
[Team LiB]

• Table of Contents
• Index
• Reviews
• Examples
• Reader Reviews
• Errata
Java Data Objects

By David Jordan, Craig Russell

Publisher: O'Reilly

Pub Date: April 2003

ISBN: 0-596-00276-9

Pages: 380

This book, written by the JDO Specification Lead and one of the key contributors to the JDO Specification, is the
definitive work on the JDO API. It gives you a thorough introduction to JDO, starting with a simple application that
demonstrates many of JDO's capabilities. It shows you how to make classes persistent, how JDO maps persistent
classes to the database, how to configure JDO at runtime, how to perform transactions, and how to make queries. More
advanced chapters cover optional features such as nontransactional access and optimistic transactions. The book
concludes by discussing the use of JDO in web applications and J2EE environments Whether you only want to read up
on an interesting new technology, or are seriously considering an alternative to JDBC or EJB CMP, you'll find that this
book is essential. It provides by far the most authoritative and complete coverage available.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Reviews
• Examples
• Reader Reviews
• Errata
Java Data Objects

By David Jordan, Craig Russell

Publisher: O'Reilly

Pub Date: April 2003

ISBN: 0-596-00276-9

Pages: 380

 Dedication

 Copyright

 Foreword

 Preface

 Who Should Read This Book?

 Organization

 Software and Versions

 Conventions

 Comments and Questions

 Acknowledgments

 Chapter 1. An Initial Tour

 Section 1.1. Defining a Persistent Object Model

 Section 1.2. Project Build Environment

 Section 1.3. Establish a Datastore Connection and Transaction

 Section 1.4. Operations on Instances

 Section 1.5. Summary

 Chapter 2. An Overview of JDO Interfaces

 Section 2.1. The javax.jdo Package

 Section 2.2. The javax.jdo.spi Package

 Section 2.3. Optional Features

 Chapter 3. JDO Architectures

 Section 3.1. Architecture Within Application JVM

 Section 3.2. Datastore Access

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.3. System Architectures with a JDO Application

 Chapter 4. Defining Persistent Classes

 Section 4.1. Kinds of Classes and Instances

 Section 4.2. Java Classes and Metadata

 Section 4.3. Fields

 Chapter 5. Datastore Mappings

 Section 5.1. Mapping Approaches

 Section 5.2. Relational Modeling Constructs

 Section 5.3. Modeling Constructs in Java and Relational Models

 Section 5.4. Mapping Classes to Tables

 Section 5.5. Mapping a Single-Valued Field to a Column

 Section 5.6. Identity

 Section 5.7. Inheritance

 Section 5.8. References

 Section 5.9. Collections and Relationships

 Chapter 6. Class Enhancement

 Section 6.1. Enhancement Approaches

 Section 6.2. Binary Compatibility

 Section 6.3. Enhancement Effects on Your Code

 Section 6.4. Changes Made by the Enhancer

 Chapter 7. Establishing a JDO Runtime Environment

 Section 7.1. Configuring a PersistenceManagerFactory

 Section 7.2. Acquiring a PersistenceManager

 Section 7.3. Transactions

 Section 7.4. Multiple PersistenceManagers

 Section 7.5. Multithreading

 Chapter 8. Instance Management

 Section 8.1. Persistence of Instances

 Section 8.2. Extent Access

 Section 8.3. Accessing and Updating Instances

 Section 8.4. Deleting Instances

 Chapter 9. The JDO Query Language

 Section 9.1. Query Components

 Section 9.2. Creating and Initializing a Query

 Section 9.3. Changes in the Cache

 Section 9.4. Query Namespaces

 Section 9.5. Query Execution

 Section 9.6. The Query Filter

 Section 9.7. Ordering Query Results

 Section 9.8. Closing a Query

 Chapter 10. Identity

 Section 10.1. Overview

 Section 10.2. Datastore Identity

 Section 10.3. Application Identity

 Section 10.4. Nondurable Identity

 Section 10.5. Identity Methods

 Section 10.6. Advanced Topics

 Chapter 11. Lifecycle States and Transitions

 Section 11.1. Lifecycle States

 Section 11.2. State Interrogation

 Section 11.3. State Transitions

 Chapter 12. Field Management

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 12.1. Transactional Fields

 Section 12.2. null Values

 Section 12.3. Retrieval of Fields

 Section 12.4. Serialization

 Section 12.5. Managing Fields During Lifecycle Events

 Section 12.6. First- and Second-Class Objects

 Chapter 13. Cache Management

 Section 13.1. Explicit Management of Instances in the Cache

 Section 13.2. Cloning

 Section 13.3. Transient-Transactional Instances

 Section 13.4. Making a Persistent Instance Transient

 Chapter 14. Nontransactional Access

 Section 14.1. Nontransactional Features

 Section 14.2. Reading Outside a Transaction

 Section 14.3. Persistent-Nontransactional State

 Section 14.4. Retaining Values at Transaction Commit

 Section 14.5. Restoring Values at Transaction Rollback

 Section 14.6. Modifying Persistent Instances Outside a Transaction

 Chapter 15. Optimistic Transactions

 Section 15.1. Verification at Commit

 Section 15.2. Optimistic Transaction State Transitions

 Section 15.3. Deleting Instances

 Section 15.4. Making Instances Transactional

 Section 15.5. Modifying Instances

 Section 15.6. Commit

 Section 15.7. Rollback

 Chapter 16. The Web-Server Environment

 Section 16.1. Web Servers

 Section 16.2. Struts with JDO

 Chapter 17. J2EE Application Servers

 Section 17.1. Enterprise JavaBeans Architecture

 Section 17.2. Stateless Session Beans

 Section 17.3. Bean-Managed Transactions

 Section 17.4. Message-Driven Beans

 Section 17.5. Persistent Entities and JDO

 Appendix A. Lifecycle States and Transitions

 Appendix B. JDO Metadata DTD

 Appendix C. JDO Interfaces and Exception Classes

 Section C.1. Interfaces

 Section C.2. Exceptions

 Appendix D. JDO Query Language BNF

 Section D.1. Parameter Declaration

 Section D.2. Variable Declaration

 Section D.3. Import Declaration

 Section D.4. Ordering Specification

 Section D.5. Type Specification

 Section D.6. Names

 Section D.7. Literal

 Section D.8. Filter Expressions

 Appendix E. Source Code for Examples

 Section E.1. The com.mediamania.appserver package

 Section E.2. The com.mediamania.content package

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section E.3. The com.mediamania.hotcache package

 Section E.4. The com.mediamania.store package

 Colophon

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dedication
To my wife Tina, whose emotional and financial support made this book possible; and to Jennifer and
Jeremy, who now think that their daddy has become addicted to his computer.

