v

vf v

λ λ λ

λ

λ

−

−
= = Δ = − =

−
+Δ

= = − = − = − × = −
+

 

 

42. A flute is a tube that is open at both ends, and so the fundamental frequency is given by 
2
v

f =
l

,  

where l  is the distance from the mouthpiece (antinode) to the first open side hole in the flute tube 
(antinode). 

  
( )
343m s

    0.491m
2 2 2 349 Hz
v v

f
f

= → = = =
l

l  

 
43. For a tube open at both ends, all harmonics are allowed, with 1nf nf= .  Thus consecutive harmonics 

differ by the fundamental frequency.  The four consecutive harmonics give the following values for 
the fundamental frequency. 

  1 523Hz 392 Hz 131Hz,  659 Hz 523Hz 136 Hz,  784 Hz 659 Hz 125Hzf = − = − = − =  
The average of these is ( )1

1 3 131Hz 136 Hz 125Hz 131Hz.f = + + ≈   We use that for the fundamental 
frequency. 

 (a) 
( )1

1

343m s
    1.31m

2 2 2 131Hz
v v

f
f

= → = = =l
l

 

  Note that the bugle is coiled like a trumpet so that the full length fits in a smaller distance. 

 (b) G4 C5
1 G4 C5

1 1

392 Hz 523Hz
    2.99 ; 3.99 ;

131Hz 131Hzn
f f

f nf n n
f f

= → = = = = = =  

E5 G5
E5 G5

1 1

659 Hz 784 Hz
5.03 ; 5.98

131Hz 131Hz
f f

n n
f f

= = = = = =  

The harmonics are 3, 4, 5,  and 6 .  

 
44. (a) The difference between successive overtones for this pipe is 176 Hz.  The difference between  

successive overtones for an open pipe is the fundamental frequency, and each overtone is an 
integer multiple of the fundamental.  Since 264 Hz is not a multiple of 176 Hz, 176 Hz cannot 
be the fundamental, and so the pipe cannot be open.  Thus it must be a  closed  pipe. 

 (b) For a closed pipe, the successive overtones differ by twice the fundamental frequency.  Thus  
176 Hz must be twice the fundamental, so the fundamental is 88 Hz .  This is verified since 

264 Hz is 3 times the fundamental, 440 Hz is 5 times the fundamental, and 616 Hz is 7 times the 
fundamental. 
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45. The tension and mass density of the string do not change, so the wave speed is constant.  The 

frequency ratio for two adjacent notes is to be 1/122 .   The frequency is given by 
2

.v
f =

l
 

  

1st 1st
fret fret unfingered1/12

1st 1/12 1/12
fretunfingered

unfingered

1st
fret unfingered unfingered

2nd nth nth unfinge1/12 2 /12 /12
fret fret fret

 2
65.0cm

   2     61.35cm
2 2 2

2

      ;  
2 2 2n

v
f

v
f

vf

x

= → = = → = = =

= = → = =

l
l

l
l

l

l
l l

l l l ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

/12
red nth unfingered

fret

1/12 2 /12
1 2

3/12 4 /12
3 4

5 /12 6 /12
5 6

1 2

65.0cm 1 2 3.6cm   ;  65.0cm 1 2 7.1cm

65.0cm 1 2 10.3cm   ;  65.0cm 1 2 13.4cm

65.0cm 1 2 16.3cm   ;  65.0cm 1 2 19.0cm

n

x x

x x

x x

−

− −

− −

− −

− = −

= − = = − =

= − = = − =

= − = = − =

l l

 

   
46. (a) The difference between successive overtones for an open pipe is the fundamental frequency.   

1 330 Hz 275Hz 55 Hzf = − =  

(b) The fundamental frequency is given by 1 2
v

f =
l

.  Solve this for the speed of sound. 

  ( ) ( ) 2
12 2 1.80 m 55 Hz 198m s 2.0 10 m sv f= = = ≈ ×l   

 
47. The difference in frequency for two successive harmonics is 40 Hz.  For an open pipe, two 

successive harmonics differ by the fundamental, so the fundamental could be 40 Hz, with 240 Hz 
being the 6th harmonic and 280 Hz being the 7th harmonic.  For a closed pipe, two successive 
harmonics differ by twice the fundamental, so the fundamental could be 20 Hz.  But the overtones of 
a closed pipe are odd multiples of the fundamental, and both overtones are even multiples of 30 Hz.  
So the pipe must be an  open pipe . 

  
( )[ ]

( )
331 0.60 23.0 m s

    4.3m
2 2 2 40 Hz
v v

f
f

+
= → = = =
l

l  

 

48. (a) The harmonics for the open pipe are 
2n

nv
f =

l
.  To be audible, they must be below 20 kHz. 

   
( ) ( )4

4
2 2.48m 2 10 Hz

2 10 Hz    289.2
2 343m s
nv

n
×

< × → < =
l

 

  Since there are 289 harmonics, there are 288 overtones .  

 (b) The harmonics for the closed pipe are 
4n

nv
f =

l
, n odd.  Again, they must be below 20 kHz. 

   
( ) ( )4

4
4 2.48m 2 10 Hz

2 10 Hz    578.4
4 343m s
nv

n
×

< × → < =
l

 

  The values of n must be odd, so n = 1, 3, 5, …, 577.  There are 289 harmonics, and so there are  
288 overtones .  
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49. A tube closed at both ends will have standing waves with displacement nodes at each end, and so has 
the same harmonic structure as a string that is fastened at both ends.  Thus the wavelength of the 
fundamental frequency is twice the length of the hallway, 1 2 16.0 m.λ = =l  

  1
1

2 1
343m s

21.4 Hz 42.8 Hz
16.0 m

=   ;  2v
f f f

λ
= = = =  

 
50. To operate with the first harmonic, we see from the figure that the thickness must be half of a 

wavelength, so the wavelength is twice the thickness.  The speed of sound in the quartz is given by 
,v G ρ=  analogous to Eqs. 15-3 and 15-4. 

  
( ) ( )10 2 2

41 1 1 1
2 2 2 2 6

2.95 10 N m 2650 kg m
= 1.39 10 m

12.0 10 Hz
Gv

t
f f

ρ
λ −

×
= = = = ×

×
   

 
51. The ear canal can be modeled as a closed pipe of length 2.5 cm.  The resonant frequencies are given 

by ,  odd
4n

nv
f n=

l
.  The first several frequencies are calculated here. 

  

( )
( ) ( )2

1 3 5

343m s
3430 Hz ,  odd

4 4 2.5 10 m

3430 Hz     10,300 Hz     17,200 Hz

n

nnv
f n n

f f f

−
= = =

×

= = =

l  

 

In the graph, the most sensitive frequency is between 3000 and 4000 Hz.  This corresponds to the 
fundamental resonant frequency of the ear canal.  The sensitivity decrease above 4000 Hz, but is 
seen to “flatten out” around 10,000 Hz again, indicating higher sensitivity near 10,000 Hz than at 
surrounding frequencies.  This 10,000 Hz relatively sensitive region corresponds to the first overtone 
resonant frequency of the ear canal. 

 
52. From Eq. 15-7, the intensity is proportional to the square of the amplitude and the square of the 

frequency.  From Fig. 16-14, the relative amplitudes are 2

1

0.4
A
A

≈  and 3

1

0.15.
A
A

≈  

  

( )

( )

2 22 2 2 2 2
22 2 2 22 2 2 2 2 2 2

2 2 2 2 2
1 1 1 1 1 1 1

2 2
223 3 3

1 1 1

2 3
2 1 3 1

1 1

2
2     2 0.4 0.64

2

3 0.15 0.20

10log 10log 0.64 2dB 10log 10log 0.24 7 dB  ;  

I v f A f A f A
I v f A

I v f A f A f A

I f A
I f A

I I
I I

π ρπ ρ
π ρ

β β− −

= → = = = = =

= = =

= = = − = = = −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  
53. The beat period is 2.0 seconds, so the beat frequency is the reciprocal of that, 0.50 Hz.  Thus the  

other string is off in frequency by 0.50 Hz± .  The beating does not tell the tuner whether the 
second string is too high or too low. 

 
54. The beat frequency is the difference in the two frequencies, or 277 Hz 262 Hz 15 Hz− = .  If the  

frequencies are both reduced by a factor of 4, then the difference between the two frequencies will 
also be reduced by a factor of 4, and so the beat frequency will be ( )1

4 15 Hz 3.75Hz 3.8 Hz= ≈ . 
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55. Since there are 4 beats/s when sounded with the 350 Hz tuning fork, the guitar string must have a  
frequency of either 346 Hz or 354 Hz.  Since there are 9 beats/s when sounded with the 355 Hz 
tuning fork, the guitar string must have a frequency of either 346 Hz or 364 Hz.  The common value 
is 346 Hz . 

 
56.  (a) Since the sounds are initially 180°  out of phase,  

another 180°  of phase must be added by a path  
length difference.  Thus the difference of the distances from the speakers to the point of 
constructive interference must be half of a wavelength.  See the diagram. 

 ( ) ( )
1 1 1

min2 2 2

343m s
    2     0.583m

2 2 294 Hz
v

d x x d x d
f

λ λ λ− − = → = + → = = = =  

This minimum distance occurs when the observer is right at one of the speakers.  If the speakers 
are separated by more than 0.583 m, the location of constructive interference will be moved 
away from the speakers, along the line between the speakers. 

 (b) Since the sounds are already 180°  out of phase, as long as the listener is equidistant from the  
speakers, there will be completely destructive interference.  So even if the speakers have a tiny 
separation, the point midway between them will be a point of completely destructive 
interference.  The minimum separation between the speakers is 0. 

 
57. Beats will be heard because the difference in the speed of sound for the two flutes will result in two  

different frequencies. 

  
( )[ ]

( )
1

1

331 0.60 28 m s
263.4 Hz

2 2 0.66 m
v

f
+

= = =
l

 

  
( )[ ]

( )
2

2

331 0.60 5.0 m s
253.0 Hz         263.4 Hz 253.0 Hz 10 beats sec

2 2 0.66 m
v

f f
+

= = = Δ = − =
l

 

 
58. (a) The microphone must be moved to the right until the difference  

in distances from the two sources is half a wavelength.  See the 
diagram.  We square the expression, collect terms, isolate the 
remaining square root, and square again. 

( ) ( )

( ) ( )

1
2 1 2

2 22 21 1 1
2 2 2

2 22 21 1 1
2 2 2

  

 

 

S S

D x D x

D x D x

λ

λ

λ

− = →

+ + − − + = →

+ + = + − + →

l l

l l

( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( )

2 2 22 2 2 21 1 1 1 1
2 4 2 2 2

2 22 2 2 2 2 4 2 21 1 1 1 1
4 2 4 16 2

2 21 1
4 162 2 2 4 2 2 2 2 2 21 1

16 4 2 2

2   

2     4 2 2

4     
4

D x D x D x

Dx D x D x Dx D x

D
D x Dx D Dx x x

D

λ λ

λ λ λ λ λ

λ
λ λ λ λ λ λ λ

λ

2
2

+ + = + − + + − + →

− = − + → − + = − +

+ −
− + = − + + → =

−

⎡ ⎤⎣ ⎦

l l l

l l

l
l

 

  The values are 3.00m, 3.20m,D = =l and ( ) ( )343m s 494 Hz 0.694m.v fλ = = =  

   ( ) ( ) ( ) ( )
( ) ( )

2 21 1
4 16

2 2

3.00 m 3.20 m 0.694 m
0.694 m 0.411m

4 3.00 m 0.694 m
x

2 + −
= =

−
 

 

A B
x d x−

D

l 

x 

S  2 S 1
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 (b) When the speakers are exactly out of phase, the maxima and minima will be interchanged.  The  
intensity maxima are 0.411 m to the left or right of the midpoint, and the intensity minimum is 
at the midpoint. 

 
59. The beat frequency is 3 beats per 2 seconds, or 1.5 Hz.  We assume the strings are the same length 

and the same mass density. 
(a) The other string must be either 220.0 Hz 1.5 Hz 218.5 Hz− =  or 220.0 Hz 1.5 Hz+  

221.5 Hz= . 

 (b) Since T1
2 2

,v F
f

μ
= =
l l

 we have 
2

T T

T T

T        
f f f

f F F F
fF F

′ ′
′∝ → = → =

′
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

To change 218.5 Hz to 220.0 Hz:  
2

T

220.0
1.014, 1.4% increase .

218.5
F F′ = =⎛ ⎞

⎜ ⎟
⎝ ⎠

 

To change 221.5 Hz to 220.0 Hz:  
2

T

220.0
0.9865, 1.3% decrease

221.5
.F F′ = =⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
60. (a) To find the beat frequency, calculate the frequency of each sound, and then subtract the two  

frequencies. 

   ( )beat 1 2
1 2

1 1
 343m s 3.821Hz 4 Hz

2.64 m 2.72 m
v v

f f f
λ λ

= − = − = − = ≈  

 (b) The speed of sound is 343 m/s, and the beat frequency is 3.821 Hz.  The regions of maximum  
intensity are one “beat wavelength” apart. 

( )343m s
89.79 m 90 m 2 sig. fig.

3.821Hz
v
f

λ = = = ≈  

 
61. (a) Observer moving towards stationary source. 

   ( )obs

snd

30.0 m s
 1 1 1350 Hz 1470 Hz

343m s
v

f f
v

′ = + = + =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 (b) Observer moving away from stationary source. 

   ( )obs

snd

30.0 m s
 1 1 1350 Hz 1230 Hz

343m s
v

f f
v

′ = − = − =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
62. The moving object can be treated as a moving “observer” for calculating the frequency it receives 

and reflects.  The bat (the source) is stationary. 

  object
object bat

snd

 1
v

f f
v

′ = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Then the object can be treated as a moving source emitting the frequency object f ′ , and the bat as a 
stationary observer. 

  
( )
( )

object

snd objectobject snd
bat bat bat

object object snd object

snd snd

1
 

1 1

v
v vf v

f f f
v v v v
v v

−
′ −

′′ = = =
+

+ +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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  ( )4 4343m s 30.0 m s
      5.00 10 Hz 4.20 10 Hz

343m s 30.0 m s
−

= × = ×
+

 

 
63. (a) For the 18 m/s relative velocity: 

   

( )

( )

source
moving src

snd

src
observer
moving snd

1 1
 2300 Hz 2427 Hz 2430 Hz

18m s
11

343m s

18 m s
 1 2300 Hz 1 2421Hz 2420 Hz

343m s

f f
v
v

v
f f

v

′ = = = ≈
−−

′ = + = + = ≈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

  

  The frequency shifts are slightly different, with source observer
moving moving

f f′ ′> .  The two frequencies are  

close, but they are not identical.  As a means of comparison, calculate the spread in frequencies 
divided by the original frequency. 

 
source observer
moving moving

source

2427 Hz 2421Hz
 0.0026 0.26%

2300 Hz

f f

f

′ ′−
−

= = =  

(b) For the 160 m/s relative velocity: 

( )

( )

source
moving src

snd

src
observer
moving snd

1 1
 2300 Hz 4311Hz 4310 Hz

160 m s
11

343m s

160 m s
 1 2300 Hz 1 3372 Hz 3370 Hz

343m s

f f
v
v

v
f f

v

′ = = = ≈
−−

′ = + = + = ≈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 

  The difference in the frequency shifts is much larger this time, still with source observer
moving moving

f f′ ′> . 

  
source observer
moving moving

source

4311Hz 3372 Hz
 0.4083 41%

2300 Hz

f f

f

′ ′−
−

= = =  

(c) For the 320 m/s relative velocity: 

( )source
moving src

snd

1 1
 2300 Hz 34,300 Hz

320 m s
11

343m s

f f
v
v

′ = = =
−−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 

( )src
observer
moving snd

320 m s
  1 2300 Hz 1 4446 Hz 4450 Hz

343m s
v

f f
v

′ = + = + = ≈
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

  The difference in the frequency shifts is quite large, still with source observer
moving moving

f f′ ′> . 

   
source observer
moving moving

source

34,300 Hz 4446 Hz
 12.98 1300%

2300 Hz

f f

f

′ ′−
−

= = =  

 (d) The Doppler formulas are asymmetric, with a larger shift for the moving source than for the  
moving observer, when the two are getting closer to each other.  In the following derivation, 
assume src snd ,v v� and use the binomial expansion. 
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1

src src
source observer
moving movingsnd sndsrc

snd

1
 1 1

1

v v
f f f f f

v vv
v

−

′ ′= = − ≈ + =
−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠

⎜ ⎟
⎝ ⎠

  

 
64. The frequency received by the stationary car is higher than the frequency emitted by the stationary  

car, by 4.5 HzfΔ = . 

  

( )

source
obs source

source

snd

snd
source

source

   
1

343m s
1 4.5 Hz 1 98 Hz

15m s

f
f f f

v
v

v
f f

v

= + Δ = →
−

= Δ − = − =

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 

 
65. (a) The observer is stationary, and the source is moving.  First the source is approaching, then the  

source is receding. 

   ( )

( )

source
moving src
towards

snd

source
moving src
away

snd

1m s
 120.0 km h 33.33m s

3.6 km h

1 1
 1280 Hz 1420 Hz

33.33m s
11

343m s

1 1
1280 Hz 1170 Hz

33.33m s
11

343m s

f f
v
v

f f
v
v

=

′ = = =
−−

′ = = =
++

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 

(b) Both the observer and the source are moving, and so use Eq. 16-11. 

  
1m s

 90.0 km h 25m s
3.6 km h

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  

( )
( ) ( ) ( )

( )
( )
( ) ( ) ( )

( )

snd obs
approaching

snd src

snd obs
receding

snd src

343m s 25m s
 1280 Hz 1520 Hz

343m s 33.33m s

343m s 25m s
1280 Hz 1080 Hz

343m s 33.33m s

v v
f f

v v

v v
f f

v v

+ +′ = = =
− −

− −′ = = =
+ +

 

(c) Both the observer and the source are moving, and so again use Eq. 16-11. 

  
( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )

snd obs
police
car snd src
approaching

snd obs
police
car snd src
receding

1m s
 80.0 km h 22.22 m s

3.6 km h

343m s 22.22 m s
 1280 Hz 1330 Hz

343m s 33.33m s

343m s 22.22 m s
1280 Hz 1240 Hz

343m s 33.33m s

v v
f f

v v

v v
f f

v v

=

− −′ = = =
− −

+ +′ = = =
+ +

⎛ ⎞
⎜ ⎟
⎝ ⎠
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66. The wall can be treated as a stationary “observer” for calculating the frequency it receives.  The bat  
is flying toward the wall. 

  wall bat

bat

snd

1
 

1
f f

v
v

′ =
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Then the wall can be treated as a stationary source emitting the frequency wallf ′ , and the bat as a 
moving observer, flying toward the wall. 

  

( )
( )

( )

snd batbat bat
bat wall bat bat

snd snd snd batbat

snd

4 4

1
 1 1

1

343m s 7.0 m s
     3.00 10 Hz 3.13 10 Hz

343m s 7.0 m s

v vv v
f f f f

v v v vv
v

+′′ ′= + = + =
−

−

+
= × = ×

−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞⎝ ⎠ ⎝ ⎠

⎜ ⎟
⎝ ⎠  

 
67. We assume that the comparison is to be made from the frame of reference of the stationary tuba.   

The stationary observers would observe a frequency from the moving tuba of 

  source
obs beat

source

snd

75 Hz
 78 Hz        78 Hz 75Hz 3Hz

12.0 m s
11

343m s

f
f f

v
v

= = = = − =
−−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

. 

 
68. For the sound to be shifted up by one note, we must have ( )1/12

source
moving

2 .f f′ =  

  ( )1/12
source
moving src

snd

1
 2   

1
f f f

v
v

′ = = →
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  ( )src snd1/12 1/12

1 1 3.6 km h
 1 1 343m s 19.25m s 69.3km h

2 2 m s
v v= − = − = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
69. The ocean wave has  44 mλ = and 18 m sv = relative to the ocean floor.  The frequency of the  

ocean wave is then 
18 m s

 0.409 Hz.
 44 m

v
f

λ
= = =  

(a) For the boat traveling west, the boat will encounter a Doppler shifted frequency, for an observer 
moving towards a stationary source.  The speed 18 m sv = represents the speed of the waves in 
the stationary medium, and so corresponds to the speed of sound in the Doppler formula.  The 
time between encountering waves is the period of the Doppler shifted frequency. 

  
( )obs

observer
moving snd

15m s
 1 1 0.409 Hz 0.750 Hz  

18m s

1 1
1.3s

0.750 Hz

v
f f

v

T
f

′ = + = + = →

= = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠  

(b) For the boat traveling east, the boat will encounter a Doppler shifted frequency, for an observer 
moving away from a stationary source. 
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( )obs

observer
moving snd

15m s
 1 1 0.409 Hz 0.0682 Hz  

18m s

1 1
15s

0.0682 Hz

v
f f

v

T
f

′ = − = − = →

= = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠  

 
70. The Doppler effect occurs only when there is relative motion of the source and the observer along  

the line connecting them.  In the first four parts of this problem, the whistle and the observer are not 
moving relative to each other and so there is no Doppler shift.  The wind speed increases (or 
decreases) the velocity of the waves in the direction of the wind, as if the speed of sound were 
different, but the frequency of the waves doesn’t change.  We do a detailed analysis of this claim in 
part (a). 

 (a) The wind velocity is a movement of the medium, and so adds or subtracts from the speed of  
sound in the medium.  Because the wind is blowing away from the observer, the effective speed 
of sound is snd wind.v v−   The wavelength of the waves traveling towards the observer is 

( )snd wind 0 ,a v v fλ = −  where 0f  is the frequency emitted by the factory whistle.  This 
wavelength approaches the observer at a relative speed of snd wind .v v−   Thus the observer hears 
the frequency calculated here. 

 snd wind snd wind
0

snd wind

0

720 Hza
a

v v v v
f f

v v
f

λ
− −

= = = =
−

 

(b) Because the wind is blowing towards the observer, the effective speed of sound is snd wind .v v+    

The same kind of analysis as applied in part (a) gives that 720 Hz .bf =  

(c) Because the wind is blowing perpendicular to the line towards the observer, the effective speed  
of sound along that line is snd .v   Since there is no relative motion of the whistle and observer, 

there will be no change in frequency, and so 720 Hz .cf =   

(d) This is just like part (c), and so 720 Hz .df =   

 (e) Because the wind is blowing toward the cyclist, the effective speed of sound is snd wind.v v+   The  
wavelength traveling toward the cyclist is ( )snd wind 0 .e v v fλ = +   This wavelength approaches 
the cyclist at a relative speed of snd wind cycle .v v v+ +   The cyclist will hear the following 
frequency. 

   

( ) ( )
( )

( )
( ) ( )snd wind cycle snd wind cycle

0
snd wind

343 15.0 12.0 m s
720 Hz

343 15.0

744 Hz   

e
e

v v v v v v
f f

v vλ
+ + + + + +

= = =
+ +

=

 

 (f) Since the wind is not changing the speed of the sound waves moving towards the cyclist, the  
speed of sound is 343 m/s.  The observer is moving towards a stationary source with a speed of 
12.0 m/s. 

   ( )obs

sns

12.0 m s
1 720 Hz 1 745Hz

343m s
v

f f
v

′ = + = + =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
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71. The maximum Doppler shift occurs when the heart has its maximum velocity.  Assume that the heart 
is moving away from the original source of sound.  The beats arise from the combining of the 
original 2.25 MHz frequency with the reflected signal which has been Doppler shifted.  There are 
two Doppler shifts – one for the heart receiving the original signal (observer moving away from 
stationary source) and one for the detector receiving the reflected signal (source moving away from 
stationary observer). 

  

( )
( )

heart

snd heartsndheart heart
heart original detector original original

snd snd heartheart heart

snd snd

original detector original origin

1
 1       

1 1

 

v
v vvv f

f f f f f
v v vv v

v v

f f f f f

−
′ −′ ′′= − = = =

+
+ +

′′Δ = − = −

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠

⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
( )
( ) ( )

snd blood blood
al original

snd blood snd blood

2
    

v v v
f

v v v v
−

= →
+ +

 

( ) ( )
3

blood snd 6
original

2260 Hz
1.54 10 m s 8.9 10 m s

2 2 2.25 10 Hz 260 Hz
f

v v
f f

−Δ
= = × = ×

− Δ × −
 

 If instead we had assumed that the heart was moving towards the original source of sound, we would  

get blood snd
original2

f
v v

f f
Δ

=
+ Δ

.  Since the beat frequency is much smaller than the original frequency, 

the fΔ  term in the denominator does not significantly affect the answer. 
 
72. (a) The angle of the shock wave front relative to the direction of motion is given by Eq. 16-12. 

   1 osnd snd

obj snd

1 1
sin     sin 30

2.0 2.0 2.0
v v
v v

θ θ −= = = → = =  (2 sig. fig.) 

 (b) The displacement of the plane ( )objv t  from the time it  

passes overhead to the time the shock wave reaches the 
observer is shown, along with the shock wave front.  From the 
displacement and height of the plane, the time is found. 

( ) ( )

obj obj

o

tan     
tan

6500 m
18s

2.0 310 m s tan 30

h h
t

v t v
θ

θ
= → =

= =
 

 
73. (a) The Mach number is the ratio of the object’s speed to the speed of sound. 

   
( )4

obs

sound

1m s
1.5 10 km hr

3.6 km hr
92.59 93

45m s
v

M
v

×
= = = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 (b) Use Eq. 16-125 to find the angle. 

   1 1 1snd

obj

1 1
sin sin sin 0.62

92.59
v
v M

θ − − −= = = = °  

 
 
 

objv t

h

θ
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74. From Eq. 16-12, snd

obj

sin
v
v

θ = . 

 (a) 1 1 osnd

obj

343m s
sin sin 2.2

8800 m s
v
v

θ − −= = =  

 (b) 1 1 osnd

obj

1560 m s
sin sin 10

8800 m s
v
v

θ − −= = =  (2 sig. fig.) 

 
75. Consider one particular wave as shown in the diagram, created at the 

location of the black dot.  After a time t has elapsed from the creation 
of that wave, the supersonic source has moved a distance objv t , and the 

wave front has moved a distance sndv t .  The line from the position of 
the source at time t is tangent to all of the wave fronts, showing the 
location of the shock wave.  A tangent to a circle at a point is perpendicular to the radius connecting 
that point to the center, and so a right angle is formed.  From the right triangle, the angle θ  can be 
defined. 

  snd snd

obj obj

sin
v t v
v t v

θ = =  

 
76. (a) The displacement of the plane from the time it passes  

overhead to the time the shock wave reaches the listener 
is shown, along with the shock wave front.  From the 
displacement and height of the plane, the angle of the 
shock wave front relative to the direction of motion can 
be found.  Then use Eq. 16-12. 

   1 o1.25 km 1.25
tan     tan 32

2.0 km 2.0
θ θ −= → = =   

(b) obj
o

snd

1 1
1.9

sin sin 32
v

M
v θ

= = = =  

 
77.  Find the angle of the shock wave, and then find the distance the 

plane has traveled when the shock wave reaches the observer.  
Use Eq. 16-12. 

  

1 1 1snd snd

obj snd

1
sin sin sin 27

2.2 2.2

9500 m 9500 m
tan     18616 m 19 km

tan 27

v v
v v

D
D

θ

θ

− − −= = = = °

= → = = =
°

  

 
78. The minimum time between pulses would be the time for a pulse to travel from the boat to the  

maximum distance and back again.  The total distance traveled by the pulse will be 150 m, at the 
speed of sound in fresh water, 1440 m/s. 

 
150 m

    0.10s
1440 m s

d
d v t t

v
= → = = =  

 
 

objv t
θ

sndv t

2.0 km

1.25 km

θ

D

9500m

θ



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

524 

79. Assume that only the fundamental frequency is heard.  The fundamental frequency of an open pipe is  

given by 
2
v

f
L

= . 

 (a) 
( ) ( )3.0 2.5

343m s 343m s
57 Hz           69 Hz

2 2 3.0 m 2 2 2.5 m
v v

f f
L L

= = = = = =  

  
( ) ( )

( )

2.0 1.5

1.0

343m s 343m s
86 Hz           114.3Hz 110 Hz

2 2 2.0 m 2 2 1.5 m

343m s
171.5 Hz 170 Hz

2 2 1.0 m

v v
f f

L L

v
f

L

= = = = = = ≈

= = = ≈
 

 (b) On a noisy day, there are a large number of component frequencies to the sounds that are being  
made – more people walking, more people talking, etc.  Thus it is more likely that the 
frequencies listed above will be a component of the overall sound, and then the resonance will 
be more prominent to the hearer.  If the day is quiet, there might be very little sound at the 
desired frequencies, and then the tubes will not have any standing waves in them to detect. 

 
80. The single mosquito creates a sound intensity of 12 2

0 1 10 W mI −= × .  Thus 100 mosquitoes will  
create a sound intensity of 100 times that of a single mosquito. 

0
0

0

100
100      10log 10log100 20dB

I
I I

I
β= = = = . 

 
81. The two sound level values must be converted to intensities, then the intensities added, and then  

converted back to sound level. 
8.2 882

82 82 0 0
0

:   82dB 10log     10 1.585 10
I

I I I I
I

= → = = ×  

( )
( )

8.9 887
89 89 0 0

0

8
total 82 89 0

8
80

total
0

:   89dB 10log     10 7.943 10

9.528 10   

9.528 10
10log 10log 6.597 10 89.8dB 90dB  2 sig. fig.

I
I I I I

I

I I I I

I
I

β

= → = = ×

= + = × →

×
= = × = ≈

 

 
82. The power output is found from the intensity, which is the power radiated per unit area. 

( )11.5 11.5 12 2 1 2
0

0

115 dB 10log     10 10 1.0 10 W m 3.162 10 W m
I

I I
I

− −= → = = × = ×  

( ) ( )22 1 2
2

    4 4 9.00 m 3.162 10 W m 322 W
4

P P
I P r I

A r
π π

π
−= = → = = × =  

 
83. Relative to the 1000 Hz output, the 15 kHz output is –12 dB. 

15 kHz 15 kHz 15 kHz
15 kHz

1.212 dB 10log     1.2 log     10     11W
175W 175 W 175W
P P P

P−− = → − = → = → =  
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84. The 130 dB level is used to find the intensity, and the intensity is used to find the power.  It is 
assumed that the jet airplane engine radiates equally in all directions. 

  
( )

( ) ( )

13 13 12 2 1 2
0

0

22 1 2 2

130dB 10log     10 10 1.0 10 W m 1.0 10 W m

1.0 10 W m 2.0 10 0.013W

I
I I

I

P IA I r

β

π π

−

−

= = → = = × = ×

= = = × × =

 

 

85. The gain is given by out
3

in

125 W
10log 10log 51dB

1.0 10 W
P
P

β
−

= = =
×

. 

 
86. It is desired that the sound from the speaker arrives at a listener 30 ms after the sound from the singer  

arrives.  The fact that the speakers are 3.0 m behind the singer adds in a delay of 
3.0 m

343m s
=   

38.7 10 s,−× or about 9 ms.  Thus there must be 21 ms of delay added into the electronic circuitry. 
 
87. The strings are both tuned to the same frequency, and both have the same length.  The mass per unit 

length is the density times the cross sectional area.  The frequency is related to the tension by Eqs. 
15-1 and 15-2. 

  

2 2 2T T T
T2

2 2 22 2 2 1
2T high high high high

2 2 2 1
2T low low low low

1 1
 ;         4   

2 2 2

4 0.724 mm
1.07

4 0.699 mm

v F F F
f v f F f r

r

F f r r d
F f r r d

ρ π
μ μ ρπ

ρ π
ρ π

= = → = = → = →

= = = = =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

l
l l l

l

l

  

   
88. The strings are both tuned to the same frequency, and both have the same length.  The mass per unit 

length is the density times the cross sectional area.  The frequency is related to the tension by Eqs. 
15-1 and 15-2. 

  

2 2 2T T T
T2

2 2 2 2
T acoustic acoustic acoustic acoustic acoustic acoustic acoust

2 2 2 2
T electric electric electric electric electric electric

1 1
 ;         4   

2 2 2

4
4

v F F F
f v f F f r

r

F f r r d
F f r r

ρ π
μ μ ρπ

ρ π ρ ρ
ρ π ρ ρ

= = → = = → = →

= = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

l
l l l

l

l

2

ic

electric

23

3

7760 kg m 0.33m
           1.7

7990 kg m 0.25m

d

= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  

   
89. (a) The wave speed on the string can be found from the length and the fundamental frequency. 

   ( ) ( )    2 2 0.32 m 440 Hz 281.6 280 m s
2

m sv
f v f= → = = = ≈l

l
 

  The tension is found from the wave speed and the mass per unit length. 

( ) ( )22 4T
T    7.21 10 kg m 281.6 m s 57 N

F
v F vμ

μ
−= → = = × =  

 (b) The length of the pipe can be found from the fundamental frequency and the speed of sound. 

( )
343m s

    0.1949 m 0.19 m
4 4 4 440 Hz
v v

f
f

= → = = = ≈l
l
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 (c) The first overtone for the string is twice the fundamental.  880 Hz  

  The first overtone for the open pipe is 3 times the fundamental.  1320 Hz  
 
90. The apparatus is a closed tube.  The water level is the closed end, and so is a node of air  

displacement.  As the water level lowers, the distance from one resonance level to the next 
corresponds to the distance between adjacent nodes, which is one-half wavelength. 

( )1
2     2 2 0.395m 0.125m 0.540 m

343m s
635 Hz

0.540 m
v

f

λ λ

λ

Δ = → = Δ = − =

= = =

l l

 

 

91. The fundamental frequency of a tube closed at one end is given by 1 .
4

f
v=
l

  The change in air 

temperature will change the speed of sound, resulting in two different frequencies. 

  

( ) ( )
( )

30.0 C

30.0 C 30.0 C 30.0 C
30.0 C 25.0 C

25.0 C25.0 C 25.0 C 25.0 C

30.0 C
30.0 C 25.0 C 25.0 C

25.0 C

4     

4
331 0.60 30.0

1 349 Hz 1 3Hz
331 0.60 25.0

v
f v v

f f
vf v v

v
f f f f

v

°

° ° °
° °

°° ° °

°
° ° °

°

= = → =

+
Δ = − = − = − =

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

l

l
 

  
92. Call the frequencies of four strings of the violin A B C D,  ,  , f f f f  with Af  the lowest pitch.  The mass  

per unit length will be named μ .  All strings are the same length and have the same tension.  For a 

string with both ends fixed, the fundamental frequency is given by T
1

1
2 2
v F

f
μ

= =
l l

. 

 
( )

T T A
B A B A2

B A

1 1
1.5     1.5     0.44

2 2 1.5
F F

f f
μμ μ

μ μ
= → = → = =

l l
 

( ) ( )
( )

( ) ( )
( )

2 2T T A
C B A C A4

C A

3 3T T A
D C A D A6

D A

1 1
1.5 1.5     1.5    0.20

2 2 1.5

1 1
1.5 1.5     1.5    0.088

2 2 1.5

F F
f f f

F F
f f f

μμ μ
μ μ

μμ μ
μ μ

= = → = → = =

= = → = → = =

l l

l l

 

 
93. The effective length of the tube is ( )1 1

3 3eff. 0.60 m 0.030 m 0.61m.D+ = + ==l l  

Uncorrected frequencies: 
( )2 1

, 1,2,3   
4n

n v
f n

−
= = →…

l
 

( ) ( )1 4

343m s
2 1 143Hz, 429 Hz, 715Hz, 1000 Hz

4 0.60 m
f n− = − =  

Corrected frequencies:  
( )

eff

2 1
, 1,2,3   

4n

n v
f n

−
= = →…

l
 

( ) ( )1 4

343m s
2 1 141Hz, 422 Hz, 703Hz, 984 Hz

4 0.61m
f n− = − =  
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94. Since the sound is loudest at points equidistant from the two sources, the two sources must be in 
phase.  The difference in distance from the two sources must be an odd number of half-wavelengths 
for destructive interference. 

  0.28m 2     0.56m             343m s 0.56 m 610 Hzf vλ λ λ= → = = = =  

  ( )0.28 m 3 2     0.187 m         343m s 0.187 m 1840 Hz out of rangef vλ λ λ= → = = = =  
 

95. As the train approaches, the observed frequency is given by approach
train

snd

 1f
v

f
v

′ = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

.  As the train 

recedes, the observed frequency is given by train
recede

snd

 1
v

f f
v

′ = +
⎛ ⎞
⎜ ⎟
⎝ ⎠

.  Solve each expression for f , 

equate them, and then solve for trainv . 

  ( )
( ) ( ) ( )

( )

train train
approach recede

snd snd

approach recede
train snd

approach recede

1 1   

552 Hz 486 Hz
343m s 22 m s

552 Hz 486 Hz

v v
f f

v v

f f
v v

f f

′ ′− = + →

′ ′− −
= = =

′ ′+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
96. The Doppler shift is 3.5 Hz, and the emitted frequency from both trains is 516 Hz.  Thus the 

frequency received by the conductor on the stationary train is 519.5 Hz.  Use this to find the moving 
train’s speed. 

  
( ) ( )snd

source snd
snd source

516 Hz
    1 1 343m s 2.31m s

 519.5 Hz
v f

f f v v
v v f

′ = → = − = − =
′−

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
97. (a) Since both speakers are moving towards the observer at the same speed, both frequencies have  

the same Doppler shift, and the observer hears no beats . 
(b) The observer will detect an increased frequency from the speaker moving towards him and a  

decreased frequency from the speaker moving away.  The difference in those two frequencies 
will be the beat frequency that is heard. 

   
( ) ( )

( ) ( )

towards away
train train

snd snd

snd snd
towards away

snd train snd traintrain train

snd snd

1 1
            

1 1

1 1

1 1

343m s 343m s
348 Hz

343m s 10.0 m s 343m s

f f f f
v v
v v

v v
f f f f f

v v v vv v
v v

′ ′= =
− +

′ ′− = − = −
− +

− +

−
−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎣ ⎦

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( ) ( )20 Hz 2 sig. fig.
10.0 m s

=
+

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 (c) Since both speakers are moving away from the observer at the same speed, both frequencies  
have the same Doppler shift, and the observer hears no beats . 
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98. For each pipe, the fundamental frequency is given by 
2
v

f =
l

.  Find the frequency of the shortest  

pipe. 

( )
343m s

71.46 Hz
2 2 2.40 m
v

f = = =
l

 

The longer pipe has a lower frequency.  Since the beat frequency is 8.0 Hz, the frequency of the 
longer pipe must be 63.46 Hz.  Use that frequency to find the length of the longer pipe. 

( )
343m s

    2.70 m
2 2 2 63.46 Hz
v v

f
f

= → = = =
l

l  

 
99. Use Eq. 16-11, which applies when both source and observer are in motion.  There will be two  

Doppler shifts in this problem – first for the emitted sound with the bat as the source and the moth as 
the observer, and then the reflected sound with the moth as the source and the bat as the observer. 

  
( )
( )

( )
( )

( )
( )

( )
( )

snd moth snd bat snd moth snd bat
moth bat bat moth bat

snd bat snd moth snd bat snd moth

      
v v v v v v v v

f f f f f
v v v v v v v v

+ + + +′ ′′ ′= = =
− − − −

 

  ( ) ( )
( )

( )
( )

343 5.0 343 7.5
                                              51.35kHz 55.23kHz

343 7.5 343 5.0
+ +

= =
− −

 

 
100. The beats arise from the combining of the original 3.80 MHz frequency with the reflected signal 

which has been Doppler shifted.  There are two Doppler shifts – one for the blood cells receiving the 
original frequency (observer moving away from stationary source) and one for the detector receiving 
the reflected frequency (source moving away from stationary observer). 

  
( )
( )

blood

snd bloodsndblood blood
blood original detector original original

snd snd bloodblood blood

snd snd

1
 1       

1 1

v
v vvv f

f f f f f
v v vv v

v v

−
′ −′ ′′= − = = =

+
+ +

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠

⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  

( )
( ) ( )

( ) ( )
( )

snd blood blood
original detector original original original

snd blood snd blood

6
3

2
 

2 0.32 m s
    3.80 10 Hz 1600 Hz

1.54 10 m s 0.32 m s

v v v
f f f f f f

v v v v
−′′Δ = − = − =
+ +

= × =
× +

 

 
101. It is 70.0 ms from the start of one chirp to the start of the next.  Since the chirp itself is 3.0 ms long, it  

is 67.0 ms from the end of a chirp to the start of the next.  Thus the time for the pulse to travel to the 
moth and back again is 67.0 ms.  The distance to the moth is half the distance that the sound can 
travel in 67.0 ms, since the sound must reach the moth and return during the 67.0 ms. 

  ( ) ( )31
snd 2 343m s 67.0 10 s 11.5 md v t −= = × =  

 
102. (a) We assume that src snd ,v v� and use the binomial expansion. 

   
1

src src
source observer
moving movingsnd sndsrc

snd

1
 1 1

1

v v
f f f f f

v vv
v

−

′ ′= = − ≈ + =
−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠

⎜ ⎟
⎝ ⎠
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 (b) We calculate the percent error in general, and then substitute in the given relative velocity. 

   

src

snd src

snd

src

snd

1
1

1
approx. exact

 % error 100 100
1exact

1

v
f f

v v
v

f
v
v

+ −
−

−
= =

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

   
2 2

src src src

snd snd snd

18.0 m s
           100 1 1 1 100 100 0.28%

343m s
v v v
v v v

= + − − = − = − = −
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
 

  The negative sign indicates that the approximate value is less than the exact value. 
 

103. The person will hear a frequency walk
towards

snd

 1
v

f f
v

′ = +
⎛ ⎞
⎜ ⎟
⎝ ⎠

 from the speaker that they walk towards. 

The person will hear a frequency walk
away

snd

 1
v

f f
v

′ = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 from the speaker that they walk away from.  

The beat frequency is the difference in those two frequencies. 

  ( )walk walk walk
towards away

snd snd snd

1.4 m s
1 1 2 2 282 Hz 2.3Hz

343m s
v v v

f f f f f
v v v

′ ′− = + − − = = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

 
104. There will be two Doppler shifts in this problem – first for a stationary source with a moving 

“observer” (the blood cells), and then for a moving source (the blood cells) and a stationary 
“observer” (the receiver).  Note that the velocity component of the blood parallel to the sound 
transmission is  1

blood blood2
cos 45 .v v° =   It is that component that causes the Doppler shift. 

  
( )
( )

( )

1
blood2

blood original
snd

1
blood2

1
snd blood2sndblood

detector original original1 1 1
blood blood2 2 snd blood2

snd snd

original detector
blood

 1

1
   

1 1

 
2

 

v
f f

v

v
v vvf

f f f
v v v v

v v

f f
v

′ = −

−
−′

′′ = = = →
+

+ +

′′−
=

′′

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( ) snd
detector original

v
f f+

 

Since the cells are moving away from the transmitter / receiver combination, the final frequency 
received is less than the original frequency, by 780 Hz.  Thus detector original 780 Hz.f f′′ = −   

  

( )
( )

( )
( )

( )
( ) ( )

original detector
blood snd snd

detector original original

6

 780 Hz
2 2

 2 780 Hz

780 Hz
2 1540m s 0.17 m s

2 5.0 10 Hz 780 Hz
      

f f
v v v

f f f

′′−
= =

′′ + −

= =
× −⎡ ⎤⎣ ⎦
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105. The apex angle is 15o, so the shock wave angle is 7.5o.  The angle of the shock wave is also given by  
wave objectsin v vθ = . 

  o
wave object object wavesin     sin 2.2 km h sin 7.5 17 km hv v v vθ θ= → = = =  

 
106. First, find the path difference in the original configuration.  Then move the obstacle to the right by 

dΔ so that the path difference increases by 1
2 .λ   Note that the path difference change must be on the 

same order as the wavelength, and so ,d dΔ � l since , .dλ � l  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( )

2 2 22 1 1
2 2initial final

2 2 221 1 1
2 2 2final initial

2 2 221 1 1
2 2 2

2   ;  2

2 2   

2 2

D d D d d

D D d d d

d d d

λ

λ

Δ = + − Δ = + Δ + −

Δ − Δ = = + Δ + − − + − →

+ Δ + = + +

l l l l

l l l l

l l

 

 Square the last equation above. 

( ) ( ) ( ) ( ) ( )2 2 2 22 2 2 21 1 1 1 1
2 4 2 2 24 2 2 2 4d d d d d dλ λ+ Δ + Δ + = + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦l l l  

We delete terms that are second order in the small quantities dΔ  and .λ  

 ( ) ( )2 22 21 1
2 28 2     

4
d d d d d

d
λλΔ = + → Δ = +l l  

 
107. (a) The “singing” rod is manifesting standing waves.  By holding the rod at its midpoint, it has a  

node at its midpoint, and antinodes at its ends.  Thus the length of the rod is a half wavelength.  
The speed of sound in aluminum is found in Table 16-1. 

   
5100 m s

3400 Hz
2 1.50 m

v v
f

Lλ
= = = =  

 (b) The wavelength of sound in the rod is twice the length of the rod, 1.50 m . 

 (c) The wavelength of the sound in air is determined by the frequency and the speed of sound in air. 

   
343m s

0.10 m
3400 Hz

v
f

λ = = =  

 
108. The displacement amplitude is related to the intensity by Eq. 15-7.  The intensity can be calculated 

from the decibel value.  The medium is air. 

  ( ) ( )10 10.5 12 2 2
0

0

10 log     10 10 10 W m 0.0316 W m
I

I I
I

ββ −= → = = =  

(a) 2 2 22   I v f Aπ ρ= →  

 ( ) ( ) ( )
2

7
3 3

1 1 0.0316 W m
2.4 10 m

2 8.0 10 Hz 2 343m s 1.29 kg m
I

A
f vπ ρ π

−= = = ×
×

 

(b) 
( ) ( ) ( )

2
5

3

1 1 0.0316 W m
5.4 10 m

2 35 Hz 2 343m s 1.29 kg m
I

A
f vπ ρ π

−= = = ×  
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109. (a) The spreadsheet used for this problem can be found on the Media Manager, with filename  
“PSE4_ISM_CH16.XLS,” on tab “Problem 16.109a.”  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b) The spreadsheet used for this problem can be found on the Media Manager, with filename \ 
  “PSE4_ISM_CH16.XLS,” on tab “Problem 16.109b.” 
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CHAPTER 17:  Temperature, Thermal Expansion, and the Ideal Gas Law 
 
Responses to Questions 
 
1.  1 kg of aluminum will have more atoms.  Aluminum has an atomic mass less than iron.  Since each 

Al atom is less massive than each Fe atom, there will be more Al atoms than Fe atoms in 1 kg. 
 
2.   Properties of materials that could be exploited in making a thermometer include: 
   a. thermal expansion, both linear and volume 
   b. the proportionality between temperature and pressure (for an ideal gas when volume is held  
    constant) 
   c. temperature dependence of resistivity  
   d. frequency of emitted radiation from a heated object (blackbody radiation curve).  
 (Note: resistivity and blackbody radiation are defined in Volume II.) 
 
3.  1Cº is larger.  Between the freezing and boiling points of water there are 100 Celsius degrees and 

180 Fahrenheit degrees, so the Celsius degrees must be larger. 
 
4.  A and B have the same temperature; the temperature of C is different. 
 
5.  No. We can only infer that the temperature of C is different from that of A and B. We cannot infer 

anything about the relationship of the temperatures of A and B. 
 
6.  The initial length should be 0.l  However, since α is very small, the absolute value of Δl will be 

about the same whether the initial or final length is used. 
 
7.  Aluminum. Al has a larger coefficient of linear expansion than Fe, and so will expand more than Fe 

when heated and will be on the outside of the curve. 
 
8.  As the pipe changes temperature due to the presence or absence of steam it will expand and contract. 

The bend allows the pipe to increase or decrease slightly in length without applying too much stress 
to the fixed ends. 

 
9.  Lower. Mercury has a larger coefficient of volume expansion than lead. When the temperature rises, 

mercury will expand more than lead. The density of mercury will decrease more than the density of 
lead will decrease, and so the lead will need to displace more mercury in order to balance its weight.  

 
10.  The bimetallic strip is made of two types of metal joined together. The metal of the outside strip has 

a higher coefficient of linear expansion than that of the inside strip, so it will expand and contract 
more dramatically. If the temperature goes above the thermostat setting, the outer strip will expand 
more than the inner, causing the spiral to wind more tightly and tilt the glass vessel so that the liquid 
mercury flows away from the contact wires and the heater turns off. If the temperature goes below 
the thermostat setting, the vessel tilts back as the outer strip contracts more than the inner and the 
spiral opens, and the heater turns on. Moving the temperature setting lever changes the initial 
position of the glass vessel. For instance, if the lever is set at 50, the vessel is tilted with the mercury 
far from the contact wires. The outer strip has to shrink significantly to uncurl the spiral enough to 
tilt the vessel back. 
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11.  If water is added quickly to an overheated engine, it comes into contact with the very hot metal parts 
of the engine. Some areas of the metal parts will cool off very rapidly; others will not. Some of the 
water will quickly turn to steam and will expand rapidly. The net result can be a cracked engine 
block or radiator, due to the thermal stress, and/or the emission of high temperature steam from the 
radiator. Water should always be added slowly, with the engine running. The water will mix with the 
hotter water already in the system, and will circulate through the engine, gradually cooling all parts 
at about the same rate. 

 
12.  No. Whatever units are used for the initial length ( )0l  will be the units of the change in length 

( ).Δl   The ratio 0Δl l  does not depend on the units used.  
 
13. When the cold thermometer is placed in the hot water, the glass part of the thermometer will expand 

first, as heat is transferred to it first. This will cause the mercury level in the thermometer to 
decrease. As heat is transferred to the mercury inside the thermometer, the mercury will expand at a 
rate greater than the glass, and the level of mercury in the thermometer will rise. 

 
14.  Since Pyrex glass has a smaller coefficient of linear expansion than ordinary glass, it will expand 

less than ordinary glass when heated, making it less likely to crack from internal stresses. Pyrex 
glass is therefore more suitable for applications involving heating and cooling. An ordinary glass 
mug may expand to the point of cracking if boiling water is poured in it, whereas a Pyrex mug will 
not.  

 
15. Slow. On a hot day, the brass rod holding the pendulum will expand and lengthen, increasing the 

length and therefore the period of the pendulum, causing the clock to run slow. 
 
16.  Soda is essentially water, and water (unlike most other substances) expands when it freezes. If the 

can is full while the soda is liquid, then as the soda freezes and expands, it will push on the inside 
surfaces of the can and the ends will bulge out. 

 
17. The coefficient of volume expansion is much greater for alcohol than for mercury. A given 

temperature change will therefore result in a greater change in volume for alcohol than for mercury. 
This means that smaller temperature changes can be measured with an alcohol thermometer. 

 
18.  Decrease. As the temperature changes, both the aluminum sphere and the water will expand, 

decreasing in density. The coefficient of volume expansion of water is greater than that of 
aluminum, so the density of the water will decrease more than the density of the aluminum will 
decrease. Even though the sphere displaces a greater volume of water at a higher temperature, the 
weight of the water displaced (the buoyant force) will decrease because of the greater decrease in the 
density of the water. 

 
19. Helium. If we take the atomic mass of 276.7 10 kg−×  and divide by the conversion factor from kg to u 

(atomic mass units), which is 271.66 10 kg u ,−×  we get 4.03 u.  This corresponds to the atomic mass 
of helium.  

 
20.  Not really, as long as the pressure is very low. At low pressure, most gases will behave like an ideal 

gas. Some practical considerations would be the volatility of the gas and its corrosive properties. 
Light monatomic or diatomic gases are best. 

 
 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

534 

21.  Fresh water is less dense than sea water, requiring the ship to displace more water for the same 
buoyant force. (The buoyant force has to equal the weight of the ship for the ship to float.) The ship 
sat lower in the fresh water than in sea water, and was therefore more likely to be swamped by 
waves in a storm and sink. 

 
 
Solutions to Problems 
 
In solving these problems, the authors did not always follow the rules of significant figures rigidly.  We 
tended to take quoted temperatures as correct to the number of digits shown, especially where other 
values might indicate that. 
 
1. The number of atoms in a pure substance can be found by dividing the mass of the substance by the  

mass of a single atom. Take the atomic masses of gold and silver from the periodic table. 

( ) ( )

( ) ( )

2

27

Au
Au Ag2

Ag
27

2.15 10 kg
196.96655u atom 1.66 10 kg u 107.8682

0.548        0.548
2.15 10 kg 196.96655

107.8682 u atom 1.66 10 kg u

N
N N

N

−

−

−

−

×
×

= = = → =
×

×

 

 Because a gold atom is heavier than a silver atom, there are fewer gold atoms in the given mass. 
 
2. The number of atoms is found by dividing the mass of the substance by the mass of a single atom.   

Take the atomic mass of copper from the periodic table. 

( ) ( )
3

22
Cu 27

3.4 10 kg
3.2 10 atoms of Cu

63.546u atom 1.66 10 kg u
N

−

−

×
= = ×

×
 

 
3. (a) ( ) ( )[ ] [ ]5 5

9 9C F 32 68 32 20 CT T° = ° − = − = °  

(b) ( ) ( ) ( )9 9
5 5F C 32 1900 32 3452 F 3500 FT T° = ° + = + = ° ≈ °  

 
4. High: ( ) ( )[ ] [ ]5 5

9 9C F 32 136 32 57.8 CT T° = ° − = − = °  

Low: ( ) ( )[ ] [ ]5 5
9 9C F 32 129 32 89.4 CT T° = ° − = − − = − °  

 
5. ( ) ( ) ( )9 9

5 5F C 32 39.4 C 32 102.9 FT T° = ° + = ° + = °  
 
6. Assume that the temperature and the length are linearly related.  The change in temperature per unit 

length change is as follows. 

  
100.0 C 0.0 C

9.970C cm
21.85 cm 11.82 cm

TΔ ° − °
= = °

Δ −l
 

 Then the temperature corresponding to length L is  ( ) ( ) ( )0.0 C 11.82 cm 9.970C cmT = + − °°l l . 

 (a) ( ) ( ) ( )18.70 cm 0.0 C 18.70 cm 11.82 cm 9.970C cm 68.6 CT = + − ° = °°  

 (b) ( ) ( ) ( )14.60 cm 0.0 C 14.60 cm 11.82 cm 9.970C cm 27.7 CT = + − ° = °°  
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7. Take the 300 m height to be the height in January.   Then the increase in the height of the tower is 
given by Eq. 17-1a. 

  ( ) ( ) ( )6
0 12 10 C 300 m 25 C 2 C 0.08mTα −Δ = Δ = × ° ° − ° =l l  

 
8. When the concrete cools in the winter, it will contract, and there will be no danger of buckling.  Thus 

the low temperature in the winter is not a factor in the design of the highway.  But when the concrete 
warms in the summer, it will expand.  A crack must be left between the slabs equal to the increase in 
length of the concrete as it heats from 15oC to 50oC. 

  ( ) ( ) ( )6 3
0 12 10 C 12 m 50 C 15 C 5.0 10 mTα − −Δ = Δ = × ° ° − ° = ×l l  

 
9. The increase in length of the table is given by Eq. 17-1a. 

  ( ) ( ) ( )6 6
0 0.2 10 C 1.6m 5.0C 1.6 10 mTα − −Δ = Δ = × ° ° = ×l l  

 For steel, ( ) ( ) ( )6 5
0 12 10 C 1.6m 5.0C 9.6 10 mTα − −Δ = Δ = × ° ° = ×l l . 

 The change for Super Invar is only 1
60  of the change for steel. 

 
10. The increase in length of the rod is given by Eq. 17-1a. 

  0 f 6
0 0

0.010
        25 C+ 551.3 C 550 C

19 10 CiT T T Tα
α α −

Δ Δ
Δ = Δ → Δ = → = + = ° = ° ≈ °

× °
l l

l l
l l

 

 

11. The density at 4oC is 
3

3

1.00 10 kg
1.00m

M
V

ρ ×
= = .  When the water is warmed, the mass will stay the 

same, but the volume will increase according to Eq. 17-2. 
  ( ) ( ) ( )6 3 2 3

0 210 10 C 1.00m 94 C 4 C 1.89 10 mV V Tβ − −Δ = Δ = × ° ° − ° = ×  

 The density at the higher temperature is 
3

3
3 2 3

1.00 10 kg
981kg m

1.00 m 1.89 10 m
M
V

ρ
−

×
= = =

+ ×
  

 
12. We assume that all of the expansion of the water is in the thickness of the mixed layer.  We also 

assume that the volume of the water can be modeled as a shell of constant radius, equal to the radius 
of the earth, and so the volume of the shell is the surface area of the shell times its thickness. 

2
E4V R dπ= .  Use Eq. 17-2. 

  

( ) ( ) ( )

2 2 2
E E E

2 2
E E

6

4     4   ;  4

4 4   

210 10 C 50m 0.5 C 0.00525m 5mm

V R d V R d V V T R d T

R d R d T

d d T

π π β β π

π β π

β −

= → Δ = Δ Δ = Δ = Δ

Δ = Δ →

Δ = Δ = × ° ° = ≈

 

 
13. The rivet must be cooled so that its diameter becomes the same as the diameter of the hole. 

  

( )

( ) ( )

0 0 0 0

0
0 6

0

    

1.870 cm 1.872 cm
20 C 69 C

12 10 C 1.872 cm

T L T T

T T

α α

α −

Δ = Δ → − = −

− −
= + = + = − °

× °
°

l l l l

l l

l

 

 The temperature of “dry ice” is about 80 C,− °  so this process will be successful. 
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14. Assume that each dimension of the plate changes according to Eq. 17-1a. 

  
( ) ( )0

     

A A A w w w w w w w w

w w w

Δ = − = + Δ + Δ − = + Δ + Δ + Δ Δ −

= Δ + Δ + Δ Δ

l l l l l l l l

l l l
 

 Neglect the very small quantity wΔ Δl . 
  ( ) ( ) 2A w w w T w T w Tα α αΔ = Δ + Δ = Δ + Δ = Δl ll l l  
 
15. The change in volume of the aluminum is given by the volume expansion formula, Eq. 17-2. 

  ( ) ( )
3

6 34
0 3

8.75 cm
75 10 C 180 C 30 C 3.9cm

2
V V Tβ π−Δ = Δ = × ° ° − ° =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
16. Since the coefficient of volume expansion is much larger for the coolant than for the aluminum and 

the steel, the coolant will expand more than the aluminum and steel, and so coolant will overflow the 
cooling system.  Use Eq. 17-2. 

  
( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

coolant aluminum steel coolant coolant aluminum aluminum steel steel

coolant coolant aluminum aluminum steel steel

6 6 6

     

     410 10 C 17 L 75 10 C 3.5L 35 10 C 13.5L 12C

  

V V V V V T V T V T

V V V T

β β β
β β β

− − −

Δ = Δ − Δ − Δ = Δ − Δ − Δ

= − − Δ

= × ° − × ° − × ° °⎡ ⎤⎣ ⎦

   0.0748L 75mL= ≈

 

 
17. (a) The amount of water lost is the final volume of the water minus the final volume of the  

container.  Also note that the original volumes of the water and the container are the same. 

   

( ) ( )

( )

( ) ( )

2 22

2

lost 0 0 H O container H O 0 container 0H O container

6 5lost
container H O

0

1mL
0.35g

0.98324 g210 10 C 5.0 10 C
55.50 mL 60 C 20 C

V V V V V V V V T V T

V
V T

β β

β β − −

= + Δ − + Δ = Δ − Δ = Δ − Δ

= − = × ° − = × °
Δ ° − °

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) From Table 17-1, the most likely material is  copper  . 
 
18. (a) The sum of the original diameter plus the expansion must be the same for both the plug and the  

ring. 

   

( ) ( )

( ) ( ) ( ) ( )

0 0 iron iron iron brass brass brassiron brass

brass iron
6 6

iron iron brass brass

final initial final

    

8.753 cm 8.743 cm
12 10 C 8.743 cm 19 10 C 8.753 cm

     163C 15 C   

T T

T

T T T

α α

α α − −

+ Δ = + Δ → + Δ = + Δ

− −
Δ = =

− × ° − × °

= − = − = − →° °

l l l l

l l

l l

l l l l

final 148 C 150 CT = − ≈ − °°

 

 (b) Simply switch the initial values in the above calculation. 

   ( ) ( ) ( ) ( )
brass iron

6 6
iron iron brass brass

final initial final final

8.743 cm 8.753 cm
12 10 C 8.753 cm 19 10 C 8.743 cm

     164C 15 C    179 C 180 C

T

T T T T

α α − −

− −
Δ = = =

− × ° − × °

= = − = − → = ≈ °° ° °

l l

l l  

 
19. We model the vessel as having a constant cross-sectional area A.  Then a volume 0V  of fluid will 

occupy a length 0l  of the tube, given that 0 0V A= l .  Likewise V A= l . 

  0 0V V V A A AΔ = − = − = Δl l l  and 0 0V V T A Tβ βΔ = Δ = Δl . 
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 Equate the two expressions for VΔ , and get 0 0    A A T Tβ βΔ = Δ → Δ = Δl l l l .  But 0 TαΔ = Δl l , 

so we see that under the conditions of the problem, .α β=  
 
20. (a) When a substance changes temperature, its volume will change by an amount given by  

Eq. 17-2.  This causes the density to change. 

     0 0 0 0 0 0 0
f

1
1

1

1 1
     

1 1 1

M M M M M M M
V V V V V V V T V V T

T T
T T T

ρ ρ ρ
β β

β βρ ρ
β β β

Δ = − = − = − = − = −
+ Δ + Δ + Δ

+ Δ − Δ
= − =

+ Δ + Δ + Δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

  If we assume that 1TβΔ � , then the denominator is approximately 1, so Tρ ρβΔ = − Δ . 
 (b) The fractional change in density is 

 ( ) ( )6 387 10 C 55 C 25 C 6.96 10
T

T
ρ ρβ β
ρ ρ

− −Δ − Δ
= = − Δ = − × ° − ° − ° = ×  

  This is a 0.70% increase . 
 
21. As the wine contracts or expands, its volume changes.  We assume that the volume change can only 

occur by a corresponding change in the headspace.  Note that if the volume increases, the headspace 
decreases, so their changes are of opposite signs.  Use Eq. 17-2. 

 (a) The temperature decreases, so the headspace should increase. 

( ) ( ) ( )

( )

2
0

3 3
6

0
22

  

10 m
420 10 C 0.750 L 10C

1L
0.0117 m

0.00925m

1.5cm 1.17cm 2.67cm 2.7cm

V V T r H

V T
H

r

H

β π

β
π π

−
−

Δ = Δ = − Δ →

× ° °
Δ

Δ = − = =

= + = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 (b) The temperature increases, so the headspace should decrease. 

   

( ) ( ) ( )

( )

3 3
6

0
22

10 m
420 10 C 0.750 L 10C

1L
0.0117 m

0.00925m

1.5cm 1.17cm 0.33cm 0.3cm

V T
H

r

H

β
π π

−
−× ° − °

Δ
Δ = − = = −

= − = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

 
22. (a) The original surface area of the sphere is given by 24A rπ= .  The radius will expand with  

temperature according to Eq. 17-1b, ( )new 1r r Tα= + Δ .  The final surface area is 2
new new4A rπ= , 

and so the change in area is newA A AΔ = − . 

   
( ) ( )

( ) ( )[ ]

2 22 2 2
new

22 2 2 1
2

4 1 4 4 1 1

   4 1 2 1 4 2 1

A A A r T r r T

r T T r T T

π α π π α

π α α π α α

Δ = − = + Δ − = + Δ −

= + Δ + Δ − = Δ + Δ

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

 

  If the temperature change is not large, 1
2 1TαΔ � , and so 28A r Tπ αΔ = Δ  

 (b) Evaluate the above expression for the solid iron sphere. 

   ( ) ( ) ( )22 2 6 2 28 8 60.0 10 m 12 10 C 275 C 15 C 2.8 10 mA r Tπ α π − − −Δ = Δ = × × ° ° − ° = ×  
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23. The pendulum has a period of 0 02 gτ π= l  at 17oC, and a period of 2 gτ π= l  at 28oC.  Notice 

that 0τ τ>  since 0>l l .  With every swing of the clock, the clock face will indicate that a time 0τ  
has passed, but the actual amount of time that has passed is τ .  Thus the clock face is “losing time” 

by an amount of 0τ τ τΔ = −  every swing.  The fractional loss is given by 
0

τ
τ
Δ , and the length at the 

higher temperature is given by  

( ) ( )

0 0 0 0 0 0 00

0 0 0 0 0 0

6 4

2 2

2

      1 1 1 19 10 C 11C 1 1.04 10

g g T

g

T

π π ατ τ τ
τ τ π

α − −

− − + Δ − + Δ −Δ −
= = = = =

= + Δ − = + × ° ° − = ×

l l l l l l l l l l

l l l l  

 Thus the amount of time lost in any time period 0τ  is ( )4
01.04 10τ τ−Δ = × .  For one year, we have 

the following. 
  ( ) ( )4 71.04 10 3.16 10 s 3286s 55minτ −Δ = × × = ≈  

 
24. The change in radius with heating does not cause a torque on the rotating wheel, and so the wheel’s  

angular momentum does not change.  Also recall that for a cylindrical wheel rotating about its axis, 
the moment of inertia is 21

2I mr= . 

  
( ) ( ) ( )

( )
( )( )

( )
( )

2 21
20 0 0 0 0 0

0 final 0 0 final final final 2 21
2final

2
0 0

2 2 2 202
final 0 0 0 0 0

2 2 22
0 0 0 0 0 0 0

2 2

2 2

        

1 1 1 1

1 1 2 21
     1

1 1 1

I mr r
L L I I

I mr r

r
r r r rr
r r r r r T r r T

T T T T
T T

ω ω ωω ω ω

ω ωω ω ω
ω ω ω α α

α α α α
α α

= → = → = = =

−Δ −
= = = − = − = − = −

+ Δ + Δ + Δ

− + Δ + Δ − Δ − Δ
= − = =

+ Δ + Δ ( ) ( )2 2

2
1

T
T

T T
αα

α α
+ Δ

= − Δ
+ Δ + Δ

 

Now assume that 1TαΔ � , and so 
( )2

2
2

1

T
T T

T

ω αα α
ω α
Δ + Δ

= − Δ ≈ − Δ
+ Δ

.  Evaluate at the given values.  

( ) ( )6 32 2 25 10 C 75.0C 3.8 10Tα − −− Δ = − × ° ° = − ×  

 
25. The thermal stress must compensate for the thermal expansion.  E  is Young’s modulus for the  

aluminum. 

( ) ( ) ( )6 9 2 7 2Stress 25 10 C 70 10 N m 35 C 18 C 3.0 10 N mF A E Tα −= = Δ = × ° × ° − ° = ×  

 
26. (a) Since the beam cannot shrink while cooling, the tensile stress must compensate in order to keep  

the length constant. 

   ( ) ( ) ( )6 9 2 8 2Stress 12 10 C 200 10 N m 50C 1.2 10 N mF A E Tα −= = Δ = × ° × ° = ×  

(b) The ultimate tensile strength of steel (from Table 12-2) is 8 25 10 N m× , and so 

the ultimate strength is not exceeded .  There would only be a safety factor of about 4.2. 

 (c) For concrete, repeat the calculation with the expansion coefficient and elastic modulus for  
concrete. 
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   ( ) ( ) ( )6 9 2 7 2Stress 12 10 C 20 10 N m 50C 1.2 10 N mF A E Tα −= = Δ = × ° × ° = ×  

  The ultimate tensile strength of concrete is 6 22 10 N m× , and so the concrete will fracture . 
 
27. (a) Calculate the change in temperature needed to increase the diameter of the iron band so that it  

fits over the barrel.  Assume that the barrel does not change in dimensions. 

   

( )

( ) ( )

0 0 0 0

0
0 6

0

    

134.122 cm 134.110 cm
20 C 27.457 C 27 C

12 10 C 134.110 cm

T T T

T T

α α

α −

Δ = Δ → − = −

− −
= + = + = ≈ °

× °
° °

l l l l l

l l

l

 

(b) Since the band cannot shrink while cooling, the thermal stress must compensate in order to keep 
the length at a constant 132.122 cm.  E  is Young’s modulus for the material. 

( ) ( ) ( ) ( ) ( )
0

2 3 9 2 6

Stress     

   9.4 10 m 6.5 10 m 100 10 N m 12 10 C 7.457C 5500 N

F A E T F AE AE Tα α

− − −

Δ
= = Δ → = = Δ

= × × × × ° ° =

l

l  

 
28. Use the relationships ( ) ( )K C 273.15T T= ° +  and ( ) ( )[ ]5

9K F 32 273.15T T= ° − + . 

 (a) ( ) ( )K C 273.15 66 273.15 339 KT T= ° + = + =  

 (b) ( ) ( )[ ] [ ]5 5
9 9K F 32 273.15 92 32 273.15 306 KT T= ° − + = − + =  

 (c) ( ) ( )K C 273.15 55 273.15 218 KT T= ° + = − + =  

 (d) ( ) ( )K C 273.15 5500 273.15 5773.15K 5800 KT T= ° + = + = ≈  

 
29. Use the relationship that ( ) ( )[ ]5

9K F 32 273.15T T= ° − + . 

  
( ) ( )[ ]
( ) ( )[ ] [ ]

5
9

9 9
5 5

K F 32 273.15  

F K 273.15 32 0 273.15 32 459.67 F

T T

T T

= ° − + →

° = − + = − + = − °
 

 
30. Use the relationship that ( ) ( )K C 273.15T T= ° + . 

 (a) ( ) ( )K C 273.15 4270 K 4300 KT T= ° + = ≈  ; ( ) ( ) 6K C 273.15 15 10  KT T= ° + = ×  

 (b) 
( ) ( )

273
% error 100 100

K K
T

T T
Δ

= × = ×  

6 3
6

273 273
4000 C: 100 7%         15 10 C:  100 2 10 %

4000 15 10
−× ≈ × × ≈ ×

×
° °  

 

31. Assume the gas is ideal.  Since the amount of gas is constant, the value of 
PV
T

 is constant. 

  ( ) ( )3 31 1 2 2 1 2
2 1

1 2 2 1

273 38.0 K1.00 atm
    3.80m 1.35m

3.20 atm 273 K
PV PV P T

V V
T T P T

+
= → = = =⎛ ⎞

⎜ ⎟
⎝ ⎠
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32. Assume the air is an ideal gas.  Since the amount of air is constant, the value of 
PV
T

 is constant. 

  ( )1 1 2 2 2 2
2 1

1 2 1 1

40 atm 1
    293 K 1465 K 1192 C 1200 C

1 atm 8
PV PV P V

T T
T T P V

= → = = = = ≈ °⎛ ⎞⎛ ⎞ °⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
33. Assume the nitrogen is an ideal gas.  From Example 17-10, the volume of one mole of nitrogen gas 

at STP is 3 322.4 10 m−× .  The mass of one mole of nitrogen, with a molecular mass of 28.0 u, is 28.0 
grams.  Use these values to calculate the density of the oxygen gas. 

  
3

3
3 3

28.0 10 kg
1.25kg m

22.4 10 m
M
V

ρ
−

−

×
= = =

×
 

 
34. (a) Assume that the helium is an ideal gas, and then use the ideal gas law to calculate the volume.   

Absolute pressure must be used, even though gauge pressure is given. 

   ( ) ( ) ( )
( ) ( )

3
5

14.00 mol 8.314J mol K 283.15K
    0.2410m

1.350atm 1.013 10 Pa atm
nRT

PV nRT V
P

= → = = =
×
i

 

 (b) Since the amount of gas is not changed, the value of PV T  is constant. 

   ( ) o1 1 2 2 2 2
2 1

1 2 1 1

2.00 atm 1
    283.15 K 210 K 63 C

1.350 atm 2
PV PV P V

T T
T T P V

= → = = = = −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
35. We ignore the weight of the stopper.  Initially there is a net force (due to air pressure) on the stopper 

of 0, because the pressure is the same both above and below the stopper.  With the increase in 
temperature, the pressure inside the tube will increase, and so there will be a net upward force given 
by ( )net in out .F P P A= −   The inside pressure can be expressed in terms of the inside temperature by 
means of the ideal gas law for a constant volume and constant mass of gas. 

  ( )

( )
( ) ( )

( )

in tube 0 tube in
in 0

in 0 0

in in
net in out 0 0 0

0 0

net
in 0 25

0

    

1   

10.0 N
1 1 273K 18K 454 K 181 C

1.013 10 Pa 0.0075m

P V PV T
P P

T T T

T T
F P P A P P A P A

T T

F
T T

P A π

= → =

= − = − = − →

= + = + + = = °
×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠ ⎢ ⎥⎣ ⎦

 

 
36. Assume that the nitrogen and carbon dioxide are ideal gases, and that the volume and temperature 

are constant for the two gases.  From the ideal gas law, the value of 
P RT
n V
=  is constant.  Also note 

that concerning the ideal gas law, the identity of the gas is unimportant, as long as the number of 
moles is considered. 

  
( ) ( )

1 2

1 2

2
3

2 2
2 1

21
3

2

  

21.6 kg CO
28.0144.01 10 kg CO mol

3.85atm 3.85atm 2.45atm
21.6 kg N 44.01

28.01 10 kg N mol

P P
n n

n
P P

n

−

−

= →

×
= = = =

×

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠
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37. (a) Assume the nitrogen is an ideal gas.  The number of moles of nitrogen is found from the atomic  
weight, and then the ideal gas law is used to calculate the volume of the gas. 

( )

( ) ( ) ( )

2
3

3 3
5

1 mole N
28.5 kg 1017 mol

28.01 10 kg
1017 mol 8.314J mol K 273 K

    22.79 m 22.8m
1.013 10 Pa

n

nRT
PV nRT V

P

−
= =

×

= → = = = ≈
×

i
 

 (b) Hold the volume and temperature constant, and again use the ideal gas law. 

   

( )

( ) ( ) ( )

2
3

5
3

1 mole N
28.5 kg 25.0 kg 1910mol

28.01 10 kg
  

1910mol 8.314J mol K 273 K
1.90 10 Pa 1.88atm

22.79 m

n

PV nRT

nRT
P

V

−
= + =

×
= →

= = = × =
i

 

 
38. We assume that the mass of air is unchanged, and the volume of air is unchanged (since the tank is 

rigid).  Use the ideal gas law. 

  ( )[ ] o1 2 2
2 1

1 2 1

194atm
    273 29 287 K 14 C

204atm
KP P P

T T
T T P

= → = = + = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
39. Assume the argon is an ideal gas.  The number of moles of argon is found from the atomic weight,  

and then the ideal gas law is used to find the pressure. 

  

( )

( ) ( ) ( )
( ) ( )

3

8
3 3

1 mole Ar
105.0 kg 2628 mol

39.95 10 kg
2628 mol 8.314J mol k 293.15K

    1.69 10 Pa
38.0 L 1.00 10 m L

n

nRT
PV nRT P

V

−

−

= =
×

= → = = = ×
×

i
 

 This is 1660 atm. 
 
40. Assume that the oxygen and helium are ideal gases, and that the volume and temperature are 

constant for the two gases.  From the ideal gas law, the value of 
P RT
n V
=  is constant.  Also note that 

concerning the ideal gas law, the identity of the gas is unimportant, as long as the number of moles is 
considered.  Finally, gauge pressure must be changed to absolute pressure. 

  
( ) ( )

( )

( )

21 2 2 2
2 1 2 3

1 2 1

3
2

8.00 atm1 mole O
    30.0 kg O 8.152 10 moles

32 10 kg 9.20 atm

4.0 10 kg
8.152 10 moles 3.26kg He

1 mole He

P P P
n n

n n P −

−

= → = = = ×
×

×
× =

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
41. We assume that the gas is ideal, that the amount of gas is constant, and that the volume of the gas is 

constant. 

  ( )[ ]1 2 2
2 1

1 2 1

2.00atm
    273.15 20.0 K 586.3K 313.15 C 313 C

1.00atm
P P P

T T
T T P

= → = = + = = ° ≈ °
⎛ ⎞
⎜ ⎟
⎝ ⎠
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42. Assume that the air is an ideal gas.  The pressure and volume are held constant.  From the ideal gas 

law, the value of 
PV

nT
R

=  is held constant. 

  
( )
( )

2 1
1 1 2 2

1 2

273 38 K 311
    1.080

273 15 K 288
n T

n T n T
n T

+
= → = = = =

+
 

 Thus 8.0%  must be removed. 

 
43. Assume the oxygen is an ideal gas.  Since the amount of gas is constant, the value of PV T  is  

constant. 

  ( ) ( )
( )

1 1 2 2 1 2
2 1

1 2 2 1

273 56.0 K61.5 L
    2.45 atm 3.49atm

48.8 L 273 18.0 K
PV PV V T

P P
T T V T

+
= → = = =

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
44. Assume the helium is an ideal gas.  Since the amount of gas is constant, the value of PV T  is 

constant.  We assume that since the outside air pressure decreases by 30%, the air pressure inside the 
balloon will also decrease 30%. 

  
( )
( )

1 1 2 2 2 1 2

1 2 1 2 1

273 5.0 K1.0atm
    1.4 times the original volume

0.68atm 273 20.0 K
PV PV V P T
T T V P T

+
= → = = =

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
45. Since the container can withstand a pressure difference of 0.50 atm, we find the temperature for 

which the inside pressure has dropped from 1.0 atm to 0.50 atm.  We assume the mass of contained 
gas and the volume of the container are constant. 

  ( )[ ]1 2 2
2 1

1 2 1

0.50atm
    273.15 18 K 146.6 K 130 C

1.0atm
P P P

T T
T T P

= → = = + = ≈ − °
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
46. The pressure inside the bag will change to the surrounding air pressure as the volume of the bag 

changes.  We assume the amount of gas and temperature of the gas are constant.  Use the ideal gas 
equation. 

  1

2
1 1 2 2 2 1 1 1

1.0atm
   1.3

0.75atm
 P

V V V
P

PV PV V= → = =
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 Thus the bag has expanded by 30%. 
 
 
47. We assume that all of the gas in this problem is at the same temperature.  Use the ideal gas equation. 

First, find the initial number of moles in the tank at 34 atm, 1.n  Then find the final number of moles 
in the tank at 204 atm, 2.n  The difference in those two values is the number of moles needed to add 
to the tank. 

( ) ( )

( ) ( )

( ) ( )

1 1
1 1 1 1

2 2
2 2 2 2

add 2 1

34atm 12 L
    

204atm 12 L
    

170atm 12 L

PV
PV n RT n

RT RT
PV

PV n RT n
RT RT

RT
n n n

= → = =

= → = =

= − =
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Use this number of moles at atmospheric pressure to find the volume of air needed to add, and then 
find the time needed to add it. 

 

( ) ( )
add

add add add add
add

170atm 12 L

    2040 L
1atm

1min
2040 L 7.0 min

290 L

n RT RTP V n RT V
P

= → = = =

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
48. From the ideal gas equation, we have 1 1 1PV nRT=  and 2 2 2PV nRT= , since the amount of gas is 

constant.  Use these relationships along with the given conditions to find the original pressure and 
temperature. 

  

( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 2 2 1 1 2 2 1 2 1 2

1 1 1 2 1 2 1 1 2 2

3

2
1 3

1 2

5 5

  ;        

450 Pa     450 Pa 9.0 K     

4.0mol 8.314J mol K 9.0 K 0.018m 450 Pa9.0 K 450 Pa
0.002 m

   1.537 10 Pa 1.5 10

PV nRT PV nRT PV PV nRT nRT nR T T

PV P V nR T T P V V V nR

nR V
P

V V

= = → − = − = − →

− + = − → − = →

++
= =

−

= × ≈ ×

−

i

( ) ( )
( ) ( )

5 3

1 1
1 1

Pa

1.537 10 Pa 0.020m
92.4 K 181 C

4.0mol 8.314J mol K
PV

T T
nR

×
= = = = ≈ − °

i

 

 
49. We calculate the density of water vapor, with a molecular mass of 18.0 grams per mole, from the 

ideal gas law. 

  ( ) ( )
( ) ( )

5
3

      

0.0180kg mol 1.013 10 Pa
0.588m

8.314J mol K 373K

n P
PV nRT

V RT

m Mn MP
V V RT

ρ

= → = →

×
= = = = =

i

 

 The density from Table 13-1 is 30.598m .  Because this gas is very “near” a phase change state 
(water can also exist as a liquid at this temperature and pressure), we would not expect it to act like 
an ideal gas.  It is reasonable to expect that the molecules will have other interactions besides purely 
elastic collisions.  That is evidenced by the fact that steam can form droplets, indicating an attractive 
force between the molecules. 

 
50. The ideal gas law can be used to relate the volume at the surface to the submerged volume of the 

bubble.  We assume the amount of gas in the bubble doesn’t change as it rises.  The pressure at the 
submerged location is found from Eq. 13-6b. 

  

submerged submergedsurface surface

surface submerged

submerged surface atm surface
surface submerged submerged

surface submerged atm submerged

    constant      
P VPV P V

PV nRT nR
T T T

P T P gh T
V V V

P T P T
ρ

= → = = → = →

+
= =
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( ) ( ) ( ) ( )

( )
( )
( )

5 3 3 2

3
5

3

1.013 10 1.00 10 kg m 9.80m s 37.0m 273.15 18.5 K
         1.00cm

1.013 10 Pa 273.15 5.5 K

         4.79cm

× + × +
=

× +

=

⎡ ⎤⎣ ⎦
 

 
51. At STP, 1 mole of ideal gas occupies 22.4 L.   

  
23

25 3
3 3

1 mole 6.02 10 molecules 1 L
2.69 10 molecules m

22.4 L mole 10 m−

×
= ×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
52. We assume that the water is at 4oC so that its density is 31000 kg m . 

  
( )

3 3

3 3

23
25

10 m 1000 kg 1 mol
1.000 L 55.51 mol

1 L 1 m 15.9994 2 1.00794 10 kg

6.022 10 molecules
55.51 mol 3.343 10 molecules

1 mol

−

−
=

+ × ×

×
= ×

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
53. We use Eq. 17-4. 

  ( )
3 3

23 17
3 3

1molecule 100 cm J
    1.38 10 3K 4 10 Pa

1cm m K
N

PV NkT P kT
V

− −= → = = × = ×
⎛ ⎞⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
 

 
54. (a) Since the average depth of the oceans is very small compared to the radius of the Earth, the  

ocean’s volume can be calculated as that of a spherical shell with surface area 2
Earth4 Rπ  and a  

thickness yΔ .  Then use the density of sea water to find the mass, and the molecular weight of 
water to find the number of moles. 

   ( ) ( )( ) ( )22 6 3 18 3
EarthVolume 0.75 4 0.75 4 6.38 10 m 3 10 m 1.15 10 mR yπ π= Δ = × × = ×  

   18 3 22 22
3 3

1025 kg 1 mol
1.15 10 m 6.55 10 moles 7 10 moles

m 18 10 kg−
× = × ≈ ×

×
⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

 (b) ( )22 23 466.55 10 moles 6.02 10 molecules 1 mol 4 10 molecules× × ≈ ×  

 
55. Assume the gas is ideal at those low pressures, and use the ideal gas law. 

  ( ) ( )
12 2 6 3

8
23 3 3

3

1 10 N m molecules 10  m
    3 10

1.38 10 J K 273 K m 1 cm

                               300molecules cm

N P
PV NkT

V kT

− −

−

×
= → = = = ×

×

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  

 
56. We assume an ideal gas at STP.  Example 17-10 shows that the molar volume of this gas is 22.4 L.  

We calculate the actual volume of one mole of gas particles, assuming a volume of 3
0 ,l  and then find 

the ratio of the actual volume of the particles to the volume of the gas. 

  
( ) ( )( )

( ) ( )

323 10

4molecules
3 3

gas

6.02 10 molecules 3.0 10 m molecule
7.3 10

22.4 L 1 10 m 1L
V

V

−

−
−

× ×
= = ×

×
 

 The molecules take up less than 0.1% of the volume of the gas. 
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57. We assume that the last breath Galileo took has been spread uniformly throughout the atmosphere 
since his death.  Calculate the number of molecules in Galileo’s last breath, and divide it by the 
volume of the atmosphere, to get “Galileo molecules/m3”.  Multiply that factor times the size of a 
breath to find the number of Galileo molecules in one of our breaths. 

  

( )( )
( )( )

( ) ( )

5 3 3
22

23

22 6 4 18 3
Earth

22
3 3

3 18 3

1.01 10 Pa 2.0 10 m
    4.9 10 molecules

1.38 10 J K 300 K

Atmospheric volume 4 4 6.38 10 m 1.0 10 m 5.1 10 m

Galileo molecules 4.9 10 molecules
9.6 10 molecules m

m 5.8 10 m

PV
PV NkT N

kT

R hπ π

−

−

× ×
= → = = = ×

×

= = × × = ×

×
= = ×

×

 

3 3
3

3

# Galileo molecules molecules 2.0 10 m molecules
9.6 10 19

breath m 1 breath breath

−×
= × =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
58. Use Eq. 17-5a for the constant-volume gas thermometer to relate the boiling point to the triple point. 

  ( ) ( )bp bp

tp tp

273.15 100 K
273.16 K     1.3660

273.16 K 273.16 K
P TP

T
P P

+
= → = = =   

 
59. (a) For the constant-volume gas thermometer, we use Eq. 17-5a. 

( ) ( ) ( )tp
tp

273.16 K 273.16 K
273.16 K     187 torr 71.2 torr

273.15 444.6 K
P

T P P
P T

= → = = =
+

 

(b) We again use Eq. 17-5a. 

  ( ) ( )
tp

118 torr
273.16 K 273.16 K 453K 180 C

71.2 torr
P

T
P

= = = °=  

 
60. From Fig. 17-17, we estimate a temperature of 373.35 K from the oxygen curve at a pressure of 268  

torr.  The boiling point of water is 373.15 K. 
(a) The inaccuracy is 373.35K 373.15K 0.20 KTΔ = − =  

(b) As a percentage, we have the following. 

  ( ) ( )0.20 K
100 100 0.054%

373.15K
T

T
Δ

= =  

The answers may vary due to differences in reading the graph. 
 

61. Since the volume is constant, the temperature of the gas is proportional to the pressure of the gas.  
First we calculate the two temperatures of the different amounts of gas. 

  ( ) ( )1 melt
1

1 tp

218
273.16 K 273.16 K 208.21K

286
P

T
P

= = =  

  ( ) ( )2 melt
2

2 tp

128
273.16 K 273.16 K 214.51K

163
P

T
P

= = =   

Assume that there is a linear relationship between the melting-point temperature and the triple-point 
pressure, as shown in Fig. 17-17.  The actual melting point is the y-intercept of that linear 
relationship.  We use Excel to find that y-intercept.  The graph is shown below. 
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y  = -0.0512 x  + 222.85

206

208

210

212

214

216

150 175 200 225 250 275 300

P tp (torr)

T
 (K

)

 
We see the melting temperature is 222.85K 223K .≈   The spreadsheet used for this problem can be 

found on the Media Manager, with filename “PSE4_ISM_CH17.XLS,” on tab “Problem 17.61.” 
 
62. Since the glass does not expand, the measuring cup will contain 350 mL of hot water.  Find the 

volume of water after it cools. 
  ( ) ( ) ( )6

0 350 mL 210 10 C 20 C 95 C 5.5mLV V Tβ −Δ = Δ = × ° ° − ° = −  

 The volume of cool water is about 5.5 mL less than the desired volume of 350 mL. 
 
63. (a) At 36oC, the tape will expand from its calibration, and so will  read low . 

 (b) ( ) ( )6 4 2

0

12 10 C 36 C 15 C 2.52 10 2.5 10 %Tα − − −Δ
= Δ = × ° ° − ° = × ≈ ×
l

l
 

 
64. The net force on each side of the box will be the pressure difference between the inside and outside 

of the box, times the area of a side of the box.  The outside pressure is 1 atmosphere.  The ideal gas 
law is used to find the pressure inside the box, assuming that the mass of gas and the volume are 
constant. 

  ( ) ( )
( )

2 1 2
2 1

2 1 1

273 185 K
constant        1.00 atm 1.590 atm

273 15 K
P nR P P T

P P
T V T T T

+
= = → = → = = =

+
 

The area of a side of the box is given by the following. 

( ) ( )2 2 / 31/ 32 2 2 1 2Area Volume of box 6.15 10 m 1.5581 10 m− −= = = × = ×⎡ ⎤⎣ ⎦l  

 The net force on a side of the box is the pressure difference times the area. 
  ( ) ( ) ( ) ( ) ( )5 1 2Pressure Area 0.590atm 1.01 10 Pa 1.5581 10 m 9300 NF −= Δ = × × =  

 
65. Assume the helium is an ideal gas.  The volume of the cylinder is constant, and we assume that the 

temperature of the gas is also constant in the cylinder.  From the ideal gas law, PV nRT= , under 
these conditions the amount of gas is proportional to the absolute pressure. 

  1 2 2 2

1 2 1 1

5atm 1atm 6
    constant        

32atm 1atm 33
P RT P P n P

PV nRT
n V n n n P

+
= → = = → = → = = =

+
 

 Thus 6 33 0.182 20%= ≈  of the original gas remains in the cylinder. 
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66. When the rod has a length l, then a small (differential) change in temperature will cause a small 
(differential) change in length according to Eq. 17-1a, expressed as .d Tα= Δl l  

 (a) ( )
2 2

1 1

2
2 1

1

            ln   
T

T

d d
d T T dT T Tα α α α= Δ → = Δ → = → = − →∫ ∫

l

l

l l l
l l

l l l
 

( )2 1

2 1
T Teα −=l l  

 (b) 

2

2 2 2

1

1 1 1

2
2 1

1

    ln     

T

T

T T dT

T T

d
dT dT e

α

α α
∫

= → = → =∫ ∫ ∫
l

l

l l
l l

l l
 

 (c) ( )
2 2 2

1 1 1

0          
T T

T T

d d
d T T dT bT dTα α α α= Δ → = Δ → = = + →∫ ∫ ∫

l

l

l l
l l

l l
 

  ( ) ( ) ( ) ( )2 21
0 2 1 2 122 22 1

0 2 1 2 1 2 12
1

ln     T T b T TT T b T T e αα − + −⎡ ⎤⎣ ⎦= − + − → =
l

l l
l

 

 
67. Assume that the air in the lungs is an ideal gas, that the amount of gas is constant, and that the 

temperature is constant.  The ideal gas law then says that the value of PV  is constant.  The pressure 
a distance h below the surface of a fluid is given by Eq. 13-6b, 0P P ghρ= + , where 0P  is 
atmospheric pressure and ρ  is the density of the fluid.  We assume that the diver is in sea water. 

  
( ) ( )

( ) ( ) ( ) ( )

submerged atm
surface submerged submergedsurface submerged

surface atm

5 3 2

5

    

1.01 10 Pa 1025kg m 9.80m s 8.0m
        5.5L 9.9 L

1.01 10 Pa

P P gh
PV PV V V V

P P
ρ+

= → = =

× +
= =

×

 

 This is obviously very dangerous, to have the lungs attempt to inflate to twice their volume.  Thus it 
is not advisable to quickly rise to the surface. 

 
68. (a) Assume the pressure and amount of gas are held constant, and so 0 0 0PV nRT=  and 0PV nRT= .   

From these two expressions calculate the change in volume and relate it to the change in 
temperature. 

   ( )0 0
0 0 0

0 0 0 0

    
nRT VnRT nR

V V V V V V T T T
P P P T

= + Δ → Δ = − = − = − = Δ  

  But 0V V TβΔ = Δ , and so 0
0

0 0

1
    

V
V T V T

T T
β βΔ = Δ = Δ → =  

 For 3
0

0

1 1
293 K , 3.4 10 K

293 K
T

T
β −= = = = × , which agrees well with Table 17-1. 

 (b) Assume the temperature and amount of gas are held constant, and so 0 0 0PV nRT PV= = .  From  
these two expressions calculate change in volume and relate it to the change in pressure. 

   0   V V V= + Δ →  

   ( )0 0 0 0
0 0 0

0 0 0

1 1 1nRT nRT nRT P P
V V V nRT V P

P P P P P P P
−

Δ = − = − = − = = −Δ
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

  But from Eq. 12-7, 0

1
V V P

B
Δ = − Δ  and so ( )0 0

1 1
    V V P V P B P

P B
Δ = −Δ = − Δ → =  
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69. To do this problem, the “molecular weight” of air is needed.  If  we approximate air as 70% N2 
(molecular weight 28) and 30% O2 (molecular weight 32), then the average molecular weight is 

 ( ) ( )0.70 28 0.30 32 29.2.+ =   
(a) Treat the air as an ideal gas.  Assume that the pressure is 1.00 atm. 

  

( ) ( )
( ) ( )

( ) ( )

5 3
4

4 3

1.013 10 Pa 870m
    3.6178 10 moles

8.314 J mol k 293 K

3.6178 10 moles 29.2 10 kg mol 1056.4 kg 1100 kg

PV
PV nRT n

RT

m −

×
= → = = = ×

= × × = ≈

i  

(b) Find the mass of air at the lower temperature, and then subtract the mass at the higher 
temperature. 

   

( ) ( )
( ) ( )

( ) ( )

5 3
4

4 3

1.013 10 Pa 870m
4.0305 10 moles

8.314J mol k 263 K

4.0305 10 moles 29.2 10 kg mol 1176.9 kg

PV
n

RT

m −

×
= = = ×

= × × =

i  

  The mass entering the house is 1176.9 kg 1056.4 kg 120.5kg 100kg− = ≈ . 

 

70. We are given that 2

1
P

V
∝ for constant temperature and 2/ 3V T∝  for constant pressure.  We also 

assume that V n∝ for constant pressure and temperature.  Combining these relationships gives the 
following. 

  ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 4 / 3

2 22 2

2 4 / 3 2 4 / 32 4 / 3 2 4/3

1.00atm 22.4 L 1.00atm 22.4 L L atm
0.283

mol K1.00mol 273.15K 1.00mol 273.15K

PV n RT

PV
R

n T

=

= = = =
i
i

 

 
71. (a) The iron floats in the mercury because Hg Feρ ρ> . As the substances are heated, the density of  

both substances will decrease due to volume expansion.   The density of the mercury decreases 
more upon heating than the density of the iron, because Hg Feβ β> .  The net effect is that the 
densities get closer together, and so relatively more mercury will have to be displaced to hold 
up the iron, and the iron will float  lower  in the mercury. 

 (b) The fraction of the volume submerged is Hg Fe
displaced

V V .  Both volumes expand as heated.  The  

subscript “displaced” is dropped for convenience. 

   

( )
( ) ( )

( )
( ) ( )
( ) ( )

0 Hg Hg
0 Hg 0 Fe

HgHg Fe 0 Hg 0 Fe 0 Fe Fe

0 Hg 0 Fe 0 Hg 0 Fe Fe

6 o o
3

6 o

1
11

fractional change 1
1

1 180 10 C 25C 1.0045
 1 1 3.6 10 % change 0.36%

1 35 10 25C 1.000875
  ;     

V T
V V

TV V V V V T
V V V V T

β
ββ
β

−
−

−

+ Δ
−

+ Δ− + Δ
= = = −

+ Δ

+ ×
= − = − = × =

+ ×
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72. (a) Consider the adjacent diagrams.  The mercury expands due  
to the heat, as does the bulb volume.  The volume of filled 
glass is equal to the volume of mercury at both temperatures.  
The value Lδ  is the amount the thread of mercury moves.  
The additional length of the mercury column in the tube 
multiplied by the tube cross sectional area will be equal to the 
expansion of the volume of mercury, minus the expansion of 
the volume of the glass bulb.  Since the tube volume is so 
much smaller than the bulb volume we can ignore any 
changes in the tube dimensions and in the mercury initially in the tube volume.   
Original volume for glass bulb and Hg in bulb: bulb

0V  

Change in glass bulb volume:      bulb
glass 0 glassV V TβΔ = Δ  

Change in Hg volume in glass bulb:    bulb
Hg 0 HgV V TβΔ = Δ  

Now find the additional volume of Hg, and use that to find the change in length of Hg in the 
tube. 

( ) 2 bulb bulb
0 Hg glass 0 Hg 0 glass  L r V V V T V Tδ π β β= Δ − Δ = Δ − Δ →  

( )
( )

( ) ( )

( )
( )

( ) ( )

bulb bulb bulb
0 0 0

Hg glass Hg glass Hg glass22 2
0 00

3
6

22

4
2

4 0.275cm
     33.0 C 10.5 C 180 9 10 C 6.87cm

1.40 10 cm

V V V
L T T T

r dd
δ β β β β β β

π ππ

π
−

−

= Δ − = Δ − = Δ −

= ° − ° − × ° =
×

⎡ ⎤⎣ ⎦

 

 (b) The formula is quoted above:  ( )
bulb

0
Hg glass2

0

4V
L T

d
δ β β

π
= Δ − . 

 
73. Since the pressure is force per unit area, if the pressure is multiplied by the surface area of the Earth, 

the force of the air is found.  If we assume that the force of the air is due to its weight, then the mass 
of the air can be found.  The number of molecules can then be found using the molecular mass of air 
(calculated in problem 71) and Avogadro’s number. 

  2
Earth        4   

F
P F PA Mg P R

A
π= → = → = →  

  

( ) ( )26 52
18Earth

2

23
18 44

3

4 6.38 10 m 1.01 10 Pa4
 5.27 10 kg

9.80m s

1 mole 6.02 10 molecules
5.27 10 kg 1.1 10 molecules

29 10 kg 1 mole

R P
M

g

N

ππ

−

× ×
= = = ×

×
= × = ×

×
⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
74. The density is the mass divided by the volume.  Let the original volume of the mass of iron be 0V , 

the original density 0 0M Vρ = .  The volume of that same mass deep in the Earth is 0V V V= + Δ , 
and so the density deep in the Earth is ( )0M V M V Vρ = = + Δ .  The change in volume is due to 
two effects:  the increase in volume due to a higher temperature, temp 0V V TβΔ = Δ , and the decrease in 

volume due to a higher pressure, pressure 0V V P BΔ = − Δ .  So temp pressureV V VΔ = Δ + Δ .  The new density 

is then calculated by ( )0 .M V Vρ = + Δ  

0L

0L Lδ+

bulb
0

0

Bulb volume 
Tube radius 

V
r

bulbBulb volume V
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( )0 0 temp pressure 0 0 0 0

1
1

M M M M
M V

V V V V V V V T V P B V T P B
ρ

β β
= = = = =

+ Δ + Δ + Δ + Δ − Δ + Δ − Δ
 

  
( )

0   
1 T P B

ρ
β

=
+ Δ − Δ

 

  
( )( ) ( )( ) ( )

[ ]

0
6 o o 5 9 2

0
0

   
1 35 10 C 2000C 5000atm 1.01 10 Pa atm 90 10 N m

   0.9395     6% decrease
1 0.07 .00561

ρ

ρ
ρ

−
=

+ × − × ×

= = →
+ −

⎡ ⎤⎣ ⎦  

 
75. One mole of gas at STP occupies 22.4 L, as found in Example 17-10.  We find the volume of the gas 

per particle for a mole of gas at STP.  We then assume that each molecule occupies of cube of side a, 
and then solve for a as the average distance between molecules. 

  

( )

3 3
26 3 3

23

1/ 326 2 9

L 1mol 10 m
22.4 3.72 10 m molecule

mol 6.02 10 molecules 1L

3.72 10 m 3.34 10 m

a

a

−
−

− −

= × =
×

= × = ×

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠  

 
76. We find the number of moles of helium in the balloon from the ideal gas equation. 

  

( ) ( ) ( )
( ) ( )

5 4
3

31.06 1.013 10 Pa 0.220m
    1.966mol 1.97 mol

8.314J mol k 293K

4.00g
1.966mol 7.86g

1 mol

PV
PV nRT n

RT

π×
= → = = = ≈

=⎛ ⎞
⎜ ⎟
⎝ ⎠

i  

 
77. We assume the temperature is constant.  As the oxygen pressure drops to atmospheric pressure, we 

can find the volume that it occupies at atmospheric pressure.  We assume the final pressure inside the 
cylinder is atmospheric pressure.  The gas would quit flowing at that pressure. 

  ( ) ( )7 5

1
1 1 2 2 2 1 5

2

1.38 10 Pa 1.013 10 Pa
    14 L 1921L

1.013 10 Pa
P

PV PV V V
P

× + ×
= → = = =

×
 

14 L of that gas is not available — it is left in the container.  So there is a total of 1907 L available. 

 ( )1min
1907 L 794.6 min 79 min 13h

2.4 L
= ≈ ≈  

 
78. The gap will be the radius of the lid minus the radius of the jar.  Also note that the original radii of 

the lid and the jar are the same. 
  ( ) ( ) ( )gap 0 0 lid jar brass glass 0lid jar

r r r r r r r r Tα α= + Δ − + Δ = Δ −Δ = − Δ  

  ( ) ( ) ( )6 6 3    19 10 C 9 10 C 4.0 cm 60C 2.4 10 cm− − −= × ° − × ° ° = ×  

 
79. (a) Assume that a mass M of gasoline with volume 0V  at 0oC is under consideration, and so its  

density is 0 0M Vρ = .  At a temperature of 35oC, the same mass has a 
volume ( )0 1V V Tβ= + Δ . 
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( ) ( ) ( )
3 3

3 30
6

0

3

0.68 10 kg m
0.6581 10 kg m

1 1 1 950 10 C 35C

  660kg m

M M
V V T T

ρρ
β β −

×
= = = = = ×

+ Δ + Δ + × ° °

≈

 

 (b) Calculate the percentage change in the density. 

   
( ) 3 3

3 3

0.6581 0.68 10 kg m
% change 100 3%

0.68 10 kg m V
− ×

= × = −
×

 

 
80. (a) From Example 13-5, we have that the pressure of the atmosphere varies as ( )0air air ,cyP P e−=   

where 0

0

,
g

c
P
ρ

=  with the subscript indicating to use the value at y = 0.  We assume that the 

helium is an ideal gas, that the helium pressure is 1.05 times the atmospheric pressure, and that 
the helium temperature is the same as the surrounding air. 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

He He air HeHe He air He0 0 0 0

0 1 0 1

air He air He He He 10 0 0 0
0

0 1 0 1 0

3 2
4 10

5
0

1.05 1.05
      

        

1.29 kg m 9.80 m s
1.25 10 m

1.013 10 Pa

cy cy
cy

P V P VP V P V
T T T T

P V P e V V e V T
V V e

T T T T T

g
c

P
ρ

− −
+

− −

= → = →

= → = → =

= = = ×
×

  

 (b) The buoyant force is the weight of the air displaced by the balloon, which would be the density  
of the air, times the volume of the balloon, times the acceleration due to gravity.  The density of 
the air displaced by the balloon can be found from the ideal gas equation, applied at any 
particular location. 

 

( )
( )

( ) ( )

buoy air balloon

airair airair
air air air air

airair

air air balloonair
buoy air balloon balloon air

He
balloon

 ;

mol. mass
    

mol. mass

mol. mass
mol. mass

1.05       m

F V g

Pm m
P V n RT RT

RT V

P P V
F V g V g g

RT RT
P

V
g

RT

ρ

ρ

ρ

=

= = → = =

= = =

=

⎛ ⎞
⎜ ⎟
⎝ ⎠ ( ) ( ) ( )He balloon air air

Heair

mol. mass mol. mass
ol. mass

1.05 1.05
g gP V

n
RT

= =

 

The final expression is constant since the number of moles of helium in the balloon is constant. 
 
81. The change in length is to be restricted to 61.0 10 m−Δ < ×l . 

  ( ) ( )
6

6
0 6

1.0 10 m
1.0 10 m    0.11C

9 10 C 1.0 m
T Tα

−
−

−

×
Δ = Δ ≤ × → Δ ≤ ≤ °

× °
l l  

 Thus the temperature would have to be controlled to within 0.11C± °   
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82. (a) Treat the air as an ideal gas.  Since the amount and temperature of the air are the same in both  
cases, the ideal gas law says PV nRT=  is a constant. 

   ( )1
2 2 1 1 2 1

2

180atm
    11.3 L 2034 L 2030 L

1.00atm
P

PV PV V V
P

= → = = = ≈  

 (b) Before entering the water, the air coming out of the tank will be at 1.00 atm pressure, and so the  
person will be able to breathe 2034 L  of air. 

   
1 breath 1 min

2034 L 84.75min 85min
2.0 L 12 breaths

t = = ≈⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(c) When the person is underwater, the temperature and pressure will be different.  Use the ideal 
gas equation to relate the original tank conditions to the underwater breathing conditions.  The 
amount of gas will be constant, so PV T nR=  will be constant.  The pressure a distance h 
below the surface of the water is given in Eq. 13-6b, 0P P ghρ= + , where 0P  is atmospheric 
pressure and ρ  is the density of the sea water. 

  ( ) ( )
( ) ( ) ( )

2 2 1 1 1 2
2 1

2 1 2 1

5

2 5 3 3 2

2 2

    

180 atm 1.01 10 Pa atm 283 K
11.3 L

1.01 10 Pa 1.025 10 kg m 9.80m s 20.0 m 293 K

1 breath 1 min
   6.572 10  L          6.572 10  L

2.0 L 12 breaths

PV PV P T
V V

T T P T

V

t

= → =

×
=

× + ×

= × = × =

⎡ ⎤ ⎛ ⎞
⎢ ⎥ ⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

27.38min 27 min≈

 

 
83. We will take the average radius of curvature as being the radius to the 

boundary between the two materials, and so is equal to the radius of 
the inside curve of the steel, plus the thickness of the steel.  Each 
strip, when curved, subtends the same angle .θΔ  

  

steel brass steel brass

steel brass 0 1 0 2

steel brass steel brass

0 steel 0 0 brass 0 steel brass

      

1 1
    

r r r r

r r r r
T T T T

θ

α α α α

Δ = = → = →
+ Δ + Δ

= =
+ Δ + Δ + Δ + Δ

→

l l l l l l

l l l l

 

 Use the relationship that the radius of the inside curve of the brass is 
equal to the radius of the inside curve of the steel, plus the thickness 
of the steel, so brass steel .r r t= +  

  

( )

( ) ( )
( ) ( )

steel steel steel
steel steel

steel brass brass

steel 6
brass

6
steel

steel

1
      

1 1 1

0.20cm
357.49cm

1 1 19 10 C 80C
1 1

1 1 12 10 C 80C

357.49cm 0.20cm

r r t T
r r t

T T T

t
r

T
T

r r t

α
α α α

α
α

−

−

+ + Δ
= → = + →

+ Δ + Δ + Δ

= = =
+ Δ + × ° °

− −
+ Δ + × ° °

= + = +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

357.69cm 3.6m= ≈

 

 
 
 
 

θΔ

r steel

brass
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84. Consider this basic geometry for the problem, with the 
assumption that the shape of the sagging wire is an arc of a 
circle.  The amount of sag is greatly exaggerated in the 
figure.  A subscript of “0” will be used for the original (low 
temperature) configuration, and no subscript will be used 
for the final (high temperature) configuration.  The variable 
“s” will be used for the amount of “sag.”  Note that “L” 
refers to half the length of the sagging wire. 

  

( ) ( )
( ) ( ) ( )

( )

2 2 2
0 0 0

2 2 22
0

0
0

1 2
0

15.0m   

15.0m 15.0m 0.500m
2 2 0.500m

   225.25m
15.0m

sin 6.6642 10 rad
225.25m

R s R

s
R

s

θ − −

+ − = →

+ +
= =

=

= = ×

 

  ( ) ( )2
0 0 0 225.25m 6.6642 10 rad 15.011mL R θ −= = × =  

 Now let the wire expand due to heating. 

  
( ) ( )( ) ( )( )16

0

1

1 15.011m 1 17 10 C 50C 15.024 m

15.0 15.0 15.024
sin     sin   ;  

L L T

L
R R R R

α

θ θ θ

−−

−

= + Δ = + × ° ° =

= → = = =

⎡ ⎤⎣ ⎦
 

 These two expressions for θ  cannot be solved analytically.  When solved numerically, the result is 
153.42 m.R =   Use this value to find the new “sag.”  Note that we ignore 2s  since .s R�  

  
( ) ( ) ( )

( ) ( )
( )

2 2 22 2

2 2

15.0m     15.0m 2 0  ;

15.0m 15.0m
73.3cm

2 2 153.42 m

R s R Rs s

s
R

+ − = → − + =

≈ = =
 

  
85. We assume ideal gas behavior for the air in the lungs, and a constant temperature for the air in the 

lungs.  When underwater, we assume the relaxed lung of the diver is at the same pressure as the 
surrounding water, which is given by Eq. 13-6b, 0 .P P ghρ= +   In order for air to flow through the 
snorkel from the atmospheric air above the water’s surface (assume to be at atmospheric pressure), 
the diver must reduce the pressure in his lungs to atmospheric pressure or below, by increasing the 
volume of the lungs.  We assume that the diver is in sea water. 

inhaling relaxed underwater 0
relaxed relaxed inhaling inhaling

relaxed inhaling atmospheric 0 0

    1
V P P P gh gh

P V P V
V P P P P

ρ ρ+
= → = = = = +  

  
( ) ( ) ( )3 2

inhaling relaxed inhaling
5

relaxed relaxed relaxed 0

1025kg m 9.80m s 0.30m
1 0.030

1.013 10 Pa
V V VV gh

V V V P
ρ−Δ

= = − = = =
×

 

 This is a 3% increase. 
 
 
 
 
 
 

R R

sag

sagR −

θ θ

L L

15.0m 15.0 m
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86. Since the problem is asking to find 
the temperature for a given voltage, 
we will graph temperature vs. 
voltage.  The graph is shown here. 

   
The spreadsheet used for this 
problem can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH17.XLS,” on tab 
“Problem 17.86.” 

 
 When a cubic equation is used to fit 

this data, this equation results. 
  ( ) ( ) ( )2 3 27.22 10 1.132 28.39 7.926T V V V−= − × + + +  

 The equation assumes that the voltage is in mV and the temperature is in C.°  
  ( ) ( ) ( ) ( ) ( ) ( ) ( )3 223.21mV 7.22 10 3.21 1.132 3.21 28.39 3.21 7.926 108 CT −= − × + + + = °   

 When a quadratic equation is used to fit this data, the following equation results. 
  ( ) ( )3 28.996 10 33.30 2.452T V V−= × + +  

 The equation assumes that the voltage is in mV and the temperature is in C.°  
  ( ) ( ) ( ) ( ) ( )233.21mV 8.996 10 3.21 33.30 3.21 2.452 109 CT −= × + + = °   

 
87. Both the glass and the liquid expand.  The expansion of the liquid would cause the volume reading to 

increase, but the expansion of the glass would cause the volume reading to decrease.  So the actual 
change in reading is the difference in those two volume changes.  We use the subscript “l” for the 
liquid and “g” for the glass.  We see from the data that the volume readings are increasing with 
temperature, and so the volume increase of the liquid is more than the volume increase of the glass. 

  ( ) ( ) ( )reading g 0 0 g 0 g1 1V V V V T V T V Tβ β β βΔ = − = + Δ − + Δ = − Δ
l l l

 

 From this expression, if the graph of V vs. T is linear, it should have a slope of ( )0 g .m V β β= −
l

  

Thus we can find the coefficient of expansion of the liquid from g
0

.
m
V

β β= +
l

 

From the graph, the slope is 
seen to be 0.0492 mL C .°   The 

effective coefficient of volume 
expansion is 

( )g
0

4

0.0492 mL C
100.00 mL

4.92 10 C              .

m
V

β β

−

°
− = =

= × °

l

 

6

4

0.0492 mL C
9 10 C

100.00mL

5.01 10 C   ;  glycerin   

β −

−

°
= + × °

= × °

l

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH17.XLS,” on tab “Problem 17.87.” 
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CHAPTER 18:  Kinetic Theory of Gases 
 
Responses to Questions 
 
1.  One of the fundamental assumptions for the derivation of the ideal gas law is that the average 

separation of the gas molecules is much greater than the diameter of the molecules. This assumption 
eliminates the need to consider the different sizes of the molecules. 

 
2.   The change in temperature when a gas is compressed or when it expands against a piston is due to 

the increase or decrease in the average speed of the molecules. The increase or decrease in speed 
comes about when the gas molecules collide elastically with the moving piston. In the case of 
compression, the piston is moving toward the molecules. The net result is an increase in the 
momentum of the gas molecules. When the gas expands, the piston is moving away from the gas 
molecules. In this case the net result of collisions between the molecules and the piston is a decrease 
in the momentum of the molecules. (See Section 9-5.) 

 
3.  If the walls are at the same temperature as the gas, then the gas molecules will not lose (or gain) 

energy in collisions with the walls, and so it is not necessary to specify that the collisions must be 
elastic. 

 
4.  Charles’s law states that if pressure is held constant, volume is proportional to temperature. The 

average kinetic energy of the gas molecules is also proportional to temperature. According to kinetic 
theory, pressure is proportional to the average kinetic energy of the gas molecules per unit volume. 
Therefore, if the temperature increases, the average kinetic energy also increases by the same factor. 
In order to keep the pressure constant, the volume must also increase, again by the same factor.  

 
5.  Gay-Lussac’s law states that if volume is constant, the pressure in a gas is proportional to the 

temperature. Kinetic theory tells us that temperature and the product of pressure and volume are 
proportional to the kinetic energy of the gas molecules. If volume is held constant, then temperature 
and pressure are both proportional to the kinetic energy, and so are proportional to each other. 

 
6.  Near the surface of the Earth, the N2 molecules and the O2 molecules are all at the same temperature 

and therefore have the same average kinetic energies. Since N2 molecules are lighter than O2 
molecules, the N2 molecules will have a higher average speed, which allows them to travel higher 
(on average) in the atmosphere than the O2 molecules. 

 
7.  For an absolute vacuum, no. But for most “vacuums,” there are still a few molecules in the 

containers, and the temperature can be determined from the (very low) pressure. 
 
8.  Temperature is a macroscopic variable, measured for a whole system. It is related to the average 

molecular kinetic energy, which is a microscopic variable. 
 
9.  At both temperatures (310 K and 273 K), the lower limit for molecular speed is zero. However, the 

higher temperature gas (310 K) will have more molecules with higher speeds. Since the total number 
of molecules is the same, the higher temperature gas must have fewer molecules at the peak speed. 
(Kinetic theory predicts that the relative number of molecules with higher speeds increases with 
increasing temperature.) 

 
10.  (a) Because the escape velocity for the Moon is 1/5 that of the Earth, molecules with lower speeds  

will be able to escape. The Moon may have started with an atmosphere, but over time most of 
the molecules of gas have escaped. 
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(b) Hydrogen is the lightest gas. For a given kinetic energy (temperature) it has the highest speed  
and will be most likely to escape. 

 
11. Velocity is a vector quantity. When the velocity is averaged, the direction must be taken into 

account. Since the molecules travel in random paths, with no net displacement (the container is at 
rest), the average velocity will have to be zero. Speed is a scalar quantity, so only the (positive) 
magnitude is considered in the averaging process. The molecules are not at rest, so the average speed 
will not be zero.  

 
12.  (a) If the pressure is doubled while the volume is held constant, the temperature also doubles. vrms is  

proportional to the square root of temperature, so it will increase by a factor of the square root 
of two.  

(b) The average velocity is also proportional to the square root of the temperature, so it will  
increase by a factor of the square root of two as well. 

 
13. Evaporation. Only molecules in a liquid that are traveling fast enough will be able to escape the 

surface of the liquid and evaporate.  
 
14.  No. Boiling occurs when the saturated vapor pressure and the external pressure are equal. At that 

point bubbles will be able to form in the liquid. For water at 100ºC, the saturated vapor pressure is 1 
atm. If the external pressure is also 1 atm, then the water will boil at 100ºC.  If the water is at 100ºC 
and the external pressure is greater than 1 atm (such as in a pressure cooker), the saturated vapor 
pressure will still be 1 atm, but bubbles will not be able to form and the water will not boil because 
the external pressure is higher. The saturated vapor pressure does not depend on the external 
pressure, but the temperature of boiling does. 

 
15. If alcohol evaporates more quickly than water at room temperature, then it must be easier for the 

alcohol molecules to escape from the surface of the liquid. Alcohol molecules are more massive than 
water molecules, and so will not be moving as fast at the same temperature. We can therefore infer 
that the attractive intermolecular forces between the alcohol molecules are less than the forces 
between the water molecules. 

 
16.  On a hot day, cooling occurs through evaporation of perspiration. If the day is hot and dry, then the 

partial pressure of water vapor in the air will be low and evaporation will readily occur, since the 
saturated vapor pressure for water will be higher than the external pressure. If the day is hot and 
humid, then the partial pressure of water vapor in the air will be much higher and the air will be 
holding all or nearly all the water vapor it can. In this case evaporation will not occur as readily, 
resulting in less cooling. 

 
17. Yes. If you place the water and its container in a vessel that can be evacuated (depressurized), and 

pump the air out of the vessel, the water will boil at room temperature. 
 
18.  Boiling occurs when the saturated vapor pressure equals the external pressure. When we say the 

oxygen “boils” at –183ºC, we mean that the saturated vapor pressure for oxygen will be 1 atm (the 
same as atmospheric pressure) at a temperature of –183ºC. At this temperature and pressure, liquid 
oxygen will vaporize. 

 
19.  The freezing point of water decreases slightly with higher pressure. The wire exerts a large pressure 

on the ice (due to the weights hung at each end). The ice under the wire will melt, allowing the wire 
to move lower into the block. Once the wire has passed a given position, the water now above the 



Chapter 18  Kinetic Theory of Gases 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

557 

wire will have only atmospheric pressure on it and will refreeze. This process allows the wire to pass 
all the way through the block and yet leave a solid block of ice. 

 
20. The humid air will be more dense than the dry air at the same temperature because it will have more 

water vapor suspended in it.  
 
21. (a) A pressure cooker, by definition, increases the pressure on what is inside it. An increased 

pressure yields a higher boiling point. The water in which the food is usually prepared will boil at a 
higher temperature than normal, thereby cooking the food faster. (b) At high altitudes, the 
atmospheric pressure is less than it is at sea level. If atmospheric pressure decreases, the boiling 
point of water will decrease. Boiling occurs at a lower temperature. Food (including pasta and rice) 
will need to cook longer at this lower temperature to be properly prepared. (c) It is actually easier to 
boil water at higher altitude, because it boils at a lower temperature. 

 
22. Both “vapor” and “gas” refer to a substance in the gaseous state. They differ in that a vapor is below 

the critical temperature and a gas is above the critical temperature for the substance.  
 
23. (a) Yes. As an example, think of ice skating. The pressure from the weight of the skater melts the  

ice, and the skater glides on a thin layer of water. 
(b) No. See Figure 18-6. The solid–liquid interface has a positive slope, and so it is not possible to  

melt carbon dioxide simply by applying pressure. 
 
24. Dry ice is carbon dioxide in the solid state. As shown in Figure 18-6, carbon dioxide at room 

temperature will be a vapor unless it is at a pressure several times atmospheric pressure. When 
brought to room temperature, the dry ice sublimates and therefore does not last long. 

 
25. Liquid CO2 can exist at temperatures between –56.6ºC and 31ºC and pressures between 5.11 atm and 

73 atm. (See Figure 18-6.) CO2 can exist as a liquid at normal room temperature, if the pressure is 
between 56 and 73 atm. 

 
26. Exhaled air contains a large amount of water vapor and is initially at a temperature equal to body 

temperature. When the exhaled air comes into contact with the external air on a cold day it cools 
rapidly and reaches the dew point. At the dew point temperature, the air can no longer hold all the 
water vapor and water condenses into little droplets, forming a cloud. 

 
27. A sound wave can be described as a pressure wave or a displacement wave. Transmission of the 

wave depends on the collisions of the gas molecules and their displacements away from an 
equilibrium position. If the wavelength of a sound wave is less than or equal to the mean free path of 
the molecules in a gas, then there is no net displacement from the equilibrium position and the sound 
wave will be “lost” in the movement of the molecules. The forces between the molecules will not be 
large enough to transmit the sound wave.  

 
28. Ways to reduce the mean free path in a gas include increasing the size of the gas molecules and 

increasing the density of the gas. Gas density can be increased either by increasing the number of 
molecules or by decreasing the volume.  
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Solutions to Problems 
 
In solving these problems, the authors did not always follow the rules of significant figures rigidly.  We 
tended to take quoted temperatures as correct to the number of digits shown, especially where other 
values might indicate that. 
 
1. (a) The average translational kinetic energy of a gas molecule is 3

2 kT . 

   ( ) ( )23 213 3
avg 2 2 1.38 10 J K 273K 5.65 10 JK kT − −= = × = ×  

 (b) The total translational kinetic energy is the average kinetic energy per molecule, times the  
number of molecules. 

   
( ) ( ) ( ) ( )

23
233

total avg 2

6.02 10 molecules
1.0mol 1.38 10 J K 298K

1

         3700J

KE N KE −×
= = ×

=

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 
2. The rms speed is given by Eq. 18-5, rms 3v kT m= .  Helium has an atomic mass of 4.0. 

  
( )( )

( )
23

3
rms 27

3 1.38 10 J K 6000 K
3 6116 m s 6 10 m s

4.0 1.66 10 kg
v kT m

−

−

×
= = = ≈ ×

×
 

 
3. The rms speed is given by Eq. 18-5, rms 3v kT m= .  The temperature must be in Kelvins. 

  
( )
( )

rms 2 22

rms 111

3 453 K
1.29

273 K3

v kT m T
v TkT m

= = = =  

 
4. The rms speed is given by Eq. 18-5, rms 3v kT m= .  Since the rms speed is proportional to the  

square root of the absolute temperature, to triple the rms speed without changing the mass, the 
absolute temperature must be multiplied by a factor of 9. 

  ( )fast slow4 9 273 20 K 2637 K 2364 CT T= = + = = °  
 
5. The average kinetic molecular energy is 3

2 .kT   Set this equal to the kinetic energy of the paper clip. 

( ) ( )23
2 931

2 2 3

3 1.38 10 J K 288K3
    3.5 10 m s

1.0 10 kg
kT

mv kT v
m

−
−

−

×
= → = = = ×

×
 

 
6. (a) The average molecular kinetic energy is 3

2 ,kT  so the total kinetic energy for a mole would be  

Avogadro’s number times 3
2 .kT  

( ) ( ) ( )3 3 3
0 2 2 2 8.314 J mol K 273K 15K 3740 JK N kT RT= = = + =i  

(b) 
( )21

2

2 3740J
3704 J    11m s

65kg
K mv v= = → = =  
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7. The mean (average) speed is as follows.  

avg

6.0 2.0 4.0 6.0 0.0 4.0 1.0 8.0 5.0 3.0 7.0 8.0 54.0
4.5

12 12
v

+ + + + + + + + + + +
= = = . 

The rms speed is the square root of the mean (average) of the squares of the speeds. 

  

2 2 2 2 2 2 2 2 2 2 2 2

rms

6.0 2.0 4.0 6.0 0.0 4.0 1.0 8.0 5.0 3.0 7.0 8.0
12

320
5.2

12
     

v
+ + + + + + + + + + +

=

= =

 

 
8. The rms speed is given by Eq. 18-5, rms 3v kT m= . 

  

( )
( )

( ) ( ) ( )

rms 2 22

rms 111

2 2

2 1

3
1.020   

3

1.020 293.15K 1.020 305.0 K 31.8 C

v kT m T
v TkT m

T T

= = = →

= = = = °

 

 
9. From the ideal gas law, PV nRT= , if the volume and amount of gas are held constant, the 

temperature is proportional to the pressure, ( )   constant
nR

PV nRT P T T
V

= → = = .  Thus the 

temperature will be tripled .  Since the rms speed is proportional to the square root of the 

temperature, ( )rms 3 constantv kT m T= = , rmsv  will be multiplied by a factor of 3 1.73.≈  
 
10.  The rms speed is given by Eq. 18-5, rms 3v kT m= .  The temperature can be found from the  

ideal gas law,     PV NkT kT PV N= → = .   The mass of the gas is the mass of a molecule times the 

number of molecules:  M Nm= , and the density of the gas is the mass per unit volume, 
M
V

ρ = . 

Combining these relationships gives the following. 

 rms

3 3 3
3

PV PV P
v kT m

Nm M ρ
= = = =  

 
11. The rms speed is given by Eq. 18-5, rms 3v kT m= . 

  
( )
( )

( )
( )

rms rms2 12 2

rms rms 211 1

3
    

3

v vkT m m
v v mkT m

= → =  

 
12. The temperature of the nitrogen gas is found from the ideal gas law, and then the rms speed is found 

from the temperature. 

      
PV

PV nRT T
nR

= → =  

  
( )
( )

( ) ( ) ( )
( ) ( )

23 5 3

rms 27

3 1.38 10 J K 3.1atm 1.013 10 Pa atm 8.5m3 3
28 1.66 10 kg 1800 mol 8.314J mol K

kT k PV
v

m m nR

−

−

× ×
= = =

× i
 

  2398.6m s 4.0 10 m s     = ≈ ×  
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13. From Eq. 18-5, we have rms 3 .v kT m=  

 (a) 
1/ 2 1/ 2 1/ 2

rms rms
1/ 2

3 1 3 1 1 3 1 1
2 2 2

dv d kT k kT v
dT dT m m T m T T

= = = =⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

  rms rms rms
rms

rms

1 1
    

2 2
dv v v T

v T T
dT T v T

Δ Δ
Δ ≈ Δ = Δ → ≈  

 (b) The temperature must be calculated in Kelvin for the formula to be applicable.  We calculate the  
percent change relative to the winter temperature. 

rms

rms

1 1 30 K
0.056 5.6%

2 2 268K
v T

v T
Δ Δ

≈ = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
14. Assume that oxygen is an ideal gas, and that each molecule occupies the same cubical volume of 3

l .  
Find the volume per molecule from the ideal gas law, and then the side length of that cubical 
molecular volume will be an estimate of the average distance between molecules. 

  

( ) ( )

( ) ( )

23
26 3

5

1/ 3231/ 3
9

5

1.38 10 J K 273 K
    3.73 10 m molecule

1.01 10 Pa

1.38 10 J K 273 K
3.34 10 m

1.01 10 Pa

V kT
PV NkT

N P

kT
P

−
−

−
−

×
= → = = = ×

×

×
= = = ×

×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

l

 

 
15. The rms speed is given by Eq. 18-5, rms 3v kT m= . 

  
( )
( )

( )
( )

235235 238
66 6

235 235238
6 66

rms UFUF UF

rms UF UFUF

3 238 6 19 352
1.004

235 6 19 3493

kT m mv

v mkT m

+
= = = = =

+
 

 
16. Gas molecules will rush into the vacuum from all directions.  An estimate for the time for air to refill 

this vacuum region is the radius of the region divided by the rms speed of the molecules. 

( ) ( )
( )

5

23
rms

27

0.01m
2 10 s

3 3 1.38 10 J K 293 K

29 1.66 10 kg

d d
t

v kT m
−

−

−

Δ Δ
Δ = = = = ×

×

×

 

 
17. (a) The rms speed is given by Eq. 18-5, rms 3v kT m= . 

   
( )( )

( )
23

rms 27

3 1.38 10 J K 273 K3
461m s

32 1.66 10 kg
kT

v
m

−

−

×
= = =

×
 

 (b) Assuming that the particle has no preferred direction, then we have the following: 
   2 2 2 2 2

rms rms3     3x y z x xv v v v v v v= + + = → = . 

The time for one crossing of the room is then given by rms3xt d v d v= = , and so the time for 

a round trip is rms2 3d v .  Thus the number of back and forth round trips per second is the 

reciprocal of this time, rms

2 3
v

d
. 
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( )

rms 461m s
# round trips per sec 26.6 26 round trips per sec

2 3 2 3 5.0 m
v

d
= = = ≈  

 
18. (a) The average time for a molecule to travel from one side of the box to the other and back again is  

simply the round-trip distance, say in the x direction, divided by the average x speed of the 
molecule.  The frequency of collisions for that molecule is the reciprocal of that round-trip time.  
The overall frequency of collisions is N times the frequency for a single particle.  Use the ideal 
gas law to relate the number of particles in the room to the gas parameters of pressure, volume, 
and temperature. 

 

3

round
trip

3

2

round
trip

2
= =   ;       

1
 

2 2 2

x x

x
x x

x PV P
t PV NkT N

v v kT kT

P
vNv v PkTf N

t kT

Δ
= → = =

= = = =

l l

l

l
l l

 

 (b) We approximate that 2 .x xv v≈   From section 18-1, we have that 2 21
3xv v=  and Eq. 18-4,  

2 31
2 2 .mv kT=   Combine these results with the result from part (a). 

 
1

2 2 21 3
2 2 2 23

3
 

2 2 2 2 4
xx

kT
v vv P P P P Pmf

kT kT kT kT mkT
= ≈ = = =

l
l l l l  

 (c) We assume the pressure is at one atmosphere, and we take the molecular mass of air to be 29 u,  
as given in problem 16. 

   

( ) ( )
( ) ( ) ( ) ( )

252
28

27 23

28

1.013 10 Pa 3m
3.27 10 Hz

4 4 29 1.66 10 kg 1.38 10 J K 293 K

  3.27 10 Hz

P
f

mkT − −

×
= = = ×

× ×

≈ ×

l

 

 
19. In the Maxwell distribution, Eq. 18-6, we see that the mass and temperature always occur as a ratio.  

Thus if the mass has been doubled, doubling the temperature will keep the velocity distribution 
constant. 

 
20. (a) We find the average by adding the speed of every particle and then dividing by the number of  

particles. 

   
( ) ( ) ( ) ( )

( ) ( ) ( )
2 10m s 7 15m s 4 20m s 3 25m s1 1

23m s
25      6 30m s 1 35m s 2 40m si i

i

v n v
N

+ + +
= = =

+ + +
⎡ ⎤
⎢ ⎥
⎣ ⎦

∑  

(b) We find the rms speed by taking the square root of the average squared speed. 

  

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2

2

2 2 2rms

2 10m s 7 15m s 4 20m s 3 25m s1 1
25      6 30m s 1 35m s 2 40m s

  24.56m s 25m s

i i
i

v n v
N

+ + +
= =

+ + +

= ≈

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
 

(c)  The most probable speed is that one that occurs most frequently, 15m s .  
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21. (a) We find the rms speed by taking the square root of the average squared speed. 

  

( ) ( ) ( )
( ) ( ) ( )

2 2 2

2

2 2 2rms

1600 220m s 4100 440m s 4700 660m s1 1
15,200 3100 880m s 1300 1100m s 400 1320m s

  706.6m s 710m s

i i
i

v n v
N

+ +
= =

+ +

= ≈

⎡ ⎤
⎢ ⎥

+⎢ ⎥⎣ ⎦
∑

 

 (b) The temperature is related to the rms speed by Eq. 18-5. 

   
( ) ( )

( )
2262

rms
rms 23

2.00 10 kg 706.6m s3
    241.2 K 240 K

3 3 1.38 10 J K
kT mv

v T
m k

−

−

×
= → = = = ≈

×
 

 (c) Find the average speed, and then use a result from Example 18-5. 
( ) ( ) ( )
( ) ( ) ( )

1600 220m s 4100 440m s 4700 660m s1 1
15,200 3100 880m s 1300 1100m s 400 1320m s

654.2 650m s  m s

i i
i

v n v
N

+ +
= =

+ + +

=

⎡ ⎤
⎢ ⎥
⎣ ⎦

≈

∑
 

( ) ( )
( )

226

23

2 2.00 10 kg 654.2 m s
    243.6 K 240 K

8 8 1.38 10 J K
8 kT mv

v T
m k

π π
π

−

−

×
= → = = = ≈

×
 

  Yes, the temperatures are consistent. 
 

22. (a) Show that ( )
0

.f v dv N
∞

=∫   We use a change of variable, and we make use of an integral from  

Appendix B-5; specifically, 
22

3
0

.
16

axx e dx
a
π∞

− =∫  

 

( )
2

2

2

3/ 2 1
2 2

0 0

2 2
2 2 2

3/ 2 3/ 21
2 22

0 0

3/ 2

4
2

2 2 2
                

2 2

2 2
4 4

2 2

2
      4

2

mv
kT

mv
xkT

m
f v dv N v e dv

kT

mv mv kT kT kT
x x v x v x dv dx

kT kT m m m

m m kT kT
N v e dv N x e dx

kT kT m m

m kT
N

kT

π
π

π π
π π

π
π

∞ ∞
−

∞ ∞
− −

=

= → = → = → = → =

=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫
2

3/ 2
2

0

2 1
4

4
xkT

x e dx N N
m m

ππ
π

∞
− = =⎛ ⎞

⎜ ⎟
⎝ ⎠∫

 

 (b) Show that ( )2

0

3
.

kT
v f v dv N

m

∞

=∫   We use the same change of variable as above, and we make  

use of an integral from Appendix B-5; specifically, 
24

0

3
.

8
axx e dx π

∞
− =∫  

   
( )

23/ 2 1
2 4 2

0 0

2 2
2 2 2

4
2

2 2 2
                

2 2

mv
kTm

v f v dv N v e dv
kT

mv mv kT kT kT
x x v x v x dv dx

kT kT m m m

π
π

∞ ∞
−

=

= → = → = → = → =

⎛ ⎞
⎜ ⎟
⎝ ⎠∫ ∫
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( ) ( )

2

2

2

3/ 2 3/ 21 2 2
4 42

2
0 0

3/ 2 2 2
4

2
0

2 2

0 0

4 2
4 4

2 2

4 2 3
          4   

2

3 3
    

mv
xkT

x

m m k T kT
N v e dv N x e dx

kT kT m m

m k T kT kT
N x e dx N

kT m m m

kT kT
v f v dv N v f v dv N

m m

π π
π π

π
π

∞ ∞
− −

∞
−

∞ ∞

=

= = →

= → =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫

∫

∫ ∫

 

 
23. From Fig. 18-6, we see that 2CO  is a vapor at 30 atm and 30 C.°  
 
24. (a) From Fig. 18-6, at atmospheric pressure, CO2 can exist as  solid or vapor .   
 (b) From Fig. 18-6, for CO2 to exist as a liquid, 5.11 atm 73 atmP≤ ≤  and   

o o56.6 C 31 CT− ≤ ≤ . 
 
25. (a) From Fig. 18-5, water is  vapor  when the pressure is 0.01 atm and the temperature is 90oC. 
  

 (b) From Fig. 18-5, water is  solid  when the pressure is 0.01 atm and the temperature is –20oC. 
 
26. (a) At the initial conditions, the water is a liquid.  As the pressure is lowered, it becomes a vapor at  

some pressure between 1.0 atm and 0.006 atm.  It would still be a vapor at 0.004 atm. 
(b) At the initial conditions, the water is a liquid.  As the pressure is lowered, it becomes a solid at a  

pressure of 1.0 atm, and then becomes a vapor at some pressure lower than 0.006 atm.  It would 
be a vapor at 0.004 atm. 

 
27. From Table 18-2, the saturated vapor pressure at 30oC is 4240 Pa.  Since the relative humidity is 

85%, the partial pressure of water is as follows. 
  ( )water saturated0.85 0.85 4240 Pa 3600PaP P= = =  

 
28. From Table 18-2, the saturated vapor pressure at 25oC is 3170 Pa.  Since the relative humidity is 

55%, the partial pressure of water is as follows. 
  ( )water saturated0.55 0.55 3170 Pa 1700 PaP P= = =  

 
29. At the boiling temperature, the external air pressure equals the saturated vapor pressure.  Thus from 

Table 18-2, for 80 C°  the saturated air pressure is 355torr  or 44.73 10 Pa×  or 0.466atm . 

 
30. From Table 18-2, if the temperature is 25oC, the saturated vapor pressure is 23.8 torr.  If the relative 

humidity is 75%, then the partial pressure of water is 75% of the saturated vapor pressure, or 17.85 
torr.  The dew point is the temperature at which the saturated vapor pressure is 17.85 torr, and from 
Table 18-2 that is between 20oC and 25oC.  Since there is no entry for 17.85 torr, the temperature can 
be estimated by a linear interpolation.  Between 20oC and 25oC, the temperature change per torr is as 
follows: 

  
( )

( )
o

o25 20 C
0.7937C torr

23.8 17.5 torr
−

=
−

. 

 Thus the temperature corresponding to 17.85 torr is  
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  ( )[ ]( )20 C 17.85 17.5 torr 0.7937C torr 20.28 C 20 C+ − ° = ≈ °° ° . 
 
31. At the boiling temperature, the air pressure equals the saturated vapor pressure.  The pressure of 0.75  

atm is equal to 47.60 10 Pa× .  From Table 18-2, the temperature is between 90oC and 100oC.  Since 
there is no entry for 47.60 10 Pa× , the temperature can be estimated by a linear interpolation.  
Between 90oC and 100oC, the temperature change per Pa is as follows: 

  
( )

( )
o

4 o
4

100 90 C
3.236 10 C Pa

10.1 7.01 10 Pa
−−

= ×
− ×

. 

 Thus the temperature corresponding to 47.60 10 Pa× is  
  ( ) ( )4 4 o90 C 7.60 7.01 10 Pa 3.236 10 C Pa 91.9 C 92 C−+ − × × = ≈ °° °⎡ ⎤⎣ ⎦ . 

 
32. The volume, temperature, and pressure of the water vapor are known.  We use the ideal gas law to 

calculate the mass.  The pressure must be interpolated from Table 18-2.  Between 20oC and 25oC, the 
pressure change per temperature change per Co is as follows. 

  
( )
( )

o
o

3170 2330 Pa
168Pa C

25 20 C
−

=
−

 

 Thus the saturated vapor pressure at 20oC is ( )o o2330Pa 168Pa C 4C 3000 Pa.+ =  

  

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
2H O

0.65 3000 Pa 5.0m 6.0m 2.4 m
    56.8 mol

8.314J mol K 273.15K 24.0 K

56.8 mol 0.018kg mol 1.0kg

PV
PV nRT n

RT

m

= → = = =
+

= =

i   

 
33. Since the water is boiling at 120oC, the saturated vapor pressure is the same as the pressure inside the  

pressure cooker.  From Table 18-2, the pressure is 51.99 10 Pa 1.97 atm× = . 
 
34. The total amount of water vapor that can be in the air can be found from the saturated vapor pressure 

in Table 18-2, using the ideal gas law.  At 25oC, that pressure is 33.17 10 Pa× . 

  
( ) ( )

( ) ( )

3 33.17 10 Pa 440m
    563moles

8.314J mol K 273 25 K
PV

PV nRT n
RT

×
= → = = =

+i
  

Since the relative humidity is only 65%, only 65% of the total possible water is in the air.  Thus 35% 
of the total possible water can still evaporate into the air. 

  ( )
3

evaporate

18 10 kg
0.35 563moles 3.5kg

1 mole
m

−×
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
35. For boiling to occur at 120 C,°  the pressure inside the cooker must be the saturated vapor pressure of 

water at that temperature.  That value can be found in Table 18-2.  For the mass to stay in place and 
contain the steam inside the cooker, the weight of the mass must be greater than the force exerted by 
the gauge pressure from the gas inside the cooker.  The limiting case, to  hold the temperature right 
at 120 C,° would be with the mass equal to that force. 

  ( ) ( ) 2
gauge inside atm inside atm
pressure

 mg F P P A P P rπ= = − = − →  
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( ) ( ) ( )

( )

25 5 32
inside atm

2

1.99 10 Pa 1.013 10 Pa 1.5 10 m
0.0705kg

9.80m s

   70g 2 sig. fig.

P P r
m

g

ππ −× − × ×−
= = =

≈

 

 
36. (a) The true atmospheric pressure will be greater than the reading from the barometer.  In Figure  

13-11, if there is a vapor pressure at the top of the tube, then atm vapor .P gh Pρ− =   The reading 

from the barometer will be atm vapor atm.gh P P Pρ = − <  
(b) The percent error is found from the atmospheric pressure and the vapor pressure. 

   

( )

vaporatm

atm atm

4

0.0015mm-Hg
% diff 100 100 100

760mm-Hg

          2.0 10 %

Pgh P
P P

ρ

−

−
= × = − × = − ×

= − ×

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠  

(c) From Table 18-2, the saturated water vapor pressure at STP is 611 Pa. 

   vapor

atm
5

611Pa
% diff 100 100 0.603%

1.013 10 Pa
P
P

= − × = − × =
×

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
37. At 30.0 C,°  the saturated vapor pressure as found in Table 18-2 is 4240 Pa.  We can find the partial 

pressure of the water vapor by using the equation given immediately before Example 18-6. 

  ( ) ( )partial
partial saturated

saturated

Rel. Hum.
Rel. Hum. 100    4240 Pa 0.45 1908Pa

100
P

P P
P

= × → = = =  

The dew point is that temperature at which 1908 Pa is the saturated vapor pressure.  From Table 18-
2, we see that will be between 15 C°  and 20 C.°   

  ( )1920 1710

1908Pa 1710 Pa
5C 16.6 C

2330 Pa 1710 Pa
T T

−
= + ° = °

−
 

 
38. The outside air is at the dew point, and so its water vapor pressure is the saturated vapor pressure at  

5.0 C,°  which comes from Table 18-2 and is 872 Pa.  Consider a fixed number of moles that moves 
from outside to inside at constant pressure.  Because the pressure is constant, the partial pressure of 
water vapor is 872 Pa inside as well.  The saturated pressure at the higher temperature is 2300 Pa.  
So the relative humidity is 872 Pa 2330 Pa 0.374 37.4% .= =  

 
39. (a) The plot is shown, with an  

accompanying linear fit.  
The  slope of the line is 

5000 K− , and the y-

intercept is 24.91 .   The 
spreadsheet used for this 
problem can be found on 
the Media Manager, with 
filename 
“PSE4_ISM_CH18.XLS,” 
on tab “Problem 18.39a.” 

 

ln (P /P 0) = -5000 (1/T ) + 24.9

8

9

10

11

12

13

14

0.0022 0.0024 0.0026 0.0028 0.0030 0.0032
1/T (1/K)

ln
 (P

/P
0 )
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 (b) The straight line results can be expressed as follows. 

   ( )0 0 0
1    ln     

m mb bT Ty mx b P P m b P P e P e e
T

+⎛ ⎞= + → = + → = =⎜ ⎟
⎝ ⎠

 

We define ( ) 24.91 10 10
0 1Pa 6.58 10 Pa 7 10 PabB Pe e= = = × ≈ ×  and 5000K.A m= − =  Then we 

have the following. 

   ( )10 5000
0 7 10 Pab m T A T TP P e e Be e− −= = = ×  

 
40. For one mole of gas, the “lost” volume (the volume occupied by the molecules) is the value of b.  

We assume spherical molecules. 

  

( )

( )
( )

34 1
0 3 2

1/ 31/ 3 5 3
10

23
0

  

3 3.2 10 m mol3
2 2 4.7 10 m

4 4 6.02 10 molecules mol

b N d

b
d

N

π

π π

−
−

= →

×
= = = ×

×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

  

 
41. (a) Use the van der Waals equation. 

   
( ) ( )

( ) ( )
( ) ( ) ( )

2

6
23 3 5 3 3 3

8.314 J mol K 273K 0.13m s
  3.1 10 Pa

0.70 10 m mol 3.2 10 m mol 0.70 10 m mol

RT a
P

V n b V n

− − −

= −
−

= − = ×
× − × ×

i
 

 (b) Use the ideal gas law. 

   ( ) ( ) ( ) 6
3 3

1.0mol 8.314J mol K 273K
    3.2 10 Pa

0.70 10 m
nRT

PV nRT P
V −

= → = = = ×
×

i
  

 
42. The van der Waals pressure can be either higher or lower than the ideal gas pressure, depending on 

the volume.  Accordingly, we use a parameter “c,” which is the ratio of the van der Waals pressure to 
the ideal pressure. 

  

( ) ( )
( ) ( )

( ) ( ) ( )
( )

( ) ( )

2 2
2

2 2

2

      1 0

1
1

1 0

 

4
2

V I

RT a nRT
P cP c RT c V an bcnRT V ban

V n b VV n

an bcnRT a bcRT RT c ba
RT c

RT c V an bcnRT V ban

n
V

= → − = → − + − − =
−

− − −

−

− + − − =

→

− ± +
=  

 
For 0.95,c = the van der Waals pressure being lower than the ideal gas pressure, we get volumes of  

5 34.16 10 m−×  and 4 32.16 10 m .−×   For 1.05,c =  the van der Waals pressure being higher than the 

ideal gas pressure, we get a volume of 5 33.46 10 m .−×   Note that the pressures are equal for a 
volume of 5 33.72 10 m .−×  
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43. (a) The Van der Waals equation of state is given by Eq. 18-9, 
( ) ( )2 .

RT a
P

V n b V n
= −

−
  At the  

critical point, both the first and second derivatives of P with respect to V are 0.  Use those 
conditions to find the critical volume, and then evaluate the critical temperature and critical 
pressure. 

   

( ) ( )

( )
( )

( )
( )

2

2 2

22
crit

crit2 3 3
crit

32 2 2
crit

crit32 4 2 4
crit

22
  ;  0    

32 6
  ;  0    

RT a nRT an
P

V n b V nb VV n

an V nbdP nRT an dP
T

dV V dV RVV nb

an V nbd P nRT an d P
T

dV V dV RVV nb

= − = −
− −

−
= − + = → =

−

−
= − = → =

−

 

  Set the two expressions for the critical temperature equal to each other, and solve for the critical  
volume.  Then use that expression to find the critical temperature, and finally the critical 
pressure. 

   

( ) ( )

( ) ( )
( )

2 3
crit crit

crit3 4
crit crit

2 2
crit

crit 33
crit

2
crit

crit 2 2
crit crit

2 3
   3

2 2 3 8
273

27

an V nb an V nb
V nb

RV RV

an V nb an nb nb a
T

RV bRR nb

nRT an a
P

V nb V b

− −
= → =

− −
= = =

= − =
−

 

 (b) To evaluate the constants, use the ratios 
2

crit

crit

T
P

and crit

crit

.T
P

 

( )

( ) ( )
( )

( ) ( )

2

2
crit

2
crit

2

2
2

2 2 4
crit

5 2
crit

crit crit
5

crit crit
2

8
6427   

27
27

J
27 8.314 304 K

27 N mmol K 0.365
64 64 72.8 1.013 10 Pa mol

J8 8.314 304 K
8 mol K27     

8 8 72.8 1.013 10 Pa
27

a
T abR

aP R
b

R T
a

P

a
T b RTbR b

aP R P
b

= = →

= = =
×

= = → = =
×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

ii

i 5 34.28 10 m mol−= ×

 

 
44. (a) We use the ideal gas law as applied to the air before it was put into the tank. 

   
( ) ( )
( ) ( )

5 31.013 10 Pa 2.3m
    95.64 mol 96 mol

8.314J mol K 293K
PV nRT n

×
= → = = ≈

i
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 (b) Use the ideal gas law. 

   ( ) ( ) ( )
( )

7 7
3

  

96mol 8.314J mol K 293K
1.9488 10 Pa 1.9 10 Pa 190atm

0.012 m

PV nRT

nRT
P

V

= →

= = = × ≈ × ≈
i  

 (c) Use the van der Waals equation. 

   

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( )

2

2 2

24 2

23 5 3 3

7 7

0.1373N m mol 96 mol96 mol 8.314 J mol K 293K
  

0.012 m 96 mol 3.72 10 m mol 0.012 m

  1.8958 10 Pa 1.9 10 Pa

RT a nRT an
P

V n b V nb VV n

−

= − = −
− −

= −
− ×

= × ≈ ×

ii
 

 (d) 
7 7ideal van der

Waals

7
van der
Waals

1.9488 10 Pa 1.8958 10 Pa
% error 100 100 2.796% 3%

1.8958 10 Pa

P P

P

−
× − ×

= × = × = ≈
×

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟

⎝ ⎠

 

 
45. The mean free path is given by Eq. 18-10b.  Combine this with the ideal gas law to find the mean 

free path–pressure relationship. 

  
( )M 2 2 2

M

1
     ;      

4 2 4 2 4 2
N P kT kT

PV NkT P
V kT r N V r P rπ π π

= → = = = → =l
l

 

 (a) 
( ) ( )

( ) ( )

23

22 10
M

1.38 10 J K 293K
0.10 Pa

4 2 4 2 1.5 10 m 0.10 m

kT
P

rπ π

−

−

×
= = =

×l
 

 (b) 
( ) ( )
( ) ( )

23
7

22 10 10
M

1.38 10 J K 293K
3 10 Pa 300atm

4 2 4 2 1.5 10 m 3 10 m

kT
P

rπ π

−

− −

×
= = = × ≈

× ×l
 

 
46. We want the mean free path to be 1.0 m.  Use Eq. 18-10b with the ideal gas law. 

  
( )

( ) ( )
( ) ( )

M 2 2

23

22 10
M

1
     ;    

4 2 4 2

1.38 10 J K 293K
0.010 Pa

4 2 4 2 1.5 10 m 1.0 m

N P kT
PV NkT

V kT r N V r P

kT
P

r

π π

π π

−

−

= → = = = →

×
= = =

×

l

l

 

 
47. First, we compare the rms speed of the hydrogen to the rms speed of the air, by Eq. 18-5. 

  
( )
( )

22

2

rms HH air

rms Hairair

3 29
3.8

2

v kT m m
v mkT m

= = = =  

Since the hydrogen is moving about 4 times faster than the air, we will use a stationary target 
approximation.  We also assume that the inter-molecular distance for a collision would be the sum of 
the radii of the hydrogen and air molecules.  The size of the air molecules are given in problem 45, 
and based on problem 71, we assume that the radius of the hydrogen molecule is the same as the 
diameter of the hydrogen atom.  We use these assumptions to calculate the mean free path, similar to 
Eq. 18-10a.  Use the ideal gas law. 
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( ) ( )

( ) ( )
( ) ( )

2

23

M 2 22 10 5
H air

7 7

     ;

1.38 10 J K 288 K1

1.0 1.5 10 m 1.013 10 Pa

1.998 10 m 2 10 m    

N P
PV NkT

V kT

kT
r Pr r N V π ππ

−

−

− −

= → =

×
= = =

+ × ×+

= × ≈ ×

⎡ ⎤⎣ ⎦
l   

 
48. The mean free path is given by Eq. 18-10b.  Combine this with the ideal gas law to find the mean 

free path–diameter relationship. 

  
( ) ( )M 22 1

2 M

1
     ;      

4 2 4 2 2
N P kT

PV NkT
V kT r N V d P

kTd
Pπ π π

= → = = = → =l
l

 

 (a) 
( ) ( )
( ) ( )

23
10

8 5
M

1.38 10 J K 273K
3.9 10 m

2 2 5.6 10 m 1.013 10 Pa
kT

d
Pπ π

−
−

−

×
= = = ×

× ×l
 

 (b) 
( ) ( )
( ) ( )

23
10

8 5
M

1.38 10 J K 273K
1.8 10 m

2 2 25 10 m 1.013 10 Pa
kT

d
Pπ π

−
−

−

×
= = = ×

× ×l
 

 
49. (a) If the average speed of a molecule is ,v  then the average time between collisions (seconds per  

collision) is the mean free path divided by the average speed.  The reciprocal of that average 
time (collisions per second) is the frequency of collisions.  Use Eq. 18-10b for the mean free 
path.  The typical size of an air molecule is given in problem 45, which can be used for the size 
of the nitrogen molecule. 

 2M
avg

avg M

1
    4 2

v N
t f r v

v t V
πΔ = → = = =

Δ
l

l
 

 (b) From Eq. 18-7b, 
8 ,kT

v
mπ

=  and from the ideal gas law,    .
N P

PV NkT
V kT

= → =   Use  

these relationships to calculate the collision frequency. 

 ( ) ( ) ( )

( ) ( ) ( )

2 2 2

25 10

7
27 23

8
4 2 4 2 16

   16 0.010 1.013 10 Pa 1.5 10 m

          4.7 10 collisions s
28 1.66 10 kg 1.38 10 J K 293K

N kT P
f r v r Pr

V m kT mkT
ππ π

π

π

−

− −

= = =

= × × ×

= ×
× ×

 

 

50. The collision frequency is derived in problem 49 as 216 .f Pr
mkT
π

=   Only one significant figure 

was given for the mean free path, so only one significant figure should be in the answer. 

216f Pr
mkT
π

=  
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( ) ( ) ( ) ( ) ( )
25 10

27 23

9 9

  16 1.013 10 Pa 1.5 10 m
29 1.66 10 kg 1.38 10 J K 273K

  4.8 10 Hz 5 10 Hz

π−
− −

= × ×
× ×

= × ≈ ×

 

 
51. Use the ideal gas law to evaluate the mean free path.  Then compare the mean free path to the 

dimensions of the box in order to estimate the collision ratio.  The size of air molecules is given in 
problem 45.  The number of collisions per second is the reciprocal of the average time between 
collisions. 

  
( )

( ) ( )

( ) ( )

23

M 2 2
210 6

wall molecular
collisions colM box

molecular wall molecular
collisions collisions collisions

     ;

1.38 10 J K 273K1
70.8m

133Pa4 2 4 2 4 2 1.5 10 m 1 10 torr
1torr

    

N P
PV NkT

V kT

kT
r N V r P

N t
v

t t N

π π π

−

− −

= → =

×
= = = =

× ×

= = → =

⎛ ⎞
⎜ ⎟
⎝ ⎠

l

l l lisions M

wall box

70.8 m
39.3

1.80 mt
= = =
l

l

 

The wall collisions are about 40 times more frequent than the inter-molecular collisions.  So the 
particles make about 1 40 of a collision with each other for each collision with a wall. 

 
52. We estimate that only 2% of the electrons will have a collision in 32 cm or less, and so approximate 

that 2% of the electrons will have a collision in every 32 cm length.  Thus 50% of the electrons 
should have a collision in a length of 25 times 32 cm, which is 8.00 m.  So we want the mean free 
path to be 8.00 m.  We also assume that the electrons are moving much faster than the air molecules, 
so that we model the air molecules as stationary.  Finally, a collision will occur if an electron comes 
within a distance of r from a gas molecule (the radius of the gas molecule), not 2r as in the derivation 
in section 18-6.  Combine this with the ideal gas law.  We assume room temperature. 

  
( )

( ) ( )
( ) ( )

M 2 2

23
3 6

22 10
M

1
     ;    

1.38 10 J K 300 K
7.3 10 Pa 7 10 atm

1.5 10 m 8.00 m

N P kT
PV NkT

V kT r N V r P

kT
P

r

π π

π π

−
− −

−

= → = = = →

×
= = = × ≈ ×

×

l

l

   

 
53. We use the equation derived in Eq. 18-9. 

  
( ) ( )

( )
2 2

5 2

1.0 m1
12,500s 3.5h

2 4 10 m s
xC

t
C D −

Δ
= = = ≈
Δ ×

 

 Because this time is so long, we see that convection is much more important than diffusion. 
 
54. From Example 18-9, we have an expression for the time to diffuse a given distance.  Divide the 

distance by the time to get the average speed. 

( ) ( )
( )

( )
( )

262 31
2

3 11 2

15 10 m1.00 0.50 mol m
0.3553s 0.36s

1.00 0.50 mol m 95 10 m s
xC

t
C D

−

−

×Δ +
= = = ≈
Δ − ×
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6
5

diffuse

15 10 m
4.2 10 m s

0.3553 s
x

v
t

−
−Δ ×

= = = ×  

  The rms thermal speed is given by Eq. 18-5, rms 3v kT m= . 

  

( ) ( )
( )

23
2

rms 27

5
7diffuse

2
rms

3 1.38 10 J K 293 K
3 3.1 10 m s

75 1.66 10 kg

4.2 10 m s
1.4 10

3.1 10 m s

v kT m

v
v

−

−

−
−

×
= = = ×

×

×
= = ×

×

 

 The diffusion speed is about seven orders of magnitude smaller than the thermal speed. 
 
55. (a) Use the ideal gas law to find the concentration of the oxygen.  We assume that the air pressure  

is 1.00 atm, and so the pressure caused by the oxygen is 0.21 atm. 

   ( )( )
( )( )

5
3 3

  

0.21atm 1.013 10 Pa atm
8.732 mol m 8.7 mol m

8.315J mol K 293 K

PV nRT

n P
V RT

= →

×
= = = ≈

i
  

 (b) Use Eq. 18-11 to calculate the diffusion rate. 

   
( ) ( )

3 3
5 2 9 21 2

3

11 11

8.732 mol m 4.366mol m
1 10 m s 2 10 m

2 10 m

  4.366 10 mol s 4 10 mol s

dC C C
J DA DA

dx x
− −

−

− −

− −
= ≈ = × ×

Δ ×

= × ≈ ×

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 (c) From Example 18-9, we have an expression for the time to diffuse a given distance. 

   
( ) ( )

( )
( )23 3 32 1

2

5 23 3

8.732 mol m 4.366 mol m 2 10 m
0.6 s

1 10 m s8.732mol m 4.366mol m
xC

t
C D

−

−

+ ×Δ
= = =
Δ ×−

 

 
56. We use the ideal gas law to find the length. 

  
( ) ( ) ( )

( )
1/ 36 231/ 3

3 7
5

1 10 1.38 10 J K 273K
    3 10 m

1.013 10 Pa
NkT

PV P NkT
P

−
−

× ×
= = → = = = ×

×

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠ ⎢ ⎥⎣ ⎦
l l  

 
57. The rms speed is given by Eq. 18-5, rms 3v kT m= .  Hydrogen atoms have a mass of 1 atomic  

mass unit. 

  
( )( )

( )
23

rms 27

3 1.38 10 J K 2.7 K3
260 m s

1 1.66 10 kg
kT

v
m

−

−

×
= = =

×
 

 The pressure is found from the ideal gas law, PV NkT= . 

  

( ) ( ) ( )23
17

56 3
3

3

22 22

1 1.38 10 J K 2.7 K 1 atm
    3.726 10 Pa

1.01 10 Pa1 10 m
1 cm

1cm

      3.689 10 atm 3.7 10 atm

NkT
PV NkT P

V

−
−

−

− −

×
= → = = = ×

××

= × ≈ ×

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠

⎜ ⎟
⎝ ⎠
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58. We assume that each molecule will have an average kinetic energy of 3
2 .kT   Find the total number of 

molecules from the mass of the bacterium. 

  

( )

( )

( )

2H O other

15
27

15
27 5

15
27

1u 1molecule
   0.70 2.0 10 kg

1.66 10 kg 18u

1u 1molecule
         0.30 2.0 10 kg

1.66 10 kg 10 u

1u 1molecule 1mol
   2.0 10 kg 0.70 0.30

1.66 10 kg 18u

N N N

−
−

−
−

−
−

= +

= ×
×

+ ×
×

= × +
×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( ) ( ) ( ) ( )

5

10

10 23 103 3
2 2

ecule
10 u

   4.69 10 molecules

4.69 10 molecules 1.38 10 J K 310 K 3 10 JK N kT − −

= ×

= = × × = ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 
59. The rms speed is given by Eq. 18-5. 

 (a) 
( ) ( )
( ) ( )

23

rms 27

1.38 10 J K 310 K33 294.7 m s 290 m s
89 u 1.66 10 kg u

kTv
m

−

−

×
= = = ≈

×
 

 (b) 
( ) ( )

( ) ( )
23

rms 274

1.38 10 J K 310 K33 9.537 m s 9.5m s
8.5 10 u 1.66 10 kg u

kTv
m

−

−

×
= = = ≈

× ×
 

 

60. The mean (average) speed is given in E. 18-7b, 
8 kT

v
mπ

= .  Using the escape velocity as v , solve 

for the temperature. 

 (a) For oxygen molecules: 
( ) ( ) ( )

( )
227 42

5
23

32.0 1.66 10 kg 1.12 10 m s
1.90 10 K

8 8 1.38 10 J K
mv

T
k

ππ −

−

× ×
= = = ×

×

 (b) For helium atoms:  
( ) ( ) ( )

( )
227 42

4
23

4.00 1.66 10 kg 1.12 10 m s
2.37 10 K

8 8 1.38 10 J K
mv

T
k

ππ −

−

× ×
= = = ×

×
 

(c) Because the “escape temperature” is so high for oxygen, very few oxygen molecules ever  
escape the atmosphere.  But helium, with one-eighth the mass, can escape at a much lower 
temperature.  While the temperature of the Earth is not close to 42.37 10 K×  today, during the 
Earth’s formation its temperature was possibly much hotter — presumably hot enough that 
helium was able to escape the atmosphere. 

 
61. Calculate the volume per molecule from the ideal gas law, and assume the molecular volume is 

spherical. 

  ( ) ( )
( )

34
3

1/ 3231/ 3
9

5volume

      

3 1.38 10 J K 273K3
2.07 10 m

4 4 1.01 10 Pa

V kT
PV NkT r

N P

kT
r

P

π

π π

−
−

= → = = →

×
= = = ×

×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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The intermolecular distance would be twice this “radius,” so about 94 10 m.−×   This is about 130 

times larger than the molecular diameter: 
9

volume
10

molecule

4 10 m
13.3.

3 10 m
d
d

−

−

×
≈ =

×
  So if we say the molecular 

diameter is 4 cm, then the intermolecular distance would be 13.3 times that, or about 50 cm. 
 
62. (a) The mean speed is given by Eq. 18-7b.  The atomic weight of cesium is 133. 

   
( ) ( )
( ) ( )

23

27

8 1.38 10 J K 673K8
327.3m s 330m s

133 1.66 10 kg
kT

v
mπ π

−

−

×
= = = ≈

×
  

(b) The collision frequency is the mean speed divided by the mean free path as given by Eq. 18- 
10b.  We also use the ideal gas law. 

 
( )

( ) ( )

( ) ( )

23

M 2 2 210

6

7 7
6

M

     ;

1.38 10 J K 673K1
133Pa4 2 4 2 4 2 1.65 10 m 17 mm-Hg

1mm-Hg

   8.49 10 m
327.3m s

3.855 10 collisions s 3.9 10 collisions s
8.49 10 m

N P
PV NkT

V kT

kT
r N V r P

v
f

π π π

−

−

−

−

= → =

×
= = =

×

= ×

= = = × ≈ ×
×

⎛ ⎞
⎜ ⎟
⎝ ⎠

l

l

  

(c) The total number of collisions per second in the gas is the number of collisions per second for a 
single atom times half the number of atoms in the gas, because each collision involves 2 of the 
gas atoms. 

   
( ) ( )

( ) ( ) ( )

1
total single single2

3
3

6 3
7

23

26

2
133Pa 1m

17 mm-Hg 55cm
1mm-Hg 10 cm

     3.855 10 collisions s
2 1.38 10 J K 673K

2.6 10 collisions s    

PV
f Nf f

kT

−

= =

= ×
×

= ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠   

 
63. The gravitational potential energy is given by U mgh= , and the average kinetic energy is 

2 31
rms2 2 .K mv kT= =   We find the ratio of potential energy to kinetic energy. The molecular mass of 

oxygen molecules is 32 u. 

  
( ) ( ) ( ) ( )

( ) ( )

27 2
5

233 3
2 2

32.0 1.66 10 kg 9.80m s 1.00m
8.58 10

1.38 10 J K 293K
U mgh
K kT

−
−

−

×
= = = ×

×
 

Yes, it is reasonable to neglect the gravitational potential energy. 
 
64. Assume that the water vapor behaves like an ideal gas.  At 20oC, the saturated vapor pressure is 

32.33 10 Pa× .  Using the ideal gas law, find the number of moles of water in the air at both 95% and 
40%.  Subtract those mole amounts to find the amount of water that must be removed. 

        
PV

PV nRT n
RT

= → = →  
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( ) ( ) ( )

( ) ( ) ( ) ( )
2

3
1 2 1 2

3

115m 2.8m
2.33 10 Pa 0.95 0.40 169.4 mol

8.314J mol k 293 K

18 10 kg
169.4 mol 3.0kg

1 mol

V
n n P P

RT
−

− = − = × − =

×
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

i
 

 
65. Find the volume “allotted” per molecule in the ideal gas law for a room at 1 atm and 23 C,°  and 

compare this to the volume of an actual molecule, modeled by a cubical volume. 

  ( ) ( )
( ) ( ) ( )

3
allotted molecule

35 93 3
4 2molecule

23
allotted

      ;  

1.013 10 Pa 0.3 10 m
6.6 10 6.6 10 % 0.07%

1.38 10 J K 300 K

V kT
PV NkT V V d

N P

V d Pd
kTV kT
P

−
− −

−

= → = = ≈

× ×
= = = = × = × ≈

×

 

 
66. (a) The volume of each gas is half of the tank volume.  Use the ideal gas law, with a pressure of 13  

atm, to find the number of molecules. 

   

( ) ( )
( ) ( )

5 3 31
2 23

23

23

13 1.013 10 Pa 3.1 10 m
    5.048 10 molecules

1.38 10 J K 293K

     5.0 10 molecules

PV
PV NkT N

kT

−

−

× ×
= → = = = ×

×

≈ ×

 

Both gases have the same number of molecules.  The identity of the gas does not enter into the 
ideal gas law. 

 (b) The average kinetic energy of a molecule is 3
2 .kT   Since both gases are the same temperature,  

the ratio of the average kinetic energies is 1:1 .  
 (c) The average kinetic energy of a molecule is also given by 21

rms2 .mv   Use this to find the ratio of  
the rms speeds. 

   ( ) ( ) ( )
( )

2

2

2

O2 2 rms He31 1
rms rms2 2 2He O

rms HeO

32
   8 2.8

4

mv
mv mv kT

v m
= = → = = = =  

 
67. The temperature can be found from the rms speed by Eq. 18-5, rms 3v kT m= .  The molecular mass 

of nitrogen molecules is 28. 
  rms 3  v kT m= →  

  
( ) ( ) ( )

( )

2

27 4
2

5rms
23

1m s
28 1.66 10 kg 4.2 10 km h

3.6 km h
1.5 10 K

3 3 1.38 10 J K
mv

T
k

−

−

× ×
= = = ×

×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  

 
68. We assume that the energy required to evaporate the water is the kinetic energy of the evaporating 

molecules.  The rms speed is given by Eq. 18-5. 

  ( )
( )

evap21
evap evap evap evap2 3

evap

2 2 2450J
   2210m s

1.00 10 kg
E

E m v v
m −

= → = = =
×
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  ( ) ( )
( )

23
evap

rms 27
rms

3 1.38 10 J K 293K3 2210m s
637 m s     3.47

18.0 1.66 10 kg 637 m s
vkT

v
m v

−

−

×
= = = → = =

×
 

   
69. (a) At a temperature of 30oC, the saturated vapor pressure, from Table 18-2, is 4240 Pa.   If the  

relative humidity is 65%, then the water vapor pressure is 50% of the saturated vapor pressure. 
   ( )0.65 4240 Pa 2756 Pa 2800 Pa= ≈  

(b) At a temperature of 5oC, the saturated vapor pressure, from Table 18-2, is 872 Pa.   If the  
relative humidity is 75%, then the water vapor pressure is 75% of the saturated vapor pressure. 

   ( )0.75 872 Pa 654 Pa 650 Pa= ≈  

 
70. First we find the pressure from the ideal gas equation. 

  
( ) ( ) ( ) 4 4

3

8.50mol 8.314J mol k 300 K
9.6367 10 Pa 9.64 10 Pa

0.220m
nRT

P
V

= = = × ≈ ×
i

 

 Now find the pressure from the van der Waals equation. 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( )

2

2 2

24 2

23 5 3 3

4 4

0.36 N m mol 8.50 mol8.50 mol 8.314 J mol k 300 K
  

0.220 m 8.50 mol 4.5 10 m mol 0.220 m

  9.5997 10 Pa 9.60 10 Pa

RT a nRT an
P

V n b V nb VV n

−

= − = −
− −

= −
− ×

= × ≈ ×

ii
 

  
4 4ideal van der

Waals

4
van der
Waals

9.6367 10 Pa 9.5997 10 Pa
% error 100 100 0.39%

9.5997 10 Pa

P P

P

−
× − ×

= × = × ≈
×

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟

⎝ ⎠

 

 
71. The mean free path is given by Eq. 18-10b. 

  
( ) ( ) ( ) ( )

13
M 22 10 3 6 3 3

1 1
2 10 m

4 2 4 2 0.5 10 m 1atom cm 10 cm mr N Vπ π −
= = = ×

×
l  

 
72. We combine the ideal gas law with Eq. 18-10b for the mean free path.  From problem 45, we se that 

the diameter of the average air molecule is 103 10 m.−×   Since air is mostly nitrogen molecules, this is 
a good approximation for the size of a nitrogen molecule. 

  
( ) ( )

( ) ( )
( ) ( )

M 2 2 2

23
8

M 22 10 5

    ;

1 1
4 2 4 2 4 2

1.38 10 J K 300 K
1.4 10 m

4 2 4 2 1.5 10 m 7.5 1.013 10 Pa

N P
PV NkT

V kT
kT

r N V r P kT r P

kT
r P

π π π

π π

−
−

−

= → =

= = =

×
= = = ×

× ×

l

l

 

 Note that this is about 100 times the radius of the molecules. 
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73. Assume that the water is an ideal gas, and that the temperature is constant.  From Table 18-2, 
saturated vapor pressure at 90oC is 47.01 10 Pa× , and so to have a relative humidity of 10%, the 
vapor pressure will be 37.01 10 Pa× .  Use the ideal gas law to calculate the amount of water. 

  ( ) ( )
( ) ( )

3 3 3

  

7.01 10 Pa 8.5m 18 10 kg
19.74 moles 0.36 kg

8.314J mol K 273 90 K 1 mole

PV nRT

PV
n

RT

−

= →

× ×
= = = =

+
⎛ ⎞
⎜ ⎟
⎝ ⎠i

 

 
74. Following the development of the kinetic molecular theory in the textbook, the tennis balls hitting  

the trash can lid are similar to the particles colliding with the walls of a container causing pressure.  
Quoting from the text, “the average force — averaged over many collisions — will be equal to the 
momentum change during one collision divided by the time between collisions.”  That average force 
must be the weight of the trash can lid in order to suspend it. 

  ball ball ball ball
avg lid avg

lid

2 2
  ;      

p m v m v
F M g F t

t t M g
Δ

= = = → Δ =
Δ Δ

 

 The above expression is “seconds per ball,” so its reciprocal will be “balls per second.” 

  
( ) ( )
( ) ( )

2

lid

ball ball

0.50kg 9.80m s1
balls s 3.4 balls s

2 2 0.060kg 12 m s
M g

t m v
= = = =
Δ

 

 
75. (a) The average time between collisions can be approximated as the mean free path divided by the  

mean speed.  The highest frequency for a sound wave is the inverse of this average collision 
time.  Combine the ideal gas law with Eq. 18-10b for the mean free path, and Eq. 18-7b for the 
mean speed. 

  

( ) ( )M 2 2 2

2
max

M
2

1 1
     ;    ;

4 2 4 2 4 2

8
8

    16

4 2

N P kT
PV NkT

V kT r N V r P kT r P

kT
kT v mv f Pr

kTm mkT
r P

π π π

ππ
π

π

= → = = = =

= → = = =

l

l

 

(b) We have estimated the molecular mass of air to be 29 u in problem 16, and the average 
molecular diameter to be 103 10 m−× in problem 48. 

  ( ) ( ) ( ) ( ) ( )

2
max

25 10
27 23

9

16

     16 1.013 10 Pa 1.5 10 m
29 1.66 10 kg 1.38 10 J K 293K

     4.6 10 Hz

f Pr
mkT
π

π−
− −

=

= × ×
× ×

= ×

 

This frequency is about 
9

5
4

4.6 10 Hz
2.3 10

2.0 10 Hz
×

= ×
×

 larger than the highest frequency in the human 

audio range. 
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76. From section 18-2, the quantity 
( )f v dv  represents the number 

of molecules that have speeds 
between v and v + dv.  So for a 
finite velocity range ,vΔ  the 
number of molecules with 
speeds between v and v v+ Δ  is 
approximately ( ) .f v vΔ   If 
there are N total molecules, then 
the fraction with speeds between 

v and v v+ Δ  is ( )
.

f v v
N
Δ

 We 

assume that we have air molecules with a molecular mass of 29, as given in problem 16. 

  ( ) ( )2 23 / 2 3 / 21 1
2 22 24     4

2 2

mv mv
kT kT

f v vm m
f v N v e v v e

kT N kT
π π

π π
− −Δ

= → = Δ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH18.XLS,” on tab “Problem 18.76.” 

 
77. From section 18-2, the quantity ( )f v dv  represents the number of molecules that have speeds 

between v and v + dv.  The number of molecules with speeds greater than 1.5 times the most 

probable speed p

2kT
v

m
=  is ( )

p1.5v

f v dv
∞

∫ .  If there are N total molecules, then the fraction with 

speeds greater than p1.5v  is ( )
p1.5

1

v

f v dv
N

∞

∫ .  Since ( )
0

1
1f v dv

N

∞

=∫  (see problem 22a), we calculate 

the desired fraction as follows. 

  ( ) ( ) ( ) ( ) ( )
p p

p p

1.5 1.5

0 0 1.5 1.5 0

1 1 1 1 1
1     1

v v

v v

f v dv f v dv f v dv f v dv f v dv
N N N N N

∞ ∞ ∞

= = + → = −∫ ∫ ∫ ∫ ∫  

 We use a substation of variables to simplify the constants. 

( )

( )

2

2
p p

2

2

3/ 2 1
2 2

2 2

p

1.5 1.5 3/ 2 3/ 21 1.5
2 22

0 0 0

1.5
2

0

4
2

2 2
        

2

1 1 2 2
4 4

2 2

4                     

mv
kT

v v mv
xkT

x

m
f v N v e

kT

v v kT kT
x v x dv dx

v m mkT m

m m kT kT
f v dv N v e dv x e dx

N N kT kT m m

x e dx

π
π

π π
π π

π

−

− −

−

=

= = → = → =

=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ ∫

∫

 

To do the integral, we approximate it as this sum:  
22

1.5
2 2

10

4 4
,i

n
xx

i
i

x e dx x e x
π π

−−

=

≈ Δ∑∫  where 
1.5

n
x

=
Δ

 

is the number of intervals used to approximate the integral.  We start with 0.15x =Δ  and then try 
smaller intervals until the answers agree to within 2%.  Here are the results of the numeric 
integration. 
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  xΔ    n  
22

1

4
i

n
x

i
i

x e x
π

−

=

Δ∑  % diff. from previous answer 

  --------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

  0.15   10  0.8262   -- 
  0.075  20  0.8074   2.3 % 
  0.03   50  0.7957   1.4 % 
 

We approximate ( )
p

2
1.5 1.5

2

0 0

1 4
0.7957,

v
xf v dv x e dx

N π
−= ≈∫ ∫  and so ( )

p1.5

1
1 0.7975

v

f v dv
N

∞

= −∫  

0.2025 0.20 .= ≈   Using more sophisticated software gives an answer of 0.21.  The spreadsheet 
used for this problem can be found on the Media Manager, with filename “PSE4_ISM_CH18.XLS,” 
on tab “Problem 18.77.” 

 
78. For each temperature, a graph  

of pressure vs. volume was 
plotted, based on Eq. 18-9, 

( ) ( )2 .RT a
P

V n b V n
= −

−
  

From the graphs, it would 
appear that the critical 
temperature for oxygen is 
approximately 150 K. 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with 
filename 
“PSE4_ISM_CH18.XLS,” on 
tab “Problem 18.78.” 
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CHAPTER 19:  Heat and the First Law of Thermodynamics 
 
Responses to Questions 
 
1.  When a jar of orange juice is vigorously shaken, the work done on it goes into heating the juice 

(increasing the kinetic energy of the molecules), mixing the components of the juice (liquid and 
pulp), and dissolving air in the juice (froth). 

 
2.   No. Energy is exchanged between them, not temperature. Once the objects have reached thermal 

equilibrium, they will have the same temperature. However, their temperature changes will not 
necessarily be the same.  

 
3.  (a) No. Because the internal energies of solids and liquids are complicated and include potential  

energies associated with the bonds between atoms and molecules, two objects may have 
different internal energies but the same temperature. Internal energy will also vary with the 
mass of the object. If two objects that are at different temperatures are placed in contact, there 
will be a net energy transfer from the hotter object to the colder one, regardless of their internal 
energies. 

 (b) Yes. Just as in (a), the transfer of energy depends on the temperature difference between the two  
objects, which may not be directly related to the difference in internal energies. 

 
4.  Plants are damaged if the water inside their cells freezes. The latent heat of water is large, so if the 

cells are plump with water, rather than dry, it will take more time for them to lose enough heat to 
freeze. Well-hydrated plants are therefore less likely to be damaged if the temperature dips below 
freezing for a short time. 

  
5.  Because the specific heat of water is quite large, water can absorb a large amount of energy with a 

small increase in temperature. Water can be heated, then easily transported throughout a building, 
and will give off a large amount of energy as it cools. This makes water particularly useful in 
radiator systems. 

 
6.  The water on the cloth jacket will evaporate. Evaporation is a cooling process since energy is 

required to change the liquid water to vapor. If, for instance, radiant energy from the sun falls on the 
canteen, the energy will evaporate the water from the cloth cover instead of heating the water inside 
the canteen.  

 
7. When water at 100ºC comes in contact with the skin, energy is transferred to the skin and the water 

begins to cool. When steam at 100ºC comes in contact with the skin, energy is transferred to the skin 
and the steam begins to condense to water at 100ºC. Steam burns are often more severe than water 
burns due to the energy given off by the steam as it condenses, before it begins to cool. 

 
8.  Energy is needed to convert water in the liquid state to the gaseous state (latent heat). Some of the 

energy needed to evaporate molecules on the surface comes from the internal energy of the water, 
thus decreasing the water temperature. 

 
9.  No. The water temperature cannot go above 100ºC, no matter how vigorously it is boiling. The rate 

at which potatoes cook depends on the temperature at which they are cooking. 
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10.  Whether an animal freezes or not depends more on internal energy of the mass of air surrounding it 
than on the temperature. Temperature is a measure of the average kinetic energy of the molecules in 
a substance. If a mass of air in the upper atmosphere has a low density of fast moving molecules, it 
will have a high temperature but a low internal (or thermal) energy. Even though the molecules are 
moving quickly, there will be few collisions, and little energy transferred to the animal. The animal 
will also be radiating thermal energy, and so will quickly deplete its internal energy.  

 
11. Energy is transferred from the water vapor to the glass as the water vapor condenses on the glass and 

then cools from the temperature of the surrounding air to the temperature of the glass. The glass (and 
the cold water inside) will heat up. No work is done, but heat is exchanged. 

 
12.  When a gas is compressed, work must be done on it by some outside force, such as a person pushing 

a piston. This work becomes the increase in internal energy of the gas, and if no gas is allowed to 
escape, an increase in internal energy results in faster average molecular speeds and a higher 
temperature. When a gas expands, it does work on the piston. If the gas is insulated so that no heat 
enters from the outside, then the energy for this work comes from the internal energy of the gas. A 
decrease in internal energy with no change in the number of molecules translates into a decrease in 
average molecular speed and therefore temperature.  

 
13. In an isothermal process, the temperature, and therefore the internal energy, of the ideal gas is 

constant. From the first law of thermodynamics, we know that if the change in the internal energy is 
zero, then the heat added to the system is equal to the work done by the system. Therefore, 3700 J of 
heat must have been added to the system. 

 
14.  Snow consists of crystals with tiny air pockets in between the flakes. Air is a good insulator, so when 

the Arctic explorers covered themselves with snow they were using its low thermal conductivity to 
keep heat from leaving their bodies. (In a similar fashion, down comforters keep you warm because 
of all the air trapped in between the feathers.) Snow would also protect the explorers from the very 
cold wind and prevent heat loss by convection. 

 
15. Wet sand has been cooled by conduction (ocean water is usually cooler than the beach) and 

continues to be cooled by evaporation, and so will be cooler than dry sand. Wet sand will also feel 
cooler because of the thermal conductivity of water. The water in the sand will also cool your feet by 
evaporation.  

 
16.  Hot air furnaces often depend on natural convection. If the return air vent is blocked, convective 

currents in the room will not occur and the room will not be heated uniformly.  
 
17. Yes. This is the case for any isothermal process or a process in which a substance changes state 

(melting/freezing, or condensing/evaporating). 
 
18.  Metabolism is a biochemical process by which living organisms get energy from food. If a body is 

doing work and losing heat, then its internal energy would drop drastically if there were no other 
source of energy. Metabolism (food) supplies this other source of energy. The first law of 
thermodynamics applies because the energy contributions from metabolism are included in Q. 

 
19. When a gas is heated at constant volume, all of the energy added goes into increasing the internal 

energy, since no work is done. When a gas is heated at constant pressure, some of the added energy 
is used for the work needed to expand the gas, and less is available for increasing the internal energy. 
It takes more energy to raise the temperature of a gas by a given amount at constant pressure than at 
constant volume. 
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Volume 

Pressure 

V1 V2 

Isobaric 

Isothermal

Adiabatic 

20.  An adiabatic compression is one that takes place with no exchange of heat with the surroundings. 
During the compression, work is done on the gas. Since no heat leaves the gas, then the work results 
in an increase in the gas’s internal energy by the same amount, and therefore an increase in its 
temperature. ΔEint  = Q – W, so if Q = 0 then ΔEint  = –W. 

 
21.   ΔEint is proportional to the change in temperature. The 

change in the internal energy is zero for the isothermal 
process, largest for the isobaric process, and least 
(negative) for the adiabatic process.  The work done, W, 
is the area under the curve and is greatest for the isobaric 
process and least for the adiabatic process. From the first 
law of thermodynamics, Q is the sum of ΔEint  and W and 
is zero for the adiabatic process and maximum for the 
isobaric process. 

 
22. In general, cooler air will be nearer the floor and warmer 

air nearer the ceiling. The fan operating in either direction 
redistributes the air by creating convection currents. Set 
the fan so that it will blow air down in the summer, 
creating a breeze, which has a cooling effect by increasing evaporation. In the winter, set the fan so 
that it pulls air up. This will cause convection currents which will help mix warm and cool air 
without creating a direct breeze. 

 
23. The actual insulating value comes from the air trapped between the down feathers. The more air is 

trapped, the greater the loft, and the lower the rate of thermal conduction.  So loft determines the 
warmth of the sleeping bag or parka. 

 
24. The use of “fins” increases the surface area of the heat sink. The greater the surface area, the more 

heat can be given off from the chip to the surroundings.  
 
25. On a sunny day, the land heats faster than the water. The air over the land is also heated and it rises 

due to a decrease in density. The cooler air over the water is then pulled in to replace the rising air, 
creating an onshore or sea breeze. 

 
26. At night, the Earth cools primarily through radiation of heat back into space. Clouds reflect energy 

back to the Earth and so the surface cools less on a cloudy night than on a clear one.  
 
27. In direct sunlight, the solar radiation will heat the thermometer to a temperature greater than the 

surrounding air. 
 
28. A premature baby will not have a well developed metabolism and will not produce much heat but 

will radiate heat to its surroundings. The surface of the incubator must be warmed so that the surface 
radiates sufficient heat back to the baby. In addition, a premature baby’s skin is underdeveloped and 
the baby tends to lose moisture by evaporation. Since evaporation is a cooling process, this may 
dangerously cool the baby even in a warm incubator. The air in the incubator needs to be humid as 
well as warm. Finally, premature babies tend to have very little fat under the skin, so they are not 
well insulated, and have trouble maintaining body temperature without assistance. 

 
29. If a house is built directly on the ground or on a slab, it can only lose energy through the floor by 

conduction. If air can circulate under the house, then energy loss also can occur due to convection 
and evaporation, especially if air is moving through the space. 
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30. A thermos bottle is designed to minimize heat transfer between the liquid contents and the outside 
air, even when the temperature difference is large. Heat transfer by radiation is minimized by the 
silvered lining. Shiny surfaces have very low emissivity, e, and thus the net rate of energy flow by 
radiation between the contents of the thermos and the outside air will be small. Heat transfer by 
conduction and convection will be minimized by the vacuum between the inner and outer walls of 
the thermos, since both these methods require a medium to transport heat. 

 
31. Water has a greater thermal conductivity than air. Water at 22ºC will feel cooler than air at the same 

temperature because the rate of heat transfer away from the body will be greater.  
 
32. The south-facing windows will allow radiant heat from the sun to enter the room to contribute to the 

heating, so that less heat will need to be provided internally. 
 
33. (a) (1) Ventilation around the edges: convection; (2) through the frame: conduction; (3) through the  
  glass panes: conduction and radiation. 
 (b)  Heavy curtains help prevent all three mechanisms for heat loss. They physically block  

 convection currents and they are opaque and insulating and therefore reduce heat loss by 
radiation and conduction. 

 
34. When the sun reaches the slope of the mountain early in the day, the ground is warmed by radiation. 

The air above the ground is also warmed and rises by convection. This rising air will move up the 
slope. When the slope is in shadow, the air cools and the convection currents reverse.  

 
35.  Wood has a much lower thermal conductivity than metals and so will feel cooler because the rate of 

heat transfer away from the hand will be less. 
 
36. Shiny surfaces have low values of e, the emissivity. Thus, the net rate of heat flow from the person 

to the surroundings (outside the blanket) will be low, since most of the heat is reflected by blanket 
back to the person, and the person will stay warmer. The blanket will also prevent energy loss due to 
wind (convection). 

 
37. The temperature of the air around cities near oceans is moderated by the presence of large bodies of 

water which act like a heat reservoir. Water has a high heat capacity. It will absorb energy in the 
summer with only a small temperature increase, and radiate energy in the winter, with a small 
temperature decrease. 

 
  
Solutions to Problems 
 
In solving these problems, the authors did not always follow the rules of significant figures rigidly.  We 
tended to take quoted temperatures as correct to the number of digits shown, especially where other 
values might indicate that. 
 
1. The kcal is the heat needed to raise 1 kg of water by 1C° .   Use this relation to find the change in the 

temperature. 

( ) ( ) ( )1kg 1C1 kcal 1
8700J 0.69C

4186 J 1 kcal 3.0 kg
°

= °
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 Thus the final temperature is 10.0 C 0.69 C 10.7 C° + ° = °  
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2. Find the mass of warmed water from the volume of water and its density of 31000kg m .  Then use 
the fact that 1 kcal of energy raises 1 kg of water by 1C° , and that the water warms by 25C° . 

   

  

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

3 2 3    1025kg m 1.0m 0.50 10 m 0.5125kg

1kcal 1bar
0.5125kg 25C 12.8kcal  ;  12.8kcal 0.043bars

1kg 1C 300kcal

m
V At m Atρ

ρ
−= = → = = × =

° = =
°

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

3. (a) 
3

74.186 10 J
2500 Cal 1.0 10 J

1 Cal
×

= ×
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) 
1 kWh

2500 Cal 2.9 kWh
860 Cal

=⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(c) At 10 cents per day, the food energy costs $0.29 per day .  It would be practically impossible  

to feed yourself in the United States on this amount of money. 
 
4. Assume that we are at the surface of the Earth so that 1 lb is equivalent to 0.454 kg. 

  
( ) ( ) ( ) ( )

0.454 kg 5 9C 1 kcal
1Btu 1 lb 1F 0.2522kcal 0.252 kcal

1 lb 1F 1 kg 1C

4186 J
0.2522 kcal 1056J

1 kcal

°
= ° = ≈

° °

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
5. The energy generated by using the brakes must equal the car’s initial kinetic energy, since its final 

kinetic energy is 0. 

  
( ) ( )

( )

2

2 3 5 51 1
02 2

5 2

1m s
1.2 10 kg 95km h 4.178 10 J 4.2 10 J

3.6km h

1 kcal
4.178 10 J 99.81kcal 1.0 10 kcal

4186 J

Q mv= = × = × ≈ ×

× = ≈ ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
6. The wattage rating is 350 Joules per second.  Note that 1 L of water has a mass of 1 kg. 

  ( ) ( ) ( ) ( )
1  1 kg 1 kcal 4186 J 1 s

2.5 10 L 60C 180s 3.0min
1 L 1 kg 1C kcal 350 J

−× ° = =
°

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 

 
7. The heat absorbed can be calculated from Eq. 19-2.  Note that 1 L of water has a mass of 1 kg. 

( ) ( ) ( )
3 3 3

6
3

1 10 m 1.0 10 kg
18 L 4186J kg C 95 C 15 C 6.0 10 J

1 L 1 m
Q mc T

−× ×
= Δ = ° ° − ° = ×

⎡ ⎤⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎢ ⎥
⎝ ⎠⎝ ⎠⎣ ⎦

i  

 
8. The specific heat can be calculated from Eq. 19-2. 

  
( ) ( )

51.35 10 J
    1379J kg C 1400J kg C

5.1 kg 37.2 C 18.0 C
Q

Q mc T c
m T

×
= Δ → = = = ° ≈ °

Δ ° − °
i i  
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9. (a) The heat absorbed can be calculated from Eq. 19-2.  Note that 1 L of water has a mass of 1 kg. 

( ) ( ) ( )
3 3 3

3

1 10 m 1.0 10 kg
1.0 L 4186J kg C 100 C 20 C

1 L 1 m
Q mc T

−× ×
= Δ = ° ° − °

⎡ ⎤⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎢ ⎥
⎝ ⎠⎝ ⎠⎣ ⎦

i  

553.349 3.3 10 J  10 J= ×× ≈  
 (b) Power is the rate of energy usage. 

   
53.349 10 J

    3300s 56min
100W

E Q Q
P t

t t P
Δ ×

= = → Δ = = ≈ ≈
Δ Δ

 

 
10. The heat absorbed by all three substances is given by Eq. 19-2, Q mc T= Δ .  Thus the amount of 

mass can be found as 
Q

m
c T

=
Δ

.  The heat and temperature change are the same for all three 

substances. 

  
2

2 2

Cu Al H O
Cu Al H O Cu Al H O

1 1 1 1 1 1
: : : : : : : :

390 900 4186

4186 4186 4186
                       : : 10.7 : 4.65 :1 11: 4.7 :1

390 900 4186

Q Q Q
m m m

c T c T c T c c c
= = =

Δ Δ Δ

= = ≈

 

 
11. The heat must warm both the water and the pot to 100oC.  The heat is also the power times the time. 

  

( )
( ) ( ) ( ) ( ) ( )[ ]( )

2 2 2

2 2 2

Al Al H O H O H O

Al Al H O H O H O

  

0.28kg 900J kg C 0.75 kg 4186J kg C 92C
750 W

 416s 420s or 6.9 min

Q Pt m c m c T

m c m c T
t

P

= = + Δ →

+ Δ ° + ° °
= =

= ≈

i i
 

 
12. The heat lost by the horseshoe must be equal to the heat gained by the iron pot and the water.  Note 

that 1 L of water has a mass of 1 kg. 
  ( ) ( ) ( )

2 2 2shoe Fe shoe eq pot Fe eq pot H O H O eq H Om c T T m c T T m c T T− = − + −  

  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
shoe0.40 kg 450J kg C 25.0 C 0.30 kg 450J kg C 25.0 C 20.0 C

                                                              1.05 kg 4186J kg C 25.0 C 20.0 C

T° − ° = ° ° − °

+ ° ° − °

i i

i
 

  shoe 150.8 C 150 CT = ≈ °°  
 
13. The heat gained by the glass thermometer must be equal to the heat lost by the water. 

  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2

2

glass glass eq glass H O H O H O eq

o
H O

H O

31.5g 0.20cal g C 39.2 C 23.6 C 135g 1.00cal g C 39.2 C

39.9 C

m c T T m c T T

T

T

− = −

° ° − ° = ° −

= °

i i  

 
14. The heat released by the 15 grams of candy in the burning is equal to the heat absorbed by the 

aluminum and water. 
  ( )2 215g

candy
Al Al H O H OQ Tm c m c= Δ+  
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( ) ( ) ( ) ( )[ ]( )   0.325 kg 0.624 kg 0.22 kcal kg C 2.00 kg 1.00kcal kg C 53.5 C 15.0 C

   85.04 kcal

= + ° + ° ° − °

=

i i
 

 The heat released by 65 grams of the candy would be 65/15 times that released by the 15 grams. 
  ( )65g 15g

candy candy

65 65
15 15 85.04 kcal 369 kcal 370CalQ Q= = = ≈  

 
15. The heat lost by the iron must be the heat gained by the aluminum and the glycerin. 

  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Fe Fe Fe eq Al Al eq Al gly gly eq gly

gly

gly

0.290 kg 450J kg C 142C 0.095 kg 900J kg C 28C 0.250 kg 28C

2305J kg C 2300J kg C

i i im c T T m c T T m c T T

c

c

− = − + −

° ° = ° ° + °

= ° ≈ °

i i

i i

 

 
16. (a) Since Q mc T= Δ  and Q C T= Δ , equate these two expressions for Q  and solve for C . 

       Q mc T C T C mc= Δ = Δ → =  

 (b) For 1.0 kg of water: ( ) ( )o o1.0 kg 4186J kg C 4200J CC mc= = =i  

 (c) For 35 kg of water:  ( ) ( )o 5 o35 kg 4186J kg C 1.5 10 J CC mc= = = ×i  

 
17. We assume that all of the kinetic energy of the hammer goes into heating the nail. 

  
( )

( ) ( ) ( )
( ) ( )

21
hammer hammer nail Fe2

2 21
2 hammer hammer

nail Fe

    10   

10 5 1.20 kg 7.5m s
53.57C 54C

0.014 kg 450J kg C

KE Q m v m c T

m v
T

m c

= → = Δ →

Δ = = = ≈ °
°

°
i

 

 
18. The silver must be heated to the melting temperature and then melted. 

  
( ) ( ) ( ) ( ) ( )

heat melt fusion

5 6   26.50 kg 230J kg C 961 C 25 C 26.50 kg 0.88 10 J kg 8.0 10 J

Q Q Q mc T mL= + = Δ +

= ° ° − ° + × = ×i
 

 
19. Assume that the heat from the person is only used to evaporate the water.  Also, we use the heat of 

vaporization at room temperature (585 kcal/kg), since the person’s temperature is closer to room 
temperature than 100oC. 

  vap
vap

180kcal
    0.308kg 0.31kg 310 mL

585kcal kg
Q

Q mL m
L

= → = = = ≈ =  

 
20. Assume that all of the heat lost by the ice cube in cooling to the temperature of the liquid nitrogen is 

used to boil the nitrogen, and so none is used to raise the temperature of the nitrogen.  The boiling 
point of the nitrogen is o77 K 196 C= − . 

  
( ) ( ) ( )

ice ice ice ice nitrogen vap
initial final

2ice ice ice ice
initial final 2

nitrogen 3
vap

  

3.5 10 kg 2100J kg C 0 C 196 C
7.2 10 kg

200 10 J kg

m c T T m L

m c T T
m

L

−
−

− = →

− × ° ° − − °
= = = ×

×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠ i
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21. (a) The energy absorbed from the body must warm the snow to the melting temperature, melt the  
snow, and then warm the melted snow to the final temperature. 

   ( ) ( ) ( ) ( ) ( ) ( )

warm melt warm snow 1 fusion liquid 2 snow 1 fusion liquid 2
snow liquid

5

5

    1.0 kg 2100J kg C 10C 3.33 10 J kg 4186J kg C 37C

    5.1 10 J

aQ Q Q Q mc T mL mc T m c T L c T= + + = Δ + + Δ = Δ + + Δ

= ° ° + × + ° °

= ×

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦i i  

 (b) The energy absorbed from the body only has to warm the melted snow to the final temperature. 

   ( ) ( ) ( ) 5
heat liquid 2
liquid

1.0 kg 4186J kg C 35C 1.5 10 JbQ Q mc T= = Δ = ° ° = ×i  

 
22. (a) The heater must heat both the boiler and the water at the same time. 
   ( )

2 21 1 Fe Fe H O H O  Q Pt m c m c T= = + Δ →  

   

( ) ( ) ( ) ( ) ( ) ( )
2 2

o o o
Fe Fe H O H O

1 7

180kg 450J kg C 730kg 4186J kg C 82C

5.2 10 J h

 4.946h 4.9 h

m c m c T
t

P

++ Δ
= =

×

= ≈

⎡ ⎤⎣ ⎦i i

 

 (b) Assume that after the water starts to boil, all the heat energy goes into boiling the water, and  
none goes to raising the temperature of the iron or the steam. 

   
( ) ( )

2

2

5
H O vap

2 2 H O vap 2 7

730kg 22.6 10 J kg
    31.727 h

5.2 10 J h

m L
Q Pt m L t

P

×
= = → = = =

×
 

  Thus the total time is 1 2 4.946h 31.727h 36.673h 37ht t+ = + = ≈  

 
23. We assume that the cyclist’s energy is only going to evaporation, not any heating.  Then the energy 

needed is equal to the mass of the water times the latent heat of vaporization for water.  Note that 1 L 
of water has a mass of 1 kg.  Also, we use the heat of vaporization at room temperature (585 
kcal/kg), since the cyclist’s temperature is closer to room temperature than 100oC.   

  ( ) ( )
2H O vap 8.0kg 585kcal kg 4700kcalQ m L= = =  

 
24. The heat lost by the aluminum and the water must equal the heat needed to melt the mercury and to 

warm the mercury to the equilibrium temperature. 

  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )[ ]( )

2 2 2

2 2 2

Al Al Al eq H O H O H O eq Hg fusion Hg eq melt

Al Al Al eq H O H O H O eq
fusion Hg eq melt

Hg

0.620 kg 900J kg C 0.400 kg 4186J kg C 12.80 C 5.06 C
        

1.00 kg

               138J kg

m c T T m c T T m L c T T

m c T T m c T T
L c T T

m

− + − = + −

− + −
= − −

° + ° ° − °
=

−

⎡ ⎤⎣ ⎦

i i

( ) ( )[ ]
4

C 5.06 C 39.0 C

        1.12 10 J kg

° ° − − °

= ×

i
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25. The kinetic energy of the bullet is assumed to warm the bullet and melt it. 

  

( )

( )[ ] ( ) ( ) ( )

21
Pb melt initial fusion2

5
Pb melt initial fusion

  

2 2 130J kg C 327 C 20 C 0.25 10 J kg

  360m s

mv Q mc T T mL

v c T T L

= = − + →

= − + = ° ° − ° + ×

=

⎡ ⎤⎣ ⎦i  

 
26. Assume that all of the melted ice stays at 0oC, so that all the heat is used in melting ice, and none in 

warming water.  The available heat is half of the original kinetic energy 

  
( )

( ) ( )

21 1
skater ice fusion2 2

22 11
344 skater

ice 5
fusion

  

58kg 7.5m s
2.4 10 kg 2.4g

3.33 10 J kg

m v Q m L

m v
m

L
−

= = →

= = = × =
×

 

 
27. Segment A is the compression at constant pressure.  Since the 

process is at a constant pressure, the path on the diagram is 
horizontal from 2.0 L to 1.0 L. 

 

Segment B is the isothermal expansion.  Since the temperature is 
constant, the ideal gas law says that the product PV is constant.  
Since the volume is doubled, the pressure must be halved, and so 
the final point on this segment is at a pressure of 0.5 atm.  The 
path is a piece of a hyperbola. 
 

Segment C is the pressure increase at constant volume.  Since the process is at a constant volume, the 
path on the diagram is vertical from 0.5 atm to 1.0 atm. 

 
28. (a) The work done by a gas at constant pressure is found from Eq. 19-9a. 

   ( ) ( )
5

3 3 5 51.01 10 Pa
1 atm 18.2 m 12.0 m 6.262 10 J 6.3 10 J

1 atm
W P V

×
= Δ = − = × ≈ ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) The change in internal energy is calculated from the first law of thermodynamics 

   ( ) 5 6
int

4186 J
1250 kcal 6.262 10 J 4.60 10 J

1 kcal
E Q WΔ = − = − × = ×⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
29. (a) Since the container has rigid walls, there is no change in volume. 
   0 JW P V= Δ =  
 (b) Use the first law of thermodynamics to find the change in internal energy. 
   ( )int 365 kJ 0 365 kJE Q WΔ = − = − − = −  
 
30. Segment A is the isothermal expansion.  The 

temperature and the amount of gas are constant, so 
PV nRT=  is constant.  Since the pressure is 
reduced by a factor of 3.5, the volume increases by 
a factor of 3.5, to a final volume of 3.5 L.  Segment 
B is the compression at constant pressure, and 
segment C is the pressure increase at constant 
volume.  The spreadsheet used for this problem can 
be found on the Media Manager, with filename 
“PSE4_ISM_CH19.XLS,” on tab “Problem 19.30.” 

0

0.5

1

1.5

0.0 1.0 2.0 3.0
( )LV

( )atmP

A

C
B

0.0

1.0

2.0

3.0

4.0

0.0 1.0 2.0 3.0 4.0
V  (m3)

P
 (a

tm
)

C
B

A
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31. (a) No work is done during the first step, since the volume is constant.  The work in the second step  
is given by W P V= Δ . 

   ( ) ( )
5 3 31.01 10 Pa 1 10 m

1.4 atm 9.3L 5.9L 480J
1 atm 1 L

W P V
−× ×

= Δ = − =
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 (b) Since there is no overall change in temperature, int 0JEΔ =  

 (c) The heat flow can be found from the first law of thermodynamics. 
   ( )int int    0 480J 480J into the gasE Q W Q E WΔ = − → = Δ + = + =  

 
32. (a) See the diagram.  The isobaric expansion  

is just a horizontal line on the graph.   
 (b) The work done is found from Eq. 19-9a. 

   ( ) ( )2 3 3   455N m 8.00m 2.00m

2730J   

W P V= Δ

= −

=

 

The change in internal energy depends on 
the temperature change, which can be 
related to the ideal gas law, PV nRT= . 

   ( )3 3
2 12 2intE nR T nRT nRTΔ = Δ = −  

   ( ) ( )[ ] ( ) 33 3 3 3
2 2 2 22 1

2730J 4.10 10 J       PV PV P V W= − = Δ = = = ×  
(c) For the isothermal expansion, since the volume expands by a factor of 4, the pressure drops by a  

factor of 4 to 2114 N m .   The spreadsheet used for this problem can be found on the Media 
Manager, with filename “PSE4_ISM_CH19.XLS,” on tab “Problem 19.32.”   

(d) The change in internal energy only depends on the initial and final temperatures.  Since those 
temperatures are the same for process (B) as they are for process (A), the internal energy change 

is the same for process (B) as for process (A), 34.10 10 J× . 
 
33. (a) The work done by an ideal gas during an isothermal volume change is given by Eq. 19-8. 

   ( ) ( ) ( )
3

2
3

1

7.00m
ln 2.60mol 8.314J mol K 290K ln 4345.2J 4350J

3.50m
V

W nRT
V

= = = ≈i  

 (b) Since the process is isothermal, there is no internal energy change.  Apply the first law of  
thermodynamics. 
 int 0    4350JE Q W Q WΔ = − = → = =  

 (c) Since the process is isothermal, there is no internal energy change, and so int 0EΔ = . 

 
34. (a) Since the process is adiabatic, 0 JQ =  
 (b) Use the first law of thermodynamics to find the change in internal energy.  The work is done on  

the gas, and so is negative. 
   ( )int 0 2850J 2850 JE Q WΔ = − = − − =  

(c) Since the internal energy is proportional to the temperature, a rise in internal energy means a 
rise in temperature. 

 

0

100

200

300

400

500

0.0 2.0 4.0 6.0 8.0 10.0
V  (m3)

P
 (N

/m
2 )

A

B B
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35. Since the expansion is adiabatic, there is no heat flow into or out of the gas.  Use the first law of 
thermodynamics to calculate the temperature change. 

  ( )
( ) ( )

3
2

22
3

int     0   

2 7500 J
401K 4.0 10 K

3 1.5 mol 8.315J mol K

E Q W nR T W

W
T

nR

Δ = − → Δ = − →

Δ = − = − = − = − ×
i

 

 
36. (a) The initial volume of the water is found from its mass and density.  The final volume is found  

from the ideal gas law.  The work done at constant pressure is given by Eq. 19-9a. 

   

( )
( )
( ) ( ) ( )

3 3
1 3 3

3
2 5

2

1.00kg
1.00 10 m

1.00 10 kg m

1mol
1.00kg 8.315J mol K 373K

0.018kg
1.70m

1.013 10 Pa

m
V

nRT
V

P

ρ
−= = = ×

×

= = =
×

⎛ ⎞
⎜ ⎟
⎝ ⎠

i
 

Note that the initial volume is negligible.  We might have assumed that since the original state 
was liquid, that the gas volume was 0 to begin with, without significant error. 

 ( ) ( )5 3 5 51.013 10 Pa 1.70m 1.722 10 J 1.72 10 JW P V= Δ = × = × ≈ ×   

 (b) The heat added to the system is calculated from the latent heat of vaporization.  Then the first  
law of thermodynamics will give the internal energy change. 

 
( ) ( ) 6

V

6 5 6
int

1.00 kg 2260 kJ kg 2260 kJ 2.26 10 J

2.26 10 J 1.72 10 J 2.09 10 J

Q mL

E Q W

= = = = ×

Δ = − = × − × = ×
 

 
37. The work done by an ideal gas during an isothermal volume change is given by Eq. 19-8. 

  ( ) ( )5 3 3B B
A

A A
A

1.80L
ln ln 1.013 10 Pa 3.50 10 m ln 236J

3.50L
V V

W nRT P V
V V

−= = = × × = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 The work done by an external agent is the opposite of the work done by the gas, 236J . 

 
38. For the path ac, use the first law of thermodynamics to find the change in internal energy. 
  ( )int ac ac

ac

63 J 35 J 28 JE Q WΔ = − = − − − = −  

 Since internal energy only depends on the initial and final temperatures, this intEΔ  applies to any 
path that starts at a and ends at c.  And for any path that starts at c and ends at a, 

int int
ca ac

28 J.E EΔ = −Δ =  

 (a) Use the first law of thermodynamics to find abcQ . 

( )int abc abc abc int abc
abc abc

    28J 54J 82JE Q W Q E WΔ = − → = Δ + = − + − = −  

(b) Since the work along path bc is 0, ( )abc ab b ab b b aW W P V P V V= = Δ = − .  Also note that the work  
along path da is 0. 

( ) ( ) ( )1 1 1
cda cd c cd c d c b a b abc2 2 2 54J 27JW W P V P V V P V V W= = Δ = − = − = − = − − =  
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 (c) Use the first law of thermodynamics to find abcQ . 

int cda cda cda int cda
cda cda

    28J 27J 55JE Q W Q E WΔ = − → = Δ + = + =  

 (d) As found above, int,a int,c int int
ca ac

28JE E E E− = Δ = −Δ =  

 (e) Since int,d int,c 12J,E E− =  int,d int,c 12JE E= +  and so ( )int int,a int,d int,a int,c
da

12 JE E E E EΔ = − = − +   

which then gives int int
da ca

12J 28J 12J 16J.E EΔ = Δ − = − =  Use the first law of thermodynamics to 

find daQ . 

   int da da da int da
da da

    16J 0 16JE Q W Q E WΔ = − → = Δ + = + =  

 
39. We are given that ac 85J,Q = − ac 55 J,W = − cda 38 J,W = int,a int,b int

ba

15J,E E E− = Δ =  and a d2.2 .P P=  

 (a) Use the first law of thermodynamics to find int,a int,c ca.E E E− = Δ  

   ( ) ( )int int ac ac
ca ac

85J 55J 30JE E Q WΔ = −Δ = − − = − − − − =  

 (b) Use the first law of thermodynamics to find cdaQ . 

   int cda cda cda int cda int cda
cda cda ca

    30 J 38 J 68JE Q W Q E W E WΔ = − → = Δ + = Δ + = + =  

(c) Since the work along path bc is 0, ( )abc ab a ab a b aW W P V P V V= = Δ = − . 

( ) ( ) ( )abc ab a ab a b a d c d cda2.2 2.2 2.2 38 J 84 JW W P V P V V P V V W= = Δ = − = − = − = − = −  

(d) Use the first law of thermodynamics to find abc.Q  

   int abc abc abc int abc int abc
abc abc ac

    30 J 84J 114 JE Q W Q E W E WΔ = − → = Δ + = Δ + = − − = −  

 (e) Since int,a int,b int,b int,a15 J    15 JE E E E− = → = − ,  we have the following. 

( )int int,c int,b int,c int,a int
bc ac

15 J 15 J 30 J 15 J 15 JE E E E E EΔ = − = − − = Δ + = − + = − .  

Use the first law of thermodynamics to find bcQ . 

   int bc bc bc int bc
bc bc

    15 J 0 15 JE Q W Q E WΔ = − → = Δ + = − + = −  

 
40. (a) Leg ba is an isobaric expansion, and so the work done is positive. 

Leg ad is an isovolumetric reduction in pressure, and so the work done on that leg is 0. 
  Leg dc is an isobaric compression, and so the work done is negative. 

 Leg cb is an isovolumetric expansion in pressure, and so the work done on that leg is 0. 
(b) From problem 38, cd dacda 38J,W W W= + =  so ad dcadc 38J.W W W= + = −   Also from problem 38, 

abc 84J,W = −  and so cba cb ba 84J.W W W= + =   So the net work done during the cycle is as follows. 

   net ba ad dc cb 84J 38J 46JW W W W W= + + + = − =  

(c) Since the process is a cycle, the initial and final states are the same, and so the internal energy  
does not change. 
 int 0EΔ =  
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(d) Use the first law of thermodynamics, applied to the entire cycle. 
  int net net net int net

tot

    0 46J 46JE Q W Q E WΔ = − → = Δ + = + =  

(e) From problem 39(b), we have adc 68J.Q = −   This is the exhaust heat.  So the input heat is found  
as follows. 

 ( )

net acd dca dca dca input

net

input

68J 46J    114 J

46J
efficiency 100 100 40%  2 sig. fig.

114 J

Q Q Q Q Q Q

W
Q

= + = − + = → = =

= × = × =
 

 

41. The work is given by 
2

1

V

V

W PdV= ∫ .  The pressure is given by the van der Waals expression, Eq. 18-9, 

with n = 1.00.  The temperature is held constant.  We will keep the moles as n until the last step. 

  

( )

( ) ( ) ( )
( )

22 2 2

1 1 1 1

2 2

2 2

2 2
22

2 1
2 1 1 2 1

ln

1 1
    ln ln ln

VV V V

V V V V

RT a nRT an an
W PdV dV dV nRT V bn

V V bn V VVb
n n

V bnan an
nRT V bn nRT V bn nRT an

V V V bn V V

= = − = − = − +
−−

−
= − + − − + = + −

−

⎛ ⎞
⎜ ⎟ ⎛ ⎞ ⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎣ ⎦⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎡ ⎤ ⎡ ⎤ ⎛ ⎞

⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎝ ⎠

∫ ∫ ∫
  

 We evaluate for n = 1.00 mol, to get 
( )
( )

2

1 2 1

1 1
ln

V b
W RT a

V b V V
−

= + −
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
42. For a diatomic gas with all degrees of freedom active, the internal energy is given by 7

int 2E nRT= . 

  ( ) ( ) ( ) 47 7
int 2 2 4.50mol 8.314J mol K 645K 8.45 10 JE nRT= = = ×i  

 
43. If there are no heat losses or mass losses, then the heating occurs at constant volume, and so Eq. 19-

10a applies, V .Q nC T= Δ   Air is primarily made of diatomic molecules, and for an ideal diatomic 

gas, 5
V 2 .C R=  

( ) ( )
( ) ( ) ( ) ( )

0 05 5
V 2 2

0

6

5

  

2 1.8 10 J 293K2
43.12 K 43C

5 5 1.013 10 Pa 3.5m 4.6m 3.0m

PV
Q nC T nR T T

T

QT
T

PV

= Δ = Δ = Δ →

×
Δ = = = ≈ °

×

 

 
44. For one mole of gas, each degree of freedom has an average energy of 1

2 RT , so the internal energy of 
a mole of the gas is as follows. 

  
( )

( )

1 1
int 2 2

1
2

    

2
2

2 2 2

V V

P V

E n RT C T C nR

n n
C C R R R R R n R

= = → =

= + = + = + = +
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45. Since the gas is monatomic, the molar specific heat is given by 3
2VC R= .  The molar specific heat is  

also given by V VC Mc= , where M is the molecular mass.  Equate these two expressions to find the 
molecular mass and the identity of the gas. 

 ( )
( )

3
2

3 8.314J mol K3 1kcal 1000g
   83.7g mol

2 2 0.0356kcal kg C 4186J 1kgV V
V

R
C R Mc M

c
= = → = = =

°
i
i

 

From the periodic table, we see that the gas is  krypton  , which has a molecular mass of 83.6 g/mol. 
 
46.  The process is adiabatic, and so the heat transfer is 0.  Apply the first law of thermodynamics. 
  ( )int int 1 20     V VE Q W W W E nC T nC T TΔ = − = − → = −Δ = − Δ = −  
 
47. If there are no heat losses, and no work being done, then the heat due to the people will increase the 

internal energy of the air, as given in Eq. 19-12.  Note that air is basically diatomic.  Use the ideal 
gas equation to estimate the number of moles of air, assuming the room is initially at 293 K. 

( ) ( ) ( )

( ) ( )

int

0 0 0

5
0 0 20 0 0 0 0 0

0

5 4 3

  ;    

2
5

70W
2 293K 1800 people 7200s

person
    47.7 K 48C

5 1.013 10 Pa 2.2 10 m

V

V V
V

PV
Q E nC T n

RT
Q Q RT Q RT Q T Q

T
PVnC PV C PV R PVC
RT

= Δ = Δ = →

Δ = = = = =

= = ≈ °
× ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
48. (a) First find the molar specific heat at constant volume, then the molar specific heat at constant  

pressure, and then finally the specific heat at constant pressure. 

   
( ) ( )

( ) ( )
( )

3

3

10 cal
0.034 kg mol 0.182 kcal kg K 6.188cal mol K

1kcal

6.188cal mol K 1.99cal mol K 1kcal
0.241kcal kg K

0.034 kg mol 10 cal

V V

P V
P

C Mc

C C R
c

M M

= = =

++
= = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

i i

i i
i

  

 (b) From the value for 6.188cal mol K,VC = i we see from Table 19-4 that this gas is probably  
triatomic. 

 
49. (a) The change in internal energy is given by Eq. 19-12.  The nitrogen is diatomic. 

   
( ) ( ) ( )

( ) ( )

5 5
int 2 2

int

J
2.00mol 8.314 150K 6236J 6240J  or

mol K
cal J

2.00mol 4.96 4.186 150K 6229J 6230J
mol K cal

V

V

E nC T n R T

E nC T

Δ = Δ = Δ = = ≈

Δ = Δ = = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

i

i

 

 (b) The work is done at constant pressure. 

( ) ( )J
2.00mol 8.314 150K 2494J 2490J

mol K
W P V nR T= Δ = Δ = = ≈⎛ ⎞

⎜ ⎟
⎝ ⎠i

  

 (c) The heat is added at constant pressure, and so Eq. 19-10b applies. 

   ( ) ( ) ( )7 7
P 2 2

J
2.00mol 8.314 150K 8730J  or

mol K
Q nC T n R T= Δ = Δ = =⎛ ⎞

⎜ ⎟
⎝ ⎠i
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   int int    6229J 2494J 8720JE Q W Q E WΔ = − → = Δ + = + =  

 
50. (a) The change in internal energy is given by Eq. 19-12. 

   ( ) ( ) ( )5 5
int 2 2

J
1.00mol 8.314 300K 6240J

mol KVE nC T n R TΔ Δ = Δ = =⎛ ⎞= ⎜ ⎟
⎝ ⎠i

  

(b) The work is given by .W PdV= ∫   The pressure is a linear function of temperature, so  

0 .P P aT= +   Use the given data to find the constants 0P  and a.  Use the ideal gas equation to 
express the integral in terms of pressure. 

 

( ) ( )
( ) ( )[ ] ( ) ( )

( ) ( )

( )

0 0

0 0

3 3
0

0 0

1.60atm 720K  ;  1.00atm 420K   

1.60atm 1.00atm 720K 420K 300K   

0.60atm
2.0 10 atm K   ;  1.60atm 2.0 10 atm K 720K 0.16atm

300K

    1     

P a P a

P a P a a

a P

P PnRT nR nR P nR
PV nRT V dV

P P a a P a

− −

= + = + →

− = + − + = →

= = × = − × = −

−
= → = = = − → =⎛ ⎞

⎜ ⎟
⎝ ⎠

( ) ( )

2 2 2

1 1 1

0
2

0 0 0 2
2

1

3

1
ln

J
1.00mol 8.314 0.16atm

1.60atmmol K   ln 310J
2.0 10 atm K 1.00atm

V P P

V P P

P
dP

P

nR P nRP nRP P
W PdV P dP dP

a P a P a P

−

= = = =

−
= = −

×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

∫ ∫ ∫

i

 

(c) Use the first law of thermodynamics. 
  int int    6240J 310J 5930JE Q W Q E WΔ = − → = Δ + = − =   

 
51. For a diatomic gas with no vibrational modes excited, we find the γ  parameter. 

5
2 7

55
2

P V

V V

C C R R R
C C R

γ + +
= = = =  

For an adiabatic process, we have constantPV γ = .  Use this to find the final pressure. 

( )
1.4

1
1 1 2 2 2 1

2

1
    1.00atm 0.4568atm 0.457atm

1.75
V

PV PV P P
V

γ

γ γ= → = = = ≈
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 Use the ideal gas law to find the final temperature. 

  ( ) ( ) ( )1 1 2 2 2 2
2 1

1 2 1 1

    293K 0.4568 1.75 234K 39 C
PV PV P V

T T
T T P V

= → = = = = − °
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 

52. The work is given by 
2

1

.
V

V

W PdV= ∫   The pressure is given by the adiabatic condition, PV cγ = , where 

c is a constant.  Note that for the two states given, 1 1 2 2c PV PVγ γ= =   

( ) ( ) ( )22 2

1 1 1

1 1 1 11
2 1 2 2 2 1 1 1 1 1 2 2

1 1 1 1

VV V

V V V

cV cV PV V PV V PV PVc cVW PdV dV
V

γ γ γ γ γ γγ

γ γ γ γ γ

− − − −− − − −
= = = = = =

− − − −∫ ∫  
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53. (a) We first find the final pressure from the adiabatic relationship, and then use the ideal gas law to  
find the temperatures.  For a diatomic gas, 1.4.γ =  

   

( )

( ) ( )
( )

( ) ( )

1.43
21

1 1 2 2 2 1 3
2

5 3

1 1
1

2 5

2 2
2

0.1210 m
    1.00atm 7.772 10 atm

0.750 m

1.013 10 Pa 0.1210 m
         403.9 K 404 K

J
3.65mol 8.314

mol K

7.772 10 1.013 10 Pa 0.75

V
PV PV P P

V

PV PV
PV nRT T T

nR nR

PV
T

nR

γ

γ γ −

−

= → = = = ×

×
= → = = = = ≈

× ×
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠i

( )
( )

30 m
194.6 K 195K

J
3.65mol 8.314

mol K

= ≈
⎛ ⎞
⎜ ⎟
⎝ ⎠i

  

 (b) ( ) ( ) ( ) 45 5
int 2 2

J
3.65mol 8.314 194.6 K 403.9 K 1.59 10 J

mol KCE nC T n R TΔ = Δ = Δ = − = − ×⎛ ⎞
⎜ ⎟
⎝ ⎠i

 

 (c) Since the process is adiabatic, no heat is transferred.  0Q =  
 (d) Use the first law of thermodynamics to find the work done by the gas.  The work done ON the  

gas is the opposite of the work done BY the gas. 

   
( )4 4

int int

4
on
gas

    0 1.59 10 J 1.59 10 J

1.59 10 J

E Q W W Q E

W

Δ = − → = − Δ = − − × = ×

= − ×
 

 
54. Combine the ideal gas equation with Eq. 19-15 for adiabatic processes. 

  

( )

1 1 2 2 1 2 1 1 2
1 1 2 2

1 2 2 1 2 2 1

3
2 5

33
2

1
3/ 2

1
1 1 3 32 1 2 1 1

2 1 2 1
1 2 1 2 2

       ;       

273K 25K
        0.086m 0.15m

273K 68K

P V

V V

PV PV P V T P V
PV PV

T T P V T P V

C C R R R
C C R

V T V T T
V V V V

V T V T T

γ
γ γ

γ

γ γ
γ γ

γ

γ

−
− −

= → = = → =

+ +
= = = =

+
= → = → = = =

−
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
  
55. (a) To plot the graph  

accurately, data points 
must be calculated.  1V  is 
found from the ideal gas 
equation, and 2P  and 2V  
are found from the fact that 
the first expansion is 
adiabatic.  The spreadsheet 
used for this problem can 
be found on the Media 
Manager, with filename 
“PSE4_ISM_CH19.XLS,” 
on tab “Problem 19.55a.” 

 

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

40 50 60 70 80 90 100
V  (L)

P
 (a

tm
) 1 

3 

2 
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( ) ( )

( ) ( )
( )

3 31
1 1 1 1 5

1

1 1 1
2 2 2 2 2 1 1 2

2

5 / 33 / 2 5 3 35 / 3
1 1

2
2

J
1.00 mol 8.314 588 K

mol K    48.26 10 m 48.26 L
1.013 10 Pa

 ,       

1.013 10 Pa 48.26 10 m
J

1.00 mol 8.314
mol K

nRT
PV nRT V

P

PV
PV nRT PV PV V

nRT

PV
V

nRT

γ
γ γ γ

−

−

−

= → = = = × =
×

= = → = →

× ×
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟ ⎛⎝ ⎠ ⎜

⎝

i

i
( )

( ) ( )

3/ 2

3 3

42
2 3 3 5

2

89.68 10 m 89.68 L
389 K

J
1.00 mol 8.314 389 K

1atmmol K 3.606 10 Pa 0.356atm
89.68 10 m 1.013 10 Pa

nRT
P

V

−

−

= × =

= = = × =
× ×

⎛ ⎞
⎜ ⎟
⎜ ⎟

⎞⎜ ⎟⎟⎜ ⎟⎠⎝ ⎠
⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

i

 

 (b) Both the pressure and the volume are known at the lower left corner of the graph. 

