This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] EEn
. Table of Contents
° Index

Java™ Media APIs: Cross-Platform Imaging, Media,

and Visualization
By Alejandro Terrazas, John Ostuni, Michael Barlow

Publisher : Sams Publishing
Pub Date : November 26, 2002

ISBN 1 0-672-32094-0
Pages 1 848

Java Media APIs: Cross-Platform Imaging, Media, and Visualization presents integrated Java media
solutions that demonstrate the best practices for using this diverse collection. According to Sun
MicroSystems, "This set of APIs supports the integration of audio and video clips, animated
presentations, 2D fonts, graphics, and images, as well as speech input/output and 3D models." By
presenting each API in the context of its appropriate use within an integrated media application, the
authors both illustrate the potential of the APIs and offer the architectural guidance necessary to build
compelling programs.

[Team LiB] waxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
o Table of Contents
o Index

Java™ Media APIs: Cross-Platform Imaging, Media,

and Visualization
By Alejandro Terrazas, John Ostuni, Michael Barlow

Publisher : Sams Publishing
Pub Date : November 26, 2002

ISBN 1 0-672-32094-0
Pages 1 848

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Copyright
Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 2001091791
Printed in the United States of America
First Printing: November 2001

040302014321
Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an "as is" basis. The authors and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this book.

Credits

Executive Editor
Michael Stephens
Acquisitions Editor
Carol Ackerman
Managing Editor
Charlotte Clapp

Proofreader

Suzanne Thomas

Technical Editor
Chunyen Lui

Starfire Research

Team Coordinator

Lynne Williams

Media Developer

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Dan Scherf

Interior Desinger

Anne Jones

Cover Designer

Aren Howell

Dedication

To Jane for her guidance and patience through our ten years of marriage. To Victoria, Enrique, and
Rebecca for being such wonderful kids. To my late best friend, James G. Boyer, who lived and died
like James Dean. —Alex Terrazas

To God and to my family. —John Ostuni

For now and then: To Champ, Zoe-Blowie, and Grantly-Cantly. Life has never been so good! In loving
memory of Billy Leitch, the gentle prankster of my childhood. —Michael Barlow

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
About the Authors

Dr. Alejandro Terrazas is president of VRSciences, a startup company developing VR therapies for
the treatment of mental disorders including addiction and age-related memory impairments. The
company also conducts research and develops software for simulation and training in virtual urban
environments. Alex is an expert in functional brain imaging, neurophysiology and the brain
mechanisms of navigation and memory formation in virtual environments. He previously held the
position of associate director of the Machine Interface Network Design (MIND) Lab at Michigan State
University where he oversaw research in telepresence, virtual environments, and 3D graphics. Dr.
Terrazas received his Ph.D. in Cognition and Neural Systems from the University of Arizona.

John Ostuni graduated from Rutgers University with a Ph.D. in Biomedical Engineering. Since that
time, he has worked at the National Institutes of Health where he is currently a senior staff scientist
in the Warren Grant Magnuson Clinical Center. He has taught various courses in Java and C++, and
his current interests are medical image processing and converting research-based software into
clinical applications. He currently resides in Maryland with his wife Sandra and his two sons Steven
and Anthony.

Dr. Michael Barlow (he prefers simply to be called Spike)is the founding director of the Virtual
Environment and Simulation Laboratory (VESL) and a senior lecturer within the School of Computer
Science at the University of New South Wales, ADFA (Australian Defence Force Academy).

For the past 15 years, Spike has been an active researcher in the area of media and speech
recognition in particular, including a stint of two years in Japan's NTT (Nippon Telegraph and
Telephone) Human Interface Laboratories working on Large Vocabulary Continuous Speech
Recognition. His other major research areas include virtual environments for scientific visualization
and education and multi-agent systems for simulation and modeling.

Spike has taught Java at the university level for several years. He currently teaches courses on OO
programming, data structures, multimedia, and virtual environments.

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Pavisua]f T o]
Acknowledgments

I would like to thank all of the researchers, clinicians, and technologists at NIH for their ideas, help,
and friendships. I would like to thank Alex for inviting me to write Chapters 4 through 6 in this book. I
would also like to thank all the editors and reviewers, especially Regina Geoghan, for their help in
preparing these chapters. I am also grateful to my many students for helping me to organize and
refine much of this work. Most importantly, I would like to thank my family for supporting me
throughout this book and throughout my career. —John Ostuni

Thanks to the multi-talented Mark Grundy (The Black Duck) for the music recordings used as audio

examples in Chapter 7.

My thanks go to my colleagues and workmates at the School of Computer Science, ADFA, who
provided both support and a bit of good-natured ribbing. In particular, my thanks go to Peter Morris,
who captured and encoded the video samples of Chapter 7 and provided much good advice besides.

Thanks also to Wen Ung for the generous loan of a Webcam with which to test video capture code.
Also thanks go to Aaron Mihe, who got my home PC (on which a lot of the text was written) up and
running again after my fiddling—yet more proof that programmers shouldn't go near hardware.
Finally, to Professor Charles Newton, Head of School, who supported my efforts with the book.

Thanks to Alex for taking me on board with the book. Last, but first in my heart, thanks to my family:
Maria, Zoe, and Grant. They supported me in every way and didn't deserve the nights and weekends
lost to my authoring. —Michael Barlow

I wish to thank Justin Couch and Alan Hudson of Yumetech for their considerable contributions to the
ROAM code, their participation in the Java 3D mailing list and their tireless work on www.j3d.org. The
Java 3D community is lucky to have them.

Thanks to Julian Gomez for his friendship and mentoring in 3D graphics.
Thanks to Paul Byrne for his contributions to the ROAM algorithm.

Thanks to Mark Hood for explaining the View Model with such clarity and for helping me so many
times in getting various goggles working.

Finally, thanks to my students, Jose Thota, Eric Blackwell and Mike Meyer at Michigan State University
who contributed to some of the writing and a lot of the testing of the code in Chapters 11-14 —Alex
Terrazas

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fravisus Jwant o]
Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value your opinion
and want to know what we're doing right, what we could do better, what areas you'd like to see us
publish in, and any other words of wisdom you're willing to pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can fax, e-mail, or write
me directly to let me know what you did or didn't like about this book—as well as what we can do to
make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and authors' names as well as your name
and phone or fax number. I will carefully review your comments and share them with the authors and
editors who worked on the book.

Fax: 317-581-4770
E-mail: feedback@samspublishing.com
Mail: Michael Stephens

Executive Editor

Sams Publishing

201 West 103rd Street
Indianapolis, IN 46290 USA

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
Chapter 1. Visualization, Media, and Imaging on the Java Platform

IN THIS CHAPTER

® 3D Modeling and Visualization with Java 3D
® The Java Media Framework

® Loading and Manipulating Images

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
3D Modeling and Visualization with Java 3D

-Dr. Alejandro Terrazas

Java 3D is an object-oriented, scene-graph-based API for programming interactive 3D content on
multiple platforms. Quite a lot of information is in the preceding sentence, so we will spend some time
trying to unpack that statement.

Two basic flavors of Java 3D exist: OpenGL and DirectX. Java 3D takes advantage of these lower-level
3D APIs to do rendering; however, it is definitely a mistake to think that Java 3D simply makes
bindings to the low-level API. It turns out that calls to OpenGL and DirectX are done through native
interface calls, JNI, which are computationally expensive. Therefore, Java 3D performs a large number
of optimizations and work in its own renderer before making the precious few calls to the low-level
APL.

Scene-graph API

One of the most important innovations to occur in 3D graphics programming in the last several years
is the development of the scene graph. Two early adoptors of the scene graph are Openlnventor and
VRML.

Generally speaking, the scene graph is a formal way to organize your 3D content, and as such it
enables a number of optimizations. A full description of the advantages of the scene graph is given in
Chapter 10, "3D Graphics, Virtual Reality, and Visualization." For now, consider that the scene graph
organizes the data largely along the spatial dimension. Therefore, culling and other spatial
optimizations that reduce the number of computations required for rendering a scene can eliminate
entire branches of the tree structure.

Another major advantage of the scene graph approach is that the state of various attributes can be
handed down to the children within the hierarchy.

Finally, the scene graph is a structure for managing content. The value of this function becomes
apparent when developing a large project.

Object-Oriented 3D Graphics

Object-oriented programming is a natural way to think about 3D graphics. It is much preferable (from
a content development and management perspective) than thinking about vertices and triangles.
Nevertheless, the 3D content has to come from somewhere. Java 3D allows the developer to get down
to the level of the vertices or to import pre-built geometry through loaders.

The other advantage to using object-oriented 3D graphics is extensibility. Java 3D provides a rich
mechanism for extension. Developers will find themselves using extension time and time again.

Interactive Graphics

As already stated, Java 3D is generally for interactive graphics. Interactive refers to the fact that the
user can make changes to the scene in near real-time. In other words, the model exists to be played
with, and the user can create a totally novel view of the model by moving the mouse or interacting
with the model in some way. Interactive graphics enable visualization and virtual navigation.

Getting the Java 3D API

Java 3D is freely downloadable from the java.sun.com Web site. There are a number of options for
downloading the software. One of the first questions is whether the user wants OpenGL or DirectX

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

versions. Like other Java APIs, there is a runtime version and an SDK. The runtime is there for any
user to download and run Java 3D applets and applications. There is no facility for compiling Java 3D
programs in the runtime. To write and compile a Java 3D program, the user will need to download the
SDK. The most current version of Java 3D is FCS J3D1.3 v1.3 beta2. The Java 3D download includes a
set of utilities that will be used extensively throughout the Java 3D section of the book.

Assuming that you already have Java installed, download and install the Java 3D SDK. The
instructions are pretty straightforward. The only real trick is to put the java3d-utils-src.jar in the
classpath.

You might also want to download the J3DFly examples. These examples are in addition to the Java 3D
examples that come with the download, and they can be found at

[Team LiB] [« Fravious it o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fravisus Jwant o]
The Java Media Framework

-Dr. Michael "Spike" Barlow

The second major section of the book, Chapters 7, 8 and 9, covers time-based media (that is, video
and audio) and the JMF—Java Media Framework, a Java API dedicated to the processing of time-based
media.

Fundamentally, the JMF is an extension to Java for handling audio and video (audio and video being
the two primary forms of time-based media). More rigorously, the JMF API (Java Media Framework
Application Programming Interface) is one of the official Java Optional Packages from Sun
Microsystems that extends the functionality of the core Java Platform. Included in 2D Graphics and
Imaging on the Java Platform this group of Optional Packages are others that are covered in the book:
Java 3D and Java Advanced Imaging (JAI).

The JMF comprises some 200 odd additional classes pertaining to the handling of time-based media.
Handling is used in the broadest sense to include playback, capture, processing, and transmission, for
either local media or media from a remote site, and as part of either an applet or application. Among
the possibilities the API affords are platform (hardware and OS) independent video conferencing,
complete audio and video editing suites, empowering the latest mobile computing such as cellular
phones and PDAs (Personal Digital Assistants), and when taken in conjunction with the other media
APIs, completely integrated multimedia applications written entirely in Java and running on any
platform.

JMF Coverage in the Book

The three chapters in this section of the book follow a progression of simple out-of-the-box utilization
of the API to sophisticated usage, such as in combination with other specialized features and APIs of
Java. Hence, a linear progression through the material is recommended as the default. However,
those of you possessing a familiarity with time-based media or parts of the API might want to skip
some of the introductory material.

The structure of the three chapters is as follows:

® Chapter 7, "Time-Based Media and the JMF: An Introduction"— The first chapter of the section
on the JMF serves as both an introduction to time-based media in general and to the JMF APL.
Some of the fundamental concepts and issues for both digital audio and video are introduced.
Midway through the chapter is an introduction to the JMF API in terms of its features, promise,
central concepts, and main classes.

® Chapter 8, "Controlling and Processing Media with JMF"— This chapter serves as the core
chapter of the JMF section, covering the key features of the JMF API. The topics covered include
managers, data sources and sinks, multiplexing and demultiplexing, codecs, format conversion,
effects, and the capture of media from devices.

® Chapter 9, "RTP and Advanced Time-Based Media Topics"— This chapter covers some of the
more advanced features of the JMF API. Chief among these topics is the Real-Time Transport
Protocol (RTP) support within JMF and the corresponding ability to transmit or receive
streaming media such as over the Internet. Also covered are issues such as extending the API
and utilizing other APIs in conjunction with JMF.

Obtaining and Installing the JMF

The JMF extends the functionality of the Java platform and is an official Optional Package. As such, it
is a free download available from Sun Microsystems' Java site: http://java.sun.com. Following the
Products & APIs link will present the browser with a wealth of APIs; among them, the JMF can be
found under the Optional Packages heading at the bottom of the page.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

Alternatively, and more directly, Sun maintains a central Web page regarding the JMF:
http://java.sun.com/products/java-media/jmf/index.html. You should definitely bookmark this URL: It
not only has links for downloading the latest version of the JMF, but it also links to documentation and
example programs, as well as the latest JMF-related news.

Sun provides several different versions of the JMF for download. These differ in the OS platform they
are intended to run on. The current version, as of the time of writing, is v2.1.1a. At the previously
mentioned central site, Sun provides links for a cross-platform Java version, a Windows Performance
Pack, and a Solaris SPARC Performance Pack. A link is also provided to Blackdown's JMF
implementation for Linux. All versions require JDK 1.1.6 or later for full functionality. Those of you
who want to obtain the JMF without possessing the JDK should download and install that first.

Although the cross-platform version is pure byte code and will run on any machine supporting Java, it
is recommended that you download and install the OS specific versions that matches your OS. This is
because these implementations have been optimized with native code where appropriate, and hence
should run faster than the cross-platform version. Thus, those of you who are running Windows 95,
98, or NT should download the Windows Performance Pack, those of you who are running on one of
Sun's UNIX machines should download the Solaris SPARC Performance Pack, and those of you who
are under Linux should download Blackdown's version of the JMF for Linux. Those of you who are not
employing any of these (for example, on a Macintosh) should download the cross-platform version.

Sun provides detailed and specific instructions regarding the download and installation process. Those
instructions are tailored to the specific version downloaded. Following the download links will take the
browser through those instructions. Thus, specific download and installation instructions are not
repeated here. Installation of any version of the JMF is quite simple, consisting of self-installing
executables or the equivalent. However, those of you who want detailed installation instructions can

find them at http://java.sun.com/products/java-media/jmf/2.1.1/setup.html.

Following the installation process, you should check that the JMF is available for usage. One means of
checking this is to attempt to run the JMStudio demonstration program that is provided as part of the
JMF. Discussed further in Chapter 7, JMStudio is a powerful application that demonstrates many of the
capabilities of the JMF, such as playback, capture, and processing. Running JMStudio is as simple as
typing java JMStudio at your command prompt. If the JMF installed properly, a small JMStudio
window will pop up from which the various functions can be selected.

An alternative means of checking whether the JMF installed correctly is to point your browser at
http://java.sun.com/products/java-media/jmf/2.1.1/jmfdiagnostics.html, Sun's JMF diagnostic page.
As part of the installation process, the JMF is made available to your Web browser so that JMF-based
applets can be run. The preceding URL tests this feature. Similarly,
http://java.sun.com/products/java-media/jmf/2.1.1/samples/index.html contains JMF-based applets
that will play movie trailers, providing that the JMF is installed on your machine, and it is arguably a
more exciting means of testing the functionality of the newly installed JMF.

Additional JMF-Related Resources

A number of resources pertaining to the JMF are available on the Web. Sun's central JMF page,

http://java.sun.com/products/java-media/jmf/index.html, acts as a clearing house for many, but not

all, of these additional resources.

Two key resources that anyone undertaking serious JMF programming should possess are the API
(class) documentation and the Programmer's Guide from Sun. The API documentation is a class-by-
class description of the API. The Programmer's Guide is a comprehensive introduction to the API from
its authors. Both these documents can be browsed online or downloaded to a user's machine. Both
the online and downloadable version of these documents can be found linked from Sun's central JMF
page.

Other resources at Sun's site include excellent sample programs, source code for the JMF itself and
JMStudio, as well as user guides for JMStudio and JMFRegistry.

Sun maintains a free mailing list: jmf-interest, for those wanting to discuss the JMF. The details for
subscribing to and posting to the list can be found at the following URL:
http://java.sun.com/products/java-media/jmf/support.html. (It is also linked from Sun's main JMF

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

site.) Joining the list is highly recommended for those undertaking programming in the JMF—the list is
a small but helpful community with relatively low traffic (typically fewer than a dozen messages a
day) with Sun engineers periodically monitoring and posting on the list. The list's past archives, found
at http://archives.java.sun.com/archives/jmf-interest.html, contain a wealth of information.

Finally, it is worth noting that although the JMF comes with many audio and video codecs (the
compression schemes that are used for audio and video and which dictate its format), further codecs
can be installed. These additional codecs then expand the functionality of the JMF—JIMF is then able to
handle media of that format. Two popular codecs of note, MPEG-4 and DivX, can be incorporated into
the JMF in this manner. IBM, through its AlphaWorks division, has provided an implementation of
MPEG-4 for the JMF at http://www.alphaworks.ibm.com/tech/mpeg-4. DivX support, currently a
popular video format on the Internet because its high compression and good visual quality, can be
incorporated into the JMF by downloading the DivX codec from the DivX home page:

[Team LiB] [+ Fravisus Jwant o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Loading and Manipulating Images

-Dr. John Ostuni

Another major section of this book is composed of Chapters 4, 5 and 6. These sections cover loading
and manipulating image data. Although Java has always included methods to decode GIF and JPEG
images, the ability to read other formats was not available. Also the ability to write formatted images
was not available at all. These limitations were removed with the introduction of the Image I/O API in
jdk1.4. The Image I/O API provides a pluggable architecture for working with images stored in files
and accessed across the network. This API is based on format-specific plug-ins, some of which are
contained as part of the Java standard edition whereas others can be downloaded from third parties or
written as needed.

Besides loading image data, another difficulty in Java was the limitations in working with image data.
Although there were classes to perform image processing, it was difficult to put together a
professional image processing application. These limitations were removed with the release of the
Java Advanced Imaging API. This API provides the foundation necessary for complex image
manipulation, processing, and analysis. The Java Advanced Imaging (JAI) API can be thought of as an
extension of Java 2D. It was designed so that a user can develop sophisticated and complete image
processing applets and applications. It contains more than 80 image processing operations. It is also
extensible so that users can add their own operations. It provides support for many different data
types and image formats. One more interesting aspect of the JAI API is that for many platforms,
native code is included in order to take advantage of any platform specific libraries that might
improve image processing speed. At runtime, if the Java interpreter finds the native classes, they will
be used. If they are not found, the interpreter will fall back to a pure Java mode.

Image I/0 and Image Manipulation Coverage in This Book

The three chapters in this section of the book progress in a logical manner. Chapter 4 covers the
standard image I/O and image manipulation prior to the release of jdk1.4 and the Java Advanced
Imaging API. Chapter 5 covers the Image I/O API, whereas Chapter 6 covers the Java Advanced

Image API.

The structure of the three chapters is as follows:

® Chapter 4, "Immediate Mode Imaging Model"— In this chapter, I will discuss the image 2D
Graphics and Imaging on the Java Platform I/O and image processing available in the Java 2D
API. This chapter covers the basic concepts of an image: how to load and manipulate images.

® Chapter 5, "Image I/O API"— In this chapter, I will not only examine how the Java Image I/O
API is used, but also I will devote a significant portion of this chapter to developing new Image
I/0 plug-ins. All the major features, concepts, and classes are discussed.

® Chapter 6, "Java Advanced Imaging"— In this chapter, I will concentrate on the main JAI
classes, specifically why they were developed and how they interact. I will examine all the
image processing operations and how they are used. Finally, I will discuss some advanced
topics such as a rendered versus renderable layer, remote image processing, and extending
the JAI to add your own image processing operations.

Obtaining and Installing the Image 1/0 API and the Java Advanced Imaging API

Starting with jdk1.4, the Java I/O API is part of the Java standard edition. Thus, there is no need to
download it separately.

On the other hand, the Java Advanced Imaging API is not part of the Java standard edition and must

be downloaded separately. This can be done at the following URL: http://java.sun.com/products/java-
media/jai/downloads/download.html. Because there is native code in this API, you will have to choose

among a Solaris, Linux, or Windows download. Besides being able to download the JAI API, you can
also download demos and a tutorial at this URL.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

Additional Resources for the Image 1/0 and the Java Advanced Imaging APls

To augment the information found in Chapter 4, refer to the Java 2D home page at
http://i /iava- ia/2D/index_html.

To augment the information found in Chapter 5, refer to the Image I/O home page at

http://java.sun.com/j2se/1.4/docs/guide/imageio/index.html. This URL contains a description of each
of the packages composing the Image I/O API. It also contains a link to a Java Image I/O API Guide.

To augment the information found in Chapter 6, refer to the JAI home page at
http://java.sun.com/products/java-media/jai/index.html. Another useful URL is the JAI API page at
http://java.sun.com/j2se/1.4/docs/api/index.html. This page provides all the methods for all the JAI
classes, so it makes a great resource when you start programming. You can download a local copy of
this API from the JAI Documentation page at http://java.sun.com/products/java-

media/jai/docs/index.html. This page also contains a JAI programming guide so that you can see
examples of Java programs using JAIL.

If you still have questions regarding some aspect of the JAI, you can go to the JAI FAQ page at
http://java.sun.com/products/java-media/jai/forDevelopers/jaifag.html. Another useful resource is

the JAI Interest Group, which provides answers and comments to the questions other members of the

group pose. To view an archive of this e-mail, refer to http://archives.java.sun.com/archives/jai-
interest.html. Finally, if you find some part of the JAI that isn't working as it should, you can refer to

the JAI bug pages to either submit a bug report or to see whether it has already been submitted. This
page can be found at http://java.sun.com/products/java-media/jai/jai-bugs.html.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Summary

The Java Media APIs provide a common platform for developing media, imaging, and visualization
applications that are suitable for many platforms and the Internet. One of the particular strengths is
having access to the entire Java language as well as the other Java Media APIs.

This book attempts to get the developer up and running with the Java 3D APIs using less complicated
heuristic examples augmented by more complex comprehensive examples. There is no way that the
entire API could be covered in this text nor any other for that matter. Java 3D is immense and is
changing frequently. You will also gain some insight into 3D graphics. From experience, we can say
that these are both somewhat difficult topics that can take years to master. However, much of what
developers want to produce can be done rapidly with Java 3D.

We wish you well in your use of these exciting technologies. We hope you will enjoy using them as
much as we enjoyed writing about them.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Part I: 2D Graphics and Imaging on the Java Platform: The Java 2D,
Java Advanced Imaging, and Java Image I/O APIs

IN THIS PART
51 . | G .] Platf

3 Graphics P . ith the Java 2D API
' The I liate Mode Imaaing M

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [ravisus] it o]
Chapter 2. Imaging and Graphics on the Java Platform
IN THIS CHAPTER

® Evolution of Java Graphics and Imaging

® Graphics Versus Imaging

® Coordinate Spaces: User Space and Device Space

® Finding Out About Device Space

® What Is Rendering?

® Graphics Context

® The Basic Recipe for Rendering in Java 2D

¢ Imaging Fundamentals

® Java Images: A Raster and a Color Model

® The Immediate Mode Rendering Model

® Rendering Independence: The Renderable and Rendered Imaging Layers

® The Pull Model

® Graphics Capabilities in JAI

® Client-Server Imaging

®* Image I/0O
Java provides a rich platform for writing graphics and imaging applications. This chapter is an
overview and roadmap for how to approach writing a graphics or imaging application in Java, and we

will develop some of the concepts that will be necessary as you further explore this exciting part of
the Java Media APIs.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
Evolution of Graphics and Imaging on the Java Platform

Java-based imaging has progressed through three main stages: the AWT model, the Java 2D API
extensions to that model, and the Java Advanced Imaging (JAI) API extensions to the Java 2D API. All
the major parts of Java 2D and JAI can ultimately trace their lineage to the AWT model. That said, the
AWT model is fairly simple and will receive attention only as needed to explain Java 2D and JAI
concepts. The beginning reader will want to become familiar with a set of core packages, especially
java.awt and java.awt.image and will want to bookmark the following URLs:

It should be emphasized at the outset that many imaging and graphics problems can be solved by
simply using the Java 2D API. The developer will want to weigh heavily whether it is necessary to use
the JAI extensions. A primary reason is that, at present, the JAI API isn't part of the core Java
Foundation Classes. The Java 2D API is part of the JFC and is thus supported on all Java platforms
since 1.2. Java 2D's being a standard part of the JFC simplifies matters greatly for many basic
Internet applications because the user isn't required to set classpaths or download class libraries.
Another important reason for choosing Java 2D over JAI is simplicity. Getting a handle on JAI can be
challenging, even for experienced image processing programmers.

On the other hand, JAI is truly an advanced imaging API. It is a complete extension to Java 2D and
allows for powerful imaging operations such as multiresolution imaging, image tiling, and imaging
over a network (explained in Chapter 5, "Image I/O Package"). JAI comes with more than 80 image
operators and provides an extension mechanism for developing additional operators. Further, JAI uses
a sophisticated imaging model, called the pull model, that enables a number of optimizations and
allows so-called deferred execution, in which images are processed as needed, thus avoiding
unnecessary image computation. Another important aspect of the JAI is the use of native code for
many image processing operations.

JAI is suitable for applications such as medical imaging, interactive special effects, and remote
sensing applications, just to name a few. My own emphasis is on functional brain imaging and virtual
reality. In both of these areas, I see the potential for a lot of exciting applications. Nonetheless, a
more mundane aspect of my research involves the design of computerized cognitive tasks, essentially
little custom user interfaces that are displayed on the computer screen to study some particular
cognitive skill. For the development of these applications, Java 2D is ideal. Given that Java 2D has
some reasonably sophisticated image processing capabilities, excellent and complete graphics
support, and is included as part of the core JDK 1.2, most developers will want to strongly consider
using Java 2D unless compelled to do otherwise.

It is further true that a basic knowledge of Java 2D (at least the imaging aspects of Java 2D) is
essential to understanding the JAIL. Readers already knowledgeable about things such as the
immediate mode rendering model and the difference between rendered and renderable images might
want to skip ahead to Chapter 6, "Java Advanced Imaging," where the JAI is described in detail.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raivisvs =t o)
Graphics Versus Imaging

At the onset, it is necessary to separate the notions of graphics and imaging. Graphics refers to the
drawing of two-dimensional geometric shapes and text, whereas imaging is reserved to mean the
spatial representation of some physical quantity. In the case of digital photography, for example, the
physical quantity is light intensity across the rectangular view area of the camera. A texture is
somewhere in between a graphic and an image in that a texture is typically a programmed pattern
that is treated more or less like an image. As an aside, we note that generating images from graphics
is straightforward; however, the reverse isn't true. The generation of geometric shapes from images
is a fundamental problem in computer vision and image analysis.

Although some overlap will exist between the operations performed on graphics and images, they will,
in general, be treated as separate here.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [privieua]firaxt +]
Coordinate Spaces: User Space and Device Space

The critical concept necessary for understanding graphics and imaging on the Java platform is the
idea of user space and device space because they will be used extensively in this and other sections of
the book.

User space is the coordinate space in which the user operates. At instantiation, the origin of user
space is at the top-left corner of the screen with the x coordinate increasing to the right and the y
coordinate increasing downward. The user can move, translate, and otherwise change the user space.

Note

User space is independent of the space of all output devices.

Device space, on the other hand, is completely dependent on the output device and its drivers. Based
on the requirements of the targeted device space, Java 2D will create a transformation of the user
space to device space (see Figure 2.1), including a color transformation and a resolution
transformation. Thankfully, the application developer doesn't need to make this transformation.
Knowing that and how the user space to device space transformation occurs, however, is key for
understanding the mechanisms and capabilities of Java-based graphics and imaging. The hypothetical
device space in Figure 2.1 has a different size and orientation than the user space in which the
graphic (in this case, a plus sign) is drawn. A transformation exists between the two spaces so that
everything looks as expected when the graphic is rendered.

Figure 2.1. User space and a hypothetical device space.

So, what's the big deal about user and device space? It comes down to Java's capability to support
many devices on many platforms. To reiterate, user space is a generic, device independent space to
which graphics can be drawn without concern for the ultimate output destination. Device space is
device dependent and conforms to the specific requirements of the target device. Understanding this
difference will serve the reader well during all further discussion.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Finding Out About Device Space

In the vast majority of cases, the programmer doesn't need to worry about device space. However,
when you do need to know some details about device spaces and the characteristics of the available
devices, the following three classes are invaluable:

® GraphicsEnvironment
® GraphicsDevice
® GraphicsConfiguration

Objects generated by the GraphicsEnvironment return a list of all devices on a platform. This list
includes the expected printers and video displays, but also lists memory buffers and fonts. Java
supports a multimonitor environment that can be important for some imaging and virtual reality
applications. More information on this topic is given in Chapter 13, "Working with Input and Output
Devices."

Objects instantiated from the GraphicsDevice and GraphicsConfiguration classes refer to individual
devices and configurations, respectively. Note that a single device might have multiple configurations
associated with it. Listing 2.1 can be used to query the graphics environment (stored in the examples
under GraphicsQuery.java).

Listing 2.1 GraphicsQuery

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

import java.awt.image.*;

import java.applet.Applet;

public class GraphicsQuery extends JApplet {
public GraphicsQuery() {

BufferedImage big =
new BufferedImage(200, 200,BufferedImage.TYPE_INT_ARGB);

GraphicsEnvironment ge =
GraphicsEnvironment.getLocalGraphicsEnvironment();

//list all fonts font families on the platform
System.out.printin("****START LISTING FONTS****").
String[] fonts = ge.getAvailableFontFamilyNames();
for (int i=0; i < fonts.length; i++) {

System.out.printin("AVAILABLE FONTS; i: " + i +

" FONT NAME: " + fonts[i]);

b
System.out.printin("****STOP LISTING FONTS****").

GraphicsDevice dscreen = ge.getDefaultScreenDevice();

System.out.printin("DEFAULT SCREEN ID: " +

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

dscreen.getIDstring() + " DEVICE TYPE: " +
dscreen.getType());

//the following gets an array of screen devices;
//the number is usually one but sometimes many

GraphicsDevice[] gs = ge.getScreenDevices();
for (inti = 0; i < gs.length; i++) {
GraphicsDevice gd = gs[i];
GraphicsConfiguration[] gc = gd.getConfigurations();

for (int j=0; j < gc.length; j++) {
Rectangle gcBounds = gc[j].getBounds();
System.out.printin("SCREEN DEVICE #: " +j +
"TYPE: " + gd.getType() +
" x bounds: " + gcBounds.x +
"y bounds: " + gcBounds.y);

}

public static void main(String arg[]) {
GraphicsQuery gq = new GraphicsQuery();
by
by
[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
What Is Rendering?

Because we will spend a great deal of time talking about rendering, it will be useful to create an
operational definition. Rendering is the process of making graphics and images objects appear on an
output device. An output device is most often the screen, a printer, or a memory area.

Although that sounds pretty simple, the actual implementation is a fairly involved process. Consider
the challenge of rendering a simple blue square or other shape to a monitor. A major problem is that
the device space of the monitor is likely to be completely different from the user space that the
programmer has used for defining the graphics to be output. This is especially true for an application
written for the Internet or an intranet where literally hundreds of different monitors will be the output
target of a rendering. Additionally, the user might want to print on any number of printers, each with
a different resolution and color palette.

As stated earlier, much of this can remain transparent to the programmer because of the user- and
device-space paradigm. Ignoring the details, however, will eventually be limiting. It will become
important to understand the rendering process in order to develop a robust graphics and imaging
application. This knowledge will prove invaluable when moving onto the JAI as well as the Java 3D
and JMF portions of this book.

The rendering process is shown schematically in Figure 2.2. The graphics or images to be rendered
begin as defined in user space and undergo a series of transformations in the Graphics2D object
(represented by the large box outlined in black) before being output to the device (that is, printer,
file, or screen).

Figure 2.2. Rendering steps in Java.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Because this series of steps is so important to our discussion, let's examine it in more detail. Note
how we transition from user space to device space as we move through the rendering pipeline.

Determine the Appropriate Rendering Area of the Output Device

This step depends on the graphics object to be rendered. If it is a shape or text, all that is needed is
the outline of the shape. The outline is determined by computing a stroke for the shape (basically
turning the shape outline into a sequence of primitives). For images, a bounding box is created that
surrounds the whole (or parts of the image) to render. Next, the shape or image bounding box is
transformed from user space to device space using a set of linear transforms. The proper linear
transforms are derived from the manufacturer-supplied drivers of the target device.

Rasterize

Rasterization is the process of turning ideal shapes into a list of pixels. Ultimately, the renderer has to
send a stream of values to the output device. A video monitor, for example, scans across the screen,
tuning on red, green, or blue guns in sequence. This sequence is determined by rasterization. During
the rasterization process, rendering options such as antialiasing and dithering are applied.

Clip the Rendering Operation to Render Only the Desired Parts

After the graphics are transformed to the device space and rasterized, they are clipped. Clipping
refers to limiting the rendering to particular portions of the output device.

Determine the Colors to Render and Convert to the Device Color Space

Much as it is necessary to apply a transformation to a shape or image in order to make the rendering
compatible with the resolution of the target output device, it is also necessary to transform the colors
and paints from user space to the palette of device space. This step includes applying transparency
values.

By the time the renderer has completed the second step, the graphics objects have entered device
space. The color information still is in user space until this step.

To summarize, rendering is the process of taking the graphics or images that are defined in user
space and transforming them into the proper description for a particular output device.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [privieua]firaxt +]
Graphics Context

A large part of the process of writing graphics and imaging applications in Java comes down to
specifying the desired graphics context for rendering. The graphics context refers to a set of attributes
that specify the properties for the output rendering. These properties can be as simple as the color
used for filling a shape or can be more complex, such as setting the antialiasing for drawing lines.
Throughout the next several chapters, pay close attention and make a mental note when changes to
the graphics context are made. Most changes to the graphics context are accomplished with methods
that begin with set, for example, setPaint() or setColor().

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raivisvs =t o)
The Basic Recipe for Rendering in Java 2D

A fundamental three-step recipe exists for programming graphics in Java. Get (or modify) the
Graphics2D context, create some geometry (or an image), and call a rendering method. The following
short code snippet demonstrates this recipe:

public void paint(Graphics g) {

//get instance of graphics context
Graphics2D g2d = (Graphics2D) g;

//madify the graphics context
g2d.setColor(Color.blue);

//call a render method
g2d.fill(new Ellipse2D.Float(5.f,5.f, 40.f, 40.f,);

}

Several complete examples are developed in Chapter 3, "Graphics Programming with the Java2D
AEI.H

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Imaging Fundamentals

A digital image refers to a series of two- or three-dimensional spatially ordered digitized samples of
some physical quantity. The physical quantity can be practically anything. In digital photography, for
example, samples represent light intensity values acquired across the lens. In positron emission
tomography (PET imaging), the spatially ordered samples represent the detected level of a radioactive
chemical (reflected in the number of so-called annihilation events) that is taken up by the brain or
some other organ. In remote sensing, the spatially organized data could represent heat or vegetation
density, and so on. The basic key to understanding images is in realizing that the spatially ordered
samples are really just a stream of numbers residing in a file or memory.

Consider a simple 4x4 grayscale image (see Figure 2.3). When the data is stored on disk, it typically
isn't stored as a 4x4 matrix, but rather it is represented as a list of 16 numbers (4x4=16). The
meaning of the order of the numbers must be known if the image is going to be displayed or
interpreted in any meaningful way. The most obvious order might be something like every fifth
number represents the first element of a new row, for example. The discussion could easily be
extended to a 2x2x2 cube. Data for the image is stored in a vector of 16 elements with values
increasing consecutively from 1:16. By convention, every fifth element is a shift to a new line.

Figure 2.3. Simple 4x4 image.

Let's next move on to a real example that will be expanded on in Chapter 4, "Immediate Mode
Imaging Model." One common type of brain image is a T2-weighted magnetic resonance image (see
Figure 2.4). Each pixel value represents the T2 signal intensity at a particular spatial location in a slice
of the brain. All the pixel values are stored sequentially in a file with some header information at the
beginning. Because this is a grayscale image, there is a one-to-one correspondence between a
number in the file and the value of the pixel. We know the dimension of this image to be 256x256
(because that what's we told the scanner we wanted). We also know that the values are stored in
short integers so we can expect 256*256 or a total of 65,536 short (2 bytes) values to be stored in
the file (after moving past the slightly annoying header information of 7,904 bytes). It is always
useful to calculate the expected file size for these types of projects. The size of this file then is
138,976 bytes—7,904 + (2*65,536). The data is read in with ReadImage.java (see Listing 2.2), stored
in a BufferedImage and rendered to the screen.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 2.4. T2-weighted MRI of the brain.

Listing 2.2 demonstrates the reading of the image data into a one-dimensional array (vector) named
voxel:

Listing 2.2 ReadImage.java

int nvox = 256*256;

try {

DatalnputStream vox = new
DatalnputStream(newFileInputStream("1.022"));

vox.skip(7904); // skip the annoyingheader
try {
for (int i=1;i <= nvox;i++){
v = vox.readShort();
voxel[i] = v;
b
} catch (EOFException e) {
System.out.printin("End of file encountered");

by

} catch (FileNotFoundException €) {
System.out.printin("DatalOTest: " + €);

} catch (IOException e) {
System.out.printin("DataIlOTest: " + e);

by

b
Note

This external class is not intended to be run yet and is part of a more comprehensive
example that is provided in Chapter 4.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The 256x256 image is stored in a one-dimensional array (that is, vector) with a length of 65,536.
Have we lost our information about which pixels are stored where? The answer is no. Every 256th
number in our stretched out vector belongs to a new row in our 256x256 2D matrix. You will see this
later when the raw data is put in a special data structure known as a Raster and rendered to a
BufferedImage. For now, know that the width and height of the image (in this case, 256x256) are
specified by the parameters passed to the constructor of our Bufferedimage. Thus, the pixels are

interpreted correctly.

This emphasizes a point: All images are stored as a series of numbers. If the programmer knows the
meaning of the order of numbers, it is possible to read in, display, and otherwise operate on the data

representing the image.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [privieua]firaxt +]
Java Images: A Raster and a ColorModel

The previous example is a simple description of what would be referred to as a Raster with a grayscale
ColorModel in Java. In other words, the Raster consists of a rectangular array of the pixel values, and
the ColorModel contains methods to convert pixel data into colors. Together, they provide the
information we need to render the image.

Two pieces make up the Raster: a DataBuffer containing the actual numbers, and a SampleModel,
which groups the numbers into pixels. In the Java 2D API, the Sample is the atomic representation of
image data. In the case of the grayscale image described previously, one Sample is equivalent to one
pixel. However, in the case of color data, there will be multiple Samples for each pixel. For example, in
an RGB image, there will be four samples per pixel, one each for red, green, and blue, and one more
for the transparency. The data can be stored in a wide variety of orders (for example, all red followed
by all blue followed by all green, or alternatively in triplets of RGB, RGB, and so on).

To reiterate an important point, in order to flexibly handle the diversity of file formats and their
interpretation, Java 2D uses the SampleModel to interpret the numbers stored in a DataBuffer. The
DataBuffer simply holds the image data (the numbers) in storage, but the SampleModel contains the
methods for grouping those numbers into pixels.

Individually, a SampleModel and a DataBuffer aren't sufficient to produce an image. Only together can
the raw data (stored in the DataBuffer) and the interpretation of that data (the SampleModel)
constitute an image.

Whereas the SampleModel interprets the DataBuffer in terms of pixels, the ColorModel interprets the
Raster (again, SampleModel plus DataBuffer) in terms of color. Some confusion might follow as to the
differences between a ColorModel and a SampleModel. The difference is as follows: By using a
DataBuffer and SampleModel, it is possible to examine and process the raw values associated with
each pixel, but unless the ColorModel is specified, there is no way to interpret the pixels into colors.
Because of the SampleModel, we know what numbers in the DataBuffer are associated with each pixel,
but we still don't know what they mean in terms of color. An image, then, is fully described by its raw
data in the DataBuffer, the interpretation of the raw data into pixels via the SampleModel, and finally
the interpretation of the pixel data into a color space through the ColorModel. Without all three of
these components, we cannot render raw numbers into an image.

In many cases, the rectangular area represented by the Raster will correspond to the entire image;
however, the Raster can represent any rectangular area of the image. Therefore, whereas the space of
the DataBuffer and SampleModel are always defined with an origin of (0,0), the Raster itself can be
translated from this origin. The Raster, therefore contains an X and Y translation. This seemingly
esoteric digression will be important when we discuss image tiling and other topics in Chapter 6.

The entire scheme will be discussed in further detail later when we examine the grayscale and color
examples in the next several chapters, but it is important for you to pause here and reflect on how an
image is represented in Java. To summarize, an image is ultimately made up of numbers; however, a
lot of information is needed in order to interpret those numbers. The DataBuffer stores the numbers,
whereas the SampleModel maps the numbers onto pixels. A rectangular array of pixels (DataBuffer
plus SampleModel) is called a Raster. After the pixels are organized and interpreted with a Raster, the
numbers are interpreted further with a ColorModel. All these components must be present in order to
represent an image in Java.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
The Immediate Mode Rendering Model

The AWT imaging model wasn't sufficient for any kind of serious image processing because it didn't
provide a mechanism for a persistent memory store of pixel data. In other words, there was no
convenient way to get to the pixel data. Note that although it is possible to access data through the
grabPixels() method, operations on this data were quite limited. Easier access to the pixel data was
added in Java 2D with the introduction of the immediate mode rendering model. The immediate mode
rendering model is based on the concept of a buffered image. The class BufferedImage represents an
area of memory containing pixel data. The ability to use an accessible data buffer enables custom
filtering operations such as blurring and sharpening as well as color operations such as color
correction and color banding. Buffered imaging is covered in substantially more detail in Chapter 4.

Because a BufferedImage is a Java image in every sense of the word, it must have the three
components listed in the preceding Java image description. That is, it must have a DataBuffer, a
SampleModel, and a ColorModel.

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Rendering Independence: The Renderable and Rendered Imaging Layers

Another important advancement included in the Java 2D API, and one that forms the heart of the JAI,
is the ability to do rendering independent imaging operations. The use of rendering independent
operations can be quite powerful and is accomplished through classes that implement the Renderable
interface. The basic advantage of rendering independence is that image operations can be
accomplished without processing the pixel data. This enables a number of important optimizations,
not the least of which is a greatly reduced need to render, but also goes a long way toward ensuring
optimal quality over all devices. Most of the advanced capabilities that are such an integral part of the
JAI are built on the capability of rendering independence.

Many incorrectly equate rendering independence with the related concept of resolution independence,
but, strictly speaking, resolution independence is but one part of the more general rendering
independence. Resolution independence refers to the fact that because a transformation exists
between the resolution of the image source and the resolution of the target output device, operations
can occur independently of either as long as the final transformation is applied at the end. Rendering
independence extends this idea beyond resolution to basically all other aspects of the rendering.

It is important to note that it isn't always desirable to operate in a rendering independent fashion.
Indeed, one generally has to enter the device dependent world eventually. An important component
of the Java 2D and JAI rendering independent model is that a parallel world always exists for
performing rendering dependent operations. These two parallel worlds are called the Renderable and
Rendered layers. They are intended to work together.

The Renderable layer is the rendering independent layer. As such, a single renderable image can
participate in a wide variety of contexts (that is, multiple printers, monitors, and output files). Any
operation that produces a Renderable image as output can itself be considered a Renderable source for
any other operation. Therefore, a series of Renderable image operations (known as
RenderableImageOps) can be set up as an editable chain or graph (Figure 2.5). The design of graphs
will be discussed in Chapter 6.

Figure 2.5. Rendering graph showing chain of operations in the Renderable Layer.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

For now, remember the following: All Renderable images are required to adapt to a rendering context
specified through an object instantiated from the RenderContext class. In other words, RenderContext

contains the information needed to produce a specific rendering (that is, for a specific context) of an

image. This information includes a rendering independent description of the area to be rendered and

other information about the rendering context and resolution of the target device. To create a specific
rendering, the user instantiates a RenderContext object and calls the createRendering() method of the
RenderableImage.

The RenderableImageOps adapts to specific operations through classes implementing the
ContextualRenderedImageFactory interface (also known by the acronym CRIF). The CRIF acts as the
link between the Renderable and Rendered layers and is passed in during instantiation of the
RenderableImageOp. The key idea here is that a single RenderableImageOp is used, but a series of
CRIFs are specified to perform the different imaging operations.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [« rruvizua fwaxt o]
The Pull Model

The basic idea of the renderable layer is that the data can be pulled through as needed for rendering,
This is the basis for the name pull model that is central to the JAI. This imaging model is also called
render on demand or just-in-time rendering.

As the name implies, whenever a rendering is needed, the pixel data can be pulled through the
Renderable layer and output in a context dependent manner. Renderable imaging will be covered

extensively in Chapter 6.

The consumer-producer model used in the AWT and maintained in Java 2D was also known as a push
model because the consumer (or image sink) never requests the image but rather waits for it
passively. This approach was good for displaying a few simple images via a Web browser, but is
obviously quite limited for image processing. In a pull model, image sources must be able to operate
on arbitrary areas of the image data. An ImageProducer cannot be used as a source under this regime
because it doesn't respond to such requests.

In order to perform network imaging, deferred execution, as well as to enable rendering on demand,
JAI went headlong into the pull model. Although the pull model is central to JAI, it doesn't preclude
using the ImageProducer interface to conform to AWT implementation. But, in general, the user of JAI
will want to adapt wholeheartedly to the pull model.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 rxaviss] firaxt +]
Graphics Capabilities in JAI

You shouldn't be left with the impression that JAI doesn't support graphics. As an extension API, the
JAI enables everything that Java 2D does plus a little more. The extra capabilities of the JAI for
graphics relate to client-server graphics: use of the pull model for optimization of operations and
display (elaborated next), as well as methods for rendering over tiled images and graphics. For the
most part, the discussion of graphics programming will be limited to the Java 2D API.

As stated previously, graphics refers to the ability to draw shapes and text. Java 2D offers an
extensive set of shapes, including user-specified arbitrary shapes, and a rich set of text capabilities
that can be used to make rather stunning output.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raivisvs =t o)
Client-Server Imaging

A particularly powerful feature of JAI is its capability to distribute processing across a network.
Although the typical application might have no need for this capability, distributed imaging is a
powerful weapon for many advanced applications. Examples include telemedicine and online gaming
and commerce. The basic idea of client-server imaging involves the use of Java's Remote Method
Invocation (RMI). The client instantiates a stub object that conveys its methods to the host through
serialization (basically, turning your objects into a stream).

Now, imagine that you have a client acting as an image acquisition machine and want to perform a
mathematically complex series of image processing operations on that data while the client continues
to collect new data. An efficient way to develop such an application would be to specify the operations
in a Renderable layer of the graph and delegate this portion of the process to the server. Changes to
the image operations could then occur rapidly on the server, and the results could be pulled though
the rendering chain to many different clients at the same time. A more detailed description and
sample application of client-server imaging is developed on Chapter 6.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [« rruvizua fwaxt o]
Image 1/O

Most programmers who have worked with image display and processing will attest to the large
amount of time spent dealing with image input and output formats. Fortunately, Java has recently
added the Java Image I/O API, which will serve to greatly reduce the amount of time spent
programming and implementing Image I/O and will further support networked, disk-based, and direct
image reading and writing.

The Image I/0O API also supports metadata, that is, image data that are not related to the pixel values
themselves but rather represent data about data.

The Image I/0 API is the subject of Chapter 5.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Summary

Imaging and graphics on the Java platform has undergone three major changes as it has evolved into
its current state. What began as a limited set of methods for displaying images in a browser (the AWT
image model) became a robust API for drawing shapes and graphics with some limited imaging
capability. The JAI extends Java 2D's graphics and imaging capabilities into a powerful advanced
imaging platform for leading edge applications.

A developer wanting to write graphics and imaging applications will have to choose carefully between
Java 2D and JAI. The proper choice will depend on whether the limited image processing capabilities
of Java 2D are sufficient for the task and whether the application needs to take advantage of the pull
imaging model.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [ravisus] it o]
Chapter 3. Graphics Programming with the Java 2D API
IN THIS CHAPTER
® The Basic Java 2D Recipe
® Set the Graphics2D Context...
® ...and Render Something
® Rendering on Components
® Shape Primitives
® Graphics Stroking
® Fill Attributes and Painting
® Transparency and Compositing
® Text
® Clipping
® Coordinate Space Transformations
® Techniques for Graphical User Input
® Double Buffering
® Comprehensive Example: Kspace Visualization
The Java 2D API extends the Java Advanced Windowing Toolkit (AWT) to provide classes for

professional 2D graphics, text, and imaging. The subject of this chapter is the use of Java 2D for

graphics and text. Java 2D imaging is the subject of Chapter 4, "The Immediate Mode Imaging

Keep in mind that, for the most part, all discussion referring to shapes will apply equally to text
because for all intents and purposes, text is represented as shapes. Operations such as texture
mapping, stroking, and alpha composting can be applied equally to shapes and text.

The key to using Java 2D for graphics is to understand a simple basic programming paradigm that we
will refer to as the Basic Java 2D Recipe.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [privieua]firaxt +]
The Basic Java 2D Recipe

As stated previously, there is a basic three-step recipe for writing a graphics program in Java:
1. Get a graphics context.
2. Set the context.
3. Render something.