—David Jordan

To Kathy, Chris, Ali, and Juliana.

—Craig Russell

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright
Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The association between the image of a lagotis and the
topic of Java Data Objects is a trademark of O'Reilly & Associates, Inc. Java and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. O'Reilly &
Associates, Inc. is independent of Sun Microsystems, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Foreword
Java Data Objects (JDO) is an important innovation for the Java platform. At a time when developers were using JDBC
almost exclusively for database access, and expert groups from major enterprise vendors were devising the much-
touted Enterprise Java Beans APIs for entity beans and container-managed persistence, Craig Russell and David Jordan
had the courage to take a different course. With a handful of others, they looked for a simpler way to provide
persistence in the Java platform, something that would be both natural and convenient for programmers. This book
describes the result of their work: JDO.

The key, unique idea behind JDO is to provide database persistence in Java with a minimum of extra stuff for the
programmer to do. The programmer doesn't need to learn SQL, doesn't need to tediously copy data into and out of
their Java objects using JDBC calls, and can use Java classes, fields, and references in a way that is natural to them,
without lots of extra method calls and coding that is extraneous to the programmer's focus and intent. Even queries can
be written using Java predicates instead of SQL. In other words, the programmer just writes Java; the persistence part
is automatic.

In addition to this transparent persistence, code written to JDO benefits from binary compatibility across
implementations on different datastores. JDO can be used with an object/relational mapping, in which JDBC calls are
generated automatically to map the data between Java objects and existing relational databases. Alternatively, the JDO
objects can be stored directly in file pages, providing the functionality and performance of an object-oriented database.

The hard work on JDO paid off: the idea of transparent persistence has proven quite popular. JDO has its own
community web site, www.JDOCentral.com, and on enterprise Java discussion sites such as www.TheServerSide.com,
developers praise the simplicity and utility of JDO. Many developers use JDO as a replacement for entity beans, by
using data objects from within session beans. Others use JDO as a convenient high-level replacement for JDBC calls in
JSP pages or other Java code. JDO has come a long way from the JDBC interface I defined in 1995 with Graham
Hamilton, and JDO is quite valuable in conjunction with J2EE.

I can't think of two individuals better qualified to write a book about JDO. Craig is the specification lead for the JDO
expert group, and Dave was one of the most active members of that group. But their qualifications go far beyond that,
and JDO was well designed as a result of those qualifications. Both have over a decade of experience with issues in
programming language persistence, including subtle transaction semantics, different persistence models, relationships
between objects, caching performance, interactions between transient and persistent objects, and programming
convenience in practice. Both had extensive experience with C++ persistence before they applied their experience to
Java. Both were key members of the Object Data Management Group (http://www.odmg.org) for years. And, most
importantly, both were developers who appreciated and needed the functionality that JDO provides.

Craig and Dave have put together a thorough, readable, and useful book. I hope you enjoy it as much as I did.

—Rick Cattell, Deputy Software CTO Sun Microsystems, February 16, 2003

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preface
JDO provides transparent persistence of your Java object models in transactional datastores. It allows you to define
your object model using all the capabilities provided in Java and it handles the mapping of that data to a variety of
underlying datastores. You do not need to learn and understand a different data-modeling language like SQL. You will
discover that JDO is very easy to use. Many development organizations are discovering the significant development
productivity advantages that can be realized by using JDO.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Who Should Read This Book?
If you are a Java programmer who writes software that needs to store data beyond the duration of a single Java Virtual
Machine (JVM) context, then you should read this book. We assume that you already know Java. But you don't need to
have a lot of knowledge of databases, because JDO insulates you from needing to know much about them.

Many Java developers have been using Java Database Connectivity (JDBC) to store their data in a database. JDBC
requires that you learn SQL. When you interact with a database via JDBC, you must view your information model from
the perspective of the relational data model, which is very different from Java. Many developers never attain the
advantages of object-oriented programming because they never define an object model for their persistent data. Most
of the application software becomes very procedural-like code that manages data in the tables of the relational data
model.

With JDO, Java becomes your data model and you only need to deal with instances of your classes when interacting
with the database. Having just the single data model of Java as the basis of your data management simplifies your
development task considerably.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Organization
This book has 17 chapters and 5 appendixes. The first three chapters provide a good overview, showing a complete
example, a high-level overview of the JDO interfaces, and a discussion of the architectures in which JDO can be used.
Chapter 3 through Chapter 6 deal with object modeling, schema design, and aspects of the JDO software-development
process. Chapter 7 covers aspects of establishing a JDO runtime environment, which includes connecting to a datastore
and issuing transactions. The remaining chapters cover aspects of using JDO to store, access, and query instances in
the datastore. We start by presenting the basic concepts and gradually move to more advanced topics, including
features that are optional in JDO implementations. We complete the book by discussing how you can integrate your
applications into application-server and J2EE environments.

The following list provides a brief description of each chapter and appendix:

Chapter 1

Provides an introductory overview of JDO by walking through a small application that illustrates many of JDO's
capabilities.

Chapter 2

Provides a high-level introduction to all of JDO's interfaces. Details of these interfaces are covered in the rest of
the book. We also discuss class enhancement and the optional features in JDO.

Chapter 3

Provides a description of the architectural components within a single JDO application and also describes the
various system architectures in which JDO implementations have been deployed.

Chapter 4

JDO maps your object models into a database. This chapter covers the Java object-modeling capabilities
supported by JDO.

Chapter 5

Explains approaches used for mapping your Java object models to the modeling components of the underlying
datastore.

Chapter 6

Covers the process and effects of enhancing your classes.

Chapter 7

Explains how to establish a connection with a datastore and establish a transaction context in which to access
objects in the database.

Chapter 8

Covers all aspects of the CRUD operations of using a database: Create, Read, Update, and Delete. We show
how to make objects persistent, accessing them from the database via extents and navigation, and how to
modify and delete them.