   ( ) ( )
( )

3 2 3 1 3 3 3

4 3 3

3 3 2 1
3

 ,       

3.606 10 Pa 48.26 10 m
209K

J
1.00mol 8.314

mol K

P P V V PV nRT

PV PV
T

nR nR

−

= = → = →

× ×
= = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠i

  

 (c) For the adiabatic process, state 1 to state 2: 

   
( ) ( )

( )

3 3
int 2 2

int

J
1.00mol 8.314 389K 588K 2482J 2480J

mol K

0  adiabatic   ;  2480J

E nR T

Q W Q E

Δ = Δ = − = − ≈ −

= = − Δ =

⎛ ⎞
⎜ ⎟
⎝ ⎠i  

  For the constant pressure process, state 2 to state 3: 

   

( ) ( )

( ) ( )

3 3
int 2 2

4 3 3 3 3

int

J
1.00mol 8.314 209K 389K 2244.7J 2240J

mol K

3.606 10 Pa 48.26 10 m 89.68 10 m 1494J 1490J

1494J 2244.7J 3739J 3740J

E nR T

W P V

Q W E

− −

Δ = Δ = − = − ≈ −

= Δ = × × − × = − ≈ −

= + Δ = − − = − ≈ −

⎛ ⎞
⎜ ⎟
⎝ ⎠i

 

  For the constant volume process, state 3 to state 1: 

   
( ) ( )3 3

int 2 2

int

J
1.00mol 8.314 588K 209K 4727J 4730J

mol K

0  ;  4730J

E nR T

W P V Q W E

Δ = Δ = − = ≈

= Δ = = + Δ =

⎛ ⎞
⎜ ⎟
⎝ ⎠i  

(d) For the complete cycle, by definition int 0 .EΔ =   If the values from above are added, we get 

int 4727J 2482J 2245J 0.EΔ = − − =  Add the separate values for the work done and the heat 
added. 

   2482J 1494J 998J 990J   ;  3739J 4727J 998J 990JW Q= − = ≈ = − + = ≈  

  Notice that the first law of thermodynamics is satisfied. 
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56. (a) Combine the ideal gas law with Eq. 19-15 for adiabatic processes. 

  
( )

( )

1

1

      ;  constant   

constant

nRT nRT
PV nRT V PV P P T nR

P P

P T
nR

γ
γγ γ γ

γ γ
γ

−

−

= → = = = = →

=

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 But since n and R are constant for a fixed amount of gas, we have 1 constant .P Tγ γ− =  
Take the derivative of the above expression with respect to y, using the product rule and chain 
rule. 

 
( ) ( )

( )

1 1

1 1

constant    constant 0  

1 0

d d
P T P T

dy dy
dP dT

T P P T
dy dy

γ γ γ γ

γ γ γ γγ γ

− −

− − −

= → = = →

− + =
 

Multiply this equation by .P Tγ γ  

 ( ) ( )1 11 1 0
P dP dT dP P dT

T P P T
T dy dy dy T dy

γ
γ γ γ γ

γ γ γ γ γ− − −− + = − + =⎡ ⎤
⎢ ⎥⎣ ⎦

 

We also assume that ,
dP

g
dy

ρ= −  and so get the following. 

 ( ) ( )1 0
P dT

g
T dy

γ ρ γ− − + = , or ( )1dT T
g

dy P
γ

ρ
γ
−

=  

(b) Use the ideal gas law.  We let M represent the total mass of the gas and m represent the mass of  

one molecule, so .
M

N
m

=   The density of the gas is .
M
V

ρ =  

 
( ) ( ) ( )

      

1 1 1

T V Vm m
PV NkT

P Nk Mk k

dT T m mg
g g

dy P k k

ρ

γ γ γ
ρ ρ

γ γ ρ γ

= → = = = →

− − −
= = =⎛ ⎞

⎜ ⎟
⎝ ⎠

 

(c) For a diatomic ideal gas, 7
5 .γ =  

( ) ( ) ( ) ( )

( )

27 27
35

237
5

3
3

29 1.66 10 kg 9.80m s1 1
9.77 10 K m

1.38 10 J K

10 m 1C
     9.77 10 K m 9.77C km 9.8C km

1km 1K

dT mg
dy k

γ
γ

−
−

−

−

×− −
= = = − ×

×

°
= − × = − ° ≈ − °

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(d) ( ) ( ) ( )9.77C km 0.1km 4.0km 40C 5 C     35 C 95 Ff f

dT
T y T T

dy
Δ = Δ = − ° − − = ° = − − ° → = ° ≈ °  

 
57. (a) The power radiated is given by Eq. 19-17.  The temperature of the tungsten is  

273K 25K 298K+ = . 

   ( ) ( ) ( ) ( ) ( )2 44 8 2 40.35 5.67 10 W m K 4 0.16m 298K 50W  2 sig. fig.
Q

e AT
t

σ π−Δ
= = × =

Δ
i  
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 (b) The net power is given by Eq. 19-18.  The temperature of the surroundings is 268 K. 

   
( ) ( ) ( ) ( ) ( ) ( )2 4 44 4 8 2 4

1 1 0.35 5.67 10 W m K 4 0.16m 298K 268K

      17 W

Q
e A T T

t
σ π−Δ

= − = × −
Δ

=

⎡ ⎤⎣ ⎦i
 

 
58. The heat conduction rate is given by Eq. 19-16a. 

  ( ) ( ) ( )21 2 460 C 22 C
380J s m C 0.010m 116W 120W

0.45m
Q T T

kA
t

π
° − °−

= = ° = ≈i i
l

 

 
59. Eq. 19-19 gives the heat absorption rate for an object facing the Sun.  The heat required to melt the 

ice is the mass of the ice times the latent heat of fusion for the ice.  The mass is found by multiplying 
the volume of ice times its density. 

( ) ( )
( )

( )
( )

( )

2

2 2

        1000 W m cos   

1000 W m cos 1000 W m cos

f f f

f f

Q
Q mL VL A x L eA

t
A x L x L

t
eA e

ρ ρ θ

ρ ρ
θ θ

Δ
Δ = = = Δ = →

Δ
Δ Δ

Δ = =
 

( ) ( ) ( )
( ) ( )

2 3 2 5
4

2

9.17 10 kg m 1.0 10 m 3.33 10 J kg
    7.5 10 s 21h

1000W m 0.050 cos35

−× × ×
= = ×

°
≈  

 
60. The distance can be calculated from the heat conduction rate, given by Eq. 19-16a.  The rate is given 

as a power (150 W = 150 J/s). 

  ( ) ( )2 31 2 1 2 0.50C
    0.2 J s m C 1.5 m 1.0 10 m

150W
Q T T T T

P kA kA
t P

−− − °
= = → = = ° = ×i il

l
 

 
61. (a) The rate of heat transfer due to radiation is given by Eq. 19-17.  We assume that each teapot is a  

sphere that holds 0.55 L.  The radius and then the surface area can be found from that. 

 

( ) ( )

( ) ( ) ( ) ( )

1/ 3 2 / 3
3 24

3

2 / 3
4 4 4 4

1 2 1 2

2 / 33 2
4 48

2 4
ceramic

3 3
        . . 4 4

4 4

3
4

4

3 0.55 10 mW
4 0.70 5.67 10 368K 293K

m K 4

                1

V V
V r r S A r

Q V
A T T T T

t

Q
t

π π π
π π

εσ πεσ
π

π
π

−
−

= → = → = =

Δ
= − = −

Δ

×Δ
= × −

Δ

=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎡ ⎤⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠i

shiny ceramic

4.13W 14 W

0.10
2.019 W 2.0W

0.70
Q Q
t t

≈

Δ Δ
= = ≈

Δ Δ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 (b) We assume that the heat capacity comes primarily from the water in the teapots, and ignore the  
heat capacity of the teapots themselves.  We apply Eq. 19-2, along with the results from part 
(a).  The mass is that of 0.55 L of water, which would be 0.55 kg. 

   elapsed
radiation

1
    

Q
Q mc T T t

mc t
Δ

Δ = Δ → Δ = Δ
Δ

⎛ ⎞
⎜ ⎟
⎝ ⎠
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( )
( )

( )

( ) ( )

ceramic

shiny ceramic

14.13W
1800s 11C

J
0.55kg 4186

kg C
1

1.6C
7

T

T T

Δ = = °

°

Δ = Δ = °

⎛ ⎞
⎜ ⎟
⎝ ⎠i  

 
62. For the temperature at the joint to remain constant, the heat flow in both rods must be the same.  

Note that the cross-sectional areas and lengths are the same.  Use Eq. 19-16a for heat conduction. 

  hot middle middle cool
Cu Al

Cu Al

      
Q Q T T T T

k A k A
t t

− −
= → = →⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ l l

 

  
( ) ( ) ( ) ( )Cu hot Al cool

middle
Cu Al

380J s m C 225 C 200J s m C 0.0 C
147 C

380J s m C 200J s m C
k T k T

T
k k

° ° + ° °+
= = = °

+ ° + °
i i i i

i i i i
 

 
63. (a) The cross-sectional area of the Earth, perpendicular to the Sun, is a circle of radius EarthR , and  

so has an area of 2
EarthRπ .  Multiply this area times the solar constant to get the rate at which the 

Earth is receiving solar energy. 

 ( ) ( ) ( )22 6 2 17
Earth solar constant 6.38 10 m 1350 W m 1.73 10 W

Q
R

t
π π= = × = ×  

 (b) Use Eq. 19-18 to calculate the rate of heat output by radiation, and assume that the temperature  
of space is 0 K.  The whole sphere is radiating heat back into space, and so we use the full 
surface area of the Earth, 2

Earth4 .Rπ  

   

( )
( ) ( ) ( )

1/ 4
4

1/ 4

17
28 2 4 6

1
    

1
1.73 10 J s 278 K 5 C

1.0 5.67 10 W m K 4 6.38 10 m
     

Q Q
e AT T

t t A
σ

εσ

π−

= → =

= × = = °
× ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦i

 

 
64. This is an example of heat conduction.  The temperature difference can be calculated by Eq. 19-16a. 

  
( ) ( )

( ) ( )
4

1 2
2o 2

95 W 5.0 10 m
    5.0C

0.84J s m C 4 3.0 10 m

Q T T P
P kA T

t kA π

−

−

×−
= = → Δ = = = °

×i i

l

l
 

 

65. We model the heat loss as conductive, so that, using Eq. 19-16a,     ,
Q kA

T Q t T
t

α= Δ → = Δ
l

 where  

α  describes the average heat conductivity properties of the house, such as insulation materials and 
surface area of the conducting surfaces.  It could have units of J h C.°i  We see that the heat loss is 
proportional to the product of elapsed time and the temperature difference.  We assume that the 
proportionality constant α  does not vary during the day, so that, for example, heating by direct 
sunlight through windows is not considered.  We also assume that α  is independent of temperature, 
and so is the same during both the day and the night. 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

turning
down

not turning
down

J h C 15h 22 C 8 C J h C 9 h 12 C 0 C 318 J

J h C 15 h 22 C 8 C J h C 9 h 22 C 0 C 408 J

Q

Q

α α α

α α α

= ° ° − ° + ° ° − ° =

= ° ° − ° + ° ° − ° =

i i

i i
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turning
down

408 J 318 J
0.28 28%

318 J
Q

Q
α α

α
Δ −

= = =  

 To keep the thermostat “up” requires about 28% more heat in this model than turning it down. 
 
66. This is an example of heat conduction.  The heat conducted is the heat released by the melting ice, 

ice fusionQ m L= .  The area through which the heat is conducted is the total area of the six surfaces of 
the box, and the length of the conducting material is the thickness of the Styrofoam.  We assume that 
all of the heat conducted into the box goes into melting the ice, and none into raising the temperature 
inside the box.  The time can then be calculated by Eq. 19-16a.   

  ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]( )

1 2 ice fusion

5

    

9.5 kg 3.33 10 J kg 0.015m
  

2 0.023J s m C 2 0.25m 0.35m 2 0.25m 0.55m 2 0.35m 0.55m 34C

Q T T Q m L
kA t

t kA T kA T
−

= → =
Δ Δ

×
=

° + + °

=

i i

l l

l
 

  4  3.6 10 s 10h= × ≈  
 
67. (a) Choose a cylindrical shell of length l, radius R, and  

thickness dR.  Apply Eq. 19-16b, modified for the radial 

geometry.  See the figure.  Note that 
dQ
dt

must be a 

constant, so that all of the heat energy that enters a shell 
also exits that shell. 

( ) ( )
( )

2 2

1 1

1 22
1 2

1 2 1

2   

2 2
      

22
ln     

ln

R T

R T

dQ dT dT
kA k R

dt dR dR
dR k dR k

dT dT
R dQ dt R dQ dt

k T TR k dQ
T T

R dQ dt dt R R

π

π π

ππ

= − = − →

= − → = − →

−
= − → =

∫ ∫

l

l l

ll

 

 (b) For still water, the initial heat flow outward from the water is described by Eq. 19-2. 
( )
( )

( )
( )

( )
( )

( )
( )

( )

( ) ( )

2 2

1 2

2 1

1 2 1 2 1 2
2 2

2 1 H O 1 2 1 H O 1 2 1

23 3

2
        

ln

2 2 2
ln ln ln

J
2 40 71 C 18 C

s m C     4.835C
J 4.0

1.0 10 kg m 0.033m 4186 ln
kg C 3.3

k T TQ T
Q mc T mc

t t R R

k T T k T T k T TT
t mc R R R c R R R c R R

π

π π
ρ π ρ

−Δ Δ
Δ = Δ → = = →

Δ Δ

− − −Δ
= = =

Δ

° − °
°= =

×
°

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

i i

i

l

l l

l

s 4.8C s° ≈ °

  

Note that this will lower the value of 1,T  which would lower the rate of temperature change as 
time elapses. 

R

R1

R2

T2 < T1

T1

dQ
 dt

<=
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(c) The water at the entrance is losing temperature at a rate of 4.835C s.°   In one second, it will 

have traveled 8 cm, and so the temperature drop per cm is 
C 1s

4.835 0.60C cm .
s 8cm
°

= °
⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

 
68. The conduction rates through the two materials must be equal.  If they were not, the temperatures in 

the materials would be changing.  Call the temperature at the boundary between the materials xT . 

  1 2 1 2
1 2 1 2

1 2 1 2

      ;  x x
x x

Q T T T T Q Q
k A k A T T T T

t t k A t k A
− −

= = → = − = −
l l

l l
 

 Add these two equations together, and solve for the heat conduction rate. 

  1 2 1 2
1 2 1 2

1 2 1 2

1
     x x

Q Q Q
T T T T T T

t k A t k A t k k A
+ = − + − → + = − →

⎛ ⎞
⎜ ⎟
⎝ ⎠

l l l l
 

( ) ( )
( )

1 2 1 2

1 21 2

1 2

T T T TQ
A A

t R R
k k

− −
= =

+
+

⎛ ⎞
⎜ ⎟
⎝ ⎠

l l
 

 The R-value for the brick needs to be calculated, using the definition of R given on page 517. 

2

1ft
12in4in

0.69ft h F Btu
J 1Btu 1m 5C 3600s0.84

s m C 1055J 3.281ft 9 F 1h

R
k

= = = °
°

° °

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

i i

i i

l
 

( )
( ) ( ) ( )

( )
21 2

2
1 2

12 F
195ft 119 Btu h 120 Btu h

0.69 19 ft h F Btu
T TQ

A
t R R

− °
= = = ≈

+ + °i i
 

 This is about 35 Watts. 
 
69. The heat needed to warm the liquid can be calculated by Eq. 19-2.   
  ( ) ( ) ( )0.20 kg 1.00 kcal kg C 37 C 5 C 6.4 kcal 6.4 CalQ mc T= Δ = ° ° − ° = =i  
 
70. (a) Use Eq. 19-17 for total power radiated. 

( )( ) ( ) ( )2 44 2 4 8 2 4 8
Sun

26 26

4 1.0 5.67 10 W m K 4 7.0 10 m 5500 K

    3.195 10 W 3.2 10 W

Q
e AT e R T

t
σ σ π π−= = = × ×

= × ≈ ×

i
 

(b) Assume that the energy from the Sun is distributed symmetrically over a spherical surface with 
the Sun at the center. 

   
( )

26
3 2 3 2

22 11
Sun-Earth

3.195 10 W
1.130 10 W m 1.1 10 W m

4 4 1.5 10 m

P Q t
A Rπ π

×
= = = × ≈ ×

×
 

 
71. The heat released can be calculated by Eq. 19-2.  To find the mass of the water, use the density (of 

pure water). 

  ( ) ( ) ( ) ( )33 3 3 151.0 10 kg m 1.0 10 m 4186J kg C 1C 4 10 JQ mc T Vc Tρ= Δ = Δ = × × ° ° = ×i  
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72. Use the heat conduction rate equation, Eq. 19-16a. 

 (a) ( ) ( ) ( )[ ]21 2
2

34 C 18 C
0.025J s m C 0.95m 35.3W 35W

3.5 10 m
Q T T

kA
t −

° − − °−
= = ° = ≈

×
i i

l
 

 (b) ( ) ( ) ( )[ ]21 2
3

34 C 18 C
0.56J s m C 0.95m 5533W 5500 W

5.0 10 m
Q T T

kA
t −

° − − °−
= = ° = ≈

×
i i

l
 

 
73. The temperature rise can be calculated from Eq. 19-2. 

  ( ) ( ) ( )
( ) ( )
0.80 200 kcal h 0.5h

    1.38C 1C
70 kg 0.83kcal kg C

Q
Q mc T T

mc
= Δ → Δ = = = °

°
° ≈

i
 

 
74. For an estimate of the heat conduction rate, use Eq. 19-16a. 

  ( ) ( ) ( )21 2
2

37 C 34 C
0.2J s m C 1.5m 22.5W 20W

4.0 10 m
Q T T

kA
t −

° − °−
= = ° = ≈

×
i i

l
 

 This is only about 10% of the cooling capacity that is needed for the body.  Thus convection cooling 
is clearly necessary. 

 
75. We assume that all of the heat provided by metabolism goes into evaporating the water.  For the 

energy required for the evaporation of water, we use the heat of vaporization at room temperature 
(585 kcal/kg), since the runner’s temperature is closer to room temperature than 100oC.   

  2950kcal kg H O
2.2 h 3.6kg

1h 585kcal
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
76. (a) To calculate heat transfer by conduction, use Eq. 19-16a for all three areas – walls, roof, and  

windows.  Each area has the same temperature difference. 

   

( )

( ) ( ) ( ) ( )

( ) ( )
( )

conduction
1 2

walls roof windows

2 2

2

3

5 5

0.023J s m C 410m 0.1J s m C 280m

0.195m 0.055m
   38C

0.84J s m C 33m

6.5 10 m

   1.832 10 W 1.8 10 W

Q kA kA kA
T T

t

−

= + + −

° °
+

= °
°

+
×

= × ≈ ×

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

i i i i

i i

l l l

 

 (b) The energy being added must both heat the air and replace the energy lost by conduction, as  
considered above.  The heat required to raise the temperature is given by Eq. 19-2, 

( )raise air air warming
temp

Q m c T= Δ .  The mass of the air can be found from the density of the air times its 

volume.  The conduction heat loss is proportional to the temperature difference between the 
inside and outside, which varies from 27Co to 38Co.  We will estimate the average temperature 
difference as 32.5oC and scale the answer from part (a) accordingly. 

( ) ( )

( ) ( )

conduction
added raise conduction air air warming

temp

3
3

1800 s

kg kcal 4186 J
         1.29 750m 0.24 11 C

m kg C kcal

Q
Q Q Q Vc T

t
ρ= + = Δ +

= °
°

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠i
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( )5 8J 32.5 C
               1.832 10 1800s 2.5 10 J

s 38 C
°

+ × = ×
°

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(c) We assume a month is 30 days. 

   gas month
conduction

0.9   
Q

Q t
t

= →⎛ ⎞
⎜ ⎟
⎝ ⎠

 

   
( ) ( )5 11

gas month
conduction

11
7

1 1 24 h 3600 s
1.832 10 J s 30 d 5.276 10 J

0.9 0.9 1 d 1 h

1 kg $0.080
5.276 10 J $781.65 $780

5.4 10 J kg

Q
Q t

t
= = × = ×

× = ≈
×

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
77. Assume that the loss of kinetic energy is all turned into heat which changes the temperature of the 

squash ball. 

  ( ) ( ) ( )
( )

2 22 2
2 21

lost 2

22 m s 12 m s
        0.14C

2 2 1200J kg C
i f

i f

v v
KE Q m v v mc T T

c
− −

= → − = Δ → Δ = = = °
°i

 

 
78. Since the handle is pushed in very quickly, we approximate the process as adiabatic, since there will 

be little time for heat transfer to or from the air in the pump.  We combine the ideal gas law and Eq. 
19-15 for adiabatic processes. 

  

( ) ( )

1 1 2 2 2 2 2 2 1
1 1 2 2

1 2 1 1 1 1 2

5
2 7

55
2

1 1

0.42 2 2 1 2 1 1
2 1

1 1 1 2 1 2 2

       ;       

    293K 2 386.6K 114 C

P V

V V

PV PV T P V P V
PV PV

T T T P V P V

C C R R R
C C R

T P V V V V V
T T

T P V V V V V

γ
γ γ

γ

γ γγ

γ

γ

− −

= → = = → =

+ +
= = = =

= = = → = = = = °
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
79. (a) The energy required to raise the temperature of the water is given by Eq. 19-2. 

   ( ) ( )

  

J 80C
0.250kg 4186 797 W 800W 2 sig. fig.

kg C 105s

Q mc T

Q T
mc

t t

= Δ →

Δ °
= = = ≈

Δ Δ °
⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠i

  

(b) After 105 s, the water is at 100 C.°   So for the remaining 15 s the energy input will boil the 
water.  Use the heat of vaporization. 

   ( ) ( ) ( )
V

V V

Power 797W 15s
    5.3g

2260J g
tQ

Q mL m
L L

Δ
= → = = = =  

 
80. (a) We consider just the 30 m of crust immediately below the surface of the Earth, assuming that all  

the heat from the interior gets transferred to the surface, and so it all passes through this 30 m 
layer.  This is a heat conduction problem, and so Eq. 19-16a is appropriate.  The radius of the 
Earth is about 66.38 10 m× .  

( ) 21 2 1 2
interior Earth

16 16

1.0C 3600s
    0.80J s m C 4 1hour

30 m hour

                                           4.910 10 J 4.9 10 J

Q T T T T
kA Q kA t R

t l l
π− − °

= → = = °

= × ≈ ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

i i
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 (b) The cross-sectional area of the Earth, perpendicular to the Sun, is a circle of radius EarthR , and  

so has an area of 2
EarthRπ .  Multiply this area times the solar constant of 1350 2W m to get the 

amount of energy incident on the Earth from the Sun per second, and then convert to energy per 
day. 

 ( )2 2
Sun Earth

3600s
1350 W m 1hour

day
Q Rπ= ⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

  

( )

( )

( )
( )

2 2
2Earth

Sun

2interior
Earth

4

3600s
1350W m 1hour

1350W mday
1.0C1.0C 3600s 0.80J s m C 40.80J s m C 4 1hour
30 m30 m hour

1.3 10         

R
Q

Q R

π

π
= =

°° °°

= ×

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

i ii i
 

 And so 4
Sun interior1.3 10Q Q= × . 

 
81. Consider a rectangular block of ice.  The surface area of the top of the block is A, and this surface is 

exposed to the air.  The surface area of the bottom of the block is A, and this surface is exposed to 
the water.  The thickness of this block is x.  The heat of fusion from the ice forming at the bottom 
surface must be conducted through the ice to the air.  For the conduction, from Eq. 19-16a, we have 

( )bottom topice .
k A T TdQ

dt x

−
=   This is the rate of heat energy leaving the bottom surface and escaping to 

the air, through the ice block.  For the freezing process, if a layer of ice of thickness dx, with mass 
dm, is formed at the bottom surface, the energy released is f f ice .dQ L dm L Adxρ= =  The rate of 

release of this energy is f ice .
dQ dx

L A
dt dt

ρ=   The rate of energy release must be equal to the rate of 

energy conduction, if the temperature at the bottom surface is to remain constant. 

  

( ) ( )

( ) ( ) ( )

( )
( )

( )

15

ice bottom top ice bottom top
f ice

f ice

0.15m
2ice bottom top ice bottom top 1

15 2
f ice f ice0 0

22 11
22 f ice

15
ice bottom top

        

    0.15m   

0.15m 3.0.15m

t

k A T T k T TdQ dx
L A dt x dx

dt x dt L

k T T k T T
dt x dx t

L L

L
t

k T T

ρ
ρ

ρ ρ

ρ

− −
= = → = →

− −
= → = →

= =
−

∫ ∫

( ) ( )
( )

5 3
4

33 10 J kg 917 kg m
9.5 10 s 1.1d

J
2 18C

s m C

×
= × ≈

°
°

⎛ ⎞
⎜ ⎟
⎝ ⎠i i

 

 
82. Assume that the final speed of the meteorite, as it completely melts, is 0, and that all of its initial 

kinetic energy was used in heating the iron to the melting point and then melting the iron. 

  

( )
( )[ ] ( ) ( )( )

21
Fe melt fusion2

5
Fe melt fusion

  

2 2 450J kg C 1808 C 105 C 2.89 10 J kg

  1520m s

i i

i i

mv mc T T mL

v c T T L

= − + →

= − + = ° ° − − ° + ×

=

⎡ ⎤⎣ ⎦i  
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83. (a) The pressure varies with depth according to Eq. 13-6b.  Use Eq. 13-6b to find the pressure at the  
original depth, and then use the ideal gas equation with a constant temperature to find the size of 
the bubble at the surface. 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

3 34 1 4 1
1 atm 2 atm 1 1 2 2 atm 1 atm 23 2 3 2

1/ 3 1/ 3

atm
2 1 1

atm atm

1/ 33 2

5

  ;    ;       

1

1000kg m 9.80m s 14.0m
3.60cm 1 4.79cm

1.013 10 Pa
   

P P gh P P PV PV P gh d P d

P gh gh
d d d

P P

ρ ρ π π

ρ ρ

= + = = → + = →

+
= = +

= + =
×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

(b) See the accompanying graph.  The path  
is an isotherm, so the product PV is 
constant.  The spreadsheet used for this 
problem can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH19.XLS,” on tab 
“Problem 19.83b.” 

 (c) Since the process is isothermal, Eq. 19-8  
is used to calculate the work. 

  

( ) ( )
( )

2 2
2 2

1 1

34 1
3 3 2 24 1

2 23 2 34 1
3 2 1

ln ln

ln   

V V
W nRT PV

V V

d
P d

d
π

π
π

= =

= ⎡ ⎤⎣ ⎦

 

( ) ( )33 521 1
2 22 2

1

0.0479 m
   ln 1.013 10 Pa 0.0479 m ln 4.99J

0.0360m
d

P d
d

π π= = × =
⎛ ⎞ ⎛ ⎞⎡ ⎤⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎝ ⎠

 

Since the process is isothermal, int 0 .EΔ =   Then, by the first law of thermodynamics, 

int int    4.99J .E Q W Q E WΔ = − → = Δ + =   The heat is added. 

 
84. Use the first law of thermodynamics to find the rate of change of internal energy.  Heat is being 

removed, so the heat term is negative.  Work is being done on the gas, so the work term is also 
negative. 

  ( )3 3 3int
int     1.5 10 W 7.5 10 W 6.0 10 W

dE dQ dW
E Q W

dt dt dt
Δ = − → = − = − × − × = ×  

 This internal energy increase will happen during the compression stroke of a cycle.  We assume that 
the time for compression is half of a cycle. 

1
compression 2

1 60s
0.20s

150 cycles/min 1min
tΔ = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Assume an ideal diatomic gas and use Eq. 19-12 in order to find the temperature change. 

 

( ) ( ) ( ) ( )

int
int

compression

compression 3int
compression

      

0.20s
6.0 10 W 57C

1.00mol 5.00cal mol K 4.186J cal

V V

V

dE T
E nC T nC

dt t

tdE
T

dt nC

Δ
Δ = Δ → = →

Δ

Δ
Δ = = × = °

⎛ ⎞
⎜ ⎟
⎝ ⎠

i
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85. We assume that the light bulb emits energy by radiation, and so Eq. 19-18 applies.  Use the data for 
the 75-W bulb to calculate the product e Aσ  for the bulb, and then calculate the temperature of the 
150-W bulb. 

  

( ) ( )
( )

( )
( ) ( )

( )[ ] ( )[ ]
( ) ( )

4 4
60 W room60 W

9 460 W
4 44 4

60 W room

4 4
150 W room150 W

  

0.90 75W
9.006 10 W K

273 75 K 273 18 K

  

Q t e A T T

Q t
e A

T T

Q t e A T T

σ

σ

σ

−

= − →

= = = ×
− + − +

= − →

  

( ) ( ) ( )
( ) ( )

1/ 41/ 4
44150 W

150 W room 9 4

0.90 150W
291 K

9.006 10 W K

        386 K 113 C 110 C

Q t
T T

e Aσ −
= + = +

×

= = ° ≈ °

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦   

 
86. Let the subscript 1 refer to the original state, subscript 2 refer to the compressed state, and subscript 

3 refer to the final state.  The first process is best described by the ideal gas law for constant 
temperature, and the second process by the adiabatic relationship in Eq. 19-15.  We use the ideal gas 
equation to relate the initial and final temperatures.  Note that the initial volume is 3 times the molar 
volume at STP, and so is 67.2 L. 

Process 1: ( )1
1 1 2 2 2 1 2 1

2

1
    1atm 4.545atm  ;  273K

0.22
V

PV PV P P T T
V

= → = = = = =
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

Process 2: 
5/ 3

2
2 2 3 3 3 2

3

1atm 0.22
  0.3644atm

0.22 1
V

PV PV P P
V

γ

γ γ= → = = =
⎛ ⎞ ⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
 

( ) ( ) ( )1 1 3 3 3 3
3 1

1 3 1 1

  273K 0.3644 1 99.48K
PV PV P V

T T
T T P V

= → = = =
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

max 1 2

min 3

max 2

min 3

273K

99 K

4.5atm

0.36atm

T T T

T T

P P

P P

= = =

= =

= =

= =

 

The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH19.XLS,” on 
tab “Problem 19.86.” 
 
 
 

87. Since the specific heat is a function of temperature, we need to integrate the infinitesimal version of 
Eq. 19-2, and use moles instead of grams. 

  ( ) ( ) ( )
( )

( ) ( )
2

1

3
4 44 4

2 1 33 3
0 0

  

2.75mol 1940J mol K
48.0 K 22.0K 305J

4 4 281K

T

T

dQ nCdT

T nk
Q nk dT T T

T T

= →

Δ = = − = − =⎡ ⎤⎣ ⎦∫
i  

 

0.0

1.0

2.0

3.0

4.0

5.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
V  (L)

P
 (a

tm
)

1

2

3



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

606 

88. Combine the ideal gas relationship for a fixed amount of gas, 1 1 2 2

1 2

PV PV
T T

= , with the adiabatic 

relationship, 1 1 2 2PV PVγ γ= . 

  

1 1 2 2 1 2 1 2 1
1 1 2 2

1 2 2 1 2 1 2

1
1 5/ 2

1
1 1 1 1 2 1 2

2 2 2 2 1 2 1

      ;      

273K 560 K
        15.3

280 K

PV PV V P T P V
PV PV

T T V P T P V

V V T V T V T
V V T V T V T

γ
γ γ

γ

γγ γ

γ

−
−

= → = = → =

+
= → = → = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
89. (a)  Since the pressure is constant, the work is found using Eq. 19-9a. 

   ( ) ( )5 3 3 5 51.013 10 Pa 4.1m 2.2 m 1.9247 10 J 1.9 10 JW P V= Δ = × − = × ≈ ×  

 (b) Use the first law of thermodynamics. 

   5 5 5 5
int 6.30 10 J 1.92 10 J 4.38 10 J 4.4 10 JE Q WΔ = − = × − × = × ≈ ×   

 (c) See the accompanying graph. 
 
 
 
 
 
 
 
 
90. The body’s metabolism (blood circulation in particular) provides cooling by convection.  If the 

metabolism has stopped, then heat loss will be by conduction and radiation, at a rate of 200 W, as 
given.  The change in temperature is related to the body’s heat loss by Eq. 19-2, Q mc T= Δ . 

  
( ) ( ) ( )

  

70 kg 3470J kg C 36.6 C 35.6 C
1200 s 20 min

200 W

Q mc T
P

t t
mc T

t
P

Δ
= = →

° ° − °Δ
= = = =

i
 

 

91. The work is given by 
2

1

V

V

W PdV= ∫ .  The pressure is found from the van der Waals expression, Eq. 

18-9.  The temperature is a constant.  The analytic integration is done in problem 41. 

  
( )
( )

22

1 2 1

1 1
ln

V bn
W nRT an

V bn V V
−

= + −
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( )
( )

3 5 3

3 5 3

24 2
3 3

5

5

1.00m 3.0 10 m mol 1.0mol
   1.0mol 8.314J mol K 373K ln

0.50m 3.0 10 m mol 1.0mol

1 1
                        0.55N m mol 1.0mol

1.00m 0.50m

1.0 3.0 10
   3101.122ln 0

0.5 3.0 10

−

−

−

−

− ×
=

− ×

+ −

− ×
= −

− ×

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

i

i

.55 2149J=

 

P (atm)

V (m3)0

1.0

4.12.2
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 An acceptable answer from the numeric integration would need to be in the range of 2100 – 2200 J.
  

To do the numeric integration, we partition the volume range.  For each volume value, the pressure is 
calculated using Eq. 18-9.  The pressure is assumed constant over each segment of the volume 
partition, and then the work for that segment is the (constant) pressure times the small change in 
volume.  Even with a relatively crude partition size of 30.1m , good agreement is found.  The result 
from the numeric integration is 2158 J, which rounds to 2200 J.  The spreadsheet used for this 
problem can be found on the Media Manager, with filename “PSE4_ISM_CH19.XLS,” on tab 
“Problem 19.91.” 
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CHAPTER 20:  Second Law of Thermodynamics 
 
Responses to Questions 
 
1.  Yes, mechanical energy can be transformed completely into heat or internal energy, as when an 

object moving over a surface is brought to rest by friction.  All of the original mechanical energy is 
converted into heat. No, the reverse cannot happen (second law of thermodynamics) except in very 
special cases (reversible adiabatic expansion of an ideal gas). For example, in an explosion, a large 
amount of internal energy is converted into mechanical energy, but some internal energy is lost to 
heat or remains as internal energy of the explosion fragments.  

 
2.   Yes, you can warm a kitchen in winter by leaving the oven door open. The oven converts electrical 

energy to heat and leaving the door open will allow this heat to enter the kitchen. However, you 
cannot cool a kitchen in the summer by leaving the refrigerator door open. The refrigerator is a heat 
engine which (with an input of work) takes heat from the low-temperature reservoir (inside the 
refrigerator) and exhausts heat to the high-temperature reservoir (the room). As shown by the second 
law of thermodynamics, there is no “perfect refrigerator,” so more heat will be exhausted into the 
room than removed from the inside of the refrigerator. Thus, leaving the refrigerator door open will 
actually warm the kitchen.    

 
3.  No. The definition of heat engine efficiency as e = W/QL does not account for QH, the energy needed 

to produce the work. Efficiency should relate the input energy and the output work. 
 
4. (a) In an internal-combustion engine, the high-temperature reservoir is the ignited gas–air mixture  

in the cylinder. The low-temperature reservoir is the outside; the burned gases leave through the 
exhaust pipe. 

(b) In the steam engine, the high-temperature reservoir is the steam-water mixture in the boiler and  
the low-temperature reservoir is the condensed water in the condenser. In the cases of both these 
engines, these areas are not technically heat “reservoirs,” because each one is not at a constant 
temperature. 

 
5.  A 10ºC decrease in the low-temperature reservoir will give a greater improvement in the efficiency 

of a Carnot engine. By definition, TL is less than TH, so a 10ºC change will be a larger percentage 
change in TL than in TH, yielding a greater improvement in efficiency.  

 
6.  A heat engine operates when heat is allowed to flow from a high-temperature area to a lower 

temperature area and some of the heat is converted into work in the process. In order to obtain useful 
work from the thermal energy in the oceans, the oceans would have to represent the high-
temperature area. This is not practical since the oceans are not at a high temperature compared to 
their surroundings and so there is no low-temperature reservoir available for the heat engine.  

 
7. The two main factors which keep real engines from Carnot efficiency are friction and heat loss to the 

environment. 
 
8.  The expansion value allows the fluid to move from an area of higher pressure to an area of lower 

pressure. When the fluid moves to the low pressure area, it expands rapidly (adiabatic expansion). 
Expansion requires energy, which is taken from the internal energy of the fluid, thus lowering its 
temperature.   

 
9.  Water freezing on the surface of a body of water when the temperature is 0ºC is nearly a reversible 

process. 
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10. (a) Consider a gas enclosed in a cylinder with a movable (and frictionless) piston. If the gas and  
cylinder are kept at a constant temperature by contact with a thermal reservoir, then heat can be 
added very slowly allowing the gas to do work on the piston and expand. This isothermal 
expansion is reversible. If work is done very slowly on the gas, by pushing down on the piston, 
while the gas is still in contact with the thermal reservoir, then the same amount of heat will 
leave during the isothermal compression. Other processes which are not isothermal are possible, 
as long as they are gradual and temperature change occurs for all parts of the system at once. 

(b) A stove burner could not be used to add heat to a system reversibly since the heat added by a  
burner would not be distributed uniformly throughout the system and because the energy 
needed to heat the burner would not be recoverable. 

 
11. The isothermal process will result in a greater change in entropy.  The entropy change for a 

reversible process is the integral of dQ/T. Q = 0 for an adiabatic process, so the change in entropy is 
also 0. 

 
12.  Three examples of naturally occurring processes in which order goes to disorder are a landslide, 

fallen leaves decaying, and a cup of coffee cooling as it sits on a table. The reverse processes are not 
observed.   

 
13. 1 kg of liquid iron will have greater entropy, since it is less ordered than solid iron and its molecules 

have more thermal motion. In addition, heat must be added to solid iron to melt it; the addition of 
heat will increase the entropy of the iron. 

 
14. (a) When the lid on a bottle of chlorine gas is removed, the gas mixes with the air in the room  

around the bottle so that eventually both the room and the bottle contain a mixture of air and 
chlorine. 

(b) The reverse process, in which the individual chlorine atoms reorganize so that they occupy only  
the bottle, violates the second law of thermodynamics and does not occur naturally. 

(c) Adding a drop of food coloring to a glass of water is another example of an irreversible process;  
the food coloring will eventually disperse throughout the water but will not ever gather into a 
drop again. Sliding a book across the floor is another example. Friction between the book and 
the floor will cause the kinetic energy to be dissipated as thermal energy and the book will 
eventually come to rest. There is no way to reverse this process and take thermal energy from 
the book and the floor and turn it into organized kinetic energy of the book. 

 
15. The machine is clearly doing work to remove heat from some of the air in the room. The waste heat 

is dumped back into the room, and the heat generated in the process of doing work is also dumped 
into the room. The net result is the addition of heat into the room by the machine. 

 
16.  Some processes that would obey the first law of thermodynamics but not the second, if they actually 

occurred, include: a cup of tea warming itself by gaining thermal energy from the cooler air 
molecules around it, a ball sitting on a soccer field gathering energy from the grass and beginning to 
roll, and a bowl of popcorn placed in the refrigerator and unpopping as it cools.  

 
17. No. While you have reduced the entropy of the papers, you have increased your own entropy by 

doing work, for which your muscles have consumed energy. The entropy of the universe has 
increased as a result of your actions. 

 
18.  The first law of thermodynamics is essentially a statement of the conservation of energy. “You can’t 

get something for nothing” is similar to the statement that “energy can be neither created nor 
destroyed.” If the “something” you want to get is useful work, then input energy is required. The 
second law concerns the direction of energy transfers. The Kelvin-Planck statement of the second 
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law says that “no device is possible whose sole effect is to transform a given amount of heat 
completely into work.” In other words, 100 joules of heat will result is something less than 100 
joules of work, so “you can’t even break even.” 

 
19. No. Even if the powdered milk is added very slowly, it cannot be re-extracted from the water 

without very large investments of energy.  This is not a reversible process. 
 
20.  Entropy is a state variable, so the change in entropy for the system will be the same for the two 

different irreversible processes that take the system from state a to state b. However, the change in 
entropy for the environment will not necessarily be the same. The total change in entropy (system 
plus environment) will be positive for irreversible processes, but the amount may be different for 
different irreversible processes.  

 
21.  For a reversible process, ΔStotal = ΔSsystem + ΔSenvironment = 0. Neither the process, nor its reverse 

process, would cause an increase in entropy.  A “nearly reversible” process would have only a small 
increase in entropy, and the reverse process would require only a small input of energy. The greater 
ΔStotal, the more energy would be needed to reverse the process. 

 
22. For reversible processes, the change in entropy is proportional to Q. Therefore, for a reversible, 

adiabatic process ΔStotal = 0 because Q = 0. For an irreversible process, ΔSsystem can be calculated by 
finding a series of reversible processes (not all of which will be adiabatic) that take the system 
between the same two states. The change in entropy for the system will be positive, since not all of 
the reversible processes will be adiabatic, and the change in the entropy of the environment will be 
zero. The total change in entropy for the irreversible adiabatic process will be positive.   

 
 
Solutions to Problems 
 
In solving these problems, the authors did not always follow the rules of significant figures rigidly.  We 
tended to take quoted temperatures as correct to the number of digits shown, especially where other 
values might indicate that. 
 
1. The efficiency of a heat engine is given by Eq. 20-1a.  We also invoke energy conservation. 

  
H L

2600 J
0.25 25%

2600 J 7800 J
W W

e
Q W Q

= = = = =
+ +

 

 
2. The efficiency of a heat engine is given by Eq. 20-1a.  We also invoke energy conservation. 

  
( )

( ) ( ) ( )

L
H L

3 3
L

    1 1   

1 1 580 MW 1 0.35 1 1.077 10 MW 1.1 10 MW

W W
e Q W e

Q W Q

Q t W t e

= = → = − →
+

= − = − = × ≈ ×

 

 
 
3. We calculate both the energy per second (power) delivered by the gasoline, and the energy per 

second (power) needed to overcome the drag forces.  The ratio of these is the efficiency. 

( )output
( to move
      car)

mi 1609m 1h
350 N 55 8604W

h 1mi 3600s
W

P Fv
t
= = = =

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 



Chapter 20  Second Law of Thermodynamics 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

611 

7H
input
(from
gasoline)

output
( to move
      car)

H input
(from
gasoline)

J 3.8L 1gal mi 1h
3.2 10 55 53079W

L 1gal 35mi h 3600s

8604W
0.16

53079W

Q
P

t

P
W

e
Q P

= = × =

= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
4. (a) The work done per second is found from the engine specifications. 

  ( ) 4J cycles
180 4cylinders 25 1.8 10 J s

cycle cylinder s
W
t
= = ×⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠i
 

(b) The efficiency is given by Eq. 20-1a. 

  
4

4 4
H H

H

1.8 10 J s
        8.182 10 J s 8.2 10 J s

0.22
W W W t

e Q Q t
Q e e

×
= = → = → = = = × ≈ ×  

(c) Divide the energy in a gallon of gasoline by the rate at which that energy gets used. 

  
6

4

130 10 J gal
1589s 26 min

8.182 10 J s
×

= ≈
×

 

 
5. The efficiency is the work done by the engine, divided by the heat input to the engine from the 

burning of the gasoline.  Both energy terms are expressed in terms of a rate.  The gasoline provides 
the input energy, and the horsepower of the engine represents the output work. 

( )

4H H

746W 1J s
25hp

1hp 1W
0.21 or 21%

kcal 1gal km 1h 4186J
3.0 10 95

gal 38km h 3600s kcal

W W t
e

Q Q t
= = = =

×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
6. (a) For the net work done by the engine to be positive, the path must  

be carried out clockwise.  Then the work done by process bc is 
positive, the work done by process ca is negative, and the work 
done by process ab is 0.  From the shape of the graph, we see that 

bc ca .W W>  
(b) The efficiency of the engine is given by Eq. 20-1a.  So we need to 

find the work done and the heat input.  At first glance we might 
assume that we need to find the pressure, volume, and temperature 
at the three points on the graph.  But as shown here, only the 
temperatures and the first law of thermodynamics are needed, along with ratios that are obtained 
from the ideal gas law. 

  ab: ( ) ( )3
ab ab int b a b a2

ab

0  ;  0VW P V Q E nC T T nR T T= Δ = = Δ = − = − >  

  bc: ( ) c c c
int c b bc bc
bc b a a

b b b0 ; ln ln ln 0V

V V T
E nC T T Q W nRT nRT nRT

V V T
Δ = − = = = = = >  

  ca: ( ) ( ) ( )a c c
ca a a c a c a a a c

a a a

1 1
nRT V T

W P V V V V nRT nRT nR T T
V V T

= − = − = − = − = −
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

   ( ) ( )5
ca a c a c2 0PQ nC T T nR T T= − = − <  

P

V

b

a

0

c

Tb = Tc
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( )

( )

( )

( )

( )

( )

( ) ( )

( ) ( )

c c b
b a c b a c b a b

bc ca a a a

c c b3 3 3input ab bc
2 2 2b a b b a b b a b

a a a

3
2

ln ln ln

ln ln ln

423K
423K ln 273K 423K

273K 0.0859 8.59%
423K

423K 273K 423K ln
273K

 

T T T
nRT nR T T T T T T T T

W W W T T T
e

T T TQ Q Q nR T T nRT T T T T T T
T T T

+ − + − + −
+

= = =
+ − + − + − +

+ −
= =

− +

= =

=

 

Of course, individual values could have been found for the work and heat on each process, and 
used in the efficiency equation instead of referring everything to the temperatures. 

 
7. (a) To find the efficiency, we need the heat input and the heat output.  The heat input occurs at  

constant pressure, and the heat output occurs at constant volume.  Start with Eq. 20-1b. 
( )
( )

( )
( )

V d a d aL

H P c b c b

1 1 1
nC T T T TQ

e
Q nC T T T Tγ

− −
= − = − = −

− −
 

So we need to express the temperatures in terms of the corresponding volume, and use the ideal 
gas law and the adiabatic relationship between pressure and volume to get those expressions.  
Note that c bP P=  and d aV V= . 

( )
( )

( )
( )

d ad d a a

c bd d a a a d a

c c b b c c b b b c b c b

a a

      

1 1 1 1

PV
PV nRT T

nR
P PPV PV
P PPV PV V P PnR nRe

PV PV PV PV P V V V V
nR nR V V

γ γγ γ

= → = →

−−
− −

= − = − = − = −
− −− −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

Use the adiabatic relationship between pressure and volume on the two adiabatic paths. 

d c c a b
d d c c a a b b

c d a b a

d a c b a a

c b a a c b
1 1

c b a a

a a c b

     ;      

1 1 1

P V V P V
PV PV PV PV

P V V P V

P P V V V V
P P V V V V

e
V V V V
V V V V

γ γ γ

γ γ γ γ

γ γ γ

γ γ

−

− −

= → = = = → =

− − −
= − = − = −

− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

1 1

a a

c b

V V
V V

γ

γ

−

− −

−

⎟

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 (b) For a diatomic ideal gas, 7
5 1.4.γ = =  

 ( ) ( )
( ) ( )

a a
1.4 1.4

c b
1 1 1 1

a a

c b

4.5 16
1 1 0.55

1.4 4.5 16

V V
V V

e
V V
V V

γ γ

γ

− −

− −

− − − −

−
−

= − = − =
−

−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎣ ⎦⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
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8. The maximum efficiency is the Carnot efficiency, given in Eq. 20-3. 

  ( )
( )

L

H

365 273 K
1 1 0.225 or 22.5%

550 273 K
T

e
T

+
= − = − =

+
 

 We assume that both temperatures are measured to the same precision – the nearest degree. 
 
9. Calculate the Carnot efficiency for the given temperatures. 

  L
ideal

H

77 K
1 1 0.7372 74%

293 K
T

e
T

= − = − = ≈  

 
10. Find the intake temperature from the original Carnot efficiency, and then recalculate the exhaust 

temperature for the new Carnot efficiency, using the same intake temperature. 

  
( )L1 L1

1 H
H 1

340 273 K
1     989 K

1 1 0.38
T T

e T
T e

+
= − → = = =

− −
 

  ( ) ( ) ( )L2
2 L2 H 2

H

1     1 989 K 1 0.45 544 K 271 C 270 C
T

e T T e
T

= − → = − = − = = ° ≈ °  

 
11. (a) The work done during any process is given by Eq. 19-7.   

So the net work done is as follows. 

   

ab bc cd da

b c d a

a b c d

b c d c

a b a d

   

   

W W W W W

PdV PdV PdV PdV

PdV PdV PdV PdV

= + + +

= + + +

= + − +
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

 

The sum of the first two terms is the area under the abc 
path (the “upper” path), and the sum of the last two terms 
is the area under the adc path (the “lower” path).  So the 
net work is the area enclosed by the cycle. 

(b) Any reversible cycle can be represented as a closed loop in the P-V plane.  If we select the two  
points on the loop with the maximum and minimum volumes, we can apply the reasoning from 
above to find the net work. 

 
12. This is a perfect Carnot engine, and so its efficiency is given by Eq. 20-1a and Eq. 20-3.  Use these 

two expressions to solve for the rate of heat output. 

  

( )
( ) ( )

( ) ( ) ( )

L
L

H H L

L

45 273 K
1 1 0.3416          1 1

210 273 K

1 1 950 W 1 0.3416 1 1831W 1800W

T W W
e e Q W e

T Q W Q

Q t W t e

+
= − = − = = = → = −

+ +

= − = − = ≈

 

 
13. The maximum (or Carnot) efficiency is given by Eq. 20-3, with temperatures in Kelvins. 

  ( )
( )

L

H

330 273 K
1 1 0.354

665 273 K
T

e
T

+
= − = − =

+
 

 Thus the total power generated can be found as follows. 
  ( ) ( )( )Actual Power Total Power max. eff. operating eff.   = →  

V

p
a

b
d

c
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( ) ( ) ( ) ( )

( ) ( )9 13

Actual Power 1.2GW
Total Power 5.215GW

max. eff. operating eff. 0.354 0.65

Exhaust Power Total Power Actual Power 5.215 GW 1.2 GW 4.015 GW

                        4.015 10 J s 3600s h 1.4 10 J h

= = =

= − = − =

= × = ×

 

 
14. This is a perfect Carnot engine, and so its efficiency is given by Eq. 20-1a and Eq. 20-3.  Equate these 

two expressions for the efficiency. 

  ( )[ ] ( ) ( )

L

H H

5

L H H
H H

1   

5.2 10 J s
1 1 560 273 K 1

950kcal s 4186J kcal

   724 K 451 C 450 C

T W
e

T Q

W W t
T T T

Q Q t

= − = →

×
= − = − = + −

= = ° ≈ °

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
15. We assume the efficiency of the person’s metabolism is that of a reversible engine.  Then we take the 

work from that “engine” and assume that it is all used to increase the person’s potential energy by 
climbing higher. 

( ) ( )
( )
( )

L

H H H

3

H L
2

H

1   

4186J
4.0 10 kcal

273 20 K1kcal
1 1 1441m 1400m

65kg 9.80m s 273 37 K

T W mgh
e

T Q Q

Q T
h

mg T

= − = = →

×
+

= − = − = ≈
+

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞ ⎝ ⎠

⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
16. The minimum value for HT  would occur if the engine were a Carnot engine.  We calculate the 

efficiency of the engine from the given data, and use this as a Carnot efficiency to calculate H.T  

  

( )

7H
output input
( to move (from
      car) gasoline)

output
( to move
      car) L L

H
H input H

(from
gasoline)

J 1L 20m
7000W  ;  3.2 10 37647W

L 17000m 1s

273 27000W
1     

37647W 1

W Q
P P

t t

P
W T T

e T
Q P T e

= = = = × =

+
= = = = − → = =

−

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

( )5 K
366K 93 C

7000W
1

37647W

= = °
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
17. Find the exhaust temperature from the original Carnot efficiency, and then recalculate the intake 

temperature for the new Carnot efficiency, using the same exhaust temperature. 

  
( ) ( ) ( )L

1 L H1
H1

o oL L
2 H2

H2 2

1     1 580K 273K 1 0.32 580.0K

580.0 K
1     936 K 663 C 660 C

1 1 0.38

T
e T T e

T

T T
e T

T e

= − → = − = + − =

= − → = = = = ≈
− −
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18. The heat input must come during the isothermal expansion.  From 

section 20-3, page 534, we have b
H H H

a

ln ln2.
V

Q nRT nRT
V

= =   

Since this is a Carnot cycle, we may use Eq. 20-3 combined with 
Eq. 20-1. 

  

( ) ( )

L

H H

H L H L
H H H L

H H

1   

ln2 ln 2

T W
e

T Q

T T T T
W Q nRT nR T T

T T

= − = →

− −
= = = −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The adiabatic relationship between points b and c and the ideal  
gas law are used to express the temperature ratio in terms of the volume ratio. 

 

( )

( ) ( )

( ) ( )
( ) ( )

1

2 / 3H L c
b b c c b c H L L

b c b

2 / 3
H L L

L 2 / 3 2 / 3

2 / 3
H

        5.7

ln 2 5.7 1 ln2  

920J
72.87 K 73K

ln 2 5.7 1 1.00mol 8.314J mol K ln2 5.7 1

72.87 K 5.7 232.52 K 233K

nRT nRT V
PV PV V V T T T

V V V

W nR T T nRT

W
T

nR

T

γ

γ γ γ γ

−

= → = → = =

= − = − →

= = = ≈
− −

= = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦i

 

  
19. (a) The pressures can be found from the ideal gas equation. 

   

( ) ( ) ( )

( ) ( ) ( )

a
a 3 3

a

5 5

b
b 3 3

b

5 5

      

0.50mol 8.314J mol K 743K
7.5 10 m

   4.118 10 Pa 4.1 10 Pa

0.50mol 8.314J mol K 743K
15.0 10 m

   2.059 10 Pa 2.1 10 Pa

nRT
PV nRT P

V
nRT

P
V

nRT
P

V

−

−

= → = →

= =
×

= × ≈ ×

= =
×

= × ≈ ×

i

i

 

 (b) The volumes can be found from combining the ideal gas law and the relationship between  
pressure and volume for an adiabatic process. 

   ( )

( )

1 1c b
c c b b c b c c b b

c b

1
2.5

1
b

c b
c

1
2.5

1
a

d a
d

          

743K
15.0L 34.4L

533K

743K
7.5L 17.2 L 17L

533K

nRT nRT
PV PV V V TV T V

V V

T
V V

T

T
V V

T

γ γ γ γ γ γ

γ

γ

− −

−

−

= → = → = →

= = =

= = = ≈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

  

 
 
 

V

p
a

b
d

c

TH

TL

V

p
a

b
d

c

TH

TL
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 (c) The work done at a constant temperature is given by Eq. 19-8. 

   ( ) ( ) ( )b

a

15.0
ln 0.50mol 8.314J mol K 743K ln 2141J 2100J

7.5
V

W nRT
V

= = = ≈
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
i  

  Note that this is also the heat input during that process. 
(d) Along process cd, there is no change in internal energy since the process is isothermic.  Thus by 

the first law of thermodynamics, the heat exhausted is equal to the work done during that 
process. 

 ( ) ( ) ( )d

c

17.2
ln 0.50mol 8.314J mol K 533K ln 1536J 1500J

34.4
V

Q W nRT
V

= = = = − ≈ −
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
i   

So 2100 J of heat was exhausted during process cd. 
 (e) From the first law of thermodynamics, for a closed cycle, the net work done is equal to the net  

heat input. 

net net 2141J 1536J 605J 600JW Q= = − = ≈  

 (f) L

H H

605J 533K
0.28   ;  1 1 0.28

2141J 743K
W T

e e
Q T

= = = = − = − =  

 
20. (a) We use the ideal gas law and the adiabatic process  

relationship to find the values of the pressure and volume at 
each of the four points. 

 ( ) ( ) ( )
a a

a
a

a

8.8atm  ; 623K ;

1.00mol 0.0821L atm mol K 623K
8.8atm

  5.81L 5.8L

P T

nRTV
P

= =

= =

= ≈

i i
 

  
( )b b a

a 1
b a a2

b

623K ; 2 2 5.81L 11.62L 11.6L

4.4atm

T V V

V
P P P

V

= = = = ≈

= = =
 

  ( )

( ) ( ) ( )

b c
c b b c c b c

b c

1
3/ 2

1
b

c b
c

c
c

c

483K ;       

623K
11.62L 17.02 L 17.0L

483K

1.00mol 0.0821L atm mol K 483K
2.33atm 2.3atm

17.02 L

nRT nRT
T PV PV V V

V V

T
V V

T

nRT
P

V

γ γ γ γ

γ −

= = → = →

= = = ≈

= = = ≈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
i i

 

  
( )

( ) ( ) ( )

1
3/ 2

1
a

d d a
d

d
d

d

623K
483K ; 5.81L 8.51L 8.5L

483K

1.00mol 0.0821L atm mol K 483K
4.66atm 4.7atm

8.51L

T
T V V

T

nRT
P

V

γ −

= = = = ≈

= = = ≈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
i i

 

 To summarize:  
a a b b

c c d d

8.8atm  ; 5.8 L  ; 4.4atm  ; 11.6 L

2.3atm  ; 17.0 L  ; 4.7atm  ; 8.5L

P V P V

P V P V

= = = =

= = = =
 

V

p
a

b
d

c

TH

TL
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(b) Isotherm ab: int
ab

0  ;EΔ =  

( ) ( ) ( )b
ab ab

a

ln 1.00mol 8.314 J mol K 623K ln 2 3590J 3600Ja

V
Q W nRT

V
= = = = ≈i  

  Adiabat bc: bc 0  ;Q =  

( ) ( ) ( ) ( ) ( )3 3
int c b c b2 2
bc

bc bc int
bc

 1.00 mol 8.314J mol K 140 K

        1746J 1700J   ;  1746J 1700J

VE nC T T nR T T

W Q E

Δ = − = − = −

= − ≈ − = − Δ = ≈

i

 

 Isotherm cd: int
cd

0  ;EΔ =  

( ) ( ) ( )d 1
cd cd 2

c

ln 1.00 mol 8.314 J mol K 483K ln 2783J 2800Jc

V
Q W nRT

V
= = = = − ≈ −i  

  Adiabat da: da 0  ;Q =  

( ) ( ) ( ) ( ) ( )3 3
int c b c b2 2
bc

bc bc int
bc

 1.00 mol 8.314 J mol K 140 K

        1746J 1700J   ;  1746J 1700J

VE nC T T nR T T

W Q E

Δ = − = − =

= ≈ = − Δ = ≈ −

i

 

 To summarize: intab :   0  ;            3600J  ;    3600JE Q WΔ = = =  

     
int

int

int

bc:   1700J  ;  0  ;            1700J

cd:   0  ;            2800J  ;  2800J

da:   1700J  ;    0  ;            1700J

E Q W

E Q W

E Q W

Δ = − = =

Δ = = − = −

Δ = = = −

 

 

(c) Using Eq. 20-1: 
input

3590J 1746J 2783J 1746J 807 J
 0.2248 0.22

3590J 3590J
W

e
Q

+ − −
= = = = ≈   

 Using Eq. 20-3: ( )
( )

L

H

273 210 K
 1 1 0.2247 0.22

273 350 K
T

e
T

+
= − = − = ≈

+
 

  The slight disagreement is due to rounding of various calculations. 
 
21. The adiabatic compression takes place between temperatures of 25 C°  and 430 C.°   Use the adiabatic 

relationship and the ideal gas law to express the volumes in terms of the temperatures. 

  

a b
a a b b a b

a b

1 1
1 1.4 1

1 1a b a b
a b a a b b

a b b a

  ;      =   ,  =   

273K 430K
        8.55

273K 25K

nRT nRT
PV PV PV nRT P P

V V

nRT nRT V T
V V TV T V

V V V T

γ γ

γ
γ γ γ γ

− −
− −

= = → →

+
= → = → = = =

+
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 

 
22. The ideal coefficient of performance is given by Eq. 20-4c. 

  [ ]
[ ]

L
ideal

H L

273 3.0 K
COP 14.53 15

22 3.0 K
T

T T
+

= = = ≈
− −
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23. The ideal coefficient of performance for a refrigerator is given by Eq. 20-4c. 

  ( )
( ) ( )

L

H L

15 273 K
COP 5.4

33 273 K 15 273 K
T

T T
− +

= = =
− + − − +

 

 

24. The COP for a heat pump is HCOP
Q
W

=  and the efficiency is 
H

W
e

Q
= .  Thus they are reciprocals of 

each other.  So if the efficiency is 0.38, the COP is 
1

2.6
0.38

= . 

 
25. (a) The total rate of adding heat to the house by the heat pump must equal the rate of heat lost by  

conduction. 

   ( ) ( )L
in out650W C

Q W
T T

t
+

= ° −
Δ

  

Since the heat pump is ideal, we have the following. 
out L L in

L
in H L L in out

1 1 1     
T Q Q W T

Q W W
T Q Q W Q W T T

− = − = − = → + =
+ + −

 

Combine these two expressions, and solve for out.T  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2L in in
in out in out

in out

in
out in

650W C       
650W C

295K
295K 1500W 269 K 4 C

650W C 650W C

Q W W T W T
T T T T

t t T T t

W T
T T

t

+
= ° − = → − = →

Δ Δ − Δ °

= − = − = = − °
Δ ° °

 

 (b) If the outside temperature is 8 C,°  then the rate of heat loss by conduction is found to be  
( ) ( )650W C 14C 9100W.° ° =   The heat pump must provide this much power to the house in 

order for the house to stay at a constant temperature.  That total power is ( )L .Q W t+ Δ   Use 
this to solve for rate at which the pump must do work. 

 
( ) in

L
in out

in out

in

9100W  

14 K
9100W 9100W 432W

295K

W T
Q W t

t T T

W T T
t T

+ Δ = = →
Δ −

−
= = =

Δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 

Since the maximum power the pump can provide is 1500 W, the pump must work 
432W

0.29
1500W

=  or 29% of the time.   

 
26. The coefficient of performance for an ideal refrigerator is given by Eq. 20-4c, with temperatures in 

Kelvins.  Use that expression to find the temperature inside the refrigerator. 

  ( )[ ]L
L H

H L

COP 5.0
COP     32 273 K 254 K 19 C

1 COP 6.0
T

T T
T T

= → = = + = = − °
− +
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27. The efficiency of a perfect Carnot engine is given by Eq. 20-1a and Eq. 20-3.  Equate these two 
expressions to solve for the work required. 

  L L L
H

H H H H H

1  ;      1     1
T T TW W

e e W Q
T Q T Q T

= − = = → − = → = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (a) ( )L
H

H

0 273
1 3100J 1 231.2J 230J

22 273
T

W Q
T

+
= − = − = ≈

+
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 (b) ( )L
H

H

15 273
1 3100J 1 388.8J 390J

22 273
T

W Q
T

− +
= − = − = ≈

+
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
28. (a) Use Eq. 20-2. 

L L L

L L LH H H
ideal

H L L H LH L H L

H H H H H

COP
1

Q T T
Q Q TQ T T

Q Q T T TW Q Q T T
Q Q T T T

= = = = = =
− −− − −

 

(b) Use Eq. 20-3. 

( )

L

L L H
ideal

H LH H

H H

1 1
1     1   ;  COP

1 1

T
T T e eT

e e
T TT T e e
T T

− −
= − → = − = = =

− −−
 

(c) ( )L
ideal

H L

273 18 K
COP 6.1

42 K
T

T T
−

= = =
−

 

 
29. (a) Use the coefficient of performance and the heat that is to be removed ( )LQ to calculate the work  

done.  The heat that is to be removed is the amount of heat released by cooling the water, 
freezing the water, and cooling the ice.  We calculate that heat as a positive quantity. 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

2

L L
ideal

H L

H O liquid fusion ice ice H LL H L

L L

5

4 4

COP   

0.40kg 4186J kg C 25C 3.33 10 J kg 2100J kg C 17C 42 K
   

273K 17 K

   3.106 10 J 3.1 10 J

Q T
W T T

mc T mL mc T T TQ T T
W

T T

= = →
−

Δ + + Δ −−
= =

° ° + × + ° °
=

−

= × ≈ ×

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦i i
 

(b) Now the compressor power ( )W t is given, and is to be related to the rate of removing heat 
from the freezer, L .Q t  

 
( ) ( ) ( )

2

L L L L
ideal

H L

H O liquid fusion H LL H L L H L

L L L

COP     
Q Q t Q t T
W W t P T T

mc T mL T TQ T T Q T T
t

PT PT PT

= = = = →
−

Δ + −− −
= = =

⎡ ⎤⎣ ⎦
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( ) ( ) ( ) ( )

( ) ( )

50.40kg 4186J kg C 25C 3.33 10 J kg 42 K
   159.6s 2.7min

180W 273K 17 K

° ° + ×
= = ≈

−

⎡ ⎤⎣ ⎦i
 

 
30. (a) The ideal COP is given by Eq. 20-4c. 

   ( ) ( ) ( )L L
eff

H L H L

273 24 K
COP     COP 0.20 0.20 4.243 4.2

14 K
T T

T T T T
+

= → = = = ≈
− −

   

 (b) The compressor power can be found from Eq. 20-4a. 

   

L L

eff

L

eff

COP       
COP

Btu 1055J 1h
33,000

h Btu 3600s 1kW
2.279kW 2.3kW

COP 4.243 1000W

Q Q
W

W

Q t
W t

= → = →

= = = ≈

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠⎝ ⎠⎝ ⎠

⎜ ⎟
⎝ ⎠

 

 (c) 
1hp

2279W 3.1hp
746W

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
31. The coefficient of performance is the heat removed from the low-temperature area divided by the 

work done to remove the heat.  In this case, the heat removed is the latent heat released by the 
freezing ice, and the work done is 1.2 kW times the elapsed time.  The mass of water frozen is its 
density times its volume. 

  ( ) ( ) ( ) ( )
( ) ( )

L f f

3
3 3 5

f

COP   

COP 7.0 1200W 3600s
0.0908m 91L

1.0 10 kg m 3.33 10 J kg

Q mL VL
W W Pt

Pt
V

L

ρ

ρ

= = = →

= = = ≈
× ×

 

 
32. Heat energy is taken away from the water, so the change in entropy will be negative.  The heat 

transfer is the mass of the steam times the latent heat of vaporization. 

  
( ) ( )

( )

5
vap 0.25 kg 22.6 10 J kg

1500J K
273 100 K

mLQ
S

T T

×
Δ = = − = − = −

+
 

 
33. Energy has been made “unavailable” in the frictional stopping of the sliding box.  We take that “lost” 

kinetic energy as the heat term of the entropy calculation. 
  ( ) ( )221 1

2 2 7.5 kg 4.0m s 293 K 0.20J KiS Q T mv TΔ = = = =  

 Since this is a decrease in “availability,” the entropy of the universe has increased. 
 
34. Heat energy is taken away from the water, so the change in entropy will be negative.  The heat taken 

away from the water is found from fusionQ mLΔ = .  Note that 1.00 m3 of water has a mass of 
31.00 10 kg× . 

  
( )( )3 5

6fusion
1.00 10 kg 3.33 10 J kg

1.22 10 J K
273K

mLQ
S

T T

× ×
Δ = = − = − = − ×  
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35. Because the temperature change is small, we can approximate any entropy integrals by avg .S Q TΔ =   
There are three terms of entropy to consider.  First, there is a loss of entropy from the water for the 
freezing process, 1SΔ .  Second, there is a loss of entropy from that newly-formed ice as it cools to  

–10oC, 2SΔ .  That process has an “average” temperature of –5oC.  Finally, there is a gain of entropy 

by the “great deal of ice,” 3SΔ , as the heat lost from the original mass of water in steps 1 and 2 goes 
into that great deal of ice.  Since it is a large quantity of ice, we assume that its temperature does not 
change during the processes. 

    

( ) ( )

( ) ( ) ( )
( )

( ) ( )

3 5
61 fusion

1
1 1

3 o o
42 ice 2

2
2 2

3 1 2 fusion ice 2
3

3 3 3

3 5

1.00 10 kg 3.33 10 J kg
1.2198 10 J K

273K

1.00 10 kg 2100J kg C 10C
7.8358 10 J K

5 273 K

1.00 10 kg 3.33 10 J kg 2100J k
      

Q mL
S

T T

Q mc T
S

T T

Q Q Q mL mc T
S

T T T

× ×
Δ = = − = − = − ×

×Δ
Δ = = − = − = − ×

− +

− − + Δ
Δ = = =

× × +
=

i

( ) ( )
( )

o o

6
g C 10C

1.3460 10 J K
10 273 K

= ×
− +

⎡ ⎤⎣ ⎦i

 

  
6 4 6

1 2 3

4 4

1.2198 10 J K 7.8358 10 J K 1.3460 10 J K

    4.784 10 J K 5 10 J K

S S S SΔ = Δ + Δ + Δ = − × − × + ×

= × ≈ ×
 

 

36. (a) 
( ) ( )6

water vaporizationwater
water

water water

0.45kg 2.26 10 J kg
2727J K 2700J K

373K
m LQ

S
T T

×
Δ = = = = ≈  

(b) Because the heat to vaporize the water comes from the surroundings, and we assume that the  
temperature of the surroundings does not change, we have surroundings water 2700J K .S SΔ = −Δ = −  

(c) The entropy change of the universe for a reversible process is universe 0 .SΔ =  

(d) If the process were irreversible, we would have surroundings waterS SΔ Δ< , because the temperature of  

the surroundings would increase, and so universe 0 .SΔ >  

 
37. The same amount of heat that leaves the high temperature heat source enters the low temperature 

body of water.  The temperatures of the heat source and body of water are constant, so the entropy is 
calculated without integration. 

  ( ) ( ) ( )

1 2
high low low high

low high

2

1 1
  

1 1 4.186J 1 1
9.50cal s

1cal 22 273 K 225 273  K

J K
      5.49 10

s

Q Q
S S S Q

T T T T

S Q
t t T T

−

Δ = Δ + Δ = − + = − →

Δ
= − = −

+ +

= ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 

 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

622 

38. The equilibrium temperature is found using calorimetry, from Chapter 19.  The heat lost by the 
aluminum is equal to the heat gained by the water.  We assume the Styrofoam insulates the mixture. 

  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2

2 2 2

2 2

Al Al Al H O H O H O

Al Al Al H O H O H O

Al Al H O H O

  

2.8 kg 900J kg C 43.0 C 1.0 kg 4186J kg C 20 C
   28.64 C

2.8 kg 900J kg C 1.0 kg 4186J kg C

i f f i

i i
f

m c T T m c T T

m c T m c T
T

m c m c

− = − →

+
=

+

° ° + ° °
= =

° + °
°i i

i i

 

final final final final

2

2 2 2

Al H O Al H O2 2

H OAl
Al H O Al Al H O H O

T T T T

T T T T

dQdQ dT dT
S S S m c m c

T T T T
Δ = Δ + Δ = + = +∫ ∫ ∫ ∫  

  ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

2 2

2

final final
Al Al H O H O

Al H O

    ln ln

273.15 28.6 K 273.15 28.6 K
    2.8kg 900J kg K ln 1.0kg 4186J kg K ln

273.15 43.0 K 273.15 20.0 K

   4.4J K

T T
m c m c

T T
= +

+ +
= +

+ +

=

i i  

 
39. Because the process happens at a constant temperature, we have .S Q TΔ =   The heat flow can be 

found from the first law of thermodynamics, the work for expansion at a constant temperature,  and 
the ideal gas equation 

( ) ( ) ( )

2 1
int

1 2

5 3 3

1

2

0    ln ln   

7.5 1.013 10 Pa 2.50 10 m 7.5atm
ln ln 9.3J K

410K 1.0atm

V P
E Q W Q W nRT PV

V P

Q PV P
S

T T P

−

Δ = − = → = = = →

× ×
Δ = = = =

 

 
40. (a) We find the final temperature of the system using calorimetry, and then approximate each part  

of the system as having stayed at an average constant temperature.  We write both heat terms as 
positive and then set them equal to each other. 

 
( ) ( )

( ) ( ) ( ) ( )
lost gained hot hot final cool final cool

hot hot cool cool
final

cool hot

      

38.0 C 3.0kg 12.0 C 2.0kg
27.6 C

5.0kg

Q Q m c T T m c T T

T m T m
T

m m

= → − = − →

° + °+
= = = °

+

 

To calculate the entropy we must use the correctly signed heat terms. 

 

( )
( )

( ) ( ) ( )
( ) ( )[ ]

( )
( )

( ) ( ) ( )
( )

cool final coolcool
cool 1 1

2 2cool cool final
avg

hot hot finalhot
hot 1 1

2 2hot hot final
avg

2.0kg 4186J kg K 27.6 C 12.0 C
446.0J kg

273K 12.0K 273K 27.6K

3.0kg 4186J kg K 27.6 38.0 C
273K 38.0K 2

m c T TQ
S

T T T

m c T TQ
S

T T T

− ° − °
Δ = = = =

+ + + +

− − °
Δ = = =

+ + +

i

i
( )[ ]

cool hot

427.1J kg
73K 27.6K

446.0J kg 427.1J kg 18.9J kg 19J kgS S S

= −
+

Δ = Δ + Δ = − = ≈
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(b) We use the final temperature as found above, and then calculate the entropy changes by  
integration. 

  

( ) ( )

( ) ( )

final

cool

final

hot

cool cool final
cool cool

cool

hot hot final
hot hot

hot

ln

273K 27.6K
2.0kg 4186J kg K ln 446.2J kg

273K 12.0K

ln

273K 27.6
3.0kg 4186J kg K ln

       

       

T

T

T

T

dQ m cdT T
S m c

T T T

dQ m c dT T
S m c

T T T

Δ = = =

+
= =

+

Δ = = =

+
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫

i

i

cool hot

K
427.1J kg

273K 38.0K

446.2J kg 427.1J kg 19.1J kg 19J kgS S S

= −
+

Δ = Δ + Δ = − = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 Using the integrals only changed the answer by about 1%. 
 
41. (a) The same amount of heat that leaves the room enters the ice and water. 

   

( )

( ) ( )

( ) ( ) ( )

room

melt

5
melt fusion

melt
melt melt

warming room
warming

melt

5
room melt

room
room

3.33 10 J kg
1219.78 J K

273K

293K
ln 4186J kg K ln 295.95 J K

273K

3.33 10 J kg 4186J kg K 20 K
2

T

T

Q mL
S m m

T T

dQ mcdT T
S mc m m

T T T

mL mc T T
S m

T

×
Δ = = = =

Δ = = = = =

− − − × +
Δ = = −

∫ ∫ i

i

( )
93K

1422.25 J K        m= −

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

   
( ) ( ) ( )

( )
total melt warming room 1219.78 J K 295.95 J K 1422.25 J K

       93.48 J K 93 J K

S S S S m m m

m m

Δ = Δ + Δ + Δ = + −

= ≈
  

  This process will occur naturally.  Note that we are assuming that m is in kg. 
(b) For this situation, every heat exchange is exactly the opposite as in part (a).  Thus we have  

( )total 93 J K .S mΔ ≈ −   This will not occur naturally. 

 
42. Since the process is at a constant volume, VdQ nC dT= .  For a diatomic gas in the temperature range 

of this problem, 5
2VC R= . 

  ( ) ( ) ( )
( )

2

1

25 5
2 2

1

273 55 K
ln 2.0 mol 8.314 J mol K ln 4.0J K

273 25 K

T
V

T

dQ nC dT T
S nR

T T T
+

Δ = = = = =
+∫ ∫ i  

 
43. (a) To approximate, we use the average temperature of the water. 

   
( ) ( )

( )
water

1
2avg avg

J
1.00kg 4186 75C

kg K 1011J K 1010J K
273 75 K

dQ Q mc T
S

T T T

°
Δ Δ

Δ = ≈ = = = ≈
+

⎛ ⎞
⎜ ⎟
⎝ ⎠∫

i  
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 (b) The heat input is given by ,Q mc T= Δ  so .dQ mcdT=  

   
( ) ( )

( )
2

1

2

1

273 75 KJ
ln 1.00kg 4186 ln

kg K 273 K

1016J K 1020J K    

T

T

dQ mcdT T
S mc

T T T
+

Δ = = = =

= ≈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦
∫ ∫ i  

  The approximation is only about 1% different. 
(c) We assume that the temperature of the surroundings is constant at 75 C°  (the water was moved 

from a cold environment to a hot environment). 

( ) ( )

( ) ( )water

surroundings

J
1.00kg 4186 75C

kg K 900J K 2 sig. fig.
273 75 K

dQ Q mc T
S

T T T

− − °
Δ − Δ

Δ = = = = −
+

⎛ ⎞
⎜ ⎟
⎝ ⎠∫

i  

If instead the heating of the water were done reversibly, the entropy of the surroundings would 
decrease by 1020 J/K.  For a general non-reversible case, the entropy of the surroundings would 
decrease, but by less than 1020 J/K (as in the calculation here). 

 
44. Entropy is a state variable, and so the entropy difference between two states is the same for any path.  

Since we are told that states a and b have the same temperature, we may find the entropy change by 
calculating the change in entropy for an isothermal process connecting the same two states.  We also 
use the first law of thermodynamics. 

( )
( ) ( )

int b a

b a
b a

0     ln

ln
ln

VE nC T Q W Q W nRT V V

nRT V VdQ Q
S nR V V

T T T

Δ = Δ = = − → = =

Δ = = = =∫
 

 
45. (a) The figure shows two processes that start at the same state.  The  

top process is adiabatic, and the bottom process is isothermic.  We 
see from the figure that at a volume of V/2, the pressure is greater 
for the adiabatic process.  We also prove it analytically. 

Isothermal: ( )1 1 2 2 1 2
2 1 1 11

21 2 2 1

    1 2
PV PV V T V

P P P P
T T V T V

= → = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Adiabatic: 1
1 1 2 2 2 1 1 11

22

    2
V V

PV PV P P P P
V V

γ γ

γ γ γ= → = = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

Since 1,γ >  we see that ( ) ( )2 2adiabatic isothermic
.P P>   The ratio is 

( )
( )

12 1adiabatic

2 1isothermic

2
2 .

2
P P
P P

γ
γ −= =  

(b) For the adiabatic process: No heat is transferred to or from the gas, so adiabatic 0 .
dQ

S
T

Δ = =∫  

 For the isothermal process:  2
int isothermal isothermal
isothermal 1

0    ln
V

E Q W nRT
V

Δ = → = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  
( )

( ) ( )

2 1isothermal isothermal
isothermal isothermal

1
2 1 2

ln1
=

            ln ln ln 2

nRT V VdQ Q
S dQ

T T T T
nR V V nR nR

Δ
Δ = = =

= = = −

∫ ∫  

V

P 

V/2 
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(c) Since each process is reversible, the energy change of the universe is 0, and so 

surroundings system.S SΔ = −Δ   For the adiabatic process, surroundings 0 .SΔ =   For the isothermal process, 

surroundings ln 2 .S nRΔ =  
 
46. (a) The equilibrium temperature is found using calorimetry, from Chapter 19.  The heat lost by the  

water is equal to the heat gained by the aluminum. 

   

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2

2 2 2

2 2

H O H O H O Al Al Al

Al Al Al H O H O H O

Al Al H O H O

  

0.150 kg 900J kg C 15 C 0.215kg 4186J kg C 100 C
   

0.150 kg 900J kg C 0.215kg 4186J kg C

88.91 C 89 C   

f f

f

m c T T m c T T

m c T m c T
T

m c m c

− = − →

+
=

+

° ° + ° °
=

° + °

= ° = °

i i
i i

 

 (b) 
final final final final

2

2 2 2

Al H O Al H O2 2

H OAl
Al H O Al Al H O H O

T T T T

T T T T

dQdQ dT dT
S S S m c m c

T T T T
Δ = Δ + Δ = + = +∫ ∫ ∫ ∫  

  ( ) ( ) ( )
( )

( ) ( ) ( )
( )

2 2

2

final final
Al Al H O H O

Al H O

    ln ln

273.15 88.91 K
    0.150kg 900J kg K ln

273.15 15 K

273.15 88.91 K
       0.215kg 4186J kg K ln 3.7J K

273.15 100 K

T T
m c m c

T T
= +

+
=

+

+
+ =

+

i

i

 

 
47.  (a) Entropy is a state function, which means that its value only  

depends on the state of the sample under consideration, not 
on its history of how it arrived at that state.  A cyclical 
process starts and ends at the same state.  Since the state is 
the same, the entropy is the same, and thus the change in 
entropy for the system is 0.  Then, because all of the 
processes involved are reversible, the entropy change for the 
universe is 0, and so the entropy change for the surroundings 
must also be 0. 

 (b) For the two adiabatic processes, Q is constant.  Thus   

0dS
dQ
T

= =  for every infinitesimal part of an adiabatic 

path, and so bc da 0.S SΔ = Δ =   For the two isothermic processes, we have the following, based on 
the first law of thermodynamics and Eq. 19-8. 

   

b
int ab ab H

a

b
Hstate b state b

ab b da
ab cd

H H H H a cstate a state a

0    ln   

ln
1

ln   ;  ln

V
E Q W Q W nRT

V

V
nRT

dQ Q V VV
S dQ nR S nR

T T T T V V

Δ = − = → = = →

Δ = = = = = Δ =∫ ∫

 

V

p
a

b
d

c

TH

TL
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   b d b d
cycle ab cd

a c a c

ln ln ln
V V V V

S S S nR nR nR
V V V V

Δ = Δ + Δ = + =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

From the discussion on page 534, we see that b c b d

a d a c

   1.
V V V V
V V V V

= → =   Thus 

b d
cycle

a c

ln ln1 0.
V V

S nR nR
V V

Δ = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
48. (a) The gases do not interact since they are ideal, and so each gas expands to twice its volume with  

no change in temperature.  Even though the actual process is not reversible, the entropy change 
can be calculated for a reversible process that has the same initial and final states.  This is 
discussed in Example 20-7. 

  

( ) ( )

2

2

2
N Ar

1

total N Ar

ln ln 2

2 ln 2 2 1.00 mol 8.314 J mol K ln 2 11.5J K

V
S S nR nR

V

S S S nR

Δ = Δ = =

Δ = Δ + Δ = = =i
 

(b) Because the containers are insulated, no heat is transferred to or from the environment.  Thus 

surroundings 0 .
dQ

S
T

Δ = =∫  

(c) Let us assume that the argon container is twice the size of the nitrogen container.  Then the final  
nitrogen volume is 3 times the original volume, and the final argon volume is 1.5 times the 
original volume. 

  ( ) ( )

2

2

2

2 2
N Ar

1 1

total N Ar

N Ar

ln ln 3  ;  ln ln1.5

ln 3 ln1.5 ln 4.5 1.00 mol 8.314 J mol K ln 4.5

        12.5J K

V V
S nR nR S nR nR

V V

S S S nR nR nR

Δ = = Δ = =

Δ = Δ + Δ = + = =

=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i  

 
49. For a system with constant volume, the heat input is given by Eq. 19-10a, .VQ nC T= Δ   At 

temperature T, an infinitesimal amount of heat would result in an infinitesimal temperature change, 
related by .VdQ nC dT=   Use this with the definition of entropy. 

    V

V

dQ nC dT dT T
dS

T T dS nC
= = → =  

This is exactly the definition of the slope of a process shown on a T–S graph, so the slope is .
V

T
nC

  

A function with this property would be /
0 .VS nCT T e=  

 
50. We assume that the process is reversible, so that the entropy change is given by Eq. 20-8.  The heat 

transfer is given by .VdQ nC dT=  

  
( ) ( ) ( )

2 2 2 2
2

1

1 1 1 1

3
2 31

3

T T T T
TV

T
T T T T

n aT bT dTdQ nC dT
S n a bT dT n aT bT

T T T

+
= = = = + = +∫ ∫ ∫ ∫  
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( ) ( ) ( ) ( ) ( ) ( )3 32 41

3  0.15mol 2.08mJ mol K 1.0K 3.0K 2.57mJ mol K 1.0K 3.0K

4.0mJ K  

= − + −

= −

⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦i i
 

 
51. (a) Express the first law of thermodynamics in differential form, as given in Section 19-6. 
   intdE dQ dW= −  

For a reversible process, dQ TdS=  (Eq. 20-7), and for any process, .dW PdV=   Also, since 

int ,VE nC TΔ = Δ  we have int .VdE nC Td=   Finally, for an ideal gas, .
nRT

P
V

=  

   
int       

    

V

V V

nRT
dE dQ dW nC dT TdS PdV TdS dV

V
nRT dT dV

TdS nC dT dV dS nC nR
V T V

= − → = − = − →

= + → = +
 

 (b) Use the ideal gas law, the differentiation product rule, and Eq. 19-11, with the above result. 

   
( )

          

    

  V V V V

V P

PdV VdP nRdT
PV nRT PdV VdP nRdT

nRT nRT nRT
PdV VdP dT dT dV dP
PV PV T T V P

dT dV dV dP dV dP dV
dS nC nR nC nR nC n C R

T V V P V P V

dP dV
dS nC nC

P V

= → + = → + = →

+ = → = +

= + = + + = + + →

= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (c) Let 0dS =  in the above result. 

   ln ln ln

0        

    ln ln C ln C      

    constant

P
V P V P

V

P V C V C

C C

dP dV dP dV dP C dV dV
dS nC nC nC nC

P V P V P C V V

dP dV
P V V e e e e

P V

P V e PV e

γ γγ

γ γ

γ

γ γ
− −− +

−

= + = → = − → = − = −

= − → = − + = + → = = →

= → = =

∫ ∫  

 
52. (a) The kinetic energy the rock loses when it hits the ground becomes a heat flow to the ground.   

That energy is then unavailable.  We assume the temperature of the ground, L,T  does not 
change when the rock hits it. 

   lost L L
L L

    
Q K K

S E T S T K
T T T
Δ

Δ = = → = Δ = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(b) The work done in a free expansion (which is isothermic if it is insulated) becomes unavailable  

as the gas expands.  From Example 20-7, 2

1

ln .
V

S nR
V

Δ =   The work done in an isothermal 

expansion is given in Eq. 19-8, as 2

1

ln .
V

W nRT
V

=   Since it is isothermal, L.T T=  

 ( )lost L L 2 1lnE T S T nR V V W= Δ = =  
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(c) Assume an amount of heat HQ is transferred from a high temperature reservoir HT  to a lower  

temperature reservoir L.T   The entropy change during that process is H H

L H

.
Q Q

S
T T

Δ = −   The 

energy “lost” is H H L
L L H H Carnot

L H H

1 .
Q Q T

T S T Q Q e W
T T T

Δ = − = − = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  The work done during the 

process is no longer available to do any other work, and so has become unavailable to do work 
in some other process following the first process. 

 
53. The total energy stored in the copper block is found from the heat flow that initially raised its 

temperature above the temperature of the surroundings. 
  ( ) ( ) ( ) 53.5kg 390J kg K 200 K 2.73 10 JQ mc T= Δ = = ×i   

We find the entropy change assuming that amount of energy leaves the copper in a reversible 
process, and that amount of energy enters the surroundings.  The temperature of the surroundings is 
assumed to be constant. 

  

( ) ( )

( )

( ) ( )

290 K

Cu
490 K

5

surroundings
surroundings surroundings

4
lost L

290 K 290 K
ln 3.5kg 390J kg K ln 716J K

490 K 490 K

2.73 10 J
941J K   ;  941 716 J K 225J K

290 K

290 K 225J K 6.5 10 J

dQ mcdT
S mc

T T

Q mc T
S S

T T

E T S

W

Δ = = = = = −

Δ ×
Δ = = = = Δ = − =

= Δ = = ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ i

5 4 5
available lost 2.73 10 J 6.5 10 J 2.1 10 JQ E= − = × − × = ×

 

 
54. For four heads:  ( )231    ln 1.38 10 J K ln1 0W S k W −= → Δ = = × =  

 For 3 heads, 1 tail:  ( )23 234    ln 1.38 10 J K ln4 1.91 10 J KW S k W − −= → Δ = = × = ×  

 For 2 heads, 2 tails: ( )23 236    ln 1.38 10 J K ln6 2.47 10 J KW S k W − −= → Δ = = × = ×  

 For 1 head, 3 tails:  ( )23 234    ln 1.38 10 J K ln4 1.91 10 J KW S k W − −= → Δ = = × = ×  

 For four tails:   ( )231    ln 1.38 10 J K ln1 0W S k W −= → Δ = = × =  

 
55. From the table below, we see that there are a total of 62 64=  microstates. 

Number of
Microstates

6 heads, 0 tails H H H H H H 1
5 heads, 1 tails H H H H H T H H H H T H H H H T H H H H T H H H H T H H H H T H H H H H 6

H H H H T T H H H T H T H H T H H T H T H H H T T H H H H T

4 heads, 2 tails H H H T T H H H T H T H H T H H T H T H H H T H H H T T H H 15
H T H T H H T H H T H H H T T H H H T H T H H H T T H H H H

H H H T T T H H T H T T H T H H T T T H H H T T H H T T H T

H T H T H T T H H T H T H T T H H T T H T H H T T T H H H T

T T T H H H T T H T H H T H T T H H H T T T H H T T H H T H

T H T H T H H T T H T H T H H T T H H T H T T H H H T T T H

T T T T H H T T T H T H T T H T T H T H T T T H H T T T T H

2 heads, 4 tails T T T H H T T T H T H T T H T T H T H T T T H T T T H H T T 15
T H T H T T H T T H T T T H H T T T H T H T T T H H T T T T

1 heads, 5 tails T T T T T H T T T T H T T T T H T T T T H T T T T H T T T T H T T T T T 6
0 heads, 6 tails T T T T T T 1

Macrostate Possible Microstates (H = heads, T = tails)

3 heads, 3 tails 20
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 (a) The probability of obtaining three heads and three tails is 20 64 or 5 16 . 

 (b) The probability of obtaining six heads is 1 64 . 

 
56. When throwing two dice, there are 36 possible microstates. 
 (a) The possible microstates that give a total of 7 are:  (1)(6) , (2)(5) , (3)(4), (4)(3), (5)(2), and  

(6)(1).  Thus the probability of getting a 7 is 6 36 1 6= . 

 (b) The possible microstates that give a total of 11 are: (5)(6) and (6)(5).  Thus the probability of  
getting an 11 is 2 36 1 18= . 

 (c) The possible microstates that give a total of 4 are:  (1)(3) , (2)(2) , and (3)(1).  Thus the  
probability of getting a 5 is 3 36 1 12= . 

 
57. (a) There is only one microstate for 4 tails:  TTTT.  There are 6 microstates with 2 heads and 2  

tails:  HHTT, HTHT, HTTH, THHT, THTH, and TTHH.  Use Eq. 20-14 to calculate the 
entropy change. 

   ( )23 232
2 1

1

ln ln ln 1.38 10 J K ln6 2.47 10 J K
W

S k W k W k
W

− −Δ = − = = × = ×    

 (b) Apply Eq. 20-14 again.  There is only 1 final microstate, and about 291.0 10× initial microstates. 

   ( )23 222
2 1 29

1

1
ln ln ln 1.38 10 J K ln 9.2 10 J K

1.0 10
W

S k W k W k
W

− −Δ = − = = × = − ×
×

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

 (c) These changes are much smaller than those for ordinary thermodynamic entropy changes.   
For ordinary processes, there are many orders of magnitude more particles than we have 
considered in this problem.  That leads to many more microstates and larger entropy values. 

 

58. The number of microstates for macrostate A is A
10! 1.

10!0!
W = =   The number of microstates for  

macrostate B is B
10! 252.
5!5!

W = =  

(a) ( )23 23ln ln ln 1.38 10 J K ln252 7.63 10 J KB
B A

A

W
S k W k W k

W
− −Δ = − = = × = ×  

 Since 0,SΔ >  this can occur naturally. 

(b) ( )23 23ln ln ln 1.38 10 J K ln252 7.63 10 J KB
A B

A

W
S k W k W k

W
− −Δ = − = − = − × = − ×  

 Since 0,SΔ <  this cannot occur naturally. 
 
59. (a) Assume that there are no dissipative forces present, and so the energy required to pump the  

water to the lake is just the gravitational potential energy of the water. 

   
( ) ( ) ( ) ( )5 2 9

grav

6

1.35 10 kg s 10.0h 9.80m s 135m 1.786 10 W h

       1.79 10 kWh

U mgh= = × = ×

≈ ×

i
 

 (b) 
( ) ( )6

4
1.786 10 kW h 0.75

9.6 10 kW
14h

×
= ×

i
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60. The required area is 
3 2

2 210 W h 1day 1 m
22 61m 60m

day 9hSun 40W
= ≈

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

i
.  A small house with 1000 ft2 

of floor space, and a roof tilted at 30o, would have a roof area of ( )
2

2
o

1 1 m
1000ft

cos30 3.28 ft
⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

2110 m , which is about twice the area needed, and so  the cells would fit on the house  .  But not all 
parts of the roof would have 9 hours of sunlight, so more than the minimum number of cells would 
be needed. 

 
61. We assume that the electrical energy comes from the 100% effective conversion of the gravitational 

potential energy of the water.   

  ( ) ( ) ( ) ( )3 3 3 2 7

  

1.00 10 kg m 32m s 9.80m s 38m 1.2 10 W

W mgh
W m V

P gh gh
t t t

ρ

= →

= = = = × = ×
 

 
62. (a) Calculate the Carnot efficiency for an engine operated between the given temperatures. 

   
( )
( )

L
ideal

H

273 4 K
1 1 0.077 7.7%

273+27 K
T

e
T

+
= − = − = =  

(b) Such an engine might be feasible in spite of the low efficiency because of the large volume of 
“fuel” (ocean water) available.  Ocean water would appear to be an “inexhaustible” source of 
heat energy.  And the oceans are  quite accessible. 

(c) The pumping of water between radically different depths would probably move smaller sea- 
dwelling creatures from their natural location, perhaps killing them in the transport process.  
Mixing the water at different temperatures will also disturb the environment of sea-dwelling 
creatures.  There is a significant dynamic of energy exchange between the ocean and the 
atmosphere, and so any changing of surface temperature water might affect at least the local 
climate, and perhaps also cause larger-scale climate changes. 

 
63. The gas is diatomic, and so 1.4γ =  and 5

2 .VC R=  
 (a) Find the number of moles by applying the ideal gas law to state a. 

( ) ( )
( ) ( )

5 3

a a
a a a

a

1.013 10 Pa 0.010m
    0.406mol 0.41mol

8.314J mol K 300K
PV

PV nRT n
RT

×
= → = = = ≈

i
 

 (b) Find cT  using the adiabatic relationship with the ideal gas law. 

( ) ( ) ( )

1 1c a
c c a a c a c c a a

c a

1
0.4a

c a
c

          

300K 2 396K 400K 2 sig. fig.

nRT nRT
PV PV V V TV TV

V V

V
T T

V

γ γ γ γ γ γ

γ

− −

−

= → = → = →

= = = ≈
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (c) This is a constant volume process. 

   
( ) ( ) ( ) ( ) ( )5 5

bc c b c b2 2 0.406mol 8.314J mol K 96K

810.1J 810J     
VQ nC T T nR T T= − = − =

= ≈

i
 

 (d) The work done by an isothermal process is given by Eq. 19-8. 

   ( ) ( ) ( )b
ab

a

0.0050
ln 0.406mol 8.314J mol K 300K ln 702J 700J

0.010
V

W nRT
V

= = = − ≈ −⎛ ⎞
⎜ ⎟
⎝ ⎠

i  
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 (e) Use the first law of thermodynamics, and the fact that ca 0.Q =  

   ( ) ( ) ( ) ( ) ( )

int ca ca ca
ca

5 5
ca int c a2 2

ca

  

0.406mol 8.314J mol K 396K 300K

    810.1J 810J

V

E Q W W

W E nC T n R T T

Δ = − = − →

= −Δ = − Δ = − = −

= ≈

i  

 (f) Heat is input to the gas only along path bc. 

   ca ab

in bc

810.1J 702J
0.13

810.1J
W W W

e
Q Q

+ −
= = = =  

 (g) H L
Carnot

H

396K 300K
0.24

396K
T T

e
T
− −

= = =   

 
64. (a) The equilibrium temperature is found using calorimetry, from Chapter 19.  The heat lost by the  

water is equal to the heat gained by the aluminum. 

   

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2

2 2 2

2 2

H O H O H O Al Al Al

Al Al Al H O H O H O

Al Al H O H O

  

0.1265kg 900J kg C 18.00 C 0.1325kg 4186J kg C 46.25 C
   41.44 C

0.1265 kg 900J kg C 0.1325 kg 4186J kg C

f f

f

m c T T m c T T

m c T m c T
T

m c m c

− = − →

+
=

+

° ° + ° °
= = °

° + °
i i

i i

 

 (b) 
final final final final

2

2 2 2

Al H O Al H O2 2

H OAl
Al H O Al Al H O H O

T T T T

T T T T

dQdQ dT dT
S S S m c m c

T T T T
Δ = Δ + Δ = + = +∫ ∫ ∫ ∫  

  ( ) ( ) ( )
( )

( ) ( ) ( )
( )

2 2

2

final final
Al Al H O H O

Al H O

    ln ln

273.15 41.44 K
    0.1265kg 900J kg K ln

273.15 18.00 K

273.15 41.44 K
       0.1325kg 4186J kg K ln 0.399J K

273.15 46.25 K

T T
m c m c

T T
= +

+
=

+

+
+ =

+

i

i

 

 
65. (a) For each engine, the efficiency is given by Carnot0.65e e= .  Thus  

( )
( )
( )
( )

L1
1 1

H1

L2
2 2

H2

430 273 K
0.65 0.65 1 0.65 1 0.185

710 273 K

270 273 K
0.65 0.65 1 0.65 1 0.137

415 273 K

C

C

T
e e

T

T
e e

T

−

−

+
= = − = − =

+

+
= = − = − =

+

⎡ ⎤⎛ ⎞
⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

⎡ ⎤⎛ ⎞
⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

 

For the first engine, the input heat is from the coal. 
1 1 H1 1 coalW e Q e Q= =  and ( )L1 H1 1 1 coal1Q Q W e Q= − = − . 

For the second energy, the input heat is the output heat from the first engine. 
( )2 2 H2 2 L1 2 1 coal1W e Q e Q e e Q= = = −  

  Add the two work expressions together, and solve for coalQ . 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2008 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

632 

   
( ) ( )

( )
1 2 1 coal 2 1 coal 1 2 1 2 coal

1 21 2
coal coal

1 2 1 2 1 2 1 2

1

    

W W e Q e e Q e e e e Q

W W tW W
Q Q t

e e e e e e e e

+ = + − = + −

++
= → =

+ − + −

 

  Calculate the rate of coal use from the required rate of input energy, coalQ t . 

( ) ( )

( )

6
9

coal

9
7

950 10 W
3.202 10 J s

0.185 0.137 0.185 0.137

1 kg
3.202 10 J s 114.4 kg s 110kg s

2.8 10 J

Q t
×

= = ×
+ −

× = ≈
×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(b) The heat exhausted into the water will make the water temperature rise according to Eq. 19-2.  
The heat exhausted into water is the heat from the coal, minus the useful work. 

   ( ) ( ) ( ) ( )
( ) ( )

2 2 2 2

2 2 2 2

2

2 2

exhaust coal
exhaust coal exhaust H O H O H O H O

H O H O H O H O

9 8
H O 4coal

H O H O

4

  ;        

3.202 10 J s 9.50 10 J s
9.782 10 kg s

4186J kg C 5.5C

kg s
       9.782 10 3600

s h

Q Q W
Q Q W Q m c T m

c T c T

m Q t W t
t c T

−
= − = Δ → = = →

Δ Δ

× − ×−
= = = ×

Δ ° °

= ×⎛ ⎞⎛
⎜ ⎟⎜
⎝ ⎠⎝

i
3

7
3 3

1m 1L 1gal
9.3 10 gal h

1000kg 10 m 3.785L−
= ×

⎛ ⎞ ⎛ ⎞⎞ ⎛ ⎞
⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
66. We start with Eq. 20-4a for the COP of a refrigerator.  The heat involved is the latent heat of fusion 

for water. 

( ) ( )

L L

5
8L

ideal

COP       
COP

5 909kg d 3.33 10 J kg5tons
4.446 10 J d

COP 0.15COP 273K+22K
0.15

13K

Q Q
W

W

Q t
W t

= → = →

×
= = = = ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  ( )8
6

1d 1kWh $0.10
cost h 4.446 10 J d $0.51 h

24h 3.600 10 J kWh
= × =

×
⎛ ⎞⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
 

 
67. (a) The exhaust heating rate is found from the delivered power and the efficiency.  Use the  

output energy with the relationship Q mc T Vc Tρ= Δ = Δ  to calculate the volume of air that is 
heated.  

   ( ) ( )H L L   1 1   e W Q W Q W Q W e= = + → = − →  

   
( ) ( ) ( )

( )

8 9
L

L
L L

1 1 9.2 10 W 1 0.35 1 1.709 10 W

        

Q t W t e

Q tmc T Vc T
Q mc T Q t V t

t t c T
ρ

ρ

= − = × − = ×

Δ Δ
= Δ → = = → =

Δ

 

The change in air temperature is o7.0C .  The heated air is at a constant pressure of 1 atm.   

   
( ) ( ) ( )

( ) ( ) ( )
9 4

L
3 3 o o

1.709 10 W 8.64 10 s day

1.2kg m 1.0 10 J kg C 7.0C
Q t t

V t
c Tρ

× ×
= =

Δ × i
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9 3

10 3 3 3
3

10 km
     1.757 10 m day 17.57km day 18km day

1 m

−

= × = ≈
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (b) If the air is 200 m thick, find the area by dividing the volume by the thickness. 

   
3

22Volume 17.57km
117 120km

thickness 0.15 km
kmA = = = ≈  

This would be a square of approximately 6 miles to a side.  Thus the local climate for a few 
miles around the power plant might be heated significantly. 

 
68. The COP for an ideal heat pump is found from Eq. 20-5. 

 (a) 
( )
( )

H H H

H L H L

24 273 K
COP 22.85 23

24 11 K
Q Q T
W Q Q T T

+
= = = = = ≈

− − −
 

 (b) From Figure 20-11, The heat delivered from a heat pump is H.Q  

( ) ( ) ( ) ( ) ( ) ( )

H

8 8
H

COP   

COP 1400W 3600s 22.85 1.152 10 J 1.2 10 J

Q
W

Q W t t

= →

= = = × ≈ ×

 

 
69. All of the processes are either constant pressure or constant volume, and so the heat input and output 

can be calculated with specific heats at constant pressure or constant volume.  This tells us that heat 
is input when the temperature increases, and heat is exhausted when the temperature decreases.  The 
lowest temperature will be the temperature at point b.  We use the ideal gas law to find the 
temperatures. 

( ) ( ) ( ) ( )0 0 0 0 0 00 0
b a b c b d b

      

2 3 3 2
,  2 ,  3 , 6

PV
PV nRT T

nR
P V P V P VPV

T T T T T T T
nR nR nR nR

= → = →

= = = = = = =
 

 (a) process ab: ( )ab 0 0 0 0 ab; 0W P V P V PV Q= Δ = − = − <  

  process bc: ( ) ( ) 0 03 3 3
bc bc c b b 0 02 2 20 ;  2 2 3V

PV
W P V Q nC T nR T T nR T nR PV

nR
= Δ = = Δ = − = = =⎛ ⎞

⎜ ⎟
⎝ ⎠

 

  process cd:   bc 0 03  ;W P V PV= Δ =  

( ) ( ) 0 05 5 5 15
cd d c b 0 02 2 2 23 3P

PV
Q nC T nR T T nR T nR PV

nR
= Δ = − = = =⎛ ⎞

⎜ ⎟
⎝ ⎠

 

  process da: da da0 ;  0W P V Q= Δ = <  

   0 0 0 0
rectangle 15 21

2 2H 0 0 0 0

3 2
0.1905 0.19

3
W PV PV

e
Q PV PV

−
= = = = ≈

+
 

(b) rectangleH L b b
Carnot

H b Carnot

6 0.1905
0.8333  ;  0.23

6 0.8333
eT T T T

e
T T e
− −

= = = = =  

 
70. (a) Calculate the Carnot efficiency by L H1e T T= −  and compare it to the 15% actual efficiency. 

   ( ) ( )Carnot L H1 1 95 273 K 495 273 K 0.521 52.1%e T T= − = − + + = =  

  Thus the engine’s relative efficiency is actual Carnot 0.15 0.521 0.288 29%e e = = ≈  
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(b) Take the stated 155 hp as the useful power obtained from the engine.  Use the efficiency to 
calculate the exhaust heat. 

( ) 5 5746W
155 hp 1.156 10 W 1.16 10 W

1 hp
W

P
t

= = = × ≈ ×⎛ ⎞
⎜ ⎟
⎝ ⎠

 (for moving the car) 

H

  
L

W W
e

Q Q W
= = →

+
 

( ) ( )51 1 3600 s 1
1 1 1.156 10 J s 1 h 1

1 h 0.15LQ W Pt
e e

= − = − = × −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

( )9 9 9 51 kcal
    2.36 10 J 2.4 10 J 2.36 10 J 5.6 10 kcal

4186 J
= × ≈ × = × = ×⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
71. (a) The exhaust heating rate can be found from the delivered power P and the Carnot efficiency.   

Then use the relationship between energy and temperature change, Q mc T= Δ , to calculate the 
temperature change of the cooling water. 

L L L L
L L

H H L H L H L H L

L L

1         

    

T T T TW W
e Q W Q t W t P

T Q Q W T T T T T T

m V
Q mc T Q t c T c T

t t
ρ

= − = = → = → = =
+ − − −

= Δ → = Δ = Δ

 

  Equate the two expressions for LQ t , and solve for TΔ . 

   

( ) ( ) ( ) ( )

L L

H L H L

8
o

3 3 3 o

    

8.5 10 W 285 K
5.006K 5.0C

1.0 10 kg m 34m s 4186J kg C 625 K 285 K

T V P T
P c T T

VT T t T Tc
t

ρ
ρ

= Δ → Δ =
− −

×
= = =

× −i

 

(b) The addition of heat per kilogram for the downstream water is LQ t c T= Δ . 

   ( )
290 K

o

285K

290K
4186J kg C ln 72.8J kg K

285K
S dS dQ cdT dT

c
m m mT T T
Δ

= = = = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫ ∫ ∫ i i  

 
72. We have a monatomic gas, so 5

3 .γ =   Also the pressure, volume, and 
temperature for state a are known.  We use the ideal gas law, the 
adiabatic relationship, and the first law of thermodynamics. 

 (a) Use the ideal gas equation to relate states a and b.  Use the  
adiabatic relationship to relate states a and c. 

( )

b b a a

b a

a b
b a

b a

a a c c

  

22.4 L 273K
1.00atm 0.400atm

56.0 L 273K

  

PV PV
T T

V T
P P

V T

PV PVγ γ

= →

= = =

= →

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

( )
5/ 3

a
c a

c

22.4 L
1.00atm 0.2172atm 0.217atm

56.0 L
V

P P
V

γ

= = = ≈
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

V

P

Isothermal

Adiabatic

a

b

c

Va Vb
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 (b) Use the ideal gas equation to calculate the temperature at c. 

   ( ) ( )b b c c c c
c b

b c b b

0.2172atm
    273K 1 148 K

0.400atm
PV PV P V

T T
T T P V

= = → = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 (c) Process ab: int
ab

0  ;  VE nC TΔ = Δ =  

     

( ) ( ) ( )b
ab ab

a

ab
ab

ab

ln 1.00 mol 8.314 J mol K 273K ln 2.5

     2079.7 J 2080J

2079.7 J
7.62 J K

273K

V
Q W nRT

V

Q
S

T

= = =

= ≈

Δ = = =

i

 

  Process bc: bc 0   ;W =  

( ) ( ) ( )

( ) ( )
c

b

3
int bc 2
bc

c
c 3

bc 2
bb

1.00 mol 8.314 J mol K 148 K 273K

      1559 J 1560 J

148 K
ln 1.00 mol 8.314 J mol K ln

273K

7.64 J K      

V

T
V

V
T

E Q nC T

dQ nC dT T
S nC

T T T

Δ = = Δ = −

= − ≈ −

Δ = = = =

= −

∫ ∫

i

i
 

  Process ca: ( )ca bc0   ;  0  adiabatic  ;Q S= Δ =  

     
( )int int int

ca ab bc

int ca
ca

0 1560 J   

1560 J   ;  1560 J

E W E E

E W

Δ = − = −Δ − Δ = − − − →

Δ = = −
 

 (d) 
input

2080 J 1560 J
0.25

2080 J
W

e
Q

−
= = =  

   
73. Take the energy transfer to use as the initial kinetic energy of the cars, because this energy becomes 

“unusable” after the collision – it is transferred to the environment. 

( ) ( ) ( )

( )

2

21
2

1m s
1100kg 75km h

2 3.6km h
1700J K

15 273 K
imvQ

S
T T

Δ = = = =
+

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦  

 
74. (a) Multiply the power times the time times the mass per Joule relationship for the fat. 

( ) ( ) ( ) ( )795J s 3600s h 24 h d 1.0 kg fat 3.7 10 J 0.2218kg d 0.22 kg d× = ≈  

 (b) ( )1.0 kg 1d 0.2218 kg 4.5d=  

 
75. Heat will enter the freezer due to conductivity, at a rate given by 19-16b.  This is the heat that must 

be removed from the freezer to keep it at a constant temperature, and so is the value of LQ  in the 
equation for the COP, Eq. 20-4a.  The work in the COP is the work input by the cooling motor.  The 
motor must remove the heat in 15% of the time that it takes for the heat to enter the freezer, so that it 
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only runs 15% of the time.  To find the minimum power requirement, we assume the freezer is ideal 
in its operation. 

  
( )

( ) ( )

L L L L

H L

L H L H L

L L

  ;  COP     
0.15

57W 0.076hp
0.15 0.15

Q T Q Q t T
kA

t x W W t T T

T
kAQ t T T T TxW t

T T

Δ
= = = = →

Δ −

Δ
− −Δ= = = ≈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
76. The radiant energy is the heat to be removed at the low temperature.  It can be related to the work 

necessary through the efficiency. 

  L H H
L L

H H L L L

1     1     1
T T TW W

e W Q W t Q t
T Q W Q T T

= − = = → = − → = −
+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  ( ) ( ) ( ) ( )H H
3300 500

L L

3300 W 1      500 W 1
T T

W t W t
T T

= − = −
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  
( ) ( ) ( ) ( ) ( )

( )
( )

savings 3300 500

273 32 K
3300W 500W 1 104.8W

273 21 K

                100W 2 sig. fig.

W t W t W t
+

= − = − − =
+

≈

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 
77. We need to find the efficiency in terms of the given parameters, H L a b, , , and .T T V V  So we must find 

the net work done and the heat input to the system.  The work done during an isothermal process is 
given by Eq. 19-8.  The work done during an isovolumentric process is 0.  We also use the first law 
of thermodynamics. 

  ab (isothermal):   b
int ab ab ab ab H
ab a

0     ln 0
V

E Q W Q W nRT
V

Δ = = − → = = >   

  bc (isovolumetric): ( ) ( )3
int bc bc int L H L H2
bc bc

0    0VE Q Q E nC T T nR T TΔ = − → = Δ = − = − <   

  cd (isothermal):   a b
int cd cd cd cd L L
cd b a

0     ln ln 0
V V

E Q W Q W nRT nRT
V V

Δ = = − → = = = − <   

  da (isovolumetric): ( ) ( )3
int da da int H L H L2
da da

0    0VE Q Q E nC T T nR T TΔ = − → = Δ = − = − >    

  

( )

( )

( )

( )

b b b
ab cd H L H L

a a a

b 3
in ab da H H L2

a

b b
H L

H La a
Sterling

b 3in H b H L
2H H L

a a H

ln ln ln

ln

ln ln

3ln ln
2

V V V
W W W nRT nRT nR T T

V V V

V
Q Q Q nRT nR T T

V

V V
T T

W T TV V
e

VQ T V T TT T T
V V T

= + = − = −

= + = + −

−
−

= = =
−+ − +

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎢ ⎥⎜ ⎟ ⎛ ⎞⎢ ⎥⎝ ⎠

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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b

a
Carnot

b H L

a H

ln

3
ln

2

       

V
V

e
V T T
V T

=
−

+

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 Since the factor in [ ] above is less than 1, we see that Sterling Carnot .e e<  

 
78. Since two of the processes are adiabatic, no heat transfer occurs 

in those processes.  Thus the heat transfer must occur along the 
isobaric processes. 

  
( ) ( )

( )
( )

( )
( )

H bc c b L da d a

d a d aL

H c b c b

  ;  

1 1 1

P P

P

P

Q Q nC T T Q Q nC T T

nC T T T TQ
e

Q nC T T T T

= = − = = −

− −
= − = − = −

− −

 

 Use the ideal gas relationship, which says that .PV nRT=  

  

( )
( )

( )
( )

( )
( )

d d a a

d a d d a a

c c b bc b c c b b

a d a

b c b

1 1 1

  1

PV PV
T T PV PVnR nRe

PV PVT T PV PV
nR nR

P V V
P V V

−
− −

= − = − = −
− −−

−
= −

−

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠  

Because process ab is adiabatic, we have 
1/

b
a a b b a b

a

    
P

PV PV V V
P

γ

γ γ= → =
⎛ ⎞
⎜ ⎟
⎝ ⎠

.  Because process cd is 

adiabatic, we have 
1/

b
b c a d d c

a

    .
P

PV PV V V
P

γ

γ γ= → =
⎛ ⎞
⎜ ⎟
⎝ ⎠

  Substitute these into the efficiency expression. 

  

( )
( ) ( )

( )

( )

1/ 1/ 1/
b b b

a c b a c b
a a aa d a

b c b b c b b c b

1 1
1

b b

a a

1 1 1

1 1  

P P PP V V P V VP P PP V V
e

P V V P V V P V V

P P
P P

γ γ γ

γ
γ γ

−
−

− −
−

= − = − = −
− − −

= − = −

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
79. (a) For the Carnot cycle, two of the processes are reversible  

adiabats, which are constant entropy processes.  The other two 
processes are isotherms, at the low and high temperatures.  See 
the adjacent diagram. 

(b) The area underneath any path on the T-S diagram would be 
written as T dS∫ .  This integral is the heat involved in the 

process. 

net
dQ

T dS T dQ Q
T

= = =∫ ∫ ∫  

V

P

b

da

Adiabatic
compression

Adiabatic
expansion

c

T

S

a b

cd

TH

TL
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For a closed cycle such as the Carnot cycle shown, since there is no internal energy change, the 
first law of thermodynamics says that  net net ,T dS Q W= =∫  the same as .PdV∫  

 
80. First we find the equilibrium temperature from calorimetry (section 19-4), and then calculate the 

entropy change of the system.  The heat lost by the warm water must be equal to the heat gained by 
the cold water.  Since the amounts of mass are the same, the equilibrium temperature is just the 
average of the two starting temperatures, 25 C.°  

  

( )

final final

initial initial
cool warm

298K 298K

cool warm
water water 273K 323K

298K 298K
ln ln

273K 323K

298K 298K
    4186J kg C ln ln 13J kg

273K 323K

T T

T T

dQ dQ mcdT mcdT
S S S mc mc

T T T T
Δ = Δ + Δ = + = + = +

= ° + =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫ ∫ ∫

i

 

   
81. To find the mass of water removed, find the energy that is removed from the low temperature 

reservoir from the work input and the Carnot efficiency.  Then use the latent heat of vaporization to 
determine the mass of water from the energy required for the condensation.  Note that the heat of 
vaporization used is that given in section 19-5 for evaporation at 20oC. 

  
( )

L L
L vapor

H H L H L

1     
T TW W

e Q W mL
T Q W Q T T

= − = = → = =
+ −

 

  
( )

( ) ( )
( )

( )
( )

L
6

vapor H L

650W 3600s 273 8 K
15.79kg 16kg

2.45 10 J kg 25 8  K
W T

m
L T T

+
= = = ≈

− × −
 

  
82. (a) From the table below, we see that there are 10 macrostates, and a total of 27 microstates. 

Number of
Microstates

3 red, 0 orange, 0 green r   r   r 1
2 red, 1 orange, 0 green r   r   o r   o   r o   r   r 3
2 red, 0 orange, 1 green r   r   g r   g   r g   r   r 3
1 red, 2 orange, 0 green r   o   o o   r   o o   o  r 3
1 red, 0 orange, 2 green r   g   g g   r   g g   g   r 3

r   o   g r   g   o o   r   g

o   g   r g   r   o g   o   r

0 red, 3 orange, 0 green o   o   o 1
0 red, 2 orange, 1 green g   o   o o   g   o o   o   g 3
0 red, 1 orange, 2 green o   g   g g   o   g g   g   o 3
0 red, 0 orange, 3 green g   g   g 1

1 red, 1 orange, 1 green 6

Macrostate Microstates  (r = red, o = orange, g = green)

 
 

(b) The probability of obtaining all 3 beans red is 1 27 . 

 (c) The probability of obtaining 2 greens and 1 orange is 3 27  or 1 9 . 

 
83. To do the numeric integration, first a value of TΔ is chosen.  The temperature range is then 

partitioned into a series of individual temperatures, starting with 4 K, and each subsequent 
temperature an amount TΔ larger than the previous.  So if 1K,TΔ =  then the temperatures used are 4 
K, 5 K, 6 K, … 40 K.  For each temperature above 4 K,  an entropy change from the previous 
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temperature is calculated by VdS nC T≈ Δ .  The total entropy change SΔ is then the sum of the 

individual dS terms.  The process could be written as ,V

i i

nC T
S

T
Δ

Δ =∑  where 1 .i iT T T+ = + Δ   For a 

value of 1K,TΔ =  a value of 33.75 10 J kgS −Δ = × was calculated, which is 3.7% larger than the 
analytic answer.  So a smaller TΔ was chosen.  For a value of 0.5 K,TΔ =  a value of 

33.68 10 J kgS −Δ = ×  was calculated, which is 1.9% larger than the analytic answer. 
 
Here is the analytic calculation of the entropy change. 

 

( ) ( )

( ) ( ) ( )
( )

( ) ( )

H H

L L

31 1
D

1 1 140 K
3 32

33
D 4 K

3

1800J mol K

1800J mol K 1800J K 1
    1.00 mol 40 K 4 K

32230 K

3.61 10 J kg    

T T
V

T T

n T T dTdQ nC dT
S

T T T

T dT
T

− −

− − −

−

Δ = = =

= = −

= ×

⎡ ⎤⎣ ⎦

∫ ∫ ∫

∫

i i

i i i
  

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH20.XLS,” on tab “Problem 20.83.” 
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CHAPTER 21:  Electric Charges and Electric Field 
 
Responses to Questions 
 
1.  Rub a glass rod with silk and use it to charge an electroscope. The electroscope will end up with a 

net positive charge. Bring the pocket comb close to the electroscope. If the electroscope leaves move 
farther apart, then the charge on the comb is positive, the same as the charge on the electroscope. If 
the leaves move together, then the charge on the comb is negative, opposite the charge on the 
electroscope. 

 
2.  The shirt or blouse becomes charged as a result of being tossed about in the dryer and rubbing 

against the dryer sides and other clothes. When you put on the charged object (shirt), it causes 
charge separation within the molecules of your skin (see Figure 21-9), which results in attraction 
between the shirt and your skin.  

 
3.  Fog or rain droplets tend to form around ions because water is a polar molecule, with a positive 

region and a negative region. The charge centers on the water molecule will be attracted to the ions 
(positive to negative). 

 
4.  See also Figure 21-9 in the text. The negatively 

charged electrons in the paper are attracted to the 
positively charged rod and move towards it within 
their molecules. The attraction occurs because the 
negative charges in the paper are closer to the 
positive rod than are the positive charges in the 
paper, and therefore the attraction between the 
unlike charges is greater than the repulsion 
between the like charges. 

 
5.  A plastic ruler that has been rubbed with a cloth is charged. When brought near small pieces of 

paper, it will cause separation of charge in the bits of paper, which will cause the paper to be 
attracted to the ruler. On a humid day, polar water molecules will be attracted to the ruler and to the 
separated charge on the bits of paper, neutralizing the charges and thus eliminating the attraction. 

 
6. The net charge on a conductor is the difference between the total positive charge and the total 

negative charge in the conductor. The “free charges” in a conductor are the electrons that can move 
about freely within the material because they are only loosely bound to their atoms. The “free 
electrons” are also referred to as “conduction electrons.” A conductor may have a zero net charge 
but still have substantial free charges.  

 
7.  Most of the electrons are strongly bound to nuclei in the metal ions. Only a few electrons per atom 

(usually one or two) are free to move about throughout the metal. These are called the “conduction 
electrons.”  The rest are bound more tightly to the nucleus and are not free to move. Furthermore, in 
the cases shown in Figures 21-7 and 21-8, not all of the conduction electrons will move. In Figure 
21-7, electrons will move until the attractive force on the remaining conduction electrons due to the 
incoming charged rod is balanced by the repulsive force from electrons that have already gathered at 
the left end of the neutral rod. In Figure 21-8, conduction electrons will be repelled by the incoming 
rod and will leave the stationary rod through the ground connection until the repulsive force on the 
remaining conduction electrons due to the incoming charged rod is balanced by the attractive force 
from the net positive charge on the stationary rod.  

 

+ + + + + + +

- +

- +

- +

- +
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8. The electroscope leaves are connected together at the top. The horizontal component of this tension 
force balances the electric force of repulsion. (Note: The vertical component of the tension force 
balances the weight of the leaves.) 

 
9.  Coulomb’s law and Newton’s law are very similar in form.  The electrostatic force can be either 

attractive or repulsive; the gravitational force can only be attractive. The electrostatic force constant 
is also much larger than the gravitational force constant. Both the electric charge and the 
gravitational mass are properties of the material. Charge can be positive or negative, but the 
gravitational mass only has one form.  

 
10. The gravitational force between everyday objects on the surface of the Earth is extremely small. 

(Recall the value of G: 6.67 x 10-11 Nm2/kg2.) Consider two objects sitting on the floor near each 
other. They are attracted to each other, but the force of static fiction for each is much greater than the 
gravitational force each experiences from the other. Even in an absolutely frictionless environment, 
the acceleration resulting from the gravitational force would be so small that it would not be 
noticeable in a short time frame. We are aware of the gravitational force between objects if at least 
one of them is very massive, as in the case of the Earth and satellites or the Earth and you.  

 

 The electric force between two objects is typically zero or close to zero because ordinary objects are 
typically neutral or close to neutral. We are aware of electric forces between objects when the 
objects are charged. An example is the electrostatic force (static cling) between pieces of clothing 
when you pull the clothes out of the dryer. 

 
11.  Yes, the electric force is a conservative force. Energy is conserved when a particle moves under the 

influence of the electric force, and the work done by the electric force in moving an object between 
two points in space is independent of the path taken. 

 
12. Coulomb observed experimentally that the force between two charged objects is directly 

proportional to the charge on each one. For example, if the charge on either object is tripled, then the 
force is tripled. This is not in agreement with a force that is proportional to the sum of the charges 
instead of to the product of the charges. Also, a charged object is not attracted to or repelled from a 
neutral object, which would be the case if the numerator in Coulomb’s law were proportional to the 
sum of the charges. 

 
13.  When a charged ruler attracts small pieces of paper, the charge on the ruler causes a separation of 

charge in the paper. For example, if the ruler is negatively charged, it will force the electrons in the 
paper to the edge of the paper farthest from the ruler, leaving the near edge positively charged. If the 
paper touches the ruler, electrons will be transferred from the ruler to the paper, neutralizing the 
positive charge. This action leaves the paper with a net negative charge, which will cause it to be 
repelled by the negatively charged ruler. 

 
14. The test charges used to measure electric fields are small in order to minimize their contribution to 

the field. Large test charges would substantially change the field being investigated. 
 
15. When determining an electric field, it is best, but not required, to use a positive test charge. A 

negative test charge would be fine for determining the magnitude of the field. But the direction of 
the electrostatic force on a negative test charge will be opposite to the direction of the electric field. 
The electrostatic force on a positive test charge will be in the same direction as the electric field. In 
order to avoid confusion, it is better to use a positive test charge. 
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16. See Figure 21-34b. A diagram of the electric field lines around two negative charges would be just 
like this diagram except that the arrows on the field lines would point towards the charges instead of 
away from them. The distance between the charges is l. 

 
17. The electric field will be strongest to the right of the positive charge (between the two charges) and 

weakest to the left of the positive charge. To the right of the positive charge, the contributions to the 
field from the two charges point in the same direction, and therefore add. To the left of the positive 
charge, the contributions to the field from the two charges point in opposite directions, and therefore 
subtract. Note that this is confirmed by the density of field lines in Figure 21-34a. 

18. At point C, the positive test charge would experience zero net force. At points A and B, the direction 
of the force on the positive test charge would be the same as the direction of the field. This direction 
is indicated by the arrows on the field lines. The strongest field is at point A, followed (in order of 
decreasing field strength) by B and then C.   

 
19.  Electric field lines can never cross because they give the direction of the electrostatic force on a 

positive test charge. If they were to cross, then the force on a test charge at a given location would be 
in more than one direction. This is not possible. 

 
20.  The field lines must be directed radially toward or away from the point charge (see rule 1). The 

spacing of the lines indicates the strength of the field (see rule 2). Since the magnitude of the field 
due to the point charge depends only on the distance from the point charge, the lines must be 
distributed symmetrically.  

 
21.  The two charges are located along a line as shown in the 

diagram. 
(a) If the signs of the charges are opposite then the point on  

the line where E = 0 will lie to the left of Q. In that region 
the electric fields from the two charges will point in 
opposite directions, and the point will be closer to the 
smaller charge. 

(b) If the two charges have the same sign, then the point on the line where E = 0 will lie between  
the two charges, closer to the smaller charge. In this region, the electric fields from the two 
charges will point in opposite directions. 

 
22. The electric field at point P would point in the negative x-direction. The magnitude of the field 

would be the same as that calculated for a positive distribution of charge on the ring: 

    
 3/ 22 2

1

4 o

Qx
E

x a



 

 
23. The velocity of the test charge will depend on its initial velocity. The field line gives the direction of 

the change in velocity, not the direction of the velocity. The acceleration of the test charge will be 
along the electric field line. 

 
24. The value measured will be slightly less than the electric field value at that point before the test 

charge was introduced. The test charge will repel charges on the surface of the conductor and these 
charges will move along the surface to increase their distances from the test charge. Since they will 
then be at greater distances from the point being tested, they will contribute a smaller amount to the 
field. 

 
 

ℓ 

Q 2Q 
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25. The motion of the electron in Example 21-16 is projectile motion. In the case of the gravitational 
force, the acceleration of the projectile is in the same direction as the field and has a value of g; in 
the case of an electron in an electric field, the direction of the acceleration of the electron and the 
field direction are opposite, and the value of the acceleration varies. 

 
26. Initially, the dipole will spin clockwise. It will “overshoot” the equilibrium position (parallel to the 

field lines), come momentarily to rest and then spin counterclockwise. The dipole will continue to 
oscillate back and forth if no damping forces are present. If there are damping forces, the amplitude 
will decrease with each oscillation until the dipole comes to rest aligned with the field.  

 
27.  If an electric dipole is placed in a nonuniform electric field, the charges of the dipole will experience 

forces of different magnitudes whose directions also may not be exactly opposite. The addition of 
these forces will leave a net force on the dipole. 

 

Solutions to Problems 
 
1. Use Coulomb’s law to calculate the magnitude of the force.  

      
 

19 19

9 2 2 31 2

22 12

1.602 10 C 26 1.602 10 C
8.988 10 N m C 2.7 10 N

1.5 10 m

Q Q
F k

r

 





  
     


 

 
2. Use the charge per electron to find the number of electrons. 

 6 14

19

1 electron
38.0 10 C 2.37 10 electrons

1.602 10 C



   

 
 
 
 

 

 
3. Use Coulomb’s law to calculate the magnitude of the force.  

       
 

6 3

9 2 21 2
22

25 10 C 2.5 10 C
8.988 10 N m C 7200 N

0.28m

Q Q
F k

r

  
     

 
4. Use Coulomb’s law to calculate the magnitude of the force.  

     
 

219

9 2 21 2
22 15

1.602 10 C
8.988 10 N m C 14 N

4.0 10 m

Q Q
F k

r






    


 

 
5. The charge on the plastic comb is negative, so the comb has gained electrons. 

 
31

6

19
16 14

1e 9.109 10 kg
3.0 10 C

1.602 10 C 1e
4.9 10 4.9 10 %

0.035kg

m

m

 


 
 





    

  
  
    

 
6. Since the magnitude of the force is inversely proportional to the square of the separation distance, 

2

1
F

r
 , if the distance is multiplied by a factor of 1/8, the force will be multiplied by a factor of 64. 

   2

064 64 3.2 10 N 2.0 NF F      
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7. Since the magnitude of the force is inversely proportional to the square of the separation distance, 

2

1
F

r
 , if the force is tripled, the distance has been reduced by a factor of 3 . 

  0 8.45 cm
4.88 cm

3 3

r
r     

 
8. Use the charge per electron and the mass per electron. 

 

 

6 14 14

19

31
14 16

1 electron
46 10 C 2.871 10 2.9 10 electrons

1.602 10 C

9.109 10 kg
2.871 10 e 2.6 10 kg

1 e






 



     
 


  

 
 
 
 
 
 

 

 
9. To find the number of electrons, convert the mass to moles, the moles to atoms, and then multiply by  

the number of electrons in an atom to find the total electrons.  Then convert to charge. 

 
23 19

8

1mole Al 6.022 10 atoms 79electrons 1.602 10 C
15kg Au 15kg Au

0.197 kg 1 mole 1molecule electron

             5.8 10 C

  


  

    
    
      

 The net charge of the bar is 0C , since there are equal numbers of protons and electrons. 

 
10. Take the ratio of the electric force divided by the gravitational force. 

  
   

1 2 29 2 2 19
2

39E 1 2

11 2 2 31 27
1 2G 1 2

2

8.988 10 N m C 1.602 10 C
2.3 10

6.67 10 N m kg 9.11 10 kg 1.67 10 kg

Q Q
kF kQ Qr

m mF Gm mG
r



  

  
    

   
 

 The electric force is about 392.3 10 times stronger than the gravitational force for the given scenario. 
 
11. (a) Let one of the charges be q , and then the other charge is T .Q q   The force between the  

charges is 
   2T

E T2 2
.

q Q q k
F k qQ q

r r


     To find the maximum and minimum force, set the 

first derivative equal to 0.  Use the second derivative test as well. 

   

 

2 E

E T2

E

E

1
T T22

2

1
T22 2 max

  ;  2 0    

2
0     gives 

k F
F qQ q

r

F
F

d k
Q q q Q

dq r

d k
q Q

dq r

      

    

 

So 1
1 2 T2q q Q   gives the maximum force. 

 (b) If one of the charges has all of the charge, and the other has no charge, then the force between  

them will be 0, which is the minimum possible force.  So 1 2 T0,  q q Q   gives the minimum 

force. 
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12. Let the right be the positive direction on the line of charges.  Use the fact that like charges repel and 
unlike charges attract to determine the direction of the forces.  In the following expressions, 

9 2 28.988 10 N m Ck    . 

   
 

   
 

   
 

   
 

   
 

   
 

75 2 2

48 2 2

85 2 2

75 C 48 C 75 C 85 C ˆ147.2 N 150 N
0.35m 0.70m

75 C 48 C 48 C 85 Cˆ ˆ ˆ ˆ563.5N 560 N
0.35m 0.35m

85 C 75 C 85 C 48 C ˆ416.3N 420 N
0.70m 0.35m

ˆ ˆ ˆ

ˆ ˆ ˆ

k k

k k

k k

   

   

   







      

   

      

F i

F i i i i

F i

i i i

i i i







 

 
13. The forces on each charge lie along a line connecting the charges.  Let the 

variable d represent the length of a side of the triangle.  Since the triangle 
is equilateral, each angle is 60o.  First calculate the magnitude of each 
individual force. 

     
 

     
 

6 6

9 2 21 2
12 22

6 6

9 2 21 3
13 22

7.0 10 C 8.0 10 C
8.988 10 N m C

1.20m

    0.3495N

7.0 10 C 6.0 10 C
8.988 10 N m C

1.20m

    0.2622 N

Q Q
F k

d

Q Q
F k

d

 

 

 
   



 
   



     
 

6 6

9 2 22 3
23 3222

8.0 10 C 6.0 10 C
8.988 10 N m C 0.2996 N

1.20m

Q Q
F k F

d

  
       

Now calculate the net force on each charge and the direction of that net force, using components.  
 

 

   
   

o o 2

1 12 13

o o 1

1 12 13

1
12 2 1 1

1 1 1 1 2

1

0.3495N cos60 0.2622 N cos60 4.365 10 N

0.3495N sin 60 0.2622 N sin 60 5.297 10 N

5.297 10 N
0.53N        tan tan 265

4.365 10 N

x x x

y y y

y

x y

x

F F F

F F F

F
F F F

F







 



       

       

 
      

 

 

  

   
 

o 1

2 21 23

o 1

2 21 23

1
22 2 1 1

2 2 2 2 1

2

0.3495N cos60 0.2996 N 1.249 10 N

0.3495N sin 60 0 3.027 10 N

3.027 10 N
0.33N        tan tan 112

1.249 10 N

x x x

y y y

y

x y

x

F F F

F F F

F
F F F

F







 



      

     


      

 

 

 

   
 

o 1

3 31 32

o 1

3 31 32

1
32 2 1 1

3 3 3 3 1

3

0.2622 N cos60 0.2996 N 1.685 10 N

0.2622 N sin 60 2.271 10 N

2.271 10 N
0.26 N        tan tan 53

1.685 10 N

0

x x x

y y y

y

x y

x

F F F

F F F

F
F F F

F







 



      

    


      



  

 
 

1Q

2Q 3Q

12F


d

13F


d

d
32F


31F


21F


23F

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14. (a) If the force is repulsive, both charges must be positive since the total charge is positive.  Call the  
total charge Q. 

   

 

       
 

2
21 11 2

1 2 1 12 2

2 2
2 2

1

2
26 61

2 9 2 2

              0

4 4

2 2

12.0N 1.16 m
   90.0 10 C 90.0 10 C 4

8.988 10 N m C

kQ Q QkQ Q Fd
Q Q Q F Q QQ

d d k

Fd Fd
Q Q Q Q

k kQ

 


       

   
 

    
 

 
 
  

 

   6 660.1 10 C , 29.9 10 C       

 (b) If the force is attractive, then the charges are of opposite sign.  The value used for F must then  
be negative.  Other than that, the solution method is the same as for part (a). 

   

 

       
 

2
21 11 2

1 2 1 12 2

2 2
2 2

1

2
26 61

2 9 2 2

6 6

              0

4 4

2 2

12.0N 1.16 m
   90.0 10 C 90.0 10 C 4

8.988 10 N m C

  106.8 10 C , 16.8 10 C

kQ Q QkQ Q Fd
Q Q Q F Q QQ

d d k

Fd Fd
Q Q Q Q

k kQ

 

 


       

   
 


    

 

   

 
 
  

 

 
15. Determine the force on the upper right charge, and then use the 

symmetry of the configuration to determine the force on the other three 
charges.  The force at the upper right corner of the square is the vector 
sum of the forces due to the other three charges.  Let the variable d  
represent the 0.100 m length of a side of the square, and let the variable 
Q  represent the 4.15 mC charge at each corner. 

  

2 2

41 41 412 2

2 2 2 2
o

42 42 422 2 2 2

2 2

43 43 432 2

     , 0

2 2
    cos45  , 

2 2 4 4

    0 , 

x y

x y

x y

Q Q
F k F k F

d d

Q Q Q Q
F k F k k F k

d d d d

Q Q
F k F F k

d d

   

    

   

 

 Add the x and y components together to find the total force, noting that 4 4x yF F . 

  
2 2 2

4 41 42 43 42 2 2

2 2
0 1

4 4
x x x x y

Q Q Q
F F F F k k k F

d d d
        

 
 
 

 

2 2
2 2

4 4 4 2 2

2 1
1 2 2

4 2
x y

Q Q
F F F k k

d d
     

   
   

  
 

41F
1Q

2Q 3Q

d

4Q

43F


42F

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   
 

23

9 2 2 7

2

4.15 10 C 1
    8.988 10 N m C 2 2.96 10 N

20.100m


      

 
 

 

41 o

4

tan 45y

x

F

F
    above the x-direction. 

For each charge, the net force will be the magnitude determined above, and will lie along the line 
from the center of the square out towards the charge. 

 
16. Determine the force on the upper right charge, and then use the symmetry of the configuration to 

determine the force on the other charges. 
 

The force at the upper right corner of the square is the vector sum of the 
forces due to the other three charges.  Let the variable d  represent the 
0.100 m length of a side of the square, and let the variable Q  represent 
the 4.15 mC charge at each corner. 

  

2 2

41 41 412 2

2 2 2 2
o

42 42 422 2 2 2

2 2

43 43 432 2

     , 0

2 2
    cos45  , 

2 2 4 4

    0 , 

x y

x y

x y

Q Q
F k F k F

d d

Q Q Q Q
F k F k k F k

d d d d

Q Q
F k F F k

d d

    

    

    

 

 Add the x and y components together to find the total force, noting that 4 4x yF F . 

  
2 2 2 2

4 41 42 43 42 2 2 2

2 2
0 1 0.64645

4 4
x x x x y

Q Q Q Q
F F F F k k k k F

d d d d
            

 
 
 

 

   
2 2

2 2

4 4 4 2 2
0.64645 2 0.9142x y

Q Q
F F F k k

d d
     

   
 

 
23

9 2 2 7

2

4.15 10 C
    8.988 10 N m C 0.9142 1.42 10 N

0.100m


      

41 o

4

tan 225y

x

F

F
    from the x-direction, or exactly towards the center of the square. 

For each charge, there are two forces that point towards the adjacent corners, and one force that 
points away from the center of the square.  Thus for each charge, the net force will be the magnitude 

of 71.42 10 N  and will lie along the line from the charge inwards towards the center of the square. 
 
17. The spheres can be treated as point charges since they are spherical, and so Coulomb’s law may be  

used to relate the amount of charge to the force of attraction.  Each sphere will have a magnitude Q  
of charge, since that amount was removed from one sphere and added to the other, being initially 
uncharged.  

  

 
2 2

1 2

2 2 9 2 2

7 12

19

1.7 10 N
    0.12 m

8.988 10 N m C

1 electron
                                           1.650 10 C 1.0 10 electrons

1.602 10 C

Q Q Q F
F k k Q r

r r k








    

 

   


 
 
 

 

41F


1Q

2Q 3Q

d

4Q

43F


42F

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x 

0Q Q
04Q

l 

l – x

Q Qq

d xd x

18.  The negative charges will repel each other, and so the third charge 
must put an opposite force on each of the original charges.  
Consideration of the various possible configurations leads to the 
conclusion that the third charge must be positive and must be between 
the other two charges.  See the diagram for the definition of variables.  
For each negative charge, equate the magnitudes of the two forces on the charge.  Also note that 
0 .x  l  

  

 

 

 

2 2

0 0 0 0
22 2 2

0 0 1
322

2 2

0 0 4
0 0 0922 2 2

4 4 4
left:         right:   

4
    

4 4
    4

3

Q Q Q Q Q Q
k k k k

x x

Q Q Q Q
k k x

x x

Q Q Q x
k k Q Q Q Q

x

  


  


    

l ll

l
l

l l

 

 Thus the charge should be of magnitude 4
09 Q , and a distance 1

0 03 from  towards 4Q Q l . 

 
19. (a) The charge will experience a force that is always pointing  

towards the origin.  In the diagram, there is a greater force of 

 2

04

Qq

d x 
to the left, and a lesser force of 

 2

04

Qq

d x 
to 

the right.  So the net force is towards the origin.  The same would be true if the mass were to the 
left of the origin.  Calculate the net force. 

   
       

   

       

2 2

net 2 2 2 2

2 2 2 2

0 0 0

0 0

4

4 4 4

     
4

Qq Qq Qq
F d x d x

d x d x d x d x

Qqd Qqd
x x

d x d x d x d x

  

 

     
   

 
 

   

  
 

  We assume that .x d  

   
   net 2 2 3

00

Qqd Qq
F x x

dd x d x 
 

 
 

 

This has the form of a simple harmonic oscillator, where the “spring constant” is elastic 3

0

.
Qq

k
d

   

The spring constant can be used to find the period.  See Eq. 14-7b. 

   
3

0

elastic
3

0

2 2 2
m m m d

T
Qqk Qq

d


  



    

(b) Sodium has an atomic mass of 23. 

   

       
 

327 12 2 2 103

0
219

12
13

29 1.66 10 kg 8.85 10 C N m 3 10 m
2 2

1.60 10 C

10 ps
2.4 10 s 0.24 ps 0.2 ps

1s

m d
T

Qq


 

  





  
 



   
 
 
 


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20. If all of the angles to the vertical (in both cases) are assumed to 
be small, then the spheres only have horizontal displacement, 
and so the electric force of repulsion is always horizontal.  
Likewise, the small angle condition leads to tan sin     
for all small angles.  See the free-body diagram for each sphere, 
showing the three forces of gravity, tension, and the 
electrostatic force.  Take to the right to be the positive 
horizontal direction, and up to be the positive vertical direction. Since the spheres are in equilibrium, 
the net force in each direction is zero. 

(a) 1 T1 1 E1 E1 T1 1sin 0    sinxF F F F F       

1 1
1 T1 1 1 T1 E1 1 1 1 1 1

1 1

cos         sin tan
cos cos

y

m g m g
F F m g F F m g m g   

 
         

A completely parallel analysis would give E2 2 2F m g .  Since the electric forces are a 

Newton’s third law pair, they can be set equal to each other in magnitude. 

   E1 E2 1 1 2 2 1 2 2 1        1F F m g m g m m          

 (b) The same analysis can be done for this case. 

   E1 E2 1 1 2 2 1 2 1 1        2F F m g m g m m          

 (c) The horizontal distance from one sphere to the other is  
s by the small angle approximation.  See the diagram.  Use the 
relationship derived above that EF mg  to solve for the distance. 

  Case 1:  1 2 1 12     
2

d
d        l l

l
    

   
  1/ 32

1 1 E1 2

2 4
    

2

kQ Q d kQ
m g F mg d

d mg
     

 
 
 

l

l
 

  Case 2:  1 2 1 1

3 2
    

2 3

d
d        l l

l
 

    
  1/ 32

1 1 E1 2

2 2 3
    

3

kQ Q d kQ
m g F mg d

d mg
     

 
 
 

l

l
 

 
21. Use Eq. 21–3 to calculate the force.  Take east to be the positive x direction. 

     19 16 16ˆ ˆ    1.602 10 C 1920 N C 3.08 10 N 3.08 10 N westq
q

            
F

E F E i i


  

 

  
22. Use Eq. 21–3 to calculate the electric field.  Take north to be the positive y direction. 

  
14

5 5

19

ˆ2.18 10 N ˆ1.36 10 N C 1.36 10 N C  south
1.602 10 Cq





 
      


F j

E j




   

 
23. Use Eq. 21–4a to calculate the electric field due to a point charge. 

   
 

6
9 2 2 7

22

33.0 10 C
8.988 10 N m C 1.10 10 N C up

0.164 m

Q
E k

r


        

 Note that the electric field points away from the positive charge. 
 

1m g


E1F


T1F


1

2m g


E2F


T2F


2

1sinl

l
1 2 l

2sinl
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24. Use Eq. 21–3 to calculate the electric field. 

  5

6

8.4 Ndown
9.5 10 N C up

8.8 10 Cq 
   

 

F
E




   

 
25. Use the definition of the electric field, Eq. 21-3. 

  
 4

6

ˆ7.22 10 N
ˆ172 N C

4.20 10 Cq






  



jF
E j




   

 
26. Use the definition of the electric field, Eq. 21-3. 

  
   

3

6

ˆ ˆ3.0 3.9 10 N
ˆ ˆ2400 3100 N C

1.25 10 Cq





 
   



i jF
E i j




   

 
27. Assuming the electric force is the only force on the electron, then Newton’s second law may be used  

to find the acceleration. 

  
 
   

19

14 2

net 31

1.602 10 C
    576 N C 1.01 10 m s

9.109 10 kg

q
m q a E

m






      


F a E
 

 

 Since the charge is negative, the direction of the acceleration is opposite to the field . 

 
28. The electric field due to the negative charge will point  

toward the negative charge, and the electric field due to the 
positive charge will point away from the positive charge.  
Thus both fields point in the same direction, towards the 
negative charge, and so can be added. 

 
   

 

 
 

 

1 2 1 2
1 2 1 22 22 2 2

1 2

9 2 2

6 6 7

2

4

/ 2 / 2

4 8.988 10 N m C
   8.0 10 C 5.8 10 C 7.8 10 N C

0.080m

Q Q Q Q k
E E E k k k k Q Q

r r

 

       

 
     

ll l

 

 The direction is towards the negative charge . 

 
29.   
 
 
 
 
 
 
 
 
30. Assuming the electric force is the only force on the electron, then Newton’s second law may be used  

to find the electric field strength. 

  
     

 
27 6 2

19

1.673 10 kg 1.8 10 9.80m s
    0.18N C

1.602 10 C
net

ma
F ma qE E

q





 
     


 

 

1 0Q 
2 0Q 

1E


2l 2E

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31. The field at the point in question is the vector sum of the two fields shown in Figure 21-56.  Use the 
results of Example 21-11 to find the field of the long line of charge. 

  

 

   

thread 2

0 0

2 2

0 0 0

2 22 2 1

2

0

1 1ˆ ˆ ˆ  ;  cos sin   
2 4

1 1 1ˆ ˆcos sin
4 2 4

12.0cm
0.070m 0.120m 0.0193m   ;  0.070m  ;  tan 59.7

7.0cm

1
cos 8.988 10

4

Q

x

Q

y d

Q Q

d y d

d y

Q
E

d


 

 


 

  








    

   

      

    

   
   
   

E j E i j

E i j

 



   

     

   

9 2 2 11

2

2 2

0 0 0

9 2 2 11

2

11 11

2 2

2.0C
N m C cos59.7 4.699 10 N C

0.0193m

1 1 1 2
sin sin

2 4 4

2 2.5C m 2.0C
    8.988 10 N m C sin59.7 1.622 10 N C

0.070cm 0.0193m

ˆ ˆ4.7 10 N C 1.6 10 N C

y

x y

Q Q
E

y d y d

E E E

 
 

  

    

   

       

     

 

 
 
 

 
 
 

E i j


   
 
 

2 211 11 11

11

1

11

4.699 10 N C 1.622 10 N C 5.0 10 N C

1.622 10 N C
tan 199

4.699 10 N C
E



       

 
  

 
  

 
32. The field due to the negative charge will point towards  

the negative charge, and the field due to the positive charge 
will point towards the negative charge.  Thus the 
magnitudes of the two fields can be added together to find 
the charges. 

  
 

   
 

22
10

net 2 2 9 2 2

586 N C 0.160m8
2 2     2.09 10 C

8 8 8.988 10 N m C/ 2
Q

Q kQ E
E E k Q

k
       

 
l

ll
 

 
33. The field at the upper right corner of the square is the vector sum of  

the fields due to the other three charges.  Let the variable l  represent 
the 1.0 m length of a side of the square, and let the variable Q  represent 
the charge at each of the three occupied corners. 

  

1 1 12 2

o

2 2 22 2 2 2

3 3 12 2

     , 0

2 2
    cos45  , 

2 2 4 4

    0 , 

x y

x y

x y

Q Q
E k E k E

Q Q Q Q
E k E k k E k

Q Q
E k E E k

   

    

   

l l

l l l l

l l

 

 Add the x and y components together to find the total electric field, noting that x yE E . 

QE


Q

2l
QE


Q

1E


3E


2E


1Q

2Q 3Q

l
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  1 2 3 2 2 2

2 2
0 1

4 4
x x x x y

Q Q Q
E E E E k k k E        

 
 
 l l l

 

2 2

2 2

2 1
1 2 2

4 2
x y

Q Q
E E E k k     

   
  
  l l

 

   
 

6

9 2 2 4

2

2.25 10 C 1
   8.988 10 N m C 2 2.60 10 N C

21.22m


      

 
 

 

1tan 45.0y

x

E

E
     from the x-direction. 

 
34. The field at the center due to the two 27.0 C negative charges 

on opposite corners (lower right and upper left in the diagram) 
will cancel each other, and so only the other two charges need to 
be considered.  The field due to each of the other charges will 
point directly toward the charge.  Accordingly, the two fields are 
in opposite directions and can be combined algebraically. 

1 2 1 2
1 2 2 2 22 2 2

Q Q Q Q
E E E k k k


    

l l l

   
 

6
9 2 2

2

6

38.6 27.0 10 C
   8.988 10 N m C

0.525m 2

7.57 10 N C, towards the 38.6 C charge   

 
  

  

 

 
35. Choose the rightward direction to be positive.  Then the field due to +Q will be positive, and the  

field due to –Q will be negative. 

  
         2 2 2 2 22 2

1 1 4Q Q kQxa
E k k kQ

x a x a x a x a x a


    

    

 
  
 

 

 The negative sign means the field points to the  left . 
 

36. For the net field to be zero at point P, the magnitudes of the fields created by 1Q  and 2Q  must be  

equal.  Also, the distance x  will be taken as positive to the left of 1Q .  That is the only region where 

the total field due to the two charges can be zero.  Let the variable l  represent the 12 cm distance, 
and note that 1

1 22
Q Q . 

 
 

     

1 2
1 2 22

1

2 1

      

25 C
12cm 35cm

45 C 25 C

Q Q
k k

x x

Q
x

Q Q



 

   


  


E E
l

l

 

 

 
 

2Q

1 38.6 CQ  

l

2Q

1E


2E


2 27.0 CQ  
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AE


Q

l

l

l

Q

BE


A

B

37. Make use of Example 21-11.  From that, we see that the electric field due to the line charge along the 

y axis is 1

0

1 ˆ.
2 x




E i


  In particular, the field due to that line of charge has no y dependence.  In a 

similar fashion, the electric field due to the line charge along the x axis is 2

0

1 ˆ.
2 y




E j


  Then the 

total field at  ,x y is the vector sum of the two fields. 

  

1 2

0 0 0

2 2 1 1 10

2 2

0 0

0

1 1 1 1ˆ ˆ ˆ ˆ
2 2 2

1

1 1 2
  ;  tan tan tan

12 2
2

y

x

x y x y

E xy
E x y

x y xy E y
x

  
  


  


 



  

     

      

 
 
 

E E E i j i j
  

 

 
38. (a) The field due to the charge at A will point straight downward, and  

the field due to the charge at B will point along the line from A to  
the origin, 30o below the negative x axis. 

A A A2 2

o

B B2 2 2

o

B 2 2

A B A B2 2

2 2 2 2 2 2
2 2

4 4 4 2

    0 , 

3
    cos30 ,

2

                        sin 30
2

3 3
       

2 2

3 9 12 3

4 4 4

t

x x

x

y

x x x y y y

x y

Q Q
E k E E k

Q Q Q
E k E k k

Q Q
E k k

Q Q
E E E k E E E k

k Q k Q k Q kQ
E E E



    

     

   

       

     



l l

l l l

l l

l l

l l l l

2
1 1 1 1 o

2

3
32an tan tan tan 3 240

3 3

2

y

x

Q
kE

E Q
k

   
 

   




l

l

 

 (b) Now reverse the direction of AE


 

   

A A A2 2

o o

B B B2 2 2 2 2

A B A B2 2

    0 , 

3
    cos30  , sin 30

2 2

3
       

2 2

x x

x y

x x x y y y

Q Q
E k E E k

Q Q Q Q Q
E k E k k E k k

Q Q
E E E k E E E k

    

     

      

l l

l l l l l

l l

 

2 2 2 2 2 2
2 2

4 4 4 2

3 4

4 4 4
x y

k Q k Q k Q kQ
E E E     

l l l l
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2
1 1 1 o

2

12tan tan tan 330
3 3

2

y

x

Q
kE

E Q
k

      




l

l

 

 
39. Near the plate, the lines should come from it almost vertically, 

because it is almost like an infinite line of charge when the 
observation point is close.  When the observation point is far 
away, it will look like a point charge. 

 
 
 
 
 
40. Consider Example 21-9.  We use the result from this example, but 

shift the center of the ring to be at 1
2x  l  for the ring on the right, 

and at 1
2x   l  for the ring on the left.  The fact that the original 

expression has a factor of x results in the interpretation that the sign 
of the field expression will give the direction of the field.  No special 
consideration needs to be given to the location of the point at which 
the field is to be calculated. 

  
 

 
 

 

 
 

 
 

right left

1 1
2 2

/ 2 / 22 22 21 10 0
2 2

1 1
2 2

/ 2 / 22 22 21 10
2 2

1 1ˆ ˆ  
4 4

ˆ  
4

Q x Q x

x R x R

x xQ

x R x R

 



 

 

 

 
 

   

 
 

   

      
 
 
 
        

E E E

i i

i

l l

l l

l l

l l

  

 

 
41. Both charges must be of the same sign so that the electric fields created by the two charges oppose 

each other, and so can add to zero.  The magnitudes of the two electric fields must be equal. 

  
   

1 2 2 1
1 2 12 2

2

9 1
        9     

4 43 2 3

Q Q Q Q
E E k k Q

Q
      

l l
 

 

42. In each case, find the vector sum of the field caused by the charge on the left  leftE


 and the field 

caused by the charge on the right  rightE


 
 

Point A:  From the symmetry of the geometry, in 
calculating the electric field at point A only the vertical 
components of the fields need to be considered.  The 
horizontal components will cancel each other. 

   

1

2 2

5.0
tan 26.6

10.0

5.0cm 10.0cm 0.1118md

   

  

d



leftE


Q Q

leftE


rightE




d

A

+ + + + +

R R

O 
1
2 l

1
2 l

x

y
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  
 

6
9 2 2 6

A A22

5.7 10 C
2 sin 2 8.988 10 N m C sin 26.6 3.7 10 N C      90

0.1118m

kQ
E

d
 


          

 Point B:  Now the point is not symmetrically placed, and 
so horizontal and vertical components of each individual 
field need to be calculated to find the resultant electric 
field. 

     

   

1 1

left right

2 2

left

2 2

right

5.0 5.0
tan 45           tan 18.4

5.0 15.0

5.0cm 5.0cm 0.0707 m

5.0cm 15.0cm 0.1581m

d

d

       

  

  

 

  

   

   
   

   

left right left right2 2

left right

9 2 2 6 6

2 2

left right left right2 2

left right

cos cos

cos45 cos18.4
    8.988 10 N m C 5.7 10 C 5.30 10 N C

0.0707 m 0.1581m

sin sin

    8.988 10

x x x

y y y

Q Q
E k k

d d

Q Q
E k k

d d

 

 



   

 
      

   

 

 
 
 

E E

E E

 

 

   
   

9 2 2 6 6

2 2

2 2 6 1

B

sin45 sin18.4
N m C 5.7 10 C 7.89 10 N C

0.0707 m 0.1581m

9.5 10 N C           tan 56y

x y B

x

E
E E E

E






 
    

      

 
 
 

 

 The results are consistent with Figure 21-34b.  In the figure, the field at Point A points straight up, 
matching the calculations.  The field at Point B should be to the right and vertical, matching the 
calculations.  Finally, the field lines are closer together at Point B than at Point A, indicating that the 
field is stronger there, matching the calculations. 

 
43. (a) See the diagram.  From the symmetry of the charges, we see that  

the net electric field points along the y axis. 

      3/ 22 2 2 2
0 0

ˆ ˆ2 sin
4 2

Q Qy

y y


 
 

 
E j j

l l


 

 (b) To find the position where the magnitude is a maximum, set the  
first derivative with respect to y equal to 0, and solve for the y 
value. 

   
 3/ 22 2

0

  
2

Qy
E

y
 

l
 

   
 

 
 

 

   

3
23/ 2 5/ 22 2 2 2

0 0

2
2 21

23/ 2 5/ 22 2 2 2

2 0  
2 2

1 3
       2

dE Q Qy
y

dy y y

y
y y

y y

 
    

 

     
 

l l

l l

l l

 


r

E

+ xQ
+

y

Q

y

¬ ¬

E1 E2



rightE
 leftE



leftd

QQ left right

rightd
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This has to be a maximum, because the magnitude is positive, the field is 0 midway between the 
charges, and 0E   as .y   

 

44. From Example 21-9, the electric field along the x-axis is 
 

3
22 2

0

1

4

Qx
E

x a



.  To find the position 

where the magnitude is a maximum, we differentiate and set the first derivative equal to zero. 

   
   

 

 

3 1
2 2

5
2

5
2

2 2 2 23
2 2 2 2

32 2 2 2
0

0

2 2

2 2

0

2
3

4 4

     2 0    
24

M

x a x x a xdE Q Q
x a x

dx x a x a

Q a
a x x

x a

 



  
   

 

     


  

  

 

Note that 0E   at 0x   and x   , and that 0E   for 0 x   .  Thus the value of the magnitude 

of E at Mx x  must be a maximum.  We could also show that the value is a maximum by using the 

second derivative test. 
 
45. Because the distance from the wire is much smaller than the length of the wire, we can approximate 

the electric field by the field of an infinite wire, which is derived in Example 21-11. 

    

6

62
9

2 2

0 0

4.75 10 C
2

1.8 10 N C,2.0m1 1 2 N m
8.988 10

2 4 C 2.4 10 m away from the wire
E

x x

 
 








    


 
    

 
 


  

 
46. This is essentially Example 21-11 again, but with different limits of 

integration.  From the diagram here, we see that the maximum 

angle is given by 
 22

2
sin .

2x
 



l

l

  We evaluate the results at 

that angle. 

   
 

 22

22

2
sin

2

20 sin
2

sin
4

x

x

E
x




















l

l

l

l

 

  
       1/ 22 2 2 2 22 2 2

0 0
0

2 2
   

4 2 42 2 4 2x x xx x x x

  
 

    
  

  
  
    

l l l l

ll l l

 

 
47. If we consider just one wire, then from the answer to problem 46, we 

would have the following.  Note that the distance from the wire to the 

point in question is  22 2 .x z  l  

  
    wire 1/ 22 22 2 2

02 2 4 2
E

z z





    

l

l l l

 

 But the total field is not simply four times the above expression, 
because the fields due to the four wires are not parallel to each other. 

  

  

 

  

 

z   
 

2l2l

 22 2z  l

right
wire

E left
wire

E



x
x 

 
r 

P

l

dqdy

dE


y

y
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Consider a side view of the problem.  The two dots represent two parallel wires, on opposite sides of 
the square.  Note that only the vertical component of the field due to each wire will actually 
contribute to the total field.  The horizontal components will cancel. 

     
 

wire wire wire 22
4 cos 4

2

z
E E E

z
 

 l
 

  
      

   

wire 1/ 2 22 2 22 2 2
0

1/ 22 2 2 2

0

4
2 22 4 2

8

4 4 2
      

z
E

zz z

z

z z









  


 

 
 
    

l

ll l l

l

l l

  

The direction is vertical, perpendicular to the loop. 
 
48. From the diagram, we see that the x components of the two fields will cancel each other at the point 

P.  Thus the net electric field will be in the negative 
y-direction, and will be twice the y-component of 
either electric field vector. 

 

 

net 2 2

1/ 22 2 2 2

3 / 22 2

2 sin 2 sin

2
      

2
      in the negative  direction

kQ
E E

x a

kQ a

x a x a

kQa
y

x a

  



 




 
49. Select a differential element of the arc which makes an 

angle of   with the x axis.  The length of this element 
is ,Rd  and the charge on that element is .dq Rd    
The magnitude of the field produced by that element is 

2

0

1
.

4

Rd
dE

R

 


   From the diagram, considering 

pieces of the arc that are symmetric with respect to the x 
axis, we see that the total field will only have an x 
component.  The vertical components of the field due to 
symmetric portions of the arc will cancel each other.  
So we have the following. 

horizontal 2

0

1
cos

4

Rd
dE

R

 





   
0 0

0 0

0
horizontal 0 02

0 0 0 0

1 2 sin
cos cos sin sin

4 4 4 4

Rd
E d

R R R R

 

 

     
    

    

        

 The field points in the negative x direction, so 0

0

2 sin

4
ˆE

R

 


  i  

 

 x 

QE



Q

Q

a

a
QE


 

  

  

  

    

   

x 

topdE


bottomdE


Rd
R



0
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50. (a) Select a differential element of the arc which makes an  
angle of  with the x axis.  The length of this element 
is ,Rd  and the charge on that element is .dq Rd   
The magnitude of the field produced by that element is 

2

0

1
.

4

Rd
dE

R

 


  From the diagram, considering 

pieces of the arc that are symmetric with respect to the 
x axis, we see that the total field will only have a y 
component, because the magnitudes of the fields due 
to those two pieces are the same.  From the diagram 
we see that the field will point down.  The horizontal components of the field cancel.  

    

 

20
vertical 2

0 0

/ 2 / 2
/ 22 20 0 0 1 1

vertical 2 4 / 2

0 0 0/ 2 / 2

0 0 01
2

0 0 0

1
sin sin

4 4

sin sin sin 2
4 4 4

ˆ             
4 8 8

Rd
dE d

R R

E d d
R R R

R R R

 



 

  
  

 

  
     

  

  


  


 

 

   

    

 

E j


 

 (b) The force on the electron is given by Eq. 21-3.  The acceleration is found from the force. 

   
   

     

0

0

19 6

0 0

31 12 2 2

0 0

17 2

ˆ  
8

1.60 10 C 1.0 10 C m
ˆ ˆ ˆ

8 8 8 9.11 10 kg 8.85 10 C N m 0.010 m

ˆ  2.5 10 m s

q
m q

R

q e

m R m R




 
 

 

 

    

 
   

 

 

F a E j

a j j j

j

 




 

 
51. (a) If we follow the first steps of Example 21-11, and refer to Figure 21-29, then the differential  

electric field due to the segment of wire is still  2 2

0

1
.

4

dy
dE

x y







  But now there is no 

symmetry, and so we calculate both components of the field. 

   
   

   

3 / 22 2 2 2
0 0

3 / 22 2 2 2
0 0

1 1
cos cos

4 4

1 1
sin sin

4 4

x

y

dy x dy
dE dE

x y x y

dy y dy
dE dE

x y x y

 
 

 

 
 

 

  
 

     
 

 

  The anti-derivatives needed are in Appendix B4. 

   
   3 / 2 3 / 2 2 2 22 2 2 2

0 0 00 0 0

2 2

0
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x

x dy x dy x y
E

x x yx y x y

x x

  
  





  
 




 
  
 

 
l

l l

l

l

 

 

  
     

d E


d E

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   

 

3 / 2 3 / 2 2 22 2 2 2
0 0 00 0 0

2 2

2 2 2 2
0 0

1 1

4 4 4

1 1
    

4 4

y

y dy y dy
E

x yx y x y

x x
xx x x

  
  

 
 


     

 

    
 

 
  
 

 
 
 

 
l

l l

l

l l

 

  Note that 0,yE  and so the electric field points to the right and down. 

 (b) The angle that the electric field makes with the x axis is given as follows. 

   

 2 2

2 2 22 2

0

2

2 2

0

4
tan 1

4

y

x

x x
E x x x xx x

E

x x










 
 

     



l

ll

l l l l

l

 

As , l  the expression becomes tan 1   , and so the field makes an angle of 

45  below the  axis .x  
 

52. Please note:  the first printing of the textbook gave the length of the charged wire as 6.00 m, but it 
should have been 6.50 m.  That error has been corrected in later printings, and the following solution 
uses a length of 6.50 m. 
(a) If we follow the first steps of Example 21-11, and refer to Figure 21-29, then the differential  

electric field due to the segment of wire is still  2 2

0

1
.

4

dy
dE

x y







  But now there is no 

symmetry, and so we calculate both components of the field. 

   
   

   

3 / 22 2 2 2
0 0

3 / 22 2 2 2
0 0

1 1
cos cos

4 4

1 1
cos sin

4 4

x

y

dy x dy
dE dE

x y x y

dy y dy
dE dE

x y x y

 
 

 

 
 

 

  
 

     
 

 

  The anti-derivatives needed are in Appendix B4. 
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  
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  
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   

 
 

   
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max max

min min
min
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 

 
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 

 

 
 
 
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 (b) We calculate the infinite line of charge result, and calculate the errors. 
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y

E
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E E

E

E

E

 
 


     

  
  


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
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 
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

 

And so we see that xE is only about 0.3% away from the value obtained from the infinite line of 

charge, and yE  is only about 2% of the value obtained from the infinite line of charge.  The 

field of an infinite line of charge result would be a good approximation for the field due to this 
wire segment. 

 
53. Choose a differential element of the rod dx a 

distance x  from the origin, as shown in the 
diagram.  The charge on that differential element is 

.
Q

dq dx
l

  The variable x  is treated as positive, 

so that the field due to this differential element is 
   2 2

0 0

1
.

4 4

dq Q dx
dE

x x x x 


 

  l
  Integrate 

along the rod to find the total field. 

  
   

 

2 2
00 0 0 00 0

0

1 1 1

4 4 4 4

4
   

Q dx Q dx Q Q
E dE

x x x xx x x x

Q

x x

   



 
      

    




   
   
     

l l

l l l l l

l

l

 

 
 
 

x

y

x
O dE



dx

dq

x
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54. As suggested, we divide the plane into long narrow strips of width dy and length l.  The charge on 
the strip is the area of the strip times the charge per unit area: .dq dy l   The charge per unit length 

on the strip is .
dq

dy  
l

  From Example 21-11, the field due to that narrow strip is 

2 2 2 2

0 0

.
2 2

dy
dE

y z y z

 

 
 

 
  From Figure 21-68 in the textbook, we see that this field 

does not point vertically.  From the symmetry of the plate, there is another long narrow strip a 
distance y on the other side of the origin, which would create the same magnitude electric field.  The 
horizontal components of those two fields would cancel each other, and so we only need calculate 
the vertical component of the field.  Then we integrate along the y direction to find the total field. 

  

 

   

   

2 22 2
00

1

2 2 2 2

0 0 0

1 1

0 0 0

  ;  cos
22

1
tan

2 2 2

   tan tan
2 2 2 2 2

z

z

dy zdy
dE dE dE

y zy z

zdy z dy z y
E E

y z y z z z

 




  
  

   
  

 


 

 

  


   
 

       

 
 
 

          

   

 
55. Take Figure 21-28 and add the angle  , measured from the –z axis, 

as indicated in the diagram.  Consider an infinitesimal length of the 
ring .ad   The charge on that infinitesimal length is  dq ad   

  .
Q Q

ad d
a

 
 

    The charge creates an infinitesimal electric 

field, ,d E


 with magnitude 
2

1

4

dq
dE

r
  

2 2

1
.

4

Q
d

x a








  From the 

symmetry of the figure, we see that the z component of d E


 will be cancelled by the z component 
due to the piece of the ring that is on the opposite side of the y axis.  The trigonometric relationships 
give cosxdE dE   and sin sin .ydE dE      The factor of sin  can be justified by noting that 

0ydE   when 0,   and sinydE dE    when 2.   

  

 

   

 

   
 

3/ 22 2 2 22 2 2 2

3/ 2 3/ 22 2 2 2 2
0

3/ 22 2 2 2 2 2 2 2

3/ 2 3/ 22 2 2 2 2 2
0

cos
4 4

4 4

sin sin sin sin
4 4

sin cos
4 4

x

x

y

y

Q d x Qx d
dE dE

x a x a x a

Qx Qx
E d

x a x a

Q d a Qa
dE dE d

x a x a x a

Qa Qa
E d

x a x a





 


   


  


    

   

  
   

 

 

 

 

  
  

 
 

     
  

     
 



   cos0

 

x

y 



a 

z

 r 
P

ad

dE

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 3/ 22 2 2

2

4
    

Qa

x a 
 


 

 We can write the electric field in vector notation. 

  
     3/ 2 3/ 2 3/ 22 2 2 2 2 2 2

0

2 2ˆ ˆ ˆ ˆ
4 4 4

Qx Qa Q a
x

x a x a x a     

   
  

 
 
 

E i j i j


 

 
56. (a)   Since the field is uniform, the electron will experience a constant force in the direction opposite  

to its velocity, so the acceleration is constant and negative.  Use constant acceleration 
relationships with a final velocity of 0. 

      
   

2 2

0

231 62 2 2

0 0 0

19 3

      ;  2 0  

9.11 10 kg 27.5 10 m s
0.189m

2 2 2 1.60 10 C 11.4 10 N C2

eE
F ma qE eE a v v a x

m

v v mv
x

eEa eE
m





           

 
       

  
 
 

 

(b) Find the elapsed time from constant acceleration relationships.  Upon returning to the original  
position, the final velocity will be the opposite of the initial velocity. 

     
   

0

31 6

80 0 0

19 3

  

2 9.11 10 kg 27.5 10 m s2 2
2.75 10 s

1.60 10 C 11.4 10 N C

v v at

v v v mv
t

eEa eE
m







  

  
     

  
 
 

 

 
57. (a) The acceleration is produced by the electric force. 

  
 
     

net

19

4 15 16 2

31

15 2 16 2

  

1.60 10 C
ˆ ˆ ˆ ˆ2.0 8.0 10 N C 3.513 10 1.405 10 m s

9.11 10 kg

ˆ ˆ3.5 10 m s 1.4 10 m s

m q e

e

m





    


          



    

  

F a E E

a E i j i j

i j

  


 

(b) The direction is found from the components of the velocity. 

  

     
 

4 15 16 2 9

6 7

7
1 1

6

ˆ ˆ ˆ8.0 10 m s 3.513 10 1.405 10 m s 1.0 10 s

ˆ ˆ   3.513 10 1.397 10 m s

1.397 10 m s
tan tan 256 or 104

3.513 10 m s
y

x

t

v

v



 

         

    

 
    

 

  

 
 
 

v v a j i j

i j

 

 

 This is the direction relative to the x axis.  The direction of motion relative to the initial 
direction is measured from the y axis, and so is 166   counter-clockwise from the initial 
direction. 

 
58. (a) The electron will experience a force in the opposite direction to the electric field.  Since the  

electron is to be brought to rest, the electric field must be in the same direction as the initial 
velocity of the electron, and so is to the  right . 

(b) Since the field is uniform, the electron will experience a constant force, and therefore have a 
constant acceleration.  Use constant acceleration relationships to find the field strength. 
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   2 2 2

0 0              2 2   
qE qE

F qE ma a v v a x v x
m m

            

   
     

   
 

22 2 31 52
0 0

19

9.109 10 kg 7.5 10 m s
40 N C  2 sig. fig.

2 2 2 1.602 10 C 0.040m

m v v mv
E

q x q x





  
    

   
 

 
59. The angle is determined by the velocity.  The x component of the velocity is constant.  The time to 

pass through the plates can be found from the x motion.  Then the y velocity can be found using 
constant acceleration relationships. 

  
     

   
 

0 0

0 0

19 3

0
22 31 7

0 0

1

      ;  

1.60 10 C 5.0 10 N C 0.049 m
tan .4303  

9.11 10 kg 1.00 10 m s

tan 0.4303 23

y y y

y

x

x eE x
x v t t v v a t

v m v

eE x

v eExm v

v v mv










      


 

        
 

    

  

 
60. Since the field is constant, the force on the electron is constant, and so the acceleration is constant.  

Thus constant acceleration relationships can be used.  The initial conditions are 0 0,x   0 0,y   

0 1.90m s,xv   and 0 0.yv   

  
       

   

   

2 21
0 0 02

19 11
2

31

19 11

2 21
0 0 2

      ;   , 

2

1.60 10 C 2.00 10 N C
1.90m s 2.0s 2.0s 3.2 m

2 9.11 10 kg

1.60 10 C 1.20 10 N C

2 2 9.11 1

  

x x y y

x
x x x

y

y y

q e e e
m q a E a E

m m m m

eE
x x v t a t v t t

m

eE
y y v t a t t

m

 



 

         

    

 
   



  
      



F a E a E E
    

   2

31
2.0s 4.2 m

0 kg


 

 
61. (a) The field along the axis of the ring is given in Example 21-9, with the opposite sign because this  

ring is negatively charged.  The force on the charge is the field times the charge q.  Note that if 
x is positive, the force is to the left, and if x is negative, the force is to the right.  Assume that 

.x R   

   
 

   3/ 2 3/ 22 2 2 2
0 0 0

3

1

4 4 4

Q xq qQx qQx
F qE

x R x R R  
  

 
 

   

This has the form of a simple harmonic oscillator, where the “spring constant” is 

elastic 3

0

.
4

Qq
k

R
  

(b)   The spring constant can be used to find the period.  See Eq. 14-7b. 

   
3 3

0 0

elastic
3

0

4
2 2 2 4

4

m m m R m R
T

Qqk Qq Qq
R

 
   



     
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62. (a) The dipole moment is given by the product of the positive charge and the separation distance. 

      19 9 28 281.60 10 C 0.68 10 m 1.088 10 C m 1.1 10 C mp Q            l  

 (b) The torque on the dipole is given by Eq. 21-9a. 

        28 4 24sin 1.088 10 C m 2.2 10 N C sin 90 2.4 10 C mpE            

 (c)      28 4 24sin 1.088 10 C m 2.2 10 N C sin 45 1.7 10 N mpE            

 (d) The work done by an external force is the change in potential energy.  Use Eq. 21-10. 

   
     

      
final initial initial final

28 4 24

cos cos cos cos

1.088 10 C m 2.2 10 N C 1 1 4.8 10 J   

W U pE pE pE   
 

       

      
 

 
63. (a) The dipole moment is the effective charge of each atom times the separation distance. 

   
30

20

10

3.4 10 C m
    3.4 10 C

1.0 10 m

p
p Q Q







     

l
l


 

(b) 
20

19

3.4 10 C
0.21

1.60 10 C

Q

e






 


  No, the net charge on each atom is not an integer multiple of e.  This 

is an indication that the H and Cl atoms are not ionized – they haven’t fully gained or lost an 
electron.  But rather, the electrons spend more time near the Cl atom than the H atom, giving the 
molecule a net dipole moment.  The electrons are not distributed symmetrically about the two 
nuclei. 

 (c) The torque is given by Eq. 21-9a. 

      30 4 26

maxsin 3.4 10 C m 2.5 10 N C 8.5 10 N m    pE pE              

 (d) The energy needed from an external force is the change in potential energy.  Use Eq. 21-10. 

   
     

    
final initial initial final

30 4 26

cos cos cos cos

3.4 10 C m 2.5 10 N C 1 cos45 2.5 10 J   

W U pE pE pE   
 

       

      
 

 
64. (a) From the symmetry in the diagram, we see that the resultant field  

will be in the y direction.  The vertical components of the two 
fields add together, while the horizontal components cancel. 

  
   

   

1/ 22 2 2 2
0

3/ 2 3 22 2
0 00

net 2 sin 2
4

2 2 2

4 44
   

Q r
E E

r r

Qr Qr Q

r rr




 

 
 

  


l l

l

 

(b) Both charges are the same sign.  A long distance away from the  

charges, they will look like a single charge of magnitude 2 ,Q  and so 
2 2

0

2
.

4

q Q
E k

r r
   

 
65. (a) There will be a torque on the dipole, in a direction to decrease .   That torque will give the  

dipole an angular acceleration, in the opposite direction of .  

   
2

2
sin     sin

d pE
pE I

dt I


            

x+   + 

     

 

r  

Q  Q 

¬    ¬  

y 

E


E

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If   is small, so that sin ,  then the equation is in the same form as Eq. 14-3, the equation 
of motion for the simple harmonic oscillator. 

   
2 2

2 2
sin 0    

d pE pE d pE

dt I I dt I

 
         

 (b) The frequency can be found from the coefficient of   in the equation of motion. 

   2 1
    

2

pE pE
f

I I



    

 
66. If the dipole is of very small extent, then the potential energy is a function of position, and so Eq. 21-

10 gives    .U x x p E
   Since the potential energy is known, we can use Eq. 8-7. 

   x

dU d d
F x

dx dx dx
       

E
p E p


    

 Since the field does not depend on the y or z coordinates, all other components of the force will be 0. 

 Thus ˆ ˆ .x

d
F

dx
 

 
 
 

E
F i p i


   

 
67. (a) Along the x axis the fields from the two charges are  

parallel so the magnitude is found as follows. 

 
 
 

   
   

net 2 21 1
2 20 0

2 21 1
2 2

2 21 1
2 20

4 4

     
4

Q Q

QQ
E E E

r r

Q r r

r r

 



 


   

 

  


 

  

l l

l l

l l

 

 
   

 
2 2 4 3 31 1

0 0 02 20

2 2 2 1 2
      

4 4 44

Q r Q r Q p

r r rr r   
   

 

l l l

l l
 

  The same result is obtained if the point is to the left of .Q  

 (b) The electric field points in the same direction as the dipole moment vector. 
 
68. Set the magnitude of the electric force equal to the magnitude of the force of gravity and solve for  

the distance. 

  

   
  

2

E G 2

9 2 2

19

31 2

      

8.988 10 N m C
1.602 10 C 5.08m

9.11 10 kg 9.80m s

e
F F k mg

r

k
r e

mg




   

 
   



 

 
69. Water has an atomic mass of 18, so 1 mole of water molecules has a mass of 18 grams.  Each water 

molecule contains 10 protons. 

  
23 19

926.02 10 H O molecules 10protons 1.60 10 C
65kg 3.5 10 C

0.018kg 1 molecule proton

 
 

    
        

 

 
 
 

 

– +  r 
– Q     + Q  

y 

¬   

 rE

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70. Calculate the total charge on all electrons in 3.0 g of copper, and compare 38 C  to that value. 

  
23 19

51mole 6.02 10 atoms 29e 1.602 10 C
Total electron charge 3.0g 1.32 10 C

63.5g mole atoms 1 e

 
  

     
          

 

  
6

10

5

38 10 C
Fraction lost 2.9 10

1.32 10 C




  


 

 
71. Use Eq. 21-4a to calculate the magnitude of the electric charge on the Earth. 

  
   262

5

2 9 2 2

150 N C 6.38 10 m
    6.8 10 C

8.988 10 N m C

Q Er
E k Q

r k


     

 
 

 Since the electric field is pointing towards the Earth’s center, the charge must be  negative . 
 
72. (a) From problem 71, we know that the electric field is pointed towards the Earth’s center.  Thus an  

electron in such a field would experience an upwards force of  magnitude EF eE .  The force 

of gravity on the electron will be negligible compared to the electric force. 

     
 

E

19

13 2 13 2

31

  

1.602 10 C 150 N C
2.638 10 m s 2.6 10 m s , up

9.11 10 kg

F eE ma

eE
a

m





  


     



 

 (b) A proton in the field would experience a downwards force of magnitude EF eE .  The force of  

gravity on the proton will be negligible compared to the electric force.  

     
 

E

19

10 2 10 2

27

  

1.602 10 C 150 N C
1.439 10 m s 1.4 10 m s , down

1.67 10 kg

F eE ma

eE
a

m





  


     



 

(c) Electron: 
13 2

12

2

2.638 10 m s
2.7 10

9.80m s
;

a

g


      Proton:   

10 2
9

2

1.439 10 m s
1.5 10

9.80m s

a

g


     

 
73. For the droplet to remain stationary, the magnitude of the electric force on the droplet must be the 

same as the weight of the droplet.  The mass of the droplet is found from its volume times the density 
of water.  Let n be the number of excess electrons on the water droplet. 

      
  

34
E 3

35 3 3 23
6 7

19

      

4 1.8 10 m 1.00 10 kg m 9.80m s4
9.96 10 1.0 10 electrons

3 3 1.602 10 C 150 N C

F q E mg neE r g

r g
n

eE

 

 




    

 
     



 

 
74. There are four forces to calculate.  Call the rightward direction the positive direction.  The value of k  

is 9 2 28.988 10 N m C   and the value of e is 191.602 10 C . 

  
   
         net CH CN OH ON 2 2 2 2 29

0.40 0.20 1 1 1 1

0.30 0.40 0.18 0.281 10 m

k e e
F F F F F


        



 
 
 

 

  10 10     2.445 10 N 2.4 10 N      
 
 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

28 

75. Set the Coulomb electrical force equal to the Newtonian gravitational force on one of the bodies (the  
Moon). 

     
 

2

Moon Earth
E G 2 2

orbit orbit

11 2 2 22 24

13Moon Earth

9 2 2

      

6.67 10 N m kg 7.35 10 kg 5.98 10 kg
5.71 10 C

8.988 10 N m C

M MQ
F F k G

r r

GM M
Q

k



   

  
   

 


 

 
76. The electric force must be a radial force in order for the electron to move in a circular orbit. 

  

   
   

2 2

E radial 2

orbit orbit

2192
9 2 2 11

orbit 22 31 6

      

1.602 10 C
8.988 10 N m C 5.2 10 m

9.109 10 kg 2.2 10 m s

Q mv
F F k

r r

Q
r k

mv







   


     

 

 

 
77. Because of the inverse square nature of the electric field,  

any location where the field is zero must be closer to the 
weaker charge  2Q .  Also, in between the two charges, 

the fields due to the two charges are parallel to each other and cannot cancel.  Thus the only places 
where the field can be zero are closer to the weaker charge, but not between them.  In the diagram, 
this means that l must be positive. 

 
 2 22 1

2 122
0      

Q Q
E k k Q d Q

d
       


l

l l
l  

 
6

22

5 6
11 2

1.6m from ,5.0 10 C
2.0m

3.6m from 2.5 10 C 5.0 10 C

QQ
d

QQ Q



 


  

   
l  

 
78. We consider that the sock is only acted on by two forces – the force of gravity, acting downward, 

and the electrostatic force, acting upwards.  If charge Q is on the sweater, then it will create an 

electric field of 
0 0

,
2 2

Q A
E


 

   where A is the surface area of one side of the sweater.  The same 

magnitude of charge will be on the sock, and so the attractive force between the sweater and sock is 
2

0

.
2

E

Q
F QE

A
    This must be equal to the weight of the sweater.  We estimate the sweater area as 

0.10 m2, which is roughly a square foot. 

       

2

0

12 2 2 2 2 7

0

  
2

2 2 8.85 10 C N m 0.10m 0.040kg 9.80m s 8 10 C

E

Q
F QE mg

A

Q Amg



  

   

    

 

 
79. The sphere will oscillate sinusoidally about the equilibrium point, with an amplitude of 5.0 cm.  The  

angular frequency of the sphere is given by 126 N m 0.650kg 13.92rad sk m    .  The 

distance of the sphere from the table is given by   0.150 0.0500cos 13.92 mr t  .  Use this distance 

1Q
2Q

 d l
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and the charge to give the electric field value at the tabletop.  That electric field will point upwards at 
all times, towards the negative sphere. 

  

   
     

  

9 2 2 6 4

2 22 2

7

2

8.988 10 N m C 3.00 10 C 2.70 10
N C

0.150 0.0500cos 13.92 m 0.150 0.0500cos 13.92

1.08 10
   N C,  upwards

3.00 cos 13.9

Q
E k

r t t

t

   
  

 






 

 
80. The wires form two sides of an isosceles triangle, and so the two charges are  

separated by a distance  2 78cm sin 26 68.4 cm  l  and are directly horizontal 

from each other.  Thus the electric force on each charge is horizontal.  From the free-
body diagram for one of the spheres, write the net force in both the horizontal and 
vertical directions and solve for the electric force.  Then write the electric force by 
Coulomb’s law, and equate the two expressions for the electric force to find the 
charge. 

   

     
 

T T

T E E T

2

E 2

3 2

6 6

9 2 2

cos 0    
cos

sin 0    sin sin tan
cos

2 tan
tan     2

24 10 kg 9.80m s tan26
2 0.684m 4.887 10 C 4.9 10 C

8.988 10 N m C

y

x

mg
F F mg F

mg
F F F F F mg

Q mg
F k mg Q

k




   







 

    

      

   

 
    

 





l
l

 

 
81. The electric field at the surface of the pea is given by Eq. 21-4a.  Solve that equation for the  

charge. 

  
  26 32

9

2 9 2 2

3 10 N C 3.75 10 m
    5 10 C

8.988 10 N m C

Q Er
E k Q

r k




 

     
 

 

 This corresponds to about 3 billion electrons. 
 

82. There will be a rightward force on 1Q  due to 2Q , given by Coulomb’s law.  There will be a leftward  

force on 1Q  due to the electric field created by the parallel plates.  Let right be the positive direction. 

  1 2
12

Q Q
F k Q E

x
   

    
 

  
6 6

9 2 2 6 4

2

6.7 10 C 1.8 10 C
       8.988 10 N m C 6.7 10 C 7.3 10 N C

0.34m

       0.45 N, right

 


 

     



 

 
 
 
 

mg


EF


TF



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83. The weight of the sphere is the density times the volume.  The electric force is given by Eq. 21-1, 
with both spheres having the same charge, and the separation distance equal to their diameter. 

  
   

     
 

2 2
34

32 2

53 2 25
9

9 2 2

      
2

16 35kg m 9.80m s 1.0 10 m16
8.0 10 C

3 3 8.99 10 N m C

Q kQ
mg k r g

d r

gr
Q

k

 






   


   

 

 

 
84. From the symmetry, we see that the resultant field will be in the y 

direction.  So we take the vertical component of each field. 

  

   

 

 
 

net 1/ 22 2 22 2
0 0

3/ 2 22 2
0

3/ 23 2 2

3/ 22 2 2

0

3/ 22
3

2

3/ 22
5

0 2

2
2 sin 2

4 4

2 1

4

2

4

2 1 1

4 1

     

     

     

Q r Q
E E E

r rr

Q r

rr

Q
r r

r r

Qr
r

r
r


 







    
 

 


  


 





 
 
  

 
 

  
  

   
 
 
 

l l

l

l

l

l

l

 

 Use the binomial expansion, assuming .r l  

  
 

3/ 22 2 2
3 3 33 3

2 2 22 2 2

net 3 / 2 5 422
5 0 035

20 20 2

2 1 1 2 1 1 2
3

4 1 4
4 14 1

Qr Qr Qr
r r r Q

E
r r

rr
rr

 


    
    



                       
  
     

l l l

l

ll

  

 Notice that the field points toward the negative charges. 
 
85. This is a constant acceleration situation, similar to projectile motion in a uniform gravitational field.  

Let the width of the plates be l, the vertical gap between the plates be h, and the initial velocity be 

0.v   Notice that the vertical motion has a maximum displacement of h/2.  Let upwards be the positive 

vertical direction.  We calculate the vertical acceleration produced by the electric field and the time t 
for the electron to cross the region of the field.  We then use constant acceleration equations to solve 
for the angle. 

  

 0 0

0 0

21
0 top 0 0 02

top 0 0 0 0

      ;  cos     
cos

    0 sin     
cos 2 sin cos

y y y

y y y

eE
F ma qE eE a v t t

m v

eE eE
v v a t v v

m v m





  

         

      
   
   
   

l

l l

l

 

   

x

y   

+   +  

  

  
r  

 Q

¬ ¬ 
–  

   

    

E


E


E


Q -2Q 
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2

21 1 1 1 1
top 0 0 top 0 02 2 2 2 2

0 0 0 0

22 2

1
0 0 0 022 2 2

0 0 0

0 0

1 11
02

    sin   
cos cos

1 1
tan tan tan tan

4 cos 4 cos

2 sin cos

2 1.02
tan     tan tan

y y

eE
y y v t a t h v

v m v

eE eE
h

m v m eE

m

h
h


 

   
 

 

   


      

     

   

   
   
   

 
 
 

l l

l l
l l l l

l

l
l

 cm
18

6.0cm
 

 

 
86. (a) The electric field from the long wire is derived in Example 21-11. 

   
0

1
,

2
E

r




 radially away from the wire 

(b) The force on the electron will point radially in, producing a centripetal acceleration. 

       

2

0

19 6

9 2 2

31

0

7

  
2

1.60 10 C 0.14 10 C m1
2 2 8.99 10 N m C

4 9.11 10 kg

  2.1 10 m s

e mv
F qE

r r

e
v

m







 



   

 
  



 

  

 Note that this speed is independent of r. 
 
87. We treat each of the plates as if it were infinite, and 

then use Eq. 21-7.  The fields due to the first and 
third plates point towards their respective plates, 
and the fields due to the second plate point away 
from it.  See the diagram.  The directions of the 
fields are given by the arrows, so we calculate the 
magnitude of the fields from Eq. 21-7.  Let the 
positive direction be to the right. 

  1 12
A 1 2 3

0 0 02 2 2
E E E E

 
  

     

 
 

 
6 2

4

12 2 2

0.50 0.25 0.35 10 C m
     3.4 10 N C, to the right

2 8.85 10 C N m





  
  

 
 

  
 

 

1 12
B 1 2 3

0 0 0

6 2
4 4

12 2 2

2 2 2

0.50 0.25 0.35 10 C m
     2.3 10 N C 2.3 10 N C  to the left

2 8.85 10 C N m

E E E E
 
  





       

   
     

 

 

  
 

 

1 12
C 1 2 3

0 0 0

6 2
3

12 2 2

2 2 2

0.50 0.25 0.35 10 C m
     5.6 10 N C  to the right

2 8.85 10 C N m

E E E E
 
  





      

   
  







 

+
+
+
+
+
+

1

–
–
–
–
–
–

–
–
–
–
–
–

2  3 

A B C D

1E


1E


1E


1E


2E


2E


2E


2E


3E


3E


3E


3E
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 

 

1 12
D 1 2 3

0 0 0

6 2
4 3

12 2 2

2 2 2

0.50 0.25 0.35 10 C m
     3.4 10 N C 3.4 10 N C  to the left

2 8.85 10 C N m

E E E E
 
  





       

   
     

 

 

 
88. Since the electric field exerts a force on the charge in the  

same direction as the electric field, the charge is  
positive.  Use the free-body diagram to write the 
equilibrium equations for both the horizontal and vertical 
directions, and use those equations to find the magnitude 
of the charge. 

       

   
 

1 o

E T E T

T T

3 2 o

7

4

43cm
cos 38.6

55cm

sin 0  sin

cos 0        tan
cos

1.0 10 kg 9.80 m s tan 38.6tan
5.2 10 C

1.5 10 N C

x

y

F F F F F QE

mg
F F mg F QE mg

mg
Q

E



 

 










 

     

      


   






 

 
89. A negative charge must be placed at the center of the square.  Let  

8.0 CQ   be the charge at each corner, let q  be the magnitude of 

negative charge in the center, and let 9.2cmd   be the side length of 
the square.  By the symmetry of the problem, if we make the net force 
on one of the corner charges be zero, the net force on each other 
corner charge will also be zero. 

 

2 2

41 41 412 2

2 2 2 2
o

42 42 422 2 2 2

2 2

43 43 432 2

o

4 4 42 2 2

     , 0

2 2
    cos45  , 

2 2 4 4

    0 , 

2 2
    cos 45

2

x y

x y

x y

q qx qy

Q Q
F k F k F
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The net force in each direction should be zero. 
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So the charge to be placed is 67.7 10 Cq     . 
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This is an  unstable equilibrium  .  If the center charge were slightly displaced, say towards the right, 
then it would be closer to the right charges than the left, and would be attracted more to the right.  
Likewise the positive charges on the right side of the square would be closer to it and would be 
attracted more to it, moving from their corner positions.  The system would not have a tendency to 
return to the symmetric shape, but rather would have a tendency to move away from it if disturbed. 

 
90. (a) The force of sphere B on sphere A is given by Coulomb’s law. 

2

AB 2
, away from B

kQ
F

R
  

 (b) The result of touching sphere B to uncharged sphere C is that the charge on B is shared between  
the two spheres, and so the charge on B is reduced to 2Q .  Again use Coulomb’s law.  

2

AB 2 2

2
, away from B

2

QQ kQ
F k

R R
   

 (c) The result of touching sphere A to sphere C is that the charge on the two spheres is shared, and  
so the charge on A is reduced to 3 4Q .  Again use Coulomb’s law. 

 
   2

AB 2 2

3 4 2 3
, away from B

8

Q Q kQ
F k

R R
   

 
91. (a) The weight of the mass is only about 2 N.  Since the tension in the string is more  

than that, there must be a downward electric force on the positive charge, which 
means that the electric field must be pointed  down .  Use the free-body diagram to 
write an expression for the magnitude of the electric field. 

     
T E E T

2

6T

7

0      

5.18N 0.210kg 9.80m s
9.18 10 N C

3.40 10 C

F F mg F F QE F mg

F mg
E

Q 

        


   




 

 (b) Use Eq. 21-7. 

      6 12 4 2

0

0

    2 2 9.18 10 N C 8.854 10 1.63 10 C m
2

E E


 


          

 
92. (a) The force will be attractive.  Each successive charge is another distance d farther than the  

previous charge.  The magnitude of the charge on the electron is e. 
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 (b) Now the closest Q is a distance of 3d from the electron. 
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93. (a) Take ,
dE

dx
 set it equal to 0, and solve for the location of the maximum. 
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10.0cm

7.07cm
2 2

a
x     

(b) Yes, the maximum of the graph  
does coincide with the analytic 
maximum.  The spreadsheet used 
for this problem can be found on 
the Media Manager, with filename 
“PSE4_ISM_CH21.XLS,” on tab 
“Problem 21.93b.” 

(c) The field due to the ring is  

 ring 3/ 22 2

1
.

4

Qx
E

x a



 

(d) The field due to the point charge is  

ring 2

1
.

4

Q
E

x
   Both are plotted 

on the graph.  The graph shows that 
the two fields converge at large 
distances from the origin.  The 
spreadsheet used for this problem 
can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH21.XLS,” on tab 
“Problem 21.93cd.” 

(e) According to the spreadsheet, ring point0.9E E at about 37 cm.  An analytic calculation gives the 

same result.  
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94. (a) Let 1 8.00 C,q  2 2.00 C,q   and  

0.0500m.d    The field directions due to the 
charges are shown in the diagram.  We take care 
with the signs of the x coordinate used to 
calculate the magnitude of the field. 
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The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH21.XLS,” on tab “Problem 21.94a.” 

(b) Now for points on the y axis.  See the diagram for this case. 
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The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH21.XLS,” on tab “Problem 21.94b.” 
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CHAPTER 22:  Gauss’s Law 
 
Responses to Questions 
 
1.  No. If the net electric flux through a surface is zero, then the net charge contained in the surface is 

zero.  However, there may be charges both inside and outside the surface that affect the electric field 
at the surface. The electric field could point outward from the surface at some points and inward at 
others. Yes. If the electric field is zero for all points on the surface, then the net flux through the 
surface must be zero and no net charge is contained within the surface. 

 
2.   No. The electric field in the expression for Gauss’s law refers to the total electric field, not just the 

electric field due to any enclosed charge. Notice, though, that if the electric field is due to a charge 
outside the Gaussian surface, then the net flux through the surface due to this charge will be zero. 

  
3.  The electric flux will be the same. The flux is equal to the net charge enclosed by the surface divided 

by ε0. If the same charge is enclosed, then the flux is the same, regardless of the shape of the surface. 
 
4.  The net flux will be zero. An electric dipole consists of two charges that are equal in magnitude but 

opposite in sign, so the net charge of an electric dipole is zero. If the closed surface encloses a zero 
net charge, than the net flux through it will be zero. 

 

5.  Yes. If the electric field is zero for all points on the surface, then the integral of dE A


 over the 
surface will be zero, the flux through the surface will be zero, and no net charge will be contained in 
the surface. No. If a surface encloses no net charge, then the net electric flux through the surface will 
be zero, but the electric field is not necessarily zero for all points on the surface. The integral of 

dE A


 over the surface must be zero, but the electric field itself is not required to be zero. There may 
be charges outside the surface that will affect the values of the electric field at the surface. 

 
6. The electric flux through a surface is the scalar (dot) product of the electric field vector and the area 

vector of the surface. Thus, in magnitude, E cosEA   . By analogy, the gravitational flux 

through a surface would be the product of the gravitational field (or force per unit mass) and the 
area, or g cosgA   . Any mass, such as a planet, would be a “sink” for gravitational field. Since 

there is not “anti-gravity” there would be no sources. 
 
7.  No. Gauss’s law is most useful in cases of high symmetry, where a surface can be defined over 

which the electric field has a constant value and a constant relationship to the direction of the 
outward normal to the surface. Such a surface cannot be defined for an electric dipole. 

 
8. When the ball is inflated and charge is distributed uniformly over its surface, the field inside is zero. 

When the ball is collapsed, there is no symmetry to the charge distribution, and the calculation of the 
electric field strength and direction inside the ball is difficult (and will most likely give a non-zero 
result). 

 
9.  For an infinitely long wire, the electric field is radially outward from the wire, resulting from 

contributions from all parts of the wire. This allows us to set up a Gaussian surface that is 
cylindrical, with the cylinder axis parallel to the wire. This surface will have zero flux through the 
top and bottom of the cylinder, since the net electric field and the outward surface normal are 
perpendicular at all points over the top and bottom. In the case of a short wire, the electric field is not 
radially outward from the wire near the ends; it curves and points directly outward along the axis of 
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the wire at both ends. We cannot define a useful Gaussian surface for this case, and the electric field 
must be computed directly. 

 
10. In Example 22-6, there is no flux through the flat ends of the cylindrical Gaussian surface because 

the field is directed radially outward from the wire. If instead the wire extended only a short distance 
past the ends of the cylinder, there would be a component of the field through the ends of the 
cylinder. The result of the example would be altered because the value of the field at a given point 
would now depend not only on the radial distance from the wire but also on the distance from the 
ends. 

 
11.  The electric flux through the sphere remains the same, since the same charge is enclosed. The 

electric field at the surface of the sphere is changed, because different parts of the sphere are now at 
different distances from the charge. The electric field will not have the same magnitude for all parts 
of the sphere, and the direction of the electric field will not be parallel to the outward normal for all 
points on the surface of the sphere. The electric field will be stronger on the side closer to the charge 
and weaker on the side further from the charge. 

 
12. (a) A charge of (Q – q) will be on the outer surface of the conductor. The total charge Q is placed  

on the conductor but since +q will reside on the inner surface, the leftover, (Q – q), will reside 
on the outer surface.   

 (b) A charge of +q will reside on the inner surface of the conductor since that amount is attracted  
by the charge –q in the cavity. (Note that E must be zero inside the conductor.) 

 
13.  Yes. The charge q will induce a charge –q on the inside surface of the thin metal shell, leaving the 

outside surface with a charge +q. The charge Q outside the sphere will feel the same electric force as 
it would if the metal shell were not present. 

 
14.  The total flux through the balloon’s surface will not change because the enclosed charge does not 

change. The flux per unit surface area will decrease, since the surface area increases while the total 
flux does not change. 

 
 

Solutions to Problems 
 
1. The electric flux of a uniform field is given by Eq. 22-1b. 

(a)    2 2

E cos 580 N C 0.13m 31N m Ccos0EA      E A

   

(b)    2 2

E cos 580N C 0.13m cos45 22 N m CEA       E A

   

(c)    2

E cos 580 N C 0.13m cos90 0EA       E A

  

 
2. Use Eq. 22-1b for the electric flux of a uniform field.  Note that the surface area vector points 

radially outward, and the electric field vector points radially inward.  Thus the angle between the two 
is 180 .  

     E

2

22 6
E

16

cos 150 N C 4 150 N C

7.7 10 N m C

4 cos180 6.38 10 m

    

EA R       

 

 



E A




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3. (a) Since the field is uniform, no lines originate or terminate inside the cube, and so the net flux is  

net 0 .   

 (b) There are two opposite faces with field lines perpendicular to the faces.  The other four faces  
have field lines parallel to those faces.  For the faces parallel to the field lines, no field lines 

enter or exit the faces.  Thus parallel 0 .   
 

Of the two faces that are perpendicular to the field lines, one will have field lines entering the 
cube, and so the angle between the field lines and the face area vector is 180 .   The other will 
have field lines exiting the cube, and so the angle between the field lines and the face area 

vector is 0 .   Thus we have 2

entering 0 0cos180E A E A E      l

  and 

2

leaving 0 0cos0 .E A E A E     l

  

 
4. (a) From the diagram in the textbook, we see that the flux outward through the hemispherical  

surface is the same as the flux inward through the circular surface base of the hemisphere.  On 
that surface all of the flux is perpendicular to the surface.  Or, we say that on the circular base, 

.E A

   Thus 2

E .r E  E A

  

(b)  E


 is perpendicular to the axis, then every field line would both enter through the hemispherical  

surface and leave through the hemispherical surface, and so E 0 .   
 
5. Use Gauss’s law to determine the enclosed charge.      

   2 12 2 2 8encl
E encl E    1840N m C 8.85 10 C N m 1.63 10 Co

o

Q
Q 


            

 
6. The net flux through each closed surface is determined by the net charge inside.  Refer to the picture 

in the textbook. 

  
   

 
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           

          
 

 
7. (a) Use Gauss’s law to determine the electric flux. 

   
6

5 2encl
E 12 2 2

1.0 10 C
1.1 10 N m C

8.85 10 C N mo

Q







 
      

 
 

 (b) Since there is no charge enclosed by surface A2, E 0  . 

 
8. The net flux is only dependent on the charge enclosed by the surface.  Since both surfaces enclose 

the same amount of charge, the flux through both surfaces is the same.  Thus the ratio is 1:1 .  
 
9. The only contributions to the flux are from the faces perpendicular to the electric field.  Over each of 

these two surfaces, the magnitude of the field is constant, so the flux is just E A

  on each of these 

two surfaces.   

      2 2 encl
E right leftright left

0

 
Q

E E


      E A E A
  
  l l  
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         22 12 2 2 7

encl right left 0 410 N C 560 N C 25m 8.85 10 C N m 8.3 10 CQ E E           l  

 
10. Because of the symmetry of the problem one sixth of the total flux will pass through each face. 

encl encl1 1
face total6 6

0 06

Q Q

 
      

Notice that the side length of the cube did not enter into the calculation. 
 
11. The charge density can be found from Eq. 22-4, Gauss’s law.  The charge is the charge density times 

the length of the rod. 

  
   5 2 12 2 2

5encl 0

0 0

7.3 10 N m C 8.85 10 C N m
    4.3 10 C m

0.15m

Q  


 




   

        
l

l
 

 
12.  
 
 
 
 
 
 
 
 
 
13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the  

charge. 

  
   22 22

11

2 9 2 2

6.25 10 N C 3.50 10 m
    8.52 10 C

8.988 10 N m C

Q Er
E k Q

r k




 

     
 

 

This corresponds to about 85 10  electrons.  Since the field points toward the ball, the charge must 

be negative.  Thus 118.52 10 CQ    . 
 
14. The charge on the spherical conductor is uniformly distributed over the surface area of the sphere, so  

24
.

Q

R



   The field at the surface of the sphere is evaluated at r = R. 

   
2

2 2

0 0 0

1 1 4

4 4

Q R
E r R

R R

  
  

     

 

15. The electric field due to a long thin wire  is given in Example 22-6 as 
0

1
.

2
E

R




  

 (a)    
 

6

9 2 2 4

0 0

2 7.2 10 C m1 1 2
8.988 10 N m C 2.6 10 N C

2 4 5.0m
E

R R

 
 

 
         

  The negative sign indicates the electric field is pointed towards the wire. 
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 (b)    
 

6

9 2 2 4

0 0

2 7.2 10 C m1 1 2
8.988 10 N m C 8.6 10 N C

2 4 1.5m
E

R R

 
 

 
         

  The negative sign indicates the electric field is pointed towards the wire. 
 
16. Because the globe is a conductor, the net charge of -1.50 mC will 

be arranged symmetrically around the sphere. 
 
 
 
 
 
 
 
 
 
17. Due to the spherical symmetry of the problem, the electric field can be evaluated using Gauss’s law 

and the charge enclosed by a spherical Gaussian surface of radius r. 

   2

2

0 0

encl encl1
4     

4

Q Q
d E r E

r


 
    E A


  

 Since the charge densities are constant, the charge enclosed is found by multiplying the appropriate 
charge density times the volume of charge enclosed by the Gaussian sphere.  Let 1 6.0cmr   and 

2 12.0cm.r   

 (a) Negative charge is enclosed for 1.r r  

   

       
 

 

3 34
3encl

2 2 12 2 2

0 0 0

11

5.0C m1 1

4 4 3 3 8.85 10 C N m

1.9 10 N C m

r rrQ
E

r r

r

  

  
 




   

 

   

 

(b) In the region  1 2 ,r r r  all of the negative charge and part of the positive charge is  

enclosed. 
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 
  
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


 

 (c) In the region 2 ,r r  all of the charge is enclosed. 

   

                  

         
 

 

3 3 3 3 34 4
3 31 2 1 1 2encl

2 2 2

0 0 0

3 33 3 3 8 2

12 2 2 2 2

1 1

4 4 3

5.0C m 8.0C m 0.060m 8.0C m 0.120m 4.1 10 N m C

3 8.85 10 C N m

r r r r rQ
E

r r r

r r

      

  
    



   
   

   
 

 

  

   
 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

42 

 (d) See the adjacent plot.  The field is  
continuous at the edges of the layers. 
The spreadsheet used for this problem 
can be found on the Media Manager, 
with filename “PSE4_ISM_CH22.XLS,” 
on tab “Problem 22.17d.” 

 
 
 
 
 
 
 
18. See Example 22-3 for a detailed discussion related to this problem. 

(a) Inside a solid metal sphere the electric field is  0 . 
 (b) Inside a solid metal sphere the electric field is  0 . 
 (c) Outside a solid metal sphere the electric field is the same as if all the charge were concentrated  

at the center as a point charge. 

      
 

6

9 2 2

22

0

5.50 10 C1
8.988 10 N m C 5140N C

4 3.10m

Q
E

r


      

  The field would point towards the center of the sphere. 
 (d) Same reasoning as in part (c). 

      
 

6

9 2 2

22

0

5.50 10 C
8.988 10 N m C 772 N C

8.00m

1

4

Q
E

r


      

  The field would point towards the center of the sphere. 
 (e) The answers would be  no different  for a thin metal shell. 
 (f) The solid sphere of charge is dealt with in Example 22-4.  We see from that Example that the  

field inside the sphere is given by 
3

0 0

1
.

4

Q
E r

r
   Outside the sphere the field is no different.   

So we have these results for the solid sphere. 

      
 

 
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9 2 2

3
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0.250m 8.988 10 N m C 0.250m 458N C

3.00m
E r


      
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6
9 2 2
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3.10m 8.988 10 N m C 5140N C

3.10m
E r


      

      
 

6
9 2 2

2

5.50 10 C
8.00m 8.988 10 N m C 772 N C

3.10m
E r


      

  All point towards the center of the sphere. 
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19. For points inside the nonconducting 
spheres, the electric field will be 
determined by the charge inside the 
spherical surface of radius r. 

334
3

encl 34
3 0 0

r r
Q Q Q

r r




 
   
   
   

 

The electric field for 0r r  can be 

calculated from Gauss’s law. 

encl
0 2

0

( )
4

Q
E r r

r
   

3

2 3

0 0 0 0

1

4 4
             

r Q
Q r

r r r 
 

   
   
   

 

The electric field outside the sphere is calculated from Gauss’s law with encl .Q Q  

  encl
0 2 2

0 04 4

Q Q
E r r

r r 
    

 The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH22.XLS,” on tab “Problem 22.19.” 

 
20. (a) When close to the sheet, we approximate it as an infinite sheet, and use the result of Example  

22-7.  We assume the charge is over both surfaces of the aluminum. 
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 (b) When far from the sheet, we approximate it as a point charge. 
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Q
E
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21. (a) Consider a spherical gaussian surface at a radius of 3.00 cm.  It encloses all of the charge. 
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(b) A radius of 6.00 cm is inside the conducting material, and so the field must be 0.  Note that  

there must be an induced charge of 65.50 10 C   on the surface at  r = 4.50 cm, and then an 

induced charge of 65.50 10 C  on the outer surface of the sphere. 
(c) Consider a spherical gaussian surface at a radius of 3.00 cm.  It encloses all of the charge. 

   

 

 
 

2

0

6
9 2 2 5

22 2
0

4   

1 5.50 10 C
8.988 10 N m C 5.49 10 N C, radially outward

4 30.0 10 m

Q
d E r

Q
E

r










  


     



 E A



 

0.0

1.0

2.0

3.0

4.0

0 5 10 15 20 25 30
r  (cm)

E
le

ct
ri

c 
fi

el
d 

(1
06  N

/C
)



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

44 

22. (a) Inside the shell, the field is that of the point charge, 
2

0

1

4
.

Q
E

r
  

 (b) There is no field inside the conducting material: 0 .E   

(c) Outside the shell, the field is that of the point charge, 
2

0

1

4
.

Q
E

r
  

 (d) The shell does not affect the field due to Q alone, except in the shell material, where the field is  
0.  The charge Q does affect the shell – it polarizes it.  There will be an induced charge of –Q  
uniformly distributed over the inside surface of the shell, and an induced charge of +Q  
uniformly distributed over the outside surface of the shell. 

 
23. (a) There can be no field inside the conductor, and so there must be an induced charge of  

8.00 C  on the surface of the spherical cavity. 

(b) Any charge on the conducting material must reside on its boundaries.  If the net charge of the  
cube is 6.10 C,  and there is a charge of 8.00 C on its inner surface, there must be a charge 

of 1.90 C on the outer surface.  

 
24. Since the charges are of opposite sign, and since the charges are free to move since they are on 

conductors, the charges will attract each other and move to the inside or facing edges of the plates.  
There will be no charge on the outside edges of the plates.  And there cannot be charge in the plates 
themselves, since they are conductors.  All of the charge must reside on surfaces.  Due to the 
symmetry of the problem, all field lines must be perpendicular to the plates, as discussed in Example 
22-7. 
(a) To find the field between the plates, we choose a gaussian cylinder, 

perpendicular to the plates, with area A for the ends of the cylinder.  We 
place one end inside the left plate (where the field must be zero), and the 
other end between the plates.  No flux passes through the curved surface 
of the cylinder. 
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The field lines between the plates leave the inside surface of the left plate, and terminate on the 
inside surface of the right plate.  A similar derivation could have been done with the right end of 
the cylinder inside of the right plate, and the left end of the cylinder in the space between the 
plates. 

 (b) If we now put the cylinder from above so that the right end is  
inside the conducting material, and the left end is to the left of 
the left plate, the only possible location for flux is through the 
left end of the cylinder.  Note that there is NO charge enclosed 
by the Gaussian cylinder. 

 encl
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 outside outside

0 0

0 0
    E A E

 
    

 (c) If the two plates were nonconductors, the results would not change.  The charge would be  
distributed over the two plates in a different fashion, and the field inside of the plates would not 
be zero, but the charge in the empty regions of space would be the same as when the plates are 
conductors. 

 
25.  Example 22-7 gives the electric field from a positively charged 

plate as 0/ 2E    with the field pointing away from the plate.  

The fields from the two plates will add, as shown in the figure.   
(a) Between the plates the fields are equal in magnitude, but 

point in opposite directions. 

between

0 0

0
2 2

E
 
 

    

(b) Outside the two plates the fields are equal in magnitude and  
point in the same direction. 

outside

0 0 02 2
E

  
  

    

(c) When the plates are conducting the charge lies on the surface of the plates.  For nonconducting  
plates the same charge will be spread across the plate.  This will not affect the electric field 
between or outside the two plates.  It will, however, allow for a non-zero field inside each plate. 

 
26. Because 3.0 cm << 1.0 m, we can consider the plates to be infinite in size, and ignore any edge 

effects.  We use the result from Problem 24(a). 

       2 12 2 2 9

0

0 0

   160 N C 1.0 m 8.85 10 C N m 1.4 10 C
Q A

E Q EA



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27. (a) In the region 10 ,r r   a gaussian surface would enclose no charge.  Thus, due to the spherical  

symmetry, we have the following. 

 2 encl
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4 0    0
Q

d E r E
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

  

(b) In the region 21 ,r r r  only the charge on the inner shell will be enclosed. 
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(c) In the region 2 ,r r  the charge on both shells will be enclosed. 

   
2 2 2 2

2 encl 1 1 2 2 1 1 2 2

2

0 0 0

4 4
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(d) To make 0E   for 2 ,r r  we must have 2 2

1 1 2 2 0 .r r     This implies that the shells are of  

opposite charge. 

(e) To make 0E   for 21 ,r r r  we must have 1 0 .    Or, if a charge 2

1 14Q r   were placed  

at the center of the shells, that would also make 0.E   
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28. If the radius is to increase from 0r  to 02r  linearly during an elapsed time of T, then the rate of 

increase must be 0 .r T   The radius as a function of time is then 0
0 0 1 .

r t
r r t r

T T
    

 
 

  Since the 

balloon is spherical, the field outside the balloon will have the same form as the field due to a point 
charge. 
(a) Here is the field just outside the balloon surface. 
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(b) Since the balloon radius is always smaller than 03.2 ,r  the total charge enclosed in a gaussian  

surface at 03.2r r  does not change in time. 
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29. Due to the spherical symmetry of the problem, Gauss’s law using a sphere of radius r leads to the 

following. 
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 (a) For the region 10 ,r r  the enclosed charge is 0. 

   encl

2

0

0
4

Q
E

r
   

(b) For the region 01 ,r r r  the enclosed charge is the product of the volume charge density times 

the volume of charged material enclosed.  The charge density is given by 
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0 1

3
.

4

Q

r r



 

  
   

 

3 34 4
3 3 13 3 3 3 3 34 4

3 3 1 0 1 1encl encl

2 2 2 2 2 3 3

0 0 0 0 0 0 1

3

4

4 4 4 4 4

Q
r r

r r r r r rQ V Q
E

r r r r r r r

 
   

    


  

    


      

 (c) For the region 0,r r  the enclosed charge is the total charge, Q. 

   
2

04

Q
E

r
  

 
30. By the superposition principle for electric fields (Section 21-6), we find the field for this problem by 

adding the field due to the point charge at the center to the field found in Problem 29.  At any 

location 0,r  the field due to the point charge is 
2

04
.

q
E

r
  
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 (a) 
2 2

0 0

0
4 4

q Q

q q
E E

r r
E

 
      

 (b) 
 
 

 
 

3 3 3 3

1 1

2 2 3 3 2 3 3

0 0 0 1 0 0 1

1

4 4 4
q Q

r r r rq Q
E E E q Q

r r r r r r r  

 
     

 

 
 
  

 

 (c) 
2 2 2

0 0 04 4 4
q Q

q Q q Q
E E E

r r r  


      

 
31. (a) Create a gaussian surface that just encloses the inner surface of the spherical shell.  Since the  

electric field inside a conductor must be zero, Gauss’s law requires that the enclosed charge be 
zero.  The enclosed charge is the sum of the charge at the center and charge on the inner surface 
of the conductor. 

  enc inner 0Q q Q    

  Therefore inner .Q q   

(b) The total charge on the conductor is the sum of the charges on the inner and outer surfaces. 

outer inner outer inner    Q Q Q Q Q Q Q q        

(c) A gaussian surface of radius 1r r  only encloses the center charge, q.  The electric field will  

therefore be the field of the single charge. 

  1 2

0

( )
4

q
E r r

r
   

(d) A gaussian surface of radius 1 0r r r   is inside the conductor so 0 .E   

(e) A gaussian surface of radius 0r r  encloses the total charge q Q .  The electric field will then  

be the field from the sum of the two charges. 

  0 2

0

( )
4

q Q
E r r

r


   

 
32. (a) For points inside the shell, the field will be due to the point charge only. 

    0 2

04

q
E r r

r
   

 (b) For points outside the shell, the field will be that of a point charge, equal to the total charge. 

    0 2

04

q Q
E r r

r


   

 (c) If ,q Q  we have  0 2

04

Q
E r r

r
   and  0 2

0

2

4
.

Q
E r r

r
   

 (d) If ,q Q   we have  0 2

04

Q
E r r

r


   and  0 0 .E r r   
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33. We follow the development of Example 22-6.  Because of the 
symmetry, we expect the field to be directed radially outward (no 
fringing effects near the ends of the cylinder) and to depend only on 
the perpendicular distance, R, from the symmetry axis of the shell.  
Because of the cylindrical symmetry, the field will be the same at all 
points on a gaussian surface that is a cylinder whose axis coincides 
with the axis of the shell.  The gaussian surface is of radius r and 

length l.  E


is perpendicular to this surface at all points.  In order to apply Gauss’s law, we need a 

closed surface, so we include the flat ends of the cylinder.  Since E


is parallel to the flat ends, there 
is no flux through the ends.  There is only flux through the curved wall of the gaussian cylinder. 

    encl encl encl

0 0 0

2
2

    
Q A A

d E R E
R

 


  
    E A l

l


  

 (a) For 0,R R  the enclosed surface area of the shell is encl 02 .A R l  

   encl 0 0

0 0 0

2
, radially outward

2 2

A R R
E

R R R

   
  

  
l

l l
 

 (b) For 0,R R  the enclosed surface area of the shell is encl 0,A   and so 0 .E   

(c) The field for 0R R due to the shell is the same as the field due to the long line of charge, if we 

substitute 02 .R    

 
34. The geometry of this problem is similar to Problem 33, and so 

we use the same development, following Example 22-6.  See 
the solution of Problem 33 for details. 

    encl E encl E encl

0 0 0

2     
2

Q V V
d E R E

R

 


  
     E A l

l


  

 (a) For 0,R R  the enclosed volume of the shell is  
2

encl 0 .V R l  

   
2

E encl E 0

0 0

, radially outward
2 2

V R
E

R R

 
 

 
l

 

 (b) For 0,R R  the enclosed volume of the shell is 2

encl .V R l  

   E encl E

0 0

, radially outward
2 2

V R
E

R

 
 

 
l

 

 
35. The geometry of this problem is similar to Problem 33, and so we use the same development, 

following Example 22-6.  See the solution of Problem 33 for details.  We choose the gaussian 
cylinder to be the same length as the cylindrical shells. 

    encl encl

0 0

2
2

    
Q Q

d E R E
R


 

   E A
l


 l  

 (a) For 10 ,R R  no charge is enclosed, and so encl

0

0
2

.
Q

E
R

 
l

 

 

R 0  

¬  
R 

 
R0 

¬  

R   
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 (b) For 21 ,R R R  charge Q  is enclosed, and so 
0

, radially outward .
2

Q
E

R


l
 

 (c) For 2 ,R R both charges of Q  and Q  are enclosed, and so encl

0

0
2

.
Q

E
R

 
l

  

 (d) The force on an electron between the cylinders points in the direction opposite to the electric  
field, and so the force is inward.  The electric force produces the centripetal acceleration for the 
electron to move in the circular orbit. 

2
21

centrip 2

0 0

    
2 4

eQ v eQ
F eE m K mv

R R 
     

l l
 

  Note that this is independent of the actual value of the radius, as long as 21 .R R R   

 
36. The geometry of this problem is similar to Problem 33, and so we use the same development, 

following Example 22-6.  See the solution of Problem 33 for details.  We choose the gaussian 
cylinder to be the same length as the cylindrical shells. 

    encl encl

0 0

2
2

    
Q Q

d E R E
R


 

   E A l
l


  

(a) At a distance of 3.0cm,R  no charge is enclosed, and so encl

0

0
2

.
Q

E
R

 
l

 

(b) At a distance of 7.0cm,R  the charge on the inner cylinder is enclosed. 

     
   

6

9 2 2 4encl encl

0 0

0.88 10 C2
2 8.988 10 N m C 4.5 10 N C

2 4 0.070m 5.0m

Q Q
E

R R 

 
       

l l
 

 The negative sign indicates that the field points radially inward. 
(c) At a distance of 12.0cm,R  the charge on both cylinders is enclosed. 

     
   

6
9 2 2 4encl encl

0 0

1.56 0.88 10 C2
2 8.988 10 N m C 2.0 10 N C

2 4 0.120m 5.0m

Q Q
E

R R 

 
      

l l
 

 The field points radially outward. 
 
37. (a) The final speed can be calculated from the work-energy theorem, where the work is the integral  

of the force on the electron between the two shells. 

   2 21 1
02 2W F dr mv mv  

   

Setting the force equal to the electric field times the charge on the electron, and inserting the 
electric field from Problem 36 gives the work done on the electron. 

   
   
   

2

1

2

0 0 1

19

16

12 2 2

ln
2 2

1.60 10 C 0.88 C 9.0cm
ln 1.65 10  J

2 8.85 10 C /Nm 5.0 m 6.5cm

R

R

qQ qQ R
W dR

R R 











 

  
  



 
 
 

 
 
 


l l

 

  Solve for the velocity from the work-energy theorem. 

   
 16

7

31

2 1.65 10  J2
1.9 10 m/s

9.1 10  kg

W
v

m






   


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 (b) The electric force on the proton provides its centripetal acceleration.   