Getting the graphics context is pretty straightforward. Cast the Graphics object as a Graphics2D object
as follows:

public void paint(Graphics g) {
Graphics2D g2d = (Graphics2D) g;
b

The result of making this cast is that the programmer has access to the increased functionality of the
methods, classes, and interfaces of the Graphics2D object. These extended capabilities enable the
advanced graphics operations described in the next several chapters. The Graphics2D object is

covered in detail in the section "Set the Graphics2D Context...."

Step 2 of the recipe, setting the graphics context, is also pretty straightforward once you understand
what a graphics context is. For now, let's say that the graphics context is a collection of properties
(also known as state attributes) that affect the appearance of the graphics output. The most common
example of changing the graphics context is to set the color used for drawing. Most of this chapter
deals with changing the myriad state attributes to achieve the desired effect.

The final step in this paradigm is to render something. This refers to the action of outputting graphics
to a device. The most obvious graphics output device is a monitor; however, printers, files, and other
devices are equally valid output targets for graphics.

Let's examine the recipe in the simplest possible example (see Listing 3.1). In this case, our goal is to
draw a square on the screen, as shown in Figure 3.1. Keep in mind, however, that this same recipe
can be applied in more complex applications.

Listing 3.1 BasicRecipel2D.java

// BasicRecipe]2D.java
//Part 1 of the recipe, general program setup.

import java.applet.Applet;
import java.awt.*;

import java.awt.event.*;
import java.awt.geom.*;

public class BasicRecipel2D extends Frame {

public BasicRecipel2D() {
//constructor
super("Java 2D basic recipe");
this.add(new myCustomCanvas());
this.setSize(500,500);
this.show();
addWindowListener(new WindowEventHandler());

class WindowEventHandler extends WindowAdapter {
public void windowClosing(WindowEvent e) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

~ System.exit(0);
}
}

public static void main(String[] args) {
new BasicRecipe]2D();

by
by

//Part 2; Java 2D specific-extend the drawing Component -Canvas-
// and override it's paint method.

class myCustomCanvas extends Canvas {

public void paint(Graphics g) {
System.out.printin("in paint");

// step one of the recipe; cast Graphics object as Graphics2D
Graphics2D g2d = (Graphics2D) g;

// step two-set the graphics context
g2d.setColor(Color.red); //setting context

//step three-render something
g2d.fill(new Rectangle2D.Float(200.0f,200.0f,75.0f,75.0f));

}

Figure 3.1. Output from BasicRecipel2D.

By modifying this recipe, it is possible to realize most of the projects you would want to do with Java
2D. Many of the examples that follow will simply modify the paint() method to add whatever
functionality is needed.

Because the basic recipe is central to our discussion of Java 2D, let's examine the pieces in more
detail.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

Part 1 of Listing 3.1 is a basic skeleton for any Java program. The appropriate classes are imported;
JFrame is extended and an eventListener is added for exiting the frame. Note that we imported
java.awt.geom. This will be necessary to have access to shapes for drawing. The other important thing
to notice in part 1 is the following line:

this.add(new myCustomCanvas());

In this case, we add myCustomCanvas, a class extending Canvas to the main application frame. Note
that Canvas extends Component and is the most common graphics component for display of graphics.
It should be emphasized that any of the many objects extending Component (such as JButton and

JPanel) can be used in the same fashion (see the section "Drawing on Components").

Part 2 of Listing 3.1 is the part of the program that most relates to Java 2D. The Component class
Canvas is extended (subclassed), and its paint() method is overridden. This is the fundamental use of
Canvas, and you will see this time and time again. Within the overridden paint() method, the three
necessary parts of the Java 2D recipe are realized—we get a graphics context by casting the Graphics
object as Graphics2D. Steps 2 and 3 of the recipe are then achieved by calling two methods of the
Graphics2D object. First, there is a change to the rendering attributes of the Graphics2D object by
calling setColor(). Second, a Shape object (in this case, a Rectange2D) is created and drawn using the
Graphics2D object's draw() method.

You are encouraged to run the BasicRecipe]2D now.

Differences Between paint(), repaint(), and update()

After taking a look at the basic recipe, you might have noticed that even though our Java 2D code is
contained within the paint() method, we never actually call this method. This underscores an
important point that often becomes a source of frustration to the uninitiated. The paint() method is
called automatically whenever the window needs to be refreshed. The programmer never calls paint()
directly, but instead calls repaint() in order to obtain a rendering. It is repaint() that calls paint(). The
rendering is then made at the next convenient time.

It becomes even more confusing when you consider that in actuality, paint() doesn't do all the
drawing, another method called update() also participates. The drawing in update() includes an
additional step in which the screen is first filled with the Component's foreground color, effectively
clearing the screen. The update() method then finally calls the Component's paint() method to output
the graphics. There are often cases in which the programmer doesn't want to clear the screen before
drawing (see the section "Comprehensive Example: Kspace Visualization" at the end of this chapter).
In this case, the programmer will need to override the update() method to eliminate the filling of the
background.

As an aside, we note that the statement "The programmer never calls paint() directly" is perhaps a
little too strong. Many animation applets do indeed call paint() directly in order to avoid the automatic
queing process that results from calling repaint(). These cases tend to be rare and are only
recommended in special circumstances.

All Rendering Should Occur in paint()

A general rule to follow is that unless there is a compelling reason not to, all drawing for a Component
should be done in that Component's paint() method. In our basic recipe example from Listing 3.1, the
Component object that we want to draw on is an instance of the class myCustomCanvas (which
extends Canvas).

What might constitute a compelling reason not to place the drawing of objects in the paint method?
For most complex applications, the paint() method can become unwieldy and should be broken down
into smaller methods. Grouping the steps into methods is functionally equivalent to having the code
directly in the paint() method, so this really isn't a major departure from the rule of doing all drawing
in the paint() method.

Another case in which you would render outside of paint() is when a BufferedImage is used. Still, the
final rendering occurs in the paint() method. This is shown later in PDExamples.java and

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

TexturePaint.java.

Other Methods Similar to paint()

Two additional methods are commonly encountered. The paintAll() method is often useful and is used
in a similar fashion to the paint() method except that paintAll() will request a paint() of the Component
and all of its subcomponents. For Swing components, paint() is often replaced by paintComponent() in
order to not invoke the paintChildren() and paintBorder() methods. This is frequently necessary when
developing an interface with a custom look and feel.

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (e Fuuvisua]fiveaxt o]
Set the Graphics2D Context...

As mentioned briefly, the graphics context is a collection of state attributes specifying properties of
the rendering. State attributes are sometimes also referred to as rendering attributes. Five interfaces
and several classes that are part of java.awt package represent these attributes.

The first three interfaces are relevant to most development projects and are listed in Table 3.1. Note
that these interfaces are implemented in the set of classes listed in Tables 3.2 and 3.3.

Table 3.1. Commonly Used Interfaces Implemented with the Graphics2D Context
Interface |Description

Composite [Methods to compose a primitive over the underlying Graphics area.

Paint Methods to specify rules for generating color patterns. Extends Transparency.
Stroke Methods to obtain a Shape representing the style of a line.
Table 3.2. Classes Implementing the Interfaces
Class Interface |Description
AlphaComposite |Composite |Implements rules for composite overlays.
Color Paint Defines a solid color.
GradientPaint Paint Defines a gradient paint pattern.
TexturePaint Paint Defines a texture pattern.
BasicStroke Stroke Defines shapes to represent a pen style for a line drawing.

Two other interfaces are necessary for certain optimizations but are less commonly used by the
programmer. The design of classes that use these interfaces are beyond the scope of this book.

Table 3.3. Less Frequently Used Interfaces Necessary for Optimized Context Operations
Interface Description

CompositeContext |Defines an optimized and encapsulated environment for compositing.
PaintContext Defines an optimized and encapsulated environment for color pattern generation.

To make a visual effect, the programmer sets rendering attributes of the context according to the
desired effect. In the BasicRecipe]2D example from Listing 3.1, the visual effect we wanted was
rather simple—we wanted the square painted red—so we changed the current color (one of many
available state attributes) to red by changing the attribute with setColor(Color.Red). Note that the
object we passed to the setColor() method is an instance of the Color class (which as shown in Table
3.2, implements the Paint interface).

The methods in Table 3.4 also have complementary methods for getting the current state attributes.

The getBackground(), getComposite(), getPaint(), and getStroke() methods will return the
corresponding current context attributes.

Table 3.4. Commonly Used Graphics2D Methods for Changing the Graphics Context

Method Description

setBackground() Sets the background color for the Component.
setComposite() Sets the compositing rule for subsequent rendering.
setPaint(Paint) Sets the current paint texture to use for rendering.
setStroke(Stroke) Sets the stroke style for rendering lines.

Another important set of attributes, called RenderingHints, allows the programmer to set state

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

attributes for rendering options such antialiasing, dfthering, and the interpolation method. The
rendering methods will affect the tradeoff between the look of the output versus the speed of
rendering. See the following URL for a complete list:

I / i2se/1.3/docs/api/ /awt/RenderingHi

Three other general types of rendering attributes can be set. The first is the font to use for rendering
text. Some details of setting the font are covered later. The clipping path and transform, which are
changed with the clip() and setTransform() methods, respectively, are covered later.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
...and Render Something

After setting the rendering context with any of the previous methods, it is time to complete the recipe
and request a rendering of a shape, line, or image. This final step is accomplished with one of several
methods contained in the Graphics2D object. For this chapter we will primarily use the draw(),
drawLine(),drawString(), and fill() methods, but keep in mind that many other drawing methods exist.

You should examine the Graphics2D documentation at this time:

http://java.sun.com/j2se/1.3/docs/api/java/awt/Graphics2D.html
[Team LiB] [rrnvisun fraxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Rendering on Components

Any object derived from the Component class has a Graphics object that can be used to render
graphics onto it. This means that the developer can render high impact graphics on all types of
buttons, canvases, and check boxes. Basically, all the user interface objects have an accessible
Graphics object that can be cast as a Graphics2D object and used by Java 2D.

Scaling to the Component's Size

So far, the examples have been deficient because they don't take the component size into account
when drawing. It is obviously good programming practice to determine the Component's width and
height and then scale the drawing accordingly. This can be done by using the Component's getSize()
method. Scaling is used in the comprehensive example at the end of this chapter.

As an example of the important concept of drawing on Components, let's go back to our
BasicRecipel2D program. Here we will replace the inner class, myCustomCanvas, with
myCustomButton, an inner class extending JButton. Also, note that we choose to use a GradientPaint
object instead of the Color object. Nonetheless, the steps are the same and the result is a custom
rendered button.

class myCustomButton extends JButton {
public void paint(Graphics g) {
// step one of the recipe; cast Graphics object as Graphics2D
Graphics2D g2d = (Graphics2D) g;

//make a GradientPaint object going
//from blue to green across from top left to
//bottom right

GradientPaint gp = new GradientPaint(0, 0, Color.blue,
this.getSize().width/20,
this.getSize().height/20,
Color.green, true);

// step two-set the graphics context
g2d.setPaint(gp); //setting context

//step three-render something--
g2d.fill(new Rectangle2D.Float(0.0f,0.0f,75.0f,75.0f));
} //end paint() method
} //end myCustomButton class

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Shape Primitives

So far we have only drawn rectangles in our examples, but there are, in fact, nine shape primitives
available to us. These shapes are contained almost entirely in the java.awt.geom package and can be
used to draw pretty much anything in two dimensions. All shape primitives implement the Shape
interface, a set of methods for describing shapes that is part of the java.awt package. In addition, all
shape primitives implement the PathIterator object that specifies the outline of the shape. Before
explaining the Pathlterator interface, we will introduce the shape primitives:

® Arc2D

® Area

® CubicCurve2D

® Fllipse2D

® GeneralPath

® Line2D

® QuadCurve2D

® Rectangle2D

® RoundRectangle2D

This set of primitives can be divided into four categories based on their properties and common
lineage.

Rectangle2D, RoundRectangle2D, Arc2D, and Ellipse2D are derived from the abstract class
RectangularShape based on the common ability to describe these primitives through a rectangular
bounding box.

Line, QuadCurve2D, and CubicCurve2D are line segments described by their two endpoints with the
requisite control points.

GeneralPath allows for the specification of a series of points that can be connected with any
combination of the straight, cubic, or quadratic line segments. In the next section, GeneralPath is
introduced as a general way to understand all geometric shapes.

Finally, Area allows the creation of new shapes through the use of intersection, union, and subtraction
of other shapes. Area operations are discussed next.

Note that all the classes mentioned previously are abstract classes; that is, they cannot be
instantiated directly but rather are instantiated through a subclass. With the exception of Area and
RoundRectangle2D, the classes are actually instantiated using the ending .Float or .Double depending
on the desired precision. For example, in the class BasicRecipel2D:

g2d.draw(new Rectangle2D.Float(0.0f,0.0f,75.0f,75.0f));
g2d.draw(new Rectangle2D.Double(0,0,75,75));

For brevity, only GeneralShape and Area are discussed in any detail here. You will find it easy to test
other shapes by modifying the BasicRecipe.java application and are encouraged to do so. See the
following URL for complete documentation on all geometric shapes:

http://java.sun.com/j2se/1.3/docs/api/java/awt/geom/package-summary.html

Understanding Shapes Through GeneralPath and the PathIterator Interfaces

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The GeneralPath Shape and the Pathlterator interface together form an important key to
understanding most geometric operations in Java 2D including area operations, arbitrary shapes
drawing, and hit testing, to name but a few. The challenge is to understand iteration objects, which
are individual instances of lines and curves (specifically, quadratic and cubic Bezier splines) that
describe the connecting paths encountered as you move (iterates) around the boundary of a
geometric object. In other words, imagine yourself standing at the intersection of two lines that are
part of a shape. The iteration object is the description you would use to move to the next interaction
of the shape; for example "a line from here to 75, 75" or "a quadratic curve to 100, 200 with a control
point at 150, 150."

Note the conceptual similarities between a Pathlterator and the Shape class GeneralPath. A GeneralPath
is a series of curves and lines that is combined to make any arbitrary shape. As such, all geometric
shapes, including rectangles and arcs, can be specified the long way; that is, by creating series move
and draw commands. For example, Listing 3.2 makes an arbitrary shape that looks like the one shown
in Figure 3.2. The method reportGP() at the end of the myCustomCanvas class is used to loop over the
PathIterator object derived from the GeneralPath and report the type of current segment as well as the
coordinates of each element in the GeneralPath.

Listing 3.2 PathlteratorEx.java

class myCustomCanvas extends Canvas {
GeneralPath gp;
//add a constructor
public myCustomCanvas() {

} //end of constructor
public void paint(Graphics g) {
Graphics2D g2d = (Graphics2D) g;
g2d.setColor(Color.green); //setting context
gp = new GeneralPath();
int cwidth=this.getSize().width;
int cheight=this.getSize().height;
gp.moveTo((int)cwidth/2,(int)cheight/2); //initial starting point
gp.append(new Rectangle2D.Float((float)cwidth/2,(float)cheight/2, 10.f,10.f),true);
gp.lineTo((int)cwidth/4,(int)cheight/4);
gp.lineTo((int)(.9*cwidth),(int)(cheight/4));
gp.append(new Ellipse2D.Float((float)(.9*cwidth),
(float)(.25*cwidth),
10.f,10.1),true);
gp.closePath(); //closes path based on most recent moveTo
g2d.draw(gp);
reportGP();
} //end of paint
public void reportGP() {
System.out.printin("**Reporting GeneralPath after repaint**");

//make an empty AffineTransform to pass to Pathlterator

AffineTransform at = new AffineTransform();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

//note: using non-xformed path

PathIterator pi = gp.getPathlterator(at);
int segnumber=0;
while (pi.isDone() == false) {
segnumber++;
System.out.printin("**GETTING DATA FOR SEGMENT#: " +
segnumber + "**");
float[] coords = new float[6];

//the following tells us whether the current segment is:
// SEG_MOVETO, SEG_LINETO, SEG_QUADTO,

// SEG_CUBICTO, or SEG_CLOSE

//coords will be filled with sequential pairs of x,y coords

System.out.printin("currentSegment type: " +
pi.currentSegment(coords));

for (int j=0;j<6;j++) {
System.out.printin("j: " +j +
" coords[j]: " + coords[j]);
} //end of for

pi.next();
} //end while pi.isDone() == false
by

Figure 3.2. This shows the screen output from PathlteratorEx.java. When changing the
screen size, the GeneralPath object is changed and reportGP() is called.

You should now attempt to draw different GeneralPaths and observe the corresponding changes in the
PathIterator object.

One related class that is often overlooked is the FlatteningPathlIterator. The utility of
FlatterningPathIterator stems from the fact that whenever any curved shape is rendered, there is an

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

intermediate step in the pipeline for converting curves into straight-line segments (part of the process
of rasterization). By specifying a flatness parameter, the application has control over the number of
straight-line segments used to approximate curves. The advantage of flattening is that there is a
reduced need for resource intensive interpolations to be performed. In many cases, the improvement
in performance won't be noticeable; however, in situations in which a great number of curved lines
are present, flattening can make a dramatic difference.

Winding Rules and Testing for Containment

A frequent problem encountered in graphics development is testing for containment—that is,
determining whether a point or shape is inside another shape. This is obviously critical for operations
such as filling, texture mapping, and determining whether the user has clicked on a shape or area.
When the shape is simple and has edges that intersect only at the vertices (such as a rectangle or
circle) the problem is trivial. In non-trivial cases, however, it becomes necessary to develop an
algorithm. Consider the following arbitrary geometric shape (shown in Figure 3.3), in which there is
some ambiguity about which points are inside and outside the shape.

Figure 3.3. Form WindingEx showing how winding rules can yield different results in tests
for containment.

There are two common methods for determining if any point is inside a geometric shape. The first,
called the odd-even rule, is based on drawing a line (ray) from the point to be classified to any point
well outside the shape. If the number of edge crossings is odd, the point is inside the shape;
otherwise it is not. The second approach is termed the non-zero winding rule and likewise determines
the number of edge crossings that occur for a ray drawn to a distant point.

However, in the non-zero winding rule scheme, the left to right crossings add to the total number of
crossing whereas the right to left crossing subtracts from the total number of crossings. If the sum of
left to right and right to left crossing isn't equal to zero, the point is determined to be inside. Figure
3.3 shows an example of applying the two rules. Indeed the odd-even and non-zero winding rules
give different answers for the ambiguous area labeled 1.

Listing 3.3 demonstrates winding rules and is another example of using a GeneralPath. The application
generates a random GeneralPath each time the New Path button is pushed. The user can then click
anywhere inside or outside the shape. The results are often the same for the two methods, but it is a
worthwhile exercise to try to predict in which cases they differ.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Listing 3.3 WindingEx.java

public class WindingEx extends JFrame {

myCustomCanvas mc;
JButton newpath;

public WindingEX() {
super("Winding Examples");
//layout manager for the frame

BorderLayout f1 = new BorderLayout();
Panel uipanel = new Panel();

newpath = new JButton("New Path");
uipanel.add(newpath);

mc = new myCustomCanvas(this);
mc.setSize(800,600);

ButtonHandler bhandler = new ButtonHandler(mc);
MouseHandler mhandler = new MouseHandler(mc);

newpath.addActionListener(bhandler);
mc.addMouseListener(mhandler);

this.getContentPane().setLayout(f1);
this.getContentPane().add(mc,BorderLayout.CENTER);
this.getContentPane().add(uipanel,BorderLayout.NORTH);

this.setSize(800,600);
this.show();
addWindowListener(new WindowEventHandler());

class WindowEventHandler extends WindowAdapter {
public void windowClosing(WindowEvent €) {
System.exit(0);

by

public static void main(String[] args) {
new WindingEX();
b
by

class MouseHandler implements MouseListener {
myCustomCanvas mc;

public void mousePressed(MouseEvent €) {
mc.drawPoint(e.getX(),e.getY());

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

by
}

class ButtonHandler implements ActionListener {
myCustomCanvas mc;

public ButtonHandler(myCustomCanvas mc) {
this.mc = mc;

}

public void actionPerformed(ActionEvent e) {
mc.generateGP();

b
by

class myCustomCanvas extends Canvas {

WindingEx wex;

String insider;

String even_oddMessage = "Click on a Point";
String non_zeroMessage =" ";

Random r;

GeneralPath gp;

public myCustomCanvas(WindingEX wex) {
r = new Random();
this.wex = wex;
this.setSize(800,600);

generateGP();

b
public void generateGP() {

gp = new GeneralPath();
gp.moveTo(r.nextInt(this.getSize().width),
r.nextInt(this.getSize().height));
for (int i=1;i<10;i++) { //choose 10 random points
gp.lineTo(r.nextInt(this.getSize().width),
r.nextInt(this.getSize().height));

b
gp.closePath();
gp.drawPoint(r.nextInt(this.getSize().width),
r.nextInt(this.getSize().height));
repaint();
by

public void drawPoint(int x, int y) {
this.x = x;
this.y = y;

gp.setWindingRule(GeneralPath.WIND_EVEN_ODD);
even_oddMessage = "EVEN_ODD RULE: ".concat(isInside(x,y));
gp.setWindingRule(GeneralPath.WIND_NON_ZERO);
non_zeroMessage = "NON_ZERO RULE: ".concat(isInside(x,y));

repaint();
b

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public String isInside(int x, inty) {

if (gp.contains(new Point(x,y)))
insider="INSIDE";

else
insider="OUTSIDE";

return insider;

b
public void paint(Graphics g) {

Graphics2D g2d = (Graphics2D) g;
g2d.drawString(even_oddMessage,440,80);
g2d.drawString(non_zeroMessage,440,100);
g2d.setColor(Color.blue);

g2d.fill(new Rectangle2D.Double(x,y,5,5));
// step two-set the graphics context
g2d.setColor(Color.red); //setting context

float dash [] = {5.5f};

BasicStroke stk = new BasicStroke(4.0f,
BasicStroke.CAP_BUTT,
BasicStroke.JOIN_MITER,
10.f, dash, 2.0f);

g2d.setStroke(stk);

g2d.draw(gp);
by
Basics of Constructive Geometry Using the Area Class

As mentioned at the beginning of this section, constructive area geometry is the making of an
arbitrary shape using the intersection, subtraction, or union of other primitives and arbitrary shapes.
Simply stated, the goal is to make a new shape from the combination of other shapes. The need for
constructive area geometry arises from the fact that drawing an arbitrary shape using line segments
and specifying points can be tedious. Often the shape can be drawn using the intersection of just a
few shape primitives. Further, it is often easier to change a shape created with constructive area
geometry than to respecify the path.

The Area class defines a special shape that supports Boolean operations and is useful in constructive
geometry. To make a shape that looks like a Venn diagram, for example, the designer might insert
the following into the paint() method of the BasicRecipel2D.java class:

Area areal = new Area(new Ellipse2D.Double());
Area area2 = new Area(new Ellipse2D.Double());
Area area3 = new Area(new Ellipse2D.Double());

g2.setColor(Color.blue);
g2.fill(areal);
g2.setColor(Color.green);
g2.fill(area2);

g2.setColor(Color.yellow);
g2.fill(area3);

areal.intersect(area2);
areal.intersect(area3);

catCnlar(Calar rad):

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

T L R I R)

g2.fill(areal);

Note that each call of the intersect() method sets the current shape to the result of the operation.
Therefore, the intersections accumulate. (That is, areal first becomes the intersection of itself and
area2, and then it becomes the intersection of that result and area3.) The same is true of the
subtract(), add(), and exclusiveOr() methods.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Graphics Stroking

The Graphics2D method setStroke() is yet another method for changing the graphics context. We will
now examine graphics stroking in greater detail.

Whenever a shape is stroked, it is as if a virtual pen draws an outline around the shape. The virtual
pen has a characteristic style defining a set of shape primitives that are combined to make the desired
effect. In Java 2D, the pen style is specified in a BasicStroke object. BasicStroke implements the Stroke
interface and is intended to be used as an argument to the setStroke() method of the Graphics2D
object.

The BasicStroke object represents the attributes for line width, endcap, and join style in addition to
attributes for specifying different types of dash patterns. Setting the Stroke attributes will affect most
of the rendering methods such as draw(), drawArc(), and so on.

One of the most basic examples of needing to change the Stroke attribute is in controlling the line
thickness for drawing. Let's once again return to the BasicRecipe]2D class. In this case, we will change
the rendering context through the setStroke() method. For brevity, only the particular code for
changing the context is included.

BasicStroke stroke = new BasicStroke(10);
g2d.setStroke(stroke);

Another common need is to set a dash pattern for the stroke. In this case, use the BasicStroke
constructor with six arguments:

g2d.setStroke(new BasicStroke(8.0f,
BasicStroke.CAP_BUTT,
BasicStroke.JOIN_BEVEL,
8.0f,
new float[] {10.0f, 4.0f},
0.0f);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Fill Attributes and Painting

Assigning material for painting is done by creating a Paint object (specifically, an object implementing
the Paint interface) and adding it to the Graphics2D context with the setPaint() method. As you will see
next, three general types of Paint objects already exist and are easily instantiated. Any of these can
readily be used as arguments to setPaint(). Before going into these three general types, it is
worthwhile to understand the Paint interface and how it relates to a second interface, the PaintContext
interface. An understanding of these two interfaces will be useful when we discuss custom painting
later.

The Paint interface consists of a unitary method that returns a PaintContext:

PaintContext createContext(ColorModel cm, Rectangle deviceBounds,
Recangle2D userBounnds, AffineTransform xform,
RenderingHints hints);

The relationship between Paint and PaintContext is easily understood if you are comfortable with the
concepts of user space and device space described in the introduction to this section.

The Paint and PaintContext are related in the following way:

The Paint object operates in user space. It specifies the way that color patterns are handled by
Graphics2D operations. The PaintContext operates in device space and defines how color patterns are
handled by specific devices. Accordingly, Paint and PaintContext are device dependent and
independent, respectively.

Whenever a Paint object is instantiated, a PaintContext containing (encapsulating) the information
necessary for putting color patterns on each output device is automatically set up. The two primary
components of a PaintContext are a Raster (as mentioned previously, a rectangular array of pixel
values in device space) and a ColorModel.

The ColorModel, described briefly in the introduction to this section and covered in detail in Chapter 6,
"Java Advanced Imaging," specifies how raw pixel values are interpreted as colors. Again, RGB is the
most common ColorModel used, but many varieties exist.

The deviceBounds and userBounds arguments to Paint's creatContext() method specify the bounding
box of the primitive being rendered in device space and user space, respectively. By placing the
appropriate restrictions on the bounds being painted, considerable improvement in runtime can be
achieved.

The AffineTransform object specifies the transform between user space and device space. Together,
AffineTransform, deviceBounds, and userBounds are used to specify the ultimate Raster object that is
used in device space.

The last argument, RenderingHints, is the same class that you saw previously when setting other
aspects of the rendering context, and likewise represents a set of options for rendering, particularly
those that make a tradeoff of quality and speed. Note that the specific RenderingHints that are
designated when generating a PaintContext are different from those used when describing Shapes.
Regardless, all rendering hints are grouped together under the same general heading.

Given this background on the Paint and PaintContext interfaces, we are in a good position to
understand the standard Paint objects that can be added to the Graphics2D context as well as the
potential to create our own Paint objects in case the standard objects aren't sufficient for a given
application.

Preexisting Paint Objects

As mentioned, Java 2D already provides three classes that implement the Paint interface. By and
large, these three classes are sufficient for most applications.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Solid Color Painting

The simplest Paint object (and the object used in all the examples so far) is the Color object. There
are numerous constructors for the Color object; however, some examples of the most commonly used
are

Color red = new Color.red; //use the Color.* for predefined colors;

//specify RGB values between 0 and 1;
Color red = new Color(1.f,0.f,0.f);

It is also possible to specify an alpha value for transparency.

For example,
Color.red = new Color(1.f,0.f,0.f,.5f);

Specifies a transparency of .5. Many more options can be specified with the AlphaComposite object

(see "Transparency and Compositing").

Using your deeper understanding of Paint and PaintContext, let's examine the steps that occur within a
simple solid color paint.

First, a ColorModel is created. The ColorModel used is most often the ColorModel specified in
RenderingHints. However, a different ColorModel from the one specified might occasionally occur
because a given device might not use the specified ColorModel. Regardless, one way or the other, a
device dependent ColorModel is selected for rendering.

Second, a Raster is generated that contains pixel values for the output device. Remember from
Chapter 2, "Imaging and Graphics on the Java Platform," a Raster is a rectangular array of pixel
values. In this simple case in which a solid color is desired, all pixels of our Raster have the same
value. In the case of GradientPaint and TexturePaint (described next), the pixels have different values.
You will see in the GradientPaint example in Listing 3.4 that the PaintContext's getRaster() method can
be used to get an instance of the Raster that we can manipulate in whatever fashion we desire.

Finally, after it is no longer needed, the PaintContext object is disposed by calling System.dispose().
Gradient Paints

GradientPaint is the second object implementing the Paint interface and, like all paint objects, can be
added to the Graphics2D context with setPaint(). A gradient paint iscommonly used in practice and
represents a transition between two colors. In order to make a GradientPaint object, it is necessary to
specify the starting and ending points for the transition (see Figures 3.4-3.7), the two colors to use,
as well as an optional rule to specify how the paint looks outside the region specified by the starting
and ending points. The outer zone can be either cyclic (repeats outside the start and endpoints) or
acyclic (remains at the final value of the gradient outside the start and endpoints). Listing 3.4
demonstrates the options that can be specified for a GradientPaint.

Listing 3.4 GradientPaintEx.java

import java.lang.StrictMath;
public class GradientPaintEx extends JFrame {
myCustomCanvas mc;
JSlider p1slide, p2slide;
JRadioButton cyclic_rb, acyclic_rb;
public GradientPaintEx() {

super("GradientPaint examples");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

BorderLayout f1 = new BorderLayout(); //layout manager for the frame

mc = new myCustomCanvas(this);
mc.setSize(500,500);

mc.setPaint(100,200);

addWindowListener(new WindowEventHandler());

class WindowEventHandler extends WindowAdapter {
public void windowClosing(WindowEvent €) {
System.exit(0);

¥

public static void main(String[] args) {
new GradientPaintEx();
b
b

class SliderListener implements ChangeListener {

GradientPaintEx gex;
myCustomCanvas mc;
int slider_val;

public SliderListener(GradientPaintEx gex, myCustomCanvas mc) {
this.gex = gex;
this.mc = mc;

b
public void stateChanged(ChangeEvent e) {

int plpos = gex.plslide.getValue();
int p2pos = gex.p2slide.getValue();

mc.setPaint(p1pos,p2pos);

}//End of stateChanged
}//End of SliderListener

class myCustomCanvas extends Canvas {
GradientPaintEx gex;
double p1pos, p2pos;
GradientPaint gpaint;

public myCustomCanvas(GradientPaintEx gex) {

this.gex = gex;

}

public void setPaint(int p1pos, int p2pos) {
this.p1lpos = (double) p1lpos;
this.p2pos = (double) p2pos;

boolean cycle = true;

if (gex.cyclic_rb.isSelected())
cycle = true;

else

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

cycle = false;
Point x = new Point2D.Double(p1pos,
this.getSize().height/2),

Point y = new Point2D.Double(p2pos,
this.getSize().height/2),

gpaint = new GradientPaint(x, y,
Color.red,
Color.green,cycle);
repaint();
b

public void update(Graphics g) {
paint(g);

public void paint(Graphics g) {

gex.plslide.setMaximum(this.getSize().width);
gex.p2slide.setMaximum(this.getSize().width);

Graphics2D g2d = (Graphics2D) g;
g2d.setPaint(gpaint); //setting context

g2d.fill(new Rectangle2D.Double(0,
0,
this.getSize().width,
this.getSize().height));

g2d.setColor(Color.black);
BasicStroke stroke = new BasicStroke(4);
g2d.setStroke(stroke);
Line2D linel = new Line2D.Double(p1pos,
OI
p1pos,
this.getSize().height);
g2d.draw(linel);

Line2D line2 = new Line2D.Double(p2pos,
0,
p2pos,
this.getSize().height);

g2d.draw(line2);

// step two-set the graphics context

Figure 3.4. A cyclic GradientPaint object with moderate separation of P1 and P2.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 3.7. An acyclic GradientPaint object with moderate separation of P1 and P2.

In Figure 3.4, the gradient of a GradientPaint is specified by two points, P1 and P2, together with the
colors to use at each point. If a fifth argument, cyclic, is specified, the pattern is repeated outside of
the points in cyclic fashion. If acyclic is specified, the full colors prevail in the zones outside the points.

Figure 3.5. A cyclic GradientPaint object with small separation of P1 and P2.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 3.6. An acyclic GradientPaint object with small separation of P1 and P2.

Note

Because the GradientPaint is specified as acyclic, the gradient doesn't repeat past the two
points.

Texture Paints

A texture can be specified for the Paint object. Textures will be explained in greater detail in both
Chapter 4 and in Part III, "Visualization and Virtual Environments: The Java 3D APIL," where texture
painting is used in the Virtual Shopping Mall example. For now, realize that you must create a
BufferedImage object either from an external source or, alternatively, by programmatically filling a
BufferedImage using some algorithm. The BufferedImage object is then used as an argument to the
constructor of the TexturePaint object. In addition, a Rectangle2D object must be passed that specifies
how the texture is replicated across the Component to be painted. The constructor for a TexturePaint

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

object is as follows:

public TexturePaint(BufferedImage txtbuffer,
Rectangle2D anchor);

One critical point to keep in mind when using the TexturePaint object is that the size of the
BufferedImage should be kept relatively small because the BufferedImage is replicated to fill whatever
graphics object is being painted. When the TexturePaint object is instantiated, an anchoring rectangle
is specified in user space coordinates. This anchoring rectangle (with its associated BufferedImage) is
copied in both x and y directions infinitely across the shape to be rendered.

Listing 3.5 demonstrates the use of a TexturePaint object. In this example, four slider bars are used to
control the anchoring rectangle.

Listing 3.5 TexturePaintEx.java

class SliderListener implements ChangeListener {

TextureEx tex;
myCustomCanvas mc;

public SliderListener(TextureEx tex, myCustomCanvas mc) {
this.tex = tex;
this.mc = mc;

}

public void stateChanged(ChangeEvent e) {

int hanchor = tex.hanchor_slide.getValue();
int vanchor = tex.vanchor_slide.getValue();

int hsize = tex.hsize_slide.getValue();
int vsize = tex.vsize_slide.getValue();

mc.createPaint(hanchor,vanchor,hsize,vsize);
}//End of stateChanged
}//End of SliderListener

class myCustomCanvas extends Canvas {

private String texture = "texture.jpg";
private TexturePaint tpaint;

private int texheight, texwidth;
Rectangle imageRect;

private int hanchor,vanchor,hsize,vsize;
Image image;

TextureEx tex;

public myCustomCanvas(TextureEx tex) {

this.tex = tex;
this.setSize(800,600);
image = this.getToolkit().getImage(texture);

MediaTracker mt = new MediaTracker(this);
mt.addImage(image, 0);
try {
mt.waitForID(0);
} catch (Exception e) {
System.out.printin("exception while loading ..");

by

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (image.getHeight(this) == -1) {
System.out.printin("Could not load: " + texture);
b
else {
System.out.printin("Loaded: " + texture);

b

texheight = image.getHeight(this);
texwidth = image.getWidth(this);
//createPaint(0,0,30,30);
this.setSize(800,600);

b

public void createPaint(int hanchor, int vanchor, int hsize, int vsize) {
this.hanchor = hanchor;
this.vanchor = vanchor;
this.hsize = hsize;
this.vsize = vsize;

BufferedImage bi =
new BufferedImage (texwidth,texheight,BufferedImage.TYPE_INT_RGB);

Graphics2D big = bi.createGraphics();
big.drawImage(image,0,0,this);
RenderingHints interpHints = new
RenderingHints(RenderingHints.KEY_INTERPOLATION,
RenderingHints.VALUE_INTERPOLATION_BICUBIC);
big.setRenderingHints(interpHints);

RenderingHints antialiasHints = new
RenderingHints(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
big.setRenderingHints(antialiasHints);
Font f1 = new Font("Helvetica", Font.BOLD, 24);
big.setFont(f1);
big.setColor(Color.black);

big.drawString("VRSciences", 125,100);
big.setColor(Color.white);

Font f2 = new Font("Helvetica", Font.BOLD, 18);
big.setFont(f2);

big.drawString("Cognitive Neuroscience", 75, 120);
big.drawString("meets", 160, 140);
big.drawString("Virtual Reality",120, 160);
big.drawString("www.vrsciences.com", 100, 180);

imageRect =
new Rectangle(hanchor,vanchor, hsize, vsize);

tpaint = new TexturePaint(bi,imageRect);
repaint();
b

public void update(Graphics g) {
paint(g);

public void paint(Graphics g) {

tex.hsize_slide.setMaximum(this.getSize().width);
tex.vsize_slide.setMaximum(this.getSize().height);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

tex.hanchor_slide.setMaximum(hsize);
tex.vanchor_slide.setMaximum(vsize);

Graphics2D g2d = (Graphics2D) g;
g2d.setPaint(tpaint); //setting context
g2d.fill(new Rectangle2D.Float(0.0f,
0.0f,
this.getSize().width,
this.getSize().height));

}

Figures 3.8 through 3.10 show the effects of changing some of the setting in TexturePaintEx.java.

Figure 3.8. A screen from TexturePaintEx with settings for a large anchoring rectangle.

Figure 3.9. A screen from TexturePaintEx with settings for a moderately sized and shifted
anchoring rectangle.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 3.10. A screen from TexturePaintEx with settings for an extremely small anchoring
rectangle.

Making a Custom Paint

Finally, in cases where the three standard Paint objects cannot be used to make the desired effect,
you can create a custom paint. This can be fairly challenging. The problem becomes tenable,
however, given a proper understanding of the Paint and PaintContext interfaces discussed previously.
For expediency, the developer should consider at length the many ways in which transparency and
composite overlay can be used with the preexisting Paint classes to accomplish a particular goal.

Creating a custom Paint object is a two-part process. The developer must write at least one
implementation of the PaintContext interface and then write an implementation of the Paint interface
that uses this custom PaintContext.

The most code intensive part is writing a custom implementation of the PaintContext interface. There
are only three different methods in the PaintContext interface. They are as follows:

public void dispose();
ColorModel getColorModel();
Raster getRaster(int x, inty, int w, int h);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If you are familiar with the Java representation of an image (described in the introduction to this
section and in far greater detail in the next chapter), it is clear that we have the makings of an image
here. Specifically, there is a Raster and a ColorModel present. Remember that a Raster consists of data
(the DataBuffer object) and the methods for interpreting that data (SampleModel).

When creating a custom implementation of PaintContext, it generally isn't necessary to modify the
getColorModel() or dispose() methods. Most of the real work occurs in writing the getRaster() method.
Overall, this work falls in the domain of image processing. The custom Paint is made by operating on
the pixels in the Raster. An example of making a custom Paint object is given in the next chapter.

The last part of the procedure is to implement the custom Paint interface object. As already
mentioned, there is only one method in the Paint interface, the createContext() method, who's sole
purpose is to return a PaintContext whenever Paint is called. So, for example, if the PaintContext that
was made is called myCustomPaintContext, implementing the createContext() method would look like
the following:

public PaintContext createContext(ColorModel cm,
Rectangle deviceBounds,
Rectangle2D userBounds,
AffineTransform transform,
RenderingHints hints) {
try{
return new myCustoomPaintContext(args);
}catch(NoninvertibleTransformException e){
e.printStackTrace();
throw new IllegalArgumentException();
by
by

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [ravisus] it o]
Transparency and Compositing

Many visually impressive effects can be made using transparency and composite overlay.

Composite attributes are generally set in an AlphaComposite object and added to the Graphics2D
context with the Graphics2D.setComposite() method. There is no direct way to instantiate an
AlphaComposite object. Instead, a so-called factory method, AlphaComposite.getinstance(), is called.
There are two variations of the getlnstance() method; the first has one argument specifying the
mixing rule to use (discussed next). The second version of the getlnstance() method has both the
argument for specifying the mixing rule as well as an argument specifying the transparency value to
use. The transparency value ranges from 0-1 (in floating point) with 0.f being totally opaque and 1.f
being totally transparent.

The mixing rules conform to a set of rules formalized by Porter and Duff and hence known as the

Porter-Duff compositing rules.[11 A key element for understanding the Porter-Duff rules is to
appreciate the difference between the source and destination objects. The source refers to the new
graphic that is to be rendered over existing graphics, called the destination. The process, then, is to
first create the destination graphics, build an AlphaComposite object with the appropriate rules set,
and add it to the attributes of the Graphics2D context. The last step is to create the source shape and
render it.

(1] T. Porter and T. Duff, Compositing Digital Images, SIGGRAPH 84, 253-259.

The application PDExamples.java is used to demonstrate the Porter-Duff rules. Portions of the class
are shown in Listing 3.6. You should run the example and experiment with different rules and
transparency values. A sample screen from this program is shown in Figure 3.11.

Listing 3.6 PDExamples.java

class myCustomCanvas extends Canvas {
float srcalpha, dstalpha;
PDExamples2 pd;

public myCustomCanvas(PDExamples2 pd) {
this.pd = pd;
b

public void paint(Graphics g) {
Graphics2D g2d = (Graphics2D) g;

float xcenter = this.getSize().width/2;
float ycenter = this.getSize().height/2;

float srcalpha = 1-((float)pd.srcalpha.getValue()/100);
float dstalpha = 1-((float)pd.dstalpha.getValue()/100);

Shape dstRectangle = new Rectangle2D.Float(xcenter,
ycenter-110,
80,
300);

Shape srcRectangle = new Rectangle2D.Float(xcenter-110,
ycenter,
300,
80);

//create a BufferedImage to put destination and source
BufferedImage bi = new BufferedImage(this.getSize().width,
this.getSize().height,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

BufferedImage. TYPE_INT_ARGB);
Graphics2D big = bi.createGraphics();

big.setColor(new Color(1.f,0.f,0.f,dstalpha)); //setting context
big.fill(dstRectangle);

big.setColor(Color.blue);
//check all radio buttons

if (pd.clear_rb.isSelected() == true) {
big.setComposite(AlphaComposite.getinstance (AlphaComposite.CLEAR,
= srcalpha));

b
else if (pd.dstin_rb.isSelected() == true) {
big.setComposite(AlphaComposite.getinstance (AlphaComposite.DST_IN,
= srcalpha));

b
else if (pd.dstout_rb.isSelected() == true) {
big.setComposite(AlphaComposite.getinstance (AlphaComposite.DST_OUT,
= srcalpha));

else if (pd.dstover_rb.isSelected() == true) {
big.setComposite(AlphaComposite.getinstance (AlphaComposite.DST_OVER,
= srcalpha));
by
else if (pd.src_rb.isSelected() == true) {
big.setComposite(AlphaComposite.getinstance (AlphaComposite.SRC,srcalpha));
b
else if (pd.srcin_rb.isSelected() == true) {
big.setComposite(AlphaComposite.getInstance (AlphaComposite.SRC_IN,
= srcalpha));

else if (pd.srcout_rb.isSelected() == true) {
big.setComposite(AlphaComposite.getInstance (AlphaComposite.SRC_OUT,
= srcalpha));

else if (pd.srcover_rb.isSelected() == true) {
big.setComposite(AlphaComposite.getinstance (AlphaComposite.SRC_OVER,
= srcalpha));

}

big.fill(srcRectangle);
g2d.drawImage(bi, null, 0, 0);
b
by

class RadioListener implements ActionListener {
myCustomCanvas mc;

public RadioListener(myCustomCanvas mc) {
this.mc = mc;

}

public void actionPerformed(ActionEvent €) {
mc.repaint();

by

class SliderListener implements ChangeListener {
myCustomCanvas mc;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public SliderListener(myCustomCanvas mc) {
this.mc = mc;
b

public void stateChanged(ChangeEvent e) {
mc.repaint();
}//End of stateChanged

}//End of SliderListener

Figure 3.11. Output from the PDExample.java demonstrating the SRC_OUT rule with 0
transparency (full opacity).

As in all of our examples so far in this chapter, we created an inner class extending Canvas. Note
again the use of the BufferedImage for storing the current graphics, as used in Listing 3.4. This time,
the necessity of using the BufferedImage stems from a different reason than needing a BufferedImage
for the TexturePaint() constructor. In this case, we need to use the BufferedImage because the
destination graphics won't have transparency. Therefore, we create a BufferedImage with
transparency to hold our destination graphics and to give them a transparency value.

Also notice that we use a method paintGraphics() to set up and fill the Bufferedimage. Therefore, our
paint() method is pretty simple; it draws the BufferedImage to the Canvas.

[Team Li] [« rrrvious)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [« rruvizua fwaxt o]
Text

One of the keys to understanding Java 2D text rendering is to realize that in most ways text can be
treated as a shape. As such, most of the methods used on shape primitives can be used on text
primitives. However, some special properties of graphics-based text should be considered.

Before diving into these special properties, it is necessary to consider some terminology. The different
terms used to describe text, layout, and style largely reflect the different ways primitives are grouped
to lay out text.

The overall goal of text layout is to artistically represent symbols (known as characters) that have
meaning in a particular language. Each character is represented by a set of shape primitives called
glyphs. Technically, glyphs are made up of little bitmapped images. Often, but not always, a single
glyph represents a single character.

To render a character, then, it is necessary to assemble a set of glyphs. This is accomplished through
a lookup (mapping) table that specifies the glyphs to use for each particular character. A current
standard, and the one used by Java, is Unicode.

A font is simply the collection of glyphs needed to make a set of characters with a particular style and
size. The collection of glyphs that make up the font known as Helvetica 10 point, for example, will be
different from the set of glyphs representing Times New Roman 10 point because of the subtle
differences in the way the curves arch, the lines are terminated, and so on. An interesting exercise is
to zoom in closely on text with a variety of fonts using any drawing program. It is easy to see the
glyphs and subtle differences among the different fonts.

Most of the classes and interfaces discussed in this section are part of the java.awt.Font package.
Getting a List of Available Fonts

The first point of divergence concerning shapes and fonts is that each environment doesn't have the
same resident fonts. Java has a very useful method for determining the fonts recognized by the
system. The GraphicsEnvironment object's getAvailableFontFamilyNames() method returns an array of
strings containing the names of the available fonts on the system. The following code can be putin a
Java program to print a list of fonts available. Likewise, the fonts can be added to a Collection object
(that is, vector or hash table) for use in user interface selection.

GraphicsEnvironment ge =
GraphicsEnvironment.getLocalGraphicsEnvironment();

String availablefonts[] =
ge.getAvailableFontFamilyNames();

for (inti = 1; i < availablefonts.length; i++) {
System.out.printin(envfonts[i]);
by

Laying Out Text

Before going too deeply into Java 2D's text rendering methods, you should know that most
applications can get by with a very simple model of getting an instance of a font, setting the
Graphics2D context for that font with the setFont() method, and using the Graphics2D rendering
method drawString() to render a string. This is the clear way to go for basic tasks such as labeling the
axis of a plot and placing short strings of text on the screen.

That said, Java 2D has some pretty advanced text rendering capabilities, most of which can be
realized with the TextLayout class (discussed next). The following introduction will hardly scratch the
surface of the different kinds of text processing that are possible with Java 2D, but should provide
enough of an introduction so that you can continue. We will focus on a few classes, primarily the
TextLayout and AttributedString classes.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Introduction to the TextLayout Class

When producing even the most rudimentary text layout, it is often necessary to combine strings in
different styles and control the flow of the text as in a paragraph layout. TextLayout is the essential
class for laying sections of text. It is a graphical representation of character data that allows for most
of the advanced text capabilities of Java 2D. Table 3.5 lists some of these capabilities.

Table 3.5. Text Layout Operations Supported in Java 2D

Layout Description

Operation

International |Classes to handle many challenges in producing international text such as right-to-left
Support language. Conforms to Unicode97 standard.

Editing Editing, carets, cursor positioning, highlighting

Rendering Justification, text metrics

Paragraph Use in conjunction with LineBreakMeasurer
Layout

After the TextLayout object is instantiated, it can be rendered either through its own draw() method or
through Graphics2D's drawString() method. The following code snippet illustrates the basic use of
TextLayout:

FontRenderContext frc = g2d.getFontRenderContext(); //contains measurement info
Font f = new Font("Helvetica",Font.BOLD, 24);

String s = new String("Simple test string");

TextLayout textlayout = new TextLayout(s, f, frc);

Textlayout.draw(g2d, height, width); //use TextLayout's draw method

There are several things to notice in the previous code snippet. First, although we created a
TextLayout object, we didn't do anything very special with it. In fact, this snippet achieves the same
result that we would have realized with the drawString() method. The use of TextLayout with longer
strings is left as an exercise for you. Generally, it is useful to read in longer strings from an external
file.

Second, notice that it is necessary to create an instance of FontRenderContext to pass to the
TextLayout constructor. The FontRenderContext object contains the basic information important for
measuring text (also known as font metrics), including a reference to the mathematical transform
necessary to convert points to pixels as well as information about specific rendering attributes that
might have been set as such. Rendering attributes include whether antialiasing has been set or
fractional metrics are in use. Although all the TextLayout constructors require the FontRenderContext
object to be passed, it isn't necessary to worry too much about FontRenderContext for most
applications in general.

A final point about the previous code snippet is that once instantiated, the TextLayout object is
immutable. Therefore, any changes to the text layout (such as changing the string) during program
operation will require the creation of a new TextLayout object.

Generating an Attributed String for TextLayout

As stated previously, we haven't done anything special with our TextLayout object. Because it is
immutable once it is created anyway, we are pretty limited in our text layout possibilities. The key to
using the immutable TextLayout object is in generating an AttributedCharacterIterator object to pass to
the TextLayout constructor (or, alternatively, the Graphics2D drawString() method).