Chapter 9

JDO includes its own query language, which is based largely on Java, using its operators and syntax to access
objects using the data model defined by your classes.

Chapter 10

Identifies the various approaches for uniquely identifying an object in the database.

Chapter 11

Covers the lifecycle states used by a JDO implementation to manage objects in memory, describing the state
transitions that occur as your application and the JDO implemenation perform operations on the objects.

Chapter 12

Describes transactional fields, null values in fields, special facilities that control the access of fields, and
mechanisms for you to manage fields during certain lifecycle events. The chapter concludes with a discussion of
first- and second-class objects.

Chapter 13

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13

Covers advanced topics related to managing instances in the cache, including making persistent instances
transient, making transient instances transactional, cloning instances, and refreshing and evicting instances in
the cache.

Chapter 14

Covers techniques for accessing instances outside of a transaction.

Chapter 15

Covers all aspects of optimistic transactions in JDO.

Chapter 16

Explains how to use JDO in an application-server environment.

Chapter 17

Explains the use of JDO in an Enterprise Java Beans environment, using JDO as the persistence service for
session and entity beans, using either bean-managed persistence (BMP) or container-managed persistence
(CMP).

Appendix A

Provides a table containing all the lifecycle states and all transitions that occur for any operation that changes
the state of an instance.

Appendix B

Provides the XML Document Type Descriptor (DTD) for JDO metadata.

Appendix C

Provides the signature for all the methods in each JDO interface.

Appendix D

Provides the Backus-Naur Form (BNF) for the JDO Query Language.

Appendix E

Provides complete source code for the major classes used in the examples throughout the book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Software and Versions
This book is based on JDO release 1.0.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Conventions
The following typographical conventions are used in this book:

Italic

Used for filenames and pathnames, hostnames, domain names, URLs, and email addresses. Italic is also used
for new terms where they are defined.

Constant width

Used for code examples and fragments, XML elements and tags, and SQL commands, table names, and column
names. Constant width is also used for class, variable, and method names and for Java keywords used within the
text.

Constant width bold

Used for emphasis in some code examples.

Constant width italic

Used to indicate text that is replaceable. For example, in BeanNamePK, you would replace BeanName with a
specific bean name.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can access this page
at:

http://www.oreilly.com/catalog/jvadtaobj

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web site
at:

http://www.oreilly.com

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments
We would like to thank our technical reviewers, who provided very valuable input. They include S. Rajesh Babu
(ObjectFrontier), Michael Bouschen (Tech@Spree), Ron Hitchens (Ronsoft Technologies), Dennis Leinbaugh, Patrick
Linskey (SolarMetric), Marc Prud'hommeaux (SolarMetric), Eric Samson (LIBeLIS), David Tinker (Hemisphere
Technologies), Mike Warren (Chemical Abstract Service), and Abe White (SolarMetric). We also appreciate the valuable
feedback from Linda DeMichiel, Sun Microsystem's EJB specification lead. The feedback and suggestions from these
technical reviewers was invaluable.

We especially acknowledge the support and guidance of our editor, Michael Loukides. We would also like to thank some
of the other staff at O'Reilly, including David Futato, Robert Romano, Brian Sawyer, and Mike Sierra.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. An Initial Tour
Java is a language that defines a runtime environment in which user-defined classes execute. Instances of these user-
defined classes may represent real-world data that is stored in a database, filesystem, or mainframe transaction
processing system. Additionally, small-footprint environments often require a means of managing persistent data in
local storage.

Because data-access techniques are different for each type of data source, accessing the data presents a challenge to
application developers, who need to use a different application programming interface (API) for each type of data
source. This means that you need to know at least two languages to develop business logic for these data sources: the
Java programming language and the specialized data-access language required by the data source. The data-access
language is likely to be different for each data source, driving up the costs to learn and use each data source.

Prior to the release of Java Data Objects (JDO), three standards existed for storing Java data: serialization, Java
DataBase Connectivity (JDBC), and Enterprise JavaBeans (EJB) Container Managed Persistence (CMP). Serialization is
used to write the state of an object, and the graph of objects it references, to an output stream. It preserves the
relationships of Java objects such that the complete graph can be reconstructed at a later point in time. But serialization
does not support transactions, queries, or the sharing of data among multiple users. It allows access only at the
granularity of the original serialization and becomes cumbersome when the application needs to manage multiple
serializations. Serialization is only used for persistence in the simplest of applications or in embedded environments that
cannot support a database effectively.

JDBC requires you to manage the values of fields explicitly and map them into relational database tables. The developer
is forced to deal with two very different data-model, language, and data-access paradigms: Java and SQL's relational
data model. The development effort to implement your own mapping between the relational data model and your Java
object model is so great that most developers never define an object model for their data; they simply write procedural
Java code to manipulate the tables of the underlying relational database. The end result is that they are not benefiting
from the advantages of object-oriented development.

The EJB component architecture is designed to support distributed object computing. It also includes support for
persistence through Container Managed Persistence (CMP). Largely due to their distributed capabilities, EJB applications
are more complex and have more overhead than JDO. However, JDO has been designed so that implementations can
provide persistence support in an EJB environment by integrating with EJB containers. If your application needs object
persistence, but does not need distributed object capabilities, you can use JDO instead of EJB components. The most
popular use of JDO in an EJB environment is to have EJB session beans directly manage JDO objects, avoiding the use
of Entity Beans. EJB components must be run in a managed, application-server environment. But JDO applications can
be run in either managed or nonmanaged environments, providing you with the flexibility to choose the most
appropriate environment to run your application.

You can develop applications more productively if you can focus on designing Java object models and using JDO to store
instances of your classes directly. You need to deal with only a single information model. JDBC requires you to
understand the relational model and the SQL language. When using EJB CMP, you are also forced to learn and deal with
many other aspects of its architecture. It also has modeling limitations not present in JDO.

JDO specifies the contracts between your persistent classes and the JDO runtime environment. JDO is engineered to
support a wide variety of data sources, including sources that are not commonly considered databases. We therefore
use the term datastore to refer to any underlying data source that you access with JDO.