    
2

02
c

qQmv
F qE

R R
  

l
  

   The velocity can be solved for from the centripetal acceleration. 

    
   

     

19

5

12 2 2 27

1.60 10 C 0.88 C
5.5 10 m/s

2 8.85 10 C /Nm 1.67 10 kg 5.0 m
v







 


  

 
 

Note that as long as the proton is between the two cylinders, the velocity is independent of the 
radius. 

 
38. The geometry of this problem is similar to Problem 33, and 

so we use the same development, following Example 22-6.  
See the solution of Problem 33 for details. 

    encl encl

0 0

2     
2

Q Q
d E R E

R


 
    E A l

l


  

 (a) For 10 ,R R  the enclosed charge is the volume of  

charge enclosed, times the charge density. 

   
2

encl E E

0 0 02 2 2

Q R R
E

R R

  
  

  
l

l l
 

 (b) For 1 2 ,R R R   the enclosed charge is all of the charge on the inner cylinder. 

   
2 2

encl E 1 E 1

0 0 02 2 2

Q R R
E

R R R

  
  

  
l

l l
 

 (c) For 2 3,R R R   the enclosed charge is all of the charge on the inner cylinder, and the part of  

the charge on the shell that is enclosed by the gaussian cylinder. 

   
   2 2 2 2 2 2

E 1 E 2 E 1 2encl

0 0 02 2 2

R R R R R RQ
E

R R R

     

  

   
  

l l l

l l
 

 (d) For 3,R R  the enclosed charge is all of the charge on both the inner cylinder and the shell. 

   
   2 2 2 2 2 2

E 1 E 3 2 E 1 3 2encl

0 0 02 2 2

R R R R R RQ
E

R R R

     

  

   
  

l l l

l l
 

 (e) See the graph.  The spreadsheet used for  
this problem can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH22.XLS,” on tab 
“Problem 22.38e.” 
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39. Due to the spherical symmetry of the geometry, we have the following to find the electric field at any  
radius r.  The field will point either radially out or radially in. 

 2 encl encl

2

0 0

4     
4

Q Q
d E r E

r


 
    E A


  

 (a) For 00 ,r r   the enclosed charge is due to the part of the charged sphere that has a radius  

smaller than r. 

   
 34

3Eencl E

2 2

0 0 04 4 3

rQ r
E

r r

  
  

    

 (b) For 0 1,r r r   the enclosed charge is due to the entire charged sphere of radius 0.r  

   
 34 3

3E 0encl E 0

2 2 2

0 0 04 4 3

rQ r
E

r r r

  
  

    

 (c) For 1 2 ,r r r   r is in the interior of the conducting spherical shell, and so 0 .E    This implies  

that encl 0,Q   and so there must be an induced charge of magnitude 34
E 03 r   on the inner 

surface of the conducting shell, at 1.r  

 (d) For 2 ,r r  the enclosed charge is the total charge of both the sphere and the shell. 

   
 34 3

3E 0encl E 0

2 2 2

0 0 0 0

1

4 4 4 3

Q rQ Q r
E

r r r

  
   


   

 
 
 

 

 
40. The conducting outer tube is uncharged, and the electric field is 0 everywhere within the conducting 

material.  Because there will be no electric field inside the conducting material of the outer cylinder 
tube, the charge on the inner nonconducting cylinder will induce an oppositely signed, equal 
magnitude charge on the inner surface of the conducting tube.  This charge will NOT be uniformly 
distributed, because the inner cylinder is not in the center of the tube.  Since the conducting tube has 
no net charge, there will be an induced charge on the OUTER surface of the conducting tube, equal 
in magnitude to the charge on the inner cylinder, and of the same sign.  This charge will be 
uniformly distributed.  Since there is no electric field in the conducting material of the tube, there is 
no way for the charges in the region interior to the tube to influence the charge distribution on the 
outer surface.  Thus the field outside the tube is due to a cylindrically symmetric distribution of 
charge.  Application of Gauss’s law as in Example 22-6, for a Gaussian cylinder with a radius larger 

than the conducting tube, and a length l leads to   encl

0

2 .
Q

E R


l   The enclosed charge is the 

amount of charge on the inner cylinder. 

  
 

2
2 encl E 1

encl E 1

0 0

    
2 2

Q R
Q R E

R R


 

  
   l

l
 

 
41. We treat the source charge as a disk of positive charge of radius concentric with a disk of negative 

charge of radius 0.R   In order for the net charge of the inner space to be 0, the charge per unit area of 

the source disks must both have the same magnitude but opposite sign.  The field due to the annulus 
is then the sum of the fields due to both the positive and negative rings. 
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(a) At a distance of 00.25R  from the center of the ring, we can approximate both of the disks as  

infinite planes, each producing a uniform field.  Since those two uniform fields will be of the 
same magnitude and opposite sign, the net field is 0. 

(b) At a distance of 075R  from the center of the ring, it appears to be approximately a point charge, 

and so the field will approximate that of a point charge, 
 2

0 0

1

4 75

Q
E

R
  

 
42. The conducting sphere is uncharged, and the electric field is 0 everywhere within its interior, except 

for in the cavities.  When charge 1Q  is placed in the first cavity, a charge 1Q  will be drawn from the 

conducting material to the inner surface of the cavity, and the electric field will remain 0 in the 
conductor.  That charge 1Q  will NOT be distributed symmetrically on the cavity surface.  Since the 

conductor is neutral, a compensating charge 1Q will appear on the outer surface of the conductor 

(charge can only be on the surfaces of conductors in electrostatics).  Likewise, when charge 2Q  is 

placed in the second cavity, a charge 2Q  will be drawn from the conducting material, and a 

compensating charge 2Q  will appear on the outer surface.  Since there is no electric field in the 

conducting material, there is no way for the charges in the cavities to influence the charge 
distribution on the outer surface.  So the distribution of charge on the outer surface is uniform, just as 
it would be if there were no inner charges, and instead a charge 1 2Q Q  were simply placed on the 

conductor.  Thus the field outside the conductor is due to a spherically symmetric distribution of 

1 2Q Q .  Application of Gauss’s law leads to 1 2

2

0

1

4
.

Q Q
E

r


   If 1 2 0,Q Q   the field will point 

radially outward.  If  1 2 0,Q Q   the field will point radially inward. 

 
43. (a) Choose a cylindrical gaussian surface with the flat ends parallel to and equidistant from the  

slab.   By symmetry the electric field must point perpendicularly away from the slab, resulting 
in no flux passing through the curved part of the gaussian cylinder.  By symmetry the flux 
through each end of the cylinder must be equal with the electric field constant across the 

surface.     2E dA EA 


  

The charge enclosed by the surface is the charge density of the slab multiplied by the volume of 
the slab enclosed by the surface.   

    enc Eq Ad  

  Gauss’s law can then be solved for the electric field. 

0 0

2     
2

E EAd d
E dA EA E

 
 

    


  

Note that this electric field is independent of the distance from the slab. 
(b) When the coordinate system of this problem is changed to axes parallel  ẑ  and perpendicular  

 r̂  to the slab, it can easily be seen that the particle will hit the slab if the initial perpendicular 

velocity is sufficient for the particle to reach the slab before the acceleration decreases its 
velocity to zero.  In the new coordinate system the axes are rotated by 45.      

 0 0
0 0 0

ˆ ˆˆ ˆcos 45 sin 45
2 2

y y
r y y    r z r z

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   0 0
0 0 0

ˆ ˆˆ ˆsin 45 cos 45
2 2

v v
v v v       r z r z


 

ˆ/a qE m r


 
The perpendicular components are then inserted into Eq. 2-12c, with the final velocity equal to 
zero.  

  
2

2 0 0
0 0

0

0 2 ( ) 2 0
2 2 2

E
r

v q d y
v a r r

m




     
  

    
 

Solving for the velocity gives the minimum speed that the particle can have to reach the slab. 

  0
0

0

2 Eq dy
v

m




  

 
44. Due to the spherical symmetry of the problem, Gauss’s law using a sphere of radius r leads to the 

following. 

 2 encl encl

2

0 0

4     
4

Q Q
d E r E

r


 
    E A


  

 (a) For the region 10 ,r r  the enclosed charge is 0. 

   encl

2

0

0
4

Q
E

r
   

(b) For the region 01 ,r r r  the enclosed charge is the product of the volume charge density times 

the volume of charged material enclosed.  The charge density is given by 1
0 .

r

r
    We must 

integrate to find the total charge.  We follow the procedure given in Example 22-5.  We divide 
the sphere up into concentric thin shells of thickness dr, as shown in Fig. 22-14.  We then 
integrate to find the charge. 
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 (c) For the region 0,r r  the enclosed charge is the total charge, found by integration in a similar  

fashion to part (b). 

   

   

0 0

1 1

2 21
encl E 0 1 0 1 0 0 1

2 2 2 2

1 0 0 1 0 1 0 1encl

2 2 2

0 0 0

4 4 2

2

4 4 2

r r

r r

r
Q dV r dr r r dr r r r

r

r r r r r rQ
E

r r r

      

  

  

       


 
  

  
 

 
 
 
 
 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

54 

 (d) See the attached graph.  We  
have chosen 1

1 02 .r r   Let 

   2 2

0 1 0 1

0 0 2

0 0

.
2

r r r
E E r r

r






    

The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH22.XLS,” on tab 
“Problem 22.44d.” 

 
 
 
45. (a) The force felt by one plate will be the charge on that plate multiplied by the electric field caused  

by the other plate.  The field due to one plate is found in Example 22-7.  Let the positive plate 
be on the left, and the negative plate on the right.  We find the force on the negative plate due to 
the positive plate. 

   

   
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a
on on due to b b a b b
plate plate plate 0
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6 2 2 6 2

12 2 2

2
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 


 



  

   
  





 

(b) Since the field due to either plate is constant, the force on the other plate is constant, and then  
the work is just the force times the distance.  Since the plates are oppositely charged, they will 
attract, and so a force equal to and opposite the force above will be required to separate them.  
The force will be in the same direction as the displacement of the plates. 

       312.71N cos0 5.0 10 m 0.064 JW      F x
   

 
46. Because the slab is very large, and we are considering only distances from the slab much less than its 

height or breadth, the symmetry of the slab results in the field being perpendicular to the slab, with a 
constant magnitude for a constant distance from the center.  We assume that E 0   and so the 

electric field points away from the center of the slab. 
(a) To determine the field inside the slab, choose a cylindrical  

gaussian surface, of length 2x d  and cross-sectional area A.  
Place it so that it is centered in the slab.  There will be no flux 
through the curved wall of the cylinder.  The electric field is 
parallel to the surface area vector on both ends, and is the 
same magnitude on both ends.  Apply Gauss’s law to find the 
electric field at a distance 1

2x d  from the center of the slab.  

See the first diagram. 
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(b) Use a similar arrangement to  
determine the field outside the slab.  
Now let 2 .x d   See the second 
diagram. 

    encl

0ends

 
Q

d d


   E A E A
  

   

     

 
1

outside 2

0 0

2     ; 
2

dA d
EA E x d

 
 

     

   Notice that electric field is continuous at the boundary of the slab. 
 
47. (a) In Problem 46, it is shown that the field outside a flat slab of nonconducting material with a  

uniform charge density is given by 
02
.

d
E




   If the charge density is positive, the field points 

away from the slab, and if the charge density is negative, the field points towards the slab.  So 
for this problem’s configuration, the field outside of both half-slabs is the vector sum of the 
fields from each half-slab.  Since those fields are equal in magnitude and opposite in direction, 
the field outside the slab is 0. 

(b) To find the field in the positively charged half-slab, we use a  
cylindrical gaussian surface of cross sectional area A.  Place it so that 
its left end is in the positively charged half-slab, a distance x > 0 from 
the center of the slab.  Its right end is external to the slab.  Due to the 
symmetry of the configuration, there will be no flux through the 
curved wall of the cylinder.  The electric field is parallel to the surface 
area vector on the left end, and is 0 on the right end.  We assume that 
the electric field is pointing to the left.  Apply Gauss’s law to find the 
electric field a distance 0 x d   from the center of the slab.  See the diagram. 
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  Since the field is pointing to the left, we can express this as 
 0

0

0

ˆ .x

d x
E





  i  

 (c) To find the field in the negatively charged half-slab, we use a cylindrical gaussian surface of  
cross sectional area A.  Place it so that its right end is in the negatively 
charged half-slab, a distance x < 0 from the center of the slab.  Its left 
end is external to the slab.  Due to the symmetry of the configuration, 
there will be no flux through the curved wall of the cylinder.  The 
electric field is parallel to the surface area vector on the left end, and 
is 0 on the right end.  We assume that the electric field is pointing to 
the right.  Apply Gauss’s law to find the electric field at a distance 

0d x    from the center of the slab.  See the diagram. 
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   0 0

0

0 0

    x

d x A d x
EA E

 
 

   
    

  Since the field is pointing to the left, we can express this as 
 0

0

0

ˆ .x

d x
E





  i  

Notice that the field is continuous at all boundaries.  At the left edge   ,x d  0 outside .xE E   At 

the center  0 ,x  0 >0.xE E   And at the right edge   ,x d 0 outside .xE E   

  
48. We follow the development of Example 22-6.  Because of the 

symmetry, we expect the field to be directed radially outward 
(no fringing effects near the ends of the cylinder) and to depend 
only on the perpendicular distance, R, from the symmetry axis 
of the cylinder.  Because of the cylindrical symmetry, the field 
will be the same at all points on a gaussian surface that is a 
cylinder whose axis coincides with the axis of the cylinder.  

The gaussian surface is of radius r and length l.  E


is perpendicular to this surface at all points.  In 
order to apply Gauss’s law, we need a closed surface, so we include the flat ends of the cylinder.  

Since E


is parallel to the flat ends, there is no flux through the ends.  There is only flux through the 
curved wall of the gaussian cylinder. 
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  

 To find the field inside the cylinder, we must find the charge enclosed in the gaussian cylinder.  We 
divide the gaussian cylinder up into coaxial thin cylindrical shells of length l and thickness dR.  That 
shell has volume 2 .dV R dR l   The total charge in the gaussian cylinder is found by integration. 
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49. The symmetry of the charge distribution allows the electric field inside the 

sphere to be calculated using Gauss’s law with a concentric gaussian 
sphere of radius 0.r r   The enclosed charge will be found by integrating 

the charge density over the enclosed volume. 
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The enclosed charge can be written in terms of the total charge by setting 
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0r r   and solving for the charge density in terms of the total charge. 
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 The electric field is then found from Gauss’s law    
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 E A
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 The electric field points radially outward since the charge distribution is positive. 
 
50. By Gauss’s law, the total flux through the cylinder is 0.Q    We find 

the flux through the ends of the cylinder, and then subtract that from 
the total flux to find the flux through the curved sides.  The electric 
field is that of a point charge.  On the ends of the cylinder, that field 
will vary in both magnitude and direction.  Thus we must do a 
detailed integration to find the flux through the ends of the cylinder.  
Divide the ends into a series of concentric circular rings, of radius R 
and thickness dR.  Each ring will have an area of 2 .RdR   The angle 

between E


and dA


is , where 0tan .R R   See the diagram of the 

left half of the cylinder. 
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The flux integral has three variables: r, R, and .   We express r and   in terms of R in order to 
integrate.  The anti-derivative is found in Appendix B-4. 
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51. The gravitational field a distance r from a point mass M is given by Eq. 6-8, 
2

ˆ,
GM

r
 g r


 where r̂  

is a unit vector pointing radially outward from mass M.  Compare this to the electric field of a point 

charge, 
2

0

1
ˆ.

4

Q

r
E r


  To change the electric field to the gravitational field, we would make these 

changes: 0  ;  4 .Q GM   E g
 

  Make these substitutions in Gauss’s law. 
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52. (a) We use Gauss’s law for a spherically symmetric charge distribution, and assume that all the  
charge is on the surface of the Earth.  Note that the field is pointing radially inward, and so the 
dot product introduces a negative sign. 
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(b) Find the surface density of electrons.  Let n be the total number of electrons. 
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53. The electric field is strictly in the y direction.  So, referencing the diagram, there is no  

flux through the top, bottom, front, or back faces of the cube.  Only the “left” and 
“right” faces will have flux through them.  And since the flux is only dependent  
on the y coordinate, the flux through each of those two faces is particularly  
simple.  Calculate the flux and use Gauss’s law to find the enclosed charge. 
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54. (a) Find the value of b by integrating the charge density over the entire sphere.  Follow the  

development given in Example 22-5. 
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 (b) To find the electric field inside the sphere, we apply Gauss’s law to an imaginary sphere of  
radius r, calculating the charge enclosed by that sphere.  The spherical symmetry allows us to 
evaluate the flux integral simply. 
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 (c) As discussed in Example 22-4, the field outside a spherically symmetric distribution of charge  
is the same as that for a point charge of the same magnitude located at the center of the sphere. 
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55. The flux through a gaussian surface depends only on the charge enclosed by the surface.  For both of  
these spheres the two point charges are enclosed within the sphere.  Therefore the flux is the same 
for both spheres. 
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56. (a) The flux through any closed surface containing the total charge must be the same, so the flux  

through the larger sphere is the same as the flux through the smaller sphere, 2235 N m /C .   

(b) Use Gauss’s law to determine the enclosed charge. 
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57. (a) There is no charge enclosed within the sphere, and so no flux lines can  

originate or terminate inside the sphere.  All field lines enter and leave 
the sphere.  Thus the net flux is 0. 

 (b) The maximum electric field will be at the point on the sphere closest  
to Q, which is the top of the sphere.  The minimum electric field will be 
at the point on the sphere farthest from Q, which is the bottom of the 
sphere. 
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(c) E


 is not perpendicular at all points.  It is only perpendicular at the two points already  
discussed: the point on the sphere closest to the point charge, and the point on the sphere 
farthest from the point charge. 

 (d) The electric field is not perpendicular or constant over the surface of the sphere.  Therefore  
Gauss’s law is not useful for obtaining E at the surface of the sphere because a gaussian surface 
cannot be chosen that simplifies the flux integral. 

 
58. The force on a sheet is the charge on the sheet times the average 

electric field due to the other sheets:  But the fields due to the 
“other” sheets is uniform, so the field is the same over the entire 
sheet.  The force per unit area is then the charge per unit area, times 
the field due to the other sheets. 

on on other on other
sheet sheet sheets sheet sheets

other on other
on on sheets sheet sheets
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 The uniform fields from each of the three sheets are indicated on the diagram.  Take the positive 
direction as upwards.  We take the direction from the diagram, and so use the absolute value of each 
charge density.  The electric field magnitude due to each sheet is given by 02 .E    
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
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







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
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59. (a) The net charge inside a sphere of radius 0a will be made of two parts – the positive point charge  

at the center of the sphere, and some fraction of the total negative charge, since the negative 
charge is distributed over all space, as described by the charge density.  To evaluate the portion 
of the negative charge inside the sphere, we must determine the coefficient A.  We do that by 
integrating the charge density over all space, in the manner of Example 22-5.  Use an integral 
from Appendix B-5. 
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 
           



  
 

Now we find the negative charge inside the sphere of radius 0 ,a  using an integral from 

Appendix B-4.  We are indicating the elementary charge by   ,e  so as to not confuse it with the 

base of the natural logarithms. 
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(b) The field at a distance 0r a  is that of a point charge of magnitude netQ at the origin, because of  

the spherical symmetry and Gauss’s law. 
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60. The field due to the plane is plane

0

,
2

E



 as discussed in Example 22-7.  Because the slab is very 

large, and we assume that we are considering only distances from the slab much less than its height 
or breadth, the symmetry of the slab results in its field being perpendicular to the slab, with a 
constant magnitude for a constant distance from its center.  We also assume that E 0   and so the 

electric field of the slab points away from the center of the slab. 
 (a) To determine the field to the left of the plane, we  

choose a cylindrical gaussian surface, of  
length x d and cross-sectional area A.  Place it so 
that the plane is centered inside the cylinder.    See 
the diagram.  There will be no flux through the 
curved wall of the cylinder.  From the symmetry, 
the electric field is parallel to the surface area 
vector on both ends.   We already know that the 
field due to the plane is the same on both ends, and by the symmetry of the problem, the field 
due to the slab must also be the same on both ends.  Thus the total field is the same magnitude 
on both ends. 

encl E
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0 0ends side ends

E
outside left

of plane 0

0     2   

2

Q A dA
d d d d E A

d
E E

 
 

 



       


 

   E A E A E A E A
      

   
 

(b) As argued above, the field is symmetric on the outside of the charged matter. 

E
right
of plane 02

d
E

 



  

(c) To determine the field inside the slab, we choose a cylindrical  
gaussian surface of cross-sectional area A with one face to the  
left of the plane, and the other face inside the slab, a distance x  
from the plane.  Due to symmetry, the field again is parallel 
to the surface area vector on both ends, has a constant  
value on each end, and no flux pierces the curved walls. 
 Apply Gauss’s law. 
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   

 

Notice that the field is continuous from “inside” to “outside” at the right edge of the slab, but 
not at the left edge of the slab.  That discontinuity is due to the surface charge density. 
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61. Consider this sphere as a combination of two spheres.  Sphere 1 is a solid sphere of radius 0r  and  

charge density E centered at A and sphere 2 is a second sphere of radius 0 / 2r  and density E  

centered at C. 
(a) The electric field at A will have zero contribution from sphere 1 due to its symmetry about point  

A.   The electric field is then calculated by creating a gaussian surface centered at point C with 
radius 0 / 2.r  

     34 1
2 3 2E 0enc E 01

02

0 0 0

    4     
6

rq r
d E r E

  


  


        E A


  

Since the electric field points into the gaussian surface (negative) the electric field at point A 
points to the right. 

(b) At point B the electric field will be the sum of the electric fields from each sphere.  The electric  
field from sphere 1 is calculated using a gaussian surface of radius 0r  centered at A. 

 34
2 3 0 Eenc E 0

1 1 0 1

0 0 0

    4     
3

rq r
d E r E

  


  
       E A


  

At point B the field from sphere 1 points toward the left.  The electric field from sphere 2 is 
calculated using a gaussian surface centered at C of radius 03 / 2.r  

     34 1
2 3 2E 0enc E 03

2 2 0 22

0 0 0

    4     
54

rq r
d E r E

  


  


        E A


  

At point B, the electric field from sphere 2 points toward the right.  The net electric field is the 
sum of these two fields.  The net field points to the left. 

E 0 E 0 E 0
1 2

0 0 0

17

3 54 54

r r r
E E E

  
  


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62. We assume the charge is uniformly distributed, and so the field of the pea is that of a point charge. 
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63. (a) In an electrostatic situation, there is no electric field inside a  

conductor.  Thus 0E   inside the conductor. 
(b) The positive sheet produces an electric field, external to  

itself, directed away from the plate with a magnitude as 

given in Example 22-7, of 1
1

0

.
2

E



   The negative sheet 

produces an electric field, external to itself, directed towards 

the plate with a magnitude of 2
2

0

.
2

E



   Between the left 

and middle sheets, those two fields are parallel and so add to each other. 

  
 

 
6 2

51 2
left 1 2 12 2 2
middle 0

2 5.00 10 C m
5.65 10 N C , to the right

2 2 8.85 10 C N m
E E E

 







     

 
 

 

+

+

+

+

– 

– 

– 

– 

+

+

+

+

–

–

–

–

1 net 0Q 
3

1E


3E


1E


3E




Chapter 22  Gauss’s Law 

 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

63 

(c) The same field is between the middle and right sheets.  See the diagram. 

  5

middle
right

5.65 10 N C , to the rightE    

(d) To find the charge density on the surface of the left side of the middle sheet, choose a gaussian  
cylinder with ends of area A.  Let one end be inside the conducting sheet, where there is no 
electric field, and the other end be in the area between the left and middle sheets.  Apply 
Gauss’s law in the manner of Example 22-16.  Note that there is no flux through the curved 
sides of the cylinder, and there is no flux through the right end since it is in conducting material.  
Also note that the field through the left end is in the opposite direction as the area vector of the 
left end. 
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 
 
 

   E A E A E A E A
      
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(e) Because the middle conducting sheet has no net charge, the charge density on the right side 
must be the opposite of the charge density on the left side. 

  6 2

right left 5.00 10 C m       

Alternatively, we could have applied Gauss’s law on the right side in the same manner that we 
did on the left side.  The same answer would result. 

 
64. Because the electric field has only x and y components, there will be no flux 

through the top or bottom surfaces.  For the other faces, we choose a 
horizontal strip of height dz and width a for a differential element and 
integrate to find the flux.  The total flux is used to determine the enclosed 
charge. 
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65. (a) Because the shell is a conductor, there is no electric field in the conducting material, and all  
charge must reside on its surfaces.  All of the field lines that originate from the point charge at 
the center must terminate on the inner surface of the shell.  Therefore the inner surface must 
have an equal but opposite charge to the point charge at the center.  Since the conductor has the 
same magnitude of charge as the point charge at the center, all of the charge on the conductor is 
on the inner surface of the shell, in a spherically symmetric distribution. 

 (b) By Gauss’s law and the spherical symmetry of the problem, the electric field can be calculated  

by 
2

0

encl1

4

Q
E

r
 . 
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  And since there is no electric field in the shell, we could express the second answer as  

0.10 m:  0 .r E   
 

66. (a) At a strip such as is marked in the textbook diagram, dA


is perpendicular to the surface, and  E


  
is inclined at an angle    relative to dA


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(b) Choose a closed gaussian surface consisting of the hemisphere and the circle of radius R at the  
base of the hemisphere.  There is no charge inside that closed gaussian surface, and so the total 
flux through the two surfaces (hemisphere and base) must be zero.  The field lines are all 
perpendicular to the circle, and all of the same magnitude, and so that flux is very easy to 
calculate. 
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67. The flux is the sum of six integrals, each of the form .dE A


   Because 

the electric field has only x and y components, there will be no flux 
through the top or bottom surfaces.  For the other faces, we choose a 
vertical strip of height a and width dy (for the front and back faces) or dx 
(for the left and right faces).  See the diagram for an illustration of a strip 
on the front face.  The total flux is then calculated, and used to determine 
the enclosed charge. 

  
 

2 2 2

front 0 0 0

0 0

ˆ ˆ ˆ
x y x y a ya a

a a a
x y x

x a

E e E e ady aE e dy
  

  



     
     
        

 
  
 
 i j i  

 This integral does not have an analytic anti-derivative, and so must be integrated numerically.  We 

approximate the integral by a sum: 
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into n elements, and so 
0a

y
n


   and .iy i y    We initially evaluate the sum for n = 10.  Then we 

evaluate it for n = 20.  If the two sums differ by no more than 2%, we take that as the value of the 
integral.  If they differ by more than 2%, we choose a larger n, compute the sum, and compare that to 
the result for n = 20.  We continue until a difference of 2% or less is reached.  This integral, for n = 
100 and a = 1.0 m, is 0.1335 m.  So we have this intermediate result. 

  
 

     
2

2

front 0
1

1.0 m 50 N C 0.1335m 6.675 N m C
ia yn

a
x

x a i

aE e y




 

 
 
        

 Now do the integral over the back face. 

  
 

 
2 2 2

back 0 0 0
0 0 0

ˆ ˆ ˆ
x y x y ya a

a a a
x y x

x

E e E e a dy aE e dy
 

  



     
     
          

 
  
 
 i j i  

We again get an integral that cannot be evaluated analytically.  A similar process to that used for the 

front face is applied again, and so we make this approximation: 

22

0 0
10

.
iyya n

aa
x x

i

aE e dy aE e y




  
   
        

 The numeric integration gives a value of 0.7405 m. 

 
     

2

2

back 0
0 1

1.0 m 50 N C 0.7405m 37.025 N m C.
iyn

a
x

x i

aE e y


 

 
 
           

 Now consider the right side. 

  
 

22 2

right 0

0

0 0

0

ˆ ˆ ˆ
x aa

a
y

y a

x y x ya
a a

x y aE e dxE e E e a dx






            
       

 
 
 
 

 i j j  

 Notice that the same integral needs to be evaluated as for the front side.  All that has changed is the 
variable name.  Thus we have the following. 

 
     

2

2

right 0

0

1.0 m 25 N C 0.1335m 3.3375 N m C
x aa

a
y

y a

aE e dx






 
 
       

Finally, do the left side, following the same process.  The same integral arises as for the back face. 

 
 

     

2 2 2

left 0 0 0
0 0 0

2

ˆ ˆ ˆ

1.0 m 25 N C 0.7405m 18.5125 N m C        

x y x y xa a

a a a
x y y

y

E e E e a dx aE e dx
 

  



     
     
          

   

 
  
 
 i j j



 

Sum to find the total flux, and multiply by 0 to find the enclosed charge. 

  

   

total front back right left top bottom

2 2 2

12 2 2 2 10

encl 0 total

6.675 37.025 3.3375 18.5125 N m C 45.525 N m C 46 N m C

8.85 10 C N m 45.525 N m C 4.0 10 CQ   

       

       

       

  

 

 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH22.XLS,” on tab “Problem 22.67.” 
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CHAPTER 23:  Electric Potential 
 
Responses to Questions 
 
1.  Not necessarily. If two points are at the same potential, then no net work is done in moving a charge 

from one point to the other, but work (both positive and negative) could be done at different parts of 
the path.  No. It is possible that positive work was done over one part of the path, and negative work 
done over another part of the path, so that these two contributions to the net work sum to zero. In this 
case, a non-zero force would have to be exerted over both parts of the path.  

 
2.  The negative charge will move toward a region of higher potential and the positive charge will move 

toward a region of lower potential. In both cases, the potential energy of the charge will decrease. 
 
3. (a) The electric potential is the electric potential energy per unit charge. The electric potential is a  

scalar. The electric field is the electric force per unit charge, and is a vector. 
(b) Electric potential is the electric potential energy per unit charge. 

 
4.  Assuming the electron starts from rest in both cases, the final speed will be twice as great. If the 

electron is accelerated through a potential difference that is four times as great, then its increase in 
kinetic energy will also be greater by a factor of four. Kinetic energy is proportional to the square of 
the speed, so the final speed will be greater by a factor of two. 

 
5.  Yes. If the charge on the particle is negative and it moves from a region of low electric potential to a 

region of high electric potential, its electric potential energy will decrease. 
 
6.  No. Electric potential is the potential energy per unit charge at a point in space and electric field is 

the electric force per unit charge at a point in space. If one of these quantities is zero, the other is not 
necessarily zero. For example, the point exactly between two charges with equal magnitudes and 
opposite signs will have a zero electric potential because the contributions from the two charges will 
be equal in magnitude and opposite in sign. (Net electric potential is a scalar sum.) This point will 
not have a zero electric field, however, because the electric field contributions will be in the same 
direction (towards the negative and away from the positive) and so will add. (Net electric field is a 
vector sum.) As another example, consider the point exactly between two equal positive point 
charges. The electric potential will be positive since it is the sum of two positive numbers, but the 
electric field will be zero since the field contributions from the two charges will be equal in 
magnitude but opposite in direction.  

 
7. (a) V at other points would be lower by 10 V. E would be unaffected, since E is the negative  

gradient of V, and a change in V by a constant value will not change the value of the gradient. 
(b) If V represents an absolute potential, then yes, the fact that the Earth carries a net charge would  

affect the value of V at the surface. If V represents a potential difference, then no, the net charge 
on the Earth would not affect the choice of V. 

 
8.  No. An equipotential line is a line connecting points of equal electric potential. If two equipotential 

lines crossed, it would indicate that their intersection point has two different values of electric 
potential simultaneously, which is impossible. As an analogy, imagine contour lines on a 
topographic map. They also never cross because one point on the surface of the Earth cannot have 
two different values for elevation above sea level. 

 



Chapter 23  Electric Potential 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

67 

9.  The equipotential lines (in black) are perpendicular to the electric field lines (in red). 
 
 
 
 
 
 
 
 
 
10.  The electric field is zero in a region of space where the electric potential is constant. The electric 

field is the gradient of the potential; if the potential is constant, the gradient is zero.  
 
11. The Earth’s gravitational equipotential lines are roughly circular, so the orbit of the satellite would 

have to be roughly circular. 
 
12.  The potential at point P would be unchanged. Each bit of positive charge will contribute an amount 

to the potential based on its charge and its distance from point P. Moving charges to different 
locations on the ring does not change their distance from P, and hence does not change their 
contributions to the potential at P. 

 

The value of the electric field will change. The electric field is the vector sum of all the contributions 
to the field from the individual charges. When the charge Q is distributed uniformly about the ring, 
the y-components of the field contributions cancel, leaving a net field in the x-direction. When the 
charge is not distributed uniformly, the y-components will not cancel, and the net field will have 
both x- and y-components, and will be larger than for the case of the uniform charge distribution. 
There is no discrepancy here, because electric potential is a scalar and electric field is a vector. 

 
13. The charge density and the electric field strength will be greatest at the pointed ends of the football 

because the surface there has a smaller radius of curvature than the middle.  
 
14.  No. You cannot calculate electric potential knowing only electric field at a point and you cannot 

calculate electric field knowing only electric potential at a point. As an example, consider the 
uniform field between two charged, conducting plates. If the potential difference between the plates 
is known, then the distance between the plates must also be known in order to calculate the field. If 
the field between the plates is known, then the distance to a point of interest between the plates must 
also be known in order to calculate the potential there. In general, to find V, you must know E and be 
able to integrate it. To find E, you must know V and be able to take its derivative. Thus you need E 
or V in the region around the point, not just at the point, in order to be able to find the other variable. 

 
15. (a) Once the two spheres are placed in contact with each other, they effectively become one larger  

conductor. They will have the same potential because the potential everywhere on a conducting 
surface is constant. 

(b) Because the spheres are identical in size, an amount of charge Q/2 will flow from the initially  
charged sphere to the initially neutral sphere so that they will have equal charges.  

(c) Even if the spheres do not have the same radius, they will still be at the same potential once they  
are brought into contact because they still create one larger conductor. However, the amount of 
charge that flows will not be exactly equal to half the total charge. The larger sphere will end up 
with the larger charge. 
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16. If the electric field points due north, the change in the potential will be (a) greatest in the direction 
opposite the field, south; (b) least in the direction of the field, north; and (c) zero in a direction 
perpendicular to the field, east and west. 

 
17. Yes. In regions of space where the equipotential lines are closely spaced, the electric field is stronger 

than in regions of space where the equipotential lines are farther apart. 
 
18.  If the electric field in a region of space is uniform, then you can infer that the electric potential is 

increasing or decreasing uniformly in that region. For example, if the electric field is 10 V/m in a 
region of space then you can infer that the potential difference between two points 1 meter apart 
(measured parallel to the direction of the field) is 10 V. If the electric potential in a region of space is 
uniform, then you can infer that the electric field there is zero.  

 
19. The electric potential energy of two unlike charges is negative. The electric potential energy of two 

like charges is positive. In the case of unlike charges, work must be done to separate the charges. In 
the case of like charges, work must be done to move the charges together. 

 
 

Solutions to Problems 
 
1. Energy is conserved, so the change in potential energy is the opposite of the change in kinetic 

energy.  The change in potential energy is related to the change in potential. 

     
 

231 52

initial final

19

  

9.11 10 kg 5.0 10 m s
0.71V

2 2 1.60 10 C

U q V K

K K K mv
V

q q q





     

  
      

 

 

 The final potential should be lower than the initial potential in order to stop the electron.    
 
2. The work done by the electric field can be found from Eq. 23-2b. 

    19 17ba
ba ba ba    1.60 10 C 55V 185V 3.84 10 J

W
V W qV

q
              

 
3. The kinetic energy gained by the electron is the work done by the electric force.  Use Eq. 23-2b to 

calculate the potential difference. 

   
16

ba
ba 19

5.25 10 J
3280V

1.60 10 C

W
V

q






    

 
 

The electron moves from low potential to high potential, so  plate B  is at the higher potential. 
 
4. By the work energy theorem, the total work done, by the external force and the electric field 

together, is the change in kinetic energy.  The work done by the electric field is given by Eq. 23-2b. 

  

 

 

external electric final initial external b a final

4 4

external final
b a 6

KE KE     KE   

KE 7.00 10 J 2.10 10 J
53.8V

9.10 10 C

W W W q V V

W
V V

q

 



       

   
    

 

 

 Since the potential difference is negative, we see that a bV V . 
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5. As an estimate, the length of the bolt would be the voltage difference of the bolt divided by the 
breakdown electric field of air. 

8

6

1 10
33m 30m

3 10 V m

V
 


 

 
6. The distance between the plates is found from Eq. 23-4b, using the magnitude of the electric field. 

2ba ba 45V
    3.5 10 m

1300V m

V V
E d

d E
       


7. The maximum charge will produce an electric field that causes breakdown in the air.  We use the 

same approach as in Examples 23-4 and 23-5. 

  

   

surface 0 breakdown surface

0 0

22 6 6

0 0 breakdown 9 2 2

1
 and   

4

1
4 0.065m 3 10 V m 1.4 10 C

8.99 10 N m C

Q
V r E V

r

Q r E



 

  

    


 
 
 

 

 
8. We assume that the electric field is uniform, and so use Eq. 23-4b, using the magnitude of the 

electric field. 

  4ba

3

110V
2.8 10 V m

4.0 10 m

V
E

d 
   


 

 
9. To find the limiting value, we assume that the E-field at the radius of the sphere is the minimum 

value that will produce breakdown in air.  We use the same approach as in Examples 23-4 and 23-5. 

     

surface
surface 0 breakdown 0 6

breakdown

surface 0 surface 0 9 2 2

0 0

8

35,000V
    0.0117 m 0.012 m

3 10 V m

1 1
    4 35,000V 0.0117 m

4 8.99 10 N m C

4.6 10 C                                   

V
V r E r

E

Q
V Q V r

r





     


   


 

 
 
 

 

 
10. If we assume the electric field is uniform, then we can use Eq. 23-4b to estimate the magnitude of the 

electric field.   From Problem 22-24 we have an expression for the electric field due to a pair of 
oppositely charged planes.  We approximate the area of a shoe as 30 cm x 8 cm. 

  
     

0 0

12 2 2 2 3

60

3

  

8.85 10 C / Nm 0.024m 5.0 10 V
1.1 10 C

1.0 10 m

V Q
E

d A

AV
Q

d


 








   

 
   



 

 
11. Since the field is uniform, we may apply Eq. 23-4b.  Note that the electric field always points from 

high potential to low potential. 

 (a) BA 0 .V     The distance between the two points is exactly perpendicular to the field lines. 

 (b)    CB C B 4.20 N C 7.00m 29.4 VV V V       

 (c) CA C A C B B A CB BA 29.4 V 0 29.4 VV V V V V V V V V              
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12. From Example 22-7, the electric field produced by a large plate is uniform with magnitude 
0

.
2

E



   

The field points away from the plate, assuming that the charge is positive.  Apply Eq. 23-41. 

             0 0

0 0 00 0

ˆ ˆ0     
2 2 2

x x x x
V x V V x V d dx V x V

  
  

           
 
 
 

 E i i


 l  

 

13. (a) The electric field at the surface of the Earth is the same as that of a point charge, 
2

0 0

.
4

Q
E

r
  

The electric potential at the surface, relative to ( ) 0V    is given by Eq. 23-5.  Writing this in 
terms of the electric field and radius of the earth gives the electric potential. 

   6

0

0 0

150 V m 6.38 10 m  = 0.96 GV
4

Q
V Er

r
       

(b) Part (a) demonstrated that the potential at the surface of the earth is 0.96 GV lower than the 
potential at infinity.  Therefore if the potential at the surface of the Earth is taken to be zero, the 

potential at infinity must be ( ) 0.96 GV .V     If the charge of the ionosphere is included in 
the calculation, the electric field outside the ionosphere is basically zero.  The electric field 
between the earth and the ionosphere would remain the same.  The electric potential, which 
would be the integral of the electric field from infinity to the surface of the earth, would reduce 
to the integral of the electric field from the ionosphere to the earth.  This would result in a 
negative potential, but of a smaller magnitude. 

 
14. (a) The potential at the surface of a charged sphere is derived in Example 23-4. 

   
   

 

0 0 0 0

0 0

12 2 2

8 20 0 0 0 0

2 2

0 0 0

8 2

    4   
4

680 V 8.85 10  C /Nm4
3.761 10 C m

Area 4 4 0.16 m

3.8 10 C m

Q
V Q rV

r

Q Q rV V

r r r




 


 







   


      

 

 

 (b) The potential away from the surface of a charged sphere is also derived in Example 23-4. 

   
   

 
0 0 0 0 0 0 0

0 0

0.16 m 680 V4
   4.352 m 4.4 m

4 4 25V

Q rV rV rV
V r

r r r V


 

         

 
15. (a) After the connection, the two spheres are at the same potential.  If they were at different  

potentials, then there would be a flow of charge in the wire until the potentials were equalized. 
(b) We assume the spheres are so far apart that the charge on one sphere does not influence the 

charge on the other sphere.  Another way to express this would be to say that the potential due 
to either of the spheres is zero at the location of the other sphere.  The charge splits between the 
spheres so that their potentials (due to the charge on them only) are equal.  The initial charge on 
sphere 1 is Q, and the final charge on sphere 1 is Q1. 

 
1 1 1 1 1

1 2 1 2 1

0 1 0 2 0 1 0 2 1 2

  ;    ;          
4 4 4 4

Q Q Q Q Q Q r
V V V V Q Q

r r r r r r   
 

      


 

Charge transferred 
   

1 2
1

1 2 1 2

r r
Q Q Q Q Q

r r r r
   

 
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16. From Example 22-6, the electric field due to a long wire is radial relative to the wire, and is of 

magnitude 
0

1
.

2
E

R




   If the charge density is positive, the field lines point radially away from the 

wire.  Use Eq. 23-41 to find the potential difference, integrating along a line that is radially outward 
from the wire. 

     
b b

a a

a
b a b a

0 0 0 b

1
ln ln

2 2 2 R

R R

R R

R
V V d dR R R

R

  
  

         E


 l  

 
17. (a) The width of the end of a finger is about 1 cm, and so consider the fingertip to be a part of a  

sphere of diameter 1 cm.  We assume that the electric field at the radius of the sphere is the 
minimum value that will produce breakdown in air.  We use the same approach as in Examples 
23-4 and 23-5. 

      6

surface 0 breakdown 0.005m 3 10 V m 15,000VV r E     

  Since this is just an estimate, we might expect anywhere from 10,000 V to 20,000 V. 

 (b) 
2

0
surface

0 0 0 0

1 1 4
 

4 4

Q r
V

r r

 
 

    

     12 2 2

5 20
surface

0

8.85 10  C /N m
15,000V 2.7 10 C m

0.005m
V

r









   


 

Since this is an estimate, we might say the charge density is on the order of 230 C m .  
 
18. We assume the field is uniform, and so Eq. 23-4b applies. 

7

9

0.10 V
1 10 V m

10 10 m

V
E

d 
   


 

 
19. (a) The electric field outside a charged, spherically symmetric volume is the same as that for a  

point charge of the same magnitude of charge.  Integrating the electric field from infinity to the 
radius of interest will give the potential at that radius. 

      0 02 2

0 0 0 0

  ;  
4 4 4 4

rrQ Q Q Q
E r r V r r dr

r r r r    

        

(b) Inside the sphere the electric field is obtained from Gauss’s Law using the charge enclosed by a 
sphere of radius r. 

    
34

2 3
03 34

30 0 0 0

4     
4

Q r Qr
r E E r r

r r




  
     

Integrating the electric field from the surface to 0r r  gives the electric potential inside the 

sphere. 

           
0 0

2 2

0 0 3 3 2

0 0 0 0 0 0 0 0 0

3
4 4 8 8

rr

r r

Qr Q Qr Q r
V r r V r dr

r r r r r   
      

 
 
 

  

 (c) To plot, we first calculate  0 0

0 04

Q
V V r r

r
    and  0 0 2

0 04
.

Q
E E r r

r
     Then we plot  

0V V  and 0E E as functions of 0 .r r  
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For 0 :r r  

2

2 2 3
0 0 0 0 01

0 02 2

0 0
2

0 0 0 0

3
8 4

3  ; 

4 4

Q r Qr

r r r rr
V V E E

Q Qr r
r r

 

 



    

 
    

 
 

 

For 0 :r r     
22

1 20 00 0
0 0 0 02

2

0 0 0 0

4 4
  ;  

4 4

Q Q

r rr r
V V r r E E r r

Q Qr r
r r

 

 

        

 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH23.XLS,” on tab 
“Problem 23.19c.” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20. We assume the total charge is still Q, and let 2

E .kr    We evaluate the constant k by calculating 

the total charge, in the manner of Example 22-5. 

   
0

2 2 54
E 05 5

00

5
4     

4

r
Q

Q dV kr r dr k r k
r

  


       

 (a) The electric field outside a charged, spherically symmetric volume is the same as that for a  
point charge of the same magnitude of charge.  Integrating the electric field from infinity to the 
radius of interest gives the potential at that radius. 

      0 02 2

0 0 0 0

  ;  
4 4 4 4

rrQ Q Q Q
E r r V r r dr

r r r r    

        

(b) Inside the sphere the electric field is obtained from Gauss’s Law using the charge enclosed by a 
sphere of radius r. 

    
5

2 2 2 5encl 4
encl E 55 5 5

0 0 0 00

5 5
4   ;  4   

4 4

rQ Q Q Qr
r E Q dV r r dr r

r r r
   

  
        
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    
3

encl
0 2 5

0 0 04 4

Q Qr
E r r

r r 
    

Integrating the electric field from the surface to 0r r  gives the electric potential inside the 

sphere. 

           
0 0

3 4 4

0 0 5 5 4

0 0 0 0 0 0 0 0 0

5
4 4 16 16

rr

r r

Qr Q Qr Q r
V r r V r dr

r r r r r   
      

 
 
 

  

(c) To plot, we first calculate  0 0

0 04

Q
V V r r

r
    and  0 0 2

0 04
.

Q
E E r r

r
     Then we plot  

0V V  and 0E E as functions of 0 .r r  

For 0 :r r  

4 3

4 4 35
0 0 0 0 01

0 04 4 3

0 0
2

0 0 0 0

5
16 4

5  ;  

4 4

Q r Qr

r r r rr
V V E E

Q Qr r
r r

 

 



    

 
    

 
 

 

For 0 :r r     
22

1 20 00 0
0 0 0 02

2

0 0 0 0

4 4
  ;  

4 4

Q Q

r rr r
V V r r E E r r

Q Qr r
r r

 

 

        

 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH23.XLS,” on tab 
“Problem 23.20c.” 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0 0.5 1 1.5 2 2.5 3
r /r 0

V
/V

0

0.0

0.2

0.4

0.6

0.8

1.0

0 0.5 1 1.5 2 2.5 3
r /r 0

E
/E

0



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

74 

21. We first need to find the electric field.  Since the charge distribution is spherically symmetric, 
Gauss’s law tells us the electric field everywhere. 

   2

2

0 0

encl encl1
4     

4

Q Q
d E r E

r


 
    E A


  

 If 0,r r calculate the charge enclosed in the manner of Example 22-5. 
2 4 3 5

2 2

encl E 0 0 02 2 2

0 0 00 0

1 4 4 4
3 5

r rr r r r
Q dV r dr r dr

r r r
          

     
     
     

    

The total charge in the sphere is the above expression evaluated at 0.r r  
3 5 3

0 0 0 0
total 0 2

0

8
4

3 5 15

r r r
Q

r


  

 
 
 

 

Outside the sphere, we may treat it as a point charge, and so the potential at the surface of the sphere 
is given by Eq. 23-5, evaluated at the surface of the sphere. 

 

3

0 0
2

total 0 0
0

0 0 0 0 0

8
1 1 215

4 4 15

r
Q r

V r r
r r




  
     

The potential inside is found from Eq. 23-4a.  We need the field inside the sphere to use Eq. 23-4a.  

The field is radial, so we integrate along a radial line so that .d EdrE


 l  

 

3 5

0 2 3
0encl 0

0 2 2 2

0 0 0 0

4
3 51 1

4 4 3 5

r r

rQ r r
E r r

r r r




  



    

 
    

 
 

 

  

0

0 0 0 0

0

0

3 2 4

0 0

2 2
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2
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2
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V V

r r r

r r r

r

 
 

  
  




          

        

  

   
   
   

        
               

  E


 l

 
 
 

 

 
22. Because of the spherical symmetry of the problem, the electric field in each region is the same as that 

of a point charge equal to the net enclosed charge. 

(a) For 
3
2encl

2 2 2 2

0 0 0

1 1 3
:   

4 4 8

Q Q Q
r r E

r r r  
     

 For 21 :   0 ,r r r E  because the electric field is 0 inside of conducting material. 

 For 
1
2encl

1 2 2 2

0 0 0

1 1 1
0 :   

4 4 8

Q Q Q
r r E

r r r  
      

 (b) For 2r r , the potential is that of a point charge at the center of the sphere. 

   
3
2

2

0 0 0

1 1 3

4 4 8
, 

Q Q Q
V r r

r r r  
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(c) For 21r r r , the potential is constant and equal to its value on the outer shell, because there is 

no electric field inside the conducting material. 

    2 1 2

0 2

3

8
, 

Q
V V r r r r r

r
      

(d) For 10 r r  , we use Eq. 23-4a.  The field is radial, so we integrate along a radial line so that 

.d EdrE


 l  

  

1

1 1 1

1

2

0 0 1

1

0 1 0 1 0 2

1 1 1

8 8

1 1 1 1 1 1
0

8 8 2 8
,  

r r r

r r

r r r

r r

Q Q
V V d E dr dr

r r r

Q Q Q
V V r r

r r r r r r

 

  

        

       

 
 
 

     
     

     

  E


 l

   

 (e) To plot, we first calculate  0 2

0 2

3

8

Q
V V r r

r
    and  0 2 2

0 2

3

8
.

Q
E E r r

r
     Then we plot  

0V V  and 0E E as functions of 2 .r r  

  For 10 r r  :     
22

1 20 2 201 1 1
2 23 3 32
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8 8
1  ; 

3 3

8 8

Q Q

r rV E rr
r r r r

Q QV E r
r r

 

 

 



     

 
 
      

  For 21r r r :  0 2

0 0
2

0 2 0 2

3

8
1 ; 0

3 3

8 8

0
Q

V Er
Q QV E

r r



 

     

  For 2r r :     
22

1 22 20 0
2 22

0 0
2

0 2 0 2

3 3

8 8
 ; 

3 3

8 8

Q Q

V r E rr r
r r r r

Q QV r E r
r r

 

 

        

 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH23.XLS,” on tab 
“Problem 23.22e.” 
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4.0

5.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

r /r 2

E
/E
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23. The field is found in Problem 22-33.  The field inside the cylinder is 0, and the field outside the 

cylinder is 0

0

.
R

R




 

(a) Use Eq. 23-4a to find the potential.  Integrate along a radial line, so that .d EdRE


 l  

  

0

0 0 0

0 0

0 0 0

0
0 0

0 0

ln   

ln ,  

R R R

R R

R R R

R

R R R
V V d E dR dR

R R

R R
V V R R

R

 
 




         

  

  E


 l

 

(b) The electric field inside the cylinder is 0, so the potential inside is constant and equal to the  

potential on the surface, 0 .V  

(c) No, we are not able to assume that 0V   at .R     0V   because there would be charge at 
infinity for an infinite cylinder.  And from the formula derived in (a), if ,R   .RV    

 
24. Use Eq. 23-5 to find the charge. 

        9

0 9 2 2

0

1 1
   4 0.15 m 185V 3.1 10 C

4 8.99 10 N m C

Q
V Q rV

r



     


 
 
 

 

 
25. (a) The electric potential is given by Eq. 23-5. 

    
19

9 2 2

10

0

1 1.60 10 C
8.99 10 N m C 28.77 V 29V

4 0.50 10 m

Q
V

r






    


  

(b) The potential energy of the electron is the charge of the electron times the electric potential due 
to the proton. 

   19 181.60 10 C 28.77V 4.6 10 JU QV           

 
26. (a) Because of the inverse square nature of the electric  

field, any location where the field is zero must be 
closer to the weaker charge  2q .  Also, in between the 

two charges, the fields due to the two charges are parallel to each other (both to the left) and 
cannot cancel.  Thus the only places where the field can be zero are closer to the weaker charge, 

  dx

1 0q 2 0q 
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but not between them.  In the diagram, this is the point to the left of 2.q   Take rightward as the 

positive direction.  

 
 

 

2 22 1
2 122

0 0

6
2

26 6
1 2

1 1
0      

4 4

2.0 10 C
5.0cm 16cm left of 

3.4 10 C 2.0 10 C

q q
E q d x q x

x d x

q
x d q

q q

 



 

      



  

   

 

(b) The potential due to the positive charge is positive  
everywhere, and the potential due to the negative 
charge is negative everywhere.  Since the negative 
charge is smaller in magnitude than the positive charge, 
any point where the potential is zero must be closer to the negative charge.  So consider 
locations between the charges (position 1x ) and to the left of the negative charge (position 2x ) 

as shown in the diagram. 
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







 
      

   

   


 
    

 

 
 
 

 
 
 

 

So the two locations where the potential is zero are 1.9 cm from the negative charge towards the 
positive charge, and 7.1 cm from the negative charge away from the positive charge. 

 
27. The work required is the difference in the potential energy of the charges, calculated with the test 

charge at the two different locations.  The potential energy of a pair of charges is given in Eq. 23-10 

as 
0

1

4

qQ
U

r
 .  So to find the work, calculate the difference in potential energy with the test 

charge at the two locations.  Let Q represent the 25 C  charge, let q represent the 0.18 C  test 
charge, D represent the 6.0 cm distance, and let d represent the 1.0 cm distance. Since the potential 
energy of the two 25 C charges doesn’t change, we don’t include it in the calculation. 
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An external force needs to do positive work to move the charge. 

  d
1x2x

1 0q 2 0q 
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28. (a) The potential due to a point charge is given by Eq. 23-5. 

   

ba b a

0 b 0 a 0 b a
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1 1
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      

 
 
 
 
 
 



 

 (b) The magnitude of the electric field due to a point  
charge is given by Eq. 21-4a.  The direction of the 
electric field due to a negative charge is towards the 
charge, so the field at point a will point downward, and 
the field at point b will point to the right.  See the 
vector diagram. 
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29. We assume that all of the energy the proton gains in being accelerated by the 

voltage is changed to potential energy just as the proton’s outer edge reaches the 
outer radius of the silicon nucleus.   
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30. By energy conservation, all of the initial potential energy of the charges will change to kinetic energy 

when the charges are very far away from each other.  By momentum conservation, since the initial 
momentum is zero and the charges have identical masses, the charges will have equal speeds in 
opposite directions from each other as they move.  Thus each charge will have the same kinetic 
energy. 
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31. By energy conservation, all of the initial potential energy will change to kinetic energy of the 
electron when the electron is far away.  The other charge is fixed, and so has no kinetic energy.  
When the electron is far away, there is no potential energy. 
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32. Use Eq. 23-2b and Eq. 23-5. 
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33. (a) For every element dq as labeled in Figure  

23-14 on the top half of the ring, there 
will be a diametrically opposite element 
of charge –dq.  The potential due to those 
two infinitesimal elements will cancel 
each other, and so the potential due to the 
entire ring is 0. 

 (b) We follow Example 21-9 from the  
textbook.  But because the upper and 
lower halves of the ring are oppositely 
charged, the parallel components of the 
fields from diametrically opposite infinitesimal segments of the ring will cancel each other, and 

the perpendicular components add, in the negative y direction.  We know then that 0 .xE   
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Note that for ,x R  this reduces to 
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which has the typical distance dependence 

for the field of a dipole, along the axis of the dipole. 
 
 
 

dq

dq




topdE


bottomdE


x



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

80 

34. The potential at the corner is the sum of the potentials due to each of the charges, using Eq. 23-5. 
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35. We follow the development of Example 23-9, with Figure 23-15.  The charge on a thin ring of radius 

R and thickness dR is  2 .dq dA RdR      Use Eq. 23-6b to find the potential of a continuous 

charge distribution. 
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36. All of the charge is the same distance from the center of the semicircle – the radius of the semicircle.  

Use Eq 23-6b to calculate the potential. 
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37. The electric potential energy is the product of the point charge and the electric potential at the 

location of the charge.   Since all points on the ring are equidistant from any point on the axis, the 
electric potential integral is simple. 
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Energy conservation is used to obtain a relationship between the potential and kinetic energies at the 
center of the loop and at a point 2.0 m along the axis from the center. 
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This is equation is solved to obtain the velocity at x = 2.0 m. 
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38. Use Eq. 23-6b to find the potential of a continuous charge 
distribution.  Choose a differential element of length dx  at position 

x  along the rod.  The charge on the element is ,
2

Q
dq dx

l
and the 

element is a distance 2 2r x y   from a point on the y axis.  Use 

an indefinite integral from Appendix B-4, page A-7. 
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39. Use Eq. 23-6b to find the potential of a continuous charge 

distribution.  Choose a differential element of length dx  at 
position x  along the rod.  The charge on the element is 

,
2

Q
dq dx

l
and the element is a distance x x  from a point 

outside the rod on the x axis.   
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40. For both parts of the problem, use Eq. 23-6b to find the potential of a continuous charge distribution.  

Choose a differential element of length dx  at position x  along the rod.  The charge on the element 
is .dq dx ax dx      

(a) The element is a distance 2 2r x y   from a point on the y 

axis. 
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The integral is equal to 0 because the region of integration is 
“even” with respect to the origin, while the integrand is “odd.”  
Alternatively, the antiderivative can be found, and the integral 
can be shown to be 0.  This is to be expected since the potential 
from points symmetric about the origin would cancel on the y axis. 

 
 (b) The element is a distance x x  from a point outside  

the rod on the x axis. 
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  A substitution of z x x  can be used to do the integration. 
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41. We follow the development of Example 23-9, with Figure 23-15.  The charge on a thin ring of radius 

R and thickness dR will now be    2 2 .dq dA aR RdR     Use Eq. 23-6b to find the potential of 

a continuous charge distribution. 
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 A substitution of 2 2 2x R u  can be used to do the integration. 
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42. 
 
 
 
 
 
 
 
 
43. The electric field from a large plate is uniform with magnitude 02 ,E    with the field pointing 

away from the plate on both sides.   Equation 23-4(a) can be integrated between two arbitrary points 
to calculate the potential difference between those points. 
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Setting the change in voltage equal to 100 V and solving for 0 1x x  gives the distance between field 

lines. 
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44. The potential at the surface of the sphere is 0

0 0

1
.

4

Q
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r
   The potential outside the sphere is  

0
0

0

1
,

4

Q r
V V

r r
   and decreases as you move away from the surface.  The difference in potential 

between a given location and the surface is to be a multiple of 100 V. 
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Note that to within the appropriate number of significant figures, this location is at the 
surface of the sphere.  That can be interpreted that we don’t know the voltage well enough 
to be working with a 100-V difference. 
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45. The potential due to the dipole is given by Eq. 23-7. 
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4 4.1 10 m

p
V

r








 
 



 
 

  3   1.8 10 V   

 (c) 
   

 

9 2 2 30 o

22 9
0

8.99 10 N m C 4.8 10 C m cos1351 cos

4 1.1 10 m

p
V

r








 
 



 
 

  3   1.8 10 V    
 
46. (a) We assume that 1p


 and 2p


 are equal in magnitude, and that each makes a 52  angle with p


.   

The magnitude of 1p


 is also given by 1p qd , where q  is the net charge on the hydrogen 

atom, and d is the distance between the H and the O. 

   

 

1 1

30
20

10

2 cos52       
2 cos52

6.1 10 C m
5.2 10 C

2 cos52 2 0.96 10 m cos52

p
p p p qd

p
q

d






     



   

  


 

  This is about 0.32 times the charge on an electron. 

QQ

r

QQ

r



QQ

r
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(b) Since we are considering the potential far from the 
dipoles, we will take the potential of each dipole to be 
given by Eq. 23-7.  See the diagram for the angles 

involved.  From part (a), 1 2 .
2cos52

p
p p 


  

      
1 2

1 2

0 0

cos 52 cos 521 1

4 4

p pV V V

p p

r r

 
 

 

   
 

 

    

 

 

0

0

0 0

1
   cos 52 cos 52

4 2 cos52

1
   cos52 cos sin 52 cos cos52 cos sin 52 cos

4 2 cos52

1 1 cos
   2cos52 cos

4 2 cos52 4

p

r

p

r

p p

r r

 


   





 

     


       


  


 

 

47. 
2 2

0 0 0 0

1 1 1 1

4 4 4 4

dV d q q d q q
E

dr dr r dr r r r   
         

     
         

 

 
48. The potential gradient is the negative of the electric field.  Outside of a spherically symmetric charge 

distribution, the field is that of a point charge at the center of the distribution. 

     
 

19

9 2 2 21

22 15
0

92 1.60 10 C1
8.99 10 N m C 2.4 10 V m

4 7.5 10 m

dV q
E

dr r






         


  

 
49. The electric field between the plates is obtained from the negative derivative of the potential. 

 (8.0 V/m)   5.0 V 8.0 V/m
dV d

E x
dx dx

        

The charge density on the plates (assumed to be conductors) is then calculated from the electric field 
between two large plates, 0/ .E    

   12 2 2 11 2

0 8.0 V/m 8.85 10 C /Nm 7.1 10 C/mE         

The plate at the origin has the charge 11 27.1 10 C/m   and the other plate, at a positive x, has charge 
11 27.1 10 C/m   so that the electric field points in the negative direction. 

 
50. We use Eq. 23-9 to find the components of the electric field. 

  

 
   

 
 
 

2 2 2 2

2 22 2 2 2 2 2

0  ;  0

2

x z

y

V V
E E

x z

a y b by y y a bV by
E

y y a y a y a y

 
     

 

   
      

    

 
 
  

 

  
 
 

2 2

22 2

ˆ
y a b

a y





E j


 

52  


52   r

1p


2p

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51. We use Eq. 23-9 to find the components of the electric field. 

  

     

2.5 3.5   ;  2 2.5 3.5  ; 3.5

ˆ ˆ ˆ2.5 3.5 2 2.5 3.5 3.5

x y z

V V V
E y yz E y x xz E xy

x y z

y yz y x xz xy

  
             

  

       E i j k


 

 
52. We use the potential to find the electric field, the electric field to find the force, and the force to find 

the acceleration. 

  

         
6

22 3 2

5

  ;    ;  

2.0 10 C
2.0 m 2 2.0 V m 2.0 m 3 3.0 V m 2.0 m 1.1m s

5.0 10 kg

x x
x x x x

x

V F qE q V q V
E F qE a

x m m m x m x

a x




  
        

  


    


  

 

 
53. (a) The potential along the y axis was derived in Problem 38. 

   

   
   

2 2
2 2 2 2

axis 2 2
0 0

1/ 2 1/ 22 2 2 21 1
2 2

2 2 2 2 2 2
0 0

ln ln ln
8 8

2 2

8 4

y

y

yQ Q
V y y

y

y y y yV Q Q
E

y y y y y

 

 

 

 
      

 

 
     

     

            
 
 
  

l l
l l l l

l ll l

l l

l l l l l l

 

  From the symmetry of the problem, this field will point along the y axis. 

   
2 2

0

1 ˆ
4

Q

y y



E j

l


 

  Note that for ,y l  this reduces to the field of a point charge at the origin. 
(b) The potential along the x axis was derived in Problem 39. 

  

    axis

0 0

2 2

0 0

ln ln ln
8 8

1 1 1

8 4

x

x

Q x Q
V x x

x

V Q Q
E

x x x x

 

 


    




     

   

  
    

   
     

l
l l

l l l

l l l l

 

  From the symmetry of the problem, this field will point along the x axis. 

  
2 2

0

1 ˆ
4

Q

x



 
 
 

E i
l


 

  Note that for ,x l  this reduces to the field of a point charge at the origin. 
 
54. Let the side length of the equilateral triangle be L.  Imagine bringing the 

electrons in from infinity one at a time.  It takes no work to bring the first 
electron to its final location, because there are no other charges present.  
Thus  1 0W  .  The work done in bringing in the second electron to its 

final location is equal to the charge on the electron times the potential 
(due to the first electron) at the final location of the second electron.  

Thus  
2

2

0 0

1 1

4 4

e e
W e

L 
   

 
 
 l

.  The work done in bringing the third electron to its final  

l

e e

e

l

l
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location is equal to the charge on the electron times the potential (due to the first two electrons).  

Thus  
2

3

0 0 0

1 1 1 2

4 4 4

e e e
W e

  
    

 
 
 l l l

.  The total work done is the sum 1 2 3W W W  . 

   
 

29 2 2 192 2 2

1 2 3 10

0 0 0

18 18

19

3 8.99 10 N m C 1.60 10 C1 1 2 1 3
0

4 4 4 1.0 10 m

1eV
   6.9 10 J 6.9 10 J 43eV

1.60 10 J

e e e
W W W W

  





 



 
       



    


 
 
 

l l l



 

 
55. The gain of kinetic energy comes from a loss of potential energy due to conservation of energy, and  

the magnitude of the potential difference is the energy per unit charge.  The helium nucleus has a 
charge of 2e.   

 
3125 10 eV

62.5kV
2

U K
V

q q e

  
         

 The negative sign indicates that the helium nucleus had to go from a higher potential to a lower 
potential. 

 
56. The kinetic energy of the particle is given in each case.  Use the kinetic energy to find the speed. 

 (a) 
   19

2 71
2 31

2 1500eV 1.60 10 J eV2
    2.3 10 m s

9.11 10 kg

K
mv K v

m






     


 

 (b) 
   19

2 51
2 27

2 1500eV 1.60 10 J eV2
    5.4 10 m s

1.67 10 kg

K
mv K v

m






     


 

 
57. The potential energy of the two-charge configuration (assuming they are both point charges) is given 

by Eq. 23-10. 

  

   

2

1 2

0 0

2

final initial

0 initial final

29 2 2 19

9 9 19

1 1

4 4

1 1

4

1 1 1eV
8.99 10 N m C 1.60 10 C

0.110 10 m 0.100 10 m 1.60 10 J

1.31eV

Q Q e
U

r r

e
U U U

r r

 





  

  

    

   
  

 

 
 
 

  
  
  



 

Thus 1.3 eV of potential energy was lost. 
 
58. The kinetic energy of the alpha particle is given.  Use the kinetic energy to find the speed. 

  
   6 19

2 71
2 27

2 5.53 10 eV 1.60 10 J eV2
    1.63 10 m s

6.64 10 kg

K
mv K v

m





 
     


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59. Following the same method as presented in Section 23-8, we get the following results. 
 (a) 1 charge:  No work is required to move a single charge into a position, so 1 0.U   

 2 charges: This represents the interaction between 1Q  and 2.Q  

1 2

0 12

2

1

4

Q Q
U

r
   

3 charges:  This now adds the interactions between 1 3&Q Q  and 2 3& .Q Q  

1 2 1 3 2 3

0 12 13 23

3

1

4

Q Q Q Q Q Q
U

r r r


 
  

 
  

 4 charges: This now adds the interaction between 1 4& ,Q Q  2 4& ,Q Q  and 3 4& .Q Q  

  1 2 1 3 1 4 2 3 2 4 3 4

0 12 13 14 23 24 34

4

1

4

Q Q Q Q Q Q Q Q Q Q Q Q
U

r r r r r r


 
     

 
 

 
 
 
 
 
 
 
 
 
 

(b) 5 charges: This now adds the interaction between 1 5& ,Q Q  2 5& ,Q Q  3 5& ,Q Q and 4 5& .Q Q  

  1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5

0 12 13 14 15 23 24 25 34 35 45

5

1

4

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
U

r r r r r r r r r r


 
         

 
 

 
 
  
 
 
 
 
 
 
 
 
60. (a) The potential energy of the four-charge configuration was derived in Problem 59.  Number the  

charges clockwise, starting in the upper right hand corner of the square. 

   

 
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 
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 
 
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(b) The potential energy of the fifth charge is due to the interaction between the fifth charge and 
each of the other four charges.  Each of those interaction terms is of the same magnitude since 
the fifth charge is the same distance from each of the other four charges. 

    
2

5th
charge 0

4 2
4

Q
U

b
  

(c) If the center charge were moved away from the center, it would be moving closer to 1 or 2 of 
the other charges.  Since the charges are all of the same sign, by moving closer, the center 
charge would be repelled back towards its original position.  Thus it is in a place of stable 
equilibrium. 

 (d) If the center charge were moved away from the center, it would be moving closer to 1 or 2 of  
the other charges.  Since the corner charges are of the opposite sign as the center charge, the 
center charge would be attracted towards those closer charges, making the center charge move 
even farther from the center.  So it is in a place of unstable equilibrium. 

 
61. (a) The electron was accelerated through a potential difference of 1.33 kV (moving from low  

potential to high potential) in gaining 1.33 keV of kinetic energy.  The proton is accelerated 
through the opposite potential difference as the electron, and has the exact opposite charge.  
Thus the proton gains the same kinetic energy,  1.33 keV . 

 (b) Both the proton and the electron have the same KE.  Use that to find the ratio of the speeds. 

   
27

p2 2 e1 1
p p e e2 2 31

p

1.67 10 kg
    42.8

9.11 10 kge

mv
m v m v

v m






    


  

  The lighter electron is moving about 43 times faster than the heavier proton. 
 
62. We find the energy by bringing in a small amount of charge at a time, similar to the method given  

in Section 23-8.  Consider the sphere partially charged, with charge q < Q.  The potential at the 

surface of the sphere is 
0 0

1
,

4

q
V

r
  and the work to add a charge dq to that sphere will increase the 

potential energy by .dU Vdq   Integrate over the entire charge to find the total potential energy. 

  
2

0 0 0 00

1 1

4 8

Q q Q
U dU dq

r r 
     

 
63. The two fragments can be treated as point charges for purposes of calculating their potential energy.  

Use Eq. 23-10 to calculate the potential energy.  Using energy conservation, the potential energy is 
all converted to kinetic energy as the two fragments separate to a large distance. 

         
   

1 2
initial final initial final

0

219

9 2 2 6

15 15 19

1
    

4

38 54 1.60 10 C 1eV
   8.99 10 N m C 250 10 eV

5.5 10 m 6.2 10 m 1.60 10 J

   250 MeV

q q
E E U K V

r


  

   


   

   



 
 
 

  

This is about 25% greater than the observed kinetic energy of 200 MeV. 
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64. We find the energy by bringing in a small amount of spherically symmetric charge at a time, similar 
to the method given in Section 23-8.  Consider that the sphere has been partially constructed, and so 
has a charge q < Q, contained in a radius 0.r r   Since the sphere is made of uniformly charged 

material, the charge density of the sphere must be E 34
3 0

.
Q

r



   Thus the partially constructed sphere 

also satisfies E 4
3

3
,

q

r



  and so 

3

3 3 34 4
3 3 0 0

   .
q Q Qr

q
r r r 

     The potential at the surface of that 

sphere can now found. 

 

3

23

0

3

0 0 0 0

1 1 1

4 4 4

Qr

q Qrr
V

r r r  
    

We now add another infinitesimally thin shell to the partially constructed sphere.  The charge of that 

shell is 2

E 4 .dq r dr    The work to add charge dq to the sphere will increase the potential energy 

by .dU Vdq   Integrate over the entire sphere to find the total potential energy. 

   
0 02 2

2 4E
E3 3

0 0 0 0 0 00 0

1 3
4

4 20

r r
Qr Q Q

U dU Vdq r dr r dr
r r r


 

  
         

 

65. The ideal gas model, from Eq. 18-4, says that 2 31
rms2 2 .K mv kT   

  

   
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23

2 531
rms rms2 2 31

273 K

23

5

rms 31
2700 K

3 1.38 10 J K 273K3
    1.11 10 m s

9.11 10 kg

3 1.38 10 J K 2700 K3
3.5 10 m s

9.11 10 kg

kT
K mv kT v

m

kT
v

m










      




   



  

 
66. If there were no deflecting field, the electrons would hit the 

center of the screen.  If an electric field of a certain direction 
moves the electrons towards one extreme of the screen, then the 
opposite field will move the electrons to the opposite extreme 
of the screen.  So we solve for the field to move the electrons to 
one extreme of the screen.  Consider three parts to the 

electron’s motion, and see the diagram, which is a top view.  
First, during the horizontal acceleration phase, energy will be 
conserved and so the horizontal speed of the electron xv  can 

be found from the accelerating potential V .  Secondly, during the deflection phase, a vertical force 
will be applied by the uniform electric field which gives the electron a leftward velocity, yv .  We 

assume that there is very little leftward displacement during this time.  Finally, after the electron 
leaves the region of electric field, it travels in a straight line to the left edge of the screen. 

Acceleration:  

   21
initial final 2

2
        x x

eV
U K eV mv v

m
       

 
 

E


field 2.6 cmx 

xv

screen  14cmy 

screen 34cmx 
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  Deflection: 

   

field
field field field

field
0 field

time in field:      

         0

x

x

y y y y y

x

x
x v t t

v

eE xeE
F eE ma a v v a t

m mv


   


       

 

  Screen: 

   screen screen
screen screen screen screen screen         x y y

x x

x x
x v t t y v t v

v v

 
        

   

field

screen field

2

screen

 y x

x x x

eE x

vy mv eE x

x v v mv


 

   


 

   
   
   

32 screen
screen screen

screen field screen field screen field

5 5

2
2 6.0 10 V 0.14 m2

0.34 m 0.026 m

   1.90 10 V m 1.9 10 V m

x

eV
y my mv V ymE

x e x x e x x x

  
   
     

   

 

 As a check on our assumptions, we calculate the upward distance that the electron would move while 
in the electric field. 

  

   

  
 

2 2 2

2 field fieldfield1 1
0 field field2 2

25

3

0
2 42

1.90 10 V m 0.026 m
    5.4 10 m

4 6000 V

y

x

eE x E xeE x
y v t a t

eVm v Vm
m



 
      


  

  
        

   

 This is about 4% of the total 15 cm vertical deflection, and so for an estimation, our approximation is 

acceptable.  And so the field must vary from 5 51.9 10 V m  to 1.9 10 V m     

 
67. Consider three parts to the electron’s motion.  First, during the 

horizontal acceleration phase, energy will be conserved and so 
the horizontal speed of the electron xv  can be found from the 

accelerating potential, V .  Secondly, during the deflection 
phase, a vertical force will be applied by the uniform 

electric field which gives the electron an upward velocity, yv .  

We assume that there is very little upward displacement during this time.  Finally, after the electron 
leaves the region of electric field, it travels in a straight line to the top of the screen. 

  Acceleration:  

   21
initial final 2

2
        x x

eV
U K eV mv v

m
       

 
 
 
 

E


fieldx

xv

11cm

22cm

screenx
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  Deflection: 

   

field
field field field

field
0 field

time in field:      

         0

x

x

y y y y y

x

x
x v t t

v

eE xeE
F eE ma a v v a t

m mv


   


       

 

  Screen: 

   screen screen
screen screen screen screen screen         x y y

x x

x x
x v t t y v t v

v v

 
        

   

field

screen field

2

screen

 y x

x x x

eE x

vy mv eE x

x v v mv


 

   


 

   
   
   

2 screen
screen screen

screen field screen field screen field

5 5

2
2 7200 V 0.11m2

0.22 m 0.028m

   2.57 10 V m 2.6 10 V m

x

eV
y my mv V ymE

x e x x e x x x

 
   
     

   

 

 As a check on our assumptions, we calculate the upward distance that the electron would move while 
in the electric field. 

  

   

   
 

2 2 2

2 field fieldfield1 1
0 field field2 2

25

3

0
2 42

2.97 10 V m 0.028m
    8.1 10 m

4 7200 V

y

x

eE x E xeE x
y v t a t

eVm v Vm
m



 
      


  

  
        

   

 This is about 7% of the total 11 cm vertical deflection, and so for an estimation, our approximation is 
acceptable. 

 
68. The potential of the earth will increase because the “neutral” Earth will now be charged by the 

removing of the electrons.  The excess charge will be the elementary charge times the number of 
electrons removed.  We approximate this change in potential by using a spherical Earth with all the 
excess charge at the surface. 

  

 

 

19 23
34

33

2

9 2 2 6

6

0 Earth

1.602 10 C 10 6.02 10 molecules 1000 kg
0.00175m

H O molecule 0.018 kg m

1203C

1 1203C
8.99 10 N m C 1.7 10 V

4 6.38 10 m

e
Q

e

Q
V

R





 



 




    


     
          



 

 
69. The potential at the surface of a charged sphere is that of a point charge of the same magnitude, 

located at the center of the sphere. 

     
 

8

9 2 2

0

1 10 C1
8.99 10 N m C 599.3V 600 V

4 0.15m

q
V

r


      
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70.
  
 
 
 
 
 
 
 
 
  
  
 
71. Let 1d  represent the distance from the left charge to point b, and let 2d  represent the distance from 

the right charge to point b.  Let Q represent the positive charges, and let q represent the negative 
charge that moves.  The change in potential energy is given by Eq. 23-2b. 

  

 

2 2 2 2

1 2

b a b a

0

0

12 14 cm 18.44 cm          14 24 cm 27.78 cm

1

4 0.1844 m 0.2778m 0.12 m 0.24 m

1 1 1 1 1
             

4 0.1844 m 0.2778m 0.12 m 0.24 m

          

d d

Q Q Q Q
U U q V V q

Qq





     

      

   

    
   
    

    
   
    

      9 2 2 6 6 1   8.99 10 N m C 1.5 10 C 33 10 C 3.477 m 1.547 J 1.5J         

 

 
72. (a) All eight charges are the same distance from the center of the cube.  Use Eq. 23-5 for the  

potential of a point charge. 

   center

0 0 0

1 16 1 1
8 9.24

4 4 43 3

2

Q Q Q
V

  
  

l l
l

    

(b) For the seven charges that produce the potential at a corner, three are a distance l  away from  

that corner, three are a distance 2l  away from that corner, and one is a distance 3l away 
from that corner.  

  corner

0 0 0 0 0

1 1 1 3 1 1 1
3 3 3 5.70

4 4 4 4 42 3 2 3

Q Q Q Q Q
V

    
       

 
 l l ll l

 

(c) The total potential energy of the system is half the energy found by multiplying each charge  
times the potential at a corner.  The factor of half comes from the fact that if you took each 
charge times the potential at a corner, you would be counting each pair of charges twice. 

   
2 2

1
corner2

0 0

3 1 1 1
8 4 3 22.8

4 42 3

Q Q
U QV

 
     

 
  l l

 

 
 
 
 

+ + 
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73. The electric force on the electron must be the same magnitude as the weight of the electron.  The 
magnitude of the electric force is the charge on the electron times the magnitude of the electric field.  
The electric field is the potential difference per meter:  E V d . 

       
E E

31 2

12

19

  ;        

9.11 10 kg 9.80 m s 0.035m
2.0 10 V

1.60 10 C

F mg F q E eV d eV d mg

mgd
V

e







     


   



 

 Since it takes such a tiny voltage to balance gravity, the thousands of volts in a television set are 
more than enough (by many orders of magnitude) to move electrons upward against the force of 
gravity. 

 
74. From Problem 59, the potential energy of a configuration of four  

charges is 1 2 1 3 1 4 2 3 2 4 3 4

0 12 13 14 23 24 34

1

4
.

Q Q Q Q Q Q Q Q Q Q Q Q
U

r r r r r r
     

 
 
 

 

Let a side of the square be l, and number the charges clockwise starting 
with the upper left corner. 

  1 2 1 3 1 4 2 3 2 4 3 4

0 12 13 14 23 24 34

1

4

Q Q Q Q Q Q Q Q Q Q Q Q
U

r r r r r r
     

 
 
 

 

                 

   
0

262
9 2 2

0

2 3 2 2 3 2 2 3 21
   

4 2 2

3.1 10 C1 1
   8 8.99 10 N m C 8 7.9J

4 0.080m2 2

Q Q Q Q Q Q Q Q Q Q Q Q

Q







  
     


      

 
 
 

   
   
   

l l l ll l

l


 

 
75. The kinetic energy of the electrons (provided by the UV light) is converted completely to potential 

energy at the plate since they are stopped.  Use energy conservation to find the emitted speed, taking 
the 0 of PE to be at the surface of the barium. 

    

21
initial final 2

19

6

31

KE PE       

2 1.60 10 C 3.02 V2
1.03 10 m s

9.11 10 kg

mv qV

qV
v

m





   

  
   



 

 
76. To find the angle, the horizontal and vertical components of the velocity are needed.  The horizontal 

component can be found using conservation of energy for the initial acceleration of the electron.  
That component is not changed as the electron passes through the plates.  The vertical component 
can be found using the vertical acceleration due to the potential difference of the plates, and the time 
the electron spends between the plates. 

  Horizontal: 

   21
inital final 2

PE KE              x

x

x
qV mv t

v


     

  Vertical: 

   
 0

E     
y y y y

y y

x

v v qE t qE x
F qE ma m v

t m mv

 
       

 
 

+ 

Q 2Q

-3Q2Q 
–

l+ +

l

l l
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  Combined: 

   

 

 2

1

250 V
0.065m

0.013m
tan 0.1136

2 2 2 5500 V

tan 0.1136 6.5

y

y y y yx

x x x

qE x

v qE x qE x E xmv

v v mv qV V


 


  

      

  

 
 
 

 

 
77. Use Eq. 23-5 to find the potential due to each charge.  Since the triangle is 

equilateral, the 30-60-90 triangle relationship says that the distance from a 

corner to the midpoint of the opposite side is 3 2l . 

  

     

     

A

0 0 0 0

0

B

0 0 0 0 0

31 1 1 1 2 1
4

4 2 4 2 4 43 2 3

3
2

6

31 1 1 1 6 3

4 2 4 2 4 4 23 2 3

Q Q Q Q
V

Q

Q Q Q Q Q
V

   



    

 
     

 

 
      

 
 
 

 
 
 

l l ll

l

l l ll l

 

  
     

C

0 0 0 0 0

31 1 1 1 2 1 3
2 1

4 2 4 2 4 4 63 2 3

Q Q Q Q Q
V

    
 

        
  
  

   l l l ll
 

 
78. Since the E-field points downward, the surface of the Earth is a lower potential than points above the 

surface.  Call the surface of the Earth 0 volts.  Then a height of 2.00 m has a potential of 300 V.   We 
also call the surface of the Earth the 0 location for gravitational PE.  Write conservation of energy 
relating the charged spheres at 2.00 m (where their speed is 0) and at ground level (where their 
electrical and gravitational potential energies are 0). 

  

       
 

21
initial final 2

4

2

        2

4.5 10 C 300 V
2 9.80 m s 2.00 m 6.3241m s

0.340 kg

qV
E E mgh qV mv v gh

m

v




      


  

 
 
 

 
 
  

 

  
       

 

4

2
4.5 10 C 300 V

2 9.80 m s 2.00 m 6.1972 m s
0.340 kg

6.3241m s 6.1972 m s 0.13m s

v

v v





 

 
  

   

 
 
    

 
79. (a) The energy is related to the charge and the potential difference by Eq. 23-3. 

   
6

64.8 10 J
    1.2 10 V

4.0C

U
U q V V

q

 
          

 (b) The energy (as heat energy) is used to raise the temperature of the water and boil it.  Assume  
that room temperature is 20oC. 

   f   Q mc T mL     

A

B

C

Q Q

3Q
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 

6

5f

4.8 10 J
1.8kg

J J
4186 80C 22.6 10

kg C kg

Q
m

c T L


  

 
  


   
   
   

 

 
80. Use Eq. 23-7 for the dipole potential, and use Eq. 23-9 to determine the electric field. 

  

 
 

   
   

 

1/ 22 2

3 / 22 2 2 2 2
0 0 0

3 / 2 1/ 22 2 2 23 2 2
2

3 5 / 22 2 2 2
0 0

2 2

3

0

5 / 22 23
2 2

0 0

1 cos

4 4 4

2 2

4 4

2cos sin

4

3
2

4 4

x

y

x

x yp p p x
V

r x y x y

x y x x y xV p p x y
E

x x y x y

p

r

V px p xy
E x y y

y x


  

 

 


 



  

 

   
    

  





      

 

   
   
      

 
 
 

 
   5 / 2 32

0

3cos sin

4

p

ry

 


         

 

 Notice the 
3

1

r
dependence in both components, which is indicative of a dipole field. 

 
81. (a) Since the reference level is given as V = 0 at ,r    the potential outside the shell is that of a  

point charge with the same total charge. 

   
   3 3 3 34 4

E 2 1 2 13 3 E
2

0 0 0

1 1
, 

4 4 3

r r r rQ
V r r

r r r

   
  

 
      

  Note that the potential at the surface of the shell is 
2

3
2E 1

2

0 2

.
3

r

r
V r

r




 
 
 
 

 

(b) To find the potential in the region 1 2 ,r r r   we need the electric field in that region.  Since the 

charge distribution is spherically symmetric, Gauss’s law may be used to find the electric field. 

       3 3 3 34 4
3 3E 1 12 encl encl E

2 2 2

0 0 0 0

1 1
4     

4 4 3

r r r rQ Q
d E r E

r r r

   


   

 
      E A


  

The potential in that region is found from Eq. 23-4a.  The electric field is radial, so we integrate 

along a radial line so that .d EdrE


 l  

   

 
2

2 2 2 2 2

2

2

3 3 3 3
1 2E E 1 E 11

22 2

0 0 0

3 3 3
2 2 2 2 2E 1 E 1 E 131 1 1 1 1

2 2 12 2 2 2 6 3

0 0 0

3 3 3

, 
3 3

rr r r r

r r

r r r r r

r

r r

r

r r r r
V V d E dr dr r dr r

r r r

r r r
V V r r r r r r r

r r r

  
  

  
  


            

           

   
   
   

      
      

       

   E


 l

2r
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(c) Inside the cavity there is no electric field, so the potential is constant and has the value that it 
has on the cavity boundary. 

  
1

3
2 2 2 2E 1 E1 1 1

2 1 2 1 12 6 3

0 1 0

,  
2

r

r
V r r r r r r

r

 
 

     
 
 
 

 

The potential is continuous at both boundaries. 
 
82. We follow the development of Example 23-9, with Figure 23-15.  The charge density of the ring is 

 2 22 1
020 0

4
.

3

Q Q

RR R


 
 



 
 
 

  The charge on a thin ring of radius R and thickness dR is 

dq dA    
2

0

4
2 .

3

Q
RdR

R



  Use Eq. 23-6b to find the potential of a continuous charge 

distribution. 

  

 
 

 

0 0
0

1
1 1 02

0 02 2

2
1/ 22 20

2 22 2 2 2
0 0 0 0 0 0

2 2 2 21
0 042

0 0

4
2

1 1 2 23

4 4 3 3

2

3

R R R

R
R R

Q
RdR

dq Q R QR
V dR x R

r R Rx R x R

Q
x R x R

R




     

 

    
 

   

  
 

 
83. From Example 22-6, the electric field due to a long wire is radial relative to the wire, and is of 

magnitude 
0

1
.

2
E

R




   If the charge density is positive, the field lines point radially away from the 

wire.  Use Eq. 23-41 to find the potential difference, integrating along a line that is radially outward 
from the wire. 

     
a a

b b

b
a b a b

0 0 0 a

1
ln ln

2 2 2 R

R R

R R

R
V V d dR R R

R

  
  

         E


 l  

 
84. (a) We may treat the sphere as a point charge located at the center of the field.  Then the electric  

field at the surface is surface 2

0 0

1
,

4

Q
E

r
  and the potential at the surface is surface

0 0

1
.

4

Q
V

r
  

     6 5

surface surface 0 breakdown 0

0 0

1
3 10 V m 0.20 m 6 10 V

4

Q
V E r E r

r
        

(b)  
   
 

5

5 5

surface 0 0 surface 9 2 2

0 0

0.20 m 6 10 V1
    4 1.33 10 C 1 10 C

4 8.99 10 N m C

Q
V Q rV

r



 


       

 
 

 
85. (a) The voltage at 0.20 mx   is obtained by inserting the given data directly into the voltage  
  equation. 

     
     

4

2 22 2 2 2

150 V m
0.20 m   23 kV

0.20 m 0.20 m

B
V

x R
  

   


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 (b) The electric field is the negative derivative of the potential. 

    
   2 32 2 2 2

ˆ4ˆ 
d B Bx

dx x R x R
x   

 

 
 
  

i
E i


 

  Since the voltage only depends on x the electric field points in the positive x direction. 
(c) Inserting the given values in the equation of part (b) gives the electric field at 0.20 mx   

   

   

4

5

32 2

ˆ4 150 V m 0.20 m
ˆ(0.20 m) 2.3 10 V m

0.20 m 0.20 m
  

  

i
E i
 

 

 
86. Use energy conservation, equating the energy of charge 1q  at its initial position to its final position 

at infinity.  Take the speed at infinity to be 0, and take the potential of the point charges to be 0 at 
infinity. 

   

 

2 21 1
initial final initial initial final final 0 1 initial final 1 final2 2

point point

2 2 1 21
0 1 02 2 2 2 2

0 0

        

1 2 1
0 0    

4

E E K U K U mv q V mv q V

q q q
mv q v

ma b a b 

          

     
 

 

 
87. (a) From the diagram, the potential at x is the potential of two  

point charges. 

 
0 0

exact

1 1

4 4

q q
V

x d x d 


 
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   
   
   
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q d

x d
   



 
 
  

 

 (b) The approximate potential is given by Eq. 23-7, with 0,   2 ,p qd  and .r x   

 approx 2

0

1 2

4

qd
V

x
  

To make the difference at 
small distances more 
apparent, we have plotted 
from 2.0 cm to 8.0 cm. 
The spreadsheet used for 
this problem can be found 
on the Media Manager, with 
filename 
“PSE4_ISM_CH23.XLS,” 
on tab “Problem 23.87.” 
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88. The electric field can be determined from the potential by using Eq. 23-8, differentiating with respect 
to x. 

         1/ 2 1/ 22 2 2 21
0 022 2

0 0 0 0
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         
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The spreadsheet used for 
this problem can be found 
on the Media Manager, 
with filename 
“PSE4_ISM_CH23.XLS,” 
on tab “Problem 23.88.” 
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89. (a) If the field is caused by a point  
charge, the potential will have a graph 
that has the appearance of 1/r 
behavior, which means that the 
potential change per unit of distance 
will decrease as potential is measured 
farther from the charge.  If the field is 
caused by a sheet of charge, the 
potential will have a linear decrease 
with distance.  The graph indicates 
that the field is caused by a point 
charge.  The spreadsheet used for this problem can be found on the Media Manager, with 
filename “PSE4_ISM_CH23.XLS,” on tab “Problem 23.89a.” 

(b) Assuming the field is caused by a point charge, we assume the charge is at x d , and then the 

potential is given by 
0

1
.

4

Q
V

x d



  This can be rearranged to  the following. 
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If we plot x vs. 
1

V
, the slope is 

0

,
4

Q


 which can be used to 

determine the charge.  
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
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The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH23.XLS,” on tab “Problem 23.89b.” 

  

(c) From the above equation, the y intercept of the graph is the location of the charge, d.  So the  

charge is located at 0.0373m 3.7cm from the first measured position .x d     
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CHAPTER 24:  Capacitance, Dielectrics, Electric Energy Storage 
 
Responses to Questions 
 
1.  Yes. If the conductors have different shapes, then even if they have the same charge, they will have 

different charge densities and therefore different electric fields near the surface. There can be a 
potential difference between them. The definition of capacitance C = Q/V cannot be used here 
because it is defined for the case where the charges on the two conductors of the capacitor are equal 
and opposite. 

 
2.  Underestimate. If the separation between the plates is not very small compared to the plate size, then 

fringing cannot be ignored and the electric field (for a given charge) will actually be smaller. The 
capacitance is inversely proportional to potential and, for parallel plates, also inversely proportional 
to the field, so the capacitance will actually be larger than that given by the formula. 

  
3.  Ignoring fringing field effects, the capacitance would decrease by a factor of 2, since the area of 

overlap decreases by a factor of 2. (Fringing effects might actually be noticeable in this 
configuration.) 

 
4.  When a capacitor is first connected to a battery, charge flows to one plate. Because the plates are 

separated by an insulating material, charge cannot cross the gap. An equal amount of charge is 
therefore repelled from the opposite plate, leaving it with a charge that is equal and opposite to the 
charge on the first plate. The two conductors of a capacitor will have equal and opposite charges 
even if they have different sizes or shapes.  

 
5.  Charge a parallel-plate capacitor using a battery with a known voltage V. Let the capacitor discharge 

through a resistor with a known resistance R and measure the time constant. This will allow 
calculation of the capacitance C. Then use C = ε0A/d and solve for ε0. 

 
6.  Parallel. The equivalent capacitance of the three capacitors in parallel will be greater than that of the 

same three capacitors in series, and therefore they will store more energy when connected to a given 
potential difference if they are in parallel. 

 
7. If a large copper sheet of thickness l is inserted between the plates of a parallel-plate capacitor, the 

charge on the capacitor will appear on the large flat surfaces of the copper sheet, with the negative 
side of the copper facing the positive side of the capacitor. This arrangement can be considered to be 
two capacitors in series, each with a thickness of  1

2 .d  l  The new net capacitance will be 

 0 ,C A d   l  so the capacitance of the capacitor will be reduced. 

 
8.  A force is required to increase the separation of the plates of an isolated capacitor because you are 

pulling a positive plate away from a negative plate. The work done in increasing the separation goes 
into increasing the electric potential energy stored between the plates. The capacitance decreases, 
and the potential between the plates increases since the charge has to remain the same. 

 
9. (a) The energy stored quadruples since the potential difference across the plates doubles and the  

capacitance doesn’t change: 21
2U CV . 

 (b) The energy stored quadruples since the charge doubles and the capacitance doesn’t change:  
2

1
2

Q
U

C
 . 
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(c) If the separation between the plates doubles, the capacitance is halved. The potential  
difference across the plates doesn’t change if the capacitor remains connected to the battery, so 

the energy stored is also halved: 21
2U CV . 

 
10. (c) If the voltage across a capacitor is doubled, the amount of energy it can store is quadrupled:  

  21
2U CV . 

 
11.  The dielectric will be pulled into the capacitor by the electrostatic attractive forces between the 

charges on the capacitor plates and the polarized charges on the dielectric’s surface. (Note that the 
addition of the dielectric decreases the energy of the system.) 

 
12. If the battery remains connected to the capacitor, the energy stored in the electric field of the 

capacitor will increase as the dielectric is inserted. Since the energy of the system increases, work 
must be done and the dielectric will have to be pushed into the area between the plates.  If it is  
released, it will be ejected. 

  

13. (a) If the capacitor is isolated, Q remains constant, and 
2

1
2

Q
U

C
  becomes 

2

1
2'

Q
U

KC
  and the  

stored energy decreases. 

(b)  If the capacitor remains connected to a battery so V does not change, 21
2U CV becomes  

21
2'U KCV , and the stored energy increases. 

 
14. For dielectrics consisting of polar molecules, one would expect the dielectric constant to decrease 

with temperature. As the thermal energy increases, the molecular vibrations will increase in 
amplitude, and the polar molecules will be less likely to line up with the electric field. 

 
15.  When the dielectric is removed, the capacitance decreases. The potential difference across the plates 

remains the same because the capacitor is still connected to the battery. If the potential difference 
remains the same and the capacitance decreases, the charge on the plates and the energy stored in the 
capacitor must also decrease. (Charges return to the battery.) The electric field between the plates 
will stay the same because the potential difference across the plates and the distance between the 
plates remain constant.  

 
16. For a given configuration of conductors and dielectrics, C is the proportionality constant between the 

voltage between the plates and the charge on the plates.  
 
17.  The dielectric constant is the ratio of the capacitance of a capacitor with the dielectric between the 

plates to the capacitance without the dielectric. If a conductor were inserted between the plates of a 
capacitor such that it filled the gap and touched both plates, the capacitance would drop to zero since 
charge would flow from one plate to the other. So, the dielectric constant of a good conductor would 
be zero.  

 
 

Solutions to Problems 
 
1. The capacitance is found from Eq. 24-1. 

  
3

62.8 10 C
    3.0 10 F 3.0 F

930 V

Q
Q CV C

V





        
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2. We assume the capacitor is fully charged, according to Eq. 24-1. 

     6 412.6 10 F 12.0 V 1.51 10 CQ CV        

 
3. The capacitance is found from Eq. 24-1. 

  
12

1275 10 C
    3.1 10 F 3.1pF

24.0 V

Q
Q CV C

V




        

 
4. Let 1Q  and 1V  be the initial charge and voltage on the capacitor, and let 2Q  and 2V  be the final 

charge and voltage on the capacitor.  Use Eq. 24-1 to relate the charges and voltages to the 
capacitance. 

  

 1 1 2 2 2 1 2 1 2 1

6
72 1

2 1

            

26 10 C
5.2 10 F 0.52 F

50 V

Q CV Q CV Q Q CV CV C V V

Q Q
C

V V





       

 
    



 

 
5. After the first capacitor is disconnected from the battery, the total charge must remain constant.  The 

voltage across each capacitor must be the same when they are connected together, since each 
capacitor plate is connected to a corresponding plate on the other capacitor by a constant-potential 
connecting wire.  Use the total charge and the final potential difference to find the value of the 
second capacitor. 

     

 

Total 1 1 1 1 final 2 2 final
initial final final

Total 1 2 1 2 final 1 1 1 2 final
final final initial

1
initial 6 5

2 1

final

          

     

125V
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15V

Q C V Q C V Q C V

Q Q Q C C V C V C C V

V

C C
V

 

  

       

       
          

 

 
6. The total charge will be conserved, and the final potential difference across the capacitors will be the 

same. 
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 
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    


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 

 

 
7. The work to move the charge between the capacitor plates is ,W qV  where V is the voltage 

difference between the plates, assuming that q Q  so that the charge on the capacitor does not 
change appreciably.  The charge is then found from Eq. 24-1.  The assumption that q Q is justified. 

  
   15μF 15J

1.1C
0.20 mC

    
Q CW

W qV q Q
C q

       
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8. (a) The total charge on the combination of capacitors is the sum of the charges on the two  
individual capacitors, since there is no battery connected to them to supply additional charge, 
and there is no neutralization of charge by combining positive and negative charges.  The 
voltage across each capacitor must be the same after they are connected, since each capacitor 
plate is connected to a corresponding plate on the other capacitor by a constant-potential 
connecting wire.  Use the total charge and the fact of equal potentials to find the charge on each 
capacitor and the common potential difference. 

1 1 1 2 2 2 1 1 final 2 2 final
initial initial initial initial final final

Total 1 2 1 2 1 1 2 2 1 final 2 final
initial initial final final initial initial

1 1 2 2
initial i

final

               

  

Q C V Q C V Q C V Q C V

Q Q Q Q Q C V C V C V C V

C V C V

V

   

        




      
 

   

   

6 6

nitial

6
1 2

1 2

6 3

1 1 final
final

6 3

2 2 final
final

2.70 10 F 475V 4.00 10 F 525V

6.70 10 F

      504.85V 505V

2.70 10 F 504.85V 1.36 10 C

4.00 10 F 504.85V 2.02 10 C

C C

V V

Q C V

Q C V

 



 

 

  


 

   

    

    

 

 (b) By connecting plates of opposite charge, the total charge will be the difference of the charges on  
the two individual capacitors.  Once the charges have equalized, the two capacitors will again 
be at the same potential. 

   

1 1 1 2 2 2 1 1 final 2 2 final
initial initial initial initial final final

Total 1 2 1 2 1 1 2 2 1 final 2 final
initial initial final final initial initial

1 1
initial

final

               

     

Q C V Q C V Q C V Q C V

Q Q Q Q Q C V C V C V C V

C V C

V

   

        




      
 

   

   

6 62 2
initial

6

1 2

1 2

6 4

1 1 final
final

6 4

2 2 final
final

2.70 10 F 475V 4.00 10 F 525V

6.70 10 F

      122.01V 120 V

2.70 10 F 122.01V 3.3 10 C

4.00 10 F 122.01V 4.9 10 C

V

C C

V V

Q C V

Q C V

 



 

 

  


 

   

    

    

 

 
9. Use Eq. 24-1. 

  
    6

3

1200 F 6.0 V 1d
 ;  7.2 10 s 83d

1.0 10 C s 86,400s

Q C V
Q C V t

Q t Q t 

 
        

    
 
 
 

 

 
10. (a) The absolute value of the charge on each plate is given by Eq. 24-1.  The plate with electrons  

has a net negative charge. 
          Q CV N e CV       
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   15

5 5

19

35 10 F 1.5V
3.281 10 3.3 10 electrons

1.60 10 C

CV
N

e






     


 

 (b) Since the charge is directly proportional to the potential difference, a 1.0% decrease in potential  
difference corresponds to a 1.0% decrease in charge. 

      15

15

0.01   ;

0.01 35 10 F 1.5V0.01 0.01
1.75s 1.8s

0.30 10 C s

Q Q

Q Q CV
t

Q t Q t Q t





 


      

      

 

 
11. Use Eq. 24-2. 

  
   
 

6 3

2 2

0 12 2 2

0

0.40 10 F 2.8 10 m
    126.6 m 130 m

8.85 10 C N m

A Cd
C A

d




 



 
     

 
 

 If the capacitor plates were square, they would be about 11.2 m on a side. 
 
12. The capacitance per unit length of a coaxial cable is derived in Example 24-2 

  
 

 
 

12 2 2

110

outside inside

2 8.85 10 C N m2
3.5 10 F m

ln ln 5.0 mm 1.0 mm

C

R R







   
l


 

 
13. Inserting the potential at the surface of a spherical conductor into Eq. 24.1 gives the capacitance of a 

conducting sphere.  Then inserting the radius of the Earth yields the Earth’s capacitance. 

     12 6 4

0

0

4 4 8.85 10 F/m 6.38 10 m 7.10 10 F
4

Q Q
C r

V Q r
 


          

 
14. From the symmetry of the charge distribution, any electric field 

must be radial, away from the cylinder axis, and its magnitude 
must be independent of the location around the axis (for a given 
radial location).  We assume the cylinders have charge of 
magnitude Q in a length l.  Choose a Gaussian cylinder of 
length d and radius R, centered on the capacitor’s axis, with 
d l  and the Gaussian cylinder far away from both ends of 

the capacitor.  On the ends of this cylinder, dE A


 and so 
there is no flux through the ends.  On the curved side of the 

cylinder, the field has a constant magnitude and dE A


 .  Thus .d EdAE A


   Write Gauss’s law. 

  encl
curved curved
walls walls 0

2
Q

d E A E Rd


   E A


  

 For b ,R R   encl 00    2 0    0.Q E Rd E       

 For a ,R R  encl 0Q
Q Q

d d


 
l l

, and so  encl 00    2 0    0.Q E Rd E       

 
15. We assume there is a uniform electric field between the capacitor plates, so that ,V Ed  and then 

use Eqs. 24-1 and 24-2. 

  
       12 4 2 6

max max 0 max 0 max

8

8.85 10 F/m 6.8 10 m 3.0 10 V m

1.8 10 C

A
Q CV E d AE

d
   



      

 

 

  

d  Ra 

Rb 

+  Q 

–  Q 

Gaussian cylinder 
of radius R 
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16. We assume there is a uniform electric field between the capacitor plates, so that ,V Ed  and then 
use Eqs. 24-1 and 24-2. 

  
       12 4 2 5

0 0

9

8.85 10 F/m 21.0 10 m 4.80 10 V m

8.92 10 C

A
Q CV Ed AE

d
   



      

 

 

 
17. We assume there is a uniform electric field between the capacitor plates, so that ,V Ed  and then 

use Eqs. 24-1 and 24-2. 

     
6

4

6 3

92 10 C
    5.8 10 V m

0.80 10 F 2.0 10 m

Q
Q CV CEd E

Cd



 


      

 
 

 
18. (a) The uncharged plate will polarize so that negative  

charge will be drawn towards the positive capacitor  
plate, and positive charge will be drawn towards the 
negative capacitor plate.  The same charge will be 
on each face of the plate as on the original capacitor 
plates.  The same electric field will be in the gaps as 
before the plate was inserted.  Use that electric field 
to determine the potential difference between the 
two original plates, and the new capacitance.  Let x be the distance from one original plate to the 
nearest face of the sheet, and so d x l  is the distance from the other original plate to the 
other face of the sheet. 

   

   

   
 

1 2

0 0 0 0

1 2 0

0 0 0

  ;    ;  

    

Q d xQ Qx
E V Ex V E d x

A A A

Q d x Q dQx Q A
V V V C

A A A C d


   


  

 
       

  
        



l
l

l l

l

  

(b) 
 

 0

final
initial 0 final 0

initial
0

1
  ;    ;  1.7

0.40 0.60

A

dA A C d d
C C

Ad d C d d d
d


 




      

  

l

l l
 

 
19. (a) The distance between plates is obtained from Eq. 24-2. 

   0 0    
A A

C x
x C

 
    

Inserting the maximum capacitance gives the minimum plate separation and the minimum 
capacitance gives the maximum plate separation. 

   6 2

0
min 12

max

8.85pF/m 25 10 m
0.22 m

1000.0 10 F

A
x

C









  


 

   6 2

o
max

min

8.85pF/m 25 10 m
0.22 mm 220 m

1.0 pF

A
x

C





     

  So 0.22 m 220 m .x    

 
 

d

x

d x  lE


E

positive plate

negative plate
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(b) Differentiating the distance equation gives the approximate uncertainty in distance. 

0 0

2

dx d A A
x C C C

dC dC C C

 
        

  
. 

The minus sign indicates that the capacitance increases as the plate separation decreases.  Since 
only the magnitude is desired, the minus sign can be dropped.  The uncertainty is finally written 
in terms of the plate separation using Eq. 24-2. 

2

0
2

00

A x C
x C

AA

x





   
 
 
 

 

(c) The percent uncertainty in distance is obtained by dividing the uncertainty by the  
separation distance. 

     
   

min min

2

min o

0.22 m 0.1pF 100%
100% 100% 0.01%

8.85pF/m 25mm

x x C

x A




 
      

     
   

max max

2

max o

0.22 mm 0.1pF 100%
100% 100% 10%

8.85pF/m 25mm

x x C

x A
 

      

 
20. The goal is to have an electric field of strength SE  at a radial distance of 5.0 bR from the center of the 

cylinder.  Knowing the electric field at a specific distance allows us to calculate the linear charge 
density on the inner cylinder.  From the linear charge density and the capacitance we can find the 
potential difference needed to create the field.  From the cylindrically symmetric geometry and 

Gauss’s law, the field in between the cylinders is given by 
0

1
.

2
E

R




   The capacitance of a 

cylindrical capacitor is given in Example 24-2. 

 
 

 

 

      

       

b S 0 b S

0 b

a b a b
0 b S

a b

4 6

b S a b 4

1
5.0     2 5.0

2 5.0

ln ln
    2 5.0

2 2 2
ln

0.100 m
       5.0 ln 5.0 1.0 10 m 2.7 10 N C ln 9300 V

1.0 10 m

Q
E R R E R E

R

R R R RQ Q Q
Q CV V R E

C
R R

R E R R


 




    





     

     

    


       

l

l l
 

 
21. To reduce the net capacitance, another capacitor must be added in series. 

  1 eq

eq 1 2 2 eq 1 1 eq

1 1 1 1 1 1
      

C C

C C C C C C C C


        

  
   
   

9 9

1 eq 9

2 9 9

1 eq

2.9 10 F 1.6 10 F
3.57 10 F 3600pF

2.9 10 F 1.6 10 F

C C
C

C C

 



 

 
    

   
 

 Yes, an existing connection needs to be broken in the process.  One of the connections of the original 
capacitor to the circuit must be disconnected in order to connect the additional capacitor in series. 

 
22. (a) Capacitors in parallel add according to Eq. 24-3. 

    6 5

eq 1 2 3 4 5 6 6 3.8 10 F 2.28 10 F 22.8 FC C C C C C C              
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 (b) Capacitors in series add according to Eq. 24-4. 

   

1 1 6
7

eq 6

1 2 3 4 5 6

1 1 1 1 1 1 6 3.8 10 F
6.3 10 F

3.8 10 F 6

     0.63 F

C
C C C C C C



  





         





   
       

 
23. We want a small voltage drop across C1.  Since ,V Q C  if we put 

the smallest capacitor in series with the battery, there will be a large 
voltage drop across it.  Then put the two larger capacitors in parallel, 
so that their equivalent capacitance is large and therefore will have a 
small voltage drop across them.  So put C1 and C3 in parallel with 
each other, and then put that combination in series with C2.  See the 
diagram.  To calculate the voltage across C1, find the equivalent 
capacitance and the net charge.  That charge is used to find the 
voltage drop across C2, and then that voltage is subtracted from the battery voltage to find the 
voltage across the parallel combination. 

  

 
 

 

 

eq2 1 31 2 3 2
eq eq eq 0 2

eq 2 1 3 2 1 3 1 2 3 2 2

2 1 3
0

eq eq 0 21 2 3
1 0 2 0 0 0 0

2 2 2 1 2 3

1 1 1
     ;    ;    ;

1.5 F
12 V

6.5 F

2.8V

QC C CC C C Q
C Q C V V

C C C C C C C C C C C C

C C C
V

Q C V CC C C
V V V V V V V

C C C C C C




 
       

   


 

         
 



 

 
24. The capacitors are in parallel, and so the potential is the same for each capacitor, and the total charge 

on the capacitors is the sum of the individual charges.  We use Eqs. 24-1 and 24-2. 

  

1 2 3
1 1 0 2 2 0 3 3 0

1 2 3

1 2 3 1 2 3
total 1 2 3 0 0 0 0 0 0

1 2 3 1 2 3

1 2 3
0 0 0

1 2 3total 1 2 3
net 0 0 0 1 2 3

1 2 3

 ;  ; 
A A A

Q CV V Q C V V Q C V V
d d d

A A A A A A
Q Q Q Q V V V V

d d d d d d

A A A
V

d d dQ A A A
C C C C

V V d d d

  

     

  
  

     

        

 

       

 
 
 

 
    

 
 

 

 
25. Capacitors in parallel add linearly, and so adding a capacitor in parallel will increase the net 

capacitance without removing the 5.0 F  capacitor. 

5.0 F 16 F    11 F connected in parallelC C       

 
26. (a) The two capacitors are in  parallel .  Both capacitors have their high voltage plates at the same  

potential (the middle plate), and both capacitors have their low voltage plates at the same 
potential (the outer plates, which are connected). 

 (b) The capacitance of two capacitors in parallel is the sum of the individual capacitances. 

   0 0
1 2 0

1 2 1 2

1 2
0

1 2

1 1A A
C C C A

d d d d

d d
A

d d

 
      

   
   

   
 

3C

2C

1C

0V
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(c) Let 1 2 constant.d d  l  Then 
 

0 0

1 2 1 1

.
A A

C
d d d d

 
 



l l

l
 We see that C   as 1 0d   or 

1d  l  (which is 2 0d  ).  Of course, a real capacitor would break down as the plates got too 

close to each other.  To find the minimum capacitance, set 
 1

0
dC

d d
 and solve for 1.d  

 

   
 
 

   1
1 2

10 1
0 1 2222 2

1 1 1 1 1 1

1 2
min 0 0 0 01 1

2 21 2 1 2

0
min max

1 2

2
0    

4 4

4
 ; 

d

ddC d A
A d d

d d d d d d d d

d d
C A A A A

d d d d

A
C C

d d




   






     

 


   



  


 
 
 

     
          l

ll
l l

l l

l

l l l
 

 
27. The maximum capacitance is found by connecting the capacitors in parallel. 

  9 9 8 8

max 1 2 3 3.6 10 F 5.8 10 F 1.00 10 F 1.94 10 F in parallelC C C C                

 The minimum capacitance is found by connecting the capacitors in series. 

  

1 1

9

min 9 9 8

1 2 3

1 1 1 1 1 1
1.82 10 F in series

3.6 10 F 5.8 10 F 1.00 10 F
C

C C C

 


  
       

  

   
     

 

 
28. When the capacitors are connected in series, they each have the same charge as the net capacitance. 

 (a)  
1 1

1 2 eq eq 6 6

1 2

1 1 1 1
9.0V

0.50 10 F 0.80 10 F
Q Q Q C V V

C C

 

 
      

 

   
     

 

6

6 6

1 2
1 26 6

1 2

    2.769 10 C

2.769 10 C 2.769 10 C
5.538V 5.5V      3.461V 3.5V

0.50 10 F 0.80 10 F

Q Q
V V

C C



 

 

 

 
       

 

 

 (b) 6 6

1 2 eq 2.769 10 C 2.8 10 CQ Q Q         

 
When the capacitors are connected in parallel, they each have the full potential difference. 

(c)    6 6

1 2 1 1 19.0 V      9.0V      0.50 10 F 9.0V 4.5 10 CV V Q CV          

     6 6

2 2 2 0.80 10 F 9.0V 7.2 10 CQ C V        

 
29. (a) From the diagram, we see that C1 and C2 are in series.  That combination is in parallel with C3,  

and then that combination is in series with C4.  Use those combinations to find the equivalent 
capacitance.  We use subscripts to indicate which capacitors have been combined. 

   

31 1
12 123 12 32 2 2

12

3
1234 5

1234 123 4

1 1 1
      ;    ;

1 1 1 2 1 5
    

3 3

C C C C C C C C
C C C

C C
C C C C C C

        

      
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(b) The charge on the equivalent capacitor 1234C is given by 3
1234 1234 5 .Q C V CV    This is the 

charge on both of the series components of 1234.C  

   
3 3 2

123 123 123 123 1235 2 5

3 3
4 4 4 45 5

    

    

Q CV C V CV V V

Q CV C V V V

    

   
 

The voltage across the equivalent capacitor  123C  is the voltage across both of its parallel 

components.  Note that the sum of the charges across the two parallel components of 123C is the 

same as the total charge on the two components, 3
5 .CV  

   
   
 

2 1 2 1
123 12 12 12 125 2 5 5

2 2 2
123 3 3 3 35 5 5

  ;  

  ;  

V V V Q C V C V CV

V V V Q C V C V CV

    

    
 

Finally, the charge on the equivalent capacitor 12C is the charge on both of the series 

components of 12.C  

   1 1 1 1
12 1 1 1 1 12 2 1 2 25 5 5 5      ;      Q CV Q CV V V Q CV Q CV V V           

  Here are all the results, gathered together. 

   
31 2

1 2 3 45 5 5

31 2
1 2 3 45 5 5

  ;    ;  

  ;    ;  

Q Q CV Q CV Q CV

V V V V V V V

   

   
 

 
30. C1 and C2 are in series, so they both have the same charge.  We then use that charge to find the 

voltage across each of C1 and C2.  Then their combined voltage is the voltage across C3.  The voltage 
across C3 is used to find the charge on C3.   

   

1 2
1 2 1 2

1 2

3 1 2 3 3 3

12.4 C 12.4 C
12.4 C ; 0.775V  ;  0.775V

16.0 F 16.0 F

1.55V ; 16.0 F 1.55V 24.8 C

Q Q
Q Q V V

C C

V V V Q C V

 


 

 

       

     

 

From the diagram, C4 must have the same charge as the sum of the charges on C1 and C3.  Then the 
voltage across the entire combination is the sum of the voltages across C4 and C3. 

 
4

4 1 3 4

4

ab 4 3

37.2 C
12.4 C 24.8 C 37.2 C  ;  1.31V

28.5 F

1.31V 1.55V 2.86V

Q
Q Q Q V

C

V V V


  


       

    

 

 Here is a summary of all results. 

1 2 3 4

1 2 3 4 ab

12.4 C ; 24.8 C ; 37.2 C

0.775V ; 1.55V ; 1.31V ; 2.86V

Q Q Q Q

V V V V V

     

    
  

 
31. When the switch is down the initial charge on C2 is calculated from Eq. 24-1.  

2 2 0Q C V  

When the switch is moved up, charge will flow from C2 to C1 until the voltage 
across the two capacitors is equal.   

2 1 2
2 1

2 1 1

Q Q C
V Q Q

C C C

 
      

The sum of the charges on the two capacitors is equal to the initial charge on C2.   

C2

C1

V0

S
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  2 2 1
2 2 1 1 1 1

1 1

C C C
Q Q Q Q Q Q

C C

        
 
 
 

 

 Inserting the initial charge in terms of the initial voltage gives the final charges. 
2

2 1 1 2 2 2
1 2 0 1 0 2 1 0

1 2 1 1 2

  ;  
C C C C C C

Q C V Q V Q Q V
C C C C C C

       
 

 
 
 

 

 
32. (a) From the diagram, we see that C1 and C2 are in parallel, and  

C3 and C4 are in parallel.  Those two combinations are then in 
series with each other.  Use those combinations to find the 
equivalent capacitance.  We use subscripts to indicate which 
capacitors have been combined. 

   

   
 

12 1 2 34 3 4

1234 12 34 1 2 3 4

1 2 3 4
1234

1 2 3 4

  ;    ;

1 1 1 1 1
 

C C C C C C

C C C C C C C

C C C C
C

C C C C

   

    
 

 


  

 

(b) The charge on the equivalent capacitor 1234C is given by 1234 1234 .Q C V   This is the charge on 

both of the series components of 1234.C  Note that 12 34 .V V V  

   

   
   

 
   
   

 

1 2 3 4

1 2 3 4 3 41234
12 1234 12 12 12

12 1 2 1 2 3 4

1 2 3 4

1 2 3 4 1 21234
34 1234 34 34 34

34 3 4 1 2 3 4

    

    

C C C C

C C C C C CC
Q C V C V V V V V

C C C C C C C

C C C C

C C C C C CC
Q C V C V V V V V

C C C C C C C

 
   

     
   

 
   

     
   

 

The voltage across the equivalent capacitor  12C  is the voltage across both of its parallel 

components, and the voltage across the equivalent 34C is the voltage across both its parallel 

components. 

 
 

 
 

 
 

3 4
12 1 2

1 2 3 4

1 3 4 2 3 4
1 1 1 2 2 2

1 2 3 4 1 2 3 4

  ;

  ;  

C C
V V V V

C C C C

C C C C C C
CV Q V C V Q V

C C C C C C C C


  

  

 
   

     

 

 
 

 
 

 
 

1 2
34 3 2

1 2 3 4

3 1 2 4 1 2
3 3 3 4 4 4

1 2 3 4 1 2 3 4

  ;

  ;  

C C
V V V V

C C C C

C C C C C C
C V Q V C V Q V

C C C C C C C C


  

  

 
   

     

 

 
 
 

b

C1 

C2a

C 3

C 4

a

C1234 

b

c

c ba 

C34 C12 
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33. (a) The voltage across C3 and C4 must be the same, since they are in parallel. 

    3 4 4
3 4 4 3

3 4 3

16 F
        23 C 46 C

8 F

Q Q C
V V Q Q

C C C


 


        

The parallel combination of C3 and C4 is in series with the parallel combination of C1 and C2, 
and so 3 4 1 2.Q Q Q Q     That total charge then divides between C1 and C2 in such a way that 

1 2.V V  

   

   

1 4 1
1 2 3 4 1 2

1 4 4

1
1 2

4 1

69 C
69 C  ;        

8.0 F
69 C 69 C 23 C  ; 69 C 23 C 46 C

24.0 F

Q Q Q
Q Q Q Q V V

C C C

C
Q Q

C C





     




        

     


 

  Notice the symmetry in the capacitances and the charges. 
 (b) Use Eq. 24-1. 

   

1
1 2 1

1

3
3 4 3

3

23 C
2.875V 2.9 V  ; 2.9 V

8.0 F

23 C
2.875V 2.9 V  ; 2.9 V

8.0 F

Q
V V V

C

Q
V V V

C







     

     
 

 (c) ba 1 3 2.875V 2.875V 5.75V 5.8VV V V       

 

34. We have P 1 2C C C  and 
S 1 2

1 1 1
.

C C C
    Solve for 1C  and 2C in terms of PC  and S.C  

  

 
   

 

     

P 1 1 P

S 1 2 1 P 1 1 P 1 1 P 1

2P
1 P 1 P S

S 1 P 1

22

P P P S

1

2 P 1

1 1 1 1 1
  

1
    0  

35.0 F 35.0 F 4 35.0 F 5.5 F4

2 2
28.2 F, 6.8 F

35.0 F 28.2 F 6.8 F or 35.0 F 6.8 F 28.2 F

   

C C C C

C C C C C C C C C C C C

C
C C C C C

C C C C

C C C C
C

C C C

   

 

     

 
      

  

     


  
 



      

 

 So the two values are 28.2 F and 6.8 F .     

 
35. Since there is no voltage between points a and b, we can imagine there 

being a connecting wire between points a and b.  Then capacitors C1 and 
C2 are in parallel, and so have the same voltage.  Also capacitors C3 and 
Cx are in parallel, and so have the same voltage.  

  1 2 3
1 2 3

1 2 3

      ;      x
x

x

Q Q Q Q
V V V V

C C C C
       

 Since no charge flows through the voltmeter, we could also remove it 
from the circuit and have no change in the circuit.  In that case, 
capacitors C1 and Cx are in series and so have the same charge.  
Likewise capacitors C2 and C3 are in series, and so have the same 
charge. 

V0

c

C1

C2 C3

Cx

b

a

V
d
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  1 2 3  ;  xQ Q Q Q   

 Solve this system of equations for Cx.  

   3 1 1
3 3 3

3 3 2 2

8.9 F
    4.8 F 2.4 F

18.0 F
x x

x

x

Q Q Q Q C
C C C C

C C Q Q C


 


      

 
 
 

 

 
36. The initial equivalent capacitance is the series combination of the two individual capacitances.  Each 

individual capacitor will have the same charge as the equivalent capacitance.  The sum of the two 
initial charges will be the sum of the two final charges, because charge is conserved.  The final 
potential of both capacitors will be equal. 

  

     

eq 1 2

1 2 1 2
eq eq eq 0 0

1 2 1 2

1 2 eq 1
final final final

1 2 eq 1 2
final final final final 1 2 2

1
1 eq
final 1 2

1 1 1
  

3200pF 1800pF
  ;  12.0V 13,824 pC

5000pF

2

2   ;        

3200pF
2 2

5000

C C C

C C C C
C Q C V V

C C C C

Q Q Q Q

Q Q Q V V
C C C

C
Q Q

C C

  

    
 


      

 


 

 

8

8

2 eq 1
final final

13,824 pC 17,695pC 1.8 10 C
pF

2 2 13,824 pC 17,695pC 9953pC 1.0 10 CQ Q Q





  

      

 

 
37. (a) The series capacitors add reciprocally, and then the parallel combination is found by adding  

linearly. 

   

1 1 1

3 2 3 2 32
eq 1 1 1 1

2 3 2 3 2 3 2 3 2 3

1 1 C C C C CC
C C C C C

C C C C C C C C C C

  


         


     
     
     

 

 (b) For each capacitor, the charge is found by multiplying the capacitance times the voltage.  For  

1C , the full 35.0 V is across the capacitance, so    6

1 1 24.0 10 F 35.0VQ CV      

48.40 10 C .   The equivalent capacitance of the series combination of 2C  and 3C  has the full 

35.0 V across it, and the charge on the series combination is the same as the charge on each of 
the individual capacitors. 

   
1

6 41
eq eq eq 2 33

1 1
     24.0 10 F 35.0V 2.80 10 C

2 3

C
C Q C V Q Q

C C



          
 
 
 

 

 

38. From the circuit diagram, we see that 1C  is in parallel with the voltage, and so 1 24V .V    

Capacitors 2C  and 3C  both have the same charge, so their voltages are inversely proportional to their 

capacitance, and their voltages must total to 24.0 V. 

   

2 3 2 2 3 3 2 3

2 3
2 2 2

3 2 3

3 2

      ;  

4.00 F
    24.0V 13.7V

7.00 F

24.0V 13.7V 10.3V

Q Q C V C V V V V

C C
V V V V V

C C C

V V V




    

     


    
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39. For an infinitesimal area element of the capacitance a distance y up from the 
small end, the distance between the plates is tan .d x d y d y        

Since the capacitor plates are square, they are of dimension ,A A  and the 

area of the infinitesimal strip is .A dydA    The infinitesimal capacitance dC 
of the strip is calculated, and then the total capacitance is found by adding 
together all of the infinitesimal capacitances, in parallel with each other. 

  

 

0 0 0

0
0

0 0

    

ln

A
A

A dA A dy
C dC

d d y d y

A dy A
C dC d y

d y

  
 


 

 

   
 

   
 

 

   0 0 0  ln ln ln ln 1
A A d A A A

d A d
d d

    


  


     
             

 

 We use the approximation from page A-1 that   21
2ln 1 .x x x     

  

2

0 0 01
2ln 1 1

2

A A A A A A A
C

d d d d d

      
 

     
      
      
       

 

 
40. No two capacitors are in series or in parallel in the diagram, and so we may not simplify by that 

method.  Instead use the hint as given in the problem.  We consider point a as the higher voltage.  
The equivalent capacitance must satisfy tot eq .Q C V  

(a) The potential between a and b can be written in three ways.  Alternate but equivalent 
expressions are shown in parentheses. 

    2 1 2 3 4 5 4 2 3 5 3 4 1  ;    ;      ;  V V V V V V V V V V V V V V V V            

There are also three independent charge relationships.  Alternate but equivalent expressions are 
shown in parentheses.  Convert the charge expressions to voltage – capacitance expression. 

 tot 2 5 tot 4 1 2 1 3 4 3 5

eq 2 2 5 5 eq 4 4 1 1 2 2 1 1 3 3

           ;           ;    

  ;    ;  

Q Q Q Q Q Q Q Q Q Q Q Q

C V C V C V C V C V CV C V CV C V

       

     
 

  We have a set of six equations:        2 1 2 3 4 5 41   ;   2  ;   3V V V V V V V V V V        

           eq 2 2 5 5 eq 4 4 1 1 2 2 1 1 3 34  ;   5  ;   6C V C V C V C V C V CV C V CV C V       

  Solve for eqC as follows. 

   (i) From Eq. (1), 21 .V V V    Rewrite equations (5) and (6).  V1 has been eliminated. 

        eq 4 4 1 1 2 2 2 1 1 2 3 35  ;   6C V C V CV CV C V CV CV C V       

   (ii) From Eq. (3), 45 .V V V    Rewrite equation (4).  V5 has been eliminated. 

      eq 2 2 5 5 4 4C V C V C V C V    

   (iii) From Eq. (2), 3 2 4.V V V V    Rewrite equation (6).  V3 has been eliminated. 

     
 

     
2 2 1 1 2 3 3 2 3 4

1 2 3 2 3 4 1 3

6   

 6

C V CV CV C V C V C V

C C C V C V C C V

     

    
 

 
 

d y 

y


d 
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Here is the current set of equations. 

     

 
 

     

eq 2 2 5 5 4

eq 4 4 1 1 2

1 2 3 2 3 4 1 3

 4

 5

6

C V C V C V C V

C V C V CV CV

C C C V C V C C V

  

  

    

 

   (iv) From Eq. (4),  4 2 2 5 eq

5

1
.V C V C V C V

C
     Rewrite equations (5) and (6). 

     
   

       
5 eq 4 2 2 5 eq 5 1 5 1 2

5 1 2 3 2 3 2 2 5 eq 5 1 3

 5

 6

C C V C C V C V C V C CV C CV

C C C C V C C V C V C V C C C V

    

      

  
  

 

   (v) Group all terms by common voltage. 

     
     

      
5 eq 4 eq 4 5 5 1 4 2 5 1 2

5 1 3 3 eq 3 5 5 1 2 3 3 2 2

 5

 6

C C C C C C C C V C C C C V

C C C C C C C V C C C C C C V

    

        
 

   (vi) Divide the two equations to eliminate the voltages, and solve for the equivalent  
capacitance. 

     

 
 

 
  

5 eq 4 eq 4 5 5 1 4 2 5 1

5 1 2 3 3 25 1 3 3 eq 3 5

1 2 3 1 2 4 1 2 5 1 3 5 1 4 5 2 3 4 2 4 5 3 4 5
eq

1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5

    
C C C C C C C C C C C C

C C C C C CC C C C C C C

C C C C C C C C C C C C C C C C C C C C C C C C
C

C C C C C C C C C C C C C C C C

   
 

    

      


      

  
 

(b) Evaluate with the given data.  Since all capacitances are in F, and the expression involves 

capacitance cubed terms divided by capacitance squared terms, the result will be in F.  

   

      
     

                  

1 2 3 1 2 4 1 2 5 1 3 5 1 4 5 2 3 4 2 4 5 3 4 5
eq

1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5

1 2 3 4 5 5 3 4 4 2 3 2 5 3 5

1 3 4 5 2 3 4 5 3 4 5

4.5 8.0 17.0 4.5 12.5 8.0 8.0 4.5 8.0 4.

C C C C C C C C C C C C C C C C C C C C C C C C
C

C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C

C C C C C C C C C C C

      


      

      


      

  


      
           

5 4.5 4.5
F

4.5 17.0 8.0 17.0 4.5 12.5

6.0 F







 



 

 
41. The stored energy is given by Eq. 24-5. 

   22 9 31 1
2 2 2.8 10 F 2200V 6.8 10 JU CV        

 
42. The energy density is given by Eq. 24-6. 

     22 12 2 2 7 31 1
02 2 8.85 10 C N m 150V m 1.0 10 J mu E        

 
43. The energy stored is obtained from Eq. 24-5, with the capacitance of Eq. 24-2. 

   
   

242 2
3

212 2 2
0

4.2 10 C 0.0013m
2.0 10 J

2 2 2 8.85 10 C N m 0.080 m

Q Q d
U

C A






    

 
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44. (a) The charge is constant, and the tripling of separation reduces the capacitance by a factor of 3. 

   

2

0
122

2

1 2
0

1

2
3

32

Q A
CCU d

AQU C
dC




     

(b) The work done is the change in energy stored in the capacitor. 

   
2 2 2

2 1 1 1 1

1 0
0

3 2 2
2

Q Q Q d
U U U U U

AC A
d


        

 
45. The equivalent capacitance is formed by C1 in parallel with the series combination of C2 and C3.  

Then use Eq. 24-5 to find the energy stored. 

  

   

2

2 3 3
net 1 2

2 3

22 2 6 33 31
net2 4 4

2

22.6 10 F 10.0V 1.70 10 J

C C C
C C C C

C C C

U C V CV  

    


     

 

 
46. (a) Use Eqs. 24-3 and 24-5. 

        22 2 6 4 41 1 1
parallel eq 1 22 2 2 0.65 10 F 28V 2.548 10 J 2.5 10 JU C V C C V             

 (b) Use Eqs. 24-4 and 24-5. 

   

     
6 6

22 21 21 1 1
series eq2 2 2 6

1 2

5 5

0.45 10 F 0.20 10 F
28V

0.65 10 F

5.428 10 J 5.4 10 J

C C
U C V V

C C

 



 

 
  

 

   

  
         

 (c) The charge can be found from Eq. 24-5. 

   

 

 

4

51
parallel2

5

6

series

2 2.548 10 J2
        1.8 10 C

28V

2 5.428 10 J
3.9 10 C

28V

U
U QV Q Q

V

Q










      


  

 

 

47. The capacitance of a cylindrical capacitor is given in Example 24-2 as 
 

0

a b

2
.

ln
C

R R




l
 

 (a) If the charge is constant, the energy can be calculated by 
2

1
2 .

Q
U

C
  

   
 

 

 
 

2
01

2

a b a b2 12
2

01 2 a b1
2

a b1

2

ln ln 3
1

2 ln
ln 3

Q

R R R RU CC

QU C R R
R RC




    

l

l
 

  The energy comes from the work required to separate the capacitor components. 
 
 
 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

116 

 (b) If the voltage is constant, the energy can be calculated by 21
2 .U CV  

   
 

 

 
 

0

21
a b a b22 2 2

21
021 1 1 a b

a b

2

ln 3 ln
1

2 ln 3
ln

R R R RU C V C

U CV C R R
R R




    

l

l
 

Since the voltage remained constant, and the capacitance decreased, the amount of charge on 
the capacitor components decreased.  Charge flowed back into the battery that was maintaining 
the constant voltage. 

 
48. (a) Before the capacitors are connected, the only stored energy is in the initially-charged capacitor.   

Use Eq. 24-5. 

      22 6 4 41 1
1 1 02 2 2.20 10 F 12.0V 1.584 10 J 1.58 10 JU CV            

 (b) The total charge available is the charge on the initial capacitor.  The capacitance changes to the  
equivalent capacitance of the two capacitors in parallel. 

   

   
 

2 262 2 2

1 01 1 1
1 1 0 eq 1 2 2 2 2 2 6

eq 1 2

5 5

2.20 10 F 12.0V
  ;    ;  

5.70 10 F

6.114 10 J 6.11 10 J                                                    

Q C V
Q Q CV C C C U

C C C





 


      

 

   

 

 (c) 5 4 5

2 1 6.114 10 J 1.584 10 J 9.73 10 JU U U              

 
49. (a)  With the plate inserted,  the capacitance is that of two series capacitors of plate separations 

1d x  and 2 .d d x  l    
1

0

0 0

i

x d x A
C

A A d


 


 

  


 
 
 

l

l
 

With the plate removed the capacitance is obtained directly from Eq. 24-2. 

0
f

A
C

d


  

Since the voltage remains constant the energy of the capacitor will be given by Eq. 24-5 written 
in terms of voltage and capacitance.  The work will be the change in energy as the plate is 
removed. 

 

 

21
2

2
20 0 01

2 2

f i f iW U U C C V

A A A V
V

d d d d

  

   

   
 

 
 
 

l

l l

 

The net work done is negative.  Although the person pulling the plate out must do work, charge 
is returned to the battery, resulting in a net negative work done. 

 
(b)  Since the charge now remains constant, the energy of the capacitor will be given by Eq. 24-5 

written in terms of capacitance and charge. 
2 2 2

0 0 0

1 1

2 2 2f i

Q Q d d Q
W

C C A A A  


    
   
   

  

l l
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  The original charge is 0
0 0

A
Q CV V

d


 

 l
 and so 

 

2

0
20

0 0
2

0

.
2 2

A
V

AVdW
A d





 



 
 
 

l
ll

l
 

 

50. (a) The charge remains constant, so we express the stored energy as 
2 2

1 1
2 2

0

,
Q Q x

U
C A

   where x  

is the separation of the plates.  The work required to increase the separation by dx  is 
,dW Fdx  where F is the force on one plate exerted by the other plate.  That work results in an 

increase in potential energy, .dU  

 
2 2

1
2

0 0

1
    

2

Q dx Q
dW Fdx dU F

A A 
      

(b) We cannot use 
2

0 0 0

Q Q
F QE Q Q

A A


  

    because the electric field is due to both plates, 

and charge cannot put a force on itself by the field it creates.  By the symmetry of the geometry, 
the electric field at one plate, due to just the other plate, is 1

2 .E   See Example 24-10. 

 
51. (a) The electric field outside the spherical conductor is that of an equivalent point charge at the  

center of the sphere, so 
2

0

1
, .

4

Q
E r R

r
    Consider a differential volume of radius dr, and 

volume 24 ,dV r dr  as used in Example 22-5.  The energy in that volume is .dU udV   
Integrate over the region outside the conductor. 

 

2 2 2
2 21 1

0 02 2 2 2

0 0 0

2

0

1 1 1
4

4 8 8

8

RR R

Q Q Q
U dU udV E dV r dr dr

r r r

Q

R

  
  



 

      



 
 
 

    
 

 (b) Use Eq. 24-5 with the capacitance of an isolated sphere, from the text immediately after  
Example 24-3. 

   
2 2 2

1 1
2 2

0 04 8

Q Q Q
U

C R R 
    

(c) When there is a charge q < Q on the sphere, the potential of the sphere is 
0

1
.

4

q
V

R
   The 

work required to add a charge dq to the sphere is then 
0

1
.

4

q
dW Vdq dq

R
    That work 

increase the potential energy by the same amount, so 
0

1
.

4

q
dU dW Vdq dq

R
     Build up 

the entire charge from 0 to Q, calculating the energy as the charge increases. 

   
2

0 0 00 0

1 1

4 4 8

Q Qq Q
U dU dW Vdq dq qdq

R R R  
            
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52. In both configurations, the voltage across the combination of capacitors is the same.  So use 
1
2 .U CV   

  

 
 

   
 

 

2 21 21 1 1 1
P P 1 2 S S2 2 2 2

1 2

22 21 21 1
P S 1 2 1 2 1 22 2

1 2

2 2

2 2 2 2 2

1 1 2 2 1 2

1

2

  ;  

5     5     5   

3 9 4 3 5
3 0        

2 2

3 5 3 5
, 2.62,0.382

2 2

C C
U C V C C V U C V V

C C

C C
U U C C V V C C C C

C C

C C C
C C C C C C

C

C

     


       


  
      

 
 

 

 
53. First find the ratio of energy requirements for a logical operation in the past to the current energy 

requirements for a logical operation. 

  
 
 

221 2
2past past past past

21
2present present presentpresent

20 5.0
220

1 1.5

N CVE C V

E N CV C V
   

     
     

    
 

 So past operations would have required 220 times more energy.  Since 5 batteries in the past were 
required to hold the same energy as a present battery, it would have taken 1100 times as many 
batteries in the past.  And if it takes 2 batteries for a modern PDA, it would take 2200 batteries to 
power the PDA in the past.  It would not fit in a pocket or purse.  The volume of a present-day 

battery is    22 30.5cm 4 cm 3cm .V r   l   The volume of 2200 of them would be 36600cm , 

which would require a cube about 20 cm in side length. 
 
54. Use Eq. 24-8 to calculate the capacitance with a dielectric. 

       
 

22

12 2 2 11

0 3

4.2 10 m
2.2 8.85 10 C N m 1.9 10 F

1.8 10 m

A
C K

d




 




     


 

 
55. The change in energy of the capacitor is obtained from Eq. 24-5 in terms of the constant voltage and 

the capacitance. 

 2 2 21 1 1
f i 0 0 02 2 2 1U U U C V KC V K C V         

The work done by the battery in maintaining a constant voltage is equal to the voltage multiplied by 
the change in charge, with the charge given by Eq. 24-1. 

      2

battery f i 0 0 01W V Q Q V C V KC V K C V        

The work done in pulling the dielectric out of the capacitor is equal to the difference between the 
change in energy of the capacitor and the energy done by the battery. 

   

       

2 21
battery 0 02

22 9 41
02

1 1

1 3.4 1 8.8 10 F 100 V 1.1 10 J

W U W K C V K C V

K C V  

       

      
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56. We assume the charge and dimensions are the same as in Problem 43.  Use Eq. 24-5 with charge and 
capacitance. 

  
   

     

262 2 2

1 1 1 1
2 2 2 2 12 2 2 4 2

0 0

420 10 C 0.0013m
289.2 J 290J

7 8.85 10 C N m 64 10 m

Q Q Q d
U

C KC K A



 


     

  
 

 

57. From Problem 10, we have 1535 10 F.C     Use Eq. 24-8 to calculate the area. 

  

   
   

215 9 6
13 2

0 12 2 2

0

2 2

35 10 F 2.0 10 m 10 m
    3.164 10 m

25 8.85 10 C N m 1m

0.3164 m 0.32 m                           

A Cd
C K A

d K






 

 





 
     

 

 

 
 
   

 Half of the area of the cell is used for capacitance, so 21.5cm  is available for capacitance.  Each 
capacitor is one “bit.” 

  

26
2 7

2 2

10 m 1bit 1byte
1.5cm 5.86 10 bytes 59 Mbytes

10 cm 0.32 m 8bits




  
    

    
    

 

 
58. The initial charge on the capacitor is initial initialQ C V .  When the mica is inserted, the capacitance 

changes to final initialC KC , and the voltage is unchanged since the capacitor is connected to the same 

battery.  The final charge on the capacitor is final finalQ C V . 

  
      9

final initial final initial initial

7

1 7 1 3.5 10 F 32 V

     6.7 10 C

Q Q Q C V C V K C V 



         

 
 

 
59. The potential difference is the same on each half of the capacitor, 

so it can be treated as two capacitors in parallel.  Each parallel 
capacitor has half of the total area of the original capacitor. 

   
1 1
2 2 1

1 2 1 0 2 0 1 2 02

A A A
C C C K K K K

d d d
         

 
60. The intermediate potential at the boundary of the two dielectrics can 

be treated as the “low” potential plate of one half and the “high” 
potential plate of the other half, so we treat it as two capacitors in 
series.  Each series capacitor has half of the inter-plate distance of 
the original capacitor. 

  
1 1

1 2 0 1 22 2

1 2 1 0 2 0 0 1 2 1 2

1 1 1 2
    

2

d d d K K A K K
C

C C C K A K A A K K d K K


  


      


 

 
 
61. The capacitor can be treated as two series capacitors with the same 

areas, but different plate separations and dielectrics.  Substituting 
Eq. 24-8 into Eq. 24-4 gives the effective capacitance. 

11

1 2 0 1 2

1 2 1 0 2 0 1 2 2 1

1 1 d d A K K
C

C C K A K A d K d K


 



    


  
  

   
 

d K1 K2

d
K1

K2

d1 K1

K2d2
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62. (a) Since the capacitors each have the same charge and the same voltage in the initial situation,  

each has the same capacitance of 0

0

.
Q

C
V

   When the dielectric is inserted, the total charge of 

02Q  will not change, but the charge will no longer be divided equally between the two 

capacitors.  Some charge will move from the capacitor without the dielectric  1C  to the 

capacitor with the dielectric  2C .  Since the capacitors are in parallel, their voltages will be the 

same. 

   

 

1 2 1 0 1
1 2

1 2

1 0 0 0 2 0

2
          

2 2
0.48   ;  1.52

1 4.2

Q Q Q Q Q
V V

C C C KC

Q Q Q Q Q Q
K


     

   


 

 (b) 1 0 2 0
1 2 0

1 0 0 2 0 0

0.48 1.52
0.48

3.2

Q Q Q Q
V V V

C Q V C Q V
       

 
63. (a) We treat this system as two capacitors, one with a dielectric,  

and one without a dielectric.  Both capacitors have their high 
voltage plates in contact and their low voltage plates in 
contact, so they are in parallel.  Use Eq. 24-2 and 24-8 for the 
capacitance.  Note that x is measured from the right edge of 
the capacitor, and is positive to the left in the diagram. 

   
   

2

1 2 0 0 0 1 1
x x x

C C C K K
d d d

  


       
  

l l l l

l
  

 (b) Both “capacitors” have the same potential difference, so use 21
2 .U CV  

      
2

2 21
1 2 0 0 02 1 1

2

x
U C C V K V

d
     

  
l

l
 

 (c) We must be careful here.  When the voltage across a capacitor is constant and a dielectric is  
inserted, charge flows from the battery to the capacitor.  So the battery will lose energy and the 
capacitor gain energy as the dielectric is inserted.  As in Example 24-10, we assume that work is 

done by an external agent  ncW  in such a way that the dielectric has no kinetic energy.  Then 

the work-energy principle (Chapter 8) can be expressed as ncW U   or nc .dW dU   This is 

analogous to moving an object vertically at constant speed.  To increase (decrease) the 
gravitational potential energy, positive (negative) work must be done by an outside, non-
gravitational source. 

 

In this problem, the potential energy of the voltage source and the potential energy of the 
capacitor both change as x changes.  Also note that the change in charge stored on the capacitor 
is the opposite of the change in charge stored in the voltage supply. 

 

   

   

21
nc cap battery nc 0 battery 02

battery cap2 2 2 2 21 1 1 1
nc 0 0 0 0 0 0 02 2 2 2

2 2
2 0 01

0 02

      

1
1

2

dW dU dU dU F dx d CV d Q V

dQ dQdC dC dC dC dC
F V V V V V V V

dx dx dx dx dx dx dx

K V
V K

d d




      

       


     

  

l l

l

 

   

 

d K 

x    +  
x 

¬
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Note that this force is in the opposite direction of dx, and so is to the right.  Since this force is 
being applied to keep the dielectric from accelerating, there must be a force of equal magnitude 
to the left pulling on the dielectric.  This force is due to the attraction of the charged plates and 
the induced charge on the dielectric.  The magnitude and direction of this attractive force are 

 
2

0 0 1 ,  left .
2

V
K

d




l
  

 
64. (a) We consider the cylinder as two cylindrical capacitors in parallel.  The two “negative plates” are  

the (connected) halves of the inner cylinder (half of which is in contact with liquid, and half of 
which is in contact with vapor).  The two “positive plates” are the (connected) halves of the 
outer cylinder (half of which is in contact with liquid, and half of which is in contact with 
vapor).  Schematically, it is like Figure 24-30 in Problem 59.  The capacitance of a cylindrical 
capacitor is given in Example 24-2. 

   
 

 
     

 
 

0 liq 0 V 0
liq V liq V V

a b a b a b

a b
V

liq V 0

2 2 2
 

ln ln ln

ln1

2

K h K h h
C C C K K K C

R R R R R R

C R Rh
K

K K

  




        

 


 
  

 
 
 

l l

l

l l

 

 (b) For the full tank, 1,
h

l

 and for the empty tank, 0.
h

l

 

  Full:  
     

0 liq0
liq V V

a b a b

22

ln ln

Kh
C K K K

R R R R


    

  

ll

l
 

     
 

12 2 2

9
2 8.85 10 C N m 2.0 m 1.4

   1.5 10 F
ln 5.0 mm 4.5mm

 


 

    

  Empty: 
     

0 0 V
liq V V

a b a b

2 2

ln ln

h K
C K K K

R R R R

 
    

  
l l

l
 

     
 

12 2 2

9
2 8.85 10 C N m 2.0 m 1.0

   1.1 10 F
ln 5.0 mm 4.5mm

 


 

    

 
65. Consider the dielectric as having a layer of equal and opposite charges at each side of the dielectric.  

Then the geometry is like three capacitors in series.  One air gap is taken to be 1,d  and then the other 

air gap is 1 .d d  l  

 

 

   
 

1 1

1 2 3 0 0 0 0

12 2 2 2 2

100

3
3

1 1 1 1 1
  

8.85 10 C N m 2.50 10 m
1.72 10 F

1.00 10 m
1.00 10 m

3.50

d d d
d

C C C C A K A A A K

A
C

d
K

   


 






 
         

  
   

   

  
    

   
      

l l l
l

l
l

 

 
 
 
 
 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

122 

66. By leaving the battery connected, the voltage will not change when the dielectric is inserted, but the 
amount of charge will change.  That will also change the electric field. 

 (a) Use Eq. 24-2 to find the capacitance. 

    
2 2

12 2 2 10 10

0 0 3

2.50 10 m
8.85 10 C N m 1.106 10 F 1.11 10 F

2.00 10 m

A
C

d



  




       


 
 
 

 

 (b) Use Eq. 24-1 to find the initial charge on each plate. 

      10 8 8

0 0 1.106 10 F 150 V 1.659 10 C 1.66 10 CQ C V           
 

  In Example 24-12, the charge was constant, so it was simple to calculate the induced charge and then 
the electric fields from those charges.  But now the voltage is constant, and so we calculate the fields 
first, and then calculate the charges.  So we are solving the problem parts in a different order. 

  

(d) We follow the same process as in part (f) of Example 24-12. 

   

   

 

     
 

0
0 D 0

5

0 3

3 3

5

  

150 V
1.167 10 V m

1.00 10 m
2.00 10 m 1.00 10 m

3.50

1.17 10 V m

E
V E d E E d

K

V
E

d
K



 

      

   
     

 

l l l l

l
l

  

 (e) 
5

4 40
D

1.167 10 V m
3.333 10 V m 3.33 10 V m

3.50

E
E

K


        

  

 (h) 0

0 0

  
Q

E
A


 

    

  
    5 2 12 2 2 8

0

8

1.167 10 V m 0.0250 m 8.85 10 C N m 2.582 10 C

2.58 10 C

Q EA  



      

 
  

(c)  8 8

ind

1 1
1 2.582 10 C 1 1.84 10 C

3.50
Q Q

K
          

   
   

 

(f) Because the battery voltage does not change, the potential difference between the plates is  

unchanged when the dielectric is inserted, and so is 150 V .V   

 (g) 
8

102.582 10 C
1.72 10 pF

150 V

Q
C

V




     

  Notice that the capacitance is the same as in Example 24-12.  Since the capacitance is a constant  
(function of geometry and material, not charge and voltage), it should be the same value. 

 
67. The capacitance will be given by /C Q V .  When a charge Q is placed on one plate and a 

charge   –Q is placed on the other plate, an electric field will be set up between the two plates.  
The electric field in the air-filled region is just the electric field between two charged plates, 

0

0 0

Q
E

A


 

  .  The electric field in the dielectric is equal to the electric field in the air,  
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 divided by the dielectric constant: 0

0

D

E Q
E

K KA
  . 

The voltage drop between the two plates is obtained by integrating the electric field between the 
two plates. One plate is set at the origin with the dielectric touching this plate.  The dielectric 
ends at x  l .  The rest of the distance to x d  is then air filled. 

 
0 0 00 0

d dQdx Qdx Q
V d d

KA A A K  
        

 
   E x

l

l

l
l

 
 

The capacitance is the ratio of the voltage to the charge. 

 
0

0

Q Q A
C

QV dd
KA K





  
   

 
 

ll
ll

  

 
68. Find the energy in each region from the energy density and the volume.  The energy density in the 

“gap” is given by 21
gap 0 gap2 ,u E and the energy density in the dielectric is given by 21

D D2 Du E  
2 2

gap gap1 1
0 02 2 ,

E E
K

K K
  
 
 
 

 where Eq. 24-10 is used. 

  
 

   
 

     

2

gap1
2 0

D D D D
2

2 gaptotal gap D gap gap D D 1 1
2 20 gap 0

Vol

Vol Vol

1.00 mm
0.222

1.00 mm 3.50 1.00 mm

E
AU U u K

EU U U u u
E A d A

K

K
d Kd

K



 
  

 
 

   
   

l

l l

l

l

l l l
l

 

 
69. There are two uniform electric fields – one in the air, and one in the gap.  They are related by Eq. 24-

10.  In each region, the potential difference is the field times the distance in the direction of the field 
over which the field exists. 

       

air
air air glass glass air air glass

glass

glass

air

air glass glass

3 3

4

  

5.80
90.0 V

3.00 10 m 5.80 2.00 10 m

2.69 10 V m

     

E
V E d E d E d d

K

K
E V

d K d

 

    





  

 

 

 
4

3air
glass

glass

2.69 10 V m
4.64 10 V m

5.80

E
E

K


     

The charge on the plates can be calculated from the field at the plate, using Eq. 22-5.  Use Eq. 24-
11b to calculate the charge on the dielectric. 
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     

 

plate plate

air

0 0

4 12 2 2 2 7

plate air 0

7 7

ind

  

2.69 10 V m 8.85 10 C N m 1.45m 3.45 10 C

1 1
1 3.45 10 C 1 2.86 10 C

5.80

Q
E

A

Q E A

Q Q
K



 

  

 

  

      

         
   
   

 

 
70. (a) The capacitance of a single isolated conducting sphere is given after example 24-3. 

    
0

12
12 2 2 10

4   

F 1m 10 pF
4 8.85 10 C N m 1.11 10 1.11pF cm

m 100cm 1F

C r

C

r



  

 

     
   

        

  

  And so      1.11pF cm     pF cm .C r C r     

 (b) We assume that the human body is a sphere of radius 100 cm.  Thus the rule    pF cmC r   

says that the capacitance of the human body is about 100 pF .  

 (c) A 0.5-cm spark would require a potential difference of about 15,000 V.  Use Eq. 24-1. 

      100 pF 15,000 V 1.5 CQ CV     

 
71. Use Eq. 24-5 to find the capacitance. 

  
 

 
2 51

2 22

2 1200J2
    4.3 10 F

7500 V

U
U CV C

V
       

 
72. (a) We approximate the configuration as a parallel-plate capacitor, and so use Eq. 24-2 to calculate  

the capacitance. 

   
      22

12 2 2 12

0 0

12

4.5in 0.0254 m in
8.85 10 C N m 7.265 10 F

0.050 m

7 10 F

A r
C

d d


   



      

 

 

 (b) Use Eq. 24-1. 

      12 11 117.265 10 F 9 V 6.539 10 C 7 10 CQ CV           

 (c) The electric field is uniform, and is the voltage divided by the plate separation. 

   
9 V

180 V m 200 V m
0.050 m

V
E

d
     

 (d) The work done by the battery to charge the plates is equal to the energy stored by the capacitor.   
Use Eq. 24-5. 

      22 12 10 101 1
2 2 7.265 10 F 9 V 2.942 10 J 3 10 JU CV           

 (e) The electric field will stay the same, because the voltage will stay the same (since the capacitor  
is still connected to the battery) and the plate separation will stay the same.  The capacitance 
changes, and so the charge changes (by Eq. 24-1), and so the work done by the battery changes 
(by Eq. 24-5). 
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73. Since the capacitor is disconnected from the battery, the charge on it cannot change.  The 
capacitance of the capacitor is increased by a factor of K, the dielectric constant. 

   initial initial
initial initial final final final initial initial

final initial

1
    34.0 V 15V

2.2

C C
Q C V C V V V V

C KC
        

 
74. The energy is given by Eq. 24-5.  Calculate the energy difference for the two different amounts of 

charge, and then solve for the difference. 

  

     

   
   

22 2
2 21 1 1

2 2 2

6

3 31 1
2 23

1
    2   

2 2

17.0 10 F 18.5J
13.0 10 C 17.7 10 C 17.7 mC

13.0 10 C

Q QQ Q Q
U U Q Q Q Q Q

C C C C C

C U
Q Q

Q



 



  
            


        

 

  
 

 
75. The energy in the capacitor, given by Eq. 24-5, is the heat energy absorbed by the water, given by 

Eq. 19-2. 

     

21
heat 2      

J
2 3.5kg 4186 95 C 22 C

2 kg C
844 V 840 V

3.0 F

U Q CV mc T

mc T
V

C

    

  
 

   

 
 
 

 

 
76. (a) The capacitance per unit length of a cylindrical capacitor with no dielectric is derived in  

Example 24-2, as 
 

0

outside inside

2

ln
.

C

R R



l

  The addition of a dielectric increases the capacitance 

by a factor of K. 

   
 

0

outside inside

2

ln

C K

R R



l

 

 (b) 
 

 
 

12 2 2

100

outside inside

2 8.85 10 C N m 2.62
1.1 10 F m

ln ln 9.0 mm 2.5mm

C K

R R





 

   
l

 

 
77. The potential can be found from the field and the plate separation.  Then the capacitance is found 

from Eq. 24-1, and the area from Eq. 24-8. 

  
 

   
   
   

6

9 9

4 3

9 3

2

0 12 2 2

0

  ;    

0.675 10 C
3.758 10 F 3.76 10 F

9.21 10 V m 1.95 10 m

3.758 10 F 1.95 10 m
    0.221m

3.75 8.85 10 C N m

V
E Q CV CEd

d

Q
C

Ed

A Cd
C K A

d K






 



 



   


     

 

 
    

 

  

 
78. (a) If N electrons flow onto the plate, the charge on the top plate is ,Ne  and the positive charge  

associated with the capacitor is .Q Ne   Since ,Q CV  we have     ,Ne CV V Ne C    

showing that V is proportional to N. 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

126 

 (b) Given 1mVV  and we want 1,N   solve for the capacitance.  

   

 19 16 16

3

      

1
1.60 10 C 1.60 10 F 2 10 F

1 10 V

Ne e N
V V

C C

N
C e

V
  




    


      

 

  

(c) Use Eq. 24-8. 

      
   

2

0 0

16 9 6
7

12 2 2

0

  

1.60 10 F 100 10 m 10 m
7.76 10 m 0.8 m

8.85 10 C N m 3 1m

A
C K K

d d

Cd

K

 






 





  

 
    

 
 
 
 

l

l

 

 
79. The relative change in energy can be obtained by inserting Eq. 24-8 into Eq. 24-5. 

 

2

0

0
2

00
1
20

12
2

2

Q A
U CC d

KAQU C K
dC




     

The dielectric is attracted to the capacitor.  As such, the dielectric will gain kinetic energy as it enters 
the capacitor.  An external force is necessary to stop the dielectric.  The negative work done by this 
force results in the decrease in energy within the capacitor. 

 

Since the charge remains constant, and the magnitude of the electric field depends on the charge, and 
not the separation distance, the electric field will not be affected by the change in distance between 
the plates.  The electric field between the plates will be reduced by the dielectric constant, as given in 
Eq. 24-10. 

0

0 0

/ 1E E K

E E K
   

 
80. (a) Use Eq. 24-2. 

   
   

 

12 2 2 6 2

7 70
8.85 10 C N m 120 10 m

7.08 10 F 7.1 10 F
1500 m

A
C

d




 
  

       

 (b) Use Eq. 24-1. 

     7 77.08 10 F 3.5 10 V 24.78C 25CQ CV        

 (c) Use Eq. 24-5. 

      7 8 81 1
2 2 24.78C 3.5 10 V 4.337 10 J 4.3 10 JU QV        

 
81. We treat this as N capacitors in parallel, so that the total capacitance is N times the capacitance of a 

single capacitor.  The maximum voltage and dielectric strength are used to find the plate separation 
of a single capacitor. 

  

3
6

6 6

S

eq 0

100 V 6.0 10 m
3.33 10 m  ;  1800

30 10 V m 3.33 10 m

  

V
d N

E d

A
C NC N K

d








      

 

  

l
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   

     
6 6

eq

12 2 2 3 3

0

1.0 10 F 3.33 10 m
1.244 1.2

1800 8.85 10 C N m 12.0 10 m 14.0 10 m

C d
K

N A

 

  

 
   

   
 

   
82. The total charge doesn’t change when the second capacitor is connected, since the two-capacitor 

combination is not connected to a source of charge.  The final voltage across the two capacitors must 
be the same.  Use Eq. 24-1. 

     

0 1 0 1 2 1 1 2 2 1 1 2 1

0 1
2 1

1

12.4 V 5.9 V
3.5 F 3.856 F 3.9 F

5.9 V

Q C V Q Q C V C V C V C V

V V
C C

V
  

      

 
   

 
 
 

 

 
83. (a) Use Eq. 24-5 to calculate the stored energy. 

      22 8 41 1
2 2 8.0 10 F 2.5 10 V 25JU CV       

 (b) The power is the energy converted per unit time. 

   
  5

6

0.15 25JEnergy
9.38 10 W 940 kW

time 4.0 10 s
P


    


 

 
84. The pressure is the force per unit area on a face of the dielectric.  The force is related to the potential 

energy stored in the capacitor by Eq. 8-7, ,
dU

F
dx

   where x is the separation of the capacitor 

plates. 

  
   

   

2 2
2 2 0 01 1

02 2 2 2

242

12 2 2

0

     ;   
2 2

2 1.0 10 m 40.0 Pa2
170 V

3.1 8.85 10 C N m

A dU K AV F K V
U CV K V F P

x dx x A x

x P
V

K

 








        


  

 

 
 
 

  

 
85. (a) From the diagram, we see that one group of 4 plates is connected together, and the other group  

of 4 plates is connected together.  This common grouping shows that the capacitors are 
connected  in parallel . 

 (b) Since they are connected in parallel, the equivalent capacitance is the sum of the individual  
capacitances.  The variable area will change the equivalent capacitance. 

   

   
 

eq 0

4 2

12 2 2 12min
min 0 3

7 7

2.0 10 m
7 7 8.85 10 C N m 7.7 10 F

1.6 10 m

A
C C

d

A
C

d






 



 


    




 

      
 

4 2

12 2 2 11max
max 0 3

9.0 10 m
7 7 8.85 10 C N m 3.5 10 F

1.6 10 m

A
C

d




 




    


  

  And so the range is from 7.7 pF to 35pF . 
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86. (a) Since the capacitor is charged and then disconnected from the power supply, the charge is  
constant.  Use Eq. 24-1 to find the new voltage. 

     41
1 1 2 2 2 1

2

8.0pF
constant        7500V 6.0 10 V

1.0pF

C
Q CV CV C V V V

C
           

 (b) In using this as a high voltage power supply, once it discharges, the voltage drops, and it needs  
to be recharged.  So it is not a constant source of high voltage.  You would also have to be sure 
it was designed to not have breakdown of the capacitor material when the voltage gets so high.  

Another disadvantage is that it has only a small amount of energy stored:  21
2U CV  

   212 4 31
2 1.0 10 C 6.0 10 V 1.8 10 J        , and so could actually only supply a small amount 

of power unless the discharge time was extremely short. 
 
87. Since the two capacitors are in series, they will both have the same charge on them. 

   
     

1 2 series

series series 1 2

12 12

12series 1
2 12 12

1 series

1 1 1
  ;    

125 10 C 175 10 F
5.15 10 F

175 10 F 25.0V 125 10 C

V
Q Q Q

C Q C C

Q C
C

CV Q

 



 

     

 
   

   

 

 
88. (a) The charge can be determined from Eqs. 24-1 and 24-2. 

   
   

   
4 2

12 2 2 11

0 4

11

2.0 10 m
8.85 10 C N m 12 V 4.248 10 C

5.0 10 m

4.2 10 C

A
Q CV V

d




 






     



 


 

 (b) Since the battery is disconnected, no charge can flow to or from the plates.  Thus the charge is  
constant. 

 114.2 10 CQ    
 (c) The capacitance has changed and the charge has stayed constant, and so the voltage has  

changed. 

   

 

1 1 0 0 0 1 0 0

1 0

1
1 0

0

constant          

0.75mm
12 V 18V

0.50mm

A A
Q CV CV C V V V

d d

d
V V

d

       

  
 

 (d) The work is the change in stored energy. 

        11 101 1 1 1
1 0 1 02 2 2 2 4.248 10 C 6.0V 1.3 10 JW U QV QV Q V V             

 
89. The first capacitor is charged, and so has a certain amount of charge on its plates.  Then, when the 

switch is moved, the capacitors are not connected to a source of charge, and so the final charge is 
equal to the initial charge.  Initially treat capacitors 2C  and 3C  as their equivalent capacitance, 

   2 3
23

2 3

2.0 F 2.4 F
1.091 F.

4.4 F

C C
C

C C

 



  


  The final voltage across 1C  and 23C  must be the 

same.  The charge on 2C  and 3C  must be the same.  Use Eq. 24-1. 
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   

0 1 0 1 23 1 1 23 23 1 1 23 1

1
1 0 1 23

1 23

    

1.0 F
24 V 11.48V

1.0 F 1.091 F

Q C V Q Q C V C V C V C V

C
V V V V

C C


 

       

    
 

 

  

   
   

1 1 1

23 23 23 2 3

2 3
2 3

2 3

1.0 F 11.48V 11.48 C

1.091 F 11.48 V 12.52 C

12.52 C 12.52 C
6.26 V  ;  5.22 V

2.0 F 2.4 F

Q C V

Q C V Q Q

Q Q
V V

C C

 

 

 
 

  

    

     

 

 To summarize:  1 1 2 2 3 311 C , 11V  ;  13 C , 6.3V  ;  13 C , 5.2 VQ V Q V Q V         

 
90. The metal conducting strips connecting cylinders b and c mean that b and c 

are at the same potential.  Due to the positive charge on the inner cylinder 
and the negative charge on the outer cylinder, cylinders b and c will 
polarize according to the first diagram, with negative charge on cylinder c, 
and positive charge on cylinder b.  This is then two capacitors in series, as 
illustrated in the second diagram.  The capacitance per unit length of a 
cylindrical capacitor is derived in Example 24-2. 

  

   

   

   

     

 

0 0
1 2

a b c d net 1 2

0 0

a b c d1 2
net

0 01 2

a b c d

0 0

c d a b a c b d

0

a c b d

2 2 1 1 1
 ;  ;   

ln ln

2 2

ln ln

2 2

ln ln

2 2
  

ln ln ln

2

ln

C C
R R R R C C C

R R R RC C
C

C C
R R R R

R R R R R R R R

C

R R R R

 

 

 

 



    

 
 

  




   
   
   

l l

l l

l l

l l

l

 

 
91. The force acting on one plate by the other plate is equal to the electric field produced by one charged 

plate multiplied by the charge on the second plate. 
2

0 02 2

Q Q
F EQ Q

A A 
  

 
 
 

 

The force is attractive since the plates are oppositely charged.  Since the force is constant, the work 
done in pulling the two plates apart by a distance x is just the force times distance. 

2

02

Q x
W Fx

A
   

The change in energy stored between the plates is obtained using Eq. 24-5. 
2 2 2

2 1 0 0 0

1 1 2

2 2 2

Q Q x x Q x
W U

C C A A A  
  

        
   

 

The work done in pulling the plates apart is equal to the increase in energy between the plates. 
 

R a 
Rb

Rc R d 
+

–
+

–

Cyl. d
Cyl. c

Cyl. b
Cyl. a
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92. Since the other values in this problem manifestly have 2 significant figures, we assume that the  
capacitance also has 2 significant figures. 
(a) The number of electrons is found from the charge on the capacitor. 

   
   15

5

19

30 10 F 1.5V
    2.8 10 's

1.60 10 C

CV
Q CV Ne N e

e






      


 

 (b) The thickness is determined from the dielectric strength. 

   9

max min 9

min max

1.5V
    1.5 10 m

1.0 10 V m

V V
E d

d E
     


 

 (c) The area is found from Eq. 24-8. 

   
   
 

15 9

13

0 12 2 2

0

30 10 F 1.5 10 m
    2.0 10 m

25 8.85 10 C N m

A Cd
C K A

d K




 





 
     

 
 

 
93. Use Eq. 24-2 for the capacitance. 

  
   

 

12 2 2 4 2

160 0
8.85 10 C N m 1.0 10 m

    9 10 m
1F

A A
C d

d C

 
 


  

       

  No , this is not practically achievable.  The gap would have to be smaller than the radius of a proton. 
 
94. See the schematic diagram for the arrangement.  The two 

“capacitors” are in series, and so have the same charge.  Thus 
their voltages, which must total 25kV, will be inversely 
proportional to their capacitances.   Let C1 be the glass-filled 
capacitor, and C2 be the vinyl capacitor.  The area of the foot is 
approximately twice the area of the hand, and since there are 
two feet on the floor and only one hand on the screen, the area 

ratio is foot

hand

4
.

1

A

A
  

  

2
1 1 2 2 1 2

1

0 glass hand 0 vinyl foot

1 2

glass vinyl

    

  ;  

C
Q C V C V V V

C

K A K A
C C

d d

 

   

 
 

     
     

0 vinyl foot

vinyl vinyl foot glass2

0 glass hand1 glass hand vinyl

glass

2
1 2 2 2 2 2

1

3 4 0.63
1.5

5 1 1.0

2.5 25,000 V    10,000 V

K A

d K A dC
K AC K A d

d

C
V V V V V V V

C




   

       

  

 
95. (a) Use Eq. 24-2 to calculate the capacitance. 

   
   

 
12 2 2 2

90
0 3

8.85 10 C N m 2.0 m
5.9 10 F

3.0 10 m

A
C

d








 
   


 

  Use Eq. 24-1 to calculate the charge. 

25kV

6.3mm glass

1cm vinyl

hand

feet

floor
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      9 7 7

0 0 0 5.9 10 F 45V 2.655 10 C 2.7 10 CQ C V           

  The electric field is the potential difference divided by the plate separation. 

   0
0 3

45V
15000 V m

3.0 10 m

V
E

d 
  


 

  Use Eq. 24-5 to calculate the energy stored. 

      22 9 61 1
0 0 02 2 5.9 10 F 45V 6.0 10 JU C V        

 (b) Now include the dielectric.  The capacitance is multiplied by the dielectric constant. 

    9 8 8

0 3.2 5.9 10 F 1.888 10 F 1.9 10 FC KC           

The voltage doesn’t change.  Use Eq. 24-1 to calculate the charge. 

    9 7 7

0 3.2 5.9 10 F 45V 8.496 10 C 8.5 10 CQ CV KC V            

Since the battery is still connected, the voltage is the same as before, and so the electric field 
doesn’t change. 

   0 15000 V mE E   

Use Eq. 24-5 to calculate the energy stored. 

        22 2 9 51 1 1
02 2 2 3.2 5.9 10 F 45V 1.9 10 JU CV KC V         

 
96. (a) For a plane conducting surface, the electric field is given by Eq. 22-5. 

   
     6 12 2 2 4 2

max S 0

0 0

7 7

    3 10 N C 8.85 10 C N m 150 10 m

3.98 10 C 4 10 C                                    

Q
E Q E A

A




 
 

 

        

   

 

 (b) The capacitance of an isolated sphere is derived in the text, right after Example 24-3. 

      12 2 2 10 10

04 4 8.85 10 C N m 1m 1.11 10 F 1 10 FC r              

 (c) Use Eq. 24-1, with the maximum charge from part (a) and the capacitance from part (b). 

   
7

10

3.98 10 C
    3586 V 4000 V

1.11 10 F

Q
Q CV V

C






     


 

 
97. (a)  The initial capacitance is obtained directly from Eq. 24-8. 

     0
0 3

3.7 8.85 pF/m 0.21m 0.14 m
32 nF

0.030 10 m

K A
C

d




  


 

(b) Maximum charge will occur when the electric field between the plates is equal to the dielectric 
strength.  The charge will be equal to the capacitance multiplied by the maximum voltage, 
where the maximum voltage is the electric field times the separation distance of the plates. 

     6 3

max 0 0 32 nF 15 10 V/m 0.030 10 m

14 C

Q C V C Ed



    


 

(c) The sheets of foil would be separated by sheets of paper with 
alternating sheets connected together on each side.  This capacitor 
would consist of 100 sheets of paper with 101 sheets of foil. 

   Al paper101 100 101 0.040 mm 100 0.030 mm

7.0 mm

t d d   


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(d) Since the capacitors are in parallel, each capacitor has the same voltage which is equal to the  

total voltage.  Therefore breakdown will occur when the voltage across a single capacitor 
provides an electric field across that capacitor equal to the dielectric strength. 

   6 3

max max 15 10 V/m 0.030 10 m 450 VV E d         

 

98. From Eq. 24-2, 0 .C A
d


   So if 

we plot C vs. A, we should get a 

straight line with a slope of 0 .
d


 

  

0

0

12 2 2

12 2

3

slope  

slope

8.85 10 C N m

8606 10 F m

1.03 10 m 1.0 mm

d

d











 



 




  

 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH24.XLS,” on tab “Problem 24.98.” 

  

C  = 8606 A

R
2
 = 0.99

0

200

400

600

800

1000

1200

0.00 0.02 0.04 0.06 0.08 0.10 0.12

A  (m2)

C
 (

pF
)
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CHAPTER 25:  Electric Currents and Resistance 
 
Responses to Questions 
 
1.  A battery rating in ampere-hours gives the total amount of charge available in the battery.  
 
2.  The chemical reactions within the cell cause electrons to pile up on the negative electrode. If the 

terminals of the battery are connected in a circuit, then electrons flow from the negative terminal 
because it has an excess of electrons. Once the electrons return to the cell, the electrolyte again 
causes them to move to the negative terminal. 

 
3.  When a flashlight is operated, the battery energy is being used up. 
 
4.  The terminal of the car battery connected to “ground” is actually connected to the metal frame of the 

car. This provides a large “sink” or “source” for charge. The metal frame serves as the common 
ground for all electrical devices in the car, and all voltages are measured with respect to the car’s 
frame. 

 
5.  Generally, water is already in the faucet spout, but it will not come out until the faucet valve is 

opened. Opening the valve provides the pressure difference needed to force water out of the spout. 
The same thing is essentially true when you connect a wire to the terminals of a battery. Electrons 
already exist in the wires. The battery provides the potential that causes them to move, producing a 
current. 

 
6.  Yes. They might have the same resistance if the aluminum wire is thicker. If the lengths of the wires 

are the same, then the ratios of resistivity to cross-sectional area must also be the same for the 
resistances to be the same. Aluminum has a higher resistivity than copper, so if the cross-sectional 
area of the aluminum is also larger by the same proportion, the two wires will have the same 
resistance.  

 
7. If the emf in a circuit remains constant and the resistance in the circuit is increased, less current will 

flow, and the power dissipated in the circuit will decrease. Both power equations support this result. 
If the current in a circuit remains constant and the resistance is increased, then the emf must increase 
and the power dissipated in the circuit will increase.  Both equations also support this result. There is 
no contradiction, because the voltage, current, and resistance are related to each other by V = IR.  

 
8.  When a lightbulb burns out, the filament breaks, creating a gap in the circuit so that no current flows. 
 
9.  If the resistance of a small immersion heater were increased, it would slow down the heating 

process. The emf in the circuit made up of the heater and the wires that connect it to the wall socket 
is maintained at a constant rms value. If the resistance in the circuit is increased, less current will 
flow, and the power dissipated in the circuit will decrease, slowing the heating process. 

 
10.  Resistance is proportional to length and inversely proportional to cross-sectional area. 

(a) For the least resistance, you want to connect the wires to maximize area and minimize length.  
Therefore, connect them opposite to each other on the faces that are 2a by 3a. 

(b) For the greatest resistance, you want to minimize area and maximize length. Therefore, connect  
the wires to the faces that are 1a by 2a. 
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11. When a light is turned on, the filament is cool, and has a lower resistance than when it is hot. The 
current through the filament will be larger, due to the lower resistance. This momentary high current 
will heat the wire rapidly, possibly causing the filament to break due to thermal stress or vaporize. 
After the light has been on for some time, the filament is at a constant high temperature, with a 
higher resistance and a lower current. Since the temperature is constant, there is less thermal stress 
on the filament than when the light is first turned on. 

 
12.  When connected to the same potential difference, the 100-W bulb will draw more current (P = IV). 

The 75-W bulb has the higher resistance (V = IR or P = V²/R).  
 
13. The electric power transferred by the lines is P = IV. If the voltage across the transmission lines is 

large, then the current in the lines will be small. The power lost in the transmission lines is P = I²R. 
The power dissipated in the lines will be small, because I is small. 

 
14.  If the circuit has a 15-A fuse, then it is rated to carry current of no more than 15 A. Replacing the 15-

A fuse with a 25-A fuse will allow the current to increase to a level that is dangerously high for the 
wiring, which might result in overheating and possibly a fire. 

 
15. The human eye and brain cannot distinguish the on-off cycle of lights when they are operated at the 

normal 60 Hz frequency. At much lower frequencies, such as 5 Hz, the eye and brain are able to 
process the on-off cycle of the lights, and they will appear to flicker. 

 
16.  The electrons are not “used up” as they pass through the lamp. Their energy is dissipated as light and 

heat, but with each cycle of the alternating voltage, their potential energy is raised again. As long as 
the electrons keep moving (converting potential energy into kinetic energy, light, and heat) the lamp 
will stay lit.  

 
17. Immediately after the toaster is turned on, the Nichrome wire heats up and its resistance increases. 

Since the (rms) potential across the element remains constant, the current in the heating element 
must decrease.  

 
18.  No. Energy is dissipated in a resistor but current, the rate of flow of charge, is not “used up.”  
 
19. In the two wires described, the drift velocities of the electrons will be about the same, but the current 

density, and therefore the current, in the wire with twice as many free electrons per atom will be 
twice as large as in the other wire. 

 
20. (a) If the length of the wire doubles, its resistance also doubles, and so the current in the wire will  

be reduced by a factor of two. Drift velocity is proportional to current, so the drift velocity will 
be halved. 

(b) If the wire’s radius is doubled, the drift velocity remains the same. (Although, since there are  
more charge carriers, the current will quadruple.) 

(c) If the potential difference doubles while the resistance remains constant, the drift velocity and  
current will also double.  

 
21.  If you turn on an electric appliance when you are outside with bare feet, and the appliance shorts out 

through you, the current has a direct path to ground through your feet, and you will receive a severe 
shock. If you are inside wearing socks and shoes with thick soles, and the appliance shorts out, the 
current will not have an easy path to ground through you, and will most likely find an alternate path. 
You might receive a mild shock, but not a severe one. 
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Solutions to Problems 
 
1. Use the definition of current, Eq. 25-1a. 

  18

19

1.30C 1 electron
    1.30A 8.13 10 electrons s

s 1.60 10 C

Q
I

t 


     
 

 

 
2. Use the definition of current, Eq. 25-1a. 

        5    6.7 A 5.0h 3600s h 1.2 10 C
Q

I Q I t
t


       


 

 
3. Use the definition of current, Eq. 25-1a. 

  
  19

11

6

1200 ions 1.60 10 C ion
5.5 10 A

3.5 10 s

Q
I

t








   
 

 

 
4. Solve Eq. 25-2a for resistance. 

  
120V

29
4.2A

V
R

I
     

 
5. (a) Use Eq. 25-2b to find the current. 

   
240V

    27.91A 28A
8.6

V
V IR I

R
     


 

 (b) Use the definition of current, Eq. 25-1a. 

         4    27.91A 50min 60s min 8.4 10 C
Q

I Q I t
t


       


 

 
6. (a) Solve Eq. 25-2a for resistance. 

   
120V

12.63 13
9.5A

V
R

I
       

 (b) Use the definition of average current, Eq. 25-1a. 

            9.5A 15min 60s min 8600C
Q

I Q I t
t


      


 

 
7. Use Ohm’s Law, Eq. 25-2a, to find the current.  Then use the definition of current, Eq. 25-1a, to 

calculate the number of electrons per minute. 

21

19

4.5V 2.8C 1 electron 60s electrons
1.1 10

1.6 s 1.60 10 C 1min minute

V Q
I

R t 


       

  
 

 
8. Find the potential difference from the resistance and the current. 

  
   

   

5 2 6

6 3

2.5 10 m 4.0 10 m 1.0 10

3100A 1.0 10 3.1 10 V

R

V IR

  

 

      

     
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9. (a) Use Eq. 25-2b to find the resistance. 

   
12V

20
0.60A

V
R

I
     (2 sig. fig.) 

 (b) An amount of charge Q  loses a potential energy of  Q V  as it passes through the resistor.   

The amount of charge is found from Eq. 25-1a. 

            0.60A 60s 12 V 430JU Q V I t V        

 
10. (a) If the voltage drops by 15%, and the resistance stays the same, then by Eq. 25-2b, V IR , the  

current will also drop by 15%. 

    final initial0.85 0.85 6.50A 5.525A 5.5AI I     

(b) If the resistance drops by 15% (the same as being multiplied by 0.85), and the voltage stays the  
same, then by Eq. 25-2b, the current must be divided by 0.85. 

 initial
final

6.50A
7.647 A 7.6A

0.85 0.85

I
I      

 

11. Use Eq. 25-3 to find the diameter, with the area as 2 2 4A r d   . 

  
   

 

8

4

2

4 1.00m 5.6 10 m4 4
    4.7 10 m

0.32
R d

A d R


 

  




 

      


l l l 
  

 

12. Use Eq. 25-3 to calculate the resistance, with the area as 2 2 4A r d   . 

     
 

8 2

22 3

4 4.5m4
1.68 10 m 4.3 10

1.5 10 m
R

A d
 

 
 


       



l l
  

 

13. Use Eq. 25-3 to calculate the resistances, with the area as 2 2 4.A r d     

2

4
R

A d
 


 
l l

. 

  
     
     

Al
28Al 22

Al Al Al CuAl
22 8

CuCu Cu Cu Al
Cu 2

Cu

4
2.65 10 m 10.0m 1.8mm

0.64
4 1.68 10 m 20.0m 2.0mm

R dd

R d
d











 
   

 

l

l

l l




 

 

14. Use Eq. 25-3 to express the resistances, with the area as 2 2 4A r d   , and so 
2

4
.R

A d
 


 
l l

 

  

 

W Cu W Cu2 2

W Cu

8

W
W Cu 8

Cu

4 4
      

5.6 10 m
2.2 mm 4.0mm

1.68 10 m

R R
d d

d d

 
 








   

 
  

 

l l




 

 The diameter of the tungsten should be 4.0 mm. 
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15. (a) If the wire obeys Ohm’s law, then V IR  or 
1

,I V
R

  showing a linear relationship between I  

and V.  A graph of I vs. V should give a straight line with a slope of 
1

R
 and a y-intercept of 0. 

(b) From the graph and the  
calculated linear fit, we see that 
the wire obeys Ohm’s law. 

  

1
slope   

1
A V

0.720

  1.39

R

R

 



 

 

The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename “PSE4_ISM_CH25.XLS,” on tab “Problem 25.15b.” 

(c) Use Eq. 25-3 to find the resistivity. 

   
   

 

242
6

3.2 10 m 1.39
    1.0 10 m

4 4 0.11m

AR d R
R

A


 




 

       
l

l l
  

  From Table 25-1, the material is nichrome. 
 
16. Use Eq. 25-5 multiplied by Al  so that it expresses resistance instead of resistivity. 

  

    

 

0 0 0 0

0 1

1 1.15     1 1.15  

0.15 0.15
22C

.0068 C

R R T T R T T

T T

 

 

        

    


 

 So raise the temperature by 22 C  to a final temperature of 42 C . 
 
17. Since the resistance is directly proportional to the length, the length of the long piece must be 4.0  

times the length of the short piece. 
  short long short short short short long4.0 5.0     0.20  , 0.80       l l l l l l l l l l  

 Make the cut at  20% of the length of the wire . 

short long short long0.20  , 0.80     0.2 2.0  , 0.8 8.0R R R R        l l l l  

 
18. Use Eq. 25-5 for the resistivity. 

  

  

 

T Al 0 Al Al 0 0 W

8

0 W
0 1 8

Al 0 Al

1   

1 1 5.6 10 m
1 20 C 1 279.49 C 280 C

2.65 10 m0.00429 C

T T

T T

   


 



 

    

 
          

 

   
   

  




 

 
19. Use Eq. 25-5 multiplied by Al  so that it expresses resistances instead of resistivity. 

    0 01   R R T T     

  
 0 1

0

1 1 140
1 20 C 1 2390 C 2400 C

120.0045 C

R
T T

R 


          



   
   

  
 

I  = 0.720 V

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6
V  (V)

I 
(A

)
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20. Calculate the voltage drop by combining Ohm’s Law (Eq. 25-2b) with the expression for resistance,  
Eq. 25-3. 

       
 

8

22 3

4 1.68 10 m 26m4
12A 2.5V

1.628 10 m
V IR I I

A d

 
 





 
    



l l 
 

 
21. The wires have the same resistance and the same resistivity. 

 
2

long longshortshort short
long short 2

1 2 short shortlong

4 2 4
            2

d
R R

A A d dd

 


      
l ll l

 

 
22.  In each case calculate the resistance by using Eq. 25-3 for resistance. 

 (a) 
   
   

5 2

4 4

2 2

3.0 10 m 1.0 10 m
3.75 10 3.8 10

2.0 10 m 4.0 10 m
x

x

yz

R
A


 

 

 

  
       

 
l 

  

 (b) 
   
   

5 2

3

2 2

3.0 10 m 2.0 10 m
1.5 10

1.0 10 m 4.0 10 m
y

y

xz

R
A

  



 

  
    

 

l 
 

 (c) 
   
   

5 2

3

2 2

3.0 10 m 4.0 10 m
6.0 10

1.0 10 m 2.0 10 m
z

z

xy

R
A


 



 

  
    

 
l 

 

 
23. The original resistance is 0 0R V I , and the high temperature resistance is R V I , where the two  

voltages are the same.  The two resistances are related by Eq. 25-5, multiplied by Al  so that it 
expresses resistance instead of resistivity. 

  

  

 

0
0 0 0 0 0

0 0

1

1 1 1
1     1 1 1

1 0.4212A
                                                20.0 C 1 44.1 C

0.3818A0.00429 C

R V I I
R R T T T T T T

R V I I


  



            

     


     
         

 
 
 

 

 

24. For the cylindrical wire, its (constant) volume is given by 0 0 ,V A A l l  and so .
V

A 
l

  Combine 

this relationship with Eq. 25-3.  We assume that 0.l l  

  

2 2

0 0
0

0 0 0 0

0 0 1
222

0

0

  ;    ;  2

2         
2 2

2

dR
R R

A V A V d V

dR V R V R R R
R

d V R

V

    


 

    

    
           

l l l l l

l

l l
l l l

ll l l l

 

 This is true for any initial conditions, and so 1
2

0 0

R

R

 

l

l
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25. The resistance depends on the length and area as .R A l   Cutting the wire and running the wires 
side by side will halve the length and double the area. 

 1
2 1 1

2 14 42
R R

A A

 
  

l l
   

 
26. The total resistance is to be 3700 ohms  totalR  at all temperatures.  Write each resistance in terms of  

Eq.25-5 (with o

0 0 CT  ), multiplied by Al  to express resistance instead of resistivity. 

  
   

 
total 0C C 0N N 0C 0C C 0N 0N N

0C 0N 0C C 0N N

1 1

      

R R T R T R R T R R T

R R R R T

   

 

       

   
 

For the above to be true, the terms with a temperature dependence must cancel, and the terms 
without a temperature dependence must add to totalR .  Thus we have two equations in two unknowns. 

  

 

 

0C C
0C C 0N N 0N

N

0C N C0C C
total 0C 0N 0C

N N

0     

 

R
R R T R

RR
R R R R


 



 
 

    


     

 

   
   

   

1o

N
0C total 1 1o o

N C

0N total 0C

0.0004 C
3700 1644 1600

0.0004 C 0.0005 C

3700 1644 2056 2100

R R

R R R


 



       
 

        

 

 
27. We choose a spherical shell of radius r and thickness dr as a differential element.  The area of this 

element is 24 .r   Use Eq. 25-3, but for an infinitesimal resistance.  Then integrate over the radius of 
the sphere. 

22

11

2 2

1 2

1 1 1 1 1
        

4 4 4 4

rr

rr

d dr dr
R dR R dR

A A r r r r r
 

   
          

  
      

 
l l

 

 

28. (a) Let the values at the lower temperature be indicated by a subscript “0”.  Thus 0
0 0

0

R
A


l

  

0
0 2

0

4
.

d




l

  The change in temperature results in new values for the resistivity, the length, and 

the diameter.  Let   represent the temperature coefficient for the resistivity, and T  represent 

the thermal coefficient of expansion, which will affect the length and diameter. 

 

     
   

  
  

  
        

0 T 0 00
0 0 022 2

0 T 00 T 0

0
0 T 0 0 0

T 0

4 1 14 4
1

11

1
    1 1   

1

T T T T
R T T

A d d T Td T T

T T
R R T T R T T

T T

 
    

   


 



   
     

  

 
       

 

ll l l
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 
 

 
       

0
0 1 6 1

0 T

140 12
20 C

12 0.0045C 140 5.5 10 C

20 C 2405 C 2425 C 2400 C

R R
T T

R R    

  
    

      

       

    

  (b) The net effect of thermal expansion is that both the length and diameter increase, which lowers  
the resistance. 

   

  
      

   

2 20 2
0 T 00 0

22
00 0 0 T 00 T 0

0 2

0

6 1

0

0 0

4
1 1

4 11

1
    0.9869

1 5.5 10 C 2405 C

% change 100 1 100 1.31 1.3%

T TR d dd
R d T Td T T

d

R R R

R R

 




 

 
   

  

 
   


      

  
   
   
   

l

ll

l l l

 

  The net effect of resistivity change is that the resistance increases. 

   

         
0
2

10 00
0

00 0 0
0 2

0

0

0 0

4

1
1 1 0.0045C 2405 C

4

11.82

% change 100 1 100 1082 1100%

     

T TR d
T T

R
d

R R R

R R


 


 



 
         




    

  

   
   
   

l

l

 

 
29. (a) Calculate each resistance separately using Eq. 25-3, and then add the resistances together to find  

the total resistance. 

   

   
 

   
 

8

Cu Cu
Cu 22 3

8

Al Al
Al 22 3

total Cu Al

4 1.68 10 m 5.0m4
0.054567

1.4 10 m

4 2.65 10 m 5.0m4
0.086074

1.4 10 m

0.054567 0.086074 0.140641 0.14

R
A d

R
A d

R R R

 
 

 
 









 
    



 
    



        

l l

l l




 

 (b) The current through the wire is the voltage divided by the total resistance. 

   
3

total

85 10 V
0.60438A 0.60A

0.140641

V
I

R


   


 

 (c) For each segment of wire, Ohm’s law is true.  Both wires have the current found in (b) above. 

   
   

   
Cu Cu

Al Al

0.60438A 0.054567 0.033V

0.60438A 0.086074 0.052V

V IR

V IR

   

   
 

  Notice that the total voltage is 85 mV. 
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30. (a) Divide the cylinder up into concentric cylindrical shells of  
radius r, thickness dr, and length l.  See the diagram.  The 
resistance of one of those shells, from Eq. 25-3, is found.  Note 
that the “length” in Eq. 25-3 is in the direction of the current flow, 
so we must substitute in dr for the “length” in Eq. 25-3.  The area 
is the surface area of the thin cylindrical shell.  Then integrate over 
the range of radii to find the total resistance. 

   
2

1

2

1

" "
      ;

2

ln
2 2

r

r

dr
R dR

A r

dr r
R dR

r r

 





 

  

   

l

l

l l

 

 (b) Use the data given to calculate the resistance from the above  
formula. 

 
 

5
42

1

15 10 m 1.8mm
ln ln 5.8 10

2 2 0.024m 1.0mm

r
R

r


 


 

    
 
 
 l


 

 (c) For resistance along the axis, we again use Eq. 25-3, but the current is flowing in the direction  
of length l.   The area is the cross-sectional area of the face of the hollow cylinder. 

    
   

   

5

2 2 2 23 3
2 1

15 10 m 0.024m
0.51

1.8 10 m 1.0 10 m
R

A r r

 
 



 

 
    

    
 

l l 
 

 
31. Use Eq. 25-6 to find the power from the voltage and the current. 

     0.27 A 3.0V 0.81WP IV    

 
32. Use Eq. 25-7b to find the resistance from the voltage and the power. 

  
 22 2 240V

    17
3300 W

V V
P R

R P
       

 
33. Use Eq. 25-7b to find the voltage from the power and the resistance. 

     
2

    3300 0.25W 29V
V

P V RP
R

       

 
34. Use Eq. 25-7b to find the resistance, and Eq. 25-6 to find the current.  

(a) 
 22 2 110V

    161.3 160
75W

V V
P R

R P
         

 
75W

    0.6818A 0.68A
110V

P
P IV I

V
        

 (b) 
 22 2 110V

    27.5 28
440W

V V
P R

R P
         

  
440W

    4.0A
110V

P
P IV I

V
      

 
 

r1

r 

dr 

r2 
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35. (a) From Eq. 25-6, if power P is delivered to the transmission line at voltage V, there must be a  
current .I P V   As this current is carried by the transmission line, there will be power losses 

of 2I R  due to the resistance of the wire.  This power loss can be expressed as  2P I R   
2 2 .P R V   Equivalently, there is a voltage drop across the transmission lines of .V IR    

Thus the voltage available to the users is ,V V   and so the power available to the users is  

  2 2 .P V V I VI V I VI I R P I R            The power loss is   2P P P P P I R       

2 2 2 .I R P R V   

(b) Since 
2

1
,P

V
   V should be as large as possible to minimize .P  

 

36. (a) Since 
2 2

    
V V

P R
R P

    says that the resistance is inversely proportional to the power for a  

constant voltage, we predict that the 850 W setting has the higher resistance. 

 (b) 
 22 120V

17
850 W

V
R

P
     

 (c) 
 22 120V

12
1250 W

V
R

P
     

 
37. (a) Use Eq. 25-6 to find the current. 

   
95W

    0.83A
115V

P
P IV I

V
      

 (b) Use Eq. 25-7b to find the resistance. 

   
 22 2 115V

    140
95W

V V
P R

R P
       

 
38. The power (and thus the brightness) of the bulb is proportional to the square of the voltage,  

according to Eq. 25-7b, 
2V

P
R

 .  Since the resistance is assumed to be constant, if the voltage is cut 

in half from 240 V to 120V, the power will be reduced by a factor of 4.  Thus the bulb will appear 
only about  1/4 as bright  in the United States as in Europe. 

 
39. To find the kWh of energy, multiply the kilowatts of power consumption by the number of hours in 

operation. 

         1kW 1h
Energy in kW in h 550W 6.0min 0.055kWh

1000W 60min
P t  

   
   
   

 

To find the cost of the energy used in a month, multiply times 4 days per week of usage, times 4 
weeks per month, times the cost per kWh. 

  
kWh 4d 4 week 9.0cents

Cost 0.055 7.9cents month
d 1week 1month kWh


                
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40. To find the cost of the energy, multiply the kilowatts of power consumption by the number of hours  
in operation times the cost per kWh. 

     1kW 24h $0.095
Cost 25W 365day $21

1000 W 1day kWh
 

    
        

 

 
41. The A h  rating is the amount of charge that the battery can deliver.  The potential energy of the  

charge is the charge times the voltage. 

      63600s
75A h 12V 3.2 10 J 0.90kWh

1h
U QV    

 
 
 

   

 
42. (a) Calculate the resistance from Eq. 25-2b and the power from Eq. 25-6. 

      3.0V
7.895 7.9          0.38A 3.0V 1.14 W 1.1W

0.38A

V
R P IV

I
           

 (b) If four D-cells are used, the voltage will be doubled to 6.0 V.  Assuming that the resistance of  
the bulb stays the same (by ignoring heating effects in the filament), the power that the bulb 

would need to dissipate is given by Eq. 25-7b, 
2V

P
R

 . A doubling of the voltage means the 

power is increased by a factor of  4  .  This should not be tried because the bulb is probably not 
rated for such a high wattage.  The filament in the bulb would probably burn out, and the glass 
bulb might even explode if the filament burns violently. 

 
43. Each bulb will draw an amount of current found from Eq. 25-6. 

  bulb    
P

P IV I
V

    

 The number of bulbs to draw 15 A is the total current divided by the current per bulb. 

  
  total

total bulb

120 V 15 A
    24 bulbs

75 W

VIP
I nI n n

V P
       

 
44. Find the power dissipated in the cord by Eq. 25-7a, using Eq. 25-3 for the resistance. 

  
     

 
22 2 2 2 8

22 2 2

4 5.4 m4
15.0 A 1.68 10 m

4 0.129 10 m

15.62 W 16 W

P I R I I I
A d d

  
  




      



 

l l l


 

 
45. Find the current used to deliver the power in each case, and then find the power dissipated in the  

resistance at the given current. 

   
 

 

2
2

dissipated 2

25

dissipated 24
12,000 V

         = 

7.5 10 W
3.0 11719 W

1.2 10 V

P P
P IV I P I R R

V V

P

   


  



 

  
 
 

 
25

4

dissipated 24
50,000 V

7.5 10 W
3.0 675W        difference 11719 W 675W 1.1 10 W

5 10 V
P


      


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46. (a) By conservation of energy and the efficiency claim, 75% of the electrical power dissipated by  
the heater must be the rate at which energy is absorbed by the water. 

     heat water
emitted by absorbed
electromagnet by water

0.75     0.75   
Q mc T

P IV
t t


      

   
     

     
0.120 kg 4186J kg 95 C 25 C

8.139 A 8.1A
0.75 0.75 12 V 480s

mc T
I

Vt

  
     

 (b) Use Ohm’s law to find the resistance of the heater. 

   
12 V

    1.5
8.139 A

V
V IR R

I
       

 
47. The water temperature rises by absorbing the heat energy that the electromagnet dissipates.  Express 

both energies in terms of power, which is energy per unit time. 

 
   

   

heat water
electric to heat

water

      

17.5A 240 V
0.154 kg s 0.15kg s

4186J kg C 6.50C

Q mc T
P P IV

t t

m IV

t c T


    

   
  

 

 This is 154 mL s.  
 
48. For the wire to stay a constant temperature, the power generated in the resistor is to be dissipated by 

radiation.  Use Eq. 25-7a and 19-18, both expressions of power (energy per unit time).  We assume 
that the dimensions requested and dimensions given are those at the higher temperature, and do not 
take any thermal expansion effects into account.  We also use Eq. 25-3 for resistance. 

  

   

 
   

       

2 4 4 2 4 4

high low high low2

1/ 31/ 3 2 82

2 4 4 4 42 8 2 4
high low

5

4
      

4 15.0 A 5.6 10 m4

1.0 5.67 10 W m K 3100 K 293K

9.92 10 m 0.099 mm

I R A T T I d T T
d

I
d

T T


 




  







     

 
 

  

  

  
          

l
l




 

 
49. Use Ohm’s law and the relationship between peak and rms values. 

  rms
peak rms

220V
2 2 2 0.12 A

2700

V
I I

R
   


  

 
50. Find the peak current from Ohm’s law, and then find the rms current from Eq. 25-9a. 

   peak

peak rms peak

180 V
0.47368A 0.47 A      2 0.47368A 2 0.33A

380

V
I I I

R
      


 

 
51. (a) When everything electrical is turned off, no current will be flowing into the house, even though  

a voltage is being supplied.  Since for a given voltage, the more resistance, the lower the 
current, a zero current corresponds to an infinite resistance. 

 (b) Use Eq. 25-7a to calculate the resistance. 

   
 
 

22 2 120 V
    = 96

2 75W

V V
P R

R P
      
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52. The power and current can be used to find the peak voltage, and then the rms voltage can be found  
from the peak voltage. 

  
 peak

rms rms rms rms

peak

2 1500 W2
    390 V

5.4 A2

I P
P I V V V

I
       

 
53. Use the average power and rms voltage to calculate the peak voltage and peak current. 

 (a)  peak rms2 2 660 V 933.4 V 930 VV V     

 (b) 
 peak

rms rms rms peak

rms

2 1800 W2
    3.9 A

660 V2

I P
P I V V I

V
       

 
54. (a) We assume that the 2.5 hp is the average power, so the maximum power is twice that, or 5.0 hp,  

as seen in Figure 25-22. 

   
746W

5.0hp 3730W 3700W
1hp

 
 
 
 

 

 (b) Use the average power and the rms voltage to find the peak current. 

   
  1

peak 2
rms rms rms peak

rms

2 3730 W2
    11A

240 V2

I P
P I V V I

V
       

 
55. (a) The average power used can be found from the resistance and the rms voltage by Eq. 25-10c. 

   
 22

rms
240 V

1309 W 1300 W
44

V
P

R
   


 

(b) The maximum power is twice the average power, and the minimum power is 0. 

 max min2 2 1309 W 2600 W       0 WP P P     

 
56. (a) Find rms.V   Use an integral from Appendix B-4, page A-7. 

   

1/ 2

1/ 2 1/ 22 2 2

0 0 0
rms 0

0

0

4
sin

1 2
sin

82 2 2

T

T

t
t V t V VTV V dt

T T T
T





    

   
                           

  

(b) Find rms.V  

   
1/ 2 1/ 2 1/ 2/ 2 2

22 2 0 0
rms 0

0 0 / 2

1 1 1
0 0

2 2

T T T

T

V T V
V V dt V dt dt

T T T T
     
     
     

    
    

 
57. (a) We follow the derivation in Example 25-14.  Start with Eq. 25-14, in absolute value. 

   

 
 

 

   
       

d d 2
2 D1

2D

6 3

10

d 223 3 3 19 3

4
    

1 mole

1 mole

4 2.3 10 A 63.5 10 kg
5.1 10 m s

6.02 10 8.9 10 kg m 1.60 10 C 0.65 10 m

j I I I m
j nev v

ne neA N e dN
e d

m

v

 
 



 



 

     

 
  

   

         
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 (b) Calculate the current density from Eq. 25-11. 

   
 
 

6

2 2

22 2 4

4 2.3 10 A4
6.931A m 6.9 A m

6.5 10 m

I I I
j

A r d  






    


   

 (c) The electric field is calculated from Eq. 25-17. 

   8 2 71
    1.68 10 m 6.931A m 1.2 10 V mj E E j


          

    
58. (a) Use Ohm’s law to find the resistance. 

   
0.0220 V

    0.02933 0.029
0.75A

V
V IR R

I
         

 (b) Find the resistivity from Eq. 25-3. 

   
   

 

232
8 8

  

0.02933 1.0 10 m
1.589 10 m 1.6 10 m

5.80 m

R
A

RA R r








 

 

 
        

l

l l
 

 

 (c) Use Eq. 25-11 to find the current density. 

   
 

5 2 5 2

22

0.75
2.387 10 A m 2.4 10 A m

0.0010 m

I I
j

A r 
        

 (d) Use Eq. 25-17 to find the electric field. 

   

   8 5 2 3 3

1
  

1.589 10 m 2.387 10 A m 3.793 10 V m 3.8 10 V m

j E

E j



   

 

        

 

 (e) Find the number of electrons per unit volume from the absolute value of Eq. 25-14. 

      
5 2

28 3

d 5 19

d

2.387 10 A m
    8.8 10 e m

1.7 10 m s 1.60 10 C

j
j nev n

v e  


     

 
    

 
59. We are given a charge density and a speed (like the drift speed) for both types of ions.  From that we 

can use Eq. 25-13 (without the negative sign) to determine the current per unit area.  Both currents 
are in the same direction in terms of conventional current – positive charge moving north has the 
same effect as negative charge moving south – and so they can be added. 

  
         

     

d

12 3 19 6

d dHe O

11 3 19 6

2 2

  

2.8 10 ions m 2 1.60 10 C ion 2.0 10 m s

                                        7.0 10 ions m 1.60 10 C ion 6.2 10 m s

2.486 A m 2.5A m , North

I neAv

I
nev nev

A




 

      

  

 

  

  
 

 
60. The magnitude of the electric field is the voltage change per unit meter. 

  
3

6

8

70 10 V
7.0 10 V m

1.0 10 m

V
E

x





 
   
 
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61. The speed is the change in position per unit time. 

  
2 27.20 10 m 3.40 10 m

35 m s
0.0063s 0.0052s

x
v

t

    
  
 

 

Two measurements are needed because there may be a time delay from the stimulation of the nerve 
to the generation of the action potential. 

 
62. The power is the work done per unit time.  The work done to move a charge through a potential 

difference is the charge times the potential difference.  The charge density must be multiplied by the 
surface area of the cell (the surface area of an open tube, length times circumference) to find the 
actual charge moved. 

      7 23 19 6

2

9

mol ions C
   3 10 6.02 10 1.6 10 0.10 m 20 10 m 0.030 V

m s mol ion

   5.4 10 W

W QV Q
P V

t t t

  



  

    

 

   
   
   

 

 
63. The energy supplied by the battery is the energy consumed by the lights. 

       
supplied consumed       

85A h 3600s h 12V 1h
39913s 11.09 h 11h

92 W 3600s

E E Q V Pt

Q V
t

P

    


    

 
 
 

  

 
64. The ampere-hour is a unit of charge. 

  1C s 3600s
1.00A h 3600 C

1A 1 h


  
    

  

 
65. Use Eqs. 25-3 and 25-7b. 

  

   
   

2 2

2 2

2

242 2

8

2

4
  ;    

4

1.5V 5.0 10 m
1.753m 1.8m

4 4 1.68 10 m 15W

V V
R P

A r d R
d

V d

P


 

 









     


   

 

l l l

l

l


 

If the voltage increases by a factor of 6 without the resistance changing, the power will increase by a 
factor of 36.  The blanket would theoretically be able to deliver 540 W of power, which might make 
the material catch on fire or burn the occupant. 

 
66. Use Eq. 25-6 to calculate the current. 

  
746 W

    6.22 A
120 V

P
P IV I

V
      

 
67. From Eq. 25-2b, if R V I , then G I V  

  
0.48A

0.16S
3.0 V

I
G

V
    
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68. Use Eq. 25-7b to express the resistance in terms of the power, and Eq. 25-3 to express the resistance  
in terms of the wire geometry. 

       
 

2 2

2 2

82
4

22 2

            4

4 9.71 10 m 3.5m 1500 W4
4     2.3 10 m

110 V

V V
P R R

R P A r d

V P
d

d P V

  
 



  





     

 
     

l l l

l l 
 

 
69. (a) Calculate the total kWh used per day, and then multiply by the number of days and the cost per  

kWh. 

             

   

1.8kW 2.0 h d 4 0.1kW 6.0 h d 3.0 kW 1.0 h d 2.0 kWh d

             11.0 kWh d

$0.105
Cost 11.0 kWh d 30d $34.65 $35 per month

kWh

  



   
 
 

 

 (b) The energy required by the household is 35% of the energy that needs to be supplied by the  
power plant. 

   

   

   

   

 

Household Energy 0.35 coal mass coal energy per mass   

1000 W 3600s
11.0 kWh d 365d

kW 1hHousehold Energy
coal mass

0.35 coal energy per mass kcal 4186J
0.35 7500

kg 1kcal

               1315kg

 

 



  
    

  
    

1300 kg of coal

 

 

70. To deliver 15 MW of power at 120 V requires a current of 
6

515 10 W
1.25 10 A

120 V

P
I

V


    .   

Calculate the power dissipated in the resistors using the current and the resistance. 

 

     
 

         

22 2 2 2 8

22 2 3

7

7

5 2 1.0 m
4 4 1.25 10 A 1.68 10 m

5.0 10 m

   2.674 10 W

1kW $0.090
Cost Power time rate per kWh 2.674 10 W 1h

1000 W kWh

       $2407 $2,400 per hour per meter

L L L
P I R I I I

A r d
  

  



       



 

  

 

   
     



 

 
71. (a) Use Eq. 25-7b to relate the power to the voltage for a constant resistance. 

   
 
 

 
 

2 22

105

2 2

117

105 V 105 V
    0.805 or a 19.5% decrease

117 V 117 V

RPV
P

R P R
      

(b) The lower power output means that the resistor is generating less heat, and so the resistor’s 
temperature would be lower.  The lower temperature results in a lower value of the resistance, 
which would increase the power output at the lower voltages.  Thus the decrease would be  
smaller than the value given in the first part of the problem. 
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72. Assume that we have a meter of wire, carrying 35 A of current, and dissipating 1.5 W of heat.  The  

power dissipated is 2

RP I R , and the resistance is R
A



l

. 

  

     
 

2 2 2 2

2 2

8

2 3

4
  

1.68 10 m 1.0 m4
2 2 35A 4.2 10 m

1.5W

R

R R

P I R I I I
A r d

d I I
P P

  
 

 
  





    

 
    

l l l

l l 
 

 
73. (a)   The resistance at the operating temperature can be calculated directly from Eq. 25-7. 

 22 2 120 V
190

75W

V V
P R

R P
       

(b) The resistance at room temperature is found by converting Eq. 25-5 into an equation for  
resistances and solving for 0.R  

  

     

0 0

0 1
0

1

192
15

1 1 0.0045K 3000 K 293K

R R T T

R
R

T T



 

  


   

     

 

 
74. (a) The angular frequency is 210 rad s  . 

   
210 rad s

33.42 Hz 33Hz
2 2

f

 

     

 (b) The maximum current is 1.80 A. 

   max
rms

1.80 A
1.27 A

2 2

I
I     

 (c) For a resistor, V IR . 

          1.80 A sin 210 24.0 43.2sin 210 VV IR t t     

 
75. (a) The power delivered to the interior is 65% of the power drawn from the source. 

   interior
interior source source

950 W
0.65     1462 W 1500 W

0.65 0.65

P
P P P       

 (b) The current drawn is current from the source, and so the source power is used to calculate the  
current. 

 source
source source

source

1462 W
    12.18A 12 A

120 V

P
P IV I

V
       

 
76. The volume of wire is unchanged by the stretching.  The volume is equal to the length of the wire  

times its cross-sectional area, and since the length was increased by a factor of 1.20, the area was 
decreased by a factor of 1.20.  Use Eq. 25-3. 

 20 0 0 0
0 0 0

00 0

1.20
     1.20           1.20 1.44 1.44

1.20
1.20

A
R A R R

AA A A
           
l l l l

l l  
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77. The long, thick conductor is labeled as conductor number 1, and the short, thin conductor is labeled  

as number 2.  The power transformed by a resistor is given by Eq. 25-7b, 2P V R , and both have 
the same voltage applied. 

  

 1 2
1 2 1 2 1 2 1 2

1 2

2

1 1 1 2 2 2 2 1
1 22

2 2 2 1 1 1 1 2

          2      4  diameter 2diameter

1
4 2     : 2 :1

2

R R A A
A A

P V R R A A
P P

P V R R A A

 




    

       

l l
l l

l l

l l

  

 

78. The heater must heat 3108m  of air per hour from o5 C  to o20 C , and also replace the heat being lost 
at a rate of 850 kcal/h.  Use Eq. 19-2 to calculate the energy needed to heat the air.  The density of 
air is found in Table 13-1. 

  

 
3

3

m kg kcal kcal
    108 1.29 0.17 15C 355

h m kg C h

kcal kcal kcal 4186J 1h
Power required 355 850 1205 1401W 1400 W

h h h kcal 3600s

Q m
Q mc T c T

t t
       



    

    
      

  
    


 

 
79. (a) Use Eq. 25-7b. 

   
 22 2 240 V

    20.57 21
2800 W

V V
P R

R P
         

 (b) Only 75% of the heat from the oven is used to heat the water.  Use Eq. 19-2. 

   

 

 

     

 
 

oven

oven

0.75 Heat absorbed by water   

1kg
0.120 L 4186J kg C 85C

1L
20.33s 20s 2 sig. fig.

0.75 0.75 2800 W

P t mc T

mc T
t

P

   

 


   

 
 
 

  

 (c)    11cents 1h
2.8 kW 20.33s 0.17 cents

kWh 3600s
  

 
80. (a) The horsepower required is the power dissipated by the frictional force, since we are neglecting  

the energy used for acceleration. 

     1m s 1hp
240 N 45 km hr 3000W 4.0 hp

3.6 km hr 746 W
P Fv   

   
   
   

 

 (b) The charge available by each battery is 595A h 95C s 3600s 3.42 10 CQ      , and so the  
total charge available is 24 times that.  The potential energy of that charge is the charge times 
the voltage.  That energy must be delivered (batteries discharged) in a certain amount of time to 
produce the 3000 W necessary.  The speed of the car times the discharge time is the range of the 
car between recharges. 

        
U QV QV d

P t
t t P v

       

  
   524 3.42 10 C 12 V

410 km
240 N

QV QV QV
d vt v v

P Fv F


       
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81. The mass of the wire is the density of copper times the volume of the wire, and the resistance of the  

wire is given by Eq. 25-3.  We represent the mass density by m  and the resistivity by  . 

  
   

   

     
 

m m

3 3 8

m

8
2 41

2

              

0.0155kg 12.5
35.997 m 36.0 m

8.9 10 kg m 1.68 10 m

4 1.68 10 m 35.997 m4
    2.48 10 m

12.5

R A m A
A R R

mR

A d d
R R

 
  

 

 


 







     


   

  

 
      



l l l

l

l l

l l





 

 
82. The resistance can be calculated from the power and voltage, and then the diameter of the wire can 

be calculated from the resistance. 

  
   

     
 

2 2 2

2 21 1
2 2

8

4 4

22

               

4 100 10 m 3.8 m 95W4
1.787 10 m 1.8 10 m

120 V

V V L L V L
P R R

R P A Pd d

LP
d

V

  
 


 



 

       

 
     


 

 
83. Use Eq. 25-7b. 

 (a) 
 22 120 V

1200 W
12

V
P

R
  


 

 (b) 
 22 120 V

103 W 100 W
140

V
P

R
   


 (2 sig. fig.) 

 
84. Use Eq. 25-7b for the power in each case, assuming the resistance is constant. 

  
 
 

2
2

13.8V 13.8V

22

12.0 V 12.0 V

13.8
1.3225 32% increase

12.0

V RP

P V R
     

 
85. Model the protons as moving in a continuous beam of cross-sectional area A.  Then by Eq. 25-13,  

dI neAv , where we only consider the absolute value of the current.  The variable n is the number 

of protons per unit volume, so 
N

n
A


l

, where N is the number of protons in the beam and  is the 

circumference of the ring.  The “drift” velocity in this case is the speed of light. 

 d d d  
N N

I neAv eAv ev
A

   
l l

 

 
   

   
3

12

19 8

d

11 10 6300 m
1.4 10 protons

1.60 10 C 3.00 10 m s

I
N

ev






   

 
l

 

 
86. (a) The current can be found from Eq. 25-6. 

        40W 120 V 0.33A      40W 12 V 3.3AA A A B B BI P V I P V I P V        
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 (b) The resistance can be found from Eq. 25-7b. 

   
   2 22 22 120 V 12 V

     360        3.6
40 W 40 W

A B
A B

A B

V VV
R R R

P P P
          

 (c) The charge is the current times the time. 

   
   

  

     0.33A 3600s 1200 C

              3.3A 3600s 12,000C

A A

B B

Q It Q I t

Q I t

   

  
 

 (d) The energy is the power times the time, and the power is the same for both bulbs. 

       5     40 W 3600s 1.4 10 JA BE Pt E E      

(e) Bulb B requires a larger current, and so should have larger diameter connecting wires to avoid  
overheating the connecting wires. 

 
87. (a) The power is given by P IV . 

      14 A 220 V 3080W 3100 WP IV     

 (b) The power dissipated is given by 2

RP I R , and the resistance is R
A



l

. 

   
     

 

8
22 2 2 2

22 2 3

4 1.68 10 m 15m4
14 A 23.73W

1.628 10 m

    24 W

RP I R I I I
A r d

  
  





 
     





l l l 

 

 (c)      
 

8
22

22 3

4 1.68 10 m 15m4
14 A 14.92 W 15W

2.053 10 m
R

L
P I

d


 





 
   




 

 (d) The savings is due to the power difference. 

   
   1kW 12 h $0.12

Savings 23.73W 14.92 W 30d
1000 W 1d 1kWh

            $0.3806 / month 38cents per month

 

 

    
    
      

 
88. The wasted power is due to losses in the wire.  The current in the wire can be found by I P V . 

 (a) 
2 2 2 2

2

2 2 2 2 2 2

4
R

P P L P L P L
P I R R

V V A V r V d

  
 

      

  
 
 

   
 

82

2 23

4 1.68 10 m 25.0 m1750 W
    16.954 W 17.0 W

120 V 2.59 10 m





 
  




 

 (b) 
 
 

   
 

822

2 22 2 3

4 1.68 10 m 25.0 m1750 W4
6.70 W

120 V 4.12 10 m
R

P L
P

V d


 





 
  




 

 
89. (a) The D-cell provides 25 mA at 1.5 V for 820 h, at a cost of $1.70. 

         1kW
Energy 1.5V 0.025A 820 h 0.03075kWh

1000 W
Pt VIt   

 
 
 
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$1.70

Cost kWh $55.28 kWh $55 kWh
0.03075kWh

    

(b) The AA-cell provides 25 mA at 1.5 V for 120 h, at a cost of $1.25. 

  

      1kW
Energy 1.5V 0.025A 120 h 0.0045kWh

1000 W

$1.25
Cost kWh $277.78 kWh $280 kWh

0.0045kWh

Pt VIt   

  

 
 
   

The D-cell is 
$55.28 kWh

550 as costly
$0.10 kWh

.    The AA-cell is 
$277.78 kWh

2800 ascostly
$0.10 kWh

.   

 
90. The electrons are assumed to be moving with simple harmonic motion.  During one cycle, an object 

in simple harmonic motion will move a distance equal to the amplitude from its equilibrium point.  
From Eq. 14-9a, we know that max ,v A  where  is the angular frequency of oscillation.  From 

Eq. 25-13 in absolute value, we see that max max .I neAv   Finally, the maximum current can be 

related to the power by Eqs. 25-9 and 25-10.  The charge carrier density, n, is calculated in Example 
25-14.  

  

 
         

1
rms rms max rms2

max max
2

rms

7

228 3 19 3

2

4

4 2 550 W
5.6 10 m

2 60 Hz 8.4 10 m 1.60 10 C 1.7 10 m 120 V

P I V I V

v I P
A

dneA
ne V

  

 


  

 

  

  
  

 

 The electron will move this distance in both directions from its equilibrium point. 
 
91. Eq. 25-3 can be used.  The area to be used is the cross-sectional area of the pipe. 

   
   

   outside inside

8

4

2 22 2 2 2

1.68 10 m 10.0 m
1.34 10

2.50 10 m 1.50 10 m
R

A r r

 
 





 

 
     

    
 

l l 
 

 
92. We assume that all of the current that enters at a leaves at b, so that the current is the same at each 

end.  The current density is given by Eq. 25-11. 

  
 

 
 

 
 

 

5 2

a 2 22 31
a 2

5 2

b 2 22 31
b 2

4 2.0 A4
4.1 10 A m

2.5 10 m

4 2.0 A4
1.6 10 A m

4.0 10 m

I I I
j

A aa

I I I
j

A bb

 

 





     


     

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93. Using Eq. 25-3, we find the infinitesimal resistance 
first of a thin vertical slice at a horizontal distance 
x from the center of the left side towards the center 
of the right side.  Let the thickness of that slice be 
dx.  That thickness corresponds to the variable l  in 
Eq. 25-3.  The diameter of this slice is 

  .x
a b a 
l

  Then integrate over all the slices to 

find the total resistance. 

  

 

   

2

1
4

2

0 1
4

0

      

4 1 4

dx
R dR

A x
a b a

dx
R dR

xb a abx a b aa b a

 


 


 


   

 

    
   

 
 
 

        

 

l

l

l

l

l l

ll

 

 

94. The resistance of the filament when the flashlight is on is 
3.2 V

16
0.20 A

V
R

I
    .  That can be used 

with a combination of Eqs. 25-3 and 25-5 to find the temperature. 

  

  

 

0 0

o o o

0 1o
0

1   

1 1 16
1 20 C 1 2168 C 2200 C

1.50.0045 C

R R T T

R
T T

R



 

   


       



   
   

  

 

 
95. When the tank is empty, the entire length of the wire is in a non-superconducting state, and so has a 

non-zero resistivity, which we call .   Then the resistance of the wire when the tank is empty is 

given by 0
0 .

V
R

A I
 
l

  When a length x of the wire is superconducting, that portion of the wire 

has 0 resistance.  Then the resistance of the wire is only due to the length ,xl and so 

0 .
x x x

R R
A A

 
  

  
l l l l

l l
  This resistance, combined with the constant current, gives 

.V IR  

   0
0 0 0

0 0

1 1     1
V x x V

V IR R V V f f
R V


        

   
     

l

l l
 

 Thus a measurement of the voltage can give the fraction of the tank that is filled with liquid helium. 
 
 
 
 
 
 
 
 
 

 0 

x

dx



Chapter 25  Electric Currents and Resistance 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

155 

96. We plot resistance vs. temperature.   
The graph is shown as follows, with no 
curve fitted to it.  It is apparent that a 
linear fit will not be a good fit to this 
data.  Both quadratic and exponential 
equations fit the data well, according to 
the R-squared coefficient as given by 
Excel.  The equations and the 
predictions are given below. 

  

 4 0.0442

exp 30.1 10 TR e  

  4 2 4

quad 7.39 10 8200 25.9 10R T T         

Solving these expressions for 57,641R    (using the spreadsheet) gives exp 37.402 CT    and 

quad 37.021 CT   .  So the temperature is probably in the range between those two values: 

37.021 C 37.402 C .T      The average of those two values is 37.21 C .T     The spreadsheet 
used for this problem can be found on the Media Manager, with filename “PSE4_ISM_CH25.XLS,” 
on tab “Problem 25.96.” 

  

As an extra comment, how might you choose between the exponential and quadratic fits?  While 
they both give almost identical predictions for this intermediate temperature, they differ significantly 
at temperatures near 0 C.  The exponential fit would give a resistance of about 301,000  at 0 C,  
while the quadratic fit would give a resistance of about 259,000   at 0 C.   So a measurement of 
resistance near 0 C might be very useful. 
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CHAPTER 26:  DC Circuits 
 
Responses to Questions 
 
1.  Even though the bird’s feet are at high potential with respect to the ground, there is very little 

potential difference between them, because they are close together on the wire. The resistance of the 
bird is much greater than the resistance of the wire between the bird’s feet. These two resistances are 
in parallel, so very little current will pass through the bird as it perches on the wire. When you put a 
metal ladder up against a power line, you provide a direct connection between the high potential line 
and ground. The ladder will have a large potential difference between its top and bottom. A person 
standing on the ladder will also have a large potential difference between his or her hands and feet.  
Even if the person’s resistance is large, the potential difference will be great enough to produce a 
current through the person’s body large enough to cause substantial damage or death. 

 
2. Series: The main disadvantage of Christmas tree lights connected in series is that when one bulb 

burns out, a gap is created in the circuit and none of the bulbs remains lit. Finding the burned-out 
bulb requires replacing each individual bulb one at a time until the string of bulbs comes back on. As 
an advantage, the bulbs are slightly easier to wire in series.  

 

Parallel: The main advantage of connecting the bulbs in parallel is that one burned-out bulb does not 
affect the rest of the strand, and is easy to identify and replace. As a disadvantage, wiring the bulbs 
in parallel is slightly more difficult. 

 
3.  Yes. You can put 20 of the 6-V lights in series, or you can put several of the 6-V lights in series with 

a large resistance. 
 
4.  When the bulbs are connected in series, they have the same current through them. R2, the bulb with 

the greater resistance, will be brighter in this case, since P = I²R. When the bulbs are connected in 
parallel, they will have the same voltage across them. In this case, R1, the bulb with the lower 
resistance, will have a larger current flowing through it and will be brighter: P = V²/R. 

 
5.  Double outlets are connected in parallel, since each has 120 V across its terminals and they can be 

used independently. 
 
6.  Arrange the two batteries in series with each other and the two bulbs in parallel across the combined 

voltage of the batteries. This configuration maximizes the voltage gain and minimizes the equivalent 
resistance, yielding the maximum power. 

 
7. The battery has to supply less power when the two resistors are connected in series than it has to 

supply when only one resistor is connected. 
R

V
IVP

2

 , so if V is constant and R increases, the 

power decreases. 
 