The AttributedCharacterlIterator is used by Graphics2D and TextLayout when rendering styled text to
walk through the text to be rendered. This is completely analogous to the Pathlterator object for
moving around the boundary of a shape that was demonstrated previously.

A common source of confusion arises because the programmer doesn't specify the details of pairing
characters and their attributes. Instead, the pairings are specified in an AttributedString object. This

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

step accounts for the majority of the work in laying out the text. The AttributedCharacterIterator is
then instantiated with the AttributedString's getlterator() method.

The following code represents a prototypical example of setting the attributes (colors, sizes, and
fonts) of individual characters in a line of text. Step 1 involves instantiating the AttributedString object
without setting the attributes. We will set the attributes short. Although this is probably the easiest
way to proceed, other constructors of AttributedString will allow you to set the attributes in the
constructor. Regardless, let's instantiate the object and add some attributes:

//step one; create the AttributedString object
String text = new String("abcdefghijklmnopgrstuvwxyz");
AttributedString attText = new AttributedString(text);

//step two;add some attributes
attText.addAttribute(TextAttribute. FOREGROUND, Color.black); //default
attText.addAttribute(TextAttribute.FAMILY, "helvetica"); //helvetica

//step three; change attribute of the third character

for (int i;i<25;i++) {
attText.addAttribute(TextAttribute.SIZE, (float) 2*i, i, i+1);
b

Remember that the TextAttribute.FONT attribute supercedes all other font attributes (for example, the
TextureAttribute.FAMILY attribute set previously).

Another caveat is that all graphical information returned from a TextLayout object's methods is
relative to the origin of the TextLayout, which is the intersection of the TextLayout object's baseline
with its left edge. Also, coordinates passed into a TextLayout object's methods are assumed to be
relative to the TextLayout object's origin.

Dozens of attributes can be added. The full list is located at

Formatting Paragraph Text

The code from the preceding section represents one way to create a TextLayout object and is sufficient
for single lines of text. A second class, however, called LineBreakMeasurer, also creates a TextLayout
object but further provides methods to control the line breaks to form blocks of text.
LineBreakMeasurer is intended for use in laying out paragraphs.

The strategy implemented by LineBreakMeasurer is simply to place as many words on each line as will
fit. If a word won't fit in its entirety on a given line, a break is placed before it and it is shifted to the
next line. Strategies that use hyphenation or minimize the differences in line length within paragraphs
require low-level calls and aren't handled easily with LineBreakMeasurer.

In order to break a paragraph of text into lines, it is necessary to construct a LineBreakMeasurer object
for the entire paragraph. Separate segments of the text are obtained using the nextLayout() method,
which returns a TextLayout object that fits within the specified width for each line (called the wrapping
width). When the nextLayout() method reaches the end of the text, it returns Null to indicate that no
more segments are available.

Inserting Shapes and Images into Text

It is also possible to embed shapes and even images into a line of text. This is accomplished by
adding the TextureAttribute. CHAR_REPLACEMENT attribute with the desired replacement object. For
shapes and images, the replacement object needs to be an object of type ShapeGraphicsAttribute or
ImageGraphicsAttribute, respectively.

Building a Custom Font

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Another somewhat common task is the creation of a custom font based on an existing font. This can
be accomplished by passing an existing font name with the desired size and style to the constructor of
the Font class. It is also possible to use the deriveFont() method:

Font sourceFont = new Font("Helvetica", Font.ITALICS, 12);
Font derivedFont = fontSource.deriveFont(Font.BOLD, 12);

Of course, there are much more interesting things you would want to do with a custom font. The
deriveFont() method has a number of constructors, including one for using a custom attribute mapping
and another for applying affine transforms to fonts. (For information on the AffineTransform class, see

the later section "Coordinate Space Transformations.")

Text Hit Testing

The TextLayout class greatly simplifies the task of hit testing in text with three methods,
getNextRightHit(), getNextLeftHit(), and hitTestChar(), that each return an instance of TextHitInfo. A
TextHitInfo object contains information about the character position within a text model as well as its
bias (whether the position is to the right or to the left of the character). You should bear in mind that
the offsets contained in TextHitInfo objects are specified relative to the start of the TextLayout object
and not to the text used to create the TextLayout.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Clipping

The clipping path is a state attribute that specifies which part of a shape is to be rendered. In order to
specify the clipping region, a path (see Listing 3.2 for the definition of a path) is created such that
only the parts of the shape within the path are rendered. The clipping region can be specified by any
valid Shape (for example, a GeneralPath or Rectangle2D). For example, a simple clipping path could be
used in the myCustomRenderer class in our basic java graphics program recipe by adding the
following:

GeneralPath gp = new GeneralPath();
gp.moveTo((50,50); //initial starting point
gp.lineTo(30,200);

gp.lineTo(110,140);

gp.lineTo(90,190);

gp.lineTo(300,50);

gp.closePath();

g2.setClip(gp);
g2.setColor(new GradientPaint();

g2.fill(new Rectangle2D.float(0.f,0.f,500.f,500.f);

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

{Team LB] [ereousfonxia]

Coordinate Space Transformations

If you wanted to rotate or otherwise transform a graphics object and then redraw it, there would be
two obvious ways to go. One way, which is generally impractical, is to transform each point of the
graphics object and then render the transformed object. Any reasonably complicated shape would
require many hundreds of transforms. The preferred way is to transform the user space, draw on it,
and then render the user space to the output device.

class myCustomCanvas extends Canvas {
public void paint(Graphics g) {

Graphics2D g2d = (Graphics2D) g;

g2d.setColor(Color.red); //setting context

Rectangle2D sql = new Rectangle2D.Float(0.f,0.f,175.0f,175.0f);
//translate user space to center
g2d.translate(this.getSize().width/2, this.getSize().height/2);
g2d.fill(sql);

g2d.rotate(-45); //rotate user space

g2d.setColor(Color.blue);

g2d.fill(sql);

}

In Figure 3.12, a translation of user space and the blue rectangle are filled. Next, the user space is
rotated -45 degrees, and the same rectangle is drawn.

Figure 3.12. Output from BasicRecipel2D.java after adding the preceding code snippet.

Another method available in Java 2D is the AffineTransformOp. An affine transformation is a linear
matrix multiplication to a coordinate space. Many effects can be produced using an affine

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

transformation including rotate, translate, shear, and scale. Indeed, when any graphics are rendered
from user space to device space, an affine transformation is used to make the conversion. It isn't
necessary to modify the transformation from user to device space, but it is interesting to note that the
same method is usable for making transformations within user space. For a quick example, we will
rotate the rectangle we created in the myCustomRenderMethod.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [privieua]firaxt +]
Techniques for Graphical User Input

Most user interaction problems in 2D consist of determining whether the user clicked on a particular
shape or text area and other forms of so-called hit testing. Two methods, Graphics2D.hit() and the
Shape.contains(), are particularly useful for solving shape clicking problems. Shape.contains() can be
placed in the mouseEvent methods such as mousePressed() and mouseClicked() to test if a particular
shape has been selected after the desired mouse event. An example of using the contains() method is
provided in Listing 3.3.

Graphics2D.hit() can be used in more or less the same fashion; however, it is necessary to pass the
hit() method a rectangular area of device space in which to search for the selected object.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Double Buffering

Double buffering is a technique for reducing flicker in animations that at first might seem a little
counter intuitive. The problem stems from the fact that when a new animation frame is rendered, it is
desirable to first clear the old frame. This causes a flicker to occur. The basic idea of double buffering
is to create a virtual screen out of the user's view. At the beginning of this chapter, it was stated that
a graphics device could be a screen, printer, file, or memory area. The virtual screen used as the
buffer is the primary example of using a memory space as a graphics device. When paint() is called,
the clearing and painting of the animation frame can occur on the virtual screen and the resulting
rendered image can then be transferred to the real screen immediately upon completion. The cost of
double buffering is in memory and CPU consumption. However, this cost is probably unavoidable for
complex animations and usually isn't too expensive.

Another application of double buffering is in spirited animations. A sprite is a graphics object that
moves over another, usually larger, graphic. The sprite itself can be a series of animated frames, thus
allowing, for example, an animation of a small butterfly flitting its wings while flying over a static or
dynamic texture. Another name used for sprite animations is cast-based animation, which is derived
from the use of sprites as cast members who can move over texture maps. Sprites are commonly
used in non-3D gaming applications.

[Team LiB] [« Fruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Pavisua]f T o]
Comprehensive Example: Kspace Visualization

The following is a comprehensive example that will be integrated with some of Java 3D examples from
Part III to form one of the integrated examples at the end of the book. It isn't necessary to
understand the subject matter to understand the graphics programming; however, some background
information is helpful.

Background Information on Kspace

One of the fundamental concepts in magnetic resonance imaging is kspace. It is sometimes said in
jest that kspace is a place where no one can hear you scream. Without a doubt, kspace is a tough
concept for people learning MRI. However, kspace is a simple extension of the concept of Fourier
space that is well known in imaging. For now, suffice it to say that Fourier space and image space are
different representations of the same data. It is possible to go back and forth between image space
and Fourier space using the forward and inverse Fourier transform. Many image processing routines
make direct use of this duality.

What makes MRI different from other imaging modalities is that the data are collected directly in
Fourier space by following a time-based trajectory through space. The position in Fourier space is
directly related to the gradient across the object being imaged. By changing the gradient over time,
many points in kspace can be sampled in a trajectory through Fourier space. Discreet samples are
taken at each point until the Fourier space is filled. A backward (inverse) Fourier Transform is then
performed to yield the image of the object (in image space).

It turns out that there are numerous (almost infinite ways) to traverse kspace. One such trajectory is
called spiral and benefits from improved coverage of kspace per unit time because of the inherent
properties of the circle. The spiral kspace trajectory allows for images to be taken in snapshot (20ms)
fashion and is used for such leading-edge applications such as imaging of the beating heart or
imaging brain activity (functional magnetic resonance imaging). Figure 3.13 shows the final
trajectory. Blue dots indicate that all time points up to the current time, whereas red dots indicate the
full trajectory. This part of the visualization will be integrated with Java 3D models in the
KspaceModeller application developed in Part III of this book.

Figure 3.13. Final kspace trajectory for KspacePlot.java.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In this example, we will use a slider bar to advance through time and see the current and previously
sampled kspace points. The visualization will be made using an actual file that sits on the computer
that runs an MRI scanner. We will later expand the number of kspace trajectories we can make,
including making programmatic versions that aren't based on real data.

Step 1—The Visualization

First, let's make a skeleton of our external extended Canvas and call it KspaceCanvas. It is in this
external class that all our painting will be accomplished. We will begin by painting an x- and y-axis
with labels. An important part of this process is determining the height and width of the Canvas
(accomplished with the getSize() method).

Listing 3.7 KspaceCanvas.java—a Custom Canvas for Visualization

import java.awt.*;
import java.awt.geom.*;
import java.awt.image.*;

public class KspaceCanvas extends Canvas {
int xcenter, ycenter, offsetx, offsety;

KspaceCanvas() {
System.out.printin("Creating an instance of KspaceCanvas");

b

public void drawKspace(int tpoint) {
System.out.printin("drawKspace");
this.tpoint = tpoint;
repaint();

b

public void paint(Graphics g){
Graphics2D g2d = (Graphics2D)g; //always!
offsetx = (int) this.getSize().width/50;
offsety = (int) this.getSize().height/50;
xcenter = (int) this.getSize().width/2;
ycenter = (int) this.getSize().height/2;
//call method to paint the x-y axix

paintAxis(g2d);

public void paintAxis(Graphics2D g2d) {
//setup font for axis labeling
Font f1 = new Font("TimesRoman", Font.BOLD, 14);
g2d.setFont(f1);

g2d.drawString("Kx", this.getSize().width-(2*offsetx),
this.getSize().height/2);

g2d.drawString("Ky", this.getSize().width/2,offsetx);
// draw axis for kspace

g2d.setColor(Color.black); //set rendering attribute
g2d.drawLine(offsetx, ycenter, xcenter-xoffset, ycenter-yoffset);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

g2d.drawLine(xcenter, yoffset, xcenter, ycenter-yoffset);

}

Notice the drawKspace() method that receives the int argument tpoint, whose sole function is to set
the current timepoint and call repaint(). The tpoint variable will represent the current timepoint in the
kspace trajectory and will run from 0 to 5499. In the next step, we will create a slider bar with an
attached listener. In that listener, the drawKspace() method will be called with the tpoint variable
representing the current value of the slider bar.

The other important code for this part occurs in the overridden paint() and paintAxis() methods. First,
in the paint() method, we get information necessary for scaling the axis appropriately. We want the x
and y centers located half way up the Canvas regardless of size, so we use the getSize() method that
was briefly described previously.

Step 2—Setting Up the User Interface

This step is fairly easy. We will extend JFrame and add two JPanels, one to hold the user interface
components and another to hold our Canvas, as shown in Listing 3.8.

Listing 3.8 KspaceSpacePlot.java

import java.applet.Applet;
import java.awt.*;

import java.awt.event.*;
import javax.vecmath.*;
import javax.swing.*;

import java.awt.BorderLayout;

import java.util.Vector;

import java.awt.GraphicsConfiguration;

public class KspacePlot extends JFrame {
int kwidth, kheight;

KspaceData ks;
KspaceCanvas kspacec;

public KspacePlot (int initx, int inity) {
super("Kspace Plot");

Panel sliderpanel = new Panel();

JSlider hslider = new JSlider();
hslider.setMinimum(0);
hslider.setMaximum(5498);

hslider.setValue(0);

hslider.setPreferredSize(new Dimension(300,20));
sliderpanel.add(hslider);

BorderLayout f1 = new BorderLayout();
this.getContentPane().setLayout(f1);
this.getContentPane().add(sliderpanel, BorderLayout.NORTH);
ks = new KspaceData();

kspacec = new KspaceCanvasA();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

this.getContentPane().add(kspacec);
kspacec.drawKspace(0);

}

public static void main(String[] args) {
int initialSizex=500;
int initialSizey=500;

WindowListener | = new WindowAdapter() {

public void windowClosing(WindowEvent e)
{System.exit(0);}

public void windowClosed(WindowEvent e)
{System.exit(0);}

)o

KspacePlot k = new KspacePlot(initialSizex, initialSizey);
k.addWindowListener(l);

k.setSize(500,500);

k.setVisible(true);

b
by

class SliderListener implements ChangeListener {

KspaceCanvasA kc;
int slider_val;

public SliderListener(KspaceCanvasA kc) {
this.kc = kc;
b

public void stateChanged(ChangeEvent e) {

JSlider s1 = (JSlider)e.getSource();

slider_val = sl.getValue();

System.out.printin("Current value of the slider: " + slider_val);
kc.drawKspace(

}//End of stateChanged
}//End of SliderListener
//

Step 3—Reading the Scanner Trajectory

Because we want to plot an actual trajectory from the scanner, we will read bytes from a file into an
array using a FileInputStream object. There are a few examples that read raw data in this book and
you will find that, in practice, reading bytes is occasionally necessary. It probably isn't necessary to
get into the details of this class. The important concept is that two files (kxtrap.flt and kytrap.flt) are
read into two public arrays. Maximum and minimum values are computed for each array and stored in
public variables. Another public array of time values is calculated based on the number of timepoints.
The values stored in these arrays will be made accessible to KspaceCanvas by adding code to the

KspaceCanvas constructor in "Step 4—Modifying KspaceCanvas to Plot the Data. " Note that this class
is external and stored in the file KspaceData.java (see Listing 3.9).

Listing 3.9 KspaceData.java—an External Class for Reading a Scanner Trajectory

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

import java.awt.*;
import java.io.*;

class KspaceData {
int tpoints=5500;

double Gxcoord[] = new double[tpoints];
double Gycoord[] = new double[tpoints];
int time[] = new int[tpoints];

double Gx, Gy;

double Gxmax=0.0;
double Gymax=0.0;
double Gxmin=0.0;
double Gymin=0.0;

KspaceData() {
readdata();

}
public void readdata() {

try {
DatalnputStream disx =
new DatalnputStream(new FileInputStream("kxtrap.flt"));
DatalnputStream disy =
new DatalnputStream(new FileInputStream("kytrap.flt"));

try {
for (int i=0; i < tpoints-1; i++) {
Gx = disx.readFloat();
Gy = disy.readFloat();

//find min and max gradient values to determine scaling
if (Gx > Gxmax) {
Gxmax=Gx;

b
if (Gy > Gymax) {
Gymax=Gy;

b

if (Gx < Gxmin) {
Gxmin=Gx;

b

if (Gy < Gymin) {
Gymin=Gy;

b

Gycoord[i] = Gy;
Gxcoord[i] = Gx;
b
} catch (EOFException €) {
b
} catch (FileNotFoundException e) {
System.out.printin("DatalOTest: " + €);
} catch (IOException e) {
System.out.printin("DatalOTest: " + €);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

b
Step 4—Modifying KspaceCanvas to Plot the Data

Now that we can read the kx and ky files, it is time to plot the data over the axis that we made in step
1.

Add the method paintData() just below the paintAxis() method in KspaceCanvas.java:
//method to plot kspace data
public void paintData(Graphics2D g2d) {

for (int i=1; i<tpoints-2; i++){
// Scale Gx and Gy between -1 and 1; called Kx and Ky;
// Multiply Kx and Ky times the width and height
//of the Canvas in the same step
Kx[i] = (ks.Kx[i] *this.getSize().width*scalefac;
Ky[i] = (ks.Ky[i])*this.getSize().height*scalefac;

g2d.setColor(Color.lightGray);

g2d.draw(new Ellipse2D.Double(kxcenter + Kx[i],
kycenter + Ky[i],3.0,3.0));

g2d.setColor(Color.blue);

g2d.fill(new Ellipse2D.Double(kxcenter + Kx[i],
kycenter + Ky[i],4.0,4.0));

}

In addition, we need to instantiate an object from our KspaceData class. In the KspacePlot.java class,
add the following line just above the initial call to the KspaceCanvas constructor:

ks = new KspaceData();

We now need to modify the constructor to KspaceCanvas to allow for the passing in the newly
constructed KspaceData object. First change the constructor in KspaceCanvas.java:

KspaceCanvas(KspaceData ks) {
this.ks = ks;
by

And, change the initial call to the constructor in KspacePlot.java accordingly to the following:
kspacec = new KspaceCanvas(ks);

Finally, let's add the call to paintData() right after the call to paintAxis() in the paint() method of
KspaceCanvas:

paintData(g2d);

After running the program, your screen should resemble Figure 3.8.
Step 5—Overriding the Update Method in KspaceCanvas

You will notice immediately that, although the program is starting to look promising, it is largely
unusable in its present state. The primary problem is that the screen is erased and fully redrawn
every time the slider bar changes.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Remember from before that repaint ends up calling update(), which puts the background color over
the component before the Component's paint() method is called. This is one of the times when this is
undesirable. We must therefore override the update() method and have our program only redraw the
points that are new since the last call to repaint(). The following code segment is inserted into
KspaceCanvas.java:

public void update(Graphics g) {
paint(g);

Step 6—Add RenderingHints to Improve the Rendering

In this final step, we want to make the output look better. This is achieved through adding
RenderingHints to the Graphics2D object. In this case, we want to add antialiasing so that our data
point ellipses (dots) look smoother. We also need to add bicubic spline interpolation so that the dots
line up better. Add the following lines in the paint() method:

RenderingHints interpHints =
new RenderingHints(RenderingHints.KEY_INTERPOLATION,
RenderingHints.VALUE_INTERPOLATION_BICUBIC);
g2d.setRenderingHints(interpHints);

RenderingHints antialiasHints =
new RenderingHints(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

g2d.setRenderingHints(antialiasHints);

You could just as well add this code to the constructor so that the RenderingHints aren't created each
time paint() is called; however, this doesn't provide a substantial difference in performance.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Summary

In this chapter, we covered graphics programming in Java 2D, and you saw that the vast majority of
graphics applications in Java 2D follow a basic three step recipe—obtain a Graphics2D object, set the
context, and render something. You should always consider the relationship between user space and
device space when learning advanced features of the platform. The rest is straightforward but does
require a knowledge of the vast array of state attributes that can be combined to produce the desired
graphics effect as well as how to produce the necessary geometry.

We will next look into buffered imaging and the immediate mode imaging model, which, other than
printing, forms the other major part of the Java 2D API.

[Team LiB] [« Fruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Chapter 4. Inmediate Mode Imaging Model

IN THIS CHAPTER

® Push Imaging Model
® Pixel Storage and Conversion
¢ Immediate Mode Imaging Model

Before discussing the immediate mode imaging model, it is important to understand the older, push
imaging model. It is from the limitations of this model that the immediate mode model was created,
just as the limitations of the immediate mode model led to the creation of the Java advanced imaging
(JAI) API discussed in Chapter 6, "Java Advanced Imaging." But just as the limitations of one model
led to the creation of another, each model is built on the functionality of the one before, so
understanding the push model is important to understanding the immediate mode model just as
understanding the immediate mode model is important to understanding JAIL.

As a quick introduction, both the push imaging model and the immediate mode imaging model are
part of the Java Advanced Windowing Toolkit (AWT) package, although at one time the immediate
mode model was part of a separate Java 2D package. (The Java 2D package has since been
incorporated into the AWT package.) In the push imaging model, the image data isn't introduced into
the imaging pipeline until it is needed; at which time an object called an ImageProducer starts pushing
the data into this pipeline. On the other end of this pipeline is an ImageConsumer that must wait for
the data to get pushed to it. In contrast, the immediate mode imaging model makes the image data
available in memory immediately after each step in the imaging pipeline.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Push Imaging Model

It is @ misconception that the push model was poorly designed and is no longer useful. On the
contrary, this model was designed to provide a simple way to load images into Applets and
applications. The main advantage of this model is that it can load and display images incrementally as
they become available over the network. Another advantage is that by using the push model, your
images can be viewed by almost all browsers without the need for plug-ins to replace the browser's
Java virtual machine (JVM). The main disadvantage of the push model is that the image data isn't
collected into an accessible location, making anything more than simple image processing difficult. A
second disadvantage is that the programming interface can be confusing, especially when you
encounter it for the first time.

Images

Conventionally, an image can be thought of as a formatted collection of pixel values. In Java
programming, this type of thinking can cause confusion. It is better to think of the java.awt.Image
class as a group of resources and methods that provide a means for transferring and inquiring about a
collection of image data and not as the collection itself. For example, let's look at the two code lines
typically used to load an image into an Applet:

Image anlmage = getImage(url); //java.awt.Applet method
and

drawImage(anImage, xlocation, ylocation, this);
//java.awt.Graphics method where "this" is an
ImageObserver

Note that for an application, the first line can be replaced by
Image anlmage = Toolkit.getDefaultToolkit().getImage(url);

or

Image anlmage = Toolkit.getDefaultToolkit().getImage(filename);

In all cases, the initial step doesn't start loading the image data, but instead instantiates an Image
object that creates the resources necessary to process the image data. The second method begins the
image loading, although the method returns immediately regardless of how much of the image is
available to display. The reason for this is so that the executing thread can move on to other tasks
while the image data is loading. The actual loading continues in a separate thread, where an object
implementing the java.awt.ImageProducer interface sends image data to an object implementing the
java.awt.ImageConsumer interface.

It is of interest to note that the three classes explicitly used to load the image data—that is, Applet,
Graphics, and Image—don't implement any of these interfaces. Thus, the separate thread connecting
the ImageProducer to the ImageConsumer is a bit mysterious in this context, although a reference to
the ImageProducer can be obtained through the getSource method of the Image class. It should be
noted that the drawImage method of the Graphics class isn't the only method that will start the image
data loading. This is true of any method that requires information about the image data, such as the
Image methods public int getWidth(ImageObserver) and public int getHeight(ImageObserver).

An important question at this point is how does the applet know how much data has been transferred
to the ImageConsumer, where it is available for drawing? This task is left up to an object implementing
the java.awt.ImageObserver interface. As the flow of data between the ImageProducer and the
ImageConsumer progresses the

public boolean imageUpdate(Image img, int infoflags,
int x, int y, int width, int height)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

method of the ImageObserver is called. Each time it is called, information is passed to it through an
integer value representing a set of flags. This information can describe such things as whether the
image width or image height is known, whether additional data bits have been loaded, or whether all
the image data has been loaded. The trick to getting all this to work is to note that the
java.awt.Component class implements the ImageObserver interface and, thus, defines this imageUpdate
method. Therefore, the Component class and any descendent of it, such as the Applet class, is an
ImageObserver. So, when you specify this as the ImageObserver, you are actually specifying that the
Applet's imageUpdate method gets called when the ImageProducer sends data to the ImageConsumer.
The default behavior of the Applet's imageUpdate method is to repaint the Applet whenever new data
bits are available.

Listing 4.1 demonstrates the use of the Applet class as an ImageObserver. We have simply replaced
the default imageUpdate method with one that is functionally similar, but much more verbose.

Listing 4.1 ImagelLoaderApplet.java

package ch4;

import java.applet.*;

import java.awt.*;

import java.net.*;

import java.awt.image.ImageObserver;

/**
* ImageLoaderApplet.java -- load and display image specified by imageURL
*/
public class ImagelLoaderApplet extends Applet {
private Image img;
private String imageURLString = "file:images/peppers.png";

public void init() {
URL url;
try {
// set imageURL here
url = new URL(imageURLString);
img = getImage(url);

by
catch (MalformedURLException me) {
showStatus("Malformed URL: " + me.getMessage());

}
}

/**
* overloaded method to prevent clearing drawing area
*/
public void update(Graphics g) {
paint(g);

public void paint(Graphics g) {
g.drawlmage(img, 0, 0, this);
b

/**
* Verbose version of ImageConsumer's imageUpdate method
*/
public boolean imageUpdate(Image img, int flags,
int x, inty, int width, int height) {
System.out.print("Flag(s): ");
if ((flags & ImageObserver. WIDTH) != 0) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

System.out.print("WIDTH: ("+width+") ");
}

if ((flags & ImageObserver.HEIGHT) != 0) {
System.out.print("HEIGHT:("+height+") ");
b

if ((flags & ImageObserver.PROPERTIES) != 0) {
System.out.print("PROPERTIES ");

}

if ((flags & ImageObserver.SOMEBITS) !'= 0) {
System.out.print("SOMEBITS("+x+","+y+")->(");
System.out.print(width+","+height+") ");
repaint();

if ((flags & ImageObserver.FRAMEBITS) != 0) {
System.out.print("FRAMEBITS("+x+","+y+")->(");
System.out.print(width+","+height+") ");
repaint();

if ((flags & ImageObserver.ALLBITS) != 0) {
System.out.print("ALLBITS("+x+","+y+")->(");
System.out.printin(width+","+height+") ");
repaint();
return false;

}

if ((flags & ImageObserver.ABORT) != 0) {
System.out.printin("ABORT \n");
return false;

}

if ((flags & ImageObserver.ERROR) != 0) {
System.out.printin("ERROR ");
return false;

}

System.out.printin();
return true;
by
by

If you were to run this Applet using the appletviewer or another browser with a defined standard
output, the output would be similar to the following:

Flag(s): WIDTH:(256) HEIGHT:(256)
Flag(s): PROPERTIES

Flag(s): SOMEBITS(0,0)->(256,1)
Flag(s): SOMEBITS(0,1)->(256,1)
Flag(s): SOMEBITS(0,2)->(256,1)

Flag(s): SOMEBITS(0,253)->(256,1)
Flag(s): SOMEBITS(0,254)->(256,1)
Flag(s): SOMEBITS(0,255)->(256,1)
Flag(s): ALLBITS(0,0)->(256,256)

Note that the meaning of the arguments width and height change according to the set flags. For the
WIDTH, HEIGHT, FRAMEBITS, and ALLBITS flags, the width and height represent the image
dimensions. For the SOMEBITS flag, the width and height represent the dimensions of the block of

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

data received by the ImageConsumer.

Before moving on to Image filtering, we will take a quick look at the methods belonging to the
ImageProducers and the ImageConsumers. When you look at the methods of the ImageProducer, you
can see that the two most important methods involve registering ImageConsumers and starting
production of Image data—that is, public void addConsumer(ImageConsumer ic) and public void
startProduction(ImageConsumer ic). When you look at the methods of the ImageConsumer, you find
that they are meant to be called by the ImageProducer and that they correspond closely to the flags in
the ImageObserver's imageUpdate method (see Table 4.1).

Table 4.1. Correspondence Between ImageConsumer Methods and ImageObserver Flags

ImageConsumer Method ImageObserver Flag

setPixels SOMEBITS

imageComplete FRAMEBITS, ALLBITS, ABORT, ERROR
setDimensions WIDTH and HEIGHT

setProperties PROPERTIES

Thus, the communication between the ImageProducer, ImageConsumer, and ImageQObserver is as
follows: The ImageConsumer registers itself with the ImageProducer using the ImageProducer's
addConsumer method. The ImageProducer then starts sending data to this ImageConsumer when its
startProduction method is called. The ImageProducer communicates with the ImageConsumer by calling
one of the ImageConsumer's methods such as setPixels or imageComplete. The status of the
ImageConsumer arrives at the ImageObserver through the ImageObserver's imageUpdate method with
the appropriate flags set so that the ImageObserver knows what information is available to it with
respect to the loading image data.

Filtering

In this context, filtering is defined as an operation that changes the pixel values or the number of
pixels represented by an Image. The most basic and most common type of filtering is simply scaling.

Image Scaling

The easiest way to perform Image scaling is with the Image method Image getScaledInstance(int width,
int height, int hints), where width and height represent the dimensions of the new scaled Image. You
can give one of them the value of -1 to ensure that the Image aspect ratio doesn't change. For
example, if the original Image dimensions were 256X200 and a width and height value of 512, -1 were
used in the getScaledInstance method, the new Image dimensions would be 512X400.

The hints parameter allows you to specify how pixel interpolation should be performed. For example,
using the previously mentioned dimensions, the number of pixels in the Image increase from 51,200
to 204,800 and the hints parameter gives the programmer some options in specifying how these
additional 153,600 pixel values are calculated. Basically, the choices refer to either pixel replication or
pixel averaging. With the hints parameter set to Image.SCALE_REPLICATE the new pixel columns and
rows introduced will just be copies of existing pixel columns and rows. Similarly, if the Image had
decreased in size, pixel columns and rows would have just dropped out. The disadvantage of this
method is that the resulting Image might appear coarse with neighboring pixels exhibiting large
differences in values. The advantage to this method is that the Image scaling will be performed very
quickly. On the other hand, if the hints parameter is set to Image.SCALE_AREA_AVERAGING, the new
pixel values will be linearly related to their neighboring pixels with close pixels contributing more and
far pixels contributing less. This method of Image scaling takes longer, but it produces smoother
image data than simply replicating pixel values. Although the getScaledInstance method is a method of
the Image class, it is the only such method that allows Image filtering. For more advanced push model
filtering, a subclass of the java.awt.image.ImageFilter must be used.

ImageFilter

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

During simple image drawing, the ImageConsumer can be difficult to find, but there are situations in
which it is well defined. For example, you can use an ImageFilter, which is an ImageConsumer, to
process image data as it passes from the original ImageProducer to the final ImageConsumer.

In early versions of Java image processing, there wasn't much support for image manipulation
because image data was never meant to be collected into an accessible area. Therefore, image
manipulation was primarily developed for filtering single pixel values. In other words, as the
ImageProducer sent image data to the ImageConsumer, this data could get filtered. But, this filtering
was designed to be done asynchronously on a pixel by pixel basis. Thus, easily implemented
ImageFilter subclasses were created, which could crop out certain regions of pixels or process
individual pixel values (java.awt.image.CropImageFilter and java.awt.image.RGBImageFilter,
respectively). But, if you wanted to write a push model filter that replaces each pixel value with the
average of itself and its neighbors (simple smoothing filter), things became much more complex. For
this latter task, you would have to subclass the ImageFilter directly, which involves fully implementing
an ImageConsumer in order to handle the information sent from the ImageProducer. Because this
procedure isn't really useful anymore, it won't be covered in this chapter.

The basic idea behind the ImageFilter class and its subclasses is that they are ImageConsumers, which
allow them to receive data from an ImageProducer. These filters get wrapped in an ImageProducer
(java.awt.Image.FilteredImageSource), which sends out the filtered data (see Figure 4.1). So the
original ImageProducer sends out data and the final ImageConsumer receives data unaware that there
was one (or more) ImageConsumer/ImageProducer pairs in the pipeline filtering the data. In Figure
4.1, note that ImageFilter is an ImageConsumer, and FilteredImageSource is an ImageProducer. The
ImageObserver is told the status of the image loading in the final ImageConsumer through calls to its
imageUpdate method.

Figure 4.1. Push model pixel pipeline showing how asynchronous rendering takes place
using ImageFilter/FilteredImageSource pairs.

In summary, consider Figure 4.1. When a Graphics object calls a drawImage method to draw the
created Image, the ImageProducer producing the original image data passes this data to the
ImageFilter, which acts as an ImageConsumer. The ImageFilter then filters the data before the
FilteredImageSource, acting as an ImageProducer, passes the data to the final ImageConsumer. The
ImageConsumer then communicates this progress to the ImageObserver (the Applet) through the
Applet's imageUpdate method. Although admittedly this seems a bit involved, there isn't much code
required. The following code block takes care of most of it with the exception of defining the filter,
which we will explore in the next several sections. The only thing that remains to be done is to start
the production of the image data and this will occur when the filteredImage data is requested.

Image originallmage = getImage(url);

ImageFilter if = new ImageFilterSubclass(subclassParameters));
ImageProducer ip = new FilteredImageSource(originalimage.getSource(), if);
Image filteredImage = createlmage(ip); //Component method

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

CropImageFilter

The CropImageFilter is a subclass of the ImageFilter which allows you to crop the dimensions of an
Image. To create a CropImageFilter, simply specify the X, y value of the top left corner depicting where
you want the new Image to start and a width and height value. As the original image data passes
through this filter, only the data within this rectangle will be passed through. Of course, the
FilteredImageSource lets its ImageConsumer(s) know the new Image dimensions through their
setDimensions method so that they will be expecting the correct number of pixels. The constructor for
the CropImageFilter is as follows:

ImageFilter if = new CropImageFilter(int x, int y, int width, int height);
RGBImagefFilter

An RGBImagekFilter is a subclass of the ImageFilter which allows you to change individual pixel values.
To create an RGBImageFilter, you must extend the RGBImageFilter class and overwrite the public int
filter(int x, int y, int rgb) method, where x and y represent the pixel location and rgb is the pixel's
original red, green, and blue color samples packed into a single integer. Likewise, the return value is
the pixel's new red, green, and blue color samples packed into an integer. This type of color
representation will be discussed further in the section "Pixel Storage and Conversion," so for now it is
enough to know that the filtering that takes place in an RGBImageFilter can only be performed one
pixel at a time using that pixel's color samples and its location.

Because the public int filterRGB(int x, int y, int rgb) method is abstract in the RGBImageFilter, it must be
defined. But, the parameters used to do this filtering are up to the programmer. Thus, the constructor
for the RGBImageFilter subclass should be passed any necessary filtering parameters. In Listing 4.2, a
subclass of the RGBImageFilter is defined, which linearly scales the red, green, and blue components
of the image data. For example, the constructor parameters 1.2, 1.0, 1.0 will increase the red
component by 20%, but leave the green and blue components unchanged.

Listing 4.2 ColorComponentScaler.java

package ch4;

import java.awt.*;
import java.awt.image.RGBImageFilter;

/**

* ColorComponentScaler -- filters an image by multiplier its

* red, green and blue color components by their given

* scale factors

*/

public class ColorComponentScaler extends RGBImageFilter {
private double redMultiplier, greenMultiplier, blueMultiplier;
private int newRed, newGreen, newBlue;
private Color color, newColor;

/**
* rm = red multiplier
* gm = green multiplier
* bm = blue multiplier
*/
public ColorComponentScaler(double rm, double gm, double bm) {
canFilterIndexColorModel = true;
redMultiplier = rm;
greenMultiplier = gm;
blueMultiplier = bm;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

}

private int multColor(int colorComponent, double multiplier) {
colorComponent = (int)(colorComponent*multiplier);
if (colorComponent < 0)
colorComponent = 0;
else if (colorComponent > 255)
colorComponent = 255;

return colorComponent;

}

/**

* split the argb value into its color components,

* multiply each color component by its corresponding scaler factor

* and pack the components back into a single pixel

*/

public int filterRGB(int x, int y, int argb) {
color = new Color(argb);
newBlue = multColor(color.getBlue(), blueMultiplier);
newGreen = multColor(color.getGreen(), greenMultiplier);
newRed = multColor(color.getRed(), redMultiplier);
newColor = new Color(newRed, newGreen, newBlue);
return (newColor.getRGB());

b

by

One last point is that the instance variable canFilterIndexColorModel specifies whether this filter
method can be applied to Images using an IndexColorModel. The IndexColorModel will be discussed in
the later section "Creating and Using ColorModels," but for now it is enough to know that the pixels in
some Images don't correspond to color components, but instead to indices of an array (or arrays)
where the color components are held. In these cases, you don't want to filter the pixel values, but
instead, you should filter the array (or arrays) holding the color components. The
canFilterIndexColorModel variable gives the RGBImageFilter permission to do this.

PixelGrabber/MemoryImageSource

Although you can directly subclass the ImageFilter in order to create more complex filters, it is usually
simpler to just collect all the data into an array and process it in its entirety before sending it out
again. This doesn't allow incremental image rendering, but that isn't always of importance. The
java.awt.image.PixelGrabber class is used for just this purpose. There are a few different constructors
for the PixelGrabber, but the one used throughout this book is the following:

PixelGrabber(Image img, int x, inty, int w, int h, boolean forceRGB)

where X, y, W, and h are provided in case you wanted to obtain some rectangular subset of the image
data. If you are interested in the entire Image, make the origin of this rectangle (0, 0) and w and h
equal to the width and height of the Image. If the image dimensions are not known, you can grab the
entire image by using a value of -1 for both the width and the height along with an origin of 0,0. The
last parameter forces the PixelGrabber to convert all pixels into the default ColorModel. (CoIorModeIs
will be discussed in the later section entitled "Creating and Using ColorMaodels.")

The PixelGrabber is an ImageConsumer so it can receive image data, but it marks the end of the push
model and the beginning of an immediate mode model because the image data is put into an array
instead of being passed to another ImageConsumer.

Caution

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

It is important to realize that this immediate mode isn't the same as the formal immediate
mode that originated as part of the Java2D package. They are similar in that the image
data is collected into one accessible area. The Java2D immediate mode imaging model will

be discussed in the later section "Immediate Mode Imaging Model."

The way the PixelGrabber collects the image data is through the use of its public boolean grabPixels()
method; for example,

PixelGrabber grabber = new PixelGrabber(originallmage, 0, 0, -1, -1, true);
try {
if (grabber.grabPixels()) {
int width = grabber.getWidth();
int height = grabber.getHeight();
int[] originalPixelArray = (int[])grabber.getPixels();
by
else {
System.err.printin("Grabbing Failed");
b

b
catch (InterruptedException €) {

System.err.printin("PixelGrabbing interrupted");
by

When all the image data is together in an array, any type of filtering can be performed as long as it is
written to handle an array of integers, where each integer typically represents red, green, and blue
color components. Last, the post-filtered data, contained in the original array or a new array, can be
given to an ImageProducer that will send it to an ImageConsumer, thus returning the imaging pipeline
back to a push model. The class used to read the image array data and pass it to an ImageConsumer
is the java.awt.image.MemoryImageSource class (see Figure 4.2).

Figure 4.2. The push model doesn't adequately describe this figure because the use of the
PixelGrabber stops the asynchronous pixel delivery.

Because the MemoryImageSource is an ImageProducer, it is typically used with the following
Component method:

Image createImage(ImageProducer producer)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

as follows:

MemoryImageSource mis;
mis = new MemoryImageSource(width, height,

newPixelArray, arrayOffset, scanLength);

Image filteredImage = createlmage(mis);

where newPixelArray is the filtered pixel array, arrayOffset is the number of bytes prior to the pixel
data in the array, and scanlength is the number of pixels in each array column. Usually the scanlength
is the same as the width. Once filteredImage is created, any use of this Image will cause the
ImageProducer to start sending Image data to an ImageConsumer.

Tip

The data provided by the PixelGrabber and passed to the MemoryImageSource is
unformatted pixel data. This means that if you were to write this data out to a file, it
wouldn't be a gif or a jpeg image even if that is how the data originated. The ability to
write formatted images to a file didn't originate until the Java Image I/O package, which
will be discussed in Chapter 5, "Image I/O APL."

One last point is that the MemoryImageSource can be used for simple animations. The way this is done
is by calling its public void setAnimation(boolean value) method immediately after it is instantiated. As
an example, consider the Applet code in Listing 4.3 in which an image appears correctly, but then
fades to black. This is done by starting with a data array filled with the original pixel values, and each
time the paint method is called, these pixel values are brought closer to zero. Note that this code was
provided for four purposes:

® The main reason was the use of the PixelGrabber to collect the image data and the

MemoryImageSource to start up the push model again.

® A second reason was to introduce simple animations.

® The third reason was to introduce the idea that a pixel isn't the smallest unit of interest and

usually needs to be broken down into pixel samples representing the different color
components. In this case, we are using the default ARGB ColorModel in which each pixel
represents a transparency component and three color components: red, green, and blue. In
order to separate the samples from the pixel values, you can do bitwise shifts and ands with the
appropriate mask. In general, getting color components from pixels is much more involved,

and it will be covered in detail in the later section "Pixel Storage and Conversion."

® The last reason was to introduce handling of 2D image data stored in a 1D image array.

Generally, this conversion takes place as follows: pixel at location(x,y) = GrabbedImageArray[x +
imageWidth*y]. This equation describes the situation in which the 2D image data is stored as a
1D array, where the first row of the image data is stored first, the second row next, and so on.

Listing 4.3 GrabandFade.java

package ch4;

import java.awt.*;

import java.applet.*;

import java.net.*;

import java.awt.image.PixelGrabber;

import java.awt.image.MemoryImageSource;

/**

* GrabandFade.java -- displays provided image and then slowly

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

* fades to black

*/

public class GrabandFade extends Applet {
private Image originallmage;
private Image newImage;
private MemoryImageSource mis;
private int width;
private int height;
private int index = 10;
private int[] originalPixelArray;
private boolean imagelLoaded = false;
private String imageURLString = "file:images/peppers.png";

public void init() {
URL url;
try {
// set imageURLString here
url = new URL(imageURLString);
originallmage = getImage(url);

by
catch (MalformedURLException me) {
showStatus("Malformed URL: " + me.getMessage());

}

/*
* Create PixelGrabber and use it to fill originalPixelArray with
* image pixel data. This array will then by used by the
* MemoryImageSource.
*/
try {
PixelGrabber grabber = new PixelGrabber(originallmage,
0,0, -1, -1, true);
if (grabber.grabPixels()) {
width = grabber.getWidth();
height = grabber.getHeight();
originalPixelArray = (int[])grabber.getPixels();

mis = new MemoryImageSource(width, height,
originalPixelArray,0, width);

mis.setAnimated(true);

newImage = createImage(mis);

by
else {
System.err.printin("Grabbing Failed");

b
b
catch (InterruptedException ie) {
System.err.printin("Pixel Grabbing Interrupted");
b

}

/**
* overwrite update method to avoid clearing of drawing area
*/
public void update(Graphics g) {
paint(g);
by

/**

* continually draw image, then decrease color components

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

* of all pixels contained in the originalPixelArray
* array until color components are all 0
*/
public void paint(Graphics g) {

int value;

int alpha, sourceRed, sourceGreen, sourceBlue;

if (newImage != null) {

g.drawImage(newlImage, 0, 0, this); // redraw image

// if image isn't faded to black, continue
if (imageLoaded == false) {
imagelLoaded = true;
for (int x=0; x < width; x+=1)
for (int y=0; y < height; y+=1){

// find the color components

value = originalPixelArray[x*height+y];
alpha = (value >> 24) & 0x000000ff;
sourceRed = (value >> 16) & 0x000000ff;
sourceGreen = (value >> 8) & 0x000000ff;
sourceBlue = value & 0x000000ff;

// subtract index from each red component
if (sourceRed > index) {
sourceRed-=index;
imagelLoaded = false;
b
else
sourceRed = 0;

// subtract index from each green component
if (sourceGreen > index) {
sourceGreen-=index;
imagelLoaded = false;
b
else
sourceGreen = 0;

// subtract index from each blue component
if (sourceBlue > index) {
sourceBlue-=index;
imagelLoaded = false;
b
else
sourceBlue = 0;

/*
when we pack new color components into integer
we make sure the alpha (transparency) value
represents opaque

*/

value = (alpha << 24);

value += (sourceRed << 16);

value += (sourceGreen << 8);

value += sourceBlue;

// fill pixel array
originalPixelArray[x*height+y] = value;

}

mis.newPixels(); //send pixels to ImageConsumer

}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}
¥
¥

Another interesting thing about Listing 4.3 is that if you use the imageUpdate method defined in
Listing 4.1, the following output appears:

Flag(s): WIDTH:(256) HEIGHT:(256)
Flag(s): PROPERTIES

Flag(s): SOMEBITS(0,0)->(256,256)
Flag(s): FRAMEBITS(0,0)->(256,256)
Flag(s): FRAMEBITS(0,0)->(256,256)
Flag(s): FRAMEBITS(0,0)->(256,256)

Flag(s): FRAMEBITS(0,0)->(256,256)
Flag(s): FRAMEBITS(0,0)->(256,256)
Flag(s): FRAMEBITS(0,0)->(256,256)
Flag(s): ALLBITS(0,0)->(256,256)

In comparison with the output from Listing 4.1, there isn't a series of SOMEBITS flags because the
PixelGrabber grabbed all the image data before it was needed. Also, because we are now sending a
series of frames to the ImageConsumer, the FRAMEBITS flag appears multiple times.

One additional thing to notice in Listing 4.3 is the method called public void update (Graphics g). When
repaint() is called (typically by the ImageObserver's imageUpdate method), the method that gets called
isn't paint(Graphics g), but update(Graphics g). The default behavior of this method is to first clear the
viewing area and then call paint(Graphics g). Often, this clearing of the viewing area results in the
animation appearing choppy. To avoid this problem, it is common to override this update method and
have it only call the paint method, that is,

public void update(Graphics g) {
paint(g);
b

When doing animations, the only time this update method doesn't need to be overwritten is if you are
using a swing component such as a javax.swing.JComponent or a javax.swing.JApplet. The designers of
swing decided to overwrite the update method so that it no longer clears the viewing area before
calling the paint method.

Double Buffering

As was mentioned in the beginning of this chapter, a java.awt.Image is unlike a conventional image in
that it doesn't hold any pixel data. It is usually easier to think of an Image as a class with methods
and resources to allow image data to be processed and displayed. With double buffering, an Image
takes on another unconventional role: that of a drawing surface. You can obtain a Graphics object of a
particular Image and use that object to draw on the Image. For example, using the following block of
code:

Image dbimg = someComponent.createImage(512, 512);
Graphics dbgraphics = dbimg.getGraphics();

anything that gets drawn using the dbgraphics object will be drawn on the hidden drawing area of
Image dbImg.

When this drawing process is completed, you can then draw the Image dbImg onto another drawing
surface (such as an Applet's) using code similar to the following:

public void paint(Graphics g) {
if (dbimg != null)
g.drawImage(dbimg,0,0,null);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This technique can be very useful for tasks such as animation in which one frame is being displayed
on an Applet while another frame is being invisibly built on an Image. When this hidden frame is
completed, it is then displayed on the Applet while another frame can be invisibly built. This allows the
transitions that occur during the frame building to be completely hidden from the user.

In Listing 4.4, a circle continually passes over an Image. This is an excellent application to appreciate
the role of double buffering and of overloading the update method. If either one of these techniques
isn't used, the circle won't appear to be traveling smoothly over the image.

Listing 4.4 DoubleBufferedImage

package ch4;

import java.awt.*;
import java.applet.*;
import java.net.*;

public class DoubleBufferedImage extends Applet {
private Image dbImage;
private Image originallmage;
private int xLocation = 0;
private int imageWidth, imageHeight;
private Graphics dbImageGraphics;
private String imageURLString = "file:images/peppers.png";

public void init() {
URL url = null;

try {
url = new URL(imageURLString);

b
catch (MalformedURLException me) {
showStatus("Malformed URL: " + me.getMessage());

by
originallmage = getImage(url);

MediaTracker mt = new MediaTracker(this);
mt.addImage(originallmage, 0);
try {
mt.waitForID(0);
by
catch (InterruptedException ie) {

}

//don't need ImageObservers since the Image is already loaded
imageWidth = originallmage.getWidth(null);
imageHeight = originalimage.getHeight(null);

dbImage = this.createImage(imageWidth, imageHeight);
dbImageGraphics = dbImage.getGraphics();
b

public void update(Graphics g) {
paint(g);

public void paint(Graphics g) {
if (xLocation == imageWidth)
xLocation = 0;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

//anything drawn using the dbImagGraphics object is hidden
dbImageGraphics.clearRect(0,0,imageWidth, imageHeight);
dbImageGraphics.drawImage(originallmage, 0, 0, this);
dbImageGraphics.setColor(Color.red);
dbImageGraphics.fillOval(xLocation, imageHeight/2, 20, 20);

//now dbImage's drawing area appears
g.drawImage(dbImage,0,0,this);

xLocation ++;

repaint(10);
by
by
Tip
One very useful class used in this example is the java.awt.MediaTracker, which allows you
to wait until a particular image or a group of images is loaded before proceeding. A typical
usage of this class is as follows:
MediaTracker mt = new MediaTracker(someImageQbserver);
mt.addImage(img, id); //give each Image a possibly non-unique id value
try {
//wait for all Images referred to by id to completely load
mt.waitForID(id);

catch (InterruptedException ie) {
//waiting was interrupted

}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Pixel Storage and Conversion

Each location in an Image is associated with a single pixel, but a pixel isn't the smallest unit of
interest. Each pixel contains one or more samples representing the different bands in the Image. For
example, pixels representing a color image could have samples of red, green, blue or alpha, red,
green, blue, where alpha is a measure of transparency not a color component. Similarly, pixels
representing a grayscale image might only contain one sample. Another thing that must be
considered is output devices. A pixel may represent bands of red, green, and blue, but an output
device, such as a printer, might expect bands of cyan, magenta, and yellow. So when working with
image data, two required steps are:

1. Extract the samples from a pixel given that pixel's location.
2. Interpret and convert(if necessary) these samples.

These tasks are performed by the java.awt.image.Raster and java.awt.image.ColorModel, respectively.
Rasters

A Raster is made up of two main objects, a java.awt.image.DataBuffer and a
java.awt.image.SampleModel. The DataBuffer's job is the storage of the Image pixels, and the
SampleModel's job is the understanding of this storage. Thus, the SampleModel can get the appropriate
pixel samples from the DataBuffer given a pixel location. The entire process of converting a pixel
location into pixel samples proceeds as follows (see Figure 4.3).