This chapter explores some of JDO's basic capabilities, by examining a small application developed by a fictitious
company called Media Mania, Inc. They rent and sell various forms of entertainment media in stores located throughout
the United States. Their stores have kiosks that provide information about movies and the actors in those movies. This
information is made available to the customers and store staff to help select merchandise that will be of interest to the
customers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 Defining a Persistent Object Model
Figure 1-1 is a Unified Modeling Language (UML) diagram of the classes and interrelationships in the Media Mania object
model. A Movie instance represents a particular movie. Each actor who has played a role in at least one movie is
represented by an instance of Actor. The Role class represents the specific roles an actor has played in a movie and thus
represents a relationship between Movie and Actor that includes an attribute (the name of the role). Each movie has one
or more roles. An actor may have played a role in more than one movie or may have played multiple roles in a single
movie.

Figure 1-1. UML diagram of the Media Mania object model

We will place these persistent classes and the application programs used to manage their instances in the Java
com.mediamania.prototype package.

1.1.1 The Classes to Persist

We will make the Movie, Actor, and Role classes persistent, so their instances can be stored in a datastore. First we will
examine the complete source code for each of these classes. An import statement is included for each class, so it is
clear which package contains each class used in the example.

Example 1-1 provides the source code for the Movie class. JDO is defined in the javax.jdo package. Notice that the class
does not require you to import any JDO-specific classes. Java references and collections defined in the java.util package
are used to represent the relationships between our classes, which is the standard practice used by most Java
applications.

The fields of the Movie class use standard Java types such as String, Date, and int. You can declare fields to be private; it
is not necessary to define a public get and set method for each field. The Movie class includes some methods to get and
set the private fields in the class, though those methods are used by other parts of the application and are not required
by JDO. You can use encapsulation, providing only the methods that support the abstraction being modeled. The class
also has static fields; these are not stored in the datastore.

The genres field is a String that contains the genres of the movie (action, romance, mystery, etc.). A Set interface is used
to reference a set of Role instances, representing the movie's cast. The addRole() method adds elements to the cast
collection, and getCast() returns an unmodifiable Set containing the elements of the cast collection. These methods are
not a JDO requirement, but they are implemented as convenience methods for the application. The parseReleaseDate()
and formatReleaseDate() methods are used to standardize the format of the movie's release date. To keep the code
simple, a null is returned if the parseReleaseDate() parameter is in the wrong format.

Example 1-1. Movie.java

package com.mediamania.prototype;

import java.util.Set;
import java.util.HashSet;
import java.util.Collections;
import java.util.Date;
import java.util.Calendar;
import java.text.SimpleDateFormat;
import java.text.ParsePosition;

public class Movie {
 private static SimpleDateFormat yearFmt = new SimpleDateFormat("yyyy");
 public static final String[] MPAAratings =
 { "G", "PG", "PG-13", "R", "NC-17", "NR" };
 private String title;
 private Date releaseDate;
 private int runningTime;
 private String rating;
 private String webSite;
 private String genres;
 private Set cast; // element type: Role

 private Movie()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private Movie()
 { }

 public Movie(String title, Date release, int duration, String rating,
 String genres) {
 this.title = title;
 releaseDate = release;
 runningTime = duration;
 this.rating = rating;
 this.genres = genres;
 cast = new HashSet();
 }
 public String getTitle() {
 return title;
 }
 public Date getReleaseDate() {
 return releaseDate;
 }
 public String getRating() {
 return rating;
 }
 public int getRunningTime() {
 return runningTime;
 }
 public void setWebSite(String site) {
 webSite = site;
 }
 public String getWebSite() {
 return webSite;
 }
 public String getGenres() {
 return genres;
 }
 public void addRole(Role role) {
 cast.add(role);
 }
 public Set getCast() {
 return Collections.unmodifiableSet(cast);
 }
 public static Date parseReleaseDate(String val) {
 Date date = null;
 try {
 date = yearFmt.parse(val);
 } catch (java.text.ParseException exc) { }
 return date;
 }
 public String formatReleaseDate() {
 return yearFmt.format(releaseDate);
 }
}

JDO imposes one requirement to make a class persistent: a no-arg constructor. If you do not define any constructors in
your class, the compiler generates a no-arg constructor. However, this constructor is not generated if you define any
constructors with arguments; in this case, you need to provide a no-arg constructor. You can declare it to be private if
you do not want your application code to use it. Some JDO implementations can generate one for you, but this is an
implementation-specific, nonportable feature.

Example 1-2 provides the source for the Actor class. For our purposes, all actors have a unique name that identifies
them. It can be a stage name that is distinct and different from the given name. Therefore, we represent the actor's
name by a single String. Each actor has played one or more roles, and the roles member models the Actor's side of the
relationship between Actor and Role. The comment on line [1] is used merely for documentation; it does not serve any
functional purpose in JDO. The addRole() and removeRole() methods in lines [2] and [3] are provided so that the
application can maintain the relationship from an Actor instance and its associated Role instances.

Example 1-2. Actor.java

package com.mediamania.prototype;

import java.util.Set;
import java.util.HashSet;
import java.util.Collections;

public class Actor {
 private String name;
 private Set roles; // element type: Role [1]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private Set roles; // element type: Role [1]

 private Actor()
 { }
 public Actor(String name) {
 this.name = name;
 roles = new HashSet();
 }
 public String getName() {
 return name;
 }
 public void addRole(Role role) { [2]
 roles.add(role);
 }
 public void removeRole(Role role) { [3]
 roles.remove(role);
 }
 public Set getRoles() {
 return Collections.unmodifiableSet(roles);
 }
}

Finally, Example 1-3 provides the source for the Role class. This class models the relationship between a Movie and Actor
and includes the specific name of the role played by the actor in the movie. The Role constructor initializes the
references to Movie and Actor, and it also updates the other ends of its relationship by calling addRole(), which we
defined in the Movie and Actor classes.

Example 1-3. Role.java

package com.mediamania.prototype;

public class Role {
 private String name;
 private Actor actor;
 private Movie movie;

 private Role()
 { }
 public Role(String name, Actor actor, Movie movie) {
 this.name = name;
 this.actor = actor;
 this.movie = movie;
 actor.addRole(this);
 movie.addRole(this);
 }
 public String getName() {
 return name;
 }
 public Actor getActor() {
 return actor;
 }
 public Movie getMovie() {
 return movie;
 }
}

We have now examined the complete source code for each class that will have instances in the datastore. These classes
did not need to import and use any JDO-specific types. Furthermore, except for providing a no-arg constructor, no data
or methods needed to be defined to make these classes persistent. The software used to access and modify fields and
define and manage relationships among instances corresponds to the standard practice used in most Java applications.