8. The overall resistance decreases and more current is drawn from the source. A bulb rated at 60-W 

and 120-V has a resistance of 240 Ω. A bulb rated at 100-W and 120-V has a resistance of 144 Ω. 
When only the 60-W bulb is on, the total resistance is 240 Ω. When both bulbs are lit, the total 
resistance is the combination of the two resistances in parallel, which is only 90 Ω.  

 
9.  No. The sign of the battery’s emf does not depend on the direction of the current through the battery. 

Yes, the terminal voltage of the battery does depend on the direction of the current through the 



Chapter 26   DC Circuits 
  

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

157 

battery. Note that the sign of the battery’s emf in the loop equation does depend on the direction the 
loop is traversed (+ in the direction of the battery’s potential, – in the opposite direction), and the 
terminal voltage sign and magnitude depend on whether the loop is traversed with or against the 
current. 

 
10.  When resistors are connected in series, the equivalent resistance is the sum of the individual 

resistances, Req,series = R1 + R2 + …. The current has to go through each additional resistance if the 
resistors are in series and therefore the equivalent resistance is greater than any individual resistance. 
In contrast, when capacitors are in parallel the equivalent capacitance is equal to the sum of the 
individual capacitors, Ceq,parallel = C1 + C2 + …. Charge drawn from the battery can go down any one 
of the different branches and land on any one of the capacitors, so the overall capacitance is greater 
than that of each individual capacitor. 

 

When resistors are connected in parallel, the current from the battery or other source divides into the 
different branches and so the equivalent resistance is less than any individual resistor in the circuit. 
The corresponding expression is 1/Req,parallel = 1/R1 + 1/R2 + …. The formula for the equivalent 
capacitance of capacitors in series follows this same form, 1/Ceq,series = 1/C1 + 1/C2 + …. When 
capacitors are in series, the overall capacitance is less than the capacitance of any individual 
capacitor. Charge leaving the first capacitor lands on the second rather than going straight to the 
battery.  
 

Compare the expressions defining resistance (R = V/I) and capacitance (C = Q/V). Resistance is 
proportional to voltage, whereas capacitance is inversely proportional to voltage. 

 
11. When batteries are connected in series, their emfs add together, producing a larger potential. The 

batteries do not need to be identical in this case. When batteries are connected in parallel, the 
currents they can generate add together, producing a larger current over a longer time period. 
Batteries in this case need to be nearly identical, or the battery with the larger emf will end up 
charging the battery with the smaller emf. 

 
12.  Yes. When a battery is being charged, current is forced through it “backwards” and then Vterminal = 

emf + Ir, so Vterminal  > emf.  
 
13. Put the battery in a circuit in series with a very large resistor and measure the terminal voltage. With 

a large resistance, the current in the circuit will be small, and the potential across the battery will be 
mainly due to the emf. Next put the battery in parallel with the large resistor (or in series with a 
small resistor) and measure the terminal voltage and the current in the circuit. You will have enough 
information to use the equation Vterminal = emf – Ir to determine the internal resistance r. 

 
14.  No.  As current passes through the resistor in the RC circuit, energy is dissipated in the resistor. 

Therefore, the total energy supplied by the battery during the charging is the combination of the 
energy dissipated in the resistor and the energy stored in the capacitor.  

 
15. (a) Stays the same; (b) Increases; (c) Decreases; (d) Increases; (e) Increases; 

(f) Decreases;  (g) Decreases; (h) Increases; (i) Remains the same. 
 
16.  The capacitance of a parallel plate capacitor is inversely proportional to the distance between the 

plates:     (C = ε0A/d).  As the diaphragm moves in and out, the distance between the plates changes 
and therefore the capacitance changes with the same frequency. This changes the amount of charge 
that can be stored on the capacitor, creating a current as the capacitor charges or discharges. The 
current oscillates with the same frequency as the diaphragm, which is the same frequency as the 
incident sound wave, and produces an oscillating Voutput. 
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17. See the adjacent figure. If both switches are connected to the 
same wire, the circuit is complete and the light is on. If they are 
connected to opposite wires, the light will remain off.  

 
 
 
 
18.  In an analog ammeter, the internal resistor, or shunt resistor, has a small value and is in parallel with 

the galvanometer, so that the overall resistance of the ammeter is very small. In an analog voltmeter, 
the internal resistor has a large value and is in series with the galvanometer, and the overall 
resistance of the voltmeter is very large.  
 

19. If you use an ammeter where you need to use a voltmeter, you will short the branch of the circuit. 
Too much current will pass through the ammeter and you will either blow the fuse on the ammeter 
or burn out its coil. 

 
20. An ammeter is placed in series with a given circuit element in order to measure the current through 

that element. If the ammeter did not have very low (ideally, zero) resistance, its presence in the 
circuit would change the current it is attempting to measure by adding more resistance in series. An 
ideal ammeter has zero resistance and thus does not change the current it is measuring.  

 

 A voltmeter is placed in parallel with a circuit element in order to measure the voltage difference 
across that element. If the voltmeter does not have a very high resistance, than its presence in 
parallel will lower the overall resistance and affect the circuit. An ideal voltmeter has infinite 
resistance so that when placed in parallel with circuit elements it will not change the value of the 
voltage it is reading. 

 
21. When a voltmeter is connected across a resistor, the voltmeter is in parallel with the resistor. Even if 

the resistance of the voltmeter is large, the parallel combination of the resistor and the voltmeter will 
be slightly smaller than the resistor alone. If Req decreases, then the overall current will increase, so 
that the potential drop across the rest of the circuit will increase. Thus the potential drop across the 
parallel combination will be less than the original voltage drop across the resistor. 

 
22. A voltmeter has a very high resistance. When it is connected to the battery very little current will 

flow. A small current results in a small voltage drop due to the internal resistance of the battery, and 
the emf and terminal voltage (measured by the voltmeter) will be very close to the same value. 
However, when the battery is connected to the lower-resistance flashlight bulb, the current will be 
higher and the voltage drop due to the internal resistance of the battery will also be higher. As a 
battery is used, its internal resistance increases. Therefore, the terminal voltage will be significantly 
lower than the emf: Vterminal = emf – Ir. A lower terminal voltage will result in a dimmer bulb, and 
usually indicates a “used-up” battery. 

 
23. (a) With the batteries in series, a greater voltage is delivered to the lamp, and the lamp will burn  
  brighter.  
 (b)  With the batteries in parallel, the voltage across the lamp is the same as for either battery alone.  

  Each battery supplies only half of the current going through the lamp, so the batteries will last 
twice as long. 
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Solutions to Problems 
 
1. See Figure 26-2 for a circuit diagram for this problem.  Using the same analysis as in Example 26-1,  

the current in the circuit is I
R r



e

.  Use Eq. 26-1 to calculate the terminal voltage. 

 (a) 
   

 ab

81.0
6.00V 5.93V

81.0 0.900

R r r R
V Ir r

R r R r R r

  
       

    
 
 
 

e ee
e e e  

(b)  
 ab

810
6.00V 5.99 V

810 0.900

R
V

R r


  

  
e  

 
2. See the circuit diagram below.  The current in the circuit is I.  The voltage abV  is given by Ohm’s law 

to be abV IR .  That same voltage is the terminal voltage of the series EMF.  

 

 
         

       
ab ab

11
44

4    and   

1.5V 0.45A 12
4     0.333 0.3

0.45A

V Ir Ir Ir Ir Ir V IR

IR
Ir IR r

I

          

 
        

e e e e e

e
e

 

 
3. We take the low-resistance ammeter to have no resistance.  The 

circuit is shown.  The terminal voltage will be 0 volts. 

 ab

1.5V
0    0.060

25A
V Ir r

I
       

e
e  

 
4. See Figure 26-2 for a circuit diagram for this problem.  Use Eq. 26-1. 

  

ab
ab

ab
ab

12.0V 8.4 V
    0.038

95A

8.4 V
    0.088

95A

V
V Ir r

I

V
V IR R

I

 
      

     

e
e

 

 
5. The equivalent resistance is the sum of the two resistances:  

eq 1 2R R R  .  The current in the circuit is then the voltage 

divided by the equivalent resistance:  
eq 1 2

I
R R R

 


e e
.  The 

voltage across the 2200- resistor is given by Ohm’s law. 

   2
2200 2 2

1 2 1 2

2200
12.0V 9.3V

650 2200

R
V IR R

R R R R


    

   
e

e  

 
 

Ie e e e

R

r rrr
ab

A

ab

Ie
r

Ie

1R
2R
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6. (a) For the resistors in series, use Eq. 26-3, which says the resistances add linearly. 

   eq 3 45 3 65 330R        

 (b) For the resistors in parallel, use Eq. 26-4, which says the resistances add reciprocally. 

   

   
   

   
   

eq

eq

3 65 3 451 1 1 1 1 1 1 3 3
 

45 45 45 65 65 65 45 65 65 45

65 45
8.9

3 65 3 45

R

R

  
         

         

 
  

  

 

 
7. (a) The maximum resistance is made by combining the resistors in series. 

   eq 1 2 3 680 720 1200 2.60 kR R R R            

 (b) The minimum resistance is made by combining the resistors in parallel. 

   
eq 1 2 3

1 1

eq

1 2 3

1 1 1 1
  

1 1 1 1 1 1
270

680 720 1200

R R R R

R
R R R

 

   

       
  

   
   

  

 

 
8. The equivalent resistance of five 100-  resistors in parallel is found, and then that resistance is 

divided by 10  to find the number of 10-  resistors needed. 

   
1 1

eq

1 2 3 4 5

1 1 1 1 1 5 20
20 10     2

100 10
R n n

R R R R R

 


            
 

   
   

  
 

 
9. Connecting nine of the resistors in series will enable you to make 

a voltage divider with a 4.0 V output.  To get the desired output, 
measure the voltage across four consecutive series resistors. 

 

 

     

eq

eq

ab

9 1.0      
9.0

9.0V
4.0 4.0 4.0 4.0V

9.0 9.0

R I
R

V I

   


      
 

e e

e
 

 
10. The resistors can all be connected in series. 

   eq 3 1.70k 5.10kR R R R        

 The resistors can all be connected in parallel. 

  
1

eq

eq

1 1 1 1 3 1.70k
    567

3 3

R
R

R R R R R

 
         

 
 

 

Two resistors in series can be placed in parallel with the third. 

 
eq

eq

2 1.70k1 1 1 1 1 3 2
   1.13k

2 2 3 3

R
R

R R R R R R R


         


 

Two resistors in parallel can be placed in series with the third. 

 
1

eq

1 1 3
1.70k 2.55k

2 2

R
R R R

R R



         
 
 

 

I
e

4.05.0

ab
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11. The resistance of each bulb can be found from its power rating. 

  
 22 2 12.0V

    36
4.0W

V V
P R

R P
       

 Find the equivalent resistance of the two bulbs in parallel. 

  eq

eq

1 1 1 2 36
    18

2 2

R
R

R R R R


         

The terminal voltage is the voltage across this equivalent resistance.  
Use that to find the current drawn from the battery. 

 ab ab ab
ab eq

eq

2
    

2

V V V
V IR I

R R R
      

Finally, use the terminal voltage and the current to find the internal resistance, as in Eq. 26-1. 

   
 

ab ab ab
ab

ab ab

12.0V 11.8V
    36 0.305 0.3

2 2 2 11.8V

V V V
V Ir r R

VI V
R

   
           

 
 
 

e e
e

E
 

 
12. (a) Each bulb should get one-eighth of the total voltage, but let us prove that instead of assuming it.   

Since the bulbs are identical, the net resistance is 
eq 8R R .  The current flowing through the  

bulbs is then tot tot
tot eq

eq

    
8

V V
V IR I

R R
    .  The voltage across one bulb is found from Ohm’s 

law. 

tot tot 110V
13.75V 14V

8 8 8

V V
V IR R

R
       

 (b) 
 

tot tot 110V
    32.74 33

8 8 8 0.42 A

V V
I R

R I
         

     22 0.42 A 32.74 5.775W 5.8WP I R      

 
13. We model the resistance of the long leads as a single resistor r.  Since the bulbs are in parallel, the 

total current is the sum of the current in each bulb, and so 8 RI I .  The voltage drop across the long 

leads is    leads 8 8 0.24 A 1.4 2.688VRV Ir I r     .  Thus the voltage across each of the parallel 

resistors is tot leads 110V 2.688V 107.3VRV V V     .  Since we have the current through each 

resistor, and the voltage across each resistor, we calculate the resistance using Ohm’s law. 
107.3V

    447.1 450
0.24A

R
R R

R

V
V I R R

I
         

The total power delivered is totP V I , and the “wasted” power is 2I r .  The fraction wasted is the 

ratio of those powers. 

   2

tot tot

8 0.24A 1.4
fraction wasted 0.024

110V

I r Ir

IV V


     

So about 2.5% of the power is wasted. 
 
14. The power delivered to the starter is equal to the square of the current in the circuit multiplied by the 

resistance of the starter.  Since the resistors in each circuit are in series we calculate the currents as 
the battery emf divided by the sum of the resistances. 

r
I

R

R

e
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2 22 22
eq 0eqS S

2
0 0 S 0 0eq eq S C

2
0.02 0.15

0.40
0.02 0.15 0.10

R RP I R I r R

P I R I R R r R R

      
                     

   
      

e

e
 

 
15. To fix this circuit, connect another resistor in parallel with the 480- resistor so that the equivalent  

resistance is the desired 370 . 

  

1 1

2

eq 1 2 eq 1

1 1 1 1 1 1 1
    1615 1600

370 480
R

R R R R R

 

          
 

   
   

  
 

 So solder a 1600- resistor in parallel with the 480- resistor. 
 
16. (a) The equivalent resistance is found by combining the 820  and 680  resistors in parallel, and  

then adding the 960  resistor in series with that parallel combination. 

   

1

eq

1 1
960 372 960 1332 1330

820 680
R



           
 

 
 
 

 

(b) The current delivered by the battery is 3

eq

12.0V
9.009 10 A

1332

V
I

R
   


.  This is the  

current in the 960  resistor.  The voltage across that resistor can be found by Ohm’s law. 

   3

470 9.009 10 A 960 8.649 V 8.6VV IR        

Thus the voltage across the parallel combination must be 12.0V 8.6V 3.4 V  .  This is the 

voltage across both the 820  and 680  resistors, since parallel resistors have the same voltage 
across them.  Note that this voltage value could also be found as follows. 

   3

parallel parallel 9.009 10 A 372 3.351V 3.4 VV IR        

 

17. The resistance of each bulb can be found by using Eq. 25-7b, 2P V R .  The two individual  
resistances are combined in parallel.  We label the bulbs by their wattage. 

  

   

2

2

11

eq 2 2

75 40

1
    

1 1 75W 25W
121 120

110V 110V

P
P V R

R V

R
R R



  

       
  
  

   

 

 
18. (a) The three resistors on the far right are in series, so their equivalent  

resistance is 3R.  That combination is in parallel with the next 
resistor to the left, as shown in the dashed box in the second figure.  
The equivalent resistance of the dashed box is found as follows. 

   
1

3
eq1 4

1 1

3
R R

R R



   
 
 

 

This equivalent resistance of 3
4 R  is in series with the next two 

resistors, as shown in the dashed box in the third figure (on the next 
page).  The equivalent resistance of that dashed box is 3 11

eq2 4 42 .R R R R     This 11
4 R  is in 
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parallel with the next resistor to the left, as shown in the fourth 
figure.  The equivalent resistance of that dashed box is found as 
follows. 

  
1

11
eq2 15

1 4
.

11
R R

R R



   
 
 

 

This is in series with the last two resistors, the ones connected 
directly to A and B.  The final equivalent resistance is given below. 

   11 41 41
eq 15 15 152 125 341.67 342R R R R          

(b) The current flowing from the battery is found from Ohm’s law.  

total

eq

50.0V
0.1463A 0.146A

341.67

V
I

R
   


 

This is the current in the top and bottom resistors.  There will be less current in the next resistor 
because the current splits, with some current passing through the resistor in question, and the 
rest of the current passing through the equivalent resistance of 11

4 R , as shown in the last figure.  

The voltage across R and across 11
4 R  must be the same, since they are in parallel.  Use this to 

find the desired current. 

   
     

 

11 11
4 4

11 11
total4 4

11 11
total total15 15

      

0.1463A 0.107A

R R RR R

R

V V I R I R I I R

I I I

     

  
 

 
19. The resistors have been numbered in the accompanying diagram to help in  

the analysis.  1R  and 2R  are in series with an equivalent resistance of 

12 2R R R R   .  This combination is in parallel with 3R , with an 

equivalent resistance of 
1

2
123 3

1 1

2
R R

R R



   
 
 

.  This combination is in 

series with 4R , with an equivalent resistance of 52
1234 3 3

R R R R   .  This 

combination is in parallel with 5R , with an equivalent resistance of 
1

5
12345 8

1 3

5
R R

R R



   
 
 

.  Finally, this combination is in series with 6R , 

and we calculate the final equivalent resistance. 
5 13

eq 8 8R R R R      

 
20. We reduce the circuit to a single loop by combining series 

and parallel combinations.  We label a combined 
resistance with the subscripts of the resistors used in the 
combination.  See the successive diagrams. 

1R  and 2R  are in series. 

 12 1 2 2R R R R R R      

12R  and 3R  are in parallel.

 

1 1

2
123 3

12 3

1 1 1 1

2
R R

R R R R

 

    
   

     
 

6R

1R

2R

3R
4R

5R

6R

1R
2R

3R

5R

4R

e

A

B

C

6R

12R

3R

5R

4R

e

A

B

C
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123R  and 4R  are in series. 

 52
1234 123 4 3 3R R R R R R      

1234R  and 5R  are in parallel. 

 

1 1

5
12345 85

31234 5

1 1 1 1
R R

R R R R

 

    
   
   

  
 

12345R  and 6R  are in series, producing the equivalent  

resistance. 
 5 13

eq 12345 6 8 8R R R R R R      

 
Now work “backwards” from the simplified circuit.  
Resistors in series have the same current as their 
equivalent resistance, and resistors in parallel have the 
same voltage as their equivalent resistance.  To avoid rounding errors, we do not use numeric values 
until the end of the problem. 

 
eq 6 1234513

8eq

8

13
I I I

R R R
    
e e e

 

 

 

 

5
1355 5

5 1234 12345 12345 12345 5 58 13

5

5
131234 2 2

1234 4 123 123 123 123 12 33 135
31234

2
133 12

3 3 12

3 12

8 5
  ;  

13 13

3 3
  ;  

13 13

2
  ;  

13 2 13

V
V V V I R R I I

R R R R

V
I I I V I R R V V

R R R R

V V
I I I

R R R R

        

         

     

 
 
 

 
 
 

e e e
e

e e e
e

e e e
1 2I I

R
 

 

Now substitute in numeric values. 

 
 1 2 3 4

2
5 6 AB 3 13

12.0 V 2 3
0.77 mA   ;  1.54 mA  ; 2.31mA  ;

13 13 1.20 k 13 13

5 8
3.85mA   ;  6.15mA   ;  1.85V

13 13

I I I I
R R R

I I V V
R R

       


      

e e e

e e
e

 

 
21. The resistors r and R are in series, so the equivalent resistance of the circuit is  R r  and the current  

in the resistors is .I
R r



e

  The power delivered to load resistor is found from Eq. 25-7a.  To find 

the value of R that maximizes this delivered power, set 0
dP

dR
  and solve for R. 

   
     

 

     

22
2 2

2 4

2 2 2 2

2
  ;  0  

0 02     2 2 2     

R r R R rR dP
P I R R

R r dRR r R r

R r R R r R Rr r R Rr R r

  
     

  

 

  
   
   

         

e e
e

 

 
22. It is given that the power used when the resistors are in series is one-fourth the power used when the 

resistors are in parallel.  The voltage is the same in both cases.  Use Eq. 25-7b, along with the 
definitions of series and parallel equivalent resistance. 

6R

123R

5R

4R

e

A

B

C

6R
5R

e

A C

1234R

6R
12345R

e

A C
eqR

e
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 

 

   

2 2

1 21 1
series parallel series parallel 1 24 4

series parallel 1 2

2 22 2

1 2 1 2 1 1 2 2 1 2 1 2 1 2

        4     4   

4     2 4 0     

V V R R
P P R R R R

R R R R

R R R R R R R R R R R R R R

        


          

  

 Thus the two resistors must be the same, and so the “other” resistor is 3.8k .  

 
23. We label identical resistors from left to right as leftR , middleR , and 

rightR .  When the switch is opened,  

the equivalent resistance of the circuit increases from 3
2

R r  to 2R r .  Thus the current delivered 

by the battery decreases, from 
3
2 R r
e

 to 
2R r
e

.  Note that this is LESS than a 50% decrease. 

(a) Because the current from the battery has decreased, the voltage drop across leftR  will decrease, 

since it will have less current than before.  The voltage drop across 
rightR  decreases to 0, since no 

current is flowing in it.  The voltage drop across middleR  will increase, because even though the 

total current has decreased, the current flowing through middleR  has increased since before the 

switch was opened, only half the total current was flowing through middleR .   

left middle right decreases ;  increases ;  goes to 0V V V . 

 (b) By Ohm’s law, the current is proportional to the voltage for a fixed resistance. 

left middle right decreases ;  increases ;  goes to 0I I I  

 (c) Since the current from the battery has decreased, the voltage drop across r will decrease, and  
thus the terminal voltage increases. 

 (d) With the switch closed, the equivalent resistance is 3
2

R r .  Thus the current in the circuit is  

closed 3
2

I
R r



e

, and the terminal voltage is given by Eq. 26-1. 

 
 

 terminal closed 3 3 3
closed 2 2 2

0.50
1 9.0V 1

5.50 0.50

         8.486V 8.5V

r
V I r r

R r R r


       

    

 

  
  

   

e
e e e

 

 (e) With the switch open, the equivalent resistance is 2R r .  Thus the current in the circuit is  

closed
2

I
R r




e
, and again the terminal voltage is given by Eq. 26-1. 

 
 

 terminal closed
closed

0.50
1 9.0V 1

2 2 2 5.50 0.50

         8.609V 8.6V

r
V I r r

R r R r


       

    

 

  
      

e
e e e

 

 
24. Find the maximum current and resulting voltage for each resistor under the power restriction. 

   

2
2

3

1800 18003

     , 

0.5W
0.0167 A     0.5W 1.8 10 30.0V

1.8 10

V P
P I R I V RP

R R

I V

    

     
 
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   

   

3

2800 28003

3

3700 37003

0.5W
0.0134 A     0.5W 2.8 10 37.4 V

2.8 10

0.5W
0.0116A      0.5W 3.7 10 43.0V

3.7 10

I V

I V

     
 

     
 

 

The parallel resistors have to have the same voltage, and so the voltage across that combination is 
limited to 37.4 V.  That would require a current given by Ohm’s law and the parallel combination of 
the two resistors. 

  parallel

parallel parallel

parallel 2800 2100

1 1 1 1
37.4V 0.0235A

2800 3700

V
I V

R R R
     

 

   
   

  
 

This is more than the maximum current that can be in 1800R .  Thus the maximum current that 1800R  

can carry, 0.0167 A , is the maximum current for the circuit.  The maximum voltage that can be 
applied across the combination is the maximum current times the equivalent resistance.  The 
equivalent resistance is the parallel combination of 2800R  and 3700R  added to 1800R . 

 
 

1 1

max max eq max 1800

2800 3700

1 1 1 1
0.0167 A 1800

2800 3700

      56.68V 57V

V I R I R
R R

 

      
 

 

      
      

          

 
25. (a) Note that adding resistors in series always results in a larger resistance, and adding resistors in  

parallel always results in a smaller resistance.  Closing the switch adds another resistor in 
parallel with 3R  and 4R , which lowers the net resistance of the parallel portion of the circuit, 

and thus lowers the equivalent resistance of the circuit.  That means that more current will be 
delivered by the battery.  Since 1R  is in series with the battery, its voltage will increase.  

Because of that increase, the voltage across 3R  and 4R  must decrease so that the total voltage 

drops around the loop are equal to the battery voltage.  Since there was no voltage across 2R  

until the switch was closed, its voltage will increase.  To summarize:  

1 2 3 4 and  increase ;  and  decreaseV V V V  

 (b) By Ohm’s law, the current is proportional to the voltage for a fixed resistance.  Thus  

   1 2 3 4 and  increase ;  and  decreaseI I I I  

 (c) Since the battery voltage does not change and the current delivered by the battery increases, the  
power delivered by the battery, found by multiplying the voltage of the battery by the current 

delivered, increases . 

 (d) Before the switch is closed, the equivalent resistance is 3R  and 4R  in parallel, combined with  

1R  in series. 

   

1 1

eq 1

3 4

1 1 2
125 187.5

125
R R

R R

 

      


   
   

  
  

The current delivered by the battery is the same as the current through 1R .  

battery

total 1

eq

22.0V
0.1173A

187.5

V
I I

R
   


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The voltage across 1R  is found by Ohm’s law. 

   1 1 0.1173A 125 14.66VV IR     

  The voltage across the parallel resistors is the battery voltage less the voltage across 1R .  

p battery 1 22.0V 14.66V 7.34VV V V      

The current through each of the parallel resistors is found from Ohm’s law. 

p

3 4

2

7.34V
0.0587A

125

V
I I

R
   


 

Notice that the current through each of the parallel resistors is half of the total current, within 
the limits of significant figures.  The currents before closing the switch are as follows. 

   1 3 40.117 A     0.059AI I I    

After the switch is closed, the equivalent resistance is 2R , 3R , and 4R  in parallel, combined with 

1R  in series.  Do a similar analysis. 

     

1 1

eq 1

2 3 4

battery

total 1 1 1

eq

p

p battery 1 2 3 4

2

1 1 1 3
125 166.7

125

22.0V
0.1320A      0.1320A 125 16.5V

166.7

5.5V
22.0V 16.5V 5.5V     0.044A

125

R R
R R R

V
I I V IR

R

V
V V V I I I

R

 

       


       


         


   
   

  

 

Notice that the current through each of the parallel resistors is one third of the total current, 
within the limits of significant figures.  The currents after closing the switch are as follows. 

   1 2 3 40.132A     0.044AI I I I     

  Yes, the predictions made in part (b) are all confirmed. 
 

26. The goal is to determine r so that 
0

0.R

R R

dP

dR 

   This ensures that R produce very little change in ,RP   

since .R
R

dP
P R

dR
     The power delivered to the heater can be found by 2

heater heater ,P V R  and so we 

need to determine the voltage across the heater.  We do this by calculating the current drawn from 
the voltage source, and then subtracting the voltage drop across r from the source voltage. 

 

 
 

 
 

 
 

 
     

       
 

 
0

2

eq total

eq

2 2

heater
heater total heater 2

2
22 0 0 0heater

0 04

0

22
  ;  

2 2

  ;  
2 2 2 2

2 2 2 2
0    2

2R R

r R r R rRr Rr r
R r I

r R rR r R r R r R r R r

R r

R r R r R V R
V I r r P

r R r R r R r R R r

R r R R rdP
R r R

dR R r

 
      

   


 
        

   

  
    



ee e

e e e e
e e e

e      0

2 2 2 2 2

0 0 0 0 0 0

2 2 2 0  

4 4 8 4 0    4     2

R r

R R r r R R r r R r R

  

        
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27. All of the resistors are in series, so the equivalent resistance is just the sum of the resistors.  Use  
Ohm’s law then to find the current, and show all voltage changes starting at the negative pole of the 
battery and going counterclockwise. 

  

 
           

eq

9.0V
0.383A 0.38A

9.5 12.0 2.0

voltages 9.0V 9.5 0.383A 12.0 0.383A 2.0 0.383A

                  9.0V 3.638V 4.596V 0.766V 0.00V

I
R

   
  

      

    



E

 

 
28. Apply Kirchhoff’s loop rule to the circuit starting at the upper left corner of the circuit diagram, in 

order to calculate the current.  Assume that the current is flowing clockwise. 

        6V
2.0 18V 6.6 12V 1.0 0    0.625A

9.6
I I I I           


   

 The terminal voltage for each battery is found by summing the potential differences across the 
internal resistance and EMF from left to right.  Note that for the 12 V battery, there is a voltage gain 
going across the internal resistance from left to right. 

  
     

     
terminal

terminal

18V battery:  2.0 18V 0.625A 2.0 18V 16.75V 17V

12V battery:  1.0 12V 0.625A 1.0 12V 12.625V 13V

V I

V I

         

       
   

 
29. To find the potential difference between points a and b, the current must be found from Kirchhoff’s 

loop law.  Start at point a and go counterclockwise around the entire circuit, taking the current to be 
counterclockwise. 

  

ab a b

0    
2

2 2 0V
2

IR IR IR IR I
R

V V V IR IR IR R
R

        

          

e

e

e e

e e e

 

 
30. (a) We label each of the currents as shown in the accompanying  

figure.  Using Kirchhoff’s junction rule and the first three 
junctions (a-c) we write equations relating the entering and 
exiting currents.   

1 2

2 3 4

1 4 5

                              [1]

                            [2]

                            [3]

I I I

I I I

I I I

 
 
 

 

We use Kirchhoff’s loop rule to write equations for loops 
abca, abcda, and bdcb. 

 

2 4 1

2 3

3 5 4

0              [4]

0 [5]

0              [6]

I R I R I R

I R I R

I R I R I R

   
   
   

e     

 

We have six unknown currents and six equations.  We solve these equations by substitution.  
First, insert Eq. [3] into [6] to eliminate current I5.  Next insert Eq. [2] into Eqs. [1], [4], and [5] 
to eliminate I2. 
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 

 
 

3 1 4 4 3 1 4

1 3 4

3 4 4 1 3 4 1

3 4 3 4 3

0   0 2        [6*]

                                                                   [1*]

0 0 2 R         [4*]

0 0 2

I R I I R I R I R I R I R

I I I I

I I R I R I R I R I I R

I I R I R I R I R

         

  

         

        e           [5*] e 

 

 

  Next we solve Eq. [4*] for I4 and insert the result into Eqs. [1*], [5*],  and [6*]. 
 

    

1 1
3 4 1 4 1 32 2

31 1 1
1 3 1 3 1 32 2 2 2

1 1
3 1 1 3 3 1 1 32 2

1
12

0 2                                           

-                                      [1**]

0 2 - 2 2       [6**]

0

I R I R I R I I I

I I I I I I I I

I R I R I I R I R I R I I

I

      

     

        

    31 1
3 3 1 32 2 22 0     [5**]I R I R I R I R      e e 

 

Finally we substitute Eq. [6**] into Eq [5**] and solve for I1.  We insert this result into Eq. 
[1**] to write an equation for the current through the battery in terms of the battery emf and 
resistance. 

3 31 1
1 1 1 1 1 12 2 2 20   ;   2  

2
I R I R I I I I I I

R R
          

e e
e  

 (b) We divide the battery emf by the current to determine the effective resistance. 

eqR R
I R

  
e e

e
 

 
31. This circuit is identical to Example 26-9 and Figure 26-13 except for the numeric values.  So we may 

copy the same equations as developed in that Example, but using the current values. 
Eq. (a): 3 1 2I I I   ;   Eq. (b): 1 334 45 48 0I I     

Eq. (c): 1 234 19 75 0I I      Eq. (d): 1
2 1

75 34
3.95 1.79

19

I
I I


    

Eq. (e): 1
3 1

45 34
0.938 0.708

48

I
I I


    

  3 1 2 1 1 1 1

2 1 3 1

    0.938 0.708 3.95 1.79     0.861A

3.95 1.79 2.41A  ;  0.938 0.708 1.55A

I I I I I I I

I I I I

         

     
 

 (a) To find the potential difference between points a and d, start at point a and add each individual  
potential difference until reaching point d.  The simplest way to do this is along the top branch. 

        ad d a 1 34 0.861A 34 29.27 V 29 VV V V I            

Slight differences will be obtained in the final answer depending on the branch used, due to 
rounding.  For example, using the bottom branch, we get the following. 

     ad d a 1 2 19 75V 2.41A 19 29.21V 29 VV V V I         e  

 (b) For the 75-V battery, the terminal voltage is the potential difference from point g to point e.  For  
the 45-V battery, the terminal voltage is the potential difference from point d to point b. 

   
   

   
terminal 1 2

terminal 2 3

75V battery:  75V 2.41A 1.0 73V

45V battery:  45V 1.55A 1.0 43V

V I r

V I r

     

     

e

e
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32. There are three currents involved, and so there must be three 
independent equations to determine those three currents.  One 
comes from Kirchhoff’s junction rule applied to the junction of 
the three branches at the top center of the circuit. 

1 2 3I I I   

Another equation comes from Kirchhoff’s loop rule applied to 
the left loop, starting at the negative terminal of the battery and 
progressing counterclockwise. 

       1 1 2 1 258V 120 82 64 0    58 202 64I I I I I           

The final equation comes from Kirchhoff’s loop rule applied to the right loop, starting at the negative 
terminal of the battery and progressing counterclockwise. 

       3 2 3 2 33.0V 25 64 110 0    3 64 135I I I I I            

 Substitute 1 2 3I I I   into the left loop equation, so that there are two equations with two unknowns. 

   2 3 2 2 358 202 64 266 202I I I I I      

 Solve the right loop equation for 2I  and substitute into the left loop equation, resulting in an 

equation with only one unknown, which can be solved. 

  

3 3
2 3 2 2 3 3

3
3 2 1 2 3

135 3 135 3
3 64 135       ;  58 266 202 266 202   

64 64

135 3
0.09235A  ;  0.1479 A  ;  0.24025A

64

I I
I I I I I I

I
I I I I I

 
         


     

 
 
   

 The current in each resistor is as follows: 

  120 : 0.24 A     82 : 0.24A     64 : 0.15A    25 : 0.092A     110 : 0.092 A      

 
33. Because there are no resistors in the bottom branch, it is possible to write Kirchhoff loop equations 

that only have one current term, making them easier to solve.  To find the current through 1R , go 

around the outer loop counterclockwise, starting at the lower left corner. 

  3 1
3 1 1 1 1

1

6.0V 9.0V
0    0.68A, left

22

V V
V I R V I

R

 
      


 

 To find the current through 2R , go around the lower loop counterclockwise, starting at the lower left 

corner. 

  3
3 2 2 2

2

6.0V
0    0.33A, left

18

V
V I R I

R
     


 

 
34. (a) There are three currents involved, and so there must be three  

independent equations to determine those three currents.  One comes 
from Kirchhoff’s junction rule applied to the junction of the three 
branches on the right of the circuit. 

2 1 3 1 2 3    I I I I I I      

Another equation comes from Kirchhoff’s loop rule applied to the top 
loop, starting at the negative terminal of the battery and progressing 
clockwise. 

   1 1 1 2 2 1 20    9 25 48I R I R I I     e  

The final equation comes from Kirchhoff’s loop rule applied to the 
bottom loop, starting at the negative terminal of the battery and 

1e

2e

2R

3R

2I

3I

1R1I

1I 3I

2I
3.0V58V

120

82
64 110

25



Chapter 26   DC Circuits 
  

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

171 

progressing counterclockwise. 
   2 3 3 2 2 3 20    12 35 48I R I R I I     e  

Substitute 1 2 3I I I   into the top loop equation, so that there are two equations with two 

unknowns. 
    1 2 2 3 2 2 3 3 29 25 48 25 48 73 25   ;  12 35 48I I I I I I I I I          

Solve the bottom loop equation for 2I  and substitute into the top loop equation, resulting in an 

equation with only one unknown, which can be solved. 

   

3
3 2 2

3
2 3 3 3 3

3
3 2

1 2 3

12 35
12 35 48     

48

12 35
9 73 25 73 25     432 876 2555 1200   

48

444 12 35
0.1182 A 0.12 A , up   ;  0.1638A 0.16A , left

3755 48

0.0456A 0.046A , right

I
I I I

I
I I I I I

I
I I

I I I


   


        


     

   

 
 
   

(b) We can include the internal resistances simply by adding 1.0  to 1R  and 3.R   So let 1 26R    

and let 3 36 .R     Now re-work the problem exactly as in part (a). 

2 1 3 1 2 3    I I I I I I      

1 1 1 2 2 1 20    9 26 48I R I R I I     e  

2 3 3 2 2 3 20    12 36 48I R I R I I     e  

 1 2 2 3 2 2 3 3 29 26 48 26 48 74 26   ;  12 36 48I I I I I I I I I          

3 3
3 2 2

3
2 3 3 3 3

3
3 2

1 2 3

12 36 1 3
12 36 48     

48 4

1 3
9 74 26 74 26     36 74 222 104   

4

38 1 3
0.1166A 0.12A , up   ;  0.1626A 0.16A, left

326 4

0.046A , right

I I
I I I

I
I I I I I

I
I I

I I I

 
    


        


     

  

 
 
   

  The currents are unchanged to 2 significant figures by the inclusion of the internal resistances. 
 
35. We are to find the ratio of the power used when the resistors are in series, to the power used when 

the resistors are in parallel.  The voltage is the same in both cases.  Use Eq. 25-7b, along with the 
definitions of series and parallel equivalent resistance. 

  

1 1

series 1 2 parallel

1 2 n

2
parallelseries series

2 2

parallel parallel series

1 1 1
  ;  

1

n

n R
R R R R nR R

R R R R n

RP V R R n

P V R R nR n

 

        

   

   
     

 
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36. (a) Since there are three currents to determine, there must be three independent equations to  
determine those three currents.  One comes from Kirchhoff’s junction rule applied to the 
junction near the negative terminal of the middle battery. 

1 2 3I I I   

Another equation comes from Kirchhoff’s loop rule applied to the top loop, starting at the 
negative terminal of the middle battery, and progressing counterclockwise.  We add series 
resistances. 

      2 1 1 212.0V 12 12.0V 35 0    24 35 12I I I I          

The final equation comes from Kirchhoff’s loop rule applied to the bottom loop, starting at the 
negative terminal of the middle battery, and progressing clockwise. 

      2 3 2 312.0V 12 6.0V 34 0    6 12 34I I I I          

Substitute 1 2 3I I I   into the top loop equation, so that there are two equations with two 

unknowns. 
    1 2 2 3 2 2 324 35 12 35 12 47 35I I I I I I I        

Solve the bottom loop equation for 2I  and substitute into the top loop equation, resulting in an 

equation with only one unknown, which can be solved for 3I . 

   

3 3
2 3 2 2 3 3

3
3 2 1 2 3

6 34 6 34
6 12 34       ;  24 47 35 47 35   

12 12

6 34
2.97mA   ;  0.508A   ;  0.511A

12

I I
I I I I I I

I
I I I I I

 
        


     

 
 
   

(b) The terminal voltage of the 6.0-V battery is    3

36.0V 6.0V 2.97 10 A 1.0I r       

5.997V 6.0V .   

 
37. This problem is the same as Problem 36, except the total resistance in the top branch is now 23  

instead of 35 .   We simply reproduce the adjusted equations here without the prose.   

1 2 3I I I   

     2 1 1 212.0V 12 12.0V 23 0    24 23 12I I I I          

     2 3 2 312.0V 12 6.0V 34 0    6 12 34I I I I          

   1 2 2 3 2 2 324 23 12 23 12 35 23I I I I I I I        

  

3 3
2 3 2 2 3 3

3
3 2 1 2 3

6 34 6 34
6 12 34       ;  24 35 23 35 23   

12 12

6 34
0.0532A  ;  0.6508A  ;  0.704 A 0.70A

12

I I
I I I I I I

I
I I I I I

 
        


      

 
 
   
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38. The circuit diagram has been labeled with six different currents.  We 
apply the junction rule to junctions a, b, and c.  We apply the loop rule 
to the three loops labeled in the diagram. 

  

  
 


1 2 1 3 5 3 4

1 1 5 5 2 2 3 3 4 4 5 5

2 2 4 4

1     ;  2     ;  3   

4  0  ;  5  0

6  0

I I I I I I I I I

I R I R I R I R I R I R

I R I R

     

       

  e

 

 Eliminate I using equations 1) and 3). 

  

 
 


3 4 1 2 1 3 5

1 1 5 5 2 2 3 3 4 4 5 5

2 2 4 4

1    ;  2   

4  0  ;  5  0

6  0

I I I I I I I

I R I R I R I R I R I R

I R I R

    

       

  e

 

 Eliminate 1I  using equation 2. 

   3 4 3 5 2 4 5 21      I I I I I I I I        

  

    



3 5 1 5 5 2 2 3 1 5 1 5 2 2

3 3 4 4 5 5

2 2 4 4

4  0    0

5  0

6  0

I I R I R I R I R I R R I R

I R I R I R

I R I R

          

   

  e

 

 Eliminate 4I  using equation 1. 

  

  
    
    

3 1 5 1 5 2 2

3 3 5 2 4 5 5 3 3 5 4 5 2 4

2 2 5 2 4 2 2 4 5 4

4  0

5  0    0

6  0    0

I R I R R I R

I R I I R I R I R I R R I R

I R I I R I R R I R

    

          

        e e

 

 Eliminate 2I  using equation 4:   2 3 1 5 1 5

2

1
.I I R I R R

R
    

  

     

   

    

   

3 3 5 4 5 3 1 5 1 5 4

2

3 1 4 2 3 5 2 4 2 5 1 4 5 4

3 1 5 1 5 2 4 5 4

2

2 3 1 2 4 5 1 2 1 4 5 2 5 4 2 4

1
5  0  

     0

1
6  0  

     0

I R I R R I R I R R R
R

I R R R R I R R R R R R R R

I R I R R R R I R
R

R I R R R I R R R R R R R R R R

       

     

      

       

e

e

 

 Eliminate 3I  using equation 5:  
 

 
2 4 2 5 1 4 5 4

3 5

1 4 2 3

R R R R R R R R
I I

R R R R

  


   

 

 
 

   

 
 

   

               
   

2 4 2 5 1 4 5 4
2 5 1 2 4 5 1 2 1 4 5 2 5 4 2 4

1 4 2 3

2 4 2 5 1 4 5 45
1 2 4 1 2 1 4 5 2 5 4 2 4

2 1 4 2 3

5

0

25 14 25 15 22 14 15 14

22 14 25  
25

R R R R R R R R
R I R R R I R R R R R R R R R R

R R R R

R R R R R R R RI
R R R R R R R R R R R R R

R R R R R

I

  
       



  
       



          

   


 
 
 
  
  
  

e

e

   
   

                    

22 25 14
12

22 25 22 14 15 25 15 14 25 14

  
 

            

  
  
  
 
 

 

+ –

å

a

b

1 2

I1

I2

I3
c

d

R1

3

I4

I5

I

R3

R4
R2

R5
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    5 5

6.0V
  5261     1.140mA upwards

5261
I I       


 

  

 
 

                 
       

2 4 2 5 1 4 5 4
3 5

1 4 2 3

25 14 25 15 22 14 15 14
   1.140mA 0.1771A

22 14 25 12

R R R R R R R R
I I

R R R R

  
 



          
   

    

 

             2 3 1 5 1 5

2

1 1
0.1771A 22 0.00114 A 37 0.1542 A

25
I I R I R R

R
        


 

  4 5 2

1 3 5

0.00114 A 0.1542 A 0.1531A

0.1771A 0.00114 A 0.1760A

I I I

I I I

     

    
 

 We keep an extra significant figure to show the slight difference in the currents. 

  22 25 12 14 150.176A     0.154 A     0.177 A     0.153A    0.001A, upwardsI I I I I          

 
39. The circuit diagram from Problem 38 is reproduced, with 2 0.R    This 

circuit can now be simplified significantly.  Resistors 1R and 5R  are in 

parallel.  Call that combination 15.R   That combination is in series with 

3.R   Call that combination 153.R  That combination is in parallel with 4.R   

See the second diagram.  We calculate the equivalent resistance 153,R use 

that to find the current through the top branch in the second diagram, and 
then use that current to find the current through 5.R  

   

1 1

153 3

1 5

1 1 1 1
12 20.92

22 15
R R

R R

 

        
 

   
   

  
 

Use the loop rule for the outside loop to find the current in the top branch. 

  153 153 153

153

6.0V
0    0.2868A

20.92
I R I

R
     


e

e  

This current is the sum of the currents in 1R and 5.R   Since those two 

resistors are in parallel, the voltage across them must be the same. 

  

 

 
 

1 5 1 1 5 5 153 5 1 5 5

1
5 153

5 1

          

22
0.2868A 0.17 A

37

V V I R I R I I R I R

R
I I

R R

      


  

 

 

 
40. (a) As shown in the diagram, we use symmetry to reduce the  

number of independent currents to six.  Using Kirchhoff’s 
junction rule, we write equations for junctions a, c, and d.  We 
then use Kirchhoff’s loop rule to write the loop equations for 
loops afgba, hedch, and aba (through the voltage source).   

1 2 3 4 1 5 42   [1]  ;    [2]  ;  2   [3]I I I I I I I I      

1 3 2 4 5 3

2

0 2   [4]  ;  0 2   [5]

0   [6]

I R I R I R I R I R I R

I R

       
 e

 

 

+ –
å

R1 R3

R5

 

R1 

+ –

å

R3 

R5 

 

I1 I2

I3

I
a b

e

h

g

d

c

f

I1

I1
I1

I3

I4

I4 I4

I4I5

I
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We have six equations with six unknown currents.  We use the method of substitution to reduce 
the equations to a single equation relating the emf from the power source to the current through 
the power source.  This resulting ratio is the effective resistance between points a and b.  We 
insert Eqs. [2], [3], and [6] into the other three equations to eliminate I1, I2, and I5. 

 

 

3 4 3 4

3 4 3 4 3

4 4 3 4 3

2  =2 2                                    [1*]

0 2  = 2 3          [4*]

0 2 2 4                             [5*]

I I I I I
R R

I I R I R R I R I R
R

I R I R I R I R I R

    

       

      

e e

e
e  

We solve Eq. [5*] for I3  and insert that into Eq. [4*].  We then insert the two results into Eq. 
[1*] and solve for the effective resistance. 

 

 

3 4 4 4 4

7
4 4 4 eq 12

4   ;  0 2 3 4
14

10 24 12
2 4 2 10      

14 14 7

I I I R I R I
R

I I I I R R
R R R R R R I

      

           

e
e

e e e e e e e
 

 (b) As shown in the diagram, we use symmetry to reduce the  
number of currents to four.  We use Kirchhoff’s junction rule 
at junctions a and d and the loop rule around loops abca 
(through the voltage source) and afgdcha.  This results in four 
equations with four unknowns.  We solve these equations for 
the ratio of the voltage source to current I, to obtain the 
effective resistance. 

1 2 3 2

2 2 3 1

2   [1]      ;  2   [2]

0 2   [3]  ;  0 2 2 2   [4]

I I I I I

I R I R I R I R

  
      e

 

We solve Eq. [3] for I2 and Eq. [2] for I3.  These results are 
inserted into Eq. [4] to determine I1.  Using these results and 
Eq. [1] we solve for the effective resistance. 

2
2 3 1 2 3

1
1 2 eq 2

3
  ;    ;  

2 2 4 2 4 4
3 2

2 2   ;  = =               
4 2

I
I I I I I

R R R R R

I I I R R
R R R I

       

      
 

e e e e e

e e e e
 

 (c) As shown in the diagram, we again use symmetry to reduce  
the number of currents to three.  We use Kirchhoff’s 
junction rule at points a and b and the loop rule around the 
loop abgda (through the power source) to write three 
equations for the three unknown currents.  We solve these 
equations for the ratio of the emf to the current through the 
emf (I) to calculate the effective resistance. 

1 1 2

1 2

3   [1]  ;  2   [2]

0 2   [3]

I I I I

I R I R

 
    e

 

We insert Eq. [2] into Eq. [3] and solve for I1.  Inserting I1 

into Eq. [1] enables us to solve for the effective resistance. 

51
1 1 1 1 eq2 6

2 6
0 2   ;  3

5 5
I R I R I I I R R

R R I
          

e e e
e  
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I3 I3
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I=0

I

I1

I2

I
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e

h
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d

c

f

I1I1
I1

I2
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I2
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41. (a) To find the equivalent resistance between points a and c,  
apply a voltage between points a and c, find the current that 
flows from the voltage source, and then calculate eq .R I e   

There is no symmetry to exploit. 

   

 
 
 
 
 
 

3

1 5 2

2 6 3

5 6 4

1 2 3

Bottom Loop   1)    0

a - d - b            2)   0

a - b - c            3)    0

d - b - c            4)    0

junction a        5)    

junction d        6)  

RI

RI RI RI

RI RI RI

RI RI R I

I I I I

 

   

   

   

  

e

 
1 4 5

2 5 6

  

junction b        7)    

I I I

I I I

 

 

 

  From Eq. 1, substitute 3 .I R e  

   
 

1 5 2 1 5 2

2 6 2 6

5 6 4 5 6 4

1 2 1 4 5 2 5 6

2)   0    

3)    0    

4)    0    

5)    6)    7)       ;      ;   

RI RI RI I I I

RI RI R I I
R R

RI RI R I R I I R I

I I I I I I I I I
R

      

      

       

      

e e

e

 

  From Eq. 7, substitute 6 2 5I I I  

   

 

1 5 2 2 2 5 2 5

5 2 4 1 2 1 4 5

2)   3)        2

4)    2 5)    6)    

   ;   

   ;      ;   

I I I I I I I I
R R

R I I R I I I I I I I
R

       

      

e e

e
 

  From Eq. 6, substitute 1 4 5 5 1 4    I I I I I I      

   

 

1 4 2 2 1 4

1 4 2 4 1 2

2)   2 3)   2

4)    2 2 5)    

        ;        

      ;      

I I I I I I
R

R I I I R I I I I
R

    

     

e

e
 

  From Eq. 2, substitute 1 4 2 4 1 22     2I I I I I I      

   

 

        

2 1 1 2 2 1

1 1 2 2 1 2 2 1 1 2

1 2

3)   2 2     3

4)    2 2 2 2     3 2 2

5)    

I I I I I I
R R

R I I I I R I I R I I R I I

I I I
R

      

         

  

e e

e

 

From Eq. 3, substitute 2 1 1 23     3I I I I
R R

    
e e

 

   2 2 2 2 2 24)    3 2 3 2 3     3 2 5 2R I I R I I R I R I
R R R R

                    
                    

e e e e
 

1I

6I

4I

3I

2I

5I

I
I

R

R

RR

R
R

a

b

d

c

e
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   2 2 25)    3     4I I I I I
R R

     
e e

 

From Eq. 5, substitute 2
1
4I I  

        
 

1 1
eq4 4

5 3
4)    3 2 5 2     

8

R R R
R I R I R

R R I R R

 
      


   
   
   

e e e
 

 (b) In this case, apply a voltage between points a and b.  Now  
there is symmetry.  In this case no current would flow through 
resistor ,R  and so that branch can be eliminated from the 
circuit.  See the adjusted diagram.  Now the upper left two 
resistors (from a to d to b) are in series, and the lower right two 
resistors (from a to c to b) are in series.  These two 
combinations are in parallel with each other, and with the 
resistor between a and b.  The equivalent resistance is now 
relatively simple to calculate. 

   
1 1

1
eq 2

1 1 1 4

2 2 2
R R

R R R R

 

       
   
   

 

 
42. Define 1I  to be the current to the right through the 2.00 V 

battery  1 ,e  and 2I  to be the current to the right through the 

3.00 V battery  2 .e   At the junction, they combine to give 

current 1 2I I I   to the left through the top branch.  Apply 

Kirchhoff’s loop rule first to the upper loop, and then to the 
outer loop, and solve for the currents. 

   
   

1 1 1 2 1 1 2

2 2 1 2 2 1 2

0    0

0    0

I r I I R R r I RI

I r I I R RI R r I

        

        

e e

e e
 

 Solve the first equation for 2I  and substitute into the second equation to solve for 1.I  

  

   

       

1 1 1
1 1 2 2 1

2 1 2 1 1

1 2 1

2.00 4.450
0    0.500 1.1125

4.00

3.00V 4.00 4.45 0.500 1.1125 0    

0.815A  ;  0.500 1.1125 1.407A

R r I I
R r I RI I I

R

RI R r I I I

I I I

  
        

          

    

e
e

e  

 The voltage across R is its resistance times 1 2I I I  . 

       1 2 4.00 0.815A 1.407A 2.368V 2.37VRV R I I         

 Note that the top battery is being charged – the current is flowing through it from positive to 
negative. 

 
43. We estimate the time between cycles of the wipers to be from 1 second to 15 seconds.  We take these  

times as the time constant of the RC combination. 

6 6

1s 1s6 6

1s 15s
    10   ;  15 10

1 10 F 1 10 F
RC R R

C C

 


 
          

 
 

So we estimate the range of resistance to be 1M   15M .    

 
 

R

R

RR

R

a

b

d

c

R

r

1I

2I

1 2I I

1e

2e

r
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44. (a) From Eq. 26-7 the product RC is equal to the time constant. 

   
6

9

3

24.0 10 s
    1.60 10 F

15.0 10
RC C

R







     
 

 

(b) Since the battery has an EMF of 24.0 V, if the voltage across the resistor is 16.0 V, the voltage 
across the capacitor will be 8.0 V as it charges.  Use the expression for the voltage across a 
charging capacitor. 

 

 

 

/ /

6 6

1     1     ln 1   

8.0 V
ln 1 24.0 10 s ln 1 9.73 10 s

24.0 V

t t C C
C

C

V t V
V e e

V
t

 





 

 

         

        

   
   
   

  
      

e e

e

e

 

 
45. The current for a capacitor-charging circuit is given by Eq. 26-8, with R 

the equivalent series resistance and C the equivalent series capacitance. 

  eq eq

eq

  

t

R C
I e

R


 
 
  

e
 

   eq 1 21 2
eq eq 1 2

1 2

ln ln
IR I R RC C

t R C R R
C C


    



    
        e e

        
 

26 3

3

6

3.8 10 F 1.50 10 A 4400
 4400 ln 5.0 10 s

7.6 10 F 12.0V

 





  
    



   
   
     

 

 
46. Express the stored energy in terms of the charge on the capacitor, using Eq. 24-5.  The charge on the  

capacitor is given by Eq. 26-6a. 

   

     

   
 

2
2

2 221 1 1
max2 2 2

2 2

max max max

1
1 1   ;

0.75     1 0.75     1 0.75  

ln 1 0.75 2.01

t

t t

t t

C eQ
U C e U e

C C

U U U e U e

t



 

 

 



 

 


     

       

   

  e
e

 

 
47. The capacitance is given by Eq. 24-8 and the resistance by Eq. 25-3.  The capacitor plate separation 

d is the same as the resistor length l.  Calculate the time constant. 

       12 12 2 2

0 0 1.0 10 m 5.0 8.85 10 C N m 44s
d A

RC K K
A d


             

  
  

   

 
48. The voltage of the discharging capacitor is given by C 0

t RCV V e .  The capacitor voltage is to be 

00.0010V . 

  
 

       

C 0 0 0

6

    0.0010     0.0010     ln 0.010   

ln 0.010 8.7 10 3.0 10 F ln 0.0010 0.18s

t RC t RC t RC t
V V e V V e e

RC

t RC

  

 

        

       
 

 
 
 

+– +–

+–

1R
1C2C2R

S e

I
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49. (a) At t = 0, the capacitor is uncharged and so there is no voltage difference across it.  The capacitor  
is a “short,” and so a simpler circuit can be drawn just by eliminating the capacitor.  In this 
simpler circuit, the two resistors on the right are in parallel with each other, and then in series 
with the resistor by the switch.  The current through the resistor by the switch splits equally 
when it reaches the junction of the parallel resistors. 

   
1

3 1
eq 1 2 3 12 23

2eq

1 1 2
     ; 

3 3
R R R I I I I

R R R R R R



           
 
 

e e e e
 

 (b) At ,t    the capacitor will be fully charged and there will be no current in the branch  
containing the capacitor, and so a simpler circuit can be drawn by eliminating that branch.  In 
this simpler circuit, the two resistors are in series, and they both have the same current. 

eq 1 2 3

eq

2       ;  0
2

R R R R I I I
R R

       
e e

 

 (c) At ,t   since there is no current through the branch containing the capacitor, there is no  
potential drop across that resistor.  Therefore the voltage difference across the capacitor equals 
the voltage difference across the resistor through which 2I  flows. 

   
2

1
2 2

2
C RV V I R R

R
    

 
 
e

e  

 
50. (a) With the currents and junctions labeled as in the diagram, we use  

point a for the junction rule and the right and left loops for the 
loop rule.  We set current I3 equal to the derivative of the charge 
on the capacitor and combine the equations to obtain a single 
differential equation in terms of the capacitor charge.  Solving this 
equation yields the charging time constant. 

1 2 3 1 1 2 2 2 2  [1]  ;  0  [2]  ;  0  [3]
Q

I I I I R I R I R
C

       e  

  We use Eq. [1] to eliminate I1 in Eq. [2].  Then we use Eq. [3] to eliminate I2 from Eq. [2].   

          2 3 1 2 2 2 1 2 3 1 1 2 3 1
2

0   ;  0   ;  0
Q

I I R I R I R R I R R R I R
R C

 
            

 
e e e  

We set I3 as the derivative of the charge on the capacitor and solve the differential equation by 
separation of variables. 

    

   

   

1 2
1 2 1 0 0

2 1 22

1 2

2

1 2 1 21 22

1 2 1 2 1 2200

1 2

2

1

0=       

ln     ln     

Q t

Q t

R RQ dQ dQ
R R R dt

R C dt R R CR C
Q

R R

R C
Q

R R R RR RR C
Q t t

R R R R C R R CR C
R R

R C
Q

R

   
              

  
                              



 e
e

e

e

e

e
 1 2

1 2

2

1
R R

t
R R Ce

R


 

 
   

 

From the exponential term we obtain the time constant, 1 2

1 2

.
R R C

R R
 


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 (b) We obtain the maximum charge on the capacitor by taking the limit as time goes to infinity. 
 1 2

1 22 2
max

1 2 1 2

1  lim

R R
t

R R C

t

R C R C
Q e

R R R R






 
   
   

e e
 

 
51. (a) With the switch open, the resistors are in series with each other, and so have the same current.   

Apply the loop rule clockwise around the left loop, starting at the negative terminal of the 
source, to find the current. 

   1 2

1 2

24V
0    1.818A

8.8 4.4

V
V IR IR I

R R
      

  
 

  The voltage at point a is the voltage across the 4.4 -resistor. 

     2 1.818A 4.4 8.0VaV IR     

 (b) With the switch open, the capacitors are in series with each other.  Find the equivalent  
capacitance.  The charge stored on the equivalent capacitance is the same value as the charge 
stored on each capacitor in series. 

   

   
 

   

1 2
eq

eq 1 2 1 2

eq eq 1 2

0.48 F 0.36 F1 1 1
    0.2057 F

0.48 F 0.36 F

24.0V 0.2057 F 4.937 C

C C
C

C C C C C

Q VC Q Q

 


 

 

     
 

    

 

  The voltage at point b is the voltage across the 0.24 F -capacitor. 

   2

2

4.937 C
13.7 V 14 V

0.36 F
b

Q
V

C




     

 (c) The switch is now closed.  After equilibrium has been reached a long time, there is no current  
flowing in the capacitors, and so the resistors are again in series, and the voltage of point a must 
be 8.0 V.  Point b is connected by a conductor to point a, and so point b must be at the same 

potential as point a, 8.0V .  This also means that the voltage across 2C  is 8.0 V, and the 

voltage across 1C  is 16 V. 

 (d) Find the charge on each of the capacitors, which are no longer in series. 

   
   

1 1 1

2 2 2

16V 0.48 F 7.68 C

8.0V 0.36 F 2.88 C

Q V C

Q V C

 

 

  

  
 

When the switch was open, point b had a net charge of 0, because the charge on the negative 
plate of 1C  had the same magnitude as the charge on the positive plate of 2C .  With the switch 

closed, these charges are not equal.  The net charge at point b is the sum of the charge on the 
negative plate of 1C  and the charge on the positive plate of 2C . 

 b 1 2 7.68 C 2.88 C 4.80 C 4.8 CQ Q Q               

Thus 4.8 C  of charge has passed through the switch, from right to left. 
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52. Because there are no simple series or parallel connections in this 
circuit, we use Kirchhoff’s rules to write equations for the currents, 
as labeled in our diagram.  We write junction equations for the 
junctions c and d.  We then write loop equations for each of the three 
loops.   We set the current through the capacitor equal to the 
derivative of the charge on the capacitor. 

1 2
1 3 2 4

1 2

1 2
3 3 4 4

1 2

  [1]  ;    [2]  ;  0  [3]

0  [4]  ;  0  [5]

Q Q
I I I I I I

C C

Q Q
I R I R

C C

      

   

e

 

 We differentiate Eq. [3] with respect to time and set the derivative of the charge equal to the current.   

1 2 1 2 2
2 1

1 2 1 2 1

1 1
0 0 =      

dQ dQ I I Cd
I I

dt dt C dt C C C C
       
e

 

We then substitute Eq. [1] into Eq. [2] to eliminate I.  Then using Eqs. [4] and [5] we eliminate I3 
and I4 from the resulting equation.  We eliminate I2 using the derivative equation above. 

1 2 2
1 3 2 4 1 1

3 1 1 4 2

  ;   
Q C Q

I I I I I I
R C C R C

        

Finally, we eliminate Q2  using Eq.[3]. 

1 2 1 1 2 4 3
1 1 1 4 1

3 1 1 4 1 1 3 1

1 1 2 3
1 4 1

1 4 3

1
       

        where      and 

Q C Q C C R R
I I I R Q

R C C R C C R C

Q C C R
I R R R C C

C C R R

     
            

     
  

          

e e

e

 

This final equation represents a simple RC circuit, with time constant .RC   

 

   

4 3 1 21 2 3
4 1

1 4 3 4 3

8.8 4.4 0.48 F 0.36 F
2.5 s

8.8 4.4

R R C CC C R
RC R C

C R R R R


 


  
         

  
 

 

 

 
53. The full-scale current is the reciprocal of the sensitivity. 

  5

full-
scale

1
2.9 10 A

35,000 V
I   


 or 29 A  

 
54. The resistance is the full-scale voltage multiplied by the sensitivity. 

        6 6

full-
scale

sensitivity 250V 35,000 V 8.75 10 8.8 10R V          

 
55. (a) The current for full-scale deflection of the galvanometer is  

5

G

1 1
2.222 10 A

sensitivity 45,000 V
I    


 

To make an ammeter, a shunt resistor must be placed in parallel with the galvanometer.  The  
voltage across the shunt resistor must be the voltage across the galvanometer.  The total current 
is to be 2.0 A.  See Figure 26-28 for a circuit diagram. 
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 

5

G G
G G s s s G G 5

s full G

4 4

2.222 10 A
    20.0

2.0A 2.222 10 A

2.222 10 2.2 10  in parallel                            

I I
I r I R R r r

I I I





 


     

  

     

 

 (b) To make a voltmeter, a resistor must be placed in series with the galvanometer, so that the  
desired full scale voltage corresponds to the full scale current of the galvanometer.  See Figure 
26-29 for a circuit diagram.  The total current must be the full-scale deflection current. 

    

 full G G

full
G 5

G

  

1.00V
20.0 44985 45k  in series

2.222 10 A

V I r R

V
R r

I 

  

        


 

 
56. (a) To make an ammeter, a shunt resistor must be placed in parallel with the galvanometer.  The  

voltage across the shunt resistor must be the voltage across the galvanometer.  See Figure 26-28  
for a circuit diagram. 

 

 
   
 

shunt G full G shunt G G

6

5G G
shunt 6

full G

      

55 10 A 32
7.0 10

25A 55 10 A

V V I I R I R

I R
R

I I







    

 
    

  

 

 (b) To make a voltmeter, a resistor must be placed in series with the galvanometer, so that the  
desired full-scale voltage corresponds to the full scale current of the galvanometer.  See Figure 
26-29 for a circuit diagram. 

     6full scale
full scale G ser G ser G 6

G

250V
    30 4.5 10

55 10 A

V
V I R R R R

I 
          


 

 
57. We divide the full-scale voltage of the electronic module by the module’s internal resistance to 

determine the current through the module that will give full-scale deflection.  Since the module and 
R2 are in parallel they will have the same voltage drop across them (400 mV) and their currents will 
add to equal the current through R1.  We set the voltage drop across R1 and R2 equal to the 40 volts 
and solve the resulting equation for R2. 

 

 
  

 

meter meter meter
meter 2 1 2 meter meter

2 2

meter
1 1 meter meter meter 1

2

6

1 meter
2

meter meter 1

400 mV
4.00 nA  ;    ;  

100 M

      

10 10  0.400 V

40 V 0.400 V 4.00 1

V V V
I I I I I I

r R R

V
V I R V V V I R

R

RV
R

V V I R

       


 
       

 

 
 

      9 6
100 k

0  A 10 10  
 

 

 

 
58. To make a voltmeter, a resistor serR must be placed in 

series with the existing meter so that the desired full 
scale voltage corresponds to the full scale current of the 
galvanometer.  We know that 25 mA produces full scale 
deflection of the galvanometer, so the voltage drop 
across the total meter must be 25 V when the current 
through the meter is 25 mA. 

   

G
GR

shuntRserR

full
scale

V

full
scale

I
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1

full full eq full ser
scale scale scale G shunt

1 1full
scale

ser 3

full G shunt
scale

1 1
  

1 1 25V 1 1
999.8 1000

25 10 A 33 0.20

V I R I R
R R

V

R
I R R



 



    

         
  

  
  

   

   
   

  

 

 The sensitivity is 
1000

40 V
25V


   

 
59. If the voltmeter were ideal, then the only resistance in the circuit would be the series combination of 

the two resistors.  The current can be found from the battery and the equivalent resistance, and then 
the voltage across each resistor can be found. 

     
   

4

tot 1 2 3

tot

4 3

44 1

4 3

27 2

45V
44 k 27 k 71k   ;  6.338 10 A

71 10

6.338 10 A 44 10 27.89 V

6.338 10 A 27 10 17.11V

V
R R R I

R

V IR

V IR







          
 

     

     

 

 Now put the voltmeter in parallel with the 44 k  resistor.  Find its equivalent resistance, and then 
follow the same analysis as above. 

   

 

1

eq

4

tot eq 2 3

tot

4 3

44 eq eq

1 1
30.07 k

44 k 95k

45V
30.07 k 27k 57.07 k      7.885 10 A

57.07 10

7.885 10 A 30.07 10 23.71V 24 V

23.71V 27.89V
% error 100 15% reading too low

27.89 V

R

V
R R R I

R

V V IR







   
 

          
 

       


   

 
 
 

 

 And now put the voltmeter in parallel with the 27k  resistor, and repeat the process. 

  

   

 

1

eq

4

tot eq 1 3

tot

4 3

27 eq eq

1 1
21.02 k

27 k 95k

45V
21.02 k 44 k 65.02 k      6.921 10 A

65.02 10

6.921 10 A 21.02 10 14.55V 15V

14.55V 17.11V
% error 100 15% reading too low

17.11V

R

V
R R R I

R

V V IR







   
 

          
 

       


   

 
 
 

 

 
60. The total resistance with the ammeter present is eq 650 480 53 1183 .R          The voltage 

supplied by the battery is found from Ohm’s law to be    3

battery eq 5.25 10 A 1183V IR      

6.211V.   When the ammeter is removed, we assume that the battery voltage does not change.  The 

equivalent resistance changes to eq 1130R   , and the new current is again found from Ohm’s law. 
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A

V

er
0.50

7.5k 7.5k

15k

  battery 3

eq

6.211V
5.50 10 A

1130

V
I

R
   

 
 

 
61. Find the equivalent resistance for the entire circuit, and then 

find the current drawn from the source.  That current will be 
the ammeter reading.  The ammeter and voltmeter symbols 
in the diagram below are each assumed to have resistance. 

  

   
 eq

4

source

eq

7500 15000
1.0 0.50 7500

7500 15000

12.0V
12501.5 12500   ;  9.60 10 A

12500
    

R

I
R



 
   

 

       


e
 

The voltmeter reading will be the source current times the equivalent resistance of the resistor–
voltmeter combination. 

       
 

4

meter source eq

7500 15000
9.60 10 A 4.8V

7500 15000
V I R   

   
 

 

 
62. From the first diagram, write the sum of the currents at junction  

a, and then substitute in for those currents as shown. 

  1 1

1

1 1

1 1A 1V

1V
1 2 1 1 1

2 1 V

1V

2 1 V

0      ;    ;  R R

R A V

R R

I I I

V V V
V I R I I I

R R R

V V V

R R R

 


      


 

e
e

e

 

 Then do a similar procedure for the second diagram. 

  2 2

2

2 2

2 2A 2V

2V
2 1 2 2 2

1 2 V

2V

1 2 V

0      ;    ;  R R

R A V

R R

I I I

V V V
I R V I I I

R R R

V V V

R R R

 


      


 

e
e

e

 

Now there are two equations in the two unknowns of 1R  and 2.R   Solve for the reciprocal values and 

then find the resistances.  Assume that all resistances are measured in kilohms. 

  

1 1

2 2

1V

2 1 V 2 1 2 1

2V

1 2 V 1 2 1 2

1 2 2 1

2 1

12.0 5.5 5.5 5.5 6.5 5.5
          0.30556

18.0

12.0 4.0 4.0 4.0 8.0 4.0
        0.22222

18.0

8.0 4.0 1 2
0.22222    0.05556

6.5 5.5
0.3

R R

R R

V V V

R R R R R R R

V V V

R R R R R R R

R R R R

R R

 
       

 
       

    

 

e

e

1 1 1

2 5.5 1 0.66667
0556    6.5 0.05556 0.30556      

7.5R R R
      

 
 
 

 

RV+

–

R1

R2

I1

a

b

c

+

–

R1

R2

I2

d

e

f

V

RV

V

I1A I1V

I2A
I2V

å

å
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  1 2

2 1

1 2
11.25k   ;  0.05556    8.18kR R

R R
        

 So the final results are 1 211k   ;  8.2kR R     

 
63. The sensitivity of the voltmeter is 1000 ohms per volt on the 3.0 

volt scale, so it has a resistance of 3000 ohms.  The circuit is 
shown in the diagram.  Find the equivalent resistance of the 
meter–resistor parallel combination and the entire circuit. 

  1

V
p

V V

eq p

3000 94001 1
2274

3000 9400

2274 9400 11674

R R
R

R R R R

R R R


 

     
  

      

 
 
   

Using the meter reading of 2.3 volts, calculate the current into the parallel combination, which is the 
current delivered by the battery.  Use that current to find the EMF of the battery. 

   

3

p

3

eq

2.3V
1.011 10 A

2274

1.011 10 A 11674 11.80V 12 V

V
I

R

IR





   


     e
 

 
64. By calling the voltmeter “high resistance,” we can assume it has no current passing through it.  Write 

Kirchhoff’s loop rule for the circuit for both cases, starting with the negative pole of the battery and 
proceeding counterclockwise. 

  

   

   

1
meter 1 1 1 1 1 1 1 1 1

1

2
meter 2 2 2 2 2 2 2 2 2

2

Case 1:      0    

Case 2:      0    

V
V V I R I r I R I r R r R

R

V
V V I R I r I R I r R r R

R

         

         

e e

e e

 

 Solve these two equations for the two unknowns of e  and r . 

  

   

   
       

   

1 2
1 2

1 2

2 1
1 2

1 2 2 1

1
1

1

  

8.1V 9.7 V
35 14.0 5.308 5.3

9.7 V 14.0 8.1V 35

9.7 V
5.308 35 11.17 V 11V

35

V V
r R r R

R R

V V
r R R

V R V R

V
r R

R

    

 
       

   

       


  
  

   

e

e

 

 
65. We connect the battery in series with the body and a resistor.  The current through this series circuit 

is the voltage supplied by the battery divided by the sum of the resistances.  The voltage drop across 
the body is equal to the current multiplied by the body’s resistance.  We set the voltage drop across 
the body equal to 0.25 V and solve for the necessary resistance. 

   1.5 V 
1 1 1800 9000 9.0 k

0.25 V

B

B
B B

B

I
R R

R
V IR R R

R R V




                     

e

e e
 

 

V

e

R R

VR
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66. (a) Since 2P V R  and the voltage is the same for each combination, the power and resistance are  

inversely related to each other.  So for the  50 W output, use the higher-resistance filament  .  
For the  100 W output, use the lower-resistance filament  .  For the  150 W output, use the   
 filaments in parallel  . 

(b) 2   P V R   

   2 22

50 W 100 W

120V 120V
     288 290      144 140

50W 100W

V
R R R

P
            

As a check, the parallel combination of the resistors gives the following.  

    22

1 2
p

1 2

288 144 120 V
96      150 W

288 144 96

R R V
R P

R R R

 
      

   
. 

 
67. The voltage drop across the two wires is the 3.0 A current times their total resistance. 

       wires wires p3.0A 0.0065 m 130m 2.535V 2.5VV IR R      

 Thus the voltage applied to the apparatus is source wires 120V 2.535V 117.465V 117VV V V      . 

 
68. The charge on the capacitor and the current in the resistor both decrease exponentially, with a time 

constant of .RC    The energy stored in the capacitor is given by 
2

1
2 ,

Q
U

C
 and the power 

dissipated in the resistor is given by 2 .P I R  

  

 

/ / / /0 0
0 0

22 2 2 1 2
20 0 01 1 1 1 1

decrease 0 2 2 2 2 2

0

/ 2 /0

2 2
2 0

dissipated 2
0 0 0

  ;  

1

t RC t RC t RC t RC

t t

t t

t RC t RC

V Q
Q Q e I I e e e

R RC

Q Q Q Q e Q
U U U U e

C C C C C

Q
e e

RC

Q
U Pdt I Rdt Rdt dt

RC





 

   




 

 

 

   

         
     
     
     

     
     

   

2 /

2
2 201

2

2
0

2 0

2
01

2 1

2

             1

t RCe

Q
e e

C

Q RC

RC

Q

C




  

   
 

  


 

 And so we see that decrease dissipated .U U  

 
69. The capacitor will charge up to 75% of its maximum value, and then discharge.  The charging time is  

the time for one heartbeat. 

   

     

beat beat

beat

beat
0 0 0

4beat

6

1min 60s
0.8333s

72beats 1min

1     0.75 1     0.25    ln 0.25   

0.8333s
9.2 10

ln 0.25 6.5 10 F 1.3863

t tt

RC RC RC

t

t
V V e V V e e

RC

t
R

C

  



  

          

      
 

    
        
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70. (a) Apply Ohm’s law to find the current. 

  body

body

110V
0.116A 0.12A

950

V
I

R
   


 

(b) The description of “alternative path to ground” is a statement that the 35  path is in parallel 
with the body.  Thus the full 110 V is still applied across the body, and so the current is the 

same: 0.12A . 

(c) If the current is limited to a total of 1.5 A, then that current will get divided between the person  
and the parallel path.  The voltage across the body and the parallel path will be the same, since 
they are in parallel. 

   

 

   

body alternate body body alternate alternate total body alternate

alternate
body total

body alternate

      

35
1.5A 0.0533A 53mA

950 35

V V I R I R I I R

R
I I

R R

     


   

  

 

 This is still a very dangerous current. 
 
71. (a) If the ammeter shows no current with the closing of the switch, then points B and D must be at  

the same potential, because the ammeter has some small resistance.  Any potential difference 
between points B and D would cause current to flow through the ammeter.  Thus the potential 
drop from A to B must be the same as the drop from A to D.  Since points B and D are at the 
same potential, the potential drop from B to C must be the same as the drop from D to C.  Use 
these two potential relationships to find the unknown resistance. 

   

3 1
BA DA 3 3 1 1

1 3

1
CB CD 3 1 2 2

3

2 3 1

        

        x x

R I
V V I R I R

R I

I
V V I R I R R R

I
R R R

    

     
 

 (b)  3
2

1

78.6
972 121

630
x

R
R R

R


    


 
 
 

  

 
72. From the solution to problem 71, the unknown resistance is given by 2 3 1 .xR R R R   We use that 

with Eq. 25-3 to find the length of the wire. 

  
 

     
   

3
2 2 2

1

232

2 3

8

1

4
  

2

29.2 3.48 1.22 10 m
29.5m

4 4 38.0 10.6 10 m

x

R L L L
R R

R A dd

R R d
L

R

  









    

  
  

  

 

 
73. Divide the power by the required voltage to determine the current drawn by the hearing aid. 

2.5 W
0.625 A

4.0 V

P
I

V
    

Use Eq. 26-1 to calculate the terminal voltage across the three batteries for mercury and dry cells. 

    
    

Hg

D

3 3 1.35 V 0.625 A 0.030 3.99 V

3 3 1.50 V 0.625 A 0.35 3.84 V

V Ir

V Ir

       
       

e

e
 

The terminal voltage of the mercury cell batteries is closer to the required 4.0 V than the voltage 
from the dry cell. 
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74. One way is to connect N resistors in series.  If each resistor can dissipate 0.5 W, then it will take 7 
resistors in series to dissipate 3.5 W.  Since the resistors are in series, each resistor will be 1/7 of the 
total resistance. 

eq 3200
457 460

7 7

R
R


       

So connect  7 resistors of 460  each, rated at ½ W, in series. 

Or, the resistors could be connected in parallel.  Again, if each resistor watt can dissipate 0.5 W, then 
it will take 7 resistors in parallel to dissipate 3.5 W.  Since the resistors are in parallel, the equivalent 
resistance will be 1/7 of each individual resistance. 

  eq

eq

1 1
7     7 7 3200 22.4 kR R

R R
       

 
 

 

So connect  7 resistors of 22.4 k  each, rated at ½ W, in parallel. 

 
75. To build up a high voltage, the cells will have to be put in series.  120 V is needed from a series of 

0.80 V cells.  Thus 
120V

150 cells
0.80V cell

  are needed to provide the desired voltage.  Since these 

cells are all in series, their current will all be the same at 350 mA.  To achieve the higher current 
desired, banks made of 150 cells each can be connected in parallel.  Then their voltage will still be at 

120 V, but the currents would add making a total of 
3

1.3A
3.71 banks 4 banks

350 10 A bank
 


.  So 

the total number of cells is 600 cells .   The panel area is  4 2 2600 cells 9.0 10 m cell 0.54m  .  

The cells should be wired in  4 banks of 150 cells in series per bank, with the banks in parallel  .  
This will produce 1.4 A at 120 V.  To optimize the output,  always have the panel pointed directly at 
the sun  . 

 
76. (a) If the terminal voltage is to be 3.0 V, then the voltage across 1R  will be 9.0 V.  This can be used  

to find the current, which then can be used to find the value of 2R . 

   

 

1
1 1 2 2

1

2 2
2 1

1

             

3.0 V
14.5 4.833 4.8

9.0 V

V
V IR I V IR

R

V V
R R

I V

    

       
 

 (b) If the load has a resistance of 7.0 , then the parallel combination of 2R  and the load must be  

used to analyze the circuit.  The equivalent resistance of the circuit can be found and used to 
calculate the current in the circuit.  Then the terminal voltage can be found from Ohm’s law, 
using the parallel combination resistance. 

   

   

   

2 load
2+load

2 load

T 2+load

eq

4.833 7.0
2.859      2.859 14.5 17.359

11.833

12.0V
0.6913A          0.6913A 2.859 1.976V 2.0V

17.359

eq

R R
R R

R R

V
I V IR

R

 
        

 

       


 

  The presence of the load has affected the terminal voltage significantly. 
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77. There are two answers because it is not known which direction the given current is flowing through 
the 4.0 k  resistor.  Assume the current is to the right.  The voltage across the 4.0 k  resistor is 

given by Ohm’s law as    33.10 10 A 4000 12.4 V.V IR        The voltage drop across the 

8.0 k  must be the same, and the current through it is 312.4 V
1.55 10 A.

8000

V
I

R
   


  The total 

current in the circuit is the sum of the two currents, and so 3

tot 4.65 10 A.I     That current can be 

used to find the terminal voltage of the battery.  Write a loop equation, starting at the negative 
terminal of the unknown battery and going clockwise. 

  
   

   
ab tot tot

3

ab

5000 12.4 V 12.0 V 1.0     

24.4V 5001 4.65 10 A 47.65V 48V

V

V

I I



      

     
 

 If the current is to the left, then the voltage drop across the parallel combination of resistors is still 
12.4 V, but with the opposite orientation.  Again write a loop equation, starting at the negative 
terminal of the unknown battery and going clockwise.  The current is now to the left. 

  
   

   
ab tot tot

3

ab

5000 12.4 V 12.0 V+ 1.0     

0.4V 5001 4.65 10 A 23.65V 24 V

V

V

I I



     

        
 

 
78. The terminal voltage and current are given for two situations.  Apply Eq. 26-1 to both of these  

situations, and solve the resulting two equations for the two unknowns. 

  

   

1 1 2 2 1 1 2 2

2 1

1 2

1 1

  ;        

47.3V 40.8V
1.413 1.4

7.40A 2.80A

40.8V 7.40A 1.413 51.3V

V I r V I r V I r V I r

V V
r

I I

V I r

         

 
     

 

     

e e e

e

 

 
79. The current in the circuit can be found from the resistance and the power dissipated.  Then the 

product of that current and the equivalent resistance is equal to the battery voltage. 

  

   

2 33

33

1

eq eq

0.80W
    0.1557 A

33

1 1
33 68.66      0.1557 A 68.66 10.69 V 11V

68 75

P
P I R I

R

R V IR



    


         
 

 
 
 

 

 
80. If the switches are both open, then the circuit is a simple series circuit.  Use Kirchhoff’s loop rule to  

find the current in that case. 
   6.0V 50 20 10 0    6.0V 80 0.075AI I          

 If the switches are both closed, the 20- resistor is in parallel with R.  Apply Kirchhoff’s loop rule to  
the outer loop of the circuit, with the 20- resistor having the current found previously. 

        6.0V 0.075A 20
6.0V 50 0.075A 20 0    0.090A

50
I I

 
       


 

This is the current in the parallel combination.  Since 0.075 A is in the 20- resistor, 0.015 A must 
be in R.  The voltage drops across R and the 20- resistor are the same since they are in parallel. 

   20
20 20 20 20

0.075A
        20 100

0.015A
R R

R

I
V V I R I R R R

I
          
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81. (a) We assume that the ammeter is ideal and so has 0 resistance, but that the voltmeter has  
resistance VR .  Then apply Ohm’s law, using the equivalent resistance.  We also assume the 

voltmeter is accurate, and so it is reading the voltage across the battery. 

 eq

V V V

V

1 1 1 1 1 1 1
           

1 1

I I
V IR I V I

R R R R V R V R
R R

          


 
 
 

  

 (b) We now assume the voltmeter is ideal, and so has an infinite resistance, but that the ammeter  
has resistance AR .  We also assume that the voltmeter is accurate and so is reading the voltage 

across the battery. 

      eq A A A        
V V

V IR I R R R R R R
I I

          

 
82. (a) The 12- and the 25- resistors are in parallel, with a net resistance 1-2R  as follows. 

   

1

1-2

1 1
8.108

12 25
R



   
 

 
 
 

 

1-2R is in series with the 4.5- resistor, for a net resistance 1-2-3R  as follows. 

1-2-3 4.5 8.108 12.608R       

That net resistance is in parallel with the 18- resistor, for a final equivalent resistance as 
follows. 

   

1

eq

1 1
7.415 7.4

12.608 18
R



     
 

 
 
 

 

 (b) Find the current in the 18- resistor by using Kirchhoff’s loop rule for the loop containing the  
battery and the 18- resistor. 

 18 18 18

18

6.0V
0    0.33A

18
I R I

R
     


e

e  

 (c) Find the current in 1-2R  and the 4.5- resistor by using Kirchhoff’s loop rule for the outer loop  

containing the battery and the resistors 1-2R  and the 4.5- resistor. 

1-2 1-2 1-2 4.5 1-2

1-2 4.5

6.0V
0    0.4759 A

12.608
I R I R I

R R
      

 
E

e  

This current divides to go through the 12- and 25- resistors in such a way that the voltage 
drop across each of them is the same.  Use that to find the current in the 12- resistor. 

  

 
 

12 25

1-2 12 25 25 1-2 12

12 12 25 25 1-2 12 25

25
12 1-2

12 25

    

      

25
0.4759 A 0.32 A

37

R R

I I I I I I

V V I R I R I I R

R
I I

R R

    

     


  

 

 

 (d) The current in the 4.5- resistor was found above to be 1-2 0.4759AI  .  Find the power  

accordingly. 

    22

4.5 1-2 4.5 0.4759 A 4.5 1.019 W 1.0WP I R      
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83. Write Kirchhoff’s loop rule for the circuit, and substitute for the current and the bulb resistance 
based on the bulb ratings. 

  

   

2 2

bulb bulb bulb
bulb bulb bulb bulb bulb bulb

bulb bulb bulb

bulb bulb bulb

2

bulb bulb
bulb bulb

bulb bulb bulb bulb bulb

                  

0  

3.0V
9.0V 3.0V 9.0

2.0W

V V P
P R P I V I

R P V

I R I R

V V
R R V

I P V P P

     

   

         

e

e e
e

 

 
84. The equivalent resistance of the circuit is the parallel combination of the bulb and the lower portion 

of the potentiometer, in series with the upper portion of the potentiometer.  With the slide at position 
x, the resistance of the lower portion is var ,xR and the resistance of the upper portion is   var1 .x R   

From that equivalent resistance, we find the current in the loop, the voltage across the bulb, and then 
the power expended in the bulb. 

  

 

1

lower bulb var bulb
parallel

lower bulb lower bulb var bulb

2

bulb
eq var parallel loop bulb loop parallel bulb

eq bulb

1 1

1   ;    ;    ;  

R R xR R
R

R R R R xR R

V
R x R R I V I R P

R R



   
 

     

 
 
 

e
 

(a) Consider the case in which 1.00.x    In this case, the full battery potential is across the bulb, 

and so it is obvious that bulb 120V.V    Thus 
 22

bulb
bulb

bulb

120V
60W .

240

V
P

R
  


 

 (b) Consider the case in which 0.65.x   

   

     
   

     

   

 

var bulb
parallel

var bulb

eq var parallel

loop bulb

eq

2

bulb

0.65 150 240
69.33

0.65 150 240

1 0.35 150 69.33 121.83

120V
0.9850A  ;  0.9850A 69.33 68.29 V

121.83

68.29 V
19.43W 19 W

240

xR R
R

xR R

R x R R

I V
R

P

 
   

   

        

     


  


e  

 (c) Consider the case in which 0.35.x   

   

     
   

     

   

 

var bulb
parallel

var bulb

eq var parallel

loop bulb

eq

2

bulb

0.35 150 240
43.08

0.35 150 240

1 0.65 150 69.33 140.58

120V
0.8536A  ;  0.8536A 43.08 36.77 V

140.58

36.77 V
5.63W 5.6W

240

xR R
R

xR R

R x R R

I V
R

P

 
   

   

        

     


  


e  
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85. (a) When the galvanometer gives a null reading, no current is passing through the galvanometer or  
the emf that is being measured.  All of the current is flowing through the slide wire resistance.  
Application of the loop rule to the lower loop gives 0,IR e  since there is no current through 
the emf to cause voltage drop across any internal resistance.  The amount of current flowing 
through the slide wire resistor will be the same no matter what emf is used since no current is 
flowing through the lower loop.  Apply this relationship to the two emf’s. 

   s
s s s

s s

0  ;  0    ;      x x
x x x

x

R
IR IR I

R R R
        

 
 
 

e e
e e e e  

(b) Use the equation derived above.  We use the fact that the resistance is proportional to the length  
of the wire, by Eq. 25-3, .R A l  

    s s s
ss s

45.8cm
1.0182 V 1.39 V

33.6cm

x

x x
x

R A
R

A




    

 
      

      
     

 

l

l

l l
e e e e  

(c) If there is current in the galvanometer, then the voltage between points A and C is uncertainty  

by the voltage drop across the galvanometer, which is    3

G G G 0.012 10 A 35V I R      

44.2 10 V .   The uncertainty might of course be more than this, due to uncertainties 
compounding from having to measure distance for both the standard emf and the unknown emf.  
Measuring the distances also has some uncertainty associated with it. 

 (d) Using this null method means that the (unknown) internal resistance of the unknown emf does  
not enter into the calculation.  No current passes through the unknown emf, and so there is no 
voltage drop across that internal resistance. 

 
86. (a) In normal operation, the capacitor is fully charged by the power supply, and so the capacitor  

voltage is the same as the power supply voltage, and there will be no current through the 
resistor.  If there is an interruption, the capacitor voltage will decrease exponentially – it will 
discharge.  We want the voltage across the capacitor to be at 75% of the full voltage after 0.20 s.  
Use Eq. 26-9b for the discharging capacitor. 

   

   

 
 

 
   

0.20s / 0.20s //

0 0 0

6

  ;  0.75     0.75   

0.20s 0.20s
81790 82 k

ln 0.75 8.5 10 F ln 0.75

RC RCt RCV V e V V e e

R
C

 



    

 
     



 

 (b) When the power supply is functioning normally, there is no voltage across the resistor, so the  
device should NOT be connected between terminals a and b.  If the power supply is not 
functioning normally, there will be a larger voltage across the capacitor than across the 
capacitor–resistor combination, since some current might be present.  This current would result 
in a voltage drop across the resistor.  To have the highest voltage in case of a power supply 
failure, the device should be connected between terminals  b and c . 

 
87. Note that, based on the significant figures of the resistors, that the 1.0-  resistor will not change the 

equivalent resistance of the circuit as determined by the resistors in the switch bank. 
  

Case 1: n = 0 switch closed.  The effective resistance of the circuit is 16.0k .   The current in the  

circuit is 
16V

1.0mA.
16.0k

I  


  The voltage across the 1.0-  resistor is V IR  

   1.0mA 1.0 1.0mV .    
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 Case 2: n = 1 switch closed.  The effective resistance of the circuit is 8.0k .   The current in the  

circuit is 
16V

2.0mA.
8.0k

I  


  The voltage across the 1.0-  resistor is V IR  

   2.0mA 1.0 2.0mV .    

 Case 3: n = 2 switch closed.  The effective resistance of the circuit is 4.0k .   The current in the  

circuit is 
16V

4.0mA.
4.0k

I  


  The voltage across the 1.0-  resistor is V IR  

   4.0mA 1.0 4.0mV .    

Case 4: n = 3 and n = 1 switches closed.  The effective resistance of the circuit is found by the 
parallel combination of the 2.0-k  and 8.0-k resistors. 

  

1

eq

1 1
1.6k

2.0k 8.0k
R



   
 

 
 
 

 

The current in the circuit is 
16V

10mA.
1.6k

I  


  The voltage across the 1.0-  resistor is 

   10mA 1.0 10mV .V IR     

So in each case, the voltage across the 1.0-  resistor, if taken in mV, is the expected analog value 
corresponding to the digital number set by the switches. 

 
88. We have labeled the resistors and the currents through the 

resistors with the value of the specific resistance, and the emf’s 
with the appropriate voltage value.  We apply the junction rule to 
points a and b, and then apply the loop rule to loops 1, 2, and 3.  
This enables us to solve for all of the currents. 

   
 

5 6 top top 6.8 12 5 6 12 6.8

5 6.8 12 6

5 10 5 5 6 6

4 8 12 12 6.8 6.8

12 12 6 6

  ;        

                     [1]

0         [2]  loop 1

0     [3]  loop 2

0                      

I I I I I I I I I I

I I I I

I R I R

I R I R

I R I R

        

  

   

   

 

e e

e e

  [4]  loop 3

 

 Use Eq. 4 to substitute 6 6 12 12I R I R  and 12
6 12 12

6

2 .
R

I I I
R

    Also combine the emf’s by adding the 

voltages. 
  5 6.8 12 15 5 5 12 12 12 12 12 6.8 6.83   [1]  ;  0  [2]  ;  0  [3]I I I I R I R I R I R       e e  

 Use Eq. 1 to eliminate 6.8I  by 6.8 12 53 .I I I   

  
   

15 5 5 12 12

12 12 12 12 5 6.8 12 12 12 6.8 5 6.8

0       [2]

3 0    3 0     [3]

I R I R

I R I I R I R R I R

  

        

e

e e
 

 Use Eq. 2 to eliminate 5I  by 15 12 12
5

5

,
I R

I
R



e

 and then solve for 12.I  

    15 12 12
12 12 12 6.8 6.8

5

3 0  
I R

I R R R
R


    

 
 
 

e
e  

I12 

1
2

3 
10e

5e

4e

8e5R

12R6R

6.8R
5I

6I

6.8I

topIa b
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       
           

     
 

12 5 15 6.8
12

12 5 6.8 5 12 6.8

12

15 12 12
5 5

5

6.8 12 5

12.00V 5.00 15.00V 6.800

3 12.00 5.00 3 6.800 5.00 12.00 6.800

    0.66502A 0.665A

15.00V 0.66502A 12.00
1.40395A 1.40A

5.00

3 3 0.

R R
I

R R R R R R

I

I R
I I

R

I I I

  
 

         

  

 
    



  

e e

e

 

 
6.8

6 12 6

66502A 1.40395A 0.59111A 0.591A

2 2 0.66502 A 1.33A

I

I I I

   

   

 

 
89. (a) After the capacitor is fully charged, there is no current  

through it, and so it behaves like an “open” in the circuit.  In 
the circuit diagram, this means that I5 = 0, I1 = I3, and I2 = I4.  
Write loop equations for the leftmost loop and the outer loop 
in order to solve for the currents. 

 

 

2 2 4 2

2 4

1 1 3 1

1 3

12.0V
    1.20A

10.0

12.0V
    0.800A

15.0

0

0

I R R I
R R

I R R I
R R

     
 

     
 





e
e

e
e

 Use these currents to find the voltage at points c and d, which will give the voltage across the 
 capacitor.    

   

   
   

   

c 2 2

d 1 1

cd

12.0V 1.20A 1.0 10.8V

12.0V 0.800A 10.0 4.00V

10.8V 4.00V 6.8V   ;  2.2 F 6.8V 14.96 C 15 C

V I R

V I R

V Q CV   

     

     

      

e

e    

 (b) When the switch is opened, the emf is taken out of the circuit.  Then we have the capacitor  
discharging through an equivalent resistance.  That equivalent resistance is the series 
combination of R1 and R2, in parallel with the series combination of R3 and R4.  Use the 
expression for discharging a capacitor, Eq. 26-9a.  

   

       

eq

1 1

eq

1 2 3 4

/

0 0

6 5

eq

1 1 1 1
6.16

11.0 14.0

0.030   

ln 0.030 6.16 2.2 10 F ln 0.030 4.8 10 s

t R C

R
R R R R

Q Q e Q

t R C

 



 

     
   

  

       

   
   

  

 

 
90. (a) The time constant of the RC circuit is given by Eq. 26-7. 
     33.0 k 4.00 F 132 msRC      

During the charging cycle, the charge and the voltage on the capacitor increases exponentially 
as in Eq. 26-6b.  We solve this equation for the time it takes the circuit to reach 90.0 V. 

   / 90.0 V
1 ln 1 132 ms ln 1 304 ms

100.0 V
t V

V e t                 
   

e
e

 

 (b) When the neon bulb starts conducting, the voltage on the capacitor drops quickly to 65.0 V and  
then starts charging.  We can find the recharging time by first finding the time for the capacitor 
to reach 65.0 V, and then subtract that time from the time required to reach 90.0 V. 

C
+

–

R2

b

R1

R3R4

a

c d

I1

I3I4

I2
I I5

å

S
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 

2

65.0 V
ln 1 132 ms ln 1 139 ms

100.0 V

304 ms 139 ms 165 ms  ;  304ms 165ms 469ms

V
t

t t

             
   

      

e  

 (c) The spreadsheet used for this  
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH26.XLS,” on 
tab “Problem 26.90c.” 

 
 
 
 
 
 
 
 
 
 
91. We represent the 10.00-M  resistor by 10 ,R and the resistance of the voltmeter as V.R   In the first 

configuration, we find the equivalent resistance eqA ,R  the current in the circuit A ,I  and the voltage 

drop across .R  

  10 V
eqA R A A A

10 V eqA eqA

  ;    ;      A

R R R
R R I V I R V V

R R R R
        


e

e e e  

In the second configuration, we find the equivalent resistance eqB,R  the current in the circuit B,I  and 

the voltage drop across 10.R  

  
10

V 10
eqB 10 R B 10 B B

V eqB eqB

  ;    ;      B

RR R
R R I V I R V V

R R R R
        


e

e e e  

We now have two equations in the two unknowns of R  and V.R   We solve the second equation for 

VR and substitute that into the first equation.  We are leaving out much of the algebra in this solution. 

  
 

 

 

A
10 VeqA

10 V

10 10 B 10
B V

VeqB B 10 B
10

V

A
10 V B 10

10
10 V B 10 B

B 10
10

B 10 B

  ;

    

 

R R
V

R RR R
R R

R R V R R
V R

RRR R V R V RR
R R

R R
V

R R V R RR RR R R V R V R
R

V R R
R

R V R V R

  




    
 



   
      
 

    

e e e

e e e
e

e e e

e

e

 

     B
10

A

7.317V
10.00M 199.92 M 200M  3 sig. fig.

0.366V

V
R R

V
        
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92. Let the internal resistance of the voltmeter be indicated by V ,R  and let the 15-M  resistance be 

indicated by 15.R   We calculate the current through the probe and voltmeter as the voltage across the 
probe divided by the equivalent resistance of the problem and the voltmeter.  We then set the voltage 
drop across the voltmeter equal to the product of the current and the parallel combination of VR  and 

15.R   This can be solved for the unknown resistance. 

 

   
  

 

15 V 15 V 15 V
V

15 V 15 V15 V 15 V 15 V 15 V

15 V 15 V

15 V 15 V
15 VV

15 V 15 V V

  ;    

15M 10M 50,000V
1 1

25M 50V

   5994 M 6000M 6G

V R R V R R VR R
I V I

R R R RR R R R R R R R RR R
R R R R

V
R R R R

R R VV
R

R R R R V

    
    

 


    

            

     

 

 
93. The charge and current are given by Eq. 26-6a and Eq. 26-8, respectively.   

  

    
  

/ / 4 7 3

7 6
final

4
initial 4

1   ;    ;  1.5 10 3.0 10 F 4.5 10 s

0.63 0.63 0.63 3.0 10 F 9.0V 1.70 10 C

9.0V
0.37 0.37 0.37 2.22 10 A

1.5 10

t RC t RCQ C e I e RC
R

Q C

I
R

   

 



         

    

       

e
e

e

e

 

The graphs are shown.  The times 
for the requested values are about 
4.4 or 4.5 ms, about one time 
constant, within the accuracy of 
estimation on the graphs. 
 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename  
“PSE4_ISM_CH26.XLS,” on tab 
“Problem 26.93.” 
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CHAPTER 27:  Magnetism 
 
Responses to Questions 
 
1.  The compass needle aligns itself with the local magnetic field of the Earth, and the Earth’s magnetic 

field lines are not always parallel to the surface of the Earth.  
 
2. The magnetic field lines are concentric circles around the wire. 

With the current running to the left, the field is directed 
counterclockwise when looking from the left end. So, the field 
goes into the page above the wire and comes out of the page 
below the wire. 

 
3. The force is downward. The field lines point from the north pole to the south pole, or left to right. 

Use the right hand rule. Your fingers point in the direction of the current (away from you). Curl them 
in the direction of the field (to the right). Your thumb points in the direction of the force 
(downward). 

 

4.  F


is always perpendicular to both B


and 


. B


and 


can be at any angle with respect to each other. 
 
5.  Alternating currents will have little effect on the compass needle, due to the rapid change of the 

direction of the current and of the magnetic field surrounding it. Direct currents will deflect a 
compass needle. The deflection depends on the magnitude and direction of the current and the 
distance from the current to the compass. The effect on the compass decreases with increasing 
distance from the wire. 

 
6.  The kinetic energy of the particle will stay the same. The magnetic force on the particle will be 

perpendicular to the particle’s velocity vector and so will do no work on the particle. The force will 
change the direction of the particle’s velocity but not the speed.  

 
7. Positive particle in the upper left: force is downward toward the wire. Negative particle in the upper 

right: force is to the left. Positive particle in the lower right: force is to the left. Negative particle in 
the lower left: force is upward toward the wire.  

 
8. In the areas where the particle’s path is curving up towards the top 

of the page, the magnetic field is directed into the page. Where the 
particle’s path curves downward towards the bottom of the page, 
the magnetic field is directed out of the page. Where the particle is 
moving in a straight line, the magnetic field direction is parallel or anti-parallel to the particle’s 
velocity. The strength of the magnetic field is greatest where the radius of curvature of the path is the 
smallest.  

  

9. (a) Near one pole of a very long bar magnet, the magnetic field is proportional to 21 .r  

 (b) Far from the magnet as a whole, the magnetic field is proportional to 31 .r  
 
10.  The picture is created when moving charged particles hit the back of the screen. A strong magnet 

held near the screen can deflect the particles from their intended paths, and thus distort the picture. If 
the magnet is strong enough, it is possible to deflect the particles so much that they do not even reach 
the screen, and the picture “goes black.”  

I
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11. The negative particle will curve down (toward the negative plate) if v > E/B because the magnetic 
force (down) will be greater than the electric force (up).  If v < E/B the negative particle will curve 
up toward the positive plate because the electric force will be greater than the magnetic force. The 
motion of a positive particle would be exactly opposite that of a negative particle.  

 
12.  No, you cannot set a resting electron into motion with a static magnetic field. In order for a charged 

particle to experience a magnetic force, it must already have a velocity with a component 
perpendicular to the magnetic field: F = qvBsinθ. If v = 0, F = 0. Yes, you can set an electron into 
motion with an electric field. The electric force on a charged particle does not depend on velocity: 

  F = qE. 
 
13. The particle will move in an elongating helical path in the direction of the electric field (for a 

positive charge). The radius of the helix will remain constant. 
 
14.  Consider a positive ion. It will experience a force downward due to the applied electric field. Once it 

begins moving downward, it will then experience a force out (in the direction of the red arrow) 
because of its motion in the magnetic field. A negative ion will experience a force up due to the 
electric field and then, because it is a negative particle moving up in the magnetic field directed to 
the right, it will experience a force out. The positive and negative ions therefore each feel a force in 
the same direction. 

 
15. The beam is deflected to the right. The current in the wire creates a magnetic field into the page 

surrounding the beam of electrons. This results in a magnetic force on the negative particles that is to 
the right.  

 
16.  Yes. One possible situation is that the magnetic field is parallel or anti-parallel to the velocity of the 

charged particle. In this case, the magnetic force would be zero, and the particle would continue 
moving in a straight line. Another possible situation is that there is an electric field with a magnitude 
and direction (perpendicular to the magnetic field) such that the electric and magnetic forces on the 
particle cancel each other out. The net force would be zero and the particle would continue moving 
in a straight line.   

 
17. No. A charged particle may be deflected sideways by an electric field if a component of its velocity 

is perpendicular to the field.  
 
18.  If the direction of the velocity of the electrons is changing but their speed is not, then they are being 

deflected by a magnetic field only, and their path will be circular or helical. If the speed of the 
electrons is changing but the direction is not, then they are being accelerated by an electric field only. 
If both speed and direction are changing, the particles are possibly being deflected by both magnetic 
and electric fields, or they are being deflected by an electric field that is not parallel to the initial 
velocity of the particles.  In the latter case, the component of the electron velocity antiparallel to the 
field direction will continue to increase, and the component of the electron velocity perpendicular to 
the field direction will remain constant. Therefore, the electron will asymptotically approach a 
straight path in the direction opposite the field direction. If the particles continue with a circular 
component to their path, there must be a magnetic field present.  

 
19. Use a small current-carrying coil or solenoid for the compass needle. 
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20. Suspend the magnet in a known magnetic field so that it is aligned with the field and free to rotate. 
Measure the torque necessary to rotate the magnet so that it is perpendicular to the field lines. The 

magnetic moment will be the torque divided by the magnetic field strength.  τ μ B
 

 so 

B  when the magnetic moment and the field are perpendicular.  
 

21. (a) If the plane of the current loop is perpendicular to the field such that the direction of A


is  
 parallel to the field lines, the loop will be in stable equilibrium. Small displacements from this 

position will result in a torque that tends to return the loop to this position. 

(b) If the plane of the current loop is perpendicular to the field such that the direction of A


is anti-
parallel to the field lines, the loop will be in unstable equilibrium. 

 
22. The charge carriers are positive. Positive particles moving to the right in the figure will experience a 

magnetic force into the page, or toward point a. Therefore, the positive charge carriers will tend to 
move toward the side containing a; this side will be at a higher potential than the side with point b.  

 
23. The distance 2r to the singly charged ions will be twice the distance to the doubly charged ions. 
 
 

Solutions to Problems 
 
1. (a) Use Eq. 27-1 to calculate the force with an angle of 90  and a length of 1 meter. 

     sin     sin 9.40A 0.90T sin90 8.5N m
F

F I B IB      l
l

 

(b)    sin 9.40A 0.90T sin35.0 4.9 N m
F

IB   
l

 

 
2. Use Eq. 27-1 to calculate the force. 

       5sin 150A 240m 5.0 10 T sin68 1.7 NF I B      l  

 
3. The dip angle is the angle between the Earth’s magnetic field and the current in the wire.  Use Eq. 

27-1 to calculate the force. 

       5 4sin 4.5A 1.6m 5.5 10 T sin 41 2.6 10 NF I B        l  

 
4. To have the maximum force, the current must be perpendicular to the magnetic field, 

as shown in the first diagram.  Use max0.25
F F

l l

 to find the angle between the wire 

and the magnetic field, illustrated in the second diagram. 

  1max0.25     sin 0.25     sin 0.25 14
F F

IB IB        
l l

 

 
5. (a) By the right hand rule, the magnetic field must be pointing up, and so the top pole face must be  

a  South pole  . 
 (b) Use Eq. 27-2 to relate the maximum force to the current.  The length of wire in the magnetic  

field is equal to the diameter of the pole faces. 

B


wire

B


wire

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 

   

2

max
max

7.50 10 N
   3.4091A 3.41A

0.100m 0.220T

F
F I B I

B


     

l
l  

 (c) Multiply the maximum force by the sine of the angle between the wire and the magnetic field. 

    2 2

max sin 7.50 10 N sin80.0 7.39 10 NF F          

 
6. The magnetic force must be equal in magnitude to the force of gravity on the wire.  The maximum 

magnetic force is applicable since the wire is perpendicular to the magnetic field.  The mass of the 
wire is the density of copper times the volume of the wire. 

  

 

     
 

21
B 2

23 3 3 22

5

      

8.9 10 kg m 1.00 10 m 9.80m s
1400A

4 4 5.0 10 T

F mg I B d g

d g
I

B








   

 
  



l l

 

This answer does not seem feasible.  The current is very large, and the resistive heating in the thin 
copper wire would probably melt it. 

 
7. We find the force using Eq. 27-3, where the vector length is broken down into two parts:  the portion 

along the z-axis and the portion along the line y=2x. 

1 2

ˆ ˆ2ˆ0.250m         0.250m
5

 
  
 

   i j
kL L

 
 

       
   

1 2

ˆ ˆ2 ˆˆ20.0A 0.250m 0.318 T
5

2ˆ ˆ ˆ ˆˆ ˆ1.59 N 1.59  +1.42 N
5

I I
 
  
 

 
 
 

        

      

i j
F B B k i

k i j i j k

L L L
    

 

2 2

1

1.59 1.42  N 2.13 N

1.42 N
tan 41.8  below the negative y-axis

1.59 N

F

   
 
 

   

  


F


 

 
8. We find the force per unit length from Eq. 27-3.  Note that while the length is not known, the 

direction is given, and so ˆ. il

l  

     

 

B

B

3

ˆ   

ˆ ˆ ˆ
1mˆ ˆ ˆ3.0A 1 0 0 0.75 1.08 N m

100cm
0.20T 0.36T 0.25T

ˆ ˆ7.5 11 10 N cm    

I I

I



    

     



   

 
 
 

F B i B

i j k
F

i B j k

j k

l

l
  




l

 

 
9. We find the net force on the loop by integrating the infinitesimal force on each infinitesimal portion  

of the loop within the magnetic field.  The infinitesimal force is found using Eq. 27-4 with the 

current in an infinitesimal portion of the loop given by   ˆ ˆcos sinId I rd    i jL


. 

   0 0

0 0

2 2

0 0
ˆ ˆ ˆ ˆˆcos sin cos sinId B I rd B IB r d

   

 
     

 
         F i j k j iL

 
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     
0

0

2

0 0 0 0 0 0

0 0

ˆ ˆ ˆ ˆ ˆ ˆ  sin cos sin 2 sin cos 2 cos

ˆ2 sin

IB r IB r

IB r

 


       




 
        

 

j i j j i i

j

 

The trigonometric identities    sin 2 sin  and cos 2 cos           are used to simplify the 

solution. 
 

10. We apply Eq. 27-3 to each circumstance, and solve for the magnetic field.  Let ˆ ˆ ˆ .x y zB B B  B i j k


  

For the first circumstance, ˆ. il

l  

 

       

 

B

ˆ ˆ ˆ

ˆ ˆˆ8.2 A 2.0m 0 0 16.4A m 16.4A m 2.5 N  

2.5N
0 ; 16.4A m 2.5N    0.1524T ;    unknown

16.4A m

z y

x y z

y z z x

I B B

B B B

B B B B

        

      

i j k

F B j k j
 

 




l

 

 For the second circumstance, ˆ. jl

l  

  

       

 

B

ˆ ˆ ˆ

ˆˆ ˆ8.2A 0 2.0m 0 2.5N 16.4A m 2.5 5.0 N  

0 0.1524T

5.0 N
16.4A m 5.0 N    0.3049T

16.4A m

ˆ
x

x

x x

I B

B

B B

       

     


i j k

F B k i ki
 






l

 

 Thus  ˆ ˆ0.30 0.15 T . B i k


 

 
11. We find the force along the wire by integrating the infinitesimal force from each path element (given 

by Eq. 27-4) along an arbitrary path between the points a and b.   

     0 0 0
ˆ ˆ ˆ ˆ ˆ ˆˆ

b b b

a a a

Id I dx dy B IB dx dy IB x y             F B i j k j i j iL
 

 

The resultant magnetic force on the wire depends on the displacement between the points a and b, 
and not on the path taken by the wire.  Therefore, the resultant force must be the same for the curved 
path, as for the straight line path between the points. 

 
12. The net force on the current loop is the sum of the 

infinitesimal forces obtained from each current 
element.  From the figure, we see that at each 
current segment, the magnetic field is 
perpendicular to the current.  This results in a 
force with only radial and vertical components.  
By symmetry, we find that the radial force 
components from segments on opposite sides of the loop cancel.  The net force then is purely 
vertical.  Symmetry also shows us that each current element contributes the same magnitude of force.    

     
2

2 2
ˆ ˆ ˆsin 2 2r

r
Id B IB d I B r IB

r d
         

 F k k kL l


 

  

z

 
I







 r 
B


dF


dl

B


dF


dl
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13. The maximum magnetic force as given in Eq. 27-5b can be used since the velocity is perpendicular 
to the magnetic field. 

       19 5 14

max 1.60 10 C 8.75 10 m s 0.45T 6.3 10 NF qvB         

 By the right hand rule, the force must be directed to the  North  . 
 
14. The magnetic force will cause centripetal motion, and the electron will move in a clockwise circular  

path if viewed in the direction of the magnetic field.  The radius of the motion can be determined. 

  
   

   

31 62
5

max 19

9.11 10 kg 1.70 10 m s
    2.02 10 m

1.60 10 C 0.480T

v mv
F qvB m r

r qB







 
      


 

 
15. In this scenario, the magnetic force is causing centripetal motion, and so must have the form of a  

centripetal force.  The magnetic force is perpendicular to the velocity at all times for circular motion. 

  
   

   

27 72

max 19

6.6 10 kg 1.6 10 m s
    1.8T

2 1.60 10 C 0.18m

v mv
F qvB m B

r qr





 
     


 

 
16. Since the charge is negative, the answer is the OPPOSITE of the result given from the right hand rule  

applied to the velocity and magnetic field. 
(a) left 
(b) left 
(c) upward 
(d) inward into the paper 
(e) no force 
(f) downward 

 
17. The right hand rule applied to the velocity and magnetic field would give the direction of the force.   

Use this to determine the direction of the magnetic field given the velocity and the force. 
(a) downward 
(b) inward into the paper 
(c) right 

 
18. The force on the electron due to the electric force must be the same magnitude as the force on the  

electron due to the magnetic force. 

 
3

6 6

E B 3

8.8 10 V m
        1.173 10 m s 1.2 10 m s

7.5 10 T

E
F F qE qvB v

B 


         


 

If the electric field is turned off, the magnetic force will cause circular motion. 

 
   
   

31 62
4

B 19 3

9.11 10 kg 1.173 10 m s
    8.9 10 m

1.60 10 C 7.5 10 T

v mv
F qvB m r

r qB





 

 
      

 
 

 
19. (a) The velocity of the ion can be found using energy conservation.  The electrical potential energy  

of the ion becomes kinetic energy as it is accelerated.  Then, since the ion is moving 
perpendicular to the magnetic field, the magnetic force will be a maximum.  That force will 
cause the ion to move in a circular path. 

   21
initial final 2

2
        

qV
E E qV mv v

m
      
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   

 

2

max

27

2

19

  

2
2 6.6 10 kg 2700V1 2 1

3.1 10 m
0.340T 2 1.60 10 C

v
F qvB m

r

qV
m

mv mVmr
qB qB B q







  


     



 

 (b) The period can be found from the speed and the radius.  Use the expressions for the radius and  
the speed from above. 

   
 

  

27

7

19

1 2
2

2 6.6 10 kg2 2 2
    3.8 10 s

2 1.60 10 C 0.340T2

mV

B qr r m
v T

T v qBqV

m


  








       


 

 
20. The velocity of each charged particle can be found using energy conservation.  The electrical  

potential energy of the particle becomes kinetic energy as it is accelerated.  Then, since the particle is 
moving perpendicularly to the magnetic field, the magnetic force will be a maximum.  That force 
will cause the ion to move in a circular path, and the radius can be determined in terms of the mass 
and charge of the particle. 

   

21
initial final 2

2

max

2
        

2
1 2

    

qV
E E qV mv v

m

qV
m

v mv mVmF qvB m r
r qB qB B q

    

     

 

   

dd

pdd
d p

p p d

pp

p

p

p p

pp

1 2

2
2   2

2 11

1 2

4
2   2

2 21

mm V

mB qr
r r

r m V q

qB q

mm V

mB qr
r r

r m V q

qB q








     

     

 

 

21. (a) From Example 27-7, we have that 
mv

r
qB

 , and so 
rqB

v
m

 .  The kinetic energy is given by   

2 2 2 2
21 1

2 2 2

rqB r q B
K mv m

m m
   

 
 

 and so we see that 2 .K r  

(b) The angular momentum of a particle moving in a circular path is given by L mvr .  From  

Example 27-7, we have that 
mv

r
qB

 , and so 
rqB

v
m

 .  Combining these relationships gives 

 2 .
rqB

L mvr m r qBr
m

    
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22. The force on the electron is given by Eq. 27-5a. 

 

   

4 4 4

B

19 4 16 15

ˆ ˆ ˆ

ˆ7.0 10 m s 6.0 10 m s 0 4.2 4.8 10 T m s

0.80T 0.60T 0

ˆ ˆ ˆ    1.60 10 C 0.6 10 T m s 9.6 10 N 1 10 N

q e e

  

          



        

i j k

F v B k

k k k

  



 

 
23. The kinetic energy of the proton can be used to find its velocity.  The magnetic force produces 

centripetal acceleration, and from this the radius can be determined. 

  

     
   

2
21

2

6 19 27

19

2
                  

2
2 6.0 10 eV 1.60 10 J eV 1.67 10 kg2

1.8m
1.60 10 C 0.20T

K mv
K mv v qvB r

m r

K
m

K mmv mr
qB qB qB

mv

qB

 



     

  
    



 

 
24.  The magnetic field can be found from Eq. 27-5b, and the direction is found from the right hand rule.   

Remember that the charge is negative. 

 
   

13

max
max 19 6

8.2 10 N
    1.8T

1.60 10 C 2.8 10 m s

F
F qvB B

qv






    

 
 

The direction would have to be East  for the right hand rule, applied to the velocity and the  
magnetic field, to give the proper direction of force. 

 
25. The total force on the proton is given by the Lorentz equation, Eq. 27-7. 

  

   

     
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   7.84 10

q e
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


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    
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  

 
 

16 15 16

15

ˆ ˆ ˆ1.03 10 1.49 10 N C

ˆ ˆ ˆ   0.78 1.0 0.15 10 N

 



   

     

i j k

i j k

 

 
26. The force on the electron is given by Eq. 27-5a.  Set the force expression components equal and 

solve for the velocity components. 

 

   

B

13
6

19

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ      

0 0
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x y x y z y z x z

z

x
x y z y

z

q F F e v v v ev B e v B

B

F
F ev B v

eB





          


         



i j k

F v B i j i j
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   

 

13
6

19

6

2.7 10 N
    2.0 10 m s

1.60 10 C 0.85T

ˆ ˆ2.0 2.8 10 m s

y

y x z x

z

F
F ev B v

eB





 
      



   v i j


 

 Notice that we have not been able to determine the z component of the electron’s velocity. 
 
27. The kinetic energy of the particle can be used to find its velocity.  The magnetic force produces 

centripetal acceleration, and from this the radius can be determined.  Inserting the radius and velocity 
into the equation for angular momentum gives the angular momentum in terms of the kinetic energy 
and magnetic field. 

2
21

2

2
                  

2
2 2

K mv mv
K mv v qvB r

m r qB

K
m

K mKmL mvr m
m qB qB

     

  

 
 
 
 
 
 

 

From the equation for the angular momentum, we see that doubling the magnetic field while keeping 
the kinetic energy constant will cut the angular momentum in half. 

1
final initial2L L  

 
28. The centripetal force is caused by the magnetic field, and is given by Eq. 27-5b. 

     
   

2

31 6 o

5 5

19

sin   

9.11 10 kg 3.0 10 m s sin 45
4.314 10 m 4.3 10 m

1.60 10 C 0.28T

v
F qvB qv B m

r

mv
r

qB

 




 


   

 
     



 

The component of the velocity that is parallel to the magnetic field is unchanged, and so the pitch is 
that velocity component times the period of the circular motion. 

  

   
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19

2
2 2
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mv

r mqB
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v v qB

m
p v T v

qB


 





 







  


     


 
 
 



 

 
29. (a) For the particle to move upward the magnetic force  

must point upward, by the right hand rule we see that 
the force on a positively charged particle would be 
downward.  Therefore, the charge on the particle must 
be negative. 

(b) In the figure we have created a right triangle to relate  
the horizontal distance l, the displacement d, and the 
radius of curvature, r.  Using the Pythagorean theorem 
we can write an expression for the radius in terms of 
the other two distances.   
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 
2 2

22 2    
2

r r
d

r d
d




   
l

l  

Since the momentum is perpendicular to the magnetic field, we can solve for the momentum by 
relating the maximum force (Eq. 27-5b) to the centripetal force on the particle. 

 2 22

max

0
0 0     

2

qB dmv
F qvB p mv qB r

r d


     

l
 

 
30. In order for the path to be bent by 90 within a distance d, the radius of curvature must be less than 

or equal to d.  The kinetic energy of the protons can be used to find their velocity.  The magnetic 
force produces centripetal acceleration, and from this, the magnetic field can be determined. 

2
21

2

1/ 2

2 2

2
                  

2
2

K mv mv
K mv v qvB B

m r qr

K
m

mv KmmB
ed ed e d

     

    
 
 

 

 
31. The magnetic force will produce centripetal acceleration.  Use that relationship to calculate the 

speed.  The radius of the Earth is 66.38 10 km , and the altitude is added to that. 

 
     

 
19 6 42

8

B 27

1.60 10 C 6.385 10 m 0.50 10 T
    1.3 10 m s

238 1.66 10 kg

v qrB
F qvB m v

r m

 



  
      


 

 Compare the size of the magnetic force to the force of gravity on the ion. 

  
     

   
19 8 4

8B

27 2

g

1.60 10 C 1.3 10 m s 0.50 10 T
2.3 10

238 1.66 10 kg 9.80m s

F qvB

F mg

 



  
   


 

 Yes, we may ignore gravity.  The magnetic force is more than 200 million times larger than gravity. 
 
32. The magnetic force produces an acceleration that is perpendicular to the original motion.  If that 

perpendicular acceleration is small, it will produce a small deflection, and the original velocity can 
be assumed to always be perpendicular to the magnetic field.  This leads to a constant perpendicular 
acceleration.  The time that this (approximately) constant acceleration acts can be found from the 
original velocity v and the distance traveled l.  The starting speed in the perpendicular direction will 
be zero. 

      
qvB

F ma qvB a
m

       
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    
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 
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This small distance justifies the assumption of constant acceleration. 
 
 
 
 
 
 



Chapter 27  Magnetism 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

207 

33. (a) In the magnetic field, the proton will move along an arc of a  
circle.  The distance x in the diagram is a chord of that circle, 
and so the center of the circular path lies on the perpendicular 
bisector of the chord.  That perpendicular bisector bisects the 
central angle of the circle which subtends the chord.  Also recall 
that a radius is perpendicular to a tangent.  In the diagram, 

1 2   because they are vertical angles.  Then 2 4  , because 

they are both complements of 3 , so 1 4  .  We have 4 5   

since the central angle is bisected by the perpendicular bisector 
of the chord.  5 7   because they are both complements of 6 , 

and 7 8   because they are vertical angles.  Thus 

1 2 4 5 7 8          , and so in the textbook diagram, the angle at which the proton leaves 

is o45  . 

 (b) The radius of curvature is given by 
mv

r
qB

 , and the distance x is twice the value of cosr  . 

   
   
   

27 5

o 3

19

1.67 10 kg 1.3 10 m s
2 cos 2 cos 2 cos45 2.3 10 m

1.60 10 C 0.850T

mv
x r

qB
 







 
    


 

 
34. (a)   Since the velocity is perpendicular to the magnetic field,  

the particle will follow a circular trajectory in the x-y plane 
of radius r.  The radius is found using the centripetal 
acceleration. 

2

    
mv

qvB r
r

mv

qB
    

From the figure we see that the distance  is the chord 
distance, which is twice the distance cos .r    Since the 
velocity is perpendicular to the radial vector, the initial direction and the angle  are 
complementary angles.  The  angles  and   are also complementary angles, so 30 .      

0 0

0 0

2
2 cos cos30 3

mv mv
r

qB qB
      

(b) From the diagram, we see that the particle travels a circular path, that is 2 short of a complete  
circle.  Since the angles  and   are complementary angles, so 60 .      The trajectory distance 
is equal to the circumference of the circular path times the fraction of the complete circle.  
Dividing the distance by the particle speed gives t. 

  0

0 0 0 0 0

360 2 602 2 2 4
360 3 3

mvr m
t

v v v qB qB
     

       

 
   


l

 

 
35. The work required by an external agent is equal to the change in potential energy.  The potential 

energy is given by Eq. 27-12, .U  μ B
  

 (a)          initial finalfinal initial initial final
cos cosW U NIAB           μ B μ B μ B μ B

            

      cos0 cos180 2NIAB NIAB      

 (b)     initial finalcos cos cos90 cos 90 0W NIAB NIAB          

1

23
4

8

76
5

r
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36. With the plane of the loop parallel to the magnetic field, the torque will be a maximum.  We use Eq. 
27-9. 

  
     2

0.185m N
sin     3.32T

sin 1 4.20A 0.0650m sin 90
NIAB B

NIAB


 

 
    




 

 
37. (a) The torque is given by Eq. 27-9.  The angle is the angle between the B-field and the  

perpendicular to the coil face. 

      
2

5 50.180m
sin 12 7.10A 5.50 10 T sin 24 4.85 10 m N

2
NIAB         

  
    

  

(b) In Example 27-11 it is stated that if the coil is free to turn, it will rotate toward the orientation so 
that the angle is 0.  In this case, that means the north edge of the coil will rise, so that a 
perpendicular to its face will be parallel with the Earth’s magnetic field. 

 
38. The magnetic dipole moment is defined in Eq. 27-10 as NIA  .  The number of turns, N , is 1.   

The current is the charge per unit time passing a given point, which on the average is the charge on 
the electron divided by the period of the circular motion, I e T .  If we assume the electron is 

moving in a circular orbit of radius r, then the area is 2r .  The period of the motion is the 
circumference of the orbit divided by the speed, 2T r v .  Finally, the angular momentum of an 

object moving in a circle is given by L mrv .  Combine these relationships to find the magnetic 
moment. 

 
2

2 2

2 2 2 2 2 2

e e e r v erv emrv e e
NIA r r mrv L

T r v r m m m


  

 
         

 
39. (a)  The magnetic moment of the coil is given by Eq. 27-10.  Since the current flows in the  

clockwise direction, the right hand rule shows that the magnetic moment is down, or in the 
negative z-direction. 

   
2

2 20.22m ˆ ˆ ˆ15 7.6A 4.334 A m 4.3 A m
2

NI     
 

     μ A k k k
    

(b) We use Eq. 27-11 to find the torque on the coil. 

     2 ˆ ˆ ˆ ˆˆ ˆ4.334  A m 0.55 0.60 0.65 T 2.6 2.4 m N         μ B k i j k i j
     

(c) We use Eq. 27-12 to find the potential energy of the coil. 

       2 2

   

ˆ ˆˆ ˆ4.334  A m 0.55 0.60 0.65 T 4.334A m 0.65 T

2.8 J

U         

 

μ B k i j k
  

 

 
40. To find the total magnetic moment, we divide the rod into infinitesimal pieces of 

thickness dy.  As the rod rotates on its axis the charge in each piece,   ,Q d dy  

creates a current loop around the axis of rotation.  The magnitude of the current 
is the charge times the frequency of rotation, 2 .    By integrating the 
infinitesimal magnetic moments from each piece, we find the total magnetic 
moment. 

 
2

2 2

0 02 2 6

d dQ Q Q d
d dI y dy y dy

d d
  


 
 
 

       μ μ A
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41. From Section 27-5, we see that the torque is proportional to the current, so if the current drops by 
12%, the output torque will also drop by 12%.  Thus the final torque is 0.88 times the initial torque. 

 
42. In Section 27-6, it is shown that the deflection of the galvanometer needle is proportional to the 

product of the current and the magnetic field.  Thus if the magnetic field is decreased to 0.860 times 
its original value, the current must be increased by dividing the original value by 0.860 to obtain the 
same deflection. 

        initialinitial initial
finalinitial final

final initial

63.0 A
    78.8 A

0.800

BI B
IB IB I

B B


      

 
43. From the galvanometer discussion in Section 27-6, the amount of deflection is proportional to the 

ratio of the current and the spring constant:  
I

k
  .  Thus if the spring constant decreases by 15%, 

the current can decrease by 15% to produce the same deflection.  The new current will be 85% of the 
original current. 

   final initial0.85 0.85 46 A 39 AI I      

 
44. Use Eq. 27-13. 

 
   

5
22

260V m
1.5 10 C kg

0.46T 0.0080m

q E

m B r
     

 
45. The force from the electric field must be equal to the weight.  
 

      
  

15 2

19

3.3 10 kg 9.80m s 0.010m
    5.94 6 electrons

1.60 10 340V

V mgd
qE ne mg n

d eV





          
 

 
46. (a) Eq. 27-14 shows that the Hall emf is proportional to the magnetic field perpendicular to the  

conductor’s surface.   We can use this proportionality to determine the unknown resistance.  
Since the new magnetic field is oriented 90 to the surface, the full magnetic field will be used 
to create the Hall potential. 

 63mV
0.10T 0.53T

12mV
H H

H H

B
B B

B


 


      e e

e e
 

(b) When the field is oriented at 60 to the surface, the magnetic field, sin 60 ,B   is used to create  
the Hall potential. 

 
sin

0.10T63 mV
60 0.61T

12 mV sin60
H

H

B B B  


     


e

e
 

 
47. (a) We use Eq. 27-14 for the Hall Potential and Eq. 25-13 to write the current in terms of the drift  
  velocity. 

 
1dH

H
d

v Bd
K

IB enten td v B  
  e

 

(b) We set the magnetic sensitivities equal and solve for the metal thickness. 

 
22 3

3 11
29 3

1 1 3 10 m
0.15 10 m 5 10  m

1 10  m
s

m s
s s m m m

n
t t

en t en t n


 


      


 

  This is less than one sixth the size of a typical metal atom. 
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(c) Use the magnetic sensitivity to calculate the Hall potential. 
   

     19 22 3 3

100 mA 0.1T
14mV 10mV

1.6 10 C 3 10 m 0.15 10 m
H H

IB
K IB

ent   
    

  
e  

 
48. (a) We find the Hall field by dividing the Hall emf by the width of the metal. 

4 46.5 V
2.167 10 V/m 2.2 10 V/m

0.03 m
H

HE
d

       e
 

(b) Since the forces from the electric and magnetic fields are balanced, we can use Eq. 27-14 to 
calculate the drift velocity. 

4
4 42.167 10 V/m

2.709 10 m s 2.7 10 m/s
0.80T

H
d

E
v

B


        

(c) We now find the density using Eq. 25-13. 

       19 4 4

28 3  

42A

1.6 10 C 6.80 10 m 0.03m 2.709 10 m/s

4.7 10 electrons/m

d

I
n

eAv   
 

  

 

 

 
49. We find the magnetic field using Eq. 27-14, with the drift velocity given by Eq. 25-13.  To 

determine the electron density we divide the density of sodium by its atomic weight.  This gives the 
number of moles of sodium per cubic meter.  Multiplying the result by Avogadro’s number gives 
the number of sodium atoms per cubic meter.  Since there is one free electron per atom, this is also 
the density of free electrons. 

           6 19 3 3 23

( )
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H H H H A
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Nnet et
B

v d I I mI
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ne td



  

 
 

    
 

   

   




e e e e

 

 
50. (a) The sign of the ions will not change the magnitude of the Hall emf, but will 

determine the polarity of the emf . 
 (b) The flow velocity corresponds to the drift velocity in Eq. 27-14. 

   
 

  

3

H
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0.13 10 V
        0.56m s

0.070T 0.0033m
vBd v

Bd


     

EE   

 
51. The magnetic force on the ions causes them to move in a circular path, so the magnetic force is a  

centripetal force.  This results in the ion mass being proportional to the path’s radius of curvature. 

  

2

21.0 21.6
21.0 21.6

21.9 22.2
21.9

        constant 76 u 22.8cm

76 u 76 u
    70 u              72 u

21.0cm 22.8cm 21.6cm 22.8cm

76 u 76 u
    73u              

21.9 cm 22.8cm 22.2cm 22.8cm

qvB m v r m qBr v m r qB v

m m
m m

m m
m

      

     

     22.2 74 um 

 

 The other masses are 70 u, 72 u, 73 u, and 74 u . 
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52. The velocity of the ions is found using energy conservation.  The electrical potential energy  
of the ions becomes kinetic energy as they are accelerated.  Then, since the ions move 
perpendicularly to the magnetic field, the magnetic force will be a maximum.  That force will cause 
the ions to move in a circular path. 

  
22 2 2 2 2 2

21 1
2 2

                  
2 2

mv qBR qBR q B R qR B
qvB v qV mv m m

R m m m V
        

 
 

 

 
53. The location of each line on the film is twice the radius of curvature of the ion.  The radius of 

curvature can be found from the expression given in Section 27-9. 

  
   
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 
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 

 
  
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The distances between the lines are  
2 2 3 3

13 12

2 2 3 3

14 13

2 2 2.0006 10 m 1.8467 10 m 1.539 10 m 1.5 10 m

2 2 2.1545 10 m 2.0006 10 m 1.539 10 m 1.5 10 m

r r

r r

   

   

        

        
 

 If the ions are doubly charged, the value of q in the denominator of the expression would double, and 
so the actual distances on the film would be halved.  Thus the distances between the lines would also 
be halved. 

  
2 3 4 4

13 12
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   

   

        

        
 

 
54. The particles in the mass spectrometer follow a semicircular path as shown in Fig. 27-33.  A particle 

has a displacement of 2r from the point of entering the semicircular region to where it strikes the 
film.  So if the separation of the two molecules on the film is 0.65 mm, the difference in radii of the 
two molecules is 0.325 mm.  The mass to radius ratio is the same for the two molecules. 
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55. Since the particle is undeflected in the crossed fields, its speed is given by Eq. 27-8.  Without the 

electric field, the particle will travel in a circle due to the magnetic force.  Using the centripetal 
acceleration, we can calculate the mass of the particle.  Also, the charge must be an integer multiple 
of the fundamental charge. 

 
         
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2192
27
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

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The particle has an atomic mass of a multiple of 2.0 u.  The simplest two cases are that it could be a 

hydrogen-2 nucleus (called a deuteron), or a helium-4 nucleus (called an alpha particle): 2 4
1 2H, He . 
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56. The radius and magnetic field values can be used to find the speed of the protons.  The electric field 
is then found from the fact that the magnetic force must be the same magnitude as the electric force 
for the protons to have straight paths. 

       

2

E B

219 2

2 6

27

                    

1.60 10 C 0.625T 5.10 10 m
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 
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The direction of the electric field must be perpendicular to both the velocity and the magnetic field, 
and must be in the opposite direction to the magnetic force on the protons. 

 
57. The magnetic force produces centripetal acceleration. 

  
   

16
2

19 3

3.8 10 kg m s
        2.4T

1.60 10 C 1.0 10 m

p
qvB mv r mv p qBr B

qr






       

 


 

The magnetic field must point upward to cause an inward-pointing (centripetal) force that steers the 
protons clockwise. 

 
58. The kinetic energy is used to determine the speed of the particles, and then the speed can be used to  

determine the radius of the circular path, since the magnetic force is causing centripetal acceleration. 
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



       


   
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59. (a) There will be one force on the rod, due to the magnetic force on the charge carriers in the rod.   

That force is of magnitude BF IdB , and by Newton’s second law is equal to the mass of the 

rod times its acceleration.  That force is constant, so the acceleration will be constant, and 
constant acceleration kinematics can be used. 

   0
net B         

IdB v v v IdB
F F IdB ma a v t

m t t m


          

 (b) Now the net force is the vector sum of the magnetic force and the force of kinetic friction. 

   

net B fr k N k

0
k k

  

    

F F F IdB F IdB mg ma

IdB v v v IdB
a g v g t

m t t m

 

 

       


       

 
 

 

 (c) Using the right hand rule, we find that the force on the rod is to the east, and the rod moves east. 
 
60. Assume that the magnetic field makes an angle  with respect to the 

vertical.  The rod will begin to slide when the horizontal magnetic force 
 cosIB l  is equal to the maximum static friction  .s NF   Find the 

normal force by setting the sum of the vertical forces equal to zero.  See 
the free body diagram. 

sin 0    sin sinB N N BF F mg F mg F mg I B          l  
mg


NF


frF


BF




B

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   
cos = sin    

sin cos
s

s sN
s

mg
IB F mg I B B

I
   

  
   


l l

l
 

We find the angle for the minimum magnetic field by setting the derivative of the magnetic field 
with respect to the angle equal to zero and solving for the angle. 

 
 

-1 -1
2

cos sin
0  tan tan 0.5 26.6

sin cos
s s

s

s

mgdB
d I

   
 

   
 

      
l

 

 
   

     

20.5 0.40kg 9.80m/s
  0.22T

sin cos 36A 0.22m 0.5sin 26.6 cos26.6
s

s

mg
B

I


  
  

  l
 

The minimum magnetic field that will cause the rod to move is 0.22 T at 27 from the vertical. 
 
61. The magnetic force must be equal in magnitude to the weight of the electron. 

  
  
  

31 2

6

19 4

9.11 10 kg 9.80 m s
    1.1 10 m s

1.60 10 C 0.50 10 T

mg
mg qvB v

qB





 


     

 
 

The magnetic force must point upwards, and so by the right hand rule and the negative charge of the 
electron, the electron must be moving  west  . 

 
62. The airplane is a charge moving in a magnetic field.  Since it is flying perpendicular to the magnetic  

field, Eq. 27-5b applies. 

       6 5 5

max 1850 10 C 120m s 5.0 10 T 1.1 10 NF qvB          

 
63. The maximum torque is found using Eq. 27-9 with sin 1  .  Set the current equal to the voltage 

divided by resistance and the area as the square of the side length. 

   22 49.0V
20 0.050m 0.020T 3.8 10 m N

24 
V

NIAB N B
R

    
   
   

    


l   

 
64. The speed of the electrons is found by assuming the energy supplied 

by the accelerating voltage becomes kinetic energy of the electrons.  
We assume that those electrons are initially directed horizontally, 
and that the television set is oriented so that the electron velocity is 
perpendicular to the Earth’s magnetic field, resulting in the largest 
possible force.  Finally, we assume that the magnetic force on the 
electrons is small enough that the electron velocity is essentially 
perpendicular to the Earth’s field for the entire trajectory.  This results in a constant acceleration for 
the electrons. 
(a) Acceleration:  

   21
initial final 2

2
        x x

eV
U K eV mv v

m
       

  Deflection: 

   

field
field field field

3Earth
Earth

Earth Earth3

time in field:      

2
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x
y x y y

x
x v t t

v
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e B

qv B e VmF qv B ma a B
m m m


   
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xv y
x
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 

        

23 3
22 field1 1 1

Earth Earth2 2 23 3

19
2 25

Earth 31 3

3

2 2

2

1.60 10 C
    5.0 10 T 0.18m

8 8 9.11 10 kg 2.0 10 V

    5.37 10 m 5.4 mm

y

x

e V x e V m
y a t B B x

m v m eV

e
B x

mV









    


   

 

  
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 
 

 

 (b)          
19

2 25

Earth 31

1.60 10 C
5.0 10 T 0.18 m

8 8 9.11 10 kg 28,000 V

e
y B x

mV







    


 

3    1.4 10 m   
 Note that the deflection is significantly smaller than the horizontal distance traveled, and so the 

assumptions made above are verified. 
 
65. From Fig. 27-22 we see that when the angle   is positive, the torque is negative.  The magnitude of 

the torque is given by Eq. 27-9.  For small angles we use the approximation sin .    Using Eq. 10-
14, we can write the torque in terms of the angular acceleration, showing that it is a harmonic 
oscillator.  

2sin     M
M

IabB
NIAB IabB I

I
       

 
  
 

           

We obtain the period of motion from the angular frequency, using 2T   .  First we determine the 
moment of inertia of the loop, as two wires rotating about their centers of mass and two wires 
rotating about an axis parallel to their lengths. 

 
 

 
 

 
 

2 2
2
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3 32
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I m b m
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   


     
     

     


  

  

 
   

 

 

 
66. (a) The frequency of the voltage must match the frequency of circular motion of the particles, so  

that the electric field is synchronized with the circular motion.  The radius of each circular orbit 

is given in Example 27-7 as r
mv

qB
 .  For an object moving in circular motion, the period is 

given by 
2

T
r

v


 , and the frequency is the reciprocal of the period. 

   
2

    
2 22

T
r v v Bq

f
mvv r m
qB


 

      

In particular we note that this frequency is independent of the radius, and so the same frequency 
can be used throughout the acceleration. 

 (b) For a small gap, the electric field across the gap will be approximately constant and uniform as  
the particles cross the gap.  If the motion and the voltage are synchronized so that the maximum 
voltage occurs when the particles are at the gap, the particles receive an energy increase of 
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0K qV  as they pass each gap.  The energy gain from one revolution will include the passing 

of 2 gaps, so the total kinetic energy increase is 02qV . 

 (c) The maximum kinetic energy will occur at the outside of the cyclotron. 

   
     22 2192 2 2 2

2 max max1 1 1 1
max max2 2 2 2 27
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K mv m
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
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
 
 
 

 

 

  13

19 6

1eV 1MeV
             6.898 10 J 4.3MeV

1.60 10 J 10 eV



  


  
  
  

 

 
67. The protons will follow a circular path as they move through the 

region of magnetic field, with a radius of curvature given in Example 

27-7 as 
mv

r
qB

 .  Fast-moving protons will have a radius of curvature 

that is too large and so they will exit above the second tube.  
Likewise, slow-moving protons will have a radius of curvature that is 
too small and so they will exit below the second tube.  Since the exit 
velocity is perpendicular to the radius line from the center of 
curvature, the bending angle can be calculated. 

       
   

2 19

1 1 1 1

27 7

sin   
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r
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
 

   



 

 
     

 

l

l l
  

 
68. (a) The force on each of the vertical wires in the loop is  

perpendicular to the magnetic field and is given by Eq. 27-1, 
with 90 .     When the face of the loop is parallel to the 
magnetic field, the forces point radially away from the axis.  
This provides a tension in the two horizontal sides.  When the 
face of the loop is perpendicular to the magnetic field, the force 
on opposite vertical wires creates a shear force in the horizontal 
wires.  From Table 12-2, we see that the tensile and shear 
strengths of aluminum are the same, so either can be used to 
determine the minimum strength.  We set tensile strength multiplied by the cross-sectional area 
of the two wires equal the tensile strength multiplied by the safety factor and solve for the wire 
diameter. 
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 
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(b)  The resistance is found from the resistivity using Eq. 25-3. 

   8
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69. The accelerating force on the bar is due to the magnetic force on the current.  If the current is  
constant, the magnetic force will be constant, and so constant acceleration kinematics can be used. 

  
2 2

2 2

0

0
2     

2 2

v v
v v a x a

x x


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 
 

   
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
       



 
 
   

Using the right hand rule, for the force on the bar to be in the direction of the acceleration shown in 
Fig. 27-53, the magnetic field must be  down  .   

 
70. (a) For the beam of electrons to be undeflected, the magnitude of the magnetic force must equal the  

magnitude of the electric force.  We assume that the magnetic field will be perpendicular to the 
velocity of the electrons so that the maximum magnetic force is obtained. 

   3 3

B E 6

8400V m
        1.75 10 T 1.8 10 T

4.8 10 m s

E
F F qvB qE B

v
          


 

(b) Since the electric field is pointing up, the electric force is down.  Thus the magnetic force must 
be up.  Using the right hand rule with the negative electrons, the magnetic field must be  out  of 
the plane of the plane formed by the electron velocity and the electric field. 

 (c) If the electric field is turned off, then the magnetic field will cause a centripetal force, moving  
the electrons in a circular path.  The frequency is the reciprocal of the period of the motion. 
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71. We find the speed of the electron using conservation  

of energy.  The accelerating potential energy becomes 
the kinetic energy of the electron. 

21
2

2
    

eV
eV mv v

m
    

Upon entering the magnetic field the electron is 
traveling horizontally.  The magnetic field will cause 
the path of the electron to rotate an angle  from the 
horizontal.  While in the field, the electron will travel 
a horizontal distance d and a vertical distance h0.  
Using the Pythagorean theorem, and trigonometric 
relations, we can write three equations which relate 
the unknown parameters, r, h0, and . 

 22 2 2 20
0 0tan =          sin             

h h d
r d r h h r r d

d r
         

l
 

These three equations can be directly solved, for the radius of curvature.  However, doing so requires 
solving a 3rd order polynomial.  Instead, we can guess at a value for h0, such as 1.0 cm.  Then we use 
the tangent equation to calculate an approximate value for .  Then insert the approximate value into 
the sine equation to solve for r.  Finally, inserting the value of r into the third equation we solve for 
h0.  We then use the new value of h0 as our guess and reiterated the process a couple of times until 
the value of h0 does not significantly change. 
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   

1

2 2

0

11cm 1.0cm 3.5cm
tan 28.39 7.36cm

22cm 3.5cm sin 28.39

               7.36cm 7.36cm 3.5cm 0.885cm

r

h

   
 
 

    
 

    

 

   

1

2 2

0

11 cm 0.885 cm 3.5 cm
tan 28.67 7.30 cm

22 cm 3.5 cm sin 28.67

               7.30 cm 7.30 cm 3.5 cm 0.894 cm

r

h

   
 
 

    
 

    

 

   

1

2 2

0

11 cm 0.894 cm 3.5 cm
tan 28.65 7.30cm

22 cm 3.5 cm sin 28.67

               7.30cm 7.30cm 3.5cm 0.894cm

r

h

   
 
 

    
 

    

 

The magnetic field can be determined from the trajectory’s radius, as done in Example 27-7. 

   
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72. (a) As the electron orbits the nucleus in the absence of the magnetic field, its  

centripetal acceleration is caused solely by the electrical attraction between 
the electron and the nucleus.   Writing the velocity of the electron as the 
circumference of its orbit times its frequency, enables us to obtain an 
equation for the frequency of the electron’s orbit. 

 22 2 2
0 2

02 2 3

2

4

rfke v ke
m m f

r r r mr



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When the magnetic field is added, the magnetic force adds or subtracts from the centripetal 
acceleration (depending on the direction of the field) resulting in the change in frequency. 
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We can solve for the frequency shift by setting 0f f f   , and only keeping the lowest order 

terms, since 0.f f   
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m m 
  2
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4
qB

f
m

    
 

(b) The “” indicates whether the magnetic force adds to or subtracts from the centripetal 
acceleration.  If the magnetic force adds to the centripetal acceleration, the frequency increases.  
If the magnetic force is opposite in direction to the acceleration, the frequency decreases. 

 
73. The speed of the proton can be calculated based on the radius of curvature of the (almost) circular 

motion.  From that the kinetic energy can be calculated. 
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74. The forces on each of the two horizontal sides of the loop 
have the same magnitude, but opposite directions, so these 
forces sum to zero.  The left side of the loop is located at 
x = b, where the magnetic field is zero, and therefore the 
force is zero.  The net force is the force acting on the right 
side of the loop.  By the right hand rule, with the current 
directed toward the top of the page and the magnetic field 
into the page, the force will point in the negative x 
direction with magnitude given by Eq. 27-2. 

 
2

0
0

ˆ ˆ ˆ1
Ia Bb a

I B IaB
b b

 
 
 

     F i i il


 

 
 75. We assume that the horizontal component of the Earth’s magnetic field is  

pointing due north.  The Earth’s magnetic field also has the dip angle of 
22o.  The angle between the magnetic field and the eastward current is  
90o.  Use Eq. 27-1 to calculate the magnitude of the force. 

  
     5 osin 330A 5.0m 5.0 10 T sin90

   0.083N

F I B    



l

 

Using the right hand rule with the eastward current and the Earth’s magnetic field, the force on the 
wire is  northerly and 68o above the horizontal  . 

 
76. Since the magnetic and gravitational force along the entire rod is 

uniform, we consider the two forces acting at the center of mass of the 
rod.  To be balanced, the net torque about the fulcrum must be zero.  
Using the usual sign convention for torques and Eq. 10-10a, we solve 
for the magnetic force on the rod. 

       1 1 1
4 4 40     M MMg d mg d F d F M m g         

We solve for the current using Eq. 27-2. 
   8.0 7.0M m g m m gF mg

I
B dB dB dB

 
   
l

 

The right hand rule indicates that the current must flow toward the left since the magnetic field is 
into the page and the magnetic force is downward. 

 
77. (a) For the rod to be in equilibrium, the gravitational torque and the  
 magnetic  torque must be equal and opposite.  Since the rod is uniform, 

the two torques can be considered to act at the same location (the center 
of mass).  Therefore, components of the two forces perpendicular to the 
rod must be equal and opposite.  Since the gravitational force points 
downward, its perpendicular component will point down and to the right.  
The magnetic force is perpendicular to the rod and must point towards 
the left to oppose the perpendicular component of the gravitational force.  
By the right hand rule, with a magnetic field pointing out of the page, the 
current must flow downward from the pivot to produce this force.   

 (b) We set the magnitude of the magnetic force, using Eq. 27-2, equal to the magnitude of the  
perpendicular component of the gravitational force, sinF mg   , and solve for the magnetic 
field. 

EarthB


E

N

BF


o22

o68
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   

   

20.150kg 9.80m/s sin13sin
sin   0.028T

12 A 1.0m
mg

I B mg B
I




    l
l

 

 (c) The largest magnetic field that could be measured is when .90   

   
   

   

2

max

0.150kg 9.80m/s sin90sin90
0.12T

12A 1.0m
mg

B
I

  
l
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CHAPTER 28:  Sources of Magnetic Field 
 
Responses to Questions 
 
1.  Alternating currents will have little effect on the compass needle, due to the rapid change of the 

direction of the current and of the magnetic field surrounding it. Direct currents will deflect a 
compass needle. The deflection depends on the magnitude and direction of the current and the 
distance from the current to the compass. The effect on the compass decreases with increasing 
distance from the wire. 

 
2. The magnetic field due to a long straight current is proportional to the current strength. The electric 

field due to a long straight line of electric charge at rest is proportional to the charge per unit length. 
Both fields are inversely proportional to the distance from the wire or line of charge. The magnetic 
field lines form concentric circles around the wire; the electric field lines are directed radially 
outward if the line of charge is positive and radially inward if the line of charge is negative.  

 
3.  The magnetic forces exerted on one wire by the other try to align the wires. The net force on either 

wire is zero, but the net torque is not zero. 
 
4.  Yes. Assume the upper wire is fixed in position. Since the currents in the wires are in the same 

direction, the wires will attract each other. The lower wire will be held in equilibrium if this force of 
attraction (upward) is equal in magnitude to the weight of the wire (downward). 

 
5. (a) The current in the lower wire is opposite in direction to the current in the upper wire. 

(b) The upper wire can be held in equilibrium due to the balance between the magnetic force from 
the lower wire and the gravitational force. The equilibrium will be stable for small vertical 
displacements, but not for horizontal displacements.  

 

6. (a) Let 2 1.I I   0 encl 0 1 2 0 12d I I I I       B l


  

(b) Let 2 1.I I    0 encl 0 1 2 0d I I I      B l


  

 
7. Inside the cavity 0B


 since the geometry is cylindrical and no current is enclosed. 

 
8. Construct a closed path similar to that shown in part (a) of the figure, such that sides ab and cd are 

perpendicular to the field lines and sides bc and da lie along the field lines. Unlike part (a), the path 
will not form a rectangle; the sides ab and cd will flare outward so that side bc is longer than side da. 
Since the field is stronger in the region of da than it is in the region of bc, but da is shorter than bc, 

the contributions to the integral in Ampère’s law may cancel. Thus, 0 encl 0I d    B

  is possible 

and the field is consistent with Ampère’s law. The lines could not curve upward instead of 
downward, because then bc would be shorter than da and it would not be possible for the 
contributions to sum to zero. 

 
9.  The equation for the magnetic field strength inside a solenoid is given by 0 .B In  

(a) The magnetic field strength is not affected if the diameter of the loops doubles. 
(b) If the spacing between the loops doubles, the number of loops per unit length decreases by a 

factor of 2, and the magnetic field strength then also decreases by a factor of 2. 
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iron rod on pivot 

solenoid

(c)  If the solenoid’s length is doubled along with the doubling of the total number of loops, then the 
number of loops per unit length remains the same, and the magnetic field strength is not 
affected. 

 
10. The Biot-Savart law states that the net field at a point in space is the vector sum of the field 

contributions due to each infinitesimal current element. As shown in Example 28-12, the magnetic 
field along the axis of a current loop is parallel to the axis because the perpendicular field 
contributions cancel. However, for points off the axis, the perpendicular contributions will not 
cancel. The net field for a point off the axis will be dominated by the current elements closest to it. 
For example, in Figure 28-21, the field lines inside the loop but below the axis curve downward, 
because these points in space are closer to the lower segment of the loop (where the current goes into 
the page) than they are to the upper segment (where the current comes out of the page).  

 
11. No. The magnetic field varies in strength and direction for points in the plane of the loop. The 

magnetic field is strongest at the center of the loop. 
 
12.  The lead-in wires to electrical devices have currents running in opposite directions. The magnetic 

fields due to these currents are therefore also opposite in direction. If the wires are twisted together, 
then the distance from a point outside the wires to each of the individual wires is about the same, and 
the field contributions from the two wires will cancel. If the wires were not twisted and were 
separate from each other, then a point outside the wires would be a different distance from one of the 
wires than from the other, and there would be a net field due to the currents in the wires. 

 
13. The Biot-Savart law and Coulomb’s law are both inverse-square in the radius and both contain a 

proportionality constant. Coulomb’s law describes a central force; the Biot-Savart law involves a 
cross product of vectors and so cannot describe a central force. 

14.  (a) The force between two identical electric charges is given by Coulomb’s law: 
2

2
.

kq
F

r
  

Magnetic pole strength of a bar magnet could be defined using an analogous expression for the 

magnetic force between the poles of two identical magnets: 
2

24
.

m
F

r




   Then, magnetic pole 

strength, m, would be given by 
24

.
Fr

m



  To determine m, place two identical magnets 

with their poles facing each other a distance r apart and measure the force between them. 
(b)  The magnetic pole strength of a current loop could be defined the same way by using two  

identical current loops instead of two bar magnets.  
 

15. Determine the magnetic field of the Earth at one of the magnetic poles (north or south), and use 
Equation 28-7b to calculate the magnetic moment. In this equation, x will be (approximately) the 
radius of the Earth. 

 
16.  To design a relay, place an iron rod inside a solenoid, with the 

solenoid oriented such that one end of it is facing a second iron 
rod on a pivot. The second iron rod functions as a switch for 
the large-current circuit and is normally held open by a spring. 
When current flows through the solenoid, the iron rod inside it 
becomes magnetized and attracts the second iron rod, closing 
the switch and allowing current to flow. 

 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

222 

17. (a) The source of the kinetic energy is the attractive force produced by the magnetic field from the  
magnet acting on the magnetic moments of the atoms in the iron. 

(b) When the block strikes the magnet, some of the kinetic energy from the block is converted into  
kinetic energy in the iron atoms in the magnet, randomizing their magnetic moments and 
decreasing the overall field produced by the magnet. Some of the kinetic energy of the block as 
a whole is also converted into the kinetic energy of the individual atoms in the block, resulting 
in an increase in thermal energy.  

 
18.  No, a magnet with a steady field will only attract objects made of ferromagnetic materials. 

Aluminum is not ferromagnetic, so the magnetic field of the magnet will not cause the aluminum to 
become a temporary magnet and therefore there will be no attractive force. Iron is ferromagnetic, so 
in the presence of a magnet, the domains in a piece of iron will align such that it will be attracted to 
the magnet.   
 

19. An unmagnetized nail has randomly oriented domains and will not generate an external magnetic 
field. Therefore, it will not attract an unmagnitized paper clip, which also has randomly oriented 
domains. When one end of the nail is in contact with a magnet, some of the domains in the nail align, 
producing an external magnetic field and turning the nail into a magnet. The magnetic nail will cause 
some of the domains in the paper clip to align, and it will be attracted to the nail. 

 
20. Yes, an iron rod can attract a magnet and a magnet can attract an iron rod. Consider Newton’s third 

law. If object A attracts object B then object B attracts object A.  
 
21. Domains in ferromagnetic materials in molten form were aligned by the Earth’s magnetic field and 

then fixed in place as the material cooled. 
 
22. Yes. When a magnet is brought near an unmagnetized piece of iron, the magnet’s field causes a 

temporary alignment of the domains of the iron. If the magnet’s north pole is brought near the iron, 
then the domains align such that the temporary south pole of the iron is facing the magnet, and if the 
magnet’s south pole is closest to the iron, then the alignment will be the opposite. In either case, the 
magnet and the iron will attract each other. 

 
23. The two rods that have ends that repel each other will be the magnets. The unmagnetized rod will be 

attracted to both ends of the magnetized rods. 
 
24. No. If they were both magnets, then they would repel one another when they were placed with like 

poles facing each other. However, if one is a magnet and the other isn’t, they will attract each other 
no matter which ends are placed together. The magnet will cause an alignment of the domains of the 
non-magnet, causing an attraction. 

 
25. (a) The magnetization curve for a paramagnetic substance is a straight line with slope slightly 

greater than 1. It passes through the origin; there is no hysteresis. 
 (b) The magnetization curve for a diamagnetic substance is a straight line with slope slightly less 

than 1. It passes through the origin; there is no hysteresis. 
 The magnetization curve for a ferromagnetic substance is a hysteresis curve (see Figure 28-29). 
 
26. (a) Yes. Diamagnetism is present in all materials but in materials that are also paramagnetic or  
   ferromagnetic, its effects will not be noticeable. 
 (b) No. Paramagnetic materials are nonferromagnetic materials with a relative permeability greater  
   than one. 
 (c) No. Ferromagnetic materials are those that can be magnetized by alignment of their domains. 
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Solutions to Problems 
 
 
1. We assume the jumper cable is a long straight wire, and use Eq. 28-1. 

  
   

 

7

4 40
cable

4 10 T m A 65A
3.714 10 T 3.7 10 T

2 2 0.035m

I
B

r


 



 


     


  

 Compare this to the Earth’s field of 40.5 10 T . 

  
4

cable Earth 5

3.714 10 T
7.43

5.0 10 T
B B






 


, so  the field of the cable is over 7 times that of the Earth. 

  
2. We assume that the wire is long and straight, and use Eq. 28-1. 

  
   4

0 wire
wire 7

0

2 0.15m 0.50 10 T2
    37.5A 38A

2 4 10 T m A

I rB
B I

r

 
  






     

 
 

 
3. Since the currents are parallel, the force on each wire will be attractive, toward the other wire.  Use  

Eq. 28-2 to calculate the magnitude of the force. 

  
   

 
 

7 2

0 1 2
2 2

4 10 T m A 35A
25m 0.15N, attractive

2 2 0.040m

I I
F

d


 


  l


 

 
4. Since the force is attractive, the currents must be in the same direction, so the current in the second 

wire must also be upward.  Use Eq. 28-2 to calculate the magnitude of the second current. 

  

 

0 1 2
2 2

42
2 7

0 2 1

  
2

2 2 0.070m
7.8 10 N m 9.75A 9.8A upward

4 10 T m A 28A

I I
F

d

F d
I

I



 
 





 

    
l

l



 

 
5. To find the direction, draw a radius line from the wire to the field point.   

Then at the field point, draw a perpendicular to the radius line, directed so 
that the perpendicular line would be part of a counterclockwise circle.  

 
 
 
 
 
6. For the experiment to be accurate to 2.0% , the magnetic field due to the current in the cable must  

be less than or equal to 2.0% of the Earth’s magnetic field.  Use Eq. 28-1 to calculate the magnetic 
field due to the current in the cable. 

  
       4

Earth0
cable Earth 7

0

2 1.00m 0.020 0.5 10 T2 0.020
0.020     5.0A

2 4 10 T m A

r BI
B B I

r


  






     

 
 

 Thus the maximum allowable current is 5.0A . 

 
 
 
 
 

I

E

D
C
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7. Since the magnetic field from a current carrying wire circles the 
wire, the individual field at point P from each wire is perpendicular 
to the radial line from that wire to point P.  We define 1B


 as the 

field from the top wire, and 2B


 as the field from the bottom wire.  
We use Eq. 28-1 to calculate the magnitude of each individual 
field.  

  

  
 

  
 

7

40
1

1

7

50
2

2

4 10 T m A 35A
1.17 10 T

2 2 0.060 m

4 10 T m A 35A
7.00 10 T

2 2 0.100m

I
B

r

I
B

r


 


 










   


   




 

We use the law of cosines to determine the angle that the radial 
line from each wire to point P makes with the vertical.  Since the field is perpendicular to the radial 
line, this is the same angle that the magnetic fields make with the horizontal. 

     
  

     
  

2 2 2

1
1

2 2 2

1
2

0.060 m 0.130 m 0.100 m
cos 47.7

2 0.060 m 0.130 m

0.100 m 0.130 m 0.060 m
cos 26.3

2 0.100 m 0.130 m









  
    

 
  

    
 

 

Using the magnitudes and angles of each magnetic field we calculate the horizontal and vertical 
components, add the vectors, and calculate the resultant magnetic field and angle.  

       4 o 5 o 5

net 1 1 2 2cos cos 1.174 10 T cos 47.7 7.00 10 T cos 26.3 1.626 10 TxB B B            

       4 o 5 o 4

net 1 1 2 1sin sin 1.17 10 T sin 47.7 7.00 10 T sin 26.3 1.18 10 TyB B B             

   2 22 2 5 4 4
, ,

4
,1 1

5
,

4 4

1.626 10  T 1.18 10  T 1.19 10  T

1.18 10  T
=tan tan 82.2

1.626 10  T

1.19 10  T @ 82.2 1.2 10 T @ 82

net x net y

net y

net y

B B B

B

B


  


 



 

       


  



     B


 

 
8. At the location of the compass, the magnetic field caused by the wire will point to 

the west, and the Earth’s magnetic field points due North.  The compass needle 
will point in the direction of the NET magnetic field. 

  

   
 

7

50
wire

5
1 1Earth

5

wire
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B

r
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B


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






 




   


   





 

 
9. The magnetic field due to the long horizontal wire points straight up at the  

point in question, and its magnitude is given by Eq. 28-1.  The two fields are 
oriented as shown in the diagram.  The net field is the vector sum of the two 
fields. 
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 
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50
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  5

Earth 5.0 10 TB    

   

o 5 o 5

net Earth net wire Earth

2 22 2 5 5 5

net net net 

5
net 1 1

5

net 

cos44 3.60 10 T          sin 44 1.07 10 T
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x y
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

 
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
 



       

        

 
   


al

   

 
10. The stream of protons constitutes a current, whose magnitude is found by multiplying the proton rate  

times the charge of a proton.  Then use Eq. 28-1 to calculate the magnetic field. 

  
     

 

7 9 19

170
stream

4 10 T m A 2.5 10 protons s 1.60 10 C proton
4.0 10 T
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I
B

r


 

 


  
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11. (a) If the currents are in the same direction, the magnetic fields at the midpoint between the two  

currents will oppose each other, and so their magnitudes should be subtracted. 

   
 

 
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1 2
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  






      


 

(b) If the currents are in the opposite direction, the magnetic fields at the midpoint between the two  
currents will reinforce each other, and so their magnitudes should be added. 

   
 

 
     
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
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12. Using the right-hand-rule we see that if the currents flow in the same direction, the magnetic fields 

will oppose each other between the wires, and therefore can equal zero at a given point.  Set the sum 
of the magnetic fields from the two wires equal to zero at the point 2.2 cm from the first wire and use 
Eq. 28-1 to solve for the unknown current.  

 0 1 0 2 2
2 1

1 2 1

6.0cm 2.2cm
0   2.0A 3.5A

2 2 2.2cmnet

I I r
B I I

r r r

 
 

   
         

  
 

 
13. Use the right hand rule to determine the direction of the magnetic field 

from each wire.  Remembering that the magnetic field is inversely 
proportional to the distance from the wire, qualitatively add the magnetic 
field vectors.  The magnetic field at point #2 is zero. 

 
 
 
 
 
 
14. The fields created by the two wires will oppose each other, so the net field is the difference of the  

magnitudes of the two fields.  The positive direction for the fields is taken to be into the paper, and 
so the closer wire creates a field in the positive direction, and the farther wire creates a field in the 
negative direction.  Let d be the separation distance of the wires. 

 0 0 0 0
net 1 1

2 2closer farther closer farther

1 1 1 1

2 2 2 2

I I I I
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r r r r r d r d
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 

   
   
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2
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     1.568 10 T 1.6 10 T

I d

r d r d










 


 




 

   

 
 
 

 
 
 


 

 Compare this to the Earth’s field of 40.5 10 T . 

  
6

net Earth 4

1.568 10 T
0.031

0.5 10 T
B B






 


 

 The field of the wires is about 3% that of the Earth.   
 
15. The center of the third wire is 5.6 mm from the left wire, and 2.8 mm from the right wire.  The force 

on the near (right) wire will attract the near wire, since the currents are in the same direction.  The 
force on the far (left) wire will repel the far wire, since the currents oppose each other.  Use Eq. 28-2 
to calculate the force per unit length. 
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16. (a) We assume that the power line is long and straight, and use Eq. 28-1. 
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 
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
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The direction at the ground, from the right hand rule, is south.  Compare this to the Earth’s field 

of 40.5 10 T , which points approximately north. 

   
6

line Earth 4

2.235 10 T
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0.5 10 T
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  The field of the cable is about 4% that of the Earth.   
 (b) We solve for the distance where line Earth .B B  
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So about 0.4 m below the wire, the net B-field would be 0, assuming the Earth’s field points 
straight north at this location. 
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17. The Earth’s magnetic field is present at both locations in the problem, and we 
assume it is the same at both locations.  The field east of a vertical wire must be 
pointing either due north or due south.  The compass shows the direction of the net 
magnetic field, and it changes from 28o E of N to 55o E of N when taken inside.  
That is a “southerly” change (rather than a “northerly” change), and so the field 
due to the wire must be pointing due south.  See the diagram.  For the angles, 

28 , 55 ,        and 180       and so 27    and o125  .  Use 

the law of sines to find the magnitude of wireB


, and then use Eq. 28-1 to find the 

magnitude of the current. 
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5.0 10 T 0.120m 17A
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  
  





    
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 

 

 Since the field due to the wire is due south, the current in the wire must be  down . 
 
18. The magnetic field at the loop due to the long wire is into the page, and can be calculated by Eq. 28-

1.  The force on the segment of the loop closest to the wire is towards the wire, since the currents are 
in the same direction.  The force on the segment of the loop farthest from the wire is away from the 
wire, since the currents are in the opposite direction. 

 

Because the magnetic field varies with distance, it is more difficult to calculate the total force on the 
left and right segments of the loop.  Using the right hand rule, the force on each small piece of the 
left segment of wire is to the left, and the force on each small piece of the right segment of wire is to 
the right.  If left and right small pieces are chosen that are equidistant from the long wire, the net 
force on those two small pieces is zero.  Thus the total force on the left and right segments of wire is 
zero, and so only the parallel segments need to be considered in the calculation.  Use Eq. 28-2. 
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19. The left wire will cause a field on the x axis that points in the y direction, and the right wire will 

cause a field on the x axis that points in the negative y direction.  The distance from the left wire to a 
point on the x axis is x, and the distance from the right wire is d x . 
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20. The left wire will cause a field on the x axis that points in the negative y direction, and the right wire 

will also cause a field on the x axis that points in the negative y direction.  The distance from the left 
wire to a point on the x axis is x, and the distance from the right wire is d x . 
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21. The magnetic fields created by the individual currents will be at right angles to each other.  The field 
due to the top wire will be to the right, and the field due to the bottom wire will be out of the page.  
Since they are at right angles, the net field is the hypotenuse of the two individual fields. 
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22. The net magnetic field is the vector sum of the magnetic fields 

produced by each current carrying wire.  Since the individual 
magnetic fields encircle the wire producing it, the field is 
perpendicular to the radial line from the wire to point P.  We let 

1B


 be the field from the left wire, and 2B


 designate the field 
from the right wire.  The magnitude of the magnetic field 
vectors is calculated from Eq. 28-1.  
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We use the law of cosines to determine the angle that the radial line from each wire to point P makes 
with the horizontal.  Since the magnetic fields are perpendicular to the radial lines, these angles are 
the same as the angles the magnetic fields make with the vertical. 
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 

 

Using the magnitudes and angles of each magnetic field we calculate the horizontal and vertical 
components, add the vectors, and calculate the resultant magnetic field and angle.  
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23. (a) The net magnetic field a point y above the center of  
the strip can be found by dividing the strip into 
infinitely thin wires and integrating the field 
contribution from each wire.  Since the point is directly 
above the center of the strip, we see that the vertical 
contributions to the magnetic field from symmetric 
points on either side of the center cancel out.  Therefore, 
we only need to integrate the horizontal component of 
the magnetic field.  We use Eq. 28-1 for the magnitude 
of the magnetic field, with the current given by 

.
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dI dx
d
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1 1

2 2

1 1

2 2

0 0 0

2 22 2 2 2
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(b) In the limit of large y,  1tan / 2 / 2 .d y d y     

10 0 0tan
2 2 2x

I I Id d
B

d y d y y

  
  

  
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 
 

This is the same as the magnetic field for a long wire. 
 
24. We break the current loop into the three branches of the triangle and add the forces from each of the 

three branches.  The current in the parallel branch flows in the same direction as the long straight 
wire, so the force is attractive with magnitude given by Eq. 28-2. 

0
1 2

II
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d





  

By symmetry the magnetic force for the other two segments will be equal.  These two wires can be 
broken down into infinitesimal segments, each with horizontal length dx.   The net force is found by 
integrating Eq. 28-2 over the side of the triangle.  We set x=0 at the left end of the left leg.  The 

distance of a line segment to the wire is then given by 3r d x  .  Since the current in these 
segments flows opposite the direction of the current in the long wire, the force will be repulsive. 
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We calculate the net force by summing the forces from the three segments. 
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25. Use Eq. 28-4 for the field inside a solenoid. 
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26. The field inside a solenoid is given by Eq. 28-4. 
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27. (a) We use Eq. 28-1, with r equal to the radius of the wire. 
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  (b) We use the results of Example 28-6, for points inside the wire.  Note that  1.25 0.50 mmr     
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(c) We use Eq. 28-1, with r equal to the distance from the center of the wire. 
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28. We use the results of Example 28-10 to find the maximum and minimum fields. 
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29. (a) The copper wire is being wound about an average   

 diameter that is approximately equal to the outside 
diameter of the solenoid minus the diameter of the wire, or 

.D d   See the (not to scale) end-view diagram.  The 
length of each wrapping is  .D d    We divide the 

length of the wire L  by the length of a single winding to 
determine the number of loops.  The length of the solenoid 
is the number of loops multiplied by the outer diameter of 
the wire, d. 
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(b) The field inside the solenoid is found using Eq. 28-4.  Since the coils are wound closely 
together, the number of turns per unit length is equal to the reciprocal of the wire diameter. 

 

  7

0
0 3

#  turns 1

4 10 T m/A 16.7A
10.5mT

2.00 10 m

L
D d d

n
d

I
B nI

d









   


   



l

l l l


 

 
 

d

DD d



Chapter 28  Sources of Magnetic Field 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

231 

30. (a) The magnitude of the magnetic field from each wire is found using Eq. 28-1.  The direction of  
the magnetic field is perpendicular to the radial vector from the current to the point of interest.  
Since the currents are both coming out of the page, the magnetic fields will point 
counterclockwise from the radial line.  The total magnetic field is the vector sum of the 
individual fields. 

   0 0
1 2 1 1 2 2

1 2

ˆ ˆ ˆ ˆsin cos sin cos
2 2

I I

r r

    
 

       B B B i j i j
  

 

   0 1 1 1 2

1 2 1 2

sin sin cos cosˆ ˆ
2

I

r r r r

    

    

        
    

i j  

This equation for the magnetic field shows 
that the x-component of the magnetic field 
is symmetric and the y-component is anti-
symmetric about  = 90.  

 (b) See sketch. 
 (c) The two diagrams are similar in shape, as  

both form loops around the central axes.  
However, the magnetic field lines form a 
vector field, showing the direction, not 
necessarily the magnitude of the magnetic 
field.  The equipotential lines are from a 
scalar field showing the points of constant 
magnitude.  The equipotential lines do not 
have an associated direction. 

  
 
31. Because of the cylindrical symmetry, the magnetic fields will be 

circular.  In each case, we can determine the magnetic field using 
Ampere’s law with concentric loops.  The current densities in the wires 
are given by the total current divided by the cross-sectional area. 
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(a) Inside the inner wire the enclosed current is determined by the  
current density of the inner wire. 
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(b) Between the wires the current enclosed is the current on the inner wire. 

  0 0
0 encl 0 0    2     

2

I
ds I B R I B

R

  


      B
   

(c) Inside the outer wire the current enclosed is the current from the inner wire and a portion of the 
current from the outer wire. 
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(d)  Outside the outer wire the net current enclosed is zero. 

 0 encl 0    2 0    0ds I B R B        B
   

 
(e) See the adjacent graph.  The  

spreadsheet used for this problem 
can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH28.XLS,” on tab 
“Problem 28.31e.” 

 

 
  

 
 
 
32. We first find the constants C1 and C2 by integrating the currents over each cylinder and setting the  

integral equal to the total current. 
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(a) Inside the inner wire the enclosed current is determined by integrating the current density inside  
the radius R. 
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(b) Between the wires the current enclosed is the current on the inner wire. 

  0 0
0 encl 0 0    2     

2

I
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R

  


      B
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(c) Inside the outer wire the current enclosed is the current from the inner wire and a portion of the  
current from the outer wire. 
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(d)  Outside the outer wire the net current enclosed is zero. 

 0 encl 0    2 0    0ds I B R B        B
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33. Use Eq. 28-7b to write a ratio of the magnetic fields at the surface of the earth and 13,000 km above 
the surface.  Use the resulting ratio to determine the magnetic field above the surface. 

 
0

33 3 33
4 62 1 12

2 13 3 3
01 2 2

3
1

6.38 10 km2
   = = 1.0 10 T  = 3.6 10 T

19.38 10 km
2

B x xx
B B

B x x
x

 

 


  
      

 

 
34. Since the point C is along the line of the two straight segments of the current, 

these segments do not contribute to the magnetic field at C.  We calculate the 
magnetic field by integrating Eq. 28-5 along the two curved segments.  Along 
each integration the line segment is perpendicular to the radial vector and the 
radial distance is constant. 
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     
  

 
    

 
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35. Since the current in the two straight segments flows radially toward and away from the center of the 

loop, they do not contribute to the magnetic field at the center.  We calculate the magnetic field by 
integrating Eq. 28-5 along the two curved segments.  Along each integration segment, the current is 
perpendicular to the radial vector and the radial distance is constant.  By the right-hand-rule the 
magnetic field from the upper portion will point into the page and the magnetic field from the lower 
portion will point out of the page. 
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1 22 2 2
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36. We assume that the inner loop is sufficiently small that the magnetic field from the 

larger loop can be considered to be constant across the surface of the smaller loop.  
The field at the center of the larger loop is illustrated in Example 28-12.  Use Eq. 27-
10 to calculate the magnetic moment of the small loop, and Eq. 27-11 to calculate the 
torque. 
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 This torque would cause the inner loop to rotate into the same plane as the outer loop with the 
currents flowing in the same direction. 

 
37. (a) The magnetic field at point C can be obtained using the Biot- 

Savart law (Eq. 28-5, integrated over the current).   First break the 
loop into four sections:  1) the upper semi-circle, 2) the lower 
semi-circle, 3) the right straight segment, and 4) the left straight 
segment.   The two straight segments do not contribute to the 
magnetic field as the point C is in the same direction that the 
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current is flowing.  Therefore, along these segments r̂  and ˆd  are parallel and ˆ ˆ 0d r  .  For 
the upper segment, each infinitesimal line segment is perpendicular to the constant magnitude 
radial vector, so the magnetic field points downward with constant magnitude. 

 0 0 0
upper 12 2

1 1

ˆˆ ˆ ˆ
4 4 4

I d r I k I
R k

r R R

  
 

 
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 
. 

Along the lower segment, each infinitesimal line segment is also perpendicular to the constant 
radial vector. 
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Adding the two contributions yields the total magnetic field. 
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4 4 4

I I I
k k k

R R R R

    
        

 
B B B
  

 

(b) The magnetic moment is the product of the area and the current.  The area is the sum of the two  
half circles.  By the right-hand-rule, curling your fingers in the direction of the current, the 

thumb points into the page, so the magnetic moment is in the k̂  direction. 
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38. Treat the moving point charge as a small current segment.  We can write the 

product of the charge and velocity as the product of a current and current segment.  
Inserting these into the Biot-Savart law gives us the magnetic field at point P. 
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39. (a) The disk can be broken down into a series of infinitesimal thick rings.   

As the charge in each of these rings rotates it produces a current of 
magnitude  2dI dq  , where dq is the surface charge density 

multiplied by the area of the ring.  We use Eq. 27-10 to calculate the 
magnetic dipole moment of each current loop and integrate the dipole 
moments to obtain the total magnetic dipole moment.  
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(b)  To find the magnetic field a distance x along the axis of the disk, we again consider the disk as a 
series of concentric currents.  We use the results of Example 28-12 to determine the magnetic 
field from each current loop in the disk, and then integrate to obtain the total magnetic field. 
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(c) When we take the limit x R  our equation reduces to Eq. 28-7b.   
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40. (a) Choose the y axis along the wire and the x axis passing from the  

center of the wire through the point P.  With this definition we 
calculate the magnetic field at P by integrating Eq. 28-5 over the 
length of the wire.  The origin is at the center of the wire. 
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 (b) If we take the limit as d  , this equation reduces to Eq. 28-1. 
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41. (a) The magnetic field at point Q can be obtained by integrating Eq. 28-5 over  

 the length of the wire.  In this case, each infinitesimal current segment dl is 
parallel to the x axis, as is each radial vector.  Since the magnetic field is 
proportional to the cross-product of the current segment and the radial 
vector, each segment contributes zero field. Thus the magnetic field at point 
Q is zero. 

 (b) The magnetic field at point P is found by integrating Eq. 28-5 over the  
length of the current segment. 
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42. We treat the loop as consisting of 5 segments, The first has length d, 

is located a distance d to the left of point P, and has current flowing 
toward the right.  The second has length d, is located a distance 2d to 
left of point P, and has current flowing upward.  The third has length 
d, is located a distance d to the left of point P, and has current 
flowing downward.  The fourth has length 2d, is located a distance d 
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below point P, and has current flowing toward the left.  Note that the fourth segment is twice as long 
as the actual fourth current.  We therefore add a fifth line segment of length d, located a distance d 
below point P with current flowing to the right.  This fifth current segment cancels the added portion, 
but allows us to use the results of Problem 41 in solving this problem.  Note that the first line points 
radially toward point P, and therefore by Problem 41(a) does not contribute to the net magnetic field.  
We add the contributions from the other four segments, with the contribution in the positive z-
direction if the current in the segment appears to flows counterclockwise around the point P. 
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43. (a) The angle subtended by one side of a polygon, , from the  

center point P is 2 divided by the number of sides, n. The 
length of the side L and the distance from the point to the 
center of the side, D, are obtained from trigonometric relations. 
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The magnetic field contribution from each side can be found 
using the result of Problem 40.   
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The contributions from each segment add, so the total magnetic field is n times the field from 
one side. 
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(b) In the limit of large n,  / n , becomes very small, so tan( / ) /n n  . 

0 0
total 2 2

In I
B

R n R

  


   

  This is the magnetic field at the center of a circle. 
 
44. The equation derived in Eq. 28-12 gives the magnetic field  

a distance x from a single loop.  We expand this single loop 
to the field of an infinite solenoid by multiplying the field 
from a single loop by n dx, the density of loops times the 
infinitesimal thickness, and integrating over all values of x.  
Use the table in Appendix B-4 to evaluate the integral. 

     
3 3 1

22 2

2 2 2
0 0 0

0
2 2 22 2 2 22 22

IR ndx IR n dx IR n x
B In

R R xR x R x

   


 

 


   
 

   

P

I0

R

D



L



Chapter 28  Sources of Magnetic Field 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

237 

 
45. To find the magnetic field at point (x,y) we break each current segment  

into two segments and sum fields from each of the eight segments to 
determine the magnetic field at the center.  We use the results of Problem 
41(b) to calculate the magnetic field of each segment. 
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0 0
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 
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
 

     
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We simplify this equation by factoring out common constants and combining terms with similar 
roots. 

2 2 2 2 2 2 2 2
0 ( ) ( ) ( ) ( ) ˆ

4 ( ) ( )( ) ( )

y x y b x a y b x a y xI

xy b x y a y b x x a y




        
    

     
B k


 

  
46. (a) By symmetry we see that on the x axis the magnetic field can only have an x component.  To  

justify this assertion, imagine that the magnetic field had a component off the axis.  If the 
current loop were rotated by 90 about the x axis, the loop orientation would be identical to the 
original loop, but the off-axis magnetic field component would have changed.  This is not 
possible, so the field only has an x component.  The contribution to this field is the same for 
each loop segment, and so the total magnetic field is equal to 4 times the x component of the 
magnetic field from one segment.  We integrate Eq. 28-5 to find this magnetic field. 
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 

 




 

         
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          

 
j k i

B

i i
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(b) Let x d to show that the magnetic field reduces to a dipole field of Eq. 28-7b. 

  
2 2

0 0
1/ 2 32 2

ˆ ˆ2 2

24 2

d I d I

xx x

 


 
i i

B


 

Comparing our magnetic field to Eq. 28-7b we see that it is a dipole field with the magnetic 

moment 2 ˆd Iμ i


 

 
47. (a) If the iron bar is completely magnetized, all of the dipoles are aligned.  The total dipole moment  
  is equal to the number of atoms times the dipole moment of a single atom.   

1 1
A

m

N V
N

M

     
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     23 3 2
23

2 2

6.022 10 atoms/mole 7.80g/cm 9.0cm 1.2cm 1.0cm A m
   1.8 10

55.845g/mole atom

   16.35 A m 16 A m  


  

  
 

 



 

 

(b) We use Eq. 27-9 to find the torque. 

  2sin 16.35 A m 0.80 T sin 90 13 m NB        

 
48. The magnetic permeability is found  

from the two fields. 

  
0 0

0

0 0 0

  ;    ;

    

B nI B nI

B B

B B

 


 



 

  
 

For the graph, we have not plotted 
the last three data points so that the 
structure for low fields is seen.  The 
spreadsheet used for this problem can 
be found on the Media Manager, with 
filename “PSE4_ISM_CH28.XLS,” 
on tab “Problem 28.48.” 

 
49. The magnetic field of a long, thin torus is the same as the field given by a long solenoid, as in Eq. 

28-9. 

    7 -12200 4 10  Tm/A 285 m 3.0 A 2.4 TB nI       

 
50. The field inside the solenoid is given by Eq. 28-4 with 

0 replaced by the permeability of the iron. 

  
   
   

5

0

2.2T 0.38 m
    2.7 10 T m A 22

640 48A

NI B
B

NI


       

l

l
  

 
51. Since the wires all carry the same current and are 

equidistant from each other, the magnitude of the force per 
unit length between any two wires is the same and is given 
by Eq. 28-2.   

  
 

272
0

4

4 10  T m/A 8.00 A

2 2 0.035 m

3.657 10 N/m

IF

d


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
 

 


l  

The direction of the force between two wires is along the 
radial line and attractive for currents traveling in the same 
direction and repulsive for currents traveling in opposite 
directions.  The forces acting on wire M are radially away 
from the other two wires.  By symmetry, the horizontal 
components of these forces cancel and the net force is the 
sum of the vertical components. 
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The force on wire N is found by adding the components of the forces from the other two wires.  By 
symmetry we see that this force is directed at an angle of 300.  The force on wire P, will have the 
same magnitude but be directed at 240. 

 
 

   

4 4 4
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4 4
, y

2 24 4 4

4

cos60 3.657 10 N/m 3.657 10 N/m cos60 1.829 10 N/m
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1.829 10 N/m 3.167 10 N/m 3.7 10 N/m at 300

3.7 10 N/m at 240

N x NP NM

N NM

N

P

F F F

F F

F

F

  

 

  


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         

       

  

 

 
52. The magnetic field at the midpoint between currents M and N is the 

vector sum of the magnetic fields from each wire, given by Eq. 28-1.    
Each field points perpendicularly to the line connecting the wire to the 
midpoint. 
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 The net field points slightly below the horizontal direction. 
 
53. For the wire to be suspended the net magnetic force must equal the 

gravitational force.  Since the same current flows through the two lower 
wires, the net magnetic force is the sum of the vertical components of 
the force from each wire, given by Eq. 28-2.  We solve for the unknown 
current by setting this force equal to the weight of the wire.   
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54. The centripetal force is caused by the magnetic field, and is given by Eq. 27-5b.  From this force we  

can calculate the radius of curvature. 
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The component of the velocity that is parallel to the magnetic field is unchanged, and so the pitch is 
that velocity component times the period of the circular motion. 
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55. (a) Use Eq. 28-1 to calculate the field due to a long straight wire. 
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 (b) 
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 (c) The two fields are not equal and opposite.  Each individual field is due to a single wire, and has  
no dependence on the other wire.  The magnitude of current in the second wire has nothing to 
do with the value of the field caused by the first wire. 

 (d) Use Eq. 28-2 to calculate the force due to one wire on another.  The forces are attractive since  
the currents are in the same direction. 
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These two forces per unit length are equal and opposite because they are a Newton’s third law 
pair of forces. 

 
56. (a) The magnetic field from the long straight wire will be out of the page  

in the region of the wire loop with its magnitude given by Eq. 28-1. 
By symmetry, the forces from the two horizontal segments are  
equal and opposite, therefore they do not contribute to the net force. 
We use Eq. 28-2 to find the force on the two vertical segments of  
the loop and sum the results to determine the net force.  Note  
that the segment with the current parallel to the straight wire  
will be attracted to the wire, while the segment with the  
current flowing in the opposite direction will be repelled from the wire. 
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(b) Since the forces on each segment lie in the same plane, the net torque on the loop is zero. 
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57. The sheet may be treated as an infinite number of parallel wires.  
The magnetic field at a location y above the wire will be the sum of 
the magnetic fields produced by each of the wires.  If we consider 
the magnetic field from two wires placed symmetrically on either 
side of where we are measuring the magnetic field, we see that the 
vertical magnetic field components cancel each other out.  
Therefore, the field above the wire must be horizontal and to the 
left.  By symmetry, the field a location y below the wire must have 
the same magnitude, but point in the opposite direction.  We 
calculate the magnetic field using Ampere’s law with a rectangular 
loop that extends a distance y above and below the current sheet, as shown in the figure. 

 0 encl 0

sides top bottom

1
02

0 2

, to the left above the sheet

d d d d B D I jtD

B jt

 
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 

   B B B Bl l l l 



      
   

 

 
58. (a) We set the magnetic force, using Eq. 28-2, equal to the weight of the wire and solve for the  

necessary current.  The current must flow in the same direction as the upper current, for the 
magnetic force to be upward. 
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 (b) The lower wire is in unstable equilibrium, since if it is raised slightly from equilibrium, the  
  magnetic force would be increased, causing the wire to move further from equilibrium. 
  (c) If the wire is suspended above the first wire at the same distance, the same current is needed,  

but in the opposite direction, as the wire must be repelled from the lower wire to remain in 
equilibrium.  Therefore the current must be 360 A to the left.  This is a stable equilibrium for 
vertical displacement since if the wire is moved slightly off the equilibrium point the magnetic 
force will increase or decrease to push the wire back to the equilibrium height. 

 
59. The magnetic field at the center of the square loop is four times the magnetic field from one of the 

sides.  It will be directed out of the page.  We can use the result of Problem 40 for the magnitude of 
the field from one side, with 1

2 .R d   If the current is flowing counterclockwise around the square 

loop, the magnetic field due to each piece will point upwards. 
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60. The magnetic field at the center of a circular loop was calculated in Example 28-12.  To determine 

the radius of the loop, we set the circumferences of the loops equal. 
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Therefore, changing the shape to a circular loop will decrease the magnetic field. 
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61. (a) Choose x = 0 at the center of one coil.  The center of the other coil will then be at x = R.  Since  
the currents flow in the same direction in both coils, the right-hand-rule shows that the magnetic 
fields from the two coils will point in the same direction along the axis.  The magnetic field 
from a current loop was found in Example 28-12.  Adding the two magnetic fields together 
yields the total field.   
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(b) Evaluate the derivative of the magnetic field at 1
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 Evaluate the second derivative of the magnetic field at 1
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Therefore, at the midpoint 0
dB

dx
  and 

2

2
0.

d B

dx
  

(c) We insert the given data into the magnetic field equation to calculate the field at the midpoint. 
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
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62. The total field is the vector sum of the fields from the two currents.  We  

can therefore write the path integral as the sum of two such integrals. 

1 2d d d   B B B
    

    l l l  

To evaluate the integral for current 1, we use Eq. 28-1, with the 
magnetic field constant and parallel to the loop at each line segment. 

2
0 1

1 0 1

02

I
d rd I

r


 


  B


 l  

To evaluate the integral for current 2, we consider a different angle d   
centered at I2  and crossing the path of the loop at two locations, as 
shown in the diagram.  If we integrate clockwise around the path, the 
components of dl parallel to the field will be 1r d  and 2 .r d   
Multiplying these components by the magnetic field at both locations 
gives the contribution to the integral from the sum of these segments. 
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   0 2 0 2
1 1 2 2 1 2

1 2

0
2 2

I I
B d B d r d r d

r r

 
 

 
    l l  

The total integral will be the sum of these pairs resulting in a zero net integral. 

1 2 0 1 0 10d d d I I       B B B
    

    l l l  

 
63. From Example 28-12, the magnetic field on the axis of a circular loop of wire of radius R carrying  

current I is 
 

0

2

3/ 22 22

IR
B

R x





, where x is the distance along the axis from the center of the loop.  

For the loop described in this problem, we have Earth.R x R   
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





 
    



 
  

 

 

 
64. The magnetic field from the wire at the location of the plane is perpendicular to the velocity of the 

plane since the plane is flying parallel to the wire. We calculate the force on the plane, and thus the 
acceleration, using Eq. 27-5b, with the magnetic field of the wire given by Eq. 28-1. 

    
  
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m m r
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



 

 

 

 

 
  

   


 

 
65. (a) To find the length of wire that will give the coil sufficient resistance to run at maximum power,  

we write the power equation (Eq. 25-7b) with the resistance given by Eq. 25-3.  We divide the 
length by the circumference of one coil to determine the number of turns. 

   
 

   
   
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max 2
max
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V d
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D D P



   





   


   

  

l
l

l

 

 (b) We use the result of Example 28-12 to determine the magnetic field at the center of the coil,  
  with the current obtained from Eq. 25-7b. 

   
   

  

7 3

0 0 max
4 10  T m/A 46 1.0 10  W

0.83 mT
2.0 m 35 V

NI N P
B

D D V

 
 

   


 

(c) Increasing the number of turns will proportionately increase the resistance and therefore  
  decrease the current.  The net result is no change in the magnetic field. 
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I1
I2

I3 

I 4 
I5

a

a a

P

66. The magnetic field at the center of the square is the vector sum of the 
magnetic field created by each current.  Since the magnitudes of the 
currents are equal and the distance from each corner to the center is the 
same, the magnitude of the magnetic field from each wire is the same 
and is given by Eq. 28-1.  The direction of the magnetic field is 
directed by the right-hand-rule and is shown in the diagram.  By 
symmetry, we see that the vertical components of the magnetic field 
cancel and the horizontal components add.  

0
1 2 3 4

0 0

ˆ4 cos45
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2 2ˆ ˆ4
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2
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    
  
 

B B B B B i

i i

    

 

 
67. The wire can be broken down into five segments:  the two  

long wires, the left vertical segment, the right vertical  
segment, and the top horizontal segment.  Since the current  
in the two long wires either flow radially toward or away  
from the point P, they will not contribute to the magnetic  
field.  The magnetic field from the top horizontal segment  
points into the page and is obtained from the solution  
to Problem 40. 

 
 

1
2

0 0

2 22 2 54
top

I Ia
B

a aa a

 
 

 


 

The magnetic fields from the two vertical segments both point into the page with magnitudes 
obtained from the solution to Problem 41. 

  
    

1
2

0 0

224 / 2 5/ 2
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B
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 
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Summing the magnetic fields from all the segments yields the net field. 

  0 0 0 5
2 2 ,  into the page.

22 5 5
top vert

I I I
B B B

aa a

  
 
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68. Use Eq. 28-4 for the field inside a solenoid. 

  
     7

30
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0.12 m

IN
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
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l


 

 
69. The field due to the solenoid is given by Eq. 28-4.  Since the field due to the solenoid is 

perpendicular to the current in the wire, Eq. 27-2 can be used to find the force on the wire segment. 

  
         

 

7
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l
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70. Since the mass of copper is fixed and the density is fixed, the volume is fixed, and we designate it as 

Cu Cu Cu Cu CuV m A  l .  We call the fixed voltage 0V .  The magnetic field in the solenoid is given by 

Eq. 28-4. 

  

0 0 0 0 0 Cu 0 0 Cu Cu
0 0 2

Cusol Cu sol RCu RCu sol Cu RCu sol Cu
sol

Cu

0 0 Cu Cu

2

RCu sol Cu
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 

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
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l

l l

 

 The number of turns of wire is the length of wire divided by the circumference of the solenoid. 

  

Cu

Cu 0 0 Cu Cu 0 0 Cu Cu 0 0 Cu Cusol

2 2
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l

l
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 The first factor in the expression for B is made of constants, so we have 
sol sol Cu

1
B

r

l l

.  Thus we 

want the wire to be  short and fat  .  Also the radius of the solenoid should be small and the length of 
the solenoid small. 

 
71. The magnetic field inside the smaller solenoid will equal the sum of the fields from both solenoids.  

The field outside the inner solenoid will equal the field produced by the outer solenoid only.  We set 
the sum of the two fields given by Eq. 28-4 equal to 1

2 times the field of the outer solenoid and 

solve for the ratio of the turn density. 
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3
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n
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n
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72. Take the origin of coordinates to be at the center of the semicircle.The magnetic field at the center of 

the semicircle is the vector sum of the magnetic fields from each of the two long wires and from the 
semicircle.  By the right-hand-rule each of these fields point into the page, so we can sum the 
magnitudes of the fields.   The magnetic field for each of the long segments is obtained by 
integrating Eq. 28-5 over the straight segment. 
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The magnetic field for the curved segment is obtained by integrating Eq. 28-5 over the semicircle. 
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73. (a) Set x = 0 at the midpoint on the axis between the two loops.  Since the loops are a distance R  

apart, the center of one loop will be at 1
2x R   and the center of the other at 1

2 .x R   The 

currents in the loops flow in opposite directions, so by the right-hand-rule the magnetic fields 
from the two wires will subtract from each other.  The magnitude of each field can be obtained 
from Example 28-12. 

   
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Factoring out 31
8 R  from each of the denominators yields the desired equation.  
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(b) For small values of x, we can use the approximation
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Again we can use the expansion for small deviations 
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This magnetic field has the expected linear dependence on x with a coefficient of 

  2
048 / 25 5C NI R . 

(c)  Set C equal to 0.15 T/m and solve for the current. 
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74. We calculate the peak current using Eqs. 25-7 and 25-9. Then we use the peak current in Eq. 28-1 to 

calculate the maximum magnetic field. 
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75. We use the results of Example  
28-12 to calculate the magnetic field as 
a function of position.  The spreadsheet 
used for this problem can be found on 
the Media Manager, with filename 
“PSE4_ISM_CH28.XLS,” on tab 
“Problem 28.75.” 
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76. (a) Use the results of Problem 61(a) to write the magnetic field. 
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 (b) See the graph.  The spreadsheet  
used for this problem can be 
found on the Media Manager, 
with filename 
“PSE4_ISM_CH28.XLS,” on tab 
“Problem 28.76b.” 

  
 
 
 
 
 

(c) Use the values from the spreadsheet to find the % difference. 
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CHAPTER 29:  Electromagnetic Induction and Faraday’s Law 
 
Responses to Questions 
 
1.  Using coils with many (N) turns increases the values of the quantities to be experimentally 

measured, because the induced emf and therefore the induced current are proportional to N. 
 
2. Magnetic flux is a quantitative measure of the number of magnetic field lines passing through a 

given area.  It depends not only on the field itself, but also on the area and on the angle between the 
field and the area.  

 
3.  Yes, the current is induced clockwise. No, there is no induced current if the magnet is steady, 

because there is no changing flux through the ring. Yes, the current is induced counterclockwise. 
 
4.  There is no induced current in the loop that is moving parallel to the wire because there is no change 

of magnetic flux through the loop. The induced current in the loop moving away from the wire is 
clockwise. The magnetic field through the loop due to the current is directed into the page, and the 
loop is moving such that its distance from the wire is increasing, resulting in a decrease in magnetic 
field strength and therefore a decrease in magnetic flux through the loop. By Lenz’s law, a 
decreasing magnetic flux into the page results in a clockwise induced current.  

 
5.  Yes. The force is attractive. The induced clockwise current in the right loop will induce a 

counterclockwise current in the left loop which will slow the relative motion of the loops.  
 
6.  (a) Yes. 

(b) The current starts as soon as the battery is connected and current begins to flow in the first loop.  
(c) The induced current stops as soon as the current in the first loop has reached its steady value.  
(d) The induced current in the second loop will be counterclockwise, in order to oppose the  

change. 
(e) While there is an induced current, there will be a force between the two loops. 
(f) The force will be repulsive, since the currents are in opposite directions.  

 
7. Yes, a current will be induced in the second coil. It will start when the battery is disconnected from 

the first coil and stop when the current falls to zero in the first coil. The current in the second loop 
will be clockwise. 

 
8. Counterclockwise. If the area of the loop decreases, the flux through the loop (directed out of the 

page) decreases. By Lenz’s law, the resulting induced current will be counterclockwise to oppose the 
change. Another way to approach this question is to use the right-hand rule. As the bar moves to the 
left, the negative electrons in the bar will experience a force down, which results in a 
counterclockwise current.  

 
9. (a) The current through RA will be to the right. The field due to the current in coil B will be to the  

left. As coil B is moved toward coil A, the flux through A will increase, so the induced field in 
coil A will be to the right, to oppose the change. This field corresponds to an induced current 
flowing from left to right in RA. 

(b) The current through RA will be to the left. When coil B is moved away from coil A, the flux  
through coil A will decrease, so the induced field will be to the left, to oppose the change. This 
field corresponds to an induced current flowing from right to left in RA. 

(c) If RB is increased, the current in the circuit will decrease, decreasing the flux through coil A,  
resulting in a current through RA to the left. 
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10. The shielding prevents external fields from inducing a current which would cause a false signal in 
the inner signal wire. 

 
11. The currents in the two wires will be 180º out of phase. If they are very close together, or wrapped 

around each other, then the magnetic fields created by the currents in the wires will very nearly 
cancel each other. 

 
12.  The straight wire will fall faster. Since the magnetic field is non-uniform, the flux through the loop 

will change as the loop falls, inducing a current which will oppose the change and therefore resist 
the downward motion. Eddy currents will also be induced in the straight wire, but they will be much 
smaller since the straight wire does not form a closed loop.  

 
13. (a) Yes. If a rapidly changing magnetic field exists outside, then currents will be induced in the  

metal sheet. These currents will create magnetic fields which will partially cancel the external 
fields. 

(b) Yes. Since the metal sheet is permeable, it will partially shield the interior from the exterior  
static magnetic field; some of the magnetic field lines will travel through the metal sheet. 

(c) The superconducting sheet will shield the interior from magnetic fields. 
 
14.  Each of the devices mentioned has a different operating current and voltage, and each needs its own 

transformer with its own ratio of primary to secondary turns designed to convert normal household 
current and voltage into the required current and voltage. If the devices were designed to operate 
with the same current and voltage, they could all run on identical transformers. 

 
15. You could hook the transformer up to a known ac voltage source. The ratio of the output voltage to 

the input voltage will give the ratio of turns on the two coils. If you pair up the leads incorrectly (one 
lead from each coil, rather than both leads from the same coil), there will be no output voltage. 
Alternatively, you could attach an ohmmeter to two of the leads. The resistance will be infinite if 
you have one lead from each pair, and nearly zero if you have both leads from the same pair. 

 
16.  Higher voltages are inherently more dangerous because of the increased risk of establishing large 

currents and large electromagnetic fields. The large potential differences between the wires and the 
ground could cause arcing and short circuits, leading to accidental electrocutions. In addition, 
higher-voltage power lines will have higher electromagnetic fields associated with them than lower-
voltage power lines. Biological effects of exposure to high electromagnetic fields are not well 
understood, but there is evidence of increased health risks to people who live close to high voltage 
power lines.   

 
17. When the transformer is connected to the 120-V dc source no back emf is generated, as would 

happen with an ac source. Therefore, the current in the transformer connected to the dc source will 
be very large. Because transformers generally are made with fine, low resistance wires, the large 
current could cause the wires to overheat, melt the insulation, and burn out. 

 
18.  A motor uses electric energy to create mechanical energy. When a large electric motor is running, 

the current in the motor’s coil creates a back emf. When the motor is first turned on, the back emf is 
small, allowing the motor to draw maximum current. The back emf has a maximum value when the 
motor is running at full speed, reducing the amount of current required to run the motor. As the 
current flow in the motor’s coil stabilizes, the motor will operate at its lower, normal current. The 
lights will dim briefly when the refrigerator motor starts due to the increased current load on the 
house circuit. Electric heaters operate by sending a large current through a large resistance, 
generating heat. When an electric heater is turned on, the current will increase quickly to its 
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maximum value (no coil, so no back emf) and will stay at its maximum value as long as the heater is 
on. Therefore, the lights will stay dim as long as the heater is on. 

 
19. At the moment shown in Figure 29-15, the armature is rotating clockwise and so the current in 

length b of the wire loop on the armature is directed outward. (Use the right-hand rule: the field is 
north to south and the wire is moving with a component downward, therefore force on positive 
charge carriers is out.) This current is increasing, because as the wire moves down, the downward 
component of the velocity increases.  As the current increases, the flux through the loop also 
increases, and therefore there is an induced emf to oppose this change. The induced emf opposes the 
current flowing in section b of the wire, and therefore creates a counter-torque.  

 
20. Eddy currents exist in any conducting material, so eddy current brakes could work with wheels made 

of copper or aluminum. 
 
21. The nonferrous materials are not magnetic but they are conducting. As they pass by the permanent 

magnets, eddy currents will be induced in them. The eddy currents provide a “braking” mechanism 
which will cause the metallic materials to slide more slowly down the incline than the nonmetallic 
materials. The nonmetallic materials will reach the bottom with larger speeds. The nonmetallic 
materials can therefore be separated from the metallic, nonferrous materials by placing bins at 
different distances from the bottom of the incline. The closest bin will catch the metallic materials, 
since their projectile velocities off the end of the incline will be small. The bin for the nonmetallic 
materials should be placed farther away to catch the higher-velocity projectiles. 

 
22. The slots in the metal bar prevent the formation of large eddy currents, which would slow the bar’s 

fall through the region of magnetic field. 
 
23. As the aluminum sheet is moved through the magnetic field, eddy currents are created in the sheet. 

The magnetic force on these induced currents opposes the motion. Thus it requires some force to 
pull the sheet out. (See Figure 29-21.)  

 
24. As the bar magnet falls, it sets up eddy currents in the metal tube which will interact with the magnet 

and slow its fall. The magnet will reach terminal velocity (due to the interactions with the magnetic 
dipoles set up by the eddy currents, not air resistance) when the weight of the magnet is balanced by 
the upward force from the eddy currents. 

 
25. As the bar moves in the magnetic field, induced eddy currents are created in the bar. The magnetic 

field exerts a force on these currents that opposes the motion of the bar. (See Figure 29-21.)  
 
26. Although in principle you could use a loudspeaker in reverse as a microphone, it would probably not 

work in actual practice. The membrane of the microphone is very lightweight and sensitive to the 
sound waves produced by your voice. The cardboard cone of a loudspeaker is much stiffer and 
would significantly dampen the vibrations so that the frequency of the impinging sound waves 
would not be translated into an induced emf with the same frequency.  

 
 

Solutions to Problems 
 
1. The average induced emf is given by Eq. 29-2b. 

 38 Wb 58Wb
2 460 V

0.42s
B Bd

N N
dt t

  
       


e  
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2. As the magnet is pushed into the coil, the magnetic flux increases to the right.  To oppose this 
increase,  flux produced by the induced current must be to the left, so the induced current in the 
resistor will be from right to left. 

 
3. As the coil is pushed into the field, the magnetic flux through the coil increases into the page.  To 

oppose this increase, the flux produced by the induced current must be out of the page, so the 
induced current is counterclockwise. 

 
4. The flux changes because the loop rotates.  The angle between the field and the normal to the loop 

changes from 0o to 90o.  The average induced emf is given by the “difference” version of Eq. 29-2b. 

   

   

2 o o

avg

2

0.110 m 1.5T cos90 cos0cos

0.20s

0.110 m 1.5T 0 1
0.29 V

0.20s

B AB

t t





 
     

 


  

e

 

 
5. Use Eq. 29-2a to calculate the emf.  Setting the flux equal to the magnetic field multiplied by the 

area of the loop, A  r2 , and the emf equal to zero, we can solve for the rate of change in the coil 
radius. 

 

   

2 2 2 0

0.12 m
0.010 T/s 0.0012 m/s 1.2 mm/s

2 2 0.500 T

Bd d dB dr
B r r Br

dt dt dt dt
dr dB r

dt dt B

  
       

      

e

 

 
6. We choose up as the positive direction.  The average induced emf is given by the “difference” 

version of Eq. 29-2a. 

  
   2

20.054 m 0.25T 0.68T
5.3 10 V

0.16s
B A B

t t

   
       

 
e  

 
7. (a) When the plane of the loop is perpendicular to the field lines, the flux is given by the maximum  

of Eq. 29-1a. 

      22 20.50T 0.080 m 1.0 10 WbB BA B r         

 (b) The angle is o55   
 (c) Use Eq. 29-1a. 

      22 o 3cos 0.50T 0.080 m cos55 5.8 10 WbB BA B r          

 
8. (a) As the resistance is increased, the current in the outer loop will decrease.  Thus the flux through  

the inner loop, which is out of the page, will decrease.  To oppose this decrease, the induced 
current in the inner loop will produce a flux out of the page, so the direction of the induced 
current will be counterclockwise. 

(b) If the small loop is placed to the left, the flux through the small loop will be into the page and  
will decrease.  To oppose this decrease, the induced current in the inner loop will produce a flux 
into the page, so the direction of the induced current will be clockwise. 
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9. As the solenoid is pulled away from the loop, the magnetic flux to the right through the loop 
decreases.  To oppose this decrease, the flux produced by the induced current must be to the right, so 
the induced current is counterclockwise as viewed from the right end of the solenoid. 

 
10. (a) The average induced emf is given by the “difference” version of Eq. 29-2b. 

   
   2

20.040 m 0.45T 0.52T
2.7 10 V

0.18s
B A B

t t

   
       

 
e  

 (b) The positive result for the induced emf means the induced field is away from the observer, so  
the induced current is clockwise. 

 
11. (a) The magnetic flux through the loop is into the paper and decreasing, because the area is  
  decreasing.  To oppose this decrease, the induced current in the loop will produce a flux  
  into the paper, so the direction of the induced current will be clockwise. 
 (b) The average induced emf is given by the “difference” version of Eq. 29-2b. 

     2 2

2 2

avg

0.75T 0.100 m 0.030 m

0.50s

    4.288 10 V 4.3 10 V

B
B A

t t



 


  

 

   

  e
 

 (c) We find the average induced current from Ohm’s law. 

   
2

24.288 10 V
1.7 10 A

2.5
I

R




   


e
 

 
12. As the loop is pulled from the field, the flux through the loop decreases, causing an induced EMF 

whose magnitude is given by Eq. 29-3, .B v le   Because the inward flux is decreasing, the induced 
flux will be into the page, so the induced current is clockwise, given by I R e .  Because this 
current in the left-hand side of the loop is in a downward magnetic field, there will be a magnetic 
force to the left.  To keep the rod moving, there must be an equal external force to the right, given by  

.F I B l  

  
     2 22 2 0.650T 0.350 m 3.40 m s

0.628 N
0.280

B v B v
F I B B B

R R R
     



l l
l l l

e
 

 
13. (a) Use Eq. 29-2a to calculate the emf induced in the ring, where the flux is the magnetic field  

multiplied by the area of the ring.  Then using Eq. 25-7, calculate the average power dissipated 
in the ring as it is moved away.  The thermal energy is the average power times the time. 

 

   

   
  

21
4

2
221 2 42

4

2 42
3

6 3

16

0.80T 0.015m
8.075 10 J 8.1mJ

16 55 10 45 10 s

B
B dBA

t t t

B d B dt
Q P t t

R t R R t



 

 
 

 
     

  

                    

   
  

e

e
 

(b) The temperature change is calculated from the thermal energy using Eq. 19-2. 

  
3

3

3

8.075 10 J
4.2 10 C

15 10 kg 129J kg C

Q
T

mc







     

 
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14. The average emf induced in the short coil is given by the “difference” version of Eq. 29-2b.  N is the 
number of loops in the short coil, and the flux change is measured over the area of the short coil.  
The magnetic flux comes from the field created by the solenoid.  The field in a solenoid is given by 
Eq. 28-4, 0 solenoid solenoidB IN l , and the changing current in the solenoid causes the field to change. 

  

     
 

 
 

0 solenoid
short short

solenoidshort short 0 short solenoid short

solenoid

27

4
4 10 T m A 15 420 0.0125m 5.0 A

    1.3 10 V
0.25m 0.60s

IN
N A

N A B N N A I

t t t




 




 

  
  


  

 
 
 l

l



e
 

 
15. (a) There is an emf induced in the coil since the flux through the coil changes.  The current in the  

coil is the induced emf divided by the resistance of the coil.  The resistance of the coil is found 
from Eq. 25-3. 

     
    

wire

coil
coil wire

wire

22 3 3

8

coil      

28 0.110 m 1.3 10 m 8.65 10 T s
   0.1504 A 0.15A

1.68 10 m 28 2 0.110 m

R
A

dB
NA NA AdtI

R
A

dB
NA

dt

dB

dt



 

 



 



 

  

 
  

 

     

l

l l



e

e
 

 (b) The rate at which thermal energy is produced in the wire is the power dissipated in the wire. 

         
 

8
22 2 3

23
wire

1.68 10 m 28 2 0.11
0.1504 A 1.4 10 W

1.3 10 m
P I R I

A











 
    



l 
 

 
16. The sinusoidal varying current in the power line creates a sinusoidal varying magnetic field 

encircling the power line, given by Eq. 28-1.  Using Eq. 29-1b we integrate this field over the area of 
the rectangle to determine the flux through it.  Differentiating the flux as in Eq. 29-2b gives the emf 
around the rectangle.  Finally, by setting the maximum emf equal to 170 V we can solve for the 
necessary length of the rectangle. 

 

       

0 0

7.0 m 7.0 m
0 0 0 0 0 0

5.0 m 5.0 m

( ) cos 2   ;
2

( ) cos 2 cos 2 ln 1.4 cos 2
2 2 2B

I
B t ft

r
I I dr I

t BdA ft dr ft ft
r r

 


    
  



      l l l

 

       

 

       

0 0
0 0

0 0 0

0
7

0 0

ln 1.4 cos 2  ln 1.4 sin 2   ;
2

 ln 1.4     

170V
12m

 ln 1.4 10 4 10 T m A 55,000A 60Hz ln 1.4

Bd N I d
N ft N I f ft

dt dt

N I f

N I f

   




  

        
 

  


l l

l

l


e

e

e

 

This is unethical because the current in the rectangle creates a back emf in the initial wire.  This 
results in a power loss to the electric company, just as if the wire had been physically connected to 
the line. 
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17. The charge that passes a given point is the current times the elapsed time, Q I t  .  The current will 

be the emf divided by the resistance, I
R


e

.  The resistance is given by Eq. 25-3, 
wire

R
A



l

, and the 

emf is given by the “difference” version of Eq. 29-2a.  Combine these equations to find the charge 
during the operation. 

 

     
 

loop

loop loop wire

wire

wire

2 2 2

loop wire loop wire loop wire

loop

23

8

  ;    ;  

2 2

0.091m 1.175 10 m 0.750T
   8.81C

2 1.68 10 m

B

A B
A B A A BtR I

t t A R t
A

A A B r r B r r B
Q I t

r


 

  

   

 




       

  

  
    


 

 

l

l l

l



e
e

 

 
18. (a) Use Eq. 29-2b to calculate the emf. 

   
     

 

3 2 2 2

2

75 8.8 0.51 10 T m 6.6 1.1475 V

6.6 1.1 V

Bd d
N t t t

dt dt

t


        

  

  e
 

(b) Evaluate at the specific times. 

  
    
    

2

2

1.0s 6.6 1.1475 1.0 V 5.5V

4.0s 6.6 1.1475 4.0 V 12 V

t

t

     

    

e

e
 

 
19. The energy dissipated in the process is the power dissipated by the resistor, times the elapsed time 

that the current flows.  The average induced emf is given by the “difference” version of Eq. 29-2a. 

  
     

  

2

22 222 22
5

  ;    ;

0.125m 0.40T
2.1 10 J

150 0.12s

B

B

P
t R

A Bt
E P t t

R t R R t





  



 
        

  

    
 
 

e
e

e
   

 
20. The induced emf is given by Eq. 29-2a.  Since the field is uniform and is perpendicular to the area, 

the flux is simply the field times the area. 

     2 20.28T 3.50 10 m s 9.8 mVBd dA
B

dt dt


        e  

 Since the area changes at a constant rate, and the area has not shrunk to 0 at t = 2.00 s, the emf is the 
same for both times. 
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21. The induced emf is given by Eq. 29-2a.  Since the field is uniform and is perpendicular to the area, 
the flux is simply the field times the area of a circle.  We calculate the initial radius from the initial 
area.  To calculate the radius after one second we add the change in radius to the initial radius. 

  

 

   

      

2

2 0
0 0 0

2

2

( ) 2                

0.285m
(0) 2 0.28T 0.043m s 23mV

0.285m
(1.00s) 2 0.28T 0.043m s 1.00s 0.043m/s 26 mV

B
d rd dr A

t B Br A r r
dt dt dt


 










     

 

  
 
 
  

e

e

e

 

 
22. The magnetic field inside the solenoid is given by Eq. 28-4, 0 .B nI   Use Eq. 29-2a to calculate 

the induced emf.  The flux causing the emf is the flux through the small loop. 

   solenoid
1 1 0 1 0 0 1 0 0sin sinBd dB dI

A A n A n I t A n I t
dt dt dt

      


         e  

 
23. (a) If the magnetic field is parallel to the plane of the loop, no magnetic flux passes through the  
  loop at any time.  Therefore, the emf and the current in the loop are zero. 
 (b) When the magnetic field is perpendicular to the plane of the loop, we differentiate Eq. 29-1a  

with respect to time to obtain the emf in the loop.  Then we divide the emf by the resistance to 
calculate the current in the loop. 

   

    

      

0 0

2 2

1 1
2

0.60 T/s 0.50 m 2 0.70 m /s 2.0 s
0.99 A

2.0 

Bd d
I t A t A t

R R dt R dt R

                
     



e

 

Since the magnetic field is pointing down into the page, the downward flux is increasing.  The 
current then flows in a direction to create an upward flux.  The resulting current is then  0.99 A  
in the counterclockwise direction. 

 
24. The magnetic field across the primary coil is constant and is that of a solenoid (Eq. 28-4).  We 

multiply this magnetic field by the area of the secondary coil to calculate the flux through the 
secondary coil.   Then using Eq. 29-2b we differentiate the flux to calculate the induced emf. 

  

     

2
0 0

2 2 21
2 0 0 0 02

sin 2 4

4 sin 2 cos 2

B p

B
p p

BA n I ft d

d d
N N n I d ft d fN n I ft

dt dt

  

     

  

       
e

 

 
25. (a)   The magnetic field a distance r from the wire is perpendicular to the 

wire and given by Eq. 28-1.  Integrating this magnetic field over the 
area of the loop gives the flux through the loop. 

0 0 ln 1
2 2

b a

B b

I Ia a
BdA adr

r b

 
 

       
    

(b) Since the loop is being pulled away, .
db

v
dt

   Differentiate the 

magnetic flux with respect to time to calculate the emf in the loop. 

a

b 
r 

aI 







 


 
dr

B

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 
2

0 0 0ln 1 ln 1
2 2 2

Bd d Ia a Ia d a db Ia v

dt dt b db b dt b b a

  
  

                            
e  

Note that this is the emf at the instant the loop is a distance b from the wire.  The value of b is 
changing with time. 

(c) Since the magnetic field at the loop points into the page, and the flux is decreasing, the induced 
current will create a downward magnetic field inside the loop.  The current in the loop then 
flows clockwise. 

(d) The power dissipated in the loop as it is pulled away is related to the emf and resistance by Eq. 
25-7b.  This power is provided by the force pulling the loop away.  We calculate this force from 
the power using Eq. 8-21.  As in part (b), the value of b is changing with time. 

 

2 2 2 4
0

22 24

P I a v
F

v Rv Rb b a




  


e
 

 

26. From Problem 25, the flux through the loop is given by 0 ln 1 .
2

B

Ia a

b




   
 
 

  The emf is found 

from Eq. 29-2a. 

   
    

   

0 0

4

ln 1 ln 1
2 2

4 10 T m A 0.120 m 12.0
ln 1 15.0 A 2500 rad s cos 2500

2 15.0

5.3 10 V cos 2500

Bd d Ia a a a dI

dt dt b b dt

t

t

 
 










       


  

 

    
        

 
 
 



e

 

 
27. The velocity is found from Eq. 29-3. 

  
0.12 V

    1.0 m s
0.90T 0.132 m

B v v
B

    l
l

e
e  

 
28. Because the velocity is perpendicular to the magnetic field and the rod, we find the induced emf  

from Eq. 29-3. 

       20.800T 0.120 m 0.150 m s 1.44 10 VB v    le  

 
29. (a) Because the velocity is perpendicular to the magnetic field and the rod, we find the induced emf  

from Eq. 29-3. 

       0.35T 0.250 m 1.3m s 0.1138 V 0.11VB v   le  

 (b) Find the induced current from Ohm’s law, using the total resistance. 

   30.1138 V
4.138 10 A 4.1mA

25.0 2.5
I

R
    

  
e

 

(c) The induced current in the rod will be down.  Because this current is in an upward magnetic  
field, there will be a magnetic force to the left.  To keep the rod moving, there must be an equal 
external force to the right, given by Eq. 27-1. 

       3 44.138 10 A 0.250 m 0.35T 3.621 10 N 0.36 mNF I B       l  
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30. The emf is given by Eq. 29-3 as .B v le   The resistance of the conductor is given by Eq. 25-3.  The 
length in Eq. 25-3 is the length of resistive material.  Since the movable rod starts at the bottom of 
the U at time t = 0, in a time t it will have moved a distance vt. 

     2 2

B v B v B vA
I

L vtR vt
A A

  
   

 
l l l

l l

e
 

 
31. The rod will descend at its terminal velocity when the magnitudes of the 

magnetic force (found in Example 29-8) and the gravitational force are equal.  
We set these two forces equal and solve for the terminal velocity. 

   
   

2 2

3 2

2 22 2

    

3.6 10  kg 9.80 m/s 0.0013 
0.39 m/s

0.060 T 0.18 m

t

t

B v
mg

R

mgR
v

B



 

 
  

l

l

 

 
32. Since the antenna is vertical, the maximum emf will occur when the car is traveling perpendicular to 

the horizontal component of the Earth’s magnetic field.  This occurs when the car is traveling in the 
east or west direction.  We calculate the magnitude of the emf using Eq. 29-3, where B is the 
horizontal component of the Earth’s magnetic field. 

   5 45.0 10 Tcos45 0.750m 30.0m/s 8.0 10 V 0.80mVxB v        le  

 
33. (a) As the rod moves through the magnetic field an emf will be built up 

across the rod, but no current can flow.  Without the current, there is 
no force to oppose the motion of the rod, so yes, the rod travels at 
constant speed.  

(b) We set the force on the moving rod, obtained in Example 29-8,  
equal to the mass times the acceleration of the rod.  We then write 
the acceleration as the derivative of the velocity, and by separation 
of variables we integrate the velocity to obtain an equation for the velocity as a function of time. 

2 2

0

2 2 2 2

2 2 2 2

00
0

ln ( )
B

tv t
mR

v

dv B dv B
F ma m v dt

dt R v mR

dv B v B
dt t v t v e

v mR v mR



      


      

 
l

l l

l l
 

The magnetic force is proportional to the velocity of the rod and opposes the motion.  This 
results in an exponentially decreasing velocity. 

 
34. (a) For a constant current, of polarity shown in the figure, the 

magnetic force will be constant, given by Eq. 27-2.  Using 
Newton’s second law we can integrate the acceleration to 
calculate the velocity as a function of time. 

0 0
( )

v tdv I B I B
F m I B dv dt v t t

dt m m
      

l l
l  

(b) For a constant emf, the current will vary with the speed of the 
rod, as motional emf opposes the motion of the rod.  We again use Eq. 27-2 for the force on the 
rod, with the current given by Ohm’s law, and the induced motional emf given by Eq 29-3.  
The current produced by the induced emf opposes the current produced by the battery. 

 

¬ 
B
 v


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 
2 2

2 2
0

0 0

2 2 2 2
0 0

0 0
0 0

         

    ln     1
B

v t t
mR

dv B v dv B dv B
F m I B B dt dt

dt R B v mR v B mR

dv B v B B
dt t v t e

v B mR B mR B



             

  
               

 
l

l l l
l l

l l

l l l

l l l

e

e e

e e

e e

 

(c) With constant current, the acceleration is constant and so the velocity does not reach a terminal 
velocity.  However, with constant emf, the increasing motional emf decreases the applied force.  

This results in a limiting, or terminal velocity of 0tv B le . 

  
35. (a) The magnetic field is perpendicular to the rod, with the magnetic 

field decreasing with distance from the rod, as in Eq. 28-1.  The 
emf, de, across a short segment, dr, of the rod is given by the 
differential version of Eq. 29-3.  Integrating this emf across the 
length of the wire gives the total emf. 

0 0

  

ln
2 2

b a

b

d Bvdr

I Iv b a
d vdr

r b

 
 



 

     
  

e

e e
 

  This emf points toward the wire, as positive charges are attracted toward the current. 
(b) The only change is the direction of the current, so the magnitude of the emf remains the same, 

but points away from the wire, since positive charges are repelled from the current. 
  
36. From Eq. 29-4, the induced voltage is proportional to the angular speed.  Thus their quotient is a 

constant. 