1. A Raster is passed a pixel location.

2. It gives this location to its SampleModel.

3. The SampleModel obtains the correct samples from its corresponding DataBuffer.
4

. The SampleModel then gives these values back to the Raster so that they can be passed on for
interpretation and conversion.

Figure 4.3. The Raster's SampleModel uses its corresponding DataBuffer to convert a pixel's
location into samples.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The Raster class provides methods to access the data contained in a DataBuffer, whereas a Raster
subclass, the WritableRaster, adds the capability to change this data. One other point regarding
Rasters is that they do more than simply pass coordinates to the SampleModel and return the results.
A Raster allows image data to be used with an x and/or y offset, whereas a SampleModel doesn't
(SampleModels always have an origin of 0, 0). In order to find the difference between the
SampleModel's origin and the Raster's origin, you can use the Raster's public int
getSampleModelTranslateX() and public int getSampleModelTranslateY() methods. So, in addition to
containing a DataBuffer and a SampleModel, a Raster contains a java.awt.Point representing its origin.

DataBuffers and SampleModels

A DataBuffer stores the pixel data as one or more arrays of some primative data type. For example,
with respect to image data containing bands of alpha, red, green, and blue with each band consisting
of 1 byte, three common ways to provide storage are as follows:

® SinglePixelPacked technique— Each array element represents all the pixel samples for a
particular location. In this case, these packed samples are held in a DataBuffer containing a
single array of type integer (see Figure 4.4). This is by far the most common method to store
image data. An example of how the different 8 bit components are extracted from a 32 bit
integer as well as an example of how they are packed back into an integer can be found in

Listing 4.3.

Figure 4.4. In this integer array, each element contains all the samples from a single
pixel. Each sample uses eight of the integer's 32 bits.

alpha red green bilue alpha red green blue

® BandedSample technique— Each array element represents a single sample with all the alpha
components in one array, the red components in another array, and likewise, the green and
blue components in two other arrays. In this case, the DataBuffer object would contain four
arrays of type byte. To find all of the samples for pixel number n, simply take the nth element

from each array (see Figure 4.5).

Figure 4.5. In the top byte array, each element represents the alpha sample from a
different pixel. The red, green, and blue samples are held in three other arrays.

® pixellnterleaved technique— Each array element represents a single sample with interleaved
alpha, red, green, and blue components. In this case, the DataBuffer would contain a single
array of type byte. To find all of the samples for pixel n, simply take elements 4*n, 4*n+1,

4*n+2 and 4*n+3 (see Figure 4.6).

Figure 4.6. In this byte array, the different samples alternate within a single array.

apha [red | green][bive [apha |[red][geen |[e]..

There is one more common image storage method, but this one is for single band images (images
with a single sample per pixel), such as grayscale images. In the case of this MultiPixelPacked
technique, a packed primitive data type holds the pixel sample of more than one pixel (see Figure

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4.7).

Figure 4.7. In this packed integer, the gray samples from four different pixels are contained
in one packed integer.

gray gray gray gray gray gray gray gray |eeees

Two of the four techniques (SinglePixelPacked and MultiPixelPacked) are packed techniques—meaning
that each array element represents more than one sample. The other two techniques (Banded and

Interleaved) are component techniques—meaning that each array element represents one and only
one sample.

As you've just seen, there are many different ways to represent pixel color components using arrays.
Thus it would be difficult to try and communicate directly with the DataBuffer object. For this reason,
SampleModels are used. A SampleModel can be thought of as the brains behind the data storage
because each one understands the organization of its corresponding DataBuffer. Given an x, y
location, it can obtain the corresponding pixel samples from the array or arrays in the DataBuffer
without the user having to know anything about the actual data allocation. Different subclasses of the
SampleModel class know how to find pixel samples from DataBuffers that use different storage
techniques (see Table 4.2).

Table 4.2. SampleModel Subclasses
SampleModel Subclass Description

SinglePixelPackedSampleModel|Knows how to obtain pixel samples when the DataBuffer is storing all of
a pixel's samples in one array element (refer to Figure 4.4).
ComponentSampleModel Knows how to obtain pixel samples when the DataBuffer is storing each
sample in a separate array element. Parent class of
BandedSampleModel and PixellnterleavedSampleModel.
BandedSampleModel Knows how to obtain pixel samples when the DataBuffer contains
separate arrays for each band (refer to Figure 4.5).
PixelInterleavedSampleModel |Knows how to obtain pixel samples when the DataBuffer contains a
single array whose elements alternate between the different bands
(refer to Figure 4.6)

MultiPixelPackedSampleModel |Knows how to obtain pixel samples when the image data represents a
single band and the DataBuffer is storing more than one sample into a
single array element (refer to Figure 4.7)

Creating and Using Rasters

The easiest way to create a Raster is to provide a SampleModel, a DataBuffer, and an offset Point to the
Raster's createRaster or createWritableRaster static method:

static Raster createRaster(SampleModel sm, DataBuffer db, Point location)

static WritableRaster createWritableRaster(SampleModel sm,
DataBuffer db, Point location)

As mentioned, this offset Point is used to translate the origin in the Raster because the SampleModel's
origin is always (0,0). If you don't want to translate the origin of the Raster, you can simple use null
for the offset Point. It should be noted that it is also common to create Rasters without first creating a
SampleModel. This is done by using the Raster's, createBandedRaster, createlnterleavedRaster, or
createPackedRaster methods, which internally create a BandedSampleModel, an

InterleavedSampleModel, or either a SinglePixelPackedModel or a MultiPixelPackedSampleModel,
respectively.

In Listing 4.3, we used bit operations in order to extract alpha and the red, green, and blue color
components from a packed integer. In a sense, we were acting like a SinglePixelPackedSampleModel

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

because we knew how the data was stored and were able to convert a pixel location into a set of pixel
samples; in this case, alpha, red, green, and blue. Under these conditions, this is a reasonable way to
obtain these samples (in fact, if you know where and how your data is stored, bitwise operations are
the most efficient way to work with pixels), but in general this isn't the most robust way to do this. If
you rely on bitwise mathematics, you're forced to understand how your data is stored and more
importantly, you won't be able to write generic algorithms for pixel processing. In other words, your
pixel processing methods should simply take a Raster or WritableRaster argument without worrying
about the SampleModel being used. Inside your methods, you can use these Raster methods for
obtaining either individual pixel samples or an array of a pixel's samples:

int getSample(int x, int y, int bandNumber)

where bandNumber is the number of the band whose sample you want. Usually, 0 = red, 1 = green, 2
= blue, and 3 = alpha.

int[] getPixel(int x, int y, int[] iArray)

where iArray is an integer array whose size is greater than or equal to the number of samples in the
pixel. If this value isn't null, it will also be the returned object. If this value is null, an appropriate
array is allocated, filled, and returned. If a WritableRaster is used, the following two methods for
setting pixel values are available:

void setSample(int X, int y, int bandNumber, int sampleValue)

where sampleValue will be the new value of the pixel sample corresponding to band number
bandNumber.

void setPixel(int x, int y, int[] iArray)

where iArray is an integer array holding the pixel's new sample values (one sample per array
element). To see how these methods are used, we will redo the earlier GrabandFade example (from
Listing 4.3)-this time using DataBuffers, SampleModels, and Rasters (see Listing 4.5).

Listing 4.5 GrabandFadewithRasters

package ch4;

import java.awt.*;

import java.applet.*;

import java.net.*;

import java.awt.image.PixelGrabber;

import java.awt.image.MemoryImageSource;
import java.awt.image.DataBuffer;

import java.awt.image.DataBufferInt;

import java.awt.image.Raster;

import java.awt.image.WritableRaster;
import java.awt.image.SampleModel;

import java.awt.image.SinglePixelPackedSampleModel;

/**
* GrabandFadewithRasters.java -- displays provided image
* and then slowly fades to black
*/
public class GrabandFadewithRasters extends Applet {
private Image originallmage;
private Image newImage;
private MemoryImageSource mis;
private int width;
private int height;
private int index = 10;
private int[] originalPixelArray;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

private boolean imageLoaded = false;
private WritableRaster raster;
private String imageURLString = "file:images/peppers.png";

public void init() {

}

URL url;
try {
url = new URL(imageURLString);
originallmage = getImage(url);
b
catch (MalformedURLException me) {
showStatus("Malformed URL: " + me.getMessage());
b

try {
PixelGrabber grabber = new PixelGrabber(originallmage,
0,0, -1, -1, true);
if (grabber.grabPixels()) {
width = grabber.getWidth();
height = grabber.getHeight();
originalPixelArray = (int[])grabber.getPixels();

mis = new MemoryImageSource(width, height,
originalPixelArray,0, width);
mis.setAnimated(true);
newImage = createImage(mis);
by
else {
System.err.printin("Grabbing Failed");
by
b
catch (InterruptedException ie) {
System.err.printin("Pixel Grabbing Interrupted");
b

DataBufferInt dbi = new DataBufferInt(originalPixelArray,
width*height);

int bandmasks[] = {0xff000000,0x00ff0000,0x0000ff00,0x000000ff};

SampleModel sm;

sm = new SinglePixelPackedSampleModel(DataBuffer. TYPE_INT,
width, height, bandmasks);

raster = Raster.createWritableRaster(sm, dbi, null);

public void update(Graphics g) {

paint(g);

public void paint(Graphics g) {

int value;
int sourceRed, sourceGreen, sourceBlue;
if (newImage != null) {
g.drawImage(newlImage, 0, 0, this);
if (imageLoaded == false) {
imagelLoaded = true;
for (int x =0; x < width; x+=1)
for (inty =0; y < height; y+=1) {
value = originalPixelArray[x*height+y];
sourceRed = raster.getSample(x,y,1);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

sourceGreen = raster.getSample(x,y,2);
sourceBlue = raster.getSample(x,y,3);

if (sourceRed > index) {
sourceRed-=index;
imagelLoaded = false;

by

else
sourceRed = 0;

if (sourceGreen > index) {
sourceGreen-=index;
imagelLoaded = false;

b

else
sourceGreen = 0;

if (sourceBlue > index) {
sourceBlue-=index;
imagelLoaded = false;

b

else
sourceBlue = 0;

raster.setSample(x,y,1,sourceRed);
raster.setSample(x,y,2,sourceGreen);
raster.setSample(x,y,3,sourceBlue);

mis.newPixels();
by
by
b
by

In the previous discussion as well as in Listing 4.3, we only considered a single pixel at a time. In
practice, it is more efficient to deal with arrays of pixels, and both the getPixels/setPixels methods and
the getSamples/setSamples methods allow you to do this.

Last, there is one other way to get and set pixel data from a Raster and that is with the Raster's
getDataElements/setDataElements methods:

public Object getDataElements(int x, int y, Object outData)

void setDataElements(int x, int y, Object inData)

where outData and inData are references to arrays defined by the Raster's getTransferType method.
These getDataElements/setDataElements methods transfer the samples in a form that is dependent
upon the type of SampleModel being used (see Table 4.3). For example, in a
SinglePixelPackedSampleModel, the pixel samples are held in a packed primitive data type, which is the
transfer type. For a MultiPixelPackedSampleModel, the pixel sample is taken out of its packed primitive
data type and returned in the smallest data type that can represent it. For ComponentSampleModels,
the samples are returned in an array of whatever type held the samples. Because the getDataElement
methods return pixel samples differently depending on the underlying SampleModel, care must be
taken when using them. On the other hand, they are useful for efficiently transferring data between
Raster's with similar SampleModels, that is,

rasterl.setDataElements(X, y, raster2.getDataElements(x, y, null))
or

rasterl.setDataElements(x, y, w, h, raster2.getDataElements(x, y, w, h, null))

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

where X and y represent either the pixel location (in the first method) or the origin of the rectangle to
be copied (in the second method). Likewise, w and h represent the width and height of this rectangle.
As you'll see, these methods are also useful for transferring data between Rasters and ColorModels.

Table 4.3. Raster Transfer Types
Raster's SampleModel Class |Raster's Transfer Type
SinglePixelPackedSampleModel |Packed primative data type
MultiPixelPackedSampleModel |Smallest primitive data type that can represent an unpacked sample
ComponentSampleModel Array of whatever type held the samples

ColorModels

When looking at Listing 4.5, it appears that all the pieces necessary to convert pixels into color
components are available, but one thing is still missing. That piece is the java.awt.image.ColorModel.
The ColorModel takes pixel samples returned by the Raster and converts them to color components. As
you've noticed in the previous examples, there are times when a pixel's samples are identical to the
output device's required color components. For example, let's assume that our output device is a color
monitor that requires color components of red, green, and blue with each component being an integer
value between 0 and 255. If each pixel of our image data contains three samples representing red,
green, and blue with each sample being between 0 and 255, a ColorModel object isn't necessary. On
the other hand, what if the pixel samples are packed into a short integer (16 bits) instead of an
integer (32 bits)? Then a reasonable scheme would be for each sample to be represented by 5 bits,
allowing 32 possible values per sample. If you tried to use these pixel samples as color components,
the image would appear too dark when displayed. In this case, a ColorModel is necessary to make the
correct conversions.

Because the ColorModel is concerned with converting pixel samples to color components and vice
versa, it requires two sets of methods: one to convert pixel samples to color components and one to
convert color components to pixel samples. These method groups are the getComponents and the
getDataElement methods, respectively. (Note that when we talk about color components, we also
include alpha when it is relevant.) The two main getComponents methods are as follows:

int[] getComponents(Object pixel, int[] components, int offset)

int[] getComponents(int pixel, int[] components, int offset)

In the first method, the pixel parameter is expected to be an array of the ColorModel's transfer type
that, for compatibility, should be the same as the Raster's transfer type (refer to Table 4.3). The
component parameter will be an integer array that will be used to hold the color components. If this
array is non null, a reference to it will also be returned by this method. If the component array is null,
an appropriately sized integer array will be allocated and returned. Last, the offset parameter specifies
where to begin putting the color components in the component array. The second method is really a
special case of the first one. This special case occurs when you are using a ColorModel subclass that
expects the pixel samples to be packed into a single integer. As you'll see in the next section, this
ColorModel subclass is called a DirectColorModel.

As mentioned, the getDataElement methods convert color components to pixel samples. The two main
getDataElement methods are the following (note that the first method is called getDataElements and
the second is called getDataElement):

Object getDataElements(int[] components, int offset, Object obj)

int getDataElement(int[] components, int offset)

Again, the first method is concerned with arrays of type transfer type, where the components
parameter holds the color components, the offset parameter describes where the first color
component is in the components array, and the obj parameter will be an array of type transfer type
and will hold the pixel samples. If the obj array is non null, a reference to it will be returned. If this
array is null, an appropriate array will be allocated and returned. In the second method, the pixel
samples will be returned packed into a single integer.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Creating and Using ColorModels

Because the Raster and the ColorModel need to work together, some care is required to make sure
that they are compatible. For instance, the number of bands of pixel samples must match the number
of components expected by the ColorModel. Also, the transfer type must be compatible. In other
words, if the SampleModel is sending four pixel samples packed into a single integer, that is how the
ColorModel should expect them (see Table 4.4).

Table 4.4. Typical Correspondence Between SampleModels and ColorModels

SampleModel Subclass ColorModel Subclass

SinglePixelPackedSampleModel DirectColorModel (subclass of abstract PackedColorModel)
BandedSampleModel ComponentColorModel

InterleavedSampleModel ComponentColorModel

MultiPixelPackedSampleModel IndexColorModel

The DirectColorModel is used when the image pixels represent red, green, and blue (and possibly
alpha) samples; and these samples are packed together into an integer, short integer, or byte. A
ComponentColorModel is used when each image pixel represents all of its color (and possibly alpha)
information as separate samples, and all samples are stored in a separate data element. The
IndexColorModel is used when the image pixels represent indices into an array containing the actual
pixel samples. This is a common technique for grayscale images, which are used with an output
device, such as a monitor, that expect pixel samples of red, green, and blue. For example, without
indexing, if there are three samples per pixel (red, green, and blue) and each one takes 8 bits, the
memory required is 8*3*imageWidth*imageHeight bits. If we are using a grayscale image so that the
red, green, and blue samples must be equal, then there are only 256 different combinations of pixel
samples that can be used. Thus, a grayscale image only requires 8*width*height bits of memory if
each image pixel is a single byte and is used as an index to obtain the red, green, and blue pixel
samples from three arrays. Of course, this latter calculation isn't completely accurate because the red,
green, and blue arrays must be allocated, which would take up an additional 3*256 bytes.

As an example of the ColorModel's role in interpreting pixel samples, consider Listing 4.6. In this
listing, two DirectColorModels are created. The first one expects 8-bit pixel samples of red, green,
blue, and alpha. The second one expects 5-bit pixel samples of red, green, and blue. In both cases,
the red, green, and blue samples are the same, but the normalized color components (color
components whose values vary from 0.0 to 1.0) are very different. In other words, the ColorModels
know the allowable range of the sample values, and they consider the ratio of the sample value to its
maximum value.

Listing 4.6 FindComponents

package ch4;

import java.awt.image.DirectColorModel;
public class FindComponents {
DirectColorModel dcm32;
DirectColorModel dcm16;
int[] components;
float[] componentsf;
int value32;
short valuel6;
int red8, green8, blue8, alpha8;
short red5, green5, blue5;

/**
FindComponents.java -- prints out normalized color components for two dif
ferent

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

*/

public FindComponents() {
red8 = red5 = 30;
green8 = green5 = 20;
blue8 = blue5 = 10;
alpha8 = 255;

dcm32 = new DirectColorModel(32, 0x00ff0000, 0x0000ff00,
0x000000ff, 0xff000000);

value32 = (alpha8<<24) + (red8<<16) + (green8<<8) + blues;

components = dcm32.getComponents(value32, null, 0);

componentsf = dcm32.getNormalizedComponents(components,0,null,0);

System.out.printin("Normalized components are: ");

for(int i=0;i<componentsf.length;i++)
System.out.printin("\t"+componentsf[i]);

dcm16 = new DirectColorModel(16, 0x7c00, 0x3e0, 0x1f);
valuel6 = (short)((red5<<10) + (green5<<5) + blue5);
components = dcm16.getComponents(valuel6, null, 0);
componentsf = dcm16.getNormalizedComponents(components,0,null,0);
System.out.printin("Normalized components are: ");
for(int i=0;i<componentsf.length;i++)
System.out.printin("\t"+componentsf[i]);
by

public static void main(String[] args) {
new FindComponents();
b
b

When run, the output of this listing would be the following:

Normalized components are:
0.11764706
0.078431375
0.039215688
1.0

Normalized components are:
0.9677419
0.6451613
0.32258064

ColorSpaces

Another interesting example, which leads us to the concept of color space, is if we are using a printer
for our output device. In this situation, the color components might need to be cyan, magenta, and
yellow (CMY); in which case, we'll need to convert each pixel into three color components just as we
did for the color monitor that needed red, green, and blue (RGB) components. So clearly just
converting pixels into color components isn't enough: We still need to interpret these components.
This interpretation is the job of the java.awt.color.ColorSpace. In other words, the number, order, and
interpretation of color components for a ColorModel is specified by its ColorSpace. Thus, given three
color components, you would need to look at the ColorModel's ColorSpace in order to understand
whether they are CMY, RGB, or something else entirely.

Although there are many different color spaces, in Java the two most important are the sRGB color
space and the CIEXYZ color space. All ColorSpaces have methods to convert to and from these two

color spaces. The sRGB color space is a proposed standardized RGB color space that all ColorModels
use by default. For more information regarding this color space, see

http://www.w3.0org/pub/WWW/Graphics/Color/sRGB.html. Because most people are familiar with

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

representing colors using red, green, and blue components, this color space is easy to use and work
with, although a minor problem with the sRGB color space is that it is possible to lose information if
you convert from one color space to another by going through an intermediate sRGB color space. The
CIEXYZ color space, on the other hand, can be used to convert between any two color spaces without
worrying about lost information. Besides the ideal sSRGB and the ideal CIEXYZ, Java provides a few
other ideal color spaces such as GRAY.

These color spaces also allow you to convert colors between different ideal colorspaces. The way this
conversion is performed is by using profiles. Profiles define the transformation between a particular
color space and something called a Profile Connection Space (PCS). Each profile describes how to
transform a color from its color space to the PCS and vice versa. Therefore, using profiles, you can
convert a color in any color space to any other color space by going through the PCS. Of course, no
input or output device is ideal, so if exact color replication is desired, profiles can also be used to
transform to and from a non-ideal, device dependent color space. For more information on profiles,
see the International Color Consortium Web site at http://www.color.org.

So to summarize this section, if you are working with red, green, and blue color components, you can
ignore the ColorSpace class most of the time. Similarly, if you are using packed integer ARGB or RGB
data, you often don't need to use a Raster because the bit manipulation isn't that difficult. On the
other hand, to create generic, robust code you will need Rasters, ColorModels, and ColorSpaces, and
you will need them to be compatible. As an illustration, if we augment Figure 4.3, you can see how
the output of the Raster interacts with the ColorModel so that the ColorModel can extract and interpret
(via its ColorSpace) the color components (see Figure 4.8). Later in this chapter, we will introduce the
BufferedImage class, which contains all these objects, thus greatly simplifying the coding of image
processing software.

Figure 4.8. The Raster's SampleModel uses its corresponding DataBuffer to convert a pixel's
location into samples. These samples get passed to a ColorModel for conversion into color
components in the appropriate color space.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Immediate Mode Imaging Model

Because the Image class was primarily set up for asynchronous handling of image data, many times it
cannot easily provide the functionality required for advanced image processing tasks. For this reason,
we've been using PixelGrabbers to collect all the data before processing it. For simple processing this
worked well, but as things became more complex, we required Rasters, ColorModels, and a series of
other classes necessary for data storage and interpretation. In practice, this extra code not only can
make your software more difficult to write and understand, but it can also provide opportunities for
software errors to occur. For these reasons, the immediate mode imaging model and its associated
classes were developed and introduced in the Java 2D package. Basically, this model provides
memory allocation and storage of all image data, thus making it available to the programmer at all
times just as if you collected all the pixel data using a PixelGrabber in the older push model. Also,
there are new classes of predefined image filters that provide much more functionality than the
ImageFilter subclasses. These filters allow the processing of image data in ways that permit a
particular destination pixel to be a function of more than one source pixel. This wasn't easily done in
the push model of image processing.

BufferedImages

Unlike its parent (java.awt.Image), a java.awt.image.BufferedImage allows easy access to the
underlying pixel data. This is achieved by having each BufferedImage contain both a Raster and a
ColorModel. Therefore, you can obtain the color components of a particular pixel location directly from
the BufferedImage without having to worry about the underlying detail involving DataBuffers,
SampleModels, and so on.

Note that because it extends the Image class, a BufferedImage can be used anywhere an Image is
used (for example, in the Graphic classes' drawlmage methods). On the other hand, the conversion
from an Image to a BufferedImage isn't as simple because a Bufferedimage contains all the image
data. The following list illustrates the required steps (also see Listing 4.7):

1. Make sure that all the image data is loaded.

2. Create a new BufferedImage using the Image width, height, and image data type (usually
BufferedImage. TYPE_INT_ARGB).

3. Obtain the BufferedImage's Graphics2D object.

4. Using this graphics object, draw the Image onto the Bufferedimage (as done earlier in the
double buffering section).

Listing 4.7 createBufferedIimage

package ch4;

import java.awt.Graphics;

import java.awt.Label;

import java.awt.Image;

import java.awt.MediaTracker;

import java.awt.image.BufferedImage;

/**
BufferedImageConverter.java -- static class containing
a method to convert a java.awt.image.BufferedImage into
a java.awt.Image

*/

public final class BufferedImageConverter {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// default version of createBufferedImage
static public BufferedImage createBufferedImage(Image imageln) {
return createBufferedImage(imageln,
BufferedImage. TYPE_INT_ARGB);
b

static public BufferedImage createBufferedimage(Image imageln,
int imageType) {
//you can use any component here
Label dummyComponent = new Label();
MediaTracker mt = new MediaTracker(dummyComponent);
mt.addImage(imageln, 0);
try {
mt.waitForID(0);
by

catch (InterruptedException ie) {

b
BufferedImage bufferedImageOut =
new BufferedImage(imageln.getWidth(null),
imageln.getHeight(null), imageType);
Graphics g = bufferedImageOut.getGraphics();
g.drawImage(imageln, 0, 0, null);

return bufferedImageOut;

}
}

Step 2 mentions that the Image type needed to be specified. This is so the correct SampleModel,
DataBuffer, and ColorModel subclasses can be used. For example, if a set of image pixels represent
ARGB color components packed into a single integer, a DirectColorModel object, a
SinglePixelPackedSampleModel object, and a DataBufferInt object will be used (see Table 4.5).

Table 4.5. Some Basic BufferedImage Types
BufferedImage Type |Description
TYPE_INT_RGB 8-bit RGB color components packed into an integer (1 pixel/int)
TYPE_INT_ARGB 8-bit ARGB color components packed into an integer (1 pixel/int)
TYPE_BYTE_BINARY A byte packed binary image (8 pixels/byte)
TYPE_USHORT_555_RGB|5-bit RGB color components packed into an unsigned short (1 pixel/ ushort)
TYPE_BYTE_GRAY An unsigned byte grayscale image (1 pixel/byte)

For the complete list of image types, see the BufferedImage documentation on the Java Web site

(http://java.sun.com/j2se/1.4/docs/api/java/awt/image/Bufferedimage.html).
Filtering

During our earlier discussion of the push imaging model, we described filter classes that could be used
for image processing. Some examples of such classes are the CropImageFilter and the RGBImageFilter.
Now that we are discussing the immediate mode imaging model, we will also discuss filter classes.
Because of the fact that in the immediate mode imaging model the image data is always available,
there are many more types of filters than there are for the push model. For instance, filter classes for
performing convolution and geometric transformations are available.

Interpolation

Before image filter classes are discussed, it is important to understand the concept of interpolation. To
begin, assume that we have a very small (1x3) grayscale image with pixel values of 50, 100, and 150.
Next assume that a destination image is set equal to this source image translated a distance
equivalent to one third of a pixel horizontally (see Figure 4.9). Now, with respect to the middle

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

destination pixel, the center of the source pixel containing a value of 50 lies two thirds of a pixel away
from it and the center of the source pixel with a value of 100 lies one third of a pixel away from it.
The question that interpolation attempts to solve is what value do we give this middle destination
pixel. One technique would be to simply give it the value of whichever source pixel value was closest
(in this case 100). This technique is referred to as nearest neighbor interpolation. Another technique
would be to come up with a pixel value based on the linear average of all surrounding source pixel
values (in this case .333*100 + .666*50 = 83). This technique is referred to as linear interpolation. In
Figure 4.9, (a) represents the destination pixel values using nearest neighbor interpolation, whereas
(b) represents the destination pixel values using bilinear interpolation. In the second case, there is
not enough information to calculate a value for the first destination pixel so it is left blank. In Java 2D,
the default value for these types of pixels is 0.

Figure 4.9. After a source array of pixel values gets translated, interpolation must be used
to estimate the destination pixel values.

Each of these techniques can be useful depending on the situation. Nearest neighbor interpolation is
very fast, but tends to appear choppy. Bilinear interpolation (which is linear interpolation in two
dimensions) appears smoother, but can increase the image rendering time. For most cases, the
increased image quality is worth the extra time required for bilinear interpolation. In the left image of
Figure 4.10, nearest neighbor interpolation was performed, whereas in the right image, bilinear
interpolation was performed.

Figure 4.10. A sheared white and black checkerboard. These images were scaled by a factor
of 4 in both the x and the y direction for display purposes.

Tip

This isn't to say that bilinear interpolation is the best interpolation algorithm available: It is
just the best choice out of the given two. In general, bilinear interpolation can cause the
destination image to appear blurry.

Of course, because we've previously explained that pixel samples are the smallest unit of interest and

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

not pixels, the idea of pixel interpolation can be confusing. What is actually occurring is that all pixel
sample bands representing color components are interpolated separatly. In other words, if you are
using a packed integer representing RGB bands, the value used for interpolation isn't the integer
value of the pixel, but instead, the interpolation is done three times, once for each band.

As you'll soon see, many types of image filtering involve interpolation. For these filtering classes, the
interpolation type can usually be specified by explicitly stating which type of interpolation to use or by
providing an instance of a java.awt.RenderingHints object that contains information regarding the
preferred interpolation method.

Tip

When using a RenderingHints object, the KEY_INTERPOLATION hint does have a possible
value of VALUE_INTERPOLATION_BICUBIC, but the Java 2D filter methods do not support it.
The supported choices are VALUE_INTERPOLATION_NEAREST_NEIGHBOR and
VALUE_INTERPOLATION_BILINEAR.

Tip

Most places that require an object of type RenderingHints will take a null value. This will be
interpreted as setting all hints to their default values.

Filtering with Alpha Components

Often, the alpha (transparency) channel is treated as a color component because pixels often have
samples representing alpha as well as samples representing color components. In these cases, it is of
interest to consider what happens to the alpha channel during image filtering. In many cases, filtering
the alpha channel doesn't make sense, such as in the case of color scaling. If you set up a filter to
make the color components higher, thus the image brighter, it doesn't mean that you necessarily
want the image to be more opaque. In the next few sections when we discuss filters for
BufferedImages and Rasters, we will describe how the alpha channel is handled for each type of filter.

As a quick introduction, filters for BufferedImages tend to give alpha special consideration whereas
filters for Rasters don't. This is because BufferedImages contain a ColorModel that allows interpretation
of the color components, and with a Raster no such interpretation is possible. If, for some reason, the
special treatment imposed by the BufferedImage filter is unwanted, you can filter the Raster instead of
the BufferedImage. The way to obtain the BufferedImage's Raster is as follows:

public WritableRaster getRaster()
BufferedImageOp and RasterOp Interfaces

When performing filtering using the Image class, much of the functionality of the used filter was
defined in its parent class (that is, ImageFilter). When performing Bufferedimage filtering, much of the
functionality of the used filter will be defined by the BufferedImageOp interface. Similarly, when
performing Raster filtering, much of the functionality of the used filter will be defined by the RasterOp
interface.

In these latter two cases, there can always be a destination object that is separate from the source
object. Thus, the filters can use any combination of source pixels to compute destination pixel values,
making 2D convolution filters and 2D affine transformation filters possible.

It is of interest to take a closer look at the method that the BufferedImageOp uses to filter
BufferedImages (see Figure 4.11):

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ImageBuffer filter(BufferedImage src, Bufferedimage dest)

Figure 4.11. BufferedImageOp's filter method.

This method takes a source BufferedImage and converts it into a destination BufferedImage. Often, the
alpha components are not filtered or are filtered differently than the color components. If the source
and destination BufferedImages have different ColorModels, a color conversion will automatically occur.
The reason this method also returns an ImageBuffer is to provide the added functionality of cascading
filters so that the destination of one filter can be the source object for another. If a destination
BufferedImage is provided, the returned BufferedImage will simply refer to the destination
BufferedImage. If the destination BufferedImage is null, an appropriate BufferedImage will be allocated
and returned. This saves the user from having to create the destination BufferedImage in advance.
Another feature of classes implementing this interface is that for certain filtering classes, it is possible
to have the same BufferedImage object for the source and the destination. This subset of classes is
analogous to the set of classes described by the ImageFilter class for use in the push model in that a
destination pixel can only be dependent on its original pixel value and its location.

The RasterOp interface is similar to the BufferedImageOp interface except that it allows filtering of
Rasters instead of BufferedImages (see Figure 4.12). The method that RasterOp classes use to filter
Rasters is the following:

WritableRaster filter(Raster src, WritableRaster dest)

Figure 4.12. RasterOp's filter method.

This method converts all components from the source Raster into the components for the destination
Raster. The alpha component is not given special treatment.

The main difference between filtering BufferedImages and filtering Rasters is that a BufferedImage
contains a ColorModel, which allows interpretation of the pixel samples. Therefore, a BufferedImage
filter can process the alpha component differently than the color components. With a Raster, all
components are treated equally.

The following five classes: AffineTransformOp, RescaleOp, ConvolveOp, LookupOp, and ColorConvertOp
all implement both the BufferedImageOp and the RasterOp interfaces; and as we discuss them, we'll
point out how they perform both Raster and BufferedImage filtering. The last class we will examine,
BandCombineOp, only implements the RasterOp interface, so it can only filter Rasters.

AffineTransformOp

One class that implements both the RasterOp and the BufferedImageOp interfaces is the
java.awt.image.AffineTransformOp class. Objects of this class contain an affine transformation
(java.awt.geom.AffineTransform) that will either be applied to a source BufferedImage to create a
destination BufferedImage or to a source Raster to create a destination Raster.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In order to best explain an affine transformation, it is beneficial to first review two more restrictive
groups of transformations; the Euclidean transformation, group and the similarity transformation
group. The Euclidean group of transformations is characterized by the fact that distance and area
don't change. In other words, if the distance between two points is 5 units, after a Euclidean
transformation that distance will still be 5 units regardless of the Euclidean transformation used. Such
transformations consist of rotations and translations. The equations representing a 2D Euclidean
transformation are as follows:

X
Il

CoSO X - sinf y + ty

% Sind x + cosO y + ty

where x, y is the location of the source point, X', y' is the location of this point after the
transformation, 6 is the rotation angle, ty is the translation in the horizontal direction, and ty is the

translation in the vertical direction. Note that rotation angles are represented in radians, with the
conversion from degrees to radians being

angle in radians = angle in degrees * (Math.PI/180.0)

Similarity transformations extend this group to include global scaling. Under this group of
transformations, distance can change, but shape can't. In other words, a square will remain a square
after a similarity transformation. The equations representing a 2D similarity transformation are as
follows:

x' = S(cosh x - sinf y + ty)
y' = S(sin6 x + cosd y + ty)

where S is the global scaling factor.

By increasing the generality of the transformation group once again, you arrive at the group of affine
transformations in which shape and area can change, but linearity and parallelism can't. In other
words, a line will remain a line after an affine transformation, and two lines that are parallel will
remain parallel after an affine transformation. The two addition types of transformation allowed are
general scaling and shearing. For example, a transformation that only contains general scaling (as
opposed to global scaling where the x and y scale factor are the same) would be as follows:

X' = SyX
y' = Syy

with Sy and Sy being the two scaling coefficients. Likewise, a transformation that only contains
shearing would be as follows:

X' = X + Shyy

y' = Shyx +y
with Shy and Shy, being the two shearing coefficients. An example of a transformation involving
shearing components of (.2, 0) is shown in Figure 4.10.
Tip

In Java, the coordinate system's origin is the top left corner with x increasing as you move
right and y increasing as you move down.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Thus, the affine transformations contain all the transformations in the Euclidean group(translations,
rotations), plus those of the similarity group (global scaling), along with general scaling and shearing.
The equations representing a 2D affine transformation are as follows:

X

Mo X + Mo1 Y + Mo2

Y

mip X + M1y + My2

where m is the array element at row r and column c in the selected AffineTransform array.
Tip

Affine transformations are linear transformations so procedures such as image warping
cannot be done using the AffinelmageOp class.

Because an affine transformation is made up of combinations of rotations, translations, scalings, and
shearings, the AffineTransform class has a series of methods that allow you to specify these
transformation groups. For example,

//rotate theta radians around the origin
public void rotate (double theta);

//rotate theta radians around point x,y
public void rotate (double theta, double x, double y);

//scale by sx in the x direction and sy in the y direction
public void scale (double sx, double sy);

//translate by tx in the x direction and ty in the y direction
public void translate(double tx, double ty);

//shear using multipliers of shx and shy
public void shear(double shx, double shy);

Note that the initial matrix is set to identity in the AffineTransform constructor and each instruction
concatenates a new temporary transformation to the stored affine transformation. For this reason, the
order of the methods make a difference in the final affine transformation. In other words, the affine
transformation created using

rotate(.5);
translate(10, 15);

will be different from the affine transformation created using

translate(10,15)
rotate(.5);

In general, there are two ways you can transfer a coordinate space: absolute coordinate system
transformations and relative coordinate system transformations. In an absolute coordinate system
transformation, the axis and coordinate system remain fixed and everything in it gets transformed. In
a relative coordinate system transformation, the axis and coordinate system get transformed and
everything in it remains constant with respect to these axes. By default, the AffineTransform

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

transformations are done as a relative coordinate system transformation. As an example, let's assume
that a rotation was performed followed by a translation along the x axis. In an absolute coordinate
system transformation, the translation would be to the right regardless of the preceding rotation
because the axes haven't moved. In a relative coordinate system transformation, the x axis moved
with the rotation, thus the translation direction is dependent upon the preceding rotation. If this
rotation was 90 degrees, a translation along the x axis would be down.

Tip

If it appears as if the AffineTransformation is doing your instructions in the reverse order,
you are probably designing your instructions for absolute coordinate system
transformations.

Last, for the AffineTransformOp, the source and destination must be different; otherwise a
IllegalArgumentException will be thrown.

The constructors for AffineTransformOp are as follows:

AffineTransformOp(AffineTransform xform, int interpolationType)

AffineTransformOp(AffineTransform xform, RenderingHints hints)

where the interpolationType can be AffineTransform.TYPE_BILINEAR or
AffineTransform.TYPE_NEAREST_NEIGHBOR.

In Listing 4.8, an affine transformation is created to rotate an image by 45 degrees around the
image's center. Because this would normally map some source pixels to points with a negative x ory
value, the image will also be translated in both the x and y directions to make sure that the entire
image can be represented by the destination BufferedImage.

Listing 4.8 RotateImage45Degrees

package ch4;

import java.awt.*;
import javax.swing.*;
import java.awt.image.*;
import java.awt.geom.*;
import java.io.*;

/**
RotateImage45Degrees.java -
1. scales an image's dimensions by a factor of two
2. rotates it 45 degrees around the image center
3. displays the processed image

*/

public class RotateImage45Degrees extends JFrame {
private Image inputImage;
private BufferedImage sourceBI;
private BufferedImage destinationBI = null;
private Insets framelnsets;
private boolean sizeSet = false;

public RotateImage45Degrees(String imageFile) {
addNotify();
framelnsets = getlnsets();
inputImage = Toolkit.getDefaultToolkit().getImage(imageFile);

MediaTracker mt = new MediaTracker(this);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

mt.addImage(inputImage, 0);

try {
mt.waitForID(0);
by

catch (InterruptedException ie) {
b

sourceBI = new BufferedImage(inputImage.getWidth(null),
inputImage.getHeight(null),
BufferedImage.TYPE_INT_ARGB);

Graphics2D g = (Graphics2D)sourceBI.getGraphics();
g.drawImage(inputImage, 0, 0, null);

AffineTransform at = new AffineTransform();

// scale image
at.scale(2.0, 2.0);

// rotate 45 degrees around image center

at.rotate(45.0*Math.PI1/180.0,
sourceBI.getWidth()/2.0,
sourceBI.getHeight()/2.0);

/* translate to make sure the rotation

doesn't cut off any image data
*/
AffineTransform translationTransform;
translationTransform = findTranslation(at, sourceBI);
at.preConcatenate(translationTransform);

// instantiate and apply affine transformation filter
BufferedImageOp bio;
bio = new AffineTransformOp(at, AffineTransformOp.TYPE_BILINEAR);

destinationBI = bio.filter(sourceBI, null);

int framelnsetsHorizontal = framelnsets.right + framelnsets.left;

int framelnsetsVertical = framelnsets.top + framelnsets.bottom;

setSize(destinationBI.getWidth() + framelnsetsHorizontal,
destinationBI.getHeight() + framelnsetsVertical);

show();

/*
find proper translations to keep rotated image
correctly displayed
*/
private AffineTransform findTranslation(AffineTransform at,
BufferedImage bi) {
Point2D p2din, p2dout;

p2din = new Point2D.Double(0.0,0.0);
p2dout = at.transform(p2din, null);
double ytrans = p2dout.getY();

p2din = new Point2D.Double(0, bi.getHeight());
p2dout = at.transform(p2din, null);
double xtrans = p2dout.getX();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

AffineTransform tat = new AffineTransform();
tat.translate(-xtrans, -ytrans);
return tat;

}

public void paint(Graphics g) {
if (destinationBI != null)
g.drawImage(destinationBI,
framelnsets.left, framelnsets.top, this);

}

public static void main(String[] args) {
if (args.length!= 1) {
new RotateImage45Degrees("images/fruits.png");
by

new RotateImage45Degrees(args[0]);

¥
by

With regard to alpha, the alpha component is treated the same as any other component, meaning
that the alpha value of the destination pixel is found by interpolating the alpha channel just as the
blue component of the destination pixel is found by interpolating the blue channel. Thus, transforming
a BufferedImage is identical to transforming a Raster. Last, you cannot use the same source and
destination object when filtering.

ConvolveOp

The java.awt.image.ConvolveOp class convolves a kernel with a source image in order to produce a
destination image. A kernel can be thought of as a two-dimensional array with an origin. During the
convolution, the origin of the array is overlaid on each pixel of the source image. This origin value is
multiplied by the pixel value it is over, and all surrounding kernel array values are multiplied by the
pixel values that they are over. Finally, all these values are summed together and the resulting
number replaces the pixel corresponding to the kernel center. For example, consider the following
kernel with an origin at (1, 1):

(1/9) (1/9) (1/9)
(179) (1/9) (1/9)
(1/9) (1/9) (1/9)

For each image pixel, its value will be multiplied by (1/9) and each of its neighbors will be multiplied
by 1/9. When these values are added together, the original image pixel will be replaced by the
average value of itself and its eight neighbors. The effect of this kernel is to cause the destination
image to appear like a smoothed version of the input image.

When you are using a convolution algorithm, edge pixels present a difficulty because they don't have
all the neighboring pixels that a non-edge pixel does. Under these conditions, convolution algorithms
aren't able to function, and some instruction is required as to how these edge pixels should be
handled. In one of the ConvolveOp constructors, there is a parameter called edgeConditions, which is
an integer. If this value is set to ConvolveOp.EDGE_NO_OP, the edge pixels in the destination object
will be identical to those of the source object. If this value is set to ConvolveOp.EDGE_ZERO_FILL, the
edge pixels will be set to 0. This latter value is the default.

The two ConvolveOp constructors are as follows:

ConvolveOp(Kernel kernel)
ConvolveOp(Kernel kernel, int edgeCondition, RenderingHints hints)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

With regard to the filtered object, if the source object is a BufferedImage with an alpha component,
this component isn't convolved separately. Instead, the other color components are multiplied by their
corresponding normalized alpha component, and the color components are convolved independently.
Finally, the alpha value of the source pixel is divided out of the returned components and given to the
destination pixel as its alpha value. If this behavior isn't wanted, you can filter the BufferedImage's
Raster—in which case, all components—including alpha—are convolved independently. You cannot use
the same source and destination object when filtering.

RescaleOp

This class multiplies each pixel sample by a scaling factor before adding an offset to it.
Mathematically, this can be expressed as follows:

dstSample = (srcSample*scaleFactor) + offset

Similar to the ConvolveOp class, any value above the maximum allowed value (usually 255) gets
clipped to the maximum value and any value below 0 gets clipped to 0. You can use the source image
as the destination image for this filtering operation. The constructors for this class are as follows:

RescaleOp(float scaleFactor, float offset, RenderingHints hints)
RescaleOp(float[] scaleFactors, float[] offsets, RenderingHints hints)
In the first constructor, only a single scale factor can be given, but in the second constructor, any

number of scale factors can be given. Table 4.6 illustrates how the choice of constructor and the
choice of the object to be filtered effect the destination pixels.

Table 4.6. RescaleOp Behavior

Object Number of scaleFactors |Filtering

Filtered

BufferedImage [Number of color Each color component scaled separately; alpha not
components changed

BufferedImage [Number of components Each component scaled separately

BufferedImage |1 Each color component scaled identically; alpha not

changed

Raster Number of components Each component scaled separately

Raster 1 Each component scaled identically

LookupOp

The java.awt.image.LookupOp object provides a means to filter Rasters and BufferedImages using a
lookup table(LUT). In the LookupOp class, the LUT is simply an array in which the source pixel
samples are treated as array indices. The corresponding destination pixel samples get their values
from the array elements. In other words:

dstSample = LUTarray[srcSample]

A LookupTable contains one or more of these lookup arrays, which allow you to process individual
bands differently. The LookupOp class contains a filter method for Rasters and for BufferedImages with
slightly different behaviors (see Table 4.7).

Table 4.7. LookupOp Behavior

Object Number of Bands in Filtering
Filtered LookupTable

BufferedImage [Number of color components Each color component filtered separately; alpha not
changed

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

BufferedImage [Number of components Each component filtered separately

BufferedImage|1 Each color component filtered identically; alpha not
changed

Raster Number of components Each component filtered separately

Raster 1 Each component filtered identically

There are two main LookupTable subclasses, ByteLookupTable and ShortLookupTable, where the
ByteLookupTable assumes that the current input image's pixel samples all lie between 0-255 inclusive
whereas the ShortLookupTable assumes that they lie between 0-66635 inclusive. Last, you can use
the same source and destination object when filtering.

ColorConvertOp

The java.awt.image.ColorConvertOp class performs a pixel by pixel color conversion of the image
source into the image destination. This is done by converting the pixels from the source image's color
space into the destination image's color space. This class has three main constructors that can take
zero, one, or two ColorSpaces as parameters. These three constructors are as follows:

ColorConvertOp(RenderingHints hints)
ColorConvertOp(ColorSpace cspace, RenderingHints hints)
ColorConvertOp(ColorSpace srcCspace, ColorSpace dstCspace, RenderingHints hints)

When this operation is to be performed on BufferedImages, no ColorSpace is necessary in the
ColorConvertOp's constructor because the BufferedImages contain ColorModels that already represent a
particular ColorSpace. Alternatively, you can provide a single ColorSpace if a null destination
BufferedImage is going to be used in the filter method. In this case an appropriate BufferedImage with
the provided ColorSpace will be created and returned by the filter method. Unlike BufferedImages,
Rasters do not contain ColorModels, so for Raster filtering, two ColorSpace objects must be provided in
the ColorConvertOp's constructor. Last, you can use the same source and destination object when
filtering.

BandCombineOp

The last filter that we will look at is the java.awt.image.BandCombineOp filter. Unlike the other filters
discussed, this filter only implements the RasterOp interface and not the BufferedlmageOp interface,
meaning that it can only be used to filter Rasters. The purpose of this filter is to perform linear
combinations of the Raster bands. In other words, the value of each band in the destination Raster will
be found through a linear function of the bands in the source Raster. The constructor for this class is
as follows:

BandCombineOp(float[][] matrix, RenderingHints hints)

where the number of rows in the matrix is equal to the number of bands in the destination Raster and
the number of columns is either equal to the number of columns in the source Raster or the number of
columns in the source Raster plus one. In this latter case, an additional band is created that is always
equal to one. For example, consider a BandCombineOp filter that switches the red and blue bands of a
Raster containing a red, green, and blue band. That would require the following matrix:

[destRedBand] [0 0 1] [sourceRedBand]

[destGreenBand] = [0 1 0] x [sourceGreenBand]

[destBlueBand] [1 0 0] [sourceBlueBand]

Similarly, a BandCombineOp filter that inverts the green band is as follows:

[destRedBand] [1 0 1 0] [sourceRedBand]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[destGreenBand] = [0 -1 0 255] x [sourceGreenBand]

[destBlueBand] [0 0 1 0] [sourceBlueBand]

[1]

In this latter example, the number of columns in the array were equal to the number of bands in the
Raster + 1. For this reason, an extra band was created with each element being equal to 1. Last, for
this filter class, the source Raster and the destination Raster can be the same.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Summary

When we began this chapter by looking at the java.awt.Image class, we noted that the Image class
shouldn't be considered a conventional image because it didn't have accessible image data. It,
instead, should be thought of as a set of resources that allow the loading and displaying of image
data. The Image class is typically used with the push model of image processing in which the object
displaying or filtering the image data makes a request to the object producing the image data to start
producing. It then waits for this producer to push the data asynchronously to it. The advantage of this
method is that the data arrives as it is available so that the drawing or filtering can begin right away
without having to wait until all the image data is loaded.

Next, we examined the java.awt.image.BufferedImage class which is a subclass of the Image class. The
main differences between the Image and BufferedImage classes is that the BufferedImage contains not
only accessible pixel data but also a Raster to extract samples from the pixels and a ColorModel to
interpret these samples. The BufferedImage class is typically used with the immediate mode imaging
model in which the image data is immediately accessible to any objects that want to use it. This
imaging model shouldn't be considered completely separate from the push imaging model because
they are usually used together (see Figure 4.13). In other words, the image data gets pushed into the
immediate mode model pipeline where it is filtered. The Bufferedimage, which is a subclass of Image,
can then return the filtered data back into a push model pipeline.