1.1.2 Declaring Classes to Be Persistent

It is necessary to identify which classes should be persistent and specify any persistence-related information that is not
expressible in Java. JDO uses a metadata file in XML format to specify this information.

You can define metadata on a class or package basis, in one or more XML files. The name of the metadata file for a
single class is the name of the class, followed by a .jdo suffix. So, a metadata file for the Movie class would be named
Movie.jdo and placed in the same directory as the Movie.class file. A metadata file for a Java package is contained in a
file named package.jdo. A metadata file for a Java package can contain metadata for multiple classes and multiple
subpackages. Example 1-4 provides the metadata for the Media Mania object model. The metadata is specified for the
package and contained in a file named com/mediamania/prototype/package.jdo.

Example 1-4. JDO metadata in the file prototype/package.jdo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 1-4. JDO metadata in the file prototype/package.jdo

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jdo PUBLIC [1]
 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
<jdo>
 <package name="com.mediamania.prototype" > [2]
 <class name="Movie" > [3]
 <field name="cast" > [4]
 <collection [5]
element-type="Role"/>
 </field>
 </class>
 <class name="Role" /> [6]
 <class name="Actor" >
 <field name="roles" >
 <collection
element-type="Role"/>
 </field>
 </class>
 </package>
</jdo>

The jdo_1_0.dtd file specified on line [1] provides a description of the XML elements that can be used in a JDO
metadata file. This document type definition (DTD) is standardized in JDO and should be provided with a JDO
implementation. It is also available for download at http://java.sun.com/dtd. You can also alter the DOCTYPE to refer to
a local copy in your filesystem.

The metadata file can contain persistence information for one or more packages that have persistent classes. Each
package is defined with a package element, which includes the name of the Java package. Line [2] provides a package
element for our com.mediamania.prototype package. Within the package element are nested class elements that identify a
persistent class of the package (e.g., line [3] has the class element for the Movie class). The file can contain multiple
package elements listed serially; they are not nested.

If information must be specified for a particular field of a class, a field element is nested within the class element, as
shown on line [4]. For example, you could declare the element type for each collection in the model. This is not
required, but it can result in a more efficient mapping. The Movie class has a collection named cast, and the Actor class
has a collection named roles; both contain Role references. Line [5] specifies the element type for cast. In many cases, a
default value for an attribute is assumed in the metadata that provides the most commonly needed value.

All of the fields that can be persistent are made persistent by default. Static and final fields cannot be made persistent.
A field declared in Java to be transient is not persistent by default, but such a field can be declared as persistent in the
metadata file. Chapter 4 describes this capability.

Chapter 4, Chapter 10, Chapter 12, and Chapter 13 cover other characteristics you can specify for classes and fields.
For a simple class like Role, which does not have any collections, you can just list the class in the metadata as shown on
line [6], if no other metadata attributes are necessary.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 Project Build Environment
In this section, we examine a development environment to compile and run our JDO application. This includes the
project directory structure, the jar files necessary to build applications, and the syntax for enhancing persistent classes.
We describe class enhancement later in this section. The environment setup partly depends on which JDO
implementation you use. Your specific project's development environment and directory structure may differ.

You can use either the Sun JDO reference implementation or another implementation of your choosing. The examples in
this book use the JDO reference implementation. You can download the JDO reference implementation by visiting
http://www.jcp.org and selecting JSR-12. Once you have installed a JDO implementation, you will need to establish a
project directory structure and define a classpath that includes all the directories and jar files necessary to build and run
your application.

JDO introduces a new step in your build process, called class enhancement. Each persistent class must be enhanced so
that it can be used in a JDO runtime environment. Your persistent classes are compiled using a Java compiler that
produces a class file. An enhancer program reads these class files and JDO metadata and creates new class files that
have been enhanced to operate in a JDO environment. Your JDO application should load these enhanced class files. The
JDO reference implementation includes an enhancer called the reference enhancer.

1.2.1 Jars Needed to Use the JDO Reference Implementation

When using the JDO reference implementation, you should include the following jar files in your classpath during
development. At runtime, all of these jar files should be in your classpath.

jdo.jar

The standard interfaces and classes defined in the JDO specification.

jdori.jar

Sun's reference implementation of the JDO specification.

btree.jar

Software used by the JDO reference implementation to manage the storage of data in a file. The reference
implementation uses a file for the storage of persistent instances.

jta.jar

The Java Transaction API. The Synchronization interface defined in package javax.transaction is used in the JDO
interface and contained in this jar file. Other facilities defined in this file are likely to be useful to a JDO
implementation. You can download this jar from http://java.sun.com/products/jta/index.html.

antlr.jar

Parsing technology used in the implementation of the JDO query language. The reference implementation uses
Version 2.7.0 of Antlr. You can download it from http://www.antlr.org.

xerces.jar

The reference implementation uses Xerces-J Release 1.4.3 to parse XML. It can be downloaded from
http://xml.apache.org/xerces-j/.

The first three jar files are included with the JDO reference implementation; the last three can be downloaded from the
specified web sites.

The reference implementation includes an additional jar, jdori-enhancer.jar, that contains the reference enhancer
implementation. The classes in jdori-enhancer.jar are also in jdori.jar. In most cases, you will use jdori.jar in both your
development and runtime environment, and not need jdori-enhancer.jar. The jdori-enhancer.jar is packaged separately
so that you can enhance your classes using the reference enhancer independent of a particular JDO implementation.
Some implementations, besides the reference implementation, may distribute this jar for use with their implementation.

If you use a different JDO implementation, its documentation should provide you with a list of all the necessary jars. An
implementation usually places all the necessary jars in a particular directory in their installation. The jdo.jar file
containing the interfaces defined in JDO should be used with all implementations. This jar file is usually included with a
vendor's implementation. JDOcentral.com (http://www.jdocentral.com) provides numerous JDO resources, including
free trial downloads of many commercial JDO implementations.