 1 2 2
2 1

1 2 1

1550 rpm
    12.4 V 22.0 V

875rpm


  

    
e e

e e  

 
37. We find the number of turns from Eq. 29-4.  The factor multiplying the sine term is the peak output 

voltage. 

  
     

peak

peak 2

24.0 V
    57.2 loops

0.420T 60 rev s 0.0515m2 rad rev
NB A N

B A


 
    

e
e  

 
38. From Eq. 29-4, the peak voltage is peak NB Ae .  Solve this for the rotation speed. 

  
peak

peak 2

120 V
    9.39 rad s

480 0.550T 0.220 m

9.39 rad s
1.49 rev s

2 2 rad rev

NB A
NBA

f

 


 

    

  

e
e

 

 
39. From Eq. 29-4, the peak voltage is peak NABe .  The rms voltage is the peak voltage divided by  

 2 , and so rms peak 2 2V NAB= e . 

 
40. Rms voltage is found from the peak induced emf.  Peak induced emf is calculated from Eq. 29-4. 
  peak   NB A e  
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       2

peak

rms

250 0.45T 2 rad rev 120 rev s 0.050m

2 2 2

     471.1V 470 V

NB A
V

 
  

 

e

 

  To double the output voltage, you must double the rotation frequency to 240 rev/s. 
 
41. From Eq. 29-4, the induced voltage (back emf) is proportional to the angular speed.  Thus their 

quotient is a constant. 

   1 2 2
2 1

1 2 1

2500 rpm
    72 V 150 V

1200 rpm


  

    
e e

e e  

 
42. When the motor is running at full speed, the back emf opposes the applied emf, to give the net across 

the motor. 

  applied back back applied    120 V 7.20 A 3.05 98 VIR IR        e e e e  

 
43. The back emf is proportional to the rotation speed (Eq. 29-4).  Thus if the motor is running at half 

speed, the back emf is half the original value, or 54 V.  Find the new current from writing a loop 
equation for the motor circuit, from Figure 29-20. 

back
back

120 V 54 V
0    13A

5.0
IR I

R

 
      


e e

e e  

 
44. The magnitude of the back emf is proportional to both the rotation speed and the magnetic field, 

from Eq. 29-4.  Thus 
B
e

 is constant. 

  
 

 
 
 

11 2 2 1 1
2 1

1 1 2 2 2 1

75V 1100 rpm
    0.42

2300 rpm 85V

BB
B B

B B


  

    
e e e

e
 

So  reduce the magnetic field to 42% of its original value  . 
 
45. (a) The generator voltage rating is the generator emf less the back emf.  The ratio of the generator  

voltage rating to the generator emf is equal to the ratio of the effective resistance to the armature 
resistance.  We solve this ratio for the generator emf, which is the same as the “no load” 
voltage. 

load load load
nl load load

nl nl

250V 64A
250V 2441V 2.4kV

0.40

R V I
V V V

R R

 
       
e  

 (b) The generator voltage is proportional to the rotation frequency.  From this proportionality we  
solve for the new generator voltage. 

 2 2 2
2 1

1 1 1

750rpm
250V 190V

1000rpm

V
V V

V

 
 

      

 
46. Because S PN N , this is a step-down transformer.  Use Eq. 29-5 to find the voltage ratio, and Eq. 

29-6 to find the current ratio. 

  S S S P

P P P S

85 turns 620 turns
0.14           7.3

620 turns 85 turns

V N I N

V N I N
       
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47. We find the ratio of the number of turns from Eq. 21-6. 

  S S

P P

12000 V
50

240 V

N V

N V
    

 If the transformer is connected backward, the role of the turns will be reversed: 

   S S S
S

P P

1 1
        240 V 4.8 V

50 240 V 50

N V V
V

N V
       

 
48. (a) Use Eqs. 29-5 and 29-6 to relate the voltage and current ratios. 

    S S S SP P P
S P

P P P S P S S

0.35 A
 ;         120 V 5.6 V

7.5 A

V N I VN I I
V V

V N I N V I I
         

 (b) Because S PV V , this is a step-down transformer. 

 
49. (a) We assume 100% efficiency, and find the input voltage from P IV . 

   P P P

P

75W
    3.409 V

22 A

P
P I V V

I
      

  Since P SV V , this is a  step-up  transformer. 

 (b) S

P

12 V
3.5

3.409 V

V

V
   

 
50. (a) The current in the transmission lines can be found from Eq. 25-10a, and then the emf at the end  

of the lines can be calculated from Kirchhoff’s loop rule. 

   

6

town
town rms rms rms 3

rms

output

6
3town

output rms 3

rms

65 10 W
    1444 A

45 10 V

0  

65 10 W
3.0 45 10 V 49333V 49 kV rms

45 10 V

P
P V I I

V

IR V

P
IR V R V

V


    



   


         



E

E

 

 (b) The power loss in the lines is given by 2

loss rmsP I R .  

   
   

22

loss loss rms
22 6

total town loss town rms

1444A 3.0
Fraction wasted

65 10 W 1444 A 3.0

                         0.088 8.8%

P P I R

P P P P I R


   

    

 

 

 
51. (a) If the resistor R is connected between the terminals, then it has a voltage V0 across it and current 

I0 passing through it.  Then by Ohm’s law the equivalent resistance is equal to the resistance of 
the resistor. 

0
eq

0

V
R R

I
   

 (b) We use Eqs. 29-5 and 29-6 to write the voltage drop and current through the resistor in terms of 
the source voltage and current to calculate the effective resistance. 

S
20

s 0 PP
eq

Ps 0 S
0

S

N
V

V V NN
R R R

NI I NI
N

 
      

 
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52. We set the power loss equal to 2% of the total power.  Then using Eq. 25-7a we write the power loss 
in terms of the current (equal to the power divided by the voltage drop) and the resistance.  Then, 
using Eq. 25-3, we calculate the cross-sectional area of each wire and the minimum wire diameter.  
We assume there are two lines to have a complete circuit. 

    
 

2 2
2

loss 2

6 8 3

22 3

0.020       
0.020 4

4 225 10 W 2.65 10 m 2 185 10  m4
0.01796m 1.8cm

0.020 0.020 660 10 V

P P d
P P I R A

V A V

P
d

V

  


 



            
   

   
   



l l

l 
 

The transmission lines must have a diameter greater than or equal to 1.8 cm. 
 
53. Without the transformers, we find the delivered current, which is the current in the transmission  

lines, from the delivered power, and the power lost in the transmission lines. 

  

   

out
out out line line

out

22

lost line line

85000 W
    708.33A

120 V

708.33A 2 0.100 100346 W

P
P V I I

V

P I R

    

   

 

Thus there must be 85000 W 100346W 185346W 185kW    of power generated at the start of the 
process. 

 
With the transformers, to deliver the same power at 120 V, the delivered current from the step-down 
transformer must still be 708.33 A.  Using the step-down transformer efficiency, we calculate the 
current in the transmission lines, and the loss in the transmission lines. 

  

   
  

   

out out
out line out out line line line

end line

22

lost line line

120 V 708.33A
0.99     0.99     71.548A

0.99 0.99 1200 V

71.548A 2 0.100 1024 W

V I
P P V I V I I

V

P I R

      

   

  

The power to be delivered is 85000 W.  The power that must be delivered to the step-down 

transformer is 
85000 W

85859 W
0.99

 .  The power that must be present at the start of the transmission 

must be 85859 W 1024 W 86883W   to compensate for the transmission line loss.  The power that 
must enter the transmission lines from the 99% efficient step-up transformer is 
86883W

87761 88kW
0.99

  .  So the power saved is 185346 W 87761W 97585W 98 kW   . 

 
54. We choose a circular path centered at the origin with radius 10 cm.  By symmetry the electric field is 

uniform along this path and is parallel to the path. We then use Eq. 29-8 to calculate the electric field 
at each point on this path.  From the electric field we calculate the force on the charged particle. 

   

   

2

6

2

0.10 m
1.0 10  C 0.10 T/s 5.0 nN

2 2

Bd dB
E d E r r

dt dt
r dB

F QE Q
dt

 




    

       



 l

 

Since the magnetic field points into the page and is decreasing, Lenz’s law tells us that an induced 
circular current centered at the origin would flow in the clockwise direction.  Therefore, the force on 

a positive charge along the positive x-axis would be down, or in the ˆj  direction. 
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55. (a) The increasing downward magnetic field creates a circular electric field along the electron path.  

This field applies an electric force to the electron causing it to accelerate. 
 (b) For the electrons to move in a circle, the magnetic force must provide a centripetal acceleration.  

With the magnetic field pointing downward, the right-hand-rule requires the electrons travel in 
a clockwise direction for the force to point inward. 

 (c) For the electrons to accelerate, the electric field must point in the counterclockwise direction.  
A current in this field would create an upward magnetic flux. So by Lenz’s law, the downward 
magnetic field must be increasing. 

 (d) For the electrons to move in a circle and accelerate, the field must be pointing downward and 
increasing in magnitude.  For a sinusoidal wave, the field is downward half of the time and 
upward the other half.  For the half that it is downward its magnitude is decreasing half of the 
time and increasing the other half.  Therefore, the magnetic field is pointing downward and 
increasing for only one fourth of every cycle. 

 
56. In Example 29-14 we found the electric field along the electron’s path from Faraday’s law.  

Multiplying this field by the electron charge gives the force on the electron, and from the force, we 
calculate the change in tangential velocity. 

avg

2

dBdv F q q r
E

dt m m m dt
    

 We set the centripetal force on the electron equal to the magnetic force (using Eq. 27-5b) and solve 
for the velocity.  Differentiating the velocity with respect to time (keeping the radius constant) yields 
a relation for the acceleration in terms of the changing magnetic field.  

2
0        

v qBr dv q dB
qvB m v r

r m dt m dt
      

 Equating these two equations for the electron acceleration, we see that the change in magnetic field 
at the electron must equal 1

2 of the average change in magnetic field.  This relation is satisfied if at all 

times 1
0 avg2 .B B  

 
57. (a) The electric field is the change in potential across the rod (obtained from Ohm’s law) divided by  

the length of the rod. 

V IR
E


 
l l

 

 (b) Again the electric field is the change in potential across the rod divided by the length of the rod.   
The electric potential is the supplied potential less the motional emf found using Eq. 29-3 and 
the results of Problem 34(b).  

2 2

2 20 0

0 0

1
B

t
mR

B
t

mR

B B e
V B v

E e





 
         

l

l
l l

l

l l l l

e e
e e

 

 
58. (a) The clockwise current in the left-hand loop produces a magnetic field which is into the page  
  within the loop and out of the page outside the loop.  Thus the right-hand loop is in a magnetic  

field that is directed out of the page.  Before the current in the left-hand loop reaches its steady 
state, there will be an induced current in the right-hand loop that will produce a magnetic field 
into the page to oppose the increase of the field from the left-hand loop.  Thus the induced 
current will be clockwise.     

(b) After a long time, the current in the left-hand loop is constant, so there will be no induced  
current in the right-hand coil.    
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 (c) If the second loop is pulled to the right, the magnetic field out of the page from the left-hand  

loop through the second loop will decrease.  During the motion, there will be an induced current  
in the right-hand loop that will produce a magnetic field out of the page to oppose the decrease 
of the field from the left-hand loop.  Thus the induced current will be counterclockwise. 

 
59. The electrical energy is dissipated because there is current flowing in a resistor.  The power 

dissipation by a resistor is given by 2P I R , and so the energy dissipated is 2E P t I R t    .  The 
current is created by the induced emf caused by the changing B-field.  The average induced emf is 
given by the “difference” version of Eq. 29-2b. 

 
 

 
 

    
   

2 222 22 2
2

22

2

     

0.270 m 0 0.755T

7.50 0.0400s

  1.01 10 J

B A B A B
I

t t R R t

A B A B
E P t I R t R t

R tR t



  
      

  

 
       

 

 

  

e
e

 

 
60. Because there are perfect transformers, the power loss is due to resistive heating in the transmission  

lines.  Since the town requires 65 MW, the power at the generating plant must be 
65MW

0.985
 65.99   

MW.  Thus the power lost in the transmission is 0.99 MW.  This can be used to determine the  
current in the transmission lines. 

 

6
2 0.99 10 W

   241.3A
2 85km 0.10 km

P
P I R I

R


    


 

To produce 65.99 MW of power at 241.3 A requires the following voltage. 
6

565.99 10 W
2.73 10 V 270 kV

241.3A

P
V

I


      

 
61. The charge on the capacitor can be written in terms of the voltage across the battery and the 

capacitance using Eq. 24-1.  When fully charged the voltage across the capacitor will equal the emf 
of the loop, which we calculate using Eq. 29-2b. 

   12 25.0 10  F 12 m 10 T/s 0.60 nCBd dB
Q CV C CA

dt dt


       

 
62. (a) From the efficiency of the transformer, we have S P0.85P P .  Use this to calculate the current  

in the primary. 

   
 

S
S P P P P

P

75W
0.85 0.85     0.8021A 0.80 A

0.85 0.85 110 V

P
P P I V I

V
        

(b) The voltage in both the primary and secondary is proportional to the number of turns in the  
respective coil.   The secondary voltage is calculated from the secondary power and resistance 

since 2P V R . 

   
  

P P P

S S S S

110V
8.2

75W 2.4

N V V

N V P R
   


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63. (a) The voltage drop across the lines is due to the resistance. 

      out in 42000 V 740 A 2 0.80 40816 V 41kVV V IR        

 (b) The power input is given by in inP IV . 

   7 7

in in 740A 42000V 3.108 10 W 3.1 10 WP IV       

 (c) The power loss in the lines is due to the current in the resistive wires. 

      22 5 5

loss 740A 1.60 8.76 10 W 8.8 10 WP I R        

 (d) The power output is given by out outP IV . 

      7 7

out out 740A 40816V 3.020 10 W 3.0 10 WP IV      . 

This could also be found by subtracting the power lost from the input power.  
7 5 7 7

out in loss 3.108 10 W 8.76 10 W 3.020 10 W 3.0 10 WP P P           

 
64. We find the current in the transmission lines from the power transmitted to the user, and then find the  

power loss in the lines. 
2 2

2T T T L
T L L L L L L 2

              
P P P R

P I V I P I R R
V V V

      
 
 

 

 
65. (a) Because S PV V , this is a  step-down  transformer. 

 (b) Assuming 100% efficiency, the power in both the primary and secondary is 35 W.  Find the  
current in the secondary from the relationship P IV . 

   S
S S S S

S

35W
   2.9 A

12 V

P
P I V I

V
      

 (c) P
P P P P

P

35W
   0.29 A

120 V

P
P I V I

V
      

 (d) Find the resistance of the bulb from Ohm’s law.  The bulb is in the secondary circuit. 

   S
S S

S

12 V
   4.1

2.9 A

V
V I R R

I
       

 
66. A side view of the rail and bar is shown in the figure.  From Section 21-3, 

the emf in the bar is produced by the components of the magnetic field, 
the length of the bar, and the velocity of the bar, which are all mutually 
perpendicular.  The magnetic field and the length of the bar are already 
perpendicular.  The component of the velocity of the bar that is 
perpendicular to the magnetic field is cosv  , and so the induced emf is 
given by the following. 

cosB v  le  
This produces a current in the wire, which can be found by Ohm’s law.  That current is pointing into 
the page on the diagram. 

  
cosB v

I
R R


 

le
 

Because the current is perpendicular to the magnetic field, the force on the wire from the magnetic 
field can be calculated from Eq. 27-2, and will be horizontal, as shown in the diagram. 



B


NF


mg


v


BF

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2 2cos cos

B

B v B v
F I B B

R R

 
  

l l
l l  

For the wire to slide down at a steady speed, the net force along the rail must be zero.  Write 
Newton’s second law for forces along the rail, with up the rail being positive. 

       
   

2 2 2

net

2 o

2 22 2 2 2 o

cos
cos sin 0    sin   

0.60 0.040 kg 9.80 m s sin 6.0sin
0.80 m s

cos 0.55T 0.32 m cos 6.0

B

B v
F F mg mg

R

Rmg
v

B


  




     


  

l

l

 

 
67. The induced current in the coil is the induced emf divided by the resistance.  The induced emf is 

found from the changing flux by Eq. 29-2a.  The magnetic field of the solenoid, which causes the 
flux, is given by Eq. 28-4.  For the area used in Eq. 29-2a, the cross-sectional area of the solenoid 
(not the coil) must be used, because all of the magnetic flux is inside the solenoid. 

  

       
 

ind sol sol sol
ind coil coil sol sol 0

sol

sol sol
coil sol 0

coil sol 0 sol solsol

sol

2 7

2

                  =

150 turns 0.045m 4 10 T m A 230 turns 2.0 A
  4.6 10 A

12 0.01m 0.10s

d dB N I
I N N A B

R dt dt

N dI
N A

N A N dIdt
I

R R dt






  




  

 


  



l

l

l



e
e

 

As the current in the solenoid increases, a magnetic field from right to left is created in the solenoid 
and the loop.  The induced current will flow in such a direction as to oppose that field, and so must 
flow from  left to right  through the resistor. 

 
68. The average induced emf is given by the “difference” version of Eq. 29-2b.  Because the coil 

orientation changes by 180 ,  the change in flux is the opposite of twice the initial flux.  The average 
current is the induced emf divided by the resistance, and the charge that flows in a given time is the 
current times the elapsed time. 

   
avg

avg

2

2
2

    
2

B B NAB
N NA NA

t t t t

NAB
NAB RQt

Q I t t t B
R R R NA

B B 
      

   

        

    

 
 
 

e

e
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69. Calculate the current in the ring from the magnitude of the emf (from Eq. 29-2a) divided by the 
resistance.  Setting the current equal to the derivative of the charge, we integrate the charge and flux 
over the 90 rotation, with the flux given by Eq. 29-1a.  This results in the total charge flowing past a 
given point in the ring.  Note that the initial orientation of the ring area relative to the magnetic field 
is not given. 

 

   

       

cos 90

cos

2

  ;        

cos 90 cos1 1 1

0.23T 0.030m
cos 90 cos 0.02601C cos 90 cos

0.025

B

BA

BA

d dQ
I dQ dt

dt R dt R

BAd
Q dQ dt dt d d

R R dt R R R





 


   

 


     

            

             

    

e e
e

e
 

 To find the maximum charge, we set the derivative of the charge with respect to the starting angle, , 
equal to zero to find the extremes.  Inserting the maximum angle into our equation, we find the 
maximum charge passing through the ring.  Finally, we divide the maximum charge by the charge of 
a single electron to obtain the number of electrons passing the point in the ring. 

   

 max

17max
max 19

0.02601 C sin 90 sin 0.02601 C cos sin 0    tan 1  

      45  or 225

0.02601 C cos 225 90 cos225 0.03678 C

0.03678 C
2.3 10 electrons

1.60 10  C/e

dQ

d

Q

Q
N

q

    





             

  

        

   


 

 
70. The coil should have a diameter about equal to the diameter of a standard flashlight D-cell so that it 

will be simple to hold and use.  This would give the coil a radius of about 1.5 cm.  As the magnet 
passes through the coil the field changes direction, so the change in flux for each pass is twice the 
maximum flux.  Let us assume that the magnet is shaken with a frequency of about two shakes per 
second, so the magnet passes through the coil four times per second.    We obtain the number of 
turns in the coil using Eq. 29-2b. 

  
   2

0

3.0V 0.25s
11,000 turns

2 2 0.050T 0.015m

t t
N

t B A 
 

    
  
e e e

 

 
71. (a) Since the coils are directly connected to the wheels, the torque provided by the motor (Eq. 27-

9) balances the torque caused by the frictional force. 

   
  

   
250 N 0.29 m

24.86 A 25 A
270 0.12 m 0.15 m 0.60 T

Fr
NIAB Fr I

NAB
       

 (b) To maintain this speed the power loss due to the friction (Eq. 8-21) must equal the net power 
provided by the coils.  The power provided by the coils is the current through the coils 
multiplied by the back emf. 

   
  

back back

250 N 35km h 1000m km
97.76V 98V

24.86A 3600 s h

Fv
P Fv I

I

 
       

 
e e  

 (c) The power dissipated in the coils is the difference between the power produced by the coils and 
the net power provided to the wheels. 

     loss net back 24.86A 120V 97.76V 553W 600WP P P I I       e e  
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 (d) We divide the net power by the total power to determine the percent used to drive the car. 

net back 97.76V
0.8147 81%

120V

P I

P I
   
e

e
 

 
72. The energy is dissipated by the resistance.  The power dissipated by the resistor is given by Eq. 25-

7b, and the energy is the integral of the power over time.  The induced emf is given by Eq. 29-2a. 

  
   

2 2 2 2
2 20 0

2

22 2 2 2 2 2
2 2 200 0

2 2
00

  ;  

1
2 2

t tB

tt
t t t

d dB NAB N A B
N NA e P I R e

dt dt R R

NABN A B N A B
E Pdt e dt e e

R R R

 

  

 


  

 

  


       

     

 
 
 

    
        

 

e
e

  

  
   
  

      
22

2 0.10s 20
18 0.100 m 0.50T

   1 0.20J 1
2 2.0 0.10s

t te e


    


     

 
73. The total emf across the rod is the integral of the differential emf across 

each small segment of the rod.  For each differential segment, dr, the 
differential emf is given by the differential version of Eq. 29-3.  The 
velocity is the angular speed multiplied by the radius.  The figure is a 
top view of the spinning rod.   

21
20

    d Bvd B rdr d B rdr B        
l

l le e e  

 
 
 
74. (a) 
 
 
 
 
 
 
 
 
 (b) At startup there is no back emf.  We therefore treat the circuit as two parallel resistors, each 

with the same voltage drop.  The current through the battery is the sum of the currents through 
each resistor. 

0 0
field armature field armature

115 V 115 V
41.5 A

36.0 3.00 
I I I

R R
      

 
e e

 

 (c) At full speed the back emf decreases the voltage drop across the armature resistor. 

back
field armature

field armature

115V 115V 105V
6.53A

36.0 3.00
I I I

R R

 
      

 
e e e

 

 
 
 
 
 
 
 

+ –  

 

   

   fieldR

armatureR

0I

0
field

I

0
armature

I

estarting
+ – 

  + – 

   fieldR

armatureR

I

fieldI

armatureI

e

backe

full speed

B
 dr 

r

v

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75. Assume that the electric field does not fringe, but only has a horizontal 
component between the plates and zero field outside the plates.  Apply 
Faraday’s law (Eq. 29-8) to this situation for a rectangular loop with one 
horizontal leg inside the plates and the second horizontal leg outside the 
plates.  We integrate around this path in the counterclockwise direction.  
Since the field only has a horizontal component between the plates, only the 
horizontal leg will contribute to the electric field integral.  Since the field is 
constant in this region, the integral is the electric field times the length of the 
leg. 

0
d Ed E  E



l

l l l  

 For a static electric field, the magnetic flux is unchanging.  Therefore 0.Bd

dt


  

  Using Faraday’s law, we have    0,Bd
d E

dt


    E l l


  which is not possible.  Thus one of the 

initial assumptions must be false.  We conclude that the field must have some fringing at the edges. 
 
 
76. The total emf across the disk is the integral of the differential emf 

across each small segment of the radial line passing from the center 
of the disk to the edge.  For each differential segment, dr, the emf is 
given by the differential version of Eq. 29-3.  The velocity is the 
angular speed multiplied by the radius.  Since the disk is rotating in 
the counterclockwise direction, and the field is out of the page, the 
emf is increasing with increasing radius.  Therefore the rim is at the 
higher potential. 

21
20

  
R

d Bvd B rdr

d B rdr B R



 

  

   

le

e e
 

 
77. We set the electric field equal to the negative gradient of the electric potential (Eq. 23-8), with the 

differential potential given by Eq. 29-3, as in Problem 76. 

ˆ ˆ ˆ
d Br dr

Br
dr dr

      E r r r
 e

 

 The electric field has magnitude Br  and points radially inwards, toward the center of the disk. 
 
78. The emf around the loop is equal to the time derivative of the flux, as in Eq. 29-2a.  Since the area of 

the coil is constant, the time derivative of the flux is equal to the derivative of the magnetic field 
multiplied by the area of the loop.  To calculate the emf in the loop we add the voltage drop across 
the capacitor to the voltage drop across the resistor.  The current in the loop is the derivative of the 
charge on the capacitor (Eq. 24-1). 
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  

 






  

 

       

            
 

e

 

 Since the charge is building up on the top plate of the capacitor, the induced current is flowing 
clockwise.  By Lenz’s law this produces a downward flux, so the external downward magnetic field 
must be decreasing. 

 

E


B
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79. (a)  As the loop falls out of the magnetic field, the flux through the loop decreases with time 
creating an induced emf in the loop.  The current in the loop is equal to the emf divided by the 
resistance, which can be written in terms of the resistivity using Eq. 25-3. 

2 2 2/ 4

4 16 16
Bdd d dA d

I B B v
R dt dt

  
  

   
      

   

e
l

l l l
 

 This current induces a force on the three sides of the loop in the magnetic field.  The forces on 
the two vertical sides are equal and opposite and therefore cancel. 

2 2 2

16 16

d d B v
F I B B v B

 
 

  
l

l l l
l

 

By Lenz’s law this force is upward to slow the decrease in flux. 
 (b) Terminal speed will occur when the gravitational force is equal to the magnetic force. 
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4 16
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gd B vd
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 


 
    

 

l
l  

 (c) We calculate the terminal velocity using the given magnetic field, the density of copper from 
Table 13-1, and the resistivity of copper from Table 25-1 

   
 

3 3 8 2

2

16 8.9 10  kg/m 1.68 10  m 9.80 m/s
3.7 cm/s

0.80 T
Tv

  
   

 
80. (a) See the graph, with best fit linear  

trend line (with the y intercept 
forced to be 0). 

 (b) The theoretical slope is the  
induced voltage divided by the 
velocity.  Take the difference 
between the experimental value 
found in part (a) and the 
theoretical value and divide the 
result by the theoretical value to 
obtain the percent difference. 

  

    
exp theory exp
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0.3532 V s m
% diff 100 1 100 1 100

0.126T 50 0.0561m

0.065%
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     
                

 

l


 

 (c) Use the theoretical equation to calculate the voltage at each experimental speed.  Then calculate 
the percent difference at each speed. 

Speed 
(m/s) 

Induced 
Voltage (V) 

Theoretical 
Induced 

Voltage (V) % diff. 
0.367 0.128 0.130 – 1.32%
0.379 0.135 0.134    0.78%
0.465 0.164 0.164 – 0.21%
0.623 0.221 0.220    0.37%
0.630 0.222 0.223 – 0.30%

 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH29.XLS,” on tab “Problem 29.80.” 
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CHAPTER 30:  Inductance, Electromagnetic Oscillations, and AC Circuits 
 
Responses to Questions 
 
1.  (a) For the maximum value of the mutual inductance, place the coils close together, face to face, on  

the same axis. 
(b) For the least possible mutual inductance, place the coils with their faces perpendicular to each  

other. 
 
2. The magnetic field near the end of the first solenoid is less than it is in the center.  Therefore the flux 

through the second coil would be less than that given by the formula, and the mutual inductance 
would be lower.  

 
3.  Yes. If two coils have mutual inductance, then they each have the capacity for self-inductance. Any 

coil that experiences a changing current will have a self-inductance. 
 
4.  The energy density is greater near the center of a solenoid, where the magnetic field is greater.  
 
5.  To create the greatest self-inductance, bend the wire into as many loops as possible. To create the 

least self-inductance, leave the wire as a straight piece of wire. 
 
6. (a) No. The time needed for the LR circuit to reach a given fraction of its maximum possible  

current depends on the time constant, τ = L/R, which is independent of the emf. 
(b) Yes. The emf determines the maximum value of the current (Imax = V0/R,) and therefore will  

affect the time it takes to reach a particular value of current.  
 
7. A circuit with a large inductive time constant is resistant to changes in the current. When a switch is 

opened, the inductor continues to force the current to flow. A large charge can build up on the 
switch, and may be able to ionize a path for itself across a small air gap, creating a spark. 

 
8. Although the current is zero at the instant the battery is connected, the rate at which the current is 

changing is a maximum and therefore the rate of change of flux through the inductor is a maximum. 
Since, by Faraday’s law, the induced emf depends on the rate of change of flux and not the flux 
itself, the emf in the inductor is a maximum at this instant. 

 
9.  When the capacitor has discharged completely, energy is stored in the magnetic field of the inductor. 

The inductor will resist a change in the current, so current will continue to flow and will charge the 
capacitor again, with the opposite polarity. 

 
10. Yes. The instantaneous voltages across the different elements in the circuit will be different, but the 

current through each element in the series circuit is the same. 
 
11. The energy comes from the generator. (A generator is a device that converts mechanical energy to 

electrical energy, so ultimately, the energy came from some mechanical source, such as falling 
water.) Some of the energy is dissipated in the resistor and some is stored in the fields of the 
capacitor and the inductor. An increase in R results in an increase in energy dissipated by the circuit. 
L, C, R, and the frequency determine the current flow in the circuit, which determines the power 
supplied by generator.  
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12.  XL = XC at the resonant frequency. If the circuit is predominantly inductive, such that XL > XC, then 
the frequency is greater than the resonant frequency and the voltage leads the current. If the circuit is 
predominantly capacitive, such that XC > XL, then the frequency is lower than the resonant frequency 
and the current leads the voltage. Values of L and C cannot be meaningfully compared, since they 
are in different units. Describing the circuit as “inductive” or “capacitive” relates to the values of XL 

and XC, which are both in ohms and which both depend on frequency.  
 
13. Yes. When ω approaches zero, XL approaches zero, and XC becomes infinitely large. This is 

consistent with what happens in an ac circuit connected to a dc power supply. For the dc case, ω is 
zero and XL will be zero because there is no changing current to cause an induced emf. XC will be 
infinitely large, because steady direct current cannot flow across a capacitor once it is charged. 

 
14.  The impedance in an LRC circuit will be a minimum at resonance, when XL = XC. At resonance, the 

impedance equals the resistance, so the smallest R possible will give the smallest impedance.  
  
15. Yes. The power output of the generator is P = IV. When either the instantaneous current or the 

instantaneous voltage in the circuit is negative, and the other variable is positive, the instantaneous 
power output can be negative. At this time either the inductor or the capacitor is discharging power 
back to the generator. 

 
16.  Yes, the power factor depends on frequency because XL and XC, and therefore the phase angle, 

depend on frequency. For example, at resonant frequency, XL = XC, the phase angle is 0º, and the 
power factor is one. The average power dissipated in an LRC circuit also depends on frequency, 
since it depends on the power factor: Pavg = Irms Vrms cosφ.  Maximum power is dissipated at the 
resonant frequency. The value of the power factor decreases as the frequency gets farther from the 
resonant frequency.  

 
17. (a) The impedance of a pure resistance is unaffected by the frequency of the source emf. 

(b) The impedance of a pure capacitance decreases with increasing frequency. 
(c) The impedance of a pure inductance increases with increasing frequency.  
(d) In an LRC circuit near resonance, small changes in the frequency will cause large changes in the  

impedance. 
(e) For frequencies far above the resonance frequency, the impedance of the LRC circuit is  

dominated by the inductive reactance and will increase with increasing frequency. For 
frequencies far below the resonance frequency, the impedance of the LRC circuit is dominated 
by the capacitive reactance and will decrease with increasing frequency. 

 
18.  In all three cases, the energy dissipated decreases as R approaches zero.  Energy oscillates between 

being stored in the field of the capacitor and being stored in the field of the inductor. 
(a) The energy stored in the fields (and oscillating between them) is a maximum at resonant  

frequency and approaches an infinite value as R approaches zero. 
(b) When the frequency is near resonance, a large amount of energy is stored in the fields but the  

value is less than the maximum value. 
(c) Far from resonance, a much lower amount of energy is stored in the fields.  

 
19. In an LRC circuit, the current and the voltage in the circuit both oscillate. The energy stored in the 

circuit also oscillates and is alternately stored in the magnetic field of the inductor and the electric 
field of the capacitor. 
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20. In an LRC circuit, energy oscillates between being stored in the magnetic field of the inductor and 
being stored in the electric field of the capacitor. This is analogous to a mass on a spring, with 
energy alternating between kinetic energy of the mass and spring potential energy as the spring 
compresses and extends.  The energy stored in the magnetic field is analogous to the kinetic energy 
of the moving mass, and L corresponds to the mass, m, on the spring. The energy stored in the 
electric field of the capacitor is analogous to the spring potential energy, and C corresponds to the 
reciprocal of the spring constant, 1/k. 

 
 

Solutions to Problems 
 
1. (a) The mutual inductance is found in Example 30-1. 

 
      27

21 2
1850 4 10 T m A 225 115 0.0200 m

3.10 10 H
2.44 m
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 




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

l
 

 (b) The emf induced in the second coil can be found from Eq. 30-3b. 

      21 1
2

12.0A
3.10 10 H 3.79 V

0.0980 ms

dI I
M M

dt t
 

       


e  

 
2. If we assume the outer solenoid is carrying current 1,I  then the magnetic field inside the outer 

solenoid is 0 1 1.B n I   The flux in each turn of the inner solenoid is 2 2

21 2 0 1 1 2 .B r n I r       The 

mutual inductance is given by Eq. 30-1. 
2

22 21 2 0 1 1 2
0 1 2 2

1 1

    
N n n I r M

M n n r
I I

 
 


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l

l
 

 
3. We find the mutual inductance of the inner loop.  If we assume the outer solenoid is carrying current 

1,I  then the magnetic field inside the outer solenoid is 1
0 1.

N
B I

l
  The magnetic flux through each 

loop of the small coil is the magnetic field times the area perpendicular to the field.  The mutual 
inductance is given by Eq. 30-1. 

1 1
2 0 2

1 1 2 21 0 1 2 2
21 2 0 2

1 1
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BA A M
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  
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4. We find the mutual inductance of the system using Eq. 30-1, with the flux equal to the integral of the 

magnetic field of the wire (Eq. 28-1) over the area of the loop. 
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5. Find the induced emf from Eq. 30-5. 

   10.0 A 25.0 A
0.28 H 12 V

0.36s

dI I
L L

dt t
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6. Use the relationship for the inductance of a solenoid, as given in Example 30-3. 

  
   

   
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0
27
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l
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7. Because the current in increasing, the emf is negative.  We find the self-inductance from Eq. 30-5. 

 
  

0.0120s
    2.50 V 0.566 H

0.0250 A 0.0280 A

dI I t
L L L

dt t I

 
          

   
e e  

 
8. (a) The number of turns can be found from the inductance of a solenoid, which is derived in  

Example 30-3. 

    
 
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0
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(b) Apply the same equation again, solving for the number of turns. 

   
    
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9. We draw the coil as two elements in series, and pure resistance and 

a pure inductance.  There is a voltage drop due to the resistance of 
the coil, given by Ohm’s law, and an induced emf due to the 
inductance of the coil, given by Eq. 30-5.  Since the current is 
increasing, the inductance will create a potential difference to 
oppose the increasing current, and so there is a drop in the potential 
due to the inductance.  The potential difference across the coil is the sum of the two potential drops. 

       3.00 A 3.25 0.44 H 3.60 A s 11.3Vab

dI
V IR L

dt
       

 
10. We use the result for inductance per unit length from Example 30-5. 
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11. The self-inductance of an air-filled solenoid was determined in Example 30-3.  We solve this 

equation for the length of the tube, using the diameter of the wire as the length per turn. 
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 The length of the wire is equal to the number of turns (the length of the solenoid divided by the 
diameter of the wire) multiplied by the circumference of the turn. 
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The resistance is calculated from the resistivity, area, and length of the wire. 

  
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12. The inductance of the solenoid is given by 
2 2 2

0 0 .
4

N A N d
L

  
 
l l

  The (constant) length of the 

wire is given by wire solN dl , and so since sol 2 sol 12.5d d , we also know that 1 22.5N N .  The fact 

that the wire is tightly wound gives sol wireNdl .  Find the ratio of the two inductances. 
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13. We use Eq. 30-4 to calculate the self-inductance, where 

the flux is the integral of the magnetic field over a cross-
section of the toroid.  The magnetic field inside the toroid 
was calculated in Example 28-10. 
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14. (a) When connected in series the voltage drops across each inductor will add, while the currents in  

each inductor are the same. 

 1 2 1 2 1 2 eq eq 1 2    
dI dI dI dI

L L L L L L L L
dt dt dt dt

            e e e  

 (b) When connected in parallel the currents in each inductor add to the equivalent current, while the  
voltage drop across each inductor is the same as the equivalent voltage drop. 

1 2

eq 1 2 eq 1 2

1 1 1
        

dI dI dI
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Therefore, inductors in series and parallel add the same as resistors in series and parallel. 
 
15. The magnetic energy in the field is derived from Eq. 30-7. 
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16. (a) We use Eq. 24-6 to calculate the energy density in an electric field and Eq. 30-7 to calculate the  

energy density in the magnetic field. 
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 (b) Use Eq. 24-6 to calculate the electric field from the energy density for the magnetic field given  
in part (a). 

 
 

6 3

2 81
02 12 2 2

0

2 1.592 10  J/m2
    6.0 10  N/C

8.85 10  C /N m
B

E B

u
u E u E

 


      

 
 

 
17. We use Eq. 30-7 to calculate the energy density with the magnetic field calculated in Example 28-12. 

  
 

2722 2
3 30 0

22
0 0

4 10 T m A 23.0A1
1.06 10 J m

2 2 2 8 8 0.280m
B

B I I
u

R R

 
 




       
 


 

 
18. We use Eq. 30-7 to calculate the magnetic energy density, with the magnetic field calculated using 

Eq. 28-1. 

  
 

272 22
30 0

22 2 2 3
0 0

4 10  T m/A 15 A1
1.6 J/m

2 2 2 8 8 1.5 10 m
B

I IB
u

R R

 
    





      
  


 

 To calculate the electric energy density with Eq. 24-6, we must first calculate the electric field at the 
surface of the wire.  The electric field will equal the voltage difference along the wire divided by the 
length of the wire.  We can calculate the voltage drop using Ohm’s law and the resistance from the 
resistivity and diameter of the wire. 

    
 
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15 3
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 
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 








   

              

 

l

l l l


  

 
19. We use Eq. 30-7 to calculate the energy density in the toroid, with the magnetic field calculated in 

Example 28-10.  We integrate the energy density over the volume of the toroid to obtain the total 
energy stored in the toroid.  Since the energy density is a function of radius only, we treat the toroid 
as cylindrical shells each with differential volume 2dV rhdr . 

2 2

1 1

2 2 22
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2 2
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2 2 2 2 2 2
0 0 0 2

2 2
1

1

2 2 2 8

2 ln
8 4 4

B

r r
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NI N IB
u

r r

N I N I h N I h rdr
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r r r

 
   

  


  

    
 

 
     

 
  

 

 
20. The magnetic field between the cables is given in Example 30-5.  Since the magnetic field only 

depends on radius, we use Eq. 30-7 for the energy density in the differential volume 2dV r dr l  
and integrate over the radius between the two cables. 

2 2

1 1

2 2 2
0 0 0 2

0 1

1 1
2 ln

2 2 4 4

r r

B r r

I I I rU dr
u dV rdr

r r r

  


   
        

   
  

l l
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21. We create an Amperean loop of radius r to calculate the magnetic field within the wire using Eq. 28-
3.  Since the resulting magnetic field only depends on radius, we use Eq. 30-7 for the energy density 
in the differential volume 2dV r dr l  and integrate from zero to the radius of the wire. 

   2 0
0 0 2 2

2
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IrI
d I B r r B

R R


   

 
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  B


 l  

2 2 2
30 0 0

2 40 0
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1 1
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2 2 4 16

R R

B

Ir I IU
u dV rdr r dr

R R

  


   
     
   

l l
 

 

22. For an LR circuit, we have  max 1 tI I e   .  Solve for t . 

   max

max max

1     1     ln 1t t I I
I I e e t

I I
           

 
 
 

 

(a)  max

max

0.95     ln 1 ln 1 0.95 3.0
I

I I t
I

          
 
 
 

 

(b)  max

max

0.990 ln 1 ln 1 0.990 4.6    
I

I I t
I

         
 

  
 

 

(c)  max

max

0.9990 ln 1 ln 1 0.9990 6.9    
I

I I t
I

         
 

  
 

 

 
23. We set the current in Eq. 30-11 equal to 0.03I0 and solve for the time. 

 /
0 00.03 ln 0.03 3.5tI I I e t         

 
24. (a) We set I equal to 75% of the maximum value in Eq. 30-9 and solve for the time constant. 

   
 

 
/

0 0

2.56 ms
0.75 1 1.847 ms 1.85 ms

ln 0.25 ln 0.25
t t

I I I e             

 (b) The resistance can be calculated from the time constant using Eq. 30-10. 
31.0 mH

16.8 
1.847 ms

L
R


     

 
25. (a) We use Eq. 30-6 to determine the energy stored in the inductor, with the current given by Eq.  

Eq 30-9. 

 
2

22 /01
2 2

1
2

tLV
U LI e

R
    

 (b) Set the energy from part (a) equal to 99.9% of its maximum value and solve for the time. 

   
2 2

2/0 0
2 2

0.999 1 ln 1 0.999 7.6
2 2

tV V
U e t

R R
          

 
26. (a) At the moment the switch is closed, no current will flow through the inductor.  Therefore, the  

resistors R1 and R2 can be treated as in series. 

 1 2 1 2 3
1 2

,  0I R R I I I
R R

     

e

e  

(b) A long time after the switch is closed, there is no voltage drop across the inductor so resistors 
R2 and R3 can be treated as parallel resistors in series with R1. 
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    

   

e

ee
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(c) Just after the switch is opened the current through the inductor continues with the same 
magnitude and direction.  With the open switch, no current can flow through the branch with 
the switch.  Therefore the current through R2 must be equal to the current through R3, but in the 
opposite direction. 

2 2
3 2 1

2 3 1 3 1 2 2 3 1 3 1 2

,     ,    0
R R

I I I
R R R R R R R R R R R R


  

   
e e

 

(d) After a long time, with no voltage source, the energy in the inductor will dissipate and no 
current will flow through any of the branches. 

1 2 3 0I I I    
 
27. (a) We use Eq. 30-5 to determine the emf in the inductor as a function of time.  Since the  

exponential term decreases in time, the maximum emf occurs when t = 0. 

/ / /0
0 0 max 0

tR L t tLI RdI d
L L I e e V e V

dt dt L
            e e . 

 (b) The current is the same just before and just after the switch moves from A to B.  We use Ohm’s  
law for a steady state current to determine I0 before the switch is thrown.  After the switch is 
thrown, the same current flows through the inductor, and therefore that current will flow 
through the resistor R’.  Using Kirchhoff’s loop rule we calculate the emf in the inductor.  This 
will be a maximum at t = 0. 

     /0 0
0 max 0

55
,       0 120V 6.6kVtV V R R

I IR R e V
R R R R

                 
   

e e e  

 
28. The steady state current is the voltage divided by the resistance while the time constant is the 

inductance divided by the resistance, Eq. 30-10.   To cut the time constant in half, we must double 
the resistance.  If the resistance is doubled, we must double the voltage to keep the steady state 
current constant. 

   0 02 2 2200  4400        2 2 240 V 480 VR R V V          

 
29. We use Kirchhoff’s loop rule in the steady state (no voltage drop across the inductor) to determine 

the current in the circuit just before the battery is removed.  This will be the maximum current after 
the battery is removed.  Again using Kirchhoff’s loop rule, with the current given by Eq. 30-11, we 
calculate the emf as a function of time. 

         5 -1

0 0

1.22 10 s2.2k / 18mH/ /
0

0    

0    e 12 V 12V
ttt tR L

V
V I R I

R

IR I Re V e e    

   

      e e

 

The emf across the inductor is greatest at t = 0 with a value of max 12Ve . 
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30. We use the inductance of a solenoid, as derived in Example 30-3:  
2

0
sol

N A
L




l
. 

(a) Both solenoids have the same area and the same length.  Because the wire in solenoid 1 is 1.5  
times as thick as the wire in solenoid 2, solenoid 2 will have 1.5 times the number of turns as 
solenoid 1. 

   

2

0 2 22
22 2 2 2

2 2
0 11 1 1 1

1.5 2.25    2.25

N A
L N N L

N AL N N L




      

 
 
 

l

l

 

(b) To find the ratio of the time constants, both the inductance and resistance ratios need to be  
known.  Since solenoid 2 has 1.5 times the number of turns as solenoid 1, the length of wire 
used to make solenoid 2 is 1.5 times that used to make solenoid 1, or wire 2 wire 11.5 ,l l  and the 

diameter of the wire in solenoid 1 is 1.5 times that in solenoid 2, or wire 1 wire 21.5d d .  Use this to 

find their relative resistances, and then the ratio of time constants. 
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ll l

l

l l l l

 2 1

2 1 2
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1

1.5
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R

R



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31. (a) The AM station received by the radio is the resonant frequency, given by Eq. 30-14.  We divide  

the resonant frequencies to create an equation relating the frequencies and capacitances.  We 
then solve this equation for the new capacitance. 

 
2 2

11 2 1
2 1

2 1 2

2

1 1
2 550kHz

1350pF 0.16nF
1600kHz1 1

2

LCf C f
C C

f C f

LC





   
        

  
 

 (b) The inductance is obtained from Eq. 30-14. 

    
   22 2 2 3 12

1

1 1 1 1
62 H

2 4 4 550 10 Hz 1350 10 F
f L

LC f C


   
    

 
 

 
32. (a) To have maximum current and no charge at the initial time, we set t = 0 in Eqs. 30-13 and 30-15  

to solve for the necessary phase factor . 

0 0 0 0sin ( ) sin cos
2 2

I I I t I t I t
            

 
 

      0 0 00 cos 0 cos sin
2 2

Q Q Q Q t Q t
              
   

 

Differentiating the charge with respect to time gives the negative of the current.  We use this to 
 write the charge in terms of the known maximum current. 

     0 0
0 0 0cos cos         ( ) sin

dQ I I
I Q t I t Q Q t t

dt
   

 
          
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 (b) As in the figure, attach the inductor to a battery and resistor for an  
extended period so that a steady state current flows through the 
inductor.  Then at time t = 0, flip the switch connecting the 
inductor in series to the capacitor. 

 
 
 
 
 
 
33. (a) We write the oscillation frequency in terms of the capacitance using Eq. 30-14, with the parallel  

plate capacitance given by Eq. 24-2.  We then solve the resulting equation for the plate 
separation distance. 

 
2 2

0
0

1 1
2 4

/
f x A f L

LC L A x
  


     

 (b) For small variations we can differentiate x and divide the result by x to determine the fractional  
change. 

   2
2 0

0 2 2
0

4 2 2 2
4 2   ;  

4

A fdf Ldx df x f
dx A fdf L

x A f L f x f

 
 

 
 

      

 (c) Inserting the given data, we can calculate the fractional variation on x. 

  62 1 Hz
2 10 0.0002%

1 MHz

x

x


     

 
34. (a) We calculate the resonant frequency using Eq. 30-14. 

  12

1 1 1 1
18,450 Hz 18.5 kHz

2 2 0.175 H 425 10  F
f

LC  
   


 

(b) As shown in Eq. 30-15, we set the peak current equal to the maximum charge (from Eq. 24-1) 
multiplied by the angular frequency. 

      12
0

3

2 425 10  F 135 V 2 18,450 Hz

6.653 10  A 6.65 mA

I Q CV f  



   

  
 

(c) We use Eq. 30-6 to calculate the maximum energy stored in the inductor. 

  22 31 1
2 2 0.175 H 6.653 10  A 3.87 JU LI      

 
35. (a) When the energy is equally shared between the capacitor and inductor, the energy stored in the  

capacitor will be one half of the initial energy in the capacitor.  We use Eq. 24-5 to write the 
energy in terms of the charge on the capacitor and solve for the charge when the energy is 
equally shared. 

22
0

0

1 2

2 2 2 2

QQ
Q Q

C C
    

 (b) We insert the charge into Eq. 30-13 and solve for the time. 

1
0 0
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T T
Q Q t t
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 
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36. Since the circuit loses 3.5% of its energy per cycle, it is an underdamped oscillation.   We use  Eq.  
24-5 for the energy with the charge as a function of time given by Eq. 30-19.  Setting the change in 
energy equal to 3.5% and using Eq. 30-18 to determine the period, we solve for the resistance. 

   
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   
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 
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        

           

   
   

4

 

 
37. As in the derivation of 30-16, we set the total energy equal to the sum of the magnetic and electric 

energies, with the charge given by Eq. 30-19.  We then solve for the time that the energy is 75% of 
the initial energy. 

   

   
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

         

      
 

 
38. As shown by Eq. 30-18, adding resistance will decrease the oscillation frequency.  We use Eq. 30-

14 for the pure LC circuit frequency and Eq. 30-18 for the frequency with added resistance to solve 
for the resistance. 
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39. We find the frequency from Eq. 30-23b for the reactance of an inductor. 

  
 
660

2     3283Hz 3300 Hz
2 2 0.0320 H

L
L

X
X fL f

L


 


       

 

40. The reactance of a capacitor is given by Eq. 30-25b, 
1

2
CX

fC
 . 

 (a) 
   6

1 1
290

2 2 60.0 Hz 9.2 10 F
CX

fC  
   


 

 (b)   
2

6 6

1 1
1.7 10

2 2 1.00 10 Hz 9.2 10 F
CX

fC 



    

 
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41. The impedance is 
1

2
CX

fC
 .  The 

extreme values are as follows. 

  

  

max 6

min 6

1

2 10 Hz 1.0 10 F

16,000

1

2 1000 Hz 1.0 10 F

160

X

X












 




 
 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH30.XLS,” on tab “Problem 30.41.” 

 
42. We find the reactance from Eq. 30-23b, and the current from Ohm’s law.  

   3

2

2 2 33.3 10 Hz 0.0360 H 7532 7530

250 V
    0.03319 A 3.3 10 A

7532

L

L

L

X fL

V
V IX I

X

 



      

      


 

 
43. (a) At 0,   the impedance of the capacitor is infinite.  Therefore the parallel combination of the  

resistor R and capacitor C behaves as the resistor only, and so is R.   Thus the impedance of the 
entire circuit is equal to the resistance of the two series resistors. 

   Z R R   
 (b) At ,   , the impedance of the capacitor is zero.  Therefore the parallel combination of the  

resistor R and capacitor C is equal to zero.  Thus the impedance of the entire circuit is equal to 
the resistance of the series resistor only. 

   Z R  
 
44. We use Eq. 30-22a to solve for the impedance. 

   
rms

rms rms
rms

110V
94mH

3.1A 2 60Hz

V
V I L L

I


 
      

 
45. (a) We find the reactance from Eq. 30-25b. 

   
   8

1 1
2804 2800

2 2 660 Hz 8.6 10 F
CX

fC  
     


 

 (b) We find the peak value of the current from Ohm’s law. 

   rms
peak rms

22,000 V
2 2 2 11A at 660 Hz

2804C

V
I I

X
   


 

 
46. (a) Since the resistor and capacitor are in parallel, they will have the same voltage drop across  

them.  We use Ohm’s law to determine the current through the resistor and Eq. 30-25 to 
determine the current across the capacitor.  The total current is the sum of the currents across 
each element. 

 

0

4
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0 200 400 600 800 1000
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 

 
 

 
 

    
    

6

6

  ;  2

490 2 60 Hz 0.35 10  F2 2

2 2 1 490 2 60 Hz 0.35 10  F 1

             0.0607 6.1%

R C
C

C

R C

V V
I I V fC

R X

V fC R fCI

I I V fC V R R fC



 
  





  

 
  

     

 

 

 (b) We repeat part (a) with a frequency of 60,000 Hz. 

    
    

6

6

490 2 60,000 Hz 0.35 10  F
0.9847 98%

490 2 60,000 Hz 0.35 10  F 1
C

R C

I

I I









 
  

   
 

  
47. The power is only dissipated in the resistor, so we use the power dissipation equation obtained in 

section 25-7. 

   221 1
avg 02 2 1.80A 1350 2187W 2.19kWP I R      

 
48. The impedance of the circuit is given by Eq. 30-28a without a capacitive reactance.  The reactance of 

the inductor is given by Eq. 30-23b. 

 (a)      2 2 22 2 2 2 2 2 3 24 10.0 10 4 55.0 Hz 0.0260 HLZ R X R f L          

41.00 10      

 (b)      2 2 22 2 2 2 2 2 3 2 44 10.0 10 4 5.5 10 Hz 0.0260 HLZ R X R f L           

  4  1.34 10    
 
49. The impedance of the circuit is given by Eq. 30-28a without an inductive reactance.  The reactance 

of the capacitor is given by Eq. 30-25b. 

 (a)  
   

22 2 2

22 2 2 22 6

1 1
75 397

4 4 60 Hz 6.8 10 F
CZ R X R

f C  
        


 

     400 2 sig. fig.   

 (b)  
   

22 2 2

22 2 2 22 6

1 1
75 75

4 4 60000 Hz 6.8 10 F
CZ R X R

f C  
        


 

 
50. We find the impedance from Eq. 30-27. 

  rms

3

rms

120 V
1700

70 10 A

V
Z

I 
   


 

 
51. The impedance is given by Eq. 30-28a with no capacitive reactance. 

 22 2 2 2LZ R X R fL     

 

   

22 2 2 2 2 2 2

60

2 22 2 2 2 2 2 2 2 2 2

2     4 2 4 60 Hz   

4 4 4 60 Hz 4 16 60 Hz   

fZ Z R f L R L

R f L R L R L

 

  

     

       
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     
 

 
2 22 2 2 2

2 2

22 2 2 2 2

3 16 60 Hz 3 25003
4 60 Hz 4 60 Hz

4 4 4 0.42 H

  1645Hz 1.6 kHz

R L R
f

L L


  

 
    

 

 

 
52. (a) The rms current is the rmv voltage divided by the impedance.  The impedance is given by Eq.  

30-28a with no inductive reactance, 

 
 

2 2 2

2

1

2
CZ R X R

fC
    . 

   
 

   

rms rms
rms

22

22 2 2 22 6

2 2

120 V

1 1
3800

4 4 60.0 Hz 0.80 10 F

120 V
2.379 10 A 2.4 10 A

5043

V V
I

Z
R

f L  

 

  

  


    


 

 (b) The phase angle is given by Eq. 30-29a with no inductive reactance. 

   
  6

1 1 1

11
2 60.0 Hz 0.80 10 F2

tan tan tan 41
3800

CX fC

R R




  

 
     


 

  The current is leading the source voltage. 

 (c) The power dissipated is given by    22 3

rms 0.02379A 6.0 10 2.2 WP I R      

 (d) The rms voltage reading is the rms current times the resistance or reactance of the element. 

   

    

 
   

2

rms rms

2

rms
rms rms 6

2.379 10 A 3800 90.4 V 90 V

2.379 10 A
78.88V 79 V

2 2 60.0 Hz 0.80 10 F

 2 sig. fig.
R

C
C

V I R

I
V I X

fC 







     


    



 

  Note that, because the maximum voltages occur at different times, the two readings do not add  
  to the applied voltage of 120 V. 
 
53. We use the rms voltage across the resistor to determine the rms current through the circuit.  Then, 

using the rms current and the rms voltage across the capacitor in Eq. 30-25 we determine the 
frequency. 

 
   

, rms rms
rms , rms

, rmsrms
6

, rms , rms

         
2

3.0 V
240 Hz

2 2 2 1.0 10  C 750 2.7 V

R
C

R

C C

V I
I V

R fC

VI
f

CV CRV



   

 

   
 

 

 Since the voltages in the resistor and capacitor are not in phase, the rms voltage across the power 
source will not be the sum of their rms voltages. 
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54. The total impedance is given by Eq. 30-28a. 

   
2

22 2 1
2

2
L CZ R X X R fL

fC



     

 
 
 

 

  
         

2

23 4 2

4 9

1
  8.70 10 2 1.00 10 Hz 3.20 10 H

2 1.00 10 Hz 6.25 10 F

   8716.5 8.72 k







      

 

   

 
 
    

 The phase angle is given by Eq. 30-29a. 

  

      

1 1

4 2

4 9

1

1

3

1
2

2
tan tan

1
2 1.00 10 Hz 3.20 10 H

2 1.00 10 Hz 6.25 10 F
 tan

535.9
 tan 3.52

8.70 10

L C

fL
X X fC

R R

R







 












 

  
 



 
   

 

 

The voltage is lagging the current, or the current is leading the voltage.   
The rms current is given by Eq. 30-27. 

  2rms
rms

725V
8.32 10 A

Z 8716.5

V
I    


 

 
55. (a) The rms current is the rms voltage divided by the impedance.  The impedance is given by Eq.  

30-28a with no capacitive reactance. 

 22 2 2 2LZ R X R fL    . 

   
     

rms rms
rms 2 2 2 2 2 2 22

120 V

4 965 4 60.0 Hz 0.225H

120 V
     0.124 A

968.7

V V
I

Z R f L 
  

  

 


 

 (b) The phase angle is given by Eq. 30-29a with no capacitive reactance. 

   
   1 1 1 2 60.0 Hz 0.225H2

tan tan tan 5.02
965

LX fL

R R


       


 

  The current is lagging the source voltage. 

 (c) The power dissipated is given by    22

rms 0.124 A 965 14.8 WP I R     

 (d) The rms voltage reading is the rms current times the resistance or reactance of the element. 

   

  

    

rms rms

rms rms rms

0.124 A 965 119.7 V 120 V

2 0.124 A 2 60.0 Hz 0.25H 10.5V

R

L
L

V I R

V I X I fL 

    

   
 

  Note that, because the maximum voltages occur at different times, the two readings do not add  
  to the applied voltage of 120 V. 
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56. (a) The current is found from the voltage and impedance.  The impedance is given by Eq. 30-28a. 

    
2

22 2 1
2

2
L CZ R X X R fL

fC



     

 
 
 

 

   
    

  

2

2

6

rms
rms

1
  2.0 2 60 Hz 0.035H 88.85

2 60 Hz 26 10 F

45V
0.5065A 0.51A

88.85

V
I

Z


 

     


   


 
 
    

(b) Use Eq. 30-29a to find the phase angle. 

  
  

1 1

6

1 1

1
2

2
tan tan

1
2 60 Hz 0.035H

2 60 Hz 26 10 F 88.83
 tan tan 88

2.0 2.0

L C

fL
X X fC

R R







 



 




 


  

    
 

 

 (c) The power dissipated is given by    22

rms 0.5065A 2.0 0.51WP I R     

 
57. For the current and voltage to be in phase, the reactances of the capacitor and inductor must be equal.  

Setting the two reactances equal enables us to solve for the capacitance. 

   2 2 22

1 1 1
2 7.8 F

2 4 4 360Hz 0.025H
L CX fL X C

fC f L
 

  
        

 
58. The light bulb acts like a resistor in series with the inductor.  Using the desired rms voltage across 

the resistor and the power dissipated by the light bulb we calculate the rms current in the circuit and 
the resistance.  Then using this current and the rms voltage of the circuit we calculate the impedance 
of the circuit (Eq. 30-27) and the required inductance (Eq. 30-28b). 

   ,rms
rms

,rms rms

75W 120V
0.625A        192

120V 0.625A
R

R

VP
I R

V I
        

  

 

   

22rms

rms

2 2
22rms

rms

2

1 1 240 V
192 0.88 H

2 2 60 Hz 0.625 A

V
Z R fL

I

V
L R

f I



 

  

           
  

 

 
59. We multiply the instantaneous current by the instantaneous voltage to calculate the instantaneous 

power.  Then using the trigonometric identity for the summation of sine arguments (inside back cover 
of text) we can simplify the result.  We integrate the power over a full period and divide the result by 
the period to calculate the average power. 

   
     
 

0 0 0 0

2
0 0

sin sin sin sin cos sin cos

sin cos sin cos sin

P IV I t V t I V t t t

I V t t t

       

    

    

 
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 

2
2

0 0
0 0

2 2
2

0 0 0 0
0 0

1
sin cos sin cos sin

2

cos sin  sin sin cos  
2 2

T
P PdT I V t t t dt

T

I V t dt I V t t dt




 
 

     


     
 

  

 

 

 
 

 
2

2 1
0 0 0 0 0 020

1 2 1
   cos sin sin cos

2 2 2
I V I V t I V


     

   
           

 

 
60. Given the resistance, inductance, capacitance, and frequency, we calculate the impedance of the 

circuit using Eq. 30-28b.   

  

  
     

6

2 2 22

2 2 660 Hz 0.025 H 103.67 

1 1
120.57 

2 2 660 Hz 2.0 10  F

150 103.67 120.57 150.95 

L

C

L C

X fL

X
fC

Z R X X

 

  

   

   


          

 

 (a) From the impedance and the peak voltage we calculate the peak current, using Eq. 30-27.   

 0
0

340 V
2.252 A 2.3 A

150.95 

V
I

Z
   


 

 (b) We calculate the phase angle of the current from the source voltage using Eq. 30-29a. 

 1 1 103.67 120.57 
tan tan 6.4

150 
L CX X

R
     
    


 

 (c) We multiply the peak current times the resistance to obtain the peak voltage across the resistor. 
The voltage across the resistor is in phase with the current, so the phase angle is the same as in 
part (b). 

  0, 0 2.252 A 150 340 V  ; 6.4RV I R         

(d) We multiply the peak current times the inductive reactance to calculate the peak voltage across 
the inductor.  The voltage in the inductor is 90º ahead of the current.  Subtracting the phase 
difference between the current and source from the 90º between the current and inductor peak 
voltage gives the phase angle between the source voltage and the inductive peak voltage.  

   
  

 
0, 0 2.252 A 103.67 230 V

90.0 90.0 6.4 96.4

L L

L

V I X

 

   

         
 

 (e) We multiply the peak current times the capacitive reactance to calculate the peak voltage across 
the capacitor.  Subtracting the phase difference between the current and source from the -90º 
between the current and capacitor peak voltage gives the phase angle between the source 
voltage and the capacitor peak voltage.  

   
  

 
0, 0 2.252 A 120.57 270 V

90.0 90.0 6.4 83.6

C C

C

V I X

 

   

            
 

 
61. Using Eq. 30-23b we calculate the impedance of the inductor.  Then we set the phase shift in Eq. 30-

29a equal to 25º and solve for the resistance.  We calculate the output voltage by multiplying the 
current through the circuit, from Eq. 30-27, by the inductive reactance (Eq. 30-23b).   

   
  2 2 175 Hz 0.055 H 60.48 

60.48 
tan 129.7 130 

tan tan  25

L

L L

X fL

X X
R

R

 




   


       



 



Chapter 30  Inductance, Electromagnetic Oscillations, and AC Circuits 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

287 

   
   

output

2 2
0 0

129.70
0.91

129.70 60.48

R
V V IR R

V V IZ Z


    

  
 

 
62. The resonant frequency is found from Eq. 30-32.  The resistance does not influence the resonant 

frequency. 

     
5

0 6 12

1 1 1 1
5.1 10 Hz

2 2 26.0 10 H 3800 10 F
f

LC   
   

 
 

 
63. We calculate the resonant frequency using Eq. 30-32 with the inductance and capacitance given in 

the example.  We use Eq. 30-30 to calculate the power dissipation, with the impedance equal to the 
resistance. 

  0
6

1 1
265 Hz

2 2 0.0300 H 12.0 10  F
f

LC  
  


 

 22
rms rms

rms rms rms

90.0V
cos 324W

25.0

V R V
P I V V

R R R
               

 

 
64. (a) We find the capacitance from the resonant frequency, Eq. 30-32. 

   
  

9

0 22 2 2 3
0

3

1 1 1 1
    5.60 10 F

2 4 4 4.15 10 H 33.0 10 Hz
f C

LC Lf  



     

 
 

 (b) At resonance the impedance is the resistance, so the current is given by Ohm’s law. 

   peak

peak

136 V
35.8 mA

3800

V
I

R
  


 

 
65. (a) The peak voltage across the capacitor is the peak current multiplied by the capacitive reactance.  

We calculate the current in the circuit by dividing the source voltage by the impedance, where 
at resonance the impedance is equal to the resistance. 

 
0 0 0

0 0 0
0 0

1 1

2 2 2C C

V V V
V X I T

f C R RC f  
     

 (b) We set the amplification equal to 125 and solve for the resistance. 

   
   

0
9

0 0

1 1 1
130

2 2 2 2 5000Hz 125 2.0 10 F

T
R

f RC f C


     
      


 

 
66. (a) We calculate the resonance frequency from the inductance and capacitance using Eq.30-32. 

  0
9

1 1
21460 Hz 21 kHz

2 2 0.055 H 1.0 10  F
f

LC  
   


 

 (b) We use the result of Problem 65 to calculate the voltage across the capacitor. 

     
0

0 9
0

1 2.0 V
420 V

2 2 35 1.0 10  F 21460 Hz
C

V
V

RC f  
  

 
 

 (c) We divide the voltage across the capacitor by the voltage source. 

0

0

420 V
210

2.0 V
CV

V
   
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67. (a) We write the average power using Eq. 30-30, with the current in terms of the impedance (Eq.  
30-27) and the power factor in terms of the resistance and impedance (Eq. 30-29b).  Finally we 
write the impedance using Eq. 30-28b. 

 

2 2
rms rms 0

rms rms rms 2 22
cos

2 1

V R V R V R
P I V V

Z Z Z R L C


 
   

   

 

 (b) The power dissipation will be a maximum when the inductive reactance is equal to the  
capacitive reactance, which is the resonant frequency. 

   
1

2
f

LC
  

 (c) We set the power dissipation equal to ½ of the maximum power dissipation and solve for the  
angular frequencies.   

 
 

2 2
0 0

max 222

2 2
2

1 1
1

2 2 22 1

4
 0 1    

2

V R V R
P P L C R

RR L C

RC R C LC
LC RC

LC

 
 

  

 
            

  
     

 

  We require the angular frequencies to be positive and for a sharp peak, 2 2 4R C LC .  The  
angular width will then be the difference between the two positive frequencies. 

2 1 1 1
    

2 2 2 2

LC RC R R R R

LC L L L LLC LC LC
                 

   
 

 
68. (a) We write the charge on the capacitor using Eq. 24-1, where the voltage drop across the  

capacitor is the inductive capacitance multiplied by the circuit current (Eq. 30-25a) and the 
circuit current is found using the source voltage and circuit impedance (Eqs. 30-27 and 30-28b). 

   
0 0 0

0 0 0 2 22 2 2 21 1
C C C

V CV V
Q CV CI X C X

Z C R L C R L C    

      
     

 

(b) We set the derivative of the charge with respect to the frequency equal to zero to calculate the  
frequency at which the charge is a maximum. 

 
 

 
3
2

2 3 2
00 0

2 22 2 2 2 2 2

2

2

2 4 4 /
0

1 1

1

2

V R L L CdQ Vd

d d
R L C R L C

R

LC L

  

     



    
  

        

  

 

 (c) The amplitude in a forced damped harmonic oscillation is given by Eq. 14-23.  This is  
equivalent to the LRC circuit with 0 0 ,  1 / ,   ,  and .F V k C m L b R      

 
69. Since the circuit is in resonance, we use Eq. 30-32 for the resonant frequency to determine the 

necessary inductance.   We set this inductance equal to the solenoid inductance calculated in 
Example 30-3, with the area equal to the area of a circle of radius r, the number of turns equal to the 
length of the wire divided by the circumference of a turn, and the length of the solenoid equal to the 
diameter of the wire multiplied by the number of turns.  We solve the resulting equation for the 
number of turns. 
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2
2

2 0
0

0 2 2

1 1 2
      

42

wire

o

r
N A r

f L
Ndf CLC

 
 



 
 
      

l

l
 

     
2 23 7 72 2

0
3

18.0 10 Hz 2.20 10 F 4 10 T m A 12.0m
37 loops

1.1 10 m
o wiref C

N
d

  
 



  
  


l 

 

 
70. The power on each side of the transformer must be equal.  We replace the currents in the power 

equation with the number of turns in the two coils using Eq. 29-6.  Then we solve for the turn ratio. 
2 2

2 2

345 10  
75

8.0 

p ps
p p p s s s

s p s

p p

s s

Z NI
P I Z P I Z

Z I N

N Z

N Z

   
            

 
   



 

 
71. (a) We calculate the inductance from the resonance frequency. 

   

0

2 2 22 3 9

1
  

2
1 1

0.03982 H 0.040H
4 4 17 10 Hz 2.2 10 Fo

f
LC

L
f C



  

 

   
 

 

 (b) We set the initial energy in the electric field, using Eq. 24-5, equal to the maximum energy in  
the magnetic field, Eq. 30-6, and solve for the maximum current. 

  
 

292
2 2 01 1

0 max max2 2

2.2 10 F 120V
    0.028A

0.03984 H

CV
CV LI I

L


      

 (c) The maximum energy in the inductor is equal to the initial energy in the capacitor. 

  22 91 1
,max 02 2 2.2 10 F 120V 16 JLU CV      

 
72. We use Eq. 30-6 to calculate the initial energy stored in the inductor. 

    22 51 1
0 02 2 0.0600H 0.0500A 7.50 10 JU LI      

 We set the energy in the inductor equal to five times the initial energy and solve for the current.  We 
set the current equal to the initial current plus the rate of increase multiplied by time and solve for the 
time. 

 5

21
2

0
0

2 5.0 7.50 10 J2
    111.8mA

0.0600H

111.8mA 50.0mA
    0.79s

78.0mA/s

U
U LI I

L

I I
I I t t



 
    

 
     

 

 
73. When the currents have acquired their steady-state 

values, the capacitor will be fully charged, and so no 
current will flow through the capacitor.  At this time, 
the voltage drop across the inductor will be zero, as the 
current flowing through the inductor is constant.  
Therefore, the current through R1 is zero, and the 
resistors R2 and R3 can be treated as in series. 
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0
1 3 2

1 3

12V
2.4mA   ;  0

5.0k

V
I I I

R R
    

 
 

 
74. (a) The self inductance is written in terms of the magnetic flux in the toroid using Eq. 30-4.  We set  

the flux equal to the magnetic field of a toroid, from Example 28-10.  The field is dependent 
upon the radius of the solenoid, but if the diameter of the solenoid loops is small compared with 
the radius of the solenoid, it can be treated as approximately constant. 

   
  2 2 2

0 0 0

0

4 2

8
B

N d NI rN N d
L

I I r

   
    

  This is consistent with the inductance of a solenoid for which the length is 02 .rl  
 (b) We calculate the value of the inductance from the given data, with r0 equal to half of the  

diameter. 

    
 

2 272 2
0

0

4 10  T m/A 550 0.020 m
58 H

8 8 0.33 m

N d
L

r





  


 

 
75. We use Eq. 30-4 to calculate the self inductance between the two wires.  We calculate the flux by 

integrating the magnetic field from the two wires, using Eq. 28-1, over the region between the two 
wires.  Dividing the inductance by the length of the wire gives the inductance per unit length. 

 
   

   

0 0 0

0 0 0

1 1 1

2 2 2

ln ln ln ln ln
2 2

r r
B

r r

r

r

I I h
L hdr dr

I I r r r r

L r r r
r r

h r r r

  
  

  
  

 



                      

                            

 
l l

l

l l

l l
l

l

 

 
76. The magnetic energy is the energy density (Eq. 30-7) multiplied by the volume of the spherical shell 

enveloping the earth. 

   
     

242 22 6 3 15

7
0

0.50 10 T
4 4 6.38 10 m 5.0 10 m 2.5 10 J

2 2 4 10 T m A
B

B
U u V r h 

 





           
 

 
77. (a) For underdamped oscillation, the charge on the capacitor is given by Eq. 30-19, with 0.     

Differentiating the current with respect to time gives the current in the circuit.  

2 2
0 0( ) cos   ;  ( ) cos sin

2

R R
L Lt tdQ R

Q t Q e t I t Q e t t
dt L

              
 

 

The total energy is the sum of the energies stored in the capacitor (Eq. 24-5) and the energy 
stored in the inductor (Eq. 30-6).  Since the oscillation is underdamped ( / 2R L ), the 
cosine term in the current is much smaller than the sine term and can be ignored.  The frequency 
of oscillation is approximately equal to the undamped frequency of Eq. 30-14. 

     

 

2 2

0 0

2 2 2
2 2 0 0

2 2
2 2 2

cos sin

2 2 2 2

cos sin
2 2

R R
L L

R R
L L

t t

C L

t t

Q e t L Q e tQ LI
U U U

C C

Q e Q e
t LC t

C C

  

  

 

 

  
     

    
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 (b) We differentiate the energy with respect to time to show the average power dissipation.  We  
then set the power loss per cycle equal to the resistance multiplied by the square of the current.  
For a lightly damped oscillation, the exponential term does not change much in one cycle, while 
the sine squared term averages to ½ .  

 

0 0

0

0 0

2 2

2
2 2 2 2 2

2 2

1 1
sin

2 2

R R
L L

R
L

R R
L L

t t

t
t t

Q e RQ edU d

dt dt C LC

RQ e
P I R Q e t Q e

LC LC
 

 


 

 
   
 
 

            
  

 

  The change in power in the circuit is equal to the power dissipated by the resistor. 
 
78. Putting an inductor in series with the device will protect it from sudden surges in current.  The 

growth of current in an LR circuit is given is Eq. 30-9. 

   max1 1tR L tR LV
I e I e

R
      

The maximum current is 33 mA, and the current is to have a value of 7.5 mA after a time of 75  
microseconds.  Use this data to solve for the inductance. 

 

   

max

max

6

2

max

1     1   

75 10 sec 150
4.4 10 H

7.5mA
ln 1ln 1

33mA

tR L tR L I
I I e e

I

tR
L

I

I

 





     

 
     


   
   

  

 

 Put an inductor of value 24.4 10 H  in series with the device. 
 
79. We use Kirchhoff’s loop rule to equate the input voltage to the voltage drops across the inductor and 

resistor.  We then multiply both sides of the equation by the integrating factor 
Rt
Le  and integrate the 

right-hand side of the equation using a u substitution with  and  
Rt Rt Rt
L L Lu IRe du dIRe Ie dt L    

  

Rt Rt Rt Rt
L L L L

in

in out

dI
V L IR

dt
dI L L L

V e dt L IR e dt du IR e V e
dt R R R

  

      
   

 

 For /L R t ,  1.
Rt
Le   Setting the exponential term equal to 

unity on both sides of the equation gives the desired results. 

 in out

L
V dt V

R
  

 
 
 
80. (a)  Since the capacitor and resistor are in series, the impedance of the circuit is given by Eq. 30- 

28a.  Divide the source voltage by the impedance to determine the current in the circuit.  
Finally, multiply the current by the resistance to determine the voltage drop across the resistor. 

 22 1 2

in in
R

V V R
V IR R

Z R fC
  


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  

     22 6

130 mV 550 
    31 mV

550 1 2 60 Hz 1.2 10  F 


 

    

 

 (b) Repeat the calculation with a frequency of 6.0 kHz. 
  

     22 6

130 mV 550 
130 mV

550 1 2 6000 Hz 1.2 10  F
RV

 


 

    

 

Thus the capacitor allows the higher frequency to pass, but attenuates the lower frequency. 
 
81. (a) We integrate the power directly from the current and voltage over one cycle. 

       

 

2 2

0 0 0 0
0 0 0

2
2

20 0
0 0

0

1
sin sin 90 sin cos

2 2
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sin

2 2 4

T
P IVdt I t V t dt I t V t dt

T

t I V
I V

 
 




    
 

 
  

    

 

  

2


 2sin 0 0
  

   
  

 

 (b) We apply Eq. 30-30, with 90   . 

rms rms cos90 0P I V    
As expected the average power is the same for both methods of calculation. 

 
82. Since the current lags the voltage one of the circuit elements must be an inductor.  Since the angle is 

less than 90º, the other element must be a resistor.   We use 30-29a to write the resistance in terms of 
the impedance.  Then using Eq. 30-27 to determine the impedance from the voltage and current and 
Eq. 30-28b, we solve for the unknown inductance and resistance. 

     

  
  

2 2 22 2rms
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2 2
rms

2
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2 1 cot 2 60Hz 5.6A 1 cot 65

2 cot 2 60Hz 51.5mH cot 65 9.1

fL
R fL

R
V

Z R fL fL fL fL
I

V
L

f I

R f L

  

     

  

  

  

      

  
  

    

  

 
83. We use Eq. 30-28b to calculate the impedance at 60 Hz. Then we double that result and solve for the 

required frequency. 

      

 
   

 

22 22
0 0

2 22 2
2 02

0

2 3500 2 60Hz 0.44 H 3504

4 3504 35004
2 2 2.2kHz

2 2 0.44 H

Z R f L

Z R
Z R fL f

L

 


 

        

  
     

 

 
84. (a) We calculate capacitive reactance using Eq. 30-25b.  Then using the resistance and capacitive  

reactance we calculate the impedance.  Finally, we use Eq. 30-27 to calculate the rms current. 

  
   

6

2 22 2

1 1
1474

2 2 60.0Hz 1.80 10 F

5700 1474 5887

C

C

X
fC

Z R X

  
   



       
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rms
rms

120V
20.38mA 20.4mA

5887

V
I

Z
   


 

 (b) We calculate the phase angle using Eq. 30-29a. 

1 1 1474
tan tan 14.5

5700
CX

R
    
    


 

 (c) The average power is calculated using Eq. 30-30. 

    rms rms cos 0.0204A 120V cos 14.5 2.37WP I V       

(d) The voltmeter will read the rms voltage across each element.  We calculate the rms voltage by 
multiplying the rms current through the element by the resistance or capacitive reactance. 

  
  

rms

rms

20.38mA 5.70k 116V

20.38mA 1474 30.0V

R

C C

V I R

V I X

   

   
 

Note that since the voltages are out of phase they do not sum to the applied voltage.  However, 
since they are 90º out of phase their squares sum to the square of the input voltage. 

 
85. We find the resistance using Ohm’s law with the dc voltage and current.  When then calculate the 

impedance from the ac voltage and current, and using Eq. 30-28b. 

 
   

 

rms

rms

2 22 2
22

45V 120V
18   ;  31.58

2.5A 3.8A

31.58 18
2 69mH

2 2 60Hz

V V
R Z

I I

Z R
R fL L

f


 

       

  
    

 

 
86. (a) From the text of the problem, the Q factor is the ratio of the voltage across the capacitor or  

inductor to the voltage across the resistor, at resonance.  The resonant frequency is given by Eq. 
30-32. 

   res 0

res

1 1
2

2 12L L

R

L
V I X f L LLCQ
V I R R R R C

       

 (b) Find the inductance from the resonant frequency, and the resistance from the Q factor. 

   
   

0

6 6

22 2 2 8 6
0

6
2

8

1 1
  

2

1 1
2.533 10 H 2.5 10 H

4 4 1.0 10 F 1.0 10 Hz

1 1 1 2.533 10 H
    4.5 10

350 1.0 10 F

f
LC

L
Cf

L L
Q R

R C Q C



 
 








 

     
 


      



 

 
87. We calculate the period of oscillation as 2 divided by the angular frequency.  Then set the total 

energy of the system at the beginning of each cycle equal to the charge on the capacitor as given by 

Eq. 24-5, with the charge given by Eq. 30-19, with    cos cos 1t t T           .  We take 

the difference in energies at the beginning and end of a cycle, divided by the initial energy.  For small 
damping, the argument of the resulting exponential term is small and we replace it with the first two 
terms of the Taylor series expansion.   
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 2 2 2
0 0

max

cos2 2
     

2 2

R R
L L

t tQ e t Q e
T U

C C

  
 

  
   


 

2
22 2

0 0

2
0

2 2 2
1 1 1

R
R L
L

R
L

t
Rt

L
t

U Q e Q e R R
e

U L L QQ e



   

 

      



           
 

 

 
88. We set the power factor equal to the resistance divided by the impedance (Eq. 30-28a) with the 

impedance written in terms of the angular frequency (Eq. 30-28b).  We rearrange the resulting 
equation to form a quadratic equation in terms of the angular frequency.   We divide the positive 
angular frequencies by 2 to determine the desired frequencies. 

 

      

   

2 2
222

22 9 9
2

9 2 4

4 4
5

9

1
cos     1 1 0

cos1

1
0.033H 55 10 F 55 10 F 1500 1 1 0

0.17

1.815 10 F H 4.782 10 F 1 0

4.78225 10 Ω F 4.85756 10 Ω F
2.65 10 rad s, 2.

3.63 10 F H

R R
LC C R

Z R L C
  

 

 

 



 

 

 



 
       

  

        
 

     

   
    



 

 


3

5 3

07 10 rad s

2.65 10 rad s 2.07 10 rad s
42kHz    and 330Hz

2 2 2
f


  



 
   

 

 
89. (a) We set 0 sinV V t  and assume the inductive reactance  

is greater than the capacitive reactance.  The current will 
lag the voltage by an angle .  The voltage across the 
resistor is in phase with the current and the voltage 
across the inductor is 90º ahead of the current.  The 
voltage across the capacitor is smaller than the voltage in 
the inductor, and antiparallel to it. 

 (b) From the diagram, the current is the projection of the  
maximum current onto the y axis, with the current 
lagging the voltage by the angle .  This is the same 
angle obtained in Eq. 30-29a.  The magnitude of the maximum current is the voltage divided by 
the impedance, Eq. 30-28b. 

 
 

  10
0 22

1
( ) sin sin   ;  tan

1

V L C
I t I t t

RR L C

     
 

 
    

 
 

 
90. (a) We use Eq. 30-28b to calculate the impedance and Eq. 30-29a to calculate the phase angle. 

  
  

     

6

22 22 3

1 1
3

754 rad s 0.0220H 16.59

1 1 754rad s 0.42 10 F 3158

23.2 10 16.59 3158 23.4k

16.59 3158
tan tan 7.71

23.2 10

L

C

L C

L C

X L

X C

Z R X X

X X

R









 

   

    

          

  
    

 
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(b) We use Eq. 30-30 to obtain the average power.  We obtain the rms voltage by dividing the 

maximum voltage by 2 .  The rms current is the rms voltage divided by the impedance. 

 
   

22 2
rms 0

rms rms 3

0.95V
cos cos cos cos 7.71 19 W

2 2 23.4 10

V V
P I V

Z Z
         

 
 

(c) The rms current is the peak voltage, divided by 2 , and then divided by the impedance. 

50
rms 3

2 0.95V 2
2.871 10 A 29 A

23.4 10

V
I

Z
    

 
 

The rms voltage across each element is the rms current times the resistance or reactance of the 
element. 

    

  
  

  

5 3
rms

5
rms

5 4
rms

2.871 10 A 23.2 10 0.67V

2.871 10 A 3158 0.091V

2.871 10 A 16.59 4.8 10 V

R

C C

L L

V I R

V I X

V I X





 

     

    

     

 

 
91. (a) The impedance of the circuit is given by Eq. 30-28b with L CX X  and 0R  .  We divide the  

magnitude of the ac voltage by the impedance to get the magnitude of the ac current in the 
circuit.  Since L CX X , the voltage will lead the current by 2.    No dc current will flow 
through the capacitor. 

 

   

22 20 20
0

20

1 1      
1

sin 2
1

V V
Z R L C L C I

Z L C

V
I t t

L C

   
 

 
 

      


 


 

 (b) The voltage across the capacitor at any instant is equal to the charge on the capacitor divided by  
the capacitance.  This voltage is the sum of the ac voltage and dc voltage.  There is no dc 
voltage drop across the inductor so the dc voltage drop across the capacitor is equal to the input 
dc voltage. 

out,ac out 1 1

Q
V V V V

C
     

We treat the emf as a superposition of the ac and dc components.  At any instant of time the 
sum of the voltage across the inductor and capacitor will equal the input voltage.  We use Eq. 
30-5 to calculate the voltage drop across the inductor.  Subtracting the voltage drop across the 
inductor from the input voltage gives the output voltage.  Finally, we subtract off the dc voltage 
to obtain the ac output voltage. 

   

 

 

   

20 20

20

20
out in 1 20

1 20 1 20

sin 2 cos 2
1 1

sin
1

sin sin
1

1
1 sin sin

1 1

L

L

dI d V V L
V L L t t

dt dt L C L C

V L
t

L C

V L
V V V V V t t

L C

L C
V V t V V t

L C L C

   
   

 
 

 
 

  
   

 
       




 
       

   
           
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   20
out,ac out 1 20 2

1
sin sin

1 1

C V
V V V V t t

L C LC

   
  

              
 

 (c) The attenuation of the ac voltage is greatest when the denominator is large. 

2 1
1 L CLC L X X

C
 


     

  We divide the output ac voltage by the input ac voltage to obtain the attenuation. 

20
2

2,out
2 2

2,in 20

1 11
1

V
V LC
V V LC LC


 

  


 

 (d) The dc output is equal to the dc input, since there is no dc voltage drop across the inductor. 

1,out 1V V  

 
92. Since no dc current flows through the capacitor, there will be no dc current through the resistor.  

Therefore the dc voltage passes through the circuit with little attenuation.  The ac current in the 
circuit is found by dividing the input ac voltage by the impedance (Eq. 30-28b)  We obtain the output 
ac voltage by multiplying the ac current by the capacitive reactance.  Dividing the result by the input 
ac voltage gives the attenuation. 

2,out20
2,out 2 2 2 2 2

20

1 1
    

1

C
C

C

VV X
V IX

V R CR X R C 
    

 
 

 
93. (a) Since the three elements are connected in parallel, at any given instant in time they will all three  

have the same voltage drop across them.  That is the voltages across each element will be in 
phase with the source.  The current in the resistor is in phase with the voltage source with 
magnitude given by Ohm’s law. 

0( ) sinR

V
I t t

R
    

(b) The current through the inductor will lag behind the voltage by /2, with magnitude equal to the 
voltage source divided by the inductive reactance. 

0( ) sin
2L

L

V
I t t

X

   
 

 

(c) The current through the capacitor leads the voltage by /2, with magnitude equal to the voltage 
source divided by the capacitive reactance. 

0( ) sin
2C

C

V
I t t

X

   
 

 

 (d) The total current is the sum of the currents through  
each element.  We use a phasor diagram to add the 
currents, as was used in Section 30-8 to add the voltages 
with different phases.  The net current is found by 
subtracting the current through the inductor from the 
current through the capacitor.  Then using the Pythagorean 
theorem to add the current through the resistor.  We use 
the tangent function to find the phase angle between the 
current and voltage source. 

 
22 2

22 0 0 0 0
0 0 0 0

1
1R C L

C L

V V V V
I I I I R C

R X X R R L



                

    
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 
2

0( ) 1 sin
V R

I t R C t
R L

  


     
 

 

0 0

1 1

0

tan tan tanC L

C L

V V
R R RX X

R C
V X X L
R

  


 


           
  

 

(e) We divide the magnitude of the voltage source by the magnitude of the current to find the 
impedance. 

0 0

2 2
0

0 1 1

V V R
Z

I V R R
R C R C

R L L
 

 

  
         
   

 

(f) The power factor is the ratio of the power dissipated in the circuit divided by the product of the 
rms voltage and current. 

2
0

2 2
,rms

2 2
rms rms 0 0

0
0

1

1 1

R R

V
R

I R I R R
V I V I V R R

V R C R C
R L L

 
 

 
 
   
         
   

 

 
94. We find the equivalent values for each type of element in series.  From the equivalent values we 

calculate the impedance using Eq. 30-28b. 

 

eq 1 2 eq 1 2
eq 1 2

2 2
22

eq eq 1 2 1 2
eq 1 2

1 1 1
            

1 1 1

R R R L L L
C C C

Z R L R R L L
C C C

  
  

     

   
               

 

 
95. If there is no current in the secondary, there will be no induced emf from the mutual inductance.  

Therefore, we set the ratio of the voltage to current equal to the inductive reactance and solve for the 
inductance. 

  
rms rms

rms rms

220 V
2 0.14 H

2 2 60 Hz 4.3 AL

V V
X fL L

I f I


 
       

 
96. (a) We use Eq. 24-2 to calculate the capacitance, assuming a parallel plate capacitor. 

   –12 2 2 –4 2

–12o
–3

5.0 8.85 10 C N m 1.0 10 m
2.213 10 F 2.2pF

2.0 10 m

K A
C

d

  
    




 

 (b) We use Eq. 30-25b to calculate the capacitive reactance. 

  
6

–12

1 1
5.995 10 6.0M

2 2 12000Hz 2.2 10 F
CX

fC 
      


 

 (c) Assuming that the resistance in the plasma and in the person is negligible compared with the  
capacitive reactance, calculate the current by dividing the voltage by the capacitive reactance. 

–4o
o 6

2500 V
4.17 10 A 0.42mA

5.995 10C

V
I

X
    

 
 

  This is not a dangerous current level. 
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 (d) We replace the frequency with 1.0 MHz and recalculate the current. 

   6 –120
0 02 2 1.0 10 Hz 2.2 10 F 2500V 35mA

C

V
I fCV

X
        

  This current level is dangerous. 
 
97. We calculate the resistance from the power dissipated and the current.  Then setting the ratio of the 

voltage to current equal to the impedance, we solve for the inductance. 

 

 

     
 

2
rms 2 2

rms

22rms

rms

2 2 22
rms rms

350W
21.88 22

4.0A

2   

120V 4.0A 21.88
54mH

2 2 60Hz

P
P I R R

I

V
Z R fL

I

V I R
L

f



 

       

   

  
  

 

 
98. We insert the proposed current into the differential equation and solve for the unknown peak current 

and phase. 

   

   
   

   

0 0 0

0 0

0 0

0 0 0 0

sin sin sin

cos sin

cos cos sin sin sin cos cos sin

cos sin cos sin cos sin

d
V t L I t RI t

dt
L I t RI t

L I t t RI t t

L I RI t L I RI t

    

    

        

       

     

   

   

   

 

 For the given equation to be a solution for all time, the coefficients of the sine and cosine terms 
must independently be equal. 

1
0 0

0 0 0

0 0 0
0 2 2 2

2 2 2 2 2 2

For the cos  term: 

     0 cos sin tan tan

For the sin  term:

     sin cos  

     = =      
sin cos

t

L L
L I RI

R R

t

V L I RI

V V V
I

L RL R R LL R
R L R L



     


  

   
 

     

 


 

 

 

 
99. The peak voltage across either element is the current through the element multiplied by the 

reactance.  We set the voltage across the inductor equal to six times the voltage across the capacitor 
and solve for the frequency in terms of the resonant frequency, Eq. 30-14. 

0
0 0

6 1 6
2 6         6

2 2L C

I
V I fC V f f

fC LC


 
        
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100. We use Kirchhoff’s junction rule to write an equation relating 
the currents in each branch, and the loop rule to write two 
equations relating the voltage drops around each loop.  We 
write the voltage drops across the capacitor and inductor in 
terms of the charge and derivative of the current.  

0 0sin 0  ;  sin 0

R L C

C L
R R

I I I

Q dI
V t I R V t I R L

C dt
 

 

     
 

 We combine these equations to eliminate the charge in the capacitor and the current in the inductor 
to write a single differential equation in terms of the current through the resistor. 

 

0

2 22
2

0 02 2 2

2
20

0 2

sin

sin sin

sin sin

L R

C C R
R

CR L R R

VdI I R
t

dt L L

dI d Q dId
CV t I RC CV t RC

dt dt dt dt

dI VdI dI I R dI
t CV t RC

dt dt dt L L dt



  

  

 

     

      

 

 We set the current in the resistor,    0 0sin sin cos cos sinRI I t I t t         , equal to the 

current provided by the voltage source and take the necessary derivatives.   

   

 

20 0
0 0

2

0 2

0 0
0 0

sin cos cos sin sin sin cos cos sin sin

                                                               sin cos cos sin

cos cos sin sin sin s

V I Rd
I t t t t t CV t

dt L L

d
RCI t t

dt
V I R

I t I t t
L L

          

   

      

    

 

   20
0

2 2
0 0

in cos cos sin sin

                                                               sin cos cos sin

I R
t t CV t

L

RCI t RCI t

     

     

 

 

 

 Setting the coefficients of the time dependent sine and cosine terms separately equal to zero enables 
us to solve for the magnitude and phase of the current through the voltage source.  We also use Eq. 
30-23b and Eq. 30-25b to write the inductance and capacitance in terms of their respective 
reactances. 

   

 
 

 

10 0
0

0 0 0 0
0

0
0

0

From the cos( ) term:

cos sin sin tan tan

From the sin( ) term:

sin cos cos

sin cos

   

L C L C

L C L C L C

L L C C

C L

C L C L

C L

C

t

I R I R X X X X
I

X X R X X R X X

t

V I R V RI
I

X X X X

V X X
I

X X R X X

V X X

X X



 
     


   

   

 

  
       

   

    




 




   
   

   
 

   

2 2 2 22 2

0

2 22
   

C LC L
L C L

C L C L C L C L

C L

C L C L

R X XX X
R X X

X X R X X X X R X X

V X X

X X R X X


 

   




 
 

C L

R

I IC IL

V = V0 sin t
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This gives us the current through the power source and resistor.  We insert these values back into 
the junction and loop equations to determine the current in each element as a function of time.  We 
calculate the impedance of the circuit by dividing the peak voltage by the peak current through the 
voltage source. 

   
     

2 22
10 0

0

  ;  tan   ;  sin
C L C L L C

R
C L L C

X X R X XV X X V
Z I t

I X X R X X Z
     

        
 

 

 

   

   

0 0

0

0 0

0 0

sin cos

cos cos

sin cos cos

sin cos cos

C R
C R

C

L R C
C

C C

dQ d dI
I CV t I RC CV t RC

dt dt dt

V R
t t

X Z

V V R
I I I t t t

Z X Z

V R V
t t t

Z X X

  

  

    

    

    

     

         

 
     

 

 

 
101. (a) The resonant frequency is given by Eq. 30-32.  At resonance, the impedance is equal to the  

resistance, so the rms voltage of the circuit is equal to the rms voltage across the resistor. 

  
 

6

rmsrms

1 1
7118Hz 7.1kHz

2 2 0.0050H 0.10 10 F

R

f
LC

V V

  
   





 

(b) We set the inductance equal to 90% of the initial inductance and use Eq. 30-28b to calculate the 
new impedance.  Dividing the rms voltage by the impedance gives the rms current.  We 
multiply the rms current by the resistance to determine the voltage drop across the resistor. 

  
   

     

 

6

2 2 22

rms rms rmsrms

1 1
223.6

2 2 7118Hz 0.10 10 F

2 2 7118Hz 0.90 0.0050H 201.3

45 201.3 223.6 50.24

45
0.90

50.24

C

L

L C

R

X
fC

X fL

Z R X X

R
V V V V

Z

 

 


   



   

         

          

 

 
102. With the given applied voltage, calculate the rms current through each branch as the rms voltage 

divided by the impedance in that branch.  

rms rms
,rms ,rms2 2 2 2

1 2

      C L

C L

V V
I I

R X R X
 

 
 

 Calculate the potential difference between points a and b in two ways.  First pass through the 
capacitor and then through R2.  Then pass through R1  and the inductor.   

rms rms 2
ab 2 2 2 2 2

1 2

C
C C L

C L

V X V R
V I X I R

R X R X
   

 
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rms 1 rms
ab 1 2 2 2 2

1 2

L
C L L

C L

V R V X
V I R X I

R X R X
     

 
 

 Set these voltage differences equal to zero, and rearrange the equations. 
2 2 2 2rms rms 2
2 2 12 2 2 2

1 2

2 2 2 2rms 1 rms
1 2 12 2 2 2

1 2

0

0

C
C L C

C L

L
L L C

C L

V X V R
X R X R R X

R X R X

V R V X
R R X X R X

R X R X

     
 

      
 

 

 
 Divide the resulting equations and solve for the product of the resistances.  Write the reactances in 

terms of the capacitance and inductance to show that the result is frequency independent. 

  
2 22 2

2 12
1 2 1 22 2 2 2

1 2 1

CC L
L C

L L C

R R XX R X L L
R R X X R R

C CR R X X R X





     

 
 

 
103. (a) The output voltage is the voltage across the capacitor, which is the current through the circuit  

multiplied by the capacitive reactance.  We calculate the current by dividing the input voltage 
by the impedance.  Finally, we divide the output voltage by the input voltage to calculate the 
gain. 

   
   

in in in
out 2 2 2 2

out

2 2 2 2
in

1 2 1

1

4 1

C
C

C C

V X V V
V IX

R X R X fCR

V
A

V f C R





   
  

 


 

 (b) As the frequency goes to zero, the gain becomes one.  In this instance the capacitor becomes 
fully charged, so no current flows across the resistor.  Therefore the output voltage is equal to 
the input voltage.  As the frequency becomes very large, the capacitive reactance becomes very 
small, allowing a large current.  In this case, most of the voltage drop is across the resistor, and 
the gain goes to zero. 

 (c) See the graph of the log of the gain as 
a function of the log of the frequency.  
Note that for frequencies less than 
about 100 Hz the gain is ~ 1.  For 
higher frequencies the gain drops off 
proportionately to the frequency.  The 
spreadsheet used for this problem can 
be found on the Media Manager, with 
filename “PSE4_ISM_CH30.XLS,” 
on tab “Problem 30.103c.” 

 
 
104. (a) The output voltage is the voltage across the resistor, which is the current through the circuit  

multiplied by the resistance.  We calculate the current by dividing the input voltage by the 
impedance.  Finally, we divide the output voltage by the input voltage to calculate the gain. 

   
 

in in in
out 2 2 2 2

2

2

2 11
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V R V R fCRV
V IR

R X fCR
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
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   
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 

 

-4

-3

-2

-1

0

-1 0 1 2 3 4 5 6
log f

lo
g 

A



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

302 

   out

2 2 2 2
in

2

4 1

V fCR
A

V f C R




 


 

 (b) As the frequency goes to zero, the gain drops to zero.  In this instance the capacitor becomes  
fully charged, so no current flows across the resistor.  Therefore the output voltage drops to 
zero.  As the frequency becomes very large, the capacitive reactance becomes very small, 
allowing a large current.  In this case, most of the voltage drop is across the resistor, and the 
gain is equal to unity. 

 
(c) See the graph of the log of the gain as  

a function of the log of the frequency.  
Note that for frequencies greater than 
about 1000 Hz the gain is ~ 1.  For 
lower frequencies the gain drops off 
proportionately to the inverse of the 
frequency.  The spreadsheet used for 
this problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH30.XLS,” on tab 
“Problem 30.104c.” 
 

 

 
105. We calculate the resonant frequency using Eq. 30-32. 

  
  0

6 6

1 1
20,000rad s

50 10 H 50 10 FLC


 
  

 
 

Using a spreadsheet, we calculate the impedance as a function of frequency using Eq. 30-28b.  We 
divide the rms voltage by the impedance to plot the rms current as a function of frequency.  The 
spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH30.XLS,” on tab “Problem 30.105.” 
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CHAPTER 31:  Maxwell’s Equations and Electromagnetic Waves 
 
Responses to Questions 
 
1.  The magnetic field will be clockwise in both cases. In the first case, the electric field is away from 

you and is increasing. The direction of the displacement current (proportional to Ed

dt


) is therefore 

away from you and the corresponding magnetic field is clockwise. In the second case, the electric 
field is directed towards you and is decreasing; the displacement current is still away from you, and 
the magnetic field is still clockwise.  

 
2. The displacement current is to the right. 
 
3.  The displacement current is spread out over a larger area than the conduction current. Thus, the 

displacement current produces a less intense field at any given point. 
 

4.  One possible reason the term 0
Ed

dt



can be called a “current” is because it has units of amperes. 

 
5.  The magnetic field vector will oscillate up and down, perpendicular to the direction of propagation 

and to the electric field vector. 
 
6.  No. Sound is a longitudinal mechanical wave. It requires the presence of a medium; electromagnetic 

waves do not require a medium. 
 
7. EM waves are self-propagating and can travel through a perfect vacuum. Sound waves are 

mechanical waves which require a medium, and therefore cannot travel through a perfect vacuum. 
 
8. No. Electromagnetic waves travel at a very large but finite speed. When you flip on a light switch, it 

takes a very small amount of time for the electrical signal to travel along the wires.  
 
9.  The wavelengths of radio and television signals are longer than those of visible light. 
 
10. The wavelength of the current is 5000 km; the house is only 200 km away. The phase of the current 

at the position of the house is 2/25 radians different from the phase at the source due to the position 
of the house.  

 
11. The signals travel through the wires at close to the speed of light, so the length of the wires in a 

normal room will have an insignificant effect. 
 
12.  103 km: radio wave; 1 km: radio wave; 1 m: microwave; 1 cm: microwave; 1 mm: microwave or 

infrared; 1 μm: infrared. 
 
13. Yes, although the wavelengths for radio waves will be much longer than for sound waves, since the 

radio waves travel at the speed of light. 
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14.  Both cordless phones and cellular phones are radio receivers and transmitters. When you speak, the 
phone converts the sound waves into electrical signals which are amplified, modulated, and 
transmitted. The receiver picks up the EM waves and converts them back into sound. Cordless 
phones and cell phones use different frequency ranges and different intensities. 

 
15. Yes. If one signal is sent by amplitude modulation and the other signal is sent by frequency 

modulation, both could be carried over the same carrier frequency. There are other ways two signals 
can be sent on the same carrier frequency which are more complex. 

 
16.  The receiver’s antenna should also be vertical for the best reception. 
 
17. Diffraction is significant when the order of magnitude of the wavelength of the waves is the same as 

the size of the obstacles. AM waves have longer wavelengths than FM waves and will be more 
likely to diffract around hills and other landscape barriers. 

 
18.  It is amplitude modulated, or AM. The person flashing the light on and off is changing the amplitude 

of the light (“on” is maximum amplitude and “off” is zero). The frequency of the carrier wave is just 
the frequency of the visible light, approximately 1014 to 1015 Hz.  

 
 

Solutions to Problems 
 

1. The electric field between the plates is given by ,
V

E
d

  where d is the distance between the plates. 

    51 V m
    120 V s 1.1 10

0.0011m s

V dE dV
E

d dt d dt


     

 
 
 

  

 

2. The displacement current is shown in section 31-1 to be D 0 .
dE

I A
dt

  

     212 2 2 6 8

D 0

V
8.85 10 C N m 0.058 m 2.0 10 6.0 10 A

m s

dE
I A

dt
         

 
 

 

 
3. The current in the wires must also be the displacement current in the capacitor.  Use the 

displacement current to find the rate at which the electric field is changing. 

   
 

  
15D

0 212 2 2
0

2.8A V
    1.2 10

m s8.85 10 C N m 0.0160m
D

dE dE
I A

dt dt A

I


 
     

  
 

 
4.  The current in the wires is the rate at which charge is accumulating on the plates and also is the 

displacement current in the capacitor.  Because the location in question is outside the capacitor, use 
the expression for the magnetic field of a long wire. 

   
   

 

7 3

80 0
10 T m A 2 38.0 10 A2

7.60 10 T
2 4 0.100m

I I
B

R R

 
 

 


      
 


 

 After the capacitor is fully charged, all currents will be zero, so the magnetic field will be  zero. 
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5. The electric field between the plates is given by ,
V

E
d

  where d is the distance between the plates.  

The displacement current is shown in section 31-1 to be D 0 .
dE

I A
dt

  

  0
D 0 0

1dE dV A dV dV
I A A C

dt d dt d dt dt


      

 
6. (a) The footnote on page 816 indicates that Kirchhoff’s junction rule is valid at a capacitor plate,  

and so the conduction current is the same value as the displacement current.  Thus the 

maximum conduction current is 35 A .  

 (b) The charge on the pages is given by 0 cos .Q CV C t  e   The current is the derivative of this. 

   
   

     

0 max 0

6 3

max max
0 212 2 2

0

sin   ;    

35 10 A 1.6 10 m

C 2 2 76.0 Hz 8.85 10 C N m 0.025m

6749 V 6700 V

dQ
I C t I C

dt

I I d

f A

  

    

 



    

 
  

 

 

e e

e  

 (c) From Eq. 31-3, D 0 .Ed
I

dt



  

   
  6

6D max
D 0 12 2 2

max 0

35 10 A
    4.0 10 V m s

8.85 10 C N m
E E

Id d
I

dt dt








  
     

 
 
 
 

  

 
7. (a) We follow the development and geometry given in Example 31-1, using R for the radial  

distance.  The electric field between the plates is given by ,
V

E
d

  where d is the distance 

between the plates. 

   
0 0 0 0

2
flux

path    2E
d R Ed

d B R
dt dt


    


   B


 l  

The subscripts are used on the radial variable because there might not be electric field flux 
through the entire area bounded by the amperian path.  The electric field between the plates is 

given by 
 0 sin 2

,
V ftV

E
d d


   where d is the distance between the plates. 

   

     

2

flux

path 0 0

2 2 2

0 0 flux 0 0 flux 0 0 0 flux 0

path path path

2   

2
cos 2 cos 2

2 2

d R E
B R

dt

d ER R fV R fV
B ft ft

R dt R d R d


  

         
 

 

 

  

 

We see that the functional form of the magnetic field is    0 cos 2 .B B R ft  
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(b) If 0,R R  then there is electric flux throughout the area bounded by the amperian loop, and so 

path flux .R R R   

     
   

   

2

0 0 flux 0 0
0 0 0 0 28 3

path

11 11

60 Hz 150 V

3.00 10 m s 5.0 10 m

   6.283 10 T m 6.3 10 T m

R fV fV
B R R R R

R d d

R R

   
 



 

   
 

   

 

If 0,R R  then there is electric flux only out a radial distance of 0.R   Thus pathR R  and 

flux 0.R R  

   

       
   

   

22 2

0 0 flux 0 0 0
0 0 0 0 28 3

path

14 14

60 Hz 150 V 0.030 m1 1

3.00 10 m s 5.0 10 m

1 1
   5.655 10 T m 5.7 10 T m

R fV fV R
B R R

R d d R R

R R

   
 



 

   
 

    

 

 

(c) See the adjacent graph.  Note that the  
magnetic field is continuous at the 
transition from “inside” to “outside” the 
capacitor radius.  The spreadsheet used 
for this problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH31.XLS,” on tab 
“Problem 31.7c.” 

 

 
 
 
8. Use Eq. 31-11 with .v c  

  
4

130 0
0 8

0

0.57 10 V m
    1.9 10 T

3.00 10 m s

E E
c B

B c




     


 

 
9. Use Eq. 31-11 with .v c  

      9 80
0 0

0

    12.5 10 T 3.00 10 m s 3.75V m
E

c E B c
B

        

 

10. The frequency of the two fields must be the same: 80.0 kHz .   The rms strength of the electric field  

can be found from Eq. 31-11 with .v c    

     8 9
rms rms 3.00 10 m s 7.75 10 T 2.33V mE cB       

 The electric field is perpendicular to both the direction of travel and the magnetic field, so the 
electric field oscillates along the  horizontal north-south line.  

 
11. (a) If we write the argument of the cosine function as kz + t = k(z + ct), we see that the wave is 

  traveling in the  – z direction, or ˆ .k   
 
 

0.0

0.5

1.0

1.5

2.0

0.0 2.0 4.0 6.0 8.0 10.0
r  (cm)

B
 (

pT
)
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  (b) E


 and B


 are perpendicular to each other and to the direction of propagation.  At the origin, the  
electric field is pointing in the positive x direction.  Since E B

 
 must point in the negative z 

direction, B


 must point in the the  – y direction, or ˆ .j  The magnitude of the magnetic field is 

found from Eq. 31-11 as 0 0 .B E c  

 

12. The wave equation to be considered is 
2 2

2
2 2

.
E E

v
x t

 


 
 

(a) Given    2, .x vtE x t Ae    

  

   

           

2

2 2 2
2

2 2

2

2

2 2 2 1 2

x vt

x vt x vt x vt

E
Ae x vt

x

E
Ae Ae x vt Ae x vt

x



  



   

 

     


    

              

 

  

        

           

2 2

2 2 2
2

2 22 2
2

2 2

2 2 2 1 2

x vt x vt

x vt x vt x vt

E
Ae x vt v Ae v x vt

t

E
Ae v Ae v x vt v Ae x vt

t

 

  

 

   

   

     


           

             

 

 We see that 
2 2

2
2 2

,
E E

v
x t

 


 
 and so the wave equation is satisfied. 

(b) Given    2

, .
x vt

E x t Ae
 

  

  

   

         

   

2

2 2 2

2 2

2
2 2

2

2
2

2

2

2 2 2 1 2

  ;  

x vt

x vt x vt x vt

x vt x vt

E
Ae x

x

E
Ae Ae x Ae x

x

E E
Ave Av e

t t



  

 



   

 

     

   


 


         
 

 
 

 

This does NOT satisfy 
2 2

2
2 2

,
E E

v
x t

 


 
 since    2 2

2 2 22 1 2
x vt x vt

v Ae x Av e
           in 

general. 
 
13. Use Eq. 31-14 to find the frequency of the microwave. 

   
 
 

8

10

2

3.00 10 m s
    2.00 10 Hz

1.50 10 m

c
c f f

 


     


 

 
14. Use Eq. 31-14 to find the wavelength and frequency. 

(a) 
 
 

8

2

9

3.000 10 m s
    1.165 10 m

25.75 10 Hz

c
c f

f
  


     


  

(b) 
 
 

8

18

9

3.00 10 m s
    2.5 10 Hz

0.12 10 m

c
c f f

 


     


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15. Use the relationship that d vt  to find the time. 

   
 
 

11

2

8

1.50 10 m
    5.00 10 s 8.33min

3.00 10 m s

d
d vt t

v


      


 

 
16. Use Eq. 31-14 to find the wavelength. 

   
 
 

8

7

14

3.00 10 m s
    3.50 10 m 311nm

8.56 10 Hz

c
c f

f
  


      


 

  This wavelength is just outside the violet end of the visible region, so it is  ultraviolet.  
 
17. (a) Use Eq. 31-14 to find the wavelength. 

   
 
 

8

5

3

3.00 10 m s
    3.00 10 m

1.00 10 Hz

c
c f

f
 


     


 

(b) Again use Eq. 31-14, with the speed of sound in place of the speed of light. 

  
 

 3

341m s
    0.341m

1.00 10 Hz

v
v f

f
     


 

(c) No, you cannot hear a 1000-Hz EM wave.  It takes a pressure wave to excite the auditory  
system.  However, if you applied the 1000-Hz EM wave to a speaker, you could hear the 1000-
Hz pressure wave. 

 
18. The length of the pulse is .d c t     Use this to find the number of wavelengths in a pulse. 

   
    

 
8 12

9

3.00 10 m s 38 10 s
10734 11,000 wavelengths

1062 10 m

c t
N







 
   


 

If the pulse is to be only one wavelength long, then its time duration is the period of the wave, which 
is the reciprocal of the wavelength. 

   
 
 

9

15

8

1062 10 m1
3.54 10 s

3.00 10 m s
T

f c







    


 

 
19. (a) The radio waves travel at the speed of light, and so .d v t     The distance is found from the  

radii of the orbits.  For Mars when nearest the Earth, the radii should be subtracted. 

    
 

 
9 9

8

227.9 10 m 149.6 10 m
261s

3.000 10 m s

d
t

c

  
   


 

  (b) For Mars when farthest from Earth, the radii should be subtracted. 

    
 

 
9 9

8

227.9 10 m 149.6 10 m
1260s

3.000 10 m s

d
t

c

  
   


 

 
20. (a) The general form of a plane wave is given in Eq. 31-7.  For this wave,  0 sin .xE E kz t   

 
1

7
6

2 2
81.60m 82m

0.077m

2.3 10 rad s
3.661 10 Hz 3.7 MHz

2 2

k

f

 


 

   


    

  

Note that   6 881.60m 3.661 10 Hz 2.987 10 m s .f c       
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(b) The magnitude of the magnetic field is given by 0 0 .B E c   The wave is traveling in the 

k̂ direction, and so the magnetic field must be in the ĵ  direction, since the direction of travel is 

given by the direction of .E B
 

 

   

     

70
0 8

7 1 7

225V m
7.50 10 T  

3.00 10 m s

ˆ 7.50 10 T sin 0.077m 2.3 10 rad s

E
B

c

z t



 

    


     B j
  

 
21. The eight-sided mirror would have to rotate 1/8 of a revolution for the succeeding mirror to be in 

position to reflect the light in the proper direction.  During this time the light must travel to the 
opposite mirror and back. 

   
 
 

    
   

81
48

3

rad 3.00 10 m s2 rad rad
3400 rad s 3.2 10 rev min

2 8 8 35 10 m

c

t x c x

 


     
   

 

 
22. The average energy transferred across unit area per unit time is the average magnitude of the 

Poynting vector, and is given by Eq. 31-19a. 

     2 12 2 2 8 7 21 1
0 02 2 8.85 10 C N m 3.00 10 m s 0.0265V m 9.32 10 W mS cE         

 
23. The energy per unit area per unit time is  given by the magnitude of the Poynting vector.  Let U  

represent the energy that crosses area A in a time .T  

   
  

   

2

rms

0

7

20

22 4 2 8 9
rms

7

  

4 10 T m A 335J
0.194 W m

1.00 10 m 3.00 10 m s 22.5 10 T

   2.77 10 s 321 days

cB U
S

A t

U
t

AcB






 


  




   

  

  


 

 
24. The energy per unit area per unit time is  given by the magnitude of the Poynting vector.  Let U  

represent the energy that crosses area A in a time .t  

  

      

2
0 rms

2
0 rms

28 12 2 2 4 2

6

  

      3.00 10 m s 8.85 10 C N m 0.0328V m 1.00 10 m 3600s h

      1.03 10 J h

U
S c E

A t
U

c E A
t





 




  







    

 

 

 
25. The intensity is the power per unit area, and also is the time averaged value of the Poynting vector.   

The area is the surface area of a sphere, since the wave is spreading spherically. 

  

 
 

  

2 2

2

2
2

0 rms rms 8 12 2 2
0

1500W
4.775W m 4.8W m

4 5.0m

4.775W m
    42V m

3.00 10 m s 8.85 10 C N m

P
S

A

S
S c E E

c




 

   
 
 

    
  
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26. (a) We find E using Eq. 31-11 with .v c  

     8 73.00 10 m s 2.5 10 T 75V mE cB       

  (b) The average power per unit area is given by the Poynting vector, from Eq. 31-19a. 

    
 

  
 

7

20 0

7 2 2
0

75V m 2.5 10 T
7.5W m

2 2 4 10 N s C

E B
I

 






  

  
 

 
27. From Eq. 31-16b, the instantaneous energy density is 2

0 .u E   From Eq. 31-17, we see that this 

instantaneous energy density is also given by .S c   The time-averaged value is therefore .S c   
Multiply that times the volume to get the energy. 

 
2

3 6
8

1350W m
1.00m 4.50 10 J

3.00 10 m s

S
U uV V

c
    


 

 
28. The power output per unit area is the intensity, and also is the magnitude of the Poynting vector.  Use 

Eq. 31-19a with rms values. 

       

2
0 rms

rms 23 8 12 2 2
0

6rms
rms 8

  

0.0158W

1.00 10 m 3.00 10 m s 8.85 10 C N m

      1376.3V m 1380V m

1376.3V m
4.59 10 T

3.00 10 m s

P
S c E

A

P
E

Ac

E
B

c



   



  

 
   

 

   


 

 
29. The radiation from the Sun has the same intensity in all directions, so the rate at which it reaches the 

Earth is the rate at which it passes through a sphere centered at the Sun with a radius equal to the 
Earth’s orbit radius.  The 21350W m is the intensity, or the magnitude of the Poynting vector. 

      22 11 2 26    4 4 1.496 10 m 1350W m 3.80 10 W
P

S P SA R S
A

          

 
30. (a) The energy emitted in each pulse is the power output of the laser times the time duration of the  

pulse. 

      11 9    1.8 10 W 1.0 10 s 180J
W

P W P t
t


        


 

(b) We find the rms electric field from the intensity, which is the power per unit area.  That is also 
the magnitude of the Poynting vector.  Use Eq. 31-19a with rms values. 

    
 

    

2
0 rms

11

rms 23 8 12 2 2
0

9

  

1.8 10 W

2.2 10 m 3.00 10 m s 8.85 10 C N m

      2.1 10 V m

P
S c E

A

P
E

Ac



   

  


 

   

 
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31. In each case, the required area is the power requirement of the device divided by 10% of the intensity 
of the sunlight. 

(a) 
3

4 2 2
2

50 10 W
5 10 m 5cm

100W m

P
A

I




      

A typical calculator is about 17 cm x 8 cm, which is about 2140cm .   So yes, the solar panel can 
be mounted directly on the calculator. 

 (b)  2 2
2

1500W
15m 20m  to one sig. fig.

100W m

P
A

I
     

A house of floor area 21000ft  would have on the order of 2100m  of roof area.  So yes, a solar 
panel on the roof should be able to power the hair dryer. 

  (c) 
   2 2

2

20hp 746W hp
149m 100m  to one sig. fig.

100W m

P
A

I
     

This would require a square panel of side length about 12 m.  So no, this panel could not be 
mounted on a car and used for real-time power. 

 
32. (a) Example 31-1 refers back to Example 21-13 and  

Figure 21-31.  In that figure, and the figure included 
here, the electric field between the plates is to the right.  
The magnetic field is shown as counterclockwise 
circles.  Take any point between the capacitor plates, 
and find the direction of .E B

 
  For instance, at the 

top of the circle shown in Figure 31-4, E


is toward the 
viewer, and B


is to the left.  The cross product E B

 
 

points down, directly to the line connecting the center 
of the plates.  Or take the rightmost point on the circle.  
E


is again toward the viewer, and B


is upwards.  The cross product E B
 

 points to the left, 
again directly to the line connecting the center of the plates.  In cylindrical coordinates, 

ˆEE k


and ˆ .BB φ


  The cross product ˆ ˆ ˆ.  k φ r  
 (b) We evaluate the Poynting vector, and then integrate it over the curved cylindrical surface 

between the capacitor plates.  The magnetic field (from Example 31-1) is 1
0 0 02 ,

dE
B r

dt
   

evaluated at 0.r r   E


 and B


 are perpendicular to each other, so 1
0 02

0

1
,

dE
r E

dt



  S E B
  

 

inward.  In calculating dS A
 
 for energy flow into the capacitor volume, note that both S


 and 

dA


point inward, and that S is constant over the curved surface of the cylindrical volume. 

 21
0 0 0 0 0 022 2

dE dE
d SdA S dA SA S r d r E r d d r E

dt dt
           S A

 
  

The amount of energy stored in the capacitor is the energy density times the volume of the 
capacitor.  The energy density is given by Eq. 24-6, 21

02 ,u E  and the energy stored is the 

energy density times the volume of the capacitor.  Take the derivative of the energy stored with 
respect to time. 

     2 2 21
0 0 0 02Volume     

dU dE
U u E r d E r d

dt dt
        

  We see that .
dU

d
dt

S A
 
  

d 

r0

II
E
B


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33. (a) The intensity from a point source is inversely proportional to the distance from the source. 

 
2

Star- 2
Earth 11Sun Sun

Star- Sun-2 23 2 15
Earth EarthStar Sun- Star

Earth

8 8

1350W m 1ly
    1.496 10 m

1 10 W m 9.46 10 m

                                   1.84 10 ly 2 10 ly

r
I I

r r
I r I 

         

   

 

 (b) Compare this distance to the galactic size. 

    
Star- 8
Earth

5

1.84 10 ly
1840 2000

galactic size 1 10 ly

r


  


 

  The distance to the star is about 2000 times the size of our galaxy. 
 
34. We assume the light energy is all absorbed, and so use Eq. 31-21a. 

   
 

 

22

6 2 6 2

8

75W

4 8.0 10 m
3.108 10 N m 3.1 10 N m .

3.00 10 m s

S
P

c

 
 


     


 

  The force is pressure times area.  We approximate the area of a fingertip to be 1.0 cm2. 

     6 2 4 2 103.108 10 N m 1.0 10 m 3.1 10 NF PA          

 
35. The acceleration of the cylindrical particle will be the force on it (due to radiation pressure) divided 

by its mass.  The light is delivering electromagnetic energy to an area A at a rate of  

1.0W.
dU

dt
   That power is related to the average magnitude of the Poynting vector by .

dU
dtS
A

   

From Eq. 31-21a, that causes a pressure on the particle of ,
S

P
c

  and the force due to that pressure 

is laser .F PA   Combine these relationships with Newton’s second law to calculate the acceleration.  
The mass of the particle is its volume times the density of water. 

 
    

2

2

2
laser H O

6 2
33 8 2 7

H O

1
  

1.0W
8 10 m s

3.00 10 m s 1000kg m 5 10 m

S dU
F PA A ma r ra

c c dt

dU dt
a

c r

 

   

     

   
 

 

 

36. (a) The light is delivering electromagnetic energy to an area A of the suit at a rate of 3.0W.
dU

dt
    

That power is related to the average magnitude of the Poynting vector by .
dU dt

S
A

   From 

Eq. 31-21b, that causes a pressure on the suit of 
2

,
S

P
c

  and the force due to that pressure is 

laser .F PA   Combine these relationships to calculate the force. 

  8
laser 8

2 3.0W2 2
2.0 10 N

3.00 10 m s

S dU
F PA A

c c dt
     


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(b) Use Newton’s law of universal gravitation, Eq. 6-1, to estimate the gravitational force.  We take  
the 20 m distance as having 2 significant figures. 

  
    

 
11 2 2

5

shuttle astronaut
grav 22

6 6

6.67 10 N m kg
1.03 10 kg 120kg

20m

2.061 10 N 2.1 10 N

m m
F G

r


 




 

   


 

(c) The gravity force is larger, by a factor of approximately 100. 
 
37. The intensity from a point source is inversely proportional to the distance from the source. 

 
 

2 211Sun-
JupiterEarth

22 11
Jupiter Sun-

Earth

7.78 10 m
27.0

1.496 10 m

r
I

I r


  


 

So it would take an area of 227m  at Jupiter to collect the same radiation as a 21.0-m  solar panel at 
the Earth. 

  
38. Use Eq. 31-14.  Note that the higher frequencies have the shorter wavelengths. 

(a) For FM radio we have the following. 

    
 
 

8

8

3.00 10 m s
2.78m

1.08 10 Hz

c

f



  


 to 

 
 

8

7

3.00 10 m s
3.41m

8.8 10 Hz

c

f



  


 

  (b) For AM radio we have the following. 

    
 
 

8

6

3.00 10 m s
180m

1.7 10 Hz

c

f



  


 to 

 
 

8

5

3.00 10 m s
561m

5.35 10 Hz

c

f



  


 

 
39. Use Eq. 31-14. 

  
 
 

8

9

3.00 10 m s
0.16m

1.9 10 Hz

c

f



  


 

 

40. The resonant frequency of an LC circuit is given by 
2 2

.f
LC

 


    We assume the inductance is 

constant, and form the ratio of the two frequencies. 

    
2 2

11 2 1
2 1

2 1 2

2

2

550kHz
    2200pF 260pF

2 1610kHz

LCf C f
C C

f C f
LC




   

        
  

 

 

41. The resonant frequency of an LC circuit is given by 
1

.
2 2

f
LC


 

    Solve for the inductance. 

  

   

2 2

9
1 22 2 2 6 12

1

1 1
    

42

1 1
5.3 10 H

4 4 88 10 Hz 620 10 F

f L
f CLC

L
f C



 




  

   
 
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   

9
2 22 2 2 6 12

2

1 1
3.5 10 H

4 4 108 10 Hz 620 10 F
L

f C 



   

 
 

 The range of inductances is 9 93.5 10 H 5.3 10 HL      
 
42. The rms electric field strength of the beam can be found from the Poynting vector. 

   

    

2
0 rms

4

rms 2 8 12 2 2
0

  

1.2 10 W
1.6V m

750m 3.00 10 m s 8.85 10 C N m

P
S c E

A

P
E

Ac



  

  


  

  

 

 
43. The electric field is found from the desired voltage and the length of the antenna.  Then use that 

electric field to calculate the magnitude of the Poynting vector. 

      
 

3
4rms

rms

232
2 8 12 2 2rms

0 rms 0 22

9 2

1.00 10 V
6.25 10 V m

1.60m

1.00 10 V
3.00 10 m s 8.85 10 C N m

1.60m

  1.04 10 W m

V
E

d

V
S c E c

d
 










   


    

 

  

 
44. We ignore the time for the sound to travel to the microphone.  Find the difference between the time 

for sound to travel to the balcony and for a radio wave to travel 3000 km. 

   
6

radio sound
radio sound 8

sound

3 10 m 50m
0.14s,

3.00 10 m s 343m s

d d
t t t

c v

                          
 

 so the  person at the radio hears the voice 0.14 s sooner.  
 
45. The length is found from the speed of light and the duration of the burst. 

     8 83.00 10 m s 10 s 3md ct      

 
46. The time travel delay is the distance divided by the speed of radio waves (which is the speed of 

light). 
6

8

3 10 m
0.01s

3.00 10 m s

d
t

c


  


 

 
47. The time consists of the time for the radio signal to travel to Earth and the time for the sound to 

travel from the loudspeaker. We use 343 m/s for the speed of sound. 

   
8

radio sound
radio sound 8

sound

3.84 10 m 25m
1.35s

3.00 10 m s 343m s

d d
t t t

c v

                        
 

  Note that about 5% of the time is for the sound wave. 
 
48. (a) The rms value of the associated electric field is found from Eq. 24-6. 

    
14 3

2 21
0 0 rms rms2 12 2 2

0

4 10 J m
    0.0672V m 0.07V m

8.85 10 C N m

u
u E E E 








      

 
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  (b) A comparable value can be found using the magnitude of the Poynting vector. 

      

2
0 rms 2

12 2 2 8
rms 0

  
4

1 1 7500W

4 0.0672V m 4 8.85 10 C n m 3.00 10 m s

 7055m 7km

P
S cE

r

P
r

E c




  

  

 
 

 


 

 
49. The light has the same intensity in all directions, so use a spherical geometry centered on the source 

to find the value of the Poynting vector.  Then use Eq. 31-19a to find the magnitude of the electric 
field, and Eq. 31-11 with v c  to find the magnitude of the magnetic field. 

   

 
    

 
 

20 0 1
0 022

0
0 22 8 12 2 2

0

70
0 8

  
4

75W
33.53V m

2 2 2.00m 3.00 10 m s 8.85 10 C n m

    34V m

33.53V m
1.1 10 T

3.00 10 m s

P P
S c E

A r

P
E

r c

E
B

c




   



   

  
 



   


  

 
50. The radiation from the Sun has the same intensity in all directions, so the rate at which energy passes 

through a sphere centered at the Sun is 24 .P S R   This rate must be the same at any distance from 
the Sun.  Use this fact to calculate the magnitude of the Poynting vector at Mars, and then use the 
Poynting vector to calculate the rms magnitude of the electric field at Mars. 

   

   

  

2
2 2 2Earth

Mars Mars Earth Earth Mars Earth 0 rms2
MarsMars

2
Earth Earth

rms 8 12 2 2
Mars 0 Mars

4 4       

1350W m 1
469V m

1.523.00 10 m s 8.85 10 C n m

R
S R S R S S c E

R

S R
E

c R

  

 

 
     

 

             

 

 
51. The direction of the wave velocity is the direction of the cross product .E B

 
  “South” crossed into 

“west” gives the direction downward.  The electric field is found from the Poynting vector, Eq. 31-
19a, and then the magnetic field is found from Eq. 31-11 with .v c  

   
 

  
 

 

21
0 02

2

0 8 12 2 2
0

60
0 8

  

2 560W m2
649V m 650V m

3.00 10 m s 8.85 10 C n m

649V m
2.2 10 T

3.00 10 m s

S c E

S
E

c

E
B

c



 



 

   
 

   



 

 
52.  From the hint, we use Eq. 29-4, which says 0 sin sin .t NBA t   e e   The intensity is given, and 

this can be used to find the magnitude of the magnetic field. 

  
2

rms rms rms 0
rms 0

0 0

      ;  sin sin   
E B cB S

S B t NBA t
c

   
 

      e e  



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

316 

          

0
rms rms

7 2 2 4 2
2 3

8

4

4 10 N s C 1.0 10 W m
   320 0.011m 2 810 10 Hz

3.00 10 m s

4.0 10 V

S
NA B NA

c

 


 

 



 

 
 



 



e

 

 
53. (a) Since intensity is energy per unit time per unit area, the energy is found by multiplying the  

intensity times the area of the antenna times the elapsed time. 

        
2

13 2 100.33m
1.0 10 W m 6.0h 3600s h 1.8 10 J

2
U IAt        

 
 

(b) The electric field amplitude can be found from the intensity, which is the magnitude of the 
Poynting vector.  The magnitude of the magnetic field is then found from Eq. 31-11 with .v c  

    

 
  

21
0 02

13 2

6
0 12 2 2 8

0

6

6
140

0 8

  

2 1.0 10 W m2
8.679 10 V m

8.85 10 C N m 3.00 10 m s

    8.7 10 V m

8.679 10 V m
2.9 10 T

3.00 10 m s

I cE

I
E

c

E
B

c















 


   

 

 


   




 

 
54. Use the relationship between average intensity (the magnitude of the Poynting vector) and electric 

field strength, as given by Eq. 31-19a.  Also use the fact that intensity is power per unit area.  We 
assume that the power is spherically symmetric about source. 

   
   

21
0 02 2

22 12 2 2 8
0 0

  
4

25,000W
61,200m

2 2 8.85 10 C N m 3.00 10 m s 0.020V m

 61km

P P
S cE

A r

P
r

cE




  

   

  
 




 

 Thus, to receive the transmission one should be within 61 km of the station. 
 
55. The light has the same intensity in all directions.  Use a spherical geometry centered at the source 

with the definition of the Poynting vector. 

   20 0 0 0 01 1 1
0 0 0 0 02 2 22 2 2 2 2

0 0

1 1
        

4 4 2

P P P cP
S c E c E c E E

A r c c r r


    

   
          

   
 

 
56. (a) The radio waves have the same intensity in all directions.  The power crossing a given area is  

the intensity times the area.  The intensity is the total power through the area of a sphere 
centered at the source. 

   
 

 2 30
23

total

35,000W
1.0m 2.785 10 W 2.8mW

4 1.0 10 m

P
P IA A

A 
     


 

 
 



Chapter 31  Maxwell’s Equations and Electromagnetic Waves 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

317 

 (b) We find the rms value of the electric field from the intensity, which is the magnitude of the  
Poynting vector. 

   
    

2 0
0 rms 2

0
rms 22 3 8 12 2 2

0

  
4

35,000W

4 4 1.0 10 m 3.00 10 m s 8.85 10 C N m

      1.024V m 1.0V m

P
S c E

r

P
E

r c




   

  

 
  

 


 

 (c) The voltage over the length of the antenna is the electric field times the length of the antenna. 

      rms rms 1.024V m 1.0m 1.0VV E d    

 (d) We calculate the electric field at the new distance, and then calculate the voltage. 

    
  

0
rms 22 4 8 12 2 2

0

2 2 2
rms rms

35,000W

4 4 5.0 10 m 3.00 10 m s 8.85 10 C N m

      2.048 10 V m   ;  2.048 10 V m 1.0m 2.0 10 V

P
E

r c

V E d

   

  

 
  

      

  

 
57. The power output of the antenna would be the intensity at a given distance from the antenna, times 

the area of a sphere surrounding the antenna.  The intensity is the magnitude of the Poynting vector. 

        

21
0 02

222 8 12 2 2 6
0 0

10

4 2 2 0.50m 3.00 10 m s 8.85 10 C N m 3 10 V m

4 10 W

S c E

P r S r c E



     



     

 

  

This is many orders of magnitude higher than the power output of commercial radio stations, which 
are no higher than the 10’s of kilowatts. 

 
58. We calculate the speed of light in water according to the relationship given. 

 8 8
water

0 0 0 0

water

1 1 1 1 1
3.00 10 m s 2.25 10 m s

1.77

1
1

0.752 75.2%

v c
K K K

c
v K

c c K

   
      

   

  

 
59. A standing wave has a node every half-wavelength, including the endpoints.  For this wave, the 

nodes would occur at the spacing calculated here. 

  
8

1 1 1
2 2 2 9

3.00 10 m s
0.0612m

2.45 10 Hz

c

f
 
  


 

 Thus there would be nodes at the following distances from a wall: 
0, 6.12 cm, 12.2 cm, 18.4 cm, 24.5 cm, 30.6 cm, and 36.7 cm (approximately the other wall). 

So there are 5 nodes, not counting the ones at (or near) the walls. 
 
60. (a) Assume that the wire is of length l and cross-sectional area A.  There must be a voltage across  

the ends of the wire to make the current flow   ,V IR  and there must be an electric field 

associated with that voltage  .E V l   Use these relationships with the definition of 

displacement current, Eq. 31-3. 
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     
D 0 0 0 0 0 0

0 0

1

E
d EA d V d IRd dE A dV A

I A A
dt dt dt dt dt dt

dI dI
R

R dt dt

      


   


     

 

l

l l
 

 (b) Calculate the displacement current found in part (a). 

   
  12 2 2 8

D 0 3

16 16

1.0A
8.85 10 C N m 1.68 10 m

1.0 10 s

1.4868 10 A 1.5 10 A

dI
I

dt
   



 

        

   

 
 

(c) From example 28-6, Ampere’s law gives the magnetic field created by a cylinder of current as 

0

2

I
B

r




  at a distance of r from the axis of the cylindrical wire.  This is true whether the current 

is displacement current or steady current. 

  

  
 

7 2 2 16

20 200 D
D 3

0 D
16

16 16D D

0 steadysteady steady

4 10 N s C 1.486 10 A
2.97 10 T 3.0 10 T

2 2 1.0 10 m

1.486 10 A2 1.486 10 1.5 10
1.0A

2

I
B

r

I
B Ir

IB I
r


 







 
 




 

 
     




      



 

 

61. (a) We note that  22 2 2 2x t xt x t           and so  
2

2
2

0 0 .
x t

x t
yE E e E e

  
          Since  

the wave is of the form  f x vt , with ,v    the wave is moving in the +x direction. 

(b) The speed of the wave is ,v c    and so .c   

(c) The electric field is in the y direction, and the wave is moving in the x direction.  Since E B
 

  
must be in the direction of motion, the magnetic field must be in the z direction.  The 

magnitudes are related by .cB E
 

 

   20 x t
z

E
B e

c
    

 

62. (a) Use the sin sin 2sin cos
2 2

A B A B
A B

        
   


 from page A-4 in Appendix A. 

   

   
           

   

0

0 0

0

sin sin

2 sin cos 2 sin cos
2 2

2 sin cos

yE E kx t kx t

kx t kx t kx t kx t
E E kx t

E kx t

 

   




     
        

     
   



 

   

   
           

   

0

0 0

0

sin sin

2 sin cos 2 sin cos
2 2

2 cos sin

zB B kx t kx t

kx t kx t kx t kx t
B B t kx

B kx t

 

   




     
        

     
   

 
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(b) The Poynting vector is given by 
0

1
.


 S E B
  

 

  

   
   

           

0
0 0

0

0 0 0 0
0 0

ˆ ˆ ˆ
1 1

0 2 sin cos 0

0 0 2 cos sin

1 1ˆ ˆ4 sin cos sin cos sin 2 sin 2

E kx t

B kx t

E B kx kx t t E B kx t


 



  
 

  


     

i j k

S E B

i i

  

 

  This is 0 for all times at positions where  sin 2 0.kx   

    sin 2 0    2     ,  0, 1, 2,
2

n
kx kx n x n

k

          

 
63. (a) To show that E


and B


 are perpendicular, calculate their dot product. 

   
       

       
0 0 0 0

0 0 0 0

ˆ ˆˆ ˆsin cos cos sin

sin cos cos sin 0

E kx t E kx t B kx t B kx t

E kx t B kx t E kx t B kx t

   

   

            
      

E B j k j k
 
 

 

  Since 0,E B
 
 E


and B


 are perpendicular to each other at all times. 

(b) The wave moves in the direction of the Poynting vector, which is given by 
0

1
.


 S E B
  

 

  
   
   

       

0 0
0 0

0 0

2 2
0 0 0 0 0 0

0 0

ˆ ˆ ˆ
1 1

0 sin cos

0 cos sin

1 1ˆ ˆ ˆˆsin cos 0 0

E kx t E kx t

B kx t B kx t

E B kx t E B kx t E B

 
 

 

 
 

    
  

          

i j k

S E B

i j k i

  

 

 We see that the Poynting vector points in the negative x direction, and so the wave moves in the 
negative x direction, which is perpendicular to both E


and B


. 

(c) We find the magnitude of the electric field vector and the magnetic field vector. 

  
    

   

1/ 22 2

0 0

1/ 22 2 2 2
0 0 0

sin cos

sin cos

E E kx t E kx t

E kx t E kx t E

 

 

          

      

E


 

  
    

   

1/ 22 2

0 0

1/ 22 2 2 2
0 0 0

cos sin

cos sin

B B kx t B kx t

B kx t B kx t B

 

 

          

      

B


 

(d) At x = 0 and t = 0, 0
ˆEE k


 and 0

ˆ.BB j


  See the figure.  The x axis is  
coming out of the page toward the reader.  As time increases, the 
component of the electric field in the z direction electric field begins to 
get smaller and the component in the negative y direction begins to get 
larger.  At the same time, the component of the magnetic field in the y 
direction begins to get smaller, and the component in the z direction 
begins to get larger.  The net effect is that both vectors rotate counterclockwise. 

 



 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

320 

CHAPTER 32:  Light: Reflection and Refraction 
 
Responses to Questions 
 
1.  (a) The Moon would look just like it does now, since the surface is rough. Reflected sunlight is  

scattered by the surface of the Moon in many directions, making the surface appear white. 
(b) With a polished, mirror-like surface, the Moon would reflect an image of the Sun, the stars, and  

the Earth. The appearance of the Moon would be different as seen from different locations on 
the Earth. 

 
2. Yes, it would have been possible, although certainly difficult. Several attempts have been made to 

reenact the event in order to test its feasibility. Two of the successful attempts include a 1975 
experiment directed by Greek scientist Dr. Ioannis Sakkas and a 2005 experiment performed by a 
group of engineering students at MIT. (See www.mit.edu for links to both these and other similar 
experiments.)  In both these cases, several individual mirrors operating together simulated a large 
spherical mirror and were used to ignite a wooden boat. If in fact the story is true, Archimedes 
would have needed good weather and an enemy fleet that cooperated by staying relatively still while 
the focused sunlight heated the wood.  

 
3.  The focal length of a plane mirror is infinite. The magnification of a plane mirror is 1. 
 
4.  The image is real and inverted, because the magnification is negative. The mirror is concave, 

because convex mirrors can only form virtual images. The image is on the same side of the mirror as 
the object; real images are formed by converging light rays and light rays cannot actually pass 
through a mirror.  

 
5.  Ray 2 is directed as if it were going through the focal 

point and is reflected from the convex mirror parallel 
to the principal axis.   

       
 
 
 
 
 
6.  Yes. For a plane mirror, o i ,d d   since the object and image are equidistant from the mirror and the 

image is virtual, or behind the mirror. The focal length of a plane mirror is infinite, so the result of 

the mirror equation, Eq. 32-2, is 
o i

1 1
0

d d
  , or o i ,d d   as expected. 

 
7. Yes. When a concave mirror produces a real image of a real object, both do and di are positive. The 

magnification equation, i

o

,
d

m
d

   results in a negative magnification, which indicates that the 

image is inverted. 
 
 
 
 
 

2 
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air 

eye 

Apparent depth

air 
 
 
water 

8. A light ray entering the solid rectangular object will exit the other side 
following a path that is parallel to its original path but displaced slightly 
from it. The angle of refraction in the glass can be determined 
geometrically from this displacement and the thickness of the object. The 
index of refraction can then be determined using Snell’s Law with this 
angle of refraction and the original angle of incidence. The speed of light 
in the material follows from the definition of the index of refraction:  

.n c v   
 
9.  This effect is similar to diffuse reflection off of a rough surface. A ripply sea has multiple surfaces 

which are at an angle to reflect the image of the Moon into your eyes. This makes the image of the 
Moon appear elongated. 

 
10. A negative object distance corresponds to a virtual object. This could occur if converging rays from 

another mirror or lens were intercepted by the mirror before actually forming an image. This image 
would be the object for the mirror.  

 
11. The angle of refraction and the angle of incidence are both zero in this case. 
 
12.  Underestimate. The light rays leaving the bottom of 

the pool bend away from the normal as they enter 
the air, so their source appears to be more shallow 
than it actually is. The greater the viewing angle, the 
more the bending of the light and therefore the less 
the apparent depth. 

 
 
13. Your brain interprets the refracted rays as if the part of 

the stick that is under water is closer to the surface than it 
actually is, so the stick appears bent. 

 
 
 
 

 
14.  Because the broad beam hits the surface of the water at an 

angle, it illuminates an area of the surface that is wider 
than the beam width. Light from the beam bends towards 
the normal. The refracted beam is wider than the incident 
beam because one edge of the beam strikes the surface 
first, while the other edge travels farther in the air. (See the 
adjacent diagram.)  

 
 
15. The light rays from the fish are bent away from the normal as they 

leave the tank. The fish will appear closer to the side of the tank than 
it really is. 

 
 
 
 
 

fish 

air

n
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16.  The water drop acts like a lens, and refracts light as the light passes through it. Also, some of the 
light incident on the air/water boundary is reflected at the surface, so the drop can be seen in 
reflected light. 

 
17. When the light ray passes from the blue material to the green material, the ray bends toward the 

normal. This indicates that the index of refraction of the blue material is less than that of the green 
material.  When the light ray passes from the green material to the yellow material, the ray bends 
away from the normal, but not far enough to make the ray parallel to the initial ray, indicating that 
the index of refraction of the yellow material is less than that of the green material but larger than the 
index of refraction of the blue material.  The ranking of the indices of refraction is, least to greatest, 
blue, yellow, and green. 

 
18.  No. Total internal reflection can only occur when light travels from a medium of higher index of 

refraction to a medium of lower index of refraction.  
 
19. No. The refraction of light as it enters the pool will make the object look smaller. See Figure 32-32 

and Conceptual Example 32-11. 
 
20. The mirror is concave, and the person is standing inside the focal point so that a virtual, upright 

image is formed. (A convex mirror would also form a virtual, upright image but the image would be 
smaller than the object.) In addition, an image is also present at the far right edge of the mirror, 
which is only possible if the mirror is concave.  

 
21. (a) Since the light is coming from a vacuum into the atmosphere, which has a larger index of 

refraction, the light rays should bend toward the normal (toward the vertical direction). 
(b) The stars are closer to the horizon than they appear to be from the surface of the Earth. 

 
 

Solutions to Problems 
 
1. Because the angle of incidence must equal the angle of reflection, we  
 see from the ray diagrams that the ray that reflects to your eye must  
 be as far below the horizontal line to the reflection point on the mirror  
 as the top is above the line, regardless of your position. 
 
 
 
 
2. For a flat mirror the image is as far behind the mirror as the object is in front, so the distance from 

object to image is twice the distance from the object to the mirror, or 5.6m .  

 
3. The law of reflection can be applied twice.  At the first reflection, 

the angle is ,  and at the second reflection, the angle is .   
Consider the triangle formed by the mirrors and the first reflected 
ray. 

  180     38 135 180     7                   

 
 
 
 

  
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4. The angle of incidence is the angle of reflection.  See the diagram for the 
appropriate lengths.  

   
 

( )
tan   

1.64m 0.38m (0.38m)
    0.69m

2.30m

H h h

x

x
x

 
  


  

l
 

 
5. The incoming ray is represented by line segment DA.  For the 

first reflection at A the angles of incidence and reflection are 1.   
For the second reflection at B the angles of incidence and 
reflection are 2.   We relate 1  and 2  to the angle at which the 

mirrors meet, ,  by using the sum of the angles of the triangle 
ABC. 

     1 2 1 290 90 180                      

 Do the same for triangle ABD. 
   1 2 1 22 2 180     180 2 180 2                   

 At point D we see that the deflection is as follows. 

   180 180 180 2 2             

 
6.  The rays entering your eye are diverging from the virtual 

image position behind the mirror.  Thus the diameter of the 
area on the mirror and the diameter of your pupil must 
subtend the same angle from the image. 

   

 

pupilmirror i 1
mirror pupil pupil2

i o i o i

22 2 31 1 1
mirror mirror pupil4 4 4

6 2

    

4.5 10 m
16

4.0 10 m

DD d
D D D

d d d d d

A D D
  



   
 

   

 

 
7. See the “top view” ray diagram. 
 
 
 
 
 
8. (a) The velocity of the incoming light wave is in the direction of the initial light wave.  We can  

write this velocity in component form, where the three axes of our coordinate system are chosen 
to be perpendicular to the plane of each of the three mirrors.  As the light reflects off any of the 
three mirrors, the component of the velocity perpendicular to that mirror reverses direction.  The 
other two velocity components will remain unchanged.  After the light has reflected off of each 
of the three mirrors, each of the three velocity components will be reversed and the light will be 
traveling directly back from where it came. 

 (b) If the mirrors are assumed to be large enough, the light can only reflect off two of the mirrors if  
the velocity component perpendicular to the third mirror is zero.  Therefore, in this case the 
light is still reflected back directly to where it came. 

 
 

Mirror
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h
x

l 

 


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9. The rays from the Sun will be parallel, so the image will be at the focal point, which is half the radius 
of curvature. 

  2 2(18.8cm) 37.6cmr f    

 
10. To produce an image at infinity, the object must be at the focal point, which is half the radius of 

curvature. 

   1 1
o 2 2 24.0cm 12.0cmd f r     

 
11. The image flips at the focal point, which is half the radius of curvature.  Thus the radius is 1.0 m. 
 

12. (a) The focal length is half the radius of curvature, so  1 1
2 2 24cm 12cm .f r    

(b) Use Eq. 32-2. 
  o

i
o i o

35cm 24cm1 1 1
    76cm

35cm 24cm

d f
d

d d f d f
     

 
 

 (c) The image is inverted, since the magnification is negative. 
 
13. The ball is a convex mirror with a focal length  1 1

2 2 4.6cm 2.3cm.f r       Use Eq. 32-3 to 

locate the image. 
   

  
  

 
o

i
o i o

25.0cm 2.3cm1 1 1
    2.106cm 2.1cm

25.0cm 2.3cm

d f
d

d d f d f


        

  
 

 The image is 2.1 cm behind the surface of the ball, virtual, and upright.  Note that the magnification  

is 
 
 

i

o

2.106cm
0.084.

25.0cm

d
m

d

 
      

 
14. The image distance can be found from the object distance of 1.7 m and the magnification of +3.  

With the image distance and object distance, the focal length and radius of curvature can be found. 

  
   

 

i
i o

o

o oo i o

o i o i o o

    

3 1.7m1 1 1
    2.55m

1 3 1

2 2 2.55m 5.1m

d
m d md

d

d mdd d md
f

d d f d d d md m

r f


   


       

   

  

 

 
15. The object distance of 2.00 cm and the magnification of +4.0 are used to find the image distance.  

The focal length and radius of curvature can then be found. 

  
   

 

i
i o

o

o oo i o

o i o i o o

    

4 2.00cm1 1 1
    2.677cm

1 4 1

2 2 2.667cm 5.3cm

d
m d md

d

d mdd d md
f

d d f d d d md m

r f


   


       

   

  

 

 Because the focal length is positive, the mirror is  concave . 
 
 



Chapter 32  Light: Reflection and Refraction  

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

325 

16. The mirror must be convex.  Only convex mirrors produce images that are upright and smaller than 
the object.  The object distance of 18.0 m and the magnification of +0.33 are used to find the image 
distance.  The focal length and radius of curvature can then be found. 

  
   

 

i
i o

o

o oo i o

o i o i o o

    

0.33 18.0m1 1 1
    8.866m

1 0.33 1

2 2 8.866m 17.7m

d
m d md

d

d mdd d md
f

d d f d d d md m

r f


   


        

   

    

 

 
17. The object distance of 3.0 m and the magnification of +0.5 are used to find the image distance.  The 

focal length and radius of curvature can then be found. 

  
   

 

i
i o

o

o oo i o

o i o i o o

    

0.5 3.0m1 1 1
    3.0m

1 0.5 1

2 2 3.0m 6.0m

d
m d md

d

d mdd d md
f

d d f d d d md m

r f


   


        

   

    

 

 
18. (a) From the ray diagram it is seen that  
  the image is virtual.  We estimate the  

  image distance as 6cm.  

 (b) Use a focal length of 9.0cm  with  

  the object distance of 18.0cm.   

     
 

o i

o
i

o

1 1 1
  

18.0cm 9.0cm
6.0cm

18.0cm 9.0cm

d d f

d f
d

d f

  


   

  

 

 (c) We find the image size from the magnification: 

    i i i
i o

o o o

6.0cm
    3.0mm 1.0mm

18.0cm

h d d
m h h

h d d

    
        

  
 

 
19. Take the object distance to be ∞, and use Eq. 32-3.  Note that the image distance is negative since the 

image is behind the mirror. 

  i
o i i

1 1 1 1 1 1
        16.0cm    2 32.0cmf d r f

d d f d f
            


 

 Because the focal length is negative, the mirror is  convex.  
 
20. (a)  
 
 
 
 
 
  
  i o o ; 1 ; h h m d r   i o o ; 1 ; h h m d r  
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 (b) Apply Eq. 32-3 and Eq. 32-4.  

   
   

o i
i

o i o o o

1 1 1 2
      ;  

2 2

rd d r
d m

d d f r d r d d r

 
      

 
 

  If o ,d r  then  o2 ,d r r   so 
   o

1.
2

r r
m

d r r
  

 
 

  If o ,d r  then  o2 ,d r r   so 
   o

1.
2

r r
m

d r r
  

 
 

 
21. Consider the ray that reflects from the center of 

the mirror, and note that i 0.d   

  

o i i i

o i o o

i i

o o

tan     
h h d h

d d d h

h d
m

h d

 
   



  
 

 
 
22. From the ray diagram, we see that with a 

negative image distance, we have the 
following. 

  o i

o i

tan
h h

d d
  


 

  
   

o i

o i

tan
h h

d r r d
  

 
 

 When we divide the two equations, we get 

  
   o i

o i o i o i o i

1 1 2
    1 1     2    

d r r d r r r r

d d d d d d d d r

 
                

If we define 
2

r
f   and consider the radius of curvature and focal length to be negative, then we 

have Eq. 32-2, 
o i

1 1 1
.

d d f
  . 

 
23. Use Eq. 32-2 and 32-3. 

  
    

i
i o

o

o oo i o

o i o i o o

    

0.55 3.2m1 1 1
    3.9 m

1 0.55 1

d
m d md

d

d mdd d md
f

d d f d d d md m


   


        

   

 

 
24. (a) We are given that i o.d d   Use Eq. 32-3. 

   o
o i o

1 1 1 2 1
        2d f r

d d f d f
        

  The object should be placed at the  center of curvature.  
 (b) Because the image is in front of the mirror, i 0,d   it is  real.  
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 (c) The magnification is oi

o o

1.
dd

m
d d


      Because the magnification is negative, the image is   

inverted.  

 (d) As found in part (c),  1.m    

 
25. (a) To produce a smaller image located behind the surface of the mirror requires a  convex mirror.  
 (b) Find the image distance from the magnification. 

   
  

 
i i o i

i
o o o

26cm 3.5cm
    20.2cm 20cm

4.5cm

h d d h
m d

h d h


            (2 sig. fig.) 

  As expected, i 0.d    The image is located  20 cm behind the surface.  
 (c) Find the focal length from Eq. 32.3. 

   
  
   

o i

o i o i

26cm 20.2cm1 1 1
    90.55cm 91cm

26cm 20.2cm

d d
f

d d f d d


        

  
 

 (d) The radius of curvature is twice the focal length. 

    2 2 90.55cm 181.1cm 180cmr f        

 
26. (a) To produce a larger upright image requires a  concave mirror.  
 (b) The image will be  upright and virtual.  
 (c) We find the image distance from the magnification: 

   
 

  

i i
i o

o o

o oo i o

o i o i o o

o

    

1 1 1
      

1

2 1.35 20.0cm2
2 154cm

1 1.35 1

h d
m d md

h d

d mdd d md
f

d d f d d d md m

md
r f

m


    


      

  

   
 

 

 
27. (a) We use the magnification equation, Eq. 32-3, to write the image distance in terms of the  

magnification and object distance.   We then replace the image distance in the mirror equation, 
Eq. 32-2, and solve for the magnification in terms of the object distance and the focal length. 

i o i o    m d d d md      

o i

o o

o

1 1 1
    

1 1 1
    

f d d

f d md

f
m

f d

  

  





 

 (b) We set 0.45 mf   and 
draw a graph of the 
magnification as a function 
of the object distance.  The 
spreadsheet used for this 
problem can be found on the 
Media Manager, with 
filename “PSE4_ISM_CH32.XLS,” on tab “Problem 32.27b.” 

-10

-8

-6

-4

-2

0

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

d o (m)

m
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 (c) The image and object will have the same lateral size when the magnification is equal to negative  
one.   Setting the magnification equal to negative one, we solve the equation found in part (a) 
for the object distance. 

o
o

1    2 0.90m
f

m d f
f d

     


 

 (d) From the graph we see that for the image to be much larger than the object, the object should be  
placed at a point  just beyond the focal point. 

 
28. We use the magnification equation, Eq. 32-3, to write the image distance in terms of the  

magnification and object distance.   We then replace the image distance in the mirror equation, Eq. 
32-2, and solve for the magnification in terms of the object distance and the focal length, with the 
focal length given as f f  . 

i
i o

o o i o o

1 1 1 1 1 1
        

o

fd
m d md m

d f d d f d md f d
            

  
 

From this relation, the closer the object is to the mirror (i.e., smaller object distance) the greater the 
magnification.  Since a person’s nose is closer to the mirror than the rest of the face, its image 
appears larger. 

 
29. (a) We use the magnification equation, Eq. 32-3, to write the image distance in terms of the  

magnification and object distance.   We then replace the image distance in the mirror equation, 
Eq. 32-2, and solve for the object distance in terms of the magnification and the focal length. 

i
i o

o

o
o i o o o

1 1 1 1 1 1 1 1 1
1 1

d
m d md

d

d f
f d d f d md d m m

    

                   

 

 (b) We set the object distance equal to the range of all positive numbers.  Since the focal length of  
a convex lens is negative, the term in parentheses in the above equation must be the range of all 
negative numbers for the object distance to include the range of all positive numbers.  We solve 
the resulting equation for all possible values of the magnification. 

1 1
1 0 1 0 1m

m m
        
 

 

 
30. The distance between the mirror and the wall is equal to 

the image distance, which we can calculate using Eq. 32-2. 
The object is located a distance r from the wall, so the 
object distance will be r less than the image distance.  The 
focal length is given by Eq. 32-1.  For the object distance 
to be real, the image distance must be greater than r. 

2 2
i i

o i i i

2 2

i

1 1 1 2 1 1
2 4 0

4 16 8 2
1 0.292  or 1.71

4 2

d d r r
f d d r d r d

r r r
d r r r

        


  
    

 

 

 Use Eq. 32-3 to calculate the magnification:  i

o

1.71
2.41

1.71

d r
m

d r r
    


 

od

id
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31.   The lateral magnification of an image equals the 
height of the image divided by the height of the 
object.  This can be written in terms of the image 
distance and focal length with Eqs. 32-2 and 32-3.  

o
i

i o o

i

o o

1 1 1
    

fd
d

f d d d f

d f
m

d d f

 
      


  


 

The longitudinal magnification will be the difference in image distances of the two ends of the object 
divided by the length of the image.  Call the far tip of the wire object 1 with object distance o.d   The 

close end of the wire will be object 2 with object distance o .d  l   Using Eq. 32-2 we can find the 
image distances for both ends. 

  
 oo

i1 i2
o i1 o o i2 o

1 1 1 1 1 1
      ;      

d fd f
d d

f d d d f f d d d f


       

   
l

l l
 

Taking the difference in image distances and dividing by the object length gives the longitudinal 
magnification. 

  

      
  

  

o o o o oi1 i2 o

o o o o

2

o o

1 d f d f d f d f d fd d d f
m

d f d f d f d f

f

d f d f

      
          




  

l l l

l l l l

l

 
 

Set o ,dl  so that the l  drops out of the second factor of the denominator.  Then rewrite the 
equation in terms of the lateral magnification, using the expression derived at the beginning of the 
problem. 

   
   

2
2

2
2

oo

f f
m m

d fd f

 
       

  

 The negative sign indicates that the image is reversed front to back, as shown in the diagram. 
 
32. We find the index of refraction from Eq. 32-1. 

  
8

8

3.00 10 m s
1.31

2.29 10 m s

c
n

v


  


 

 
33. In each case, the speed is found from Eq. 32-1 and the index of refraction. 

 (a) Ethyl alcohol: 
8

83.00 10 m s
2.21 10 m s

1.36

c
v

n


     

 (b) Lucite:  
8

83.00 10 m s
1.99 10 m s

1.51

c
v

n


     

 (c) Crown glass: 
8

83.00 10 m s
1.97 10 m s

1.52

c
v

n


     

 
34. Find the distance traveled by light in 4.2 years. 

     8 7 163.00 10 m s 4.2 yr 3.16 10 s yr 4.0 10 md c t        

 
 
 

do di1 

¬ ¬
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35. The time for light to travel from the Sun to the Earth is found from the distance between them and  
 the speed of light. 

  
11

2
8

1.50 10 m
5.00 10 s 8.33min

3.00 10 m s

d
t

c


     


 

 
36. We find the index of refraction from Eq. 32-1. 

  water

water

water

1.33
1.51

0.88 0.88 0.88
0.88

c c c n
n

v v c
n

     
 
 
 

 

 
37. The length in space of a burst is the speed of light times the elapsed time. 

    8 83.00 10 m s 10 s 3md ct      

 
38. Find the angle of refraction from Snell’s law. 

  1 11
1 1 2 2 2

2

1.33
sin sin     sin sin sin sin38.5 55.9

1.00

n
n n

n
    



            
  

 

 
39. Find the angle of refraction from Snell’s law. 

  1 11
1 1 2 2 2

2

1.00
sin sin     sin sin sin sin63 35

1.56

n
n n

n
    



            
  

 

 
40. We find the incident angle in the air (relative to the normal) from Snell’s law. 

  1 12
1 1 2 2 1 2

1

1.33
sin sin     sin sin sin sin33.0 46.4

1.00

n
n n

n
                

  
 

Since this is the angle relative to the horizontal, the angle as measured from the horizon is 

90.0 46.4 43.6 .      
  
41. We find the incident angle in the water from Snell’s law. 

  1 12
1 1 2 2 1 2

1

1.00
sin sin     sin sin sin sin56.0 38.6

1.33

n
n n

n
                

  
 

 
42. The angle of reflection is equal to the angle of incidence: ref1 1 22 .      Use Snell’s law 

  

   
 

air 1 glass 2 2 2

2 2 2 2 2 2

1 2

sin sin     1.00 sin2 1.56 sin

sin 2 2sin cos 1.56 sin     cos 0.780    38.74

2 77.5

n n   

     

 

  

      

  

 

 
43. The beam forms the hypotenuse of two right triangles as it passes 

through the plastic and then the glass.  The upper angle of the 
triangle is the angle of refraction in that medium.  Note that the 
sum of the opposite sides is equal to the displacement D.  First, we 
calculate the angles of refraction in each medium using Snell’s 
Law (Eq. 32-5).  

D
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1 1 2 2

1 1
1

1

1 1
2

2

sin 45 sin sin

sin 45 sin 45
sin sin 25.88

1.62

sin 45 sin 45
sin sin 28.75

1.47

n n

n

n

 





 

 

 

         
  

         
  

 

We then use the trigonometric identity for tangent to calculate the two opposite sides, and sum to get 
the  displacement. 

   1 2 1 1 1 1tan tan 2.0cm tan25.88 3.0cm tan 28.75 2.6cmD D D h h           

 
44. (a) We use Eq. 32-5 to calculate the refracted angle as the light enters the glass (n=1.56) from the  

air (n=1.00).  

1 11
1 1 2 2 2 1

2

1.00
sin sin sin sin sin sin  43.5 26.18 26.2

1.56

n
n n

n
                    

 

 (b) We again use Eq. 32-5 using the refracted angle in the glass and the indices of refraction of the  
glass and water. 

1 12
3 2

3

1.56
sin sin sin sin  26.18 31.17 31.2

1.33

n

n
                

 

 (c) We repeat the same calculation as in part (a), but using the index of refraction of water. 

1 11
3 1

3

1.00
sin sin sin sin  43.5 31.17 31.2

1.33

n

n
                

 

As expected the refracted angle in the water is the same whether the light beam first passes 
through the glass, or passes directly into the water.  

 
45. We find the angle of incidence from the distances. 

  
 
 

1
1 1

1

2.5m
tan 1.9231    62.526

1.3mh
      
l

 

 For the refraction from air into water, we have 
  air 1 water 2sin sin ;n n   

      2 21.00 sin62.526 sin     41.842        

 We find the horizontal distance from the edge of the pool from 

  
 

1 2 1 2 2tan

2.5m 2.1m tan 41.842 m .4m

h    

      

l l l l
 

    
46. Since the light ray travels parallel to the base when it exits the 

glass, and the back edge of the glass makes a 45 angle to the 
horizontal, the exiting angle of refraction is 45.  We use 
Snell’s law, Eq. 32-5, to calculate the incident angle at the 
back pane.   

1 14
3 4

3

1.0
sin sin sin sin  45 28.13

1.5

n

n
              

 

We calculate the refracted angle at the front edge of the glass by noting that the angles 2  and 3  in 
the figure form two angles of a triangle.  The third angle, as determined by the perpendiculars to the 
surface, is 135.   

 1 

 2 
nwater

nairh1

h2 l 1 

l 2
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2 3 2 3135 180 45 45 28.13 16.87                  
 Finally, we use Snell’s law at the front face of the glass to calculate the incident angle. 

1 12
1 2

1

1.5
sin sin sin sin  16.87 25.81 26

1.0

n

n
                

 

 
47. As the light ray passes from air into glass with an angle of incidence of 25, the beam will refract.  
 Determine the angle of refraction by applying Snell’s law. 

1 1 2 2

1 11
2 1

2

sin sin     

1.00
sin sin sin sin  25 16.36

1.5

n n

n

n

 

  

 

            

  

We now consider the two right triangles created by the 
diameters of the incident and refracted beams with the 
air–glass interface, as shown in the figure.  The diameters 
form right angles with the ray direction and using 
complementary angles we see that the angle between the 
diameter and the interface is equal to the incident and refracted angles.  Since the air–glass interface 
creates the hypotenuse for both triangles we use the definition of the cosine to solve for this length in 
each triangle and set the lengths equal.  The resulting equation is solved for the diameter of the 
refracted ray. 

 1 2 2
2 1

1 2 1

cos cos16.36
    3.0mm 3.2mm

cos cos cos cos25

d d
D d d


  


     


  

 
48. Find the angle 2  for the refraction at the first surface. 

  
   

air 1 2

2 2

sin sin

1.00 sin45.0 sin     27.33

n n 
 



     
 

Find the angle of incidence at the second surface from the 
triangle formed by the two sides of the prism and the light 
path. 

     2 390 90 180   A           

  3 2 60 27.33 32.67A          

 Use refraction at the second surface to find 4.  

     3 air 4 4 4sin sin     1.54 sin32.67 sin     56.2  from the normaln n            

 
49. Since the angle of incidence at the base of the prism is o0 , 

the rays are undeflected there. The angle of incidence at the 
upper face of the prism is o30 .  Use Snell’s law to calculate 
the angle of refraction as the light exits the prism. 

 1
1 1 r rsin sin sin 1.52sin30 49.46n           

From the diagram, note that a normal to either top surface 
makes a 30 angle from the vertical.  Subtracting 30 from 
the refracted angle will give the angle of the beam with 
respect to the vertical.  By symmetry, the angle   is twice the angle of the refracted beam from the 
vertical. 

   r2 30 2 49.46 30 38.9           

 

1

2 3 4

n

A
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50. Because the surfaces are parallel, the angle of refraction from the first 
surface is the angle of incidence at the second.  Thus for the two refractions, 
we have the following. 

  1 1 2 2 2 2 1 3sin sin   ;  sin sinn n n n      
 Substitute the second equation into the first. 

  1 1 1 3 3 1sin sin     n n       

 Because the ray emerges in the same index of refraction, it is undeviated. 
 
51. Because the glass surfaces are parallel, the exit beam will be  
 traveling in the same direction as the original beam.  
 Find the angle inside the glass from Snell’s law, 

air sin sin .n n    Since the angles are small, cos 1  and 

sin ,   where   is in radians. 

   1.00     n
n

      

 Find the distance along the ray in the glass from  

 ,
cos

t
L t


   and then find the perpendicular displacement 

 from the original direction. 

       1
sin

t n
d L t t

n n

    
            

 

 
52. We find the speed of light from the speed of light in a vacuum divided by the index of refraction.  

Examining the graph we estimate that the index of refraction of 450 nm light in silicate flint glass is 
1.643 and of 680 nm light is 1.613.  There will be some variation in the answers due to estimation 
from the graph. 

red blue 680 450

red 680

1 1.613 1 1.643
0.01826 1.8%

1 1.613

v v c n c n

v c n

  
       

 
53. We find the angles of refraction in the glass from Snell’s law, Eq. 32-5. 
      2,blue 2,blue1.00 sin60.00 1.4831 sin     35.727       

      2,red 2,red1.00 sin60.00 1.4754 sin     35.943       which gives 2,700 35.943 .    

 Thus the angle between the refracted beams is 

  2,red 2,blue 35.943 35.727 0.216 0.22 .           

 
54. The indices of refraction are estimated from Figure 32-28 as 

1.642 for 465 nm and 1.619 for 652 nm.  Consider the  
refraction at the first surface. 

  
   

air a b

b1 b1

sin sin   

1.00 sin45 1.642 sin     25.51

n n 
 

 

    
 

      b2 b21.00 sin 45 1.619 sin     25.90       

We find the angle of incidence at the second surface from 
the upper triangle. 

     b c90 90 180   A           

 

1

2
2

3

n1 n2 n1



 

 

n 



t 

d

nair = 1.00 

 L

 – 

nair = 1.00

a

n

A 

b c  
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 c1 b1 c2 b260.00 25.51 34.49   ;  60.00 25.90 34.10A A                    
 Apply Snell’s law at the second surface. 
  c air dsin sinn n   

      d1 d11.642 sin34.49 1.00 sin     68.4 from the normal       

      d2 d21.619 sin34.10 1.00 sin     65.2 from the normal       

 
55.   At the first surface, the angle of incidence o

1 60   

from air  1 1.000n   and the angle of refraction 2  into 

water  2n n  is found using Snell’s law. 

     
1 1 2 2

2

1
2

sin sin   

1.000 sin60 sin     

sin60
sin

n n

n

n

 


 

 

  

   
 

   

 Note that at this surface the ray has been deflected from its initial direction by angle 1 260 .    
From the figure we see that the triangle that is interior to the drop is an isosceles triangle, so the 
angle of incidence from water  2n n at the second surface is 2  and angle of refraction is 3  into 

air  3 1.000n  .  This relationship is identical to the relationship at the first surface, showing that the 

refracted angle as the light exits the drop is again 60. 

  

   2 2 3 3 2 3 3 2

o
o o

3 3

sin sin     sin 1.000 sin     sin sin   

sin60
sin sin60     60

n n n n

n
n

     

 

     

 
    

 

 

Note that at this surface the ray has been deflected from its initial direction by the angle 
o

2 3 2 260 .         The total deflection of the ray is equal to the sum of the deflections at each 
surface. 

      
o

o o o o 1
1 2 2 2 2

sin 60
60 60 120 2 120 2sin

n
        
           

 
  

Inserting the indices of refraction for the two colors and subtracting the angles gives the difference in 
total deflection. 

  

o o
o –1 o –1

violet red
violet red

o o o o
–1 –1 –1 –1

red violet

sin60 sin60
120 2sin 120 2sin

sin60 sin60 sin60 sin60
2 sin sin 2 sin sin

1.330 1.341

n n

n n

  
                     
         

                     
         

0.80
    

  

 

 
56. (a) We solve Snell’s law for the refracted angle.  Then, since the index varies by only about 1%, we  

differentiate the angle with respect to the index of refraction to determine the spread in angle. 

1 1
1 2 2

2 2 1 1
22 2 2

2 1 1
2

sin
sin sin     sin   

sin sin

sin sin
1

n
n

d n

n dn n n
n

n

  

   
 

      
 

 
    

 


 

  
60o

 

 

R  
R   

2
 

1 2 
2 3 
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 (b) We set 1.5n   and 1 0 0rad     and solve for the spread in refracted angle. 

    1
2 2 2 2 2

1

sin sin  0
0.01 0

sin 1.5 sin 0

n

n n





   

 
 

 (c) We set 1.5n   and 1 90    and solve for the spread in refracted angle.  We must convert the  
spread from radians back to degrees. 

    2 2 2

sin  90 180
0.01 0.0089 rad 0.5

 rad1.5 sin 90



       

  
 

 
57. When the light in the material with a higher index is incident at the critical angle, the refracted  
 angle is 90°.  Use Snell’s law. 

  1 1water
diamond 1 water 2 1

diamond

1.33
sin sin     sin sin 33.3

2.42

n
n n

n
     
      

 
 

 Because diamond has the higher index, the light must start in  diamond.  
 
58. When the light in the liquid is incident at the critical angle, the refracted angle is 90°.  Use Snell’s 

law. 

   2
liquid 1 air 2 liquid air

1

sin 1
sin sin     1.00 1.31

sin sin 49.6
n n n n

 


    


 

 
59. We find the critical angle for light leaving the water: 

  
water 1 air 2

1 1air
1

water

sin sin   

1.00
sin sin 48.75

1.33

n n

n

n

 

  

 

 
    

 

 

 If the light is incident at a greater angle than this, it will  
 totally reflect.  Find R from the diagram.  

   1tan 72.0cm tan 48.75 82.1cmR H      

 
60. The ray reflects at the same angle, so each segment makes 

a 14.5° angle with the side.  We find the distance l 
between reflections from the definition of the tangent 
function. 

4
41.40 10  m

tan 5.41 10  m
tan tan  14.5

d d





     


l
l

 

 
61. We find the angle of incidence from the distances. 

  
 
 1 1

7.6cm
tan 0.95    43.53

8.0cmh
      

l
 

 The relationship for the maximum incident angle for refraction from liquid into air gives this. 

   liquid 1 air 2 liquid 1max 1max
liquid

1
sin sin     sin 1.00 sin90     sinn n n

n
          

 Thus we have the following. 

1

n
1H

R air
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  1 1max liquid
liquid liquid

1 1
sin sin     sin 43.53 0.6887     1.5n

n n
          

62. For the device to work properly, the light should experience total internal 
reflection at the top surface of the prism when it is a prism to air interface, but 
not total internal reflection when the top surface is a prism to water interface.  
Since the incident ray is perpendicular to the lower surface of the prism, light 
does not experience refraction at that surface.   As shown in the diagram, the 
incident angle for the upper surface will be 45.  We then use Eq. 32-7 to determine the minimum 
index of refraction for total internal reflection with an air interface, and the maximum index of 
refraction for a water interface.  The usable indices of refraction will lie between these two values. 

2 air water
c 1,min 1,max

1 c c

1.00 1.33
sin     1.41    1.88

sin sin 45 sin sin 45

n n n
n n

n


 
        

 
 

 The index of refraction must fall within the range 1.41 1.88.n    A Lucite prism will work. 
 
63. (a) We calculate the critical angle using Eq. 32-7.  We calculate the time for each ray to pass  

through the fiber by dividing the length the ray travels by the speed of the ray in the fiber.  The 
length for ray A is the horizontal length of the fiber.  The length for ray B is equal to the length 
of the fiber divided by the critical angle, since ray B is always traveling along a diagonal line at 
the critical angle relative to the horizontal.  The speed of light in the fiber is the speed of light in 
a vacuum divided by the index of refraction in the fiber. 

  
 

2 B A A A A 1
c B A

1 c 1 2

6

5

sin   ;  1
sin

1.0km 1.465 1.465
                          1 2.3 10 s

1.0003.00 10 km/s

n n
t t t

n v v v v c n n






 
          

 

       

l l l l l

 

 (b) We now replace the index of refraction of air (n = 1.000) with the index of refraction of the  
glass “cladding” (n = 1.460). 

   8A 1 1
5

2

1.0km 1.465 1.465
1 1 1.7 10 s

3.00 10 km/s 1.460

n n
t

c n
               

l
 

 
64. (a) The ray enters normal to the first surface, so there is no deviation there.  The angle of incidence  

is 45° at the second surface.  When there is air outside the surface, we have the following. 
    1 1 2 2 1 2sin sin     sin 45 sinn n n        

  For total internal reflection to occur, 2sin 1,   and so 1

1
1.41.

sin 45
n  


 

 (b) When there is water outside the surface, we have the following. 
      1 1 2 2 2 2sin sin     1.58 sin 45 1.33 sin     sin 0.84n n          

  Because 2sin 1,    the prism will not be totally reflecting.  
 (c) For total reflection when there is water outside the surface, we have  the following. 
    1 1 2 2 1 2sin sin     sin 45 sinn n n        

    1 2sin 45 sin .n     

  For total internal reflection to occur, 2sin 1.   

   1

1.33
1.88

sin 45
n  


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65. For the refraction at the first surface, we have the following. 

  
 air 1 2 1 2

1
2

sin sin     1.00 sin sin   

sin sin .

n n n

n

   


   


 

 Find the angle of incidence at the second surface. 

  
   2 3

3 2 2

90 90 180   

60.0

A

A

 
  

        

    
  

 For the refraction at the second surface, we have this. 
   3 air 4 4sin sin 1.00 sinn n     

The maximum value of 4  before internal reflection takes place at the second surface is 90°.  For 
internal reflection to occur, we have the following. 

   3 2 2 2sin sin 1    sin cos cos sin 1n n A n A A            

 Use the result from the first surface to eliminate n. 

  

 
 

1 2 2
1

2 2

1

2

2 2

sin sin cos cos sin sin
sin 1  

sin tan cos

1 1cos cos60.0
sin sin 45.01

2.210  
tan sin sin60.0

tan 0.452    24.3

A A A

A

A

A

  


 



 

  
    

                     


   

 or 

 Use the result from the first surface. 

  1
min

2 max

sin sin 45.0
1.715    1.72

sin sin 24.3
n n





    


 

 
66. For the refraction at the side of the rod, we have 2 1sin sin .n n    

 The minimum angle for total reflection min  occurs when 90    

    2 min min
2

1
sin 1.00 1 1    sinn

n
      

 Find the maximum angle of refraction at the end of the rod. 
  max min90     

Because the sine function increases with angle, for the refraction at 
the end of the rod, we have the following. 

     1 max 2 max max 2 min 2 minsin sin     1.00 sin sin 90 cosn n n n           

If we want total internal reflection to occur for any incident angle at the end of the fiber, the 
maximum value of  is 90°, so 2 mincos 1.n      When we divide this by the result for the refraction 

at the side, we get min mintan 1  45 .       Thus we have the following. 

  2
min

1 1
1.414

sin sin 45
n


  


 

 
 
 

1

 2  3 4

n

A 



 
 

n 1 

n 2

90°
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67. We find the location of the image of a point on the bottom from the 

refraction from water to glass, using Eq. 32-8, with R   . 

  
 

1 2 2 1

o i

2 o
i

1

0    

1.58 12.0cm
14.26cm

1.33

n n n n

d d R

n d
d

n


   

     
 

Using this image distance from the top surface as the object for the refraction from glass to air gives 
the final image location, which is the apparent depth of the water. 

  
 2 3 3 2 3 o2

i2
o2 i2 2

1.00 13.0cm 14.26cm
0    17.25cm

1.58

n n n n n d
d

d d R n


           

 Thus the bottom appears to be 17.3 cm below the surface of the glass.  In reality it is 25 cm. 
 
68. (a) We use Eq. 32-8 to calculate the location of the image of the fish.  We  

assume that the observer is outside the circle in the diagram, to the 
right of the diagram.  The fish is located at the center of the sphere so 
the object distance is 28.0 cm.  Since the glass is thin we use the index 
of refraction of the water and of the air.  Index 1 refers to the water, 
and index 2 refers to the air.  The radius of curvature of the right side 
of the bowl is negative.   

1 2 2 1

o i

1 1

2 1 1
i 2

o

    

1.00 1.33 1.33
1.00 28.0cm

28.0cm 28.0cm

n n n n

d d R

n n n
d n

R d

 


  

    
          

The image is also at the center of the bowl.  When the fish is at the center of the bowl, all small-
angle light rays traveling outward from the fish are approximately perpendicular to the surface 
of the bowl, and therefore do not refract at the surface.  This causes the image of the fish to also 
be located at the center of the bowl. 

(b) We repeat the same calculation as above with the object distance 20.0 from the right side of the 
bowl, so o 20.0cm.d   

1 1

2 1 1
i 2

o

1.00 1.33 1.33
1.00 18.3cm

28.0cm 20.0cm

n n n
d n

R d

 
    

          
 

The fish appears closer to the center of the bowl than it actually is. 
 
69. (a) The accompanying figure shows a  

light ray originating at point O and 
entering the convex spherical surface 
at point P.  In this case 2 1n n .  The 
ray bends away from the normal and 
creates a virtual image at point I.  
From the image and supplementary 
angles we obtain the relationships 
between the angles. 

1 2                 

h1

I1

h2

I2 n1

n2

n 

O
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We then use Snell’s law to relate the incident and refracted angle.  For this derivation we 
assume these are small angles. 

1 1 2 2 1 1 2 2sin sin     n n n n       

From the diagram we can create three right triangles, each with height h and lengths o ,d  i ,d  
and R.  Again, using the small angle approximation we obtain a relationship between the angles 
and lengths.  Combining these definitions to eliminate the angles we obtain Eq. 32-8, noting that 
by our definition id  is a negative value. 

 o i

  ;    ;  
h h h

d R d
    


 

   

 

1 1 2 2 1 2 1 1 2 2

1 2 2 1
1 1 2 2

o i o i

      

    

n n n n n n n n

h h h h n n n n
n n n n

d R d R d d R

                  


     



 

 (b) This image shows a concave surface with  

2 1n n .  Again, we use the approximation 
of small angles and sign convention that 

0R   and i 0.d    We write relationships 
between the angles using supplementary 
angles, Snell’s law, and right triangles.  
Combining these equations to eliminate 
the angles we arrive at Eq. 32-8. 

   
   

     

1 2
o i

1 1 2 2 1 2 1 1 2 2

1 2 2 1
1 1 2 2

o i 0

  ;    ;    ;    ;  

      

    
i

h h h

d d R

n n n n n n n n

h h h h n n n n
n n n n

R d R d d d R

        

         

      
 

         


     

  

 

 (c) This image shows a concave surface with  

2 1n n .  Again, we use the approximation 
of small angles and sign convention that 

0R   and i 0.d    We write relationships 
between the angles using supplementary 
angles, Snell’s law, and right triangles.  
Combining these equations to eliminate the 
angles we arrive at Eq. 32-8. 

   
   

     

1 2
i o

1 1 2 2 1 2 1 1 2 2

1 2 2 1
1 1 2 2

o i o i

  ;    ;    ;    ;       

      

    

h h h

d d R

n n n n n n n n

h h h h n n n n
n n n n

R d R d d d R

        

         

      
 

         


     

  
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70. We consider two rays leaving the coin.  These rays refract 

upon leaving the surface and reach the observer’s eye with 
angles of refraction all very near 45 .     Let the origin of 
coordinates be at the actual location of the coin.  We will 
write straight-line equations for each of two refracted rays, 
one with a refraction angle of   and the other with a 
refraction angle of d  , and extrapolate them back to 
where they intersect to find the location of the image.  We  

utilize the relationship     .
df

f x dx f x dx
dx

     
 

  

 First, apply Snell’s law to both rays. 
Ray # 1, leaving the coin at angle .  
 sin sinn    
Ray # 2, leaving the coin at angle .d   

    sin sinn d d       

 Note the following relationship involving the differential angles. 

     sin
sin sin sin cos   ;  sin sin cos

d
d d d d d

d


           


         

 So for Ray # 2, we would have the following Snell’s law relationship. 

 
   sin cos sin cos     sin cos sin cos   

cos
cos cos     

cos

n d d n n d d

n d d d d
n

           
     


       

  
 

This relationship between d  and d  will be useful later in the solution. 

Ray # 1 leaves the water at coordinates 1 1tan ,x h y h   and has a slope after it leaves the water of  

 1 tan 90 cot .m        Thus a straight-line equation describing ray # 1 after it leaves the water is 

as follows. 
    1 1 1     tan coty y x x m y h x h          

Ray # 2 leaves the water at the following coordinates. 

    2
2 2

tan
tan tan tan sec ,  

d
x h d h d h d y h

d


      


 

          
 

 

 Ray # 2 has the following slope after it leaves the water. 

      2
2

cot
tan 90 cot cot cot csc

d
m d d d d

d


        


             

Thus a straight-line equation describing ray # 2 after it leaves the water is as follows. 

     2 2
2 2 2     tan sec cot cscy y x x m y h x h d d                     

To find where these rays intersect, which is the image location, set the two expressions for y equal to 
each other. 

     2 2tan cot tan sec cot csc   h x h h x h d d                      

 Expanding the terms and subtracting common terms gives us the following. 
  2 2 2 2 2csc tan csc sec cot sec cscx d h d h d h d d               

The first three terms each have a differential factor, but the last term has two differential factors.  



d


d 

ray1

ray 2

h
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That means the last term is much smaller than the other terms, and so can be ignored.  So we delete 
the last term, and use the relationship between the differentials derived earlier. 

2 2 2

2 2 2

2
2

2 3

cos
csc tan csc sec cot    ;     

cos

cos
csc tan csc sec cot

cos

cos cot cos sin
tan sec tan

cos csc cos

x d h d h d d d
n

x d h d h d
n

x h h
n n

         


       


     
  

   

 

  
     

   

 

Now we may substitute in values.  We know that 45   and 0.75m.h    We use the original 

relationship for ray # 1 to solve for .   And once we solve for x, we use the straight-line equation for 
ray # 1 to solve for y. 

 1 1 sin 45
sin sin     sin sin 32.12

1.33
n

n

     
       

  

   

2 2

3 3

cos sin cos 45sin 45
tan 0.75 tan32.12 0.1427m

cos 1.33cos 32.12

tan cot 0.75 0.1427 0.75tan32.12 cot 45 0.4264m

x h
n

y h x h

 


 

   
       

   
      

 

The image of the coin is located 0.14 m toward the viewer and 0.43 m above the actual coin. 
 
71. Use Eq. 32-2 to determine the location of the image from 

the right mirror, in terms of the focal length.  Since this 
distance is measured from the right mirror, we subtract 
that distance from the separation distance between the two 
mirrors to obtain the object distance for the left mirror.  
We then insert this object distance back into Eq. 32-2, 
with the known image distance and combine terms to 
write a quadratic equation for the focal length. 

 
 

1

o1
i1

o1 i1 o1 o1

o1 o1 o1
o2 i1

o1 o1

o1 i2 o1 i2 o1 o1

o2 i2 o1 o1 i2 i2 o1 o1

2 2
i2 o1 o1 i2 o1 i2 o1

1 1 1 1 1
    

1 1 1 1

fd
d

f d d f d d f

fd Dd fD fd
d D d D

d f d f

d f d d fd Dd fD fd

f d d Dd fD fd d d Dd fD fd

d Dd fD fd d d f f d fDd f D


 

        
 

    
 
    

    
   

      

   

2
o1

2
i2 o1 i2 o1 o1 i2 o1 i22 0

f d

f d D d f d d Dd Dd Dd d      

 

 We insert the values for the initial object distance, final image distance, and mirror separation 
distance and then solve the quadratic equation. 

         

   
    

 

2 22

2 2 3

22 2 3

0.50m 1.00m 0.50m 2 0.50m 2 1.00m 0.50m 1.00m 0.50m 0

2.00m 1.50m 0.25m 0

1.50m 1.50m 4 2.00m 0.25m
0.25m  or  0.50m

2 2.00m

f f

f f

f

       

  

 
 

 

 If the focal length is 0.25 m, the right mirror creates an image at the location of the object.  With the 
paper in place, this image would be blocked out.  With a focal length of 0.50 m, the light from the 
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right mirror comes out as parallel light.  No image is formed from the right mirror.  When this 
parallel light enters the second mirror it is imaged at the focal point (0.50 m) of the second mirror. 

72. (a) We use Snell’s law to calculate the refracted angle within the medium.   
Then using the right triangle formed by the ray within the medium, we can 
use the trigonometric identities to write equations for the horizontal 
displacement and path length. 

1
1 2 2

sin
sin sin     sinn

n

      

2 2 2 2
2 2 1

2 2 2
cos     

2 cos 1 sin sin

D D D nD

n


  
    

 
l

l
 

1 1
2 2 2 2 2 2

1 1

2 2 sin 2 sin
sin     sin

2 sin sin

d nD D
d

nn n

  
 

    
 

l
l

 

 (b) Evaluate the above expressions for 1 0 .    

   1
22 2 2 2 2

1 1

2 2 2 2 sin
2   ;  sin     0

2sin sin

nD nD d D
D d

n n n


 

      
 

l
l

 

  These are the expected values. 
 
73.  (a) The first image seen will be due to a single reflection off the front glass.  This image will be  

equally far behind the mirror as you are in front of the mirror.  

1 2 1.5 m= 3.0 mD    
The second image seen will be the image reflected once off the front mirror and once off the 
back mirror. As seen in the diagram, this image will appear to be twice the distance between the 
mirrors. 

2 1.5 m 2.2 m + (2.2 m 1.5 m)=2 2.2 m =  4.4 mD      
The third image seen will be the image reflected off the front mirror, the back mirror, and off 
the front mirror again.  As seen in the diagram this image distance will be the sum of twice your 
distance to the mirror and twice the distance between the mirrors. 

3 1.5 m 2.2 m + 2.2 m +1.5 m=2 1.5 m 2 2.2 m = 7.4 mD       
  The actual person is to the far right in the diagram.  

 
 
 
 
 
 
 
 
 (b) We see from the diagram that the first image is facing  toward you ; the second image is facing   

away from you ; and the third image is facing  toward you. 
 
74. Find the angle of incidence for refraction from water into air. 

  
     

water 1 air 2

1 1

sin sin   

1.33 sin 1.00 sin 90.0 13.0     47.11

n n 
 
 

      
 

       11.33 sin 1.00 sin 90.0 13.0 ,       

 We find the depth of the pool from 1tan .x h   

 1 

2

n w a t er 

n a ir

h

x 

D

1D

2D
3D
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   tan 47.11 5.50m     5.11mh h     

 
75. The apparent height of the image is related to the angle 

subtended by the image.  For small angles, this angle is the 
height of the image divided by the distance between the 
image and viewer.  Since both images are virtual, which 
gives a negative image distance, the image to viewer 
(object) distance will be the object distance minus the 
image distance.  For the plane mirror the object and image 
heights are the same, and the image distance is the 
negative of the object distance. 

i o
i o i o plane

o i o

  ;    ;  
2

h h
h h d d

d d d
    


 

 We use Eq. 32-2 and 32-3 to write the angle of the image in the convex mirror in terms of the object 
size and distance. 

2
o o o

i o i
o i o o

i i o i o
i

o o o o

i o o o
convex 2 2

o i o o o o o

1 1 1 2
        

    

2 2

d f d d f
d d d

f d d d f d f

h d h d h f
h

h d d d f

h h f d f h f

d d d f d d f d d f



      

 

      


   
          

 

 We now set the angle in the convex mirror equal to ½ of the angle in the plane mirror and solve for 
the focal length. 

2o o1 1
convex plane o o o o2 22

o o o

        4 2     
2 4

h f h
d f d d f f d

d d f d
  

         


 

We use Eq. 32-1 to calculate the radius of the mirror. 

 1
o o22 2 3.80mr f d d        

 
76. For the critical angle, the refracted angle is 90°.  For the refraction from plastic to air, we have the 

following. 
   plastic plastic air air plastic plasticsin sin     sin39.3 1.00 sin 90     1.5788n n n n         

 For the refraction from plastic to water, we have the following. 

     plastic plastic water water plastic plasticsin sin     1.5788 sin 1.33 sin90     57.4n n             

 
77. The two students  chose different signs for the magnification,  i.e., one upright and one inverted. 

The focal length of the concave mirror is  1 1
2 2 46cm 23cm.f R     We relate the object and 

image distances from the magnification. 

  i i
i o

o o

    3     3
d d

m d d
d d

          

 Use this result in the mirror equation. 

  
  o

o i o o

1 1 1 1 1 1 2 4
        , 15.3cm,30.7cm

3 3 3

f f
d

d d f d d f

     
            
      

 

So the object distances are  15 cm (produces virtual image) , and +31 cm (produces real image). 
 

O I2

do
I1

h
1

 plane 

h
2

 convex 

O

h
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78. The object “creates” the I1 images as reflections from the actual 

mirrors.  The I2 images can be considered as images of the I1 
“objects,” formed by the original mirrors.  A specific I2 image is the 
image of the I1 “object” that is diametrically opposite it.  Then the I3 
image can be considered as an image of the I2 “objects.”  Each I2 
“object” would make the I3 “image” at the same location.  We can 
consider the extension of the actual mirrors, shown as dashed lines, 
to help understand the image formation. 

 
 
79. The total deviation of the beam is the sum of the deviations at 

each surface.  The deviation at the first surface is the refracted 
angle 2  subtracted from the incident angle 1 .  The deviation 

at the second surface is the incident angle 3  subtracted from 

the refracted angle 4 .  This gives the total deviation. 

  1 2 1 2 4 3              

We will express all of the angles in terms of 2 .  To minimize 
the deviation, we will take the derivative of the deviation with 
respect to 2 , and then set that derivative equal to zero.  Use Snell’s law at the first surface to write 
the incident angle in terms of the refracted angle. 

   1
1 2 1 2sin sin     sin sinn n       

The angle of incidence at the second surface is found using complementary angles, such that the sum 
of the refracted angle from the first surface and the incident angle at the second surface must equal 
the apex angle. 

2 3 3 2               
The refracted angle from the second surface is again found using Snell’s law with the deviation in 
angle equal to the difference between the incident and refracted angles at the second surface. 

      1 1
3 4 4 3 2sin sin     sin sin sin sinn n n             

Inserting each of the angles into the deviation and setting the derivative equal to zero allows us to 
solve for the angle at which the deviation is a minimum. 

      
    

 
 

1 1
2 2 2 2

1 1
2 2

22 1
2 2 2 3 22 2 2 2

2 2 2

sin sin sin sin

  sin sin sin sin

coscos
0        

1 sin 1 sin

n n

n n

nd n

d n n

      

   

        
   

 

 

     

   


        

  

  

In order for 2 3,   the ray must pass through the prism horizontally, which is perpendicular to the 

bisector of the apex angle .  Set 1
2 2   in the deviation equation (for the minimum deviation, m ) 

and solve for the index of refraction. 

  

    
     

  

1 1
2 2

1 1 11 1 1
2 2 2

1
2

1
2

sin sin sin sin

sin sin sin sin 2sin sin

sin

sin

m

m

n n

n n n

n

    

    

 


 

  

   

    


 

 

1

  2   3 4

n

 
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80. For the refraction at the second surface, we have this. 
     3 air 4 3 4sin sin     1.58 sin 1.00 sinn n       

The maximum value of 4  before internal reflection takes place 
at the second surface is 90°.  Thus for internal reflection not to 
occur, we have 

    3 3 31.58 sin 1.00    sin 0.6329    39.27         

 We find the refraction angle at the second surface. 

  
   2 3

2 3 3

90 90 180   

72

A

A

 
  

        

    
 

 Thus 2 72 39.27 32.73 .        
 For the refraction at the first surface, we have the following. 
       air 1 2 1 2 1 2sin sin     1.00 sin 1.58 sin     sin 1.50 sinn n           

 Now apply the limiting condition. 

   1 1sin 1.58 sin32.73 0.754    58.69        

 
81. (a) Consider the light ray shown in the figure.  A ray of light  

starting at point A reflects off the surface at point P before 
arriving at point B, a horizontal distance l from point A.  We 
calculate the length of each path and divide the length by the 
speed of light to determine the time required for the light to 
travel between the two points. 

 2 22 2
21

x hx h
t

c c

 
 

l
 

To minimize the time we set the derivative of the time with respect to x equal to zero.  We also 
use the definition of the sine as opposite side over hypotenuse to relate the lengths to the angles 
of incidence and reflection. 

 
 

 
 

2 2 2 2
1 2

1 2 1 22 2 2 2
1 2

0   

    sin sin     

xdt x

dx c x h c x h

xx

x h x h
   

 
   

  


    

  

l

l

l

l

 

 (b) Now we consider a light ray traveling from point A to point B  
in media with different indices of refraction, as shown in the 
figure.  The time to travel between the two points is the 
distance in each medium divided by the speed of light in that 
medium. 

 2 22 2
21

1 2

x hx h
t

c n c n

 
 

l
 

To minimize the time we set the derivative of the time with 
respect to x equal to zero.  We also use the definition of the 
sine as opposite side over hypotenuse to relate the lengths to 
the angles of incidence and reflection. 

1

 2  3 4

n

A 

1h
2h

x xl
1 2

1n
1h

1

2n
2h

2

l

-xl



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

346 

 
 

 
 

2 21 1
1 1 2 22 2 2 2 2 22 2

1 12 2

0 sin sin
n x n xdt n x n x

n n
dx c x h x hc x h x h

 
  

      
    

l l

l l

 

 
82. We use Eq. 32-8 to calculate the location of the image and Eq. 32-3 to calculate the height of the 

image.   

 

1 1

1 2 2 1 2 1 1
i 2

o i o

i i i
i o

o o o

1.53 1.33 1.33
1.53 36.3cm

2.00cm 23cm

36.3cm
2.0mm 3.2mm

23cm

n n n n n n n
d n

d d R R d

h d d
h h

h d d

 
     

          
  

       

 

 
83. A ray of light initially on the inside of the beam will strike the far surface at the 

smallest angle, as seen in the associated figure.   The angle is found using the 
triangle shown in the figure, with side r and hypotenuse r+d.  We set this angle 
equal to the critical angle, using Eq. 32-7, and solve for the minimum radius of 
curvature. 

2
C

1

1
sin

1

r n d
r

r d n n n
     

 
 

 
84. A relationship between the image and object distances can be obtained from the given information. 

  i 1
i o2

o

1
   7.5cm

2

d
m d d

d
        

Now we find the focal length and the radius of curvature. 

  
o i

1 1 1 1 1 1
        5.0cm    10cm

15cm 7.5cm
f r

d d f f
          

 
85. If total internal reflection fails at all, it fails for 90 .     Assume 

90    and use Snell’s law to determine the maximum . 

  1
2 1 1 1

2

sin sin sin90     sin
n

n n n n
n

         

Snell’s law can again be used to determine the angle   for which 
light (if not totally internally reflected) would exit the top surface, 
using the relationship 90    since they form two angles of a right triangle. 

     2
1 2 2 2

1

sin sin sin 90 cos     sin cos
n

n n n n
n

             

Using the trigonometric relationship 2cos 1 sin    we can solve for the exiting angle in terms 

of the indices of refraction.  
2

22 2 1

1 1 2

sin 1 sin 1
n n n

n n n
 

 
     

 
 

 Insert the values for the indices ( 1 1.00n   and 2 1.51n  ) to determine the sine of the exit angle.  
2

1.51 1.00
sin 1 1.13

1.00 1.51
     

 
 

Since the sine function has a maximum value of 1, the light totally internally reflects at the glass–air 
interface for any incident angle of light.   


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If the glass is immersed in water, then 1 1.33n   and 2 1.51n  . 
2

11.51 1.33
sin 1 0.538 sin 0.538 32.5

1.33 1.51
          

 
 

Light entering the glass from water at 90 can escape out the top at 32.5, therefore total internal 

reflection only occurs for incident angles 32.5 .   
 
86. The path of the ray in the sphere forms an isosceles triangle with 

two radii.  The two identical angles of the triangle are equal to the 
refracted angle.  Since the incoming ray is horizontal, the third 
angle is the supplementary angle of the incident angle.  We set the 
sum of these angles equal to 180 and solve for the ratio of the 
incident and refracted angles.  Finally we use Snell’s law in the 
small angle approximation to calculate the index of refraction. 

 r r

1 2 r r r

2 180 180     2

sin sin     2     2n n n n

   

    

      

     
 

 
87. The first graph is a graph of n vs. .  The second graph is a graph n vs. of 21 .   By fitting a line of  

the form 2 ,n A B    we have 1.50A   and  3 6 2 25.74 10 10 nm 5740nm .B       

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH32.XLS,” on tab “Problem 32.87.” 

   
88. (a) As the light ray enters the water drop, its path changes  

by the difference between the incident and refracted angles.  
We use Snell’s law to calculate the refracted angle.  The 
light ray then reflects off the back surface of the droplet.  
At this surface its path changes by r180 2  , as seen in 
the diagram.  As the light exits the droplet it refracts again, 
changing its path by the difference between the incident 
and refracted angles.  Summing these three angles gives the 
total path change. 

1
r r

sin
sin sin sinn

n

         
 

       1
r r r r

sin
180 2 180 2 4 180 2 4sin

n

                           
 
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(b) Here is the graph of  vs .   
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH32.XLS,” on 
tab “Problem 32.88.” 

 
 (c) On the spreadsheet, the  

incident angles that give 
scattering angles from 138  to 
140  are approximately 
48.5 54.5     and 
64.5 69.5 .      This is 
11/90 of the possible incident 
angles, or about 12%. 
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virtual 
image 

CHAPTER 33:  Lenses and Optical Instruments 
 
Responses to Questions 
 
1.  The film must be placed behind the lens at the focal length of the lens. 
 
2. The lens moves farther away from the film. When the photographer moves closer to his subject, the 

object distance decreases. The focal length of the lens does not change, so the image distance must 

increase, by Eq. 33-2, 
o i

1 1 1
.

f d d
   

 
3.  Yes. Diverging lenses, by definition, cause light rays to diverge and will not bring rays from a real 

object to a focal point as required to form a real image. However, if another optical element (for 
example, a converging lens) forms a virtual object for the diverging lens, it is possible for the 
diverging lens to form a real image.  

 
4.  A real image formed by a thin lens is 

on the opposite side of the lens as the 
object, and will always be inverted as 
shown in the top diagram. A virtual 
image is formed on the same side of 
the lens as the real object, and will be 
upright, as shown in the bottom 
diagram. 

 
 
 
 
 
 
 
5. Yes.  In the thin-lens equation, the variables for object distance and image distance can be 

interchanged and the formula remains the same.    
 
6. Yes, real images can be projected on a screen. No, virtual images cannot, because they are formed by 

diverging rays, which do not come to a focus on the screen. Both kinds of images can be 
photographed. The lenses in a camera are designed to focus either converging or diverging light rays 
down onto the film.  

 
7. (a) Yes. The image moves farther from the lens. 

(b) Yes. The image also gets larger.  
 
8. The mirror equation and the lens equation are identical. According to the sign conventions, d > 0 

indicates a real object or image and d < 0 indicates a virtual object or image, for both mirrors and 
lenses. But the positions of the objects and images are different for a mirror and a lens. For a mirror, 
a real object or image will be in front of the mirror and a virtual object or image will be behind the 
mirror. For a lens, a real image will be on the opposite side of the lens from a real object, and a 
virtual image will be on the same side of the lens as the real object. 
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9. No. The lens will be a diverging lens when placed in water because the 
index of refraction of the lens is less than the index of refraction of the 
medium surrounding it. Rays going from water to lens material will bend 
away from the normal instead of toward the normal, and rays going from 
the lens back to the water will bend towards the normal.  

 
 
 
 
10. A virtual image created by a previous lens can serve as a virtual object for a second lens. If the 

previous lens creates an image behind the position of the second lens, that image will also serve as a 
virtual object for the second lens. 

 
11.  Assuming that the lens remains fixed and the screen is moved, the dog’s head will have the greater 

magnification. The object distance for the head is less than the object distance for the tail, because 
the dog is facing the mirror. The image distance for the head will therefore be greater than the image 
distance for the tail.  Magnification is the ratio of the image distance to the object distance, so will be 
greater for the head. 

 
12. If the cat’s nose is closer to the lens than the focal point and the tail is farther from the lens than the 

focal point, the image of the nose will be virtual and the image of the tail will be real. The virtual 
image of the front part of the cat will be spread out from the image of the nose to infinity on the 
same side of the lens as the cat. The real image of the back part of the cat will be spread out from the 
image of the tail to infinity on the opposite side of the lens. 

 
13.  The technique for determining the focal length of the diverging lens in Example 33-6 requires the 

combination of the two lenses together to project a real image of the sun onto a screen. The focal 
length of the lens combination can be measured. If the focal length of the converging lens is longer 
than the focal length of the diverging lens (the converging lens is weaker than the diverging lens), 
then the lens combination will be diverging, and will not form a real image of the sun. In this case 
the focal length of the combination of lenses cannot be measured, and the focal length of the 
diverging lens alone cannot be determined. 

 
14.  A double convex lens causes light rays to converge because the 

light bends towards the normal as it enters the lens and away 
from the normal as it exits the lens. The result, due to the 
curvature of the sides of the lens, is that the light bends towards 
the principal axis at both surfaces. The more strongly the sides of 
the lens are curved, the greater the bending, and the shorter the 
focal length.  

 
 
15. Yes. The relative values of the index of refraction of the fluid and the index of refraction of the lens 

will determine the refraction of light as it passes from the fluid through the lens and back into the 
fluid. The amount of refraction of light determines the focal length of the lens, so the focal length 
will change if the lens is immersed in a fluid. No, the image formation of the spherical mirror is 
determined by reflection, not refraction, and is independent of the medium in which the mirror is 
immersed. 
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16.  The lens material is air and the medium in which the lens is 
placed is water. Air has a lower index of refraction than water, 
so the light rays will bend away from the normal when entering 
the lens and towards the normal when leaving the lens. 
(a) A converging lens can be made by a shape that is thinner in 

the middle than it is at the edges.  
(b) A diverging lens will be thicker in the middle than it is at 

the edges. 
 
 
17. If the object of the second lens (the image from the first lens) is exactly at the focal point, then a 

virtual image will be formed at infinity and can be viewed with a relaxed eye.  
 
18. The corrective lenses will not work the same underwater as in 

air, and so the nearsighted person will probably not be able to 
see clearly underwater. The difference in the index of 
refraction of water and glass is much smaller than the 
difference in the indices for air and glass, so the lenses will not 
cause the incoming rays to diverge sufficiently.  

 
19. Nearsighted. Diverging lenses are used to correct nearsightedness and converging lenses are used to 

correct farsightedness. If the person’s face appears narrower through the glasses, then the image of 
the face produced by the lenses is smaller than the face, virtual, and upright. Thus, the lenses must be 
diverging, and therefore the person is nearsighted. 

 
20. All light entering the camera lens while the shutter is open contributes to a single picture. If the 

camera is moved while the shutter is open, the position of the image on the film moves. The new 
image position overlaps the previous image position, causing a blurry final image. With the eye, new 
images are continuously being formed by the nervous system, so images do not “build up” on the 
retina and overlap with each other.  

 
21. Squinting limits the off-axis rays that enter the eye and results in an image that is formed primarily 

by the center part of the lens, reducing spherical aberration and spreading of the image. 
 
22. The image formed on the retina is inverted. The human brain then processes the image so that we 

interpret the world we see correctly. 
 
23. Both reading glasses and magnifiers are converging lenses used to produce magnified images. A 

magnifier, generally a short focal length lens, is typically used by adjusting the distance between the 
lens and the object so that the object is exactly at or just inside the focal point. An object exactly at 
the focal point results in an image that is at infinity and can be viewed with a relaxed eye. If the lens 
is adjusted so that it focuses the image at the eye’s near point, the magnification is slightly greater. 
The lenses in reading glasses typically are a fixed distance from the eye. These lenses cause the rays 
from a nearby object to converge somewhat before they reach the eye, allowing the eye to focus on 
an object that is inside the near point. The focal length of the lens needed for reading glasses will 
depend on the individual eye. The object does not have to be inside the focal point of the lens. For 
both reading glasses and magnifiers, the lenses allow the eye to focus on an object closer than the 
near point. 

 

Diverging lens 
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24. The relationship between di and do for a given lens of focal length f is given by Eq. 33-2, 

o i

1 1 1
.

d d f
    The focal length is fixed for a camera lens, so if the lens focuses on a closer object, 

do decreases and therefore di must increase. An increase in di means that the lens must be farther 
from the film. 

 
25. The curved surface should face the 

object. If the flat surface faces the 
object and the rays come in parallel 
to the optical axis, then no bending 
will occur at the first surface and all 
the bending will occur at the second 
surface. Bending at the two surfaces 
will clearly not be equal in this case. The bending at 
the two surfaces may be equal if the curved surface 
faces the object. 

 
If the parallel rays from the distant object come in 
above or below the optical axis with the flat side 
towards the object, then the first bending is actually 
away from the axis. In this case also, bending at both surfaces can be equal if the curved side of the 
lens faces the object. 

 
26. For both converging and diverging lenses, the focal point for violet light is closer to the lens than the 

focal point for red light. The index of refraction for violet light is slightly greater than for red light 
for glass, so the violet light bends more, resulting in a smaller magnitude focal length. 

 

Solutions to Problems 
 
1. (a) From the ray diagram, the object distance is about  

480 cm. 
 (b) We find the object distance from Eq. 33-2. 

  
o i

i
o

i

1 1 1
  

215mm 373mm
508mm

373mm 215mm

d d f

fd
d

d f

  

  
 

 

NOTE:  In the first printing of the textbook, a different set 
of values was given: 75.0mmf  and i 88.0mm.d    
Using that set of values gives the same object distance as 
above.  But the ray diagram would be much more 
elongated, with the object distance almost 7 times the focal length. 

 
2. (a) To form a real image from parallel rays requires a  converging lens.  
 (b) We find the power of the lens from Eqs. 33-1 and 33-2.  

   
o i

1 1 1 1 1
5.41D

0.185m
P

d d f
     


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3. (a) The power of the lens is given by Eq. 33.1 

   
1 1

4.26D
0.235m

P
f

    

  This lens is converging. 
 (b) We find the focal length of the lens from Eq. 33.1 

   
1 1 1

    0.148m
6.75D

P f
f D

        

  This lens is diverging. 
 
4. To form a real image from a real object requires a converging lens.  We find the focal length of the  

lens from Eq. 33-2.    

  
  o i

o i o i

1.85m 0.483m1 1 1
    0.383m

1.85m 0.483m

d d
f

d d f d d
     

 
 

 Because i 0,d   the image is  real.  
 
5. (a) We find the image distance from Eq. 33-2. 

   
  o

i
o i o

10.0m 0.105m1 1 1
    0.106m 106mm

10.0m 0.105m

d f
d

d d f d f
      

 
 

(b) Use the same general calculation. 

   
  o

i
o

3.0m 0.105m
0.109m 109mm

3.0m 0.105m

d f
d

d f
   

 
 

 (c) Use the same general calculation. 

   
  o

i
o

1.0m 0.105m
0.117m 117mm

1.0m 0.105m

d f
d

d f
   

 
 

 (d) We find the smallest object distance from the maximum image distance. 

   
  i

max
o
mino i i

min max max

132mm 105mm1 1 1
    513mm 0.513m

132 mm 105mm

d f
d

d d f d f


      


 

 
6. (a) We locate the image using Eq. 33-2. 

   
  o

i
o i o

18cm 28cm1 1 1
    50.4cm 50cm

18cm 28cm

d f
d

d d f d f
        

 
 

  The negative sign means the image is  50 cm behind the lens (virtual).  
 (b) We find the magnification from Eq. 33-3. 

   
 
 

i

o

50.4cm
2.8

18cm

d
m

d


       

 
7. (a) The image should be upright for reading.  The image  

will be virtual, upright, and magnified. 
 (b) To form a virtual, upright magnified image requires a  

converging lens. 
 (c) We find the image distance, then the focal length, and  

then the power of the lens.  The object distance is given. 
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  i
i o

o

    
d

m d md
d

       

    
i o o o

o i o i o o o

1 1 1 1 2.5 1
6.7 D

2.5 0.090m

d d md d m
P

f d d d d d md md

    
       


 

 
8. Use Eqs. 33-1 and 33-2 to find the image distance, and Eq. 33-3 to find the image height. 

  
 

  
o

i
o i o

0.125m1 1 1
    0.0625m 6.25cm

1 8.00D 0.125m 1

d
P d

d d f Pd
         

  
   

 Since the image distance is negative, the image is virtual and behind the lens. 

  
     i i i

i o
o o o

6.25cm
    1.00mm 0.500mm upright

12.5cm

h d d
m h h

h d d


          

 
9. First, find the original image distance from Eqs. 33-1 and 33-2. 

 
  

o
i

o i o

1.50m1 1 1
    0.1364 m

1 8.00D 1.50m 1

d
P d

d d f Pd
      

 
 

 (a) With o 0.60m,d   find the new image distance. 

   
 

  
o

i
o i o

0.60m1 1 1
    0.1579m

1 8.00D 0.60m 1

d
P d

d d f Pd
      

 
 

Thus the image has moved 0.1579m 0.1364m 0.0215m 0.02m   away from the lens. 

 (b) With o 2.40m,d   find the new image distance. 

   
 

  
o

i
o i o

2.40m1 1 1
    0.1319m

1 8.00D 2.40m 1

d
P d

d d f Pd
      

 
 

  The image has moved 0.1319m 0.1364m 0.0045m 0.004m    toward the lens. 

 
10. (a) If the image is real, the focal length must be positive, the image distance must be positive, and 

the magnification is negative.  Thus i o2.50 .d d   Use Eq. 33-2. 

    o
o i o o

1 1 1 1 1 3.50 3.50
   50.0mm 70.0mm

2.50 2.50 2.50
d f

d d d d f
             
   

 

 (b) If the image is magnified, the lens must have a positive focal length, because negative lenses  
always form reduced images.  Since the image is virtual the magnification is positive.  Thus 

i o2.50 .d d    Again use Eq. 33-2. 

  o
o i o o

1 1 1 1 1 1.50 1.50
   50.0mm 30.0mm

2.5 2.50 2.50
d f

d d d d f
             
   

 

 
11. From Eq. 33-3, i oh h  when i o .d d  So find do from Eq. 33-2. 

o
o i o o

1 1 1 1 1
    2 50cmd f

d d d d f
        

 
12. (a) Use Eqs. 33-2 and 33-3. 

  o
i

o i o

1.30m 0.135m1 1 1
    0.1506m 151mm

1.30m 0.135m

d f
d

d d f d f
      

 
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 i i i
i o

o o o

0.1506m
    2.80cm 0.324m

1.30m

h d d
m h h

h d d
           

  The image is behind the lens a distance of 151 mm, is real, and is inverted. 
 (b) Again use Eqs. 33-2 and 33-3. 

   

  
 

   

o
i

o i o

i i i
i o

o o o

1.30m 0.135m1 1 1
    0.1223m 122 mm

1.30m 0.135m

0.1223m
    2.80cm 0.263m

1.30m

d f
d

d d f d f

h d d
m h h

h d d


        

  


        

 

  The image is in front of the lens a distance of 122 mm, is virtual, and is upright. 
 
13. The sum of the object and image distances must be the distance between object and screen, which we 

label as Td .  We solve this relationship for the image distance, and use that expression in Eq. 33-2 in 
order to find the object distance. 

  
 

      

2
o i T i T o o T o T

o i o T o

22
T T T

o

1 1 1 1 1
      ;      0  

86.0cm 86.0cm 4 16.0cm 86.0cm4
21.3cm, 64.7cm

2 2

d d d d d d d d d fd
d d d d d f

d d fd
d

             


  
  

 

 Note that to have real values for od , we must in general have 2
T T T4 0    4 .d fd d f     

  
 
 
 

14. For a real image both the object distance and image distances are positive, and so the magnification 
is negative. Use Eqs. 33-2 and 33-3 to  find the object and image distances.  Since they are on 
opposite sides of the lens, the distance between them is their sum. 

   

 

i
i o o

o

o
o i o o

i o

o i

    2.95

1 1 1 1 1 3.95 3.95
    85cm 113.8cm

2.95 2.95 2.95

2.95 2.95 113.8cm 335.7cm

113.8cm 335.7cm 449.5cm 450cm

d
m d md d

d

d f
d d d d f

d d

d d


    

             
   

  

    

 

 
15. (a) Use Eq. 33-2 to write an expression for the image distance in terms of the object distance and  

focal length.  We then use Eq. 33-3 to write an expression for the magnification.   

o i
i

o i o o o

1 1 1
      ;  

d f d f
d m

d d f d f d d f
       

 
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These expressions show that when od f , the image distance is positive, producing a real 
image, and the magnification is negative, which gives an inverted image. 

(b) From the above equations, when od f , the image distance is negative, producing a virtual 
image, and the magnification is positive, which gives an upright image. 

 (c) We set  od f   and calculate the limiting image distance and magnification. 

  i
i

o

1
=              

2 2

f f f d f
d m

f f d f f


     
   

 

  We also take the limit of large negative object distance. 

   
  i

i
o

=              0
f d f

d f m
f d f


     
   

 

From these limiting cases, we see that when od f  , the image is real and upright with 
1

i2 f d f   and 1
20 m  . 

(d) We take the limiting condition o 0d  , and determine the resulting image distance and 
magnification. 

  i
i

o

0
= 0             1

0 0

f d f
d m

f d f
     

 
 

From this limit and that found in part (c), we see that when o0 d f   , the image is real and 

upright, with 1
i 20 d f   and 1

2 1.m   

 
16. (a) We use the magnification equation, Eq. 33-3, to write the image distance in terms of the  

magnification and object distance.   We then replace the image distance in the mirror equation, 
Eq. 32-2, and solve for the magnification in terms of the object distance and the focal length. 

i o i o    m d d d md      

o i

o o

o

1 1 1
    

1 1 1
    

f d d

f d md

f
m

f d

  

  





 

 (b) We set 0.45 mf   and 
draw a graph of the 
magnification as a function 
of the object distance.  The 
spreadsheet used for this 
problem can be found on the 
Media Manager, with 
filename “PSE4_ISM_CH33.XLS,” on tab “Problem 33.16b.” 

 (c) The image and object will have the same lateral size when the magnification is equal to negative  
one.   Setting the magnification equal to negative one, we solve the equation found in part (a) 
for the object distance. 

o
o

1    2 0.90m
f

m d f
f d

     


 

 (d) From the graph we see that for the image to be much larger than the object, the object should be  
placed at a point  just beyond the focal point. 

 

-10

-8

-6

-4

-2

0

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

d o (m)

m
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17. Find the object distance from Eq. 33-2. 

  
  i

o
o i o i i

0.105m 6.50m1 1 1 1 1 1
        0.107m

6.50m 0.105m

fd
d

d d f d d f d f
        

 
 

 Find the size of the image from Eq. 33-3. 

   i i i
i o

o o o

6.50m
    36mm 2187mm 2.2m

0.107m

h d d
m h h

h d d
         

 
18. (a) Use Eq. 33-2 with o i T i T o   .d d d d d d      

 

2
2 T T T
o T o T o

o i o T o

41 1 1 1 1
    0    

2

d d fd
d d d fd d

d d d d d f

 
         


 

There are only real solutions for od  if 2
T T T4 0    4 .d fd d f      If that condition is met, 

then there will be two locations for the lens, at distances  21
o T T T2 4d d d fd    from the 

object, that will form sharp images on the screen. 
 (b) If T 4 ,d f  then Eq. 33-2 cannot be solved for real values of od  or i .d  

 (c) If T 4 ,d f  the lens locations relative to the object are given by  21
o1 T T T2 4d d d fd    and  

 21
o2 T T T2 4 .d d d fd     

      2 2 21 1
o1 o2 T T T T T T T T2 24 4 4d d d d d fd d d fd d fd            

  Find the ratio of image sizes using Eq. 33-3.  

   

 
 

 
 

i2
o

i2 i2 o1 T o2 o1o2

i1i1 o2 i1 o2 T o1
o

o1

22 21 1 2
T T T T T T T2 2

T T T

22 21 1
T T TT T T T T T T2 2

4 4 4

44 4

d
h

h d d d d dd
dh d d d d dh
d

d d d fd d d fd d d fd

d d fdd d fd d d d fd




  


                                  

 

 
19. (a) With the definitions as given in the problem, o o    x d f d x f      and i  x d f      

i .d x f    Use Eq. 33-2. 

   

   
  

    
o i

2 2 2

1 1 1 1 1 1
      

2     2     

x f x f

d d x f x f f x f x f f

f x x f x f x f f xf x f x x xf fx f f x x

   
      

    

                  

 

 (b) Use Eq. 33-2. 
  o

i
o i o

48.0cm 38.0cm1 1 1
    182cm

48.0cm 38.0cm

d f
d

d d f d f
     

 
 

 (c) Use the Newtonian form. 

   

 
 

22
2

i

38.0cm
    144.2cm

48.0cm 38.0cm

144.2cm 38.0cm 182cm

f
xx f x

x

d x f

     


    
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20. The first lens is the converging lens.  An object at infinity will form an image at the focal point of the 
converging lens, by Eq. 33-2. 

i1 1
o1 i1 1 i1

1 1 1 1 1
    20.0cmd f

d d f d
      


 

This image is the object for the second lens.  Since this image is behind the second lens, the object 
distance for the second lens is negative, and so o2 6.0cm.d     Again use Eq. 33-2. 

  
  
   

o2 2
i2

o2 i2 2 o2 2

6.0cm 33.5cm1 1 1
    7.3cm

6.0cm 33.5cm

d f
d

d d f d f

 
     

   
 

 Thus the final image is real,  7.3 cm beyond the second lens.  
 
21. Find the image formed by the first lens, using Eq. 33-2. 

  
  
   

o1 1
i1

o1 i1 1 o1 1

35.0cm 25.0cm1 1 1
    87.5cm

35.0cm 25.0cm

d f
d

d d f d f
     

 
   

This image is the object for the second lens.  Because it is beyond the second lens, it has a negative 
object distance. 

o2 16.5cm 87.5cm 71.0cmd      
 Find the image formed by the second lens, again using Eq. 33-2. 

  
  
   

o2 2
i2

o2 i2 2 o2 2

71.0cm 25.0cm1 1 1
    18.5cm

71.0cm 25.0cm

d f
d

d d f d f


     

  
   

 Thus the final image is real,  18.5 cm beyond second lens.  
 The total magnification is the product of the magnifications for the two lenses: 

  i1 i2 i1 i2
1 2

o1 o2 o1 o2

d d d d
m m m

d d d d

  
      

  
 

   
  
    87.5cm 18.5cm

0.651 inverted
35.0cm 71.0cm

 
   

 
 

 
22. From the ray diagram, the image from the first lens is a 

virtual image at the focal point of the first lens.  This is a 
real object for the second lens.  Since the light is parallel 
after leaving the second lens, the object for the second lens 
must be at its focal point.  Let the separation of the lenses 
be l.  Note that the focal length of the diverging lens is 
negative. 

1 2

1 2

1

  

34.0cm 24.0cm 10.0cm  

10.0cm

f f

f f

f

  

     

 

l

l  

 
23. (a) The first image is formed as in Example 33-5, and so iA 30.0cm.d    This image becomes the  

object for the lens B, at a distance oB 20.0cm 30.0cm 10.0cm.d       This is a virtual object 
since it is behind lens N.  Use Eq. 33-2 to find the image formed by lens B, which is the final 
image. 

 
  oB B

iB
oB iB B oB B

10.0cm 25.0cm1 1 1
    7.14cm

10.0cm 25.0cm

d f
d

d d f d f


     

  
  

So the final image is 7.14 cm beyond lens B.  

f1

f1 < 0 f2 > 0

f 2 
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 (b) The total magnification is the product of the magnifications for the two lenses: 

   
  
  

iA iB iA iB
1 2

oA oB oA oB

30.0cm 7.14cm
0.357

60.0cm 10.0cm

d d d d
m m m

d d d d

  
            

 

 (c) See the ray diagram here. 
  
 
 
 
 
 
 
 
24. (a) Find the image formed by the converging lens, using Eq. 33-2. 

   
  
   

o1 1
i1

o1 i1 1 o1 1

33cm 18cm1 1 1
    39.6cm

33cm 18cm

d f
d

d d f d f
     

 
 

This image is the object for the second lens.  The image is to the right of the second lens, and so 
is virtual.  Use that image to find the final image. 

     
   

o2
o2 i2 2

o2 2
i2

o2 2

1 1 1
12cm 39.6cm 27.6cm  ;    

27.6cm 14cm
28.4cm

27.6cm 14cm

d
d d f

d f
d

d f

      

 
   

   

 

So the final image is 28 cm to the left of the diverging lens, or 16 cm to the left of the 
converging lens. 

(b) The initial image is unchanged.  With the change in the distance between the lenses, the image 
distance for the second lens has changed. 

     
   

o2
o2 i2 2

o2 2
i2

o2 2

1 1 1
38cm 39.6cm 1.6cm  ;    

1.6cm 14cm
1.8cm

1.6cm 14cm

d
d d f

d f
d

d f

      

 
  

   

 

  Now the final image is  1.8 cm to the right of the diverging lens.  
 
25. (a) The first lens is the converging lens.  Find the image formed by the first lens. 

   
  
   

o1 1
i1

o1 i1 1 o1 1

60.0cm 20.0cm1 1 1
    30.0cm

60.0cm 20.0cm

d f
d

d d f d f
     

 
   

This image is the object for the second lens.  Since this image is behind the second lens, the 
object distance for the second lens is negative, and so o2 25.0cm 30.0cm 5.0cm.d       Use 
Eq. 33-2. 