Figure 4.13. There are many ways to filter image data in Java using both the push and the
immediate mode imaging models.

Note

For more information on the topics discussed in this chapter, we recommend that you refer
to John Zukowski's Java AWT Reference (O'Reilly, 1997) or Jonathon Knudsen's Java 2D
Graphics (O'Reilly, 1999).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raivisvs =t o)
Chapter 5. Image 1/0 API

IN THIS CHAPTER

¢ Image Formats

® Reading and Writing Basics
® Service Provider Interfaces
® JIOParam Classes

® Metadata

® Final Plug-in Code

In Chapter 4, "Immediate Mode Imaging Model," we looked at how an image gets loaded and what to
do with it after it is loaded, but there wasn't much discussion regarding what types of images can be
loaded. The reason for this is that until the Java Image I/O package was developed, you could only
read GIF and JPEG images. Also, until this package was created, you could only write out unformatted
pixel values. In this chapter, we'll explore the basics of the Java Image I/O package and how it solved
both of these problems.

Two of the more useful aspects of the Image 1I/0O package are its use of plug-ins and metadata. The
capability to read and write formatted images is available through plug-ins, which means that at
runtime the Java virtual machine (JVM) discovers which image readers/writers are available and what
types of image formats they can decode/encode. Metadata is useful in communicating non-pixel
information about the input images and output images. In the Image I/0O package, the metadata
classes are designed to be easily converted into XML DOM trees, enabling the use of the Java XML
DOM API when working with this image information.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Image Formats

While the number of image formats is large, there are a few that are well known and commonly used.
In this chapter, we will only mention the image formats that are most often associated with Web
browsers: GIF, JPEG, and PNG; as well as a sample format called ch5, which we will use for
illustrative purposes throughout this chapter.

GIF: Graphics Image Format

The Graphics Image Format (GIF; also referred to as CompuServe GIF format) represents each pixel
using 3 bytes, depicting its red, green and blue color components. This format takes all the unique
sets of color components within the GIF image(not exceeding 256) and puts them into a color table.

This limits the number of colors that can be represented in a GIF image to 256 out of a possible 224
(approximately 16 million). By using this color table, a pixel no longer needs to contain a red, a
green, and a blue component, but instead can simply contain an index for the color table. In this way,
each pixel can be represented using a single byte instead of 3 bytes. A lossless compression is then
performed in order to reduce the image size. Thus, one of the main advantages of the GIF format is
that any 256 out of approximately 16 million colors can be represented using images whose size is
relatively small. This is an important point when transferring images over a network. Another
advantage is that the compression is lossless, so the image quality won't be diminished. Also, one of
the 256 colors in the color table can represent a transparent color; meaning that any pixel mapped to
this value will appear transparent (alpha value of 0) when displayed. Some additional features are
that the GIF image format can represent more than one image, making animation possible, and that it
supports interlacing, so that when an image is displayed it immediately appears at a very low
resolution and progressively redraws itself until it is at the proper resolution. The main disadvantage
of the GIF image format is the range of colors a single image can represent is limited. If one needs
more then 256 colors, then another image format must be used.

JPEG

Like the GIF image format, the Joint Photographic Experts Group (JPEG) format represents each pixel
using 3 bytes, one each for the red, green, and blue color components. Unlike the GIF format, the
JPEG format does not limit the number of colors that can be used in an image. Thus, it must employ
another strategy in order to prevent prohibitively large image sizes. This strategy is the use of lossy
compression, which can compress an image to a greater degree than lossless compression. Therefore,
the main advantage of the JPEG format is that it can represent a large number of colors using
relatively small image sizes, whereas a disadvantage is that the uncompressed image may not be of
the same quality as the original image. In most cases, this latter point is insignificant because the loss
in quality is not visible to the human eye, although there are times when it is apparent. For instance,
if there are large regions in an image that are a single color, then the JPEG
compression/decompression process might make those regions appear blotchy. Also, sharp changes
in contrast might be blurred, as will text (especially fine text). A good thing to remember is that JPEG
was designed for photographs, and that is what it does best. So, for real world scenes JPEG should be
used, and for artificial scenes, such as logos, GIF should be used.

PNG

The Portable Network Graphics (PNG) image format might potentially replace the GIF image format
someday. It has all the advantages of GIF, with the exception of animation. It also supports an alpha
channel (GIF only supports alpha values of 0 or 255), and two-dimensional interlacing (GIF's is just
horizontal). Also, because the PNG format is open software, there are no patents involved with its
use.

ch5 Format
For illustrative purposes a sample image format will be defined and used throughout this chapter for

the development of plug-ins. This format will be referred to as the ch5 format, and it will be an 8-bit
grayscale format specified by the following pattern:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

5 (String representing format's magic number)

Number of Images in Stream (String)

Image #1 Width (String)

Image #1 Height (String)

Image #1 Data (series of pixels, 1 byte/pixel)

Image #2 Width (String)

Image #2 Height (String)

and so on.
In a later section when we discuss metadata, it will be explained that metadata is the collection of
non-pixel image information. In this ch5 format, the "Number of Images in Stream" value will be

considered part of the image stream's metadata, whereas the "Width" and "Height" values will be
considered part of each image's metadata.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Reading and Writing Basics

In the previous chapter we saw that with the Java2D package, input images are converted to Images
using the getImage methods of the Applet class and the Toolkit class. In this chapter we'll see that,
with the Image 1/0 package, input images are converted to BufferedImages using the read methods of
the javax.imageio.ImageReader class. Generally, more than one ImageReader subclass will be
available, so the initial step in reading an image is to choose an ImageReader that can decode the
format of the image of interest. This is done by providing information about that image's format to a
set of ImageReader service providers (javax.imageio.ImageReaderSpis). This information can be in the
following forms:

® Image file suffix
® Image MIME type
® Image format

® Image data

Using the provided information, the ImageReaderSpis respond as to whether their corresponding
ImageReader can decode that format or not. One of the ImageReaders whose service provider
responds positively will then be chosen to convert the image data into a BufferedImage.

An important point to understand in this arrangement is that the ImageReaders are available through
plug-ins. Thus, while some will be part of the Java standard development kit, the rest can be
downloaded from third party vendors, freeware, and shareware sites. If no appropriate ImageReader
is available, then one can be written, as will be demonstrated in later sections.

The process for writing images is very similar, except in reverse. The available
javax.imageio.ImageWriters have service providers that are given information about the potential
output image's format, and they respond if they are able to convert the BufferedImage of interest into
an output image using this format.

ImagelO

The ImagelO class contains static methods that are mainly used for locating ImageReaders and
ImageWriters. For example, if you want to find out which image formats or image MIME types your
JVM can currently decode or encode, you can use the following ImagelO methods:

static String[] getReaderFormatNames()
static String[] getReaderMIMETypes()
static String[] getWriterFormatNames()
static String[] getWriterMIMETypes()

In Listing 5.1 these ImagelO methods are used to display the available ImageReaders and
ImageWriters according to image format and MIME type.

Listing 5.1 RWtypes.java

package ch5.imageio;
import javax.imageio.ImagelO;

/**

* RWtypes.java - a class to display available ImageReaders and
* ImageWriters by image format and MIME type

*/

public class RWtypes {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

~ public static void main(String[] args) {
String[] readers, writers;

System.out.printin("For Reading:");

readers = ImagelO.getReaderFormatNames();

System.out.printin("\tBy format:");

for (int i=0; i<readers.length;i++)
System.out.printin("\t\t" + readers[i]);

readers = ImagelO.getReaderMIMETypes();

System.out.printin("\tBy MIME Types:");

for (int i=0; i<readers.length;i++)
System.out.printin("\t\t" + readers[i]);

System.out.printIn("For Writing:");

writers = ImagelO.getWriterFormatNames();

System.out.printin("\tBy format:");

for (int i=0; i<writers.length;i++)
System.out.printin("\t\t" + writers[i]);

writers = ImagelO.getWriterMIMETypes();
System.out.printin("\tBy MIME Types:");
for (int i=0; i<writers.length;i++)
System.out.printin("\t\t" + writers[i]);
¥

}

If you were to run this application, the following output might appear:

For Reading:
By format:

png
jpeg
JPEG
gif
ipg
JPG

By MIME Types:
image/jpeg
image/png
image/x-png
image/qgif

For Writing:

By format:
PNG
bng
Jpeg
JPEG
ipg
JPG

By MIME Types:
image/jpeg
image/png
image/x-png

Tip

If you are using a version of the Java standard development kit (SDK) prior to 1.4.0, you'll
need to have imageio.jar (from the Image I/O package) and crimson.jar (from the JAXP
package) somewhere in your classpath.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Thus, without adding additional ImageReader and ImageWriter plug-ins, we are only able to read GIF,
JPEG, and PNG images, and we can only write JPEG and PNG images.

Note

This output is dependent upon the version of the Java Image I/0O package being used. In
the early access version of this package, JPEG ImageReaders and ImageWriters are not
provided.

While this type of output is useful to examine what kinds of image formats one can decode and
encode, a more common concern is that of finding an appropriate ImageReader for a given image.
This task can also be done by using static methods of the ImagelO class (see Figure 5.1). These
methods enable one to find an ImageReader by specifying an image's format, its MIME type, or its file
suffix, as in one of the following:

static Iterator getImageReadersByFormatName(String formatName)
static Iterator getImageReadersByMIMEType(String MIMEType)
static Iterator getImageReadersbySuffix(String fileSuffix)

Figure 5.1. When given information about an input image, IOImage static methods are used
to discover which of the available ImageReaders can decode its format.

Any of the ImageReaders contained in the returned Iterator can be used to convert the input image
into a BufferedImage.

Thus, there are various ways to find an appropriate ImageReader, but most of those ways do not
involve examining the input stream. This is because the methods relying upon image format, image
suffix, and image MIME type are based on assumptions that if given an image with that property, then
a particular ImageReader can decode it. A more reliable method is to just let the image input stream
be examined, or more exactly, the object representing the image input stream
(javax.imageio.stream.ImagelnputStream) be examined, as seen in

static Iterator getImageReaders(Object input)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

where input is usually an ImagelnputStream.
Some examples of ImagelnputStream creation are as follows:

URL url = new URL(imageURL);
ImagelnputStream iis = ImagelO.createImagelnputStream(url.openStream());

or

Socket s = new Socket(imageHost, imagePort);
ImagelnputSream iis = ImagelO.createImagelnputStream(s.getInputStream());

or

FileInputStream fis = new FileInputStream(imageFileName);
ImagelnputStream iis = ImagelO.createImagelnputStream(fis);

Lastly, if you already have an ImageWriter, you can use it to get a corresponding ImageReader
(assuming that the plug-in which defined the ImageWriter also defined an ImageReader), as in

static ImageReader getImageReader(ImageWriter writer)
Note

Most image formats begin with something called a magic number, which is the part of the
ImagelnputStream that most ImageReaderSpis use to decide whether they can decode an
image format.

Many of the ImagelO static methods pertaining to ImageWriters are analogous to those pertaining to
ImageReaders, so an ImageWriter can be found using any one of the following methods:

static Iterator getImageWritersByFormatName(String formatName)
static Iterator getImageWritersByMIMEType(String MIMEType)
static Iterator getImageWritersbySuffix(String fileSuffix)

static ImageWriter getImageWriter(ImageReader reader)

One last method to obtain an ImageWriter, which is loosely analogous to the
static Iterator getImageReaders(Object input)

method, is the following:

static Iterator getiImageWriters(ImageTypeSpecifier type, String format)

where the javax.imageio.ImageTypeSpecifier class is a convenience class that specifies a
ColorModel/SampleModel combination (in this case, of the BufferedImage to be written) and the format
parameter specifies an output image format.

ImageReader Usage
Although a more detailed discussion of ImageReaders will be provided later in this chapter, it is

necessary at this point to understand the basics of how an ImageReader is used. The two main
reasons that an application will interact with an ImageReader are:

® To provide it with an input source
® To use it to read the source image(s)

To give the ImageReader an input source, the following method is used:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public void setInput(Object input, boolean seekForwardOnly)

where the input parameter is usually an ImagelnputStream and the seekForwardOnly parameter is used
to specify whether an application can go backwards in the input stream. Thus, if an image stream
consists of two images and you want to allow the application to read the first image after the second
image has been read, the seekForwardOnly parameter would need to be false.

After an image source is defined, the ImageReader can read source images using either of the
following two methods:

public void read(int imagelndex)
or
public void read(int imagelndex, ImageReadParam param)

where imagelndex is the index of the image that will be read and the param parameter provides
control over how this image is to be read. The ImageReadParam class will be discussed in an
upcoming section entitled "ImageReadParam," so for now it's enough to know that it can provide
functionality such as clipping and subsampling of the input image.

Note

There is a field called minIndex in the ImageReader that is initialized to 0. Whenever an
imagelndex is passed to the read method, it is checked to make sure it is not less than
minIndex. If it is, an IndexOutOfBoundsException is thrown. If imagelndex is an allowable
value and seekForwardOnly is true, minIndex takes the value of the last imagelndex. If
seekForwardOnly is false, the value of minIndex remains at 0.

Because an image index is involved in image reading, one often needs to know how many images are
available from a particular source. This information is obtained using the following ImageReader
method:

public int getNumImages(boolean allowSearch)

where the allowSearch parameter specifies whether you want the entire ImagelnputStream examined
to determine the number of available images. In other words, in some image formats, the number of
images is immediately available, while in other formats this can only be discovered by searching the
entire image input stream. If the allowSearch parameter is false, the number of images available will
be returned only if it is immediately available. If it's not, then a -1 will be returned. This parameter
permits the programmer to specify that finding the number of images is required for the application
and, if necessary, it should wait for the entire ImagelnputStream to be searched before continuing. In
many cases the allowSearch parameter can be set to false because it is possible to read all the
available images without knowing how many there are by simply catching any IndexOutofBounds
exceptions, illustrated by the following:

int imagelndex = 0;
BufferedImage bi;
try {
while (bi=reader.read(imagelndex++)) {
/* process image here */
}

b
catch (IndexOutOfBoundsException exception) {
// no more images left

}

An example of ImageReader usage is provided in Listing 5.2. In this listing, an ImageReader is found
by examining the input image's ImagelnputStream. This application takes an image URL and uses it to

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

create a BufferedImage that is displaiyed.'
Listing 5.2 displayImage.java

package ch5.imageio;

import java.io.*;

import java.util.*;

import java.awt.*;

import java.net.*;

import javax.swing.*;

import java.awt.image.*;

import javax.imageio.ImagelO;

import javax.imageio.ImageReader;

import javax.imageio.IIOException;

import javax.imageio.stream.ImagelnputStream;

/**
* displayImage.java -- displays an image or a series of images contained
* at the URL provided on the command line.
*/
public class displaylmage extends JFrame {
private BufferedImage bi;
private Insets insets;
private ImageReader reader;
private ImagelInputStream iis;
private URL url;
private int imagelndex = 0;

public displayImage(String inputURL) {
/*

* The following line looks for plug-ins on the application
* classpath -- this will be discussed in a later section

*/

ImagelO.scanForPlugins();

try {
url = new URL(inputURL);

by

catch (MalformedURLException mue) {
System.out.print("MalformedURLException: ");
System.out.printin(mue.getMessage());
System.exit(1);

by
try {

iis = ImagelO.createImagelnputStream(url.openStream());
b

catch (IIOException ie) {
System.out.printin("IIOException: " + ie.getMessage());
System.exit(1);

b

catch (IOException ie) {
System.out.printin("IOException: " + ie.getMessage());
System.exit(1);

b

/*
* get ImageReaders which can decode the given ImagelnputStream

*/

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Iterator readers = ImagelO.getImageReaders(iis);

/* if there is a set of appropriate ImageReaders, then take

* the first one

*/

if(readers.hasNext()) {
reader = (ImageReader)readers.next();
reader.setInput(iis, true);

by

if (reader == null) {
System.err.print("No Available ImageReader can ");
System.err.printin("decode: " + url);
System.exit(1);

b

addNotify();
insets = getInsets();

show();
showImage();

}

/**
* This method iteratively displays all images in the given
* ImagelnputStream
*/
private void showImage() {
imagelndex = 0;

reader.setInput(iis, true);
X

* read and display all images

*/

while(true) {

try {
bi = reader.read(imagelndex);
setSize(bi.getWidth()+insets.left+insets.right,
bi.getHeight()+insets.top+insets.bottom);

imagelndex++;
repaint();

b

catch (IOException ie) {
System.out.printin("IIOException " + ie.getMessage());
System.exit(1);

b
catch (IndexOutOfBoundsException iobe) {
// all of the images have been read
b
by
b

/**
* simple image paint routine which double buffers display
*/
public void paint(Graphics g) {
Image buffer;
Graphics g2d;

if (bi '= null) {
buffer = createlmage(bi.getWidth(), bi.getHeight());
g2d = buffer.getGraphics();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

/*
* first clear viewing area
* then draw image on buffered image
* then draw buffered image on JFrame
*/
g2d.clearRect(0, 0, bi.getWidth(), bi.getHeight());
g2d.drawImage(bi, 0, 0, null);
g.drawImage(buffer, insets.left, insets.top, null);
b
b

public static void main(String[] args) {
if (args.length == 0)
new displayImage("file:images/fruits.png");
else
new displayImage(args[0]);
by

by
ImageWriter Usage

When we discussed ImageReader usage, we were primarily interested in its setInput and read
methods. For ImageWriter usage, we will discuss the analogous setOutput and write methods.

The most common setOutput method is
public void setOutput(Object output)
where output is typically an ImageOutputStream, as in

Socket s = new Socket(imageHost, imagePort);
ImageOutputStream ios = ImagelO.createImageOutputStream(s.getOutputStream());

or

FileOutputStream fos = new FileOutputStream(imageFileName);
ImageOutputStream ios = ImagelO.createImageOutputStream(fos);

The main write method is as follows:

public void write(IIOMetadata streamMetadata,
ITI0Image iioimage,
ImageWriteParam param)

where the streamMetadata parameter represents the stream metadata to be included in the output
stream, and the param parameter provides control over how the output image is written to the output
stream. Because both of these topics will be considered later in this chapter, we'll ignore them for
now. In practice, these values can be set to null if there is no stream metadata, and/or no special
control is required for writing the images to the output stream. The middle parameter, iioimage, is an
object of type javax.imageio.IIOImage, which is a container class used for holding the following
information:

® The image
® The image's associated thumbnail images, represented as a java.util.List of BufferedImages

® The image's metadata (note that this is different than the stream's metadata, which was a
parameter in the write method)

If the output image format does not support thumbnail images or image metadata, these can both be
set to null. The constructors for instantiating an II0Image object are as follows:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

II0Image(Raster raster, List thumbnails, IIOMetadata metadata)
ITI0Image(RenderedImage image, List thumbnails, IIOMetadata metadata)

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Service Provider Interfaces

One obvious question resulting from the previous discussion is how do the ImagelO static methods
know which ImageReader(s) can decode the image data? Theoretically, one way this can be done is to
have each of the ImageReaders contain a set of methods that would return a list of image formats, file
suffixes, and MIME types that it can decode. Another method could take an ImagelnputStream and
return true or false if the ImageReader can decode it. Using these techniques, it would be up to the
plug-in developers to write these methods and therefore provide this information. Although this idea
has its merits, there is one problem: In order to find out an ImageReader's functionality, it needs to
be registered; and to register each of the ImageReaders, an object of each ImageReader class would
need to be instantiated. This would be a waste of time and memory because not all of the
ImageReaders will be needed. For this reason, service provider interfaces (spi) are used. Spis are
small classes (such as ImageReaderSpi and ImageWriterSpi) that are used to describe the functionality
of larger classes (such as ImageReader and ImageWriter). Thus, in practice the JVM can instantiate an
object of each ImageReaderSpi, and these objects can be used to decide which ImageReader(s) can
decode an image format. Similarly, the JVM can instantiate an object of each ImageWriterSpi, and
these objects can be used to decide which ImageWriter(s) can encode an image format.

ImageReaderSpi

Consider Listing 5.3, which implements an ImageReaderSpi. The purpose of this listing is to illustrate
how the ImageReaderSpi passes information about its corresponding ImageReader to the ImagelQ's
static methods. Note that the ImageReader that corresponds to this ImageReaderSpi will be developed
in a later section entitled "ImageReadParam."

Listing 5.3 ch5viImageReaderSpi.java
package ch5.imageio.plugins;

import java.io.*;

import java.util.*;

import javax.imageio.ImageReader;

import javax.imageio.spi.ImageReaderSpi;
import javax.imageio.stream.ImagelnputStream;

/**
* Simple, non-functional ImageReaderSpi used to understand how

* information regarding format name, suffices and mime types
* get passed to ImagelO static methods

*/
public class ch5vlImageReaderSpi extends ImageReaderSpi {
static final String[] suffixes = { "ch5", "CH5"};
static final String[] names = {"ch5"};
static final String[] MIMETypes = { "image/ch5" };
static final String version = "0.50";
static final String readerCN="ch5.imageio.plugins.ch5viImageReader";

static final String vendorName = "Company Name";

//writerSpiNames
static final String[] wSN={"ch5.imageio.plugins.ch5v1ImageWriterSpi"};

//StreamMetadataFormatNames and StreamMetadataFormatClassNames
static final boolean supportedStandardStreamMetadataFormat = false;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

static final String nativeStreamMFN = null;
static final String nativeStreamMFCN = null;
static final String[] extraStreamMFN = null;
static final String[] extraStreamMFCN = null;

//ImageMetadataFormatNames and ImageMetadataFormatClassNames
static final boolean supportedStandardImageMetadataFormat = false;
static final String nativeImageMFN = null;

static final String nativelmageMFCN = null;

static final String[] extraImageMFN = {null};

static final String[] extraImageMFCN = {null};

public ch5vlImageReaderSpi() {
super(vendorName,
version,
names,
suffixes,
MIMETypes,
readerCN, // reader class name
STANDARD_INPUT_TYPE,
WSN, // writer spi hames
supportedStandardStreamMetadataFormat,
nativeStreamMFN,
nativeStreamMFCN,
extraStreamMFN,
extraStreamMFCN,
supportedStandardimageMetadataFormat,
nativeImageMFN,
nativelmageMFCN,
extralmageMFN,
extralmageMFCN);

}

public String getDescription(Locale locale) {
return "Demo ch5 image reader, version " + version;

}

/**

* We haven't created the corresponding ImageReader class yet,
* so we'll just return null for now.

*/

public ImageReader createReaderInstance(Object extension) {
return new ch5vlImageReader(this);

}

/**

* This method gets called when an application wants to see if
* the input image's format can be decoded by this ImageReader.
* In this case, we'll simply check the first line of data to

* see if it is @ 5 which is the format type's magic number.

* Note that we initially make sure the input object is of

* type ImagelnputStream so we know it is compatible with

* mark and reset methods.

*/

public boolean canDecodelnput(Object input) {

boolean reply = false;

if (!(input instanceof ImagelnputStream))
return reply;

ImagelnputStream iis = (ImagelnputStream)input;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

iis.mark(); // mark where we are in ImagelnputStream
try {
String magicNumber = iis.readLine().trim();
iis.reset(); // reset stream back to marked location
if (magicNumber.equals("5"))

reply = true;
b
catch (IOException exception) {
by
return reply;
by
/**

* This method gets called when the set of file suffices is

* requested by the ImagelO's getImageReadersBySuffix method
* It doesn't need to be redefined here, but is done for

* illustrative purposes

*/

public String[] getFileSuffixes() {

return super.getFileSuffixes();

}

/**

* This method gets called when the set of file mime types is

* requested by the ImagelO's getImageReadersByMIMEType method
* It doesn't need to be redefined here, but is done for

* illustrative purposes

*/

public String[] getMIMETypes() {

return super.getMIMETypes();

by

/**
* This method gets called when the set of format names is
* requested by the ImagelO's getiImageReadersByFormatName method
* It doesn't need to be redefined here, but is done for
* illustrative purposes
*/
public String[] getFormatNames() {
return super.getFormatNames();
by
by

ImageWriterSpi

In general, the explanation of the ImageWriterSpi class is similar to that of the ImageReaderSpi class,
except that instead of having a

public boolean canDecodeImage(Object source)
it has a
public boolean canEncodeImage(ImageTypeSpecifier its)

where, as previously mentioned, the ImageTypeSpecifier class is simply a container class for holding
an image's ColorModel and SampleModel. Thus, while an ImageReader can be chosen using the input
image's suffix, MIME type, format, or by examining the input stream, an ImageWriter can be chosen
using the output image's suffix, MIME type, format, or by considering the image's ColorModel and
SampleModel pair. Sample code for an ImageWriterSpi is shown in Listing 5.4. In this listing, all
metadata will be given null values. In the final section, "Final Plug-in Code," it will be redone using
metadata.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Listing 5.4 ch5viImageWriterSpi.java

package ch5.imageio.plugins;

import java.io.*;

import java.util.*;

import java.awt.image.*;

import javax.imageio.ImageWriter;

import javax.imageio.ImageTypeSpecifier;
import javax.imageio.spi.ImageWriterSpi;

import javax.imageio.stream.ImagelnputStream;

/**

* Simple, non-functional ImageWriterSpi used to understand how
* information regarding format name, suffices and mime types

* get passed to ImagelO static methods

*/

public class ch5v1lImageWriterSpi extends ImageWriterSpi {

static final String[] suffixes = {"ch5", "CH5"};
static final String[] names = {"ch5"};
static final String[] MIMETypes = {"image/ch5" };

static final String version = "0.50";
static final String writerCN = "ch5.imageio.plugins.ch5v1ImageWriter";

static final String vendorName = "Company Name";
static final String[] rdrSpiNames={"ch5.imageio.ch5viImageReaderSpi"};

static final boolean supportsStandardStreamMetadataFormat = false;
static final String nativeStreamMetadataFormatName = null;

static final String nativeStreamMetadataFormatClassName = null;
static final String[] extraStreamMetadataFormatNames = null;

static final String[] extraStreamMetadataFormatClassNames = null;

static final boolean supportsStandardimageMetadataFormat = false;
static final String nativelmageMetadataFormatName = null;

static final String nativelmageMetadataFormatClassName = null;
static final String[] extralmageMetadataFormatNames = null;

static final String[] extraImageMetadataFormatClassNames = null;

public ch5v1ImageWriterSpi() {
super(vendorName,
version,
names,
suffixes,
MIMETypes,
writerCN, //writer class name
STANDARD_OUTPUT_TYPE,
rdrSpiNames, //reader spi names
supportsStandardStreamMetadataFormat,
nativeStreamMetadataFormatName,
nativeStreamMetadataFormatClassName,
extraStreamMetadataFormatNames,
extraStreamMetadataFormatClassNames,
supportsStandardImageMetadataFormat,
nativelmageMetadataFormatName,
nativelmageMetadataFormatClassName,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

extraImagéMetadataFormatNames,
extralmageMetadataFormatClassNames);

}

public String getDescription(Locale locale) {
return "Demo ch5 image writer, version " + version;

}

/**

* We haven't created the corresponding ImageWriter class yet,
* so we'll just return null for now.

*/

public ImageWriter createWriterInstance(Object extension) {
return new ch5vlImageWriter(this);

}

/**

* This method gets called when an application wants to see if

* the corresponding ImageWriter can encode an image with

* a ColorModel and SampleModel specified by the ImageTypeSpecifier.

* For this example, we will only advertise that we can encode

* gray scale images with 8 bit pixels.

*/

public boolean canEncodeImage(ImageTypeSpecifier its) {

if (its.getBufferedImageType() == BufferedImage.TYPE_BYTE_GRAY)
return true;

else
return false;

b

/**

* This method gets called when the set of file suffices is

* requested by the ImagelO's getimageWritersBySuffix method
* It doesn't need to be redefined here, but is done for

* illustrative purposes

*/

public String[] getFileSuffixes() {

return super.getFileSuffixes();

}

/**

* This method gets called when the set of file mime types is

* requested by the ImagelQ's getImageWritersByMIMEType method
* It doesn't need to be redefined here, but is done for

* illustrative purposes

*/

public String[] getMIMETypes() {

return super.getMIMETypes();

b

/**

* This method gets called when the set of format names is

* requested by the ImagelO's getImageWritersByFormatName method
* It doesn't need to be redefined here, but is done for

* illustrative purposes

*/

public String[] getFormatNames() {

return super.getFormatNames();

}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Using JAR Files to Specify SPIs

In order for the JVM to discover the ImageReader and ImageWriter plug-ins, they must be contained in
a properly formatted JAR file. Furthermore, the JAR file must contain a META-INF/services directory
for listing the service providers contained in that JAR file. For each service provider interface that is
implemented by a class stored in this JAR file, a file whose name is the fully qualified class name of
the SPI should be placed in the services directory. Inside each of these files should be the fully
qualified names of the implementation classes contained in the JAR file (one per line). For example, in
Listing 5.3 the SPI is javax.imageio.spi.ImageReaderSpi, so that will be the name of a file in the META-
INF/services directory. The name of the class implementing this interface is
ch5.imageio.ch5v1ReaderSpi, so that name will go inside that file. Using Listings 5.1-5.4, the contents
of their JAR files would show the following:

META-INF/

META-INF/MANIFEST.MF

META-INF/services/
META-INF/services/javax.imageio.spi.ImageReaderSpi
META-INF/services/javax.imageio.spi.ImageWriterSpi
ch5/

ch5/imageio/

ch5/imageio/RWtypes.class

ch5/imageio/plugins/
ch5/imageio/plugins/ch5viImageReaderSpi.class
ch5/imageio/plugins/ch5v1ImageWriterSpi.class
ch5/imageio/displayImage.class

If you examine the contents of the file META-INF/services/javax.imageio.spi.ImageReaderSpi, you will
see the text ch5.imageio.plugins.ch5ImageReaderSpi.

Tip

One way to format your JAR file is to create an appropriate services directory, and then use
the following commands:

(for UNIX)

jar cf ch5.jar ch5

jar xf ch5.jar META-INF

mv services META-INF/services
rm ch5.jar

jar cfM ch5.jar ch5 META-INF

(for DOS)

jar cf ch5.jar ch5

jar xf ch5.jar META-INF

move services META-INF\services
del ch5.jar

jar cfM chb.jar ch5 META-INF

The last step in getting the application to acknowledge these SPI classes is to make sure that this JAR
file is located somewhere on the application classpath. If we run Listing 5.1 with this JAR file located
on the application classpath, the new output is as follows:

For Reading:
By format:
png
jpeg

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

JPEG
gif
ipg
JPG
ch5

By MIME Types:
image/jpeg
image/ch5
image/png
image/x-png
image/qgif

For Writing:

By format:
PNG
bng
Jpeg
JPEG
ipg
JPG
ch5

By MIME Types:
image/jpeg
image/ch5
image/png
image/x-png

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] B B
IIOParam Classes

By default, the ImageReader's read method does not offer much control over how the input image is
read. Similarly, neither does the ImageWriter's write method offer much control over how the output
image is written. One way to achieve more control in both of these situations is by using an object of
the javax.imageio.IIOParam class. This class provides methods for describing how an image stream
should be encoded and decoded. The IIOParam class contains one subclass for image reading, and
one subclass for image writing. They are javax.imageio.ImageReadParams and
javax.imageio.ImageWriteParams, respectively.

ImageReadParam

A javax.imageio.ImageReadParam object can be obtained using the following ImageReader method:
public ImageReadParam getDefaultReadParam()

After a reference to an ImageReadParam object is obtained, one can then make changes to the state
of this object in order to specify how the input image should be read. After the ImageReadParam
object is set appropriately, the following ImageReader read method should be used:

public BufferedImage read(int imagelndex, ImageReadParam imageReadParam)
One of the more common ImageReadParam methods used to control image reading is the following:
public void setSourceRegion(Rectangle sourceRegion)

where the parameter sourceRegion represents the image dimensions to be read. Thus, if you wanted
to only read the top half of an image, you could use the following:

Rectangle rectangle;

rectangle = new Rectangle(imageReader.getImageWidth(imagelndex),
imageReader.getImageHeight(imagelndex)/2));

imageReadParam.setSourceRegion(rectangle);

BufferedImage bi = imageReader.read(imagelndex, imageReadParam);

Another useful method is setSourceSubSampling, which permits you to eliminate all pixels which are
not multiples of provided x and y SubSamplingFactors. For example, if the xSubSamplingFactor is 2 and
the ySubSamplingFactor is 1, then only columns 0, 2, 4, and so on will be kept.

public void setSourceSubsampling(int sourceXSubsampling,
int sourceYSubsampling,
int subsamplingXOffset,
int subsamplingYOffset)

Thus, if you wanted to use subsampling to reduce an image size by a factor of 16, you could use the
following:

imageReadParam.setSourceSubSampling(4, 4, 0, 0);
BufferedImage bi = imageReader.read(imagelndex, imageReadParam);

For a user of the Image I/O API, the ImageReadParam class is primarily for controlling the reading of
input images. On the other hand, if one is a plug-in designer, this class has two other important
purposes. Its values are used in the ImageReader's getDestination method to instantiate the
appropriate sized BufferedImage. After this BufferedImage has been instantiated the ImageReadParam
parameters are used to correctly fill the BufferedImage in with the input image's data.

In more detail, there is a predefined ImageReader method that gets executed in the read method. This
method returns the BufferedImage object in which the decoded input data should be placed. This
getDestination method is as follows:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

protected static BufferedImage getDestination(ImageReadParam param,
Iterator imageTypes,
int width, int height)

where the param parameter is the ImageReadParam object that was passed to the read method and
imageTypes is an Iterator object containing the set of allowable ImageTypeSpecifiers (with the default
one first). The width and height parameters are the true width and height of the input image. Thus,
given this information, the ImageReader's getDestination method will return a BufferedImage of the
appropriate size taking into account any clipping and subsampling. This BufferedImage must then be
filled appropriately using the ImageReadParam settings and the input image.

Note

If the ImageReadParam object's setDestinationType method and setDestination method are
not used, the BufferedImage type returned by the ImageReader's getDestination method will
be the first ImageTypeSpecifier specified by the imageTypes parameter. Typically, this
parameter will represent the return value of the ImageReader's getImageTypes method.

In Table 5.1, the results of using the ImageReadParam's setSourceRegion and setSubsampling methods
on the size of the destination BufferedImage are shown. As illustrated in this table, the destination
image size will be found by first clipping any image regions not common to both the original image
region and the defined source region, and then subsampling the resulting area using the formulas

new width = (original width + xsubsamplingfactor-1)/xsubsamplingfactor
and

new height = (original height + ysubsamplingfactor-1)/ysubsamplingfactor

Table 5.1. Imagereadparam Settings Versus Resulting Destination BufferedImage Size for a
256 x 256 Input Image

Source Rectangle SubSample x, y Resulting Destination BufferedImage Width,
Dimensions Values Height

0, 0, 256, 256 1,1 256, 256

0, 0, 256, 256 2,3 128, 86

50, 75, 256, 256 1,1 206, 181

50, 75, 200, 200 2,3 100, 61

In Listing 5.5, a simple version of an ImageReader is shown. The part to note in this listing is that the
ImageReadParam object dictates the dimensions of the destination BufferedImage that is returned
from the ImageReader's getDestination method. Also note that it is up to the plug-in designer to
correctly read in the pixel data and to fill this BufferedImage using these ImageReadParam values.

Listing 5.5 ch5viImageReader.java
package ch5.imageio.plugins;

import java.io.*;

import java.util.*;

import java.awt.*;

import java.awt.image.*;

import javax.imageio.IIOException;

import javax.imageio.ImageReader;

import javax.imageio.ImageTypeSpecifier;
import javax.imageio.ImageReadParam;
import javax.imageio.metadata.lIOMetadata;
import javax.imageio.spi.ImageReaderSpi;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

import javax.imageio.stream.ImagelnputStream;

/**
* ch5vlImageReader.java -- this class provides the functionality to
* read an image of format ch5. This class does not make use of
* IIO0Metadata classes for representing metadata. A second version of
* this class will be provided later in this chapter which will
* correctly represent the metadata
*/
public class ch5viImageReader extends ImageReader {
private ImagelnputStream iis;
private int[] width = null;
private int[] height = null;
private int numberIlmages = -1;

public ch5vlImageReader(ImageReaderSpi originatingProvider) {
super(originatingProvider);

/**

* this method returns null for now. We will revisit it at the
* end of this chapter after metadata has been discussed.
*/

public IIOMetadata getStreamMetadata() {

return null;

}

/**

* this method returns null for now. We will revisit it at the
* end of this chapter after metadata has been discussed.
*/

public IIOMetadata getImageMetadata(int imagelndex) {
return null;

}

/**
* this method sets the input for this ImageReader and also
* calls the setStreamMetadata method so that the numberImages
* field is available
*/
public void setInput(Object object, boolean seekForwardOnly) {
super.setInput(object, seekForwardOnly);
if (object == null)
throw new IllegalArgumentException("input is null");

if (!(object instanceof ImagelnputStream)) {
String argString = "input not an ImagelnputStream";
throw new IllegalArgumentException(argString);
b
iis = (ImagelnputStream)object;
setStreamMetadata(iis);

}

/**

* this method provides suggestions for possible image types that
* will be used to decode the image specified by index imageIndex.
* By default, the first image type returned by this method will

* be the image type of the BufferedImage returned by the

* ImageReader's getDestination method. In this case, we are

* suggesting using an 8 bit grayscale image with no alpha

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

* component.
*/
public Iterator getImageTypes(int imagelndex) {
java.util.List | = new java.util.ArrayList();;
int bits = 8;

/*
*can convert ch5 format into 8 bit grayscale image with no alpha
*/
l.add(ImageTypeSpecifier.createGrayscale(bits,
DataBuffer.TYPE_BYTE,
false));
return l.iterator();

}

/**

* read in the input image specified by index imagelndex using

* the parameters specified by the ImageReadParam object param

*/

public BufferedImage read(int imagelndex, ImageReadParam param) {

checkIndex(imagelndex);

if (isSeekForwardOnly())
minIndex = imagelndex;
else

minIndex = 0;

BufferedImage bimage = null;
WritableRaster raster = null;

/*

* this method sets the image metadata so that we can use the
* getWidth and getHeight methods

*/

setlImageMetadata(iis, imagelndex);

int srcWidth = getWidth(imagelndex);
int srcHeight = getHeight(imagelndex);

// initialize values to -1
int dstWidth = -1;
int dstHeight = -1;
int srcRegionWidth = -1;
int srcRegionHeight = -1;
int srcRegionXOffset = -1;
int srcRegionYOffset = -1;
int xSubsamplingFactor = -1;
int ySubsamplingFactor = -1;

if (param == null)

param = getDefaultReadParam();

Iterator imageTypes = getImageTypes(imagelndex);
try {
b3

* get the destination BufferedImage which will
* be filled using the input image's pixel data
*/
bimage = getDestination(param, imageTypes,
srcWidth, srcHeight);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

/*

* get Rectangle object which will be used to clip
* the source image's dimensions.

*/

Rectangle srcRegion = param.getSourceRegion();
if (srcRegion != null) {

srcRegionWidth = (int)srcRegion.getWidth();
srcRegionHeight = (int)srcRegion.getHeight();
srcRegionXOffset = (int)srcRegion.getX();
srcRegionYOffset = (int)srcRegion.getY();

/*

* correct for overextended source regions

*/

if (srcRegionXOffset + srcRegionWidth > srcWidth)
dstWidth = srcWidth-srcRegionXOffset;

else
dstWidth = srcRegionWidth;

if (srcRegionYOffset + srcRegionHeight > srcHeight)
dstHeight = srcHeight-srcRegionYOffset;

else
dstHeight = srcRegionHeight;

by

else {

dstWidth = srcWidth;

dstHeight = srcHeight;

srcRegionXOffset = srcRegionYOffset = 0;

b

/*

* get subsampling factors

*/

xSubsamplingFactor = param.getSourceXSubsampling();

ySubsamplingFactor = param.getSourceYSubsampling();

/**

* dstWidth and dstHeight should be

* equal to bimage.getWidth() and bimage.getHeight()
* after these next two instructions

*/

dstWidth = (dstWidth-1)/xSubsamplingFactor + 1;
dstHeight = (dstHeight-1)/ySubsamplingFactor + 1;

b
catch (IIOException e) {
System.err.printin("Can't create destination BufferedImage");

b
raster = bimage.getWritableTile(0, 0);

/* using the parameters specified by the ImageReadParam
* object, read the image image data into the destination
* BufferedImage
*/

byte[] srcBuffer = new byte[srcWidth];
byte[] dstBuffer = new byte[dstWidth];

int jj;
int index;

try {
for (int j=0; j<srcHeight; j++) {
iis.readFully(srcBuffer, 0, srcWidth);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

jj = j - srcRegionYOffset;
if (jj % ySubsamplingFactor == 0) {
ji /= ySubsamplingFactor;
if ((Gj >= 0) && (jj < dstHeight)) {
for (int i=0;i<dstWidth;i++) {
index = srcRegionXOffset+i*xSubsamplingFactor;
dstBuffer[i] = srcBuffer[index];
by
raster.setDataElements(0, jj, dstWidth,
1, dstBuffer);
b

O <~

atch (IOException €) {
bimage = null;
by

return bimage;

}

/**
* this method sets the image metadata for the image indexed by
* index imagelndex. This method is specific for the ch5 format
* and thus only sets the image width and image height
*/
private void setiImageMetadata(ImagelnputStream iis,
int imageIndex) {

try {

String s;

s = iis.readLine();

width[imagelndex] = Integer.parselnt(s.trim());

s = iis.readLine();

height[imagelndex] = Integer.parselnt(s);
by
catch (IOException exception) {
b
b

/**
* this method sets the stream metadata for the images represented
* by the ImagelnputStream iis. This method is specific for the
* ch5 format and thus only sets the numberImages field.
*/
private void setStreamMetadata(ImagelnputStream iis) {
try {
String magicNumber = iis.readLine();
numberImages = Integer.parselnt(iis.readLine().trim());
width = new int[numberImages];
height = new intfnumberImages];
for (int i=0;i<numberImages;i++)
width[i] = height[i] = -1;
b
catch (IOException exception) {
b
by

/**
* This method can only be used after the stream metadata

* has been set (which occurs in the setInput method).
* Else it will return a -1

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}

*/
public int getNumImages(boolean allowSearch) {
return numberImages;

}

/**
* This method can only be used successfully after the image
* metadata has been set (which occurs in the setinput method).
* Else it returns -1
*/
public int getHeight(int imageIndex) {
if (height == null)
return -1;
checkIndex(imagelndex);

return height[imagelndex];

}

/**
* This method can only be used successfully after the image
* metadata has been set (which occurs in the setInput method).
* Else it returns -1
*/
public int getWidth(int imagelndex) {
if (width == null)
return -1;
checkIndex(imagelndex);

return width[imagelndex];

}

private void checkIndex(int imagelndex) {
if (imagelndex >= numberImages) {
String argString = "imagelndex >= number of images";
throw new IndexOutOfBoundsException(argString);
b
if (imagelndex < minIndex) {
String argString = "imagelndex < minIndex";
throw new IndexOutOfBoundsException(argString);

}
}

ImageWriteParam

The javax.imageio.ImageWriteParam object dictates the dimensions of the output image just as the
ImageReadParam dictated the dimensions of the input BufferedImage. Also, just as it was up to the
plug-in designer to correctly use the ImageReadParam values to clip and subsample the input image to
fill a BufferedImage, the plug-in designer must use the ImageWriteParam values to correctly clip and
subsample the output BufferedImage to produce the correct output image. So just like the
ImageReadParam, the ImageWriteParam has two different roles. One role is to allow the user to specify
how an image should be written out and the other is to provide these values to the ImageWriter's write

method.

Note

Besides a BufferedImage, an ImageWriter might also use a Raster for an output image

source.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A ImageWriteParam object can be obtained using the following ImageWriter method:
public ImageWriteParam getDefaultWriteParam()

After a reference to an ImageWriteParam object is obtained, a user then makes changes to the state of
this object in order to specify how the output image should be saved. The two most common methods
of the ImageWriteParam class are the same as for the ImageReadParam class, namely

public void setSourceRegion(Rectangle sourceRegion)
and

public void setSourceSubsampling(int sourceXSubsampling,
int sourceYSubsampling,
int subsamplingXOffset,
int subsamplingYOffset)

In the end of this chapter, an ImageWriter will be presented so that the use of the ImageWriteParam
object in writing the output image can be better understood.

ITIOParamController

Besides obtaining an IIOParam (superclass of ImageReadParam and ImageWriteParam) object and
changing its state through method calls, there is another way to control image reading and writing.
That way is by using an javax.imageio.IIOParamController. An IIOParamController is used to set the
IIOParam object to the correct state by using a controlling class provided by the plug-in, such as

ImageReadParam param = reader.getDefaultReadParam();
IIOParamController controller = param.getController();
if (controller = null)

controller.activate(param);

Typically, this controlling class is a graphical user interface (GUI), but it could be any class that
implements the following method:

public void activate(IIOParam param)

[Team LiB] [+ Fruvisus Jwant o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Metadata

Corresponding to an image is a set of non-pixel data that represents properties of that image. Some
examples are width, height, color table, color space, and so on. Although there are ImageReader
methods for obtaining the image width and height(such as getWidth and getHeight), it is not possible
to provide a separate method for each piece of metadata that could be contained in an image format.
Instead, the ImageReader class provides the metadata information collectively using the following two
methods:

IIOMetadata getImageMetadata(int imagelndex)
and
IIOMetadata getStreamMetadata()

The first method provides the metadata for the image specified by the index imagelndex, while the
second method provides the metadata that is descriptive of all images contained in a single stream.
For example, a single file could hold any number of images that all share a common color table. In
this situation, the color table could be described by the stream metadata. Another example is the ch5
format that we are using in this chapter. The number of images is part of the stream metadata and
the width and height measures are part of each image's metadata.

XML and XML APIs

Extensible Markup Language (XML) is a language for creating and using markup languages for data
storage and organization. The different data elements are delimited through the use of tags. The
exact tags are not predefined in XML, but are instead defined by the implementer using XML. For
example, the following XML code describes an example of the image metadata for the ch5 format that
we've been using in this chapter. This code block shows two elements, ch5.imageio.ch5image_1.00 and
imageDimensions with the imageDimensions element containing attributes of imageWidth and
imageHeight.

<ch5.imageio.ch5image_1.00>
<imageDimensions imageWidth=256 imageHeight=256>
</imageDimensions>

</chb5.imageio.chstream_1.00>

Within a single XML document, there is one main element in which all other elements are contained.
Thus, this main element can be considered a parent element to all other elements within the
document. Similarly, each of the elements within an XML file might be considered a parent to any
elements they contain as well as to any of their attributes. Using this line of reasoning, it can be
useful to consider the XML document as a tree with the main element being the root node of the tree.

There are two main ways for working with XML documents in Java. The first way is through a Simple
Parser for XML (SAXP) that treats the XML document like a serial stream of data. This parser
generates events whenever anything interesting occurs while a data stream is being parsed. When
working with a SAXP parser, you must implement methods to handle the events as they arise. The
advantages of using SAXP parsers is that they're fast and they don't require much memory, because
they do not store the parsed elements. The second method for working with XML documents is with a
Document Object Model (DOM) that stores the entire XML document in a tree format. Instead of
generating events, it simply gives an application access to this DOM tree. It's important to note that
the DOM tree nodes do not simply contain the elements and attributes, but objects representing
elements and attributes. Thus, each of the DOM nodes contain functionality for manipulating this tree.
Besides element and attribute node types, there are also node types for document, document type,
processing instruction, entity, and so on.

IIOMetadata

javax.imageio.metadata.IIOMetadata classes are used to represent metadata while also providing the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

capability to access this information as a tree of javax.imageio.metadata.lIOMetadataNode objects. The
IIOMetadataNode class implements the Java DOM Element interface (which extends the DOM Node
interface) so that one can treat stream and image metadata using the XML DOM API. For example, to
convert a IIOMetadata object into a DOM tree, simply use the following method:

public org.w3c.dom.Node getAsTree(String formatName)
where formatName is the desired metadata format.

When designing IIOMetadata classes, designers can create stream and image metadata classes any
way they like, although generally the closer a metadata format follows a particular image format, the
less able it is to describe any other image formats. Often, there are tradeoffs when designing a
metadata format between the number of image formats that it can be used for, and how much
information each of these applicable image formats will lose when using this format.

Tip

There is one plug-in—neutral metadata format already defined, and it is called
com.sun.imageio_1.0. All image formats can be expressed using this format, but many will
contain some information that this format cannot express and will be lost. This format has
child nodes for chroma, compression, dimension, document, text, tile, and transparency.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Final Plug-in Code

As discussed previously, ImageReaders and ImageWriters may be made known to the JVM through the
use of plug-ins. The remainder of the chapter will be devoted to presenting the code listings for the
ch5ImageReader and ch5ImageWriter classes, along with their corresponding service provider
interfaces and metadata classes.

ch5ImageReader

Listing 5.6 is identical to Listing 5.5, except that the metadata formats have now been defined so the
getMetadata and getImageData methods no longer return null.

The way metadata is used in this ImageReader class is that the setInput and read methods obtain the
stream and image metadata respectively (see Table 5.2). This metadata is then available to be
returned to an application that uses the ImageReader's getStreamMetadata and getImageMetadata
methods.