1.2.2 Project Directory Structure

You should use the following directory structure for the Media Mania application development environment. The project
must have a root directory placed somewhere in the filesystem. The following directories reside beneath the project's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

must have a root directory placed somewhere in the filesystem. The following directories reside beneath the project's
root directory:

src

This directory contains all of the application's source code. Under src, there is a subdirectory hierarchy of
com/mediamania/prototype (corresponding to the Java com.mediamania.prototype package). This is where the
Movie.java, Actor.java, and Role.java source files reside.

classes

When the Java source files are compiled, their class files are placed in this directory.

enhanced

This is the directory that contains the enhanced class files (produced by the enhancer).

database

This directory contains the files used by the reference implementation to store our persistent data.

Though this particular directory structure is not a requirement of JDO or the reference implementation, you need to
understand it to follow our description of the Media Mania application.

When you execute your JDO application, the Java runtime must load the enhanced version of the class files, which are
located in our enhanced directory. Therefore, the enhanced directory should be listed prior to the classes directory in
your classpath. As an alternative approach, you can also enhance in-place, replacing your unenhanced class file with
their enhanced form.

1.2.3 Enhancing Classes for Persistence

A class must be enhanced before its instances can be managed in a JDO environment. A JDO enhancer adds data and
methods to your classes that enable their instances to be managed by a JDO implementation. An enhancer reads a
class file produced by the Java compiler and, using the JDO metadata, produces a new, enhanced class file that includes
the necessary functionality. JDO has standardized the modifications made by enhancers so that enhanced class files are
binary-compatible and can be used with any JDO implementation. These enhanced files are also independent of any
specific datastore.

As mentioned previously, the enhancer provided with Sun's JDO reference implementation is called the reference
enhancer. A JDO vendor may provide its own enhancer; the command-line syntax necessary to execute an enhancer
may differ from the syntax shown here. Each implementation should provide you with documentation explaining how to
enhance your classes for use with their implementation.

Example 1-5 provides the reference enhancer command for enhancing the persistent classes in our Media Mania
application. The -d argument specifies the root directory in which to place the enhanced class files; we have specified
our enhanced directory. The enhancer is given a list of JDO metadata files and a set of class files to enhance. The
directory separator and line-continuation symbols may vary, depending on your operating system and build
environment.

Example 1-5. Enhancing the persistent classes

java com.sun.jdori.enhancer.Main -d enhanced \
 classes/com/mediamania/prototype/package.jdo \
 classes/com/mediamania/prototype/Movie.class \
 classes/com/mediamania/prototype/Actor.class \
 classes/com/mediamania/prototype/Role.class

Though it is convenient to place the metadata files in the directory with the source code, the JDO specification
recommends that the metadata files be available via resources loaded by the same class loader as the class files. The
metadata is needed at both build and runtime. So, we have placed the package.jdo metadata file under the classes
directory hierarchy in the directory for the prototype package.

The class files for all persistent classes in our object model are listed together in Example 1-5, but you can also enhance
each class individually. When this command executes, it places new, enhanced class files in the enhanced directory.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.3 Establish a Datastore Connection and Transaction
Now that our classes have been enhanced, their instances can be stored in a datastore. We now examine how an
application establishes a connection with a datastore and executes operations within a transaction. We begin to write
software that makes direct use of the JDO interfaces. All JDO interfaces used by an application are defined in the
javax.jdo package.

JDO has an interface called PersistenceManager that has a connection with a datastore. A PersistenceManager has an
associated instance of the JDO Transaction interface used to control the start and completion of a transaction. The
Transaction instance is acquired by calling currentTransaction() on the PersistenceManager instance.

1.3.1 Acquiring a PersistenceManager

A PersistenceManagerFactory is used to configure and acquire a PersistenceManager. Methods in the PersistenceManagerFactory
are used to set properties that control the behavior of the PersistenceManager instances acquired from the factory.
Therefore, the first step performed by a JDO application is the acquisition of a PersistenceManagerFactory instance. To get
this instance, call the following static method of the JDOHelper class:

static PersistenceManagerFactory getPersistenceManagerFactory(Properties props);

The Properties instance can be populated programmatically or by loading property values from a property file. Example
1-6 lists the contents of the property file we will use in our Media Mania application. The PersistenceManagerFactoryClass
property on line [1] specifies which JDO implementation we are using by providing the name of the implementation's
class that implements the PersistenceManagerFactory interface. In this case, we specify the class defined in Sun's JDO
reference implementation. Other properties listed in Example 1-6 include the connection URL used to connect to a
particular datastore and a username and password, which may be necessary to establish a connection to the datastore

Example 1-6. Contents of jdo.properties

javax.jdo.PersistenceManagerFactoryClass=com.sun.jdori.fostore.FOStorePMF [1]
javax.jdo.option.ConnectionURL=fostore:database/fostoredb
javax.jdo.option.ConnectionUserName=dave
javax.jdo.option.ConnectionPassword=jdo4me
javax.jdo.option.Optimistic=false

The format of the connection URL depends on the particular datastore being accessed. The JDO reference
implementation has its own storage facility called File Object Store (FOStore). The ConnectionURL property in Example 1-
6 specifies that the datastore is located in the database directory, which is located in our project's root directory. In this
case, we have provided a relative path; it is also possible to provide an absolute path to the datastore. The URL
specifies that the FOStore datastore files will have a name prefix of fostoredb.

If you are using a different implementation, you will need to provide different values for these properties. You may also
need to provide values for additional properties. Check with your implementation's documentation to determine the
properties that are necessary.

1.3.2 Creating a FOStore Datastore

To use FOStore we must first create a datastore. The program in Example 1-7 creates a datastore using the
jdo.properties file; all applications use this property file. Line [1] loads the properties from jdo.properties into a
Properties instance. The program adds the com.sun.jdori.option.ConnectionCreate property on line [2] to indicate that the
datastore should be created. Setting it to true instructs the implementation to create the datastore. We then call
getPersistenceManagerFactory() on line [3] to acquire the PersistenceManagerFactory. Line [4] creates a PersistenceManager.

To complete the creation of the datastore, we must also begin and commit a transaction. The PersistenceManager method
currentTransaction() is called on line [5] to access the Transaction instance associated with the PersistenceManager. The
Transaction methods begin() and commit() are called on lines [6] and [7] to start and commit a transaction. When you
execute this application, a FOStore datastore is created in the database directory. Two files are created: fostore.btd and
fostore.btx.