   
  
   

o2 2
i2

o2 i2 2 o2 2

5.0cm 10.0cm1 1 1
    10cm

5.0cm 10.0cm

d f
d

d d f d f

 
     

   
 

  Thus the final image is real, 10 cm beyond the second lens.  The distance has two significant  
figures.  

 (b) The total magnification is the product of the magnifications for the two lenses:  

   
  
  

i1 i2 i1 i2
1 2

o1 o2 o1 o2

30.0cm 10.0cm
1.0

60.0cm 5.0cm

d d d d
m m m

d d d d

  
             
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 (c) See the diagram here. 
 
 
 
 
 
 
 
 
 
 
 
26. We find the focal length of the combination by finding the image distance for an object very far 

away.  For the converging lens, we have the following from Eq. 33-2. 

  i1 C
o1 i1 i1

1 1 1 1 1
    

C

d f
d d f d

     


 

The first image is the object for the second lens.  Since the first image is real, the second object 
distance is negative.  We also assume that the lenses are thin, and so o2 i1 C.d d f     

 For the second diverging lens, we have the following from Eq. 33-2. 

  
o2 i2 D C i2

1 1 1 1 1

d d f f d
      

Since the original object was at infinity, the second image must be at the focal point of the 
combination, and so i2 T.d f  

  
D C i2 C T

1 1 1 1 1

f f d f f
       

 
27. (a) We see that the image is real and upright. 

 We estimate that it is 30 cm beyond the 
second lens, and that the final image height 
is half the original object height. 

 
 (b) Find the image formed by the first  

lens, using Eq. 33-2. 

   
o1 i1 1

1 1 1
  

d d f
    

  
   

o1 1
i1

o1 1

36cm 13cm
20.35cm

36cm 13cm

d f
d

d f
  

 
   

This image is the object for the second lens.  Because it is between the lenses, it has a positive 
object distance. 

o2 56cm 20.35cm 35.65cmd     
  Find the image formed by the second lens, again using Eq. 33-2. 

   
  
   

o2 2
i2

o2 i2 2 o2 2

35.65cm 16cm1 1 1
    29.25cm

35.65cm 16cm

d f
d

d d f d f
     

 
   

  Thus the final image is real,  29 cm beyond the second lens.  
  The total magnification is the product of the magnifications for the two lenses: 

   
  
  

i1 i2
1 2

o1 o2

20.35cm 29.25cm
0.46

36cm 35.65cm

d d
m m m

d d

  
        

  
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28. Use Eq. 33-4, the lensmaker’s equation. 

  

 

   
  
   

1 2

1 2

1 2

1 1 1
1   

33.4cm 28.8cm1 1
26.66cm 27cm

1 1.58 1 33.4cm 28.8cm

n
f R R

R R
f

n R R

 
    

 
   

               

 

 
29. Find the index from Eq. 33-4, the lensmaker’s equation. 

      1 2 1
2

1 2 1 2

1 1 1 1 1
1     1 1 31.4cm 1.54

28.9cm

R R
n n

f R R f R R

     
                  

 

 
30. With the surfaces reversed, we have 1 46.2cmR    and 2 22.4cm.R     Use Eq. 33-4 to find the  

focal length. 

  

 

   
  
   

1 2

1 2

1 2

1 1 1
1   

46.2cm 22.4cm1 1
87.0cm

1 1.50 1 46.2cm 22.4cm

n
f R R

R R
f

n R R

 
    

 
   

            

 

 
31. The plane surface has an infinite radius of curvature.  Let the plane surface be surface 2, so 2 .R      

The index of refraction is found in Table 32-1. 

  
     

    
1 2 1 1

1

11 1 1 1 1 1
1 1   

1 1.46 1 18.7cm 8.6cm

n
n n

f R R f R R

R n f

   
              

    

 

 
32. First we find the focal length from Eq. 33-3, the lensmaker’s equation.  Then we use Eq. 33-2 to find 

the image distance, and Eq. 33-3 to find the magnification. 

  

 

   
  
   

1 2

1 2

1 2

1 1 1
1   

22.0cm 18.5cm1 1
223.6cm

1 1.52 1 22.0cm 18.5cm

n
f R R

R R
f

n R R

 
    

 
   

            

 

  

  o
i

o i o

i

o

90.0cm 223.6m1 1 1
    150.6cm 151cm

90.0cm 223.6cm

150.6cm
1.67

90.0cm

d f
d

d d f d f

d
m

d

        
 


     

 

 The image is virtual, in front of the lens, and upright. 
 
33. Find the radius from the lensmaker’s equation, Eq. 33-4.: 

     
1 2 1 2

1 1 1 1 1
1     1   n P n

f R R R R

   
          

   
 

  
 

 
  

    
1

2
1

1 1.56 1 0.300m
0.34m

1 3.50D 0.300m 1.56 1

n R
R

PR n

 
  

   
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34. The exposure is proportional to the product of the lens opening area and the exposure time, with the 
square of the f-stop number inversely proportional to the lens opening area.  Setting the exposures 
equal for both exposure times we solve for the needed f-stop number.  

   2 2 2
1 1 2 2 2 1

1

1 1000 s
-stop -stop   -stop -stop 16 5.54 or 

1 120s 5.6

t f
t f t f f f

t
       

 
35. We find the f-number from -stop .f f D  

  
 
 
17cm

-stop
6.0cm 2.8

f f
f

D
    

 
36. We use similar triangles, created from the distances 

between the centers of the two objects (H) and their ray 
traces to the hole (L1) and the distance between the 
centers of the two images (h) and the distance of the 
screen to the hole (L2) to determine the distance 
between the center of the two image circles.  We then 
create similar triangles from the two ray traces for a 
single source with the base of one triangle equal to the 
diameter of the hole (d) , and the base of the second 
triangle equal to the diameter of the image circle (D).  The heights for these two triangles are the 
distance from object to hole (L1) and the distance from object to image (L1 + L2).    

   2

1 2 1

7.0 cm
 2.0 cm 0.14 cm 1.4 mm

100 cm

LH h
h H

L L L
       

 1 2

1 1 2 1

100cm 7.0cm
 1.0mm 1.07mm

100cm

d D L L
D d

L L L L

 
    


 

Since the separation distance of the two images is greater than their diameters, the two circles do not 
overlap. 

 
37. We calculate the effective f-number for the pinhole camera by dividing the focal length by the 

diameter of the pinhole.  The focal length is equal to the image distance.  Setting the exposures equal 
for both cameras, where the exposure is proportional to the product of the exposure time and the area 
of the lens opening (which is inversely proportional to the square of the f-stop number), we solve for 
the exposure time. 

  
 
 2

70mm
-stop .

1.0mm 70

f f
f

D
    

   
2 2

2 2 2 1
1 1 2 2 2 1 6

1

-stop 1 70
-stop -stop   0.16 s s

-stop 250 s 11

f
t f t f t t

f
             

  
 

 
38. Consider an object located a distance od  from a 

converging lens of focal length f  and its real image 

formed at distance id . If the distance od  is much 
greater than the focal length, the lens equation tells us 
that the focal length and image distance are equal. 

o o
i

o i o o

1 1 1
    

fd fd
d f

d d f d f d
     


 

 

od20
20
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Thus, in a camera, the recording medium of spatial extent x  is placed a distance equal to f  behind 
the lens to form a focused image of a distant object. Assume the distant object subtends an angle of 
40  at the position of the lens, so that the half-angle subtended is 20 , as shown in the figure.  We 
then use the tangent of this angle to determine the relationship between the focal length and half the 
image height. 

   
1

o 2
o

tan 20     
2 tan 20

x x
f

f
    

(a) For a 35-mm camera, we set 36 mmx   to calculate the focal length. 

  
o

36 mm
49 mm

2tan 20
f    

(b) For a digital camera, we set 1.0 cm 10 mmx   . 

   
o

10 mm
14 mm

2tan 20
f    

 
39. The image distance is found from Eq. 33-3, and then the focal length from Eq. 33-2.  The image is 

inverted. 

  

   
 

  

i i i
i o

o o o

o i

o i o i

24mm
    65m 41mm

38m

65m 0.041m1 1 1
    0.041m 41mm

65m 0.041m

h d h
m d d

h d h

d d
f

d d f d d


        

      
 

 

 The object is essentially at infinity, so the image distance is equal to the focal length. 
 
40. The length of the eyeball is the image distance for a far object, i.e., the focal length of the lens. 
 We find the f-number from -stop .f f D  

  
 
 

20mm
-stop 2.5 or .

8.0mm 2.5

f f
f

D
    

 
41. The actual near point of the person is 55 cm.  With the lens, an object placed at the normal near 

point, 25 cm, or 23 cm from the lens, is to produce a virtual image 55 cm from the eye, or 53 cm 
from the lens.  We find the power of the lens from Eqs. 33-1 and 33-3.

 

o i

1 1 1 1 1
2.5D

0.23m 0.53m
P

f d d
     


 

 
42. The screen placed 55 cm from the eye, or 53.2 cm from the lens, is to produce a virtual image 105 

cm from the eye, or 103.2 cm from the lens.  Find the power of the lens from Eqs. 33-1 and 33-2. 

  
o i

1 1 1 1 1
0.91D

0.532m 1.032m
P

f d d
     


 

 
43. With the contact lens, an object at infinity should form a virtual image at the far point of the eye, 17 

cm from the contact lens.  Use that with Eq. 33-2 to find the focal length of the contact lens. 
 We find the power of the lens from 

  i
o i i

1 1 1 1 1 1
        17cmf d

d d f d f
        


 

Find the new near point as the object location that forms a virtual image at the actual near point of 12 
cm from the contact lens.  Again use Eq. 33-2. 
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  
   

i
o

o i i

17cm 12cm1 1 1
    41cm

12cm 17cm

fd
d

d d f d f

 
     

   
 

So the person would have to hold the object 41 cm from their eye to see it clearly.  With glasses, they 
only had to hold the object 32 cm from the eye. So glasses would be better.  

 
44. (a) Since the lens power is negative, the lens is diverging, so it produces images closer than the  

object.   Thus the person is  nearsighted.  
(b) We find the far point by finding the image distance for an object at infinity.  Since the lens is 

2.0 cm in front of the eye, the far point is 2.0 cm farther than the absolute value of the image 
distance. 

   
i

o i i

1 1 1 1 1 1
    4.50D  0.222 m 22.2 cm

4.50 D

FP 22.2 cm 2.0 cm 24.2 cm  from eye

P d
d d f d

             


   

 

 
45. (a) The lens should put the image of an object at infinity at the person’s far point of 78 cm.  Note  

that the image is still in front of the eye, so the image distance is negative.  Use Eqs. 33-2 and 
33-1. 

   
 o i

1 1 1 1 1
1.282 D 1.3D

0.78m
P

f d d
        

 
 

 (b) To find the near point with the lens in place, we find the object distance to form an image 25 cm  
in front of the eye. 

   
 

  
i

o
o i i

0.25m1 1 1
    0.37m 37cm

1 1.282 D 0.25m 1

d
P d

d d f Pd


       

   
 

 
46. The image of an object at infinity is to be formed 14 cm in front of the eye.  So for glasses, the image 

distance is to be i 12cm,d    and for contact lenses, the image distance is to be i 14cm.d    

  o i i

glasses contacts

1 1 1 1 1 1 1
        

1 1
8.3D   ;  7.1D

0.12m 0.14m

i
i

f d P
d d f d f d

P P

        


     
 

 

 
47. Find the far point of the eye by finding the image distance FROM THE LENS for an object at 

infinity, using Eq. 33-2. 

  i1 1
o1 i1 1 i1 1

1 1 1 1 1 1
        23.0cmd f

d d f d f
        


 

Since the image is 23.0 in front of the lens, the image is 24.8 cm in front of the eye.  The contact lens 
must put the image of an object at infinity at this same location.  Use Eq. 33-2 for the contact lens 
with an image distance of -24.8 cm and an object distance of infinity. 

   1 i2
o2 i2 2 i2 1

1 1 1 1 1 1
        24.8cmf d

d d f d f
        


 

 
48. (a) We find the focal length of the lens for an object at infinity and the image on the retina.  The  

image distance is thus 2.0 cm.  Use Eq. 33-2. 

   
o i

1 1 1 1 1 1
        2.0cm

2.0cm
f

d d f f
      


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(b) We find the focal length of the lens for an object distance of 38 cm and an image distance of 2.0 
cm.  Again use Eq. 33.2. 

  
  
   

o i

o i o i

38cm 2.0cm1 1 1
    1.9cm

38cm 2.0cm

d d
f

d d f d d
     

 
 

 
49. Find the object distance for the contact lens to form an image at the eye’s near point, using Eqs. 33-2  

and 33-1. 

  
  

i
o

o i i

1 1 1 0.106m
    0.184m 18.4cm

1 4.00D 0.106m 1

d
P d

d d f Pd


       

   
 

 Likewise find the object distance for the contact lens to form an image at the eye’s far point. 

  
  

i
o

i

0.200m
1.00m 100cm

1 4.0D 0.200m 1

d
d

Pd


   

   
 (3 sig. fig.) 

 
50. In the image we show the principal rays from 

each of the two points as they pass directly 
through the cornea and onto the lens.  These 
two rays and the distance between the two 
objects, l, and the distance between the two 
images (4 m) create similar triangles.  We set 
the ratio of the bases and heights of these two 
triangles equal to solve for l. 

4 m 4 m
25 cm 50 m

25 cm 2.0 cm 2.0 cm

     
l

l  

 
51. We find the focal length from Eq. 33-6 

  
25cm

    6.6cm
3.8

N N
M f

f M
      

 
52. Find the magnification from Eq. 33-6. 

  
 
 
25cm

1.9
13cm

N
M

f
     

 
53. (a) We find the focal length with the image at the near point from Eq. 33-6b. 

   
25cm

1     12.5cm 13cm
1 3.0 1

N N
M f

f M
      

 
 

   
 

1

25cm
3.0 1 ,

f
   which gives 1 12.5cm 13cm.f    

(b) If the eye is relaxed, the image is at infinity, and so use Eq. 33-6a. 

   
25cm

    8.3cm
3.0

N N
M f

f M
      

 
54. Maximum magnification is obtained with the image at the near point (which is negative).  We find 

the object distance from Eq. 33-2, and the magnification from Eq. 33-6b. 

  
  
   

i
o

o i i

25.0cm 8.80cm1 1 1
    6.51cm

25.0cm 8.80cm

d f
d

d d f d f


     

  
 

25cm 2.0cm

4 m
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25.0cm

1 1 3.84
8.80cm

N
M

f
       

 
55. (a) We find the image distance from Eq. 33-2. 

  o
i

o i o

6.00cm 5.85cm1 1 1
    234cm

5.85cm 6.00cm

fd
d

d d f d f
      

 
 

(b) The angular magnification is given by Eq. 33-6a, since the eye will have to focus over 2 m 
away. 

   
25.0cm

4.17
6.00cm

N
M

f
     

 
56.  (a) We use Eq. 33-6b to calculate the angular magnification. 

 
 
25.0cm

1 1 3.60
9.60cm

N
M

f
       

 (b) Because the object without the lens and the image with 
the  lens are at the near point, the angular magnification 
is also the ratio of widths.  Using this relationship we 
calculate the image width. 

    i
o

o

3.60 3.40mm 12.3mmi

h
M h Mh

h
      

 (c) We use Eq. 33-2 to calculate the object distance, with the 
image distance at -25.0 cm. 

   
  i

o
o i i

9.60cm 25.0cm1 1 1
  6.94cm

25.0cm 9.60cm

fd
d

d d f d f


     

  
   

 
57. (a) We find the image distance using Eq. 33-2. 

   
  o

i
o i o

9.5cm 8.3cm1 1 1
    66cm

8.3cm 9.5cm

fd
d

d d f d f
      

 
  

(b) The angular magnification is found using Eq. 33-5, with the angles given as defined in Figure  
33-33. 

   
 
 

o o

o o

25 cm
3.0

8.3 cm

h d N
M

h N d





       

 
58. First, find the focal length of the magnifying glass from Eq. 33-6a, for a relaxed eye (focused at 

infinity). 

  
25.0cm

    8.33cm
3.0

N N
M f

f M
      

 (a) Again use Eq. 33-6a for a different near point. 

   
 
 

1
1

65cm
7.8

8.33cm

N
M

f
     

 (b) Again use Eq. 33-6a for a different near point. 

   
 
 

2
2

17cm
2.0

8.33cm

N
M

f
     

Without the lens, the closest an object can be placed is the near point.  A farther near point means a 
smaller angle subtended by the object without the lens, and thus greater magnification. 

O

ho

N

ho

hi

I

O




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59. The focal length is 10 cm.  First, find the object distance for an image at infinity.  Then, find the 
object distance for an image 25 cm in front of the eye. 

  Initial: o
o i o

1 1 1 1 1 1
        12cmd f

d d f d f
       


   

  Final: 
  
   

i
o

o i i

25cm 12cm1 1 1
    8.1cm

25cm 12cm

d f
d

d d f d f


     

  
 

 The lens was moved 12cm 8.1cm 3.9cm    4 cm toward the fine print. 
 
60. The magnification of the telescope is given by Eq. 33-7. 

  
 
 

o

e

78cm
28

2.8cm

f
M

f
        

 For both object and image far away, the separation of the lenses is the sum of the focal lengths. 

  o e 78cm 2.8cm 81cmf f     
 
61. We find the focal length of the eyepiece from the magnification by Eq. 33-7. 

  o o
e

e

88cm
    2.5cm

35

f f
M f

f M
       


 

 For both object and image far away, the separation of the lenses is the sum of the focal lengths. 

  o e 88cm 2.5cm 91cmf f     
 
62. We find the focal length of the objective from Eq. 33-7. 

    o e o e    7.0 3.0cm 21cmM f f f Mf      

 
63. The magnification is given by Eq. 33-7. 

    o e o e 0.75m 35D 26M f f f P          

 
64. For a distant object and a relaxed eye (which means the image is at infinity), the separation of the 

eyepiece and objective lenses is the sum of their focal lengths.  Use Eq. 33-7 to find the 
magnification. 

  o o
o e

e o

75.5cm
  ;  30

78.0cm 75.5cm

f f
f f M

f f
          

 
l

l
 

 
65. For a distant object and a relaxed eye (which means the image is at infinity), the separation of the 

eyepiece and objective lenses is the sum of their focal lengths.  Use Eq. 33-7 to find the 
magnification. 

  o o
o e

e o

36.0cm
  ;  16

33.8cm 36.0cm

f f
f f M

f f
          

 
l

l
 

 
66. The focal length of the objective is just half the radius of curvature.  Use Eq. 33-7 for the 

magnification. 

  
1

o 2

e e

3.2m
114 110

0.028m

f r
M

f f
             
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67. The focal length of the mirror is found from Eq. 33-7.  The radius of curvature is twice the focal 
length. 

    o
o e

e

    120 0.031m 3.72m 3.7m   ;  2 7.4m
f

M f Mf r f
f

            

 
68. The relaxed eye means that the image is at infinity, and so the distance between the two lenses is 

1.25 m.  Use that relationship with Eq. 33-7 to solve for the focal lengths.  Note that the 
magnification for an astronomical telescope is negative. 

  

 o o
o e o

e o

e o

120 1.25m
  ;      1.24m

1 120 1

1.25m 1.24m 0.01m 1 cm

f f M
f f M f

f f M

f f


        

   

     

l
l

l

l

 

 
69. We use Eq. 33-6a and the magnification of the eyepiece to calculate the focal length of the eyepiece.   

We set the sum of the focal lengths equal to the length of the telescope to calculate the focal length 
of the objective.  Then using both focal lengths in Eq. 33-7 we calculate the maximum 
magnification. 

e e o o e

o

e

25cm
5cm  ;      50cm 5cm 45cm

5
45cm

9
5cm

N
f f f f f

M
f

M
f

          

      

l l

 

 
70.   Since the star is very far away, the image of the star from the objective mirror will be at the focal 

length of the objective, which is equal to one-half its radius of curvature (Eq. 32-1).  We subtract this 
distance from the separation distance to determine the object distance for the second mirror.  Then, 
using Eq. 33-2, we calculate the final image distance, which is where the sensor should be placed. 

  
   

o
i1 o o2 i1

e o2
i

o2 i2 e e o2 e

3.00m
1.50m  ;  0.90m 1.50m 0.60m

2 2
1.50m 0.60m1 1 1 2

    3.0m
2 2 0.60m 1.50m

R
d f d d

R d
d

d d f R d R

         

 
      

   

l

 

 
71. We assume a prism binocular so the magnification 

is positive, but simplify the diagram by ignoring 
the prisms.  We find the focal length of the 
eyepiece using Eq. 33-7, with the design 
magnification. 

o
e

26cm
3.47cm

7.5

f
f

M
    

Using Eq. 33-2 and the objective focal length, we 
calculate the intermediate image distance.  With 
the final image at infinity (relaxed eye), the secondary object distance is equal to the focal length of 
the eyepiece.  We calculate the angular magnification using Eq. 33-5, with the angles shown in the 
diagram. 

  o o`
i1

o1 i1 o o1 o

e i1

i1 e

26cm 400cm1 1 1
    27.81cm

400cm 26cm

27.81cm
8.0

3.47cm

f d
d

d d f d f

h f d
M

h d f




     
 


     
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72. The magnification of the microscope is given by Eq. 33-10b. 

  
  
  o e

25cm 17.5cm
448.7 450

0.65cm 1.50cm

N
M

f f
     
l

 

 
73. We find the focal length of the eyepiece from the magnification of the microscope, using the 

approximate results of Eq. 33-10b.  We already know that o .f l  

  
  
  e

o e o

25cm 17.5cm
    1.6cm

680 0.40cm

N N
M f

f f Mf
    
l l

 

 Note that this also satisfies the assumption that e .f l  
 
74. We use Eq. 33-10b. 

  
  
  e o

25cm 17cm
607.1 610

2.5cm 0.28cm

N
M

f f
     
l

 

 
75. (a) The total magnification is found from Eq. 33-10a. 

     o e 58.0 13.0 754M M M     

 (b) With the final image at infinity, we find the focal length of the eyepiece using Eq. 33-9. 

   e e
e e

25.0cm
    1.923cm 1.92cm

13.0

N N
M f

f M
       

Since the image from the objective is at the focal point of the eyepiece, we set the image 
distance from the objective as the distance between the lenses less the focal length of the 
eyepiece.  Using the image distance and magnification in Eq. 33-3, we calculate the initial 
object distance.  Then using the image and object distance in Eq. 33-2 we calculate the objective 
focal length. 

   i e 20.0cm 1.92cm 18.08cmd f    l  

   
  

i i
o

o

o i
o

o o i o i

18.08cm
0.312cm

58.0

0.312cm 18.08cm1 1 1
0.307cm

0.312cm 18.08cm

d d
m d

d m

d d
f

f d d d d

    

     
 

 

(c) We found the object distance, in part (b), o 0.312cm .d   

 
76. (a) The total magnification is the product of the magnification of each lens, with the magnification  

of the eyepiece increased by one, as in Eq. 33-6b. 

       o e 1 58.0 13.0 1.0 812M M M       

 (b) We find the focal length of the eyepiece using Eq. 33-6b. 

    e e
e e

25cm
1 +1  1.92cm

13.0

N N
M f

f M
       

Since the image from the eyepiece is at the near point, we use Eq. 33-2 to calculate the location 
of the object.  This object distance is the location of the image from the objective.  Subtracting 
this object distance from the distance between the lenses gives us the image distance from the 
objective.  Using the image distance and magnification in Eq. 33-3, we calculate the initial 
object distance.  Then using the image and object distance in Eq. 33-2 we calculate the objective 
focal length. 
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  

  

e i2
o2

e 2 i2 i2 e

i1 o2

i i
o

o

o i
o

o o i o i

1.92cm 25.0cm1 1 1
    1.78cm

25.0cm 1.92cm

20.0cm 1.78cm 18.22cm

18.22cm
    0.314cm

58.0

0.314cm 18.22cm1 1 1
    0.308

0.314cm 18.22cm

o

f d
d

f d d d f

d d

d d
m d

d m

d d
f

f d d d d


     

  
    

    

     
 

l

cm

 

 (c) We found the object distance, in part (b), o 0.314cm .d   

 
77. (a) Since the final image is at infinity (relaxed eye) the image from the objective is at the focal  

point of the eyepiece.  We subtract this distance from the distance between the lenses to 
calculate the objective image distance.  Then using Eq. 33-2, we calculate the object distance. 

     
i1 e

o i1
o1

o o1 i1 i1 o

16.8cm 1.8cm 15.0cm

0.80cm 15.0cm1 1 1
    0.85cm

15.0cm 0.80cm

d f

f d
d

f d d d f

    

     
 

l

 

 (b) With the final image at infinity, the magnification of the eyepiece is given by Eq. 33-10a. 

   
 
 

e

e o

25.0cm 16.8cm 1.8cm
247 250

1.8cm 0.85cm

N f
M

f d

    
        

  

l
 

 
78. (a) We find the image distance from the objective using Eq. 33-2.  For the final image to be at  

infinity (viewed with a relaxed eye), the objective image distance must be at the focal distance 
of the eyepiece.  We calculate the distance between the lenses as the sum of the objective image 
distance and the eyepiece focal length. 

   
  o o1

i1
o1 i1 o o1 o

0.740cm 0.790cm1 1 1
    11.7cm

0.790cm 0.740cm

f d
d

d d f d f
     

 
 

   i1 e 11.7cm 2.80cm 14.5cmd f    l  

 (b) We use Eq. 33-10a to calculate the total magnification. 

   
 
 

e

e o

25.0cm 14.5cm 2.80cm
132

2.80cm 0.790cm

N f
M

f d

    
      

  

l
 

 
79. For each objective lens we set the image distance equal to the sum of the focal length and 160 mm.  

Then, using Eq. 33-2 we write a relation for the object distance in terms of the focal length.  Using 
this relation in Eq. 33-3 we write an equation for the magnification in terms of the objective focal 
length.  The total magnification is the product of the magnification of the objective and focal length. 

 o o

o i o o o i o o o

160 mm1 1 1 1 1 1 1 1 1
            

160 mm 160 mmo

f f
d

d d f d f d d f f


         


 

 
i o

o
o oo o

160mm 160 mm

160mm

160 mm

d f
m

d ff f


  

 
 
 

 

Since the objective magnification is inversely proportional to the focal length, the objective with the 
smallest focal length  o 3.9 mmf  combined with the largest eyepiece magnification  e 10M   

yields the largest overall magnification.  The objective with the largest focal length  o 32 mmf   
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coupled with the smallest eyepiece magnification  e 5M   yields the smallest overall 

magnification.   

   largest smallest

160mm 160mm
10 410   ;  5 25

3.9mm 32mm
M M         

 
80. (a) For this microscope both the objective and eyepiece have focal lengths of 12 cm.  Since the  

final image is at infinity (relaxed eye) the image from the objective must be at the focal length 
of the eyepiece.  The objective image distance must therefore be equal to the distance between 
the lenses less the focal length of the objective.  We calculate the object distance by inserting 
the objective focal length and image distance into Eq. 33-2. 

  
i1 e

o i1
o

o o i1 i1 o

55cm 12cm 43cm

12cm 43cm1 1 1
    16.65cm 17cm

43cm 12cm

d f

f d
d

f d d d f

    

      
 

l

 

 (b) We calculate the magnification using Eq. 33-10a. 

 
 

e

e o

25cm 55cm 12cm
5.38 5.4

12cm 16.65cm

N f
M

f d

    
        

  

l
 

 (c) We calculate the magnification using Eq. 33-10b, and divide the result by the answer to part (b)  
to determine the percent difference. 

  
  

approx
approx

e o

25cm 55cm 9.55 5.38
9.55   ;  0.775 78%

12cm  12cm 5.38

M MN
M

f f M

 
      
l

  

 
81. We use Eq. 33-4 to find the focal length for each color, and then Eq. 33-2 to find the image distance.  

For the plano-convex lens, 1 0R   and 2 .R    

     red red
red 1 2

1 1 1 1 1
1 1.5106 1     36.036cm

18.4cm
n f

f R R

                        
    

     yellow orange
yellow 1 2

1 1 1 1 1
1 1.5226 1     35.209cm

18.4cm
n f

f R R

                        
 We find the image distances from 

  
  
   

o red
i
redo i red o red

red

66.0cm 36.036cm1 1 1
    79.374cm 79.4cm

66.0cm 36.036cm

d f
d

d d f d f
      

 
   

  
  
   

o yellow
i
yellowo i yellow o yellow

yellow

66.0cm 35.209cm1 1 1
    75.469cm 75.5cm

66.0cm 35.209cm

d f
d

d d f d f
      

 
  

 The images are 3.9 cm apart, an example of chromatic aberration. 
 
82. From Problem 26 we have a relationship between the individual focal lengths and the focal length of  

the combination. 

  
  
   

C D
T

D C T T D C C D

25cm 28cm1 1 1 1 1 1
        233cm

25cm 28cm

f f
f

f f f f f f f f


         

  
 

(a) The combination is converging, since the focal length is positive.  Also, the converging lens is  
“stronger” than the diverging lens since it has a smaller absolute focal length (or higher absolute 
power). 

(b) From above, T 230cm .f   
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83. We calculate the range object distances from Eq. 33-2 using the given focal length and maximum 

and minimum image distances. 

  i,max
o,min

o i i,max

200.0mm 206.4mm1 1 1
    6450mm 6.45m

206.4mm 200.0mm

fd
d

f d d d f
      

 
 

  i,min
o,max

i,min

200.0mm 200.0mm

200.0mm 200.0mm

fd
d

d f
   

 
 

 Thus the range of object distances is o6.45m .d       

 
84. We calculate the maximum and minimum image distances from Eq. 33-2, using the given focal 

length and maximum and minimum object distances.  Subtracting these two distances gives the 
distance over which the lens must move relative to the plane of the sensor or film. 

  

  

o,min
i,max

o i o,min

o,max
i,min

o,max

i,max i,min

135mm 1.30m1 1 1
    0.151m 151mm

1300mm 135mm

135mm
135mm

135mm

151mm 135mm 16mm

fd
d

f d d d f

fd
d

d f

d d d

      
 


  

  

     

 

 
85. Since the object height is equal to the image height, the magnification is –1.  We use Eq. 33-3 to 

obtain the image distance in terms of the object distance.  Then we use this relationship with Eq. 33-
2 to solve for the object distance. 

 

i
i o

o

o i o o o

1     

1 1 1 1 1 2
    2 2 58mm 116mmo

d
m d d

d

d f
f d d d d d

     

        
 

 The distance between the object and the film is the sum of the object and image distances. 

   o i o o o2 2 116 mm 232mmd d d d d d        

 
86. When an object is very far away, the image will be at the focal point.  We set the image distance in 

Eq. 33-3 equal to the focal length to show that the magnification is proportional to the focal length. 

   i

o o o

1
constant     

d f
m f f m f

d d d

 
         

 
 

 
87. We use Eq. 33-2 with the final image distance and focal length of the converging lens to determine 

the location of the object for the second lens.  Subtracting this distance from the separation distance 
between the lenses gives us the image distance from the first lens.  Inserting this image distance and 
object distance into Eq. 33-2, we calculate the focal length of the diverging lens. 

  

  

  

i2 2
o2

o2 i2 2 i2 2

i1 o2

1 o1
1

o1 i1 1 i1 o1

17.0cm 12.0cm1 1 1
    40.8cm

17.0cm 12.0cm

30.0cm 40.8cm 10.8cm

10.8cm 25.0cm1 1 1
    19.0cm

10.8cm 25.0cm
i

d f
d

d d f d f

d d

d d
f

d d f d d

     
 

     


      

  

l   
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88. The relationship between two lenses in contact was found in Problem 26.  We use this resulting 
equation to solve for the combination focal length. 

  D C
T

T D C D C

20.0cm 13.0cm1 1 1
    37.1cm

20.0cm 13.0cm

f f
f

f f f f f


     

  
 

 Since the focal length is positive, the combination is a converging lens.  
 
89. We use Eq. 33-7, which relates the magnification to the focal lengths, to write the focal length of the 

objective lens in terms of the magnification and focal length of the eyepiece.  Then setting the sum of 
the focal lengths equal to the length of the telescope we solve for the focal length of the eyepiece and 
the focal length of the objective. 

   
o

o e e o e e
e

o e

28cm
      ;  1     3.1cm

1 1 8.0

28cm 3.1cm 25cm

f
M f Mf f f f M f

f M

f f

            
  

    

l
l

l

 

 
90. (a) When two lenses are placed in contact, the negative of the image of the first lens is the object  

distance of the second.  Using Eq. 33-2, we solve for the image distance of the first lens.  
Inserting the negative of this image distance into the lens equation for the second lens we obtain 
a relationship between the initial object distance and final image distance.  Again using the lens 
equation with this relationship, we obtain the focal length of the lens combination.  

1 o1 i1 i1 1 o1 o2

2 o2 i2 o2 1 o1 2 1 o2 o1 T

1 2
T

T 1 2 1 2

1 1 1 1 1 1 1
    

1 1 1 1 1 1 1 1 1 1 1

1 1 1
    

f d d d f d d

f d d d f d f f d d f

f f
f

f f f f f

      

 
          

 

   


 

 (b) Setting the power equal to the inverse of the focal length gives the relationship between powers  
of adjacent lenses. 

   T 1 2
T 1 2

1 1 1
P P P

f f f
      

 
91. (a) Because the Sun is very far away, the image will be at the focal point, or  i .d f   We find the  

magnitude of the size of the image using Eq. 33-3, with the image distance equal to 28 mm. 

   
  6

i i o i
i 8

o o o

1.4 10 km 28mm
    0.26mm

1.5 10 km

h d h d
h

h d d


    


 

 (b) We repeat the same calculation with a 50 mm image distance. 

   
  6

i 8

1.4 10 km 50mm
0.47mm

1.5 10 km
h


 


  

 (c) Again, with a 135 mm image distance. 

   
  6

i 8

1.4 10 km 135mm
1.3 mm

1.5 10 km
h


 


  

(d) The equations show that image height is directly proportional to focal length. Therefore the  
relative magnifications will be the ratio of focal lengths. 

28mm
0.56

50mm
   for the 28 mm lens ;  

135mm
2.7

50mm
   for the 135 mm lens. 
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92. We solve this problem by working through the lenses “backwards.”  We use the image distances and 
focal lengths to calculate the object distances.  Since the final image from the right lens is halfway 
between the lenses, we set the image distance of the second lens equal to the negative of half the 
distance between the lenses.  Using Eq. 33-2, we solve for the object distance of this lens.  By 
subtracting this object distance from the distance between the two lenses, we find the image distance 
from the first lens.  Then using Eq. 33-2 again, we solve for the initial object distance. 

 
  

  

1 1
i2 2 2

i2 2
o2

o2 i2 2 i2 2

i1 o2

i1 1
o1

o1 i1 1 i1 1

30.0cm 15.0cm

15.0cm 20.0cm1 1 1
    8.57cm

15.0cm 20.0cm

30.0 cm 8.57 cm 21.4 cm

21.4cm 15.0cm1 1 1
    50.0cm

21.4cm 15.0cm

d

d f
d

d d f d f

d d

d f
d

d d f d f

     


     

  
    

     
 

l

l
 

 
93. We set di as the original image distance and i 10.0cmd   as the new image distance.  Then using Eq. 

33-2 for both cases, we eliminate the focal length and solve for the image distance.  We insert the 
real image distance into the initial lens equation and solve for the focal length. 

  

 

   

o1 i o2 i o1 o2 i i i i

2 2
i i

i i

i

1 1 1 1 1 1 1 1 1 10.0cm
    

10.0cm 10.0cm 10.0cm

1 1 10.0cm
    10.0cm 1200cm 0

60.0cm 40.0cm 10.0cm

40.0cm  or 30.0cm

d d f d d d d d d d d

d d
d d

d


        

  


     



 

 

 Only the positive image distance will produce the real image. 

  
  1

o1 i i 1

30.0cm 60.0cm1 1 1
20.0cm

30.0cm 60.0cm
i o

o

d d
f

f d d d d
     

 
 

 
94. Since the distance to the sun is much larger than the  

telescope’s focal length, the image distance is about equal 
to the focal length.  Rays from the top and bottom edges of 
the sun pass through the lens unrefracted.  These rays with 
the object and image heights form similar triangles.  We 
calculate the focal length of the telescope by setting the 
ratio of height to base for each triangle equal. 

 
8

6

  

1.5 10  km
15 mm 1607 mm 1.6 m

1.4 10  km

o

i o

o
i

o

f d

h h

d
f h

h

 


   


 

 
95. We use Eq. 33-3 to write the image distance in terms of the object distance, image height, and object 

height.  Then using Eq. 33-2 we solve for the object distance, which is the distance between the 
photographer and the subject. 

  

i i o

o o i i o

o o

o i o i o i

1 1
    

1 1 1 1 1 1
1     

o

h d h
m

h d d h d

h h

f d d d h d h d

     

   
          

  

 

ih od oh
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   o
o

i

1750mm
1 1 220mm 46,900mm 47 m

8.25mm

h
d f

h

   
          

 

 
96. The exposure is proportional to the intensity of light, the area of the shutter, and the time.  The area 

of the shutter is proportional to the square of the diameter or inversely proportional to the square of 
the f-stop.  Setting the two proportionalities equal, with constant time, we solve for the change in 
intensity. 

  
   

2 2

1 2 2 2
2 2

1 11 2

-stop 16
    8.2

-stop 5.6-stop -stop

I t I t I f

I ff f

          
  

 

 
97. The maximum magnification is achieved with the image at the near point, using Eq. 33-6b. 

  
 
 

1
1

15.0cm
1 1 2.8

8.5cm

N
M

f
       

 For an adult we set the near point equal to 25.0 cm. 

  
 
 

2
2

25.0cm
1 1 3.9

8.5cm

N
M

f
       

 The person with the normal eye (adult) sees more detail. 
 
98. The actual far point of the person is 155cm.  With the lens, an object far away is to produce a virtual 

image 155cm  from the eye, or 153cm  from the lens.  We calculate the power of the upper part of 
the bifocals using Eq. 33-2 with the power equal to the inverse of the focal length in meter.

 
  1

1 o1 i1

1 1 1 1 1
0.65 D (upper part)

1.53 m
P

f d d

                          
  

 The actual near point of the person is 45cm.  With the lens, an object placed at the normal near point,  

25 cm, or 23 cm from the lens, is to produce a virtual image 45cm  from the eye, or 43cm  from the 
lens.  We again calculate the power using Eq. 33-2.

 
  2

2 o2 i2

1 1 1 1 1
2.0 D (lower part)

0.23 m 0.43 m
P

f d d

                            
 
99. The magnification for a relaxed eye is given by Eq. 33-6a. 

    0.25m 4.0D 1.0 .M N f NP       

 
100. (a) The magnification of the telescope is given by Eq. 33-7.  The focal lengths are expressed in  

terms of their powers. 

   
 
 

o e

e o

4.5D
2.25 2.3

2.0D

f P
M

f P
             

 (b) To get a magnification greater than 1, for the eyepiece we use the lens with the smaller focal  
  length, or greater power:  4.5 D.  
 
101. We calculate the man’s near point  id  using Eq. 33-2, with the initial object at 0.32 m with a 2.5 D 

lens.  To give him a normal near point, we set the final object distance as 0.25 m and calculate the 
power necessary to have the image at his actual near point. 
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  

o1
1 1 i

i o1 i o1 1 o1

2 1
i o2 o1 o2

1 1 1 1 0.32m
        1.6m

1 2.5D 0.32m 1

1 1 1 1 1 1
2.5 D 3.4 D

0.32 m 0.25 m

d
P P d

d d d d Pd

P P
d d d d

         
 

                
  

 

 
102. (a) We solve Eq. 33-2 for the image distance.  Then taking the time derivative of the image  

distance gives the image velocity.  If the velocity of the object is taken to be positive, then the 

image distance is decreasing, and so  o o

d
v d

dt
  . 

   
 

   
 

 

 

o
i

i o o

o oo o
i i o o o2 2

o o o o

2
o

2

o

1 1 1
    

  

fd
d

f d d d f

f d f fdd d fd f fd
v d v v v

dt dt d f d f d f d f

f v

d f

   


  
            




 

 (b) The velocity of the image is positive, which means the image is moving the same direction as  
the object.  But since the image is on the opposite side of the lens as the object, the image must 
be moving away from the lens. 

 (c) We set the image and object velocities equal and solve for the image distance. 

   
 

 
2

2 2o
i o o o o o2

o

                2
f v

v v v d f f d f f d f
d f

          


 

 
103. The focal length of the eyepiece is found using Eq. 33-1. 

  2
e

e

1 1
4.3 10 m 4.3cm.

23 D
f

P
      

For both object and image far away, we find the focal length of the objective from the separation of 
the lenses. 

  o e o e  85cm 4.3cm 80.7cmf f f f       l l  
 The magnification of the telescope is given by Eq. 33-7. 

  
 
 

o

e

80.7cm
19

4.3cm

f
M

f
        

 
104. (a) The length of the telescope is the sum of the focal lengths.  The magnification is the ratio of the  

focal lengths (Eq. 33-7).  For a magnification greater than one, the lens with the smaller focal 
length should be the eyepiece.  Therefore the 4.0 cm lens should be the eyepiece. 

 o e 4.0cm 44cm 48cmf f    l  

   
 
 

o

e

44cm
11

4.0cm

f
M

f
        

 (b)  We use Eq. 33-10b to solve for the length, l, of the microscope. 

   
   

e o

25 4.0 cm 44 cm
    180 cm 1.8 m

25 cm
e oMf fN

M
f f N


      

l
l  

  This is far too long to be practical. 
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105. (a) The focal length of the lens is the inverse of the power. 

   
1 1

0.286m 28.6cm.
3.50D

f
P

     

 (b) The lens produces a virtual image at his near point.  We set the object distance at 23 cm from  
the glass (25 cm from the eyes) and solve for the image distance.  We add the two centimeters 
between the glass and eyes to determine the near point. 

   

1 1

i
o i o

1 1 1 1 1
    3.50D 1.18m

0.23m

0.02 m 1.18m 0.02m 1.20mi

P d P
f d d d

N d

 
   

            
  

    

 

 (c) For Pam, find the object distance that has an image at her near point, –0.23 m from the lens. 

   
1 1

o
o i i

1 1 1 1 1
    3.50 D 0.13m

0.23 m
P d P

f d d d

                 
  

  Pam’s near point with the glasses is 13 cm from the glasses or 15 cm from her eyes. 
 
106. As shown in the image, the parallel rays will pass through a single 

point located at the focal distance from the lens.  The ray passing 
through the edge of the lens (a distance D/2 from the principal 
axis) makes an angle  with the principal axis.  We set the tangent 
of this angle equal to the ratio of the opposite side (D/2) to the 
adjacent side (f)  and solve for the focal length. 

2 5.0 cm
tan 41 cm

2tan 2 tan3.5

D D
f

f



    


 

 
107. We use Eq. 33-6b to calculate the necessary focal length for a magnifying glass held at the near point 

( 25 cmN  ) to have a magnification of 3.0.M   

25 cm
1    12.5 cm

1 3.0 1

N N
M f

f M
     

 
 

In the text, the lensmaker’s equation (Eq. 33-4) is derived assuming the lens is composed of material 
with index of refraction n  and is surrounded by air, whose index of refraction is 1an   . We now 

modify this derivation, with the lens composed of air with index of refraction 1an   surrounded by 

water, whose index of refraction is w 1.33n  . In the proof of the lensmaker’s equation, Snell’s law at 
small angles is first applied at both surfaces of the lens.  

w 1 2 w 1 2 1 2
w

3 w 4 3 w 4 3 4
w

1
sin sin         

1
sin sin         

n n n
n

n n n
n

     

     

    

    
  

These equations are the same as those following Fig. 33-16, but with n replaced by 1/nw.  The rest of 
the derivation is the same, so we can rewrite the lensmaker’s equation with this single modification.  
We assume the radii are equal, insert the necessary focal length, and solve for the radius of curvature 

 

w 1 2 w w

w

1 1 1 1 1 1 1 1 2
1 1 1

1 1
2 1 2 12.5 cm 1 6.20cm 6.2cm

1.33

f n R R n R R n R

R f
n

                                    
             

  

  

 The lens is therefore a concave lens with radii of curvature –6.2 cm. 
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108. (a) We use Eq. 32-2 to calculate the image distance and then use the object and image distances in  
Eq. 32-3 to calculate the magnification.  We finally make the approximation that the object 
distance is much larger than the focal length. 

1

1 o
i

o i 1 1 o o 1

i 1 o 1 1
1

o o o 1 o 1 o

1 1 1 1 1
    

1

f d
d

d d f f d d f

d f d f f
m

d d d f d f d


 

        
 

          

 

This real image, located near the focal distance from lens 1, becomes the object for the second 
lens.  We subtract the focal length from the separation distance to determine the object distance 
for lens 2.  Using Eq. 32-2, we calculate the second image distance and Eq. 32-3 to calculate the 
second magnification.  Multiplying the two magnifications gives the total magnification. 

 
   

 

2 o2
i2

o2 i2 2 o2 2

1
12i2 2 o2 2

2 3 1
o2 o2 o2 2 o2 2 1 1 14 2

1 1
1 2

o o

1 1 1
    

1
2

2
2

f d
d

d d f d f

fd f d f
m

d d d f d f f f f

f f
m m

d d

   


 
              

 
    
 

 

 (b)  If the object is at infinity, the image from the first lens will form a focal length behind that  
lens.  Subtracting this distance from the separation distance gives the object distance for the 
second lens.  We use Eq. 32-2 to calculate the image distance from the second lens.  Adding this 
distance to the separation distance between the lenses gives the distance the image is from the 
first lens. 

  
   

31
1 1 12 42 o2 1

i2 123 1
o2 i2 2 o2 2 1 1 14 2

3 51
i2 1 1 14 2 4

1 1 1
    

f f ff d
d f

d d f d f f f f

d d f f f

 
     

   

    l

 

 (c) We set the magnification equal to the total magnification found in part (a) and solve for the  
focal length. 

   1
1

o o

250mm 2 250mm
125mm

2

f
m f

d d
        

We use the results of part (b)  to determine the distance of the lens to the film.  We subtract this 
distance from 250 mm to determine how much closer the lens can be to the film in the two lens 
system. 

    5 5
14 4 125mm 156mm   ;  250mm 156mm 94mmd f d        

 
109. (a) We use Eqs. 33-2 and 33-3. 

i i i
o

o o i i i

1 1 1 1
      ;      1

d d m d
m d m

d m d d f d d f
               

  This is a straight line with slope = 
1

f
  and y-intercept = 1. 

 
 
 
 



Chapter 33  Lenses and Optical Instruments  
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

379 

(b) A plot of i vs. m d  is shown here. 

1

1 1

slope .0726cm

13.8cm 14cm

f    


 

The y-intercept is 1.028.  Yes, it 
is close to the expected value of 1.  
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH33.XLS,” on tab 
“Problem 33.109b.” 

(c) Use the relationship derived above. 

   i i i i1 1 1
d d d

m
f f f f

   
          

 

l l
 

A plot of i vs. m d would still have a slope of 
1

f
 , so 

1

slope
f    as before.  The y-intercept 

will have changed, to i1 .
f


l
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CHAPTER 34:  The Wave Nature of Light; Interference 
 
Responses to Questions 
 
1.  Yes, Huygens’ principle applies to all waves, including sound and water waves. 
 
2. Light from the Sun can be focused by a converging lens on a piece of paper and burn a hole in the 

paper. This provides evidence that light is energy. Also, you can feel the heat from the Sun beating 
down on you on a hot summer day. When you move into the shade you may still feel hot, but you 
don’t feel the Sun’s energy directly. 

 
3.  A ray shows the direction of propagation of a wave front. If this information is enough for the 

situation under discussion, then light can be discussed as rays. Sometimes, however, the wave nature 
of light is essential to the discussion. For instance, the double slit interference pattern depends on the 
interference of the waves, and could not be explained by examining light as only rays. 

 
4.  The bending of waves around corners or obstacles is called diffraction. Diffraction is most prominent 

when the size of the obstacle is on the order of the size of the wavelength. Sound waves have much 
longer wavelengths than do light waves. As a result, the diffraction of sound waves around a corner 
is noticeable and we can hear the sound in the “shadow region,” but the diffraction of light waves 
around a corner is not noticeable.   

 
5.  The wavelength of light cannot be determined from reflection measurements alone, because the law 

of reflection is the same for all wavelengths. However, thin film interference, which involves 
interference of the rays reflecting from the front and back surfaces of the film, can be used to 
determine wavelength. Refraction can also be used to determine wavelength because the index of 
refraction for a given medium is different for different wavelengths.   

 
6.  For destructive interference, the path lengths must differ by an odd number of half wavelengths, such 

as λ/2, 3λ/2, 5λ/2, 7λ/2, etc. In general, the path lengths must differ by λ(m + ½), where m is an 
integer. 

 
7. Blue light has a shorter wavelength than red light. The angles to each of the bright fringes for the 

blue light would be smaller than for the corresponding orders for the red light, so the bright fringes 
would be closer together for the blue light.  

 
8. The fringes would be closer together because the wavelength of the light underwater is less than the 

wavelength in air.  
 
9.  The two experiments are the same in principle. Each requires coherent sources and works best with a 

single frequency source. Each produces a pattern of alternating high and low intensity. Sound waves 
have much longer wavelengths than light waves, so the appropriate source separation for the sound 
experiment would be larger. Also, sound waves are mechanical waves which require a medium 
through which to travel, so the sound experiment could not be done in a vacuum and the light 
experiment could.  

 
10. The red light and the blue light coming from the two different slits will have different wavelengths 

(and different frequencies) and will not have a constant phase relationship. In order for a double-slit 
pattern to be produced, the light coming from the slits must be coherent. No distinct double-slit 
interference pattern will appear. However, each slit will individually produce a “single-slit 
diffraction” pattern, as will be discussed in Chapter 35.  



Chapter 34  The Wave Nature of Light; Interference 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

381 

11. Light from the two headlights would not be coherent, so would not maintain a consistent phase 
relationship and therefore no stable interference pattern would be produced.   

 
12.  As the thickness of the film increases, the number of different wavelengths in the visible range that 

meet the constructive interference criteria increases. For a thick piece of glass, many different 
wavelengths will undergo constructive interference and these will all combine to produce white light. 

 
13. Bright colored rings will occur when the path difference  

between the two interfering rays is λ/2, 3λ/2, 5λ/2, and so  
forth. A given ring, therefore, has a path difference that is  
exactly one wavelength longer than the path difference of  
its neighboring ring to the inside and one wavelength shorter than the path difference of its 
neighboring ring to the outside. Newton’s rings are created by the thin film of air between a glass 
lens and the flat glass surface on which it is placed. Because the glass of the lens is curved, the 
thickness of this air film does not increase linearly. The farther a point is from the center, the less the 
horizontal distance that corresponds to an increase in vertical thickness of one wavelength. The 
horizontal distance between two neighboring rings therefore decreases with increasing distance from 
the center.  

 
14.  These lenses probably are designed to eliminate wavelengths at both the red and the blue ends of the 

spectrum. The thickness of the coating is designed to cause destructive interference for reflected red 
and blue light. The reflected light then appears yellow-green.  

 
15. The index of refraction of the oil must be less than the index of refraction of the water. If the oil film 

appears bright at the edge, then the interference between the light reflected from the top of the oil 
film and from the bottom of the oil film at that point must be constructive. The light reflecting from 
the top surface (the air/oil interface) undergoes a 180º phase shift since the index of refraction of the 
oil is greater than that of air. The thickness of the oil film at the edge is negligible, so for there to be 
constructive interference, the light reflecting from the bottom of the oil film (the oil/water interface) 
must also undergo a 180º phase shift. This will occur only if the index of refraction of the oil is less 
than that of the water.  

 
 

Solutions to Problems 
 
1. Consider a wave front traveling at an angle 1  relative to a surface.  

At time 0,t   the wave front touches the surface at point A, as shown 
in the figure.  After a time t, the wave front, moving at speed v, has 
moved forward such that the contact position has moved to point B.  
The distance between the two contact points is calculated using 

simple geometry:  
1

AB .
sin

vt


  

By Huygens’ principle, at each point the wave front touches the surface, it creates a new wavelet.  
These wavelets expand out in all directions at speed v.  The line passing through the surface of each 
of these wavelets is the reflected wave front.   Using the radius of the wavelet created at 0,t  the 
center of the wavelet created at time t, and the distance between the two contact points (AB) we 
create a right triangle.  Dividing the radius of the wavelet centered at AB (vt) by distance between 
the contact points gives the sine of the angle between the contact surface and the reflected wave, 2 . 
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  2 1 2 1

1

sin sin     
AB

sin

vt vt
vt

   



      

Since these two angles are equal, their complementary angles (the incident and reflected angles) are 
also equal.   

 
2. For constructive interference, the path difference is a multiple of the wavelength, as given by Eq. 34-

2a.  Apply this to the fifth order. 

  
 5

7
1.8 10 m sin9.8sin

sin     6.1 10 m
5

d
d m

m

  



 

       

 
3. For constructive interference, the path difference is a multiple of the wavelength, as given by Eq. 34-

2a. Apply this to the third order. 

  
 9

6
3 610 10 m

sin     3.9 10 m
sin sin 28

m
d m d

 






     


 

 
4. For constructive interference, the path difference is a multiple of the wavelength, as given by Eq. 34-

2a.  The location on the screen is given by tan ,x  l  as seen in Fig. 34-7(c).   For small angles, we 
have sin tan .x   l   Adjacent fringes will have 1.m   

   

  
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1 2 2 1

5 8
7 14

7
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1 1
  ;      
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x m
d m d m x

d
m mm m

x x x x x
d d d d d

d x c
f

  

   









    

 
        

 
       



l

l

l ll l l

l

   

 
5. For constructive interference, the path difference is a multiple of the wavelength, as given by Eq. 34-

2a.  The location on the screen is given by tan ,x  l  as seen in Fig. 34-7(c).  For small angles, we 
have sin tan .x   l   Second order means m = 2. 

        
 

1 2
1 2

9

42 1
2 1 4

sin           ;    ;    

720 660 10 m 2 1.0m
1.76 10 m 0.2mm

6.8 10 m

x m m m
d m d m x x x

d d d

m
x x x

d

    

  




       

           


l l l

l

l
 

This justifies using the small angle approximation, since .x l  
 
6. The slit spacing and the distance from the slits to the screen is the same in both cases.  The distance 

between bright fringes can be taken as the position of the first bright fringe (m = 1) relative to the 
central fringe.  We indicate the lab laser with subscript 1, and the laser pointer with subscript 2.  For 
constructive interference, the path difference is a multiple of the wavelength, as given by Eq. 34-2a.  
The location on the screen is given by tan ,x  l  as seen in Fig. 34-7(c).  For small angles, we have 
sin tan .x   l    

  
 

1 2
1 2

1
2 2 2

1

sin           ;    ;    
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x m
d m d m x x x

d d d
d

x x
x

    



       

    

l l l

l

l
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7. Using a ruler on Fig. 35-9a, the distance from the  0m  fringe to the  10m  fringe is found to be 
about 13.5 mm. For constructive interference, the path difference is a multiple of the wavelength, as 
given by Eq. 34-2a.  The location on the screen is given by tan ,x  l  as seen in Fig. 34-7(c).  For 
small angles, we have sin tan .x   l  

  
  

  

4

7
1.7 10 m 0.0135m

sin         6.6 10 m
10 0.35m

x dx dx
d m d m

m m
   





        

l l l
  

 
8. For constructive interference, the path difference is a multiple of the wavelength, as given by Eq. 34-

2a.  The location on the screen is given by tan ,x  l  as seen in Fig. 34-7(c).   For small angles, we 
have sin tan .x   l  

   9

4
3

680 10 m 3 2.6m
sin         1.4 10 m

38 10 m

x m
d m d m d

x

  






       


l

l
 

 
9. For constructive interference, the path difference is a multiple of the wavelength, as given by Eq. 34-

2a.  The location on the screen is given by tan ,x  l  as seen in Fig. 34-7(c).   For small angles, we 
have sin tan .x   l   For adjacent fringes, 1.m   

  

    
 

9

5

sin           

633 10 m 3.8m
1 0.035m 3.5cm

6.8 10 m

x m
d m d m x

d

x m
d

  






     


     



l

l

l
 

 
10. For constructive interference, the path difference is a multiple of the wavelength, as given by Eq. 34-

2a.  The location on the screen is given by tan ,x  l  as seen in Fig. 34-7(c).   For small angles, we 
have sin tan .x   l  

  
   

 

9

5
633 10 m 1 5.0m

sin         1.3 10 m
0.25m

x m
d m d m d

x

  





       
l

l
 

 
11. The 180° phase shift produced by the glass is equivalent to a path length of 1

2 .   For constructive 

interference on the screen, the total path difference is a multiple of the wavelength: 

 1 1
max max2 2sin , 0, 1, 2,     sin , 1, 2,d m m d m m             

We could express the result as  1
max 2sin , 0, 1, 2, .d m m      

For destructive interference on the screen, the total path difference is 
   1 1

min min2 2sin , 0, 1, 2,     sin , 0, 1, 2,d m m d m m             

Thus the pattern is just the  reverse of the usual double-slit pattern.  There will be a dark central line.  
Every place there was a bright fringe will now have a dark line, and vice versa. 

 
12. We equate the expression from Eq. 34-2a for the second order blue light to Eq. 34-2b, since the slit 

separation and angle must be the same for the two conditions to be met at the same location. 

  

    
 

1
2

1
2

sin 2 480nm 960nm  ;  sin ,  0, 1, 2,

960nm     0    1920nm  ;  1    640nm

                                    2    384nm

bd m d m m

m m m

m

   

  



       

         

   



 

 The only one visible is 640 nm .   384 nm is near the low-wavelength limit for visible light. 
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13. For constructive interference, the path difference is a multiple of the wavelength, as given by Eq. 34-
2a.  The location on the screen is given by tan ,x  l  as seen in Fig. 34-7(c).   For small angles, we 
have sin tan .x   l   For adjacent fringes, 1.m   

  

    
 

9

3

3

sin           

544 10 m 5.0m
1 2.7 10 m

1.0 10 m

x m
d m d m x

d

x m
d

  







     


     



l

l

l
 

 
14. An expression is derived for the slit separation from the data for the 500 nm light.  That expression is 

then used to find the location of the maxima for the 650 nm light.  For constructive interference, the 
path difference is a multiple of the wavelength, as given by Eq. 34-2a.  The location on the screen is 
given by tan ,x  l  as seen in Fig. 34-7(c).   For small angles, we have sin tan .x   l    

  
    

    

1 1

1

2 2 2 2
2 1

1 1 1 1

1

sin               

650nm 2
12mm 10.4mm 10mm  2 sig. fig.

500nm 3

x m m m
d m d m d x

x x d

m m
x x

m m
x

    

 
 

        

    

l l l

l

l

l

  

 
15. The presence of the water changes the wavelength according to Eq. 34-1, and so we must change   

to .n n   For constructive interference, the path difference is a multiple of the wavelength, as 

given by Eq. 34-2a.  The location on the screen is given by tan ,x  l  as seen in Fig. 34-7(c).   For 
small angles, we have sin tan .x   l   Adjacent fringes will have 1.m   

  

 

    
  

1
1 2

9

3
2 1 5

1
sin           ;    ;    

470 10 m 0.500m1
2.94 10 m

1.33 6.00 10 m

n
n n

n n n

mx m m
d m d m x x x

d d d

m m
x x x

d d d nd

   

   






       


         



ll l

l

l l l l
 

 
16. To change the center point from constructive interference to destructive interference, the phase shift 

produced by the introduction of the plastic must be equivalent to half a wavelength.  The wavelength 
of the light is shorter in the plastic than in the air, so the number of wavelengths in the plastic must 
be ½ greater than the number in the same thickness of air.  The number of wavelengths in the 
distance equal to the thickness of the plate is the thickness of the plate divided by the appropriate 
wavelength. 

  

 

   

plastic 1
plastic air plastic 2

plastic

plastic

1   

680nm
570nm

2 1.60 12 1

tnt t t t
N N n

t
n

    



        

  


 

 
17. The intensity is proportional to the square of the amplitude.  Let the amplitude at the center due to 

one slit be 0.E   The amplitude at the center with both slits uncovered is 02 .E  
2

1 slit 0

2 slits 0

1

2 4

I E

I E

 
  
 

 

Thus the amplitude due to a single slit is one-fourth the amplitude when both slits are open. 
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18. The intensity as a function of angle from the central maximum is given by Eq. 34-6. 

  2 21 1
0 02 2

sin sin sin 1
cos     cos     cos

2

d d d
I I I

     
  

                
     

 

 

 

1

1
2

sin 1 sin 1
cos     cos 45 90   

4 22 2

2 sin

d d
n n

d n

     
 

 

                     
 

 

 To only consider 0,   we take just the plus sign. 

 1
22 sin ,  0, 1, 2,d n n      

 
19. The intensity of the pattern is given by Eq. 34-6.  We find the angle where the intensity is half its 

maximum value. 

  

2 2 1/ 2 1/ 21 1
0 02 2

11/ 2
1/ 2

sin sin sin 1
cos     cos     cos   

2

sin 1
cos     sin

4 42

d d d
I I I

d

d


     

  
   




                
     

   
 

If ,d   then sin 1
4d

    and so sin .    This is the angle from the central maximum to the 

location of half intensity.  The angular displacement from the half-intensity position on one side of 
the central maximum to the half-intensity position on the other side would be twice this. 

  2 2
4 2d d

       

 
20. (a) The phase difference is given in Eq. 34-4.  We are given the path length difference, sin .d   

sin 1.25
    2 2.50

2

d    
  
     

 (b) The intensity is given by Eq. 34-6. 

    2 2
0 0 0cos cos 1.25 0.500

2
I I I I

     
 

 

 

21. A doubling of the intensity means that the electric field amplitude has increased by a factor of 2.   

We set the amplitude of the electric field of one slit equal to 0E  and of the other equal to 02E .  We 

use Eq. 34-3 to write each of the electric fields, where the phase difference,  , is given by Eq. 34-4.  
Summing these two electric fields gives the total electric field.   

 

 
0 0 0 0 0

0 0

sin 2 sin sin 2 sin cos 2 cos sin

1 2 cos sin 2 cos sin

E E t E t E t E t E t

E t E t

        

   

     

  
 

We square the total electric field intensity and integrate over the period to determine the average 
intensity. 

  

 

   

2
2 2

0 0

0 0

2 2
2 2 20

0

1 1
1 2 cos sin 2 cos sin

1 2 cos sin 2cos sin 2 2 1 2 cos sin sin cos

T T

T

E E dt E t E t dt
T T

E
t t t t dt

T

     

       

     

       

 


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   
2 22

20 0    1 2 cos 2sin 3 2 2 cos
2 2

E E            
 

Since the intensity is proportional to this average square of the electric field, and the intensity is 
maximum when 0,   we obtain the relative intensity by dividing the square of the electric field by 
the maximum square of the electric field. 

2

2
0 0

3 2 2 cos 2
, with = sin

3 2 2

I E
d

I E
 



  



 


 

 
22. (a) If the sources have equal intensities, their electric fields will have  

the same magnitudes.  We show a phasor diagram with each of the 
electric fields shifted by an angle .    As shown in the sketch, the 
three electric fields and their sum form a symmetric trapezoid.  
Since 20E  and 0E  are parallel, and 20E  is rotated from 10E  and 30E  

by the angle ,  the magnitude of 0E  is the sum of the components 

of 10,E  20 ,E   and 30E  that are parallel to 20.E  

 0 10 20 30 10cos cos 1 2cosE E E E E         

We set the intensity proportional to the square of the electric field 
magnitude and divide by the maximum intensity (at 0  ) to determine the relative intensity. 

 
 

 
2 22

100
22

0 0 10

1 2cos 1 2cos 2
, sin

91 2cos0

EI E
d

I E E
 



   


      
  

 

 (b) The intensity will be at its maximum when cos 1.    In this case the three phasors are all in  
line. 

   max max max max

2
cos 1    2 sin     sin ,    0, 1, 2,

m
m d m

d

     


         

The intensity will be a minimum when 1 2cos 0.    In this case the three 
phasors add to 0 and form an equilateral triangle as shown in the second 
diagram, for the case of k = 1, where k is defined below. 

   
   

 

min

2 1
3 31 1

min 2 4 2
3 3

1 2cos 0  

2 2
cos ,  0, 1, 2,

2 2

m m
m

m m



  


  


  

         


 

  This can be written as one expression with two parameters. 

   

 

 

1
min min3

1
min 3

2
2 sin ,  1, 2; 0, 1, 2,   

sin ,  1, 2; 0, 1, 2,

m k d k m

m k k m
d

  




     

    




 

 
23. From Example 34-7, we see that the thickness is related to the bright color wavelength by 4 .t n  

    4     4 4 1.32 120nm 634nmt n nt       

 
24. Between the 25 dark lines there are 24 intervals.  When we add the half-interval at the wire end, we 

have 24.5 intervals over the length of the plates. 

  
28.5cm

1.16cm
24.5intervals

  





10E

20E

30E

0E
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25. (a) An incident wave that reflects from the outer surface of the  
bubble has a phase change of 1 .    An incident wave 

that reflects from the inner surface of the bubble has a 
phase change due to the additional path length, so 

2
film

2
2 .

t 


 
  
 

  For destructive interference with a 

minimum non-zero thickness of bubble, the net phase change must be .  

   
 

1
net 2 1 film2

film

2 480nm
2     180nm

2 2 1.33

t
t

n

      


  
           

  
 

 (b) For the next two larger thicknesses, the net phase change would be 3  and 5 .  

   
 

 

net 2 1 film
film

3
net 2 1 film 2

film

2 480nm
2 3     361nm

1.33

2 480nm
2 5     541nm

1.33

t
t

n

t
t

n

      


      


  
           

  
  

           
  

 

 (c) If the thickness were much less than one wavelength, then there would be very little phase  
change introduced by additional path length, and so the two reflected waves would have a phase 
difference of about 1 .    This would produce destructive interference. 

 
26. An incident wave that reflects from the top surface of the 

coating has a phase change of 1 .    An incident wave that 

reflects from the glass  1.5n   at the bottom surface of the 

coating has a phase change due to both the additional path 
length and a phase change of  on reflection, so 

2
film

2
2 .

t  


 
  
 

  For constructive interference with a 

minimum non-zero thickness of coating, the net phase change must be 2 .  

  1 1
net 2 1 film2 2

film film

2
2 2     

t
t

n

       


    
            

    
. 

 The lens reflects the most for 570nm.  The minimum non-zero thickness occurs for 1:m   

  
 
 min

film

570nm
228nm

2 2 1.25
t

n


    

Since the middle of the spectrum is being selectively reflected, the transmitted light will be stronger 
in the red and blue portions of the visible spectrum. 

 
27. (a) When illuminated from above at A, a light ray reflected from the air-oil interface undergoes a  

phase shift of 1 .    A ray reflected at the oil-water interface undergoes no phase shift.  If the 

oil thickness at A is negligible compared to the wavelength of the light, then there is no 
significant shift in phase due to a path distance traveled by a ray in the oil.  Thus the light 
reflected from the two surfaces will destructively interfere for all visible wavelengths, and the 
oil will appear black when viewed from above. 

  

(b) From the discussion in part (a), the ray reflected from the air-oil interface undergoes a phase  
shift of 1 .    A ray that reflects from the oil-water interface has no phase change due to 

1 

 2 film2 2 0t   

1 

 2 film2 2  t    
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reflection, but has a phase change due to the additional path length of 2
oil

2
2 .

t 


 
  
 

  For 

constructive interference, the net phase change must be a multiple of  2 .  

      1 1 1 1
net 2 1 oil2 2 2 2

oil o

2
2 2     

t
m t m m

n

      


  
           

  
  

From the diagram, we see that point B is the second thickness that yields constructive 
interference for 580 nm, and so we use m = 1.  (The first location that yields constructive 
interference would be for m = 0.) 

      1 1 1 1
2 2 2 2

o

580nm
1 290nm

1.50
t m

n


       

 
28. When illuminated from above, the light ray reflected from the air-oil interface undergoes a phase 

shift of 1 .    A ray reflected at the oil-water interface undergoes no phase shift due to reflection, 

but has a phase change due to the additional path length of 2
oil

2
2 .

t 


 
  
 

  For constructive 

interference to occur, the net phase change must be a multiple of 2 .  

       1 1 1 1
net 2 1 oil2 2 2 2

oil o

2
2 2     

t
m t m m

n

      


  
           

  
 

For 650nm,  the possible thicknesses are as follows. 

  1 1
650 2 2

650nm
108nm, 325nm, 542nm, 

1.50
t m     

For 390nm,  the possible thicknesses are as follows. 

  1 1
390 2 2

390nm
65nm, 195nm, 325nm, 455nm, 

1.50
t m     

 The minimum thickness of the oil slick must be 325nm .  

 
29. An incident wave that reflects from the convex surface of the 

lens has no phase change, so 1 0.    An incident wave that 

reflects from the glass underneath the lens has a phase change 
due to both the additional path length and a phase change of  

on reflection, so 2

2
2 .

t  


   
 

  For destructive 

interference (dark rings), the net phase change must be an odd-
integer multiple of ,  so    

 net 2 1 2 1 ,  0, 1, 2, .m m           Because 0m   corresponds to the dark center, m 

represents the  number of the ring. 

 

  

net 2 1

1 1
air2 2

2
2 0 2 1 ,  0, 1, 2,   

31 560nm 8680nm 8.68 m

t
m m

t m

     


 

              

   


 

 The thickness of the lens is the thickness of the air at the edge of the lens: 
 
  

1 0 

 2 2 2t    
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30. An incident wave that reflects from the second 
surface of the upper piece of glass has no phase 
change, so 1 0.    An incident wave that reflects 

from the first surface of the second piece of glass has 
a phase change due to both the additional path length 
and a phase change of  on reflection, so 

2

2
2 .

t  


   
 

  For destructive interference (dark 

lines), the net phase change must be an odd-integer multiple of ,  so 

 net 2 1 2 1 ,  0, 1, 2, .m m           Because 0m   corresponds to the left edge of the diagram, 

the 28th dark line corresponds to m = 27.  The 28th dark line also has a gap thickness of d. 

  
 

  

1
net 2 1 2

1
2

2
2 0 2 1       

27 670nm 9045nm 9.0 m

t
m t m

d

      




               

  

 

 
31. With respect to the incident wave, the wave that reflects from 

the air at the top surface of the air layer has a phase change of 

1 0.    With respect to the incident wave, the wave that 
reflects from the glass at the bottom surface of the air layer has 
a phase change due to both the additional path length and 

reflection, so 2

2
2 .

t  


   
 

  For constructive interference, 

the net phase change must be an even non-zero integer multiple of .  

   1 1
net 2 1 2 2

2
2 0 2     ,  1, 2,

t
m t m m      


               

 . 

 The minimum thickness is with 1.m   

   1 1
min 2 2450nm 1 113nmt     

 For destructive interference, the net phase change must be an odd-integer multiple of .  

    1
net 2 1 2

2
2 0 2 1     ,  0, 1, 2,

t
m t m      


               

   

 The minimum non-zero thickness is   1
min 2 450nm 1 225nm .t    

 
32. With respect to the incident wave, the wave that reflects  
 from the top surface of the alcohol has a phase change of  

1 .    With respect to the incident wave, the wave that 
reflects from the glass at the bottom surface of the alcohol 
has a phase change due to both the additional path length 
and a phase change of   on reflection, so 

2
film

2
2 .

t  


 
  
 

  For constructive interference, the net 

phase change must be an even non-zero integer multiple of .  

  11 1
net 2 1 1 1film 1 1 12 2

1film film

2
2 2     , 1, 2, 3, ...

t
m t m m m

n

       


  
               

. 

glass

air

glass

1 0 

 2 2 2  t    

1 

 2 film2 2    t    
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 For destructive interference, the net phase change must be an odd-integer multiple .  

     21
net 2 1 2 2 24

2film film

2
2 2 1     2 1 , 0, 1, 2, ...

t
m t m m

n

      


  
            

  
. 

 Set the two expressions for the thickness equal to each other. 

     
 

1 2 2 11 1
1 22 4

film film 1 2

635nm2 1 5
2 1     1.24 1.25

2 512nm 4

m
m m

n n m

  



         

 Thus we see that 1 2 2,m m   and the thickness of the film is 

   11 1
12 2

film

635nm
2 467nm

1.36
t m

n

     
 

 or    21 1
24 4

film

512nm
2 1 5 471nm

1.36
t m

n

      
 

 

 With 2 sig.fig., the thickness is 470 nm.  The range of answers is due to rounding 1 2 .   
 
33. With respect to the incident wave, the wave that reflects from point B in the 

first diagram will not undergo a phase change, and so B 0.    With respect to 
the incident wave, the wave that reflects from point C in the first diagram has 
a phase change due to both the additional path length in air, and a phase 

change of   on reflection, and so we say that  D

2
2 ,

y  


   where y is 

the thickness of the air gap from B to C (or C to D).  For dark rings, the net 
phase difference of the waves that recombine as they leave the glass moving 
upwards must be an odd-integer multiple of .  

  
   net D B

1
dark 2

2
2 2 1   

,  0, 1, 2,

y
m

y m m

     




      

  
 

Because m = 0 corresponds to the dark center, m represents the number of the 
dark ring. 
 

Let the air gap of y be located a horizontal 
distance r from the center of the lens, as seen in 
the second diagram.  Consider the dashed right 
triangle in the second diagram. 

 22 2

2 2 2 2

2 2

  

2  

2

R r R y

R r R Ry y

r Ry y

   

    

 

 

If we assume that ,y R then 2 2 .r Ry  

   2 2 1
dark dark dark22     2 2     , 0, 1, 2,r Ry r Ry R m r m R m          

 

34. From Problem 33, we have  1/ 2
.r m R m R     To find the distance between adjacent rings, we 

assume 1    1 .m m m       Since ,m m  .
dr

r m
dm

    

  

   

   

1/ 2 1/ 21
2

1/ 22 2
1/ 21

2

  ;  

1
4 4

dr
r m R m R R

dm

dr R R
r m m R R

dm m R m

  

  






 

           

 

R

y

r
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35. The radius of the m-th ring in terms of the wavelength of light and the radius of curvature is derived 

in Problem 33 as .r m R   Using this equation, with the wavelength of light in the liquid given 
by Eq. 34-1, we divide the two radii and solve for the index of refraction. 

 

2 2

air air

liquid liquid

2.92 cm
    1.32

2.54 cm/

r m R r
n n

r rm n R




               
 

  
36. We use the equation derived in Problem 33, where r is the radius of the lens (1.7 cm) to solve for the 

radius of curvature.  Since the outer edge is the 44th bright ring, which would be halfway between the 
44th and 45th dark fringes, we set m=44.5 

  
 

  
22

9

0.017m
    11.20m 11m

44.5 580 10 m

r
r m R R

m


 
     


 

We calculate the focal length of the lens using Eq. 33-4 (the lensmaker’s equation) with the index of 
refraction of lucite taken from Table 32-1. 

    1
1

1 2

1 1 1 1 1 1
1 1.51 1 0.0455m     22m

11.2m 0.0455m
n f

f R R




   
              

 

 
37. (a) Assume the indices of refraction for air, water, and  

glass are 1.00, 1.33, and 1.50, respectively. When 
illuminated from above, a ray reflected from the air-
water interface undergoes a phase shift of 1 ,   and a 
ray reflected at the water-glass interface also undergoes 
a phase shift of .   Thus, the two rays are unshifted in 
phase relative to each other due to reflection. For 
constructive interference, the path difference 2t must equal an integer number of wavelengths in 
water.  

   water
water

water

2
2 , 0, 1, 2,     

n t
t m m m

n m

       

(b) The above relation can be solved for the m-value associated with the reflected color.  If this m- 
value is an integer the wavelength undergoes constructive interference upon reflection.   

   water water2 2
    

n t n t
m

m



    

For a thickness 5200 m 2 10 nmt     the m-values for the two wavelengths are calculated.  

  

  

5

water
700 nm

5

water
400 nm

2 1.33 2 10 nm2
760

700nm

2 1.33 2 10 nm2
1330

400nm

n t
m

n t
m






  


  

 

Since both wavelengths yield integers for ,m  they are both reflected. 
(c) All m-values between m = 760 and m = 1330 will produce reflected visible colors.  There are 

1330 – (760 – 1) = 571 such values. 
(d) This mix of a large number of wavelengths from throughout the visible spectrum will give the  

thick layer a white or grey appearance. 
 
 
 
 

air

water

glass

1 

 2 film2 2    t    
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38. We assume 1 2 3n n n   and that most of the incident light is 
transmitted.  If the amplitude of an incident ray is taken to 
be 0 ,E  then the amplitude of a reflected ray is 0 ,rE  with 

1.r    The light reflected from the top surface of the film 
therefore has an amplitude of 0rE and is phase shifted by 

1  from the incident wave, due to the higher index of 
refraction.  The light transmitted at that top surface has an 
amplitude of   01 r E .  That light is then reflected off the bottom surface of the film, and we 

assume that it has the same reflection coefficient.  Thus the amplitude of that second reflected ray is 

   2
0 0 01 ,r r E r r E rE    the same amplitude as the first reflected ray.  Due to traveling through 

the film and reflecting from the glass, the second ray has a phase shift of 
 2 film 22 2 / 4 n         l l , where l  is the thickness of the film.  Summing the two 

reflected rays gives the net reflected wave. 
   

       
0 0

0 2 2

cos cos 4 /

1 cos4 cos sin 4 sin

nE rE t rE t

rE n t n t

     

       

    

      

l

l l
 

As with the double slit experiment, we set the intensity proportional to the square of the wave 
amplitude and integrate over one period to calculate the average intensity. 

       

       
       

   

22
0 2 20 0

2 2 2 22 2
2 20

0
2 2

2 2
2 2 20

2 2 0

1 1
1 cos4 cos sin 4 sin

1 cos4 cos sin 4 sin

2 1 cos4 sin 4 cos sin

1 cos4 sin 4
2

T T

T

I E dt rE n t n t dt
T T

n t n tr E
dt

T n n t t

r E
n n r E

       

       

       

   

         

    
  

     

     

 



l l

l l

l l

l l  2
21 cos4 n  l

 

The reflected intensity without the film is proportional to the square of the intensity of the single 
reflected electric field. 

   
2 2 2 2

22 20 0
0 no film 00 0 0

1 1
cos cos

2

T T Tr E r E
I E dt rE t dt t dt

T T T
                 

Dividing the intensity with the film to that without the film gives the factor by which the intensity is 
reduced. 

   
2 2

0 2
22 21

0 02

1 cos4
2 1 cos4

r E nI
n

I r E

 
 


  

l
l  

To determine the thickness of the film, the phase difference between the two reflected waves with 
550nm  must be an odd integer multiple of   so that there is destructive interference.  The 

minimum thickness will be for m = 0. 

     2 1 2

550nm
4 2 1     

4 4 4
nn m

n n

                l l  

It is interesting to see that the same result is obtained if we set the reflected intensity equal to zero for 
a wavelength of 550 nm. 

 2 2 2
0

550nm
2 1 cos4 0  cos4 1  4   

4

I
n n n

I n
               l l l l  

Finally, we insert the two given wavelengths (430 nm and 670 nm) into the intensity equation to 
determine the reduction in intensities. 

 

t

 1  = 

 2  = (2 t /  film)2 + n1

n2

n3

 2 film2 2    l

l

1 

 2 film2 2        l
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 

 

0

0

550 nm/4 550 nm
For 430 nm,  2 1 cos4 2 1 cos4 0.721 72%

430 nm / 4 430 nm

550 nm
For 670 nm,  2 1 cos4 0.308 31%

4 670 nm

I n

I n

I

I

  

 

          
   
 

     
 

 

 
39. From the discussion in section 34-6, we see that the path length change is twice the distance that the 

mirror moves.  One fringe shift corresponds to a change in path length of ,  and so corresponds to a 
mirror motion of 1

2 .   Let N be the number of fringe shifts produced by a mirror movement of .x  

    9 41 1
2 21

2

    650 589 10 m 1.91 10 m
x

N x N


 
         

 
40. From the discussion in section 34-6, we see that the path length change is twice the distance that the 

mirror moves.  One fringe shift corresponds to a change in path length of ,  and so corresponds to a 
mirror motion of 1

2 .   Let N be the number of fringe shifts produced by a mirror movement of .x  

  
 4

7

1
2

2 1.25 10 m2
    6.51 10 m 651nm

384

x x
N

N







 
        

 
41. From the discussion in section 34-6, we see that the path length change is twice the distance that the 

mirror moves.  One fringe shift corresponds to a change in path length of ,  and so corresponds to a 
mirror motion of 1

2 .   Let N be the number of fringe shifts produced by a mirror movement of .x   

The thickness of the foil is the distance that the mirror moves during the 272 fringe shifts. 

    9 51 1
2 21

2

    272 589 10 m 8.01 10 m
x

N x N


 
         

 
42. One fringe shift corresponds to an effective change in path length of .   The actual distance has not 

changed, but the number of wavelengths in the depth of the cavity has.  If the cavity has a length d, 

the number of wavelengths in vacuum is ,
d


 and the (greater) number with the gas present is 

gas

gas

.
n dd

 
   Because the light passes through the cavity twice, the number of fringe shifts is twice 

the difference in the number of wavelengths in the two media. 

      
 

9
gas

gas gas 2

176 632.8 10 m
2 2 1     1 1 1.00482

2 2 1.155 10 m

n d d d N
N n n

d


  





 
            

 

 
43. There are two interference patterns formed, one by each of the two wavelengths.  The fringe patterns 

overlap but do not interfere with each other.  Accordingly, when the bright fringes of one pattern 
occurs at the same locations as the dark fringes of the other patterns, there will be no fringes seen, 
since there will be no dark bands to distinguish one fringe from the adjacent fringes.   

 

To shift from one “no fringes” occurrence to the next, the mirror motion must produce an integer 
number of fringe shifts for each wavelength, and the number of shifts for the shorter wavelength 
must be one more than the number for the longer wavelength.  From the discussion in section 34-6, 
we see that the path length change is twice the distance that the mirror moves.  One fringe shift 
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corresponds to a change in path length of ,  and so corresponds to a mirror motion of 1
2 .   Let N be 

the number of fringe shifts produced by a mirror movement of .x  

  

 
  

 

1 2 2 1
1 2 2 1

5 41 2

1 2

2   ;  2   ;  1    2 2 1  

589.6nm 589.0nm
2.89 10 nm 2.9 10 m

2 2 0.6nm

x x x x
N N N N

x

   

 
 



          

     


 

 
44. We assume the luminous flux is uniform, and so is the same in all directions. 

  
   22 5 2 11 28 28

28
27 27

4 10 lm m 4 1.496 10 m 2.81 10 lm 3 10 lm

2.81 10 lm
2.24 10 cd 2 10 cd

4 sr 4 sr

F E A E r

F
I

 

 

       


     

l l l

l

l

  

 
45. (a) The wattage of the bulb is the electric power input to the bulb. 

   
1700lm

luminous efficiency 17lm W
100W

F

P
  l  

(b) The illuminance is the luminous flux incident on a surface, divided by the area of the surface.  
Let N represent the number of lamps, each contributing an identical amount of luminous flux. 

   

 

 
   

  

1
2

2

luminous efficiency
  

2 250lm m 25m 30m2
156lamps 160lamps

luminous efficiency 60lm W 40W

N PF
E

A A

E A
N

P

    

   

l

l

l

 

 
46. (a) For constructive interference, the path difference is a multiple of the wavelength, as given by  

Eq. 34-2a.  The location on the screen is given by tan ,x  l  as seen in Fig. 34-7(c).   For small 
angles, we have sin tan .x   l   For adjacent fringes, 1.m   

      
 

7

4

2

sin               

5.0 10 m 4.0m 1
1.0 10 m

2.0 10 m

x m
d m d m x x m

d d

m
d

x

   







         


   

 

l l

l

l
 

(b) For minima, we use Eq. 34-2b.  The fourth-order minimum corresponds to m = 3, and the fifth-
order minimum corresponds to m = 4.  The slit separation, screen distance, and location on the 
screen are the same for the two wavelengths. 

  

       

 
   

1 1 1 1
A A B B2 2 2 2

1
7 7A 2

B A 1
B 2

sin           

3.5
= 5.0 10 m 3.9 10 m

4.5

x
d m d m m m

m

m

    

   

         


   



l
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47. The wavelength of the signal is 
 
 

8

6

3.00 10 m s
4.00m.

75 10 Hz

v

f



  


 

(a) There is a phase difference between the direct and reflected signals 

from both the path difference, 2 ,
h 


 
 
 

and the reflection, . 

  The total phase difference is the sum of the two. 

   
 
   122m

2 2 62 31 2
4.00m

h      


       
 

 

  Since the phase difference is an integer multiple of 2 ,  the interference is  constructive.  
 (b) When the plane is 22 m closer to the receiver, the phase difference is as follows. 

   
   

   122m 22m 51
2 2 51 2

4.00m 2

h y
      


   

       
   

 

Since the phase difference is an odd-half-integer multiple of 2 ,  the interference is  
destructive.  

 
48. Because the measurements are made far from the antennas, we can use the analysis for the double 

slit.  Use Eq. 34-2a for constructive interference, and 34-2b for destructive interference.  The 

wavelength of the signal is 
 
 

8

6

3.00 10 m s
3.39m.

88.5 10 Hz

v

f



  


 

   For constructive interference, the path difference is a multiple of the wavelength: 

  
     

  

1

1 1
1 2
max max

1
3
max

sin ,  0, 1, 2, 3, ... ;     sin

1 3.39m 2 3.39m
sin 22   ;  sin 49   ;

9.0m 9.0m

3 3.39 m
sin impossible

9.0m

m
d m m

d

  

 





 



   

     

 

 

 For destructive interference, the path difference is an odd multiple of half a wavelength: 

  

   

     

     

1
1 21

2

31
21 12

0 1
max max

5 7
2 21 1

2 3
max max

sin ,  0, 1, 2, 3, ... ;     sin

3.39m3.39 m
sin 11   ;  sin 34   ;

9.0m 9.0m

3.39 m 3.39m
sin 70  ;  sin impossible

9.0m 9.0m

m
d m m

d


  

 

 



 

 


    

     

    

 

These angles are applicable both above and below the midline, and both to the left and the right of 
the antennas. 

 
49. For constructive interference, the path difference is a multiple of the wavelength, as given by Eq. 34-

2a.  The location on the screen is given by tan ,x  l  as seen in Fig. 34-7(c).  For small angles, we 
have sin tan .x   l   Second order means m = 2. 

  1 2
1 2sin           ;    ;    

x m m m
d m d m x x x

d d d

           
l l l

l
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    
 

1 2
1 2

4 3

9 7
2 1

  

6.6 10 m 1.23 10 m
690 10 m 4.36 10 m 440nm

2 1.60m

m m
x x x

d d

d x

m

 

 
 

 

     

 
       

l l

l

 

 
50. PLEASE NOTE:  In early versions of the textbook, in which the third line of this problem states that 

“… light is a minimum only for …,” the resulting answer does not work out properly.  It yields 
values of m = 6 and m = 4 for the integers in the interference relationship.  Accordingly, the problem 
was changed to read “… light is a maximum only for … .”  The solution here reflects that change. 
 
With respect to the incident wave, the wave that reflects at  
the top surface of the film has a phase change of 1 .    With 
respect to the incident wave, the wave that reflects from the bottom 
surface of the film has a phase change due to the additional path 
length and no phase change due to reflection, so  

2
film

2
2 0.

t 


 
  
 

  For constructive interference, the net phase change must be an integer multiple 

of 2 .  

     1 1 1 1
net 2 1 film2 2 2 2

film film

2
2 2     , 0, 1, 2, ...

t
m t m m m

n

      


 
           

 
. 

 Evaluate the thickness for the two wavelengths. 

       
 

1
2 21 2 11 1 1 1

1 22 2 2 2 1
film film 1 22

688.0nm 7
    1.40

491.4nm 5

m
t m m

n n m
  




        


   

Thus 2 3m   and 1 2.m    Evaluate the thickness with either value and the corresponding 
wavelength. 

       1 25 71 1 1 1 1 1
1 22 2 2 2 2 2 2 2

film film

688.0nm 491.4nm
544 nm   ;  544 nm

1.58 1.58
t m t m

n n
             

 
51. From the discussion in section 34-6, we see that the path length change is twice the distance that the 

mirror moves.  The phase shift is 2 for every wavelength of path length change.  The intensity as a 
function of phase shift is given by Eq. 34-6. 

  2 2
0 0

path change 2 4 2
      ;  cos cos

2 2

x x x
I I I

   
    

        
 

 

 
52. To maximize reflection, the three rays shown in the figure should be 

in phase. We first compare rays 2 and 3.  Ray 2 reflects from 

2 1,n n  and so has a phase shift of 2 .    Ray 3 will have a phase 
change due to the additional path length in material 2, and a phase 
shift of   because of reflecting from 2.n n   Thus 

2
3

2

2
2 .

d  


 
  
 

  For constructive interference the net phase 

change for rays 2 and 3 must be a non-zero integer multiple of 2 .  

  2 1
2 3 3 2 2 22

2

2
2 2     , 1, 2, 3

d
m d m m       



  
           

  
  

d1

n1 n2

d2

n1

1
2
3 n

1n 2n

1 

 2 film2 2t  
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The minimum thickness is for m = 1, and so 1
2 22

2

.
2

d m
n

   

Now consider rays 1 and 2.  The exact same analysis applies, because the same relationship exists 

between the indices of refraction: 1n n  and 2 1.n n   Thus 1
1

.
2

d
n


    

 
53. With respect to the incident wave, the wave that reflects  

from the top surface of the coating has a phase change of 

1 .    With respect to the incident wave, the wave that 

reflects from the glass  1.5n   at the bottom surface of the 

coating has a phase change due to both the additional path 

length and reflection, so 2
film

2
2 .

t  


 
  
 

  For destructive 

interference, the net phase change must be an odd-integer multiple of .  

  

 

   

net 2 1
film

1 1
film4 4

film

2
2 2 1   

2 1 2 1 , 0, 1, 2, ...

t
m

t m m m
n

      




  
         

  

    

 

 The minimum thickness has m = 0, and so 1
min 4

film

.t
n


  

 (a) For the blue light:   
 
 

1
min 4

450nm
81.52nm 82nm .

1.38
t     

 (b) For the red light: 
 
 

1
min 4

700nm
126.8nm 130nm .

1.38
t     

 
54. The phase difference caused by the path difference back and forth through the coating must 

correspond to half a wavelength in order to produce destructive interference. 

 1 1 1
2 4 42     2cm 0.5cmt t       

 
55. We consider a figure similar to Figure 34-12, but with the 

incoming rays at an angle of i  to the normal.  Ray s2 will travel 

an extra distance 1 isind  l  before reaching the slits, and an 

extra distance 2 sind  l  after leaving the slits.  There will be a 
phase difference between the waves due to the path difference 

1 2.  l l   When this total path difference is a multiple of the 
wavelength, constructive interference will occur. 

   
1 2

i

sin sin   

sin sin ,   0, 1, 2,

id d m
m

m
d

  
 

      

  

l l


 

Since the rays leave the slits at all angles in the forward 
direction, we could have drawn the leaving rays with a 
downward tilt instead of an upward tilt.  This would make the 
ray s2 traveling a longer distance from the slits to the screen.  In 

2l

1l

d





i

i

1s 1s

2s

2s

1 

 2 film2 2   t    



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

398 

this case the path difference would be 2 1,  l l  and would result in the following expression. 

   
2 1 i

1 2 i

sin sin     sin sin ,   0, 1, 2,

sin sin     sin sin ,   0, 1, 2,

i

i

m
d d m m

d
m

d d m m
d

    

    

         

          

l l

l l




 

 We combine the statements as follows. 

   isin sin ,   0, 1, 2,
m

m
d

      

Because of an arbitrary choice of taking 2 1,  l l  we could also have formulated the problem so 

that the result would be expressed as isin sin ,   0, 1, 2,
m

m
d

     . 

 
56. The signals will be out of phase when the path difference equals an odd number of half-wavelengths.  

Let the 175-m distance be represented by d. 

  

   

     
 

2 2 2 21 1
2 2

22 21
22 2 2 2 21 1

2 2 1
2

, 0, 1, 2, 3, ...      

2     
2

y d y m m y d y m

d m
y d y y m m y

m

 


 



          

 
       



 

 We evaluate this for the first three values of m.  The wavelength is 
8

6

3.00 10 m s
50m.

6.0 10 Hz

c

f
 
  


 

  
 
 

     
  

2 2 2 22 21 1
2 2

1 1
2 2

175m 50m
600m, 167m, 60m, 0m

2 2 50m

d m m
y

m m




   
  

 
 

The first three points on the y axis where the signals are out of phase are at 0,60m, and 167 m .y   

 
57. As explained in Example 34-6 the 1

2 - cycle  phase change at the lower surface means that destructive 

interference occurs when the thickness t is such that 2 ,  0, 1, 2, ...t m m  .  Set 1m   to find the 
smallest nonzero value of t. 

   1 1
2 2 680nm 340nmt     

As also explained in Example 34-6, constructive interference will occur when   1
22 ,t m    

0, 1, 2, ...m   .  We set 0m   to find the smallest value of t: 

   1 1
4 4 680nm 170nmt     

 
58. The reflected wave appears to be coming from the virtual image, so this corresponds to a double slit, 

with the separation being d = 2S.  The reflection from the mirror produces a  phase shift, however, 
so the maxima and minima are interchanged, as described in Problem 11. 

 1
max min2sin , 0, 1, 2,   ;  sin , 0, 1, 2,

2S 2S
m m m m

         

 
59.   Since the two sources are 180 out of phase, destructive interference will occur when the path length 

difference between the two sources and the receiver is 0, or an integer number of wavelengths.  Since 
the antennae are separated by a distance of  / 2d  , the path length difference can never be greater 
than / 2 , so the only points of destructive interference occur when the receiver is equidistant from 

each antenna, that is, at destructive 0  and 180    .  Constructive interference occurs when the path 

difference is a half integer wavelength.  Again, since the separation distance between the two 
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antennas is / 2d  , the maximum path length difference is / 2 , which occurs along the line 
through the antennae, therefore the constructive interference only occurs at 

constructive 90  and 270    .  As expected, these angles are reversed from those in phase, found in 

Example 34-5c. 
 
60. If we consider the two rays shown in the diagram, we see that the 

first ray passes through with no reflection, while the second ray has 
reflected twice.  If film glass ,n n  the first reflection from the glass 

produces a phase shift equivalent to 1
film2 ,  while the second 

reflection from the air produces no shift.  When we compare the 
two rays at the film-glass surface, we see that the second ray has a 
total shift in phase, due to its longer path length (2t) and reflection 

 1
film2 .   We set this path difference equal to an integer number of wavelengths for maximum 

intensity and equal to a half-integer number of wavelengths for minimum intensity.  

  

 

 

1 1
2 21

film film2
film

1
21 1

film film2 2
film

max:   2 , 1, 2, 3, ...    , 1, 2, 3, ...

min:   2 , 0, 1, 2, 3, ...     , 0, 1, 2, 3, ...

m
t m m t m

n

m
t m m t m

n


 

 


     

      

 

At 0t  , or in the limit filmt n , the transmitted beam will be at a minimum.  Each time the 
thickness increases by a quarter wavelength the intensity switches between a maximum and a 
minimum. 

  

If film glass ,n n  the first reflection from the glass produces no shift, while the second reflection from 

the air also produces no shift.  When we compare the two rays at the film-glass surface, we see that 
the second ray has a total shift due solely to the difference in path lengths, 2 .t  

 For maxima, we have 

  

   

1
2

film
film

1 1
2 21

film2
film

max:   2 , 0, 1, 2, 3, ...    , 0, 1, 2, 3, ...

min:  2 , 1, 2, 3, ...    , 1, 2, 3, ...

m
t m m t m

n

m
t m m t m

n






    


     

 

At 0t  , or in the limit filmt n , the transmitted beam will be at a maximum.  Each time the 
thickness increases by a quarter wavelength the intensity switches between a maximum and a 
minimum. 

 
61. With respect to the incident wave, the wave that reflects 

from the top surface of the film has a phase change of 

1 .    With respect to the incident wave, the wave that 

reflects from the glass  1.52n   at the bottom surface of 

the film has a phase change due to both the additional path 

length and reflection, so 2
film

2
2 .

t  


 
  
 

  For 

constructive interference, the net phase change must be an even non-zero integer multiple of .   

         0 1
film20 or         

1 

 2 film2 2   t    
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  1 1
net 2 1 film2 2

film film

2
2 2     , 1, 2, 3, ...

t
m t m m m

n
       


  

           
  

. 

The minimum non-zero thickness occurs for 1.m   

  
 min

film

643nm
240nm

2 2 1.34
t

n


    

 

62. The path difference to a point on the x axis from the two sources is 2 2
2 1 .d d d x d x        For 

the two signals to be out of phase, this path difference must be an odd number of half-wavelengths, 
so  1

2 ,  0, 1, 2, .d m m       Also, the maximum path difference is 3 .d    Thus the path 

difference must be 1
2 ,  3

2 ,  or 5
2   for the signals to be out of phase (m = 0, 1, or 2).  We solve for x 

for the three path differences. 

  

   
   

 
 

 
 

 
 

 
 

 
 

 
 

2 2 2 21 1
2 2

22 2 2 21 1
2 2

2 2 22 2 2 21 1 1
2 2 2

1 1 1
2 2 2

2 21 1
2 2

1 1
2 2

21
2

1
2

      

2   

9 9

2 2 2

9 0 9 1
0 : 8.75   ;  1: 2.25

2 0 2 1

9 2
2 : 0.55

2 2

d x d x m x d x m

x d x x m m

d m m m
x

m m m

m x m x

m x

 

 

  


 

   

 

           

      

     
  

  

   
     

 

 
  



 

 
63. For both configurations, we have sind m  .  The angles and the orders are to be the same.  The 

slit separations and wavelengths will be different.  Use the fact that frequency and wavelength are 
related by .v f    The speed of sound in room-temperature air is given in Chapter 16 as 343 m/s. 

  

 

L S

L S

S
14

4S S LS
S L L L 8

LL L S

L

sin
sin       

343m s 4.6 10 Hz
1.0 10 m 200m

3.00 10 m s 262 Hz

d m
m d d d

v
v ff

d d d d
v v f
f

    






     

   
         

 

 The answer has 2 significant figures. 
 
64. Light traveling from a region 12 from the vertical would have to  

travel a slightly longer distance to reach the far antenna.  Using 
trigonometry we calculate this distance, as was done in Young’s double 
slit experiment.  Dividing this additional distance by the speed of light 
gives us the necessary time shift. 

  8
8

55 m sin12sin
3.81 10  s 38.1 ns

3.00 10  m/s

d
t

c c

 
      


l

 

 
 
 
 



Chapter 34  The Wave Nature of Light; Interference 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

401 

65. In order for the two reflected halves of the beam to be 180  out of phase with each other, the 
minimum path difference (2t) should be 1

2   in the plastic.  Notice that there is no net phase 

difference between the two halves of the beam due to reflection, because both halves reflect from the 
same material. 

  
 

1
2

780nm
2     126nm

4 4 1.55
t t

n n

 
      

 
66. We determine n for each angle using a spreadsheet.  The results are shown below. 

 
25 50 75 100 125 150

degree 5.5 6.9 8.6 10.0 11.3 12.5

            1.75 2.19 2.10 2.07 2.02 1.98

N

n

  

The average value is avg 2.02n  .  The spreadsheet used for this problem can be found on the Media 

Manager, with filename “PSE4_ISM_CH34.XLS,” on tab “Problem 34.66.” 
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CHAPTER 35:  Diffraction and Polarization 
 
Responses to Questions 
 
1.  Radio waves have a much longer wavelength than visible light and will diffract around normal-sized 

objects (like hills).  The wavelengths of visible light are very small and will not diffract around 
normal-sized objects. 

 
2. You see a pattern of dark and bright lines parallel to your fingertips in the narrow opening between 

your fingers. 
 
3. Light from all points of an extended source produces diffraction patterns, and these many different 

diffraction patterns overlap and wash out each other so that no distinct pattern can be easily seen. 
When using white light, the diffraction patterns of the different wavelengths will overlap because the 
locations of the fringes depend on wavelength. Monochromatic light will produce a more distinct 
diffraction pattern. 

 
4.  (a) If the slit width is increased, the diffraction pattern will become more compact. 

(b) If the wavelength of the light is increased, the diffraction pattern will spread out. 
 
5. (a) A slit width of 50 nm would produce a central maximum so spread out that it would cover the  

entire width of the screen. No minimum (and therefore no diffraction pattern) will be seen. The 
different wavelengths will all overlap, so the light on the screen will be white. It will also be 
dim, compared to the source, because it is spread out. 

(b) For the 50,000 nm slit, the central maximum will be very narrow, about a degree in width for 
the blue end of the spectrum and about a degree and a half for the red. The diffraction pattern 
will not be distinct, because most of the intensity will be in the small central maximum and the 
fringes for the different wavelengths of white light will not coincide. 

6. (a) If the apparatus is immersed in water, the wavelength of the light will decrease 
n


  
 
 

 and  

the diffraction pattern will become more compact. 
(b) If the apparatus is placed in a vacuum, the wavelength of the light will increase slightly, and the  

diffraction pattern will spread out very slightly. 
 

7. The intensity pattern is actually a function of the form 
2

sin x

x
 
 
 

(see equations 35-7 and 35-8). The 

maxima of this function do not coincide exactly with the maxima of sin2 x. You can think of the 
intensity pattern as the combination of a sin2 x function and a 1/x2  function, which forces the 
intensity function to zero and shifts the maxima slightly. 

 
8.   Similarities: Both have a regular pattern of light and dark fringes. The angular separation of the 

fringes is proportional to the wavelength of the light, and inversely proportional to the slit size or slit 
separation. Differences: The single slit diffraction maxima decrease in brightness from the center. 
Maxima for the double slit interference pattern would be equally bright (ignoring single slit effects) 
and are equally spaced. 

 
9.  No. D represents the slit width and d the distance between the centers of the slits. It is possible for 

the distance between the slit centers to be greater than the width of the slits; it is not possible for the 
distance between the slit centers to be less than the width of the slits. 
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10. (a) Increasing the wavelength, λ, will spread out the diffraction pattern, since the locations of the  
minima are given by sin θ = mλ/D. The interference pattern will also spread out; the 
interference maxima are given by sin θ = mλ/d. The number of interference fringes in the 
central diffraction maximum will not change. 

(b)  Increasing the slit separation, d, will decrease the spacing between the interference fringes  
without changing the diffraction, so more interference maxima will fit in the central maximum 
of the diffraction envelope. 

(c) Increasing the slit width, D, will decrease the angular width of the diffraction central maximum  
without changing the interference fringes, so fewer bright fringes will fit in the central 
maximum. 

 
11. Yes. As stated in Section 35-5, “It is not possible to resolve detail of objects smaller than the 

wavelength of the radiation being used.” 
 
12.  Yes. Diffraction effects will occur for both real and virtual images. 
 
13. A large mirror has better resolution and gathers more light than a small mirror.  
 
14.  No. The resolving power of a lens is on the order of the wavelength of the light being used, so it is 

not possible to resolve details smaller than the wavelength of the light. Atoms have diameters of 
about 10-8 cm and the wavelength of visible light is on the order of 10-5 cm. 

 
15. Violet light would give the best resolution in a microscope, because the wavelengths are shortest.  
 
16. Yes.  (See the introduction to Section 35-7.) The analysis for a diffraction grating of many slits is 

essentially the same as for Young’s double slit interference. However, the bright maxima of a 
multiple-slit grating are much sharper and narrower than those in a double-slit pattern. 

 
17. The answer depends on the slit spacing of the grating being used. If the spacing is small enough, 

only the first order will appear so there will not be any overlap. For wider slit spacing there can be 
overlap. If there is overlap, it will be the higher orders of the shorter wavelength light overlapping 
with lower orders of the longer wavelength light. See, for instance, Example 35-9, which shows the 
overlap of the third order blue light with the second order red light.  

 
18. The bright lines will coincide, but those for the grating will be much narrower with wider dark 

spaces in between. The grating will produce a much sharper pattern. 
 
19. (a) Violet light will be at the top of the rainbow created by the diffraction grating. Principal  

maxima for a diffraction grating are at positions given by sin
m

d


  . Violet light has a shorter 

wavelength than red light and so will appear at a smaller angle away from the direction of the 
horizontal incident beam. 

 (b) Red light will appear at the top of the rainbow created by the prism. The index of refraction for  
violet light in a given medium is slightly greater than for red light in the same medium, and so 
the violet light will bend more and will appear farther from the direction of the horizontal 
incident beam. 

 
20. The tiny peaks are produced when light from some but not all of the slits interferes constructively. 

The peaks are tiny because light from only some of the slits interferes constructively. 
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21. Polarization demonstrates the transverse wave nature of light, and cannot be explained if light is 
considered only as particles.  

 
22. Take the sunglasses outside and look up at the sky through them. Rotate the sunglasses (about an 

axis perpendicular to the lens) through at least 180. If the sky seems to lighten and darken as you 
rotate the sunglasses, then they are polarizing. You could also look at a liquid crystal display or 
reflections from the floor while rotating the glasses, or put one pair of glasses on top of the other and 
rotate them. If what you see through the glasses changes as you rotate them, then the glasses are 
polarizing. 

 
23. Black. If there were no atmosphere, there would be no scattering of the sunlight coming to Earth. 
 
 

Solutions to Problems 
 
1. We use Eq. 35-1 to calculate the angular distance from the middle of the central peak to the first 

minimum.  The width of the central peak is twice this angular distance. 

 

 

9
1 1

1 1 3

1

680 10 m
sin sin sin 1.067

0.0365 10 m

2 2 1.067 2.13

D D

  

 


 



             

     

 

  
2. The angle from the central maximum to the first dark fringe is equal to half the width of the central 

maximum.  Using this angle and Eq. 35-1, we calculate the wavelength used. 
 

   

1 1
1 2 2

3 4
1 1

32 16

sin sin 2.60 10  mm  sin 16 7.17 10  mm 717 nmD
D

 
    

     

        
 

 
3. The angle to the first maximum is about halfway between the angles to the first and second minima.  

We use Eq. 35-2 to calculate the angular distance to the first and second minima.  Then we average 
these to values to determine the approximate location of the first maximum.  Finally, using 
trigonometry, we set the linear distance equal to the distance to the screen multiplied by the tangent 
of the angle. 

  

   

1

9 9
1 1

1 26 6

1 2

1

sin sin

1 580 10  m 2 580 10  m
sin 8.678       sin 17.774  

3.8 10  m 3.8 10  m

8.678 17.774  
= 13.23

2 2

tan 10.0 m tan 13.23 2.35 m

m m

m
D m

D

y

  

 

 





 
 

 

     
 

      
            

   
  

   l

 

 
4. (a) We use Eq. 35-2, using m=1,2,3,… to calculate the possible diffraction minima, when the  

wavelength is 0.50 cm. 

1

1 1
1 2

sin sin

1 0.50 cm 2 0.50 cm
sin 18.2       sin 38.7

1.6 cm 1.6 cm

m m

m
D m

D

  

 



 

     
 

            
   
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1 1
3 4

3 0.50 cm 4 0.50 cm
sin 69.6       sin     no solution

1.6 cm 1.6 cm
             

   
 

  There are three diffraction minima:  18, 39, and 70. 
 (b) We repeat the process from part (a) using a wavelength of 1.0 cm. 

1 1
1 2

1 1.0 cm 2 1.0 cm
sin 38.7       sin =no real solution

1.6 cm 1.6 cm
            

   
 

  The only diffraction minima is at  39 
 (c) We repeat the process from part (a) using a wavelength of 3.0 cm. 

1
1

1 3.0 cm
sin no real solution

1.6 cm
     

 
 

  There are no diffraction minima. 
 
5. The path-length difference between the top and bottom of the 

slit for the incident wave is  D sin i.  The path-length 
difference between the top and bottom of the slit for the 
diffracted wave is  D sin .  When the net path-length difference 
is equal to a multiple of the wavelength, there will be an even 
number of segments of the wave having a path-length difference 
of /2. We set the path-length difference equal to m (an integer) 
times the wavelength and solve for the angle of the diffraction 
minimum. 

sin sin     

sin sin ,    1, 2, ...

i

i

D D m

m
m

D

  

 

  

    
    

From this equation we see that when  = 23.0°, the minima will be symmetrically distributed around 
a central maximum at 23.0 

 
6. The angle from the central maximum to the first bright maximum is half the angle between the first 

bright maxima on either side of the central maximum.  The angle to the first maximum is about 
halfway between the angles to the first and second minima.  We use Eq. 35-2, setting 3 2m  , to 
calculate the slit width, D.  

  

 
  

1 1
1 2 2

1

35 17.5

3 2 633 nm
sin 3157.6 nm 3.2 m

sin sin17.5m

m
D m D

 

  


     

     


 

 
7. We use the distance to the screen and half the width of the diffraction maximum to calculate the 

angular distance to the first minimum.  Then using this angle and Eq. 35-1 we calculate the slit 
width.  Then using the slit width and the new wavelength we calculate the angle to the first minimum 
and the width of the diffraction maximum. 

  

     1 1 1
1 11 12 2 2

1 1

1 1
1

1

0.06m
tan     tan tan 0.781

2.20m

580nm
sin     42,537nm

sin sin0.781

y y

D
D

 

 


   
     

    


l l
 

i



i

Slit, width aD
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   

1 12 2
2 2

2 2

460nm
sin     sin sin 0.620

42,537nm

2 tan 2 2.20m tan 0.620 0.0476m 4.8cm

D D

y

  



           
   

     l

 

 
8. (a) There will be no diffraction minima if the angle for the first minimum is greater than 90 .   We  

set the angle in Eq. 35-1 equal to 90 and solve for the slit width.  

   sin
sin 90

D
D

     


 

 (b) For no visible light to exhibit a diffraction minimum, the slit width must be equal to the shortest  
visible wavelength. 

    min 400 nm .D    
 
9. We set the angle to the first minimum equal to half of the separation angle between the dark bands.  

We insert this angle into Eq. 35-1 to solve for the slit width. 

  
 1 1

2 2 55.0 27.5

440nm
sin     953nm

sin sin 27.5
D

D

 
 



     

    


 

 
10. We find the angle to the first minimum using Eq. 35-1.  The distance on the screen from the central 

maximum is found using the distance to the screen and the tangent of the angle.  The width of the 
central maximum is twice the distance from the central maximum to the first minimum.   

 
 

9
1 1

1 1 3

1 1

1

450 10 m
sin     sin sin 0.02578

1.0 10 m

tan 5.0 m tan0.02578 0.00225 m

2 2 0.00225 m 0.0045 m 0.45 cm

D D

y

y y

  




 



             
   

    

l  

 
11. (a) For vertical diffraction we use the height of the slit (1.5 m) as the slit width in Eq. 35-1 to  

calculate the angle between the central maximum to the first minimum.  The angular separation 
of the first minima is equal to twice this angle. 

 

9
1 1

1 1 6

1

780 10 m
sin   sin sin 31.3

1.5 10 m

2 2 31.3 63

D D

  

 


 




     


     

 

 (b) To find the horizontal diffraction we use the width of the slit (3.0 m) in Eq. 35-1. 

 

9
1 1

1 1 6

1

780 10 m
sin   sin sin 15.07

3.0 10 m

2 2 15.07 30

D D

  

 


 




     


     

 

 
12. (a) If we consider the slit made up of N wavelets each of amplitude 0 ,E  the total amplitude at the  

central maximum, where they are all in phase, is 0.NE   Doubling the size of the slit doubles the 
number of wavelets and thus the total amplitude of the electric field.  Because the intensity is 
proportional to the square of the electric field amplitude, the intensity at the central maximum is 
increased by a factor of 4. 

 22 2
0 0 02 4 4I E E E I     
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 (b) From Eq. 35-1 we see that, for small angles, the width of the central maximum is inversely  
proportional to the slit width.  Therefore doubling the slit width will cut the area of the central 
peak in half.  Since the intensity is spread over only half the area, where the intensity is four 
times the initial intensity, the average intensity (or energy) over the central maximum has 
doubled.  This is true for all fringes, so when the slit width is doubled, allowing twice the 
energy to pass through the slit, the average energy within each slit will also double, in accord 
with the conservation of energy. 

 
13. We use Eq. 35-8 to calculate the intensity, where the angle   is found from the displacement from  

the central maximum (15 cm) and the distance to the screen. 

   

 

–1

6
9

2 2

0

15cm
tan   tan 31.0

25cm

2 2
sin 1.0 10 m sin 31.0 4.31rad

750 10 m

sin 4.31rad 2sin 2
0.1498 0.15

2 4.31rad 2

y

D

I

I

 

 
 









   

    


   

   
 

   
   
   

l

 

 So the light intensity at 15 cm is about 15% of the maximum intensity. 
 
14. (a) The secondary maxima do not occur precisely where  sin / 2  is a maximum, that is at  

1
2/ 2 ( )  where 1,2,3,...,m m     because the diffraction intensity (Eq. 35-7) is the ratio of 

the sine function and / 2 .  Near the maximum of the sine function, the denominator of the 
intensity function causes the intensity to decrease more rapidly than the sine function causes it 
to increase.  This results in the intensity reaching a maximum slightly before the sine function 
reaches its maximum. 

 (b) We set the derivative of Eq. 35-7 with respect to   equal to zero to determine the intensity  
extrema.   

   
       2

2

sin 2 sin 2 cos 2 sin 2
0   2

2 2 2o o

dI d
I I

d d

   
     

     
        

     
 

When the first term in brackets is zero, the intensity is a minimum, so the intensity is a 
maximum when the second term in brackets is zero. 

   
     2

cos 2 sin 2
0 2 tan 2

2

 
 

 
     

 (c) The first and secondary  
maxima are found where 
these two curves intersect, 

or 1 8.987  and 

2 15.451.    We 

calculate the percent 
difference between these 
and the maxima of the sine 
curve, 1 3   and 

2 5 .    
       

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16
beta

y

y = beta/2

y = tan(beta/2)
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1 1

11

2

8.987 3
0.0464 4.64%

3

15.451 5
0.0164 1.64%

5

  
  

 
 

 
     



 
    

 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH35.XLS,” on tab “Problem 35.14.” 

 
15. If the central diffraction peak contains nine fringes, there will be four fringes on each side of the 

central peak.  Thus the fifth maximum of the double slit must coincide with the first minimum of the 
diffraction pattern.  We use Eq. 34-2a with m = 5 to find the angle of the fifth interference maximum 
and set that angle equal to the first diffraction minimum, given by Eq. 35-1, to solve for the ratio of 
the slit separation to slit width. 

  
5 5

sin   sin   ;  sin   5d m d D
d D d

             

 
16. (a) If the central diffraction peak is to contain seventeen fringes, there will be eight fringes on each  

side of the central peak.  Thus, the ninth minimum of the double slit must coincide with the first 
minimum of the diffraction pattern.  We use Eq. 34-2b with m = 8 to find the angle of the ninth 
interference minimum and set that angle equal to the first diffraction minimum, given by Eq. 
35-1, to solve for the ratio of the slit separation to slit width. 

   
   1

21
2

8 8.5
sin   sin

8.5
sin   8.5

d m
d d

d D
D d

   

 


    

   
 

Therefore, for the first diffraction minimum to be at the ninth interference minimum, the 
separation of slits should be 8.5 times the slit width. 

 (b) If the first diffraction minimum is to occur at the ninth interference maximum, we use Eq. 34-2a  
with m = 9 to find the angle of the ninth interference maximum and set that angle equal to the 
first diffraction minimum, given by Eq. 35-1, to solve for the ratio of the slit separation to slit 
width. 

   
9 9 9

sin   sin   ;  sin   9d m d D
d d D d

               

Therefore, for the first diffraction minimum to be at the ninth interference maximum, the 
separation of slits should be 9 times the slit width. 

 
17. Given light with 605 nm   passing through double slits with separation 0.120 mmd  , we use Eq. 

34-2a to find the highest integer m  value for the interference fringe that occurs before the angle 
o90  .    

  
 –3

–9

0.120 10 m sin90
sin     198

605 10 m
d m m 

 
   


 

So, including the 0m   fringe, and the symmetric pattern of interference fringes on each side of 
0  , there are potentially a total of 198 198 1 397    fringes. However, since slits have width 
0.040 mm,a   the potential interference fringes that coincide with the slits’ diffraction minima will 

be absent. Let the diffraction minima be indexed by 1, 2, 3, etc.m   We then set the diffraction 
angles in Eq. 34-2a and Eq. 35-2 equal to solve for the m values of the absent fringes. 
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0.120 mm

sin     3    3
0.040 mm

m m m d
m m

D d m D

 


       


 

Using 1, 2, 3, etc.m  , the 66 interference fringes on each side of 0   with ,1983, 6, 9, ...m   will 

be absent.  Thus the number of fringes on the screen is  397 – 2 66 265 . 

 
18. In a double-slit experiment, if the central diffraction peak contains 13 interference fringes, there is 

the 0m   fringe, along with fringes up to 6m   on each side of 0  . Then, at angle  , the 7m   
interference fringe coincides with the first diffraction minima.  We set this angle in Eq. 34-2a and 
35-2 equal to solve for the relationship between the slit width and separation. 

  1

7
sin     7    7

1

m m d m
d D

D d D m

 


       


 

 Now, we use these equations again to find the m value at the second diffraction minimum, 0.m   

  2

7
sin     2 14

m m d D
m m

D d D D

 


       

Thus, the six fringes corresponding to 8m   to 13m   will occur within the first and second 
diffraction minima.  

 
19. (a) The angle to each of the maxima of the double slit are given by Eq. 34-2a.  The distance of a  

fringe on the screen from the center of the pattern is equal to the distance between the slit and 
screen multiplied by the tangent of the angle.  For small angles, we can set the tangent equal to 
the sine of the angle.  The slit spacing is found by subtracting the distance between two adjacent 
fringes. 

    9

1 3

sin         tan sin  

1.0m 580 10 m1
0.019m 1.9cm

0.030 10 m

m m m m

m m

m m
y

d d

m m
y y y

d d d

   

  


 

   


        



l l l

l
l l

 

 (b) We use Eq. 35-1 to determine the angle between the center and the first minimum.  Then by  
multiplying the distance to the screen by the tangent of the angle we find the distance from the 
center to the first minima.  The distance between the two first order diffraction minima is twice 
the distance from the center to one of the minima. 

    
 

9
1 1

1 1 3

1 1

1

580 10 m
sin   sin sin 3.325

0.010 10 m
 tan 1.0m tan3.325 0.0581 m

2 2 0.0581m 0.116m 12cm

D D
y

y y

  




 




     


   

    

l  

 
20. We set d D  in Eqs. 34-4 and 35-6 to show   .  Replacing   with  in Eq. 35-9, and using the  

double angle formula we show that Eq. 35-9 reduces to Eq. 35-7, with 2   .  Finally using Eq. 

35-6 again, we show that 2    implies that the new slit width D  is simply double the initial slit 
width. 

     
 

 
 

2 22 2 1
42

0 0 02 2

2 2
sin sin

sin 2 2sin 2 cos 2sin 2
cos 2

2 2 2

d D

I I I I

    
 

  
  

  

       
 
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 
 

22

0 0 22

sin 2sin
    ,   where 2 .

2

2 2
sin 2 sin   2

I I

D D D D

  
 

   
 


  



       
 

 

 
21. Using Eq. 34-2a we determine the angle at which the third-order interference maximum occurs.  

Then we use Eq. 35-9 to determine the ratio of the intensity of the third-order maximum, where  is 
given by Eq. 35-6 and  is given by Eq. 34-4. 

1 1 3
sin sin sin 4.301

40.0

m
d m

d

   


            
   

 

   

   

40.0 52
sin  sin 4.301 1.885 rad

2 2
40.02

sin  sin 4.301 9.424 rad
2 2

D

d

   
 

   
 

   

   

 

     
2 22

2sin 2 sin 1.885 rad
   cos cos 9.424 0.255

2 2 1.885 rado o oI I I I
 


                     

 

 
22. We use Eq. 34-2a to determine the order of the double slit maximum that corresponds to the same 

angle as the first order single slit minimum, from Eq. 35-1.  Since this double slit maximum is 
darkened, inside the central diffraction peak, there will be the zeroth order fringe and on either side 
of the central peak a number of maximum equal to one less than the double slit order.  Therefore, 
there will be 2(m – 1)+1, or 2m – 1 fringes.   

sin
sin       ;  2 1 2 1

d d d d
d m m N m

D D D

  
 

          
 

 

 (a)  We first set the slit separation equal to twice the slit width, d = 2.00 D. 

   
2.00

2 1 3
D

N
D

    

 (b)  Next we set d = 12.0 D. 
12.00

2 1 23
D

N
D

    

 (c) For the previous two parts, the ratio of slits had been an integer value.  This corresponded to the  
single slit minimum overlapping the double slit maximum.  Now that d = 4.50 D, the single slit 
minimum overlaps a double slit minimum.  Therefore, the last order maximum, m = 4, is not 
darkened and N = 2m + 1. 

2 1 2(4) 1 9N m      
 (d) In this case the ratio of the slit separation to slit width is not an integer, nor a half-integer value.   

The first order single-slit minimum falls between the seventh order maximum and the seventh 
order minimum.  Therefore, the seventh order maximum will partially be seen as a fringe. 

2 1 2(7) 1 15N m      
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23. (a) If D  , the central maximum of the diffraction pattern will be very  
wide.  Thus we need consider only the interference between slits.  We 

construct a phasor diagram for the interference, with 
2

sind
 


  as 

the phase difference between adjacent slits.  The magnitude of the 
electric fields of the slits will have the same magnitude, 10 20E E  

30 0.E E    From the symmetry of the phasor diagram we see that 

.    Adding the three electric field vectors yields the net electric 
field. 

 0 10 20 30 0cos cos 1 2cosE E E E E          

The central peak intensity occurs when  = 0.  We set the intensity proportional to the square of 
the electric field and calculate the ratio of the intensities. 

 
 

 2 222
00

22 2
0 00 0

1 2cos 1 2cos

91 2cos0

EI E

I E E
    
  


 

  (b) We find the locations of the maxima and minima by setting the first derivative of the intensity  
equal to zero. 

    20 02
1 2cos 1 2cos 2sin 0

9 9

dI I Id

d d
   
 
       

This equation is satisfied when either of the terms in parentheses is equal to zero.  When 
1 2cos 0,  the intensity equals zero and is a minimum. 

 1 1
2

2 4 8 10
1 2cos 0 cos , , , ,...

3 3 3 3

            

Maxima occur for sin 0,   which also says cos 1.      
1sin 0 sin 0 0, ,2 ,3 ,...         

When cos 1,   the intensity is a principal maximum.  When cos 1,    the intensity is a 
secondary maximum.   

   

    

   

2 2

0 0 0

22

0
0 0

2 2

0 0 0

1 2cos 1 2cos0
(0)

9 9

1 2 11 2cos
( )

9 9 9

1 2cos2 1 2
(2 )

9 9

I I I I

I
I I I

I I I I















 
  

 
  

 
  

 

Thus we see that, since cos  alternates between +1 and –1, there is only a single secondary 
maximum between each principal maximum.  

 
24. The angular resolution is given by Eq. 35-10. 

  
9

7
2

560 10  m 180 3600"
1.22 1.22 2.69 10  rad 0.055"

254 10  m  rad 1D









            


 
25. The angular resolution is given by Eq. 35-10.  The distance between the stars is the angular 

resolution times the distance to the stars from the Earth. 

  

   
 

15
9

11

9.46 10 m
16ly 550 10 m

1ly
1.22   ;  1.22 1.22 1.5 10 m

0.66m

r
r

D D

  

 
 

      l   





10E

20E

30E

0E
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26. We find the angle   subtended by the planet by dividing the orbital radius by the distance of the star 
to the earth.  Then using Eq. 35-10 we calculate the minimum diameter aperture needed to resolve 
this angle. 

   
  

9 15

11

1.22
  

1.22 550 10 m 4ly 9.461 10 m/ly1.22
0.17m 20cm

1AU 1.496 10 m/AU

r

d D

d
D

r






  

 
   



 

 
27. We find the angular half-width of the flashlight beam using Eq. 35-10 with 5 cmD  and 

550 nm.    We set the diameter of the beam equal to twice the radius, where the radius of the 

beam is equal to the angular half-width multiplied by the distance traveled, 83.84 10 m.  

 

    

–9

–5

8 –5 4

1.22 550 10 m1.22
1.3 10 rad

0.050 m

2 2 3.84 10 m 1.3 10 rad 1.0 10 m

D

d r






   

     

 

 
28. To find the focal length of the eyepiece we use Eq. 33-7, where the objective focal length is 2.00 m, 

’ is the ratio of the minimum resolved distance and 25 cm, and   is the ratio of the object on the 
moon and the distance to the moon.  We ignore the inversion of the image. 

 
     

 
7.5 km 384,000 km

2.0 m 0.098 m 9.8 cm
0.10 mm 250 mm

oo
e o o

e

df
f f f

f d N

 
 


      


l
 

 We use Eq. 35-10 to determine the resolution limit. 
9

6560 10  m
1.22 1.22 6.2 10  rad

0.11 mD





     

This corresponds to a minimum resolution distance,   6384,000km 6.2 10 rad 2.4kmr    , 

which is smaller than the 7.5 km object we wish to observe. 
 
29. We set the resolving power as the focal length of the lens multiplied by the angular resolution, as in 

Eq. 35-11.  The resolution is the inverse of the resolving power. 

  
  

  

1

6

6

1 1.22 25 mm
730 lines/mm

( / 2) 1.22 1.22 560 10 mm 50.0 mm

1 3.0 mm
88 lines/mm

( /16) 1.22 560 10 mm 50.0 mm

f D

RP f D f

RP f










       

 


 

 
30. We use Eq. 35-13 to calculate the angle for the second order maximum. 

 9

1 1
5

2 480 10  m
sin sin sin 4.1

1.35 10  m

m
d m

d

  


 


               
   

 
31. We use Eq. 35-13 to calculate the wavelengths from the given angles.  The slit separation, d, is the 

inverse of the number of lines per cm, N.  We assume that 12,000 is good to 3 significant figures. 
sin

sind m
Nm

      



Chapter 35   Diffraction and Polarization 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

413 

5 5
1 2

sin 28.8 sin36.7
4.01 10  cm 401 nm        4.98 10  cm 498 nm

12,000 /cm 12,000 /cm
   
         

5 5
3 4

sin38.6 sin 47.9
5.201 10  cm 520 nm      6.18 10  cm 618 nm

12,000 /cm 12,000 /cm
   

         

 
32. We use Eq. 35-13 to find the wavelength, where the number of lines, N, is the inverse of the slit 

separation, or d=1/N. 

  
 

5sin sin 26.0
sin 4.17 10 cm 420nm

3 3500 /cm
d m

mN

   
        

 
33. Because the angle increases with wavelength, to have a complete order we use the largest 

wavelength.  We set the maximum angle is 90° to determine the largest integer m in Eq. 35-13. 

   9

sin sin 90
sin 2.1

700 10  m 6800 /cm 100 cm/m
d m m

N

 
 


    


 

Thus, two full spectral orders can be seen on each side of the central maximum, and a portion of the 
third order. 

 
34. We find the slit separation from Eq. 35-13.  Then set the number of lines per centimeter equal to the 

inverse of the slit separation, N=1/d.  

   7

1 sin sin15.0
sin 1300lines cm

3 650 10 cm
d m N

d m

 
 


     


  

 
35. Since the same diffraction grating is being used for both wavelengths of light, the slit separation will 

be the same.  We solve Eq. 35-13 for the slit separation for both wavelengths and set the two 
equations equal.   The resulting equation is then solved for the unknown wavelength. 

 1 1 2 2 1 2
2 1

1 2 2 1

sin 2 sin 20.6
sin 632.8nm 556nm

sin sin sin 1 sin53.2

m m m
d m d

m

     
  


       


 

 
36. We find the first order angles for the maximum and minimum wavelengths using Eq. 35-13, where 

the slit separation distance is the inverse of the number of lines per centimeter.  Then we set the 
distance from the central maximum of the maximum and minimum wavelength equal to the distance 
to the screen multiplied by the tangent of the first order angle.  The width of the spectrum is the 
difference in these distances. 

  

 

  

  

    

1 1

1 7
1

1 7
2

2 1 2 1

sin sin sin

sin 410 10 cm 7800 lines/cm 18.65

sin 750 10 cm 7800 lines/cm 35.80

tan tan 2.80 m tan35.80 tan18.65 1.1m

m
d m m N

d

y y y

   





 

 

 

 

     
 

     
     

         l

 

 
37. We find the second order angles for the maximum and minimum wavelengths using Eq. 35-13, 

where the slit separation distance is the inverse of the number of lines per centimeter.  Subtracting 
these two angles gives the angular width. 

   1 1sin sin sin
m

d m m N
d

         
 
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    1 7 5
1 sin 2 4.5 10  m 6.0 10  /m 32.7          

  
  1 7 5

2

2 1

sin 2 7.0 10  m 6.0 10  /m 57.1

57.1 32.7 24



  

       

        
  

 
38. The 1m   brightness maximum for the wavelength of 1200 nm occurs at angle  .  At this same 

angle 2m  , 3m  , etc. brightness maximum will form for other wavelengths.  To find these 
wavelengths, we use Eq. 35-13, where the right hand side of the equation remains constant, and 
solve for the wavelengths of higher order. 

  

1 1 1
1 1

2 3 4

sin

1200 nm 1200 nm 1200 nm
600 nm        400 nm     300 nm

2 3 4

m m

m
d m m

m m

    

  

    

     
 

Higher order maxima will have shorter wavelengths.  Therefore in the range 360 nm to 2000 nm, the 
only wavelengths that have a maxima at the angle   are 600 nm and 400 nm besides the 1200 nm. 

 
39. Because the angle increases with wavelength, we compare the maximum angle for the second order 

with the minimum angle for the third order, using Eq. 35-13, by calculating the ratio of the sines for 
each angle.  Since this ratio is greater than one, the maximum angle for the second order is larger 
than the minimum angle for the first order and the spectra overlap. 

  
 
 

2 2 2

3 3 3

2 700 nmsin 2 / 2
sin     sin   ;  1.2

sin 3 / 3 3 400 nm

m d
d m

d d

     
  

        
 

 

To determine which wavelengths overlap, we set this ratio of sines equal to one and solve for the 
second order wavelength that overlaps with the shortest wavelength of the third order.  We then 
repeat this process to find the wavelength of the third order that overlaps with the longest wavelength 
of the second order. 

 

 

2 2 2
3 2,max

3 3 3

2 3,min

sin 2 / 2 2 2
1     700 nm 467 nm

sin 3 / 3 3 3

3 3
                                            400 nm 600 nm

2 2

d

d

    
  

 

      

   
 

Therefore, the wavelengths 600 nm – 700 nm of the second order overlap with the wavelengths 400 
nm – 467 nm of the third order.   Note that these wavelengths are independent of the slit spacing. 

 
40. We set the diffraction angles as one half the difference between the angles on opposite sides of the 

center.  Then we solve Eq. 35-13 for the wavelength, with d equal to the inverse of the number of 
lines per centimeter. 

 

 

1

5
1

2 2
2

5
2

26 38 26 18
26 28 26 28/ 60 26.47

2 2
sin sin 26.47

sin 4.618 10  cm 462 nm
9650 line/cm

41 02 40 27
40 44.5 40 44.5/ 60 40.742

2 2
sin 40.742

6.763 10  cm
9650 line/cm

r

r

d
N

 

 

 







            


     

            


   

l

l

676 nm
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41. If the spectrometer were immersed in water, the wavelengths calculated in Problem 40 would be 
wavelengths in water.  To change those wavelengths into wavelengths in air, we must multiply by 
the index of refraction. 

       5 5
1 2
air air

4.618 10 cm 1.33 614nm   ;  6.763 10 cm 1.33 899nm         

 Note that the second wavelength is not in the visible range. 
 
42. We solve Eq. 35-13 for the slit separation width, d, using the given information.  Then setting m=3, 

we solve for the angle of the third order maximum. 

  

 

1 1
3

1 589nm
sin     2074nm 2.07 m

sin sin16.5

3 589nm
sin sin 58.4

2074nm

m m
d

d

m

d

  


  

     


       
   

 

 
43. We find the angle for each “boundary” color from Eq. 35-13, and then use the fact that the 

displacement on the screen is given by tan ,
y

L
   where y is the displacement on the screen from the 

central maximum, and L is the distance from the grating to the screen. 

   5 1
3

1 1m
sin   ;  1 6.1 10 m  ;  tan tan sin

610lines mm 10 mm

m m
d y L L

d d

                 
 

  

 
  
 

  
 

1 1red violet
1

9 9

1 1

5 5

1 1red violet
2

tan sin tan sin

1 700 10 m 1 400 10 m
0.32m tan sin tan sin

1 6.1 10 m 1 6.1 10 m

0.0706m 7cm

tan sin tan sin

0.

m m
L L

d d

m m
L L

d d

 

 

 

 
 

 

          
           

         

 

          



l

l

 
  
 

  
 

9 9

1 1

5 5

2 700 10 m 2 400 10 m
32m tan sin tan sin

1 6.1 10 m 1 6.1 10 m

0.3464m 35cm

 
 

          
         

 

 

 The second order rainbow is dispersed over a larger distance. 
 
44. (a) Missing orders occur when the angle to the interference maxima (Eq. 34-2a) is equal to the  

angle of a diffraction minimum (Eq. 35-2).  We set 2d D  and show that the even interference 
orders are missing. 

   1 2 1
1 2

2

2
sin     2    2

m m m d D
m m

d D m D D

           

Since 2 1,2,3,4, ...,m   all even orders of m1 correspond to the diffraction minima and will be 
missing from the interference pattern.    

 (b) Setting the angle of interference maxima equal to the angle of diffraction minimum, with the  
orders equal to integers we determine the relationship between the slit size and separation that 
will produce missing orders. 
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   1 2 1

2

sin     
m m d m

d D D m

       

 (c) When d D , all interference maxima will overlap with diffraction minima so that no fringes  
will exist.  This is expected because if the slit width and separation distance are the same, the 
slits will merge into one single opening. 

 
45. (a) Diffraction maxima occur at angles for which the incident  

light constructive interferes.  That is, when the path length 
difference between two rays is equal to an integer number of 
wavelengths.  Since the light is incident at an angle  
relative to the grating, each succeeding higher ray, as shown 
in the diagram, travels a distance 1 sind  l  farther to 
reach the grating.  After passing through the grating the 
higher rays travel a distance to the screen that is again longer 
by 2 sind  l .  By setting the total path length difference 
equal to an integer number of wavelengths, we are able to 
determine the location of the bright fringes. 

     1 1 sin sin ,      0,1,2,....d m m           l l l  

 (b) The  allows for the incident angle and the diffracted angle to have positive and negative  
values. 

 (c) We insert the given data, with m=1, to solve for the angles . 

   
9

1 1 550 10 m
  sin sin sin sin15 0.93  and 32

0.01m 5000lines

m

d

 


                
   



 
46. Using Eq. 35-13 we calculate the maximum order possible for this diffraction grating, by setting the 

angle equal to 90.  Then we set the resolving power equal to the product of the number of grating 
lines and the order, where the resolving power is the wavelength divided by the minimum separation 
in wavelengths (Eq. 35-19) and solve for the separation. 

  
 

9

0.01m 6500lines sin90sin
sin     2.47 2

624 10 m

m d
m

d

 
 


     


 

  
   

624 nm
  0.015 nm

6500 lines/cm 3.18 cm 2
Nm

Nm

 

     


 

The resolution is best for the second order, since it is more spread out than the first order. 
 
47.   (a) The resolving power is given by Eq. 35-19. 

        1 1R     R 16,000 1 16,000   ;  R 16,000 2 32,000Nm       

 (b) The wavelength resolution is also given by Eq. 35-19. 

   

     
2 2

1 1

R     

410nm 410nm
2.6 10 nm 26pm   ;  1.3 10 nm 13pm

16,000 1 32,000 1

Nm
Nm

 


  

    


         
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48. (a) We use Eq. 35-13, with the angle equal to 90 to determine the maximum order.   

   
 1050nm sin90sin

sin     1.81
580nm

m d
m

d

 



      

Since the order must be an integer number there will only be one principal maximum on either 
side of the central maximum.  Counting the central maximum and the two other principal 
maxima there will be a total of three principal maxima.  

 (b) We use Eq. 35-17 to calculate the peak width, where the full peak width is double the half-peak  
width and the angle to the peak is given by Eq. 35-13. 

   

 
 

 
   

0

5
0 2

0 0

1 1
1

5
1 2

1

0

2 580nm2
2 6.4 10 rad 0.0037

cos cos 1.80 10 m cos0

1 580nm
sin sin 33.5

1050nm

2 580nm2
7.7 10 rad 0.0044

cos 1.80 10 m cos 33.5

Nd

m

d



 
 









 



 





       
 

         
   

      
  

l

l

 

 
49. We use Eq. 35-20, with m = 1. 

  
  
 

1 1 1 0.138nm
2 sin     sin sin 14.0

2 2 0.285nm

m
m d

d

           

 
50. We use Eq. 35-20 for X-ray diffraction. 
 (a) Apply Eq. 35-20 to both orders of diffraction. 

   1 11 1 2
2 1

2 2 1

sin 2
2 sin         sin sin sin sin 26.8 64.4

sin 1

m m
m d

m m

   


               
  

 (b) Use the first order data. 

   
 2 0.24nm sin 26.82 sin

2 sin     0.22nm
1

d
m d

m

  


      

 
51. For each diffraction peak, we can measure the angle and count the order.  Consider Eq. 35-20. 
  1 2 32 sin     2 sin   ;  2 2 sin   ;  3 2 sinm d d d d             

From each equation, all we can find is the ratio 2
2 332sin sin sin

d

      .  No, we cannot 

separately determine the wavelength or the spacing.  
 
52. Use Eq. 35-21.  Since the initial light is unpolarized, the intensity after the first polarizer will be half 

the initial intensity.  Let the initial intensity be 0.I  

  
2

2 2 21 1
1 0 2 1 02 2

0

cos 65
  ;  cos cos     0.089

2

I
I I I I I

I
  

       

 
53. If 0I  is the intensity passed by the first Polaroid, the intensity passed by the second will be 0I  when 

the two axes are parallel.  To calculate a reduction to half intensity, we use Eq. 35-21. 
  2 21 1

0 02 2cos     cos     45I I I          
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54. We assume that the light is coming from air to glass, and use Eq. 35-22b. 

  1
p glass ptan 1.58    tan 1.58 57.7n         

 
55. The light is traveling from water to diamond.  We use Eq. 35-22a. 

   1diamond
p p

water

2.42
tan 1.82    tan 1.82 61.2

1.33

n

n
           

 
56. The critical angle exists when light passes from a material with a higher index of refraction  1n  into 

a material with a lower index of refraction  2 .n   Use Eq. 32-7. 

   2
C

1

sin sin55
n

n
    

 To find the Brewster angle, use Eq. 35-22a.  If light is passing from high index to low index, we 
have the following. 

   12
p p

1

tan sin55     tan sin55 39
n

n
           

 If light is passing from low index to high index, we have the following. 

  11
p p

2

1 1
tan     tan 51

sin55 sin55

n

n
            

 

 
57. Let the initial intensity of the unpolarized light be 0.I   The intensity after passing through the first 

Polaroid will be 1
1 02 .I I   Then use Eq. 35-21. 

  2 2 1 21
2 1 02

0

2
cos cos     cos

I
I I I

I
        

 (a) 1 12

0

2 2
cos cos 35.3

3

I

I
       

 (b) 1 12

0

2 2
cos cos 63.4

10

I

I
       

 
58. For the first transmission, the angle between the light and the polarizer is 18.0 .   For the second 

transmission, the angle between the light and the polarizer is 36.0 .   Use Eq. 35-21 twice. 
  2 2 2 2

1 0 2 1 0 0cos 18.0   ;  cos 36.0 cos 18.0 cos 36.0 0.592I I I I I I         

 Thus the transmitted intensity is 59.2% of the incoming intensity. 
 
59. First case:  the light is coming from water to air.  Use Eq. 35-22a. 

  1 1air air
p p

water water

1.00
tan     tan tan 36.9

1.33

n n

n n
          

 Second case:  for total internal reflection, the light must also be coming from water into air.  Use Eq. 
32-7. 

   1 1air air
C p

water water

1.00
sin     sin sin 48.8

1.33

n n

n n
          

  Third case:  the light is coming from air to water.  Use Eq. 35-22b. 

   1 1
p water p watertan     tan tan 1.33 53.1n n          

  Note that the two Brewster’s angles add to give 90.0 .  



Chapter 35   Diffraction and Polarization 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

419 

60. When plane-polarized light passes through a sheet oriented at an angle , the intensity decreases 

according to Eq. 35-21, 2
0 cos .I I    For 45 ,   2 1

2cos .    Thus sheets 2 through 6 will each 

reduce the intensity by a factor of 1
2 .   The first sheet reduces the intensity of the unpolarized incident 

light by 1
2  as well.  Thus we have the following. 

    61
0 02 0.016I I I   

 
61. We assume vertically polarized light of intensity 0I  is incident upon the first polarizer.  The angle 

between the polarization direction and the polarizer is  .   After the light passes that first polarizer, 
the angle between that light and the next polarizer will be  90 .   Apply Eq. 35-21. 

     2 2 2 2 2 2
1 0 1 0 0cos   ;  cos 90 cos cos 90 cos sinI I I I I I              

We can also use the trigonometric identity 1
2sin cos sin 2    to write the final intensity as 

2 2 21
0 04cos sin sin 2 .I I I     

 
    21 1 1

0 0 0 04 4 2

1
02

sin 2 2sin 2 cos2 2 sin 2 cos2 sin 4

sin 4 0    4 , 360     0,45 ,90

dI d
I I I I

d d
I

     
 

  

   

         
 

Substituting the three angles back into the intensity equation, we see that the angles 0 and 90  both 
give minimum intensity.  The angle 45 gives the maximum intensity of 1

04 .I  

 
62. We set the intensity of the beam as the sum of the maximum and minimum intensities.  Using Eq. 

35-21, we determine the intensity of the beam after it has passed through the polarizer.  Since Imin is 
polarized perpendicular to Imax and the polarizer is rotated at an angle  from the polarization of Imax, 
the polarizer is oriented at an angle of  90   from Imin. 

  
 

0 max min

2 2 2 2 2
0 max min max mincos cos cos 90 cos sin

I I I

I I I I I I    

 

     
 

 We solve the percent polarization equation for Imin and insert the result into our intensity equation. 

  max min
min max

max min

1
    

1

I I p
p I I

I I p

 
  

 
 

  

   

   

2 2
2 2

max max max

2 2 2 2

max max

1 cos 1 sin1
cos sin

1 1

cos sin cos sin 1 cos2

1 1

p pp
I I I I

p p

p p
I I

p p

 
 

    

    
         

              

 

 
63. Because the width of the pattern is much smaller than the distance to the screen, the angles from the 

diffraction pattern for this first order will be small.  Thus we may make the approximation that 
sin tan .    We find the angle to the first minimum from the distances, using half the width of the 
full first order pattern.  Then we use Eq. 35-2 to find the slit width. 

   

 
 

  

1
1min 1min2

4 5

8.20cm
tan 0.01439 sin

285cm

1 415nm
sin     2.88 10 nm 2.88 10 m

sin 0.01439

m
D m D

 

 




  

       
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64. If the original intensity is 0 ,I  the first polarizers will reduce the intensity to one half the initial 

intensity, or 1
1 02 .I I Each subsequent polarizer oriented at an angle   to the preceding one will 

reduce the intensity by 2cos  , as given by Eq. 35-21.  We set the final intensity equal to one quarter 
of the initial intensity, with 10    for each polarizer and solve for the minimum number of 
polarizers. 

   
 

 
 

1 021
02 2 2

ln 2 ln 2 0.25
cos   1 1 23.6 24 polarizers

ln cos ln cos 10

n I I
I I n


 

       


 

We round the number of lenses up to the integer number of polarizers, so that the intensity will be 
less than 25% of the initial intensity. 

 
65. The lines act like a grating.  We assume that we see the first diffractive order, so m = 1.  Use Eq. 35-

13. 

  
  1 480nm

sin     580nm
sin sin56

m
d m d

 


    


 

 
66. We assume the sound is diffracted when it passes through the doorway, and find the angles of the 

minima from Eq. 35-2. 

  

  
  
  

  
  

  

1

1 1

1 1

1 1 1

  ;  sin     sin , 1, 2, 3, ...

1 340m s
1:  sin sin 27

0.88m 850Hz

2 340m s
2 :  sin sin 65

0.88m 850Hz

3 340m s
3:  sin sin sin 1.36 impossible

0.88m 850Hz

v mv mv
D m m

f f Df

mv
m

Df

mv
m

Df

mv
m

Df

   









 

 

  

     

    

    

    

 

 Thus the whistle would not be heard clearly at angles of  27° and 65° on either side of the normal.  
 
67. We find the angles for the first order from Eq. 35-13. 

  

  

7

1 1
1

7

1
2

1 4.4 10  m
sin sin 19.5

0.01 m 7600

1 6.8 10  m
sin 31.1

0.01 m 7600

m

d






 





   


  

 

 The distances from the central white line on the screen are found using the tangent of the angle and 
the distance to the screen. 

 
 

1 1

2 2

tan 2.5m tan19.5 0.89m

tan 2.5m tan 31.1 1.51m

y L

y L





   

   
 

 Subtracting these two distances gives the linear separation of the two lines. 

  2 1 1.51m 0.89m 0.6my y     
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68. Because the angle increases with wavelength, to miss a complete order we use the smallest visible 
wavelength, 400 nm.  The maximum angle is 90°.  With these parameters we use Eq. 35-13 to find 
the slit separation, d.  The inverse of the slit separation gives the number of lines per unit length. 

  

 

7

2 400nm
sin     800nm

sin sin90
1 1

12,500lines/cm
800 10 cm

m
d m d

d

 




    


 


 

 
69. We find the angles for the two first-order peaks from the distance to the screen and the distances 

along the screen to the maxima from the central peak. 

  

 
 
 
 

1 11 1
1 1

1 12 2
2 2

3.32cm
tan     tan tan 2.88

66.0cm

3.71cm
tan     tan tan 3.22

66.0cm

y y

y y

 

 

 

 

     

     

l l

l l

 

Inserting the wavelength of yellow sodium light and the first order angle into Eq. 35-13, we calculate 
the separation of lines.  Then, using the separation of lines and the second angle, we calculate the 
wavelength of the second source.  Finally, we take the inverse of the line separation to determine the 
number of lines per centimeter on the grating. 

 

 

1
1 1

1

1
2

7

1 589 nm
sin     11,720nm

sin sin 2.88

sin
11,720nm sin3.22 658nm

1 1 line
853lines/cm

11,720 10 cm

m
d m d

d

m

d

 






    


   

 


 

 
70. We find the angles for the first order from Eq. 35-13, with m = 1.  The slit spacing is the inverse of 

the lines/cm of the grating. 

  

1
5

9 9
1 1 1 11 2

5 5

1 1m 1
m  ;  sin     sin     

8100lines cm 100cm 8.1 10

656 10 m 410 10 m
sin sin sin sin 13

1 1
m m

8.1 10 8.1 10

m
d d m

d

d d

  

 



 
   

      


 
      

   
       

 

 
71. (a) This is very similar to Example 35-6.  We use the same notation as in that Example, and solve  

for the distance l. 

  
 

3

4

9

6.0 10 m 2.0m1.22
    1.8 10 m 18km

1.22 1.22 560 10 m

Ds
s

D









       


l l l  

 (b) We use the same data for the eye and the wavelength. 

   
 

 
9

4

3

1.22 560 10 m1.22 180 3600
1.139 10 rad 23

rad 16.0 10 mD









              
 

  Our answer is less than the real resolution, because of atmospheric effects and aberrations in the  
eye. 
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72. We first find the angular half-width for the first order, using Eq. 35-1, sin .
D

    Since this angle is 

small, we may use the approximation that sin tan .    The width from the central maximum to the 
first minimum is given by tan .y L    That width is then doubled to find the width of the beam, 
from the first diffraction minimum on one side to the first diffraction minimum on the other side. 

    8 9

4

tan sin

2 3.8 10 m 633 10 m
2 2 sin 2 4.8 10 m

0.010m

y L L

y y L L
D

 




 

 
      

 

 
73. The distance between lines on the diffraction grating is found by solving Eq. 35-13 for d, the grating 

spacing.  The number of lines per meter is the reciprocal of d. 

 
5

7

1 sin sin 21.5
    5.79 10 lines m

sin 1 6.328 10 m

m
d

d m

 
  


     


 

 
74. (a) We calculate the wavelength of the mother’s sound by dividing the speed of sound by the  

frequency of her voice.  We use Eq. 34-2b to determine the double slit interference minima with 
3.0 m.d   

      340 m s 400 Hz 0.85 mv f     

   

    
   

1 1
–1 –1 12 2 1

2

0.85 m
sin sin sin 0.2833 ,  0,1,2,...

3.0 m

8.1 ,  25 ,  45 ,  and 83

m m
m m

d


    
         

   

    

 

We use Eq. 35-2 to determine the angles for destructive interference from single slit diffraction, 
with 1.0 m.D   

   

 
   –1 –1 10.85 m

sin sin sin 0.85 ,  1,2,...
1.0 m

58

mm
m m

D





          

 

 

 (b) We use the depth and length of the room to determine the angle the sound would need to travel  
to reach the son. 

   1 8.0 m
tan 58

5.0 m
      

 
 

This angle is close to the single slit diffraction minimum, so the son has a good explanation for 
not hearing her. 

 
75. We use the Brewster angle, Eq. 35-22b, for light coming from air to water. 
  1 1

p ptan     tan tan 1.33 53.1n n          

 This is the angle from the normal, as seen in Fig. 35-41, so the angle above the horizontal is the 

complement of 90.0 53.1 36.9 .      
 
76. (a) Let the initial unpolarized intensity be 0.I   The intensity of the polarized light after passing the  

first polarizer is 1
1 02 .I I   Apply Eq. 35-21 to find the final intensity. 

   2 2
2 1 1cos cos 90 0 .I I I     

 (b) Now the third polarizer is inserted.  The angle between the first and second polarizers is 66 ,  so  
the angle between the second and third polarizers is 24 .   It is still true that 1

1 02 .I I  



Chapter 35   Diffraction and Polarization 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

423 

   

2 2 2 2 21 1
2 1 0 3 2 02 2

3

1

cos 66 cos 66   ;   cos 24 cos 66 cos 24 0.069  

0.069

I I I I I I

I

I

          


 

 (c) The two crossed polarizers, which are now numbers 2 and 3, will still not allow any light to pass  

through them if they are consecutive to each other.  Thus 3

1

0 .
I

I
  

 
77. The reduction being investigated is that which occurs when the polarized light passes through the 

second Polaroid.  Let 1I  be the intensity of the light that emerges from the first Polaroid, and 2I  be 
the intensity of the light after it emerges from the second Polaroid.  Use Eq. 35-21. 

 (a) 2 1
2 1 1cos 0.25     cos 0.25 60I I I         

 (b) 2 1
2 1 1cos 0.10     cos 0.10 72I I I         

 (c) 2 1
2 1 1cos 0.010     cos 0.010 84I I I         

 
78. (a) We apply Eq. 35-21 through the successive polarizers.  The initial light is unpolarized.  Each  

polarizer is then rotated 30  from the previous one. 

   
2 2 2 2 21 1 1

1 0 2 1 2 0 2 3 2 3 0 2 32 2 2

2 2 2 2 2 2 21 1
4 3 4 0 2 3 4 0 02 2

  ;  cos cos   ;  cos cos cos   ;

cos cos cos cos cos 30 cos 30 cos 30 0.21

I I I I I I I I

I I I I I

    

   

    

      
 

(b) If we remove the second polarizer, then the angle between polarizers # 1 and # 3 is now 60  

   
2 21 1

1 0 3 1 3 0 32 2

2 2 2 2 21 1
4 3 4 0 3 4 0 02 2

  ;  cos cos   ;

cos cos cos cos 60 cos 30 0.094

I I I I I

I I I I I

 

  

  

     
 

The same value would result by removing the third polarizer, because then the angle between 
polarizers # 2 and # 4 would be 60   Thus we can decrease the intensity by removing either the  
second or third polarizer. 

(c) If we remove both the  second and third polarizers,  we will have two polarizers with their axes  
  perpendicular, so no light will be transmitted. 
 
79. For the minimum aperture the angle subtended at the lens by the smallest feature is the angular 

resolution, given by Eq. 35-10.  We let l represent the spatial separation, and r represent the altitude 
of the camera above the ground. 

  
  

 

91.22 580 10 m 25000m1.22 1.22
    0.3538m 0.4m

0.05m

r
D

D r

 


      
l

l
 

 
80. Let 0I  be the initial intensity.  Use Eq. 35-21 for both transmissions of the light. 

  

2 2 2 2
1 0 1 2 1 2 0 1 2 0

1 1
1

2

cos   ;  cos cos cos 0.25   

0.25 0.25
cos cos 42

cos cos48

I I I I I I   




 

    

   
         

 

 
81. We find the spacing from Eq. 35-20. 

  
  11

10
2 9.73 10 m

2 sin     2.45 10 m
2sin 2sin 23.4

m
m d d

 






     


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82. The angles for Bragg scattering are found from Eq. 35-20, for 
m = 1 and m = 2.  If the distance from the crystal to the screen 
is l, the radius of the diffraction ring is given by tan 2 .r  l   

  

1

1
1

2 sin   ;  tan 2 tan 2sin
2

tan 2sin
2

m
d m r

d

m
r

d

  







         
       

l l

l

 

 
  
 

9

1

9

1 0.10 10 m
  0.12m tan 2sin 0.059m

2 0.22 10 m






  
   

    
 

   
  
 

9

1 1
2 9

2 0.10 10 m
tan 2sin 0.12m tan 2sin 0.17m

2 2 0.22 10 m

m
r

d




 


                    
l  

 
83. From Eq. 35-10 we calculate the minimum resolvable separation angle.  We then multiply this angle 

by the distance between the Earth and Moon to obtain the minimum distance between two objects on 
the Moon that the Hubble can resolve. 

  

 

  

9

7

8 7

1.22 550 10 m1.22
2.796 10 rad

2.4m

3.84 10 m 2.796 10 rad 110m

D

s











   

    l

 

 
84. From Eq. 35-10 we calculate the minimum resolvable separation angle.  We then multiply this angle 

by the distance between Mars and Earth to obtain the minimum distance between two objects that 
can be resolved by a person on Mars 

  

 

  

9

4

10 4 7

1.22 550 10  m1.22
1.34 10  rad

0.005 m

8 10  m 1.34 10  rad 1.07 10  m

D

s











   

     l

 

Since the minimum resolvable distance is much less than the Earth-Moon distance, a person standing 
on Mars could resolve the Earth and Moon as two separate objects without a telescope. 

 
85. The distance x is twice the distance to the first minima.  We can write x in terms of the slit width D 

using Eq. 35-2, with m = 1.  The ratio 
D


 is small, so we may approximate sin tan .     

  ;  2sin 2 2 tan 2
D D

x y
       l l l  

When the plate is heated up the slit width increases due to thermal expansion.  Eq. 17-1b is used to 
determine the new slit width, with the coefficient of thermal expansion, , given in Table 17-1. Each 
slit width is used to determine a value for x.  Subtracting the two values for x gives the change .x   
We use the binomial expansion to simplify the evaluation. 

      

 
   

     

1
0

0 0 0 0

9
16

6
0 0

4

2 1 2
2 2 1 1 1

1 1

2 2.0m 650 10 m2 2
1 1 25 10 C 55C

22 10 m

1.7 10 m

x x x T
D T D D T D

T T
D D

    
 

  










    
           

 
  

          
   


           



  

l l
l l

l l
 

X-ray
Crystal

2

Screen

l
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86. The tangent of the angle for each order is the distance in the table divided by the distance to the 
screen.  If we call the distance in the table y and the distance to the screen l, then we have this 
relationship. 

 1tan     tan
y y    
l l

 

The relationship between the angle 
and the wavelength is given by Eq. 
35-2, sin ,D m   which can be 

written as sin .m
D

    A plot of 

sin  vs. m should have a slope of 

,
D


 and so the wavelength can be 

determined from the slope and the 
slit width.  The graph is shown, and 
the slope used to calculate the wavelength. 

    5slope    slope 0.01471 4.000 10 m 588.4 nmD
D

         

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH35.XLS,” on tab “Problem 35.86.” 

 
87. We have N polarizers providing a rotation of 90 .   Thus, each polarizer must rotate the light by an 

angle of  N 90 N .     As the light passes through each polarizer, the intensity will be reduced by a 

factor of 2
Ncos .   Let the original intensity be 0.I  

  
   

2 2 4 2 6
1 0 N 2 1 N 0 N 3 2 N 0 N

2N2N

N 0 N 0

cos   ;  cos cos   ;  cos cos

cos 0.90     cos 90 N 0.90

I I I I I I I I

I I I

    



    

      
 

We evaluate   2N
cos 90 N    for various values of N.  A table for a few 

values of N is shown here.  We see that N = 24 satisfies the criteria, and so   
   90 24N 90 24N 3.75 .N        So we need to put 24 polarizers in the 

path of the original polarized light, each rotated 3.75  from the previous one.  
The spreadsheet used for this problem can be found on the Media Manager, 
with filename “PSE4_ISM_CH35.XLS,” on tab “Problem 35.87.” 

 
88. (a) The intensity of the diffraction pattern is given by Eqs. 35-6 and 35-7.  We want to find the  

angle where 1
02 .I I   Doubling this angle will give the desired .  

 1
2

2

1
0 02  or ,  with 

sin 2 2
    sin 2 sin

2 2 2
I I I

    


 
 

 
      

This equation must be solved numerically.  A spreadsheet was developed to find the non-zero 

values of   that satisfy 0sin
2
  .  It is apparent from this expression that there will be no 

solutions for 2.    The only non-zero value is 1.392.    Now use Eq. 35-6 to find .  

 
 1 1 1 1.3922

sin     sin sin sin   ;
2 2

D
D D D

    
   

        

 
 1 1.392

2 2sin
D


 


    

N [cos(90/N )]2N

21 0.8890
22 0.8938
23 0.8982
24 0.9022
25 0.9060

sin   = 0.01471 m  + 0.0001

R
2
 = 0.9999

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 2 4 6 8 10
m

si
n 

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(b) For :D    
   1 11.392 1.392

2sin 2sin 52.6
D




 
       

 For 100 :D   
   1 11.392 1.392

2sin 2sin 0.508
100D




 
       

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH35.XLS,” on tab “Problem 35.88.” 
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CHAPTER 36:  The Special Theory of Relativity 
 
Responses to Questions 
 
1.  No. The train is an inertial reference frame, and the laws of physics are the same in all inertial 

reference frames, so there is no experiment you can perform inside the train car to determine if you 
are moving. 

 
2. The fact that you instinctively think you are moving is consistent with the relativity principle applied 

to mechanics. Even though you are at rest relative to the ground, when the car next to you creeps 
forward, you are moving backward relative to that car. 

 
3.  As long as the railroad car is traveling with a constant velocity, the ball will land back in his hand. 
 
4.  The relativity principle refers only to inertial reference frames. Neither the reference frame of the 

Earth nor the reference frame of the Sun is inertial. Either reference frame is valid, but the laws of 
physics will not be the same in each of the frames. 

 
5.  The starlight would pass at c, regardless of your spaceship’s speed. This is consistent with the 

second postulate of relativity which states that the speed of light through empty space is independent 
of the speed of the source or the observer. 

 
6.  It deals with space-time (sometimes called “the fabric of space-time”) and the actual passage of time 

in the reference frame, not with the mechanical workings of clocks. Any measurement of time 
(heartbeats or decay rates, for instance) would be measured as slower than normal when viewed by 
an observer outside the moving reference frame.  

 
7. Time actually passes more slowly in the moving reference frames, according to observers outside 

the moving frames.  
 
8. This situation is an example of the “twin paradox” applied to parent-child instead of to twins. This 

might be possible if the woman was traveling at high enough speeds during her trip. Time would 
have passed more slowly for her and she could have aged less than her son, who stayed on Earth. 
(Note that the situations of the woman and son are not symmetric; she must undergo acceleration 
during her journey.)  

 
9.  No, you would not notice any change in your heartbeat, mass, height, or waistline, because you are 

in the inertial frame of the spaceship. Observers on Earth, however, would report that your heartbeat 
is slower and your mass greater than if you were at rest with respect to them. Your height and 
waistline will depend on your orientation with respect to the motion. If you are “standing up” in the 
spaceship such that your height is perpendicular to the direction of travel, then your height would not 
change but your waistline would shrink. If you happened to be “lying down” so that your body is 
parallel to the direction of motion when the Earth observers peer through the telescope, then you 
would appear shorter but your waistline would not change. 

 
10. Yes. However, at a speed of only 90 km/hr, v/c is very small, and therefore γ is very close to one, so 

the effects would not be noticeable.  
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11. Length contraction and time dilation would not occur. If the speed of light were infinite, v/c would 
be zero for all finite values of v, and therefore γ would always be one, resulting in 0t t    and 

0.l l  

 
12.  The effects of special relativity, such as time dilation and length contraction, would be noticeable in 

our everyday activities because everyday speeds would no longer be so small compared to the speed 
of light. There would be no “absolute time” on which we would all agree, so it would be more 
difficult, for instance, to plan to meet friends for lunch at a certain time!  In addition, 25 m/s would 
be the limiting speed and nothing in the universe would move faster than that. 

 

13.  Both the length contraction and time dilation formulas include the term 2 21 .v c   If c were not 

the limiting speed in the universe, then it would be possible to have a situation with v > c. However, 
this would result in a negative number under the square root, which gives an imaginary number as a 
result, indicating that c must be the limiting speed. 

 
14. Mr. Tompkins appears shrunk in the horizontal direction, since that is the direction of his motion, 

and normal size in the vertical direction, perpendicular to his direction of motion. This length 
contraction is a result of the fact that, to the people on the sidewalk, Mr. Tompkins is in a moving 
frame of reference. If the speed of light were only 20 mi/h, then the amount of contraction, which 
depends on γ, would be enough to be noticeable. Therefore, Mr. Tompkins and his bicycle appear 
very skinny. (Compare to the chapter-opening figure, which is shown from Mr. Tompkin’s 
viewpoint. In this case, Mr. Tompkins sees himself as “normal” but all the objects moving with 
respect to him are contracted.) 

15. No. The relativistic momentum of the electron is given by 
2 2

.
1

mv
p mv

v c
 


 At low speeds 

(compared to c) this reduces to the classical momentum, p = mv. As v approaches c, γ approaches 
infinity so there is no upper limit to the electron’s momentum. 

 
16. No. To accelerate a particle with nonzero rest mass up to the speed of light would require an infinite 

amount of energy, and so is not possible.  
 
17. No. E = mc² does not conflict with the principle of conservation of energy as long as it is understood 

that mass is a form of energy.  
 
18. Yes, mass is a form of energy so technically it is correct to say that a spring has more mass when 

compressed. However, the change in mass of the spring is very small and essentially negligible. 
 
19. “Energy can be neither created nor destroyed.” Mass is a form of energy, and mass can be 

“destroyed” when it is converted to other forms of energy. The total amount of energy remains 
constant. 

 
20. Technically yes, the notion that velocities simply add is wrong. However, at everyday speeds, the 

relativistic equations reduce to classical ones, so our ideas about velocity addition are essentially 
true for velocities that are low compared to the speed of light. 
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Solutions to Problems 
 
1. You measure the contracted length.  Find the rest length from Eq. 36-3a. 

  
 

0 2 2 2

38.2m
72.5m

1 1 0.850v c
  

 

l
l  

 
2. We find the lifetime at rest from Eq. 36-1a. 

   
28

2 2 6 6
0 8

2.70 10 m s
1 4.76 10 s 1 2.07 10 s

3.00 10 m s
t t v c   

          
 

 
3. The numerical values and 

graph were generated in a 
spreadsheet.  The graph is 
shown also.  The spreadsheet 
used for this problem can be 
found on the Media Manager, 
with filename 
“PSE4_ISM_CH36.XLS,” on 
tab “Problem 36.3.” 

 
 
 
 
 
 
 
 
4. The measured distance is the contracted length.  Use Eq. 36-3a. 

   
28

2 2
0 8

2.80 10 m s
1 135 ly 1 48.5 ly

3.00 10 m s
v c

 
      
l l  

 
5. The speed is determined from the time dilation relationship, Eq. 36-1a. 

  

2 2
0

22 8
80

8

1   

2.60 10 s
1 1 0.807 2.42 10 m s

4.40 10 s

t t v c

t
v c c c

t





    

               

 

 
6. The speed is determined from the length contraction relationship, Eq. 36-3a. 

  
2 2

2 2 8
0

0

35ly
1     1 1 0.78 2.3 10 m s

56ly
v c v c c c

   
            

  

l
l l

l
   

 
7. The speed is determined from the length contraction relationship, Eq. 36-3a.  Then the time is found 

from the speed and the contracted distance. 

  2 2
0 1   v c  l l  

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1
v /c
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 
 

2

2 2
0

0

25y25ly
1   ;  27 y

0.92325ly
11

65ly

c
v c t

v c
cc

 
       

     
    
  

l l l

l
l

l

 

 
8. The speed is determined from the length contraction relationship, Eq. 36-3a. 

   
2

22 2
0

0

1     1 1 0.900 0.436v c v c c c
 

        
 

l
l l

l
 

 
9. The change in length is determined from the length contraction relationship, Eq. 36-3a.  The speed is 

very small compared to the speed of light. 

  

2 2
0

1/ 2 22 2 3
2 2 101 1

2 22 2 8
0

1   

11.2 10 m s
1 1 1 1 1 6.97 10

3.00 10 m s

v c

v v
v c

c c


  

   
                

l l

l

l

 

 So the percent decrease is  86.97 10 % .  

 
10. (a) The measured length is the contracted length.  We find the rest length from Eq. 36-3a. 

   
 

0 2 2 2

4.80m
7.39m

1 1 0.760v c
  

 

l
l  

  Distances perpendicular to the motion do not change, so the rest height is 1.35m .  

 (b) The time in the spacecraft is the rest time, found from Eq. 36-1a. 

   22 2
0 1 20.0s 1 0.760 13.0st t v c        

 (c) To your friend, you moved at the same relative speed: 0.760 .c  

 (d) She would measure the same time dilation: 13.0s .   

 
11. (a) We use Eq. 36-3a for length contraction with the contracted length 99.0% of the rest length. 

 
2

22 2
0

0

1     1 1 0.990 0.141v c v c c c
 

        
 

l
l l

l
 

(b) We use Eq. 36-1a for time dilation with the time as measured from a relative moving frame 
1.00% greater than the rest time. 

   
2 2

2 2 0
0

1
1     1 1 0.140

1.0100

t
t t v c v c c c

t

                  
 

 We see that a speed of 0.14 c results in about a 1% relativistic effect. 
 
12. (a) To an observer on Earth, 18.6 ly is the rest length, so the time will be the distance divided by  

the speed. 

   
 0

Earth

18.6 ly
19.58yr 19.6yr

0.950
t

v c
   
l

 

 (b) The time as observed on the spacecraft is shorter.  Use Eq. 36-1a. 

      22 2
0 1 19.58yr 1 0.950 6.114 yr 6.11yrt t v c         
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 (c) To the spacecraft observer, the distance to the star is contracted.  Use Eq. 36-3a. 

      22 2
0 1 18.6 ly 1 0.950 5.808 ly 5.81 lyv c     l l  

 (d) To the spacecraft observer, the speed of the spacecraft is their observed distance divided by  
their observed time. 

   
 

0

5.808 ly
0.950

6.114 yr
v c

t
  

l

 

 
13. (a) In the Earth frame, the clock on the Enterprise will run slower.  Use Eq. 36-1a. 

      22 2
0 1 5.0yr 1 0.74 3.4 yrt t v c        

 (b) Now we assume the 5.0 years is the time as measured on the Enterprise.  Again use Eq. 36-1a. 

   
 
 

2 2 0
0 2 2 2

5.0yr
1     7.4 yr

1 1 0.74

t
t t v c t

v c


        

 
 

 
14. We find the speed of the particle in the lab frame, and use that to find the rest frame lifetime and 

distance. 

  8lab
9

lab

1.00m
2.941 10 m s 0.9803

3.40 10 s

x
v c

t 


    
 

 

 (a) Find the rest frame lifetime from Eq. 36-1a. 

      22 2 9 10
0 lab 1 3.40 10 s 1 0.9803 6.72 10 st t v c            

 (b) In its rest frame, the particle will travel the distance given by its speed and the rest lifetime. 

     8 10
0 0 2.941 10 m s 6.72 10 s 0.198mx v t         

  This could also be found from the length contraction relationship:  lab
0 2 2

.
1

x
x

v c


 


 

 
15. Since the number of particles passing per second is reduced from N to N / 2, a time 0T  must have 

elapsed in the particles’ rest frame.  The time T elapsed in the lab frame will be greater, according to 
Eq. 36-1a.  The particles moved a distance of 02cT  in the lab frame during that time. 

  2 2 0 0 4
0 52 2

0

2 2

2
1       ;      0.894

1
1

T x cT
T T v c T v v c c

TTv c
v c

        




   

 
16. The dimension along the direction of motion is contracted, and the other two dimensions are 

unchanged.  Use Eq. 36-3a to find the contracted length. 

         2 3 3 22 2 2 2 3
0 0 01  ; 1 2.0m 1 0.80 4.8mv c V v c       l l l l l  

 
17. The vertical dimensions of the ship will not change, but the horizontal dimensions will be contracted 

according to Eq. 36-3a.  The base will be contracted as follows. 

 22 2
base 1 1 0.95 0.31v c    l l l l  

When at rest, the angle of the sides with respect to the base is given by 1 0.50
cos 75.52 .

2.0
   

l

l
   

The vertical component of vert 2 sin 2 sin75.52 1.936   l l l l  is unchanged.  The horizontal  
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component, which is  1
42 cos 2 0.50  l l l at rest, will be contracted in the same way as the base. 

  22 2
horizontal 0.50 1 0.50 1 0.95 0.156v c    l l l l  

Use the Pythagorean theorem to find the length of the leg. 

   2 22 2
leg horizontal vert 0.156 1.936 1.942 1.94     l l l l l l l  

 
18. In the Earth frame, the average lifetime of the pion will be dilated according to Eq. 36-1a.  The speed 

of the pion will be the distance moved in the Earth frame times the dilated time. 

  

  
 

2 2

0

2 2
8 8

0

1   

1 1
0.95

3.00 10 m s 2.6 10 s1 1
25m

d d
v v c

t t

v c c c
tc

d



   
 

  
           

 

 

 
19. We take the positive direction in the direction of the Enterprise.  Consider the alien vessel as 

reference frame S, and the Earth as reference frame S .   The velocity of the Earth relative to the alien 
vessel is 0.60 .v c    The velocity of the Enterprise relative to the Earth is 0.90 .xu c    Solve for 

the velocity of the Enterprise relative to the alien vessel, ,xu  using Eq. 36-7a. 

  
   

  
2

0.90 0.60
0.65

1 0.60 0.901

x
x

x

u v c c
u c

vu
c

  
  

       
 

 

We could also have made the Enterprise as reference frame S, with 0.90 ,v c   and the velocity of 

the alien vessel relative to the Earth as 0.60 .xu c    The same answer would result.   
Choosing the two spacecraft as the two reference frames would also work.  Let the alien vessel be 
reference frame S, and the Enterprise be reference frame S .   Then we have the velocity of the Earth 
relative to the alien vessel as 0.60 ,xu c   and the velocity of the Earth relative to the Enterprise as 

0.90 .xu c     We solve for v, the velocity of the Enterprise relative to the alien vessel. 

 
     

  
2 2 2

.60 0.90
    0.65

0.90 .601 1 1

x x x
x

x x x

u v c cu u
u v c

vu u u c c
c c c

    
    

                    

 

 
20. The Galilean transformation is given in Eq. 36-4. 

(a)          , , , , 25m 30m s 3.5s ,20m,0 130m,20m,0x y z x vt y z         

(b)          , , , , 25m 30m s 10.0s ,20m,0 325m,20m,0x y z x vt y z         

 
21. (a) The person’s coordinates in S are found using Eq. 36-6, with 25 mx  , 20 my  , 0z  , and  

3.5 s.t      We set 81.80 10 m/s.v    

  

   

8

2 2 2 28 8

25m 1.8 10 m/s 3.5 s
820m

1 1 1.8 10 m/s 3.0 10 m/s

20m   ;  0

x vt
x

v c

y y z z

  
  

   

    
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 (b) We repeat part (a) using the time 10.0 s.t    

  

   

8

2 2 2 28 8

25m 1.8 10 m/s 10.0 s
2280m

1 1 1.8 10 m/s 3.0 10 m/s

20m   ;  0

x vt
x

v c

y y z z

  
  

   

    

 

 
22. We determine the components of her velocity in the S frame using Eq. 36-7, where 

81.10 10 m/sx yu u     and  81.80 10 m/sv   .  Then using trigonometry we combine the 

components to determine the magnitude and direction. 

    
8 8

8
22 8 8 8

1.10 10 m/s 1.80 10 m/s
2.38 10 m/s

1 / 1 1.80 10 m/s 1.10 10 m/s / 3.00 10 m/s

x
x

x

u v
u

vu c

    
   

    
 

     
    

2 28 8 82 2
7

22 8 8 8

1.10 10 m/s 1 1.8 10 m/s 3.0 10 m/s1
7.21 10 m/s

1 / 1 1.80 10 m/s 1.10 10 m/s / 3.00 10 m/s

y
y

x

u v c
u

vu c

    
   

    
 

   2 22 2 8 7 8

7
1 1

8

2.38 10 m/s 7.21 10 m/s 2.49 10 m/s

7.21 10 m/s
tan tan 16.9

2.38 10 m/s

x y

y

x

u u u

u

u
  

       


   



 

 
23. (a) We take the positive direction to be the direction of motion of spaceship 1.  Consider spaceship  

2 as reference frame S, and the Earth reference frame S .   The velocity of the Earth relative to 
spaceship 2 is 0.60 .v c   The velocity of spaceship 1 relative to the Earth is 0.60 .xu c    Solve 

for the velocity of spaceship 1 relative to spaceship 2, ,xu  using Eq. 36-7a. 

 
   

  
2

0.60 0.60
0.88

1 0.60 0.601

x
x

x

u v c c
u c

vu
c

  
  

      
 

 

(b) Now consider spaceship 1 as reference frame S.  The velocity of the Earth relative to spaceship  
1 is 0.60 .v c    The velocity of spaceship 2 relative to the Earth is 0.60 .xu c     Solve for the 

velocity of spaceship 2 relative to spaceship 1, ,xu  using Eq. 36-7a. 

   
   

  
2

0.60 0.60
0.88

1 0.60 0.601

x
x

x

u v c c
u c

vu
c

   
   

        
 

 

As expected, the two relative velocities are the opposite of each other. 
 
24. (a) The Galilean transformation is given in Eq. 36-4. 

   8 6100m 0.92 3.00 10 m s 1.00 10 s 376mx x vt x vt             

(b) The Lorentz transformation is given in Eq. 36-6.  Note that we are given t, the clock reading in 
frame S. 

  

 

2 2

2

    

 

vx t vx
t t t

c c

t vx v ct vx
x x vt x v x

c c c




  
 

        
 

                       
      
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         2 8 6

2

1
  100m 0.92 1 0.92 3.00 10 m s 1.00 10 s 0.92 100m

1 0.92

  316m

        


 

 
25. (a) We take the positive direction in the direction of the first spaceship.  We choose reference frame  

S as the Earth, and reference frame S as the first spaceship.  So 0.61 .v c   The speed of the 

second spaceship relative to the first spaceship is 0.87 .xu c    We use Eq. 36-7a to solve for the 
speed of the second spaceship relative to the Earth, u. 

   
   

  
2

0.87 0.61
0.97

1 0.61 0.871

x
x

x

u v c c
u c

vu
c

  
  

      
 

 

 (b) The only difference is now that 0.87 .xu c   

   
   

  
2

0.87 0.61
0.55

1 0.61 0.871

x
x

x

u v c c
u c

vu
c

   
   

       
 

 

  The problem asks for the speed, which would be 0.55c  

 
26. We assume that the given speed of 0.90c is relative to the planet that you are approaching.  We take 

the positive direction in the direction that you are traveling.  Consider your spaceship as reference 
frame S, and the planet as reference frame S .   The velocity of the planet relative to you is 

0.90 .v c    The velocity of the probe relative to the planet is 0.95 .xu c    Solve for the velocity of 

the probe relative to your spaceship, ,xu  using Eq. 36-7a. 

  
   

  
2

0.95 0.90
0.34

1 0.90 0.951

x
x

x

u v c c
u c

vu
c

  
  

       
 

 

 
27. We set frame S as the frame at rest with the spaceship.  In this frame the module has speed 

0.82 .yu u c     Frame S is the frame that is stationary with respect to the Earth.  The spaceship, and 

therefore frame S  moves in the x-direction with speed 0.76c in this frame, or 0.76 .v c   We use 
Eq. 36-7a and 36-7b to determine the components of the module velocity in frame S.  Then using 
trigonometry we combine the components to determine the speed and direction of travel. 

2 2 2

2 2

10 0.76 0.82 1 0.76
0.76   ;  0.533

1 / 1 0 1 / 1 0
yx

x y
x x

u v cu v c c
u c u c

vu c vu c

    
     

    
 

   2 22 2 1 1 0.533
0.76 0.533 0.93   ;  tan tan 35

0.76
y

x y
x

u c
u u u c c c

u c
            

 
28. The velocity components of the particle in the S frame are cosxu u   and sin .yu u    We find the 

components of the particle in the S frame from the velocity transformations given in Eqs. 36-7a and 
36-7b. Those transformations are for the S frame moving with speed v relative to the S frame.  We 
can find the transformations from the S frame to the S frame by simply changing v to –v and primed 
to unprimed variables. 

  
 

 
 

     
2 2 2 2

2 2 2 2

1 1
      ;      

1 1 1 1
y yx x

x x y y

x x x x

u v c u v cu v u v
u u u u

vu c vu c vu c vu c

   
      

   
 



Chapter 36   The Special Theory of Relativity  

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

435 

  
 
 

 
     

2 2

2 2 2 2 2 2 2

2

1

1 1 sin 1 sin 1
tan

cos cos

1

y

xy y

xx x

x

u v c

vu cu u v c u v c v c

u vu u v u v v u

vu c

 


 



   
     

   


 

 
29. (a) In frame S  the horizontal component of the stick length will be contracted, while the vertical  

component remains the same.  We use the trigonometric relations to determine the x- and y-
components of the length of the stick.  Then using Eq. 36-3a we determine the contracted length 
of the x-component.  Finally, we use the Pythagorean theorem to determine stick length in 
frame S .  

   

2 2 2 2
0 0 0

22 2 2 2 2 2 2 2
0 0 0

cos   ;  sin   ;  1 cos 1  

cos 1 sin 1 cos

x y y x x

x y

v c v c

v c v c

  

  

       

       

l l l l l l l l

l l l l l l

 

 (b) We calculate the angle from the length components in the moving frame. 

 1 1 1 10

2 2 2 2
0

sin tan
tan tan tan tan tan

cos 1 1

y

x v c v c

   


   
   

       
        

l l

l l
 

 
30. (a) We choose the train as frame S and the Earth as frame S.  Since the guns fire simultaneously in  

S , we set these times equal to zero, that is A B 0.t t     To simplify the problem we also set the 

location of gunman A equal to zero in frame S when the guns were fired, A 0.x    This places 

gunman B at B 55.0m.x    Use Eq. 36-6 to determine the time that each gunman fired his 
weapon in frame S. 

 
  
 

A
A A 2 2

14B
B B 22 2 88

0
0 0

35m/s 55.0m1
0 2.14 10 s

3.00 10 m/s1 35.0m/s 3.00 10 m/s

vx v
t t

c c

vx
t t

c

 

 

           
   

                 

 

  Therefore, in Frame S, A fired first. 

 (b) As found in part (a), the difference in time is 142.14 10 s .  

 (c) In the Earth frame of reference, since A fired first, B was struck first.  In the train frame, A is  
moving away from the bullet fired toward him, and B is moving toward the bullet fired toward 
him.  Thus B will be struck first in this frame as well. 

 
31. We set frame S as the frame moving with the observer.  Frame S is the frame in which the two light 

bulbs are at rest.  Frame S is moving with velocity v with respect to frame S.   We solve Eq. 36-6 for 
the time t in terms of t, x, and v.  Using the resulting equation we determine the time in frame S that 
each bulb is turned on, given that in frame S the bulbs are turned on simultaneously at A B 0.t t    
Taking the difference in these times gives the time interval as measured by the observing moving 
with velocity v. 

 

2

2 2 2 2 2 2

 

=  1     

x
x x vt x vt

vx v x v vx t vx vx
t t t vt t t t

c c c c c c




   
 

       

                             
       
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2 2 2 2 2

2

0
0 0  ;  0A B

A A B B

B A

vx v vx v v
t t t t

c c c c c

v
t t t

c

    



                         
       

      

l l

l
 

According to the observer, bulb B turned on first. 
 
32. We set up the two frames such that in frame S, the first object is located at the origin and the second 

object is located 220 meters from the origin, so A 0x  and B 220 m.x    We set the time when event 

A occurred equal to zero, so A B0 and 0.80 s.t t       We then set the location of the two events in 

frame S equal, and using Eq. 36-6 we solve for the velocity.  

    8A B
A B A B B

A B

0 220m
      ;  2.5 10 m/s

0 0.88 sA

x x
x x x vt x vt v

t t
 


          
 

 

 
33. From the boy’s frame of reference, the pole remains at rest with respect to him.  As such, the pole 

will always remain 12.0 m long.  As the boy runs toward the barn, relativity requires that the 
(relatively moving) barn contract in size, making the barn even shorter than its rest length of 10.0 m.  
Thus it is impossible, in the boy’s frame of reference, for the barn to be longer than the pole.  So 
according to the boy, the pole will never completely fit within the barn. 

 

In the frame of reference at rest with respect to the barn, it is possible for the pole to be shorter than 
the barn.  We use Eq. 36-3a to calculate the speed that the boy would have to run for the contracted 
length of the pole, l, to equal the length of the barn.  

   2 22 2 2 2
0 01     1 1 10.0 m 12.0 m 0.5528v c v c c c       l l l l  

If persons standing at the front and back door of the barn were to close both doors exactly when the 
pole was completely inside the barn, we would have two simultaneous events in the barn’s rest frame 
S with the pole completely inside the barn.  Let us set the time for these two events as A B 0.t t    In 

frame S these two events occur at the front and far side of the barn, or at A 0x   and B 10.0m.x    
Using Eq. 36-6, we calculate the times at which the barn doors close in the boy’s frame of reference. 

 

2 2

8
2 82

0
0 0

0.5528 10.0m1
0 2.211 10 s

3.00 10 m/s1 0.5528

A
A A

B
B B

vx v
t t

c c

vx
t t

c

 

 

           
   

                

 

Therefore, in the boy’s frame of reference the far door of the barn closed 22.1 ns before the front 
door.  If we multiply the speed of the boy by this time difference, we calculate the distance the boy 
traveled between the closing of the two doors. 

  8 80.5528 3.00 10  m/s 2.211 10  s 3.67 m.x vt        

We use Eq. 36-3a to determine the length of the barn in the boy’s frame of reference. 

 2 2 2
0 1 10.0 m 1 0.5528 8.33 mv c    l l  

Subtracting the distance traveled between closing the doors from the length of the pole, we find the 
length of the barn in the boy’s frame of reference.   

0,pole barn12.0 m 3.67 m 8.33 mx     l l  

Therefore, in the boy’s frame of reference, when the front of the pole reached the far door it was 
closed.  Then 22.1 ns later, when the back of the pole reached the front door, that door was closed.  
In the boy’s frame of reference these two events are not simultaneous. 
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34. The momentum of the proton is given by Eq. 36-8. 

  
   

 

27 8

19

2 2 2

1.67 10 kg 0.75 3.00 10 m s
5.7 10 kg m s

1 1 0.75

mv
p mv

v c





 
     

 
 

 
35. (a) We compare the classical momentum to the relativistic momentum. 

    2classical 2 2

relativistic
2 2

1 1 0.10 0.995

1

p mv
v c

mvp

v c

     



 

  The classical momentum is about 0.5%  in error. 
 (b) We again compare the two momenta. 

    2classical 2 2

relativistic
2 2

1 1 0.60 0.8

1

p mv
v c

mvp

v c

     



 

  The classical momentum is 20%  in error. 
 
36. The momentum at the higher speed is to be twice the initial momentum.  We designate the initial 

state with a subscript “0”, and the final state with a subscript “f”. 

  

 
 

2
f f

22 2 22 2
2ff ff

2 22 2
0 00 f

2 22 2
00

2 2
f f

0.261 1
2    4    4 0.29   

1 1 0.26
11

0.29
    0.47

1.29

mv v
cv cp vv c

c
mv vp v c

v cv c

v c v c

   
              



    
 

 

 
37. The two momenta, as measured in the frame in which the particle was initially at rest, will be equal 

to each other in magnitude.  The lighter particle is designated with a subscript “1”, and the heavier 
particle with a subscript “2”. 

     
 
 

1 1 2 2
1 2 2 2 2 2

1 2

2 2 22 2 27
21 2 2

2272 2 2 2
11 2

1

      
1 1

0.606.68 10 kg
9.0   

1.67 10 kg1 1 1 0.60

0.90 0.95

m v m v
p p

v c v c

cv m v
c

mv c v c

v c c





   
 

    
              

 

 

 
38. We find the proton’s momenta using Eq. 36-8. 

  

 
 

 
 

 
 

p 1 p p 2 p
0.45 p 0.80 p2 2 2 2

1 2
2 2

p 2 p
0.98 p2 2

2
2

0.45 0.80
0.5039   ;  1.3333

1 0.45 1 0.801 1

0.98
4.9247

1 0.981

m v m c m v m c
p m c p m c

v v
c c

m v m c
p m c

v
c

     
  

  

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(a) p p2 1

1 p

1.3333 0.5039
100 100 164.6 160%

0.5039

m c m cp p

p m c

  
         

 

(b) p p2 1

1 p

4.9247 1.3333
100 100 269.4 270%

1.3333

m c m cp p

p m c

  
         

 

 
39. The rest energy of the electron is given by Eq. 36-12. 

  

  
 

 

22 31 8 14

14

13

9.11 10 kg 3.00 10 m s 8.20 10 J

8.20 10 J
0.511MeV

1.60 10 J MeV

E mc  





     


 



 

 
40. We find the loss in mass from Eq. 36-12. 

  
  

 

13

28 28
22 8

200MeV 1.60 10 J MeV
3.56 10 kg 4 10 kg

3.00 10 m s

E
m

c


 


     


 

 
41. We find the mass conversion from Eq. 36-12. 

  
 

 

19

22 8

8 10 J
900kg

3.00 10 m s

E
m

c


  


 

 
42. We calculate the mass from Eq. 36-12. 

      
 

227 8

2 2
2 2 2 13

1.6726 10 kg 2.9979 10 m s1 1
938.2 MeV

1.6022 10 J MeV

E
m mc c

c c c





 
   


 

 
43.  Each photon has momentum 0.50 MeV/c.  Thus each photon has mass 0.50 MeV.  Assuming the  

photons have opposite initial directions, then the total momentum is 0, and so the product mass will 
not be moving.  Thus all of the photon energy can be converted into the mass of the particle.  

Accordingly, the heaviest particle would have a mass of 21.00MeV ,c  which is 301.78 10 kg. . 

 
44. (a) The work is the change in kinetic energy.  Use Eq. 36-10b.  The initial kinetic energy is 0. 

   
   2 4

final 2

1
1 1 938.3MeV 1.39 10 MeV

1 0.998

13.9GeV

W K K mc
 

         
 



 

 (b) The momentum of the proton is given by Eq. 36-8. 

     2 4

2

1
938.3MeV 0.998 1.48 10 MeV 14.8GeV

1 0.998
p mv c c c c    


 

 
45. We find the energy equivalent of the mass from Eq. 36-12. 

    22 3 8 131.0 10 kg 3.00 10 m s 9.0 10 JE mc        

 We assume that this energy is used to increase the gravitational potential energy. 

  
  

13
9

3 2

9.0 10 J
    9.2 10 kg

1.0 10 m 9.80m s

E
E mgh m

hg


     


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46. The work is the change in kinetic energy.  Use Eq. 36-10b.  The initial kinetic energy is 0. 

  

     

   
 

2 2 2
1 0.90 2 0.99 0.90 0.99 0.90

2 2 2 2
0.99 0.902 0.99 0.90

2
1 0.90 0.90

2

1   ;  1 1

1 1
1 1 1 0.99 1 0.90 3.7

11 1 1
1 0.90

c cW mc W K K mc mc

mc mcW

W mc

  

   
 

       


        

  


 

 
47. The kinetic energy is given by Eq. 36-10. 

    2 2

2 2

1 3
1     2     0.866

41
K mc mc v c c

v c
         


 

 
48. The total energy of the proton is the kinetic energy plus the mass energy.  Use Eq. 36-13 to find the 

momentum. 

  

         

   

2

2 2 22 2 2 2 2 2 2

2
2 2

  ;

2

938.3MeV
2 1 2 950MeV 1 2 1638MeV

950MeV

1638MeV 1.6GeV

E K mc

pc E mc K mc mc K K mc

mc
pc K K mc K

K

p c c

 

      

      

 

 

 
49. We find the speed in terms of c.  The kinetic energy is given by Eq. 36-10 and the momentum by Eq. 

36-8. 

  

 
 

   

  

8

8

2

2

2

2

2.80 10 m s
0.9333

3.00 10 m s

1
1 1 938.3MeV 1674.6MeV 1.67GeV

1 0.9333

1
938.3MeV 0.9333 2439 MeV 2.44GeV

1 0.9333

v c

K mc

p mv c c c c






 



 
      

 

   


 

 
50. We use Eq. 36-10 to find the speed from the kinetic energy. 

  

  2 2

2 2

2 2

2

1
1 1   

1

1 1
1 1 0.957

1.25MeV1 1
0.511MeV

K mc mc
v c

v c c c
K

mc


 
     
  

    
          

 

 
51. Since the proton was accelerated by a potential difference of 125 MV, its potential energy decreased 

by 125 MeV, and so its kinetic energy increased from 0 to 125 MeV.  Use Eq. 36-10 to find the 
speed from the kinetic energy. 

    2 2

2 2

1
1 1   

1
K mc mc

v c


 
     
  
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  2 2

2

1 1
1 1 0.470

125MeV1 1
938.3MeV

v c c c
K

mc

    
          

 

 
52. We let M represent the rest mass of the new particle.  The initial energy is due to both incoming 

particles, and the final energy is the rest energy of the new particle.  Use Eq. 36-11 for the initial 
energies. 

   2 2

2 2

2
2     2

1

m
E mc Mc M m

v c
     


 

We assumed that energy is conserved, and so there was no loss of energy in the collision. 
The final kinetic energy is 0, so all of the kinetic energy was lost. 

  2 2
lost initial 2 2

1
2 1 1 2

1
K K mc mc

v c


 
     
  

 

 
53. Since the electron was accelerated by a potential difference of 28 kV, its potential energy decreased 

by 28 keV, and so its kinetic energy increased from 0 to 28 MeV.  Use Eq. 36-10 to find the speed 
from the kinetic energy. 

  

  2 2

2 2

2 2

2

1
1 1   

1

1 1
1 1 0.32

0.028MeV1 1
0.511MeV

K mc mc
v c

v c c c
K

mc


 
     
  

    
          

 

 
54. We use Eqs. 36-11 and 36-13 in order to find the mass. 

  

 
   

 

22 2 2 2 4 2 2 2 2 4

2 222 2 2
2 28

2 2

2   

121MeV 45MeV
140MeV 2.5 10 kg

2 2 45MeV

E p c m c K mc K Kmc m c

c cp c K
m c

Kc c


       


    

  

 The particle is most likely a probably a 0  meson. 
 
55. (a) Since the kinetic energy is half the total energy, and the total energy is the kinetic energy plus  

the rest energy, the kinetic energy must be equal to the rest energy.  We also use Eq. 36-10.  

   

 
 

2 21 1
2 2

2 2 3
42 2

    

1
1     2     0.866

1

K E K mc K mc

K mc mc v c c
v c

 

    

        


 

 (b) In this case, the kinetic energy is half the rest energy. 

     2 2 3 51
2 2 92 2

1
1         0.745

1
K mc mc v c c

v c
         


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56. We use Eq. 36-10 for the kinetic energy and Eq. 36-8 for the momentum. 

   

   

2 2

2 2 27

8

7

2 8

2 2 2 2 27

8

1 1
1 1 1 938.3MeV

1 8.15 10 m s
1

3.00 10 m s

36.7 MeV

8.15 10 m s
938.3MeV

3.00 10 m s1 1
265MeV

1 1 8.15 10 m s
1

3.00 10 m s

K mc mc
v c

mc v cmv
p mv c

c cv c v c





 
 

   
                  



 
      

   
   

 

 Evaluate with the classical expressions. 

  

 

 

22 7
2 21 1 1

c 2 2 2 8

7
2

c 8

8.15 10 m s
938.3MeV 34.6MeV

3.00 10 m s

1 8.15 10 m s
938.3MeV 255MeV

3.00 10 m s

v
K mv mc

c

v
p mv mc c

c c

           
           

 

 Calculate the percent error. 

  

c

c

34.6 36.7
error 100 100 5.7%

36.7
255 265

error 100 100 3.8%
265

K

p

K K

K
p p

p

 
     

 
     

 

 
57. (a) The kinetic energy is found from Eq. 36-10. 

   
    22 4 8

2 2 2

19 19

1 1
1 1 1 1.7 10 kg 3.00 10 m s

1 1 0.18

2.541 10 J 2.5 10 J

K mc mc
v c

 
   
             

   

 

 (b) Use the classical expression and compare the two results. 

   

    
   

 

2
4 8 191 1

2 2

19 19

19

1.7 10 kg 0.18 3.00 10 m s 2.479 10 J

2.479 10 J 2.541 10 J
%error 100 2.4%

2.541 10 J

K mv        

  
   



 

The classical value is 2.4% too low. 
 
58. The kinetic energy of 998 GeV is used to find the speed of the protons.  Since the energy is 1000 

times the rest mass, we expect the speed to be very close to c.  Use Eq. 36-10. 

 

 

2 2

2 2

2 2

2

1
1 1   

1

1 1
1 1 to 7 sig. fig.

998GeV1 1
0.938GeV

K mc mc
v c

v c c c
K

mc


 
     
  

    
          
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  
  

27 8

2 2

3 19

998GeV
1 1.673 10 kg 3.00 10 m s1

0.938GeV
3.3T

1.0 10 m 1.60 10 C

K
mc

mv mv mc
B

rqv rq rq

 




        
       

 
 

 
59. By conservation of energy, the rest energy of the americium nucleus is equal to the rest energies of 

the other particles plus the kinetic energy of the alpha particle. 

  

 2 2
Am Np

Np Am 2 2 2

  

5.5MeV 1u
241.05682u 4.00260u 237.04832u

931.49 MeV

m c m m c K

K
m m m

c c c

 




   

 
       

 

 

 
60. (a) For a particle of non-zero mass, we derive the following relationship between kinetic energy  

and momentum.      

 

         

   
   

2 2 222 2 2 2 2 2 2

2 22 2
22 2

  ;  2

2 4 4
2 0    

2

E K mc pc E mc K mc mc K K mc

mc mc pc
K K mc pc K

        

  
    

 

For the kinetic energy to be positive, we take the positive root. 

 
   

   
2 22 2

2 22 2
2 4 4

2

mc mc pc
K mc mc pc

  
      

If the momentum is large, we have the following relationship. 

   2 22 2 2K mc mc pc pc mc       

Thus there should be a linear relationship between kinetic energy and momentum for large 
values of momentum.   
 

If the momentum is small, we use the binomial expansion to derive the classical relationship. 

      
2

2 22 2 2 2
2

1
pc

K mc mc pc mc mc
mc

          
 

 

2 2
2 2 1

2 2
   1

2

pc p
mc mc

mc m

           
 

Thus we expect a quadratic relationship for 
small values of momentum.  The adjacent 
graph verifies these approximations. 

 (b) For a particle of zero mass, the relationship is  
simply .K pc   See the included graph.  The 
spreadsheet used for this problem can be 
found on the Media Manager, with filename 
“PSE4_ISM_CH36.XLS,” on tab “Problem 
36.60.” 

 
 
 
 
 
 

p

K

0m 

0m 
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61. All of the energy, both rest energy and kinetic energy, becomes electromagnetic energy.  We use Eq. 
36-11.  Both masses are the same. 

  
   2 2 2

total 1 2 1 2 1 2 2 2

1 1
105.7 MeV

1 0.43 1 0.55

243.6MeV 240MeV

E E E mc mc mc   
 

        
  

 

 

 
62. We use Eqs. 36-11 and 36-13.  

         
 

2 2 222 2 2 2 2 2 2

2 2

  ;  2   

2

E K mc pc E mc K mc mc K K mc

K K mc
p

c

         




 

 
63. (a) We assume the mass of the particle is m, and we are given that the velocity only has an x- 

component, .xu   We write the momentum in each frame using Eq. 36-8, and we use the velocity 

transformation given in Eq. 36-7.  Note that there are three relevant velocities: ,xu  the velocity 

in reference frame S; ,xu the velocity in reference frame S ;  and v, the velocity of one frame 
relative to the other frame.  There is no velocity in the y or z directions, in either frame.  We 

reserve the symbol   for 
2 2

1
,

1 v c
 and also use Eq. 36-11 for energy. 

   

   

2 2

2 2

2 2 2 2 2 2

2 2

  ;  0  ;  0
1

1 1
      ;  0  ;  0

1 1 1 1

  ;  0 since 0   ;  0 since 0
1

x
x y z

x

x x x x
x x y y z z

x x

x
x y y z z

x

mu
p p p

u c

u v u v vu c vu c
u u u u u u

vu c vu c v c v c

mu
p p u p u

u c

  


             
   


        



 

  Substitute the expression for xu  into the expression for .xp  

   

 
 

 
 

 
 

 
 

 

 
 

 
     

 

   

 

2

22 2 2 2

22
22 22

2 22 2

2 2 2
2 22 2

2 22

2 2 2

2 2 2 2 2

1 1

11 1
1 1

1
1 1

1

1 1
1 1

1

2
1 2

x

x xx
x

xx x x

x
x

x x

x x

x x x
x x

x

x

x x x x

u v
m

vu c u vmu
p m

vu cu c u v u v
vu cc cvu c
vu c vu c

u v m u v
m

vu c u v u v
vu c vu c

c cvu c

m u v m

vu vu u u v v
c c c c c


 

   
  

 
 

 

 
 

  
   




 

      
 

 
2 2 2

2 2 21

x

x x

u v

vu u v
c c c



    
 
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 
  

   
 

   
 

 
   

2 2 2 2

2 2 2 2 2 2

2 2

2 22 2 2 2 2 2 2

2 2 2 2 2 2

1 1

1 1 1

1 1 1

1 1 1

x

x xx

x

x
x

x x x x

mu mv

u c u cm u v

v c u c v c

mu mc v mc v
p

c cu c u c u c p vE c

v c v c v c


 

 
  

 
   

  
  

 

   
It is obvious from the first few equations of the problem that  0y yp p    and  0 .z zp p    

   

 
   

 

 

 

 

   
 

  
   

 

 

2 2 2

2 2 2 2

22
22 22

2 22 2

2

2 2 2 22 2 2

2 2 2 2 2 2 2
22

2

2 2

1 1
1 1

1
1 1

1 11

1 1 1
1

1

x x x

x
x

x x

x

x xx x

xx
x

x

mc mc mc
E

u c u v u v
vu cc cvu c
vu c vu c

mc mvu

u c u cmc vu c mc mvu

v c u c v cu v
vu c

c

E p v

v c

   
  

 
 

 


  

  
  

 






 

 (b) We summarize these results, and write the Lorentz transformation from Eq. 36-6, but solved in  
terms of the primed variables.  That can be easily done by interchanged primed and unprimed 
quantities, and changing v to .v  

   
   

   

2

2 2 2 2

2

2 2 2 2

 ;  ;  ; 
1 1

  ;    ;    ;  
1 1

x x
x y y y y

p vE c E p v
p p p p p E

v c v c

x vt t vx c
x y y z z t

v c v c

       
 

       
 

 

These transformations are identical if we exchange xp  with x, yp  with y, zp  with z, and 2E c  

with t (or E c with ct). 
 
64. The galaxy is moving away from the Earth, and so we use Eq. 36-15b. 

 
 

0 0 0

2
2

0

0 22

0

0.0987    0.9013

1 1 0.9013
      0.1035

1 0.90131+

f f f f f

f fc v
f f v c c c

c v f f

   

               

 

 
65. For source and observer moving towards each other, use Eq. 36-14b. 

 0 0

1 1 0.70
95.0MHz 226MHz 230MHz

1 1 0.70

c v v c
f f f

c v v c

  
    

  
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66. We use Eq. 36-15a, and assume that .v c  

  
      

    

0 0 0 0 2 2

1/ 22 2 0
0 0 0 0

0 0

1 11 1
1

1 1 1 1

   1 1 1     

v c v cc v v c
v c

c v v c v c v c v c

v
v c v c v c v c

c

    

     
 



  
    

    

 
         

 

 
67. (a) We apply Eq. 36-14b to determine the received/reflected frequency f.  Then we apply this same  

equation a second time using the frequency f as the source frequency to determine the Doppler-
shifted frequency  .f    We subtract the initial frequency from this Doppler-shifted frequency to 
obtain the beat frequency.  The beat frequency will be much smaller than the emitted frequency 
when the speed is much smaller than the speed of light.  We then set c v c   and solve for v. 

  
 

0 0 0

beat
beat 0 0 0 0 0

0

8

9

     

2 2
    

2

3.00 10 m/s 6670Hz
27.8m/s

2 36.0 10 Hz

c v c v c v c v c v
f f f f f f

c v c v c v c v c v

c v c v v v cf
f f f f f f f v

c v c v c v c f

v

               

                   


 



 

 (b) We find the change in velocity and solve for the resulting change in beat frequency.  Setting  
the change in the velocity equal to 1 km/h we solve for the change in beat frequency. 

     
 

beat beat 0
beat

0 0

9

beat 8

2
        

2 2

2 36.0 10 Hz 1km/h 1m/s
70Hz

3.600km/h3.00 10 m/s

cf c f f v
v v f

f f c

f

 
      

  
     

 

 
68. We consider the difference between Doppler-shifted frequencies for atoms moving directly towards  

the observer and atoms moving directly away.  Use Eqs. 36-14b and 36-15b. 

  0 0 0 0 02 2 2 2

2 2

1

c v c v c v c v v v c
f f f f f f

c v c v c v c v c v v c

       
                     

 

We take the speed to be the rms speed of thermal motion, given by Eq. 18-5.  We also assume that 
the thermal energy is much less than the rest energy, and so 23 .kT mc  

1/ 2

rms 2 2 2 2
0

3 3 3 3 3
        2 1 2

kT v kT f kT kT kT
v v

m c mc f mc mc mc

          
 

 

We evaluate for a gas of H atoms (not 2H  molecules) at 550 K.  Use Appendix F to find the mass. 

  
  

   

23

5
22 27 8

0

3 1.38 10 J K 550K3
2 2 2.5 10

1.008u 1.66 10 kg u 3.00 10 m s

f kT

f mc







   

 
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69. At the North Pole the clock is at rest, while the clock on the equator travels the circumference of the 
Earth each day.  We divide the circumference of the Earth by the length of the day to determine the 
speed of the equatorial clock.  We set the dilated time equal to 2.0 years and solve for the change in 
rest times for the two clocks. 

 
  

62 6.38 10 m2
464m/s

24hr 3600s/hr

R
v

T

 
    

    
 

2
0,eq 2 2

0,eq 22 2

0,pole
0,pole

2

0,eq 0,pole 2

2 72

22 8

    1 / 1
21 /

    
1 0

1
2

2.0yr 464m/s 3.156 10 s/yr
                         75 s

2 2 3.00 10 m/s

t v
t t t v c t

cv c

t
t t t

v
t t t t

c

v
t

c


  
          

  


     


 
        

 


   



 

 
70. We take the positive direction in the direction of the motion of the second pod.  Consider the first 

pod as reference frame S, and the spacecraft as reference frame S .   The velocity of the spacecraft  
relative to the first pod is 0.60 .v c   The velocity of the first pod relative to the spacecraft is 

0.50 .xu c    Solve for the velocity of the second pod relative to the first pod, ,xu  using Eq. 36-7a. 

  
   

  
2

0.50 0.60
0.846

1 0.60 0.501

x
x

x

u v c c
u c

vu
c

  
  

      
 

 

 
71. We treat the Earth as the stationary frame, and the airplane as the moving frame.  The elapsed time in 

the airplane will be dilated to the observers on the Earth.  Use Eq. 36-1a. 

 

 

 

2 2 2 2Earth Earth
Earth plane Earth

2
2 2Earth Earth Earth1

Earth plane 2 2 2

6

8
28

2 2
  ;  1 1

2 2
1 1 1 1

1m s
6.38 10 m 1300km h

3.6km h
8.0 10 s

3.00 10 m s

r r
t t t v c v c

v v

r r v r v
t t t v c

v v c c

 

  




    

  
           

  
  

   
    



 

 
72. (a) To travelers on the spacecraft, the distance to the star is contracted, according to Eq. 36-3a.   

This contracted distance is to be traveled in 4.6 years.  Use that time with the contracted 
distance to find the speed of the spacecraft. 

 

2 2
spacecraft Earth

spacecraft spacecraft

2 2

spacecraft

Earth

1
  

1 1
0.6829 0.68

4.6ly
11

4.3ly

x x v c
v

t t

v c c c c
c t

x

  
  
 

   
   

       
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 (b) Find the elapsed time according to observers on Earth, using Eq. 36-1a. 

   spaceship
Earth 2 2 2

4.6y
6.3y

1 1 0.6829

t
t

v c


   

 
  

  Note that this agrees with the time found from distance and speed. 

   Earth
Earth

4.3ly
6.3yr

0.6829

x
t

v c


    

 
73. (a) We use Eq. 36-15a.  To get a longer wavelength than usual means that the object is moving  

away from the Earth. 

 
 

2

0 0 2

1.070 1
1.070     0.067

1.070 1

c v
c v c

c v
  


    

 
 

 (b) We assume that the quasar is moving and the Earth is stationary.  Then we use Eq. 16-9b. 

    0
0 0

0

1
        1 1.070     0.070

1 1

f c c
f v c v c

v c v c
  

 
 

           
 

 
74. We assume that some kind of a light signal is being transmitted from the astronaut to Earth, with a 

frequency of the heartbeat.  That frequency will then be Doppler shifted, according to Eq. 36-15b.  
We express the frequencies in beats per minute. 

  
 
 

 
 

2 2 2 2
0

0 2 2 2 2
0

60 30
    0.60

60 30

f fc v
f f v c c c

c v f f

 
    

  
 

 
75. (a) The velocity components of the light in the S frame are 0xu   and .yu c    We transform those  

velocities to the S frame according to Eq. 36-7. 

   

2 2 2 2
2 2

2 2

2 2 2
1 1 1

2

1 10
  ;  1

1 1 0 1 1 0

1
tan tan tan 1

yx
x y

x x

y

x

u v c c v cu v v
u v u c v c

vu c vu c

u c v c c

u v v
   

    
      

    


   

    

 (b)  2 2 2 2 2 2 2 2 21x yu u u v c v c v c v c          

 (c) In a Galilean transformation, we would have the following. 

 2 2 1  ;    ;    ;  tanx x y y

c
u u v v u u c u v c c

v
            

 
76. We take the positive direction as the direction of motion of rocket A.  Consider rocket A as reference 

frame S, and the Earth as reference frame S .   The velocity of the Earth relative to rocket A is 
0.65 .v c    The velocity of rocket B relative to the Earth is 0.85 .xu c    Solve for the velocity of 

rocket B relative to rocket A, ,xu  using Eq. 36-7a. 

   
  

2

0.85 0.65
0.45

1 0.65 0.851

x
x

x

u v c c
u c

vu
c

  
  

       
 

 

Note that a Galilean analysis would have resulted in 0.20 .xu c  
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77. (a) We find the speed from Eq. 36-10. 

   

 

 

2 2 2

2 2

2 2

82 2

1
1 1 14,000   

1

1 1
1   

14,001 2 14,001

3.00 10 m s1 1
0.77m s

2 14,001 2 14,001

K mc mc mc
v c

c
v c c

c
c v


 
      
  

          
   

         
   

 

 (b) The tube will be contracted in the rest frame of the electron, according to Eq. 36-3a. 

 
2

2 2 3
0

1
1 3.0 10 m 1 1 0.21m

14,001
v c

          
   

l l  

 
78. The electrostatic force provides the radial acceleration.  We solve that relationship for the speed of 

the electron. 

  
   

 
9 2 2

2 2
electron

electrostatic centripetal 2
0

2192
6

31 10
0 electron

8.99 10 N m C

1
        

4

1.60 10 C1
2.18 10 m s 0.0073

4 9.11 10 kg 0.53 10 m

e m v
F F

r r

e
v c

m r







 

 

   


    

 

 

 Because this is much less than 0.1c, the electron is  not relativistic.  
 
79. The minimum energy required would be the energy to produce the pair with no kinetic energy, so the 

total energy is their rest energy.  They both have the same mass.  Use Eq. 36-12. 

     2 132 2 0.511MeV 1.022 MeV 1.64 10 JE mc      

 
80. The wattage times the time is the energy required.  We use Eq. 36-12 to calculate the mass. 

  
  
 

7

2 5
22 8

75W 3.16 10 s 1000g
    2.6 10 g

1kg3.00 10 m s

Pt
E Pt mc m

c


  
       

 
 

 
81. Use Eqs. 36-13, 36-8, and 36-11. 

 

 

1/ 22 2 2 2 4 2 2 2 4

2 2 2
1/ 22 2 2 4 21

2 2

      

2

E p c m c E p c m c

dE pc pc mvc
p c m c pc v

dp E E mc






     

     
 

 
82. The kinetic energy available comes from the decrease in rest energy. 

     2 2 2 2
n p 939.57 MeV 938.27 MeV 0.511MeV 0 0.79 MeVe vK m c m c m c m c          

 
83. (a) We find the rate of mass loss from Eq. 36-12. 

   

 

 

2 2

26
9 9

22 8

      

1 4 10 J s
4.44 10 kg s 4 10 kg s

3.00 10 m s

E mc E m c

m E

t c t

     

            
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(b) Find the time from the mass of the Sun and the rate determined in part (a).  

 
  

24

7 7Earth
9 7

5.98 10 kg
4.27 10 y 4 10 y

4.44 10 kg s 3.156 10 s y

m
t

m t


      

   
 

 (c) We find the time for the Sun to lose all of its mass at this same rate. 

   
 

  
30

13 13Sun
9 7

1.99 10 kg
1.42 10 y 1 10 y

4.44 10 kg s 3.156 10 s y

m
t

m t


      

   
 

 
84. Use Eq. 36-8 for the momentum to find the mass. 

 

2 2

28
22

82 2
31

8

  
1

2.24 10 m s
3.07 10 kg m s 1

3.00 10 m s1
9.12 10 kg

2.24 10 m s

mv
p mv

v c

p v c
m

v







  


         



 

 This particle has the mass of an electron, and a negative charge, so it must be an electron. 
 
85.  The total binding energy is the energy required to provide the increase in rest energy. 

  

 

   

2
p+e n He

2
2

2 2

931.5MeV
2 1.00783u 2 1.00867u 4.00260u 28.32 MeV

u

E m m m c

c
c

    
 

       
 

 

 
86. The momentum is given by Eq. 36-8, and the energy is given by Eq. 36-11 and Eq. 36-13. 

2 2 2

2 2 2 4 2 2 2 2 2
    

mc v Ev pc pc pc
P mv v

c c E m c p c m c p

      
 

 

 
87. (a) The magnitudes of the momenta are equal.  We use Eq. 36-8. 

   

    

 

2

2 2 2 2 2

10

8

18

938.3MeV 0.9851 1
5356MeV

1 1 1 0.985

1 1.602 10 J GeV
5.36GeV 5.36GeV

3.00 10 m s 1GeV

2.86 10 kg m s

mc v cmv
p mv c

c cv c v c

c
c c







    
  

   
      

  

 

 (b) Because the protons are moving in opposite directions, the vector sum of the momenta is  0.  
 (c) In the reference frame of one proton, the laboratory is moving at 0.985c.  The other 

proton is moving at 0.985c  relative to the laboratory.  We find the speed of one proton 
relative to the other, and then find the momentum of the moving proton in the rest frame of the 
other proton by using that relative velocity. 

   
   

  
2

0.985 0.985
0.9999

1 0.985 0.9851

x
x

x

c cv u
u c

vu
c

     
      

 
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     

 

 

22

2 2 2 2 2

2

10

8

17

2 0.985
938.3MeV

1 0.9851 1
62081MeV

1 1 2 0.985
1

1 0.985

1 1.602 10 J GeV
62.1GeV 62.1GeV

3.00 10 m s 1GeV

3.31 10 kg m s

xx
x

x x

mc u cmu
p mu c

c cu c u c

c
c c







 
      

   
   

   
      

  

 

 
88. We find the loss in mass from Eq. 36-12. 

  
 

3
12

22 8

484 10 J
5.38 10 kg

3.00 10 m s

E
m

c


    


 

 Two moles of water has a mass of 336 10 kg.   Find the percentage of mass lost. 

  
12

10 8
3

5.38 10 kg
1.49 10 1.5 10 %

36 10 kg


 




   


 

 
89. Use Eq. 36-10 for kinetic energy, and Eq. 36-12 for rest energy. 

  

 

 

2 2
Enterprise converted

9 7
converted Enterprise2 2 2

1   

1 1
1 1 6 10 kg 3 10 kg

1 1 0.10

K m c m c

m m
v c

   

   
            

 

 
90. We set the kinetic energy of the spacecraft equal to the rest energy of an unknown mass.  Use Eqs. 

36-10 and 36-12. 

 

   

2 2
ship

5 4
ship ship2 2 2

1   

1 1
1 1 1 1.8 10 kg 7.2 10 kg

1 1 0.70

K m c mc

m m m
v c





   

   
              

 

From the Earth’s point of view, the distance is 35 ly and the speed is 0.70c.  That data is used to 
calculate the time from the Earth frame, and then Eq. 36-1a is used to calculate the time in the 
spaceship frame. 

  
   2 2 2

0

35y
50y  ;  1 50y 1 0.70 36y

0.70

cd
t t t v c

v c
            

 
91. We assume one particle is moving in the negative direction in the laboratory frame, and the other 

particle is moving in the positive direction.  We consider the particle moving in the negative 
direction as reference frame S, and the laboratory as reference frame S .   The velocity of the 
laboratory relative to the negative-moving particle is 0.85 ,v c  and the velocity of the positive-

moving particle relative to the laboratory frame is 0.85 .xu c    Solve for the velocity of the positive-

moving particle relative to the negative-moving particle, .xu  

  
   

  
2

0.85 0.85
0.987

1 0.85 0.851

x
x

x

u v c c
u c

vu
c

  
  

      
 
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92. We consider the motion from the reference frame of the spaceship.  The passengers will see the trip 
distance contracted, as given by Eq. 36-3a.  They will measure their speed to be that contracted 
distance divided by the year of travel time (as measured on the ship).  Use that speed to find the work 
done (the kinetic energy of the ship). 

2 2
0

2 2
0 0

0

0

1 1 1
    0.9887

1.0ly
11

6.6ly

v c v
v c

t t c
c t


     
                       

ll

l

 

 

  

2 2

2 2

24 8 22

2

1
1 1

1

1
1 3.2 10 kg 3.00 10 m s 1.6 10 J

1 0.9887

W K mc mc
v c


 
      
  

 
      
  

 

 
93. The kinetic energy is given by Eq. 36-10. 

  
 

 
  22 2 8

2 2 2

21

1 1
1 1 1 14,500kg 3.00 10 m s

1 1 0.98

5.3 10 J

K mc mc
v c


  
        

       

 

 

 We compare this with annual U.S. energy consumption:  
21

20

5.3 10 J
53.

10 J


  

 The spaceship’s kinetic energy is over 50 times as great. 
 
94. The pi meson decays at rest, and so the momentum of the muon and the neutrino must each have the 

same magnitude (and opposite directions).  The neutrino has no rest mass, and the total energy must 
be conserved.  We combine these relationships using Eq. 36-13. 

  

 
   

     

1/ 22 2 2 4

1/ 2 1/ 22 2 2 2 4 2 2 2 4

1/ 2 22 2 2 2 4 2 2 2 2 4

  ;  

      

    

v v v v v

v v

E p c m c p c p p p

E E E m c p c m c p c p c m c pc

m c pc p c m c m c pc p c m c



     

   

    

         

      

 

 Solve for the momentum. 

  
2 2 2 2

2 4 2 2 2 2 2 2 42     
2

m c m c
m c m c pc p c p c m c pc

m
 

  



       

Write the kinetic energy of the muon using Eqs. 36-11 and 36-13. 

  

   

   

     

2 2

2 2 2 2

2 2 2 2

2 2 2 2 2 2

22 2 2 2 2 2 2 2

  ;    

2

2

2 2

2 2 2

2 2 2

vK E m c E E E m c pc

m c m c
K m c pc m c m c m c

m

m m c m c m c m c

m m

m m m m m c m m m m c m m c

m m m

     

 
    



    

 

          

  

      


     

 
 

     
  

 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

452 

95. (a) The relative speed can be calculated in either frame, and will be the same value in both frames.   
The time as measured on the Earth will be longer than the time measured on the spaceship, as 
given by Eq. 36-1a. 

          

spaceship spaceshipEarth
Earth 2 2 2

Earth
Earth

Earth

2 2
2 22 2Earth Earth

Earth spaceship Earth spaceship

2

Earth
Earth spacesh

  ;    
1

1

     

t tx
v t

t v c x
c t

x x
t t t t

c c

x
t t

c

 
    
      

                
   

     
 

     2 2 2

ip 6.0y 2.50y 6.5y  

 

 (b) The distance as measured by the spaceship will be contracted. 

    spaceship spaceshipEarth
spaceship Earth

Earth spaceship Earth

2.50y
    6.0ly 2.3ly

6.5y

x tx
v x x

t t t

 
       
  

 

This is the same distance as found using the length contraction relationship. 
 
96. (a) To observers on the ship, the period is non-relativistic.  Use Eq. 14-7b. 

   
 
 

1.88kg
2 2 0.939s

84.2 N m

m
T

k
     

(b) The oscillating mass is a clock.  According to observers on Earth, clocks on the spacecraft run  
slow. 

   
 
 

Earth 2 2 2

0.939s
2.15s

1 1 0.900

T
T

v c
  

 
 

 
97. We use the Lorentz transformations to derive the result. 

      2 2
      ;      

vx v x
x x vt x x v t t t t t

c c
   

                          
   

 

  

       

     

      

2 2
22 2 2

2

2
2 2 22 2

2
2 22 2

2 2

2 2

1
1

1

v x v x
c t x c t x v t c t x v t

c c

v x v x
c t c t x x v t v t

c c

v
c v t x

cv c

  



                                                 
                       

   
                

      
 
          

2 22 2 2 2 2
2 2

2 2
2 2 2 2

2 2

1
1 1

1

1

1

c v c t v c x
v c

v c
c t x c t x

v c

 


  

      



          


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98. We assume that the left edge of the glass is even with point A when the flash of light is emitted.   
There is no loss of generality with that assumption.  We do the calculations in the frame of reference 
in which points A and B are at rest, and the glass is then moving to the right with speed v. 
 

If the glass is not moving, we would have this “no motion” result. 

 

0 glass vacuum
glass

distance in glass distance in vacuum

speed in glass speed in vacuum

1

v

d d
t t t

v c

n dd d nd d nd d

c n c c c c c




     

    
     

l

ll l l
 

If the index of refraction is 1,n   then the glass will have no effect on the light, and the time would 
simply be the distance divided by the speed of light. 

  1 glass vacuum

distance in glass distance in vacuum

speed in glass speed in vacuumn

d d d d
t t t

c c c c
  

       
l l l

 

Now, let us consider the problem from a relativistic point of view.  The speed of light in the glass 
will be the relativistic sum of the speed of light in stationary glass, ,c n  and the speed of the glass, v, 

by Eq. 36-7a.  We define  to simplify further expressions. 

  light
in glass

2

1 1
     

1 1 1 1

vn vnc c
v v c cc cn nv

cv v v vn n
nc nc nc nc

 

                   
               

 

 The contracted width of the glass, from the Earth frame of reference, is given by Eq. 36-3a. 