Table 5.2. Relationship Between ImageReader Methods and Metadata in the
ch5ImageReader Class

ImageReader Method |Effect on Metadata

setInput Decodes stream metadata

read Decodes image metadata

getStreamMetadata Converts stream metadata to an IIOMetadata object that is returned
getlImageMetadata Converts image metadata to an IIOMetadata object that is returned

Listing 5.6 ch5ImageReader.java

package ch5.imageio.plugins;

import java.io.*;

import java.util.*;

import java.awt.*;

import java.awt.image.*;

import javax.imageio.IIOException;

import javax.imageio.ImageReader;

import javax.imageio.ImageTypeSpecifier;
import javax.imageio.ImageReadParam;
import javax.imageio.metadata.lIOMetadata;
import javax.imageio.spi.ImageReaderSpi;
import javax.imageio.stream.ImagelnputStream;
import ch5.imageio.plugins.*;

/**
* ch5ImageReader.java -- this class provides the functionality to
* read an image of format ch5.
*/
public class ch5ImageReader extends ImageReader {
private ImagelnputStream iis;
private ch5ImageMetadata[] imagemd;
private ch5StreamMetadata streammd;

public ch5ImageReader(ImageReaderSpi originatingProvider) {
super(originatingProvider);

/**

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

* return the ch5StreamMetadata object instantiated in
* the setStreamMetadata method

*/

public IIOMetadata getStreamMetadata() {

return streammd;

}

/**

* return the ch5ImageMetadata object instantiated in

* the setImageMetadata method

*/

public IIOMetadata getiImageMetadata(int imagelndex) {
return imagemd[imagelndex];

}

/**
* this method sets the input for this ImageReader and also
* calls the setStreamMetadata method so that the numberImages
* field is available
*/
public void setInput(Object object, boolean seekForwardOnly) {
super.setInput(object, seekForwardOnly);
if (object == null)
throw new IllegalArgumentException("input is null");

if (!(object instanceof ImagelnputStream)) {
String argString = "input not an ImagelnputStream";
throw new IllegalArgumentException(argString);
b
iis = (ImagelnputStream)object;
setStreamMetadata(iis);

}

/**
* this method provides suggestions for possible image types that
* will be used to decode the image specified by index imageIndex.
* By default, the first image type returned by this method will
* be the image type of the BufferedImage returned by the
* ImageReader's getDestination method. In this case, we are
* suggesting using an 8 bit grayscale image with no alpha
* component.
*/
public Iterator getImageTypes(int imageIndex) {
java.util.List | = new java.util.ArrayList();;
int bits = 8;

/*
* can convert ch5 format into 8 bit grayscale image with no alpha
*/
l.add(ImageTypeSpecifier.createGrayscale(bits,
DataBuffer.TYPE_BYTE,
false));
return l.iterator();

}

/**

* read in the input image specified by index imageIndex using

* the parameters specified by the ImageReadParam object param
*/

public BufferedImage read(int imagelndex, ImageReadParam param) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

checkIndex(imagelndex);

if (isSeekForwardOnly())
minIndex = imagelndex;
else

minIndex = 0;

BufferedImage bimage = null;
WritableRaster raster = null;

/*

* this method sets the image metadata so that we can use the
* getWidth and getHeight methods

*/

setImageMetadata(iis, imagelndex);

int srcWidth = getWidth(imageIndex);
int srcHeight = getHeight(imageIndex);

// initialize values to -1
int dstWidth = -1;
int dstHeight = -1;
int srcRegionWidth = -1;
int srcRegionHeight = -1;
int srcRegionXOffset = -1;
int srcRegionYOffset = -1;
int xSubsamplingFactor = -1;
int ySubsamplingFactor = -1;

if (param == null)

param = getDefaultReadParam();

Iterator imageTypes = getImageTypes(imagelndex);
try {
/*
* get the destination BufferedImage which will
* be filled using the input image's pixel data
*/
bimage = getDestination(param, imageTypes,
srcWidth, srcHeight);

/*

* get Rectangle object which will be used to clip
* the source image's dimensions.

*/

Rectangle srcRegion = param.getSourceRegion();
if (srcRegion = null) {

srcRegionWidth = (int)srcRegion.getWidth();
srcRegionHeight = (int)srcRegion.getHeight();
srcRegionXOffset = (int)srcRegion.getX();
srcRegionYOffset = (int)srcRegion.getY();

/*

* correct for overextended source regions

*/

if (srcRegionXOffset + srcRegionWidth > srcWidth)
dstWidth = srcWidth-srcRegionXOffset;

else
dstWidth = srcRegionWidth;

if (srcRegionYOffset + srcRegionHeight > srcHeight)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

dstHeight = srcHeight-srcRegionYOffset;
else

dstHeight = srcRegionHeight;
b

else {

dstWidth = srcWidth;

dstHeight = srcHeight;

srcRegionXOffset = srcRegionYOffset = 0;

by

/*

* get subsampling factors

*/

xSubsamplingFactor = param.getSourceXSubsampling();
ySubsamplingFactor = param.getSourceYSubsampling();

/**
* dstWidth and dstHeight should be
* equal to bimage.getWidth() and bimage.getHeight()
* after these next two instructions
*/
dstWidth = (dstWidth-1)/xSubsamplingFactor + 1;
dstHeight = (dstHeight-1)/ySubsamplingFactor + 1;
by
catch (IIOException e) {
System.err.printin("Can't create destination BufferedImage");
by

raster = bimage.getWritableTile(0, 0);

/* using the parameters specified by the ImageReadParam
* object, read the image image data into the destination
* BufferedImage
*/

byte[] srcBuffer = new byte[srcWidth];
byte[] dstBuffer = new byte[dstWidth];
int jj;

int index;

try {
for (int j=0; j<srcHeight; j++) {
iis.readFully(srcBuffer, 0, srcWidth);

jj = j - srcRegionYOffset;
if (jj % ySubsamplingFactor == 0) {
ji /= ySubsamplingFactor;
if ((Gj >= 0) && (jj < dstHeight)) {
for (int i=0;i<dstWidth;i++) {
index = srcRegionXOffset+i*xSubsamplingFactor;
dstBuffer[i] = srcBuffer[index];
by
raster.setDataElements(0, jj, dstWidth,
1, dstBuffer);
by

O -

atch (IOException €) {
bimage = null;

}

return bimage;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

/**
* this method sets the image metadata for the image indexed by
* index imagelndex. This method is specific for the ch5 format
* and thus only sets the image width and image height
*/
private void setimageMetadata(ImagelnputStream iis,
int imagelndex) {
imagemd[imagelndex] = new ch5ImageMetadata();
try {
String s;
s = iis.readLine();
imagemd[imagelndex].imageWidth = Integer.parselnt(s.trim());
s = iis.readLine();
imagemd[imagelndex].imageHeight = Integer.parselnt(s.trim());
b

catch (IOException exception) {

b
¥

/**
* this method sets the stream metadata for the images represented
* by the ImagelnputStream iis. This method is specific for the
* ch5 format and thus only sets the numberImages field.
*/
private void setStreamMetadata(ImagelInputStream iis) {
streammd = new ch5StreamMetadata();
try {
String magicNumber = iis.readLine();
int numImages = Integer.parselnt(iis.readLine().trim());
streammd.numberImages = nhumImages;
imagemd = new ch5ImageMetadata[streammd.numberIimages];
by
catch (IOException exception) {
b
by

/**

* This method can only be used after the stream metadata
* has been set (which occurs in the setInput method).

* Else it will return a -1

*/

public int getNumImages(boolean allowSearch) {

return streammd.numberImages;

}

/**
* This method can only be used after the stream metadata
* has been set (which occurs in the setInput method).
* Else it will return a -1
*/
public int getHeight(int imagelndex) {
if (imagemd == null)
return -1;
checkIndex(imagelndex);

return imagemd[imagelndex].imageHeight;

}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

/**
* This method can only be used after the stream metadata
* has been set (which occurs in the setInput method).
* Else it will return a -1
*/
public int getWidth(int imagelndex) {
if (imagemd == null)
return -1;
checkIndex(imagelndex);

return imagemd[imageIndex].imageWidth;

}

private void checkIndex(int imagelndex) {
if (imagelndex >= streammd.numberImages) {
String argString = "imagelndex >= number of images";
throw new IndexOutOfBoundsException(argString);
b
if (imagelndex < minIndex) {
String argString = "imagelndex < minIndex";
throw new IndexOutOfBoundsException(argString);
b
b
by
ch5ImageWriter

The way metadata is used in this ImageWriter class is that the write method writes both the stream
and image metadata (see Table 5.3 and Listing 5.7). Because the write method might be called any
number of times for different images, a boolean variable (StreamMetadataWritten) is used to ensure
that the stream metadata is only written during the initial write method call.

The metadata that is being written must be obtained from the application and passed to the
ImageWriter. The application gets this metadata by instantiating IIOMetadata objects for the stream
and image metadata (ch5StreamMetadata and ch5ImageMetadata in this example), and then setting
them to the correct state.

Table 5.3. Relationship Between ImageWriter Methods and Metadata

ImageWriter Effect on Metadata
Method
Constructor Passes stream and image metadata into the ImageWriter.
write 1. If stream metadata hasn't already been encoded, it encodes stream
metadata.
2. Encodes image metadata.

Listing 5.7 ch5ImageWriter.java

package ch5.imageio.plugins;

import java.io.*;

import java.util.*;

import java.awt.*;

import java.awt.image.*;

import org.w3c.dom.*;

import javax.imageio.II0OImage;

import javax.imageio.ImageTypeSpecifier;
import javax.imageio.ImageWriter;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

HTPOIL javdx.lndygelo. tndaygevvriterdrdiil,

import javax.imageio.metadata.IIOMetadata;
import javax.imageio.metadata.lIOMetadataNode;
import javax.imageio.spi.ImageWriterSpi;

import javax.imageio.stream.ImagelnputStream;
import javax.imageio.stream.ImageOutputStream;

/**
* ch5ImageWriter.java -- this class provides the functionality to
* write an image of format chb.
*/
public class ch5ImageWriter extends ImageWriter {
private ImageOutputStream ios;
private boolean streamMetadataRead;

public ch5ImageWriter(ImageWriterSpi originatingProvider) {
super(originatingProvider);
streamMetadataRead = false;

by

/**
* this method is used to convert an ImageReader's image metadata
* which is in a particular format into image metadata that can be
* used for this ImageWriter. Primarily this is used for
* transcoding (format conversion). This ImageWriter does not
* support such conversions
*/
public IIOMetadata convertimageMetadata(IIOMetadata metadata,
ImageTypeSpecifier specifier,
ImageWriteParam param) {
return null;

b

/**

* this method is used to convert an ImageReader's stream metadata

* which is in a particular format into stream metadata that can

* be used for this ImageWriter. Primarily this is used for

* transcoding (format conversion). This ImageWriter does not

* support such conversions

*/

public IIOMetadata convertStreamMetadata(IIOMetadata metadata,
ImageWriteParam param) {

return null;

b

/**

* provide default values for the image metadata

*/

public IIOMetadata getDefaultimageMetadata(ImageTypeSpecifier specifier,
ImageWriteParam param) {

ch5ImageMetadata imagemd = new ch5ImageMetadata();

imagemd.initialize(256, 256); // default image size

return imagemd;

¥

/**

* provide default values for the stream metadata

*/

public IIOMetadata getDefaultStreamMetadata(ImageWriteParam param) {
ch5StreamMetadata streammd = new ch5StreamMetadata();
streammd.initialize(1); // default number of images

return streammd;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

/**
* write out the output image specified by index imageIndex using
* the parameters specified by the ImageWriteParam object param
*/
public void write(IIOMetadata metadata,
II0Image iioimage,
ImageWriteParam param) {
Node root = null;
Node dimensionsElementNode = null;
Raster raster = iioimage.getRaster();

/*

* Set stream metadata if it hasn't been set yet

*/

if (streamMetadataRead == false) {
root = metadata.getAsTree("ch5.imageio.ch5stream_1.0");
dimensionsElementNode = root.getFirstChild();
Node numberImagesAttributeNode

= dimensionsElementNode.getAttributes().getNamedItem("numberImages");

String numberImages = numberImagesAttributeNode.getNodeValue();
try {
ios.writeBytes("5\n");
ios.writeBytes(numberImages+"\n");
streamMetadataRead = true;
by
catch (IOException exception) {
by

by

ch5ImageMetadata imageMetadata = (ch5ImageMetadata)iioimage.getMetadata();
root = imageMetadata.getAsTree("ch5.imageio.ch5image_1.0");
dimensionsElementNode = root.getFirstChild();

Node widthAttributeNode = dimensionsElementNode.getAttributes(). getNamedItem(
= "imageWidth");
String widthString = widthAttributeNode.getNodeValue();

Node heightAttributeNode = dimensionsElementNode.getAttributes(). getNamedItem(
= "imageHeight");
String heightString = heightAttributeNode.getNodeValue();

int sourceWidth = Integer.parselnt(widthString);
int sourceHeight = Integer.parselnt(heightString);
int destinationWidth = -1;

int destinationHeight = -1;

int sourceRegionWidth = -1;

int sourceRegionHeight = -1;

int sourceRegionXOffset = -1;

int sourceRegionYOffset = -1;

int xSubsamplingFactor = -1;

int ySubsamplingFactor = -1;

if (param == null)
param = getDefaultWriteParam();

/*
* get Rectangle object which will be used to clip
* the source image's dimensions.

X/

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

~/

Rectangle sourceRegion = param.getSourceRegion();

if (sourceRegion '= null) {
sourceRegionWidth = (int)sourceRegion.getWidth();
sourceRegionHeight = (int)sourceRegion.getHeight();
sourceRegionXOffset = (int)sourceRegion.getX();
sourceRegionYOffset = (int)sourceRegion.getY();

/*

* correct for overextended source regions

*/

if (sourceRegionXOffset + sourceRegionWidth > sourceWidth)
destinationWidth = sourceWidth-sourceRegionXOffset;

else

destinationWidth = sourceRegionWidth;

if (sourceRegionYOffset + sourceRegionHeight > sourceHeight)
destinationHeight = sourceHeight-sourceRegionYOffset;
else
destinationHeight = sourceRegionHeight;
by
else {
destinationWidth = sourceWidth;
destinationHeight = sourceHeight;
sourceRegionXOffset = sourceRegionYOffset = 0;
by
/*
* get subsampling factors
*/
xSubsamplingFactor = param.getSourceXSubsampling();
ySubsamplingFactor = param.getSourceYSubsampling();

destinationWidth = (destinationWidth-1)/xSubsamplingFactor + 1;
destinationHeight = (destinationHeight-1)/ySubsamplingFactor + 1;

byte[] sourceBuffer;
byte[] destinationBuffer = new byte[destinationWidth];

try {
ios.writeBytes(new String(destinationWidth+ "\n"));

ios.writeBytes(new String(destinationHeight+ "\n"));

int jj;
for (int j=0; j<sourceWidth; j++) {
sourceBuffer= (byte[])raster.getDataElements(0, j, sourceWidth, 1, null);
ji = j - sourceRegionYOffset;
if (jj % ySubsamplingFactor == 0) {
jj /= ySubsamplingFactor;
if ((Gj >= 0) && (jj < destinationHeight)) {
for (int i=0;i<destinationWidth;i++)
destinationBuffer[i] =
= sourceBuffer[sourceRegionXOffset+i*xSubsamplingFactor];
ios.write(destinationBuffer, 0, destinationWidth);
ios.flush();

b
b
b

b
catch (IOException e) {
System.err.printin("IOException: " + e.getMessage());
b

}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public void setOutput(Object output) {
super.setOutput(output);

if (output == null)
throw new IllegalArgumentException("output is null");

if (!(output instanceof ImageOutputStream))
throw new IllegalArgumentException("output not an ImageOutputStream");

ios = (ImageOutputStream)output;
streamMetadataRead = false;
b

b

ch5StreamMetadata

This is the class used to hold the stream metadata (see Listing 5.8). For reading, its values are taken
from the input stream. For writing, its values must be set by the application. The document type
definition (DTD) for this class is the following:

<!ELEMENT ch5.imageio.ch5stream_1.00 (imageDimensions)>
<IATTLIST imageDimensions

numberImages CDATA #REQUIRED
>

Clearly, this is a very minimal set of stream metadata used for illustrative purposes. In practice, these
classes will be much more complicated.

Listing 5.8 ch5StreamMetadata.java

package ch5.imageio.plugins;

import java.io.UnsupportedEncodingException;
import java.util.ArrayList;

import java.util.List;

import javax.imageio.ImageTypeSpecifier;

import javax.imageio.metadata.IIOMetadata;
import javax.imageio.metadata.lIOMetadataNode;
import javax.imageio.metadata.IIOMetadataFormat;
import org.w3c.dom.Node;

/**
* ch5StreamMetadata.java -- holds stream metadata for the ch5 format.
* The internal tree for holding this metadata is read only
*/
public class ch5StreamMetadata extends IIOMetadata {
static final String
nativeMetadataFormatName = "ch5.imageio.ch5stream_1.0";

static final String[] metadataFormatNames = {
nativeMetadataFormatName

)o
public int numberImages;
public ch5StreamMetadata() {

super(nativeMetadataFormatName, metadataFormatNames);
numberImages = -1;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

by

public boolean isReadOnly() {
return true;

b

/**
* IIOMetadataFormat objects are meant to describe the structure of
* metadata returned from the getAsTree method. In this case,
* no such description is available
*/
public IIOMetadataFormat getMetadataFormat(String formatName) {
if (formatName.equals(nativeMetadataFormatName)) {
return null;
}else {
throw new IllegalArgumentException("Not a recognized format!");
b

by

/**
* returns the stream metadata in a tree corresponding to the
* provided formatName
*/
public Node getAsTree(String formatName) {
if (formatName.equals(nativeMetadataFormatName)) {
return getNativeTree();
}else {
throw new IllegalArgumentException("Not a recognized format!");
b

b

/**
* returns the stream metadata in a tree using the following format
* <IELEMENT chb5.imageio.ch5stream_1.0 (imageDimensions)>
* <IATTLIST imageDimensions
* numberImages CDATA #REQUIRED
*/
private Node getNativeTree() {
IIOMetadataNode node; // scratch node

IIOMetadataNode root =
new IIOMetadataNode(nativeMetadataFormatName);

// Image descriptor

node = new IIOMetadataNode("imageDimensions");
node.setAttribute("numberIimages”, Integer.toString(numberImages));
root.appendChild(node);

return root;

public void setFromTree(String formatName, Node root) {
throw new IllegalStateException("Metadata is read-only!");

b

public void mergeTree(String formatName, Node root) {
throw new IllegalStateException("Metadata is read-only!");

by

public void reset() {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

throw new IllegalStateException("Metadata is read-only!");

b

/**

* initialize the stream metadata element numberImages

*/

public void initialize(int numberImages) {
this.numberIlmages = numberImages;

b

b
[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

{Team LB] [ereousfonxia]

ch5ImageMetadata

This is the class used to hold the image metadata (see Listing 5.9). For reading, its values are taken
from the input stream. For writing, its values must be set by the application. The DTD for this class is
the following:

<IELEMENT ch5.imageio.ch5image_1.0 (imageDimensions)>
<IATTLIST imageDimensions

imageWidth CDATA #REQUIRED

imageHeight CDATA #REQUIRED
>

As was true for the ch5StreamMetadata class, this is a very minimal set of metadata used for
illustrative purposes, and in practice these classes will be much more complicated.

Listing 5.9 ch5ImageMetadata.java

package ch5.imageio.plugins;

import java.io.UnsupportedEncodingException;
import java.util.ArrayList;

import java.util.List;

import javax.imageio.ImageTypeSpecifier;

import javax.imageio.metadata.IlIOMetadata;
import javax.imageio.metadata.lIOMetadataNode;
import javax.imageio.metadata.lIOMetadataFormat;
import org.w3c.dom.Node;

/**
* ch5ImageMetadata.java -- holds image metadata for the ch5 format.
* The internal tree for holding this metadata is read only
*/
public class ch5ImageMetadata extends IIOMetadata {
static final String
nativeMetadataFormatName = "ch5.imageio.ch5image_1.0";

static final String[] metadataFormatNames = {
nativeMetadataFormatName

4

public int imageWidth;
public int imageHeight;

public ch5ImageMetadata() {
super(nativeMetadataFormatName, metadataFormatNames);
imageWidth = -1;
imageHeight = -1;

b

public boolean isReadOnly() {
return true;
by

/**
* IIOMetadataFormat objects are meant to describe the structure of

* metadata returned from the getAsTree method. In this case,
* no such description is available

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}

*/
public IIOMetadataFormat getMetadataFormat(String formatName) {
if (formatName.equals(nativeMetadataFormatName)) {
return null;
}else {
throw new IllegalArgumentException("Not a recognized format!");
b

¥

/**
* returns the image metadata in a tree corresponding to the
* provided formatName
*/
public Node getAsTree(String formatName) {
if (formatName.equals(nativeMetadataFormatName)) {
return getNativeTree();
}else {
throw new IllegalArgumentException("Not a recognized format!");
b

by

/**
* returns the image metadata in a tree using the following format
* <IELEMENT ch5.imageio.ch5image_1.0 (imageDimensions)>
* <IATTLIST imageDimensions
* imageWidth CDATA #REQUIRED
* imageHeight CDATA #REQUIRED
*/
private Node getNativeTree() {

IIOMetadataNode root =

new IIOMetadataNode(nativeMetadataFormatName);

IIOMetadataNode node = new IIOMetadataNode("imageDimensions");
node.setAttribute("imageWidth", Integer.toString(imageWidth));
node.setAttribute("imageHeight", Integer.toString(imageHeight));
root.appendChild(node);

return root;

b

public void setFromTree(String formatName, Node root) {
throw new IllegalStateException("Metadata is read-only!");

by

public void mergeTree(String formatName, Node root) {
throw new IllegalStateException("Metadata is read-only!");

¥

public void reset() {
throw new IllegalStateException("Metadata is read-only!");

by

/**
* initialize the image metadata elements width and height
*/
public void initialize(int width, int height) {
imageWidth = width;
imageHeight = height;
b

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ch5ImageReaderSpi

Listing 5.10 is identical to Listing 5.3, except that the metadata formats have now been defined so
non-null values are provided for the metadata-related objects.

Listing 5.10 ch5ImageReaderSpi.java

package ch5.imageio.plugins;

import java.io.*;

import java.util.*;

import javax.imageio.ImageReader;

import javax.imageio.spi.ImageReaderSpi;
import javax.imageio.stream.ImagelnputStream;

/**

* Simple, functional ImageReaderSpi used to understand how
* information regarding format name, suffices and mime types
* get passed to ImagelO static methods

*/

public class ch5ImageReaderSpi extends ImageReaderSpi {

static final String[] suffixes = {"ch5", "CH5"};
static final String[] names = {"ch5"};
static final String[] MIMETypes = {"image/ch5"};

static final String version = "1.00";
static final String readerCN = "ch5.imageio.plugins.ch5ImageReader";
static final String vendorName = "CompanyName";

//writerSpiNames
static final String[] wSN={"ch5.imageio.plugins.ch5ImageWriterSpi"};

//StreamMetadataFormatNames and StreamMetadataFormatClassNames
static final boolean supportedStandardStreamMetadataFormat = false;
static final String nativeStreamMFN = "ch5.imageio.ch5stream_1.00";
static final String nativeStreamMFCN = "ch5.imageio.ch5stream";

static final String[] extraStreamMFN = null;

static final String[] extraStreamMFCN = null;

//ImageMetadataFormatNames and ImageMetadataFormatClassNames
static final boolean supportedStandardImageMetadataFormat = false;
static final String nativeImageMFN = "ch5.imageio.ch5image1.00";
static final String nativelmageMFCN = "ch5.imageio.ch5image";

static final String[] extraImageMFN = null;

static final String[] extralmageMFCN = null;

public ch5ImageReaderSpi() {
super(vendorName,
version,
names,
suffixes,
MIMETypes,
readerCN, //readerClassName
STANDARD_INPUT_TYPE,
WSN, //writerSpiNames
false,
nativeStreamMFN,
nativeStreamMFCN,
extraStreamMFN,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

extraStreamMFCN,

false,

nativeImageMFN,

nativeImageMFCN,

extralmageMFN,

extralmageMFCN);
by

public String getDescription(Locale locale) {
return "Demo ch5 image reader, version " + version;

}

public ImageReader createReaderInstance(Object extension) {
return new ch5ImageReader(this);

}

/**

* This method gets called when an application wants to see if

* the input image's format can be decoded by this ImageReader.
* In this case, we'll simply check the first byte of data to

* see if its a 5 which is the format type's magic number

*/

public boolean canDecodelnput(Object input) {

boolean reply = false;

ImagelnputStream iis = (ImagelnputStream)input;

iis.mark(); // mark where we are in ImagelnputStream

try {
String magicNumber = iis.readLine().trim();
iis.reset(); // reset stream back to marked location
if (magicNumber.equals("5"))
reply = true;

by

catch (IOException exception) {

by

return reply;

b

b

ch5ImageWriterSpi

Listing 5.11 is identical to Listing 5.4, except that the metadata formats have now been defined so
non-null values are provided for the metadata-related objects.

Listing 5.11 ch5ImageWriterSpi.java

package ch5.imageio.plugins;

import java.io.*;

import java.util.*;

import java.awt.image.BufferedImage;

import javax.imageio.ImageWriter;

import javax.imageio.ImageTypeSpecifier;
import javax.imageio.spi.ImageWriterSpi;

import javax.imageio.stream.ImagelnputStream;

/**
* Simple, functional ImageWriterSpi used to understand how

* information regarding format name, suffices and mime types
* get passed to ImagelO static methods

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

*/)
public class ch5ImageWriterSpi extends ImageWriterSpi {

static final String[] suffixes = {"ch5", "CH5"};
static final String[] names = {"ch5"};
static final String[] MIMETypes = {"image/ch5" };

static final String version = "1.00";

static final String writerClassName = "ch5.imageio.plugins.ch5ImageWriter";

static final String vendorName = "Company Name";

static final String[] readerSpiNames = {"ch5.imagio.plugins.ch5ImageReaderSpi"};

/*

static final String nativeStreamMetadataFormatName = "ch5.imageio.ch5stream_1.0";
static final String[] streamMetadataFormatNames = {nativeStreamMetadataFormatName};
static final String nativelmageMetadataFormatName = "ch5.imageio.ch5image_1.0";
static final String[] imageMetadataFormatNames = {nativeImageMetadataFormatName};

*/

static final String nativeStreamMetadataFormatName = "ch5.imageio.ch5stream_1.00";
static final String nativeStreamMetadataFormatClassName = "ch5.imageio.ch5stream”;
static final String[] extraStreamMetadataFormatNames = {null};

static final String[] extraStreamMetadataFormatClassNames = {null};

static final String nativelmageMetadataFormatName = "ch5.imageio.ch5image_1.00";
static final String nativeImageMetadataFormatClassName = "ch5.imageio.ch5image";
static final String[] extraImageMetadataFormatNames = {null};

static final String[] extralmageMetadataFormatClassNames = {null};

public ch5ImageWriterSpi() {
super(vendorName,
version,
names,
suffixes,
MIMETypes,
writerClassName,
STANDARD_OUTPUT_TYPE,
readerSpiNames,
false,
nativeStreamMetadataFormatName,
nativeStreamMetadataFormatClassName,
extraStreamMetadataFormatNames,
extraStreamMetadataFormatClassNames,
false,
nativelmageMetadataFormatName,
nativelmageMetadataFormatClassName,
extralmageMetadataFormatNames,
extralmageMetadataFormatClassNames);

}

public String getDescription(Locale locale) {
return "Demo ch5 image writer, version " + version;

}

public ImageWriter createWriterInstance(Object extension) {
return new ch5ImageWriter(this);

}

/**
* This method gets called when an application wants to see if

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

* the corresponding ImageWriter can encode an image with

* a ColorModel and SampleModel specified by the ImageTypeSpecifier

*/

public boolean canEncodeImage(ImageTypeSpecifier its) {

if (its.getBufferedImageType() == BufferedImage.TYPE_BYTE_GRAY)
return true;

else
return false;

by

b
[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Summary

We began this chapter by looking at the ImagelO class and how its static methods are used to find
appropriate ImageReaders and ImageWriters. This was done through the use of service provider
classes (ImageReaderSpi and ImageWriterSpi), which are small classes that describe the functionality
of their corresponding ImageReaders and ImageWriters. The process of discovering available
ImageReaders and ImageWriters is done at runtime through the use of plug-ins so that additional
functionality can be added to the Image I/O package at any time. We then described the IIOParam
subclasses, ImageReaderParam and ImageWriterParam, which provide control over the reading and
writing process. We next considered the IIOMetadata subclasses, which allows the user to access both
the stream's metadata and the image's metadata when reading and to provide this metadata when
writing. Last, we described how to write your own ImageReader and ImageWriter plug-ins in order to
work with your own image formats.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
Chapter 6. Java Advanced Imaging
IN THIS CHAPTER

® Introduction

® JAI Image Classes

® The JAI Class

® JAI IO

® Advanced Topics

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

{Team LB] [ereousfonxia]
Introduction

To begin, let's look at a simple program written using the Java Advanced Imaging (JAI) package. This
program (shown in Listing 6.1) takes as parameters an image filename and a scale factor. It loads the
image, scales its dimensions, and displays the results.

Listing 6.1 Intro.java

package ché6;

import java.awt.*;

import javax.swing.*;

import java.awt.image.renderable.ParameterBlock;
import javax.media.jai.JAI;

import javax.media.jai.RenderedOp;

/**
Intro.java -- objects of this class perform the following steps:
1. reads an image file
2. scales the image dimensions using provided scale factor
3. displays the result

*/

public class Intro extends JFrame {

public Intro(String filename, String scaleFactor) {
ParameterBlock pb;

/*
create new ParameterBlock,
add filename parameter,
create RenderedOp
*/
pb = new ParameterBlock();
pb.add(filename);
RenderedOp inputRO = JAI.create("fileload", pb);

/*
create new ParameterBlock,
add a source and add a scale parameter,
create RenderedOp
*/
pb = new ParameterBlock();
pb.addSource(inputRO);
float scale = Float.parseFloat(scaleFactor);
pb.add(scale); // x dimension scale factor
pb.add(scale); // y dimension scale factor
RenderedOp scaledRO = JAl.create("scale", pb);

// display result
getContentPane().add(new chéDisplay(scaledRO));

pack();
show();

}

public static void main(String[] args) {
if (args.length != 2)
System.err.printin("Usage: filename scaleFactor");
else

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

new Intro(args[0], args[1]);
b
b

By examining Listing 6.1, you will notice the pattern that is underlying much of JAI's functionality.
That pattern follows these steps:

1. Set up a ParameterBlock with the necessary sources and parameters according to the
corresponding operation.

2. Call the JAI class's static method create with the operation name and the ParameterBlock.
3. Use the result of this operation as a source for subsequent operations.

Note that this listing and most listings in this chapter make use of the chéDisplay class defined in

Listing 6.2 for displaying images.
Listing 6.2 ch6Display.java

package ché6;

import java.awt.*;
import javax.swing.*;
import java.awt.geom.*;
import java.awt.image.*;

/**
Very simple class for displaying RenderedImages
*/
public class ch6Display extends JPanel {
public chéDisplay(RenderedImage image) {
super();
source = image;
setPreferredSize(new Dimension(source.getWidth(),
source.getHeight()));
by

public synchronized void paintComponent(Graphics g) {
Graphics2D g2d = (Graphics2D)g;

// account for borders and source image offsets
Insets insets = getlnsets();

int tx = insets.left - source.getMinX();

int ty = insets.top - source.getMinY();

AffineTransform af;
af = AffineTransform.getTranslateInstance(tx, ty);

// Translation moves the entire image within the container
g2d.drawRenderedImage(source, af);

}

protected RenderedImage source = null;

}

As you will see in the remainder of this chapter, not only is the Java Advanced Imaging package
simple to use, but it also has many useful features not illustrated in this example, such as the ability
to

® Go easily back and forth between Java 2D classes and JAI classes.

® Provide resolution independent operations.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® Work on remote images.

® Add your own image processing operators.

® Use float and double data types for pixel values.

® Use native code to increase speed of image processing operations.

In this chapter, we will start off describing underlying concepts such as imaging models. We will then
look at some important JAI classes. Then we will look into the different JAI operators that are
provided and how they are to be used. Finally, we will look at some more advanced topics such as
remote image processing, renderable images, and creating your own image processing operators.

Imaging Models

In the original AWT package, the main class used for image processing is the java.awt.Image class.
This class doesn't store image data, but it contains methods and resources to allow this data to be
displayed and manipulated. The image data is obtained through an ImageConsumer, which registers
itself with an ImageProducer. This ImageConsumer instructs the ImageProducer to start producing
data. It is important to note that the ImageConsumer never requests data for a particular pixel
location. It just asks that the image production begin, and then processes data as it arrives. This
behavior specifies a push imaging model, as illustrated in Figure 6.1.

Figure 6.1. Java's push imaging model.

In this figure, a request from the final ImageConsumer causes the initial ImageProducer to begin image
production. As the image data is produced it passes through the ImageConsumer/ImageProducer
pipeline until it is received by the final ImageConsumer. In this model, the final ImageConsumer might
be processing or displaying image data it has received while the initial ImageProducer is still producing
the rest of the image data. Note that for the ImageConsumer/ImageProducer pairs, the
ImageConsumers are usually java.awt.image.ImageFilters and the ImageProducers are usually
java.awt.image.FilteredImageSources.

In the Java2D package, the main class used for image processing is the java.awt.image.BufferedImage

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

class. Unlike the Image class, Bufferedimage objects provide storage forrimage data. Whenever a new
BufferedImage is created, its image pixels are immediately calculated and made available to any
object that requests them. This behavior specifies an immediate mode imaging model.

As illustrated in Figure 6.2, the requesting objects are usually BufferedImageOps. When a
BufferedImageOp's filter method is called, it creates a new BufferedImage whose data can be used by
the next BufferedImageOp. Note that Figure 6.2 is just one example of the Java immediate mode
imaging model. An analogous interface called RasterOp performs the same function for Rasters that
BufferedImageOps performs for BufferedImages. Thus, this figure could have also been diagrammed
using RasterOps and WritableRasters.

Figure 6.2. Java's immediate mode imaging model.

In the JAI package, the main class used for image processing is the javax.media.jai.PlanarImage class.
PlanarImage objects don't make their data immediately available, but wait until an object requests it;
at which time, all its pixel data is calculated before being passed on. This behavior specifies a new
Java imaging model referred to as the pul/l imaging model, as illustrated in Figure 6.3.

Figure 6.3. Java's pull imaging model.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In this figure, when the final RenderedIimage is requested, its corresponding RenderedOp attempts to
create it. To do so, it requests the data from its source RenderedOps, which must then create their
RenderedImages. These requests work their way to the original RenderedOp, which will have no image
sources and will be able to create its RenderedImage without making any further requests. In each
case, only after all its image data is created will a RenderedOp object provide its RenderedImage to the
requesting object.

BufferedImage Revisited

In Chapter 4, "The Immediate Mode Imaging Model," the BufferedImage class was described as having

a Raster for holding and accessing pixel data and a ColorModel for pixel data interpretation. Further
understanding of a BufferedImage's behavior can be obtained by examining the two interfaces it
implements: the java.awt.image.RenderedImage and java.awt.image.WritableRenderedImage interfaces.
The RenderedImage interface describes the functionality required to provide tiled, read only images in
the form of a Raster. The WritableRenderedImage interface describes the additional functionality
required to provide tiled, writable images in the form of a WritableRaster, which is a Raster subclass.
Thus, a BufferedImage can provide its image data as either a Raster or a WritableRaster.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
JAl Image Classes

The javax.media.jai.PlanarImage class is an abstract class that also implements the RenderedImage
interface, so any concrete PlanarImage subclass has the capability to provide image data in a Raster to
objects requesting its data. The PlanarImage class doesn't implement the WritableRenderedImage
interface, but one subclass that does have this functionality is the javax.media.jai.TiledImage class.
The TiledImage class is the main class for performing image processing directly on pixel data. Another
important PlanarImage subclass is the javax.media.jai.RenderedOp class. This class doesn't implement
the WritableRenderedImage interface, but does provide methods for data creation through a set of
operators.

Thus, a TiledImage object allows you to edit the pixel data yourself, whereas a RenderedOp object
edits the pixel data for you according to its corresponding operator. We will examine these three
classes in detail starting with the PlanarImage. At the end of this chapter, we will examine two other
PlanarImage subclasses: RenderableOp and ImageOp. The RenderableOp class performs a function
similar to the RenderedOp class except that it is meant to be used with rendering independent
RenderableImages instead of rendering dependent RenderedIimages. This distinction will be made
clearer when RenderableOps are discussed. The final subclass, ImageOp, is used to carry out the
operations specified in the RenderedOp and RenderableOp objects. This class will be discussed in the
"Extending JAI" section.

PlanarImage

In order to better understand the Planarimage class, we will discuss the following topics:

® Image layout
® Properties
® Sources

® Tiles
Image Layout

A PlanarImage contains an object of class javax.media.jai.ImagelLayout, which is used to hold
information describing the image dimensions (minimumXValue, minimumYValue, width, height),
information describing pixel access (SampleModel), information describing pixel interpretation
(ColorModel), and information describing the tile grid layout (tileGridXOffset, tileGridYOffset, tileWidth,
tileHeight). The PlanarImage class contains accessor methods so that these values can be read
without going through the contained ImagelLayout object.

Properties

PlanarImages not only contain pixel data, but they also contain a set of properties. These properties
are often referred to as the image's metadata (see Chapter 5, "Image I/O Package," for more
information on metadata). Typical properties for a new PlanarImage are the following:
image_min_x_coord, image_min_y_coord, image_width, and image_height. However, depending on the
image's initial format, the number and type of initial properties can vary. As will be discussed when
describing the set of statistical operators, some operations can add to this property list. For example,
the "mean" operation provides a property called mean that provides the average value of each of the
image's bands. The value of any property can be found as follows:

public Object getProperty(String name)

where the return value must be cast into the correct class, that is,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

double[] meanValuesForEachBand = (double [])planarImage.getProperty("mean");

You can also add properties to a PlanarImage, which is a convenient way to keep created metadata
with its corresponding image. This is done using the following PlanarImage method:

void setProperty(java.lang.String nhame, java.lang.Object value)
Sources and Sinks

With any image, there can be one or more images that were used to derive it. For example, if imageA
and imageB were added to create imageC, imageA and imageB could be considered imageC's source
images. In JAI, a PlanarImage object keeps a reference to its sources and because its sources are also
PlanarImages, they keep references to their sources. Thus, a PlanarImage represents much more than
a single image: It is part of a graph describing the history of its creation. For this reason, a
PlanarImage is often considered part of a directed acyclic graph (DAG) that is a graph in which the
connection between nodes is uni-directional and once you travel from one node to another, there is no
way to get back again. In these JAI DAGs, each PlanarImage is considered a node and the reference
from one PlanarImage to another is considered a graph edge (see Figure 6.4).

Figure 6.4. A reference to PImageF actually contains information about all PlanarImages
used to create it.

A PlanarImage's sources can be found using one of the following methods:

public java.util.Vector getSources()
public PlanarImage getSourceImage(int index)

The latter one is often used in conjunction with the following PlanarImage method:
public int getNumSources()
Caution

Images and BufferedImages contain a getSource method, but this method is very different
from the getSources method that was just discussed. The getSource method provides a
reference to an ImageProducer for use with the push imaging model.

A PlanarImage also has sinks, which refer to the PlanarImages that the PlanarImage helped create. The

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

use of sinks isn't completely analogous to the use of sources because of the way JAI defines reachable
nodes. This definition is important because a node that isn't considered reachable is available to be
garbage collected. The definition states that any node in a DAG that has an external reference is
reachable and any node that is a source to a node with an external reference is reachable. Any other
node in the DAG is unreachable and can be garbage collected.

For example, referring back to Figure 6.4, if there were a reference to PImageF, all nodes in that DAG
would be reachable and none would be garbage collected. On the other hand, if there were no
external references to PImageF and there was an external reference to PImageE instead, PImageF
would be unreachable and would eventually be garbage collected. What makes this confusing is that if
PImageF hasn't been garbage collected, using PImageE's getSinks method can provide an external
reference to PImageF; at which point it becomes reachable. Therefore, the difficulty of working with
sinks is that depending on the DAG's external references and the efficiency of the garbage collector, a
PlanarImage's sinks might or might not exist.

Tiles

Tiles are rectangular segments of a Raster that allow you to process or display particular regions of an
image instead of trying to work with the entire image at once. This is very useful for large images that
might not fit completely into memory. All image tiles have the same width and height, so they divide
the Raster into a rectangular grid. By default, a tile has the same dimensions as its corresponding
image, meaning that its Raster is composed of a single tile.

Note

Tiles can lie outside the bounds of a Raster; in which case, those pixel values are
considered undefined.

A tile contains the same pixel bands as its associated Raster and is used to access that Raster's data.
One way to access this data is through the public Raster getTile(int x, int y) method, which will return
the tile associated with tile index X, y. Because the returned object is a Raster and not a
WritableRaster, this method can be used to get tiles for read-only purposes. The ability to provide
changeable Raster data isn't part of the PlanarImage class, but is available in its TiledImage subclass.
As will be described in the following section, the TiledImage class provides management of the
writable tiles so that if more then one object has a reference to the same writable tile, the TiledImage
object can be used to inform them all if a change is made to that data.

TiledImage

The javax.media.jai.TiledImage class is JAI's closest analogy to the BufferedImage class. You can
roughly think of it as taking a BufferedImage and adding the necessary functionality to allow it to be
used in the JAI package. The three constructors for TiledImages are as follows:

TiledImage(int minX, int minY, int width, int height,
int tileGridXOffset, int tileGridYOffset,
java.awt.image.SampleModel tileSampleModel,
java.awt.image.ColorModel colorModel)

TiledImage(java.awt.image.RenderedImage source,
boolean areBuffersShared)

TiledImage(java.awt.image.RenderedImage source,
int tileWidth, int tileHeight)

where the first constructor creates a TiledImage from the provided parts, whereas the second and
third constructors create TiledImages using a RenderedIimage to supply these parts. The second
constructor provides the added functionality of being able to share the data in the RenderedImage,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

whereas the third constructor allows you to retile this data as it is being copied. For examples of how
these constructors are used, the first constructor is demonstrated in Listing 6.14 and the second and
third constructors are demonstrated in Listing 6.3.

The TiledImage class implements both the RenderedImage and WritableRenderedImage interfaces so
that it can provide read-only and writable tiles. To obtain read-only tiles, use the same method that
was discussed for PlanarImage, namely getRaster. In order to edit tiles, one of the following three
ways should be used.

The first way is through the public WritableRaster getWritableRaster(int x, int y) method, which returns
a WritableRaster so that you can edit individual pixels or samples using methods previously discussed
in Chapter 4, namely setPixel, setPixels, setDataElements, setSample, and setSamples methods. All
these methods are declared in the WritableRenderedImage interface.

When using the getWritableTile method, care must be taken whenever the data contained in one of the
tiles is changed. This is because the getWritableTile method doesn't make a copy of the Raster's data,
so all objects that call getWritableTile using the same tile index will obtain a reference to the same
writable tile. The best way to ensure that each of these objects is aware of any changes is for each
object interested in a particular writable tile to register itself with the TiledImage object. Then through
the use of appropriate events, each of these objects can be kept informed about any changes to that
tile. The next section will describe this process in more detail.

A second way to edit tile data is to use one of the following TiledImage methods to overwrite all or
part of the tile data using a Raster:

public void setData(Raster r)
public void setData(Raster r, Roi roi)

In the first method, all regions of the TiledImage data that overlap the provided Raster will be set to
the Raster's data values. All regions of the TiledImage outside the Raster's bounds will be unchanged.
In the second setData method, a javax.media.jai.ROI (region of interest) object is provided. A ROI
object is a single band image which contains a threshold value. All ROI pixels greater than or equal to
this threshold value are considered on and all ROI pixels less than this threshold value are considered
off. The way the ROI object is used in this setData method is that it is overlaid on top of the provided
Raster. Then only the Raster pixels that correspond to on ROI pixels will be used to set the tile data.
Thus, if the on ROI pixels make up a circle, only the tiled data corresponding to that circle will be set.
All tiled data outside of that circle will be unchanged.

The last way to edit Raster data is to simply use the TiledImage's public Graphics2D createGraphics()
method to obtain a Graphics2D object that can be used for drawing directly on the WritableRaster.

TiledImage Events

Because any number of objects can have an interest in a particular tile, there needs to be some
mechanism for finding out if this tile's data has changed. This can be done by having these objects
register themselves as java.awt.image.TileObservers using the TiledImage's addTileObserver method. In
order to become a TileObserver, you must implement the java.awt.image.TileObserver interface and
define the

public void tileUpdate(WritableRenderedImage source,
int tileX, int tileY, boolean willBeWritable)

method. Then whenever a tile is about to be updated or released, this information is sent to the
TileObserver using the tile index (tileX, tileY) and a willBeWritable variable, which specifies whether that
tile is about to be updated (willBeWritable == true) or if it is about to be released (willBeWritable ==
false). Each TiledImage object uses its getWritableTile method and its releaseWritableTile method to
decide when to send out tile update events.

Basically, each getWritableTile call adds an external reference to a tile, and each releaseWritableTile
call removes an external reference from a tile. Thus, a tile is considered "about to be updated" when
it goes from a state in which no object has an external reference to it as a writable tile to a state in
which an object has called getWritableTile for that tile.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Similarly, a tile is considered "about to be released" when it goes from a state in which at least one
object has an external reference to it as a writable tile to a state in which the last object that has such
a reference releases it by calling releaseWritableTile. Note that the TiledImage's setData method
initially calls the getWritableTile method for each affected tile before it changes the pixel data and then
calls the releaseWritableTile method for each tiles when it is done. Thus, if there are no other external
references to the tile of interest, the setData method will generate two tile update events. This can be
demonstrated in Listing 6.3, which uses both the getWritableTile method and the setData method to
change the TileImage data. One last point is that using a Graphics2D object to write on a TiledImage
will also generate tile update events for all affected tiles.

Note

Throughout this section we talk about TileObserver events, but this is done only for
descriptive purposes. There is no actual java.awt.Event sent to the TileObservers.

Listing 6.3 TileTester.java

package ché6;

import java.awt.*;

import java.awt.image.*;

import javax.swing.*;

import javax.media.jai.*;

import javax.media.jai.widget.*;

public class TileTester extends JFrame implements TileObserver {

/**
TileTester.java - takes two images of the same size and uses
tiles from the first image to edit tiles in the second image.
*/
public TileTester(String filenamel, String filename2) {
RenderedOp inputRO1 = JAl.create("fileload", filenamel);
RenderedOp inputRO2 = JAl.create("fileload", filename2);
if ((inputRO1.getWidth() != inputRO2.getWidth()) ||
(inputRO1.getHeight() !'= inputRO2.getHeight())) {
System.err.print("Images must have same dimensions ");
System.err.printin("for this example to run properly");
System.exit(1);
by

/*

Create two TiledImages, one for each RenderedOp.

We are specifying the tile size as half the
width and height of the source RenderedOps

Thus, each TiledImage will have 4 tiles,
tile(0,0), tile(0,1), tile(1,0) and tile(1,1);

*/

TiledImage til = new TiledImage(inputRO1,
inputRO1.getWidth()/2,
inputRO1.getHeight()/2);

TiledImage ti2 = new TiledImage(inputRO2,
inputRO2.getWidth()/2,
inputRO2.getHeight()/2);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

//addTileObserver for the 2nd TiledImage
ti2.addTileObserver(this);

//ti2copy will copy data from ti2's DataBuffer
TiledImage ti2copy = new TiledImage(ti2, false);

//ti2share will share ti2's DataBuffer
TiledImage ti2share = new TiledImage(ti2, true);

/*
Force rendering of ti2copy and ti2share.
Rendering either will cause ti2 to be rendered.
Displaying them will also cause them to be rendered,
but it happens in a separate thread. This way we
have more control.

*/

Raster[] tmpR;

tmpR = ti2copy.getTiles(); // render ti2copy

tmpR = ti2share.getTiles(); // render ti2share

// now display the TiledImage
getContentPane().setLayout(new GridLayout(2,2));
getContentPane().add(new chéDisplay(til));
getContentPane().add(new chéDisplay(ti2));
getContentPane().add(new chéDisplay(ti2copy));
getContentPane().add(new chéDisplay(ti2share));

pack();
show();

/*
take tile(0,0) from TiledImage til and use it to replace
tile(0,0) in TiledImage ti2.

This will only effect ti2 and ti2share, not ti2copy.

Also, the setData method will cause ti2 to generate two tile
update events. One for when tile with index 0,0 is about to
become writable and one when it is about to be released.

Both of which happen implicitly since there are no calls to
getWritableTile or releaseWritableTile

*/

Raster r00 = til.getTile(0,0);
ti2.setData(r00);
repaint();

/*
copy tile(1,1) from TiledImage t1 and use it to
replace tile(1,1) in ti2.
Again ti2 generates two tile update events.
Both of these happen explicitly;
one when getWritableTile is called and one
when releaseWritableTile is called
*/
Raster rill = til.getTile(1,1);
WritableRaster wr = ti2.getWritableTile(1,1);
wr.setRect(0,0,ri11);
ti2.releaseWritableTile(1,1);
repaint();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

J

/*
this method gets called to handle any tile update events
*/
public void tileUpdate(WritableRenderedImage source,
int tileX,
int tiley,
boolean willBeWritable) {
System.out.printin("Tile("+tileX+","+tileY+")");
if (willBeWritable)
System.out.printin(" is writable");
else
System.out.printin(" is not writable");
b

/**
input should be two filenames representing equal sized images
*/
static public void main(String[] args) {
if (args.length = 2)
System.err.printin("Usage: TileTester filenamel filename2 ");
else
new TileTester(args[0], args[1]);
by

b
The output of Listing 6.3 will be as follows:

Tile(0,0) is writable
Tile(0,0) is not writable
Tile(1,1) is writable
Tile(1,1) is not writable

RenderedOp

Another important PlanariImage subclass is the javax.media.jai.RenderedOp class. The objects of this
class store information necessary to carry out image processing operations. This information consists
of an operation name, a java.awt.image.renderable.ParameterBlock (containing sources and
parameters), and a java.awt.RenderingHints object, which provide hints for how the RenderedOp object
should perform its image rendering. Each one of these items will be described in detail later in this
section.