Example 1-7. Creating a FOStore datastore

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 1-7. Creating a FOStore datastore

package com.mediamania;

import java.io.FileInputStream;
import java.io.InputStream;
import java.util.Properties;
import javax.jdo.JDOHelper;
import javax.jdo.PersistenceManagerFactory;
import javax.jdo.PersistenceManager;
import javax.jdo.Transaction;

public class CreateDatabase {
 public static void main(String[] args) {
 create();
 }
 public static void create() {
 try {
 InputStream propertyStream = new FileInputStream("jdo.properties");
 Properties jdoproperties = new Properties();
 jdoproperties.load(propertyStream); [1]
 jdoproperties.put("com.sun.jdori.option.ConnectionCreate", "true"); [2]
 PersistenceManagerFactory pmf =
 JDOHelper.getPersistenceManagerFactory(jdoproperties); [3]
 PersistenceManager pm = pmf.getPersistenceManager(); [4]
 Transaction tx = pm.currentTransaction(); [5]
 tx.begin(); [6]
 tx.commit(); [7]
 } catch (Exception e) {
 System.err.println("Exception creating the database");
 e.printStackTrace();
 System.exit(-1);
 }
 }
}

The JDO reference implementation provides this programmatic means to create a database. Most databases provide a
utility separate from JDO for creating a database. JDO does not define a standard, vendor-independent interface for
creating a database. Creation of a datastore is always datastore-specific. This program illustrates how it is done using
the FOStore datastore.

In addition, when you are using JDO with a relational database, there is often an additional step of creating or mapping
to an existing relational schema. The procedure to follow for establishing a schema that corresponds with your JDO
object model is implementation-specific. You should examine the documentation of the implementation you are using to
determine the necessary steps.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.4 Operations on Instances
Now we have a datastore in which we can store instances of our classes. Each application needs to acquire a
PersistenceManager to access and update the datastore. Example 1-8 provides the source for the MediaManiaApp class,
which serves as the base class for each application in this book. Each application is a concrete subclass of MediaManiaApp
that implements its application logic in the execute() method.

MediaManiaApp has a constructor that loads the properties from jdo.properties (line [1]). After loading properties from
the file, it calls getPropertyOverrides() and merges the returned properties into jdoproperties. An application subclass can
redefine getPropertyOverrides() to provide any additional properties or change properties that are set in the
jdo.properties file. The constructor gets a PersistenceManagerFactory (line [2]) and then acquires a PersistenceManager (line
[3]). We also provide the getPersistenceManager() method to access the PersistenceManager from outside the
MediaManiaApp class. The Transaction associated with the PersistenceManager is acquired on line [4].

The application subclasses make a call to executeTransaction(), defined in the MediaManiaApp class. This method begins a
transaction on line [5]. It then calls execute() on line [6], which will execute the subclass-specific functionality.

We chose this particular design for application classes to simplify and reduce the amount of redundant code in the
examples for establishing an environment to run. This is not required in JDO; you can choose an approach that is best
suited for your application environment.

After the return from the execute() method (implemented by a subclass), an attempt is made to commit the transaction
(line [7]). If any exceptions are thrown, the transaction is rolled back and the exception is printed to the error stream.

Example 1-8. MediaManiaApp base class

package com.mediamania;

import java.io.FileInputStream;
import java.io.InputStream;
import java.util.Properties;
import java.util.Map;
import java.util.HashMap;
import javax.jdo.JDOHelper;
import javax.jdo.PersistenceManagerFactory;
import javax.jdo.PersistenceManager;
import javax.jdo.Transaction;

public abstract class MediaManiaApp {
 protected PersistenceManagerFactory pmf;
 protected PersistenceManager pm;
 protected Transaction tx;

 public abstract void execute(); // defined in concrete application subclasses

 protected static Map getPropertyOverrides() {
 return new HashMap();
 }
 public MediaManiaApp() {
 try {
 InputStream propertyStream = new FileInputStream("jdo.properties");
 Properties jdoproperties = new Properties();
 jdoproperties.load(propertyStream); [1]
 jdoproperties.putAll(getPropertyOverrides());
 pmf = JDOHelper.getPersistenceManagerFactory(jdoproperties); [2]
 pm = pmf.getPersistenceManager(); [3]
 tx = pm.currentTransaction(); [4]
 } catch (Exception e) {
 e.printStackTrace(System.err);
 System.exit(-1);
 }
 }
 public PersistenceManager getPersistenceManager() {
 return pm;
 }
 public void executeTransaction() {
 try {
 tx.begin(); [5]
 execute(); [6]
 tx.commit(); [7]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 tx.commit(); [7]
 } catch (Throwable exception) {
 exception.printStackTrace(System.err);
 if (tx.isActive()) tx.rollback();
 }
 }
}

1.4.1 Making Instances Persistent

Let's examine a simple application, called CreateMovie, that makes a single Movie instance persistent, as shown in
Example 1-9. The functionality of the application is placed in execute(). After constructing an instance of CreateMovie, we
call executeTransaction(), which is defined in the MediaManiaApp base class. It makes a call to execute(), which will be the
method defined in this class. The execute() method instantiates a single Movie instance on line [5]. Calling the
PersistenceManager method makePersistent() on line [6] makes the Movie instance persistent. If the transaction commits
successfully in executeTransaction(), the Movie instance will be stored in the datastore.

Example 1-9. Creating a Movie instance and making it persistent

package com.mediamania.prototype;

import java.util.Calendar;
import java.util.Date;
import com.mediamania.MediaManiaApp;

public class CreateMovie extends MediaManiaApp {
 public static void main(String[] args) {
 CreateMovie createMovie = new CreateMovie();
 createMovie.executeTransaction();
 }
 public void execute() {
 Calendar cal = Calendar.getInstance();
 cal.clear();
 cal.set(Calendar.YEAR, 1997);
 Date date = cal.getTime();
 Movie movie = new Movie("Titanic", date, 194, "PG-13", "historical, drama"); [5]
 pm.makePersistent(movie); [6]
 }
}

Now let's examine a larger application. LoadMovies, shown in Example 1-10, reads a file containing movie data and
creates multiple instances of Movie. The name of the file is passed to the application as an argument, and the LoadMovies
constructor initializes a BufferedReader to read the data. The execute() method reads one line at a time from the file and
calls parseMovieData(), which parses the line of input data, creates a Movie instance on line [1], and makes it persistent
on line [2]. When the transaction commits in executeTransaction(), all of the newly created Movie instances will be stored
in the datastore.