2 2
moving
glass

1
d

d d v c


    

We assume the light enters the block when the left edge of the block is at point A, and write simple  
equations for the displacement of the leading edge of the light, and the leading edge of the block.  Set 
them equal and solve for the time when the light exits the right edge of the block. 

  

 

light light right
in glass edge

light right glass glass glass
edge

  ;    ;

        

c d
x v t t x vt

n

c d d n
x x t vt t

n c nv





  

   

     


 

Where is the front edge of the block when the light emerges?  Use 
 glass

d n
t

c nv 



 with either 

expression – for the leading edge of the light, or the leading edge of the block. 

  
   

 
 

   

light light glass
in glass

right glass
edge

c d n cd
x v t

n c nv c nv

d c nv vdnd d d n cd
x vt v

c nv c nv c nv


   

 
       

  
 

 
     

  

 

The part of the path that is left, 
 

,
cd

c nv


 




l  will be traveled at speed c by the light.  We express 

that time, and then find the total time. 

  
 

vacuum

cd
c nv

t
c


 





l
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   
 

 
 

total glass vacuum glass

1
      

cd
c nvd n d n

t t t t
c nv c c c nv

n d c v

c c c v


  

   


 

      
 

 
 



l
l

l

 

 We check this for the appropriate limiting cases. 

  Case 1: 
   

total

1 1

v c

n d n dc v c c
t

c c c v c c c c c

  
    

 
l l l

 

    This result was expected, because the speed of the light would always be c.  

  Case 2: 
       

total
0

1 1 1
1

v

n d n d n dc v
t

c c c v c c c

   
    


ll l

 

    This result was obtained earlier in the solution. 

  Case 3: 
 

total
1

1

n

n d c v
t

c c c v c

 
  


l l

  

    This result was expected, because then there is no speed change in the glass. 
 
99. The spreadsheet used for this 

problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH36.XLS,” on 
tab “Problem 36.99.” 

 
 
 
 
 
 
 
 

100. (a) We use Eq. 36-98.  Since there is motion in two dimensions, we have 
22

2 2

1
.

1 yx
vv

c c

 

 

 

   0
ˆ    ;   0      ;      yx

x x y y

dpd dp
F p mv p F p Ft mv

dt dt dt
             

p
F j


 

  Use the component equations to obtain expressions for 2
xv  and 2.yv  

   

 
 

 
 

2 222 2 2
2 2 20 0 0

0 02 2 2 2 2 2 2 2
0

22 2 2 2 2
2

2 2 2 2 2

2 2

2 2 2

2 2 2 2

        1     

        1   

yyx
x x x x

yx
y y y

x

y

c vvp p p v
mv p v v v p

m m m c c m c p

vFt F t F t v
mv Ft v v

m m m c c

c v
v F t

m c F t


 


 

 
             

 
           

 






 

  Substitute the expression for 2
yv  into the expression for 2.xv  
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 
 

 
 

 
 

  
    

2 2

2 2 2

2 2 2 22 2 2 4 2 2 2

2 2 2 2
0 0 02 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0

2 2 2 2 2 2 2 2 2 2 4 2 2 2
0 0

2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2
0 0 0 0

 

  

  

x

y x

x

x x

x x x x x

c v
c F t

m c F tc v m c F t v
v p p p

m c p m c p m c p m c F t

v m c p m c F t p m c F t v

v m c v m c p v F t m c v F t p p m c p F t v

 
 
      

   

    

    

 
2 2 2 2 2 2 2 2 2 2 0

0 0 1/ 22 2 2 2 2
0

    x x x x

p c
v m c v p v F t p c v

m c p F t



    
 

 

  Use the expression for xv  to solve for .yv  

   

 
 

 
 

  
  

 
  

 

2 2
2 0

2 2 2 2 22 2
02 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2
0 02 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0

1/ 22 2 2 2 2
0

     

x

y

y

p c
c

m c p F tc v
v F t F t

m c F t m c F t

c m c p F t p c c m c F t
F t F t

m c F t m c p F t m c F t m c p F t

Ftc
v

m c p F t

 
 
     

 

   
  

     




 

 

The negative sign comes from taking the negative square root of the previous equation.  We 
know that the particle is moving down. 

 

(b) See the graph.  We are  
plotting xv c  and .yv c   

The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH36.XLS,” on 
tab “Problem 36.100.” 

 
 
 
 
 

 (c) The path is not parabolic, because the xv  is not constant.  Even though there is no force in the x- 

direction, as the net speed of the particle increases,  increases.  Thus xv  must decrease as time 

elapses in order for xp  to stay constant. 

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5t  ( s)

v
/c

 vx

(- vy)



 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

456 

CHAPTER 37:  Early Quantum Theory and Models of the Atom 
 
Responses to Questions 
 
1.  A reddish star is the coolest, followed by a whitish-yellow star. Bluish stars have the highest 

temperatures. The temperature of the star is related to the frequency of the emitted light. Since red 
light has a lower frequency than blue light, red stars have a lower temperature than blue stars. 

 
2. The energy radiated by an object may not be in the visible part of the electromagnetic spectrum. The 

spectrum of a blackbody with a temperature of 1000 K peaks in the IR and the object appears red, 
since it includes some radiation at the red end of the visible spectrum. Cooler objects will radiate 
less overall energy and peak at even longer wavelengths. Objects that are cool enough will not 
radiate any energy at visible wavelengths. 

 
3.  The lightbulb will not produce light as white as the Sun, since the peak of its emitted light is in the 

infrared. The lightbulb will appear more yellowish than the Sun, which has a spectrum that peaks in 
the visible range. 

 
4. A bulb which appears red would emit very little radiant energy at higher visible frequencies and 

therefore would not expose black and white photographic paper. This strategy would not work in a 
darkroom for developing color photographs since the photographic paper would be sensitive to light 
at all visible frequencies, including red.  

 
5.  If the threshold wavelength increases for the second metal, then it has a smaller work function than 

the first metal. Longer wavelength corresponds to lower energy. It will take less energy for the 
electron to escape the surface of the second metal. 

 
6. According to the wave theory, light of any frequency can cause electrons to be ejected as long as the 

light is intense enough. A higher intensity corresponds to a greater electric field magnitude and more 
energy. Therefore, there should be no frequency below which the photoelectric effect does not 
occur. According to the particle theory, however, each photon carries an amount of energy which 
depends upon its frequency. Increasing the intensity of the light increases the number of photons but 
does not increase the energy of the individual photons. The cutoff frequency is that frequency at 
which the energy of the photon equals the work function. If the frequency of the incoming light is 
below the cutoff, the electrons will not be ejected because no individual photon has enough energy 
to impart to an electron.  

 
7. Individual photons of ultraviolet light are more energetic than photons of visible light and will 

deliver more energy to the skin, causing burns. UV photons also can penetrate farther into the skin, 
and, once at the deeper level, can deposit a large amount of energy that can cause damage to cells. 

 
8. Cesium will give a higher maximum kinetic energy for the electrons. Cesium has a lower work 

function, so more energy is available for the kinetic energy of the electrons. 
 
9.  (a) No. The energy of a beam of photons depends not only on the energy of each individual photon  

but also on the total number of photons. If there are enough infrared photons, the infrared beam 
may have more energy than the ultraviolet beam. 

(b) Yes. The energy of a single photon depends on its frequency: E = hf. Since infrared light has a  
lower frequency than ultraviolet light, a single IR photon will always have less energy than a 
single UV photon.  
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10. Fewer electrons are emitted from the surface struck by the 400 nm photons. Each 400 nm photon has 
a higher energy than each 450 nm photon, so it will take fewer 400 nm photons to produce the same 
intensity (energy per unit area per unit time) as the 450 nm photon beam. The maximum kinetic 
energy of the electrons emitted from the surface struck by the 400 nm photons will be greater than 
the maximum kinetic energy of the electrons emitted from the surface struck by the 450 nm photons, 
again because each 400 nm photon has a higher energy.  

 
11. (a) In a burglar alarm, when the light beam is interrupted (by an intruder, or a door or window  

opening), the current stops flowing in the circuit. An alarm could be set to go off when the 
current stops. 

(b) In a smoke detector, when the light beam is obscured by smoke, the current in the circuit would  
decrease or stop. An alarm could be set to go off when the current decreased below a certain 
level.  

(c) The amount of current in the circuit depends on the intensity of the light, as long as the  
frequency of the light is above the threshold frequency. The ammeter in the circuit could be 
calibrated to reflect the light intensity. 

 
12.  Yes, the wavelength increases. In the scattering process, some of the energy of the incident photon is 

transferred to the electron, so the scattered photon has less energy, and therefore a lower frequency 
and longer wavelength, than the incident photon. (E = hf = hc/λ.) 

 
13. In the photoelectric effect the photon energy is completely absorbed by the electron. In the Compton 

effect, the photon is scattered from the electron and travels off at a lower energy. 
 
14.  According to both the wave theory and the particle theory the intensity of a point source of light 

decreases as the inverse square of the distance from the source. In the wave theory, the intensity of 
the waves obeys the inverse square law. In the particle theory, the surface area of a sphere increases 
with the square of the radius, and therefore the density of particles decreases with distance, obeying 
the inverse square law. The variation of intensity with distance cannot be used to help distinguish 
between the two theories.  

 
15. The proton will have the shorter wavelength, since it has a larger mass than the electron and 

therefore a larger momentum  .h p   

 
16. Light demonstrates characteristics of both waves and particles. Diffraction and interference are wave 

characteristics, and are demonstrated, for example, in Young’s double-slit experiment. The 
photoelectric effect and Compton scattering are examples of experiments in which light 
demonstrates particle characteristics. We can’t say that light IS a wave or a particle, but it has 
properties of each. 

 
17. Electrons demonstrate characteristics of both waves and particles. Electrons act like waves in 

electron diffraction and like particles in the Compton effect and other collisions. 
 
18.  Both a photon and an electron have properties of waves and properties of particles. They can both be 

associated with a wavelength and they can both undergo scattering. An electron has a negative 
charge and a rest mass, obeys the Pauli exclusion principle, and travels at less than the speed of 
light. A photon is not charged, has no rest mass, does not obey the Pauli exclusion principle, and 
travels at the speed of light. 

 
19.   Opposite charges attract, so the attractive Coulomb force between the positive nucleus and the 

negative electrons keeps the electrons from flying off into space.  
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20. Look at a solar absorption spectrum, measured above the Earth’s atmosphere. If there are dark 
(absorption) lines at the wavelengths corresponding to oxygen transitions, then there is oxygen near 
the surface of the Sun.  

 
21. At room temperature, nearly all the atoms in hydrogen gas will be in the ground state. When light 

passes through the gas, photons are absorbed, causing electrons to make transitions to higher states 
and creating absorption lines. These lines correspond to the Lyman series since that is the series of 
transitions involving the ground state or n = 1 level. Since there are virtually no atoms in higher 
energy states, photons corresponding to transitions from n > 2 to higher states will not be absorbed.  

 
22. The closeness of the spacing between energy levels near the top of Figure 37-26 indicates that the 

energy differences between these levels are small. Small energy differences correspond to small 
wavelength differences, leading to the closely spaced spectral lines in Figure 37-21. 

  
23. There is no direct connection between the size of a particle and its de Broglie wavelength. It is 

possible for the wavelength to be smaller or larger than the particle. 
 
24. On average the electrons of helium are closer to the nucleus than the electrons of hydrogen. The 

nucleus of helium contains two protons (positive charges), and so attracts each electron more 
strongly than the single proton in the nucleus of hydrogen. (There is some shielding of the nuclear 
charge by the second electron, but each electron still feels the attractive force of more than one 
proton’s worth of charge.) 

 
25. The lines in the spectrum of hydrogen correspond to all the possible transitions that the electron can 

make. The Balmer lines, for example, correspond to an electron moving from all higher energy 
levels to the n = 2 level. Although an individual hydrogen atom only contains one electron, a sample 
of hydrogen gas contains many atoms and all the different atoms will be undergoing different 
transitions. 

 
26. The Balmer series spectral lines are in the visible light range and could be seen by early 

experimenters without special detection equipment. 
 
27. The photon carries momentum, so according to conservation of momentum, the hydrogen atom will 

recoil as the photon is ejected. Some of the energy emitted in the transition of the atom to a lower 
energy state will be the kinetic energy of the recoiling atom, so the photon will have slightly less 
energy than predicted by the simple difference in energy levels. 

 
28. No. At room temperature, virtually all the atoms in a sample of hydrogen gas will be in the ground 

state. Thus, the absorption spectrum will contain primarily just the Lyman lines, as photons 
corresponding to transitions from the n = 1 level to higher levels are absorbed. Hydrogen at very 
high temperatures will have atoms in excited states. The electrons in the higher energy levels will 
fall to all lower energy levels, not just the n = 1 level. Therefore, emission lines corresponding to 
transitions to levels higher than n = 1 will be present as well as the Lyman lines. In general, you 
would expect to see only Lyman lines in the absorption spectrum of room temperature hydrogen, but 
you would find Lyman, Balmer, Paschen, and other lines in the emission spectrum of high-
temperature hydrogen. 

 
 
 
 
 



Chapter 37   Early Quantum Theory and Models of the Atom 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

459 

Solutions to Problems 
 
In several problems, the value of hc is needed.  We often use the result of Problem 96, 1240eV nm.hc    
 
1. We use Wien’s law, Eq. 37-1. 

 (a) 
   

 

3 3

5
P

2.90 10 m K 2.90 10 m K
1.06 10 m 10.6 m

273KT
 

 


 
    

 
 

  This wavelength is in the  far infrared.  

 (b) 
   

 

3 3

7
P

2.90 10 m K 2.90 10 m K
8.29 10 m 829nm

3500KT


 


 
    

 
 

  This wavelength is in the  infrared.  

 (c) 
   

 

3 3

4
P

2.90 10 m K 2.90 10 m K
6.90 10 m 0.69 mm

4.2 KT


 


 
    

 
 

  This wavelength is in the  microwave  region. 

 (d) 
   

 

3 3

3
P

2.90 10 m K 2.90 10 m K
1.06 10 m 1.06mm

2.725KT


 


 
    

 
 

  This wavelength is in the  microwave  region. 
 
2. We use Wien’s law to find the temperature for a peak wavelength of 460 nm. 

  
   

 
3 3

9
P

2.90 10 m K 2.90 10 m K
6300K

460 10 m
T



 



 
  



 
 

 
3. Because the energy is quantized according to Eq. 37-2, the difference in energy between adjacent 

levels is simply E = nhf. 

    34 13 206.63 10 J s 8.1 10 Hz 5.4 10 J 0.34eVE hf           

 
4. We use Eq. 37-1 with a temperature of 98 F 37 C 310K.     

  
   

 

3 3

6
P

2.90 10 m K 2.90 10 m K
9.4 10 m 9.4 m

310KT
 

 


 
    

 
 

 
5. (a) Wien’s displacement law says that PT   constant.  We must find the wavelength at which  

 ,I T  is a maximum for a given temperature.  This can be found by setting 0.I     

   
  

 

 

2 5 5
2

/ /

/ 6 5 /
2

2
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2
/ /

26 /

2
2

1 1

1 5
    2

1
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    5 5 0    5 5
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hc kT hc kT

hc kT hc kT

hc kT

hc kT hc kT

hc kT

I hc
hc

e e

hc
e e

kThc
e

hc hc hc
e e

kT kTe

 

 



 



  
  

 





 

 

     
           

          
 
  

            
  


   
 
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    
P

5 5 ; x hc
e x x

kT
    

This transcendental equation will have some solution x = constant, and so 
P

hc

kT
 constant, and 

so P constant .T    The constant could be evaluated from solving the transcendental equation,  

 (b) To find the value of the constant, we solve  5 5,xe x   or 5 5 .xx e    This can be done  

graphically, by graphing both 5y x   and 5 xy e  on the same set of axes and finding the 

intersection point.  Or, the quantity 5 5 xx e   could be calculated, and find for what value of x 
that expression is 0.  The answer is x = 4.966.  We use this value to solve for h.  The spreadsheet 
used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH37.XLS,”  on tab “Problem 37.5.” 

     
P

3 23

34P
8

4.966  

2.90 10 m K 1.38 10 J K
4.966 4.966 6.62 10 J s

3.00 10 m s

hc

kT

Tk
h

c




 



 

 
   






 

 (c) We integrate Planck’s radiation formula over all wavelengths. 

   

 

 

2 5

/ 2
0 0

5
2

02 5 4 4 3

/ 2 3 2
0 0 0

2
,   ;  let   ;    ;  

1

2
2 2

,
1 1 1

hc kT

hc kT x x

hc hc hc hc
I T d d x d dx

e kT xkT x kT

hc
hc

hc hc k T xxkTI T d d dx dx
e e x kT h c e





     



    

  



  



 
      

  
                      
 
 

 

  

4 3
4 4

3 2
0

2

1x

k x
dx T T

h c e





  
     





 

Thus the total radiated power per unit area is proportional to 4.T   Everything else in the 
expression is constant with respect to temperature. 

 
6. We use Eq. 37-3. 

    34 6 266.626 10 J s 104.1 10 Hz 6.898 10 JE hf         

 
7. We use Eq. 37-3 along with the fact that f c   for light.  The longest wavelength will have the 

lowest energy. 

  
  

 
34 8

19
1 1 199

1

6.63 10 J s 3.00 10 m /s 1eV
4.85 10 J 3.03eV

1.60 10 J410 10 m

hc
E hf








           


 

  
  

 
34 8

19
2 2 199

2

6.63 10 J s 3.00 10 m /s 1eV
2.65 10 J 1.66eV

1.60 10 J750 10 m

hc
E hf








           


 

 Thus the range of energies is 19 192.7 10 J 4.9 10 JE      or 1.7eV 3.0eV .E   
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8. We use Eq. 37-3 with the fact that f c   for light. 

  
  
  

34 8

12 3

19 3

6.63 10 J s 3.00 10 m/s
3.27 10 m 3.3 10 nm

1.60 10 J/eV 380 10 eV

c hc

f E



 



 
      

 


 

Significant diffraction occurs when the opening is on the order of the wavelength.  Thus there would 
be  insignificant diffraction  through the doorway. 

 
9. We use Eq. 37-3 with the fact that f c   for light. 

  
  

 
19

13 13min
min min min 34

0.1eV 1.60 10 J eV
    2.41 10 Hz 2 10 Hz

6.63 10 J s

E
E hf f

h






       

 
 

  
 
 

8

5 5
max 13

min

3.00 10 m s
1.24 10 m 1 10 m

2.41 10 Hz

c

f
  


     


 

 
10. We use Eq. 37-5. 

  
 
 

34

27

7

6.63 10 J s
1.07 10 kg m s

6.20 10 m

h
p









   




  

 
11. At the minimum frequency, the kinetic energy of the ejected electrons is 0.  Use Eq. 37-4a. 

  
19

140
min 0 min 34

4.8 10 J
0    7.2 10 Hz

6.63 10 J s

W
K hf W f

h






       

 
 

 
12. The longest wavelength corresponds to the minimum frequency.  That occurs when the kinetic 

energy of the ejected electrons is 0.  Use Eq. 37-4a. 

    
  

0
min 0 min

max

8 34

7
max 19

0

0      

3.00 10 m s 6.63 10 J s
3.36 10 m 336nm

3.70eV 1.60 10 J eV

c W
K hf W f

h

ch

W









      

 
    



  

 
13. The energy of the photon will equal the kinetic energy of the baseball.  We use Eq. 37-3. 

  
  

34 8

2 271
2 22

2 6.63 10 J s 3.00 10 m s2
        3.05 10 m

0.145kg 30.0m s

c hc
K hf mv h

mv







 
       


 

 
14. We divide the minimum energy by the photon energy at 550 nm to find the number of photons. 

  
  

  
18 9

min min
min 34 8

10 J 550 10 m
    2.77 3 photons

6.63 10 J s 3.00 10 m s

E E
E nhf E n

hf hc


 




       

 
 

 
15. The photon of visible light with the maximum energy has the least wavelength.  We use 410 nm as 

the lowest wavelength of visible light. 

  
  
  

34 8

max 19 9
min

6.63 10 J s 3.00 10 m/s
3.03eV

1.60 10 J/eV 410 10 m

hc
hf





 

 
  

 


 

 Electrons will not be emitted if this energy is less than the work function.   
 The metals with work functions greater than 3.03 eV are  copper and iron.  
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16. (a) At the threshold wavelength, the kinetic energy of the photoelectrons is zero, so the work  
function is equal to the energy of the photon. 

   0 max

1240eV nm
2.4eV

520nm

hc
W hf K hf


     


 

 (b) The stopping voltage is the voltage that gives a potential energy change equal to the maximum  
  kinetic energy.  We use Eq. 37-4b to calculate the maximum kinetic energy. 

   
max 0 0

max
0

1240eV nm
2.38eV 0.25eV

470nm

0.25eV
0.25V

hc
K hf W W

K
V

e e


      

  



 

 
17. The photon of visible light with the maximum energy has the minimum wavelength.  We use Eq. 37-

4b to calculate the maximum kinetic energy. 

   max 0 0

1240 eV nm
2.48 eV 0.54 eV

410 nm

hc
K hf W W


      


 

 
18. We use Eq. 37-4b to calculate the maximum kinetic energy.  Since the kinetic energy is much less 

than the rest energy, we use the classical definition of kinetic energy to calculate the speed. 

  max 0 0

1240eV nm
2.48eV 0.92eV

365nm

hc
K hf W W


      


 

  
  19

2 5max1
max 2 31

2 0.92eV 1.60 10 J eV2
    5.7 10 m/s

9.11 10 kg

K
K mv v

m






     


 

 
19. We use Eq. 37-4b to calculate the work function. 

  0 max max

1240 eV nm
1.70 eV 2.65 eV

285 nm

hc
W hf K K


      


 

 
20. Electrons emitted from photons at the threshold wavelength have no kinetic energy.  We use Eq. 37-

4b with the threshold wavelength to determine the work function.   

  0 max
max

1240 eV nm
3.88 eV.

320 nm

hc hc
W K

 
    


 

 (a) We now use Eq. 36-4b with the work function determined above to calculate the kinetic energy  
of the photoelectrons emitted by 280 nm light. 

   max 0

1240 eV nm
3.88 eV 0.55 eV

280 nm

hc
K W


    


 

 (b) Because the wavelength is greater than the threshold wavelength, the photon energy is less than  
  the work function, so there will be  no ejected electrons.  
 
21. The stopping voltage is the voltage that gives a potential energy change equal to the maximum 

kinetic energy of the photoelectrons.  We use Eq. 37-4b to calculate the work function where the 
maximum kinetic energy is the product of the stopping voltage and electron charge. 

    0 max 0

1240 eV nm
1.84 V 3.55 eV

230 nm

hc hc
W K eV e

 
      


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22. The energy required for the chemical reaction is provided by the photon.  We use Eq. 37-3 for the 
energy of the photon, where / .f c   

  
1240 eV nm

2.0 eV
630 nm

hc
E hf


   


 

Each reaction takes place in a molecule, so we use the appropriate conversions to convert 
eV/molecule to kcal/mol. 

  
19 232.0 eV 1.60 10  J 6.02 10 molecules kcal

45 kcal/mole
molecule eV mol 4186 J

E
            

     
 

 
23. (a) Since f c  , the photon energy given by Eq. 37-3 can be written in terms of the wavelength  

as .E hc    This shows that the photon with the largest wavelength has the smallest energy.  
The 750-nm photon then delivers the minimum energy that will excite the retina. 

   
  

 
–34 8

–19–9

6.63 10 J s 3.00 10 m s 1 eV
1.66eV

1.60 10 J750 10 m

hc
E


        


 

 (b) The eye cannot see light with wavelengths less than 410 nm. Obviously, these wavelength  
photons have more energy than the minimum required to initiate vision, so they must not arrive 
at the retina. That is, wavelength less than 410 nm are absorbed near the front portion of the 
eye. The threshold photon energy is that of a 410-nm photon. 

   
  

 
–34 8

–19–9

6.63 10 J s 3.00 10 m s 1 eV
3.03eV

1.60 10 J410 10 m

hc
E


        


 

 
24. We plot the maximum (kinetic) energy  

of the emitted electrons vs. the 
frequency of the incident radiation.  
Eq. 37-4b says max 0.K hf W    The 
best-fit straight line is determined by 
linear regression in Excel.  The slope 
of the best-fit straight line to the data 
should give Planck’s constant, the x-
intercept is the cutoff frequency, and 
the y-intercept is the opposite of the 
work function.  The spreadsheet used 
for this problem can be found on the 
Media Manager, with filename “PSE4_ISM_CH37.XLS,” on tab “Problem 37.24.” 

 (a)   14 19 340.4157eV 10 Hz 1.60 10 J eV 6.7 10 J sh        

 (b)  
140

cutoff 0 cutoff 14

2.3042eV
    5.5 10 Hz

0.4157eV 10 Hz

W
hf W f

h
       

  (c) 0 2.3eVW   

 
25. (a) Since f c  , the photon energy is E hc   and the largest wavelength has the smallest  

energy.  In order to eject electrons for all possible incident visible light, the metal’s work 
function must be less than or equal to the energy of a 750-nm photon. Thus the maximum value 
for the metal’s work function oW  is found by setting the work function equal to the energy of 
the 750-nm photon.  

E  = 0.4157 f  - 2.3042

R
2
 = 0.9999

0.0

0.5

1.0

1.5

2.0

2.5

3.0

6.0 7.0 8.0 9.0 10.0 11.0 12.0

Frequency (1014 Hz)

E
ne

rg
y 

(e
V

)
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  
 
–34 8

o –19–9

6.63 10 J s 3.00 10 m s 1 eV
1.66 eV

1.60 10 J750 10 m

hc
W


        


 

 (b) If the photomultiplier is to function only for incident wavelengths less than 410-nm, then we set  
the work function equal to the energy of the 410-nm photon. 

  
 
–34 8

o –19–9

6.63 10 J s 3.00 10 m s 1 eV
3.03 eV

1.60 10 J410 10 m

hc
W


        


 

 
26. Since f c  , the energy of each emitted photon is E hc  .  We multiply the energy of each 

photon by 61.0 10 s  to determine the average power output of each atom.  At distance of 

25 cmr  , the light sensor measures an intensity of 21.6 nW 1.0 cmI  . Since light energy emitted 
from atoms radiates equally in all directions, the intensity varies with distance as a spherical wave. 
Thus, from Section 15–3 in the text, the average power emitted is 24P r I .  Dividing the total 
average power by the power from each atom gives the number of trapped atoms. 

   
     

2 9 22

6 34 8 9
atom

7

4 25cm 1.6 10 W/cm4

1.0 10 /s 6.63 10 J s 3.00 10 m/s / 780 10 m

4.9 10 atoms

P r I
N

P nhc






 


  

   

 

  

 
27. We set the kinetic energy in Eq. 37-4b equal to the stopping voltage, 0eV , and write the frequency 

of the incident light in terms of the wavelength, .f c    We differentiate the resulting equation 
and solve for the fractional change in wavelength, and we take the absolute value of the final 
expression. 

  
    

0
0 0 0 02

19 9

34 8

          

1.60 10 C 550 10 m
0.01V 0.004

6.63 10 J s 3.00 10 m s

hc hc d edV e
eV W edV d V

hc hc

   
   




 




          

 
 

 

 

 
28. We use Eq. 37-6b.  Note that the answer is correct to two significant figures. 

  

 

   
 

e

31 8 13

1 1e
34

1 cos   

9.11 10 kg 3.00 10 m s 1.5 10 m
cos 1 cos 1 20

6.63 10 J s

h

m c

m c

h

 


 

 


   

                 

 

 
29. The Compton wavelength for a particle of mass m is .h mc  

 (a) 
 

  
34

12

31 8
e

6.63 10 J s
2.43 10 m

9.11 10 kg 3.00 10 m s

h

m c







  

 


 

 (b) 
 

  
34

15

27 8
p

6.63 10 J s
1.32 10 m

1.67 10 kg 3.00 10 m s

h

m c







  

 


 

 (c) The energy of the photon is given by Eq. 37-3. 

   
 

2
photon rest energy

hc hc
E hf mc

h mc
      
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30. We find the Compton wavelength shift for a photon scattered from an electron, using Eq. 37-6b.  The 
Compton wavelength of a free electron is given in the text right after Eq. 37-6b. 

         3
C

e

1 cos 1 cos 2.43 10 nm 1 cos
h

m c
      
         

 
 

 (a)   3 32.43 10 nm 1 cos60 1.22 10 nma            

 (b)   3 32.43 10 nm 1 cos90 2.43 10 nmb            

 (c)   3 32.43 10 nm 1 cos180 4.86 10 nmc            

 
31. (a) In the Compton effect, the maximum change in the photon’s wavelength is when scattering  

angle o180  .  We use Eq. 37-6b to determine the maximum change in wavelength.  Dividing 
the maximum change by the initial wavelength gives the maximum fractional change. 

   

 

    
   

e

–34

6

–31 8 9
e

1– cos   

6.63 10 J s 1 cos180
1– cos 8.8 10

9.11 10 kg 3.00 10 m s 550 10 m

h

m c

h

m c

 

 
 




  

  
   

  

  

 (b) We replace the initial wavelength with 0.10 nm.   

       
   

–34

–31 8 9
e

6.63 10 J s 1 cos180
1– cos 0.049

9.11 10 kg 3.00 10 m s 0.10 10 m

h

m c

 
  

  
  

  


 

 
32. We find the change in wavelength for each scattering event using Eq. 37-6b, with a scattering angle 

of o0.50 .    To calculate the total change in wavelength, we subtract the initial wavelength, 
obtained from the initial energy, from the final wavelength.  We divide the change in wavelength by 
the wavelength change from each event to determine the number of scattering events. 

    
  

–34

o –17 8

–31 8
e

6.63 10 J s 1 cos0.5
1– cos0.5 9.24 10 m 9.24 10 nm

9.11 10 kg 3.00 10 m s

h

m c
 

   
      

 
 

  
  
  

–34 8

–12
0 6 –19

0

6.63 10 J s 3.00 10 m s
1.24 10 m 0.00124nm

1.0 10 eV 1.60 10 J eV

hc

E


  
    

 
. 

  
    90

–8

555 nm – 0.00124 nm 
6 10 events

 9.24 10 nm
n

 



   
 

 

 
33. (a) We use conservation of momentum to set the initial momentum of the photon equal to the sum  

of the final momentum of the photon and electron, where the momentum of the photon is given 
by Eq. 37-5 and the momentum of the electron is written in terms of the total energy (Eq. 36-
13).  We multiply this equation by the speed of light to simplify.   

   2 2
00     e

h h hc hc
p E E

   
                  

 

Using conservation of energy we set the initial energy of the photon and rest energy of the 
electron equal to the sum of the final energy of the photon and the total energy of the electron.   

   0

hc hc
E E

 
           
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By summing these two equations, we eliminate the final wavelength of the photon.  We then  
solve the resulting equation for the kinetic energy of the electron, which is the total energy less 
the rest energy. 

   

2

2 2 2 2
0 0 0 0

2

2
2 0 0

2 2 2
0 0 0

0

2

2
0 0

0

2  +     2

2

2 2 2     

2 2

2

2 2

hc hc
E E E E E E E E

hc
E E

hc hc
E E E E E E E

hc
E

hc
E E

K E E
hc

 


 







                   

                                         

         
 



2

0 0

0 0 0

2

5

2 2 2

2 2 2

1240 eV nm
2

0.160 nm   228eV
1240 eV nm

2 5.11 10 eV
0.160 nm

hc hcE E

hc hc
E E E

 

 

             
                            

 
 
  

       





 

 (b) We solve the energy equation for the final wavelength. 

   

0

11

0

1 1 228eV
0.165nm

0.160nm 1240eV nm

hc hc
E E

hc K
hc hcE E

 








           

                 
 



 

 
34.  First we use conservation of energy, where the energy of the photon is written in terms of the 

wavelength, to relate the initial and final energies.  Solve this equation for the electron’s final energy. 

2 2   
hc hc hc hc

mc E E mc
   

                            
 

Next, we define the x-direction as the direction of the initial motion of the photon.  We write 
equations for the conservation of momentum in the horizontal and vertical directions, where  is the 
angle the photon makes with the initial direction of the photon and  is the angle the electron makes. 

  :    cos cos              :    0 sin sinx e y e

h h h
p p p p   

  
   

 
 

To eliminate the variable  we solve the momentum equations for the electron’s momentum, square 
the resulting equations and add the two equations together using the identity 2 2cos sin 1.    

   

   

2 2
2 2

2 2
2 2

2 22
2

  cos  cos               sin sin

cos sin cos sin

2
cos

e e

e e

e

h h h
p p

h h h
p p

h h h
p

   
  

   
  


  

            

             

            
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We now apply the relativistic invariant equation, Eq. 36-13, to write the electron momentum in terms 
of the electron energy.  Then using the electron energy obtained from the conservation of energy 
equation, we eliminate the electron energy and solve for the change in wavelength. 

   

22 22 2 2 4
2 2

2

2 2 2
2 2 2 2

2 2

2
cos

1 1
= 2

2 1 1
cos 2

cos     1 cos

h h h E m c h h
mc m c

c

h h h
m c hmc m c

h h
hmc

h
h mc h

mc


    

    


   

     

                                 

                     

        

        

 

 
35. The photon energy must be equal to the kinetic energy of the products plus the mass energy of the 

products.  The mass of the positron is equal to the mass of the electron. 

  
 

2
photon products products

2 2
products photon products photon electron

  

2 2.67 MeV 2 0.511MeV 1.65MeV

E K m c

K E m c E m c

  

      
 

  
36. The photon with the longest wavelength has the minimum energy in order to create the masses with 

no additional kinetic energy.  Use Eq. 37-5. 

  
 

  
34

16
max 2 27 8

min

6.63 10 J s
6.62 10 m

2 2 2 1.67 10 kg 3.00 10 m s

hc hc h

E mc mc








     

 


 

 This must take place in the presence of some other object in order for momentum to be conserved. 
 
37. The minimum energy necessary is equal to the rest energy of the two muons. 

    2
min 2 2 207 0.511MeV 212 MeVE mc    

 The wavelength is given by Eq. 37-5. 

  
  
  

34 8

15

19 6

6.63 10 J s 3.00 10 m s
5.86 10 m

1.60 10 J eV 212 10 eV

hc

E







 
   

 


 

 
38. Since 0.001 ,v c  the total energy of the particles is essentially equal to their rest energy.  Both 

particles have the same rest energy of 0.511 MeV.  Since the total momentum is 0, each photon must 
have half the available energy and equal momenta. 

  photon2
photon electron photon0.511MeV     ;    0.511MeV

E
E m c p c

c
     

 
39. The energy of the photon is equal to the total energy of the two particles produced.  Both particles 

have the same kinetic energy and the same mass. 

     2
photon 2 2 0.375MeV 0.511MeV 1.772 MeVE K mc      

 The wavelength is found from Eq. 37-5. 

  
  
  

34 8
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19 6

6.63 10 J s 3.00 10 m s
7.02 10 m

1.60 10 J eV 1.772 10 eV
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E







 
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 


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40. We find the wavelength from Eq. 37-7. 

  
 

  

34

32
6.63 10 J s

2.9 10 m
0.23kg 0.10m s

h h

p mv






    


 

 
41. The neutron is not relativistic, so we can use .p mv   We also use Eq. 37-7. 

  
 

  
34

12

27 4

6.63 10 J s
4.7 10 m

1.67 10 kg 8.5 10 m s

h h

p mv








    

 


 

 
42. We assume the electron is non-relativistic, and check that with the final answer.  We use Eq. 37-7. 

  
 

  
34

6

31 9

6.63 10 J s
    3.466 10 m s 0.01155

9.11 10 kg 0.21 10 m

h h h
v c

p mv m






 


       

 


 

Our use of classical expressions is justified.  The kinetic energy is equal to the potential energy 
change. 

  
  

 

231 61
221

2 19

9.11 10 kg 3.466 10 m s
34.2eV

1.60 10 J eV
eV K mv





 
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
 

 Thus the required potential difference is  34 V.  
 
43. The theoretical resolution limit is the wavelength of the electron.  We find the wavelength from the 

momentum, and find the momentum from the kinetic energy and rest energy.  We use the result from 
Problem 94.  The kinetic energy of the electron is 85 keV. 

  

  
      
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
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


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

 

 
44. We use the relativistic expression for momentum, Eq. 36-8. 

  
   

   
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2342 2
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1 1
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






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 

 
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 


 

 
45. Since the particles are not relativistic, we may use 2 2 .K p m   We then form the ratio of the 

kinetic energies, using Eq. 37-7. 
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2 2 272
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46. We assume the neutron is not relativistic.  If the resulting velocity is small, our assumption will be 
valid. We use Eq. 37-7. 

 
  

34

27 9

6.63 10 J s
    1300m s 1000m s

1.67 10 kg 0.3 10 m

h h h
v

p mv m






 


      

 


 

This is not relativistic, so our assumption was valid. 
 
47. (a) We find the momentum from Eq. 37-7. 

   
34

24
10

6.63 10 J s
1.1 10 kg m s

6.0 10 m

h
p









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
   

 (b) We assume the speed is non-relativistic. 

     
34

6

31 10

6.63 10 J s
    1.2 10 m s

9.11 10 kg 6.0 10 m

h h h
v

p mv m






 


      

 


 

  Since 34.04 10 ,v c    our assumption is valid. 
 (c) We calculate the kinetic energy classically. 

        222 2 3 61 1 1
2 2 2 0.511MeV 4.04 10 4.17 10 MeV 4.17eVK mv mc v c          

  This is the energy gained by an electron if accelerated through a potential difference of 4.2 V. 
 
48. Because all of the energies to be considered are much less than the rest energy of an electron, we can 

use non-relativistic relationships.  We use Eq. 37-7 to calculate the wavelength. 
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      

 (a) 
   

34
10 10

31 19

6.63 10 J s
2.7 10 m 3 10 m

2 2 9.11 10 kg 20eV 1.60 10 J eV

h

mK



 

 


     

 


 

 (b) 
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 (c) 
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
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
 

 
49. Since the particles are not relativistic, we may use 2 2 .K p m   We then form the ratio of the 

wavelengths, using Eq. 37-7. 

  
pp e

e p

e

2
  ;  1

2
2

h

m Kh h m
hp mmK
m K





      

 Thus we see the proton has the shorter wavelength, since e p.m m  

 
50. The final kinetic energy of the electron is equal to the negative change in potential energy of the 

electron as it passes through the potential difference.  We compare this energy to the rest energy of 
the electron to determine if the electron is relativistic. 

    3 31e 33 10 V 33 10 eVK q V        

 Because this is greater than 1% of the electron rest energy, the electron is relativistic.  We use Eq. 
36-13 to determine the electron momentum and then Eq. 37-5 to determine the wavelength. 
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    

2 2
22 2 2 2 2 4

2 2 23 3 3

2
 

1240eV nm
0.0066nm

2 33 10 eV 2 33 10 eV 511 10 eV

K Kmc
E K mc p c m c p

c
h hc

p K Kmc


       

   
    

  

   Because  « 5 cm,   diffraction effects are negligible.  
 
51. We will assume that the electrons are non-relativistic, and then examine the result in light of that 

assumption.  The wavelength of the electron can be found from Eq. 34-2a.  The speed can then be 
found from Eq. 37-7. 
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  

  

 This is far from being relativistic, so our original assumption was fine. 
 
52. We relate the kinetic energy to the momentum with a classical relationship, since the electrons are 

non-relativistic.  We also use Eq. 37-7.  We then assume that the kinetic energy was acquired by 
electrostatic potential energy. 

   
   

2 2

2

2342

22 31 19 9

  
2 2

6.63 10 J s
19V

2 2 9.11 10 kg 1.60 10 C 0.28 10 m

p h
K eV

m m

h
V

me







  

   


  

  

  

 
53. The kinetic energy is 3450 eV.  That is small enough compared to the rest energy of the electron for 

the electron to be non-relativistic.  We use Eq. 37-7. 

     
  

    

34 8

1/ 2 1/ 2 1/ 22 19 6

11

6.63 10 J s 3.00 10 m /s

2 2 1.60 10 J/eV 2 0.511 10 eV 3450 eV

2.09 10 m 20.9pm

h h hc

p mK mc K








 
   

   

  



 

 

54. The energy of a level is 
 

2

13.6 eV
.nE

n
   

 (a) The transition from n = 1 to n' = 3 is an  absorption,  because the  final state,  n' = 3, has a  
  higher energy.  The photon energy is the difference between the energies of the two states. 

     2 2

1 1
13.6 eV 12.1 eV

3 1n nhf E E
                 

 

 (b) The transition from n = 6 to n' = 2 is an  emission,  because the  initial state,  n' = 2, has a  
  higher energy.  The photon energy is the difference between the energies of the two states. 

       2 2

1 1
13.6 eV 3.0 eV

2 6n nhf E E
                 

 

 (c) The transition from n = 4 to n' = 5 is an  absorption,  because the  final state,  n' = 5, has a  
  higher energy.  The photon energy is the difference between the energies of the two states. 



Chapter 37   Early Quantum Theory and Models of the Atom 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

471 

     2 2

1 1
13.6 eV 0.31 eV

5 4n nhf E E
                 

 

 The photon for the transition from  n = 1 to n' = 3  has the largest energy. 
 
55. To ionize the atom means removing the electron, or raising it to zero energy. 

  
   

ionization 2 2

13.6eV 13.6eV
0 0 1.51eV

3nE E
n


       

 
56. We use the equation that appears above Eq. 37-15 in the text. 

(a) The second Balmer line is the transition from n = 4 to n = 2. 

   
   4 2

1240eV nm
490nm

0.85eV 3.4eV

hc

E E
   

     


 

 (b) The third Lyman line is the transition from n = 4 to n = 1. 

   
   4 1

1240eV nm
97.3nm

0.85 eV 13.6 eV

hc

E E
   

     


 

 (c) The first Balmer line is the transition from n = 3 to n = 2. 
  For the jump from n = 5 to n = 2, we have 

   
   3 2

1240eV nm
650nm

1.5 eV 3.4 eV

hc

E E
   

     


 

 
57. Doubly ionized lithium is similar to hydrogen, except that there are three positive charges (Z = 3) in 

the nucleus.  The square of the product of the positive and negative charges appears in the energy 
term for the energy levels.  We can use the results for hydrogen, if we replace e2 by Ze2: 

  
     2 2

2 2 2

13.6eV 3 13.6eV 122eV
n

Z
E

n n n
       

  
 
 ionization 1 2

122eV
0 0 122eV

1
E E

 
      

  
 

 
58. We evaluate the Rydberg constant using Eq. 37-8 and 37-15.  We use hydrogen so Z = 1. 

  

       

     
     

2 4

2 2 2 22 3
0

42 19 312 4

2 32 3 12 2 2 34 8
0

4
7 7 1

4
3 3

2 4

1 1 1 1 1
  

8

1 1.602176 10 C 9.109382 10 kg

8 8 8.854188 10 C N m 6.626069 10 J s 2.997925 10 m s

C kg
1.0974 10 1.0974 10 m

C
J s m s

N m

Z e m
R

h cn n n n

Z e m
R

h c

 



 

 



   
              

 
 

  

   

 





 

 
59. The longest wavelength corresponds to the minimum energy, which is the ionization energy: 

  
  
  

34 8

8

19
ion

6.63 10 J s 3.00 10 m /s
9.14 10 m 91.4nm

1.60 10 J/eV 13.6eV

hc

E







 
    




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60. Singly ionized helium is like hydrogen, except that there are two positive charges (Z = 2) in the 
nucleus.  The square of the product of the positive and negative charges appears in the energy term 
for the energy levels.  We can use the results for hydrogen, if we replace e2 by Ze2. 

  
     2 2

2 2 2

13.6 eV 2 13.6 eV 54.4 eV
n

Z
E

n n n
       

 We find the energy of the photon from the n = 5 to n = 2 transition in singly-ionized helium. 

   5 2 2 2

1 1
54.4 eV 11.4 eV

5 2
E E E

                  
 

Because this is NOT the energy difference between any two specific energy levels for hydrogen, the 
photon CANNOT be absorbed by hydrogen. 

 
61. The energy of the photon is the sum of the ionization energy of 13.6 eV and the kinetic energy of 

20.0eV.  The wavelength is found from Eq. 37-3. 

  
  
  

34 8

8
total 19

total

6.63 10 J s 3.00 10 m /s
    3.70 10 m 37.0nm

1.60 10 J/eV 33.6 eV

hc hc
hf E

E









 
       




 

 
62. A collision is elastic if the kinetic energy before the collision is equal to the kinetic energy after the 

collision.  If the hydrogen atom is in the ground state, then the smallest amount of energy it can 
absorb is the difference in the n = 1 and n = 2 levels.  So as long as the kinetic energy of the 
incoming electron is less than that difference, the collision must be elastic. 

   2 1

13.6eV
13.6eV 10.2eV

4
K E E         

 
 

 
63. Singly ionized helium is like hydrogen, except that there are two 

positive charges (Z = 2) in the nucleus. The square of the product 
of the positive and negative charges appears in the energy term 
for the energy levels.  We can use the results for hydrogen, if we 
replace e2 by Ze2: 

  
     2 2

2 2 2

1 2 3 4

13.6eV 2 13.6eV 54.4eV

54.5eV,  13.6eV,  6.0eV,  3.4eV

n

Z
E

n n n
E E E E

     

       
 

 
 
 
 
64. Doubly ionized lithium is like hydrogen, except that there are  

three positive charges (Z = 3) in the nucleus.  The square of the 
product of the positive and negative charges appears in the 
energy term for the energy levels.  We can use the results for 
hydrogen, if we replace e2 by Ze2: 

  

     2 2

2 2 2

1 2 3

4

13.6eV 3 13.6eV 122.4eV

122eV,  30.6eV,  13.6eV,

7.65eV

n

Z
E

n n n
E E E

E

     

     
 

 

 
 
 

122

30.6

13.6
7.65
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65. The potential energy for the ground state is given by the charge of the electron times the electric 
potential caused by the proton.  

  
        

 

29 2 2 19 19

proton 10
0 1

9.00 10 N m C 1.60 10 C 1eV 1.60 10 J1

4 0.529 10 m

27.2eV

e
U e V e

r

 



  
     



 



 

The kinetic energy is the total energy minus the potential energy. 

   1 13.6eV 27.2eV 13.6eVK E U         

 
66. The value of n is found from 2

1,nr n r  and then find the energy from Eq. 37-14b. 

  

 

     

31
22

1 10
1

5
2 2 2

0.10 10 m
    972

0.529 10 m

13.6 eV 13.6 eV 13.6 eV
1.4 10 eV

972 1375

n
n

r
r n r n

r

E
n








    



        

 

 
67. The velocity is found from Eq. 37-10 evaluated for n = 1. 

   
  

34

6 3

10 31
1 e

  
2

6.63 10 J s
2.190 10 m s 7.30 10

2 2 0.529 10 m 9.11 10 kg

n

nh
mvr

h
v c

rm



 




 

 


     

 

  

 We see that ,v c  and so yes, non-relativistic formulas are justified. 
 The relativistic factor is as follows. 

  

1
22 2 62

51 1
2 2 8

2.190 10 m s
1 1 1 1 2.66 10 0.99997

3.00 10 m s

v v

c c


                            
 

We see that 2 21 v c  is essentially 1, and so again the answer is yes, non-relativistic formulas are 

justified. 
 
68. The angular momentum can be used to find the quantum number for the orbit, and then the energy 

can be found from the quantum number.  Use Eqs. 37-10 and 37-14b. 

  

 
 

 

34 2

34

2

2

2 5.273 10 kg m s2
    5.000 5

2 6.626 10 J s

13.6eV
13.6eV 0.544eV

25n

h L
L n n

h

Z
E

n









     



    




  

   
69. Hydrogen atoms start in the 1n   orbit (“ground state”). Using Eq. 37-9 and Eq. 37-14b, we 

determine the orbit to which the atom is excited when it absorbs a photon of 12.75 Ev via collision 
with an electron.  Then, using Eq. 37-15, we calculate all possible wavelengths that can be emitted as 
the electron cascades back to the ground state. 

2

13.6 eV
      

13.6 eV 13.6 eV
4

13.6 eV + 12.75 eV

U L U L

L

E E E E E E
n

n
E E

         

 
  

  
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Starting with the electron in the 4n   orbit, the following transitions are possible: 4n   to 3n  ; 
4n   to 2n  ; 4n   to 1n  ; 3n   to 2n  ; 3n   to 1n  ; 2n   to 1n  . 

   7 –1 5 –1
2 2

1 1 1
1.097 10 m – 5.333 10 m 1875 nm

3 4



       
   

 7 –1 6 –1
2 2

1 1 1
1.097 10 m – 2.057 10 m 486.2 nm

2 4



       
   

 7 –1 7 –1
2 2

1 1 1
1.097 10 m – 1.028 10 m 97.23 nm

1 4



       
   

 7 –1 6 –1
2 2

1 1 1
1.097 10 m – 1.524 10 m 656.3 nm

2 3



       
 

 

 7 –1 6 –1
2 2

1 1 1
1.097 10 m – 9.751 10 m 102.6 nm

1 3



       
 

 

 7 –1 6 –1
2 2

1 1 1
1.097 10 m – 8.228 10 m 121.5 nm

1 2



       
   

 
70. When we compare the gravitational and electric forces we see that we can use the same expression 

for the Bohr orbits, Eq. 37-11 and 37-14a, if we replace 2
04Ze   with .e pGm m    

  
 

    

2 2
0 0

1 2 2 2

2342

1 22 2 2 11 2 2 31 27

29

4
  

4

6.626 10 J s

4 4 6.67 10 N m / kg 9.11 10 kg 1.67 10 kg

1.20 10 m

e e

e p

h h
r

m Ze m Ze

h
r

Gm m

 
 

 



  

  


 

  

 




 

  
     

 

2 2 2 3 22 4 2 2

1 12 2 2 2
0 0

2 3 22 11 2 2 31 27

97
234

22
    

8 4

2 6.67 10 N m kg 9.11 10 kg 1.67 10 kg
4.22 10 J

6.626 10 J s

e pe e
G m mZ e m Ze m

E E
h h h


 

   




 
       

 

  
    







 

 
71. We know that the radii of the orbits are given by 2

1.nr n r   Find the difference in radius for adjacent 
orbits. 

       22 2 2
1 1 1 1 1 11 2 1 2 1n nr r r n r n r n r n n r n r              

If 1,n we have 1 2

2
2 2 .n nr r

r nr n
n n

     

In the classical limit, the separation of radii (and energies) should be very small.  We see that letting 
n   accomplishes this.  If we substitute the expression for 1r  from Eq. 37-11, we have this. 

2
0

1 2

2
2

nh
r nr

me




    

We see that 2 ,r h   and so letting 0h   is equivalent to considering .n   
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72. We calculate the energy from the light bulb that enters the eye by calculating the intensity of the  
light at a distance of 250 m by dividing the power in the visible spectrum by the area of a sphere of 
radius 250 m.  We multiply the intensity of the light by the area of the pupil to determine the energy 
entering the eye per second.  We divide this energy by the energy of a photon (Eq. 37-3) to calculate 
the number of photons entering the eye per second.  

 
  

  

2
2

2

292 3

34 8

8

       / 4
4 16

0.030 75W 550 10 m 4.0 10 m

/ 16 250m16 6.626 10 J s 3.00 10 m s

1.0 10 photons/sec

e

e

P P D
I P I D

P P D
n

hc hc







 



     
 

             

 

l l

l 
 

 
73. To produce a photoelectron, the hydrogen atom must be ionized, so the minimum energy of the 

photon is 13.6 eV.  We find the minimum frequency of the photon from Eq. 37-3. 

  
 

19

15min
min 34

13.6 eV 1.60 10 J eV
        3.28 10 Hz

6.63 10 J s

E E
E hf f f

h h






       

 
 

 
74. From Section 35-10, the spacing between planes, d, for the first-order peaks is given by Eq. 35-20, 

2 sin .d    The wavelength of the electrons can be found from their kinetic energy.  The electrons 
are not relativistic at the energy given. 

   
     

2 2

2

34

11

31 19

    2 sin   
2 2 2

6.63 10 J s
8.9 10 m

2sin 2 2 sin38 2 9.11 10 kg 125eV 1.60 10 J/eV

p h h
K d

m m mK

h
d

mK

 







 

     


   

  

  

 
75. The power rating is the amount of energy produced per second.  If this is divided by the energy per 

photon, then the result is the number of photons produced per second. 

  
  

  
2

26
photon 34 8

photon

860W 12.2 10 m
  ;  5.3 10 photons s
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hc P P
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E hc









     

 
 

 
76. The intensity is the amount of energy per second per unit area reaching the Earth.  If that intensity is 

divided by the energy per photon, the result will be the photons per second per unit area reaching the 
Earth.  We use Eq. 37-3. 

    
  

photon
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77. The impulse on the wall is due to the change in momentum of the photons.  Each photon is absorbed, 
and so its entire momentum is transferred to the wall. 

  

 
  

 

on wall wall photons photon photon

9 9

18

34

0   

6.5 10 N 633 10 m
6.2 10 photons s

6.63 10 J s

nh
F t p p np np

n F

t h




 



          

 
   

  

 

 
78. We find the peak wavelength from Wien’s law, Eq. 37-1. 

  
   

 

3 3

3
P

2.90 10 m K 2.90 10 m K
1.1 10 m 1.1mm

2.7 KT


 


 
    

 
 

 
79. The total energy of the two photons must equal the total energy (kinetic energy plus mass energy) of 

the two particles.  The total momentum of the photons is 0, so the momentum of the particles must 
have been equal and opposite.  Since both particles have the same mass and the same momentum, 
they each have the same kinetic energy. 

  
 2

photons particles e

21
photons e2

2   

0.755MeV 0.511MeV 0.244 MeV

E E m c K

K E m c

   

    
 

 
80. We calculate the required momentum from de Broglie’s relation, Eq. 37-7.    

  
 
 

34

22

12

6.63 10 J s
1.11 10  kg m/s

6.0 10 m

h
p








   




  

 (a) For the proton, we use the classical definition of momentum to determine the speed of the  
electron, and then the kinetic energy.  We divide the kinetic energy by the charge of the proton 
to determine the required potential difference.  

   
 

22
4

27

227 42

19

1.11 10 kg m/s
6.65 10 m/s

1.67 10 kg

1.67 10 kg 6.65 10 m/s
23V

2 2 1.60 10 C

p
v c

m

K mv
V

e e










   



 
   



 

 

 (b) For the electron, if we divide the momentum by the electron mass we obtain a speed greater  
than 10% of the speed of light.  Therefore, we must use the relativistic invariant equation to 
determine the energy of the electron.  We then subtract the rest energy from the total energy to 
determine the kinetic energy of the electron.  Finally, we divide the kinetic energy by the 
electron charge to calculate the potential difference. 

   

   

       

  

1
22 22

0

1
2 2 2 4 222 8 31 8

14

22 14 31 8 15
0

15

19

1.11 10 kg m/s 3.00 10 m s 9.11 10 kg 3.00 10 m s

8.85 10 J

8.85 10 J 9.11 10 kg 3.00 10 m s 6.50 10 J

6.50 10 J
41 kV

1.60 10 C

E pc m c

K E m c

K
V

e

 



  





    

        
 

        


  




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81. If we ignore the recoil motion, at the closest approach the kinetic energy of both particles is zero.  
The potential energy of the two charges must equal the initial kinetic energy of the   particle: 

   

  

       
  

Ag

0 min

29 2 2 19
Ag 14

min 13
0

1
  

4

9.00 10 N m C 2 47 1.60 10 C1
2.8 10 m

4 4.8MeV 1.60 10 J MeV

Z e Z e
K U

r

Z e Z e
r

K

















  

 
   




 

 
82. The electrostatic potential energy is given by Eq. 23-5.  The kinetic energy is given by the total 

energy, Eq. 37-14a, minus the potential energy.  The Bohr radius is given by Eq. 37-11. 

  

2 2 2 2 4

2 2 2 2 2
0 0 0 0

2 4

2 4 2 4 2 4 2 4 2 2 22 2 2
00

2 42 2 2 2 2 2 2 2 2 2 2 2 2 4
0 0 0 0

2 2 2
0

1 1

4 4 4

84
 ;  2

8 4 8 4
8

n

Ze Ze mZe Z e m
U eV

r n h n h

Z e m
UZ e m Z e m Z e m Z e m n hn h

K E U
Z e mh n n h n h K n h Z e m
n h


   


   



       

 
          

 

 

 
83. We calculate the ratio of the forces. 

  

    
  

211 2 2 31 272
gravitational

222 9 2 2 19
electric

2

40

6.67 10 N m kg 9.11 10 kg 1.67 10 kg

9.00 10 N m C 1.60 10 C

4.4 10

e p

e p

Gm m

F Gm mr

F keke
r

  





 
       
   
 
 

 



  

  Yes,  the gravitational force may be safely ignored. 
 
84. The potential difference gives the electrons a kinetic energy of 12.3 eV, so it is possible to provide 

this much energy to the hydrogen atom through collisions.  From the ground state, the maximum 
energy of the atom is 13.6 eV 12.3 eV 1.3 eV.      From the energy level diagram, Figure 37-26, 
we see that this means the atom could be excited to the n = 3 state, so the possible transitions when 
the atom returns to the ground state are n = 3 to n = 2, n = 3 to n = 1, and n = 2 to n = 1.  We 
calculate the wavelengths from the equation above Eq. 37-15. 

  
   3 2

3 2

1240eV nm
650nm

1.5 eV 3.4 eV

hc

E E
    

     


 

  
   3 1

3 1

1240eV nm
102nm

1.5 eV 13.6 eV

hc

E E
    

     


 

  
   2 1

2 1

1240eV nm
122nm

3.4 eV 13.6 eV

hc

E E
    

     


 

 
85. The stopping potential is the voltage that gives a potential energy change equal to the maximum 

kinetic energy.  We use Eq. 37-4b to first find the work function, and then find the stopping potential 
for the higher wavelength. 

  max 0 0 0 0
0

    
hc hc

K eV W W eV
 

       
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    
 

1 0 0 0
1 1 0 1 0

34 8

9 919

1 1

6.63 10 J s 3.00 10 m s 1 1
2.70eV 2.25eV

440 10 m 380 10 m1.60 10 J eV

hc hc hc
eV W eV hc eV

    


 

   
          

   

   
       


 

 The potential difference needed to cancel an electron kinetic energy of 2.25 eV is  2.25 V.  
 
86. (a) The electron has a charge e, so the potential difference produces a kinetic energy of eV.  The  

shortest wavelength photon is produced when all the kinetic energy is lost and a photon is 
emitted. 

   max 0
0

    
hc hc

hf eV
eV




    which gives 0 .
hc

eV
   

 (b) 0 3

1240eV nm
0.038nm

33 10 eV

hc

eV
   




 

 
87. The average force on the sail is equal to the impulse on the sail divided by the time (Eq. 9-2).  Since 

the photons bounce off the mirror the impulse is equal to twice the incident momentum.  We use Eq. 
37-5 to write the momentum of the photon in terms of the photon energy.  The total photon energy is 
the intensity of the sunlight multiplied by the area of the sail 

      22

8

2 1350 W/m 1000 m2 / 2 / 2
9.0 N

3.00 10  m/s

E c E tp IA
F

t t c c


     
  

 

 
88. We first find the work function from the given data.  A photon energy of 9.0 eV corresponds with a 

stopping potential of 4.0 V. 
  0 0 0 0    9.0eV 4.0eV 5.0eVeV hf W W hf eV         

If the photons’ wavelength is doubled, the energy is halved, from 9.0 eV to 4.5 eV.  This is smaller 
than the work function, and so no current flows.  Thus the maximum kinetic energy is 0.  Likewise, 
if the photon’s wavelength is tripled, the energy is only 3.0 eV, which is still less than the work 
function, and so no current flows. 

 
89. The electrons will be non-relativistic at that low energy.  The maximum kinetic energy of the 

photoelectrons is given by Eq. 37-4b.  The kinetic energy determines the momentum, and the 
momentum determines the wavelength of the emitted electrons.  The shortest electron wavelength 
corresponds to the maximum kinetic energy. 

   

   

2 2

electron 0 electron2
electron

0

34

9

31 19

    
2 2

2

6.63 10 J s
1.2 10 m

1240eV nm
2 9.11 10 kg 2.4eV 1.60 10 J eV

360nm

hc p h h
K W

m m hc
m W


 






 

     
  
 


  

 
   

 




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90. The wavelength is found from Eq. 35-13.  The velocity of electrons with the same wavelength (and 
thus the same diffraction pattern) is found from their momentum, assuming they are not relativistic.  
We use Eq. 37-7 to relate the wavelength and momentum. 

    
   

34

31 3

sin
sin       

6.63 10 J s 1
990m s

sin 9.11 10 kg 0.012 10 m sin3.5

d h h
d n

n p mv

hn
v

md

  





 

     


  

  

  

 
91. (a) See the adjacent figure. 
 (b) Absorption of a 5.1 eV photon represents a transition  

from the  ground state  to the state 5.1 eV above that, 
the third excited state.  Possible photon emission 
energies are found by considering all the possible 
downward transitions that might occur as the electron 
makes its way back to the ground state. 

    6.4eV 6.8eV 0.4eV     

    6.4eV 9.0eV 2.6eV     

    6.4eV 11.5eV 5.1eV     

    6.8eV 9.0eV 2.2eV     

    6.8eV 11.5eV 4.7eV     

    9.0eV 11.5eV 2.5eV     

 
92. (a) We use Eq. 37-4b to calculate the maximum kinetic energy of the electron and set this equal to 

the product of the stopping voltage and the electron charge. 

   
   

0 0
max 0 0 0

0

/
    

1240eV nm 424nm 2.28eV
0.65V

e

hf W hc W
K hf W eV V

e e

V

 
     


 


 

 (b) We calculate the speed from the non-relativistic kinetic energy equation and the maximum 
kinetic energy found in part (a). 

   
  19

2 5max1
max max max2 31

2 0.65eV 1.60 10 J eV2
    4.8 10 m/s

9.11 10 kg

K
K mv v

m






     


 

 (c) We use Eq. 37-7 to calculate the de Broglie wavelength. 

     
34

9

31 5

6.63 10 J s
1.52 10 m 1.5nm

9.11 10 kg 4.8 10 m s

h h

p mv








     

 


 

 
93. (a) We use Bohr’s analysis of the hydrogen atom, where we replace the proton mass with Earth’s  

mass, the electron mass with the Moon’s mass, and the electrostatic force 
2

2e

ke
F

r
  with the 

gravitational force  
2

.E M
g

Gm m
F

r
   To account for the change in force, we replace 2ke  with 

.E MGm m   With these replacements, we write expressions similar to Eq. 37-11 and Eq. 37-14a 
for the Bohr radius and energy.   
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 

    
 

2 2

2 2

2342 2
2

22 2 2 11 2 2 22 24

2 129

  
4

6.626 10 J s

4 4 6.67 10 N m / kg 7.35 10 kg 5.98 10 kg
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n

n
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h n
r

mke

h n
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n



 







 


 

  

 




   

   
     

 

2 4 2

2 2

2 2 32 11 2 2 24 222 2 2 3

22 2 2 34

165

2

2
  

2 6.67 10 N m / kg 5.98 10 kg 7.35 10 kg2

6.626 10 J s

2.84 10 J

n

E M
n

e mk
E

n h

G m m
E

n h n

n








  

  
   




 




 

(b) We insert the known masses and Earth–Moon distance into the Bohr radius equation to  
determine the Bohr state. 

   
     

 

2 2

2

22 11 2 2 22 24 8

234

68

4
 

4 6.67 10  Nm / kg 7.35 10  kg 5.98 10  kg 3.84 10  m

6.626 10  Js

2.73 10

M E nGm m r
n

h



 





   




 

 

Since 6810 ,n   a value of  1n   is negligible compared to n.  Hence the quantization of 

energy and radius is  not apparent.  
 
94. We use Eqs. 36-13, 36-11, and 37-7 to derive the expression. 

  

 

 

22 2 2 4 2 2 2 2 2 4 2 2 2 2 4

2 2 2 2
2 2 2 2 2

2 2 2 2 2

  ;      2   

2         
2 2

p c m c E E K mc p c m c K mc K mc K m c

h c h c hc
K mc K p c

K mc K K mc K
 



           

      
 

  

 
95. As light leaves the flashlight it gains momentum.  This change in momentum is given by Eq. 31-20. 

Dividing the change in momentum by the elapsed time gives the force the flashlight must apply to 
the light to produce this momentum.  This is equal to the reaction force that light applies to the 
flashlight. 

8
8

3.0W
1.0 10 N

3.00 10 m s

p U P

t c t c
 

    
  

 

 
96. (a) Since f c  , the energy of each emitted photon is .E hc    We insert the values for h and  

c and convert the resulting units to eV nm.  

   
    

   

–34 8 –19

–9

6.626 10 J s 2.998 10 m s 1eV 1.602 10 J 1240 eV nm

in nm10 m 1nm

hc
E

  
  

  
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 (b) Insert 650 nm into the above equation. 

   
1240 eV nm

1.9 eV
650 nm

E  


 

 

97. (a) We write the Planck time as   P ,t G h c  and the units of Pt  must be  .T  

          
  

                   
     
            

3 2
2 2

P 2
    

L ML L
t G h c T L M T

T TMT
 

There are no mass units in  ,T  and so   ,  and            5 3
.T L T   There are no 

length units in  ,T  and so   5  and          3 5 2
.T T T   Thus   1

2
 and 

   5
2

.  

   1/ 2 1/ 2 5/ 2
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Gh
t G h c

c
   

 (b) 
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 

11 2 2 34

43
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Gh
t

c

 


  
   




  

 (c) We write the Planck length as    P ,G h c  and the units of P  must be  .L  

          
  

                   
     
            

3 2
2 2
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L ML L
G h c L L M T

T TMT
 

There are no mass units in  ,L  and so   ,  and            5 3
.L L T   There are no 

time units in  ,L  and so   3  and         5 3 2
.L L L   Thus   1

2
 and 

   3
2

.  

   1/ 2 1/ 2 3/ 2
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t G h c

c
   

 (d) 
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98. For standing matter waves, there are nodes at the two walls.  For the ground state (first harmonic), 

the wavelength is twice the distance between the walls, or 1
2 l (see Figure 15-26b).  We use Eq. 

37-7 to find the velocity and then the kinetic energy. 
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 For the second harmonic, the distance between the walls is a full wavelength, and so .l  
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99. (a)  Apply conservation of momentum before and after the emission of the photon to determine the  
recoil speed of the atom, where the momentum of the photon is given by Eq. 37-7.   

     
 

  
–34

–3

–27 –9

6.63 10 J s
0     6.0 10 m s

85 1.66 10 kg 780 10 m

h h
mv v

m 


      
 


 

(b)  We solve Eq. 18-5 for the lowest achievable temperature, where the recoil speed is the rms 
speed of the rubidium gas.  

  
 

2–27 –32
–7

–23

85 1.66 10 kg 6.0 10 m s3
    1.2 10 K 0.12 K

3 3 1.38 10 J K

kT mv
v T

m k


 
      


 

 
100. Each time the rubidium atom absorbs a photon its momentum decreases by the momentum of the 

photon.  Dividing the initial momentum of the rubidium atom by the momentum of the photon, Eq. 
37-7, gives the number of collisions necessary to stop the atom.  Multiplying the number of 
collisions by the absorption time, 25 ns per absorption, provides the time to completely stop the 
atom. 

    

 

27 9

34

8u 1.66 10 kg/u 290m s 780 10 m
48,140

6.63 10 J s

48,140 25ns 1.2 ms

mv mv
n

h h

T




 



 
   



 

  

 
101. (a) See the adjacent graphs.   
 (b) To compare the intensities, the  

two graphs are numerically 
integrated from 400 nm to 760 
nm, which is approximately the 
range of wavelengths for visible 
light.  The result of those 
integrations is that the higher 
temperature bulb is about 4.8 
times more intense than the 
lower temperature bulb. 

 
The spreadsheet used for this 
problem can be found on the Media 
Manager, with filename “PSE4_ISM_CH37.XLS,” on tab “Problem 37.101.” 

 
102. Planck’s radiation formula  I T  was calculated for a temperature of 6000 K, for wavelengths 

from 20 nm to 2000 nm.  A plot of those calculations is in the spreadsheet for this problem.  To 
estimate the % of emitted sunlight that is in the visible, this ratio was calculated by numeric 
integration.  The details are in the spreadsheet. 

  

 

 
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400nm
2000 nm
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,

% visible 0.42

,

I T d

I T d

 

 
 




 

So our estimate is that 42% of emitted sunlight is in the visible wavelengths.  The spreadsheet used 
for this problem can be found on the Media Manager, with filename “PSE4_ISM_CH37.XLS,” on 
tab “Problem 37.102.” 
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103. (a) For the photoelectric effect experiment, Eq. 37-4b can be expressed as max 0.K hf W    The  
maximum kinetic energy is equal to the potential energy associated with the stopping voltage, 
so max 0.K eV   We also have .f c    Combine those relationships as follows. 

   0
max 0 0 0 0

1
        

hc hc W
K hf W eV W V

e e 
         

A plot of 0V  vs. 
1


 should yield a straight line with a slope of 

hc

e
 and a y-intercept of 0 .

W

e
  

 
(b) The graph is shown, with a linear  

regression fit as given by Excel.  
 

 (c) The slope is 1.24V m,
hc

a
e

     

and the y-intercept is 2.31V.b    
 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH37.XLS,” on tab 
“Problem 37.103.” 
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CHAPTER 38:  Quantum Mechanics 
 
Responses to Questions 
 
1. (a) A matter wave ψ does not need a medium as a wave on a string does. The square of the wave  

function for a matter wave ψ describes the probability of finding a particle within a certain 
spatial range, whereas the equation for a wave on a string describes the displacement of a piece 
of string from its equilibrium position. 

(b)  An EM wave also does not need a medium. The equation for the EM wave describes the way in  
which the amplitudes of the electric and magnetic fields change as the wave passes a point in 
space. An EM wave represents a vector field and can be polarized. A matter wave is a scalar 
and cannot be polarized. 

 
2. According to Bohr’s theory, each electron in an atom travels in a circular orbit and has a precise 

position and momentum at any point in time. This view is inconsistent with the postulates of 
quantum mechanics and the uncertainty principle, which does not allow both the position and 
momentum to be known precisely. According to quantum mechanics, the “orbitals” of electrons do 
not have precise radii, but describe the probability of finding an electron in a given spatial range. 

 
3. As mass increases, the uncertainty in the momentum of the object increases, and, from the 

Heisenberg uncertainty principle, the uncertainty in the position of the object decreases, making the 
future position of the object easier to predict. 

 
4. Planck’s constant is so small that on the scale of a baseball the uncertainties in position and 

momentum are negligible compared with the values of the position and momentum. If visible light is 
being used to observe the baseball, then the uncertainty in the baseball’s position will be on the order 
of the wavelength of visible light. (See Section 38-3.) A baseball is very large compared to the 
wavelength of light, so any uncertainty in the position of the baseball will be much smaller than the 
extent of the object itself.  

 
5.  No. According to the uncertainty principle, if the needle were balanced the position of the center of 

mass would be known exactly, and there would have to be some uncertainty in its momentum. The 
center of mass of the needle could not have a zero momentum, and therefore would fall over. If the 
initial momentum of the center of mass of the needle were exactly zero, then there would be 
uncertainty in its position, and the needle could not be perfectly balanced (with the center of mass 
over the tip). 

 
6. Yes, some of the air escapes the tire in the act of measuring the pressure and it is impossible to avoid 

this escape. The act of measuring the air pressure in a tire therefore actually changes the pressure, 
although not by much since very little air escapes compared to the total amount of air in the tire. 
This is similar to the uncertainty principle, in which one of the two factors limiting the precision of 
measurement is the interaction between the object begin observed, or measured, and the observing 
instrument. 

 
7. Yes. In energy form, the uncertainty principle is ΔEΔt > h/2 . For the ground state, Δt is very large, 

since electrons remain in that state for a very long time, so ΔE is very small and the energy of the 
state can be precisely known. For excited states, which can decay to the ground state, Δt is much 
smaller, and ΔE is corresponding larger. Therefore the energy of the state is less well known. 
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8. If Planck’s constant were much larger than it is, then the consequences of the uncertainty principle 
would be noticeable with macroscopic objects. For instance, attempts to determine a baseball’s 
speed would mean that you could not find its position very accurately. Using a radar gun to find the 
speed of a pitcher’s fastball would significantly change the actual course of the ball. 

 
9.  According to Newtonian mechanics, all objects have an exact position and momentum at a point in 

time. This information can be used to predict the future motion of an object. According to quantum 
mechanics, there is unavoidable uncertainty in the position and momentum of all objects. It is 
impossible to exactly determine both position and momentum at the same time, which introduces 
uncertainly into the prediction of the future motion of the object. 

 
10. If you knew the position precisely, then you would know nothing about the momentum.  
 
11. No. Some of the energy of the soup would be used to heat up the thermometer, so the temperature 

registered on the thermometer would be slightly less than the original temperature of the soup. 
 
12.  No. However, the greater the precision of the measurement of position, the greater the uncertainty in 

the measurement of the momentum of the object will be. 
 
13. A particle in a box is confined to a region of space. Since the uncertainty in position is limited by the 

box, there must be some uncertainty in the particle’s momentum, and the momentum cannot be zero. 
The zero point energy reflects the uncertainty in momentum. 

 
14.  Yes, the probability of finding the particle at these points is zero. It is possible for the particle to pass 

by these points. Since the particle is acting like a wave, these points correspond to the nodes in a 
standing wave pattern in the box. 

 
15.  For large values of n, the probability density varies rapidly between zero and the maximum value. It 

can be averaged easily to the classical result as n becomes large. 
 
16. As n increases, the energy of the corresponding state increases, but ΔE/E approaches zero. For large 

n, the probability density varies rapidly between zero and the maximum value and is easily averaged 
to the classical result, which is a uniform probability density for all points in the well. 

 
17. As the potential decreases, the wave function extends into the forbidden region as an exponential 

decay function. When the potential drops below the particle energy, the wave function outside the 
well changes from an exponential decay function to an oscillating function with a longer wavelength 
than the function within the well. When the potential is zero, the wavelengths of the wave function 
will be the same everywhere. The ground state energy of the particle in a well becomes the energy of 
the free particle. 

 
18. The hydrogen atom will have a greater probability of tunneling through the barrier because it has a 

smaller mass and therefore a larger transmission coefficient. (See Equations 38-17a and 38-17b.) 
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Solutions to Problems 
 
1. We find the wavelength of the neutron from Eq. 37-7.   The peaks of the interference pattern are 

given by Eq. 34-2a and Figure 34-10.  For small angles, we have sin tan .   

  
  

     

0

34

4 27 19
0

7

  ;  sin , 1,2, ...   ;  tan
2

sin tan         , 1,2, ...  

6.63 10 J s 1.0m

2 6.0 10 m 2 1.67 10 kg 0.030eV 1.60 10 J eV

    2.8 10 m

h h
d m m y

p m K

m y m
y m

d d

h
y

d d m K

   

  




  



    

      


   

  

 

l

l

l

l l 
  

    
2. We find the wavelength of a pellet from Eq. 37-7.  The half-angle for the central circle of the 

diffraction pattern is given in Section 35-4 as 
1.22

sin ,
D

   where D is the diameter of the opening.  

Assuming the angle is small, the diameter of the spread of the bullet beam is 2 tan 2 sin .d   l l  

      
 

3 3
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34

1.22 1.22
  ;  2 tan 2 sin 2 2   
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h h h
d

p mv D Dmv
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h

  

 



      

 
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

l l l l

l


 

 This is almost 1210 light years. 
  
3. The uncertainty in the velocity is given.  Use Eq. 38-1 to find the uncertainty in the position. 

  
 

  

34

11

27
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4. The minimum uncertainty in the energy is found from Eq. 38-2. 
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34
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
 

 
5. The uncertainty in position is given.  Use Eq. 38-1 to find the uncertainty in the momentum. 

  
 

  
34

31 8

1.055 10 J s
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6. The uncertainty in the energy is found from the lifetime and the uncertainty principle. 
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2 2

            
hc hc hc E E

E dE d E
E

  
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                 

 The wavelength uncertainty is the absolute value of this expression, and so 83 10



    

 
7. The uncertainty in the energy is found from the lifetime and the uncertainty principle. 
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8. (a) We find the wavelength from Eq. 37-7. 

   
 
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 (b) Use Eq. 38-1 to find the uncertainty in momentum 
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9. The uncertainty in the position is found from the uncertainty in the velocity and Eq. 38-1. 
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 The uncertainty for the electron is greater by a factor of 291.5 10 .  
 
10. We find the uncertainty in the energy of the muon from Eq. 38-2, and then find the uncertainty in the  

mass. 
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11. We find the uncertainty in the energy of the free neutron from Eq. 38-2, and then the mass 

uncertainty from Eq. 36-12.  We assume the lifetime of the neutron is good to two significant 
figures.  The current experimental lifetime of the neutron is 886 seconds, so the 900 second value is 
certainly good to at least 2 significant figures. 
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12. Use the radius as the uncertainty in position for the electron.  We find the uncertainty in the 
momentum from Eq. 38-1, and then find the energy associated with that momentum from Eq. 36-13. 

  
 
 

34

19

15

1.055 10 J s
1.055 10 kg m s.

1.0 10 m
p

x







    

 

   

If we assume that the lowest value for the momentum is the least uncertainty, we can estimate the 
lowest possible energy.  
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13. (a) The minimum uncertainty in the energy is found from Eq. 38-2. 
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 (b) The transition energy can be found from Eq. 37-14b.  Z = 1 for hydrogen. 
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 (c) The wavelength is given by Eq. 37-3. 
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 
     
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 
 

  

  Take the derivative of the above relationship to find .  
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
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14. We assume the electron is non-relativistic.  The momentum is calculated from the kinetic energy, 

and the position uncertainty from the momentum uncertainty, Eq. 38-1.  Since the kinetic energy is 
known to 1.00%, we have 21.00 10 .K K     
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
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15. Let us assume that the electron has an initial x momentum ,xp  so that it has a wavelength of 

.xh p    The maxima of the double-slit interference pattern occur at locations satisfying Eq. 34-
2a, sin ,  0,1,2, .d m m      If the angles are small, then we replace sin  by  , and so the 
maxima are given by .m d    The angular separation of the maxima is then ,d    and the 

angular separation between a maximum and the adjacent minimum is 2 .d     The separation of 

a maximum and the adjacent minimum on the screen is then screen 2 ,y d  l  where l  is the 
distance from the slits to the detection screen.  This means that many electrons hit the screen at a 
maximum position, and very few electrons hit the screen a distance 2dl  to either side of that 
maximum position. 

 

 If the particular slit that an electron passes through is known, then y  for the electrons at the 

location of the slits is 2.d   The uncertainty principle says 
1

slits 2

.y

h
p

y d d
   


 

  We assume 

that yp  for the electron must be at least that big.  Because of this uncertainty in y momentum, the 

electron has an uncertainty in its location on the screen, as screen
screen .y

x

h
py dy

hp d







    

l
l

l
   

Since this is about the same size as the separation between maxima and minima, the interference 
pattern will be “destroyed.”  The electrons will not be grouped near the maxima locations.  They will 
instead be “spread out” on the screen, and no interference pattern will be visible. 

 
16. We are given that  1 ,x t  and  2 ,x t  are solutions to the Schrödinger equation.  Substitute the  

function    1 2, ,A x t B x t    into the Schrödinger equation. 

            

   

   
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A B
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m x m x m x
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   

      
 

      
              

                  

  

 

 

  

 So, since       
2 2

1 2 1 2 1 222
A B U x A B i A B

m x t

 
           

 
  , the combination 

   1 2, ,A x t B x t   is also a solution to  the time-dependent Schrödinger equation.   

 

17. (a) Substitute    , i kx tx t Ae    into both sides of the time-dependent Schrödinger equation, Eq.  

38-7, and compare the functional form of the results. 
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Both sides of the equation give a result of    constant ,i kx tAe   and so t    , i kx tx t Ae    is a 

valid solution, if the constants are equal. 
 

  Now repeat the process for    , cos .x t A kx t    
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
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
 
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

  

 

Because    cos sinkx t kx t     for arbitrary values of x and t,    , cosx t A kx t    is 

NOT a valid solution.  
 

  Now repeat the process for    , sin .x t A kx t    
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Because    cos sinkx t kx t     for arbitrary values of x and t,    , sinx t A kx t    is 

NOT a valid solution.  
 (b) Conservation of energy gives the following result. 

   
2 2 2

0 0 ;      
2 2 2

p h hk k
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m m


 
         

   

We equate the two results from the valid solution. 

   
2 2 2 2

0 0    
2 2

i kx t i kx tk k
U Ae Ae U

m m
    

     
 

    

The expressions are the same. 
 
18. The wave function is given in the form   sin .x A kx   

(a) 10 10
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2 2
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(d) 
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19. The general expression for the wave function of a free particle is given by Eq. 38-3a.  The particles 
are not relativistic. 

 (a) 
  

 
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 
 

     9 1 9 1sin 2.6 10 m cos 2.6 10 mA x B x             

(b) 
  

 
27 5

12 1

34

1.67 10 kg 3.0 10 m s2 2
4.7 10 m

1.055 10 J s

p mv
k

h

 







 
     

 
 

     12 1 12 1sin 4.7 10 m cos 4.7 10 mA x B x             

 
20. This is similar to the analysis done in Chapter 16 Section 6 for beats.  Referring to Figure 16-17, we 

see the distance from one node to the next can be considered a wave packet.  We add the two wave 
functions, employ the trigonometric identity for the sine of a sum of two angles, and then find the 

distance between nodes.  The wave numbers are related to the wavelengths by 
2

.k



   Since 

1 2 ,   it is also true that 1 2k k  and so  1
1 2 avg2 .k k k    We define 1 2.k k k    
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   

 

The sum function will take on a value of 0 if    1 1
2 2 ,  0,1,2 .k x n n       The distance between 

these nodal locations is found as follows. 
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  

Now use the de Broglie relationship between wavelength and momentum. 
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      ;      
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21. The minimum speed corresponds to the lowest energy state.  The energy is given by Eq. 38-13. 

    
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22. We assume the particle is not relativistic.  The energy levels are given by Eq. 38-13, and the wave 

functions are given by Eq. 38-14. 
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, which is the de Broglie wavelength
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23. (a) The longest wavelength photon will be the photon with the lowest frequency, and thus the  

lowest energy.  The difference between energy levels increases with high states, so the lowest 
energy transition is from n = 2 to n = 1.  The energy levels are given by Eq. 38-13. 

   
2

2 2
128n

h
E n n E
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 (b) We use the ground state energy and Eq. 38-13. 
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24. The energy levels for a particle in a rigid box are given by Eq. 38-13.  Use that equation, evaluated 

for n = 4 and n = 1, to calculate the width of the box.  We also use Eq. 37-3. 
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25. We assume the particle is not relativistic.  The energy levels give the kinetic energy of the particles 

in the box. 
2 2 2
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This is consistent with the uncertainty principle. 
 

26. The longest wavelength photon will be the photon with the lowest frequency, and thus the  
lowest energy.  The difference between energy levels increases with high states, so the lowest energy 
transition is from n = 2 to n = 1.  The energy levels are given by Eq. 38-13. 
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27. The energy levels for a particle in an infinite potential well are given by Eq. 38-13.  The wave 

functions are given by Eq. 38-14 with 
2

.A 
l
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28. The wave functions for an infinite square well are given by Eq. 38-14. 
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(a) The maxima occur at locations where 
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The values of m are limited because .x  l  
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minsin 0    ,  0,1,2,     ,  0,1,2,

n n m
x x m m n x m n

n

           
 

l
l l

   

 
29. The energy levels for a particle in a rigid box are given by Eq. 38-13.  We substitute the appropriate 

mass in for each part of the problem. 
(a) For an electron we have the following: 

  
 

    

2342 2

22 31 14 13

6.63 10 J s
940MeV

8 8 9.11 10 kg 2.0 10 m 1.60 10 J MeV

h n
E

m



  


  

  l


 

(b) For a neutron we have the following: 

  
 

    

2342 2

22 27 14 13

6.63 10 J s
0.51MeV

8 8 1.675 10 kg 2.0 10 m 1.60 10 J MeV

h n
E

m



  


  

  l


 

(c) For a proton we have the following: 

  
 

    

2342 2

22 27 14 13

6.63 10 J s
0.51MeV

8 8 1.673 10 kg 2.0 10 m 1.60 10 J MeV

h n
E

m



  


  

  l


 

 
30. The energy released is calculated by Eq. 38-13, with n = 2 for the initial state and n = 1 for the final 

state.   

  
   

    

2342
2 1

2 1 22 27 14 13

3 6.63 10 J s
2 1

8 8 1.67 10 kg 1.0 10 m 1.60 10 J MeV

6.17 MeV

h
E E E

m



  


     

  



l


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31. (a) The ground state energy is given by Eq. 38-13 with n = 1.  

  

   
     

2342 2

1 22 27 3 19
1

19 19

6.63 10 J s 1

8 8 32u 1.66 10 kg u 4.0 10 m 1.60 10 J eV

4.041 10 eV 4.0 10 eV

n

h n
E

m



  


 


 

  

   

l



 

(b) We equate the thermal energy expression to Eq. 38-13 in order to find the quantum number. 

        
 

2 2
1
2 2

3

23 27

34

8 8

  
8

4.0 10 m
2 2 1.38 10 J K 300K 32u 1.66 10 kg u

6.63 10 J s

1.789 10 2 10

h n
kT

m

n kTm
h


 



 


   



   

l

l


 

(c) Use Eq. 38-13 with a large-n approximation. 

  
   

  

2 2 2
2 2

1 12 2 2

8 19 10

1 2 1 2 2
8 8 8

2 1.789 10 4.041 10 eV 1.4 10 eV

n n

h h h
E E E n n n n nE

m m m

 

           

    

l l l  

 
32. Because the wave function is normalized, the probability is found as in Example 38-8.  Change the 

variable to ,
n x 
l

 and then .
n

d dx
 
l

 

  

 

2 2 2

1 1 1

0.65
2 2 2 2

0.35

0.651 1
2 4 0.35

2 2 2
sin sin sin

2
sin 2

x x n x n

n

x x n x n

n

n

n x
P dx dx d d

n n

n

 

 





    
 

 


   

 

   
l

l

l

l l l  

 (a) For the n = 1 state we have the following: 

        0.651 1 1 1
2 4 2 40.35

2 2
sin 2 0.30 sin1.3 sin0.70 0.5575 0.56P




    

 
          

 (b) For the n = 5 state we have the following: 

        3.251 1 1 1
2 4 2 41.75

2 2
sin 2 1.5 sin6.5 sin3.5 0.2363 0.24

5 5
n

n
P




    

 
           

 (c) For the n = 20 state we have the following: 

      131 1 1 1
2 4 2 47

2 1
sin 2 6 sin 26 sin14 0.30

20 10
P




    

 
         

(d) The classical prediction would be that the particle has an equal probability of being at any  

location, so the probability of being in the given range is 
0.65nm 0.35nm

0.30.
1.00nm

P


    We see 

that the probabilities approach the classical value for large n. 
 
33. Consider Figure 38-9, copied here.  To consider the problem with 

the boundaries shifted, we would not expect any kind of physics to 
change.  So we expect the same wave functions in terms of their 
actual shape, and we expect the same energies if all that is done is to 
change the labeling of the walls to 1

2x   l  and 1
2 .x  l   The 

mathematical descriptions of the wave functions would change 
because of the change of coordinates.  All we should have to do is 
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shift the origin of coordinates to the right by 1
2 .l   Thus we might expect the following wave 

functions and energies. 

  

 1 1
2 2

2
sin   

2 2
sin sin

n

n

n
x

n n
x x n



  

   
 

           

l l

l
l l l l

 

  

2
1

1 12 2

2

2 2 2

3 1 1
3 2 2 2

2 2
1:  sin cos  ; 

8

2 2 2 2 4
2 :  sin sin  ; 

8

2 3 2 3 2 3
3:  sin sin sin

2
                co

h
n x x E

m

h
n x x E

m

n x x x

  

  

      

          
   

           
   

                  
     

 

l l l l l

l l l l l

l l l l l l

l

2

3 2

2

4 4 2

3 9
s  ; 

8

2 4 2 4 16
4 :  sin 2 sin  ; 

8

h
x E

m

h
n x E

m



  

   
 

          
   

l l

l l l l l

 

For any higher orders, we simply add another 2 of phase to the arguments of the above functions.  
They can be summarized as follows. 

  

  

 

2 2
1 / 2

2

2 2
/ 2

2

2
 odd: 1 cos ,  

8

2
 even: 1 sin ,  

8

n

n

n

n

n x n h
n E

m

n x n h
n E

m





         

        

l l l

l l l

 

Of course, this is not a “solution” in the sense that we have not derived these solutions from the 
Schrödinger equation.  We now show a solution that arises from solving the Schrödinger equation.  
We follow the development as given in Section 38-8. 
 

As suggested, let    sin .x A kx     For a region where   2

2
0,  

mE
U x k 


(Eq. 38-11a).  

The boundary conditions are    1 1
2 2sin 0A k     l l  and    1 1

2 2sin 0.A k   l l   To 

guarantee the boundary conditions, we must have the following: 
    1 1 1 1

2 2 2 2sin 0      ;  sin 0    A k k m A k k n                l l l l  

Both n and m are integers.  Add these two results, and subtract the two results, to get two new 
expressions. 

     
1
2 1

21
2

1
      ;  

k n
n m k n m

k m

 
  

 
 

    
  
l

l l
 

So again we have an energy quantization, with 
   2 22 2 22 2

2 2
.

2 2 8

n m h n mk
E

m m m

  
  

l l


  Note that 

m n  is not allowed, because this leads to 0,k   ,n   and   0.x   

 
Next we normalize the wave functions.  We use an indefinite integral from Appendix B-4. 
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       

   

     

   

1
2

1
2

1
2

2 2 2 1
2

1
2

1 1
2 2

2 2
2 2 1 1

2 4

1
sin sin

1
sin 1

1
let     

      ;      

1 sin sin 2
n

m

x A kx A n m x n m

dx A n m x n m dx

n m x n m dx d
n m

x n x m

A A
dx d

n m n m





   

  

   


   

   
 



 





        

       

     


      

   
 

 

 

l

l

l

l

l

l

l l

l l    
 2 2

2

2 2

2 2
    

n

m

n mA A

n m

A A














  

l l

l l

 

This is the same as in Section 38-8.  Finally, let us examine a few allowed cases. 

   

2
1 1

1,0 1,02 2 2

2

2,0 2,0 2

3 3
3,02 2

2 2
1, 0 :  ,      sin cos  ; 

8

2 2 2 2 2 4
2,  0 :  ,      sin sin  ; 

8

3 2 3
3,  0 :  ,      sin

h
n m k x x E

m

h
n m k x x E

m

n m k x

     

     

   

              
   

               
   

      

l l l l l l

l l l l l l

l l l

1
2

2
1

3,02 2

2

4,0 4,0 2

2 3
sin

2 3 2 3 9
  sin cos  ; 

8

4 2 4 2 4 16
4,  0 :  ,  2     sin 2 sin  ; 

8

x

h
x x E

m

h
n m k x E

m

  

 

     

        
   

           
   

              
   

l l

l l l l l

l l l l l l

 

These are the same results as those obtained in the less formal method.  Other combinations of m and 
n would give essentially these same results for the lowest four energies and the associated wave 
functions.  For example, consider 4,  1.n m   

 

5 5 1
4,12 2 2

2

4,1 2

3 2 3 2 3
4,  1:  ,      sin sin

2 4 9
  cos  ; 

8

n m k x x

h
E

m

      



              
   

   
 

l l l l l

l l l

 

We see that 4,1 3,0    and that both states have the same energy.  Since the only difference in the 

wave functions is the algebraic sign, any physical measurement predictions, which depend on the 
absolute square of the wave function, would be the same. 

 
34. We choose the zero of potential energy to be at the bottom of the well.  Thus in free space, outside 

the well, the potential is 0 56eV.U    Thus the total energy of the electron is 0 236 eV.E K U     
(a) In free space, the kinetic energy of the particle is 180 eV.  Use that to find the momentum and 

then the wavelength. 

   
2

    2   
2

p h
K p mK

m 
      
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 

   

34

11
1/ 2

31 19

6.63 10 J s
9.15 10 m

2 2 9.11 10 kg 180eV 1.60 10 J eV

h

mK





 


   

   


 

 (b) Over the well, the kinetic energy is 236 eV. 

   
 

   

34

11
1/ 2

31 19

6.63 10 J s
7.99 10 m

2 2 9.11 10 kg 236eV 1.60 10 J eV

h

mK





 


   

   


 

 (c) The diagram is qualitatively the same as Figure 38-14,  
reproduced here.  Notice that the wavelength is longer when 
the particle is not over the well, and shorter when the 
particle is over the well. 

 
 
   
 
35. We pattern our answer after Figure 38-13. 

 
 
 
 
 
 
 
 
 

 
 

 
36. (a) We assume that the lowest three states are bound in the well, so that 

0.E U   See the diagrams for the proposed wave functions.  Note 
that, in the well, the wave functions are similar to those for the 
infinite well.  Outside the well, for ,x  l  the wave functions are 
drawn with an exponential decay, similar to the right side of Figure 
38-13. 

(b) In the region 0,x  0 .   

In the well, with 0 ,x  l  the wave function is similar to that of a 
free particle or a particle in an infinite potential well, since U = 0.  

Thus sin sin ,A kx B kx    where 
2

.
mE

k 


 

  In the region ,x  l ,GxDe   where 
 02

.
m U E

G





 

 
37. We will consider the “left” wall of the square well, using Figure 38-12,l and assume that our answer 

is applicable at either wall due to the symmetry of the potential well.  As in Section 38-9, let  
GxCe   for 0,x   with G given in Eq. 38-16.  Since the wave function must be continuous, 

 0 .x C     The energy of the electron is to be its ground state energy, approximated by Eq. 38-

1

2

3

0               x x  l
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13 for the infinite well.  If that energy is much less than the depth of the well, our approximation will 
be reasonable.  We want to find the distance x for which    0.010 0 .x   

  

 
    

 
 

   
 

   
   

2342

022 31 9 19

0

34

11

31 19

6.63 10 J s
14.73eV

8 8 9.11 10 kg 0.16 10 m 1.60 10 J eV

ln 0.010 ln 0.010
0.010    

0 2

1.055 10 J s ln 0.010
2.0 10 m

2 9.11 10 kg 2000eV 14.73eV 1.60 10 J eV

Gx
Gx

h
E U

m

x Ce
e x

C G m U E

x






  




 


  

  

     



   

  

l








 

The wave function will be 1.0% of its value at the walls at a distance of 112.0 10 m 0.020nm   

from the walls. 
 
38. We use Eqs. 38-17a and 38-17b. 

 

 
 

 
 

2 0
2

223422

0 1931 9

2ln ln
      ;    

2 2

1.055 10 J s ln 0.00050ln 1
14eV

2 2 1.60 10 J eV2 9.11 10 kg 2 0.85 10 m

   14eV 0.76eV 13.24eV 13eV

G m U ET T
T e G G

T
E U

m





 


       

                      

   

l

l l

l




 

 
39. We use Eqs. 38-17a and 38-17b to solve for the particle’s energy. 

  

 

 
 

 
 

2 0
2

223422
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2ln ln
      ;    

2 2
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18eV
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   17.33eV 17eV

G m U ET T
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T
E U
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

 


       

                      

 

l

l l

l




 

 
40. We use Eqs. 38-17a and 38-17b to solve for the transmission coefficient, which can be interpreted in 

terms of probability.  For the mass of the helium nucleus, we take the mass of 2 protons and 2 
neutrons, ignoring the (small) binding energy. 

 Proton:  

     
 

  

27 13

0 14 1

34
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G T e e

 




    

 
   



       l
l

   

 Helium:  Mass =    27 27 27
proton neutron2 2 2 1.673 10 kg 2 1.675 10 kg 6.70 10 kg.m m           
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34
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
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41. (a) The probability of the electron passing through the barrier is given by Eqs. 38-17a and 38-17b. 

   

 

       
 

02
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31 19

0 9

34

2.803 2

2 9.11 10 kg 1.2eV 1.60 10 J eV2
2 2 0.25 10 m 2.803

1.055 10 J s

6.063 10 6.1%

m U E

T e
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T e




 




 



 
  



   

l

l



 
 

 (b) The probability of reflecting is the probability of NOT tunneling, and so is 93.9% .  
 
42. The transmitted current is caused by protons that tunnel through the barrier.  Since current is directly 

proportional to the number of charges moving, the transmitted current is the incident current times 
the transmission coefficient.  We use Eqs. 38-17a and 38-17b. 
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         
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l

l



   

 
43. The transmission coefficient is given by Eqs. 38-17a and 38-17b. 
 (a) The barrier height is now  1.02 70eV 71.4eV.  

   

       
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
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 






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
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 (b) The barrier width is now  1.02 0.10nm 0.102 nm.  

   

       
 

 0

31 19

0 9

34

2 3
2 4.669 3

0

2 9.11 10 kg 20eV 1.60 10 J eV2
2 2 0.102 10 m

1.055 10 J s

                           4.669

9.382 10
9.382 10   ;  93.8    6.2% decrease

0.010

m U E

m U E

T
T e e

T

 




   

 
 


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
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44. We assume that the wave function inside the barrier is given by a decaying exponential, so 

  .Gxx Ae   

 
 

 22

2
2 2

0
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G
Aex

T e
Ax








  

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l
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45. (a) We assume that the alpha particle is at the outer edge of the nucleus.  The potential energy is  
electrostatic potential energy, and is found from Eq. 23-10. 

   
     9 2 2

219

1 2
surface 15 13

surface of
nucleus

8.988 10 N m C
2 90 1.60 10 C1 1MeV

4 8 10 m 1.60 10 J

32.36MeV 32 MeV

Q Q
U

r



 


 
       

 

 

(b) The kinetic energy of the free alpha particle is also its 
total energy.  Since the free alpha has 4 MeV, by 
conservation of energy the alpha particle had 4 MeV of 
potential energy at the exit from the barrier.  See the 
diagram, a copy of Figure 38-17, modified to show U = 
0 inside the barrier, and stated in part (c). 

   

surface of
nucleus1 2 1 2

exit
exit from surface of exit from
barrier nucleus barrier

surface of
nucleus

surface
exit from
barrier

1 1

4 4

  

r
Q Q Q Q

U
r r r

r
U

r

  

 

 

  

 surface
exit from surface of
barrier nucleusexit

exit from surface of
barrier nucleus

32.36MeV
8fm 64.72fm

4 MeV

64.72fm 8fm 56.72fm 57fm

U
r r

U

r r r

  

      
 

 (c) We now model the barrier as being rectangular, with a  
width of  1

barrier 3 56.72fm 18.9fm.r     The barrier exists 

at both boundaries of the nucleus, if we imagine the 
nucleus as 1-dimensional.  See the diagram (not to scale).  
We calculate the speed of the alpha particle and use that 
to find the frequency of collision with the barrier. 

  
 

21
2

13

27

7 7

  

2 4 MeV 1.60 10 J MeV2

4 1.67 10 kg

1.38 10 m s 1.4 10 m s

E K mv

E
v

m





  


 



   

 

Note that the speed of the alpha is less than 5% of the speed of light, so we can treat the alpha 
without using relativistic concepts.  The time between collisions is the diameter of the nucleus 
(16 fm) divided by the speed of the alpha particles.  The frequency of collision is the reciprocal 
of the time between collisions. 

7
20 20

15

1.38 10 m s
8.625 10 collisions s 8.6 10 collisions s

16 10 m

v
f

d 


     


 

If we multiply this collision frequency times the probability of tunneling, T, then we will have 
an estimate of “effective” collisions/s, or in other words, the decays/s.  The reciprocal of this 
effective frequency is an estimate of the time the alpha spends inside the nucleus – the life of 
the uranium nucleus. 

exit from
barrier

r

“out”              “in”               “out” 

19fm 19fm
16fm
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      

 
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  
 



 

   

 
    15 1 15

2
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7

1 1 1
  ;  Lifetime

8.625 10 collisions s

1yr
                                2.06 10 s 7 10 yr
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G
G

T e
fT fe e
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
   

   


      

l

l

 

 
46. We find the lifetime of the particle from Eq. 38-2. 

  
 

  
34

25

10

1.055 10 J s
2.6 10 s.

2.5GeV 1.60 10 J GeV
t

E







    

 


 

 
47. We use the radius as the uncertainty in position for the neutron.  We find the uncertainty in the 

momentum from Eq. 38-1.  If we assume that the lowest value for the momentum is the least 
uncertainty, we estimate the lowest possible kinetic energy (non-relativistic) as  

  
   

  

2

22 34

12
2 1327 15

1.055 10 kg m s 1MeV
2.314 10 J

2 2 1.60 10 J2 1.67 10 kg 1.2 10 m

14.46MeV 14 MeV

p xE
m m




 

 
              

 




 

 
48. The energy levels for a particle in an infinite potential well are given by Eq. 38-13.  The wave 

functions are given by Eq. 38-14. with 
2

.A 
l

 

 (a) 
 
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     
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 (c)  2 1 1 1 14 3 3 32.90MeV 98.7 MeV 99 MeVE E E E E E          

  
  
  

34 8

14

13

6.63 10 J s 3.00 10 m s
    1.3 10 m 13fm

98.7 MeV 1.60 10 J MeV

hc hc
E

E









 
       

 


 

 This is in the gamma-ray region of the EM spectrum, as seen in Fig. 31-12.  
 
49. We find the wavelength of the protons from their kinetic energy, and then use the two-slit 

interference formulas from Chapter 34, with a small angle approximation.  If the protons were 
accelerated by a 650-volt potential difference, then they will have 650 eV of kinetic energy. 
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l

l

l

l l 
 

  
50. We assume that the particles are not relativistic.  Conservation of energy is used to find the speed of 

each particle.  That speed then can be used to find the momentum and finally the de Broglie 
wavelength.  We let the magnitude of the accelerating potential difference be V. 
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51. We use Eq. 37-10, Bohr’s quantum condition. 

1
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1
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 The uncertainty in position is comparable to the Bohr radius. 
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52. (a) See the diagram.   

(b) We use the solution   2Bxx Ae  in the  

Schrödinger equation. 

    
 

2 2

2 2

2

2

2

2

 ; 2

2 2 2

2 2 1

Bx Bx

Bx Bx

Bx

d
Ae ABxe

dx

d
ABe ABx Bxe

dx

Bx ABe





 

 



  

   

 

  

  2 2 2
2 2 2

2 21
22

2 2 1   
2 2

Bx Bx Bxd
U Bx ABe Cx Ae EAe

m dx m

             
 

 

2 2 2
21

2

2
0

B B
E C x

m m

   
      

   

 
 

This is a solution if 
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  Solve these two equations for E in terms of C, 

and let .C m   
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53. We assume the alpha particle is in the ground state.  The energy is given by Eq. 38-13. 
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 The speed can be found from the kinetic energy.  The alpha is non-relativistic. 
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54. From energy conservation, the speed of a ball after falling a height H, or the speed needed to rise to a 

height H, is 2 .v gH   We say that the starting height is 0 ,H  and so the speed just before the ball 

hits the ground before the first bounce is 0 02 .v gH   After that bounce, the ball rebounded to 

1 00.65 ,H H  and so the speed right after the first bounce, and right before the second bounce, is 

 1 1 02 2 0.65 .v gH g H    Repeated application of this idea gives the maximum height after n 

bounces as   00.65 ,
n

nH H and the maximum speed after n bounces as   02 0.65 .
n

nv g H   The 

uncertainty principle will come into play in the problem when the maximum speed after a bounce is 
of the same order as the uncertainty in the speed.  We take the maximum height as the uncertainty in 
the position. 
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 
 

 
 

   

 
    

 

2
2

0 0 2 2
0 0

234
2

2 36 22 32
3 0

2 3
0

2 0.65     2 0.65   
0.65 0.65

1.055 10 J s
lnln

2 3.0 10 kg 9.80m s 2.0m2
0.65     105

2 3ln 0.65 3ln 0.65

n n

n n

n

m g H m g H
H H

m gH
n

m gH





   

    
          

 




 

 After about 105 bounces, the uncertainty principle will be important to consider. 
 
55. We model the electrons as being restricted from leaving the surface of the sodium by an energy 

barrier, similar to Figure 38-15a.  The difference between the barrier’s height and the energy of the 
electrons is the work function, and so 0 0 2.28eV.U E W     But quantum mechanically, some 
electrons will “tunnel” through that barrier without ever being given the work function energy, and 
thus get outside the barrier, as shown in Figure 38-15b.  This is the tunneling current as indicated in 
Figure 38-18.  The distance from the sodium surface to the tip of the microscope is the width of the 
barrier, .l   We calculate the transmission probability as a function of barrier width by Eqs. 38-17a 
and 38-17b.  The barrier is then increased to , l l  which will lower the transmission probability. 

  

       
 

 
 

31 19

0 9

34

2
22 2 0.3091

0 2
0

2 9.11 10 kg 2.28eV 1.60 10 J eV2
2 2 2 0.02 10 m

1.055 10 J s

0.3091

 ;   ;  0.734
G

GG G
G

m U E
G

T e
T e T e e e

T e

 




 
    



 
    





     
l l

l ll l

l

l l
 

 

 The tunneling current is caused by electrons that tunnel through the barrier.  Since current is directly 
proportional to the number of electrons making it through the barrier, any change in the transmission 
probability is reflected as a proportional change in current.  So we see that the change in the 
transmission probability, which will be reflected as a change in current, is a decrease of 27%.  Note 
that this change is only a fraction of the size of an atom. 

 

56. The time independent Schrödinger equation with U = 0 is 
2 2

2
.

2

d
E

m dx

  


 

     

2

2

2 2 2 2 2 2 2
2

2 2

2

2 2 2 2 2
ikx ikx

mE

d d k
Ae k Ae E

m dx m dx m m m

   

 
 
         


   

 

 We see that the function solves the Schrödinger equation. 
 

57.  The wave functions for the particle in the infinite well are 
2

sin ,n

n
x

    
 l l

as derived in Section  

38-8.  A table of integrals was consulted to find  2 2sin .x ax dx  

  

 

2

22 2 2 2 2

0 0

3 2
2 2

3 2

2 2
sin sin

1 cos2
     Note that sin sin 2 .

6 4 8 4

n

n n
x x dx x x dx x x dx

x x x ax
x ax dx ax

a a a

 
          

    
 

    
 

  



l l

l l l l
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3 2
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3 2
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sin sin
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x x

n x x n
x x x dx x

n n n

n


 

  

 

                                         

   



l

l

l

l l l l

l l l

l

 

      
See the adjacent graph.  The 
spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH38.XLS,” on 
tab “Problem 38.57.” 

 
 
 
 
 

58. (a) To check that the wave function is normalized, we calculate   2
.x dx




  

      
2 2 2

2 2 2
2

2

2 2
0 0

1 2 2
0 1 1

2

x x x

b b b
x b

x dx e dx xe dx e
b b b b




    

 

 
        

  
    

  We see that the function is normalized. 

 (b) The most probable position is that for which   2
x  is maximized.  That point can be found by  

solving  
  2

0
d x

dx


  for x.  Since we are only considering 0,x  we need not use the absolute 

value signs in the function. 
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            

 

  

 

This value for x maximizes the function, because the function must be positive, and the function 
is 0 at 0x   and .x     Thus this single local extreme point must be a maximum. 

 (c) To find the probability, we integrate the probability density function between the given limits. 
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59. (a) We assume the pencil is a uniform rod, and that it makes an angle of  with the  
vertical.  If the bottom point is fixed, then the torque due to its weight about the 
bottom point will cause an angular acceleration. See the diagram. 

    
2

21 1
2 3 2

    sin
d

I mg m
dt

    l l   

From the equation, if the pencil is exactly upright, so that 0,   then the 
angular acceleration will be exactly 0 and the pencil will remain stationary.  
But according to the uncertainty principle (as expressed at the bottom of page 
1023), the angle cannot be known with 0 uncertainty.  Let the z axis be coming out of the page. 

        0z
z

L
L

       

  

  Thus the pencil cannot have exactly 0,  and so there will be a torque and hence rotation. 
(b) For the initial part of the motion, the angle will be very small, and so the differential equation 

can be expressed as 
2

2

3
.

2

g d

dt

 
l

  The solutions to this differential equation are of the form 

,kt ktAe Be    where 
 
 

2

1
3 9.80m s3

9.037s
2 2 0.18m

g
k   

l
  Since the angle will be 

increasing in time, we ignore the second term, which decreases in time.  Thus ,ktAe   with 

  00 .t A      The angular velocity of the pencil is approximated as ,ktd
kAe

dt

    and 

the initial angular velocity is 0 .kA   We take the initial position and the initial angular 
velocity as their smallest possible values, which are their uncertainties – the magnitude of a 
quantity must be at least as big as its uncertainties.  Apply the uncertainty principle in angular 
form. 
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




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 

  

         


    



    

l l

l

 


 

With this initial position and initial angular velocity, we can then do a numeric integration to 
find the time when the angle is 2rad.    For a step size of 0.01 s, the time of fall is about 
4.07 s.  For a step size of 0.001 s, the time of fall is about 3.99 s.  This is only about a 2% 
change in the final result, so the time is pretty stable around 4 s.  Even changing the starting 
angle to a value 100 times bigger than that above (so 14

0 3.930 10 rad   ) still gives a time of 

fall of 3.48 s.  So within a factor of 2, we estimate the time of fall as 4 seconds. 
 

Note that if the solution of the approximate differential equation is used, ,ktAe   we get the 
following time of fall. 

max
max 1 16

1 1 2
ln ln 3.98s.

9.037s 3.930 10
t

k A

 
 

           
 

  The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH38.XLS,” on tab “Problem 38.59.” 

 

mg

l
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60.  The ground state wave function for the particle in the infinite well is 
2

sin .x
    
 l l

  Let 

1
center 2 ,x  l  so the region of interest extends from 1 1

min 2 2x x  l  to 1 1
max 2 2x x  l .  We are to 

find the largest value of x so that the approximate probability of   2
1
2

2 x
x x 
  l

l
(from 

Example 38-7) is no more than 10% different than  
max

min

2

2
sin

x

x

x dx
  

  
  


l l

, the exact probability.  

We calculate the value of the integral using numeric integration (as described in Section 2-9), first 
finding the number of steps needed between minx  and maxx that gives a stable value.  Then we 
compare the integral to the approximation.  (Note that the integral could be evaluated exactly.)   

To aid in the evaluation of the integral, we make the substitution that .u x l   Then the integral 
becomes as follows. 

  
1

max 2

1
min 2

1

2

1

2sin

x
u

x
u

u du

   
 

   
 

  
l

l

 

In doing the numeric integrations, we found that for any value of x  up to ,l  breaking the numeric 
integration up into 50 steps gave the same answer to 3 significant digits as breaking it up into 100 
steps.  So we did all numeric integrations with 50 steps.  We then numerically calculated the integral 
for values of ,x l  starting at 0.01, and increasing by steps of 0.01, until we found a 10% difference 

between the approximation and the numeric integration.  This happens at 0.34,x l and so the 

approximation is good within 10% up to  0.34 0.34 0.10nm 0.034 nm .x   l  This is much 

broader than we might have guessed initially, indicating that the wave function is varying rather 
slowly over the central region of the potential well.  The spreadsheet used for this problem can be 
found on the Media Manager, with filename“PSE4_ISM_CH38.XLS,” on tab “Problem 38.60.” 

 
61. (a) See the graph. 

(b) From the graph and the  
spreadsheet, we find these 
results. 

  

0

0

0

0
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 
 

 

   
 
The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH38.XLS,” on tab “Problem 38.61.” 
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CHAPTER 39:  Quantum Mechanics of Atoms 
 
Responses to Questions 
 
1.  The Bohr model placed electrons in definite circular orbits described by a single quantum number 

(n). The Bohr model could not explain the spectra of atoms more complex than hydrogen and could 
not explain fine structure in the spectra. The quantum-mechanical model uses the concept of electron 
“probability clouds,” with the probability of finding the electron at a given position determined by 
the wave function. The quantum model uses four quantum numbers to describe the electron (n, l, ml, 
ms) and can explain the spectra of more complex atoms and fine structure. 

 

2. The quantity 
2 is maximum at r = 0 because of its dependence on the factor 0 .r re  In the ground 

state, the electron is expected to be found near the nucleus. The radial probability density 
224 r  gives the probability of finding the electron in a thin spherical shell located at r. Since r = 0 

is at the center of the nucleus, the radial probability density is zero here.  
 
3.  The quantum-mechanical model predicts that the electron spends more time near the nucleus. In the 

Bohr model, the electron in the ground state is in a fixed orbit of definite radius. The electron cannot 
come any closer to the nucleus than that distance. In the quantum-mechanical model, the electron is 
most often found at the Bohr radius, but it can also be found closer to the nucleus (and farther away). 

 
4. As the number of electrons goes up, the number of protons in the nucleus increases, which increases 

the attraction of the electrons to the center of the atom. Even though the outer electrons are partially 
screened from the increased nuclear charge by the inner electrons, they are all pulled closer to the 
more positive nucleus. Also, more states are available in the upper shells to accommodate many 
more electrons at approximately the same radius.  

 
5.  Because the nuclei of hydrogen and helium are different, the energy levels of the atoms are different. 

The presence of the second electron in helium will also affect its energy levels. If the energy levels 
are different, then the energy difference between the levels will be different and the spectra will be 
different.   

 
6. The two levels have different orbital quantum numbers. The orbital quantum number for the upper 

level is l = 2. This results in five different possible values of ml (–2, –1, 0, 1, and 2) so the energy 
level is split into five separate levels in the presence of a magnetic field. The lower level shown has 
an orbital quantum number of l = 1, so only three different values of ml (–1, 0 and 1) are possible, 
and therefore the energy level is split into only three separate levels. 

 
7. In the time-independent Schrödinger equation, the wave function and the potential depend on the 

three spatial variables. The three quantum numbers result from application of boundary conditions to 
the wave function. 

 
8. The Zeeman effect is the splitting of an energy level in the presence of a magnetic field. In the 

reference frame of the electron, the nucleus orbits the electron. The “internal” Zeeman effect, as seen 
in sodium, is caused by the magnetic field produced by the “orbiting” nucleus.  

 
9.  (a) and (c) are allowed for atoms in an excited state. (b) is not allowed. Only six electrons are 

allowed in the 2p state. 
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10. The complete electron configuration for a uranium atom is as follows. 
1s22s22p63s23p63d104s24p64d104f145s25p65d105f36s26p66d17s2 

 
11. (a) Group II; (b) Group VIII; (c) Group I; (d) Group VII. 
 
12.  The periodicity of the periodic table depends on the number and arrangements of the electrons in the 

atom. It therefore depends on all the factors which determine this arrangement. One of these, the 
Pauli exclusion principle, states that no two electrons can occupy the same quantum state. The 
number of electrons that can be in any principle state depends on how many different substates are 
available, which is determined by the number of possible orbital quantum numbers for each principle 
state, the number of possible magnetic quantum numbers for each orbital quantum number, and 
finally, the number of spin orientations for each electron. Therefore, quantization of angular 
momentum, direction of angular momentum, and spin all play a role in the periodicity of the periodic 
table. (See Table 39-1 for a summary of the quantum numbers.)  

 
13. If there were no electron spin, then, according to the Pauli exclusion principle, s-subshells would be 

filled with one electron, p-subshells with three electrons, and d-subshells with five electrons.  The 
first 20 elements of the periodic table would look like the following: 

 
H     1 
1s1 

        

He   2 
2s1 

     Li    3 
2p1 

Be    4 
2p2 

B    5 
2p3 

C     6 
3s1 

     N     7 
3p1 

O    8 
3p2 

F     9 
3p3 

Ne   10 
4s1 

Na   11 
3d1 

Mg  12 
3d2 

Al   13 
3d3 

Si   14 
3d4 

P    15 
3d5 

S     16 
4p1 

Cl    17 
4p2 

Ar   18 
4p3 

K    19 
5s1 

Ca   20 
4d1 

       

 
14.  Neon is a noble gas and does not react readily with other elements. Neon has its outermost subshell 

completely filled, and so the electron distribution is spherically symmetric, making it harder to 
remove an electron. Sodium is in the first column of the periodic table and is an alkali metal. Sodium 
has a single outer s electron, which is outside the inner closed shells and shielded from the nuclear 
charge by the inner electrons, making it easier to remove. Therefore, neon has a higher ionization 
energy than sodium, even though they differ in number of protons by only one.  

 
15. Chlorine and iodine are in the same column of the periodic table. They are each one electron away 

from having a complete outermost shell and will react readily with atoms having only one electron in 
the outermost shell. Interactions with other atoms depend largely on the outermost electrons; 
therefore these two elements will have similar properties because their outermost electrons are in 
similar configurations. 

 
16. Potassium and sodium are in the same column of the periodic table. They each have only one 

electron in the outermost shell, and their inner shells are completely filled. Sodium has only one 
electron in the n = 3 shell, or principle energy level, and potassium has only one electron in the n = 4 
level. Interactions with other atoms depend largely on the outermost electrons, and therefore these 
two elements will have similar properties because their outermost electrons are in similar 
configurations. 
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17. Rare earth elements have similar chemical properties because the electrons in the filled 6s or 7s-
suborbitals serve as the valence electrons for all these elements. They all have partially filled inner f-
suborbitals, which are very close together in energy. The different numbers of electrons in the f-
suborbitals have very little effect on the chemical properties of these elements. 

 
18. When we use the Bohr theory to calculate the X-ray line wavelengths, we estimate the nuclear 

charge seen by the transitioning electron as Z – 1, assuming that the second electron in the ground 
state is partially shielding the nuclear charge. This is only an estimate, so we do not expect the 
calculated wavelengths to agree exactly with the measured values. 

 
19.   In helium and other complex atoms, electrons interact with other electrons in addition to their 

interactions with the nucleus. The Bohr theory only works well for atoms that have a single outer 
electron in an s state. X-ray emissions generally involve transitions to the 1s or 2s states. In these 
cases the Bohr theory can be modified to correct for screening from a second electron by using the 
factor Z – 1 for the nuclear charge and can yield good estimates of the transition energies. 
Transitions involving outer electrons in more complex atoms will be affected by additional complex 
screening effects and cannot be adequately described by the Bohr theory. 

 
20. The continuous portion of the X-ray spectrum is due to the “bremsstrahlung” radiation. An incoming 

electron gives up energy in the collision and emits light. Electrons can give up all or part of their 
kinetic energy. The maximum amount of energy an electron can give up is its total amount of kinetic 
energy. In the photon description of light, the maximum electron kinetic energy will correspond to 
the energy of the shortest wavelength (highest energy) photons that can be produced in the 
collisions. The result is the existence of “cut-off” wavelength in the X-ray spectrum. An increase in 
the number of electrons will not change the cut-off wavelength. According to wave theory, an 
increase in the number of electrons could result in the production of shorter-wavelength photons, 
which is not observed experimentally.  

 
21. To figure out which lines in an X-ray spectrum correspond to which transitions, you would use the 

Bohr model to estimate the energies of the transitions between levels and match these to the energies 
of the observed lines. The energies of transitions to the n = 1 level (K) will be the greatest, followed 
by the transitions to the n = 2 level (L). Within a level, the α line will have the lowest energy 
(because it corresponds to a transition between adjacent levels), followed by the β line, and so on. 

 
22. The characteristic X-ray spectra occur when inner electrons are knocked out of their shells. X-rays 

are the high energy photons emitted when other electrons fall to replace the knocked-out electrons. 
Because the shells involved are close to the nucleus, Z will have a direct influence on the energies. 
The visible spectral lines due to transitions between upper levels have energies less influenced by Z 
because the inner electrons shield the outer electrons from the nuclear charge. 

 
23. The difference in energy between adjacent energy levels in an atom decreases with increasing n. 

Therefore, transitions of electrons between inner energy levels will produce higher energy (shorter 
wavelength) photons than transitions between outer energy levels. 

 
24. The electron has a negative charge. 
 
25. Consider a silver atom in its ground state for which the entire magnetic moment is due to the spin of 

only one of its electrons. In a uniform magnetic field, the dipole will experience a torque that would 
tend to align it with the field. In a non-uniform field, each pole of the dipole will experience a force 
of different magnitude. Consequently, the dipole will experience a net force that varies with the 
spatial orientation of the dipole. The Stern-Gerlach experiment provided the first evidence of space 
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quantization, since it clearly indicated that there are two opposite spin orientations for the outermost 
electron in the silver atom.  

 
26. Spontaneous emission occurs randomly when an electron in an excited state falls to a lower energy 

level and emits a photon. Stimulated emission also results when an electron falls to a lower energy 
level, but it occurs when a photon of the same energy as the transition stimulates the electron to fall 
sooner than it would have naturally. 

 
27. No. The intensity of a spherical wave, which spreads out in all directions, follows the inverse-square 

law. A laser produces light that is very nearly a plane wave; its intensity is nearly constant with 
distance. 

 
28. Laser light is monochromatic, coherent, and in a narrow beam that spreads very little if at all. 

Ordinary light is usually made up of many different wavelengths, incoherent, and spreads out in all 
directions. Both types of light can be created when electrons fall to lower energy levels and emit 
photons.  

 
29. Since laser light is a plane wave, its intensity remains approximately constant with distance. The 

light produced by a street lamp spreads out with an intensity that decreases as 1/r. Thus, at a 
sufficient distance, the laser light will be more intense than the light from a street lamp. 

 
 

Solutions to Problems 
 

1. The value of l  can range from 0 to 1.n    Thus for n = 7, 0, 1, 2, 3, 4, 5, 6 .l  

 

2. The value of m
l
 can range from  l  to . l   Thus for 3,l  3, 2, 1, 0, 1, 2, 3 .m    

l
 

 The possible values of ms are 1 1
2 2, .   

 
3.  The value of l  ranges from 0 to 1.n    Thus for 3,n  0,1,2.l   For each l  the value of m

l
 can 

range from  l  to , l  or 2 1l  values.  For each m
l
 there are 2 values of .sm   Thus the number of 

states for each l  is  2 2 1 .l   The number of states is      2 0 1 2 2 1 2 4 1N        

18states .   We start with 0,l  and list the quantum numbers in the order  , , , .sn m m
l

l  

(3, 0, 0, 1
2 ), (3, 0, 0, 1

2 ), (3, 1, –1, 1
2 ), (3, 1, –1, 1

2 ), (3, 1, 0, 1
2 ), (3, 1, 0, 1

2 ),  

(3, 1, 1, 1
2 ), (3, 1, 1, 1

2 ), (3, 2, – 2, 1
2 ), (3, 2, – 2, 1

2 ), (3, 2, –1, 1
2 ), (3, 2, –1, 1

2 ), 

(3, 2, 0, 1
2 ), (3, 2, 0, 1

2 ), (3, 2, 1, 1
2 ), (3, 2, 1, 1

2 ), (3, 2, 2, 1
2 ), (3, 2, 2, 1

2 ) 

 

4. The value of m
l
 can range from  l  to , l so we have 4 .  

 The value of l  can range from 0 to 1.n    Thus we have  1 minimum5 .n    

 There are two values of 1 1
2 2: , .s sm m     
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5.  The value of l  can range from 0 to 1.n    Thus for 5,l  we have 6 .n   

 For each l  the value of m
l
 can range from  l  to : l 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5 .m      

l
 

 There are two values of 1 1
2 2: , .s sm m     

 
6. The magnitude of the angular momentum depends only on .l  

     34 341 12 12 1.055 10 J s 3.65 10 J sL        l l      

 

7.  (a) The principal quantum number is 7 .n   
 (b) The energy of the state is 

   
   

7 2 2

13.6eV 13.6eV
0.278eV .

7
E

n
       

 (c) The “g” subshell has 4 .l   The magnitude of the angular momentum  

  depends on l  only: 

      34 341 20 20 1.055 10 J s 4.72 10 J sL        l l     

 (d) For each l  the value of m
l
 can range from  l  to : l 4, 3, 2, 1, 0, 1, 2, 3, 4 .m    

l
 

 
8. (a) For each l  the value of m

l
 can range from  l  to , l or 2 1l  values.  For each of these there  

are two values of ms.  Thus the total number of states in a subshell is  2 2 1 .N  l  

 (b) For 0, 1, 2, 3, 4, 5, and 6, 2, 6, 10, 14, 18, 22, and 26 ,N  respectively. 

 
9. For a given n, 0 1.n  l  Since for each l  the number of possible states is  2 2 1 ,l  the number 

of possible states for a given n is as follows. 

     1 1 1
2

0 0 0

1
2 2 1 4 2 4 2 2

2

n n n n n
n n

  

  

 
      

 
  
l l l

l l  

 
10.  Photon emission means a jump to a lower state, so for the final state, n = 1, 2, 3, or 4.  For a d 

subshell, 2,l  and because 1,  l  the new value of l  must be 1 or 3. 

 (a) 1l  corresponds to a p subshell, and 3l  corresponds to an f subshell.  Keeping in mind that  
  0 1,n  l  we find the following possible destination states: 2 ,3 ,4 ,4 .p p p f  

(b) In a hydrogen atom, l  has no appreciable effect on energy, and so for energy purposes there are  
four possible destination states, corresponding to n = 2, 3, and 4. Thus there are  three different 
photon wavelengths  corresponding to three possible changes in energy. 

 
11. We use Eq. 39-3 to find l and Eq. 39-4 to find ml. 

  

     
 

2342

22 34

34

34

6.84 10 J s
1     1 42    6

1.055 10 J s

2.11 10 J s
    2

1.055 10 J s
z

z

L
L

L
L m m










        




    

l l

l l l l l



 


 

 

 Since 6,l  we must have 7 .n   
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12. To show that the ground-state wave function is normalized, we integrate 
2

100 over all space.  Use 

substitution of variables and an integral from Appendix B-5. 

  0

2
2 2 1 1

100 0 02 23
0 0all 0

space

1 2
4  ;     let       ,  

r

r r
dV e r dr x r r x dr r dx

r r
 



 

       

 Note that if 0, 0r x  and if , .r x     

    0

2
2 2 2 2 21 1 1 1

100 0 04 2 2 23 3
0 0all 0 0 0

space

1 4
4 2! 1

r

r x xdV e r dr e r x r dx e x dx
r r

 
 

  
          

 And so we see that the ground-state wave function is normalized. 
 

13. The ground state wave function is 0/
100 3

0

1
.r re

r



  

(a)  
0

1.5
100 1.5 3

0

1
r r

e
r







  

(b)  
0

2 3
100 3

1.5
0

1
r r

e
r







  

(c)  
0

22 2 2 3
r 100 0 3

1.5
0 0

1 4
4 4

r r
P r r e e

r r
  


 



 
   

 
 

 

14. The state 2, 0n  l  must have 0m 
l

 and so the wave function is 02
200 3

00

1
2 .

32

r

rr
e

rr




 
  

 
 

(a)  
0

0

0

4

2 20
200 4 3 3

00 0

1 4 1
2

32 8

r

r

r r

r
e e

rr r


 






 
    

 
 

(b)  
0

0

0

2 4
22 2 40

200 3 34
0 0 0

1 4 1
2

32 8

r

r

r r

r
e e

r r r


 






 
   

 
 

(c)    
0

2 22 4 4
r 200 0 3

4
0 0

1 8
4 4 4

8r r
P r r e e

r r
  


 



 
   

 
 

 
15. The factor is found from the ratio of the radial probability densities for 100.   Use Eq. 39-7. 

  
 
     

0

00

0 0

0

0 0

0 0

22 22
0
22

2 200
r 0

42 2 222
r 0 0

2 2
0 02 2

44

1.85
2 4 42

4 4

rr

rr

r r r r

r r
r r

r r r r

rr
ee

rrP r r e e

P r r er r
e e

r r




 


 

 

  
         

    
    

         

 

 
16. (a) To find the probability, integrate the radial probability distribution for the ground state.  We  

follow Example 39-4, and use the last integral in Appendix B-4. 

   
0

0

22

3
0 00

P 4  ; let 2   
rr

rr r
e dr x

r r



    
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    
2

2
2 2 21 1

2 2 0
0

P 2 2 1 5 0.32 32%x xx e dx e x x e              

(b) We follow the same process here. 

  

 

0

0

0

22 2

3
0 0

4
4

2 2 2 41 1
2 2 2

2

P 4  ; let 2   

P 2 2 5 13 0.44 44%

rr
r

r

x x

r r
e dr x

r r

x e dx e x x e e



   

  

          




 

 
17. To find the probability for the electron to be within a sphere of radius r, we must integrate the radial 

probability density for the ground state from 0 to r.  The density is given in Eq. 39-7. 

  

      

sphere

0

22
sphere

3
0 0 00

2 2 2 21 1 1 1
2 2 2 20

0

P 4  ; let 2  ; let 2   

P 2 2 2 2 2 1 1

r r

r

x
x

x x x x

rr r
e dr x x

r r r

x e dx e x x e x x e x x



    

   

                      




  

 We solve this equation numerically for values of x that give P = 0.50, 0.90, and 0.99.   

(a) The equation for P = 0.50 is solved by  x = 2.674, and so  1
sphere 0 02 2.674 1.3 .r r r   

(b) The equation for P = 0.90 is solved by  x = 5.322, and so  1
sphere 0 02 5.322 2.7 .r r r   

(c) The equation for P = 0.99 is solved by  x = 8.406, and so  1
sphere 0 02 8.406 4.2 .r r r   

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH39.XLS,” on tab “Problem 39.17.” 

 
18. (a) To find the probability for the electron to be within a sphere of radius r, we must integrate the  

radial probability density for the ground state from 0 to r.  The density is given in Eq. 39-7.  
Since 0,r r we approximate 02 1.r re   

   
 

 
0

31521.1fm 1.1fm2 2 3
14

33 3 3 10
0 0 00 0

1.1 10 m4 4
P 4 4 1.2 10

3 3 0.529 10 m

r

rr r r
e dr dr

r r r









     


   

(b) The Bohr radius, 0 ,r is inversely proportional to the mass of the particle.  So now the Bohr  
radius is smaller by a factor of 207. 

  
 

 
0

31521.1fm 1.1fm2 2 3
7

33 3 3 10
0 0 00 0

1.1 10 m4 4
P 4 4 1.1 10

3 3 0.529 10 m 207

r

rr r r
e dr dr

r r r









     


   

 
19. We follow the directions as given in the problem.  We use the first integral listed in Appendix B-5. 

  

 

0 0

32 22 2 2
100 3 3

0 0 00 0 0

3 31 1
0 0 04 4 2

0

1
4 4 4  ; let 2   

3!

r r

r r

x

r r
r r r dr r e r dr e dr x

r r r

r r x e dx r r

  


   




    

  

  


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20. To show that 200 is normalized, we integrate 
2

200 over all space.  Use substitution of variables and 

an integral from Appendix B-5. 

  0
2 2

200 0 03
0 0 0all 0

space

1
2 4  ;     let       ,  

32

r

rr r
dV e r dr x r r x dr r dx

r r r
 



  
      

 
   

 Note that if 0, 0r x  and if , .r x     

  

 

   

     

0

2
2 22 2 2

200 0 03 3
0 0 0all 0 0

space

2 2 2 3 4 2 3 4

0 0 0 0 0

1 4
2 4 2

32 32

1 1 1 1 1
2 4 4

8 8 2 2 8

1 1 1
2! 3! 4! 1 3 3 1

2 2 8

r

r x

x x x x x

r
dV e r dr x e r x r dx

r r r

x e x dx x x x e dx x e dx x e dx x e dx

 
 

 


    
    

 
    

 

       

      

  

      

 And so we see that 200  is normalized. 
 
21. We follow the directions as given in the problem.  The three wave functions are given in Eq. 39-9.  

We explicitly show the expressions involving the complex conjugate. 

  

     

   

0 0 0

0 0 0

2 2 22 1 1 1
r 210 211 21 13 3 3

2
2 1 1 1

3 3 35 5 5
0 0 0

2 2 2 22 2
2 1 1 1

3 3 35 5 5
0 0 0

4

4
32 64 64

4
32 64 64

r r r

r r r

r r r

r r r

P r

x iy x iy x iy x iyz
r e e e

r r r

x y x yz r
r e e e

r r r

   


  


  



  

  

    
         

                    
  

    
  

  0

0

2 2 2
5

0

4

5
0

24

24

r

r

r

r

z x y e
r

r
e

r





 



   

 

22. From Problem 21, we have that 0

4

r 5
024

r

rr
P e

r



  for the 2p state.  We find the most probable distance 

by setting r 0
dP

dr
  and solving for r.  This is very similar to Example 39-3. 

   
0

0 0 0

4 3 4 3
r

r 0 05 5 5 6
0 0 0 0 0

4 1
  ;  4 0    4

24 24 24 24

r
r r r r
r r rr dP r r r e

P e e e r r r r
r dr r r r r


  

         

  
23. The probability is found by integrating the radial probability density over the range of radii given. 

  

     

0

0

0

21.01 2

3
0 00.99

2.02
2.02

2 2 1.98 2.021 1
2 2 1.98

1.98

P 4  ; let 2   

P 2 2 4.9402 5.0602 0.0108 1.1%

rr
r

r

x x

r r
e dr x

r r

x e dx e x x e e



   

  

          




 

Because the range of radii is small and the radial probability density is relatively constant over that 
range (see Figure 39-7), we can approximate the probability as follows. 
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     
00

0 0

0

221.01 2 2
20

0 03 3
0 00.99

P 4 4 0.02 0.08 0.0108 1.1%
rrr

r r

r

r r
e dr P r r r e r e

r r

 
         

 
24. The probability is found by integrating the radial probability density over the range of radii given.  

The radial probability density is given after Eq. 39-8. 

  

   

0

0

0

25.00 2

3
0 0 04.00

5.00 5.00
22 4 3 21 1

8 8

4.00 4.00

P 2  ; let   
8

P 2 4 4

rr
r

r

x x

r r r
e dr x

r r r

x x e dx x x x e dx



 

 
    

 

    



 
 

 There are some difficult integrals to evaluate.  We use integration by parts. 

  
    

2 2

2 2 2 2

:   ; ;  2 ;  

     2 2 1 2 2

x x x

x x x x x x

x e dx u x dv e du xdx v e

x e dx x e xe dx x e e x e x x

  

     

    

           


 

 

  
 

3 3 2

3 3 2 3 2

:   ; ;  3 ;  

     3 3 6 6

x x x

x x x x

x e dx u x dv e du x dx v e

x e dx x e x e dx e x x x

  

   

    

       


 

 

  
 

4 4 3

4 4 3 4 3 2

:   ; ;  4 ;  

     4 4 12 24 24

x x x

x x x x

x e dx u x dv e du x dx v e

x e dx x e x e dx e x x x x

  

   

    

        


 

 

We substitute the integrals above into the expression for the probability.  We are not showing the 
algebra. 

   5.00
4 2 5 41 1

8 84.00
P 4 8 8 773 360 0.173 17.3%xe x x x e e               

 

25. The wave function is given in Eq. 39-5a.  Note that  1/ 22 2 2 .r x y z     We will need the 

derivative relationship derived in the first line below. 

  0 0
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0

2 2 21
1002 3 3
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2 3 3 3
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0 00

1 1 1
2   ;    ;  

1 1 1 1 1 1 1

1 1 1 1
       1

r r

r r

r r r

r r r

r

r

r x r x
x y z x e e

x r x r x r rr r

x x r
e e e

x x r r r r r r r xr r r

e x
rr rr rr

 
 


  



 

  



   
       

   

                  
             


   2

2 2
0 0

1 1 1
1 x

rr rr r


      
         

      

 

Similarly, we would have 
2

2
2 2

0 0

1 1 1
  ;  1   ;    ;

r y r z
y

y r y rr rr r z r

 
    

           
 and 

2
2

2 2
0 0

1 1 1
1 .z

z rr rr r

 
  

        
  Substitute into the time-independent Schrödinger equation. 
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2 2 2
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m rr rr r rr r rr r r

   


 


   
        

                                         
               




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 
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

 
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Since the factor in square brackets must be a constant, the terms with the r dependence must cancel. 
2 2 2 2

0 0
0 2 2

0 0

4
0    

4

e h
r

mrr r me me

 
 

    
 

 

Note from Equation 37-11 that this expression for 0r  is the same as the Bohr radius.  Since those two 
terms cancel, we are left with the following. 
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26. (a) The probability is found by integrating the radial probability density over the range of radii  

given.  The radial probability density is given after Eq. 39-8. 
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  The following integrals are derived in the solution to Problem 24. 
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 (b) From Problem 21, we have that the radial probability density for this state is 0
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27. (a) The radial probability distribution is given by Eq. 39-6.  Use the wave function given. 
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r 300 3 2 3 2
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(b) See the graph. 
(c) The most probable distance is the radius  

for which the radial probability 
distribution has a global maximum.  We 

find that location by setting r 0
dP

dr
  and 

solving for r.  We see from the graph that 
the global maximum is approximately at 

013 .r r  
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The above system has 6 non-infinite solutions.  One solution is r = 0, which leads to r 0,P   
which is not a maximum for the radial distribution.  The second-order polynomial, 

2

2
0 0

2 2
1 ,

3 27

r r
r r

 
  

 
 is a factor of the radial probability distribution, and so its zeros also give 

locations where r 0.P    So the maxima must be found from the roots of the third-order 

polynomial.  A spreadsheet was used to find the roots  of 2 35 12 2
3 27 811 0.x x x      Those roots 

are 0.74,  4.19, and 13.07.x    So the most probable distance is 013.1 .r r  

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH39.XLS,” on tab “Problem 39.27.” 

 
28. For oxygen, Z = 8.  We start with the 1n   shell, and list the quantum numbers in the order  

 , , , .sn m m
l

l  

  
       
       

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1,0,0, , 1,0,0, , 2,0,0, , 2,0,0, ,

2,1, 1, , 2,1, 1, , 2,1,0, , 2,1,0,

   

     
 

Note that, without additional information, there are two other possibilities that could substitute for 
any of the last four electrons. 

 
29. (a) For carbon, Z = 6.  We start with the 1n   shell, and list the quantum numbers in the order  

 , , , .sn m m
l

l  

              1 1 1 1 1 1
2 2 2 2 2 21,0,0, , 1,0,0, , 2,0,0, , 2,0,0, , 2,1, 1, , 2,1, 1,         

  Note that, without additional information, there are other possibilities for the last two electrons. 
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(b) For aluminum, Z = 13.  We start with the 1n   shell, and list the quantum numbers in the order  

 , , , .sn m m
l

l  

   
           
             

1 1 1 1 1 1
2 2 2 2 2 2

1 1 1 1 1 1 1
2 2 2 2 2 2 2

1,0,0, , 1,0,0, , 2,0,0, , 2,0,0, , 2,1, 1, , 2,1, 1, ,

2,1,0, , 2,1,0, , 2,1,1, , 2,1,1, , 3,0,0, , 3,0,0, , 3,1, 1,

       

       
 

 

  Note that, without additional information, there are other possibilities for the last electron. 
 
30. The number of electrons in the subshell is determined by the value of .l  For each l  the value of m

l
 

can range from  l  to , l  which is 2 1l  values.  For each m
l
 value there are two values of .sm   

Thus the total number of states for a given l  is  2 2 1 .N  l  

     2 2 1 2 2 4 1 18 electronsN       l  

 
31. Since the electron is in its lowest energy state, we must have the lowest possible value of n.  Since 

2,m 
l

 the smallest possible value of l  is 2 ,l  and the smallest possible value of n is 3 .n   
 
32. Limiting the number of electron shells to six would mean that the periodic table stops with radon 

(Rn), since the next element, francium (Fr), begins filling the seventh shell.  Including all elements 
up through radon means  86  elements. 

 
33. (a) Nickel has Z = 28. 

   2 2 6 2 6 8 21 2 2 3 3 3 4s s p s p d s  

 (b) Silver has Z = 47. 

   2 2 6 2 6 10 2 6 10 11 2 2 3 3 3 4 4 4 5s s p s p d s p d s  

 (c) Uranium has Z = 92. 

   2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 3 1 21 2 2 3 3 3 4 4 4 4 5 5 5 6 6 5 6 7s s p s p d s p d f s p d s p f d s  

 
34. The third electron in lithium is in the 2s subshell, which is outside the more tightly bound filled 1s 

shell.  This makes it appear as if there is a “nucleus” with a net charge of 1e.   Thus we use the 
energy of the hydrogen atom. 
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       

We predict the binding energy to be  3.4 eV .  Our assumption of complete shielding of the nucleus 
by the 2s electrons is probably not correct.  The partial shielding means the net charge of the 
“nucleus” is higher than +1e, and so it holds the outer electron more tightly, requiring more energy to 
remove it. 

 
35. We use Eq. 37-13, which says that the radius of a Bohr orbit is inversely proportional to the atomic 

number.  We also use Eq. 37-14b, which says that the energy of Bohr orbit is proportional to the 
square of the atomic number.  The energy to remove the electron is the opposite of the total energy. 
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36. The energy levels of the infinite square well are given in Eq. 38-13.  Each energy level can have a 
maximum of two electrons, since the only quantum numbers are n and ms.  Thus the lowest energy 
level will have two electrons in the n = 1 state, two electrons in the n = 2 state, and 1 electron in the 
n = 3 state. 

       
2 2

2 22
1 2 3 2 2

2 2 2 1 2 2 1 3 19
8 8

h h
E E E E

m m
         l l

 

 
37. In a filled subshell, there are an even number of electrons.  All of the possible quantum number 

combinations for electrons in that subshell represent an electron that is present.  Thus for every m  

value, both values of sm are filled, representing a spin “up” state and a spin “down” state.  The total 
angular momentum of that pair is zero, and since all of the electrons are paired, the total angular 
momentum is  zero. 

 
38. The shortest wavelength X-ray has the most energy, which is the maximum kinetic energy of the 

electron in the tube: 
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 Thus the operating voltage of the tube is 46kV .  

 
39. The shortest wavelength X-ray has the most energy, which is the maximum kinetic energy of the 

electron in the tube. 

  
  
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The longest wavelength of the continuous spectrum would be at the limit of the X-ray region of the 
electromagnetic spectrum, generally on the order of  1 nm.  

 
40. The energy of the photon with the shortest wavelength must equal the maximum kinetic energy of an 

electron.  We assume V is in volts. 
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41. With the shielding provided by the remaining 1n   electron, we use the energies of the hydrogen 

atom with Z replaced by 1.Z    The energy of the photon is found, and then the wavelength. 
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10

19 3

6.63 10 J s 3.00 10 m/s
1.94 10 m 0.194nm

1.60 10 J/eV 6.40 10 eV

hc

E







 
    
  


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42. We follow the procedure of Example 39-6, of using the Bohr formula, Eq. 37-15, with Z replaced by 
Z – 1. 

  
    

4
2 27 1 9 1

2 3 2 2 2 2
0

10
9 1

1 1 1 1 1
1 1.097 10 m 27 1 5.562 10 m   

8 1 2

1
1.798 10 m

5.562 10 m

e m
Z

h c n n 



 




                       

  


 

 
43. The wavelength of the K  line is calculated for molybdenum in Example 39-6.  We use that same 

procedure.  Note that the wavelength is inversely proportional to  2
1 .Z   

 
 

 
 

2

Feunknown
unknown2

Fe unknown

1 194pm
    26 1 1 24

229 pm1

Z
Z

Z




 
      

  
 

The unknown material has Z = 24, and so is chromium.  
 
44. We assume that there is “shielding” provided by the 1s electron that is already at that level.  Thus the 

effective charge “seen” by the transitioning electron is 42 – 1 = 41.  We use Eqs. 37-9 and 37-14b. 

  

  

  

  
    

2

2 2

34 8

2 2 19
2 2 2 2

11

1 1
13.6eV 1

6.63 10 J s 3.00 10 m/s

1 1 1 1
13.6eV 1 13.6eV 41 1.60 10 J eV

1 3

6.12 10 m 0.0612nm

hf E Z
n n

hc hc

E Z
n n








       

 
  
             

  


  

We do not expect perfect agreement because there is some  partial shielding provided by the 2n   
shell,  which was ignored when we replaced Z by 1.Z    That would make the effective atomic 
number a little smaller, which would lead to a larger wavelength.  The amount of shielding could be 
estimated by using the actual wavelength and solving for the effective atomic number. 

 
45. Momentum and energy will be conserved in any inertial reference frame.  Consider the frame of 

reference that is moving with the same velocity as the electron’s initial velocity.  In that frame of 
reference, the initial momentum of the electron is 0, and its initial total energy is 2.mc   Let the 
emitted photon have frequency f, and let the direction of motion of that photon be considered the 

positive direction.  The momentum of the photon is then ,
h hf

p
c 

   and so the momentum of the 

electron must be .e

hf
p

c
    The final energy of the photon is ,E hf p c    and the final energy 

of the electron is, from Eq. 36-13, 2 2 2 4
electron e
final

.E p c m c    We write the conservation conditions, 

and then solve for the frequency of the emitted photon. 

    Momentum: e e0     
hf hf

p p
c c

      

Energy:  2 2 2 2 4
emc hf p c m c    

   

2
2 2 2 2 2 2 2 4

2 4 2 2 2 2 2 2 4 22     2 0    0

hf
mc hf c m c h f m c

c

m c mc hf h f h f m c mc hf f

      
 

       
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 Since the photon must have f = 0, no photon can be emitted and still satisfy the conservation laws.   
 

Another way to consider this situation is that if an electron at rest emits a photon, the energy of the 
electron must decrease for energy to be conserved.  But the energy of a stationary electron cannot 
decrease, unless its mass were to change.  Then it would no longer be an electron. 

 

So we conclude that a third object (with mass) must be present in order for both energy and 
momentum to be conserved.   

 
46. The Bohr magneton is given by Eq. 39-12. 

  
 

19 34

24
B 31

1.602 10 C 1.054 10 J s
μ 9.27 10 J T

2 2 9.109 10 kg

e

m

 




 
   




 

 
47. We use Eq. 39-14 for the magnetic moment, since the question concerns spin angular momentum.  

The energy difference is the difference in the potential energies of the two spin states. 

     
    

24
spin down 41 1

B 2 219spin up

9.27 10 J T
μ μ 2.0023 2.5T 2.9 10 eV

1.60 10 J eV
z sU B g B m







          


 

 
48. (a) The energy difference is the difference in the potential energies of the two spin states.  Use Eq.  

39-14 for the magnetic moment. 

 
     

    
24

spin down 1 1
B 2 219spin up

4 4

9.27 10 J T
μ μ 2.0023 1.0T

1.60 10 J eV

1.160 10 eV 1.2 10 eV

z sU B g B m




 


        



   

 

 (b) Calculate the wavelength associated with this energy change. 

     
  

34 8

2

4 19

  

6.63 10 J s 3.00 10 m/s
1.072 10 m 1.1cm

1.160 10 eV 1.60 10 J eV

c
U E h

hc

U







 

   

 
    
  

  

 (c) The answer would be no different for hydrogen.  The splitting for both atoms is due to an s-state  
electron:  1s for hydrogen, 5s for silver.  See the discussion on page 1058 concerning the Stern-
Gerlach experiment. 

 
49. (a) Refer to Figure 39-14 and the equation following it.  A constant magnetic field gradient will  

produce a constant force on the silver atoms.  Atoms with the valence electron in one of the spin 
states will experience an upward force, and atoms with the valence electron in the opposite spin 
state will experience a downward force.  That constant force will produce a constant 
acceleration, leading to the deflection from the original direction of the atoms as they leave the 
oven.  We assume the initial direction of the atoms is the x direction, and the magnetic field 
gradient is in the z direction.  If undeflected, that atoms would hit the screen at z = 0. 

   
 2 2 2

21 1 1 1
2 2 2 2

Ag Ag Ag

μ μz z
z B s

dB dB
g mF x x xdz dzz at

m v m v m v

               
     

 

One beam is deflected up, and the other down.  There separation is the difference in the two 
deflections due to the two spin states. 
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 

   
  

1 1
2 2

1 1 2
2 2

1
2

Ag

224

41
2 27

μ

2.0023 9.27 10 J T 1800T m 0.050m
3.833 10 m 0.38mm

780m s107.87u 1.66 10 kg u

s s

z
B

m m

dB
g xdzz z z

m v 






           
 

  
      

 

 (b) The separation is seen in the above equation to be proportional to the g-factor.  So to find the  
new deflection, divide the answer to part (a) by the original g-factor. 

   
4

1

3.833 10 m
0.19mm

2.0023gz





      

 

50. For the 5g state, 4l and 1
2 .s    Thus the possible values of j are 7 91

2 2 24 , .j s    l  

Let 7
2 .j    Then we have the following. 

 7 5 3 3 5 7 7 71 1
2 2 2 2 2 2 2 2 2 2

7 5 3 3 5 71 1
2 2 2 2 2 2 2 2

3 7
, , , , , , ,      1

2
, , , , , , ,

j

z j

m J

J m

       

     

 

        
 

Let 9
2 .j    Then we have the following. 

 9 7 5 3 3 5 7 9 9 91 1
2 2 2 2 2 2 2 2 2 2 2 2

9 7 5 3 3 5 7 91 1
2 2 2 2 2 2 2 2 2 2

3 11
, , , , , , , , ,      1

2
, , , , , , , , ,

j

z j

m J

J m

        

      

 

          
 

 

51. (a) For the 4p state, 1.l   Since 1
2 ,s   the possible values for j are 3

2j s  l  and  

1
2 .j s  l  

(b) For the 4f state, 3.l   Since 1
2 ,s   the possible values for j are 7

2j s  l  and  

5
2 .j s  l  

(c) For the 3d state, 2.l   Since 1
2 ,s   the possible values for j are 5

2j s  l  and  

3
2 .j s  l  

(d) The values of J are found from Eq. 39-15. 

  

 

 

 

15 3
4 :   1  and 

2 2

63 35
4 :   1  and 

2 2

35 15
3 :   1  and 

2 2

p J j j

f J j j

d J j j

  

  

  

  

  

  

 

 
52. (a) Gallium has Z = 31.  We list the quantum numbers in the order  , , , .sn m m

l
l  

   
           
           

1 1 1 1 1 1
2 2 2 2 2 2

1 1 1 1 1 1
2 2 2 2 2 2

1,0,0, , 1,0,0, , 2,0,0, , 2,0,0, , 2,1, 1, , 2,1, 1, ,

2,1,0, , 2,1,0, , 2,1,1, , 2,1,1, , 3,0,0, , 3,0,0, ,

       

     
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           
           
           
 

1 1 1 1 1 1
2 2 2 2 2 2

1 1 1 1 1 1
2 2 2 2 2 2

1 1 1 1 1 1
2 2 2 2 2 2

1
2

3,1, 1, , 3,1, 1, , 3,1,0, , 3,1,0, , 3,1,1, , 3,1,1, ,

3,2, 2, , 3,2, 2, , 3,2, 1, , 3,2, 1, , 3,2,0, , 3,2,0, ,

3,2,1, , 3,2,1, , 3,2,2, , 3,2, 2, , 4,0,0, , 4,0,0, ,

4,1,0,

       

         

      



 

  The last electron listed could have other quantum numbers for m
l
 and .sm  

 (b) The 1s, 2s, 2p, 3s, 3p, 3d, and 4s  subshells are filled. 

(c) For a 4p state, 1.l   Since 1
2 ,s   the possible values for j are 3

2j s  l  and  

1
2 .j s  l  

 (d) The 4p electron is the only electron not in a filled subshell.  The angular momentum of a filled  
  subshell is zero, so the total angular momentum of the atom is the angular momentum of the 4p  
  electron. 

(e) When the beam passes through the magnetic field gradient, the deflecting force will be  
proportional to mj .  If 1

2 ,j   the values of mj are 1
2 ,  and there will be two lines.  If 3

2 ,j   the 

values of  mj are 31
2 2, ,   and there will be four lines.  The number of lines indicates the value 

of j. 
 
53. (a) The additional term for the spin-orbit interaction is given in the text as spin n n

orbit

μ zU B  μ B
 .   

The separation of the energy levels due to the two different electron spins is twice this. 

   

 

  
   

spin down

spin n B nspin up
orbit

5 19spin
orbit

n 24 1 1
B 2 2

μ μ   

5 10 eV 1.60 10 J eV
0.431T 0.4T

μ 2.0023 9.27 10 J T

z s

s

U B g B m

U
B

g m

 



     

  
   
    

 

(b) If we consider the nucleus to be a loop of current with radius r, then the magnetic field due to  
the nucleus at the center of the loop (the location of the electron) is given in Example 28-12 as 

0
n .

2

I
B

r


   Model the current as the charge of the nucleus moving in a circle, with a period as 

given by circular motion. 

 
 
 2 2 2
e

e

e m r vq e e ev
I

t T r v r r m r  


    


 

Note that classically, ,e em rv L  the angular momentum of the electron, and so 

 1em rv  l l   with 2.l   Thus we have the following: 

 
     0 B 00 0

n 2 3 3

1 1 μ 1

2 2 2 2 2 2e e

eI e
B

r r m r m r r

  
  

  
   

l l l l l l 
  

From Figure 39-9 (b), we see that the most probable radius for the 2,  1n  l  state is 
approximately 04 .r r  We can now calculate the approximate magnetic field. 

  
 

 
  

 

24 7
B 0

n 3 3
10

0

9.27 10 J T 4 10 T m A 6μ 1
0.479T 0.5T

2 4 2 4 0.529 10 m
B

r



 

 



 
   

  

l l 
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The two values are about 
 1

2

0.479T 0.431T
100 11%

0.479T 0.431T


 


 different, and so are consistent. 

 
54. The energy of a pulse is the power of the pulse times the duration in time. 

    30.63W 23 10 s 0.01449J 0.014JE P t        

The number of photons in a pulse is the energy of a pulse, divided by the energy of a photon as given 
in Eq. 37-3. 

  
  

  
-9

16

34 8

0.01449J 640 10 m
4.7 10 photons

6.63 10 J s 3.00 10 m/s

E E
N

hf hc





    

 
 

 
55. The angular half-width of the beam can be found in 

Section 35-4, and is given by 1/ 2

1.22
,

d

   where d 

is the diameter of the diffracting circle.  The angular 
width of the beam is twice this.  The linear diameter 
of the beam is then the angular width times the distance from the source of the light to the 
observation point, .D r   See the diagram. 

 (a)    9

3
3

2.44 694 10 m2.44
380 10 m 180m

3.6 10 m
D r r

d







    


  

 (b)    9

6 5
3

2.44 694 10 m2.44
384 10 m 1.8 10 m

3.6 10 m
D r r

d







     


 

 
56. Intensity equals power per unit area.  The area of the light from the laser is assumed to be in a 

circular area, while the area intercepted by the light from a light bulb is the surface area of a sphere. 

(a) 
 

3
2 2

22 3

0.50 10 W
70.74W m 71W m

1.5 10 m

P P
I

S r 






    


 

 (b) 
 

2 2
22

15W
0.2984W m 0.30W m

4 4 2.0m

P P
I

S r 
      

  The laser beam is more intense by a factor of 
2

2

70.74W m
237 240 .

0.2984W m
   

 
57. Transition from the 3E   state to the 2E   state releases photons with energy 1.96 eV, as shown in 

Figure 39-21.  The wavelength is determined from the energy.  

  
  
  

34 8

7

19

6.63 10 J s 3.00 10 m/s
6.34 10 m 634nm

1.60 10 J/eV 1.96eV

hc

E







 
    
 


 

 
58. We use Eq. 39-16b. 

  

  
  

  
  

19

2 0 23

19

2 0 23

2.2eV 1.60 10 J eV

1.38 10 J K 300 K 85.0 372

0

1.8eV 1.60 10 J eV

1.38 10 J K 300 K 69.6 311

0

1.2 10

6.1 10

E E

kT

E E

kT

N
e e e

N

N
e e e

N









 
            

 
            

    

    

 

r
D
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59. The relative numbers of atoms in two energy states at a given temperature is given by Eq. 39-16b.  
From Figure 39-20, the energy difference between the two states is 2.2 eV. 

  
  
 

2 0 19

42 02
23

20

0

2.2eV 1.60 10 J eV
    3.7 10 K

1.38 10 J K ln0.5ln

E E

kT E EN
e T

NN k
N

  
 



 
            

     
 

  

 
60. Consider Eq. 39-16b, with .n nE E    To have a population inversion means that .n nN N   

 1    ln 0    0
n nE E

kTn n n n n n

n n

N N E E E E
e

N N kT kT

     

 

          
 

  

Since ,n nE E   to satisfy the last condition we must have T < 0, a negative temperature. 
 

This negative “temperature” is not a contradiction.  The Boltzmann distribution assumes that a 
system is in thermal equilibrium, and the inverted system is not in thermal equilibrium.  The 
inversion cannot be maintained without adding energy to the system.  If left to itself, the excited 
states will decay and the inversion will not be maintained. 

 
61. (a) Boron has 4,Z   so the outermost electron has 2.n    We use the Bohr result with an  

effective Z.  We might naively expect to get eff 1,Z   indicating that the other three electrons 

shield the outer electron from the nucleus, or eff 2,Z   indicating that only the inner two 
electrons accomplish the shielding. 

   
     2 2

eff eff
2 eff2 2

13.6eV 13.6eV
     8.26eV     1.56

2

Z Z
E Z

n
         

This indicates that the second electron in the 2n   shell does partially shield the electron that is 
to be removed. 

 (b) We find the average radius from the expression below. 

   
 

 

2 102
101

eff

2 0.529 10 m
1.36 10 m

1.56

n r
r

Z





     

 
62. An h subshell has 5.l   For a given l  value, m

l
 ranges from  l  to , l  taking on 2 1l  different 

values.  For each m
l
 there are 2 values of .sm   Thus the number of states for a given l  value is 

 2 2 1 .l   Thus there are    2 2 1 2 11 22  l  possible electron states. 

 
63. (a) Z = 25 is manganese. 

   2 2 6 2 6 5 21 2 2 3 3 3 4s s p s p d s  

 (b) Z = 34 is selenium. 

   2 2 6 2 6 10 2 41 2 2 3 3 3 4 4s s p s p d s p  

 (c) Z = 39 is yttrium. 

   2 2 6 2 6 10 2 6 1 21 2 2 3 3 3 4 4 4 5s s p s p d s p d s  
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64. The value of l  can range from 0 to 1.n    Thus for 6,n   we have 0 5. l   The magnitude of L


 

is given by Eq. 39-3,  1 .L  l l   

  min max0  ;  30L L    

 
65. (a) We treat the Earth as a particle in rotation about the Sun.  The angular momentum of a particle  

is given in Example 11-7 as ,L mvr  where r is the orbit radius.  We equate this to the 
quantum mechanical expression in Eq. 39-3.  We anticipate that the quantum number will be 

very large, and so approximate  
1

21  l l  as .l  

   

 

   
  

2 1

2
Earth Sun

Earth

224 112
74 74Earth

34 7

2
1   

5.98 10 kg 2 1.496 10 m2
2.5255 10 2.5 10

1.055 10 J s 3.156 10 s

M r
L M vr

T

M r

T









       

 
     

 

l l l

l

 

 

 

 (b) There are 2 1l values of m
l
 for a value of ,l so the number of orientations is as follows. 

 74 74 742 1 2 2.5255 10 1 5.051 10 5.1 10 .N         l  

 
66. Eq. 37-15 gives the Bohr-theory result for the wavelength of a spectral line.  For the Mosley plot, the 

wavelengths are for the K line, which has 2n   and 1.n    We assume that the shielding of the 
other n = 1 electron present reduces the effective atomic number to Z – 1.  We use the value of the 
Rydberg constant from Section 37-11. 

    

 

2 4 4 4
2 2

2 3 2 2 2 3 2 3
0 0 0

1/ 24 4
2

2 3 2 3
0 0

1/ 24
13

42 3
0

1 1 1 1 1 1 1 3
          

8 8 1 4 32

1 3 1 3
1      ,  , 1

32 32

3

32

Z e m e m e m
Z Z

h c n n h c h c

e m e m
Z a Z b a b

h c h c

e m
a R

h c

     

   



                               

   
         
   

 
  
 

  1/ 2/ 2 7 1 1/ 23
4 1.0974 10 m 2868.9m     

 

 
67. This is very similar to Example 39-3.  We find the radial 

probability distribution for the n = 2, l = 0 wave function, and 
find the position at which that distribution has a maximum.  We 
see from Figure 39-8 that there will be two local maxima in the 
probability distribution function, and the global maximum is at 
approximately 05 .r   The wave function is given in Eq. 39-8. 

  

0

0

2
200 3

00

22
22

r 200 3
0 0

1
2

32

4 2
8

r

r

r

r

r
e

rr

r r
P r e

r r




 





 
  

 

 
   

 

 

0 0 0

2 22 2
r

3 3 3
0 0 0 0 0 0 0 0

2 1 1
2 2 2 2

8 8 8

r r r

r r rdP r r r r r r
e e e

dr r r r r r r r r

          
               

        
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   
0

2 2 2 20
0 0 0 0 06

0

2
     6 4 0    0,  2 , 6 4 0

8

r

rr r re
r r r r r r r r r r r

r




           

 
2 2

2 2 0 0 0
0 0 0 0

6 36 16
6 4 0    3 5 0.764 ,  5.24

2

r r r
r r r r r r r r

 
         

 So there are four extrema:  0 0 00,  0.76 ,  2 ,  5.2 .r r r r   From Figure 39-8 we see that the most probable 

distance is 05.2 .r r  

 
68. The “location” of the beam is uncertain in the transverse direction by an amount equal to the aperture 

opening, D.  This gives a value for the uncertainty in the transverse momentum.  The momentum 
must be at least as big as its uncertainty, and so we obtain a value for the transverse momentum. 

          y y yp y p p
y D D

        

    

The momentum in the forward direction is related to the 

wavelength of the light by .x

h
p


   See the diagram to 

relate the momentum to the angle. 

    ;
2

y

x

p D

p h D


 

  


 “spread” 2
D D

 


    

 
69. The magnitude of the angular momentum is given by Eq. 39-3, and zL  is 

given by Eq. 39-4.  The cosine of the angle between L


 and the z axis is 
found from L  and .zL  

   
 

1 11   ;    ;  cos cos
1

z
z

L m
L L m

L
      


l

l
l l

l l
   

 (a) For 1,l 1,  0, 1.m  
l

 

   

1 1
1,1 1,0

1
1, 1

1 0
cos 45  ; cos 90  ;

2 2
1

cos 135
2

 



 




     


  

 

 (b) For 2,l 2, 1,  0, 1, 2.m   
l

 

   

1 1 1
2,2 2,1 2,0

1 1
2, 1 2,2

2 1 0
cos 35.3  ; cos 65.9  ;  cos 90

6 6 2
1 2

cos 114.1  ;  cos 144.7
6 6

  

 

  

 


        

 
     

 

 (c) For 3,l 3, 2, 1,  0, 1, 2, 3.m    
l

 

   

1 1 1
3,3 3,2 3,1

1 1 1
3,0 3, 1 3, 2

1
3, 3

3 2 1
cos 30  ; cos 54.7  ;  cos 73.2

12 12 12
0 1 2

cos 90  ;  cos 106.8   ;  cos 125.3  ;
12 12 12

3
cos 150

12

  

  



  

  
 




        

 
        


  

 

 

D xp
yp



x

y
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 (d) We see from the previous parts that the smallest angle occurs for .m 
l
l  

   
  

1
100,100

100
cos 5.71

100 101
     

   
  

6 6

6
1

10 ,10 6 6

10
cos 0.0573

10 10 1
   


   

This is consistent with the correspondence principle, which would say that the angle between L


 
and the z axis could be any value classically, which is represented by letting l  (which also 
means n  ). 

 
70.  (a) Since 0,zL   ,   and so   is unknown.  We can say nothing about the  

value of .  
(b) Since   is completely unknown, we have no knowledge of the component of the angular  

momentum perpendicular to the z-axis.  Thus xL  and yL are unknown. 

(c) The square of the total angular momentum is given by 2 2 2 .x y zL L L L      Use this with the  

quantization conditions for L  and zL  given in Eqs. 39-3 and 39-4. 

  
   

 

2 2 2 2 2 2 2 2 2 2 2 2

1/ 22 2 2

    1     1

1

x y z x y x y

x y

L L L L L L m L L m

L L m

               

     

l l

l

l l l l

l l

  


 

 
71. (a) The mean value can be found as described in Problem 19.  We use the first definite integral  

given in Appendix B-5, with n = 1 and a = 1. 

    

0 0

2 22 2 2
100 3 2

0 0 0 00 0 0

0 0 00

2 2 2
2 2

100
0 0 0 00

1 1 1 1 4
4 4  ; let 2   

1 1 1
1

1 1 1
    4

4 4 4

r r

r r

x

r r
r dr e r dr e dr x

r r r r r r r

xe dx
r r r

e e e
U U r dr

r r r

  


 
  

   






       
 

  

      

  





 

(b) For the ground state of hydrogen, Eq. 37-14a gives the energy, and Eq. 37-11 gives the Bohr  
radius.   Substitute those expressions into .E U K   

  

4 2

2 2
0 0 0

2
4 0

24 2 2 4 2

2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0

2 2 2
1
2

0 0 0 0 0 0

1
  ;  

8 4

1

8 4 4 8 4 8

4 8 8

e m e
E U

h r

h
e m

mee m e e e m e
K E U

h r r h r h r

e e e
U

r r r

 




     

  

   

 
              

 

    

 

 

72. In the Bohr model, Bohr 2 .
2

h
L n


     In quantum mechanics,  QM 1 .L  l l    For 2,n   0l  

or 1,l  so that  QM 0 0 1 0L     or  QM 1 1 1 2 .L      
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73. (a) The 4 3p p  transition is  forbidden,  because 0 1.   l  

 (b) The 3 1p s  transition is  allowed,  because 1.  l  

 (c) The 4 3d d  transition is  forbidden,  because 0 1.   l  

 (d) The 4 3d s  transition is  forbidden,  because 2 1.    l  

 (e) The 4 2s p  transition is  allowed,  because 1.  l  
 
74. The binding energy is given by the opposite of Eq. 37-14b. 

 
2

3
2 2

13.6eV
13.6eV 6.72 10 eV

45n

Z
E

n
      

The radius is given by Eq. 37-13. 

   
2

10 2 10 70.529 10 m 45 0.529 10 m 1.07 10 mn

n
r

Z
         

 The effective cross-sectional area is as follows. 

 22 7 14 21.07 10 m 3.60 10 mr          

 
75. The wavelengths of emitted lines from one-electron atoms are given by Eq. 37-15.  We can simplify 

the equation by using the Rydberg constant, so 
2 2

1 1 1
.R

n n
      

  The Lyman series with 

hydrogen has Z = 1 and n     Every fourth line from the unknown element match the wavelengths 
of the first three Lyman lines.  This gives three equations in three unknowns. 

  
   

 

2
2 2 2 2 2 2

Lyman
2  1

2 22 2 2 2
Lyman
3  1

22 2 2
Lyman
4  1

1 1 1 1 1 3 1 1
    

1 2 4

1 1 1 1 1 8 1 1
    

1 3 94 4

1 1 1 1 1 15
    

1 4 168

R Z R Z
n m n m

R Z R Z
n nm m

R Z R
n m











 







                
     

                        

                22

1 1

8
Z

n m

 

   

  

 Subtract the first equation from each of the other two equations. 

  
   

   

2
2 22 2 2 2

2
2 22 2 2 2

8 3 1 1 1 1 5 1 1
    

9 4 364 4

15 3 1 1 1 1 3 1 1
    

16 4 168 8

Z Z Z
n n m mm m

Z Z Z
n n m mm m

 

 

                       
                       

 

 Divide the resulting equations to eliminate Z, solve for m, and then substitute to find Z. 

  

 

 

 
 

 
 

  
 

    

2 2

22 2 22

2 32

222 2

3 2 3 2

1 1 45
4 4 2 82036       

3 27 8 2 41 1
16 88

40 4 27 2 8     13 514 608 896 0

m m
Z

m m m m m m

m m m
Z

m m mm

m m m m m m





             
    

    

        
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This is a cubic equation, which can be solved by numerical techniques.  We first drew a graph, and 
saw that two of the 0’s of the function were negative, and one was near m = 8.  The only acceptable 
results are for m > 0, and substitution verifies that m = 8 solves the equation.  We use that result to 
find Z. 

  
     

1 1

2 2 22 2 2

3 1 1 3 1 1 3 1 1
    4

16 16 16 88 8 8 8
Z Z

m mm m

 


                                      

 

Thus the element is beryllium.  The spreadsheet used for this problem can be found on the Media 
Manager, with filename “PSE4_ISM_CH39.XLS,” on tab “Problem 39.75.” 

 
76. (a) The additional energy due to the presence of a magnetic field is derived in Section 39-7, as  

Bμ .zU m B
l

  We use this to calculate the energy spacing between adjacent m
l
 values. 

 
   

B

24

5 5
B 19

μ   

9.27 10 J T
μ 1.6T 9.27 10 eV 9.3 10 eV

1.60 10 J eV

z

z

U m B

U B m


 


 


      



l

l

 

(b) As seen in Figure 39-4, the 3,  2n  l  level will split  
into 5 levels, and the 2,  1n  l  level will split into 3 
levels.  With no restrictions, there would be 15 
different transitions possible.  All transitions would 
have the same 1.n    Thus there are only three 
unique wavelengths possible:  the one corresponding to 
a transition with 1m  

l
 (a slightly larger energy 

change than in the B = 0 case), the one corresponding 
to a transition with 0m 

l
 (the same energy change 

as in the B = 0 case), and the one corresponding to a 
transition with 1m  

l
 (a slightly smaller energy 

change than in the B = 0 case).  See the diagram, 
showing 9 possible transitions grouped into 3 actual energy changes.  The value along the right 
side is the change in energy level due to the magnetic field interaction. 

(c) Eq. 37-15 gives the wavelength for hydrogen, considering only a change in principal quantum 
number.  The energies for those transitions is on the order of eV.  The energy change due to the 
magnetic field interaction is much smaller than that, so we can use an approximation, knowing 

E from part (a).  We obtain E from Eq. 37-14b. 

  

 

 

1
17 1 71 1

3 2 4 92 2

3 22 2 2

5

1

1 1
1.0974 10 m 6.56096 10 m 656.10nm

2 3

1 1
      ;  13.6eV 1.889eV

2 3

9.27 10 eV
656.10nm 0.032nm

1.889eV

n

n

m

R

c hc E
h E E

E E E

E

E



  

 




 

 

 



 

                 
             

 
  

      
 


l 3 2

1 3 2

1 3 2

656.10nm 0.032nm 656.07nm

0 656.10nm

656.10nm 0.032nm 656.13nm

n

m n

m n

 

 

  

 

   

   

    

  

     
l

l

 

 
 

² m =

+2B

–2B

+B

–B

0

+B

–B

0

n = 3, ¬ = 2

n = 2, ¬ = 1

–1 0 +1m 
l
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77. (a) We use Eq. 39-16b, with the “note” as explained in the problem, multiplying the initial  
expression times 8

2 .  

   

 
  

19

23
2 1

13.6eV 13.6eV
1.60 10 J eV

4 1

1.38 10 J K 300 K
394.22 8 8

2 2
1

4
E E

kTN
e e e

N





        
                

  Many calculators will not directly evaluate 394.2 ,e so we do the following. 

   

 

 

394.2

171.2 0.2 171 171

394.2 171 171 1712

1

  ;  log 394.2log 394.2 0.4343 171.2  ;

10 10 10 0.631 10

4 4 0.631 10 2.52 10 3 10

x e x e

x

N
e

N



   

   

      

   

      

 

  There are 18 states with n = 3, so we multiply by 18
2 .  

   

 
  

19

23
3 1

13.6eV 13.6eV
1.60 10 J eV

9 1

1.38 10 J K 300 K
467.2 202 2023 18 18

2 2
1

9 1.13 10 1 10
E E

kTN
e e e

N





        
                     

 (b) We repeat the evaluations for the higher temperature. 

  

 
  

19

23
2 1

13.6eV 13.6eV
1.60 10 J eV

4 1

1.38 10 J K 6000 K
19.71 8 82 8 8

2 2
1

4 1.10 10 1 10
E E

kTN
e e e

N





        
                     

  

 
  

19

23
3 1

13.6eV 13.6eV
1.60 10 J eV

9 1

1.38 10 J K 6000 K
23.36 10 103 18 18

2 2
1

9 6.44 10 6 10
E E

kTN
e e e

N





        
                     

(c) Since the fraction of atoms in each excited state is very small, we assume that 1N  is the number  

of hydrogen atoms given.  1.0 g of H atoms contains 236.02 10  atoms. 

 
    
    

8 23 8 15 15
12

10 23 10 14 14
13

1.10 10 6.02 10 1.10 10 6.62 10 7 10

6.44 10 6.02 10 6.44 10 3.88 10 4 10

NN

NN

 

 

        

        
  

(d) We assume the lifetime of an excited state atom is 810 s.   Each atom would emit one photon as  
its electron goes to the ground state.  The number of photons emitted per second can be 
estimated by the number of atoms, divided by the lifetime. 

  
14 15

22 233 2
3 28 8

4 10 7 10
4 10 photons s   ;  7 10 photons s

10 s 10 s
N N

n n
  

 
        
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CHAPTER 40:  Molecules and Solids 
 
Responses to Questions 
 
1.  (a) Covalent; (b) ionic; (c) metallic. 
 
2. A neutral calcium atom has 20 electrons. Its outermost electrons are in the 4s2 state. The inner 18 

electrons form a spherically symmetric distribution and partially shield the outer two electrons from 
the nuclear charge. A neutral chlorine atom has 17 electrons; it lacks just one electron to have its 
outer shell filled. A CaCl2 molecule could be formed when the outer two electrons of the calcium 
atom are “shared” with two chlorine atoms. These electrons will be attracted by both the Ca and the 
Cl nuclei and will spend part of their time between the Ca and Cl nuclei. The nuclei will be attracted 
to this negatively charged area, forming a covalent bond. As is the case with other asymmetric 
covalent bonds, this bond will have a partial ionic character as well. The two electrons will partly 
orbit the Ca nucleus and partly orbit each of the two Cl nuclei. Since each Cl nucleus will now have 
an extra electron part of the time, it will have a net negative charge. The Ca nucleus will “lose” two 
electrons for part of the time, giving it a net positive charge. 

 
3.  No, neither the H2 nor the O2 molecule has a permanent dipole moment. The outer electrons are 

shared equally between the two atoms in each molecule, so there are no polar ends that are more 
positively or negatively charged. The H2O molecule does have a permanent dipole moment. The 
electrons associated with the hydrogen atoms are pulled toward the oxygen atom, leaving each 
hydrogen with a small net positive charge and the oxygen with a small net negative charge. Because 
of the shape of the H2O molecule (see Figure 40-6), one end of the molecule will be positive and the 
other end will be negative, resulting in a permanent dipole moment. 

 
4. The molecule H3 has three electrons. According to the Pauli exclusion principle, no two of these 

electrons can be in the same quantum state. Two of them will be 1s2 electrons and will form a 
“closed shell” and a spherically symmetric distribution, and the third one will be outside this 
distribution and unpaired. This third electron will be partially shielded from the nucleus and will thus 
be easily “lost,” resulting in an unstable molecule. The ion H3

+ only has two electrons. These 1s2 
electrons will form a closed shell and a spherically symmetric distribution, resulting in a stable 
configuration.  

 
5.  The energy of a molecule can be divided into four categories: translational kinetic energy, rotational 

kinetic energy, vibrational kinetic energy, and electrostatic potential energy. 
 
6. Yes. The electron will spend most of its time between the two nuclei. Both positive nuclei will be 

attracted to this negative charge, forming a bond. 
 
7. The carbon atom (Z = 6) usually forms four bonds because carbon requires four electrons to form a 

closed 2p shell, and each hydrogen-like atom contributes one electron. 
 
8. The last valence electron of a sodium atom is shielded from most of the sodium nuclear charge and 

experiences a net nuclear charge of +1e. The outer shell of a chlorine atom is the 3p shell, which 
contains five electrons. Due to shielding effects, the 3p electrons of chlorine experience a net nuclear 
charge of +5e. In NaCl, the last valence electron of sodium is strongly bound to a chlorine nucleus. 
This strong ionic bonding produces a large energy gap between the valence band and the conduction 
band in NaCl, characteristic of a good insulator. 
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9. The conduction electrons are not strongly bound to particular nuclei, so a metal can be viewed as a 
collection of positive ions and a negative electron “gas.” (The positive ions are just the metal atoms 
without their outermost electrons, since these “free” electrons make up the gas.) The electrostatic 
attraction between the freely-roaming electrons and the positive ions keeps the electrons from 
leaving the metal.  

 
10.  As temperature increases, the thermal motion of ions in a metal lattice will increase. More electrons 

will collide with the ions, increasing the resistivity of the metal. When the temperature of a 
semiconductor increases, more electrons are able to move into the conduction band, making more 
charge carriers available and therefore decreasing the resistivity. (Note: the thermal motion increases 
in semiconductors as well, but the increase in the number of charge carriers is a larger effect.) 

 
11. When the top branch of the input circuit is at the high voltage (current is flowing in this direction for 

half the cycle), then the bottom branch of the output is at the high voltage. The current follows the 
path through the bridge in the diagram on the left. When the bottom branch of the input circuit is at 
the high voltage (current is flowing in this direction during the other half of the cycle), then the 
bottom branch of the output is still at high voltage. The current follows the path through the bridge 
in the diagram on the right. 

 
 
 
 
 
 
 
 
 
 
12. In an ideal gas, it is possible for all of the gas particles to have the same energy. (The velocity 

distribution of the particles in an ideal gas usually follows the Maxwell velocity distribution.) As the 
temperature of the gas increases, the kinetic energy of the gas increases. In a Fermi electron gas, 
only two electrons can have the same energy (Pauli exclusion principle). The electrons fill up the 
energy states up to the Fermi level. As the temperature of the Fermi gas increases, only the electrons 
in the top few levels can move to higher energy levels. The result is that the energy of the Fermi gas 
is not strongly temperature dependent. 

 
13.  For an ideal pn junction diode connected in reverse bias, the holes and electrons that would normally 

be near the junction are pulled apart by the reverse voltage, preventing current flow across the 
junction. The resistance is essentially infinite. A real diode does allow a small amount of reverse 
current to flow if the voltage is high enough, so the resistance in this case is very high but not 
infinite. A pn junction diode connected in forward bias has a low resistance (the holes and electrons 
are close together at the junction) and current flows easily.   

 
14. The general shape of Figure 40-28 is the same for most metals. The scale of the graph (especially the 

x-axis scale and the Fermi energy) is peculiar to copper and will change from metal to metal. 
 
15.  The base current (between the base and the emitter) controls the collector current (between the 

collector and the emitter). If there is no base current, then no collector current flows.  Thus, 
controlling the relatively small base current allows the transistor to act as a switch, turning the larger 
collector current on and off. 
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16. The main difference between n-type and p-type semiconductors is the sign on the charge carriers. In 
an n-type semiconductor the charge carriers are negative electrons. In a p-type semiconductor, the 
charge carriers are positive holes. 

 
17. A transistor can be used as an amplifier because small changes in the base current can make much 

larger changes in the collector current. (See Figure 40-43.) For a pnp transistor, both the collector 
and the base voltages are negative, and holes move from the emitter to the collector. The diagram for 
a pnp amplifier looks just like Figure 40-43, with the polarity of Be  and Ce  reversed, BI  and CI  
flowing in opposite directions, and the emitter arrow pointing toward the base. 

 
18. In Figure 40-43, the base–collector junction is reverse-biased and the base–emitter junction is 

forward-biased.  
 
19. The energy comes from the power supplied by the collector/emitter voltage source. The input signal 

to the base just regulates how much current, and therefore power, can be drawn from the collector’s 
voltage source.  

 
20.   The phosphorus atoms will be donor atoms. Phosphorus has five valence electrons. It will form four 

covalent bonds with the silicon atoms around it, and will have one “extra” electron which is weakly 
bound to the atom and can be easily excited up to the conduction band. This process results in extra 
electrons in the conduction band. Silicon doped with phosphorus is therefore an n-type 
semiconductor. 

 
21. No. Ohmic devices (those that obey Ohm’s law) have a constant resistance and therefore a linear 

relationship between voltage and current. The voltage-current relationship for diodes is not linear. 
The resistance of a diode operated in reverse-bias is very large. The same diode operated in a 
forward-bias mode has a much smaller resistance. Since a transistor can be thought of as made up of 
diodes, it is also non-ohmic. 

 
22. No. Single diodes can be used to rectify signals, but cannot amplify signals. The diode will allow 

the signal to pass, if forward-biased, or not allow the signal to pass, if reverse-biased. Combinations 
of diodes with additional power sources, as in a transistor, are able to amplify a signal. 

 
23. Reversing the collector voltage would reverse the roles of the collector and emitter of the transistor. 

Unless the base-emitter voltage is also reversed, the transistor cannot act as an amplifier.   
 

Solutions to Problems 
 
Note: A factor that appears in the analysis of electron energies is 

     
2

29 2 2 19 28

0

9.00 10 N m C 1.60 10 C 2.30 10 J m.
4

e


        

 
1. We calculate the binding energy as the opposite of the electrostatic potential energy.  We use Eq. 23-

10 for the potential energy. 

  

2 28
1 2

9 9
0 0

19 19

19
19

1 1 2.30 10 J m
Binding energy

4 4 0.28 10 m 0.28 10 m

8.214 10 J 8.2 10 J

1eV
8.214 10 J 5.134eV 5.1eV

1.60 10 J

Q Q e
U

r 



 

 




           

   

      


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2. From Problem 1, the “point electron” binding energy is 5.134 eV.  With the repulsion of the electron 
clouds included, the actual binding energy is 4.43 eV.  Use these values to calculate the contribution 
of the electron clouds. 

5.134eV 4.43eV 0.704eV 0.70eV    

 
3. We calculate the binding energy as the difference between the energy 

of two isolated hydrogen atoms and the energy of the bonded 
combination of particles.  We estimate the energy of the bonded 
combination as the negative potential energy of the two electron-
proton combinations, plus the positive potential energy of the proton-
proton combination.  We approximate the electrons as a single object with a charge of 0.33 of the 
normal charge of two electrons, since the electrons only spend that fraction of time between the 
nuclei.  A simple picture illustrating our bonded model is shown. 

 

 
   

   
  

 

isolated

2 2

bonded p-p e-p 1
0 0 02

28

9 19

binding isolated bonded

2 13.6eV 27.2eV

0.661 1 1
2 2 1 2.64

4 4 4

2.30 10 J m
1.64 31.9eV

0.074 10 m 1.60 10 J eV

27.2eV 31.9eV 4.7e

U

e ee e
U U U

d d d

U U U

  


 

   

           
    


   

 

      



V

  

This is reasonably close to the actual value of 4.5 eV quoted in the text. 
 
4. We follow the procedure outlined in the statement of the problem. 

  

   

   

   

2 2

2 2

2 2

1 1
H N2 2

1 1
C N2 2

1 1
N O2 2

HN:  74pm 145pm 110pm

CN:  154pm 145pm 150pm

NO:  145pm 121pm 133pm

d d

d d

d d

   

   

   

 

 
5. According to the problem statement, 5.39 eV of energy is required to make an Li ion from neutral 

Li, and 3.41 eV of energy is released when an F atom becomes an F  ion.  That means that a net 
energy input of 5.39 eV – 3.41 eV = 1.98 eV is needed to form the ions.  We calculate the negative 
potential energy of the attraction between the two ions. 

 
  

282

9 19
0

2.30 10 J m1
9.21eV

4 0.156 10 m 1.60 10 J eV

e
U

r



 

 
     

 
 

The binding energy should therefore be 9.21 eV – 1.98 eV = 7.23 eV.  But the actual binding energy 
is only 5.95 eV.  Thus the energy associated with the repulsion of the electron clouds is 7.23 eV – 
5.95 eV = 1.28 eV. 

 
6. We convert the units from kcal/mole to eV/molecule. 

2
19 23

kcal 4186J 1eV 1mole eV
1 4.339 10

mole 1kcal 1.602 10 J 6.022 10 molecules molecule


    
 

 

 Now convert 4.43 eV per molecule into kcal per mole. 

2

eV 1kcal mol
4.43 102kcal mol

molecule 4.339 10 eV molecule 


 

 

0.66e
p p

d
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7. (a) The neutral He atom has two electrons in the ground state, 1, 0, 0.n m     Thus the two  

electrons have opposite spins, 1
2 .sm     If we try to form a covalent bond, we see that an 

electron from one of the atoms will have the same quantum numbers as one of the electrons on 
the other atom.  From the exclusion principle, this is not allowed, so the electrons cannot be 
shared. 

 (b) We consider the 2He   molecular ion to be formed from a neutral He atom and an He ion.  It  
will have three electrons.  If the electron on the ion has a certain spin value, it will have the 
opposite spin as one of the electrons on the neutral atom.  Thus those two electrons can be in the 
same spatial region, and so a bond can be formed.  

 

8. The units of 
2

I


are 

 
     

2 2 2 2

2 2

J s J J J
J.

N m Jkg m kg m s m
   


 

 

 

9. The reduced mass is given in Section 40-4 as 1 2

1 2

.
m m

m m
 


  We calculate in atomic mass units. 

 (a) KCl:  
  
   

1 2

1 2

39.10u 35.45u
18.59u

39.10u 35.45u

m m

m m
   

 
 

 (b) O2:  
  
   

1 2

1 2

16.00u 16.00u
8.00u

16.00u 16.00u

m m

m m
   

 
 

 (c) HCl:  
  
   

1 2

1 2

1.008u 35.45u
0.9801u

1.008u 35.45u

m m

m m
   

 
 

 
10. (a) The moment of inertia of 2O  about its CM is given by  

 
2 2

O
O2 .

2 2

m rr
I m

   
 

 

  

 
     

2342 2
4

22 27 9 19
O

4

1.055 10 J s
1.789 10 eV

2 16 1.66 10 kg 0.121 10 m 1.60 10 J eV

1.79 10 eV

I m r




  




   

  

 

 
 

(b) From Figure 40-17, we see that the energy involved in the l = 2 to l = 1 transition is 
22

.
I


 

  

 
  

  

2 2
4 4 -4

34 8

3

4 19

2
4 4 1.789 10 eV 7.156 10 eV 7.16 10 eV

2

6.63 10 J s 3.00 10 m s
    1.74 10 m

7.156 10 eV 1.60 10 J eV

E
I I

c hc
E h

E




 




 

        

 
      

  

 

   

 
11. Use the rotational energy and the moment of inertia of N2 about its 

CM to find the bond length. 

  
2 2 2 2

N
N rot 2

N

2 ;    
2 2 2

r m r
I m E

I m r
      
 

 
 r


mN CM mN

r


mO CM mO
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 
    

34

10

4 19 27
rot N

1.055 10 J s
1.10 10 m

2.48 10 eV 1.60 10 J eV 14.01u 1.66 10 kg u
r

E m




  


   

  


 

 
12.  The longest wavelength emitted will be due to the smallest energy change.  From Figure 40-17, the 

smallest rotational energy change is 2 .E I     We find the rotational inertia from Eq. 40-4. 

  

 
 

     

2

2
21 2

2
1 2

2 8
227 9

34

4

  

4

4 3.00 10 m s 6.941u 1.008u
1.66 10 kg u 0.16 10 m

6.941u 1.008u6.63 10 J s

6.7 10 m

hc
E

I

hc c m m
I r

h m m





 





   

 
    

  
     

 







 

 
13. The energies involved in the transitions are given in Figure 40-17.  We find the rotational inertial 

from Eq. 40-4.  The basic amount of rotational energy is 2 .I  

   
 

   

2342 2 2 2

2221 27 9
2 HH21 2

1 2

21

2 1.055 10 J s2

1.008u 1.66 10 kg u 0.074 10 m

2.429 10 J

I m rm rm m
r

m m



 




   
   
  

 

   

 

 (a) For l = 1 to l = 0: 

  

2
21 2

19

34 8

5
21

1
2.429 10 J 1.5 10 eV

1.60 10 J eV

6.63 10 J s 3.00 10 m s
8.2 10 m

2.429 10 J

E
I

hc

E


 







 
       

 
   
 




 

 (b) For l = 2 to l = 1: 

 

  
 

2
21 2

19

34 8

5

21

1
2 2 2.429 10 J 3.0 10 eV

1.60 10 J eV

6.63 10 J s 3.00 10 m s
4.1 10 m

2 2.429 10 J

E
I

hc

E


 







 
       

 
   
 




 

(c) For l = 3 to l = 2: 

 

  
 

2
21 2

19

34 8

5

21

1
3 3 2.429 10 J 4.6 10 eV

1.60 10 J eV

6.63 10 J s 3.00 10 m s
2.7 10 m

3 2.429 10 J

E
I

hc

E


 







 
       

 
   
 




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14. The energy change for transitions between combined rotational and vibrational states is given above 
Eq. 40-8a. 

  vib rot rotE E E hf E          

If E hf   is to be in the spectrum, then rot 0.E    But the selection rules state that 1  l  for a 

transition.  It is not possible to have 0 l  for a transition.  The only way to have rot 0E   is for 

0, l  which is forbidden.  Thus E hf   is not possible.  Here is a mathematical statement as 
well. 

         
2 2 2

rot 1 1 2 1
2 2 2

E E E
I I I               

ll l
l l l l l l l l l

  
 

 For rot 0,E   mathematically we must have 0, l  which is forbidden. 
 
15. (a) The reduced mass is defined in Eq. 40-4. 

  
  
   

C O

C O

12.01u 16.00u
6.86u

12.01u 16.00u

m m

m m
   

 
 

 (b) We find the effective spring constant from Eq. 40-5. 

   

    22 2 13 27

1
  

2

4 4 6.42 10 Hz 6.86u 1.66 10 kg u 1850 N m

k
f

k f

 

   

 

    

 

  The spring constant for 2H  is estimated in Example 40-6 as 550 N/m. 

   
2

CO

H

850 N m
3.4

550 N m

k

k


   

 
16. The effective spring constant can be found from Eq. 40-5, using the vibrational frequency and the 

reduced mass. 

    
   

2 2 2 1 2

1 2

22 13 27

1
    4 4

2

6.941u 79.904u
    4 1.7 10 Hz 1.66 10 kg u 120 N m

6.941u 79.904u

k m m
f k f f

m m
  

 

 

   


   


 

 
17. We first find the energies of the transitions represented by the wavelengths. 

  

  
  
  
  
  
  

34 8

5
1 19 3

34 8

5
2 19 3

34 8

3 19 3

6.63 10 J s 3.00 10 m/s
5.38 10 eV

1.60 10 J/eV 23.1 10 m

6.63 10 J s 3.00 10 m/s
10.72 10 eV

1.60 10 J/eV 11.6 10 m

6.63 10 J s 3.00 10 m/s
16.12

1.60 10 J/eV 7.71 10 m

hc
E

hc
E

hc
E










 




 



 

 
    

 

 
    

 

 
    

 






510 eV

 

Since 2

1

10.72
2

5.38

E

E


 


 and 3

1

16.12
3,

5.38

E

E


 


 from the energy levels indicated in Figure 40-17, and 

from the selection rule that 1,  l  we see that these three transitions must represent the 1l  to  

0l  transition, the 2l  to  1l  transition, and the 3l  to  2l  transition.  Thus 2
1 .E I     

We use that relationship along with Eq. 40-4 to find the bond length. 
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 

  
     

2 2

1 2

34

1 27 5 19

10

  

1.055 10 J s

22.990u 35.453u
1.66 10 kg u 5.38 10 eV 1.60 10 J eV

22.990u 35.453u

2.36 10 m

E
I r

r
E







  



   


 

  
    

 

 


 

 

18. (a) The curve for  21
02 4.5eVU k x r    is shown in Figure 40–18 as a dotted line.  Measuring  

on the graph with a ruler gives the distance from the origin to the 0.1 nm mark as 38 mm.  The 
measured distance from the origin to the largest  x-intercept of the parabola is 45 mm.  Taking a 
ratio gives the distance from the origin to the largest x-intercept as 0.118 nm.  We fit a parabolic 
curve to data. 

   

     
 

 
 

0

2 21 1
02 2

21
0.118nm 02

219 9

2 2

4.5eV  ;  0 4.5eV 4.5eV check

0.118nm 4.5eV 0  

2 4.5eV eV 1.60 10 J 10 nm
4649 743.8N m

nm eV 1m0.118nm 0.074nm

  740 N m

x r

x

U k x r U k

U k r

k







      

    

  
    

   



 

 (b) The frequency of vibration is given by Eq. 14-7a, using the reduced mass.  Use this relationship  
to find the wavelength. 

    27

8 6

1
  

2

0.5 1.00794u 1.66 10 kg u
2 2 3.00 10 m s 2.0 10 m

743.8N m

k c
f

c
k

  

  




  


    

 

 
19. Consider the system in equilibrium, to find the center of  

mass.  See the first diagram.  The dashed line represents the 
location of the center of mass. 

 

 1 2 1 1 2 2 2 1

2 1
1 2

1 2 1 2

  ;    

 ;  

m m m

m m

m m m m

     

 
 

l l l l l l l

l l l l
 

Now let the spring be stretched to the left and right, 
but let the center of mass be unmoved. 

 
   1 2 1 1 1 2 2 2

1 1 1 1 2 2 2 2 1 1 2 2

  ;    

    

x x x m x m x

m m x m m x m x m x

     

    

l l

l l
 

This is the second relationship requested in the problem.  Now use the differential relationships. 

  
 

2 2 2 2
1 2 1 2

1 22 2 2 2
1 2

22 2 2
1 21 2 1 2

2 2 2 2
1 2 1 2

  ;        ;  

1 1
        

d x d x d x k d x k
m kx m kx x x

dt dt dt m dt m

d x xd x d x m m k d x
kx kx x kx

dt dt m m dt m m dt




        

  
            

 

 

1m 2m

l

1l 2l

1m
2m

1l 2l 2x1x
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This last equation is the differential equation for simple harmonic motion, as in Eq. 14-3, with m 

replaced by .   The frequency is given by Eq. 14-7a, 
1

,
2

k
f

 
  which is the same as Eq. 40-5. 

 
20. The ionic cohesive energy is given right after Eq. 40-9, and derived in the solution to Problem 25.  

The Madelung constant is 1.75. 

     
    

282
1

0 89 19
0

2.30 10 J m1
1 1.75 1 7.9eV

4 0.28 10 m 1.60 10 J eV

e
U

r m






 


            


 

 
21. Because each ion occupies a cell of side s, a molecule occupies two cells.  Use the value of the 

density to solve for the desired distance. 

    

NaCl
3

1/ 3

1/ 3 27

10NaCl
6 3

3 3

mass
  

volume 2

58.44u 1.661 10 kg u
2.826 10 m

2 g 1kg 10 cm
2 2.165

cm 1000g 1m

m

s

m
s








  

 
              
          

 

 
22. Because each ion occupies a cell of side s, a molecule occupies two cells.  Use the value of the 

density to solve for the desired distance. 

    

KCl
3

1/ 3

1/ 3 27

10KCl
6 3

3 3

mass
  

volume 2

39.10u 35.45u 1.661 10 kg u
3.15 10 m

2 g 1kg 10 cm
2 1.99

cm 1000g 1m

m

s

m
s








  

 
               
          

 

 
23. According to Section 40-5, the NaCl crystal is face-centered cubic.  It is 

illustrated in Figure 40-24.  We consider four of the labeled ions from 
Figure 40-24.  See the adjacent diagram.  The distance from an Na ion 
to a Cl ion is labeled as d, and the distance from an Na ion to the nearest 
neighbor Na ion is called D. 

   2 0.24nm 2 0.34nmD d    

 
 
 
24. See the diagram.  Select a charge in the middle of 

the chain.  There will be two charges of opposite 
sign a distance r away, two charges of the same sign 
a distance 2r away, etc.  Calculate the potential energy of the chosen charge. 

  

 

2 2 2 2

0 0 0 0

2
1 1 1
2 3 4

0

1 2 1 2 1 2 1 2

4 4 2 4 3 4 4

2
1

4

e e e e
U

r r r r

e

r

   



          
           

       

     




   

–

r

–+ –+ +

d

+ –

– +

Na Cl

NaCl
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 From Appendix A,   2 2 41 1 1
2 3 4ln 1 .x x x x x        Evaluate this expansion at x = 1. 

     
2 2

1 1 1 1 1 1
2 3 4 2 3 4

0 0

2 2
ln 1 1 1 ln 2    1 ln 2

4 4

e e
U

r r 
                  

From Section 40-5, the potential energy is given as 
2

0

.
4

e
U

r




    Equate the two expressions for the 

potential energy to evaluate the Madelung constant. 

  
2 2

0 0

2
ln 2    2ln 2

4 4

e e
U

r r

 
 

       

 
25. (a) Start with Eq. 40-9 and find the equilibrium distance, which minimizes the potential energy.   

Call that equilibrium distance 0.r  

  

 

0 0

2 2 2

2 1 2 1
0 0 0 0 0

2 1
0

0

2 1
0

2 2 2
0

0 0
0 0 0 0 0 0 0 0

  ;  0  
4 4 4

4

14
1

4 4 4

m m m
r r r r

m

m

m m

e B dU e B e B
U m m

r r dr r r r r

e r
B

m

e r
e B e em

U U r r
r r r r r m

  
  





  
  

 
 





 
         

 



            
 

 

(b) For NaI, we evaluate 0U  with m = 10, 1.75,   and 0 0.33nm.r   

  
      

2 28
1

0 109 19
0 0

1 2.30 10 J m
1 1.75 1 6.861eV

4 0.33 10 m 1.60 10 J eV

6.9eV

e
U

r m






 

            

 



 

(c)  For MgO, we evaluate 0U  with m = 10, 1.75,   and 0 0.21nm.r   

  
      

2 28
1

0 109 19
0 0

1 2.30 10 J m
1 1.75 1 10.78eV

4 0.21 10 m 1.60 10 J eV

11eV

e
U

r m






 

            

 



 

(d) Calculate the % difference using m = 8 instead of m = 10. 

  

   

 

   
   

2 2
1 1
8 100 0 1 1 1 1

8 10 8 100 0 0 0 10 8
2 1 1

0 10 101
10 10

0 0

1 1
1 14 4

0.0278
1 1

1
4

2.8%

m m

m

e e
U U

r r
eU
r

 
 




 



    
   

    
  

 
  
26. We follow Example 40-9.  The density of occupied states (number of states per unit volume in an 

infinitesimal energy range) is given by Eq. 40-15.  Because we are using a small energy range, we 
estimate the calculation with a difference expression.  We let N represent the number of states, and V 
represent the volume under consideration. 

  
 

 

3/ 2
1/ 2

3

1
F F F F F F2

8 2

0.985 0.9925   ;  0.985 0.015 0.0822eV

m
N g E V E E V E

h
E E E E E E E E


   

       
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 
 

     
3/ 231

3/ 26 3 19
334

21

8 2 9.11 10 kg
0.9925 5.48eV 1.0 10 m 0.0822eV 1.60 10 J eV

6.63 10 J s

1.3 10 states

N
 

 




  



 

  

 
27. We follow Example 40-9.  The density of occupied states (number of states per unit volume in an 

infinitesimal energy range) is given by Eq. 40-15.  Because we are using a small energy range, we 
estimate the calculation with a difference expression.  We let N represent the number of states, and V 
represent the volume under consideration. 

  

 

 
 

     

3/ 2
1/ 2

3

3/ 231
3/ 26 3 19

334

20

8 2

8 2 9.11 10 kg
7.025eV 1.0 10 m 0.05eV 1.60 10 J eV

6.63 10 J s

9.0 10 states

m
N g E V E E V E

h



 
 



   


  



 


 

 
28. The density of molecules in an ideal gas can be found from the ideal gas law. 

  
5

25 3

23
gas

1.013 10 Pa
    2.576 10 m

1.38 10 J K 285K

N P
PV NkT

V kT




         
 

We assume that each copper atom contributes one free electron, and use the density of copper as 
given in Table 13-1. 

  
23 3

28 3
3 3

e's

1e 6.02 10 Cu atoms 8.9 10 kg
8.431 10 m

Cu atom 63.546 10 kg m

N

V




                   
  

25 3
gas 4

28 3

e's

2.576 10 m
3.1 10

8.431 10 m

N
V

N
V






 
      

 
 
 

 

 
29. We use Eq. 40-14 for the occupancy probability, and solve for the energy.  The Fermi energy is  

7.0 eV. 
  (a) Evaluate for T = 295 K. 

   

 
 
   

F

23

F 19

1
  

1

1.38 10 J K1 1
ln 1 295K ln 1 7.0eV

0.8501.60 10 J eV

6.96eV

E E kT
f E

e

E kT E
f E







 


              



 

  (b) Evaluate for T = 750 K. 

   

 
 
   

F

23

F 19

1
  

1

1.38 10 J K1 1
ln 1 750K ln 1 7.0eV

0.8501.60 10 J eV

6.89eV

E E kT
f E

e

E kT E
f E







 


              


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30. We use Eq. 40-14 for the occupancy probability, and solve for the energy.  The Fermi energy is  
7.0 eV. 

  (a) Evaluate for T = 295 K. 

   

 
 
   

F

23

F 19

1
  

1

1.38 10 J K1 1
ln 1 295K ln 1 7.0eV

0.1501.60 10 J eV

7.04eV

E E kT
f E

e

E kT E
f E







 


              



 

  (b) Evaluate for T = 950 K. 

   

 
 
   

F

23

F 19

1
  

1

1.38 10 J K1 1
ln 1 950K ln 1 7.0eV

0.1501.60 10 J eV

7.14eV

E E kT
f E

e

E kT E
f E







 


              



 

 
31. The occupancy probability is given by Eq. 40-14.  The Fermi level for copper is 7.0 eV. 

  
         19 23F F F/ 1.015 / 0.015 7.0eV 1.60 10 J eV 1.38 10 J K 295K

1 1 1
0.0159

1 1 1

1.6%

E E kT E E kT
f

e e e
          

   
  



 

 
32. We follow Example 40-10. 

(a) Because each zinc atom contributes two free electrons, the density of free electrons is twice the  
  density of atoms. 

   
   

23
3 29 3

3

29 3

6.02 10 atoms mol
7100kg m 2free electrons atom 1.307 10 m

65.409 10 kg mol

1.3 10 m

N

V






 
    

 

 

(b) The Fermi energy is given by Eq. 40-12. 

 
   

2342 / 3 2 / 32
29 3

F 1931

6.63 10 J s3 3 1
1.307 10 m

8 1.60 10 J eV8 9.11 10 kg

9.414eV 9.4eV

h N
E

m V 






                  

 



 

(c) The Fermi speed is the speed of electrons with the Fermi energy. 

   
  

 
19

6F
F 31

2 9.414eV 1.60 10 J eV2
1.8 10 m s

9.11 10 kg

E
v

m






   


 

 
33. We follow Example 40-10.  We need the number of conduction electrons per unit volume of  sodium. 

     
23

3 28 3
3

6.02 10 atoms mol
970kg m 1free electrons atom 2.540 10 m

22.99 10 kg mol

N

V




 
    

 

The Fermi energy is given by Eq. 40-12. 
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 
   

2342 / 3 2 / 32
28 3

F 1931

6.63 10 J s3 3 1
2.540 10 m 3.159eV

8 1.60 10 J eV8 9.11 10 kg

3.2eV

h N
E

m V 






                  





 

 The Fermi speed is the speed of electrons with the Fermi energy. 

  
  

 
19

6F
F 31

2 3.159eV 1.60 10 J eV2
1.1 10 m s

9.11 10 kg

E
v

m






   


 

 
34. (a) Find the density of free electrons from Eq. 40-12. 

   
   

 

2 / 32

F

3/ 2
31 193/ 2

F
22 34

29 3 29 3

3
  

8

8 9.11 10 kg 11.63eV 1.60 10 J eV8

3 3 6.63 10 J s

1.7945 10 m 1.79 10 m

h N
E

m V

N mE

V h



 
 



 

   
 

            

   


  

 (b) Let n represent the valence number, so there are n free electrons per atom. 

   

   

 

23
3

3

3
29 3

23 3

6.02 10 atoms mol
270kg m free electrons atom   

27.0 10 kg mol

27.0 10 kg mol 1
1.7945 10 m 2.981 3

6.02 10 atoms mol 270kg m

N
n

V

n






 
   
  

        

 

This agrees nicely with aluminum’s position in the periodic table, and its electron configuration 
of 1s22s22p63s23p1.  The level 3 electrons are the valence electrons. 

 
35. We calculate the given expression, with T = 0, so that the maximum energy is EF.  The value of f(E) 

at T = 0 is given below Eq. 40-14. 

  

 

 

   

   

 

 

FF F F

F F FF

3 / 2
1/ 2 3/ 2

30
00 0 0

3/ 2
1/ 21/ 2

0 3
0 0 00

5 / 22
F5 3

F53/ 22
F3

8 2
1

8 2
1

EE E E

E E EE

m
E E dEEn E dE Eg E f E dE E dE

h
E

m
n E dE g E f E dE E dEE dE

h

E
E

E





 
 
    
 
 
 

 

  

     

 
36. We first find the density of neutrons, and then use Eq. 40-12. 

 
 

30 44 3
327 4

3

1 neutron 1
2.5 1.99 10 kg 4.103 10 m

1.675 10 kg 12,000m

N

V 




               
 

 
   

2342 / 3 2 / 32
44 3

F 1327

6.63 10 J s3 3 1
4.103 10 m

8 1.60 10 J MeV8 1.675 10 kg

109.8MeV 110MeV

h N
E

m V 






                  

 


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37. We start with Eq. 38-13 for the energy level as a function of n.  If we solve for n, we have the 
number of levels with energies between 0 and E.  Taking the differential of that expression will give 
the number of levels with energies between E and dE.  Finally, we multiply by 2 since there can be 2 
electrons (with opposite spins) in each energy level. 

  

2 2 2
2 1

22 2 2

2
1

222

2

8 8
          

8

8
8

2 2

h m m dE
E n n E dn

m h h E

m dE
dn mh Eg
dE dE h E

     

  
l

l l

l

l

l

 

 
38. We use Eq. 40-14, with F.E E  

   F 0/

1 1 1 1

1 1 1 21E E kT
f

ee    
 

 

 The result is independent of the value of T. 
 
39. (a) Eq. 38-13 gives the energy levels as a function of n, the number of levels.  Since there are 2  

electrons in every energy level, n = N / 2.  The Fermi energy will be the highest energy level 
occupied with N electrons. 

  
2 2 2 2 2 2

22 1
F22 2 2 2

    
8 8 32 32n

h h h N h N
E n N E

m m m m
    

l l l l
  

(b) The smallest amount of energy that this metal can absorb is the spacing between energy levels. 

      
2 2 2

2 2
1 2 2 2

1 2 1 1
8 8 8n n

h h h
E E E n n n N

m m m
           l l l

 

(c) We calculate the limit requested. 

  
 

2

2

2 2
F

2

1 48

32

h
NE m

h NE N
m


 l

l

 

For large N, this is a very small change in energy.  Thus a very small change in energy will 
allow an electron to change energy levels, and so the metal conducts very easily. 

 
40.  (a) We use Eq. 40-14, with the data as given in the problem. 

   

  
  

 F

19

F
23

3 3
4.74848/

0.12eV 1.60 10 J eV
4.74848

1.38 10 J K 293K

1 1 1
8.590 10 8.6 10

1 116.4091E E kT

E E

kT k

f
ee





 



 



      


 

This is reasonable.  Very few states this far above the Fermi energy are occupied at this 
relatively low temperature.  

(b) Use a similar calculation to part (a). 

  

  
  

 F

19

F
23

4.74848/

0.12eV 1.60 10 J eV
4.74848

1.38 10 J K 293K

1 1 1
0.991409 0.99

1 1.0086651E E kT

E E

kT k

f
ee







 
  



    

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(c) Since the probability that the state is occupied is 0.991409, the probability that the state is  

unoccupied is 3 31 0.991409 8.591 10 8.6 10 .        This is the same as part (a). 
 
41. We consider the cube to be a three-dimensional infinite well, with a width of l in each dimension.   

We apply the boundary conditions as in Section 38-8 separately to each dimension.  Each dimension 
gives a quantum number which we label as 1,n  2 ,n  and 3.n   We then have a contribution to the 
energy of the bound particle from each quantum number, as in Eq. 38-13. 

 
2 2 2 2

2 2 2 2 2 2
1 2 3 1 2 3 1 2 3 1 2 32 2 2 2

,  , , 1,2,3,
8 8 8 8

h h h h
E E E E n n n n n n n n n

m m m m
         

l l l l
  

 Specifying the three quantum numbers gives a state and the corresponding energy. 
  

Choosing axes as specified in the problem, the equation of a sphere of radius R in that coordinate 
system is 2 2 2 2

1 2 3 .R n n n     Each state “contained” in that sphere could be indicated by a cube of 
side length 1, and each state can have two electrons (two spin states).  The “volume” of that sphere is 
1
8  of a full sphere.  From that we calculate the number of states in one octant, and then g(E). 

   

   

 

3/ 22
3/ 23 2 2 21 4

1 2 38 3 2

3/ 2 3/ 22 3/ 2
1/ 2 1/ 2 1/ 2

3 2 2 3

8
2

3 3

1 1 8 3 8 8 2

3 2 2

m
N R n n n E

h

dN m m m
g E E E E

V dE h h h

 

  

 
      

 

         
  

l

l

l

 

 
42. The photon with the minimum frequency for conduction must have an energy equal to the energy 

gap. 

  
  
  

34 8

19 9

6.63 10 J s 3.00 10 m/s
2.14eV

1.60 10 J/eV 580 10 m
g

hc
E hf





 

 
   

 


 

 
43. The photon with the longest wavelength or minimum frequency for conduction must have an energy 

equal to the energy gap: 

  
  
  

34 8

6

19

6.63 10 J s 3.00 10 m/s
1.09 10 m 1.09 m.

1.60 10 J/eV 1.14eVg

c hc hc

f hf E
 






 
      




 

 
44. The energy of the photon must be greater than or equal to the energy gap.  Thus the longest 

wavelength that will excite an electron is 

  
  
  

34 8

6

19

6.63 10 J s 3.00 10 m/s
1.7 10 m 1.7 m

1.60 10 J/eV 0.72eVg

c hc hc

f hf E
 






 
      




 

 Thus the wavelength range is 1.7 m .   

 
45. (a) In the 2s shell of an atom, 0,l  so there are two states: 1

2 .sm     When N atoms form bands,  

  each atom provides 2 states, so the total number of states in the band is  2N.  
 (b) In the 2p shell of an atom, 1,l  so there are three states from the m

l
 values: 0, 1;m    each  

of which has two states from the ms values: 1
2 ,sm    for a total of 6 states.  When N atoms 

form bands, each atom provides 6 states, so the total number of states in the band is  6N.  
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 (c) In the 3p shell of an atom, 1,l  so there are three states from the m
l
 values: 0, 1;m  

l
 each  

of which has two states from the ms values: 1
2 ,sm    for a total of 6 states.  When N atoms 

form bands, each atom provides 6 states, so the total number of states in the band is  6N.  
 (d) In general, for a value of ,l  there are 2 1l  states from the m

l
 values: 0, 1, ... , .m   

l
l   For  

each of these there are two states from the ms values: 1
2 ,sm    for a total of  2 2 1l  states.  

When N atoms form bands, each atom provides  2 2 1l  states, so the total number of states 

in the band is  2 2 1 .N l   

 
46. The minimum energy provided to an electron must be equal to the energy gap.  Divide the total 

available energy by the energy gap to estimate the maximum number of electrons that can be made 
to jump. 

  
 
 

3

6
760 10 eV

1.1 10
0.72eVg

hf
N

E


     

 
47. Calculate the number of conduction electrons in a mole of pure silicon.  Also calculate the additional 

conduction electrons provided by the doping, and then take the ratio of those two numbers of 
conduction electrons. 

  
 

   
3

16 3 11
Si 3

28.09 10 kg mol
10 electrons m 1.206 10 electrons mole

2330kg m
N

 
   
  

 

  
 23

17
doping 6

6.02 10 atoms
5.017 10

1.2 10
N


  


 added conduction electrons. 

  
 
 

17
doping 6 6

11
Si

5.017 10
4.16 10 4 10

1.206 10

N

N


    


 

 
48. The wavelength is found from the energy gap. 

  
  
  

34 8

7

19

6.63 10 J s 3.00 10 m/s
7.8 10 m 0.78 m

1.60 10 J/eV 1.6eVg

c hc hc

f hf E
 






 
      




 

 
49. The photon will have an energy equal to the energy gap: 

  
  
  

34 8

19 9

6.63 10 J s 3.00 10 m/s
1.8eV

1.60 10 J/eV 680 10 m
g

hc
E hf





 

 
   

 


 

 
50. From the current-voltage characteristic graph in Figure 40-38, we see that a current of 12 mA means 

a voltage of about 0.68 V across the diode.  The battery voltage is the sum of the voltages across the 
diode and the resistor. 

    battery diode R 0.68V 0.012A 860 11VV V V       
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51. The battery voltage is the sum of the voltages across the diode 
and the resistor. 

  battery diode R ;V V V   

    diode
diode

2.0V
2.0V 150Ω     

150 150

V
V I I     

 
 

This is the equation for a straight line which passes through 
the points (0 V, 13.3 mA) and (0.8 V, 8 mA).  The line has a 
y-intercept of 13.3 mA and a slope of 6.67 mA/V.  If we 
assume the operating voltage of the diode is about 0.7 V, then 
the current is about 8.6 mA.  There is some approximation 
involved in the answer. 

 
52. We have copied the graph for V > 0 and rotated it so that it shows V as a function of I.  This is the 

first diagram below.  The resistance is the slope of that first graph.  The slope, and thus the 
resistance, is very high for low currents, and decreases for larger currents, approaching 0.  As an 
approximate value, we see that the voltage changes from about 0.55 V to 0.65 V as the current goes 
from 0 to 10 mA.  That makes the resistance about 10 ohms when the current is about 5 mA.  The 
second diagram is a sketch of the resistance. 

 
  
   
 
 
 
 
 
 
 
 
53. (a) For a half-wave rectifier without a capacitor, the current is zero for half the time.  We  

approximate the average current as half of the full rms current. 

   
 
 

rms1 1
av 2 2

120V
1.7mA

35k

V
I

R
  


 

 (b) For a full-wave rectifier without a capacitor, the current is positive all the time.  We  
approximate the average current as equal to the full rms current. 

   
 
 

rms
av

120V
3.4mA

35k

V
I

R
  


 

 
54.  The band gap is the energy corresponding to the emitted wavelength. 

  
  

34 8

6 19

6.63 10 J s 3.00 10 m s
0.96eV

1.3 10 m 1.60 10 J eV

hc
E





 

 
  

 


 

 
55. There will be a current in the resistor while the ac voltage varies from 0.6 V to 9.0 V rms.  Because 

the 0.6 V is small, the voltage across the resistor will be almost sinusoidal, so the rms voltage across 
the resistor will be close to 9.0V 0.6V 8.4V.   

 (a) For a half-wave rectifier without a capacitor, the current is zero for half the time.  We ignore  
the short time it takes for the voltage to increase from 0 to 0.6 V, and so current is flowing in  

 voltsV

 mAI

10      20      30

0.2

0.4

0.6

0.8

10 20 30
I (mA)

 R 

5

10

15

20
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the resistor for about half the time.  We approximate the average current as half of the full rms 
current. 

   rms1 1
av 2 2

8.4V
35mA

0.120kΩ

V
I

R
    

 (b) For a full-wave rectifier without a capacitor, the current is positive all the time.  We ignore the  
short times it takes for the voltage to increase from 0 to 0.6 V, and so current is flowing in the 
resistor all the time.  We approximate the average current as the full rms current. 

   rms
av

8.4V
70mA

0.120kΩ

V
I

R
    

 

56. (a) The time constant for the circuit is   3 6
1 1 28 10 35 10 F 0.98s.RC         As seen in  

Figure 40-40(c), there are two peaks per cycle.  The period of the rectified voltage is 
1

120 s 0.0083s.T     Because 1 ,T   the voltage across the capacitor will be essentially 

constant during a cycle, so the average voltage is the same as the peak voltage.  The average 
current is basically constant. 

   
 

 
avg peak rms

avg 3

2 120V2
6.1mA

28 10

V V V
I

R R R
    

 
 

 (b) With a different capacitor, the time constant for the circuit changes. 

  3 6
2 2 28 10 0.10 10 F 0.0028sRC        

Now the period of the rectified voltage is about 3 time constants, and so the voltage will 

decrease to about 5%  3e  of the peak value during each half-cycle.  We approximate the 

voltage as dropping linearly from its peak value to 0 over each half-cycle, and so take the 
average voltage as half the peak voltage. 

 
 

avg rms1 1
avg 2 2 3

2 120V2
3.0mA

28 10

V V
I

R R
   

 
 

 
57. By Ohm’s law, the output (collector) current times the output resistor will be the output voltage. 

 
out out

out C C C 6
C B

0.35V
    3684 3700

95 1.0 10 A

V V
V i R R

i i 
        


 

 
58. By Ohm’s law, the output (collector) current times the output resistor will be the output voltage. 

   6
out C C B C 85 2.0 10 A 4300 0.73VV i R i R        

 
59. By Ohm’s law, the output (collector) current times the output resistor will be the output voltage. 

 input 4out
out C C

65 0.080V
    2.08 10 A 0.21mA

25,000
VVV

V i R i
R R

        


 

 
60. (a) The voltage gain is the collector ac voltage divided by the base ac voltage. 

   C C C C

B B B B

7.8k
75 153.9 150

3.8kV I

V i R R

V i R R
 

 
       

  

(b) The power amplification is the output power divided by the input power. 

   C C
P

B B

75 153.9 11,543 12,000I V

i V

i V
        
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61. The arrow at the emitter terminal, E, indicates the direction of current E .I  The current into the   
 transistor must equal the current out of the transistor. 

  B C EI I I   

 
62. For an electron confined in 1 dimension, we find the uncertainty in the momentum from Eq. 38-1, 

.p
x

 



  The momentum of the electron must be at least as big as the uncertainty in the 

momentum, so we approximate .p
x





  Finally, we calculate the kinetic energy by 
2

.
2

p
K

m
   Find 

the difference in the two kinetic energies based on the two position uncertainties. 

  

 

   

 
     

2 2

2

2

in atoms molecule 2 2

in atoms molecule

234

2 2 1931 9 9

in atoms molecule

2 2

1 1

2

1.055 10 J s 1 1 1

1.60 10 J eV2 9.11 10 kg 0.053 10 m 0.074 10 m

6.62eV

p
K

m m x

K K K
m x x



  

 


 
     

   
             









 

 There are two electrons, and each one has this kinetic energy difference, so the total kinetic energy 

difference is  2 6.62eV 13.2eV 13eV .   

  
63. We find the temperature from the given relationship. 

(a) 
  

 
19

43
2 23

2 4.0eV 1.60 10 J eV2
    3.1 10 K

3 3 1.38 10 J K

K
K kT T

k






     


 

 (b) 
  

 
19

3
2 23

2 0.12eV 1.60 10 J eV2
    930K

3 3 1.38 10 J K

K
K kT T

k






    


  

 
64. (a) The potential energy for the point charges is found as from Eq. 23-10. 

   
 

  
282

9 19
0

2.30 10 J m1
5.32eV 5.3eV

4 0.27 10 m 1.60 10 J eV

e
U

r



 


       

 


 

 (b) Because the potential energy of the ions is negative, 5.32 eV is released when the ions are  
brought together.  The other energies quoted involve the transfer of the electron from the K 
atom to the F atom.  3.41 eV is released and 4.34 eV is absorbed in the individual electron 
transfer processes.  Thus the total binding energy is as follows. 

   Binding energy 5.32eV 3.41eV 4.34eV 4.39eV 4.4eV      

 
65. The diagram here is similar to Figure 40-9 and Figure 40-11.  

The activation energy is the energy needed to get the (initially) 
stable system over the barrier in the potential energy.  The 
activation energy is 1.4 eV for this molecule.  The dissociation 
energy is the energy that is released when the bond is broken.  
The dissociation energy is 1.6 eV for this molecule. 

 

U
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66. (a) The equilibrium position is the location where the potential energy is a minimum.  We find that  
location by setting the derivative of the potential energy equal to 0. 

 

        

   

0 0 0 0

0

2

0 0

0 0

1   ;  2 1 0    1 0

1    0    

a r r a r r a r r a r r

a r r

dU
U U e U e ae e

dr

e a r r r r

       

 

             

     
  

The dissociation energy is the energy difference between the two states of equilibrium 
separation and infinite separation. 

        0 0 0

0

2 2 2 2

0 0 0 0 01 1 1 0 1 1a r a r r
r r rU U U U e U e U U U   
 

                   

(b) See the included graph.  The  
spreadsheet used for this problem can 
be found on the Media Manager, with 
filename “PSE4_ISM_CH40.XLS,” 
on tab “Problem 40.66b.” 

 
 
 
 
 
 
67. (a) The reduced mass is defined in Eq. 40-4. 

  
  
   

H Cl

H Cl

1.008u 35.453u
0.9801u

1.008u 35.453u

m m

m m
   

 
 

 (b) We find the effective spring constant from Eq. 40-5. 

   

    22 2 13 27

1
  

2

4 4 8.66 10 Hz 0.9801u 1.6605 10 kg u 482 N m

k
f

k f

 

   

 

    

 

  The spring constant for 2H  is estimated in Example 40-6 as 550 N/m. 