Because a PlanarImage contains a reference to each of its source PlanarImage's, a RenderedOp object
contains a reference to each of its source PlanarImages (which could be RenderedOp object or another
PlanarImage subclass), thus RenderedOp objects can be viewed as a DAG just as PlanarImage objects
were (refer to Figure 6.4 and Figure 6.5). What is interesting about a DAG consisting of RenderedOp
objects is that a particular RenderedOp object can describe the complete set of image processing
operations, source images, and parameters necessary to derive its RenderedImage from the original
source images.

Figure 6.5. Being part of a DAG, the bottom RenderedOp contains all the information
necessary to load two images, invert them, add them together, and store them.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When it is time for the final RenderedOp in the RenderedOp DAG to be rendered, it pulls the data from
its sources, which in turn, pulls the data from their sources, and so on. Thus, in order for one
RenderedOp node to be rendered, all the preceding RenderedOps must be rendered. Of course, if a
RenderedOp has already been rendered, it will not be rerendered unless a source or a parameter is

changed. (See the "RenderingChangeEvents" section for more information on how changing
parameters and sources can cause a RenderedImage to be rerendered.)

When a RenderedOp is rendered, it creates a RenderedImage. This rendering usually occurs in one of
two ways: with an explicit call to its getRendering method or by an implicit call to this method. This
latter situation occurs whenever an object tries to use the RenderedIlmage data or tries to find out
information regarding some of the RenderedImage's metadata, such as image width or image height.
Another way a rendering can be performed is by using the createRendering method. This method
creates a rendering without marking the RenderedOp node as being rendered. The importance of this
classification will be described in the "RenderingChangeEvents" section. Before this can be discussed,
we first need to examine the different parts of a RenderedOp: the operation, the parameter block, and
the rendering hints.

Operations

With respect to RenderedOps, an operation is simply a String specifying how to create a destination
RenderedImage. Some examples of valid operations are add, addConst, and invert, where the first
operation adds two source images, the second operation adds a source image to an array of constants
(one constant per image band), and the last operation inverts a source image.

Each allowable operator corresponds to a class implementing the javax.media.jai.OperationDescriptor
interface. Each of these classes describes how their corresponding operation works. They also
describe the number of source objects and the number and types of parameters they require. For
example, operator descriptor classes for the previously listed operations are
javax.media.jai.AddDescriptor, javax.media.jai.AddConstDescriptor, and javax.media.jai.InvertDescriptor.
OperationDescriptor classes will be covered more completely in the later section entitled "Extending

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Another class that will be discussed in the "Extending JAI" section is the
javax.media.jai.OperationRegistry. All allowable operations must be registered in order for them to be
used. In Listing 6.4, the OperationRegistry object is used to display the set of registered operations.

Listing 6.4 ListRegistry.java

package ché6;

import javax.media.jai.JAI;
import javax.media.jai.OperationRegistry;
import javax.media.jai.RegistryMode;

/**
lists all allowable JAI operations
*/
public class ListRegistry {
public ListRegistry() {
or = JAIL.getDefaultInstance().getOperationRegistry();
String[] modeNames = RegistryMode.getModeNames();
String[] descriptorNames;

for (int i=0;i<modeNames.length;i++) {
System.out.printin("For registry mode: " + modeNames[i]);

descriptorNames = or.getDescriptorNames(modeNames[i]);
for (int j=0;j<descriptorNames.length;j++) {
System.out.print("\tRegistered Operator: ");
System.out.printin(descriptorNames[j]);
}
}
}

public static void main(String[] args) {
new ListRegistry();

}

private OperationRegistry or;

}
ParameterBlock

The java.awt.image.renderable.ParameterBlock class is used to encapsulate information regarding
sources and parameters necessary for a particular operation to be carried out. For example, for an
add operation, the corresponding ParameterBlock would need to contain two sources. For the addConst
operation, it would need to contain one source and one array of constants (one for each band), and
for the invert operation, a single source is all that is required. To place a PlanarImage source in a
ParameterBlock one can use the ParameterBlock's addSource method, and to place a parameter in a
ParameterBlock one can use its add method. For example, a ParameterBlock that could be used for an
addConst operation is as follows:

ParameterBlock pb = new ParameterBlock()
pb.addSource(planarImageSource);
pb.add(constantDoubleArray);

One last note regarding ParameterBlocks is that once a ParameterBlock is created it can be changed
using one of the ParameterBlock's set or setSource methods. For example, to reuse the preceding
ParameterBlock to perform an addConst operation on another source image, simply use

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

setSource(newPlanarImageSource, 0); //where 0 refers to the source index

As will be discussed in the "RenderingChangeEvents" section, changing a ParameterBlock contained
within a RenderedOp causes the parts of the DAG dependent on that ParameterBlock to change. So by
simply changing a contained ParameterBlock, not only will its associated operation be carried out
again, but all operations dependent on the created RenderedImage will be redone.

RenderingHints

As described in Chapter 3, "Graphics Programming with the Java2D API," and Chapter 4, "The
Immediate Mode Imaging Model", the java.awt.RenderingHints class provides hints for use when
creating a RenderedImage. All these hints have default values, so a null can be used whenever a
RenderingHints object is expected. These default values are considered the global set of rendering
hints. Whenever a RenderedOp is created using the JAI's create method, a non-null or local set of
rendering hints can be passed to it in order to override one or more global rendering hints.

At the end of this chapter, when we discuss RenderableImages, you will see that a single set of local
rendering hints can be provided to the final RenderableOp in a RenderableOp DAG, and that set will be
combined with the global set and used for all operations in that DAG. This is unlike a RenderedOp DAG
in which every node can have its own set of local rendering hints.

RenderingChangeEvents

When a RenderedOp is rendered using the getRendering method (either implicitly or explicitly) it is
marked as being rendered. After this occurs, any time it gets rerendered it sends out a
javax.media.jai.RenderingChangeEvent event to any object that had registered itself as being interested
in these events. Because the RenderingChangeEvent is a subclass of the
java.beans.PropertyChangeEvent, any object interested in receiving RenderingChangeEvents can
implement the PropertyChangeListener interface and register themselves as such using the
PlanarImage's addPropertyListener method.

An interesting aspect of the RenderedOp class is that whenever a RenderedOp node is created, it
registers itself as a PropertyChangeListener for all of its immediate source nodes. This way, whenever
one of these source nodes gets rerendered, it can also rerender itself. In the same manner, if any
node in the RenderedOp DAG gets rerendered, all the following RenderedOp nodes will rerender
themselves. The question now is: what can make a RenderedOp node rerender itself in order to start
this process? The answer is any change in its operation, or its ParameterBlock object or its
RenderingHints object. Thus, if in Figure 6.5, you change the filename contained in a ParameterBlock in
one of the top RenderedOp nodes, that RenderedOp and all the dependent RenderOp nodes will
rerender their images, causing the final RenderedImage to change.

Caution

If you want to change either a source or a parameter in a ParameterBlock, you should go
through the RenderedOp's setSource or setParameter methods. These methods get passed
to the underlying ParameterBlock where they take effect. Changes to the original
ParameterBlock do not have any effect in the DAG because they are cloned for use by the
RenderedOp object.

An example of this situation appears in Listing 6.5. In this listing, a PlanarImage is created, rotated,
and displayed. The name of the file to be loaded is then changed in the initial ParameterBlock, causing
the corresponding RenderedOp to rerender its image. This RenderedOp sends out a
RenderingChangeEvent so the next RenderedOp also rerenders its image. When run, Listing 6.5
displays the image corresponding to the first filename adjacent to a rotated version of this image.
After a delay of two seconds, both images change to depict the change in the name of the file to be
loaded.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Listing 6.5 RenderingChangeEventTest.java

package ché6;

import java.awt.*;

import java.io.*;

import java.util.*;

import javax.swing.*;

import java.awt.image.renderable.ParameterBlock;
import java.awt.image.RenderedImage;

import javax.media.jai.JAI;

import javax.media.jai.PlanarImage;

import javax.media.jai.RenderedOp;

/**
RenderingChangeEventTest.java -- objects of this class
1. create a RenderedOp by loading filenamel
2. create a 2nd RenderedOp representing rotation
of the first RenderedOp
3. renders and displays both RenderedOps
4. changes the input filename used in the 1st RenderedOp
to filename2 which generates a RenderingChangeEvent causing
the rotated image to change.
*/

public class RenderingChangeEventTest extends JFrame {

public RenderingChangeEventTest(String filenamel, String filename2) {
this.filename2 = filename2;
RenderedOp inputRO = JAl.create("fileload", filenamel);
RenderedOp rotatedRO = createRotatedImage(inputRO);

/*
Force rotatedRO to be rendered. This is not usually needed,
but for this example we need the rotatedRO object's rendering
to be done before the rotation angle is changed.

*/

RenderedImage tmp = (PlanarImage)rotatedRO.getRendering();

// display original and rotated
getContentPane().setLayout(new GridLayout(1,2));
getContentPane().add(new chéDisplay(inputRO));
getContentPane().add(new chéDisplay(rotatedRO));

pack();
show();

// wait 2 seconds so images don't change to quickly

try{
Thread.sleep(2000);

}

catch(InterruptedException ie) {

}

changeFilename(rotatedRO);

// redisplay images
repaint();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

/**
Returns a RenderedOp representing a rotated
version of RenderedOp toBeRotatedRO

*/

private RenderedOp createRotatedImage(RenderedOp toBeRotatedRO) {
float angle = (float)((45.0/180.0)*Math.PI); //45 degree rotation

ParameterBlock param;

param = new ParameterBlock();
param.addSource(toBeRotatedRO);

param.add(new Float(toBeRotatedRO.getWidth()/2));
param.add(new Float(toBeRotatedRO.getHeight()/2));
param.add(new Float(angle));

RenderedOp ro = JAl.create("rotate", param);

return ro;

}

/**
1. go to the RenderedOp's source image
2. change the filename parameter in its ParameterBlock
3. this will generate a RenderingChangeEvent which will
cause the rotatedRO RenderedOp to rerender its images
*/
private void changeFilename(RenderedOp toBeChangedRO) {
//get source RenderedOp
RenderedOp tmpRO = (RenderedOp)toBeChangedRO.getSourceImage(0);
tmpRO.setParameter(filename2, 0);

}

public static void main(String[] args) {
if (args.length != 2)
System.err.printin("Usage: filenamel filename2");
else
new RenderingChangeEventTest(args[0], args[1]);
b

String filename2;

[Team Lig] [« revious)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] B B
The JAI Class

The JAI class primarily contains a set of methods to create RenderedOp objects given an operation, a
ParameterBlock object, and a RenderingHints object (refer to Listing 6.1). Its most common method is
the static create method, that is,

static public RenderedOp create(String operationName,
ParameterBlock param,
RenderingHints renderingHints)

or if the RenderingHints object is null (meaning that default values should be used), you can use

static public RenderedOp create(String operationName,
ParameterBlock param)

There are also a large number of other JAI create methods that allow you to perform an operation
without using a ParameterBlock. In all listings in this chapter, ParameterBlocks will be used in the JAI's
create methods, but, in practice, it is common to see method calls such as JAlL.create("Fileload",
filename) for loading an image file.

Note

The case of the operator isn't significant, so the operations add, Add, and ADD are treated
identically.

There is another set of methods called createRenderable, which act similar to the create methods, but
create a RenderableOp instead of a RenderedOp. The RenderableOp class will be discussed in a later
section entitled "RenderedOps Versus RenderableOps". One last point is that when the JAI's create

method is used, numerous verifications occur with regard to the provided ParameterBlock and the
operation String. For instance, the number of sources are checked as well as the number, types, and
values of the parameters.

Operators

In the previous discussion, the operation to be performed must be one of the operations registered
with the JAI package (refer to Listing 6.4). In Tables 6.1 to 6.12, the different operators are
presented. In these tables, the format of the necessary ParameterBlock is provided along with a short
description of each operator.

Tip

For more information about a particular operator, look at the documentation for its
descriptor class. For instance, the add operator's descriptor class will be called
javax.media.jai.operator.AddDescriptor.

Before examining these tables, a few points need to be made.
Use of Constant Arrays

In many cases, the parameters provided to a ParameterBlock object are arrays; for example in the
Clamp operator, the two parameters are double arrays specifying a set of low values and a set of high

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

values. These are specified as an array instead of as a simple data value to give the user the ability to
process each of the image bands differently. The way this is done is that if the number of elements in
the array is equal to or greater than the number of image bands, the array value that will be used for
a particular band will be constantArray[bandNumber]. On the other hand, if the number of array
elements is less than the number of image bands, the array value that will be used for each band will
be constantArray[0] and all bands will be treated equally. Thus, the constant array value used to
process each band is as follows:

if (constantArray.length >= dstNumBands)
value = constantArray[bandNumber];
else
value = constantArray[0];

Parameter Object Types and Default Values

In the JAI API documentation, the operators are listed as requiring Object parameters. For example,
whenever an integer array is needed, instead of int[], it will be listed as Integer[]. In all cases, you
can use either, so we decided to use the primitive data types for simplicity. Also, many of the
parameters required for an operation have default values. In order to use a default value, you can
just use null for that parameter value. In the upcoming tables, default values will be listed when
available.

Clamping

In general, the output of all operators are clamped according to the data type of the destination
image. In other words, each data type has a minimum and maximum allowable value. Any destination
value higher than the maximum value will be set to the maximum value and any destination value
lower than the minimum value will be set to the minimum value.

Note

Images composed of data types float or double are clamped at 0.0, 1.0.

Also, the output of all operators are rounded if the destination data type isn't float or double.
Samples

As discussed in Chapter 4, a pixel isn't the smallest element of an image. Each pixel is composed of
one or more samples in which each sample corresponds to a particular image band. Thus an image
with three bands (possible red, green, and blue) will have three samples per pixel. Most of the JAI
operators work directly on samples although they are often described as operating on pixels. For
example, when it is said that the Invert operator inverts pixels, it actually inverts each sample in each
pixel.

Operation Groupings

As will be discussed in the "Extending JAI" section, a natural operator grouping exists based on the
OpImage subclass that the operator implementation extends. Although this grouping is functionally
useful, we have chosen different operator groupings in order to present smaller, more descriptive
groups.

Pixel Operators

Associated with each pixel is a location. Pixel operators iteratively go through all pixel locations in a
PlanarImage and carry out some type of computation. These computations are performed

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

independéntly on each location without considering any other pixel locations within that PlanarImage.
These operations can be grouped into two categories: single source pixel operators and multisource
pixel operators.

Single Source Pixel Operators

Single source pixel operators calculate destination pixel values directly from the corresponding pixel
value in a source image. A more mathematical form is destination[c][r][b] = function(source[c][r]
[b]), where ¢ is the column number, r is the row number, and b is the band number. These operations
can be further broken down into one group that requires no parameters such as Absolute, Exp, Format,
Invert, Log, and Not (see Table 6.1) and one group that does require parameters such as Clamp,
ColorConvert, Lookup, Rescale, and Threshold (see Table 6.2).

Table 6.1. Summary of Single Source Pixel Operators Which Require No Parameters
Operator|Parameter Block Format/Description

Absolute |addSource(PlanarImage pi);

The Absolute operator computes the absolute value of all pixels in pi.

Format |addSource(PlanarImage pi);
add(int datatype);

The Format operator reformats an image by casting each of its data samples to a different
data type, where datatype can be one of the following:

DataBuffer. TYPE_BYTE (default value), DataBuffer. TYPE_SHORT, DataBuffer. TYPE_USHORT,
DataBuffer. TYPE_INT, DataBuffer. TYPE_FLOAT, or DataBuffer.TYPE_DOUBLE)

See Listing 6.12 for an example of this operator.
Exp addSource(PlanarImage pi);

The Exp operator computes the exponential of all pixels in pi.
Invert addSource(PlanarImage pi);

The Invert operator computes the inverse of all pixels in pi. If pi's datatype is signed, a
sample's inverse is the negation of the sample's value. If pi's datatype is unsigned, the
sample's inverse is the maximum value of that datatype minus the sample's value.

Log addSource(PlanarImage pi);

The Log operator computes the natural log of all pixels in pi.
Not addSource(PlanarImage pi);

The Not operator performs bitwise logical NOT on all pixels in pi.

Table 6.2 provides a list of the single source pixel operators requiring one or more parameters. Be
sure to refer to the previous section "Use of Constant Arrays" to understand how the operators use
the array parameters. Unless otherwise noted, the parameters don't have default values.

Table 6.2. Summary of Single Source Pixel Operators that Require One or More Parameters
Operator |Parameter Block Format/Description
Clamp addSource(PlanarImage pi);

add(double[] low);
add(double[] high);

The Clamp operator sets any pixel in pi under the value specified by low to low and any
pixel in pi over the value specified by high to high. All other pixel values are unchanged.

ColorConvert|addSource(PlanarImage pi);
add(ColorModel cm);

The ColorConvert operator converts each pixel in pi to the colorspace specified by cm.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Lookup addSource(PlanarImage pi);
add(LookupTable]AI table);

The Lookup operator uses the lookup table table to transform pixel values in pi. This
operation uses a javax.media.jai.LookupTableJAI object, which contains both a lookup
table and an offset value.

If table contains as many elements or more elements than the source image has bands,
the destination values will be

tmp = source[c][r][b] - offset[b];
destination[c][r][b] = lookup[b][tmp],

where ¢ = column number, r = row number, and b = band number.

If table has less elements than the source image has bands, the destination values will
be

tmp = source[c][r][b] - offset[0];
destination[c][r][b] = lookup[0][tmp]
Rescale addSource(PlanarImage pi);
add(double[] constants);
add(double[] offsets);

The Rescale operator multiplies each pixel in pi by constants before adding offsets.

If the constants and offsets array have as many elements or more elements than the
source image has bands, the destination values will be

tmp = source[c][r][b]*scale[b]
destination[c][r][b] = tmp + offset[b],

where ¢ = column number, r = row number, and b = band number.

If the constants and offsets array have less elements than the source image has bands,
the destination values will be

tmp = source[c][r][b]*scale[0]

destination[c][r][b] = tmp + offset[0]

Threshold |addSource(PlanarImage pi);

add(double[] low);

add(double[] high);

add(double[] constants);

The Threshold operator maps all pixel values in

= pi that fall within the inclusive limits

= specified by low and high to constants. Any pixel

== value that lies outside of this range will be unchanged.

Multiple Source Pixel Operators

Multiple source pixel operators calculate a destination pixel value directly from the corresponding pixel
values of more than one source. Mathematically, using two sources, this can be expressed as follows:
destination[c][r][b] = function(sourcel[c][r][b], source2[c][r][b]), where cis the column number, ris
the row number, and b is the band number. This group of operators can be broken down into two
groups. The first group uses multiple image sources and no parameters, and the second group uses a
single source image and a constant array parameter. In these operators, this constant array acts like
a second image source.

Examples of the first group of operators are Add, AddCollection, And, Divide, DivideComplex, Max, Min,
Multiply, MultiplyComplex, Or, Subtract, and Xor (see Table 6.3). Note that AddCollection is the only
operator that allows more than two sources. Examples of the second group of operators are AddConst,
AndConst, DivideByConst, DivideIntoConst, MultiplyConst, OrConst, SubtractConst, SubtractFromConst,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

and XorConst (see' Table 6.4).

In Table 6.3 there are two operations involving complex data, that is, DivideComplex and
MultiplyComplex. A complex image is simply a PlanarImage with an even number of bands in which the
odd-numbered bands (first, third, and so on) will be interpreted as making up the real part of the
image, whereas the even-numbered bands (second, fourth, and so on) will be interpreted as making
up the imaginary part of the image.

Table 6.3. Summary of Multiple Source Pixel Operators that Require No Parameters

Operator Parameter Block Format/Description

Add addSource(PlanarImage pil);
addSource(PlanarImage pi2);

The Add operator adds corresponding pixels in pil and pi2.

AddCollection [addSource(CollectionImage ci);

The AddCollection operator adds corresponding pixels in all images contained in ci.

And addSource(PlanarImage pil);
addSource(PlanarImage pi2);

The And operator performs logical AND on corresponding pixels in pil and pi2.

Divide addSource(PlanarImage pil);
addSource(PlanarImage pi2);

The Divide operator divides pixels in pil by corresponding pixels in pi2.

DivideComplex |addSource(PlanarImage pil);
addSource(PlanarImage pi2);

The DivideComplex operator divides complex pixels in pil by corresponding complex
pixels in pi2.

Max addSource(PlanarImage pil);
addSource(PlanarImage pi2);

The Max operator finds the maximum value of corresponding pixels in pil and pi2.

Min addSource(PlanarImage pil);
addSource(PlanarImage pi2);

The Min operator finds the minimum value of corresponding pixels in pil and pi2.

Multiply addSource(PlanarImage pil);
addSource(PlanarImage pi2);

The Multiply operator multiplies corresponding pixels in pil and pi2.

MultiplyComplexjaddSource(PlanarImage pil);
addSource(PlanarImage pi2);

The MultiplyComplex operator multiplies corresponding complex pixels in pil and pi2.

Or addSource(PlanarImage pil);
addSource(PlanarImage pi2);

The Or operator computes the logical OR of corresponding pixels in pil and pi2.

Subtract addSource(PlanarImage pil);
addSource(PlanarImage pi2);

The Subtract operator subtracts pixels in pi2 from corresponding pixels in pil.

Xor addSource(PlanarImage pil);
addSource(PlanarImage pi2);

The Xor operator computes the XOR value of corresponding pixels in pil and pi2.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

In Table 6.4, each ParameterBlock contains a single image source and a constant array that can be
considered a second image source. Be sure to refer to the preceding section "Use of Constant Arrays"

to understand how

the operators use the array parameters.

Table 6.4. Summary of Multiple Source Pixel Operators in Which One Source Is Derived

from a Constant Array

Operator

Parameter Block Format/Description

AddConst

addSource(PlanarImage pi);
add(double[] constants);

The AddConst operator adds constants to each pixel in pi.

AndConst

addSource(PlanarImage pi);
add(int[] constants);

The AndConst operator performs logical AND between constants and pixels in pi.

DivideByConst

addSource(PlanarImage pi);
add(double[] constants);

The DivideByConst operator divides each pixel in pi by constants.

DivideIntoConst

addSource(PlanarImage pi);
add(double[] constants);

The DivideIntoConst operator divides constants by pixels in pi.

MultiplyConst

addSource(PlanarImage pi);
add(double[] constants);

The MultiplyConst operator multiplies constants to each pixel in pi.

OrConst

addSource(PlanarImage pi);
add(int[] constants);

The OrConst operator performs a logical OR between constants and each pixel in
pi.

SubtractConst

addSource(PlanarImage pi);
add(double[] constants);

The SubtractConst operator subtracts constants from each pixel in pi.

SubtractFromConst

addSource(PlanarImage pi);
add(double[] constants);

The SubtractFromConst operator subtracts each pixel in pi from constants.

XorConst

addSource(PlanarImage pi);
add(int[] constants);

The XorConst operator performs logical XOR between constants and each pixel in

pi.

Other Pixel Operators

The pixel operators that don't fit in any of the previous groups are presented here. They are the
BandCombine, BandSelect, Composite, Constant, MatchCDF, Overlay, Pattern and Piecewise operators
(see Table 6.5). Because of the complexity of these operators, examples of many of them are
provided following this table. Unless otherwise noted, the parameters don't have default values.

Table 6.5. Summary of Other Pixel Operators

Operator |Parameter Block Format/Description

BandCombine|addSource(PlanarImage pi);
add(double[][] matrix);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

The BandCombine operator linearly combines the bands in pi according to the matrix
array. The number of columns in matrix represent the number of bands in pi plus one.
The number of rows in matrix represent the number of bands in the destination image.
This operator is similar to the java.awt.Image.BandCombineOp described in Chapter 4
(see Listing 6.6).

BandSelect

addSource(PlanarImage pi);
add(int[] bandIndices);

The BandSelect operator copies bands in pi to the destination image in the order
specified by bandIndices (see Listing 6.7).

Composite

addSource(PlanarImage pil);
addSource(PlanarImage pi2);
add(PlanarImage alphal);
add(PlanarImage alpha2);
add(Boolean alphaPremultiplied);
add(Integer destAlpha);

The Composite operator combines corresponding pixels in pil and pi2 using the alpha
values provided in alphal and alpha2.

CompositeDescriptor.NO_DESTINATION_ALPHA
CompositeDescriptor.DESTINATION_ALPHA_FIRST
CompositeDescriptor.DESTINATION_ALPHA_LAST

Default values are alpha2 = null (opaque); alphaPremultiplied = false; destAlpha =
CompositeDescriptor.NO_DESTINATION_ALPHA

(see Listing 6.8).

Constant

add(Float width);
add(Float height);
add(Number[] constants);

The Constant operator creates a new image of size width, height where each pixel is set

equal to constants (see Listing 6.9).

MatchCDF

addSource(PlanarImage pi);
add(float[][] CDF);

The MatchCDF operator attempts to make pi's cumulative density function (CDF) match
the provided CDF. The format of CDF is as follows:

CDF[numberOfBands][numberOfBinsInBand] where, for a particular band, each
subsequent CDF value must be nonnegative and nondecreasing. The final value for
each band must be 1.0.

Overlay

addSource(PlanarImage pil);
addSource(PlanarImage pi2);

The Overlay operator covers pixels on pil with pixels from pi2 wherever the bounds of
the two source images intersect.

Pattern

add(int width);
add(int height);
add(Raster pattern);

The Pattern operator creates a destination image of dimensions (width, height) made up
of a repeated pattern specified by pattern. The tile dimensions in the destination image
will be the dimensions of pattern.

Piecewise

addSource(PlanarImage pi);
add(float[][][] breakPoints);

The Piecewise operator performs a piecewise linear mapping of pixel values in pi, where

breakPoints is defined as breakPoints| numBands][2][numBreakPoints].

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When the array's second index is equal to 0, the breakPoints array represents a list of
possible source sample values. When this array index is equal to 1, the breakPoints
array represents a list of possible destination sample values. Thus, the breakPoints
array maps a set of source sample values to a set of destination sample values. Any
source sample value that isn't contained in the set of source sample values will have its
destination value computed using the closest source values that do exist in this set
along with their corresponding destination values (see Listing 6.9).

Note

Listings 6.6 through 6.9 are not standalone applications, but are methods belonging to an
application named OtherPointOperatorsTester.java.

In Listing 6.6, an example of a method using the "BandCombine" operator is shown. Assuming that an
image has three color components and is using an RGB color space, the general equation for a
particular band in the destination image is

x*sourceRedComponent + y*sourceGreenComponent + z*sourceBlueComponent + t

where X,y,z, and tare variables. Thus a band in the destination image is created by linearly combining
bands in a source image plus adding an offset. Using "BandCombine" operator, the Xx,y,z, and ¢
variables are contained in a two-dimensional double array.

Listing 6.6 bandCombine Method of OtherPointOperatorsTester.java

/**
BandCombine operation in which the destination band components are;
destinationRedComponent = 255 — sourceRedComponent
destinationGreenComponent = sourceBlueComponent;
destinationBlueComponent = sourceGreenComponent;.
*/
public PlanarImage bandCombine(PlanarImage pi) {
double[][] matrix = {
{-1.0D, 0.0D, 0.0D, 255.0D },
{0.0D, 0.0D, 1.0D, 0.0D },
{0.0D, 1.0D, 0.0D, 0.0D },
ot
ParameterBlock param = new ParameterBlock();
param.addSource(pi);
param.add(matrix);
return JAL.create("BandCombine", param);

}

In Listing 6.7, an example of a method using the "BandSelect" operation is shown. Assuming that the
source bands are contained in an array called sourceBandArray and the destination bands are
contained in an array called destinationBandArray, the general equation for a particular band is

destinationBand[bandNumber] = sourceBand[bandSelectArray[bandNumber]]

where bandSelectArray is a single dimensional int array with as many elements as there are bands in
the destination image.

Listing 6.7 bandSelect Method of OtherPointOperatorsTester.java

/**
BandSelect method used to reverse the second and third bands
Thus, if the initial band order is red, green, blue

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the destination band order will be red, blue, green
*/
public PlanarImage bandSelect(PlanarImage pi) {
int[] array = {0, 2, 1};

ParameterBlock param = new ParameterBlock();
param.addSource(pi);

param.add(array);

return JAL.create("BandSelect", param);

}

In Listing 6.8, an example of a method using the "Composite" operation is shown.

Listing 6.8 Composite Method of OtherPointOperatorsTester.java

/**
performs compositing of PlanarImages pil and pi2 using
normalized alpha values of .5 for pil and normalized alpha
values of 1.0 (opaque) for pi2. Thus, the destination pixels
will be made up of equal parts of pil and pi2.

*/

public PlanarImage composite(PlanarImage pil, PlanarImage pi2) {
byte alphalValue = (byte)128; //normalized value of .5
byte alpha2Value = (byte)256; //normalized value of 1.0

ParameterBlock param = new ParameterBlock();
param.addSource(pil);
param.addSource(pi2);
param.add(makeAlpha(pil.getWidth(), pil.getHeight(),
alphalValue, alphalValue, alphalValue));
param.add(makeAlpha(pi2.getWidth(), pi2.getHeight(),
alpha2Value, alpha2Value, alpha2Value));
param.add(new Boolean(false));
param.add(CompositeDescriptor.NO_DESTINATION_ALPHA);

return JAL.create("Composite", param);

}

/**
returns a PlanarImage containing 3 bands with samples being of
type byte. All sample in bandO will be set to alpha0, all
samples in band1 will be set to alphal and all samples in band2
will be set to alpha2.

*/
private PlanarImage makeAlpha(float width, float height,
byte alpha0, byte alphal, byte alpha2) {
byte[] alphaValues;

alphaValues = new byte[3];

alphaValues[0] = alpha0; //alpha value for 1st band
alphaValues[1] = alpha1l; //alpha value for 2nd band
alphaValues[2] = alpha2; //alpha value for 3rd band

ParameterBlock param = new ParameterBlock();
param.add(width);

param.add(height);

param.add(alphaValues);

RenderedOp ro = JAI.create("Constant”, param);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

return ro;

}

The "Composite" operator combines two source Planarimages in such a way that by taking into account
each pixel's corresponding alpha (transparency) values, the two images appear together (see Figure
6.6).

Figure 6.6. Composite operation.

Alpha values are supplied by interpreting the pixel values of two other PlanarImages as the alpha
values for the two source images. In Listing 6.8, in order to create these alpha PlanarImages, a
method using the "Constant" operation is used.

For more details on how this compositing is performed, let

pilValue = sample value of PlanarImagel
pi2Value = sample value of PlanerImage2
pilAlpha = normalized alpha value for PlanarImagel

pi2Alpha = normalized alpha value for PlanarImage?2

(where normalized alpha values range from 0.0, 1.0).

The "Porter-Duff over" composite rule (which is the composite rule used) can then be defined as
destinationValue = pilValue*pilAlpha + (1-pilAlpha)*(pi2Value*pi2Alpha)

In Figure 6.6, the left and middle images are the source images. The last image is the result of the
composite operator applied to these two source images. In this operation, all pixels in the first source
image were given a normalized alpha value of .5, whereas all pixels in the second source image were
given an alpha value of 1.0. Thus, the destination image represents each of the two source images
equally.

In Listing 6.9, an example of a method using the "Piecewise" operator is shown.

Listing 6.9 piecewise Method of OtherPointOperatorsTester.java

/**
performs piecewise linear mapping of a PlanarImage with 3 bands
In this example:
all values under 50 will become 100
all values over 200 will become 255
all other values becomes linearly interpolated between the two, i.e.,
100 + (value-50)*(255-100)/(200-50)
*/
public PlanarImage piecewise(PlanarImage pi) {
float[][][] breakPoints = new float[3][2][2];

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

breakPoints[0][0][0] = 50;

breakPoints[0][1][0] = 100;
breakPoints[0][0][1] = 200;
breakPoints[0][1][1] = 255;

breakPoints[1][0][0] = 50;

breakPoints[1][1][0] = 100;
breakPoints[1][0][1] = 200;
breakPoints[1][1][1] = 255;

breakPoints[2][0][0] = 50;

breakPoints[2][1][0] = 100;
breakPoints[2][0][1] = 200;
breakPoints[2][1][1] = 255;

ParameterBlock param = new ParameterBlock();
param.addSource(pi);
param.add(breakPoints);

return JAI.create("Piecewise", param);

}

This operator requires a three-dimensional float array often called breakPoints. The format of this
array is as follows:

float breakPoints[numBands][2][numBreakPoints]

In order to understand this operator, it is best to think of this array as two separate arrays; that is,
sourceBreakPoints and destinationBreakPoints where

sourceBreakPoints[bandNumber][breakPoints] = breakPoints[bandNumber][0][breakPoint]
and
destinationBreakPoints[bandNumber][breakPoints] = breakPoints[bandNumber][1][breakPoint]

Thus, this operator maps the values in the sourceBreakPoints array into the values in the
destinationBreakPoints array.

For the sourceBreakPoints and the destinationBreakPoints arrays, each subsequent break point must
have a higher value than the one before it. For example for a single band image, the source
breakpoints could be {2, 4, 6, 8} and the destination breakpoints could be {1, 4, 12, 20} .

The purpose of these arrays is to map source pixel values into destination pixel values. If a source
pixel value corresponds to a source breakpoint, its destination pixel value will simply be the
corresponding destination breakpoint value. If a source pixel value falls between two breakpoints, its
destination pixel value will be linearly computed according to the two closest source breakpoints and
their corresponding destination breakpoints. For example, using the source and destination
breakpoints listed previously, any source pixel value less than or equal to 2 will have a destination
pixel value of 1. Any source pixel value of 2 or 3 will have a destination pixel value of

1+ (value-2)*(4-1)/(4-2)

Any source pixel value of 4 or 5 will have a destination pixel value of
4+(value-4)*(12-4)/(6-4)

Any source pixel value of 6 or 7 will have a destination pixel value of
12+(value-6)*(20-12)/(8-6)

Any source pixel value of 8 or above will have a destination pixel value of 20.

Area Operators

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Unlike point operators, when computing the value of a destination pixel, area operators generally
need to use more than a single pixel within a source image. For example, a smoothing filter can
compute a destination pixel's value by averaging its corresponding source pixel with a region
containing that source pixel's neighbors. The listed area operators are Border, BoxFilter, Convolve,
Crop, and Median Filter. Because of the confusion that often occurs between borders and a related

concept of border extenders, a section titled "Creating Borders and Border Extenders" immediately
follows Table 6.6 that discusses these concepts.

Table 6.6. Summary of Area Operators

Operator

Parameter Block Format/Description

Border

addSource(PlanarImage pi);
add(int leftBorderSize);

add(int rightBorderSize);

add(int topBorderSize);

add(int bottomBorderSize);
add(BorderExtender extenderType);

The Border operator puts a border around the source image pi. The extenderType
describes which type of border to use. This choice is usually specified by using
BorderExtender.createlnstance(int type), where type is one of the following:

BorderExtender.BORDER_COPY
BorderExtender.BORDER_ZERO
BorderExtender.BORDER_REFLECT
BorderExtender.BORDER_WRAP

Alternatively, the extenderType can be specified through
new BorderExtenderConstant(double[] constant)

(see Listing 6.10)

BoxFilter

addSource(PlanerImage pi);
add(int boxWidth);

add(int boxHeight);

add(int boxXOrigin);
add(int boxYOrigin);

The BoxFilter operator convolves pi with a box kernel with dimensions of boxWidth,
boxHeight and a center located at boxXOrigin, boxYOrigin. Each element of the box
filter has a weight equal to 1/(boxWidth*boxHeight).

Convolve

addSource(PlanarImage pi);
add(KernelJAI kernel);

The Convolve operator convolves pi with kernel kernel, where this kernelJAI object
contains the kernel's shape, origin, and element values.

Crop

addSource(PlanarImage pi);
add(int xOrigin);

add(int yOrigin);

add(int width);

add(int height);

The Crop operator crops pi using a rectangle with an origin at xOrigin, yOrigin and
dimensions of width, height.

GradientMagnitude

addSource(PlanarImage pi);
add(KernelJAI kernell);
add(KernelJAI kernel2);

The GradientMagnitute operator computes the magnitude of the two values found
by implementing convolution using kernell and kernel2 independently.

MedianFilter

addSource(PlanarImage pi);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

add(int maskShape); -
add(int maskSize);

The MedianFilter operator performs median filtering of pi using a mask of size
maskSize and a shape of one of the following:

MedianFilterDescriptor.MEDIAN_MASK_SQUARE,
MedianFilterDescriptor.MEDIAN_MASK_PLUS
MedianFilterDescriptor.MEDIAN_MASK_X
MedianFilterDescriptor.

= MEDIAN_MASK_SQUARE_SEPARABLE

where this latter mask shape uses a square mask, but instead of computing the
median of all pixels in the square, it first computes a median value for each row
and then computes the median of the calculated row medians.

Creating Borders and Border Extenders

There are two ways to provide pixel data at locations past an image's natural boundaries. The first
way is through the Border operation as described in Table 6.6. This method creates a border around
an image by extending the image dimensions and filling the border area as specified: copy, constant,

reflect, wrap, or zero.

® copy— Border pixels replicate values of edge and corner pixels.
® constant— Border pixels are set to provided constant values.

® reflect— Border appears as a reflection of the image.

® wrap— Border appears as a reproduction of the image.

® zero— Border pixels are all set to 0.

Listing 6.10 illustrates how the different border descriptors are used (see Figure 6.7).
Listing 6.10 BorderTester.java

package ché6;

import java.awt.*;

import javax.swing.*;

import java.io.*;

import java.awt.image.renderable.ParameterBlock;
import javax.media.jai.JAI;

import javax.media.jai.BorderExtender;

import javax.media.jai.BorderExtenderConstant;
import javax.media.jai.RenderedOp;

import javax.media.jai.RenderedImagelList;

/**
BorderTester -- this class illustrates the 5 different border types

*/

public class BorderTester extends JFrame {
public BorderTester(String filename) {
setTitle("ch6.BorderTester");

int borderThickness = 20;
int extenderType;
ParameterBlock param;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

RenderedOp sourceImage = JAI.create("fileload", filename);

param = new ParameterBlock();
param.addSource(sourceImage);
param.add(borderThickness);
param.add(borderThickness);
param.add(borderThickness);
param.add(borderThickness);

extenderType = BorderExtender.BORDER_COPY;
param.add(BorderExtender.createlnstance(extenderType));
RenderedOp bdrCopy = JAI.create("border", param);

extenderType = BorderExtender.BORDER_ZERO;
param.set(BorderExtender.createInstance(extenderType), 4);
RenderedOp bdrZero = JAI.create("border", param);

extenderType = BorderExtender.BORDER_REFLECT;
param.set(BorderExtender.createInstance(extenderType), 4);
RenderedOp bdrReflect = JAlL.create("border", param);

extenderType = BorderExtender.BORDER_WRAP;
param.set(BorderExtender.createInstance(extenderType), 4);
RenderedOp bdrWrap = JAl.create("border", param);

double[] constantValues = {128.0, 128.0, 128.0}; //gray border
param.set(new BorderExtenderConstant(constantValues), 4);
RenderedOp bdrConstant = JAl.create("border", param);

getContentPane().setBackground(Color.white);
getContentPane().setLayout(new GridLayout(2,3));
getContentPane().add(new chéDisplay(sourcelmage));
getContentPane().add(new chéDisplay(bdrCopy));
getContentPane().add(new chéDisplay(bdrZero));
getContentPane().add(new chéDisplay(bdrReflect));
getContentPane().add(new chéDisplay(bdrWrap));
getContentPane().add(new chéDisplay(bdrConstant));
/*

add a little extra space so viewer can

distinguish between the different images
*/
Insets insets = getInsets();
int xSize = 3*(sourcelmage.getWidth()+80);
xSize += insets.left+insets.right;
int ySize = 2*(sourcelmage.getHeight()+80);
ySize += insets.top+insets.bottom;
setSize(xSize, ySize);

show();

}

public static void main(String[] args) {
if (args.length != 1)
System.err.printin("Usage: BorderTester imageFileName");
else
new BorderTester(args[0]);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 6.7. Border operations.

In Figure 6.7, the top left image is the source image. In the following images (presented in order from
top row to the bottom row), the following border types are illustrated: copy, zero, reflect, wrap, and
constant.

The main purpose of the Border operator is to extend the image dimensions for visual purposes. By
mistake, it is often used so that when an operation requires pixel values past the normal image
dimensions, they are available. This situation is very common for some of the area operators such as
Convolution, BoxFilter, and MedianFilter. The reason this type of image extension should not be done is
that once you use the Border operator, the created border becomes part of the image. Thus, it will be
processed by all subsequent operators and will appear when displayed. A better way to provide these
additional pixel values is to use a border extender instead of a border.

Like a border, a border extender provides pixel values to operators that require values beyond the
dimensions of an image. Unlike a border, border extenders are otherwise invisible. Thus, they don't
extend the dimensions of the image, they don't get processed by other operators, and they don't
appear when the image is displayed. In Figure 6.8 the first column depicts an original source image,
the source image with a border extender and the source image with a border of width 10 pixels on
each side. The second column depicts these three images filtered using a 19x19 box filter with an
origin at (10, 10). Note that the images in this figure were created using Listing 6.11.

Figure 6.8. Borders versus border extenders.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

An important thing to remember about border extenders is that they aren't operators, but are
rendering hints. Thus they are used in a rendering by creating a rendering hints key/value pair with
the key being JAI.KEY_BORDER_EXTENDER and the value being a java.media.jai.BorderExtender
object. This key/value pair is then added to a RenderingHints object, that is,

BorderExtender extender;

extender = BorderExtender.createlnstance(BorderExtender.BORDER_ZERO);
RenderingHints.Key extenderKey = JAL.KEY_BORDER_EXTENDER;
RenderingHints renderHints = new RenderingHints(extenderKey, extender);

This RenderingHints object can than be passed to a created RenderedOp in the JAI's create method.
Listing 6.11 provides an example of the use of both borders and border extenders. This application
produced the image shown in Figure 6.8.

Listing 6.11 BordersAndBorderExtenders.java

package ché6;

import java.awt.*;

import javax.swing.*;

import java.io.*;

import java.awt.image.renderable.ParameterBlock;
import javax.media.jai.JAL;

import javax.media.jai.PlanarImage;

import javax.media.jai.BorderExtender;

import javax.media.jai.BorderExtenderConstant;
import javax.media.jai.RenderedOp;

import javax.media.jai.RenderedImagelList;

/**
BordersAndBorderExtenders -- this class illustrates box filtering
using border extenders and using borders

*/

public class BordersAndBorderExtenders extends JFrame {

public BordersAndBorderExtenders(String filename) {
setTitle("ch6.BordersAndBorderExtenders");

int extenderType = BorderExtender.BORDER_REFLECT;
BorderExtender extender;
extender = BorderExtender.createlnstance(extenderType);

RenderingHints.Key extenderKey = JAI.KEY_BORDER_EXTENDER;

RenderingHints renderHints;
renderHints = new RenderingHints(extenderKey, extender);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

}

RenderedOp sourceImage = loadImageFile(filename);

RenderedOp filteredImage = filter(sourcelmage);

RenderedOp sourceImageWithExtender;
sourcelmageWithExtender = loadImageFile(filename, renderHints);
RenderedOp filteredImageWithExtender;
filteredImageWithExtender = filter(sourceImage, renderHints);

// create image with black border of width 10 pixels on each side
RenderedOp sourceImageWithBorder;

sourceImageWithBorder = createBorderedIlmage(sourcelmage, 10);
RenderedOp filteredImageWithBorder;

filteredImageWithBorder = filter(sourceImageWithBorder);

getContentPane().setBackground(Color.white);
getContentPane().setLayout(new GridLayout(3,2));
getContentPane().add(new chéDisplay(sourcelmage));
getContentPane().add(new chéDisplay(filteredImage));

getContentPane().add(new chéDisplay(sourcelmageWithExtender));
getContentPane().add(new chéDisplay(filteredImageWithExtender));

getContentPane().add(new chéDisplay(sourcelmageWithBorder));
getContentPane().add(new chéDisplay(filteredImageWithBorder));

printSize(sourcelmage, "sourcelmage");

printSize(sourcelmage, "filteredImage");
printSize(sourcelmageWithExtender, "sourcelmageWithExtender");
printSize(filteredImageWithExtender, "filteredImageWithExtender");
printSize(sourcelmageWithBorder, "sourcelmageWithBorder");
printSize(filteredImageWithBorder, "filteredImageWithBorder");

/*
add a little extra space so viewer can
distinguish between the different images
*/
Insets insets = getlnsets();
int xsize = 2*(sourceImage.getWidth()+40);
xsize += (insets.left+insets.right);
int ysize = 3*(sourcelmage.getHeight()+40);
ysize += (insets.top+insets.bottom);
setSize(xsize, ysize);
show();

private void printSize(PlanarImage pi, String name) {

}

System.out.print("Size of " + name + "is ");
System.out.printin(pi.getWidth() + ", " + pi.getHeight());

private RenderedOp loadImageFile(String filename) {

}

ParameterBlock pb = new ParameterBlock();
pb.add(filename);
return JAL.create("fileload", pb);

private RenderedOp loadImageFile(String filename,

RenderingHints rh) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

ParameterBlock pb = new ParameterBlock();
pb.add(filename);
return JAI.create("fileload", pb, rh);

}

private RenderedOp createBorderedImage(PlanarImage pi,

int length) {

ParameterBlock borderParams = new ParameterBlock();
borderParams.addSource(pi);

borderParams.add(new Integer(length));

borderParams.add(new Integer(length));

borderParams.add(new Integer(length));

borderParams.add(new Integer(length));

int extenderType = BorderExtender.BORDER_REFLECT;
borderParams.add(BorderExtender.createlnstance(extenderType));

return JAI.create("Border", borderParams);

}

/**

filter using a 19x19 box filter with an origin of 10,10

*/

private RenderedOp filter(PlanarImage pi) {
ParameterBlock param = new ParameterBlock();
param.addSource(pi);
param.add(19);
param.add(19);
param.add(10);
param.add(10);
return JAL.create("Boxfilter", param);

}

private RenderedOp filter(PlanarImage pi, RenderingHints rh) {
ParameterBlock param = new ParameterBlock();
param.addSource(pi);
param.add(19);
param.add(19);
param.add(10);
param.add(10);
return JAL.create("Boxfilter", param, rh);

}

public static void main(String[] args) {
if (args.length '= 1) {

}

System.err.print("USAGE: ");
System.err.printin("BordersAndBorderExtenders imageFilename");

else

¥
¥

new BordersAndBorderExtenders(args[0]);

The typical output for Listing 6.11 is the following:

Size of sourcelmage is 256, 256

Size of filteredImage is 256, 256

Size of sourceImageWithExtender is 256, 256
Size of filteredImageWithExtender is 256, 256
Size of sourcelmageWithBorder is 276, 276
Size of filteredImageWithBorder is 276, 276

Note that the border extenders didn't increase the image dimensions.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Geometric Operators

Geometric operators calculate destination pixel values by spatially transforming a destination image.
In other words, each location in a destination image is transformed into a location in a source image.
Because these new pixel locations might not correspond to integer values, interpolation must be used
in order to derive an appropriate value for that location using the surrounding source pixel values.
That calculated value will then be applied to the original destination pixel location. (For more
information regarding interpolation, see Chapter 4.)

Because of this need for interpolation, most of the geometric operators require an interpolation type
to be specified. This is done by instantiating a subclass of the javax.media.jai.Interpolation class. The
possible subclasses are the javax.media.jai.Nearest (the default value), javax.media.jai.Bilinear,
javax.media.jai.Bicubic, and javax.media.jai.Bicubic2 for nearest neighbor, bilinear, and two different
types of bicubic polynomial interpolation, respectively.

For many of these geometric operations, there will be times when the operator requires image data
that isn't available. For example, a translation of 20 pixels in the x direction will leave 20 columns in
the destination image not containing data from that source image. One way to control what pixel
values are placed in these columns is to specify a border extender as described in the previous
section. The geometric operators are Affine, Rotate, Scale, Shear, Translate, Transpose and Warp (see
Table 6.7).

It is important to note a discrepancy between the previous discussion and the operator descriptions in

able 6.7. As is commonly done, the operators are described as applying some type of transformation
to a source image. What actually occurs is that the inverse transformation is applied to the destination
image. This is done in order to obtain destination pixel values in the manner just described.

Table 6.7. Summary of Geometric Operators
Operator|Parameter Block Format/Description
Affine addSource(PlanarImage pi);

add(java.awt.geom.AffineTransform transform);
add(javax.media.jai.Interpolation type);

The Affine operator performs the affine transformation described by transform to source
image pi.

Rotate addSource(PlanarImage pi);

add(float XOrigin);

add(float YOrigin);

add(float rotation);

add(javax.media.jai.Interpolation type);

The Rotate operator performs a rotation of rotation radians around point (xOrigin, yOrigin)
of pi.