   
2

CO

H

482 N m
0.88

550 N m

k

k
   

 
68.  Vibrational states have a constant energy difference of vib 0.54eV,E   as found in Example 40-7.  

Rotational states have a varying energy difference, depending on the l value, of 
2

rot ,E
I

 
l

 where l 

represents the upper energy state, as given in Eq. 40-3. 

  

 
      

 

2342 2

rot 22 27 9 19
0

1.055 10 J s

0.5 1.008u 1.66 10 kg u 0.074 10 m 1.60 10 J eV

0.0152eV

E
I r



  


   

  



l l
l

l

 
 

Each gap, as represented in Figure 40-17, is larger.  We add those gaps until we reach 0.54eV.  

   
   

rot rot

rot rot

rot rot

1  0 :  0.0152eV           0.0152eV

2  1:  2 0.0152eV      3 0.0152eV 0.0456eV

3  2 :  3 0.0152eV      6 0.0152eV 0.0912eV

E E

E E

E E

      

       

       





l l

l l

l l

 

0

2

4

6

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
r/r 0

U
(e

V
)
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   
   
   
 

rot rot

rot rot

rot rot

rot

4  3 :  4 0.0152eV      10 0.0152eV 0.152eV

5  4 :  5 0.0152eV      15 0.0152eV 0.228eV

6  5 :  6 0.0152eV      21 0.0152eV 0.3192eV

7  8 :  7 0.0152eV      

E E

E E

E E

E

       

       

       

    





l l

l l

l l

l l  
   

rot

rot rot

28 0.0152eV 0.4256eV

8  7 :  8 0.0152eV      36 0.0152eV 0.5472eV

E

E E

  

       

l l

 

So we see that rotational states from 0l  to 7l  can be “between” vibrational states, or a total of 
8 rotational states. 

 
69. The Boltzmann indicates that the population of a state decreases as the energy of the state increases, 

according to / .nE kT
nN e   The rotation energy of states increases with higher l values, according to 

Eq. 40-2.  Thus states with higher values of l have higher energies, and so there are fewer molecules  
in those states.  Since the higher states are less likely to be populated, they are less likely to absorb a 
photon.  As an example, the probability of absorption between 1l  and 2l  is more likely than 
between 2l  and 3,l  and so the peak representing the transition between 1l  and 2l  is 
higher than the peak representing the transition between 2l  and 3.l  

 

The molecule is not rigid, and so the distance between the two ions is not constant.  The moment of 
inertia depends on the bond length, and the energy levels depend on the moment of inertia.  Thus the 
energy levels are not exactly equally spaced. 

 
70. From Figure 40-17, a rotational absorption spectrum would show peaks at energies of 2 ,I  22 ,I  

23 ,I  etc.  Adjacent peaks are separated by an energy of 2 .I   We use the photon frequency at 
that energy to determine the rotational inertia. 

  
 

 
342 2 2

47 2
2 2 11

6.63 10 J s
    2.0 10 kg m

4 4 8.4 10 Hz

h
E I

I E hf f 





        

 

     

 
71. To use silicon to filter the wavelengths, wavelengths below the IR should cause the electron to be 

raised to the conduction band, so the photon is absorbed in the silicon.  Let us find the shortest  
wavelength that will cause the electron to jump. 

  
  
  

34 8

6

19

6.63 10 J s 3.00 10 m/s
1.09 10 m 1.09 m

1.60 10 J/eV 1.14eVg

c hc hc

f hf E
 






 
      




 

Because this is in the IR region of the spectrum, the shorter wavelengths of visible light will excite 
the electron and the photon would be absorbed.  So silicon  could be used  as a window. 

 
72. The kinetic energy of the baton is 21

2 ,I  and the quantum number can be found from Eq. 40-2.  Let 

the length of the baton be d.  We assume the quantum number will be very large. 

  

 

 

       
 

2 2 2
21

2

2 21 1
end bar2 12

1
2 2 331

12 34

1
  

2 2
2

2

2 1.6s
2 0.38kg 0.16m 0.26kg 0.32m 2.07 10

1.055 10 J s

I
I I

I f
m d m d



 

 




  

     

      

l l l

l

 

 


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The spacing between rotational energy levels is given by Eq. 40-3.  We compare that value to the 
rotational kinetic energy. 

 

2

34
2 2 33

1 1
2.4 10

2 2 2.07 10
2

E I
E

I


    



l

l l




 

This is such a small difference that it would not be detectable, so no, we do not need to consider 
quantum effects. 

 
73. From the diagram of the cubic lattice, we see that an atom inside the cube  

is bonded to the six nearest neighbors.  Because each bond is shared by 
two atoms, the number of bonds per atom is 3 (as long as the sample is 
large enough that most atoms are in the interior, and not on the boundary 
surface).  We find the heat of fusion from the energy required to break the 
bonds: 

      
fusion bond

23 3 19

number of bonds number of atoms

atom mol

3 6.02 10 atoms mol 3.9 10 eV 1.60 10 J eV

1127J mol 1100J mol

L E

 

     
  

   

 

 

 
74.  The longest wavelength will be the photon with the minimum energy. 

  
  

34 8

7
min max 19

max min

6.63 10 J s 3.00 10 m/s
    3.5 10 m

3.6eV 1.60 10 J/eV

hc hc
E

E









 
      

 


 

So the photon must have 73.5 10 m .    
 
75. The photon with the minimum frequency for conduction must have an energy equal to the energy  

gap. 

  
  
  

34 8

19 9

6.63 10 J s 3.00 10 m/s
5.50eV

1.60 10 J/eV 226 10 m
g

hc
E hf





 

 
   

 


 

 
76. (a) We calculate the Fermi temperature, for a Fermi energy of 7.0 eV. 

   
  19

4F
F 23

7.0eV 1.60 10 J/eV
8.1 10 K

1.38 10 J K

E
T

k






   


  

(b) We are given that F ,T T  and we assume that / 1.E kTe   

     F F

/
/

1 1 1 1

1
11

E kT
E E kT kT E EE

kT kTkT kT

f E e
e

e ee


           

    

    




 

This is not useful for conductors like copper, because the Fermi temperature is higher than the 
melting point, and we would no longer have a solid conductor. 

 
77. We use Eq. 40-11 with the limits given in order to determine the number of states. 

     
2 2

1 1

3 / 2 3 / 2
1/ 2 3 / 2 3 / 2

2 13 3

8 2 8 2 2

3

E E

E E

m m
N V g E dE V E dE V E E

h h

 
      
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 
 

       
3/ 231

3/ 23 3/ 2 3 / 2 19
334

25 25

16 2 9.11 10 kg
   0.1m 6.2eV 4.0eV 1.60 10 J eV

3 6.63 10 J s

   3.365 10 3 10

 





    

   

  

 
78.  (a) For the glass to be transparent to the photon, the photon must have less energy than 1.14 eV,  

and so the wavelength of the photon must be longer than the wavelength corresponding to 1.14  
eV. 

   
  

band gap
min

34 8

6 6
min 19

band gap

  

6.63 10 J s 3.00 10 m s
1.09 10 m    1.09 10 m

1.14eV 1.60 10 J eV

hc
E

hc

E



 


 


 

 
      



  

The minimum wavelength for transparency is in the infrared region of the spectrum.  Since IR 
has longer wavelengths than visible light, the silicon would not be transparent for visible light.  
The silicon would be opaque, as in Example 40-14. 

(b) The minimum possible band gap energy for light to be transparent would mean that the band 
gap energy would have to be larger than the most energetic visible photon.  The most energetic 
photon corresponds to the shortest wavelength, which is 450 nm in this problem. 

  
  
  min

34 8

band gap 9 19
min

6.63 10 J s 3.00 10 m s
2.7625eV 2.8eV

450 10 m 1.60 10 J eV

hc
E E 



 

 
    

 


 

 
79. The photon with the maximum wavelength for absorption must have an energy equal to the energy 

gap. 

  
  
  

34 8

4

19 3

6.63 10 J s 3.00 10 m/s
6.47 10 eV

1.60 10 J/eV 1.92 10 m
g

hc
E hf






 

 
    

 


 

 
80.  (a) The electrons will not be moving fast enough at this low temperature to use relativistic  

expressions, so the momentum is just the mass times the speed.  The kinetic energy of the 
electrons can be found from the temperature, by Eq. 18-4.  The kinetic energy is used to 
calculate the momentum, and the momentum is used to calculate the wavelength. 

    
   

2
3
2

34

9

31 23

    3
2

6.63 10 J s
6.27 10 m 6nm

3 3 9 10 kg 1.38 10 J K 300K

p
K kT p mkT

m

h h

p mkT





 

   


     

 

  

 (b) The wavelength is much longer than the opening, and so electrons at this temperature would  
experience diffraction when passing through the lattice. 

 
81. The photon with the longest wavelength has the minimum energy. 

  
  
  

34 8

19 9

6.63 10 J s 3.00 10 m/s
1.130eV 1.1eV

1.60 10 J/eV 1100 10 m
g

hc
E





 

 
   

 


 

If the energy gap is any larger than this, some solar photons will not have enough energy to cause an 
electron to jump levels, and so will not be absorbed. 
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82. The energy gap is related to photon wavelength by .gE hf hc     Use this for both colors of 

LED. 

 Green: 
  
  

34 8

19 9

6.63 10 J s 3.00 10 m/s
2.37eV

1.60 10 J/eV 525 10 m
gE



 

 
 

 


 

 Blue: 
  
  

34 8

19 9

6.63 10 J s 3.00 10 m/s
2.67eV

1.60 10 J/eV 465 10 m
gE



 

 
 

 


 

 
83. The arsenic ion has a charge of +1, since we consider the ion as having been formed by removing 

one electron from the arsenic atom.  Thus the effective Z will be 1, and we can use the Bohr theory 
results for hydrogen.  We also substitute 0KÅ  in place of 0.Å  

 (a) The Bohr energy is given in Eq. 37-14a and b.  The binding energy is the opposite of the ground  
state energy, so we use n = 1. 

   
 

 
2 4 2 4

binding 2 2 2 2 22
0

1 1 1
13.6eV 0.094eV

8 128

Z e m Z e m
E

n K hK h

 
    

 
2
0ÅÅ

 

 (b) The Bohr radius is given in Eq. 37-11. 

   
   

2 2
10 100 0

1 2 2
12 0.529 10 m 6.3 10 m

h K h
r K

mZe me 
      

Å Å
 

 

84.  From Eq. 25-13, the number of charge carriers per unit volume in a current is given by 
drift

I
n

ev A
 , 

where driftv  is the drift velocity of the charge carriers, and A is the cross-sectional area through which 

the carriers move.  From Eq. 27-14, the drift velocity is given by H
drift ,v

Bd

e

 where He  is the Hall-

effect voltage and d is the width of the strip carrying the current (see Figure 27-32).  The distance d 
is the shorter dimension on the “top” of Figure 40-47.  We combine these equations to find the 
density of charge carriers.  We define the thickness of the current-carrying strip by .t A d  

  
  

   
3

20 3

19 3
drift H H

0.28 10 A 1.3T
1.264 10 electrons m

1.60 10 C 0.018V 1.0 10 m

I IBd IB
n

ev A e A e t



 


     

 e e
 

 The actual density of atoms per unit volume in the silicon is found from the density and the atomic 
weight.  We let that be represented by N. 

  
 

23
3 28 3

3

20 3
9

28 3

1mole 6.02 10 atoms
2330kg m 4.994 10 atoms m

28.0855 10 kg 1mole

1.264 10 electrons m
2.5 10 electrons atom

4.994 10 atoms m

N

n

N





   
      


  



  

   
85. We assume the 130 V value is given to the nearest volt. 

(a) The current through the load resistor must be maintained at a constant value. 
 
 

output
load

load

130V
7.22mA

18.0k

V
I

R
  


 

At the minimum supply voltage, there will be no current through the diode, so the current 
through R is also 7.22 mA.  The supply voltage is equal to the voltage across R plus the output 
voltage. 
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  load supply output
min

7.22mA 2.80k 20.2V  ;  150VR RV I R V V V        

At the maximum supply voltage, the current through the diode will be 120 mA, and so the 
current through R is 127 mA. 

     load supply output
max

127.22mA 2.80k 356V  ;  486VR RV I R V V V        

 (b) The supply voltage is fixed at 245 V, and the output voltage is still to be 130 V.  The voltage  
across R is fixed at 245V 130V 115V.    We calculate the current through R. 

   
 
 

115V
41.1mA

2.80k
R

R

V
I

R
  


 

  If there is no current through the diode, this current will be in the load resistor. 

   load
load

load

130V
3.16k

41.1mA

V
R

I
     

If loadR  is less than this, there will be a greater current through R, meaning a greater voltage 
drop across R, and a smaller voltage across the load.  Thus regulation would be lost, so 
3.16k is the minimum load resistance for regulation. 

 

If loadR  is greater than 3.16k ,  the current through loadR  will have to decrease in order for the 
voltage to be regulated, which means there must be current through the diode.  The current 
through the diode is 41.1 mA when loadR  is infinite, which is less than the diode maximum of 

120 mA.  Thus the range for load resistance is load3.16k .R     

 
86.  The voltage as graphed in Figure 40-40c decays exponentially, according to Eq. 26-9b.  As 

suggested in the problem, we use a linear approximation for the decay, using an expansion from 
Appendix A-3.  From Figure 40-40c, we see that the decay lasts for approximately one-half of a 
cycle, before it increases back to the peak value. 

  
 

  
1 1
2 60/ /min

min peak 3 6
peak

s
    1 1 1 0.97

7.8 10 36 10 F
t tV t t

V V e e
V RC

 


 


         

  
 

The voltage will decrease 3% from its maximum, or 1.5% above and below its average. 
 
87. The spreadsheet used for this problem can be found on the Media Manager, with filename 

“PSE4_ISM_CH40.XLS,” on tab “Problem 40.87.” 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
E /E F

f(
E

) 500T K
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(b) 
 
 
 
 
 
 
 
 
 
 

(c) 
 
 
 
 
 
 
 
 
 
 
(d) 
 
 
 
 
 
 
 
 
 
 

We see that for temperatures even as high as 1000 K, there is very little probability of electrons 
being above the Fermi level.  Only when the temperature gets quite high do we see a significant 
increase in the probability of electrons to have an energy higher than the Fermi energy. 

 
88.  (a) The total potential energy is due to the electron-electron interaction, the proton-proton  

interaction, and 4 electron-proton interactions. 

 
   

2 2 2

e-e p-p p-e 2 21 10 0 0 0
02 2

2

2 2
0 0 0

1 1 1
4 4

4 4 4

1 1 8

4

e e e
U U U U

d r d r

e

d r r d

  



 
       

  

 
   
  

 

 
 
 
 
 

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
E /E F

f(
E

) 1000T K

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
E /E F

f(
E

) 5000T K

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
E /E F

f(
E

) 10,000T K
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 (b) U has a minimum at  

0.043nm .d    0U   for 

the approximate range 
0.011nm 0.51nm.d   

 

The spreadsheet used for 
this problem can be found 
on the Media Manager, 
with filename 
“PSE4_ISM_CH40.XLS,” 
on tab “Problem 40.88b.” 
 
 
 
 

  

 (c) To find the point of greatest stability, set the derivative of U with respect to d (indicated by U  )  
equal to 0 and solve for d. 

  

 
   

 
   

2

2 2
0 0 0

2 2

3/ 2 3/ 22 22 2 2 2
0 00 0

3/ 23 2 2 2 2
0 03/ 2 22 2

0

2 2 2 0
0

1 1 8
  

4

8 21 1 8 1
0  

4 2 4

8 1
    8     2   

0.074
4     0.0427nm

3 3

e
U

d r r d

de e d
U

d dr d r d

d
d r d d r d

dr d

r
d r d d



 

 
    
  
                         

       


     

 

 
89.  We first find the wavelength for a photon that has 1.14 eV of energy.  This is the maximum 

wavelength that will be able to make electron-hole pairs. 

  
  
  

34 8

6
gap 19

gap

6.63 10 J s 3.00 10 m s
    1.09 10 m 1090nm

1.14eV 1.60 10 J eV

hc hc
E

E









 
      




 

Any wavelength shorter than 1100 nm will be effective.  The 21000W m  value includes all 
wavelengths of solar photons reaching the Earth, so we need to find what fraction of solar photons 
have wavelengths below 1100 nm.  We do this using the Planck formula, from Section 37-1.  We 
find the following using numeric integration, for a temperature of 6000 K. 

 

1100 nm 2 5

/
0

2 5

/
0

2
1

fraction of effective photons
2

1

hc kT

hc kT

hc
d

e

hc
d

e





  

  



 









 

 
The Planck function is shown in the figure for T = 6000 K.  We approximated the upper limit for the 
full integration as 4000 nm, and obtained a ratio of 0.79.  Thus we use an effective solar energy input 
of 2790W m .   To estimate the number of incoming photons, we use an average photon wavelength 
of 500 nm, estimated simply by looking at the Planck function graph.  We also assume that each 
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photon produces only one electron-
hole pair, even though many of 
them would have enough energy to 
create more than one. 
 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH40.XLS,” on tab 
“Problem 40.89.” 
 
 

         
 

2

9 19

2 19 2

34

Solar energy 1 "average" photon 1 electron produced Charge

s m Energy for 500 nm photon 1 solar photon electron

500 10 m 1.60 10 C
790W m 1.60 10 C 790W m

6.63 10 J s 3

I

A

hc


 




                

       



  8

2 2

.00 10 m s

318C s m 32mA cm



 
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CHAPTER 41:  Nuclear Physics and Radioactivity 
 
Responses to Questions 
 
1.  All isotopes of the same element have the same number of protons in their nuclei (and electrons in 

the atom) and will have very similar chemical properties. Isotopes of the same element have 
different numbers of neutrons in their nuclei and therefore different atomic masses. 

 
2. (a) uranium; (b) nitrogen; (c) hydrogen; (d) strontium; (e) berkelium. The element is determined by 

the atomic number. 
 
3.  Z is the number of protons and N is the number of neutrons. 

(a) Z = 92, N = 140;  (b) Z = 7, N = 11;  (c) Z = 1, N = 0;  (d) Z = 38, N = 44;  (e) Z = 97, N = 150.  
 
4. If there are 88 nucleons and 50 neutrons, then there are 38 protons. Strontium is the element with 38 

protons. 
 
5. The atomic masses given in the periodic table are averaged over the isotopes of the element in the 

percentages in which they occur in nature. For instance, the most common form of hydrogen has one 
proton and no neutrons, but other naturally occurring isotopes include deuterium (one proton and 
one neutron) and tritium (one proton and 2 neutrons). These latter two are much less common, and 
the resulting “weighted average” for the mass of hydrogen is 1.0079.   

 
6.  A force other than the gravitational force or the electromagnetic force is necessary to explain the 

stability of nuclei. In most nuclei, several protons and neutrons are confined to a very small space. 
The gravitational attractive force between the nucleons is very small compared with electromagnetic 
repulsion between the protons. The strong nuclear force overcomes the electromagnetic repulsion 
and holds the nucleus together.  

 
7. The strong force and the electromagnetic force are two of the four fundamental forces in nature. 

They are both involved in holding atoms together: the strong force binds quarks into nucleons and 
nucleons together in the nucleus; the electromagnetic force is responsible for binding negatively-
charged electrons to positively-charged nuclei and atoms into molecules. The strong force is the 
strongest of the four fundamental forces; the electromagnetic force is about 100 times weaker at 
distances on the order of 10-17 m. The strong force operates at short range and is negligible for 
distances greater than about the size of the nucleus. The electromagnetic force is a long range force 
that decreases as the inverse square of the distance between the two interacting charged particles. 
The electromagnetic force operates only between charged particles. The strong force is always 
attractive; the electromagnetic force can be attractive or repulsive. Both these forces have mediating 
field particles associated with them. The gluon is the particle for the strong force and the photon is 
the particle for the electromagnetic force.  

 
8. Chemical processes are the result of interactions between electrons. Radioactivity is not affected by 

the external conditions that normally affect chemical processes, such as temperature, pressure, or 
strong chemical reagents. Therefore, radioactivity is not a chemical process, but a nuclear one. In 
addition, the energies associated with radioactivity are generally larger than energies corresponding 
to electron orbital transitions, indicating that radioactivity is a nuclear process. 

 
9. The resulting nuclide for gamma decay is the same isotope in a lower energy state:  

γ CuCu* 64
29

64
29 . 
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 The resulting nuclide for beta-minus decay is an isotope of zinc, Zn64
30 :   

   eZnCu 64
30

64
29 . 

 The resulting nuclide for beta-plus decay is an isotope of nickel, Ni64
28 :   

   eNiCu 64
28

64
29 . 

 

10.  U238
92 decays by alpha emission into 234

90Th,  which has 144 neutrons. 

 
11. Alpha (α) particles are helium nuclei. Each α particle consists of 2 protons and 2 neutrons, and 

therefore has a charge of +2e and an atomic mass value of 4 u. Beta (β) particles are electrons (beta-
minus) or positrons (beta-plus). Electrons have a charge of –e and positrons have a charge of +e. In 
terms of mass, beta particles are much lighter than protons or neutrons, by a factor of about 2000, so 
are lighter than alpha particles by a factor of about 8000.  Gamma (γ) particle are photons. They have 
no rest mass and no charge.   

 

12. (a) Magnesium is formed:  24 24
11 12Na Mg e    . 

 (b) Neon is formed:  22 22
11 10Na Ne e    . 

 (c) Lead is formed: 210 206 4
84 82 2Po Pb He  . 

 

13.  (a) Sulfur is formed:  32 32
15 16Pb S e    . 

 (b) Chlorine is formed:  35 35
16 17S Cl e    . 

 (c) Thallium is formed: 211 207 4
83 81 2Bi Tl He  . 

 

14. (a) Sc45
21 ;  (b) Cu58

29 ;  (c) e ;  (d) U230
92 ;  (e) e  

 
15. The two extra electrons held by the newly formed thorium will be very loosely held, as the number 

of protons in the nucleus will have been reduced from 92 to 90, reducing the nuclear charge. It will 
be easy for these extra two electrons to escape from the thorium atom through a variety of 
mechanisms. 

 
16. When a nucleus undergoes either β– or β+ decay it becomes a different element, since it has either 

converted a neutron to a proton or a proton to a neutron and therefore its atomic number has 
changed. The energy levels of the atomic electrons will adjust to become the energy levels of the 
new element. Photons are likely to be emitted from the atom as electrons change energies to occupy 
the new levels. 

 
17. Alpha particles from an alpha-emitting nuclide are part of a two-body decay. The energy carried off 

by the decay fragments is determined by the principles of conservation of energy and of momentum. 
With only two decay fragments, these two constraints require the alpha particles to be 
monoenergetic. Beta particles from a beta-emitting nucleus are part of a three-body decay. Again, 
the energy carried off by all of the decay fragments is determined by the principles of conservation 
of energy and of momentum. However, with three decay fragments, the energy distribution between 
the fragments is not determined by these two constraints. The beta particles will therefore have a 
range of energies. 
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18. Below. During electron capture, a proton in the nucleus becomes a neutron. Therefore, the isotopes 
that undergo electron capture will most likely be those that have too few neutrons in the nucleus 
(compared to their number of protons) and will lie below the line of stability in Figure 41-2.  

 
19.   No. Hydrogen has only one proton. Deuterium has one proton and one neutron. Neither has the two 

protons and two neutrons required to form an alpha particle. 
 
20. Many artificially produced radioactive isotopes have very short half-lives, and so are rare in nature 

because they do not last long if they are produced naturally. Many of these isotopes also have a very 
high energy of formation, which is generally not available in nature. 

 
21. No. At the end of one month, ½ the sample will remain. At the end of two months, ¼ of the original 

sample will remain. 
 
22. For Z > 92, the short range of the attractive strong nuclear force means that no number of neutrons is 

able to overcome the electrostatic repulsion of the large concentration of protons. 
 

23. Helium-3, He3
2 , will be the other particle released. There are a total of four protons and three 

neutrons in the reactant particles. The alpha particle carries off two protons and two neutrons, 
leaving two protons and one neutron. 

 
24. No. Carbon-14 dating can only be used to date objects that were once living. The stone used to build 

walls was never alive. 
 
25. In β decay, a neutrino and a β particle (electron or positron) will be emitted from the nucleus, and the 

number of protons in the nucleus changes. Because there are three decay products (the neutrino, the 
β particle, and the nucleus), the momentum of the β particle can have a range of values. In internal 
conversion, only an electron is emitted from the atom, and the number of protons in the nucleus 
stays the same. Because there are only two decay products (the electron and the nucleus), the 
electron will have a unique momentum and, therefore, a unique energy.  

 
26. Figure 41-6 shows the potential energy curve for an alpha particle and daughter nucleus for the case 

of radioactive nuclei. The alpha particle tunnels through the barrier from point A to point B in the 
figure. In the case of stable nuclei, the probability of this happening must be essentially zero. The 
maximum height of the Coulomb potential energy curve must be larger and/or the Q-value of the 
reaction must be smaller so that the probability of tunneling is extremely low.  

 
27.  The decay series of Figure 41-12 begins with a nucleus that has many more neutrons than protons 

and lies far above the line of stability in Figure 41-2. In a β+ decay, a proton is converted to a 
neutron, which would take the nuclei in this decay series farther from the line of stability and is not 
energetically preferred. 

 
28. There are four alpha particles and four β– particles (electrons) emitted, no matter which decay path is 

chosen. The nucleon number drops by 16 as 222
86 Rn  decays into 206

82 Pb 206Pb, indicating the presence 

of four alpha decays. The proton number only drops by four, from Z = 86 to Z = 82, but four alpha 
decays would result in a decrease of eight protons. Four β– decays will convert four neutrons into 
protons, making the decrease in the number of protons only four, as required. (See Figure 41-12.) 
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Solutions to Problems 
 
1. Convert the units from 2MeV c  to atomic mass units. 

   2
2

1u
139 MeV 0.149u

931.49 MeV
m c

c

 
  

 
 

 
2. The  particle is a helium nucleus and has A = 4.  Use Eq. 41-1. 

      
1 1

15 15 153 31.2 10 m 1.2 10 m 4 1.9 10 m 1.9fmr A          

 
3. The radii of the two nuclei can be calculated with Eq. 41-1.  Take the ratio of the two radii. 

  
  
  

1/ 315 1/ 3

238
1/ 315

232

1.2 10 m 238 238
1.0085

2321.2 10 m 232

r

r





     
 

 

 So the radius of 238
92 U is 0.85%  larger than the radius of 232

92 U.  
 
4. Use Eq. 41-1 for both parts. 

(a)     1/ 315 1/ 3 15 151.2 10 m 1.2 10 m 112 5.8 10 m 5.8fmr A          

 (b)  
33 15

15 1/ 3
15 15

3.7 10 m
1.2 10 m     29.3 29

1.2 10 m 1.2 10 m

r
r A A




 

              
 

 
5. To find the rest mass of an  particle, we subtract the rest mass of the two electrons from the rest 

mass of a helium atom: 

  
    

He e

2 2 2

2

4.002603u 931.5MeV u 2 0.511MeV 3727 MeV

m m m

c c c

  

  
 

This is less than the sum of the masses of two protons and two neutrons because of the binding 
energy. 

 
6. Each particle would exert a force on the other through the Coulomb electrostatic force.  The distance 

between the particles is twice the raiius of one of the particles.  The Coulomb force is given by Eq. 
21-2. 

 
    

   

9 2 2
2

19

2 2
1/3 15

0

8.988 10 N m C 2 1.60 10 C1
63.41N 63N

4 2 2 4 1.2 10 m

q q
F

r
 








       
  

 

The acceleration is found from Newton’s second law.  We use the mass of a “bare” alpha calculated 
in Problem 5. 

27 2

27
2

2

63.41N
    9.5 10 m s

1.6605 10 kg
3727 MeV

931.49MeV

F
F ma a

m
c

c


     

 
 
 
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7. (a) The mass of a nucleus with mass number A is approximately (A u) and its radius is  

   15 1/ 31.2 10 m .r A    Calculate the density. 

   

   
 

27 27

17 3
334 154

3 3

17 3

1.66 10 kg u 1.66 10 kg u
2.293 10 kg m

1.2 10 m

2.3 10 kg m

A Am

V r A


 

 



 
     



 

 

  We see that this is independent of A. 
 (b) We find the radius from the mass and the density. 

   
 

 

1/ 31/ 3 24

34
3 17 3

3 5.98 10 kg3
    184m 180m

4 4 2.293 10 kg m

M
M R R 

 

  
            

 

 (c) We set the density of the Earth equal to the density of the uranium nucleus.  We approximate  
the mass of the uranium nucleus as 238 u. 

   

   

Earth U
Earth 3 34 4

Earth U3 3

1/ 31/ 3 27

6 10U
U Earth 24

Earth

      

238 1.66 10 kg
6.38 10 m 2.58 10 m

5.98 10 kg

U

M m

R r

m
r R

M

 
 




   

  
           

 

 
8. Use Eq. 41-1 to find the value for A.  We use uranium-238 since it is the most common isotope. 

   
 
  

 
15 1/ 3

3unknown
1/ 315

U

1.2 10 m
0.5    238 0.5 29.75 30

1.2 10 m 238

Ar
A

r r






     

 
 

  From Appendix F, a stable nucleus with 30A  is 31
15 P .  

 
9. The basic principle to use is that of conservation of energy.  We assume that the centers of the two 

particles are located a distance from each other equal to the sum of their radii.  That distance is used 
to calculate the initial electrical potential energy.  Then we also assume that, since the nucleus is 
much heavier than the alpha, that the alpha has all of the final kinetic energy when the particles are 
far apart from each other (and so have no potential energy).   

   

 

     
   

9 2 2

Fm
i i f f

0 Fm

219

7

1/ 3 1/ 3 15 19
8.988 10 N m C

1
    0 0  

4

2 100 1.60 10 C
3.017 10 eV

4 257 1.2 10 m 1.60 10 J eV

     30MeV

q q
K U K U K

r r

K











 
 

       



  

  



  

 
10. (a) The hydrogen atom is made of a proton and an electron. 

    
 

 
27

p

27 31
p e

1.67 10 kg
0.99945

1.67 10 kg 9.11 10 kg

m

m m



 


 

   
 

 (b) Compare the volume of the nucleus to the volume of the atom.  The nuclear radius is given by  
Eq. 41-1.  For the atomic radius we use the Bohr radius, given in Eq. 37-12. 

   
 
 

33 15

14nucleus
10

atom

1.2 10 m
1.2 10

0.53 10 m

r

r






  
         

 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

566 

11. Electron mass is negligible compared to nucleon mass, and one nucleon weighs about 1.0 atomic 
mass unit. Therefore, in a 1.0-kg object, 

  
 26

26
(1.0kg) 6.02 10 u kg

6 10 nucleons.
1.0u nucleon

N


    

No, it does not matter what the element is, because  the mass of one nucleon is essentially the same 
for all elements.  

 
12. The initial kinetic energy of the alpha must be equal to the electrical potential energy when the alpha 

just touches the uranium.  The distance between the two particles is the sum of their radii. 

  

 

     
   

9 2 2

U
i i f f

0 U

219

7

1/ 3 1/ 3 15 19
8.988 10 N m C

1
    0 0   

4

2 92 1.60 10 C
2.832 10 eV

4 238 1.2 10 m 1.60 10 J eV

     28MeV

q q
K U K U K

r r

K











 
 

       



  

  



 

 
13. From Figure 41–1, we see that the average binding energy per nucleon at A = 63 is about 8.7 MeV.  

Multiply this by the number of nucleons in the nucleus. 

    63 8.7 MeV 548.1MeV 550MeV   

 
14. Deuterium consists of one proton, one neutron, and one electron.  Ordinary hydrogen consists of one 

proton and one electron.  We use the atomic masses from Appendix F, and the electron masses 
cancel. 

  

     
       

1 1 2 2
1 0 1

2 2

Binding energy H n H

1.007825u 1.008665u 2.014082u 931.5MeV u

2.243MeV

m m m c

c c

    

     



 

 
15. We find the binding energy of the last neutron from the masses of the isotopes. 

  

     
       

31 1 32 2
15 0 15

2 2

Binding energy P n P

30.973762u 1.008665u 31.973907u 931.5MeV /

7.94 MeV

m m m c

c c

    

    



 

 
16. (a) 7

3 Li  consists of three protons and three neutrons.  We find the binding energy from the masses,  
using hydrogen atoms in place of protons so that we account for the mass of the electrons. 

   

     
       

1 1 7 2
1 0 3

2 2

Binding energy 3 H 4 n Li

3 1.007825u 4 1.008665u 7.016005u 931.5MeV /

39.24 MeV

Binding energy 39.24 MeV
5.61MeV nucleon

nucleon 7nucleons

m m m c

c c

    

    


 
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 (b) 197
79 Au  consists of 79 protons and 118 neutrons.  We find the binding energy as in part (a). 

   

     
       

1 1 197 2
1 0 79

2 2

Binding energy 79 H 118 n Au

                       79 1.007825u 118 1.008665u 196.966569u 931.5MeV /

                       1559 MeV

Binding energy 1559 MeV
7.91MeV

nucleon 197nucleons

m m m c

c c

    

    


  nucleon

 

 
17. 23

11 Na  consists of 11 protons and 12 neutrons.  We find the binding energy from the masses: 

  

     
       

1 1 23 2
1 0 11

2 2

Binding energy 11 H 12 n Na

11 1.007825u 12 1.008665u 22.989769u 931.5MeV u

186.6MeV

Binding energy 186.6MeV
8.113MeV nucleon

nucleon 23

m m m c

c c

    

    


 

 

 We do a similar calculation for 24
11 Na,  consisting of 11 protons and 13 neutrons. 

  

     
       

1 1 24 2
1 0 11

2 2

Binding energy 11 H 13 n Na

11 1.007825u 13 1.008665u 23.990963u 931.5MeV u

193.5MeV

Binding energy 193.5MeV
8.063MeV nucleon

nucleon 24

m m m c

c c

    

    


 

  

 By this measure, the nucleons in 23
11 Na are more tightly bound than those in 24

11 Na.  
 
18. We find the required energy by calculating the difference in the masses. 
 (a) Removal of a proton creates an isotope of carbon.  To balance electrons, the proton is included  

as a hydrogen atom: 15 1 14
7 1 6N H C.   

   

     
       

14 1 15 2
6 1 7

2

Energy needed C H N

14.003242 u 1.007825u 15.000109u 931.5MeV u

10.21MeV

m m m c

c

    

    



 

 (b) Removal of a neutron creates another isotope of nitrogen: 15 1 14
7 0 7N n N.   

   

     
       

14 1 15 2
7 0 7

2

Energy needed N n N

14.003074 u 1.008665u 15.000109u 931.5MeV u

10.83MeV

m m m c

c

    

    



   

The nucleons are held by the attractive strong nuclear force.  It takes less energy to remove the 
proton because there is also the  repulsive electric force  from the other protons. 

 
19. (a) We find the binding energy from the masses. 

   
   

     

4 8 2
2 4

2 2

Binding Energy 2 He Be

2 4.002603u 8.005305u 931.5MeV u 0.092 MeV

m m c

c c

   

     
 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

568 

Because the binding energy is negative, the nucleus is unstable.  It will be in a lower energy 
state as two alphas instead of a beryllium. 

 (b) We find the binding energy from the masses. 

   
   

     

4 12 2
2 6

2 2

Binding Energy 3 He C

3 4.002603u 12.000000u 931.5MeV u 7.3MeV

m m c

c c

   

     
 

  Because the binding energy is positive, the nucleus is  stable.  
 
20. The decay is 3 3 0

1 2 1H He e .v     When we add one electron to both sides to use atomic masses, 

we see that the mass of the emitted  particle is included in the atomic mass of 3
2 He.   The energy 

released is the difference in the masses. 

  
   

     

3 3 2
1 2

2 2

Energy released H He

3.016049u 3.016029u 931.5MeV u 0.019 MeV

m m c

c c

   

    
 

 
21. The decay is 1 1 0

0 1 1n p e .v    The electron mass is accounted for if we use the atomic mass of 
1
1 H.   If we ignore the recoil of the proton and the neutrino, and any possible mass of the neutrino, we 
get the maximum kinetic energy. 

  
         1 1 2 2 2

max 0 1n H 1.008665u 1.007825u 931.5MeV u

0.782 MeV

K m m c c c       


 

 
22. For the decay 11 10 1

6 5 1C B p,   we find the difference of the initial and the final masses: 

  
     

     

11 10 1
6 5 1C B H

11.011434u 10.012937u 1.007825u 0.009328u

m m m m   

    
 

         11.011433u 10.012936u 1.007825u 0.0099318u.      

 Since the final masses are more than the original mass, energy would not be conserved. 
 
23. The wavelength is determined from the energy change between the states. 

  
  
  

34 8

12

13

6.63 10 J s 3.00 10 m s
    2.6 10 m

0.48MeV 1.60 10 J MeV

c hc
E hf h

E









 
       

 


  

 
24. For each decay, we find the difference of the initial and the final masses.  If the final mass is more 

than the initial mass, then the decay is not possible. 

 (a)      232 1 233
92 0 92U n U 232.037156u 1.008665u 233.039635u 0.006816um m m m         

  Because an increase in mass is required, the decay is  not possible.  

 (b)      13 1 14
7 0 7N n N 13.005739u 1.008665u 14.003074 u 0.011330um m m m         

  Because an increase in mass is required, the decay is  not possible.  

 (c)      39 1 40
19 0 19K n K 38.963707u 1.008665u 39.963998u 0.008374um m m m         

  Because an increase in mass is required, the decay is  not possible.  
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25. (a) From Appendix F, 24
11 Na is a   emitter . 

(b) The decay reaction is 24 24
11 12Na Mg .v     We add 11 electrons to both sides in order to 

use atomic masses.  Then the mass of the beta is accounted for in the mass of the magnesium.  
The maximum kinetic energy of the    corresponds to the neutrino having no kinetic energy (a 
limiting case).  We also ignore the recoil of the magnesium. 

   
   

     

24 24 2
11 12

2 2

Na Mg

23.990963u 23.985042u 931.5MeV u 5.52 MeV

K m m c

c c

     

    
 

 
26. The kinetic energy of the electron will be maximum if the (essentially) massless neutrino has no 

kinetic energy.  We also ignore the recoil energy of the sodium.  The maximum kinetic energy of the 
reaction is then the Q-value of the reaction.  Note that the “new” electron mass is accounted for by 
using atomic masses. 

  
         23 23 2 2 2

10 11Ne Na 22.9945u 22.9898u 931.5MeV u

4.4MeV

K Q m m c c c         


 

If the neutrino were to have all of the kinetic energy, then the minimum kinetic energy of the 
electron is  0.   The sum of the kinetic energy of the electron and the energy of the neutrino must be 
the Q-value, and so the neutrino energies are 0 and 4.4 MeV, respectively. 

 
27. (a) We find the final nucleus by balancing the mass and charge numbers. 

   
     
     

U He 92 2 90

U He 238 4 234

Z X Z Z

A X A A

    

    
 

  Thus the final nucleus is 234
90 Th .  

(b) If we ignore the recoil of the thorium, the kinetic energy of the  particle is equal to the Q- 
value of the reaction.  The electrons are balanced. 

   

     

     

238 234 4 2
92 90 2

234 238 4
90 92 2 2

2 2

U Th He   

Th U He

4.20MeV 1u
               238.050788u 4.002603u

931.5MeV

               234.04368u

K Q m m m c

K
m m m

c

c c

      

  

  
    

  



 

  This answer assumes that the 4.20 MeV value does not limit the sig. fig. of the answer. 
 
28. The reaction is 60 60

27 28Co Ni .      The kinetic energy of the   will be maximum if the 
(essentially) massless neutrino has no kinetic energy.  We also ignore the recoil of the nickel. 

  
   

     

60 60 2

2 2

Co Ni

59.933822u 59.930791u 931.5MeV / u 2.82 MeV.

K m m c

c c

    

    
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29. We use conservation of momentum – the momenta of the two particles must be equal and opposite if 
there are only two products.  The energies are small enough that we may use non-relativistic 
relationships. 

   4
    2 2     5.0MeV 0.078MeV

256X X X X
X

m
p p m K m K K K

m


           

 
30. For alpha decay we have 218 214 4

84 82 2Po Pb He.    We find the Q value. 

  

     
   

218 214 4 2
84 82 2

2 2

Po Pb He

218.008965u 213.999805u 4.002603u 931.5MeV u

6.108MeV

Q m m m c

c c

    

  



 

For beta decay we have 218 218 0
84 85 1Po At e .v     We assume the neutrino is massless, and find the Q 

value. 

  
   

   

218 218 2
84 85

2 2

Po At

218.008965u 218.008694u 931.5MeV u 0.252 MeV

Q m m c

c c

   

  
   

 
31. (a) We find the final nucleus by balancing the mass and charge numbers. 

   
       
     

P e 15 1 16

P e 32 0 32

Z X Z Z

A X A A

     

    
 

  Thus the final nucleus is 32
16 S .  

 (b) If we ignore the recoil of the sulfur and the energy of the neutrino, the maximum kinetic energy  
of the electron is the Q-value of the reaction.  The reaction is 32 32

15 16P S .v      We add 15 
electrons to each side of the reaction, and then we may use atomic masses.  The mass of the 
emitted beta is accounted for in the mass of the sulfur. 

   

   

   

32 32 2
15 16

32 32
16 15 2 2 2

P S   

1.71MeV 1u
S P 31.973907u 31.972071u

931.5MeV

K Q m m c

K
m m

c c c

     
  

      
  

 

 
32. We find the energy from the wavelength. 

  
  
  

34 8

13 19

6.63 10 J s 3.00 10 m s
12.4 MeV

1.00 10 m 1.602 10 J eV

hc
E





 

 
  

 


 

This has to be a  ray from the nucleus rather than a photon from the atom.  Electron transitions do 

not involve this much energy.  Electron transitions involve energies on the order of a few eV. 
 
33. We add three electron masses to each side of the reaction 7 0 7

4 1 3Be e Li .v     Then for the mass 

of the product side, we may use the atomic mass of 7
3 Li.   For the reactant side, including the three 

electron masses and the mass of the emitted electron, we may use the atomic mass of 7
4 Be.   The 

energy released is the Q-value. 

  
   

     

7 7 2
4 3

2 2

Be Li

7.016930u 7.016005u 931.5MeV u 0.862 MeV

Q m m c

c c

   

    
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34. The emitted photon and the recoiling nucleus have the same magnitude of momentum.  We find the 
recoil energy from the momentum.  We assume the energy is small enough that we can use classical 
relationships. 

   
  

K K K

22
5

K 2 2 2
K

2   

1.46MeV
2.86 10 MeV 28.6eV

2 2 39.96u 931.5MeV u

E
p p m K

c

E
K

m c c c




 

   

    
 

 
35. The kinetic energy of the    particle will be maximum if the (almost massless) neutrino has no 

kinetic energy.  We ignore the recoil of the boron.  Note that if the mass of one electron is added to 
the mass of the boron, then we may use atomic masses.  We also must include the mass of the .   
(See Problem 38 for details.) 

 11 11 0 0
6 5 1 1C B e v 

     

  
             

       

11 11 0 0 2 11 11 0 2
6 5 1 1 6 5 1

2 2

C B e C B 2 e

11.011434u 11.009305 2 0.00054858u 931.5MeV u 0.9612MeV

K m m m m c m m m c

c c

 
 

            

      
 

If the    has no kinetic energy, then the maximum kinetic energy of the neutrino is also 

0.9612MeV .  The minimum energy of each is 0, when the other has the maximum. 

 
36. We assume that the energies are low enough that we may use classical kinematics.  In particular, we 

will use 2 .p mK   The decay is 238 234 4
92 90 2U Th He.    If the uranium nucleus is at rest when it 

decays, the magnitude of the momentum of the two daughter particles must be the same. 

   
22

Th
Th Th

Th Th Th Th

2 4u
  ;  4.20MeV 0.0718MeV

2 2 2 234u

p m K mp
p p K K

m m m m
   

 
 

       
 

 

 The Q-value is the total kinetic energy produced. 

  Th 4.20MeV 0.0718MeV 4.27 MeVQ K K      

 
37. Both energy and momentum are conserved.  Therefore, the momenta of the product particles are 

equal in magnitude.  We assume that the energies involved are low enough that we may use classical 

kinematics; in particular, 2 .p mK  

   
2 2
Pb

Pb Pb
Pb Pb Pb Pb

2 4.0026
  ;  

2 2 2 205.97

p p m K m
p p K K K

m m m m
   

  

 
      

 
 

 The sum of the kinetic energies of the product particles must be equal to the Q-value for the reaction. 

  

     
     

       

210 206 4 2
Pb 84 82 2

210 206 4 2
84 82 2

2

2

4.0026
Po Pb He   

205.97

Po Pb He

4.0026
1

205.97

209.982874u 205.974465u 4.002603u
     931.5MeV u 5.31MeV

4.0026
1

205.97

K K m m m c K K

m m m c
K

c
c

  



        

   
  
 

     
  
 
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38. For the positron-emission process, 1N N e .A A
Z Z v

      We must add Z  electrons to the nuclear 

mass of N  to be able to use the atomic mass, and so we must also add Z  electrons to the reactant 
side.  On the reactant side, we use 1Z   electrons to be able to use the atomic mass of N .   Thus we 
have 1 “extra” electron mass and the -particle mass, which means that we must include 2 electron 
masses on the right-hand side.  We find the Q-value given this constraint. 

     2 2
P D e P D e2 2 .Q M M m c M M m c          

 
39. (a) The decay constant can be found from the half-life, using Eq. 41-8. 

   10 1 18 1
9

1/ 2

ln 2 ln 2
1.5 10 yr 4.9 10 s

4.5 10 yrT
         


 

 (b) The half-life can be found from the decay constant, using Eq. 41-8. 

   1/ 2 5 1

ln 2 ln 2
21660s 6.0h

3.2 10 s
T

     


 

 
40. We find the half-life from Eq. 41-7d and Eq. 41-8. 

   1/ 2

ln 2

0 0 1/ 2

0

ln 2 ln 2
    3.6h 1.8h

320
ln ln

1280

t
TtR R e R e T t

R
R




         

 We can see this also from the fact that the rate dropped by a factor of 4, which takes 2 half-lives. 
 
41. We use Eq. 41.6 to find the fraction remaining. 

  
   ln 2 2.0 yr 12mo yr

9 mo
0

0

    0.158 0.16t tN
N N e e e

N
 

 
 

          

 
42. The activity at a given time is given by Eq. 41-7b.  The half-life is found in Appendix F. 

  
    20 9

7
1/ 2

ln 2 ln 2
8.1 10 nuclei 3.1 10 decays s

5730yr 3.16 10 s yr

dN
N N

dt T
     


 

 
43. Every half-life, the sample is multiplied by one-half. 

      61 1
2 2

0

0.015625
nN

N
    

 
44. The activity of a sample is given by Eq. 41-7a.  There are two different decay constants involved.  

Note that Appendix F gives half-lives, not activities. 

  

 

 
  

 

    

I CoI Co I
I I Co Co I 0 Co 0

Co

Co
1/2

I
I Co 1/2

I Co

I Co
1/2 1/2

          

5.2710 y 365.25d yln
ln

ln 8.0233d
63.703d

ln 2 ln 2 1 1
ln 2

8.0233d 5.2710 y 365.25d y

tt tN N N e N e e

T

T

t

T T

   
   



 

 

      

 
       
      

    
 
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45. We find the number of nuclei from the activity of the sample and the half-life. 

  
    

1/ 2

9 7

191/ 2

ln 2
  

4.468 10 yr 3.156 10 s yr
340decays s 6.9 10 nuclei

ln 2 ln 2

dN
N N

dt T

T dN
N

dt

  

 
   

 

 
46. Each  emission decreases the mass number by 4 and the atomic number by 2.  The mass number 

changes from 235 to 207, which is a change of 28.  Thus there must be 7 particles emitted.  With 

the 7  emissions, the atomic number would have changed from 92 to 78.  Each    emission 
increases the atomic number by 1, so to have a final atomic number of 82, there must be 

4 particles  emitted. 

 
47. We need both the decay constant and the initial number of nuclei. 

  
   

7 1

1/ 2

ln 2 ln 2
9.99905 10 s

8.0233days 24h day 3600s hT
       

  
 

   
6

23 18
0

782 10 g
6.02 10 atoms mol 3.596 10 nuclei.

130.906g mol
N

 
    
  

 

 (a) We Eq. 41-7b to evaluate the initial activity. 

     7 1 18 12 12

0

9.99905 10 s 3.596 10 3.5957 10 decays s 3.60 10 decays s
dN

dt
         

 (b) We evaluate Eq. 41-7c at 1.0h.t   

   
    7 19.99905 10 s 3600s12

0

12

3.5957 10 decays s

3.58 10 decays s

tdN dN
e e

dt dt


    

 

 

 (c) We evaluate Eq. 41-7c at t = 4 months.  We use a time of 1/3 year for the 4 months. 

   
     7 1 79.99905 10 s 0.333yr 3.156 10 s yr12

0

7

3.5957 10 decays s

9.72 10 decays s

tdN dN
e e

dt dt


     

 

 

 
48. We will use the decay constant frequently, so we calculate it here. 

  1

1/2

ln 2 ln 2
0.022505s

30.8sT
     

 (a) We find the initial number of nuclei from the atomic mass. 

   
 
   

6

23 16 16
0

7.8 10 g
6.02 10 atoms mol 3.787 10 3.8 10 nuclei.

124g mol
N


       

 (b) Evaluate Eq. 41-6 at 2.6min.t   

        10.022505s 2.6min 60s min16 15 15
0 3.787 10 1.131 10 1.1 10 nucleitN N e e

        

 (c) The activity is found by Eq. 41-7a. 

     1 15 13 130.022505s 1.131 10 2.545 10 2.5 10 decays sN        
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 (d) We find the time from Eq. 41-7a. 

   
  

0

1 16

0

1

  

1decay/s
lnln

0.022505s 3.787 10 decay/s
1528s 25.46min 25min

0.022505s

tN N e

N

N
t

 











 

                

 

 
49. We find the mass from the initial decay rate and Eq. 41-7b. 

 
 
 

 
 

    
 

 
 

23

0
0

1/ 2
23 23

0 0

9 7

5 1

23

6.02 10 nuclei mole
  

atomic weight g mole

atomic weight atomic weight1

ln 26.02 10 6.02 10

1.265 10 yr 3.156 10 s yr 39.963998g
   2.0 10 s 0.76g

ln 2 6.02 10

dN
N m

dt

dN dN T
m

dt dt

 






  

 
 

 
  



 

 
50. The number of nuclei is found from the mass and the atomic weight.  The activity is then found from 

number of nuclei and the half-life, using Eq. 41-7b. 

  
 

   
6

23 10
6

1/ 2

8.7 10 gln 2 ln 2
6.02 10 atoms mol 9.2 10 decays s

1.23 10 s 31.974g mol

dN
N N

dt T


 
      

   
 

 
51. We find the mass from the initial decay rate and Eq. 41-7b. 

 
 
 

 
 

    
 

 
 

23

0
0

1/ 2
23 23

0 0

4 1 11

23

6.02 10 nuclei mole
  

atomic weight g mole

atomic weight atomic weight1

ln 26.02 10 6.02 10

87.32d 86,400s d 34.969032g
   3.65 10 s 2.31 10 g

ln 2 6.02 10

dN
N m

dt

dN dN T
m

dt dt

 



 


  

 
 

   


 

 
52. (a) The decay constant is found from Eq. 41-8. 

     
13 1

5 7
1/ 2

ln 2 ln 2
1.38 10 s

1.59 10 yr 3.156 10 s yrT
     

 
 

 (b) The activity is the decay constant times the number of nuclei. 

     13 1 18 5 760s
1.38 10 s 5.50 10 7.59 10 decays s 4.55 10 decays min.

1min
N    
       

 
 

 
53. We use Eq. 41-7c. 

   1/2

ln 2

0 0 1/2 1
4

0

ln 2 ln 2
    8.6min 4.3min

lnln

t
TtR R e R e T t

R

R




         
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54. Because the fraction of atoms that are 14
6 C  is so small, we use the atomic weight of 12

6 C  to find the 
number of carbon atoms in the sample.  The activity is found from Eq. 41-7a. 

  

 
   

 

    

23 25

25 13
14 12

13

7

385g
6.02 10 atoms mol 1.93 10 atoms

12g mol

1.3
1.93 10 2.51 10 nuclei

10

ln 2
2.51 10 96decays s

5730 yr 3.156 10 s yr

N

N

N

 
    
  
     
 
 
   

  

 

 
55. We find the mass from the activity.  Note that AN  is used to represent Avogadro’s number. 

      
 

A

1/2

9 7

21/2
23

A

ln 2
  

370decays s 4.468 10 yr 3.156 10 s yr 238.05g mole
2.98 10 g

ln 2 6.02 10 nuclei mole ln 2

mN
R N

T A

RT A
m

N





  

 
   



 

 
56. We assume that the elapsed time is much smaller than the half-life, so that can approixmate the 

decay rate as being constant.  We also assume that the 87
38Sr  is stable, and there was none present 

when the rocks were formed.  Thus every atom of 87
37 Rb  that decayed is now an atom of 87

38Sr.  

   
10

9Sr 1/2
Sr Rb Rb

Rb

4.75 10 yr
    0.0260 1.78 10 yr

ln 2 ln 2

N T
N N N t t

N
 

           

 This is 4%  of the half-life, so our original assumption is valid. 
 
57. The activity is given by Eq. 41-7a. 

 

 

0 0
1/2

1/2

ln 2
0.975     ln 0.975   

ln 2 1d
31.0h 848.71h 35.4d

ln 0.975 24h

tN N e t t
T

T

        

 
    

 

 

 
58. The activity is given by Eq. 41-7a. 
 (a) We use Eq. 41-7c.We find the number of half-lives from 

   1/2
0

0 0

1 53d 15decays s
   ln ln ln 240.85d 240d

ln 2 ln 2 350decays s
t TR R

R R e t
R R




  

          
 

 

 (b) We find the mass from the activity.  Note that AN  is used to represent Avogadro’s number. 

       
 

0 A
0 0

1/2

140 1/2

23
A

ln 2
  

350decays s 53d 86,400s d 7.017g mole
2.7 10 g

ln 2 6.02 10 nuclei mole ln 2

m N
R N

T A

R T A
m

N





  

   


 

 

59. 232 228 4
90 88 2Th Ra   ;  228 228

88 89Ra Ac  ;   228 228
89 90Ac Th   ;    228 224 4

90 88 2Th Ra   ; 

 224 220 4
88 86 2Ra Rn    
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235 231 4
92 90 2U Th   ;  231 231

90 91Th Pa   ;   231 227 4
91 89 2Pa Ac   ;  227 227

89 90Ac Th   ;  
 

227 223 4
90 88 2Th Ra    

 
60. Because the fraction of atoms that are 14

6 C  is so small, we use the atomic weight of 12
6 C  to find the 

number of carbon atoms in 85 g.  We then use the ratio to find the number of 14
6 C atoms present 

when the club was made.  Finally, we use the activity as given in Eq. 41-7c to find the age of the 
club. 

  

 
   

  
   

 
 

 

12
6

14
6

14 14
6 6

14 14
6 6

14
6 14

6

23 24

C

12 24 12

C

C Ctoday 0

C Ctoday today1/2

C 0 C
1/2 0

85g
6.02 10 atoms mol 4.264 10 atoms

12g mol

1.3 10 4.264 10 5.543 10 nuclei

  

1
ln ln

ln 2 ln 2

5730 yr
  

t

N

N

N N e

N NT
t

N N
T

 

 

 





 
    
  

    

 

   
 
 
 

 
 

    12

7

0

7.0decays s
ln 9178yr 9200 yr

ln 2 ln 2
5.543 10 nuclei

5730 yr 3.156 10 s yr

 
 
 

    
 
61. The number of radioactive nuclei decreases exponentially, and every radioactive nucleus that decays 

becomes a daughter nucleus. 

   
0

D 0 0 1

t

t

N N e

N N N N e











   
 

 
62. The activity is given by Eq. 41-7d. 

  
 0

0 1/2
1/2

0

ln
4.00h ln 2ln 2 ln 2

        0.6085h 36.5min
ln 0.01050ln

t

R
R t

R R e T
Rt T
R

              

 From Appendix F we see that the isotope is 211
82 Pb .  

 
63. Because the carbon is being replenished in living trees, we assume that the amount of 14

6 C  is constant 
until the wood is cut, and then it decays.  We use Eq. 41-6. 

  
 0 1/2

0
1/2 0

ln
5730 yr ln 0.060ln 2

        ln 23,000 yr
ln 2 ln 2

t

N
N T N

N N e t
t T N

              
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64. (a) The mass number is found from the radius, using Eq. 41-1. 

    
3 3

15 1/3 55 55
15 15

5000m
1.2 10 m     7.23 10 7 10

1.2 10 m 1.2 10 m

r
r A A

 

   
               

 

 (b) The mass of the neutron star is the mass number times the atomic mass unit conversion in kg. 

       27 55 27 29 291.66 10 kg u 7.23 10 u 1.66 10 kg u 1.20 10 kg 1 10 kgm A            

  Note that this is about 6% of the mass of the Sun. 
(c) The acceleration of gravity on the surface of the neutron star is found from Eq. 6-4 applied to 

the neutron star. 

   
  

 

11 2 2 29

11 2 11 2
22

6.67 10 N m kg 1.20 10 kg
3.20 10 m s 3 10 m s

5000m

Gm
g

r

 
     


 

 
65. Because the tritium in water is being replenished, we assume that the amount is constant until the 

wine is made, and then it decays.  We use Eq. 41-6. 

  
 0 1/2

0
1/2 0

ln
12.3yr ln 0.10ln 2

        ln 41yr
ln 2 ln 2

t

N

N T N
N N e t

t T N
             

 
66. We assume a mass of 70 kg of water, and find the number of protons, given that there are 10 protons 

in a water molecule. 

  

 
   

3

23
protons

28

70 10 g water 10protons
6.02 10 molecules water mol water

18g water mol  water water molecule

2.34 10 protons

N
       

   
 

 

 We assume that the time is much less than the half-life so that the rate of decay is constant. 

  
33

1/2
28

1/2

ln 2 1 proton 10 yr
    60,000 yr

ln 2 2.34 10 protons ln 2

TN N
N N t

t T N


                     
 

 This is almost 1000 times a normal life expectancy. 
 
67. Consider the reaction n p e .v     The neutron, proton, and electron are all spin 1

2  particles.  If 

the proton and neutron spins are aligned (both are 1
2 , for example), then the electron and neutrino 

spins must cancel.  Since the electron is spin 1
2 , the neutrino must also be spin 1

2  in this case.   
 

The other possibility is if the proton and neutron spins are opposite of each other.  Consider the case 
of the neutron having spin 1

2  and the proton having spin 1
2 .   If the electron has spin 1

2 , then the 

spins of the electron and proton cancel, and the neutrino must have spin 1
2  for angular momentum to 

be conserved.  If the electron has spin 1
2 ,  then the spin of the neutrino must be 3

2  for angular 

momentum to be conserved.  
 

A similar argument could be made for positron emission, with p n e .v    
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68. We assume that all of the kinetic energy of the alpha particle becomes electrostatic potential energy 
at the distance of closest approach.  Note that the distance found is the distance from the center of the 
alpha to the center of the gold nucleus. 

     
  

9 2 2

Au
i i f f

0

219

14Au

13
0

14

8.988 10 N m C

1
    0 0   

4

2 79 1.60 10 C1
2.951 10 m

4 7.7MeV 1.60 10 J MeV

  3.0 10 m

q q
K U K U K

r

q q
r

K



















 

       


   



 

 

 We use Eq. 41-1 to compare to the size of the gold nucleus. 

  
 

14
approach

1/3 15
Au

2.951 10 m
4.2

197 1.2 10 m

r

r






 


 

 So the distance of approach is about 4.2  the radius of the gold nucleus. 
 
69. We find the number of half-lives from the change in activity. 

   1
2 1

2

0

ln 0.0100
0.0100    6.64 half-lives

ln

n

dN
dt

n
dN

dt

      

 
70. We find the mass from the activity.  Note that AN  is used to represent Avogadro’s number. 

  
    

 

40 A

1/2

9 7

41/2
40 23

A

4

ln 2
  

45decays s 1.265 10 yr 3.156 10 s yr 39.964g mole
1.721 10 g

ln 2 6.02 10 nuclei mole ln 2

1.7 10 g

m N
R N

T A

RT A
m

N







  

 
   



 

 

We find the number of 39
19 K  atoms from the number of 40

19 K  atoms and the abundance given in 

Appendix F.  That is then used to find the mass of 39
19 K.  

  
   

1/2
40 40 40 39 40

1/2
39 39 40

A A A

9 7

0.93258
      ;  0.000117   ;  0.93258

ln 2 0.000117
0.93258 0.93258

0.000117 0.000117 ln 2

45decays s 1.265 10 yr 3.156 10 s yr 380.93258

0.000117 ln 2

K K

RTR
R N N N N N N N

RTA A A
m N N

N N N




      

  

    
 

 
 23

.964g mole

6.02 10 nuclei mole

1.3g





  

 
71. (a) If the initial nucleus is at rest when it decays, momentum conservation says that the magnitude  

of the momentum of the alpha particle will be equal to the magnitude of the momentum of the 
daughter particle.  We use that to calculate the (non-relativistic) kinetic energy of the daughter 
particle.  The mass of each particle is essentially equal to its atomic mass number, in atomic 
mass units. 
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22
D

D D
D D D D D D

D D

1
DD D4

D

2 4
  ;   

2 2 2

4

1

14
4

p m K m Ap
p p K K K K

m m m m A A

K
KK A

AK K A
K KK K

A

    
   





  

      

  
         

 

 (b) We specifically consider the decay of 226
88 Ra.   The daughter has D 222.A       

 
D

1 1
D D4 4

1 1
0.017699 1.8%

1 1 222

K

K K A

   
  

 

Thus the alpha particle carries away  1 0.018 0.982 98.2% .    
 
72. We see from the periodic chart that Sr is in the same column as  calcium.   If strontium is ingested, 

the body may treat it chemically as if it were calcium, which means it might be  stored by the body 
in bones.   We use Eq. 41-6 to find the time to reach a 1% level. 

  

 

0
0

1/2

1/2

0

ln
ln 2

      

29 yr ln 0.010
ln 192.67 yr 190 yr

ln 2 ln 2

t

N
N

N N e
t T

T N
t

N

      

     

 

 The decay reactions are as follows.  We assume the daughter undergoes beta decay. 

  90 90 0 90 90 0
38 39 1 39 40 1Sr Y e   ;   Y Zr ev v        

 
73. We take the momentum of the nucleon to be equal to the uncertainty in the momentum of the 

nucleon, as given by the uncertainty principle.  The uncertainty in position is estimate as the radius 
of the nucleus.  With that momentum, we calculate the kinetic energy, using a classical formula. 

  
  

      

2
342 2

22
27 1/3 15 13

    

1.055 10 J s

2 2 2 1.67 10 kg 56 1.2 10 m 1.60 10 J MeV

   0.988MeV 1MeV

p x p p
x r

p
K

m mr



  

       



  

    

 

 


 

 
74. (a) The reaction is 236 232 4

92 90 2U Th He.    If we assume the uranium nucleus is initially at rest, then  
the magnitude of the momenta of the two products must be the same.  The kinetic energy 
available to the products is the Q-value of the reaction.  We use the non-relativistic relationship 
that 2 2 .p mK  

   

22
He He He HeTh

He Th Th He
Th Th Th Th

He
Th He He

Th

2
  ;   

2 2 2

1   

p m K mp
p p K K

m m m m

m
Q K K K

m

    

 
     

 
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 

 

 

2Th Th
He U Th He

He Th He Th

2

2

232.038055u
      236.045568u 232.038055u 4.002603u

4.002603u 232.038055u

      0.004827u 931.5MeV u 4.496MeV

m m
K Q m m m c

m m m m

c

c

   
          
 

    

 

 

  (b) We use Eq. 41-1 to estimate the radii. 

    
  

  

1/315 15 15
He

1/315 15 15
Th

1.2 10 m 4 1.905 10 m 1.9 10 m

1.2 10 m 232 7.374 10 m 7.4 10 m

r

r

  

  

     

     
 

  (c) The maximum height of the Coulomb barrier will correspond to the  alpha particle and the  
thorium nucleus being separated by the sum of their radii.  We use Eq. 23-10. 

 

     
   

9 2 2

He Th He Th

0 A 0 He Th

219

1/3 1/3 15 13
8.988 10 N m C

1 1

4 4

2 90 1.60 10 C

4 232 1.2 10 m 1.60 10 J MeV

27.898MeV 28MeV

q q q q
U

r r r 


 
 

 





  

 

 

(d) At position “A”, the product particles are separated by the sum of their radii, about 9.3 fm.  At 
position “B”, the alpha particle will have a potential energy equal to its final kinetic energy, 
4.496 MeV.  Use Eq. 23-10 to solve for the separation distance at position “B”. 

       
  

9 2 2

He Th
B

0 B

219

He Th
B 13

0 B

15

B A

8.988 10 N m C

1
  

4

2 90 1.60 10 C1

4 4.496MeV 1.60 10 J MeV

   57.57 10 m

57.6fm 9.3fm 48.3fm

q q
U

r

q q
r

U

r r











 

 


 



 

   

 

 Note that this is a center-to-center distance. 
 
75. (a) We find the daughter nucleus by balancing the mass and charge numbers: 

          Os e 76 1 77Z X Z Z        

        Os e 191 0 191A X A A       

  The daughter nucleus is 191
77 Ir .  

 (b) See the included diagram. 
 (c) Because there is only one  energy, the   
  decay must be to the higher excited state. 
 
76. The activity is the decay constant times the number of nuclei, as given by Eq. 41-7a. 

 (a) We calculate the activity for 131
53 I.  

  
    23

1/2

ln 2 ln 2 1.0g
6.02 10 nuclei mol

8.02d 86,400s d 130.906g mol
R N N

T


 
    

 
 

191
76Os

191
77 Ir*

 (0.042 MeV)

 (0.129 MeV)

 – (0.14 MeV)

191
77 Ir

191
77 Ir*
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  15   4.6 10 decays s   

 (b) We calculate the activity for 238
92 U.  

       23

9 7
1/2

4

ln 2 ln 2 1.0g
6.02 10 nuclei mol

238.051g mol4.47 10 yr 3.156 10 s yr

1.2 10 decays s

R N
T

 
   

   

 

 

 
77. From Figure 30–1, we see that the average binding energy per nucleon at 63A   is ~8.6 MeV.  We 

use the mass average atomic weight as the average number of nucleons for the two stable isotopes of 

copper.  That gives a binding energy of   63.546 8.6MeV 546.5MeV 550MeV .   

 The number of atoms in a penny is found from the atomic weight. 

  
 

   23 223.0g
6.02 10 atoms mol 2.842 10 atoms

63.546g mol
N      

 Thus the total energy needed is the product of the number of atoms times the binding energy. 

     22 13 122.842 10 atoms 546.5MeV atom 1.60 10 J MeV 2.5 10 J     

 

78. (a)      4 4 4
2 2 2He He He 4.002603u 4 0.002603um A       

           2 20.002603u 931.5MeV u 2.425Mevc c   

 (b)      12 12 12
6 6 6C C C 12.000000u 12 0m A       

 (c)      86 86 86
38 38 38Sr Sr Sr 85.909260u 86 0.090740um A        

           2 20.090740u 931.5MeV u 84.52 MeVc c     

 (d)      235 235 235
92 92 92U U U 235.043930u 235 0.043930um A       

            2 20.043930u 931.5MeV u 40.92 MeVc c   

 (e) From the Appendix we see that 

  
0 for 0 8 and 85;

0 for 9 84.

Z Z

Z

    
   

  
0 for 0 15 and 214;

0 for 16 214.

A A

A

    
   

 

 
79. The reaction is 1 1 2

1 0 1H n H.    If we assume the initial kinetic energies are small, then the energy of 
the gamma is the Q-value of the reaction. 

  
     

       

1 1 2 2
1 0 1

2 2

He n He

1.007825u 1.008665u 2.014082u 931.5MeV u 2.243MeV

Q m m m c

c c

    

      
 

 
80. (a) We use the definition of the mean life given in the problem.  We use a definite integral formula  

from Appendix B-5. 

   

 

 

0
2 2

0 0 0

0
00 0 0

1 1
1

11

t t

t t t

tN t dt tN e dt te dt

N t dt N e dt e dt e

 

  

 




  
 

   
  

     


  

  
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 (b) We evaluate at time 
1

.t 


   

   
 
 

10
0

0

0.368
0

N t N e
e e

N t N e




   



   


 

 
81. (a) The usual fraction of 14

6 C  is 121.3 10 .   Because the fraction of atoms that are 14
6 C  is so small,  

  we use the atomic weight of 12
6 C  to find the number of carbon atoms in 72 g.  We use Eq. 41-6 

  to find the time. 

   

 

  
 

23 24
12

24 12 12
14

51/2
0 12

0 0

72g
6.02 10 atoms mol 3.612 10 atoms

12g mol

3.612 10 atoms 1.3 10 4.6956 10 atoms

5730 yr1 1
    ln ln ln 2.4 10 yr

ln 2 ln 2 4.6956 10
t

N

N

TN N
N N e t

N N








 
    
 

    

         


 

 (b) We do a similar calculation for an initial mass of 270 grams. 

   

  
 

23 12 13
14

51/2
0 13

0 0

270g
6.02 10 atoms mol 1.3 10 1.761 10 atoms

12g mol

5730 yr1 1
    ln ln ln 2.5 10 yr

ln 2 ln 2 1.761 10
t

N

TN N
N N e t

N N








 
     
 

         


 

  This shows that, for times on the order of 510 yr,  the sample amount has fairly little effect on 
  the age determined.  Thus, times of this magnitude are not accurately measured by carbon  
  dating. 
 
82. (a) This reaction would turn the protons and electrons in atoms into neutrons.  This would eliminate  

chemical reactions, and thus eliminate life as we know it. 
(b) We assume that there is no kinetic energy brought into the reaction, and solve for the increase of  

mass necessary to make the reaction energetically possible.  For calculating energies, we write 
the reaction as 1 1

1 0H    n ,v   and we assume the neutrino has no mass or kinetic energy. 

   
         1 1 2 2 2

1 0H n 1.007825u 1.008665u 931.5MeV u

0.782 MeV

Q m m c c c       
 

 

This is the amount that the proton would have to increase in order to make this energetically 
possible.  We find the percentage change. 

      
   

2

2

0.782 MeV
100 100 0.083%

938.27 MeV

cm

m c

      
    

 

 

83. We assume the particles are not relativistic, so that 2 .p mK   The radius is given in Example 27-7 

as .
mv

r
qB

   Set the radii of the two particles equal.  Note that the charge of the alpha particle is twice 

that of the electron (in absolute value).  We also use the “bare” alpha particle mass, subtracting the 
two electrons from the helium atomic mass. 

      2     2
2

m vm v
m v m v p p

eB eB
  

           
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 

 

22

4
2 2

4

4 4 0.000549u2 2
5.48 10

4.002603u 2 0.000549u

2 2

pp
mK m m

p pK m

m m



  

  

 

     


 

 
84. Natural samarium has an atomic mass of 150.36 grams per mole.  We find the number of nuclei in 

the natural sample, and then take 15% of that to find the number of 147
62Sm nuclei.  We first find the 

number of 147Sm nuclei from the mass and proportion information. 

   
   

147
62

23

20 147
natural 62Sm

0.15 1.00g 6.02 10 nuclei / mol
0.15 6.006 10 nuclei of Sm

150.36g mol
N N


     

 The activity level is used to calculate the half-life. 

  

 
1/2

20 18 11
1/2 7

ln 2
Activity   

ln 2 ln 2 1yr
6.006 10 3.469 10 s 1.1 10 yr

120decays s 3.156 10 s

R N N
T

T N
R

   

         

 

 
85. Since amounts are not specified, we will assume that “today” there is 0.720 g of 235

92 U and 

100.000 0.720 99.280g   of 238
92 U.  We use Eq. 41-6. 

 (a) Relate the amounts today to the amounts 91.0 10  years ago. 

        
 
 

     
 

 

1/2

9

8

1/2

9

9

1/2

ln 2

0 0

1.0 10 yr
ln 2ln 2 7.04 10 yr

0 235235

1.0 10
ln 2ln 2 4.468 10

0 238238

    

0.720g 1.927g

99.280g 115.94g

t

Tt t

t

T

t

T

N N e N Ne Ne

N N e e

N N e e

 









   

  

  

 

    
 

 
9

9

1/ 2

0.693 1.0 10
0.693

4.468 10

0,238 238 99.28g 115.937g.
t

TN N e e




    

  The percentage of 235
92 U  was  

1.927
100% 1.63%

1.927 115.94
 


 

 (b) Relate the amounts today to the amounts 6100 10  years from now. 

   
     

 
 

     
 
 

6

8

1/2

6

9

1/2

100 10 yr
ln 2ln 2 7.04 10 yr

0 235 0 235

100 10 yr
ln 2ln 2 4.468 10 yr

238 0 238

    0.720g 0.6525g

99.280g 97.752g

t

Tt

t

T

N N e N N e e

N N e e




 


 

    

  

 

  The percentage of 235
92 U  will be 

0.6525
100% 0.663%

0.6525 97.752
 


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86. We determine the number of 40
19 K nuclei in the sample, and then use the half-life to determine the 

activity. 

  
      

 

40 39
19 19

3 23

17

K K

17
9 7

1/2

400 10 g 6.02 10 atoms mol
0.000117 0.000117 7.231 10

38.9637g mol

ln 2 ln 2 1yr
7.231 10 12.55decay s 13decay s

1.265 10 yr 3.156 10 s

N N

R N N
T



 
   

         

  

 
87. We use Eq. 41-7a to relate the activity to the half-life. 

 
1/2

23
7 21

1/2 7

ln 2
  

ln 2 ln 2 6.02 10 nuclei 1yr
1.5 10 g 1.3 10 yr

1decay s 152g 3.156 10 s

dN
R N N

dt T

T N
R

   

           

 

 
88. The mass number changes only with  decay, and changes by 4.   If the mass number is 4n, then 

the new number is  4 4 4 1 4 .n n n      There is a similar result for each family, as shown here. 

   4     4 4 4 1 4n n n n      

   4 1    4 4 1 4 1 1 4 1n n n n          

   4 2    4 4 2 4 1 2 4 2n n n n          

   4 3    4 4 3 4 1 3 4 3n n n n          

 Thus the daughter nuclides are always in the same family.  
 
89. We calculate the initial number of nuclei from the initial mass and the atomic mass. 

 
  

9 16 16

27

1 atom
1.80 10 kg 8.3349 10 nuclei 8.33 10 nuclei

13.005739u 1.6605 10 kg
N 


     


 

See the adjacent graph.  From the graph, the half-life is approximately 600 seconds. 
 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH41.XLS,” on 
tab “Problem 41.89.” 
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90. See the following graph.  The spreadsheet used for this problem can be found on the Media Manager, 
with filename “PSE4_ISM_CH41.XLS,” on tab “Problem 41.90.” 
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CHAPTER 42:  Nuclear Energy: Effects and Uses of Radiation 
 
Responses to Questions 
 
1.  (a) Ba138

56 ; (b) p or H1
1 ; (c) γ ; (d) Hg199

80  

 

2. S32
16  

 

3.  Ne20
10   

 
4. Neutrons have no net charge, and therefore do not have to overcome the Coulomb barrier (Coulomb 

repulsion) to get into the nucleus. Neutrons are also massive and can carry more energy than a 
lighter particle. 

 

5.  F17
9 is the residual nucleus. The reaction equation is: 20 17

10 9Ne p  F.    

 
6. Fission fragments have more neutrons than are required for nuclear stability and will decay by β– 

emission in order to convert a neutron to a proton. 
 
7.  The energy from nuclear fission appears in the thermal (kinetic) energy of the fission fragments and 

the neutrons that are emitted, and in the thermal energy of nearby atoms with which they collide. 
 

8. Pu239
94 has a smaller critical mass than U235

92 . Since there are more neutrons released per decay in Pu-

239, fewer nuclei are needed to release sufficient neutrons to create and sustain a chain reaction. 
 
9. Yes, a chain reaction would be possible, since the multiplication factor f is greater than 1. However, 

the chain reaction would progress slowly, and care would have to be taken to prevent neutron loss. 
 
10. When uranium is enriched, the percentage of U-235 nuclei in a given mass of uranium is increased. 

This process involves the nuclei of the atoms. Chemical processes typically involve the electrons in 
atoms, and not the nuclei. The chemical behavior of all the isotopes of uranium is nearly identical, 
therefore chemical means could not be used to separate isotopes and enrich uranium. 

 
11. Neutrons are neutral; they are not repelled by the electrons surrounding the atom or by the positively 

charged protons in the nucleus. They are able to penetrate easily into the nucleus, and, once there, 
are held in place by the strong nuclear force. A neutron brings to the nucleus its kinetic energy and 
the binding energy given up as the neutron is bound to the rest of the nucleus. This binding energy 
can be very large, and is enough to move the nucleus into an excited state, from which it will fission. 

 
12.  The hydrogen atoms in water act as a moderator to slow down the neutrons released during fission 

reactions. The slower neutrons are more likely to be absorbed by other uranium nuclei to produce 
further fission reactions, creating a chain reaction that could lead to an explosion. A porous block of 
uranium in air would be less likely to undergo a chain reaction due to the absence of an effective 
moderator. 

 
13. Ordinary water does not moderate, or slow down, neutrons as well as heavy water; more neutrons 

will also be lost to absorption in ordinary water. However, if the uranium in a reactor is highly 
enriched, there will be many fissionable nuclei available in the fuel rods. It will be likely that the few 
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moderated neutrons will be absorbed by a fissionable nucleus, and it will be possible for a chain 
reaction to occur. 

 
14.  A useful fission reaction is one that is self-sustaining. The neutrons released from an initial fission 

process can go on to initiate further fission reactions, creating a self-sustaining reaction. If no 
neutrons were released, then the process would end after a single reaction and not be very useful.  

 
15. Heavy nuclei decay because they are neutron-rich, especially after neutron capture. After fission, the 

smaller daughter nuclei will still be neutron-rich and relatively unstable, and will emit neutrons in 
order to move to a more stable configuration. Lighter nuclei are generally more stable with 
approximately equal numbers of protons and neutrons; heavier nuclei need additional neutrons in 
order to overcome Coulomb repulsion between the protons.  

 
16. The water in the primary system flows through the core of the reactor and therefore could contain 

radioactive materials, including deuterium, tritium, and radioactive oxygen isotopes. The use of a 
secondary system provides for isolation of these potentially hazardous materials from the external 
environment. 

 
17. Fission is the process in which a larger nucleus splits into two or more fragments, roughly equal in 

size. Fusion is the process in which smaller nuclei combine to form larger nuclei.  
 
18. Fossil fuel power plants are less expensive to construct and the technology is well known. However, 

the mining of coal is dangerous and can be environmentally destructive, the transportation of oil can 
be damaging to the environment through spills, the production of power from both coal and oil 
contributes to air pollution and the release of greenhouse gases into the environment, and there is a 
limited supply of both coal and oil. Fission power plants produce no greenhouse gases and virtually 
no air pollution, and the technology is well known. However, they are expensive to build, produce 
thermal pollution and radioactive waste, and when accidents occur they tend to be very destructive. 
Uranium is also dangerous to mine. Fusion power plants produce very little radioactive waste and 
virtually no air pollution or greenhouse gases. Unfortunately, the technology for large-scale 
sustainable power production is not yet known, and the pilot plants are very expensive to build. 

 
19. To ignite a fusion reaction, the two nuclei must have enough kinetic energy to overcome electrostatic 

repulsion and approach each other very closely in a collision. Electrostatic repulsion is proportional 
to charge and inversely proportional to the square of the distance between the centers of the charge 
distributions. Both deuterium and tritium have one positive charge, so the charge effect is the same 
for d-d and d-t ignition.  Tritium has one more neutron than deuterium and thus has a larger nucleus. 
In the d-t ignition, the distance between the centers of the nuclei will be greater than in d-d ignition, 
reducing the electrostatic repulsion and requiring a lower temperature for fusion ignition. 

 
20. The interiors of stars contain ionized atoms (a plasma) at very high temperature and with a high 

density of nuclei. The nuclei have high enough kinetic energy and a great enough likelihood of 
colliding with other nuclei to allow fusion to occur.   

 
21. Stars maintain fusion confinement with gravity. The large amount of mass in a star creates a 

tremendous gravitational attraction on the gas particles which is able to overcome the repulsive 
Coulomb force and radiation pressure.  

 
22. Younger women may suffer damage to reproductive cells as well as somatic damage. Genetic 

damage caused by radiation can cause mutations and be passed on to future generations. A fetus is 
particularly susceptible to radiation damage due to its small mass and rapid cell development. Since 
it is quite possible, especially early in a pregnancy, for a woman to be pregnant and not know it, it is 
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reasonable to have lower recommended dose levels for women of childbearing years. Beyond the 
reproductive years, the acceptable exposure dosage for women can be increased. 

 
23. Alpha particles are relatively large and are generally emitted with relatively low kinetic energies. 

They are not able to penetrate the skin, and so are not very destructive or dangerous as long as they 
stay outside the body. If alpha emitters are ingested or breathed, however, the protective layer of 
skin is bypassed, and the alpha particles, which are charged, can do tremendous amounts of damage 
to lung or other delicate internal tissue due to ionizing effects. Thus, there are strong rules against 
eating and drinking around alpha-emitters, and the machining of such materials, which would 
produce fine dust particles that could be inhaled, can be done only in sealed conditions. 

 
24. The absorbed dose measures the amount of energy deposited per unit mass of absorbing material and 

is measured in Grays (SI) (1 Gy = 1J/kg) or rads. The effective dose takes into account the type of 
radiation depositing the energy and is used to determine the biological damage done by the radiation. 
The effective dose is the absorbed dose multiplied by a quality factor, QF. The effective dose is 
measured in rem or siverts (SI). 1 Sv of any type of radiation does approximately the same amount 
of biological damage.  

 
25. Appropriate levels of radiation can kill possibly harmful bacteria and viruses on medical supplies or 

in food. 
 
26. Allow a radioactive tracer to be introduced into the liquid that flows through the pipe. Then check 

the pipe with a Geiger counter. When you find the tracer on the outside of the pipe (radiation levels 
will be higher at that point), you will have found the leak. 

 
 

Solutions to Problems 
 
1. By absorbing a neutron, the mass number increases by one and the atomic number is unchanged.  

The product nucleus is 28

13 Al .  Since the nucleus now has an “extra” neutron, it will decay by   , 

according to this reaction:  28 28

13 14 eAl  Si v    .  Thus the product is 28

14Si . 

 
2. If the Q-value is positive, then no threshold energy is needed. 

  
  2 3

1 2

2
2 2 2 2

nH He

MeV
2 2 2.014082u 3.016029u 1.008665u 931.5

u

   3.232MeV

c
Q m c m c m c c     



 
 
   

  Thus  no threshold energy is required  .  
 
3. A “slow” neutron means that it has negligible kinetic energy.  If the Q-value is positive, then the  

reaction is possible. 

  
 238 239

92 92

2
2 2 2 2

nU U

MeV
238.050788u 1.008665u 239.054293u 931.5

u

   4.807MeV

c
Q m c m c m c c     



 
 
   

 Thus  the reaction is possible  .  
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4. The Q-value tells whether the reaction requires or releases energy. 

  
  7 4

3 2

2
2 2 2 2 2

p Li He

MeV
1.007825u 7.016005u 2 4.002603 u 931.5

u

   17.35MeV

c
Q m c m c m c m c c      



 
 
   

 The reaction releases 17.35 MeV . 

 
5. The Q-value tells whether the reaction requires or releases energy. 

  
 

9 12
4 6

2 2 2 2

nBe C

2
2MeV

  4.002603u 9.012182u 12.000000u 1.008665u 931.5 5.701MeV
u

Q m c m c m c m c

c
c

   

    
 
 
 

 

 The reaction releases 5.701MeV . 

 
6. (a) If the Q-value is positive, then no threshold energy is needed. 

   
 

24 23
12 11

2 2 2 2

n dMg Na

2
2MeV

  1.008665u 23.985042u 22.989769u 2.014082u 931.5 9.449 MeV
u

Q m c m c m c m c

c
c

   

     
 
 
 

 

Thus more energy is required if this reaction is to occur.  The 16.00 MeV of kinetic energy is 
more than sufficient, and so  the reaction can occur  .  

(b) 16.00 MeV 9.449 MeV= 6.55MeV of energy is released  

 
7.  (a) If the Q-value is positive, then no threshold energy is needed. 

   
  

7 4
3 2

2 2 2 2

p Li He

2
2MeV

  1.007825u 7.016005u 2 4.002603u 931.5 17.348MeV
u

Q m c m c m c m c

c
c

   

   
 
 
 

 

Since the Q-value is positive,  the reaction can occur  .  
 (b) The total kinetic energy of the products will be the Q-value plus the incoming kinetic energy. 

   total reactants 3.5 MeV 17.348 MeV= 20.8 MeVK K Q     

 
8. (a) If the Q-value is positive, then no threshold energy is needed. 

   
 

14 17
7 8

2 2 2 2

pN O

2
2MeV

  4.002603u 14.003074u 16.999132u 1.007825u 931.5 1.192 MeV
u

Q m c m c m c m c

c
c

   

     
 
 
 

 

Thus more energy is required if this reaction is to occur.  The 9.68 MeV of kinetic energy is 
more than sufficient, and so  the reaction can occur  .  

 (b) The total kinetic energy of the products will be the Q-value plus the incoming kinetic energy. 

   total reactants 9.68 MeV 1.192 MeV= 8.49 MeVK K Q     
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9. 16 20
8 10

2 2

O Ne
Q m c m c m    

 
2

2MeV
   4.002603u 15.994915u 19.992440u 931.5 4.730MeV

u

c
c   

 
 
 

 

 
10.  The Q-value tells whether the reaction requires or releases energy. 

  
 

13 14
6 7

2 2 2 2

d nC N

2
2MeV

  2.014082u 13.003355u 14.003074u 1.008665u 931.5 5.308MeV
u

Q m c m c m c m c

c
c

   

    
 
 
 

 

 The total kinetic energy of the products will be the Q-value plus the incoming kinetic energy. 

   total reactants 44.4 MeV 5.308 MeV= 49.7 MeVK K Q     

 
11. The nitrogen-14 absorbs a neutron.  Carbon-12 is a product.  Thus the reaction is 

14 14

7 6n N  C ?   .  The reactants have 7 protons and 15 nucleons, which means 8 neutrons.  Thus 

the products have 7 protons and 15 nucleons.  The unknown product must be a proton.  Thus the 

reaction is 14 14

7 6n N  C p .    

 

14 14
7 6

2 2 2 2

n pN C

2
2MeV

  1.008665u 14.003074u 14.003242u 1.007825u 931.5 0.626MeV
u

Q m c m c m c m c

c
c

   

    
 
 
 

 

 

12. (a) The deuteron is 2

1H , and so the reactants have 4 protons and 8 nucleons.  Therefore the  

reactants have 4 neutrons.  Thus the products must have 4 protons and 4 neutrons.  That means 

that X must have 3 protons and 4 neutrons, and so X is 7

3 Li . 

(b) This is called a “stripping” reaction because the lithium nucleus has “stripped” a neutron from  
the deuteron. 

(c) The Q-value tells whether the reaction requires or releases energy. 

   
 

6 7
3 3

2 2 2 2

d pLi Li

2
2MeV

  2.014082u 6.015123u 7.016005u 1.007825u 931.5 5.007 MeV
u

Q m c m c m c m c

c
c

   

    
 
 
 

 

  Since the Q-value is positive, the reaction is  exothermic  .  
 
13. (a) This is called a “pickup” reaction because the helium has “picked up” a neutron from the carbon  

nucleus. 

 (b) The alpha is 4

2 He .  The reactants have 8 protons and 15 nucleons, and so have 7 neutrons.  Thus  

the products must also have 8 protons and 7 neutrons.  The alpha has 2 protons and 2 neutrons, 

and so X must have 6 protons and 5 neutrons.  Thus X is 11

6 C . 
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(c) The Q-value tells whether the reaction requires or releases energy. 

   3 12 11
2 6 6

2 2 2 2

He C C
Q m c m c m c m c     

    
2

2MeV
  3.016029u 12.000000u 11.011434u 4.002603u 931.5 1.856MeV

u

c
c    

 
 
 

 

  Since the Q-value is positive, the reaction is  exothermic  .  
 
14. (a) The product has 16 protons and 16 neutrons.  Thus the reactants must have 16 protons and 16  

neutrons.  Thus the missing nucleus has 15 protons and 16 neutrons, and so is 31

15 P .   

(b) The Q-value tells whether the reaction requires or releases energy. 

   
 

31 32
15 16

2 2 2

p P S

2
2MeV

  1.007825 u 30.973762 u 31.972071u 931.5 8.864 MeV
u

Q m c m c m c

c
c

  

   
 
 
 

 

 
15. We assume that all of the particles are essentially at rest, and so ignore conservation of momentum.   

To just make the fluorine nucleus, the Q-value plus the incoming kinetic energy should add to 0. 

   

 

18 18
8 9

18 18
9 8

18
9

2 2 2 2

p nO F

2 2 2 2

p nF O

2
2

4

4 2

2F

0  

MeV
        2.438 MeV 1.007825u 17.999161u 1.008665u 931.5

u

1.6767874 10 MeV

1u
1.6767874 10 MeV 18

931.5MeV

       

K Q K m c m c m c m c

m c K m c m c m c

c
c

m c
c

       

    

   

 

  

 
 
 

 
 
 

.000938u

 

 
16. We assume that the energies are small enough that classical mechanics is applicable, particularly 

2p mK  and 21
2 .K mv   The least proton kinetic energy is required when the product particles 

move together and so have the same speed.  We write equations for 1-D momentum conservation 
and for energy conservation, and then combine those to find the required proton energy. 

  

 

          

 

 

p n N n N

22

p n N 2n N n N1
p n N n N2

p p p p

p

n N p

n N

p n N
p n N p p

n N n N p

  
2 2

Energy conservation :     

p p p m m v

p m m v m m m m
K m m v K K

m m m m

m
K K K

m m

m m m
K Q K K K K Q

m m m m m

   

  
      

 



      

  

 

 Note that this result is also derived in Problem 87.  We now substitute in the values for this specific 
problem. 

  13 13
6 7

2 2 2 2n N n N
p p nC N

n N p n N p

m m m m
K Q m c m c m c m c Q

m m m m m m

 
      

   
 
   
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2
2MeV

13.003355u 1.007825u 13.005739 u 1.008665u 931.5
u

    
1.008665 13.005739

1.008665 13.005739 1.007825

    3.24 MeV

c
c  

 



 



   
       
  
    

 

 If some intermediate values are used, such as 3.003MeVQ   , and n N

n N p

1.077,
m m

m m m




 
the mass 

factor as 1.077, then the value of 3.23 MeV will be obtained. 
 
17. We use the same derivation algebra as in Problem 16, and so jump to the final expression. 

 

14 14
6 7

2 2 2 2n N n N
p p nC N

n N p n N p

2
2MeV

14.003242 u 1.007825u 14.003074 u 1.008665u 931.5
u

1.008665 14.003074

1.008665 14.003074 1.007825

0.

m m m m
K Q m c m c m c m c Q

m m m m m m

c
c

 
      

   

  

 



 



 
 

   
       
  
    

671MeV

 

 
18. We use Eq, 42-3. 

     21 3 28 2 7

0

1.7 10 nuclei m 0.120 m 40 10 m 8 10
R

n
R

       l   

 
19. From the figure we see that a collision will occur if 

1 2 .d R R    We calculate the area of the effective circle 

presented by 2R  to the center of 1.R  

   22

1 2d R R      

 
 
 
 
 
 
 
20. At a distance x into the target material, particles are 

arriving at a rate .xR    Due to interactions between the 

particles and the target material, which remove particles 
from the stream, particles are arriving at a distance of  
x dx  at a lower rate of ,x xR dR  where .0xdR    Thus 

the collision rate is .xdR   The cross section, given in Eq. 

42-3, gives the relationship between the two rates.  Also 
see the diagram. 0x  x x dx l

0R xR
x xR dR

v


d

1R

2R



Chapter 42   Nuclear Energy; Effects and Uses of Radiation 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

593 

      x
x x

x

dR
dR R n dx

R ndx
 


    

 Integrate the above differential relationship. 

  
0

0

0 0

1
        ln     

xR x
n xx

x x x x

R x

R
dR R n dx dR n dx n x R R e

R R
            

 
 
 

   

0
nR e  l  represents the rate at which particles leave the target material, unaffected by the target 

material. 
 
21. We use the result from Problem 20, where 0 .nR R e  l

l
  We use the data for the 1.0-cm-thick target 

to get an expression for .n  

  

1

0

0

2

0 1

0

1 1
    ln ln 0.25 138.63m

0.010 m

1 1 1
    ln ln 9.966 10 m 10cm

138.63m 10

n

n x x
x

R
R R e n

R

R
R R e x

n R









 

 

 

      

        
 
 
 

l l

l

l
 

 Note that the answer is correct to 2 significant figures. 
 
22. We assume a 2.0% reaction rate allows us to treat the target as thin.  We use Eq. 42-3.  We need the 

volume density of the cadmium atoms. 

   
23

3 28 36.02 10 atoms
8650kg m 4.572 10 nuclei m

0.1139kg
n

 
   

 
 

(a) The cross section for 0.1-eV neutrons is ~ 3000 bn. 

       

0

6

28 3 28 2
0

  

1 1
0.020 1.458 10 m

4.572 10 nuclei m 3000 10 m

1.5μm

R

R

n
R

R n








 

   
 



l

l   

 (b) The cross section for 5.0-eV neutrons is ~ 2 bn. 

    
    

3

28 3 28 2
0

1 1
0.020 2.187 10 m

4.572 10 nuclei m 2 10 m

2.2mm

R

R n



   

 



l

 

 
23. The Q-value gives the energy released in the reaction, assuming the initial kinetic energy of the  

neutron is very small. 

    

235 141 92
92 56 36

2 2 2 2 2

n nU Ba Kr

2
2

3

MeV
  1.008665u 235.043930u 140.914411u 91.926156u 3 1.008665u 931.5

u

  173.3MeV

Q m c m c m c m c m c

c
c

    

    



 
 
 
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24. The Q-value gives the energy released in the reaction, assuming the initial kinetic energy of the  
neutron is very small. 

  235 88 136
92 38 54

2 2 2 2 2

n nU Sr Xe
12Q m c m c m c m c m c      

  
  

2
2MeV

  1.008665u 235.043930u 87.905612u 135.907219u 12 1.008665u 931.5
u

  126.5MeV

c
c    



 
 
   

 
25. The power released is the energy released per reaction times the number of reactions per second. 

  

  
6

18

6 19

energy # reactions
  

reaction s

# reactions 200 10 W
6 10 reactions s

energys 200 10 eV reaction 1.60 10 J eV
reaction

P

P


  


   

 

 

 
26. Compare the energy per fission with the rest mass energy. 

  
  

4

2 2 2

energy per fission 200MeV 1
9.1 10

rest mass energy 1100235u 931.5MeVmc c c
     

  
27. We convert the 880 watts over a year’s time to a mass of uranium. 

  

2357
4 23592

9213 23

235

92

0.235kg U880 J 3.156 10 s 1MeV 1fission
3.388 10 kg U

1 s 1y 1.60 10 J 200MeV 6.02 10 atoms

0.34g U






 

 



       
                 

 
28. (a) The total number of nucleons for the reactants is 236, and so the total number of nucleons for  

the products must also be 236.  The two daughter nuclei have a total of 231 nucleons, so 

 5 neutrons  must be produced in the reaction:  235 133 98

92 51 41U n  Sb Nb 5n    . 

 (b)  235 133 98
92 51 41

2 2 2 2 2

n nU Sb Nb
5Q m c m c m c m c m c      

  
2

2MeV
   235.043930u 1.008665u 132.915250u 97.910328u 5 1.008665u 931.5

u

   171.1MeV

c
c    



 
 
   

 
29. We assume as stated in problems 26 and 27 that an average of 200 MeV is released per fission of a 

uranium nucleus.  Also, note that the problem asks for the mass of 238

92 U,  but it is the 235

92 U nucleus 

that undergoes the fission.  Since 238

92 U is almost 100% of the natural abundance, we can use the 

abundance of 235

92 U from Appendix F as a ratio of 235

92 U to 238

92 U. 

  
 

235 238
7 92 92

13 235 23 238

92 92

238

92

5 238 5
92

1MeV 1nucleus U 1 atom U 0.238 kg
3 10 J

1.60 10 J 200 MeV 0.0072 atoms U 6.02 10 nuclei U

5.15 5 10 kg U10 kg U



 


 

 

     
             

 
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30.  Since the reaction is 38% efficient, the fission needs to generate  950 0.38 MW  of power.  Convert 

the power rating to a mass of uranium using the factor-label method.  We assume 200 MeV is 
released per fission, as in other problems. 

  

6 7
235

926 19 23

235

92

950 10 J 1 atom 1eV 0.235kg U 3.156 10 s
962kg U

0.38 s 200 10 eV 1.60 10 J 6.02 10 atoms 1y

960kg U



 
    

  



 

 

31. We find the number of collisions from the relationship  1
0 2 ,

n

nE E where n is the number of 

collisions. 

   
6

01
0 2 1 1

2 2

0.040eVln ln
1.0 10 eV    24.58 25collisions

ln ln

n

n

n

E

E
E E n        

 
32. If the uranium splits into equal fragments, each will have an atomic mass number of half of 236, or 

118.  Each will have a nuclear charge of half of 92, or 46.  Calculate the electrical potential energy 
using Eq. 23-10.  The distance between the nuclei will be twice the radius of a nucleus, and the 
radius is given in Eq. 41-1. 

       
   

22 19

9 2 21 2
1/ 3 1315

0

46 1.60 10 C1 1MeV
8.99 10 N m C 260MeV

4 1.60 10 J2 1.2 10 m 118

QQ
U

r






   


 
 
 

  

 This is about  30% larger  than the nuclear fission energy released. 
 
33. The height of the Coulomb barrier is given by the electrostatic potential energy, Eq. 23-10.  The  

distance to use is the sum of the radii of the two particles involved.  For the alpha decay, the 

daughter nucleus is 232
90Th.   We assume the fission results in two equal fragments, each with Z = 46 

and A = 128.  These are palladium nuclei. 

  
  

  
 

   

    
   

0 0

0

0

Th Pd Pd
fission

Th Pd Pd

Th
15 1/3 1/3 1/3

Th
2 2 1/3 1/3

Pd Pdfission

15 1/3Pd Pd

1 1

4 4

1

4

1

4

  ;  

2 90

1.2 10 m 4 232 2 90 2 128
0.11

46 46 4 232

1.2 10 m 2 128

Q Q
U

r r r

Q

U r

Q

r r

Q Q
U

r

Q

r
QU








 

 









 
 

 
   


 

 

 
34. The reaction rate is proportional to the number of neutrons causing the reactions.  For each fission 

the number of neutrons will increase by a factor of 1.0004, so in 1000 milliseconds the number of 

neutrons will increase by a factor of  1000
1.0004 1.5 .  

 

35.    23 7 163 3
2 2 1.38 10 J K 2 10 K 4 10 JK kT         

   23 73
2 19

1eV
     1.38 10 J K 2 10 K 2588eV 3000eV

1.60 10 J



    


 
 
 
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36. The Q-value gives the energy released in the reaction. 

  2 3 4
1 1 2

2 2 2 2

nH H He
Q m c m c m c m c     

   
2

2MeV
  2.014082u 3.016049u 4.002603u 1.008665u 931.5 17.57 MeV

u

c
c    

 
 
 

 

 

37. Calculate the Q-value for the reaction 2 2 3

1 1 2H H  He n    

  
  

2 3
1 2

2 2 2

nH He

2
2

2

MeV
  2 2.014082u 3.016029u 1.008665u 931.5 3.23MeV

u

Q m c m c m c

c
c

  

   
 
 
 

 

 
38. For the reaction in Eq. 42-7a, if atomic masses are to be used, then one more electron needs to be 

added to the products side of the equation.  Notice that charge is not balanced in the equation as 

written.  The balanced reaction is 1 1 2

1 1 1H H  H e ev       

  
    

1 2 +
1 1

2 2 2 2

H H e e

2
2

2

MeV
  2 1.007825u 2.014082 u 2 0.000549u 931.5 0.4378MeV 0.44 MeV

u

Q m c m c m c m c

c
c

   

    
 
 
 

 

For the reaction in Eq. 42-7b, use atomic masses since there would be two electrons on each side. 

  
 

1 2 3
1 1 2

2 2 2

H H He

2
2MeV

  1.007825u 2.014082u 3.016029u 931.5 5.4753MeV 5.48MeV
u

Q m c m c m c

c
c

  

    
 
 
 

 

For the reaction in Eq. 42-7c, use atomic masses since there would be two electrons on each side. 

  
    

3 4 1
2 2 1

2 2 2

He He H

2
2

2 2

MeV
  2 3.016029u 4.002603 2 1.007825u 931.5 12.86MeV

u

Q m c m c m c

c
c

  

   
 
 
 

 

 

39. (a) Reaction 42-9a:  
 

23

27

4.00 MeV 1u 1kg
5.98 10 MeV g

2 2.014082 u 1.66 10 kg 1000 g
   


 

  Reaction 42-9b:  
 

23

27

3.23MeV 1u 1kg
4.83 10 MeV g

2 2.014082 u 1.66 10 kg 1000 g
   


 

  Reaction 42-9c:  
 

24

27

17.57 MeV 1u 1kg
2.10 10 MeV g

2.014082 u 3.016049 u 1.66 10 kg 1000 g
   

 
 

(b) Uranium fission (200 MeV per nucleus): 

      
 

23

27

200 MeV 1u 1kg
5.13 10 MeV g

235 u 1.66 10 kg 1000 g
   


 

Reaction 42-9a gives about 17% more energy per gram than uranium fission.  Reaction 42-9b 
gives about 6% less energy per gram than uranium fission.  Reaction 42-9c gives about 4 times 
as much energy per gram than uranium fission. 
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40. Calculate the Q-value for the reaction 238 239

92 92U n  U   

  238 239
92 92

2 2 2

nU U
Q m c m c m c    

   
2

2MeV
  238.050788u 1.008665u 239.054293u 931.5 4.807 MeV

u

c
c   

 
 
 

 

 
41. The reaction of Eq. 42-9b consumes 2 deuterons and releases 3.23 MeV of energy.  The amount of 

energy needed is the power times the elapsed time, and the energy can be related to the mass of 
deuterium by the reaction. 

  
 

3
7

13 23

4

J s 1MeV 2d 2.014 10 kg
850 1 yr 3.156 10

s yr 1.60 10 J 3.23MeV 6.02 10 d

     3.473 10 kg 0.35g










 

  

      
                

 
42. (a) The reactants have a total of 3 protons and 7 neutrons, and so the products should have the  

same.  After accounting for the helium, there are 3 neutrons and 1 proton in the other product, 

and so it must be tritium, 3

1He.   The reaction is 6 1 4 3

3 0 2 1Li n  He H.    

 (b)  The Q-value gives the energy released. 

   
 

6 1 4 3
3 0 2 1

2 2 2 2

Li n He He

2
2MeV

  6.015123u 1.008665u 4.002603u 3.016049u 931.5 4.784MeV
u

Q m c m c m c m c

c
c

   

    
 
 
 

 

 
43.  Assume that the two reactions take place at equal rates, so they are both equally likely.  Then from 

the reaction of 4 deuterons, there would be a total of 7.228 MeV of energy released, or 1.807 MeV 

per deuteron on the average.  A total power of 
1250 MW

3788 MW
0.33

  must be obtained from the 

fusion reactions to provide the required 1250 MW output, because of the 330% efficiency.  We 
convert the power to a number of deuterons based on the energy released per reacting deuteron, and 
then convert that to an amount of water using the natural abundance of deuterium. 

  

6

13

2 2

23

J 3600s 1MeV 1 d 1 H atom
3788 10

s 1h 1.60 10 J 1.807 MeV 0.000115 d's
3788 MW    

1H O molecule 0.018 kg H O

2 H atoms 6.02 10 molecules

                      


 






        
                
   
   
   

            6131kg h 6100 kg h 

 

 
44. We assume that the reactants are at rest when they react, and so the total momentum of the system is 

0.  As a result, the momenta of the two products are equal in magnitude.  The available energy of 
17.57 MeV is much smaller than the masses involved, and so we use the non-relativistic relationship 

between momentum and kinetic energy, 
2

    2
2

.
p

K p mK
m

    

  
 

4 4 4 4
2 2 2 2

4 4 4 4 4
2 2 2 2 2

n total n n nHe He He He

n n n totalHe He He He He

17.57 MeV              2 2   

      

K K K p p m K m K

m K m K m K m K K

      

    
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  4
2

4
2

n
totalHe

nHe

1.008665
17.57MeV 3.536MeV 3.5MeV

4.002603 1.008665

m
K K

m m
   

 
 
 
 

 

  4
2

n total He
17.57 MeV 3.54MeV 14.03MeV 14MeVK K K       

If the plasma temperature were significantly higher, then the approximation of 0 kinetic energy being 
brought into the reaction would not be reasonable.  Thus the results would depend on plasma 
temperature.  A higher plasma temperature would result in higher values for the energies. 

 
45. In Eq. 42-9a, 4.00 MeV of energy is released for every 2 deuterium atoms.  The mass of water can be 

converted to a number of deuterium atoms. 

  

 

 

23 4
212

2

2 2

6 19
21 9

6.02 10 H O 2 H 1.15 10 d
1.00kg H O 7.692 10 d nuclei  

0.018kg H O 1H O 1H

4.00 10 eV 1.60 10 J
7.692 10 d nuclei 2.46 10 J

2datoms 1eV





 
  

 
  

   
   

   
  
  
  

 

 As compared to gasoline: 
9

7

2.46 10 J
50 times more than gasoline

5 10 J




   

 

46. (a) We follow the method of Example 42-10.  The reaction is 12 1 13

6 1 7C H  N    .  We calculate  

the potential energy of the particles when they are separated by the sum of their radii.  The radii 
are calculated from Eq. 41-1. 

       
   

219

9 2 2C H
total 15 1/ 3 1/ 3 13

0 C H

6 1 1.60 10 C1 1MeV
8.99 10 N m C

4 1.2 10 m 1 12 1.60 10 J

         2.19 MeV

q q
K

r r



 


  

   



 
 
 


 

For the d-t reaction, Example 42-10 shows total 0.45MeVK  .  Find the ratio of the two 

energies.  

C

d t

2.19 MeV
4.9

0.45 MeV

K

K 

   

The carbon reaction requires about 5 times more energy than the d-t reaction.  

 (b) Since the kinetic energy is proportional to the temperature by 3
2K kT , since the kinetic  

energy has to increase by a factor of 5, so does the temperature. 

 8 94.9 3 10 K 1.5 10 KT     . 

 

47. (a) No carbon is consumed in this cycle because one 12

6 C  nucleus is required in the first step of the  

cycle, and one 12

6 C  nucleus is produced in the last step of the cycle.  The net effect of the cycle 

can be found by adding all the reactants and all the products together, and canceling what 
appears on both sides of the reaction. 

   

12 1 13

6 1 7

13 13

7 6

13 1 14

6 1 7

14 1 15

7 1 8

C H  N

      N  C e

C H  N

N H  O

v









  

  

  

  
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15 15

8 7

15 1 12 4

7 1 6 2

      O  N e

N H  C He

v  

  
 

____________________________________ 
 

   
12 1 13 13 1 14 1 15 15 1

6 1 7 6 1 7 1 8 7 1

13 13 14 15 15 12 4

7 6 7 8 7 6 2

C H N C H N H O N H

            N C e N O N e C Hev v   

        

             
 

____________________________________ 
 

1 4

1 24 H    He 2e 2 3v      

There is a difference of one gamma ray in the process, as mentioned in the text. 
(b) To use the values from Appendix F, we must be sure that number of electrons is balanced as  

well as the number of protons and neutrons.  The above “net” equation does not consider the 
electrons that neutral nuclei would have, because it does not conserve charge.  What the above 
reaction really represents (ignoring the gammas and neutrinos) is the following. 

   1 4 1 1 1

1 2 1 1 04 H    He 2 e           4 p    2 p 2 n 2e        

  To use the values from Appendix F, we must add 4 electrons to each side of the reaction. 

      1 1 1 1 4

1 1 0 1 24 p 4e   2 p 2e 2 n 2e 2e     4 H  He 2e 2e                

The energy produced in the reaction is the Q-value. 

   
    

1 4
1 2

2 2

eH He

2
2

4 4

MeV
  4 1.007825u 4.002603u 4 0.000549 u 931.5 24.69 MeV

u

Q m c m c m

c
c

  

   
 
 
 

 

As mentioned at the top of page 1143, the positrons and the electrons annihilate to produce 

another 2.04 MeV, so the total energy released is  24.69 MeV 2 1.02 MeV 26.73MeV .   

 (c) In some reactions extra electrons must be added in order to use the values from Appendix F. 
   

The first equation is electron-balanced, and so Appendix F can be used. 

   
 

12 1 13
6 1 7

2 2 2

C H N

2
2MeV

  12.000000 u 1.007825 u 13.005739 u 931.5 1.943MeV
u

Q m c m c m c

c
c

  

   
 
 
 

 

  The second equation needs to have another electron, so that 13 13

7 6N  C e e v     . 

   
  

13 13
7 6

2 2 2

eN C

2
2

2

MeV
  13.005739 u 13.003355u 2 0.000549 u 931.5 1.198 MeV

u

Q m c m c m c

c
c

  

   
 
 
 

 

We must include an electron-positron annihilation in this reaction. 

1.198 MeV 1.02 MeV 2.218 MeV   
 

The third equation is electron-balanced. 

   
 

13 1 14
6 1 7

2 2 2

C H N

2
2MeV

  13.003355 u 1.007825 u 14.003074 u 931.5 7.551MeV
u

Q m c m c m c

c
c

  

   
 
 
 
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The fourth equation is electron-balanced. 

   14 1 15
7 1 8

2 2 2

N H O
Q m c m c m c    

    
2

2MeV
  14.003074 u 1.007825 u 15.003066 u 931.5 7.296 MeV

u

c
c   

 
 
 

 

  The fifth equation needs to have another electron, so that 15 15

8 7O  N e e v     . 

   
  

15 15
8 7

2 2 2

eO N

2
2

2

MeV
  15.003066 u 15.000109 u 2 0.000549 u 931.5 1.732 MeV

u

Q m c m c m c

c
c

  

   
 
 
 

 

We must include an electron-positron annihilation in this reaction. 

1.732 MeV 1.02 MeV 2.752 MeV   
 

  The sixth equation is electron-balanced. 

    

15 1 12 4
7 1 6 2

2 2 2 2

N H C He

2
2MeV

  15.000109 u 1.007825 u 12.000000 u 4.002603u 931.5
u

  4.966 MeV

Q m c m c m c m c

c
c

   

   



 
 
 

 

  The total is found as follows. 
1.943MeV 2.218 MeV 7.551MeV 7.296 MeV 2.752 MeV 4.966 MeV

     26.73MeV

    


  

 (d) It takes a higher temperature for this reaction than for a proton-proton reaction because the  
reactants have to have more initial kinetic energy to overcome the Coulomb repulsion of one 
nucleus to another.  In particular, the carbon and nitrogen nuclei have higher Z values leading to 
the requirement of a high temperature in order for the protons to get close enough to fuse with 
them. 

 
48.  Because the quality factor of alpha particles is 20 and the quality factor of X-rays is 1, it takes 20 

times as many rads of X-rays to cause the same biological damage as compared to alpha particles.  

Thus the 250 rads of alpha particles is equivalent to 250 rad 20 5000 rad   of X-rays. 

 
49. Use Eq. 42-11b to relate Sv to Gy.  From Table 42.1, the quality factor of gamma rays is 1, and so 

the number of Sv is equal to the number of Gy.  Thus 4.0Sv 4.0 Gy . 

 
50.  A gray is 1 Joule per kg, according to Eq. 42-10. 

  
J

3.0 65kg 195J 200J
kg

    (2 sig. fig.) 

 
51.  The biological damage is measured by the effective dose, Eq. 42-11b. 

  

65rad fast neutrons 10 rad slow neutrons 3 

65rad 10
220 rad slow neutrons

3

x

x

   


 
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52. (a) Since the quality factor for protons is 1, the effective dose (in rem) is the same as the absorbed  
dose (in rad).  Thus the absorbed dose is 1.0 rad or 0.010 Gy. 

 
 (b) A Gy is a J per kg. 

       10

19 6

1J kg 1eV 1p
0.010Gy 0.25kg 1.3 10 p

1Gy 1.60 10 J 1.2 10 eV
 

 
    

       
 

 
53.  The counting rate will be 85% of 25% of the activity. 

       
10

6 3.7 10 decays s 1
0.035 10 Ci 0.25 0.85 275.2 280counts s

1Ci 1decay
counts s

 
  

  
  
  

 

 
54. The two definitions of roentgen are 121.6 10 ion pairs g  produced by the radiation, and the newer 

definition of 20.878 10 J kg  deposited by the radiation.  Start with the current definition, and 
relate them by the value of 35 eV per ion pair. 

  
       2 19

12

1R 0.878 10 J kg 1kg 1000g 1eV 1.60 10 J 1ion pair 35eV

1.567 10 ion pairs g

   

 
 

 The two values of ion pairs per gram are within about 2% of each other. 
 
55. We approximate the decay rate as constant, and find the time to administer 36 Gy.  If that calculated 

time is significantly shorter than the half-life of the isotope, then the approximation is reasonable.  If 
1.0 mCi delivers about 10 mGy/min, then 1.6 mCi would deliver 16 mGy/min. 

  
3

dose 36Gy 1day
dose rate time    time 1.56day 1.6day

rate 16 10 Gy min 1440 min
      



 
 
 

 

 This is only about 11% of a half life, so our approximation is reasonable. 
 
56.  Since the half-life is long (5730 yr) we will consider the activity as constant over a short period of 

time.  Use the definition of the curie from Section 42-6. 

  

 

   

10
6 4

1/2

4 7 161/2

16 10

23

3.70 10 decays s ln 2
2.00 10 Ci 7.40 10 decays s   

1Ci

5730 y
7.4 10 decays s 3.156 10 s y 1.931 10 nuclei

ln 2 ln 2

0.014 kg
1.931 10 nuclei 4.49 10 kg

6.02 10 nuclei

dN
N N

dt T

TdN
N

dt






      

     

  


 
 
 

 
 
 

 
 
 

 

 

57. (a) According to Appendix F, 131

53 I  decays by beta decay. 

131 131

53 54I  Xe + v    

 (b) The number of nuclei present is given by Eq. 41-6. 

   
 1/ 2

0 0
0

ln ln
8.0d ln0.070

    30.69d 31d
ln2 ln2

t

N N
T

N N
N N e t


            
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(c) The activity is given by .dN dt N    This can be used to find the number of nuclei, and then 

the mass can be found.  Note that the numeric value of dN dt  is negative since the number of 
undecayed nuclei is decreasing. 

   

           3 10

1/ 2

13

13 12

23

  

8.0d 86400s d 1 10 Ci 3.70 10 decays s

ln 2 ln 2

   3.69 10 nuclei

0.131kg
3.69 10 nuclei 8 10 kg 8 ng

6.02 10 nuclei

dN
N

dt

T dN dtdN dt
N









  

 
   

 

   


 
 
 

 

 
58.  The activity is converted to decays per day, then to energy per year, and finally to a dose per year.   

The potassium decays by gammas and betas, according to Appendix F.  Gammas and betas have a 
quality factor of 1, so the number of Sv is the same as the number of Gy, and the number of rem is 
the same as the number of rad. 

  

 

 

12 10 6

13
6 5

Ci decays s 3600s L decays
2000 10 3.70 10 12hr 0.5 1.598 10

L 1Ci hr day day

decays day MeV 1.60 10 J J
1.598 10 365 1.5 1.40 10

day yr decay MeV yr
0.10






   


  

      
          

     
     
     

  

 (a) For the adult, use a mass of 60 kg. 

5

7 2

7 2

5

J 1 1Gy 1Sv
Effective dose 1.40 10

yr 60kg 1J kg 1Gy

2.33 10 Sv yr 2.33 10 mrem yr

2 10 Sv yr 2 10 mrem yr

10 mrem

Sv

 or 



 

 

 

  

  

    
    
    

 
 

 
 

   

2

4

mrem
2.33 10

year
fraction of allowed dose 2 10 times the allowed dose

mrem
100

year






    

(b) For the baby, the only difference is that the mass is 10 times smaller, so the effective dose is 10  
times bigger.  The results are as follows. 

   62 10 Sv yr ,  0.2 mrem yr ,  and 32 10 times the allowed dose  

 
59.  Each decay releases one gamma ray of energy 122 keV.  Half of that energy is deposited in the body.  

The activity tells at what rate the gamma rays are released into the body.   We assume the activity is 
constant. 

        6 10 16s 1
1.55 10 Ci 3.70 10 86400s day 0.50 122keV 1.60 10 J keV

Ci 58kg


   

  
      

 

  7 7J kg Gy
      8.338 10 8.3 10

day day
      
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60. We use the dose, the mass of the beef, and the energy per electron to find the number of electrons. 

  3 17

13

1J kg 1MeV 1e
4.5 10 Gy 5kg 1 10 e

1Gy 1.60 10 J 1.2MeV





  



    
        

 

 
61.  (a) The reaction has Z = 86 and A = 222 for the parent nucleus.  The alpha has Z = 2 and A = 4, so  

the daughter nucleus must have Z = 84 and A = 218.  That makes the daughter nucleus 218

84 Po .  

(b) From Figure 41-12, polonium-218 is  radioactive .  It decays via both  alpha and beta decay  ,  
each with a half-life of  3.1 minutes  .  

(c) The daughter nucleus is not a noble gas, so it is  chemically reacting  .  It is in the same group as  
oxygen, so it might react with many other elements chemically. 

 (d) The activity is given by Eq. 41-7a, 
1/2

ln 2
R N N

T
  . 

       
23

9

1/2

6 6

ln 2 ln 2 6.02 10 nuclei
1.6 10 g

3.8235d 86400s d 222 g

9.104 10 decays s 9.1 10 Bq 0.25mCi

R N
T

 
  

    

     

  To find the activity after 1 month, use Eq. 41-7d. 

   
   

 
1/2

ln 2 ln 2
30d

3.8235d6 4

0

4

9.104 10 decays s 3.956 10 decays s

4.0 10 Bq 1.1 Ci

t
TR R e e



 

    

  
 

 
62. (a) For parallel rays, the object and the image will be the same size, and so the magnification is 1. 

(b) When the film is pressed against the back, the image of the back on  
the film will be the same size as the back, since there is no appreciable 
spreading of the rays from the back to the film.  So mback = 1.  But, 
from the diagram, we see that the rays which define the boundary of 
the area on the chest will have a much larger image with the film at the 
back.  The height of the image is proportional to the distance from the 
point source, since the rays travel in straight lines. 

   2 1 2 2
front

1 1 1

25
1 1 2.67

15

h d d d
m

h d d


        

So the range of magnifications is 1 2.67,m  depending on which 
part of the body is being imaged. 

 
 
 
63. The frequency is given in Example 42-14 to be 42.58 MHz.  Use that to find the wavelength. 

  
8

6

2.998 10 m s
    7.041m

42.58 10 Hz

c
c f

f
 


    


 

 This lies in the  radio wave  portion of the spectrum. 
 
 
 
 
 

h2
h1

d2d1
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64. We use Eq. 42-12, but with the neutron’s magnetic moment. 
  n T2μ   hf B   

  

     

  
  

T

n N

6 27

19

2

2μ 2 0.7023 μ 0.70232 0.7023
4

2 42.58 10 Hz 1.673 10 kg
    3.978T

0.7023 1.602 10 C

p

p

fmhf hf hf
B

eh e
m





 



   

 
 



 

 

65. (a) The reaction is 9 4

4 2Be He  n ?   .  There are 6 protons and 13 nucleons in the reactants, and  

so there must be 6 protons and 13 nucleons in the products.  The neutron is 1 nucleon, so the 

other product must have 6 protons ad 12 nucleons.  Thus it is 12

6 C . 

 (b) 9 4 12
4 2 6

2 2 2 2

nBe He C
Q m c m c m c m c     

 
2

2MeV
  9.012182 u 4.002603u 1.008665 u 12.000000 u 931.5 5.701MeV

u

c
c    

 
 
 

 

 
66. The energy and temperature are related by the Boltzmann constant, which has units of 

energy/temperature. 

  23 8

19

J 1eV 1keV
1.381 10 8.620 10 keV K

K 1.602 10 J 1000eV
k  


     


 

 
67. From Eq. 18-5, the average speed of a gas molecule (root mean square speed) is inversely 

proportional to the square root of the mass of the molecule, if the temperature is constant.  We 
assume that the two gases are in the same environment and so at the same temperature.  We use 6UF  

molecules for the calculations. 

  
 
 

235 238
92 6 92 6

238 235
92 6 92 6

UF UF

UF UF

238 6 19
1.0043 :1

235 6 19

v m

v m


  


 

 
68. (a) We assume that the energy produced by the fission was 200 MeV per fission, as in Eq. 42-6. 

   
 

12

13 23

5 10 J 1MeV 1fission atom 0.235 kg
20 kilotons TNT

1kiloton 1.60 10 J 200 MeV 6.02 10 atom

                              1.220 kg 1kg





 

 

      
              

 (b) Use 2E mc . 

   

 

 

12

2 3

22 8

5 10 J
20 kilotons TNT

1kiloton
    1.11 10 kg 1g

3.0 10 m s

E
E mc m

c




      


 
 
   

  This is consistent with the result found in Problem 26. 
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69.  The effective dose (in rem) is equal to the actual dose (in rad) times the quality factor, from Eq. 42- 
11a. 

           dose rem 29 mrad yr  X-ray, -ray 1 3.6 mrad yr 10 65mrem yr    

 
70. The oceans cover about 70% of the Earth, to an average depth of approximately 4 km.  The density 

of the water is approximately 31000 kg m .  Find the volume of water using the surface area of the 
Earth.  Then convert that volume of water to mass, to the number of water molecules, to the number 
of hydrogen atoms, and then finally to the number of deuterium atoms using the natural abundance 
of deuterium from Appendix F. 

  

           

 

26 3

21

23
21

Mass of water surface area depth density 4 6.38 10 m 4000m 1000kg m

                       2.05 10 kg water

6.02 10 molecules 2 H atoms 0.000115 d atom
2.05 10 kg water

0.018 kg water 1 molecule

  

 




  
    

43 43

3
43 16

23

s

1 H atom

                    1.58 10 d 2 10 d atoms

2 10 kg
                    1.58 10 d 5 10 kg d

6.02 10 d atoms



   


   



 
 
 

 
 
 

 

From Eqs. 42-9a and 42-9b, if the two reactions are carried out at the same rate then 4 deuterons 
would produce 7.23 MeV of energy.  Use that relationship to convert the number of deuterons in the 
oceans to energy. 

   
13

43 30 307.23MeV 1.60 10 J
1.58 10 d 4.57 10 J 5 10 J

4 d 1MeV


        

 
71. Because the quality factor for gamma rays is 1, the dose in rem is equal in number to the dose in rad.  

Since the intensity falls off as r2, the square of the distance, the exposure rate times r2 is constant. 

   

 

3

23 2 2

22

3

5rem 1rad 1 year 1week rad
Allowed dose 2.747 10

year 1rem 52 weeks 35hours hour

rad rad
2.747 10 5.2 10 1m   

hour hour

rad
5.2 10 1m

hour 4.351m
rad

2.747 10
hour

r

r



 





  

   


 



    
    
    

   
   
   

 
 
 
 
 
 

4.4m

 

 

72. (a) The reaction is of the form 4 222

2 86?   He Rn  .  There are 88 protons and 226 nucleons as  

products, so there must be 88 protons and 226 nucleons as reactants.  Thus the parent nucleus is 
226

88 Ra . 

   226 4 222

88 2 86Ra  He Rn   

(b) If we ignore the kinetic energy of the daughter nucleus, then the kinetic energy of the alpha 
particle is the Q-value of the reaction. 
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 

226 4 222
88 2 86

2 2 2

Ra He Rn

2
2MeV

226.025410 u 4.002603u 222.017578 u 931.5 4.871MeV
u

K m c m c m c

c
c

   

   
 
 
 

 

 (c) From momentum conservation, the momentum of the alpha particle will be equal in magnitude  
to the momentum of the daughter particle.  At the energy above, the alpha particle is not 

relativistic, and so 
2

    2
2

p
K p m K

m


   


   . 

      
2931.5MeV

2 2 4.002603u 4.871MeV 191MeV
1u

a a

c
p m K c   

 
 
 

 

 (d) Since daughterp p  , 
2 2
daughter

daughter

daughter daughter2 2

p p
K

m m
  . 

   
 

 

22
2

daughter 2

daughter

191MeV
8.82 10 MeV

2 931.5MeV
2 222 u

1u

cp
K

m c
    

 
 
 

 

Thus we see that our original assumption of ignoring the kinetic energy of the daughter nucleus 
is valid.  The kinetic energy of the daughter is less than 2% of the Q-value. 

 
73.  (a) The mass of fuel can be found by converting the power to energy to number of nuclei to mass. 

   
   

7
6

13 23

4

3.156 10 s 1MeV 1fission atom 0.235kg
2400 10 J s 1 y

1y 1.60 10 J 200 MeV 6.02 10 atom

     9.240 10 kg 920 kg






 

  

      
              

 (b) The product of the first 5 factors above gives the number of U atoms that fission. 

   
7

6

13

26

3.156 10 s 1MeV 1fission atom
#Sr atoms 0.06 2400 10 J s 1 y

1y 1.60 10 J 200MeV

                 1.42 10 Sr atoms




 



 

    
          

  The activity is given by Eq. 41-7a. 

   
     

 

26 17

7

1/ 2

17 6 6

10

ln 2 ln 2
1.42 10 1.076 10 decays s

29 yr 3.156 10 s yr

1Ci
      1.076 10 decays s 2.91 10 Ci 3 10 Ci

3.70 10 decays s

dN
N N

dt T
     



     


 
 
 

 

 
74. This “heat of combustion” is 26.2 MeV / 4 hydrogen atoms. 

  
13

14

27

26.2 MeV 1.60 10 J 1H atom 1u
6.26 10 J kg

4 H atoms 1MeV 1.0078 u 1.66 10 kg






 



   
   

   
 

 This is about 72 10  times the heat of combustion of coal. 
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75. (a) The energy is radiated uniformly over a sphere with a radius equal to the orbit radius of the  
Earth. 

      22 11 26 261300 W m 4 1.496 10 m 3.656 10 W 3.7 10 W       

(b) The reaction of Eq. 42-8 releases 26.2 MeV for every 4 protons consumed, assuming we ignore 
the energy carried away with the neutrinos. 

   

26 38

13

38

J 4 protons 1MeV
3.656 10 3.489 10 protons s

s 26.2 MeV 1.60 10 J

3.5 10 protons s


  



 

   
          

(c) Convert the Sun’s  mass to a number of protons, and then use the above result to estimate the  
Sun’s lifetime. 

   30 11

27 38 7

1proton 1s 1yr
2.0 10 kg 1.1 10 yr

1.673 10 kg 3.489 10 protons 3.156 10
  

  
   

      
 

 
76. For the net proton cycle, Eq. 42-8, we see that there are two neutrinos produced for every four 

protons consumed.  Thus the net number of neutrinos generated per second from the sun is just half 
the value of protons consumed per second.  That proton consumption rate is calculated in Problem 
75b. 

   38 382
3.489 10 protons s 1.745 10 s

4 p


  

 
 
 

  

We assume the neutrinos are spread out uniformly over a sphere centered at the Sun.  So the fraction 
that would pass through the area of the ceiling can be found by a ratio of areas, assuming the ceiling 
is perpendicular to the neutrino flux.  But since the window is not perpendicular, a cosine factor is 
included to account for the angle difference, as discussed in Eq. 22-1a.  Finally, we adjust for the 
one-hour duration, assuming the relative angle is constant over that hour. 

   
 

  
2

38 20

211

180 m
1.745 10 s cos 38 3600s 3.2 10

4 1.496 10 m
v


   


 

 
77. We use the common value of 200 MeV of energy released per fission.  We then multiply that by the 

number of fissions, which we take as 5.0% of the number of U-238 atoms. 

  

 
23513

23892
92235 238

92 92

23 238

92

238

92

12 12

U nuclei200 MeV 1.602 10 J
0.05 2.0 kg U

1 nucleus of U 1MeV U nuclei
Total energy

6.022 10 nuclei of U nuclei

0.238 kg U

8.107 10 J 8 10 J








   

   
   

   
  
     

 

 
78. (a) The energy released is given by the Q-value. 

     12 24
6 12

2
2 2 2

C Mg

MeV
2 2 12.000000 u 23.985042 u 931.5 13.93MeV

u

c
Q m c m c c    

 
 
 

 

 (b) The total kinetic energy of the two nuclei must equal their potential energy when separated by  
6.0 fm. 

   1 2

0

1
2   

4

q q
K

r
   
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     219

9 2 21 21 1
2 2 15 13

0

6 1.60 10 C1 1MeV
8.99 10 N m C

4 6.0 10 m 1.60 10 J

4.315 MeV 4.3MeV

q q
K

r



 


  

 

 

    
 
 


 

 (c) The kinetic energy and temperature are related by Eq. 18-4. 

   

 
13

103 2 2
2 3 3 23

1.60 10 J
4.315MeV

1MeV
    3.3 10 K

1.38 10 J K

K
K kT T

k







     


 
 
   

 

79. (a) A Curie is 103.7 10 decays s.  

  6 100.10 10 Ci 3.7 10 decays s 3700decays s    

 (b) The beta particles have a quality factor of 1.  We calculate the dose in gray and then convert to  
sieverts. The half life is over a billion years, so we assume the activity is constant. 

   
       13 7

4 4 4

1
3700decays s 1.4 MeV decay 1.60 10 J MeV 3.156 10 s y

55kg

     4.756 10 J kg y 4.756 10 Gy y 4.8 10 Sv y



  

 

     

 
 
   

  This is about 
4

3

4.756 10 Sv y
0.13

3.6 10 Sv y









 or 13% of the background rate. 

 

80. The surface area of a sphere is 24 r . 

  
   

 

7 107

22 2 26
Earth

2.0 10 Ci 3.7 10 decays sActivity 2.0 10 Ci decays s
1400

m 4 m4 6.38 10 mr 

 
  


 

 

81.   4 12
2 6

2
2 2 2

He C

MeV
3 3 4.002603u 12.000000 u 931.5 7.274 MeV

u

c
Q m c m c c    

 
 
 

 

 
82. Since the half-life is 30 years, we assume that the activity does not change during the 2.0 hours of 

exposure. We calculate the total energy absorbed, and then calculate the effective dose.  The two 
energies can be added directly since the quality factor for both gammas and betas is about 1. 

  

   6 10

5

3 -19

5
5 5

decays s
1.2 10 Ci 3.7 10 1.6 hr 3600

s 1hr
Energy 3.478 10 J

eV J
850 10 1.60×10

decay eV

3.478 10 J 100rad
dose 5.351 10 rad 5.4 10 rem

65kg 1J kg






 

 

  




     

           
   
       

 

 
83.  The half life of the strontium isotope is 28.79 years.  Use that with Eq. 41-7c to find the time for the 

activity to be reduced to 15% of its initial value. 

  
   1/2

0

0 0

28.79 y ln 0.151
    ln ln 79 y

ln 2 ln 2
t TR R

R R e t
R R




          
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84.  Source B is more dangerous than source A because of its higher energy.  Since both sources have the 
same activity, they both emit the same number of gammas.  Source B can deposit twice as much 
energy per gamma and therefore cause more biological damage. 

 

Source C is more dangerous than source B because the alphas have a quality factor up to 20 times 
larger than the gammas.  Thus a number of alphas may have an effective dose up to 20 times higher 
than the effective dose of the same number of like-energy gammas. 

 

 So from most dangerous to least dangerous, the ranking of the sources is  C > B > A  . 
 

We might say that source B is twice as dangerous as source A, and source C is 20 times more 
dangerous than source B. 

 
85.  The whole-body dose can be converted into a number of decays, which would be the maximum 

number of nuclei that could be in the Tc sample.  The quality factor of gammas is 1. 

  

   

 

3 17

19

17 12

3

1J kg 1eV
50 mrem 50 mrad    50 10 rad 60 kg 1.875 10 eV

100 rad 1.60 10 J

1 effective 2  decays 1 nucleus
1.875 10 eV 2.679 10 nuclei

140 10 eV 1 effective 1  decay

 
 




    



  


   
     

   
       

 

This is the total number of decays that will occur.  The activity for this number of nuclei can be 
calculated from Eq. 41-7a. 

  
 
  

12

3

10

1/2

ln 2 2.67910 decaysln 2 1Ci
2.32 10 Ci 2 mCi

6 h 3600s h 3.70 10 decays s
R N N

T
      



 
 
 

 

 

86. The number of 60
27 Co  nuclei  60N can be calculated from the activity and the half-life of 60

27 Co.   The 

number of 60
27 Co  nuclei can also be calculated from the cross section and the number of 59

27 Co  nuclei 

 59N  present in the paint.  By combining these two calculations, we can find the number of 59
27 Co in 

the paint.  We assume that, since the half life is relatively long, that all 60
27 Co are made initially, 

without any of them decaying.  

  60 60 1/2
60 60 60

1/2

ln 2
    

ln 2

dN dN T
N N N

dt T dt
     

We assume the paint is thin and so use Eq. 42-3 for the cross section.  Let R represent the rate at 

which 60
27 Co nuclei are made (i.e., the collision rate), and t the elapsed time of neutron bombardment.  

0R  is the rate at which the neutrons hit the painting, and so is the given neutron flux times the area of 

the painting. 

  
   

   

59 0 59
60 0 0

59
59

60 60 1/2
59

volume of paint

volume of paint surface area of paint

neutron flux
neutron flux     

neutron flux ln 2 neutron flux

N R N t
N Rt R n t R t

A

AN t
N t

A

N dN T
N

t dt t


 




 

   

  

 

  
  
  

l
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 
  

    

 

7

12 2
4 28 2

2 2

17 17 5

59 23

5.27 yr 3.156 10 s yr
     55decays s

5.0 10 cm
ln 2 10 19 10 m 300s

cm s m

58.933g
     4.631 10 atoms    4.631 10 atoms 4.5 10 g

6.022 10 atoms
m











      


  
  
  

 
 
 

  

  

87. Since all speeds are relativistic, we may use  2p mK  to relate momentum and kinetic energy.  If 
we assume the target is at rest, then the total momentum of the products must equal the momentum 
of the bombarding particle.  The total (kinetic) energy of the products comes from the kinetic energy 
of the bombarding particle and the Q-value of the reaction. 

  prb
pr b pr pr b br pr b b b

pr pr b

    2 2         
Qmm

p p m K m K K K Q K K
m m m

         


 

 
88. (a) We assume a thin target, and use Eq. 42-3. 

       
5

28 228 3 7

0 0

1 1 1bn
1.6 10 6.8 bn

10 m5.9 10 m 4.0 10 m

R R

R n R n
 

 
    

 
 
 
 l l

  

 (b) We assume that the cross section is the area presented by the gold nucleus. 

   
 2 2 141

4 28 2

4 6.8 bn 1bn
    2.9 10 m

10 m
r d d  





       

 
 
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CHAPTER 43:  Elementary Particles 
 
Responses to Questions 
 
1.  p + n → p + p + – . 
 
2. No.  In the rest frame of the proton, this decay is energetically impossible, and so it is impossible in 

every other frame as well. In a frame in which the proton is moving very fast, the decay products 
must be moving very fast as well to conserve momentum. With this constraint, there will not be 
enough energy to make the decay possible. 

 
3. “Antiatoms” would be made up of antiprotons, antineutrons, and positrons. If antimatter came into 

contact with matter, the corresponding pairs of particles would annihilate, producing energy in the 
form of gamma rays and other particles. 

 
4. The photon signals the electromagnetic interaction. 
 
5.  (a) Yes, if a neutrino is produced during a decay, the weak interaction is responsible. 

 (b) No, for example, a weak interaction decay could produce a Z0 instead of a neutrino. 
 
6. The neutron decay process also produces an electron and an antineutrino; these two particles only 

interact via the weak force. In addition, the strong force dominates at extremely small distances and 
at other distances the weak force dominates.  

 
7. An electron takes part in electromagnetic, weak, and gravitational interactions. A neutrino takes part 

in weak and gravitational interactions. A proton takes part in all four interactions: strong, 
electromagnetic, weak, and gravitational. 

 
8. All of the gauge bosons, leptons, and mesons have baryon number equal to zero and there are no 

baryons produced in the decays, so baryon number is conserved for these groups. The chart below 
shows charge conservation for a few examples of decays in these groups. 

 

Particle name Decay Charge conservation check 
W W ee    +1 = +1 + 0 

muon 
  

ee  –1 = –1 + 0 + 0 

tau 
     

  
ee  

–1 = –1 + 0 + 0 
 
–1 = –1 + 0 + 0 

pion 
    +1 = +1 + 0 

eta o 30   
00     

0 = 0 + 0 + 0 
 
0 = +1 –1 + 0 

 

 The next chart shows charge conservation and baryon number conservation for a sample of the 
baryon decays shown in Table 43-2. 

 

Particle name Decay Charge conservation check Baryon number (B) 
conservation check 

neutron 
eepn    0 = +1 –1 + 0 +1 = +1 + 0 + 0 
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sigma op   
  n  

+1 = +1 + 0  
 
+1 = 0 + 1 

+1 = +1 + 0 
 
+1 = +1 + 0 

 
9.  Decays via the electromagnetic interaction are indicated by the production of photons. In Table 43-2, 

the decays of 0, Σ0, and η0 proceed via the electromagnetic interaction. 
 
10. All of the decays listed in Table 43-2 in which a neutrino or antineutrino is one of the decay products 

occur via the weak interaction. These include the W, muon, tau, pion, kaon, and neutron. In addition, 
the Z particle decays via the weak interaction.  

 
11. The Δ baryon has a baryon number of one and is therefore made of three quarks. The u, c, and t 

quarks have a charge of +2/3 e each and the d, s, and b quarks have a charge of -1/3 e each.  There is 
no way to combine three quarks for a total charge of -2e.   

 
12. As evidenced by their shorter lifetimes, the J/ψ and Υ particles decay via the electromagnetic 

interaction. 
 
13.  Based on the lifetimes listed, all of the particles in Table 43-4, except the J/ψ and the Υ, decay via 

the weak interaction. 
 
14. Baryons are formed from three quarks or antiquarks, each of spin 1

2  or 1
2 ,  respectively. Any 

combination of quarks and antiquarks will yield a spin magnitude of either 1
2  or 3

2 .  Mesons are 

formed from two quarks or antiquarks. Any combination of two quarks or antiquarks will yield a 
spin magnitude of either 0 or 1. 

 
15. The “neutrinolet” would not interact via the gravitational force (no mass), the strong force (no color 

charge), or the electromagnetic force (no electrical charge). In addition, it does not feel the weak 
force. However, it could possibly exist. The photon, for example, also has no rest mass, color charge, 
or electric charge and does not feel the weak force. 

 
16. (a) No. Leptons are fundamental particles with no known internal structure. Baryons are made up  

of three quarks. 
(b)  Yes. All baryons are hadrons. 
(c)  No. A meson is a quark–antiquark pair. 
(d)  No. Hadrons are made up of quarks and leptons are fundamental particles. 

 
17. No. A particle made up of two quarks would have a particular color. Three quarks or a quark–

antiquark pair are necessary for the particle to be white or colorless. A combination of two quarks 
and two antiquarks is possible, as the resulting particle could be white or colorless. 

 
18. Inside the nucleus, a neutron will not decay because the dominant interaction is the strong interaction 

with the other nucleons. A free neutron will decay through the weak interaction. 
 
19. The reaction is not possible, because it does not conserve lepton number. L = 1 on the left-hand side 

of the reaction equation, and L = –1 on the right-hand side of the reaction equation. 
 
20. The reaction proceeds by the weak force. We know this because an electron anti-neutrino is 

produced in the reaction, which only happens in reactions governed by the weak interaction. 
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Solutions to Problems 
 
1. The total energy is given by Eq. 36-11a. 

  2

0 0.938GeV 4.65GeV 5.59GeVE m c K      

 
2. Because the energy of the electrons is much greater than their rest mass, we have .K E pc    

Combine that with Eq. 43-1 for the de Broglie wavelength. 

  
   
   

34 8

17

9 19

6.63 10 J s 3.00 10 m s
 ;          4.4 10 m

28 10 eV 1.60 10 J eV

h hc hc
E pc p E

E


 







 
        

 


 

 
3. The frequency is related to the magnetic field in Eq. 43-2. 

  
   27 7

19

2 1.67 10 kg 3.1 10 Hz2
    2.0T

2 1.60 10 C

qB mf
f B

m q








 
    


 

 
4. The time for one revolution is the period of revolution, which is the circumference of the orbit  

divided by the speed of the protons.  Since the protons have very high energy, their speed is 
essentially the speed of light. 

  
 3

5

8

2 1.0 10 m2
2.1 10 s

3.0 10 m s

r
T

v

 


   


 

 
5. Use Eq. 43-2 to calculate the frequency.  The alpha particle has a charge of +2e and a mass of 4 

times the proton mass. 

  
  

 
19

7

27

2 1.60 10 C 1.7T
1.3 10 Hz 13MHz

2 2 4 1.67 10 kg

qB
f

m 






    

  
 

 

6. (a) The maximum kinetic energy is 
2 2 2

21
22

q B R
K mv

m
  .  Compared to Example 43-2, the charge  

has been doubled and the mass has been multiplied by 4.  These two effects cancel each other in 
the equation, and so the maximum kinetic energy is unchanged.  The kinetic energy from that 
example was 8.653 MeV. 

     
 

13

7 7

27

8.7 MeV

2 8.653MeV 1.60 10 J MeV2
2.042 10 m s 2.0 10 m s

4 1.66 10 kg

K

K
v

m








     



  

 (b) The maximum kinetic energy is 
2 2 2

21
22

q B R
K mv

m
  .  Compared to Example 43-2, the charge  

is unchanged and the mass has been multiplied by 2.  Thus the kinetic energy will be half of what 
it was in Example 43-2 (8.653 MeV). 

     
 

131
2 7 7

27

4.3MeV

2 8.653MeV 1.60 10 J MeV2
2.042 10 m s 2.0 10 m s

2 1.66 10 kg

K

K
v

m








     


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The alpha and the deuteron have the same charge to mass ratio, and so move at the same speed. 

 (c) The frequency is given by 
2

qB
f

m
 .  Since the charge to mass ratio of both the alpha and the  

deuteron is half that of the proton, the frequency for the alpha and the deuteron will both be half 
the frequency found in Example 43-2 for the proton. 

   13MHzf   

 

7. From Eq. 41-1, the diameter of a nucleon is about 15

nucleon 2.4 10 m.d    The 25-MeV alpha particles 

and protons are not relativistic, so their momentum is given by 2p mv mK  .  The wavelength is 

given by Eq. 43-1, 
2

h h

p mK
   . 

  
       

     

34
15

27 6 19

34
15

p
27 6 19

p

6.63 10 J s
2.88 10 m

2 KE 2 4 1.66 10 kg 25 10 eV 1.6 10 J eV

6.63 10 J s
5.75 10

2 KE 2 1.67 10 kg 25 10 eV 1.6 10 J eV

h

m

h

m












 




 


   

  


   

  




 

We see that nucleond   and p nucleon2 .d    Thus the alpha particle will be better for picking out 

details in the nucleus. 
 
8. Because the energy of the protons is much greater than their rest mass, we have .K E pc    

Combine this with the expression (given above Example 43-2) relating the momentum and radius of 
curvature for a particle in a magnetic field. 

    
   

12 19

19 3 8

              

1.0 10 eV 1.60 10 J eV
3.3T

1.60 10 C 1.0 10 m 3.00 10 m s

qBr E
v mv qBr p qBr qBr

m c

E
B

qrc





       

 
  

  

 

 
9. Because the energy of the protons is much greater than their rest mass, we have .K E pc    A 

relationship for the magnetic field is given right before Eq. 43-2. 

    
   

15 19

19 3 8

              

7.0 10 eV 1.60 10 J eV
5.5T

1.60 10 C 4.25 10 m 3.00 10 m s

qBr E
v mv qBr p qBr qBr

m c

E
B

qrc





       

 
  

  

 

 
10. (a) The magnetic field is found from the maximum kinetic energy as derived in Example 43-2. 

   
2 2 2 2

    
2

 
q B R mK

K B
m qR

     

    
  

27 6 19

19

2 2.014 1.66 10 kg 12 10 eV 1.60 10 J eV
0.7082T 0.71T

1.60 10 C 1.0m
B

 



  
  


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 (b) The cyclotron frequency is given by Eq. 43-2. 

   
   
   

19

6

27

1.60 10 C 0.7082T
5.394 10 Hz 5.4 MHz

2 2 2.014 1.66 10 kg

qB
f

m 






    


 

(c) The deuteron will be accelerated twice per revolution, and so will gain energy equal to twice its  
charge times the voltage on each revolution. 

       
6

19

19 3

12 10 eV
number of revolutions 1.60 10 J eV

2 1.60 10 C 22 10 V

  273 revolutions 270 revolutions

n 




  

 

 

 

 (d) The time is the number of revolutions divided by the frequency (which is revolutions per  
second).  

 6

6

273revolutions
5.1 10 s 51 s

5.394 10 rev s

n
t

f
     


 

 (e) If we use an average radius of half the radius of the cyclotron, then the distance traveled is the  
average circumference times the number of revolutions. 

     1
2

distance 2 1.0 m 273 860 mrn     

 
11. Because the energy of the protons is much greater than their rest mass, we have .K E pc    

Combine that with Eq. 43-1 for the de Broglie wavelength.  That is the minimum size that protons of 
that energy could resolve. 

  
  
  

34 8

19

12 19

6.63 10 J s 3.0 10 m s
 ;          1.8 10 m

7.0 10 eV 1.60 10 J eV

h hc hc
E pc p E

E


 







 
        

 


 

 
12. If the speed of the protons is c, then the time for one revolution is found from uniform circular  

motion.  The number of revolutions is the total time divided by the time for one revolution.  The 
energy per revolution is the total energy gained divided by the number of revolutions. 

     
   

6 3 3

8

2 2 2
              

2

1.0 10 MeV 150 10 MeV 2 1.0 10 m2
Energy revolution

3.00 10 m s 20s

                             0.89 MeV rev 0.9 MeV rev

r r r t ct
v T n

T v c T r

E rE

n ct

  




     

   
  



 

 

 
13. Start with an expression from Section 42-1, relating the momentum and radius of curvature for a 

particle in a magnetic field, with q replaced by e. 

        
eBr

v mv eBr p eBr
m

      

In the relativistic limit, p E c  and so 
E

eBr
c
 .  To put the energy in electron volts, divide the 

energy by the charge of the object. 

      
E E

eBr Brc
c e
    
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14. The energy released is the difference in the mass energy between the products and the reactant. 

  0 0

2 2 2 1115.7 MeV 939.6MeV 135.0MeV 41.1MeVnE m c m c m c


         

 
15. The energy released is the difference in the mass energy between the products and the reactant. 

  2 2 2 139.6MeV 105.7 MeV 0 33.9MeVE m c m c m c
           

 
16. Use Eq. 43-3 to estimate the range of the force based on the mass of the mediating particle. 

  
   
   

34 8

2 16

2 6 19

6.63 10 J s 3.00 10 m s
    3.98 10 m

2 2 2 497.7 10 eV 1.60 10 J eV

hc hc
mc d

d mc  







 
     

 


 

 
17. The energy required is the mass energy of the two particles. 

   22 2 939.6 MeV 1879.2 MeVnE m c    

 
18. The reaction is multi-step, and can be written as shown here: 
 The energy released is the initial rest energy minus the  

final rest energy of the proton and pion, using Table 43-2. 

   0
2

p 1192.6Mev 938.3MeV 139.6MeV 114.7 MeVE m cm m
 

         

 
19. Because the two protons are heading towards each other with the same speed, the total momentum of 

the system is 0.  The minimum kinetic energy for the collision would result in all three particles at 
rest, and so the minimum kinetic energy of the collision must be equal to the mass energy of the 0 .  

Each proton will have half of that kinetic energy.  From Table 43-2, the mass of the 0  is 
2135.0MeV c . 

  0

2

proton proton2 135.0MeV    67.5MeVK m c K


     

 
20. Because the two neutrons are heading towards each other with the same speed, the total momentum 

of the system is 0.  The minimum kinetic energy for the collision would result in all four particles at 
rest, and so the minimum kinetic energy of the collision must be equal to the mass energy of the 

K K   pair.  Each neutron will have half of that kinetic energy.  From Table 43-2, the mass of each 

of the K  and the K  is 2493.7MeV c . 

  2 2

neutron K neutron K2 2     493.7 MeVK m c K m c     

 
21. We treat the neutrino as massless, but it still has momentum and energy.  We use conservation of 

momentum and conservation of energy, along with Eqs. 36-11 and 36-13. 
 (a) To find the maximum kinetic energy of the positron, we assume that the pion has no kinetic 

energy, and so the magnitude of the momenta of the positron and the neutrino are the same. 

  
 

e

22 2 2 2 2 2 2 2 2 2 2 4

K e K e e e e

  ;

      

v

v v v

p p

m c m c E E m c m c E E p c p c E m c 



           
 

  
 

 

22 2 2 4

K e 2

e e e2 2

K

 
2

m c m c m c
E K m c

m c m c





 
   


 

0 0 +

         p



 

 

 
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 
 

   
 

 

22 2 2 4

K e 2

e e2 2

K

2 2

2

497.7MeV 139.6MeV 0.511MeV
0.511MeV 178.5MeV

2 497.7MeV 139.6MeV

m c m c m c
K m c

m c m c





 
 



 
  



 

(b) To find the maximum kinetic energy of the pion, we assume that the positron has no kinetic  
energy, and so the magnitude of the momenta of the positron and the neutrino are the same.  
The result is found by just interchanging the pion and positron. 

  

 
 

   
 

 

22 2 2 4

K e 2

e 2 2

K e

2 2

2

497.7MeV 0.511MeV 139.6MeV
139.6MeV 128.6MeV

2 497.7MeV 0.511MeV

m c m c m c
K m c

m c m c




 
 



 
  



   

 
22. The energy of the two photons (assumed to be equal so that momentum is conserved) must be the 

combined rest mass energy of the proton and antiproton. 

  
   
   

34 8

2 15

0 2 6 19

0

6.63 10 J s 3.00 10 m s
2 2 2     1.32 10 m

938.3 10 eV 1.60 10 J eV

c hc
m c hf h

m c










 
     

 



 

 

23. (a) 0   n       Charge conservation is violated, since 0 0 1   
      Strangeness is violated, since 1 0 0    

 (b) 0   p K     Energy conservation is violated, since  
2 2 2 21115.7 MeV 938.3MeV 493.7 MeV 432.0MeV1c c c c    

 (c) 0 +        Baryon number conservation is violated, since 1 0 0   
      Strangeness is violated, since 1 0 0    
      Spin is violated, since 1

2 0 0   

 
24. (a) The Q-value is the mass energy of the reactants minus the mass energy of the products. 

      0

2 2 2

p 1115.7 MeV 938.3MeV 139.6MeV 37.8MeVQ m c m c m c
 

        

 (b) Energy conservation for the decay gives the following. 

0 0

2 2

p p    m c E E E m c E
   

      

Momentum conservation says that the magnitudes of the momenta of the two products are 

equal.  Then convert that relationship to energy using 2 2 2 2 4

0E p c m c  , with energy 

conservation. 

   

   
 

 
     

 

0

0 0

0

0

22

p p

22 2 4 2 2 4 2 2 4

p p p

2 2 4 2 4 2 2 2 4

p p p p

2 2 22 4 2 4 2 4

p

p 2

      

2   

1115.7 MeV 938.3MeV 139.6MeV
943.7 MeV

2 2 1115.7 MeV

p p p c p c

E m c E m c m c E m c

E m c m c E m c E m c

m c m c m c
E

m c

 

  





 

  







 





   

     

     

   
  
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0

2

p

2

p p p

2

1115.7 MeV 943.7 MeV 172.0MeV

943.7 MeV 938.3MeV 5.4MeV

172.0MeV 139.6MeV 32.4MeV

E m c E

K E m c

K E m c



  



  


    

    

    

 

 
25. (a) We work in the rest frame of the isolated electron, so that it is initially at rest.  Energy  

conservation gives the following. 

   2 2

e e e e e        0m c K m c E K E K E            

  Since the photon has no energy, it does not exist, and so has not been emitted. 
(b) For the photon exchange in Figure 43-8, the photon exists for such a short time that the 

uncertainty principle allows energy to not be conserved during the exchange. 
 
26. The total momentum of the electron and positron is 0, and so the total momentum of the two photons 

must be 0.  Thus each photon has the same momentum, and so each photon also has the same energy.  
The total energy of the photons must be the total energy of the electron / positron pair. 

  

 
   

   

+

2

photons 0e /e pair

34 8

12 12

2 6 3 19

0

    2 KE 2 2   

6.63 10 J s 3.00 10 m s
1.335 10 m 1.3 10 m

KE 0.511 10 eV 420 10 eV 1.60 10 J eV

c
E E m c hf h

hc

m c









 



     

 
     

    

  

 
27. Since the pion decays from rest, the momentum before the decay is zero.  Thus the momentum after 

the decay is also zero, and so the magnitudes of the momenta of the positron and the neutrino are 
equal.  We also treat the neutrino as massless.  Use energy and momentum conservation along with 
the relativistic relationship between energy and momentum. 

   
 

2 2 2 2 2 2 2 4 2

e e e e e

22 2 4 2 2 4 2 2 2 2 4 2 4

e e e e e e e

2 2 2 2

2 2 2e e1 1
2 2e e e

1
2e

   ;            

2     2

      
2 2

m c E E p p p c p c E m c E

E m c m c E m c E m c E E m c m c m c

m c m c
E m c K m c m c

m m

K m

   

    

 
 

     

           

 

    

 



       

        

      

      
 

22 2

2 2 e 1
2 2e

0.511MeV 0.511MeV
139.6MeV 0.511MeV

2 2 139.6MeV

        69.3MeV

cm c
c m c

m c




 



    



  

 
28. (a) For the reaction 0p  n     , the conservation laws are as follows. 

Charge: 1 1 0 0        Charge is conserved. 
   Baryon number:  0 1 1 0      Baryon number is conserved.  
   Lepton number:  0 0 0 0     Lepton number is conserved.  
   Strangeness:  0 0 0 0      Strangeness is conserved.  

  The reaction is possible.  

 (b) For the reaction 0p  n     , the conservation laws are as follows. 

   Charge: 1 1 0 0       Charge is NOT conserved. 

 The reaction is forbidden, because charge is not conserved.  
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 (c) For the reaction p  p e     , the conservation laws are as follows. 
   Charge: 1 1 1 1        Charge is conserved. 
   Baryon number:  0 1 1 0      Baryon number is conserved. 
   Lepton number:  0 0 0 1     Lepton number is NOT conserved.  

The reaction is forbidden, because lepton number is not conserved.  

 (d) For the reaction ep  e v  , the conservation laws are as follows. 

   Charge: 1 1 0       Charge is conserved. 
Baryon number:  1 0 0    Baryon number NOT conserved. 
Mass energy is fine, because p e .vm m m   

The reaction is forbidden, because baryon number is not conserved.  

 (e) For the reaction   e     , the conservation laws are as follows. 

   Charge: 1 1 0       Charge is conserved. 
   Baryon number:  0 0 0    Baryon number is conserved.  
   Electron lepton number:  0 1 0    Lepton number is NOT conserved.  

 Mass energy is fine, because e .vm m m    

  The reaction is forbidden, because lepton number is not conserved.  

(f) For the reaction ep  n e v   , the conservation laws are as follows. 

   Mass energy: 2 2 2938.3MeV 939.6MeV 0.511MeVc c c   
    Mass energy is NOT conserved. 

The reaction is forbidden, because energy is not conserved.  

 

29. Since the   decays from rest, the momentum before the decay is zero.  Thus the momentum after 

the decay is also zero, and so the momenta of the 0  and    are equal in magnitude.  Use energy 
and momentum conservation along with the relativistic relationship between energy and momentum.   

0 0
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     

     

   
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2
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K E m c
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

  
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30. p p  p p   :   This reaction will not happen because charge is not conserved  2 0 ,  

and baryon number is not conserved  2 0 . 
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p p  p p p    :  This reaction will not happen because charge is not conserved  2 1 ,  

and baryon number is not conserved  2 1 . 

p p  p p p p     :  This reaction is possible.  All conservation laws are satisfied. 

p p  p e e p      :   This reaction will not happen.  Baryon number is not conserved 

 2 0 , and lepton number is not conserved  0 2  . 

 
31. The two neutrinos must move together, in the opposite direction of the electron, in order for the 

electron to have the maximum kinetic energy, and thus the total momentum of the neutrinos will be 
equal in magnitude to the momentum of the electron.  Since a neutrino is (essentially) massless, we 
have .v vE p c   We assume that the muon is at rest when it decays.  Use conservation of energy and 

momentum, along with their relativistic relationship. 
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32. A    could NOT be produced by p p  p n      .  The pion has a mass energy of 139.6 MeV, 
and so the extra 100 MeV of energy could not create it.  The Q-value for the reaction is 

 2 2 2

p p2 2 139.6MeVQ m c m c m c
      , and so more than 139.6 MeV of kinetic energy is 

needed.  The minimum initial kinetic energy would produce the particles all moving together at the 
same speed, having the same total momentum as the incoming proton.  We consider the products to 
be one mass p nM m m m

     since they all move together with the velocity.  We use energy and 

momentum conservation, along with their relativistic relationship, 2 2 2 2 4

0E p c m c  . 
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33. We use the uncertainty principle to estimate the uncertainty in rest energy. 

 
   

34

20 16

6.63 10 J s
9420eV 9keV

2 2 7 10 s 1.60 10 J eV

h
E

t 



 


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  


 

 
34. We estimate the lifetime from the energy width and the uncertainty principle. 
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36. (a) For B b u  , we have  

   Charge:   1 2
3 3

1       Spin:   1 1
2 2

0    

   Baryon number: 1 1
3 3

0       Strangeness:  0 0 0   
   Charm:   0 0 0      Bottomness:  1 1 0     
   Topness:   0 0 0   

 (b) Because B  is the antiparticle of B , B b u  .  The 0B  still must have a bottom quark, but  

must be neutral.  Therefore 0B b d .  Because 0B  is the antiparticle to 0B , we must have 

0B b d . 

 
37. We find the energy width from the lifetime in Table 42-2 and the uncertainty principle. 

 (a)    
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 (b)    
34
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h
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
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 

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38. (a) Charge:         0 1 1       Charge is conserved. 

 Baryon number:      1 1 0       Baryon number is conserved. 

  Lepton number:      0 0 0     Lepton number is conserved. 

  Strangeness:       2 1 0       Strangeness is NOT conserved. 

Energy:   2 2 2 21314.9 Mev 1189.4 Mev 139.6 Mev 1329 Mevc c c c     
         Energy is NOT conserved. 

The decay is not possible, because energy is not conserved.  
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 (b) Charge:           1 0 1 0       Charge is conserved. 

 Baryon number:        1 1 0 0       Baryon number is conserved. 

  Lepton number:        0 0 0 1     Lepton number is NOT conserved. 

  Strangeness:         3 1 0 0       Strangeness is NOT conserved. 

  Energy:  2 2 2 2 21672.5 Mev 1192.6 Mev 139.6 Mev 0 Mev 1332.2 Mevc c c c c     
            Energy is conserved. 

The decay is not possible, because lepton number is not conserved.  

 (c)  Charge:           0 0 0 0     Charge is conserved. 

  Baryon number:        0 0 0 0     Baryon number is conserved. 

  Lepton number:        0 0 0 0     Lepton number is conserved. 

  Strangeness:         1 1 0 0       Strangeness is conserved. 

 Energy:  2 2 2 2 21192.6 Mev 1115.7 Mev 0 Mev 0 Mev 1115.7 Mevc c c c c     
            Energy is conserved. 

  The decay is possible.  

 

39. (a) The 0  has a strangeness of –2, and so must contain two strange quarks.  In order to make a  

neutral particle, the third quark must be an up quark.  So 0 u ss .   

(b) The   has a strangeness of –2, and so must contain two strange quarks.  In order to make a  

particle with a total charge of –1, the third quark must be a down quark.  So d s s .   

 
40. (a) The neutron has a baryon number of 1, so there must be three quarks.  The charge must be 0, as  

must be the strangeness, the charm, the bottomness, and the topness.  Thus u d dn  . 

 (b) The antineutron is the anti particle of the neutron, and so u d dn  . 

 (c) The 0  has a strangeness of -1, so it must contain an “s” quark.  It is a baryon, so it  
must contain three quarks.  And it must have charge, charm, bottomness, and topness equal to 0.  

Thus 0 u d s  . 

 (d) The 0  has a strangeness of +1, so it must contain an s  quark.  It is a baryon, so it must  
contain three quarks.  And it must have charge, charm, bottomness, and topness equal to 0. Thus  

0 u d s  . 

 
41. (a) The combination u u d  has charge = +1, baryon number =  +1, and strangeness, charm,  

bottomness, and topness all equal to 0.  Thus u u d p .  

 (b) The combination u u s  has charge = -1, baryon number = -1, strangeness = +1, and  

charm, bottomness, and topness all equal to 0.  Thus u u s   . 

 (c) The combination u s  has charge = -1, baryon number = 0, strangeness = -1, and charm,  

bottomness, and topness all equal to 0.  Thus u s K . 
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 (d) The combination d u  has charge = -1, baryon number = 0, and strangeness, charm,  

bottomness, and topness all equal to 0.  Thus d u    

 (e) The combination c s  has charge = -1, baryon number = 0, strangeness = -1, charm = -1, and  

bottomness and topness of 0.  Thus c s DS

  

 

42. To form the 0D  meson, we must have a total charge of 0, a baryon number of 0, a strangeness of 0, 
and a charm of +1.  We assume that there is no topness or bottomness.  To get the charm, we must 
have a “c” quark, with a charge of 2

3
e .  To have a neutral meson, there must be another quark with 

a charge of 2
3

e .  To have a baryon number of 0, that second quark must be an antiquark.  The only 

candidate with those properties is an anti-up quark.  Thus 0 c uD  . 

 

43. To form the SD  meson, we must have a total charge of +1, a baryon number of 0, a strangeness of 

+1, and a charm of +1.  We assume that there is no topness or bottomness.  To get the charm, we 
must have a “c” quark, with a charge of 2

3
e .  To have a total charge of +1, there must be another 

quark with a charge of 1
3
e .  To have a baryon number of 0, that second quark must be an 

antiquark.  To have a strangeness of +1, the other quark must be an anti-strange.  Thus c sSD  . 

 
44. Here is a Feynman diagram for the reaction 0p    n.      
 
 
 
 
 
 
 
 
 
 

45. Since leptons are involved, the reaction  n   pv      is a weak 

interaction.  Since there is a charge change in the lepton, a W boson must 
be involved in the interaction.  If we consider the neutron as having 

emitted the boson, then it is a W ,  which interacts with the neutrino.  If 

we consider the neutrino as having emitted the boson, then it is a W ,  
which interacts with the neutron. 

 
 
 
46. To find the length in the lab, we need to know the speed of the particle which is moving 

relativistically.  Start with Eq. 36-10a. 
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   

   
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47. (a) At an energy of 1.0 TeV, the protons are moving at practically the speed of light.  From uniform  

circular motion we find the time for the protons to complete one revolution of the ring.  Then 
the total charge that passes any point in the ring during that time is the charge of the entire 
group of stored protons.  The current is then the total charge divided by the period. 
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   
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   
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 (b) The 1.0 TeV is equal to the kinetic energy of the proton beam. 

   
     

21
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  
  
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48. By assuming that the kinetic energy is approximately 0, the total energy released is the rest mass 

energy of the annihilating pair of particles. 

 (a)  2

total 02 2 0.511MeV 1.022 MeVE m c     

 (b)  2

total 02 2 938.3MeV 1876.6 MeVE m c    

 
49. These protons will be moving at essentially the speed of light for the entire time of acceleration.  The 

number of revolutions is the total gain in energy divided by the energy gain per revolution.  Then the 
distance is the number of revolutions times the circumference of the ring, and the time is the distance 
of travel divided by the speed of the protons. 
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   
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  
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50. (a) For the reaction 0 0p  K p      , the conservation laws are as follows. 
   Charge: 1 1 0 1 0        Charge is NOT conserved. 

  The reaction is not possible, because charge is not conserved.  

 Also we note that the reactants would have to have significant kinetic energy to be able to 

“create” the 0K .  
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 (b) For the reaction 0 0K p       , the conservation laws are as follows. 
   Charge: 1 1 0 0        Charge is conserved. 
   Spin: 1 1

2 2
0 0        Spin is conserved. 

   Baryon number:  0 1 1 0     Baryon number is conserved.  
   Lepton number:  0 0 0 0     Lepton number is conserved.  

 Strangeness:  1 0 1 0       Strangeness is conserved.  

 The reaction is possible, via the strong interaction.  

 (c) For the reaction 0K n         , the conservation laws are as follows. 
   Charge: 1 0 1 0 0        Charge is conserved. 
   Spin:  1 1

2 2
0 0 1        Spin is conserved. 

   Baryon number:  0 1 1 0 0      Baryon number is conserved. 
   Lepton number:  0 0 0 0 0     Lepton number is conserved.  

 Strangeness:  1 0 1 0 0      Strangeness is NOT conserved. 
The reaction is not possible via the strong interaction because strangeness is not 
conserved.  It is possible via the weak interaction.  

 (d) For the reaction 0 0K         , the conservation laws are as follows. 
   Charge: 1 0 0 1       Charge is conserved. 
   Spin:  0 0 0 0       Spin is conserved. 
   Baryon number:  0 0 0 0     Baryon number is conserved. 
   Lepton number:  0 0 0 0     Lepton number is conserved.  

 Strangeness:  1 0 0 0     Strangeness is NOT conserved.  
The reaction is not possible via the strong interaction because strangeness is not 
conserved.  It is possible via the weak interaction.  

 (e) For the reaction e  e    , the conservation laws are as follows. 

   Charge: 1 1 0       Charge is conserved. 
   Spin:  1 1

2 2
0        Spin is conserved. 

   Baryon number:  0 0 0    Baryon number is conserved.  
   Lepton number:  0 1 1     Lepton number is conserved.  

Strangeness:  0 0 0 0 0      Strangeness is conserved.  

 The reaction is possible, via the weak interaction.  

 
51. (a) For the reaction p  K      , the conservation laws are as follows. 
   Charge: 1 1 1 1        Charge is conserved. 
   Baryon number:  0 1 0 1      Baryon number is conserved.  
   Lepton number:  0 0 0 0     Lepton number is conserved.  
   Strangeness:  0 0 1 1      Strangeness is conserved.  

  The reaction is possible, via the strong interaction.  

 (b) For the reaction p  K      , the conservation laws are as follows. 
   Charge: 1 1 1 1       Charge is conserved. 
   Baryon number:  0 1 0 1      Baryon number is conserved.  
   Lepton number:  0 0 0 0     Lepton number is conserved.  

 Strangeness:  0 0 1 1     Strangeness is conserved.  

 The reaction is possible, via the strong interaction.  
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 (c) For the reaction 0 0 0p  K       , the conservation laws are as follows. 
   Charge: 1 1 0 0 0        Charge is conserved. 
   Baryon number:  0 1 1 0 0      Baryon number is conserved. 
   Lepton number:  0 0 0 0 0      Lepton number is conserved.  

 Strangeness:  0 0 1 1 0      Strangeness is conserved.  

The reaction is possible, via the strong interaction.  

 (d) For the reaction 0 0p        , the conservation laws are as follows. 

   Charge: 1 1 0 0       Charge is NOT conserved. 

The reaction is not possible, because charge is not conserved.  

 (e) For the reaction ep  p e      , the conservation laws are as follows. 

   Charge: 1 1 1 1 0         Charge is conserved. 
   Baryon number:  0 1 1 0 0     Baryon number is conserved.  
   Lepton number:  0 0 0 1 1     Lepton number is conserved.  

Strangeness:  0 0 0 0 0      Strangeness is conserved.  

 The reaction is possible, via the weak interaction.  

 Note that we did not check mass conservation, because in a collision, there is always some kinetic 
energy brought into the reaction.  Thus the products can be heavier than the reactants. 

 

52. The    is the anti-particle of the   , so the reaction is        .  The conservation rules are 

as follows. 
Charge: 1 1 0       Charge is conserved. 

   Baryon number:  0 0 0   Baryon number is conserved.  
   Lepton number:  0 1 1   Lepton number is conserved.  

Strangeness:  0 0 0     Strangeness is conserved. 
Spin: 1 1

2 2
0      Spin is conserved  

 
53. Use Eq. 43-3 to estimate the mass of the particle based on the given distance. 

  
  

 
34 8

2 11

1918

6.63 10 J s 3.0 10 m s 1
1.98 10 eV 200GeV

2 1.60 10 J eV2 10 m

hc
mc

d 





 
    



 
 
 


 

 This value is of the same order of magnitude as the mass of the W . 
 
54. The Q-value is the mass energy of the reactants minus the mass energy of the products. 

 For the first reaction, 0p p  p p     : 

   0 0

2 2 2 2

p p2 2 135.0 MeVQ m c m c m c m c
 

        

 For the second reaction, p p  p n      : 

  
 2 2 2 2 2 2 2

p p n p n2

   938.3MeV 939.6MeV 139.6MeV= 140.9MeV

Q m c m c m c m c m c m c m c a
        

   
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55. The fundamental fermions are the quarks and electrons.  In a water molecule there are 2 hydrogen 
atoms consisting of one electron and one proton each, and 1 oxygen atom, consisting of 8 electrons, 
8 protons, and 8  neutrons.  Thus there are 18 nucleons, consisting of 3 quarks each, and 10 

electrons.  The total number of fermions is thus 18 3 10 64 fermions   . 
 
56. We assume that the interaction happens essentially at rest, so that there is no initial kinetic energy or 

momentum.  Thus the momentum of the neutron and the momentum of the 0  will have the same 

magnitude.  From energy conservation we find the total energy of the 0 . 

     
0

0

2 2 2

p n n

2 2 2

p n n

  

139.6MeV 938.3MeV 939.6MeV 0.60MeV

     137.7 MeV

m c m c E m c K

E m c m c m c K

 

 





    

       



 

 From momentum conservation, we can find the mass energy of the 0 .  We utilize Eq. 36-13 to 
relate momentum and energy. 

  

   
     

0 0 0 0 0 0

0 0

0

22 2 2 4 2 2 4 2 4 2 2 2 4

n n n n n n

1/ 22 2 22 2 2 2 4

n n

2

       

137.7 MeV 939.6MeV 0.60MeV 939.6MeV

         133.5MeV    133.5MeV

p p p c p c E m c E m c m c E E m c

m c E E m c

m c

     

 



           

      

  

    

 The value from Table 43-2 is 135.0MeV.  
 
57. (a) First we use the uncertainty principle, Eq. 38-1.  The energy is so high that we assume ,E pc   

and so .
E

p
c


   

      
 

 
 

34 8 9

16

32 19

      
2 2

6.63 10 J s 3.00 10 m s 1GeV 10 eV
2 10 GeV

2 2 10 m 1.60 10 J eV

h E h
x p x

c

hc
E

x

 

 



 


      

 
    

 

  

Next, we use de Broglie’s wavelength formula. We take the de Broglie wavelength as the  
unification distance. 

      
 

 
 

34 8 9

17

32 19

  

6.63 10 J s 3.00 10 m s 1GeV 10 eV
1 10 GeV

10 m 1.60 10 J eV

h h

p Ec

hc
E







 

  

 
   




 

Both energies are reasonably close to 1610 GeV .  This energy is the amount that could be 
violated in conservation of energy if the universe were the size of the unification distance. 

 (b) From Eq. 18-4, we have 3
2

E kT . 

   
   

 
25 19

28 293
2 23

2 10 eV 1.6 10 J eV2
    7.7 10 K 10 K

3 3 1.38 10 J K

E
E kT T

k






      


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58. The Q-value is the mass energy of the reactants minus the mass energy of the products. 

  
   0 0

2 2 2 2

p K
139.6MeV 938.3MeV 1115.7MeV 497.7 MeV

   535.5MeV

Q m c m c m c m c
  

       

 
 

 We consider the products to be one mass 0 0

2

K
1613.4 MeVM m m c


    since they both have the 

same velocity.  Energy conservation gives the following:  2

p ME m c E
    .  Momentum 

conservation says that the incoming momentum is equal to the outgoing momentum.  Then convert 

that relationship to energy using the relativistic relationship that 2 2 2 2 4.E p c m c   

   

 

2 2 2 2 4 2 2 4

M M

22 2 4 2 2 4 2 2 2 4 2 4

p p p

2 4 2 4 2 4

p 2

2

p

2 4 2 4 2 4

p 2

2

p

          

2   

  
2

2

Mp p p c p c E m c E M c

E m c E m c M c E E m c m c M c

M c m c m c
E K m c

m c

M c m c m c
K m c

m c

   

    


  


 

   

    



  



 

       

        

 
   

 
 

 

     
 

 
2 2 2

1613.4MeV 139.6MeV 938.3MeV
         139.6MeV 768.0MeV

2 938.3MeV

 
    

 
59. Since there is no initial momentum, the final momentum must add to zero.  Thus each of the pions 

must have the same magnitude of momentum, and therefore the same kinetic energy.  Use energy 
conservation to find the kinetic energy of each pion. 

  2 2 2 2

p p2 2 2     938.3MeV 139.6 MeV 798.7 MeVm c K m c K m c m c            

 
60. The Q-value is the energy of the reactants minus the energy of the products.  We assume that one of 

the initial protons is at rest, and that all four final particles have the same velocity and therefore the 
same kinetic energy, since they all have the same mass.  We consider the products to be one mass 

p4M m since they all have the same velocity. 

  2 2 2 2 2

p p p p2 4 2 2Q m c m c m c Mc m c       

 Energy conservation gives the following, where thK  is the threshold energy. 

   2 2 2

th p p M MK m c m c E K Mc      

 Momentum conservation says that the incoming momentum is equal to the outgoing momentum.  

Then convert that relationship to energy using the relativistic relationship that 2 2 2 2 4

0E p c m c  . 

  
       

 

2 22 2 2 2 4 2 2 4

p M p M th p p

22 2 2 4 2 4 2 2 2 4 4

th th p p p th th p p p

          

2 4 4 4   

Mp p p c p c K m c m c K Mc M c

K K m c m c m c K K m c m c m c

         

       
 

  

2 2 2 4 2 4 2 2 4

th p th p p p th p p

2

th p

2 4 4 16     2 12   

6 3

K m c K m c m c m c K m c m c

K m c Q

     

 
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61. The total energy is the sum of the kinetic energy and the mass energy.  The wavelength is found 
from the relativistic momentum. 

  

   

  
     

2 9 6 10

2 22 2 2 2

34 8

17

192 210 6

15 10 eV 938 10 eV 1.594 10 eV 16GeV

6.63 10 J s 3.00 10 m s 1
  7.8 10 m

1.60 10 J eV1.594 10 eV 938 10 eV

E K mc

h h hc

p E mc E mc

c









        

  
 

 
  

  



 

 
62. We use 0  to represent the actual wavelength, and   to define the approximate wavelength.  The 

approximation is to ignore the rest mass in the expression for the total energy, 2.E K mc    We also 
use Eqs. 36-10, 36-11, 36-13,  and 43-1. 

  

     

 
 

 

2
2 2 22 2 2 2 2 2 2

0 0 01/22

82
10 10

1/2 22

34

1 2

  ;    ;  1.01  
2

1

2 9.38 10 eV2
1.01   9.333 10 eV 9.3 10 eV

0.02011.01 12
1

6.63 10 J s 3.0

mc
p c E mc K mc mc K

K

h hc hc

p Kmc
K

K

hc hc mc
K

K mc
K

K

hc

K

    




      

     




       





 

 
 
 

 
 
 

 
 
 

  
  

8

17 17

10 19

2

2 2

22 10

2 8

0 10 m s
1.332 10 m 1.3 10 m

9.333 10 eV 1.60 10 J eV

1
1   

1

9.333 10 eV
1 1 1 1 0.99995

9.38 10 eV

K mc
v c

K
v c c c

mc

 






   

 

  



      



 
 
 
 

  
        

 
63. As mentioned in Example 43-9, the 0  can be considered as either u u  or d d.   There are various 

models to describe this reaction.  Four are shown here. 
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64. (a) To conserve charge, the missing particle must be neutral.  To conserve baryon number, the  
missing particle must be a meson.  To conserve strangeness, charm, topness, and bottomness, 
the missing particle must be made of up and down quarks and antiquarks only.  With all this 

information, the missing particle is 0 .  
(b) This is a weak interaction since one product is a lepton.  To conserve charge, the missing  

particle must be neutral.  To conserve the muon lepton number, the missing particle must be an 

antiparticle in the muon family.  With this information, the missing particle is  . 

 
65. A relationship between total energy and speed is given by Eq. 36-11b. 

  

2

2 2

2 2 22 8 8
91

212 12

  
1

9.38 10 eV 9.38 10 eV
1 1 1 1 9.0 10

7.0 10 eV 7.0 10 eV

mc
E

v c

v mc

c E

 


 
       

 

     
     

     

  

 
66.   We write equations for both conservation of energy and conservation of momentum.  The 

magnitudes of the momenta of the products are equal.  We also use Eqs. 36-11 and 36-13. 

  

 

2

1 2 0 1 2

22 2 2 2 2 4 2 2 2 4 2 2 4 2 4

1 2 2 2 1 2 1 1 2

2 4 2 4 2 4
2 4 2 2 2 2 4 2 4 1 2

1 1 1 1 2 1 2

2 4 2 4 2 4 2 4 2 4 2 4 2 2
2 21 2 1 2 1

1 1 1 12

  

  

2     
2

2
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  ;  p p E mc E E

mc E E p c m c p c m c E m c m c

m c m c m c
m c mc E E E m c m c E
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m c m c m c m c m c m c mc m c
K E m c m c

mc

    

         

 
      

    
    

 

2

22 2 2 4

1 2

2

2

   
2

mc

mc m c m c

mc

 


 

 
67. The value of 0R  is not known until we draw the graph.  We note the following: 

/ /

0 0 0 0        ln ln     ln lnt tR R e R R e R R t R t R                

A graph of ln  vs. R t  should give a 
straight line with a slope of 1/  
and a y-intercept of 0ln .R   The 

determination of the mean life does 
not depend on 0,R  and so to find 

the mean life, we may simply plot 
ln  vs. .R t   That graph is shown, 
along with the slope and y-
intercept.  The spreadsheet used for 
this problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH43.XLS,” on tab “Problem 43.67.” 

1 2.266 2.197
2.266 s 2.3 s      % diff 100 3.1%

0.4413 2.197
  


       

y = -0.4413x + 4.7124

R2 = 0.9639
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CHAPTER 44:  Astrophysics and Cosmology 
 
Responses to Questions 
 
1. The Milky Way appears “murky” or “milky” to the naked eye, and so before telescopes were used it 

was thought to be cloud-like. When viewed with a telescope, much of the “murkiness” is resolved 
into stars and star clusters, so we no longer consider the Milky Way to be milky. 

 
2. If a star generates more energy in its interior than it radiates away, its temperature will increase. 

Consequently, there will be greater outward pressure opposing the gravitational force directed 
inward. To regain equilibrium, the star will expand. If a star generates less energy than it radiates 
away, then its temperature will decrease. There will be a smaller outward pressure opposing the 
gravitational force directed inward, and, in order to regain equilibrium, the star will contract.  

 
3. Red giants are extremely large stars with relatively cool surface temperatures, resulting in their 

reddish colors. These stars are very luminous because they are so large. When the Sun becomes a 
red giant, for instance, its radius will be on the order of the distance from the Earth to the Sun. A red 
giant has run out of hydrogen in its inner core and is fusing hydrogen to helium in a shell 
surrounding the core. Red giants have left their main sequence positions on the H–R diagram and 
moved up (more luminous) and to the right (cooler). 

 
4. A star moving along arrow #1 would increase in luminosity 

while maintaining the same surface temperature. It would 
therefore also have to increase in size, since each square 
meter of its surface would have the same color and therefore 
same energy output as before. A star moving along arrow #2 
would increase in luminosity and decrease in temperature. It 
would also increase in size, since it would need to produce a 
greater luminosity even though each unit area of its surface 
would now be producing less energy. A star moving along 
arrow #3 maintains the same luminosity while increasing its 
surface temperature. It will become smaller, since a unit area 
of this star will increase its energy and therefore a smaller 
overall area will be needed to maintain the same luminosity. 
A star moving along arrow #4 decreases in both surface temperature and luminosity. Finally, a star 
moving along arrow #5 will decrease in luminosity while maintaining the same surface temperature 
and decreasing in size. Note that these arrows do not necessarily represent “natural” paths for stars 
on the H–R diagram.  

 
5. The H–R diagram is a plot of luminosity versus surface temperature of a star and therefore does not 

directly tell us anything about the core of a star. However, when considered in conjunction with 
theories of stellar evolution, the H–R diagram does relate to the interior of a star. For instance, all 
main sequence stars are fusing hydrogen to helium in their cores, so the location of a particular star 
on the main sequence does give us that information.  

 
6. The fate of a star depends on the mass of the star remaining after the red giant phase. If the mass is 

less than about 1.4 solar masses, the star will become a white dwarf. If the mass is greater than this 
limit, than the exclusion principle applied to electrons is not enough to hold the star up against its 
own gravity and it continues to contract, eventually becoming a neutron star or, if its mass at this 
stage is more than two or three solar masses, a black hole.  
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7. Yes. Hotter stars are found on the main sequence above and to the left of cooler stars. If H–R 
diagrams of clusters of stars are compared, it is found that older clusters are missing the upper left 
portions of their main sequences. All the stars in a given cluster are formed at about the same time, 
and the absence of the hotter main sequence stars in a cluster indicates that they have shorter lives 
and have already used up their core hydrogen and become red giants. In fact, the “turn-off” point, or 
point at which the upper end of the main sequence stops, can be used to determine the ages of 
clusters.  

 
8. The baseline used in measuring parallaxes from the Earth is the distance from the Earth to the Sun. 

(See Figure 44-11.) If you were measuring parallaxes from the Moon instead, you would need to 
make a slight correction based on the position of the Moon with respect to the Earth–Sun line at the 
time of the measurement. If you were measuring parallaxes from Mars, you would need to use the 
distance from Mars to the Sun as the baseline. In addition, you would need to wait half a Martian 
year between measurements instead of half an Earth year. 

 
9. Watch the star over a period of several days and determine its period through observation. Use the 

known relationship between period and luminosity to find its absolute luminosity. Compare its 
absolute luminosity to its apparent luminosity (observed) to determine the distance to the galaxy in 
which it is located. 

 
10. A geodesic is the shortest distance between two points. For instance, on a flat plane the shortest 

distance between two points is a straight line, and on the surface of a sphere the shortest distance is 
an arc of a great circle. According to general relativity, space–time is curved. Determining the nature 
of a geodesic, for instance by observing the motion of a body or light near a large mass, will help 
determine the nature of the curvature of space–time there.  

 
11. If the redshift of spectral lines of galaxies were discovered to be due to something other than 

expansion of the universe, then the Big Bang theory and the idea that the universe is expanding 
would be called into question. However, the evidence of the cosmic background microwave 
radiation would conflict with this view, unless it too was determined to result from some cause other 
than expansion.  

 
12. No. In an expanding universe, all galaxies are moving away from all other galaxies on a large scale. 

(On a small scale, neighboring galaxies may be gravitationally bound to each other.) Therefore, the 
view from any galaxy would be the same. Our observations do not indicate that we are at the center. 
(See Figure 44-23.)  

 
13. They would appear to be receding. In an expanding universe, the distances between galaxies are 

increasing, and so the view from any galaxy is that all other galaxies are moving away. 
 
14. An explosion on Earth would be affected by the Earth’s gravity and air resistance. Each piece of 

debris would act like a projectile, with its individual initial velocity. More distant particles would not 
spread at a higher speed. This corresponds somewhat to a closed universe, in which the galaxies 
eventually stop and then all come back together again. In the case of the explosion on Earth, most of 
the particles would eventually stop. Most would land on the ground. Some might escape into space. 
The particles would not all reassemble, as in the “big crunch.” 

 
15. Black holes have tremendous gravity, so we can detect them by the gravitational deflection of other 

objects in their vicinity. Also, matter accelerating toward a black hole gives off x-rays, which can be 
detected. In addition, gravitational lensing, the bending of light coming from stars and galaxies 
located behind the black hole, can indicate that the black hole is present. 
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16. R = 2GM/c², so M = Rc²/2G .  
 

 M = (5.29 x 10-11)(3.00 x 108)²/[2(6.67 x 10-11)] = 3.57 x 1016 kg 
 
17. Both the formation of the Earth and the time during which people have lived on Earth are on the far 

right edge of Figure 44-30, in the era of dark energy. 
 
18. The 2.7 K cosmic microwave background radiation is the remnant radiation of the Big Bang. As the 

universe expanded, the wavelengths of the Big Bang radiation lengthened and became redshifted. 
The 2.7 K blackbody curve peaks at a wavelength of about 7.35 cm, in the microwave region. The 
temperature of this radiation is low because the energy spread out over an increasingly large volume 
as the universe expanded.  

 
19. The early universe was too hot for atoms to exist. The average kinetic energies of particles were high 

and frequent collisions prevented electrons from remaining with nuclei. 
 
20. (a) Type Ia supernovae have a range of luminosities that can be extracted from their observable  
  characteristics and can be derived from the rate at which they brighten and fade away. 
 (b) The distance to a supernova can be determined by comparing the relative intensity to the 

luminosity. 
 
21. The initial Big Bang was not perfectly symmetric. Deviations in the symmetry enabled the 

development of galaxies and other structures.  
 
22. If the average mass density of the universe is above the critical density, then the universe will 

eventually stop its expansion and contract, collapsing on itself and ending finally in a “big crunch.” 
This scenario corresponds to a closed universe, or one with positive curvature. 

 
23. If there were 7 protons for every neutron, and it takes two protons and two neutrons to create a 

single helium nucleus, then for every helium nucleus there would be 12 hydrogen nuclei. Since the 
mass of helium is four times the mass of hydrogen, the ratio of the total mass of hydrogen to the 
total mass of helium should be 12:4, or 3:1. 

 
24. (a) Gravity between galaxies should be pulling the galaxies back together, slowing the expansion of  
  the universe. 
 (b) Astronomers could measure the redshift of light from distant supernovae and deduce the 

recession velocities of the galaxies in which they lie. By obtaining data from a large number of 
supernovae, they could establish a history of the recessional velocity of the universe, and 
perhaps tell whether the expansion of the universe is slowing down. 

 
 

Solutions to Problems 
 
1. Convert the angle to seconds of arc, reciprocate to find the distance in parsecs, and then convert to  

light years. 

  

 

 

o4

o

3600
2.9 10 1.044

1

1 1 3.26ly
pc 0.958 pc 3.1ly

1.044 1pc
d





 
  

   
 

 
 
 

 
 
 
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2. Use the angle to calculate the distance in parsecs, and then convert to light years. 

    1 1 3.26 ly
pc 3.704 pc 3.704 pc 12 ly

0.27 1pc
    d


   

 
 

  
 

 

 
3. Convert the light years to parsecs, and then take the reciprocal of the number of parsecs to find the 

parallax angle in seconds of arc. 

   1pc 1
65ly 19.94 pc 20 pc  2 sig. fig.          0.050

3.26ly 19.94 pc
    

 
 
 

 

 
4. The reciprocal of the distance in parsecs is the angle in seconds of arc. 

 (a) 
 
1 1

0.01786 0.018
pc 56 pcd

       

 (b)    
o

o o6 61
0.01786 4.961 10 5.0 10

3600
     


 
 
 

 

 
5. The parallax angle is  smaller  for the further star.  Since tan ,d D   as the distance D to the star 

increases, the tangent decreases, so the angle decreases.  And since for small angles, tan  , we 

have that .d D    Thus if the distance D is doubled, the angle   will be  smaller by a factor of 2 . 
 
6. Find the distance in light years.  That value is also the time for light to reach us. 

  
3.26 ly

85pc 277 ly 280ly    It takes light 280 years  to reach us.
1pc

  
 
 
 

 

 
7. The apparent brightness of an object is inversely proportional to the square of the observer’s distance 

from the object, given by Eq. 44-1.  To find the relative brightness at one location as compared to 
another, take a ratio of the apparent brightness at each location. 

  

2 22 2
Jupiter Jupiter Earth Earth

2

Earth Jupiter Jupiter
2

Earth

4 1
0.037

5.2
4

L

b d d d
Lb d d
d





    
   
   

  
 

 

8. (a) The apparent brightness is the solar constant, 3 21.3 10 W m . 

 (b) Use Eq. 44-1 to find the intrinsic luminosity. 

      22 11 2 3 2 26

2
   4 4 1.496 10 m 1.3 10 W m 3.7 10 W

4

L
b L d

d
b 


         

 
9. The density is the mass divided by the volume. 

  
 

30
3 3

334 104
3 3

1.99 10 kg
2 10 kg m

6 10 m

M M

V r


 


    

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10. The angular width is the inverse tangent of the diameter of our Galaxy divided by the distance to the 
nearest galaxy.  According to Figure 44-2, our Galaxy is about 100,000 ly in diameter. 

  

5
1 1 o

6

6
1 1 3 o

Moon 8

Galaxy diameter 1.0 10 ly
tan tan 0.042 rad 2.4

Distance to nearest galaxy 2.4 10 ly

Moon diameter 3.48 10 m
tan tan 9.1 10 rad 0.52

Distance to Moon 3.84 10 m





 

  


   




    



 

 

 The Galaxy width is about 4.5 times the Moon width. 
 
11. The Q-value is the mass energy of the reactants minus the mass energy of the products.  The masses 

are found in Appendix F. 

    

   

4 4 8

2 2 4

2 2 2 2

He Be

4 8 12

2 4 6

2 2 2 2 2

Be He C

He He  Be

2 2 4.002603u 8.005305 u 931.5 Mev 0.092 MeV

He Be  C

4.002603u 8.005305 u 12.000000 931.5 Mev

   7.366 MeV

Q m c m c c c

Q m c m c m c c c

 

     

 

     



 

   
12. The angular width is the inverse tangent of the diameter of the Moon divided by the distance to the 

Sun. 

   
6

o1 1 5 3

11

Moon diameter 3.48 10 m
tan tan 2.33 10 rad 1.33 10 4.79

Distance to Sun 1.496 10 m
           


 

 
13. The density is the mass divided by the volume. 

  
 

30
9 3Sun

334 64
Earth3 3

1.99 10 kg
1.83 10 kg m

6.38 10 m

MM

V R


 


    


 

 Since the volumes are the same, the ratio of the densities is the same as the ratio of the masses. 

  
30

5

24

Earth Earth

1.99 10 kg
3.33 10 times larger

5.98 10 kg

M

M





   


 

 
14. The density of the neutron star is its mass divided by its volume.  Use the proton to calculate the 

density of nuclear matter.  The radius of the proton is taken from Eq. 41-1. 

  

 
 

30

17 3 17 3

neutron 3
4star
3

neutron neutron17 3 17 3
star star8

279 3

white nuclear
dwarf matter

4
3

3

1.5 1.99 10 kg
5.354 10 kg m 5.4 10 kg m

11 10 m

5.354 10 kg m 5.354 10 kg m
2.9 10           

1.673 10 kg1.83 10 kg m

1.2 10

M

V




 

 






     



 
   



 315

2.3

m


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15. Wien’s law (Eq. 37-1) says that the PT  , where   is a constant, and so P1 1 P2 2.T T    The 

Stefan–Boltzmann equation (Eq. 19-17) says that the power output of a star is given by 4P AT , 

where   is a constant, and A is the radiating area.  The P in the Stefan–Boltzmann equation is the 
same as the luminosity L in this chapter.  The luminosity L is related to the apparent brightness b by 
Eq. 44-1.   It is given that 1 2 0.091b b  , 1 2d d , P1 470 nm,   and P2 720 nm.   

2 P1 1 2
P1 1 P2 2 1 2 2 2

1 P2 1 2

    0.091     0.091   
4 4

  ;  
T L L

T T b b
T d d


 

  
        

  2 42 4 4 2
2 22 2 2 2 2 2 2

2 4 2 4 4 2

1 1 1 1 1 1 1 1 1

2 2 2

1 2 P2

2 1 P1

0.091 40.091 0.091 0.091
1 0.091   

4

470 nm
0.091 0.091 0.091 0.1285

720 nm

r Td L P A T T r

d L P AT r T T r

r T

r T







      

   
     
     

    

 

 The ratio of the diameters is the same as the ratio of radii, so 1

2

0.13 .
D

D
  

 
16. Wien’s law (Eq. 37-1) says that the PT  , where   is a constant, and so P1 1 P2 2.T T    The 

Stefan–Boltzmann equation (Eq. 19-17) says that the power output of a star is given by 4P AT , 

where   is a constant, and A is the radiating area.  The P in the Stefan–Boltzmann equation is the 
same as the luminosity L in this chapter.  The luminosity L is related to the apparent brightness b by 
Eq. 44-1.   It is given that 1 2 ,b b 1 2 ,r r P1 750 nm,   and P2 450 nm.   

  

2 P1
P1 1 P2 2

1 P2

42 4 2 4 4

1 2 2 2 2 2 2 2 2 2 2
1 2 2 2 2 4 2 4 4

1 2 1 1 1 1 1 1 1 1 1

2 2 2

2 2 P1

1 1 P2

    

4
          

4 4 4

750
2.8

450

T
T T

T

L L d L P A T r T T T
b b

d d d L P AT r T T T

d T

d T


 



 
   




  

          

   

 
 
 

     
         

 

 

 The star with the peak at 450 nm is 2.8 times further away than the star with the peak at 750 nm. 
 

17. The Schwarzschild radius is 
2

2
.

GM

c
 

  
 

11 2 2 24

3Earth
Earth 22 8

2 6.67 10 N m kg 5.98 10 kg2
8.86 10 m 8.9 mm

3.00 10 m s

GM
R

c




 

    



 

 

18. The Schwarzschild radius is given by 
2

2
.

GM
R

c
   An approximate mass for our Galaxy is 

calculated in Example 44-1. 

  
   

 

11 2 2 41

14

22 8

2 6.67 10 N m kg 2 10 kg2
3 10 m

3.00 10 m s

GM
R

c

 
   




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19. The limiting value for the angles in a triangle on a sphere is o540 .  Imagine drawing an equilateral   
triangle near the north pole, enclosing the north pole.  If that triangle were small, the surface would 
be approximately flat, and each angle in the triangle would be o60 .  Then imagine “stretching” each 
side of that triangle down towards the equator, while keeping sure that the north pole stayed inside 
the triangle. The angle at each vertex of the triangle would expand, with a limiting value of o180 .  

The three o180  angles in the triangle would sum to o540 . 
 
20. To just escape from an object, the kinetic energy of the body at the surface of the body must be equal 

to the magnitude of the gravitational potential energy at the surface.  Use Eq. 8-19. 

  esc 2

Schwarzchild

2 2

2

GM GM
v c

R GM c
    

 
21. We find the time for the light to cross the elevator, and then find how far the elevator moves during 

that time due to its acceleration. 

        
 

22
2 161

2 22 8

9.80 m s 2.4 m
 ; 1.3 10 m

2 2 3.00 10 m s

g xx
t y g t

c c


        


   

 Note that this is smaller than the size of a proton. 
 
22. Use Eq. 44-4, Hubble’s law. 

  71850 km s
    84 Mly 8.4 10 ly

22 km s Mly

v
v Hd d

H
        

 
23. Use Eq. 44-4, Hubble’s law. 

  
  8

8

4

2
0.015 3.00 10 m s

    204.5 Mly 2.0 10 Mly 2.0 10 ly
2.2 10 m s Mly

v
v Hd d

H


        


 

 
24. (a) Use Eq. 44-6 to solve for the speed of the galaxy. 

   obs rest

rest

455 nm 434 nm
0.048

434 nm
    0.04839 c

v
z v c c

c

 


 
      

 
 

 (b) Use Hubble’s law, Eq. 44-4, to solve for the distance. 

   
 8

8
0.04839 3.00 10 m s

    660 Mly 6.6 10 ly
22000 m s Mly

v
v Hd d

H


        

 
25. We find the velocity from Hubble’s law, Eq. 44-4, and the observed wavelength from the Doppler 

shift, Eq. 44-3. 

 (a) 
   4

8

22000 m s Mly 7.0 Mly
5.133 10

3.00 10 m s

v Hd

c c
   


 

 
4

0 4

1 1 5.133 10
656 nm 656.34 nm 656 nm

1 1 5.133 10

v c

v c
 





  
   

  
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 (b) 
   3

8

22000 m s Mly 70 Mly
5.133 10

3.00 10 m s

v Hd

c c
   


 

 
3

0 3

1 1 5.133 10
656 nm 659.38 nm 659 nm

1 1 5.133 10

v c

v c
 





  
   

  
 

 
26. Use Eqs. 44-3 and 44-4 to solve for the distance to the galaxy. 

  

 
 

 
 

 
 

   
   

2 2

obs rest

obs rest 2 2

obs rest

2 22 2 8

obs rest

2 2 4 2 2

obs rest

3 9

1
    

1

423.4 nm 393.4 nm3.00 10 m s

2.2 10 m s Mly 423.4 nm 393.4 nm

1.0 10 Mly 1.0 10 ly

v c
v c

v c

v c
d

H H

 
 

 

 

 


  

 

 
  

  

   

  
  

 

 
27. Use Eqs. 44-3 and 44-5a to solve for the speed of the galaxy. 

  
 
 

2 2

2 2

obs rest obs

rest rest

1
1  

1

1 1 1.060 1
0.05820    0.058

1.060 11 1

1
v c

z
v c

zv
v c

c z

  
 


  



  
    

 


  

 

 The approximation of  Eq. 44-6 gives 0.060 .v zc c   

 
28. Use Eqs. 44-3 and 44-5a to solve for the redshift parameter. 

  obs rest obs

rest rest

1 1 0.075
1 1 1 0.078

1 1 0.075

v c
z

v c

  
 
  

       
 

 

 Or, we use the approximation given in Eq. 44-6. 

  0.075
v

z
c

   

 

29. Eq. 44-3 states rest

1

1

v c

v c
 





.  

  

 
1/ 2 1/ 2 2

1 1 1
rest rest rest rest2 2 2

1
rest rest rest rest rest rest2

rest

1
1 1 1 1 1

1

1 2 1         

v c v v v v v

v c c c c c c

v v v v v

c c c c c

    


        




         




            

        
        
        

    
        
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30. For small relative wavelength shifts, we may use Eq. 44-6 to find the speed.  We use Eq. 44-4 to find 
the distance. 

rest rest

8

rest

     ;    

3.00 10 m s 0.10cm
65Mly

22,000m s Mly 21cm

v
v c v Hd

c

v c
d

H H

 
 




 
    

   
     

  

 

 
31. Wien’s law is given in Eq. 37-1. 

  
3 3

3 3

P P

2.90 10 m K 2.90 10 m K
2.90 10 m K    1.1 10 m

2.7 K
T

T
 

 
  

      
 

  

 

32. We use Wien’s law, Eq. 37-1.  From Figure 44-30, the temperature is about 1010 K.  

  
3 3

3 13

P P 10

2.90 10 m K 2.90 10 m K
2.90 10 m K    3 10 m

10 K
T

T
 

 
  

      
 

   

 From Figure 31-12, that wavelength is in the gamma ray region of the EM spectrum. 
 
33. We use the proton as typical nuclear matter.   

  26 3

3 27

kg 1nucleon
10 6 nucleons m

m 1.67 10 kg






  

    
 

 
34. If the universe’s scale is inversely proportional to the temperature, the scale times the temperature 

should be constant.  If we call the current scale “1,” and knowing the current temperature to be about 
3 K, then the product of scale and temperature should be about 3.  Use Figure 44-30 to estimate the 
temperature at various times.  For purposes of illustration, we assume the universe has a current size 

of about 1010 ly.   There will be some variation in the answer due to reading the figure. 

(a) At 610 yrt  , the temperature is about 1000 K.  Thus the scale is found as follows. 

   
  

  

3

3 10 7

3 3
Scale Temperature 3    Scale 3 10     

Temperature 1000

Size 3 10 10 ly 3 10 ly





      

   

 

(b) At 1 st  , the temperature is about 1010 K . 

     10 10 10

10

3 3
Scale 3 10     Size 3 10 10 ly 3ly

Temperature 10
          

(c) At 610 st  , the temperature is about 1310 K . 

   

  

13

13 10 3 13

133 3
Scale

Temperature 10

Size 3 10 10 ly 3 10 ly 3 10 m

3 10   

 

  

     

 
 

(d) At 3510 st  , the temperature is about 2710 K . 

   

  

27

27

27 10 17

3 3
Scale 3 10

Temperature 10

Size 3 10 10 ly 3 10 ly 0.3m



 

   

    
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35. We approximate the temperature–energy relationship by 2kT E mc   as suggested on page 1217. 
2

2     
mc

kT mc T
k

   . 

 (a) 
   2 2 132

12

23

500 MeV 1.60 10 J MeV
6 10 K

1.38 10 J K

c cmc
T

k






   


 

  From Figure 44-30, this corresponds to a time of 510 s . 

 (b) 
   2 2 132

14

23

9500 MeV 1.60 10 J MeV
1 10 K

1.38 10 J K

c cmc
T

k






   


 

  From Figure 44-30, this corresponds to a time of 710 s . 

 (c) 
   2 2 132

12

23

100 MeV 1.60 10 J MeV
1 10 K

1.38 10 J K

c cmc
T

k






   


 

  From Figure 44-30, this corresponds to a time of 410 s . 
There will be some variation in the answers due to reading the figure. 

 
36. (a) According to the text, near Figure 44-33, the visible matter makes up about one-tenth of the  

total baryonic matter.  The average baryonic density is therefore 10 times the density of visible 
matter. 

   
  

visible
baryon visible 34

3

11 11 30

3
9 154

3

26 326 3

10 10

10 galaxies 10 stars galaxy 2.0 10 kg star
10

14 10 ly 9.46 10 m ly

2.1 10 kg m2.055 10 kg m

M

R
 







 




 

 

  

 

 

(b) Again, according to the text, dark matter is about 4 times more plentiful than normal matter. 

   26 3 26 3

dark baryon4 4 2.055 10 kg m 8.2 10 kg m         

 
37. (a) From page 1201, a white dwarf with a mass equal to that of the Sun has a radius about the size  

of the Earth’s radius, 6380 km .   From page 1202, a neutron star with a mass equal to 1.5 solar 

masses has a radius of about 20 km .   For the black hole, we use the Schwarzschild radius 

formula. 

 
   

 

11 2 2 30

22 8

2 6.67 10 N m kg 3 1.99 10 kg2
8849m 8.85km

3.00 10 m s

GM
R

c

 
   




 

(b) The ratio is 6380 : 20 : 8.85 721: 2.26 : 1 700 : 2 : 1 .   
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38. The angular momentum is the product of the rotational inertia and the angular velocity. 

  

   

 

initial final

2 22 82
initial initial initial5

final initial initial initial2 32
final final final5

9 9

  

7 10 m
1rev month

8 10 m

rev 1month
       7.66 10 rev month 7.66 10

month 3

I I

I MR R

I MR R

 

   

 


   



    

      
      

     
1d 1h

2953
0d 24 h 3600s

3000 rev s

rev s  



 

 

39. The rotational kinetic energy is given by 21
2

I .  The final angular velocity, from problem 43, is 
97.66 10 rev month . 

  
  

  

22 2 21 2
final final final final final final final2 5

2 2 21 2
initial initial initial initial initial initial initial2 5

2
3 9

9

8

8 10 m 7.66 10 rev month
8 10

7 10 m 1rev month

K I MR R

K I MR R

  
  

  

 
  



 
 
 

 
  
 

 

 
40. The apparent luminosity is given by Eq. 44-1.  Use that relationship to derive an expression for the 

absolute luminosity, and equate that for two stars. 

  

 

2

2

2 2

distant Sun distant distant Sun Sun
star star star

11Sun
distant Sun 11 15
star distant

star

    4
4

    4 4   

1 1ly
1.5 10 m 5ly

10 9.461 10 m

L
b L d

d

L L d d

l
d d

l

b

b b




 



  

   

   


 
 
 

 

 
41. A: The temperature increases, the luminosity stays the same, and the size decreases. 
 B: The temperature stays the same, the luminosity decreases, and the size decreases. 
 C: The temperature decreases, the luminosity increases, and the size increases. 
 
42. The power output is the energy loss divided by the elapsed time. 

  

     

        
     

2 2 21 1 2
initial 2 2 5

2 230 3 9

25 25

fraction lost fraction lost fraction lost

1.5 1.99 10 kg 8.0 10 m 2 rad s 1 101
  1.74610 W 1.7 10 W

5 1d 24 h d 3600s h

K I MRK
P

t t t t

 

 


   

   

  
   

 

 
43. Use Newton’s law of universal gravitation. 

  
   

  

241

11 2 2 281 2

22 6 15

28

3 10 kg
6.67 10 N m kg 1.68 10 N

2 10 ly 9.46 10 m ly

   2 10 N

m m
F G

r



    

 

 

  

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44. (a) Assume that the nucleons make up only 2% of the critical mass density. 

   

 
 

 
 

26 3

26 3

3

27

9 8 3

26 3

8 3

nucleon mass density 0.02 10 kg m

0.02 10 kg m
nucleon number density 0.12 nucleon m

1.67 10 kg nucleon

neutrino number density 10 nucleon number density 1.2 10 neutrino m

0.98 10 kg m

1.2 10 neutrino m











 


  



8 2
35 2

27

kg 9.315 10 eV
8.17 10 46 eV

neutrino 1.66 10 kg

c
c




   



  

 (b) Assume that the nucleons make up only 5% of the critical mass density. 

   

 
 

 
 

26 3

26 3

3

27

9 8 3

26 3

8 3

nucleon mass density 0.05 10 kg m

0.05 10 kg m
nucleon number density 0.30 nucleon m

1.67 10 kg nucleon

neutrino number density 10 nucleon number density 3.0 10 neutrino m

0.95 10 kg m

3.0 10 neutrino m











 


  



8 2
35 2

27

kg 9.315 10 eV
3.17 10 18eV

neutrino 1.66 10 kg

c
c




   



 

 
45. The temperature of each star can be found from Wien’s law. 

  

3

P

3 3

660 4809 9

2.90 10 m K  

2.90 10 m K 2.90 10 m K
4390 K          6040 K

660 10 m 480 10 m

T

T T

 

 

 

  

 
   

 



   

 The luminosity of each star can be found from the H–R diagram. 

  25 26

660 4803 10 W          3 10 WL L    

The Stefan–Boltzmann equation says that the power output of a star is given by 4P AT , where 

  is a constant, and A is the radiating area.  The P in the Stefan–Boltzmann equation is the same as 
the luminosity L given in Eq. 44-1.  Form the ratio of the two luminosities. 

  
 
 

24 2 4 2 26

480 480 480 480 480 480 480 660

24 2 4 2 25

660 660 660 660 660 660 660 480

4390 K4 3 10 W
    1.67

4 3 10 W 6040 K

L A T r T r L T

L A T r T r L T

 
 


     


 

 The diameters are in the same ratio as the radii. 

  480

660

1.67 1.7
d

d
   

The luminosities are fairly subjective, since they are read from the H–R diagram.  Different answers 
may arise from different readings of the H–R diagram. 

 
46. (a) The number of parsecs is the reciprocal of the angular resolution in seconds of arc. 

        
o

o661 1 1
100 parsec     0.01 3 10

60 60
2.78 10




    
  

         
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(b) We use the Rayleigh criterion, Eq. 35-10, which relates the angular resolution to the diameter of  
the optical element.  We choose a wavelength of 550 nm, in the middle of the visible range. 

   
 

   

9

6

1.22 550 10 m1.22 1.22
    = =13.83m 14 m

2.78 10 rad 180
D

D

 


 






   

    
 

  The largest optical telescopes currently in use are about 10 m in diameter. 
 
47. We approximate the temperature–kinetic energy relationship by kT K  as given on page 1217. 

  
  12 19

16

23

1.96 10 eV 1.60 10 J eV
    2 10 K

1.38 10 J K

K
kT K T

k





 
     


 

 From Figure 44-30, this is in the  hadron era  .   
 
48. We assume that gravity causes a centripetal force on the gas.  Solve for the speed of the rotating gas,  

and use Eq. 44-6. 

      
 

2gas black
hole gas gas

gravity centripetal 2

9 30black
hole 11 2 2 5

gas 15

5
3 3

8

      

2 10 1.99 10 kg
6.67 10 N m kg 6.42 10 m s

9.46 10 m
68ly

1ly

6.42 10 m s
2.14 10 2 10

3.00 10 m s

m m
m v

F F G
r r

m

v G
r

v
z

c



 

   

 
    




     



 
 
 

  

 
49. (a) To find the energy released in the reaction, we calculate the Q-value for this reaction.  From Eq.  

42-2a, the Q-value is the mass energy of the reactants minus the mass energy of the products.  
The masses are found in Appendix F. 

    2 2 2 2

C Mg2 2 12.000000 u 23.985042 u 931.5Mev 13.93MeVQ m c m c c c      

(b) The total kinetic energy should be equal to the electrical potential energy of the two nuclei when  
they are just touching.  The distance between the two nuclei will be twice the nuclear radius, 
from Eq. 41-1.  Each nucleus will have half the total kinetic energy. 

   

      

     
   

2
1/ 3 1/ 315 15 nucleus

0

2

nucleus1 1
2 2

0

22 19

9 2 21
2 1/ 3 1315

1
1.2 10 m 1.2 10 m 12           

4 2

1

4 2

6 1.60 10 C 1MeV
8.988 10 N n C 4.711MeV

1.60 10 J2 1.2 10 m 12

4.7 MeV

q
r A U

r

q
K U

r





 





    

 


 





   
 



 

(c) We approximate the temperature–kinetic energy relationship by kT K  as given on page  
1217. 

   
  13

10

23

4.711MeV 1.60 10 J MeV
    5.5 10 K

1.38 10 J K

K
kT K T

k






     


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50. (a) Find the Q-value for this reaction.  From Eq. 42-2a, the Q-value is the mass energy of the  
reactants minus the mass energy of the products. 

    
16 16 28 4

8 8 14 2

2 2 2 2 2

O Si He

O O  Si He

2 2 15.994915u 27.976927 u 4.002603 931.5Mev

   9.594 MeV

Q m c m c m c c c

  

     



 

(b) The total kinetic energy should be equal to the electrical potential energy of the two nuclei when  
they are just touching.  The distance between the two nuclei will be twice the nuclear radius, 
from Eq. 41-1.  Each nucleus will have half the total kinetic energy. 

     

     
  

2
1/3 1/315 15 nucleus

0

2

nucleus1 1
nucleus 2 2

0

22 19

9 2 21
2 1/3 1915

1
1.2 10 m 1.2 10 m 16           

4 2

1

4 2

8 1.60 10 C 1eV
          8.988 10 N n C 7.609 MeV

1.60 10 J2 1.2 10 m 16

          7.6 MeV

q
r A U

r

q
K U

r





 





    

 


   







 

(c) We approximate the temperature–kinetic energy relationship by kT K  as given on page  
1217. 

  

 
19

6

10

23

1.60 10 J
7.609 10 eV

1eV
    8.8 10 K

1.38 10 J K

K
kT K T

k








     


 
 
   

 

51. We treat the energy of the photon as a “rest mass,” and so 2

photon photon" ."m E c   To just escape 

from a spherical mass M of radius R, the energy of the photon must be equal to the magnitude of the 
gravitational potential energy at the surface. 

  
 2

photonphoton photon

photon 2

photon photon

    
GM E cGMm GMm GM

E R
R E E c

      

 
52. We use the Sun’s mass and given density to calculate the size of the Sun. 

  
 
 

34
Sun3

1/ 31/ 3 30

18

Sun 1526 3

18
7 3Sun Sun

11

Earth-Sun galaxy

  

3 1.99 10 kg3 1ly
3.62 10 m 382 ly 400ly

4 9.46 10 m4 10 kg m

3.62 10 m 382 ly
2 10   ;  4 10

1.50 10 m 100,000ly

M M

V r

M
r

r r

d d




  



  


     




     



    
          
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53. We approximate the temperature–kinetic energy relationship by kT K  as given on page 1217. 

  
   12 19

17

23

14 10 eV 1.60 10 J eV
    1.6 10 K

1.38 10 J K

K
kT K T

k





 
     


 

From Figure 44-30, this might correspond to a time around 1510 s .   Note that this is just a very 
rough estimate due to the qualitative nature of Figure 44-30. 

 
54. (a) We consider the photon as  

entering from the left, grazing the 
Sun, and moving off in a new 
direction.  The deflection is 
assumed to be very small.  In 
particular, we consider a small part 
of the motion in which the photon 
moves a horizontal distance 
dx cdt while located at (x,y) 
relative to the center of the Sun.  

Note that y R  and  2 2 2 .r x y    
If the photon has energy E, it will 

have a “mass” of 2 ,m E c  and a 

momentum of magnitude .p E c mc    To find the change of momentum in the y-direction, 
we use the impulse produced by the y-component of the gravitational force.    

   
 2 2 3/22 2

cosy y

GMm dx GMm dx GMmR dx
dp F dt

r c r c

R

r c x R
     


 

To find the total change in the y-momentum, we integrate over all x (the entire path of the 
photon).  We use an integral from Appendix B-4. 

   
   3/2 1/22 2 2 2 2 2

2 2
y

GMmR dx GMmR x GMm GMp
p

c c cR c Rx R R x R







        
 

  

The total magnitude of deflection is the change in momentum divided by the original 
momentum. 

   
2

2

2
2y

GMp
p GMc R

c Rp p



     

 (b) We use data for the Sun. 

   

 

   

2
11 30

2

22 8 8

6

N m
2 6.67 10 1.99 10 kg

kg2

3.00 10 m s 6.96 10 m

180 3600
4.238 10 rad 0.87

 rad 1

GM

c R








 

  
 


   



 
 
 

  
  
  



  

 
 
 



x

y R

E
p mc

c
 

2

GMm
F

r


R
r


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55. Because Venus has a more negative apparent magnitude, Venus is brighter.  We write the 
logarithmic relationship as follows, letting m represent the magnitude and b the brightness. 

  

   

   

 
Venus Sirius2 1

2 1 2 1 2 1

2 1

2 1

4.4 1.4
Venus2 2.5 2.5

2 1 2 1
1 Sirius

log   ;  log log log   

5
2.5

log log 0.01

log     10     10 10 16
m mm m

k

m k b m

m

m

m k b b k b b

m
k

b b

bb
m k b b

b b

  
 

     

 
   

       

  

 
56. If there are N nucleons, we assume that there are approximately 1

2
N neutrons and 1

2
N protons.  

Thus, for the star to be neutral, there would also be 1
2

N electrons. 

 (a) From Eq. 40-12 and 40-13, we find that if all electron levels are filled up to the Fermi energy  

F ,E  the average electron energy is F
3
5 .E  

    e

2/3 2/32 2
e3 31

e F5 2 5
e e

3 3 1 3

8 5 2 8 2
E

Nh h N
N E N N

m V m V 
            

    
  

 (b) The Fermi energy for nucleons would be a similar expression, but the mass would be the mass  
of a nucleon instead of the mass of the electron.  Nucleons are about 2000 times heavier than 
electrons, so the Fermi energy for the nucleons would be on the order of 1/1000 the Fermi 
energy for the electrons.  We will ignore that small correction. 
 

To calculate the potential energy of the star, think about the 
mass in terms of shells.  Consider the inner portion of the 
star with radius r < R and mass m, surrounded by a shell of 
thickness dr and mass dM.  See the diagram.  From Gauss’s 
law applied to gravity, the gravitational effects of the inner 
portion of the star on the shell are the same as if all of its 
mass were at the geometric center.  Likewise, the 
spherically-symmetric outer portion of the star has no 
gravitational effect on the shell.  Thus the gravitational 
energy of the inner portion–shel) combination is given by a 

form of Eq. 8-17, .dU G
mdM

r
    The density of the star 

is given by 
34

3

.
M

R



   We use that density to calculate the masses, and then integrate over the 

full radius of the star to find the total gravitational energy of the star. 

 

   

   

3
3 34 4

3 33 34
3

2
2 2

3 34
3

3 2

23 3
4

6

3
4 4

3
3

M r
m r r M

R R

M Mr
dM r dr r dr dr

R R

r Mr
M dr

mdM GMR RdU G G r dr
r r R

  


  


  

  

     

 

r

R
dr
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  
2 2 2 5 2

4 4

6 6 6

0 0

3 3 3 3

5 5

R RGM GM GM R GM
U r dr r dr

R R R R
       

 
 
 
   

 (c) The total energy is the sum of the two terms calculated above.  The mass of the star is primarily  
due to the nucleons, and so nucleon .M Nm  

   

2/32 2

total e

e

2/3
2 2 2/3 2 5/3 2

3 4/3 5/3 24
e nucleon nucleon e nucleon3

3 1 3 3

5 2 8 2 5

3 3 3 9 3 3

80 2 5 320 5

h N GM
E E U N

m V R

h M M GM h M GM

m m m R R m m R R



  

   

   

   
   
   

  
  

  

 

Let 
2/3 2 5/3

4/3 5/3

e nucleon

9 3

320

h M
a

m m
  and 23

,
5

b GM  so total 2
.

a b
E

R R
    We set total 0dE dR   to find 

the equilibrium radius.  

 

2/3 2 5/3

4/3 5/3 2/3 2

total e nucleon
eq3 2 4/3 1/3 5/3

2 e nucleon

9 3
2

3202 2 9
0    

3 32
5

h M

dE m ma b a h
R

dR R R b GM m mGM




         

We evaluate the equilibrium radius using the Sun’s mass. 

 
 

    

2/3 2

eq 4/3 1/3 5/3

e nucleon

22/3 34

2
1/3 5/34/3 11 30 31 27

2

6 3

9

32

9 6.63 10 J s

N m
32 6.67 10 2.0 10 kg 9.11 10 kg 1.67 10 kg

kg

7.178 10 m 7.2 10 km

h
R

GM m m





  






   

   

 
 
 




 

 
57. There are N neutrons.  The mass of the star is due only to neutrons, and so n .M Nm   From Eqs. 

40-12 and 40-13, we find that if all energy levels are filled up to the Fermi energy F ,E  the average 

energy is F
3
5 .E   We follow the same procedure as in Problem 56.  The expression for the 

gravitational energy does not change. 

       2/3 2/32/3 2 5/32 2

3 3
n n F5 5 3 4/3 8/3 24

n n n n n3

3 183 3 3

8 40 160

h Mh N M h M
E N E N

m V m m R m m R   
   

   
         

  

  
  2

total n

2/3 2 5/3

4/3 8/3 2
n

3

5

3 18

160

GM
E E U

R

h M

m R
     

Let 
 2/3 2 5/3

4/3 8/3
n

3 18

160
a

h M

m
  and 23

,
5

b GM  so total 2
.

a b
E

R R
    We set total 0dE dR   to find the 

equilibrium radius.  
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 
 

2/3 2 5/3

2/3 24/3 8/3

total n
eq3 2 4/3 1/3 8/3

2 n

3 18
2

181602 2
0    

3 16
5

h M

hdE ma b a
R

dR R R b GM mGM




         

 We evaluate the equilibrium radius for a mass of 1.5 solar masses. 

  

 

 
   

2/3 2

eq 4/3 1/3 8/3

n

22/3 34

2
1/3 8/34/3 11 30 27

2

4

18

16

18 6.63 10 J s

N m
16 6.67 10 1.5 2.0 10 kg 1.67 10 kg

kg

1.086 10 m 11km

h
R

GM m





 






  

  

       




 

 
58. We must find a combination of c, G, and   that has the dimensions of time.  The dimensions of  c 

are ,
L

T
 
  

 the dimensions of G are 
3

2
,

L

MT

 
 
 

 and the dimensions of   are 
2

.
ML

T

 
 
 

 

       

 

3 2
3 2 2

2

51 1
2 2 2

11 2 2

5/2 1/2 1/2

5

    

3 2 0 ; 0 ; 2 1    5 0 ; 1 3   

5 1 3      ;  ; 

1
6.67 10 N m kg 6.6

2

P

P

L L ML
t c G T L M T

T MT T

G
t c G

c

 
         

           

    



     





   

               

        


  

    
         






 
 

34

44

58

3 10 J s
5.38 10 s

3.00 10 m s






 



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