Scale addSource(PlanarImage pi);

add(float xScaleFactor);

add(float yScaleFactor);

add(float xTranslation);

add(float yTranslation);

add(javax.media.jai.Interpolation type);

The Scale operator performs resizing and translating of source image pi, where

sourceXLocation*xScaleFactor + xTranslation

destinationXLocation

DestinationYLocation = sourceYLocation*yScaleFactor + yTranslation
Shear addSource(PlanarImage pi);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

add(float shear);
add(javax.media.jai.operator.ShearDir direction);
add(float xTranslation);

add(float yTranslation);
add(javax.media.jai.Interpolation type);

The Shear operator performs shearing on the source image pi, where direction must be one
of the following values:

ShearDescriptor.SHEAR_HORIZONTAL or ShearDescriptor.SHEAR_VERTICAL

The shear equations are as follows:

For a direction of SHEAR_HORIZONTAL:

destinationXLocation = sourceXLocation + XTranslation + shear*sourceYLocation
destinationYLocation = sourceYLocation;

For a direction of SHEAR_VERTICAL:

destinationXLocation = sourceXLocation;

destinationYLocation = sourceYLocation + yTranslation + shear*sourceXLocation

Translate

addSource(PlanarImage pi);

add(float xTrans);

add(float yTrans);
add(javax.media.jai.Interpolation type);

The Translate operator translates pi by xTrans in the x direction and yTrans in the y
direction.

Transpose

addSource(PlanarImage pi);
add(javax.media.jai.operator.TransposeType type);

The Transpose operator transposes pi using one of the following values:

TransposeDescriptor.FLIP_VERTICAL,

== TransposeDescriptor.

FLIP_HORIZONTAL, TransposeDescriptor.

= FLIP_DIAGONAL,
TransposeDescriptor.FLIP_ANTIDIAGONAL,

= TransposeDescriptor.

ROTATE_90, TransposeDescriptor.ROTATE_180,
= TransposeDescriptor.

ROTATE_270

Warp

addSource(PlanarImage pi);
add(java.media.jai. WARP warp);
add(javax.media.jai.Interpolation type);

The Warp operator defines a warping of the source image pi. Possible concrete classes for
warp are javax.media.jai.WarpGrid, which contains a mapping of rectilinear points on the
destination image to the source image pi; javax.media.jai.WarpQuadratic, which maps
destination pixels to the source image pi through a pair of quadratic bivariate polynomial
functions; and javax.media.jai.WarpPerspective, which uses a javax.media.jai.Perspective
transformation to map destination pixels into the source image pi.

Color Quantization Operators

Two operators, ErrorDiffusion and OrderedDither, are used for situations in which the output device
cannot represent the colors contained in the image. For example, a monitor might be limited to only
displaying 256 colors, whereas a JPEG image might have thousands of different colors that need to be
represented (see Table 6.8).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Table 6.8. Summary of Quantization Operators
Operator Parameter Block Format/Description
ErrorDiffusion [addSource(PlanarImage pi);

add(LookupTableJAI table);
add(javax.media.jai.KernelJAI kernel);

The ErrorDiffusion operator finds the closest available pixel value from the lookup table,
table. It then calculates how different the actual pixel value is from the found pixel
value and applies a portion of this difference to the pixel under it and the pixel to the
right of it in order to make this difference appear less noticeable. For example, a pink
pixel might be effectively replaced by a red one if white is added to its neighboring
pixel values.

The default kernel value is

KernelJAI.LERROR_FILTER_FLOYD_STEINBERG

OrderedDither|addSource(PlanarImage pi);
add(javax.media.jai.ColorCube cube);
add(javax.media.jai.KernelJAI dithermask);

The OrderedDither operator finds the closest available pixel value from the provided
ColorCube. It then adds some pseudo-randomness in the found color table index by
using the provided dither mask.

The default value for cube is ColorCube.BYTE_496 and the default value for dithermask
is KernelJAI.DITHER_MASK_443.

Statistical Operators

Statistical operators are unique because they don't change any of the pixel values in the source image
(see Table 6.9). Their only effect is to add one or more properties to a PlanarImage. For example, the
Extrema operator adds a property called "minimum", which represents the minimum value in each
band; a property called "maximum", which represents the maximum value in each band; and a
property called "extrema", which represents both the minimum and maximum values in each band.
Thus, this line of code:

double[] minValuesForEachBand = (double [])planarImage.getProperty("minimum");
has the same affect as these two lines:

double[][] extrema = (double[][])planarImage.getProperty("extrema");
double[] minValuesForEachBand = extrema[0];

Table 6.9. Summary of Statistical Operators
Operator|Parameter Block Format/Description

Extrema [|addSource(PlanarImage pi);
add(javax.media.jai.ROI roi);
add(int xPeriod);

add(int yPeriod);

The Extrema operator computes the minimum and maximum of each band in pi using x
and y sampling periods of xPeriod and yPeriod over the regions specified by roi. This
operator adds the following properties: double[] minimum, double[] maximum, and double[]
[Jextrema where minimum = extrema[0] and maximum = extrema[1]. The default value of
roi is null, which means that the entire image will be processed. Also, the default values
for xPeriod and yPeriod are 1.

Histogram |addSource(PlanarImage pi);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

add(javax.media.jai.ROI roi);
add(int xPeriod);

add(int yPeriod);

add(int[] numBins);
add(double[] lowValue);
add(double[] highValue);

The Histogram operator computes a histogram of each band of pi using x and y sampling
periods of xPeriod and yPeriod over the regions specified by roi. The histogram will have
numBins bins and will only contain those pixel values that are greater than or equal to
lowValue and less than or equal to highValue. This operator adds a property called
"histogram" of class javax.media.jai.Histogram. The default value for roi is null, which means
that the entire image will be processed. The default values for xPeriod and yPeriod are 1,
the default value for numBins is {2563} , and the default values for lowValue and highValue
are {0.0} and {256.0} , respectively.

Mean addSource(PlanarImage pi);
add(javax.media.jai.ROI roi);
add(int xPeriod);

add(int yPeriod);

The Mean operator finds the mean value of each band in pi using x and y sampling periods
of xPeriod and yPeriod over the region specified by roi. This operator adds a property called
"mean" of type double[]. The default value for roi is null, which means that the entire
image will be processed and the default values for xPeriod and yPeriod are 1.

Frequency Operators

In this section, we will examine the operators for converted to and from the frequency domain as well
as some other operators that are useful for frequency domain filtering. These operators are the
Conjugate, DCT, DFT, IDCT, IDFT, ImageFunction, Magnitude, MagnitudeSquared, PeriodicShift, Phase,
and PolarToComplex operators (see Tahle 6.10). Prior to this examination, we first need to take a
closer look at complex images.

As previously discussed, a complex image is similar to a regular image except that it has two
components: a real component and an imaginary component. Thus, a gray scale complex image
requires two bands to represent it and an RGB complex image requires six bands. For this reason, in
any operator that converts from the spatial domain to the frequency domain (dct and dft), the number
of bands in the returned image will be twice that of the source image. Likewise, in any operator
converting from the frequency domain to the space domain (idct and idft), the number of bands in the
returned image will be half that of the source image.

Table 6.10. Summary of Frequency Operators
Operator Parameter Block Format/Description
Conjugate addSource(PlanarImage pi);

The Conjugate operator computes the complex conjugate of pi.

DCT addSource(PlanarImage pi);

The DCT operator computes the discrete cosine transform of pi.
DFT addSource(PlanarImage pi);

add(int scalingType);

add(int dataNature);

The DFT operator computes the discrete Fourier transform of pi, where scalingType
must be one of the following:

DFTDescriptor.SCALING_NONE, DFTDescriptor.SCALING_UNITARY, or
DFTDescriptor.SCALING_DIMENSIONS

and dataNature must be one of the following:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

DFTDescriptor.REAL_TO_COMPLEX, DFTDescriptor.COMPLEX_TO_COMPLEX, or
DFTDescriptor.COMPLEX_TO_REAL.

IDCT

addSource(PlanarImage pi);

The IDCT operator computes the inverse discrete cosine transform of complex
image pi.

IDFT

addSource(PlanarImage pi);
add(int scalingType);
add(int dataNature);

The IDFT operator computes the inverse discrete Fourier transform of complex
image pi, where scalingType must be one of the following:

DFTDescriptor.SCALING_NONE, DFTDescriptor.SCALING_UNITARY, or
DFTDescriptor.SCALING_DIMENSIONS

and dataNature must be one of the following:

DFTDescriptor.REAL_TO_COMPLEX, DFTDescriptor. COMPLEX_TO_COMPLEX, or
DFTDescriptor.COMPLEX_TO_REAL

ImageFunction

addSource(PlanarImage pi);
add(int width);

add(int height);

add(float xscale);

add(float yscale);

add(float xTrans);

add(float yTrans);

The ImageFunction operator sends the pixels in pi to the ImageFunction function by
calling the ImageFunction's getData method. The actual data locations passed to
this function will be

xScale*(Xlocation - xTrans)
yScale*(YLocation - yTrans)

where xLocation, yLocation are the pixel's locations in pi. Default values for xscale
and yscale are 1.0, and the default values for XTrans and yTrans are 0.0.

Magnitude

addSource(PlanarImage pi);

The Magnitude operator finds the magnitude of each pixel in the complex image pi.

MagnitudeSquared

addSource(PlanarImage pi);

The MagnitudeSquared operator finds the squared magnitude of each pixel in the
complex image pi.

PeriodicShift

addSource(PlanarImage pi);
add(int xShift);
add(int yShift);

The PeriodicShift operator computes the periodic translation of the complex image
pi.

Phase

addSource(PlanarImage pi);

The Phase operator computes the phase angle of each pixel in the complex image
pi.

PolarToComplex

addSource(PlanarImage pi);

The PolarToComplex operator computes a complex image from a magnitude and

phase image represented by pi.

An example of many of these operators can be found in Listing 6.12. In this listing, the DFT of a

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

source image is computed and the resulting complex image is processed for display purposes (see

Figure 6.9).
Listing 6.12 DFTTester

package ché6;

import java.awt.*;

import javax.swing.*;

import java.io.*;

import javax.media.jai.JAI;

import javax.media.jai.operator.DFTDescriptor;
import javax.media.jai.KernelJAI;

import javax.media.jai.RenderedOp;

import javax.media.jai.RenderedImagelList;

import java.awt.image.renderable.ParameterBlock;

/**

DFTTester -- displays the provided image along side its DFT
*/
public class DFTTester extends JFrame {

public DFTTester(String filename) {
setTitle("DFT Tester");
RenderedOp inputImage = loadIlmage(filename);
RenderedOp dftComplexImage = computeDFT(inputImage);
RenderedOp dftMagnitudeImage = computeMagnitudes(dftComplexImage);
RenderedOp dftLogImage = computeLogImage(dftMagnitudeImage);
RenderedOp formattedLogImage = formatForDisplay(dftLogImage);

getContentPane().setLayout(new GridLayout(1,2));
getContentPane().add(new chéDisplay(inputimage));
getContentPane().add(new chéDisplay(formattedLogImage));

pack();
show();

}

private RenderedOp loadImage(String filename) {
ParameterBlock param = new ParameterBlock();
param.add(filename);
return JAL.create("Fileload", param);

}

/**
perform Discrete Fourier Transform

*/

private RenderedOp computeDFT(RenderedOp ro) {
ParameterBlock param = new ParameterBlock();
param.addSource(ro);
param.add(DFTDescriptor.SCALING_NONE);
param.add(DFTDescriptor.REAL_TO_COMPLEX);
return JAIL.create("DFT", param);

}

/**
computes the magnitude image from a supplied complex image.
The number of bands will be decreased by 2

*/

private RenderedOp computeMagnitudes(RenderedOp ro) {
ParameterBlock param = new ParameterBlock();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

param.addSourcé(ro);
return JAL.create("Magnitude", param);

}

/**
performs log(pixelValue+1)

*/

private RenderedOp computeLogImage(RenderedOp ro) {
ParameterBlock param;

param = new ParameterBlock();
param.addSource(ro);

double[] constant = {1.0};

param.add(constant);

RenderedOp tmp = JAl.create("addConst", param);

param = new ParameterBlock();
param.addSource(tmp);
return JAIL.create("log", param);

/**
1. scales input image so that the maximum value is 255
2. shifts scaled image so DC frequency is in center
3. formats shifted image to a datatype of byte

*/

private RenderedOp formatForDisplay(RenderedOp ro) {
ParameterBlock param;

param= new ParameterBlock();

param.addSource(ro);

param.add(null);

param.add(1);

param.add(1);

RenderedOp statsImage = JAl.create("Extrema", param);

double[] maximum = (double[]) statsImage.getProperty("maximum");

param = new ParameterBlock();

param.addSource(ro);

double[] scale = {255.0/maximum[0]};

param.add(scale);

double[] offset = {0.0};

param.add(offset);

RenderedOp rescaledimage = JAlL.create("Rescale", param);

param = new ParameterBlock();
param.addSource(rescaledImage);

param.add(new Integer(rescaledImage.getWidth()/2));
param.add(new Integer(rescaledImage.getHeight()/2));
RenderedOp shiftedImage = JAI.create("PeriodicShift", param);

param = new ParameterBlock();
param.addSource(shiftedImage);
param.add(java.awt.image.DataBuffer. TYPE_BYTE);
return JAL.create("format", param);

}

public static void main(String[] args) {
if (args.length = 1)
System.err.printin("USAGE: DFTTester filename");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

eise

new DFTTester(args[0]);

Figure 6.9. Illustration of output from the DFTTester.java application shown in Listing 6.12.

[«rrevious Rt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
JAI IO

One of the most useful aspects of JAI is the ability to easily read and write image data. Images can be
loaded into a PlanarImage if they are contained in a formatted image file, a nonformatted image file,

or a BufferedImage. Likewise, the data contained in a PlanarImage can be written into a file as either
formatted or unformatted data or the PlanarImage can be converted into a BufferedImage.

File Operator

There are an assortment of operators for reading a specific image format such as BMP, GIF, FPX,
JPEG, PNG, PNM, and TIFF (see Table 6.11).

Note

The IO for JAI is built on the Image IO package discussed in Chapter 5, so there shouldn't
be a discrepancy between the file formats the Image 10 package can decode/encode and
the file formats the JAI package can decode/encode.

In Table 6.11, the list of IO operators is presented. Note that many of them allow optional encoder or
decoder objects in order to provide more control over reading and writing images of specific formats.

Table 6.11. Summary of File Operators
Operator |Parameter Block Format/Description

AWTImage |add(java.awt.Image image);

The AWTImage operator converts a java.awt.Image into a Planarimage.

BMP add(com.sun.media.jai.codec.SeekableStream
== stream);

The BMP operator decodes the bmp image contained in stream.

Encode addSource(PlanarImage pi);
add(java.io.OutputStream stream);

add(String format);
add(com.sun.media.jai.codec.ImageEncodeParam
== param);

The Encode operator encodes pi onto stream using given format and encoding
parameters. The default value for format is "tiff", and the default value for param is null.

FileLoad add(String filename);
add(com.sun.media.jai.codec.ImageDecodeParam
== param);

add(boolean checkFileLocally);

The FileLoad operator decodes the image contained in file filename using the given
decoding parameters. The image format isn't specified. When loading remote files,
checkFileLocally should be set to false; otherwise, an IllegalArgumentException will be
thrown when the file isn't found on the local file system. The default value for param is
null, and the default value for checkFileLocally is true.

FileStore addSource(PlanarImage pi);

add(String filename);

add(String format);
add(com.sun.media.jai.codec.ImageEncodeParam
= param);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

The FileStore operator encodes pi into file filename using given format and encoding
parameters. The default value for format is "tiff" and the default value for param is null.

FPX

add(com.sun.media.jai.codec.SeekableStream
== stream);
add(com.sun.media.jai.codec.FPXDecodeParam param);

The FPX operator decodes the fpx image contained in stream. The default value of
param is null.

GIF

add(com.sun.media.jai.codec.SeekableStream
== stream);

The GIF operator decodes the gif image contained in stream.

I1P

add(String url);

add(int[] subImages);

add(float filter);

add(float contrast);
add(Rectangle2D.Float sourceROI);
add(AffineTransform transform);
add(float aspectRatio);
add(Rectangle2DFloat destROI);
add(int rotation);

add(String mirrorAxis);
add(ICC_Profile iccprofile);
add(int jpegquality);

add(int jpegtable);

The IIP operator creates a java.awt.image.RenderedImage or a
java.awt.image.renderable.RenderableImage based on the data received from the
Internet Imaging Protocol (IIP) server. It can optionally apply a sequence of operations
to the created image. Refer to the IIP specifications found at

http://www.digitalimaging.org for more complete information on this operator.

IIPResolution

add(String url);
add(int resolution);
add(int subImage);

The IIPResolution operator requests from the IIP server an image located at url with a
resolution level of resolution. It then creates a java.awt.image.RenderedIimage based on
the data received from the server. The default value for resolution is
IIPResolutionDescriptor.MAX_RESOLUTION, and the default value for subImage is 0.

JPEG

add(com.sun.media.jai.codec.SeekableStream
= stream);

The JPEG operator decodes the jpeg image contained in stream.

PNG

add(com.sun.media.jai.codec.SeekableStream
= stream);
add(com.sun.media.jai.codec.PNGDecodeParam param);

The PNG operator decodes png images contained in stream. The default value of param
is null.

PNM

add(com.sun.media.jai.codec.SeekableStream
= stream);
add(com.sun.media.jai.codec.PNGDecodeParam param);

The PNM operator decodes the pnm image contained in stream. The default value of
param is null.

Stream

add(com.sun.media.jai.codec.SeekableStream
= stream);
add(com.sun.media.jai.codec.ImageDecodeParam

= param);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The Stream operator decodes the image contained in stream. The image format isn't
specified. The default value of param is null.

TIFF add(com.sun.media.jai.codec.SeekableStream
== stream);

add(com.sun.media.jai.codec. TIFFDecodeParam
= param);

add(int page);

The TIFF operator decodes page page of the tiff image contained in stream. The default
value of param is null, and the default value of page is 0.

URL add(java.net.URL url);
add(com.sun.media.jai.codec.ImageDecodeParam
== param);

The URL operator decodes the image contained in url. The image format isn't specified.
The default value of param is null.

There are also three main operators for reading images without specifying an image format. They are
the FileLoad, Stream, and URL operators. These operators examine the image bytes to decode the
image format and then call the appropriate operator—that is, TIFF, GIF, and so on. Listing 6.13 shows
all three operators being used to read the same image data. Writing formatted image data is done by
using the FileStore and Encode operators, which write out image data of a specified format to a file or
to a stream, respectively.

Listing 6.13 ImageLoadTester

package ché6;

import java.awt.*;

import java.awt.image.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.awt.image.renderable.ParameterBlock;
import javax.media.jai.RenderedOp;

import javax.media.jai.JAL;

import com.sun.media.jai.codec.SeekableStream;

/**
ImagelLoadTester -- loads an image using the JAI class' create method.

This method uses 3 different operator names to load the image
in 3 different manners, namely "stream”, "fileload" and "url"

It then prints out the properties of the loaded image
*/

public class ImagelLoadTester extends JFrame {

public ImagelLoadTester(String filename) {
SeekableStream stream = null;
URL url = null;

try {
url = new URL("file:"+filename);
stream = SeekableStream.wrapInputStream(url.openStream(),
false);
b
catch (IOException ioe) {
System.err.printin("IOException: " + ioe.getMessage());
b

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

params = new ParameterBlock();
params.add(stream);
RenderedOp streamImage = JAL.create("stream”, params);

params = new ParameterBlock();
params.add(filename);
RenderedOp fileImage = JAI.create("fileload", params);

params = new ParameterBlock();
params.add(url);
RenderedOp urlImage = JAI.create("url", params);

//Display Image Properties

String[] props = streamImage.getPropertyNames();

for (int i=0;i<props.length;i++) {
System.out.print("Property: " + props[i] + ", ");
System.out.printin(streamImage.getProperty(propsl[i]));

b

getContentPane().setLayout(new GridLayout(1, 3));
getContentPane().add(new chéDisplay(streamImage));
getContentPane().add(new chéDisplay(fileImage));
getContentPane().add(new chéDisplay(urlimage));

pack();
show();

}

public static void main(String[] args) {
if (args.length != 1)
System.err.printin("USAGE: ImageloadTester filename");
else
new ImageloadTester(args[0]);
by

private ParameterBlock params;

}

Reading Unformatted Images

If there is no defined format for an image or the JAI decoders cannot decode the image's format,
you'll need to convert the raw pixel data into a PlanarImage yourself. Listing 6.14 illustrates how to
read in a series of tiles concatenated into a single image. A common situation in medical imaging
occurs when a series of slices are concatenated into a single image file. In this listing, the tiles are
assumed to be composed of a single band containing float data.

Listing 6.14 FloatViewer

package ché6;

import javax.media.jai.*;

import java.awt.*;

import java.awt.color.*;

import java.awt.image.*;

import java.awt.image.renderable.*;
import javax.swing.*;

import java.io.*;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

/**

FloatViewer.java - reads a image file composes of float values,
scales it for display purposes and displays it.

This image file can be composed of any humber of different images

as

long as they are the same dimensions (referred to as tileWidth

and tileHeight);

*/

public class FloatViewer extends JFrame {
public FloatViewer(String filename, String tileWidth,

}

String tileHeight) {
File f = new File(filename);
if (I(f.exists())) {
System.err.printin("File: " + filename + " does not exist ");
System.exit(1);

by
this.tilewidth = Integer.parselnt(tileWidth);
this.tileHeight = Integer.parselnt(tileHeight);

float[][] dataArray = getData(f);
PlanarImage inputImage = getTiledImage(dataArray);

double scaleFactor = findScale(inputImage);
ParameterBlock pb = new ParameterBlock();
pb.addSource(inputimage);

pb.add(new double[] {1.0/scaleFactor});
pb.add(new double[] {0.0});

RenderedOp scaledIimage = JAl.create("rescale", pb);

getContentPane().setLayout(new BorderLayout());

getContentPane().add(new JScrollPane(new ch6Display(scaledImage)),
BorderLayout.CENTER);

show();
pack();

/**

*/

provides a scale factor for displaying the image data.

private double findScale(PlanarImage pi) {

}

ParameterBlock pb = new ParameterBlock();
pb.addSource(pi);

PlanarImage pi2 = JAI.create("extrema", pb);

double[] maximum = (double[])pi2.getProperty("maximum");
double maxValue = maximum[0];

return maxValue/2.0;

/**

reads the image data from the file and stores it in an
array of javax.media.jai.DataBufferFloat elements
with each tile being stored in a

separate javax.media.jai.DataBufferFloat element.

*/

private float[][] getData(File file) {

numberFloats = (int)(file.length()/4); //4 bytes per float
numberFloatsPerTile = tileWidth*tileHeight;
numberTiles = numberFloats/numberFloatsPerTile;

float[][] floatArray = null;
floatArray = new float[numberTiles][numberFloats];

try {
FileInputStream fis = new FileInputStream(file);
BufferedInputStream bis;
bis = new BufferedInputStream(fis, numberFloatsPerTile*4):

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Caution

Running Listing 6.14 might cause an OutOfMemoryError error to occur. The easiest way to
avoid this is to increase the amount of memory allocated to the JVM. In order to do this,
use something like the following:

java =Xms32m —Xmx128m classFilename

This increases the initial memory allocation from 4 megabytes to 32 megabytes and the
maximum memory allocation from 16 megabytes to 128 megabytes.

Converting to and from Images and Buffered Images

As we have previously discussed, some of the functionality contained within the PlanarImage class is
available in a BufferedImage, although usually to a lesser extent. Other PlanarImage features don't
exist in the BufferedImage at all. Thus, you need to perform some type of conversion on a
BufferedImage in order to use it with the JAI package. To do this, convert the BufferedImage to a
RenderedImageAdapter class using the following constructor:

public RenderedImageAdapter(RenderedImage src)

Because the RenderedImageAdapter class is a subclass of the PlanarImage class, it can be used
wherever the PlanarImage class is expected. (Basically it is a PlanarImage with no sources.) When
creating a RenderedImageAdapter in this manner, the data from the BufferedImage is copied so
subsequent changes to the BufferedImage won't affect the RenderedImageAdapter.

Note

Because both a BufferedImage and a PlanarImage implement the RenderedImage interface,
they can both be referred to as a RenderedImages. The RenderedImageAdaptor is
"idempotent" however, meaning that a BufferedImage will be converted to a PlanarImage,
but a PlanarImage will be unchanged.

To go from a PlanarImage to a BufferedImage, you can simply use the PlanarImage's
getAsBufferedImage method, which returns a copy of the Planarimage's data contained in a
BufferedImage.

In some cases, you will have a java.awt.Image object that needs to be converted into a PlanarImage.
In this case you can use the AWTImage operator mentioned in Table 6.11.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [privieua]firaxt +]
Advanced Topics

What follows are some advanced topics that we are unable to cover to the extent that they deserve.
We have provided enough information to allow you to understand the basics of each topic. We have
also provided code samples so that you'll be able to experiment with these features without having to
worry about getting things set up and running.

RenderedOps Versus RenderableOps

In some situations a RenderedOp is created without knowing how its RenderedIlmage is going to be
used. For example, it could be displayed on a low resolution monitor or a high resolution printer.
Similarly, it could be displayed as a thumbnail image or it could be scaled to fit a user specified
region. The user could specify that it be rendered with an emphasis on speed or an emphasis on
quality. For these reasons, it might make sense to wait until all the relevant rendering information is
decided before any rendering hints are set. When working with RenderedOps, this isn't possible
because the RenderingHints objects are contained in the RenderedOp object and must be available
when the RenderedOp is instantiated. For this reason, the RenderableOp layer was developed.

Unlike a RenderedOp, a RenderableOp doesn't contain a RenderingHints because it isn't capable of
creating a RenderedImage directly. Instead, after all the rendering hints have been decided, you can
pass the RenderingHints to a RenderableOp, which then uses it to create a RenderedOp. The
RenderedOp then makes the RenderedImage, which is returned. Although there are RenderableOp
methods to create a rendering, this rendering is done in two steps using an intermediate RenderedOp.

One way to think about the relationship between RenderedOps and RenderableOps is that the
RenderableOp DAGs are templates to create RenderedOp DAGs. This relationship is similar to that of a
class and an object. A single class can be used to form many objects which, depending on the values
of their instance variables, can act very differently. Similarly, a RenderableOp can be used to create
many RenderedOps which, depending on the values of their RenderingHints, can act very differently.

When a RenderableOp is rendered, it is usually through its

public RenderedImage createScaledRendering(int width,
int height,
RenderContext rc)

method. After this method is called, the RenderableOp checks whether its sources are rendered. If not,
it requests that they become rendered, and this request makes its way up the RenderableOp DAG in
the same way that a rendering request makes its way up a RenderedOp DAG. Thus, both RenderedOps
and RenderableOps operate in the pull imaging mode. The main difference is that the RenderableOp
DAG creates a RenderedOp DAG to produce the final RenderedImage and, of course, a RenderedOp
DAG creates the RenderedImage itself.

One last operator that needs to be discussed is the Renderable operator. This operator takes a
RenderedImage source, such as a RenderedOp, and converts it into a RenderableOp for use in a
RenderableOp DAG (see Table 6.12).

Table 6.12. The Renderable Operator
Operator |Parameter Block Format/Description

Renderable|addSource(Planarimage pi);
add(RenderedOp downSampler);
add(int maxLowResDim);
add(float minX);

add(float minY);

add(float height);

The Renderable operator produces a RenderableImage from a RenderedImage source, pi.
The default value for downSampler is null, the default value for maxLowResDim is 64, the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| |defau|t values for minX and minY are 0.0, and the default value for height is 1.0.

Listing 6.15 provides an example of the "Renderable" operator. In this example, an image is loaded
from a file, inverted and rotated using a RenderableOp DAG. It is then displayed two times, once as a
small image with an emphasis on rendering speed and once as a larger image with an emphasis on
rendering quality.

Listing 6.15 RenderableImageTester

package ché6;

import java.awt.*;

import javax.swing.*;

import java.awt.image.renderable.ParameterBlock;
import java.awt.image.RenderedImage;

import javax.media.jai.JAL;

import javax.media.jai.PlanarImage;

import javax.media.jai.RenderedOp;

import javax.media.jai.RenderableOp;

/**
RenderableImageTester.java -- objects of this class
3. create a RenderableOp by loading image contained in filename
4. create a 2nd RenderableOp representing the rotation
of the first RenderableOp
5. displays the final RenderedOp
6. displays the RenderableOp according to desired image width and
height and rendering hints
*/
public class RenderableImageTester extends JFrame {
public RenderableImageTester(String filename) {
int xScale, yScale;

RenderedOp imageSource = readInputFile(filename);

RenderableOp renderableInput = getRenderable(imageSource);
RenderableOp invertedRenderable;

invertedRenderable = createRenderablelnverted(renderableInput);
RenderableOp rotatedRenderable;

rotatedRenderable = createRenderableRotated(invertedRenderable);

RenderingHints rh;
rh = new RenderingHints(RenderingHints.KEY_RENDERING,
RenderingHints.VALUE_RENDER_SPEED);

xScale = imageSource.getWidth()/2;
yScale = imageSource.getHeight()/2;

RenderedImage smallRendered;

smallRendered = rotatedRenderable.createScaledRendering(xScale,
yScale,
rh);

rh = new RenderingHints(RenderingHints.KEY_RENDERING,
RenderingHints.VALUE_RENDER_QUALITY);

xScale = imageSource.getWidth()*2;

yScale = imageSource.getHeight()*2;

RenderedImage largeRendered;
largeRendered = rotatedRenderable.createScaledRendering(xScale,

vQrala

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Yoy

rh);
getContentPane().setLayout(new GridLayout(1,2));
getContentPane().add(new chéDisplay(smallRendered));
getContentPane().add(new chéDisplay(largeRendered));

pack();
show();

}

private RenderedOp readInputFile(String filename) {
ParameterBlock pb = new ParameterBlock();
pb.add(filename);
return JAI.create("fileload", pb);

}

private RenderableOp getRenderable(RenderedOp ro) {
ParameterBlock pb = new ParameterBlock();
pb.addSource(ro);
pb.add(null);
pb.add(null);
pb.add(null);
pb.add(null);
pb.add(null);
return JAL.createRenderable("renderable", pb);

/**
Returns a RenderableOp representing a inverted
version of RenderableOp toBelnverted
*/
private RenderableOp createRenderableInverted(RenderableOp inputro) {
ParameterBlock param;
param = new ParameterBlock();
param.addSource(inputro);
RenderableOp ro = JAlL.createRenderable("Invert", param);

return ro;

/**
Returns a RenderableOp representing a rotated
version of RenderableOp toBeRotatedRO

*/

private RenderableOp createRenderableRotated(RenderableOp inputro) {
float angle = (float)((45.0/180.0)*Math.PI); //45 degree rotation

ParameterBlock param;

param = new ParameterBlock();
param.addSource(inputro);

param.add(new Float(inputro.getWidth()/2));
param.add(new Float(inputro.getHeight()/2));
param.add(new Float(angle));

RenderableOp ro = JAl.createRenderable("Rotate", param);

return ro;

}

public static void main(String[] args) {
if (args.length != 1)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

System.err.printin("Usage: filename");
else
new RenderableImageTester(args[0]);
b
b

Client/Server Imaging

In jdk1.2, Java introduced support for remote method invocation (RMI), which allows you to run a
JVM on two different machines and have objects running in one JVM call methods on objects running
on another JVM. This can be useful in situations in which there is a reason for running a method on a
different computer; for instance it might have a faster CPU, a database, or special files. In JAI, Java
not only continues its support for RMI, but also has greatly simplified working with remote images.

The basic idea behind RMI is that a client appears to make a method call on a remote object, but
actually makes a method call on something called a stub object. This stub object serializes all the
method parameters and brings them over to the remote machine where they are placed into the
remote machines local memory. The remote object then performs the specified method using these
local objects and provides a return object to the stub. (This return object could be a thrown
exception.) The stub serializes this return object and brings it back to the client machine where it is
placed into local memory. If it is an exception, it is rethrown in the space of the original method call.
Thus, in summary, both the client and the server are performing local operations, but the stub object
provides the appropriate data transfer, data packaging, and data unpackaging so that it appears as if
the client is actually calling a remote method.

Tip

The process of serializing and packaging parameters is usually referred to as parameter
marshalling.

One obstacle to implementing this type of system is that for it to work, the stub object needs to be
instantiated on the remote server and retrieved by the client when it is needed. Thus, the client must
know where to get this stub object. This is done by having the server registering its stub object with
an rmi registry. The rmi registry is an application provided as part of the standard jdk. The rmi
registry runs on the server using a known port (1099 is the default) so that the client knows how to
find it.

In basic Java RMI, the programmer must create the client application, the remote classes, and the
remote server application containing the code to register the stub object(s) with the rmi registry. In
JAI, you only need to write the client application. After starting the rmi registry, you simply need to
start the predefined JAI remote class (java.media.jai.JAIRMIImageServer), which registers predefined
remote classes with the rmi registry. Two examples of setting up the JAIRMIImageServer are shown
below.

For UNIX:
#1/bin/sh

CLASSPATH=
rmiregistry &

JAI=/usr/java/jre/lib/ext
CLASSPATH=$JAI/jai_core.jar:$JAI/jai_codec.jar:$JAI/mlibwrapper_jai.jar

java -Djava.rmi.server.codebase="file:$JAI/jai_core.jar file:$JAI/jai_codec.jar
file:$JAI/mlibwrapper_jai.jar"\
-Djava.rmi.server.useCodebaseOnly=false\
-Djava.security.policy==file:$PWD/policy\
com.sun.media.jai.rmi.JAIRMIImageServer

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FOR WINDOWS:

SET CLASSPATH=
start rmiregistry

SET JAI=/usr/java/jre/lib/ext
SET CLASSPATH=%JAI%\jai_core.jar; %JAI%)\jai_codec.jar; %JAI%\mlibwrapper_jai.jar

java -Djava.rmi.server.codebase="file:%JAI%\jai_core.jar file:%JAI%\jai_codec.ja
r" -Djava.rmi.server.useCodebaseOnly=false -Djava.security.policy=file:%JAI%\pol
icy com.sun.media.jai.rmi.JAIRMIImageServer

Caution

When the rmi registry is started, the current directory is examined to see whether it
contains any class files. This is a very common problem with setting up remote servers.
Make sure that no classfiles are in the directory where the rmiregistry is started and make
sure that no classfiles are on the classpath (that is, clear the classpath).

When writing the remote client application, you specify that you are working with remote objects by
using the remote subclasses of PlanarImage and RenderedOp, namely RemoteIlmage and
RemoteRenderedOp, respectively.

In Listing 6.16, a client application is provided. This application simply takes as input the name of the
remote server and a file located on that server. It then accesses that file through the
JAIRMIImageServer and displays it.

Listing 6.16 RemoteTester

package ché6;

import java.awt.*;

import javax.swing.*;

import java.awt.image.renderable.ParameterBlock;

import javax.media.jai.remote.RemotelAI;

import javax.media.jai.remote.RemoteRenderedOp;

/**
RemoteTester.java -- takes as parameters a remote host and a
filename. It then reads and displays the image contained in this
remote file.

*/

public class RemoteTester extends JFrame {

public RemoteTester(String serverName, String fileName) {
ParameterBlock pb;
String protocolName = "jairmi";
RemotelAI rc = new Remote]AI(protocolName, serverName);

// Create the operations to load the images from files.

pb = new ParameterBlock();

pb.add(fileName);

pb.add(null);

pb.add(Boolean.FALSE);

RemoteRenderedOp remotelmage = rc.create("fileload", pb, null);

getContentPane().add(new chéDisplay(remotelmage));

pack();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

éhovxfd;
by
public static void main(String[] args) {
if (args.length == 2)
new RemoteTester(args[0], args[1]);

else
System.err.printin("Usage: RemoteTester serverName fileName");

RMI Security

Remote imaging is potentially very dangerous because you must ensure that no unwanted users
acquire any of your image data. You also need to ensure that a remote client doesn't do any damage
to the files on the server machine. For this reason, the JAIRMIImageServer requires the user to specify
a policy file when it is started. This is Java's way of making sure that the server only has the
permissions that you specify.

The following policy file will provide the client application all possible permissions and might be helpful
in getting your application up and running. It should be used for development purposes only.

grant {
// Allow everything for now
permission java.security.AllPermission;

Jo

A better policy file to use for the previous example is as follows:

grant {
permission java.net.SocketPermission "*:1024-",
"listen, resolve, accept, connect, listen, resolve";
permission java.io.FilePermission "/usr/java/jre/lib/ext/-", "read";
permission java.io.FilePermission "remotelmages/-", "read";

i

where the first two permissions are necessary for the JAIRMIImageServer to function properly and the
last permission is to allow the client to read images contained in a directory called "remoteImages."

Extending JAI

The most successful image processing packages are those that are built on a strong foundation,
supply the most common operators, and provide a means for users to add their own operators. JAI
does all three things. In this section, the process of adding new operators in JAI will be discussed. The
steps are as follows:

1. Provide an operator descriptor.
2. Create a RIF or a CRIF.

3. Create an OpImage.

4. Register the new operator.

In order to describe this process, we will develop an operator called the CheckAlignment operator. In
many fields such as medical imaging, it is common to combine two images in order to detect
abnormalities that couldn't easily be detectable in a single image. Before this can be done, it is
important to make sure that the two images are aligned. One way to do this is to create a new image
composed of squares, where the pixel values in the squares alternate between the two source images.
This operator will take as input two source images and an integer specifying the square dimension.

OperatorDescriptors

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The first thing that needs to be done when you are writing a new operator is to provide a description
of it using a class that implements the java.media.jai.OperatorDescriptor interface. This interface
describes the functionality necessary to provide information about the new operator such as operation
name, number of sources, number of parameters, types and ranges of parameters, and so on. In
order to make this task easier, the java.media.jai.OperatorDescriptorImpl class which implements this
interface and contains default behaviors for many of the methods is available. Thus, the easiest way
to create a new OperatorDescriptor is to extend the OperatorDescriptorImpl class and define a

constructor as shown in Listing 6.17.

Listing 6.17 CheckAlignmentDescriptor

package ch6.checkalignment;

import javax.media.jai.OperationDescriptorImpl;
import javax.media.jai.registry.RenderedRegistryMode;

public class CheckAlignmentDescriptor extends OperationDescriptorImpl {
private static final String[] paramNames = {"samplingPeriod"};
private static final Object[] paramDefaults = {new Integer(1)};
private static final Class[] paramClasses = {Integer.class};
private static final int numSources = 2;
private static final String[] supportedModes = {"rendered"};
private static final Object[] validParamValues = {
new javax.media.jai.util.Range(Integer.class,
new Integer(1),
new Integer(Integer.MAX_VALUE))
}&

private static final String[][] resources = {
{"GlobalName", "CheckAlignment"},
{"LocalName", "CheckAlignment"},
{"Vender", "MyCompanyName"},
{"Description", "Provides Visual Alignment Check of Two Images"},
{"DocURL", "none"},
{"Version", "Beta"},

o

public CheckAlignmentDescriptor() {
super(resources,

supportedModes,
numsources,
paramNames,
paramClasses,
paramDefaults,
validParamValues);

RIFS and CRIFS

After the descriptor is written, you must create a class implementing either the java.awt.image.
renderable.RenderedImageFactory class or the
java.awt.image.renderable.ContextualRenderedImageFactory class. The RenderedImageFactory (RIF for
short) interface is for use with RenderedImages, and the ContextualRenderedIimageFactory (CRIF for
short) is for use with RenderablelImages. However, a CRIF (which is a subclass of RIF) can also support
RenderedImages. Because our operator will only be used with RenderedImages, we will only implement
a RIF.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The main method that must be defined in any class implementing the RIF interface is the

public RenderedImage create(ParameterBlock paramBlock,
RenderingHints rh)

method, which is used for rendering RenderedOps (see Listing 6.18). The main methods that must be
defined in any class implementing the CRIF interface is the previous create method along with the
additional

public RenderedImage create(RenderContext renderContext,
ParameterBlock paramBlock)

method, which is used for rendering RenderableOps.
Listing 6.18 CheckAlignmentRIF.java

package ch6.checkalignment;

import java.awt.image.RenderedImage;

import java.awt.image.renderable.ParameterBlock;

import java.awt.image.renderable.RenderedimageFactory;
import java.awt.RenderingHints;

import javax.media.jai.ImagelLayout;

public class CheckAlignmentRIF implements RenderedImageFactory {
public CheckAlignmentRIF() {}

public RenderedImage create(ParameterBlock paramBlock,
RenderingHints renderingHints) {

RenderedImage sourcel = paramBlock.getRenderedSource(0);
RenderedImage source2 = paramBlock.getRenderedSource(1);
int samplingPeriod = paramBlock.getIntParameter(0);
Imagelayout layout = null;

return new CheckAlignmentOpImage(sourcel,

source2,
samplingPeriod,
layout,
renderingHints,
false);
b
b
OpImages

The third thing that needs to be done is to implement your operator using a javax.media.jai.OpImage,
which is the base class for all image operators. Image operations can be divided into different
categories based on the OpImage subclass they extend. Each of these subclasses has a particular set
of characteristics which allow them to easily perform certain image processing tasks. The subclasses
are shown in Table 6.13.

Table 6.13. OpImage Subclasses

OpImage Brief Description
subclass
AreaOpImage A destination pixel at location X, y is computed using a single source pixel at

location x, y and a fixed region around that source pixel.

GeometricOpImage |A destination pixel is computed using a geometric transformation of the source
pixels.

PointOpImage A destination pixel at location x, y is computed using a single source pixel at

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

location x, vy.

SourcelessOpImage|Destination pixels are computed without using source pixels.

StatisticsOpImage |No destination pixels are computed. Instead, statistical measures are computed
on the source image.

UntiledOpImage A computed destination image will consist of a single tile equal in size to the
image bounds.

For our CheckAlignment operator we will implement a PointOpImage because we are operating on each

pixel independently (see Listing 6.19).
Listing 6.19 CheckAlignmentOpImage

package ché6.checkalignment;

import javax.media.jai.ImagelLayout;
import javax.media.jai.PointOpImage;
import java.awt.image.RenderedImage;
import java.awt.image.Raster;

import java.awt.image.WritableRaster;

public class CheckAlignmentOpImage extends PointOpImage {

public CheckAlignmentOpImage(RenderedIimage si,
RenderedImage s2,
int sp,
Imagelayout layout,
java.util.Map configuration,
boolean cobbleSources) {

super(sl, s2, layout, configuration, cobbleSources);
sourcel = si;

source2 = s2;

samplingPeriod = sp;

}

public Raster computeTile(int x, int y) {
Raster r1 = sourcel.getTile(x, y);
Raster r2 = source2.getTile(x, y);

int xBounds = rl.getWidth();
if (r2.getWidth() < xBounds)
xBounds = r2.getWidth();
int yBounds = rl1.getHeight();
if (r2.getHeight() < yBounds)
yBounds = r2.getHeight();

WritableRaster wr;
wr = rl.createCompatibleWritableRaster(xBounds, yBounds);

int tmpi;
int tmpj;
for (int i=0;i<wr.getWidth();i++)
for (int j=0;j<wr.getHeight();j++) {
tmpi = i/samplingPeriod;
tmpj = j/samplingPeriod;
if ((tmpi % 2 == 0) && (tmpj %2 == 0))
wr.setDataElements(i,j,r2.getDataElements(i,j,null));
else if ((tmpi % 2 !'= 0) && (tmpj %2 !=0))
wr.setDataElements(i,j,r2.getDataElements(i,j,null));
else

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

wr.setDataElements(i,j,r1.getDataElements(i,j,null));
b

return wr;

}

private RenderedImage sourcel, source2;
private int samplingPeriod;

by
JAI Registry

The last step in creating an operator is registering the new operator with the JAI registry. The easiest
way to do this is to register it in the application. The downside to this is that only applications that
add this addition code will be able to use the new operator (see Listing 6.20). It is also possible to
make your operator a permanent part of the registry—in which case it is available to all applications
on that platform.

Listing 6.20 CheckAlignmentTester

package ché6;

import java.awt.*;

import java.awt.geom.*;

import java.awt.image.*;

import javax.swing.*;

import javax.media.jai.JAL;

import javax.media.jai.RenderedOp;

import javax.media.jai.OperationRegistry;

import javax.media.jai.registry.RIFRegistry;

import java.awt.image.renderable.RenderedimageFactory;
import java.awt.image.renderable.ParameterBlock;
import ch6.checkalignment.*;

public class CheckAlignmentTester extends JFrame{
/*
The following static block registers the "CheckAlignment" operator
with the JAI registry
*/
static {
OperationRegistry or;
or = JAIL.getDefaultInstance().getOperationRegistry();
or.registerDescriptor(new CheckAlignmentDescriptor());
RenderedImageFactory rif = new CheckAlignmentRIF();
RIFRegistry.register(or, "CheckAlignment", "ch6example", rif);

}

public CheckAlignmentTester(String fileNamel,
String fileName2,
String samplingPeriod) {
pb = new ParameterBlock();
pb.add(fileNamel);
RenderedOp sourceImagel = JAl.create("fileload", pb);
pb.set(fileName2,0);
RenderedOp sourceImage2 = JAl.create("fileload", pb);

pb = new ParameterBlock();
pb.addSource(sourcelmagel);
pb.addSource(sourcelmage?);
pb.add(Integer.parselnt(samplingPeriod));

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

RenderedOp destinationImage = JAIcreate("CheckAlignment", pb);

getContentPane().add(new chéDisplay(destinationImage));

pack();
show();

}

public static void main(String[] args) {
if (args.length = 3) {
System.err.print("Usage: CheckAlignment ");
System.err.printin("filenamel filename2 samplingPeriod");
b
else
new CheckAlignmentTester(args[0], args[1], args[2]);
by

private ParameterBlock pb;

}

Figure 6.10. Illustration of output from the CheckAlighmentTester application shown in
Listil.g 6.20-

In one image, a single blue square lies in a white background and in the second image a single red
square lies in a white background. As you can see, these two colored squares are not perfectly aligned
because the resulting image is not a perfect checkerboard.

[Team Lig] [+ revions)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Native Acceleration

In order to improve the computation speed of image processing applications, the JAI comes with both
Java code and native code for many platforms. If the JVM finds the native code, then that will be
used. If the native code is not available, the Java code will be used. Thus, the JAI package is able to
provide optimized implementations for different platforms that can take advantage of each platform's
capabilities. You can find the difference between the native implementation and the Java
implementation for a particular application by simply removing the native code libraries. For instance,
on a Solaris SPARC platform, they will be located in the Java home directly under jre/lib/sparc. You
will know you are using only the Java code when you see the following message: "Could not load
mediaLib accelerator wrapper classes. Continuing in pure Java mode".

You will find that the time difference is highly dependent on your application. For the FloatViewer
application in Listing 6.14, you won't see any difference. For the DFTTester application in Listing 6.12,
you may see a 25 percent decrease in computation time.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Summary

We began this chapter by looking at the PlanarImage class and two of its subclasses: the RenderedOp
and the TiledImage. You saw that the PlanarImage is the main JAI class for working with images. It
contains a reference to all of its source images, which allows it to be part of Directed Acyclic Graph
(DAG). These DAGS allow changes to a particular image to work their way down to the final rendered
image. They also allow the JAI to operate in the pull imaging mode, where rendering requests make
their way up the DAG.

We described how the TiledImage class was used primarily for situations in which you need to work
with a WritableRaster and how the RenderedOp class was used primarily for processing a source image
given an operation name. The majority of this chapter was then spent listing and describing the
different operators. Finally we looked at some advanced features such as the renderable layer, remote
imaging, and writing your own image operators.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
Part ll: Time-Based Media: The Java Media Framework

IN THIS PART

7 Time-Based Medi | the IME: An I .
8 C i p ina Media with IME

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Chapter 7. Time-Based Media and the JMF: An Introduction

IN THIS CHAPTER

® Time-Based Media

® Processing Media

® Audio Primer

® Video Primer

® What Is the JMF?

® Java and Time-Based Media: A Short History

® Media Formats and Content Types Supported by JMF
® Levels of Usage of the JMF API1

® Programming Paradigms When Using JMF

® Structure of the API

® Time—A Central Concept

® Bare Bones Player Applet—A First Applet Using JMF

This section of the book covers time-based media (that is, video and audio) and the JMF (Java Media
Framework)—a Java API dedicated to the processing of time-based media.

The section is broken into three chapters—this one, Chapter 8, "Processing Media with JMF," and
Chapter 9, "RTP and Advanced JMF Topics"—that follow a progression of simple out of the box

utilizations of the API to sophisticated usage such as in combination with other specialized features
and APIs of Java. Hence, a linear progression through the material is recommended as the default.
However, those of you possessing familiarity with time-based media or parts of the API might want to
skip some of the introductory material.

In particular the structure of the three chapters is as follows:

Chapter 7, "Time Based Media and the JMF: An Introduction," serves as both an
introduction to time-based media in general and to the JMF API. In particular, some of
the fundamental concepts and issues for both digital audio and video are introduced.
Midway through the chapter, that is followed by an introduction to the JMF API in terms
of its features, promise, central concepts, and main classes.

Chapter 8, "Processing Media with JMF," serves as the core chapter of Part II, "Time-
Based Media: The Java Media Framework and Java Sound," covering the key features of

the JMF API. The topics include managers, data sources and sinks, multiplexing and
demultiplexing, codecs, format conversion, effects, and capture of media from devices.

Chapter 9, "RTP and Advanced JMF Topics," covers some of the more advanced features
of the JMF API. Chief among these covered topics is the RTP (Real-Time Transport
Protocol) support within JMF and the corresponding ability to transmit or receive
streaming media such as over the Internet. Also covered are issues such as extending
the API and utilizing other APIs in conjunction with JMF.

http://www.colorpilot.com/chm2pdf.