Example 1-10. LoadMovies

package com.mediamania.prototype;

import java.io.FileReader;
import java.io.BufferedReader;
import java.util.Calendar;
import java.util.Date;
import java.util.StringTokenizer;
import javax.jdo.PersistenceManager;
import com.mediamania.MediaManiaApp;

public class LoadMovies extends MediaManiaApp {
 private BufferedReader reader;

 public static void main(String[] args) {
 LoadMovies loadMovies = new LoadMovies(args[0]);
 loadMovies.executeTransaction();
 }
 public LoadMovies(String filename) {
 try {
 FileReader fr = new FileReader(filename);
 reader = new BufferedReader(fr);
 } catch (Exception e) {
 System.err.print("Unable to open input file ");
 System.err.println(filename);
 e.printStackTrace();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e.printStackTrace();
 System.exit(-1);
 }
 }
 public void execute() {
 try {
 while (reader.ready()) {
 String line = reader.readLine();
 parseMovieData(line);
 }
 } catch (java.io.IOException e) {
 System.err.println("Exception reading input file");
 e.printStackTrace(System.err);
 }
 }
 public void parseMovieData(String line) {
 StringTokenizer tokenizer = new StringTokenizer(line, ";");
 String title = tokenizer.nextToken();
 String dateStr = tokenizer.nextToken();
 Date releaseDate = Movie.parseReleaseDate(dateStr);
 int runningTime = 0;
 try {
 runningTime = Integer.parseInt(tokenizer.nextToken());
 } catch (java.lang.NumberFormatException e) {
 System.err.print("Exception parsing running time for ");
 System.err.println(title);
 }
 String rating = tokenizer.nextToken();
 String genres = tokenizer.nextToken();
 Movie movie = new Movie(title, releaseDate, runningTime, rating, genres); [1]
 pm.makePersistent(movie); [2]
 }
}

The movie data is in a file with the following format:

movie title;release date;running time;movie rating;genre1,genre2,genre3

The format to use for release dates is maintained in the Movie class, so parseReleaseDate() is called to create a Date
instance from the input data. A movie is described by one or more genres, which are listed at the end of the line of
data.

1.4.2 Accessing Instances

Now let's access the Movie instances in the datastore to verify that they were stored successfully. There are several
ways to access instances in JDO:

Iterate an extent

Navigate the object model

Execute a query

An extent is a facility used to access all the instances of a particular class or the class and all its subclasses. If the
application wants to access only a subset of the instances, a query can be executed with a filter that constrains the
instances returned to those that satisfy a Boolean predicate. Once the application has accessed an instance from the
datastore, it can navigate to related instances in the datastore by traversing through references and iterating collections
in the object model. Instances that are not yet in memory are read from the datastore on demand. These facilities for
accessing instances are often used in combination, and JDO ensures that each persistent instance is represented in the
application memory only once per PersistenceManager. Each PersistenceManager manages a single transaction context.

1.4.2.1 Iterating an extent

JDO provides the Extent interface for accessing the extent of a class. The extent allows access to all of the instances of a
class, but using an extent does not imply that all the instances are in memory. The PrintMovies application, provided in
Example 1-11, uses the Movie extent.

Example 1-11. Iterating the Movie extent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 1-11. Iterating the Movie extent

package com.mediamania.prototype;

import java.util.Iterator;
import java.util.Set;
import javax.jdo.PersistenceManager;
import javax.jdo.Extent;
import com.mediamania.MediaManiaApp;

public class PrintMovies extends MediaManiaApp {

 public static void main(String[] args) {
 PrintMovies movies = new PrintMovies();
 movies.executeTransaction();
 }

 public void execute() {
 Extent extent = pm.getExtent(Movie.class, true); [1]
 Iterator iter = extent.iterator(); [2]
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next(); [3]
 System.out.print(movie.getTitle()); System.out.print(";");
 System.out.print(movie.getRating()); System.out.print(";");
 System.out.print(movie.formatReleaseDate()); System.out.print(";");
 System.out.print(movie.getRunningTime()); System.out.print(";");
 System.out.println(movie.getGenres()); [4]

 Set cast = movie.getCast(); [5]
 Iterator castIterator = cast.iterator();
 while (castIterator.hasNext()) {
 Role role = (Role) castIterator.next(); [6]
 System.out.print("\t");
 System.out.print(role.getName());
 System.out.print(", ");
 System.out.println(role.getActor().getName()); [7]
 }
 }
 extent.close(iter); [8]
 }
}

On line [1] we acquire an Extent for the Movie class from the PersistenceManager. The second parameter indicates whether
to include instances of Movie subclasses. A value of false causes only Movie instances to be returned, even if there are
instances of subclasses. Though we don't currently have any classes that extend the Movie class, providing a value of
true will return instances of any such classes that we may define in the future. The Extent interface has the iterator()
method, which we call on line [2] to acquire an Iterator that will access each element of the extent. Line [3] uses the
Iterator to access Movie instances. The application can then perform operations on the Movie instance to acquire data
about the movie to print. For example, on line [4] we call getGenres() to get the genres associated with the movie. On
line [5] we acquire the set of Roles. We acquire a reference to a Role on line [6] and then print the role's name. On line
[7] we navigate to the Actor for that role by calling getActor(), which we defined in the Role class. We then print the
actor's name.

Once the application has completed iteration through the extent, line [8] closes the Iterator to relinquish any resources
required to perform the extent iteration. Multiple Iterator instances can be used concurrently on an Extent. This method
closes a specific Iterator; closeAll() closes all the Iterator instances associated with an Extent.

1.4.2.2 Navigating the object model

Example 1-11 demonstrates iteration of the Movie extent. But on line [6] we also navigate to a set of related Role
instances by iterating a collection in our object model. On line [7] we use the Role instance to navigate through a
reference to the related Actor instance. Line [5] and [7] demonstrate, respectively, traversal of to-many and to-one
relationships. A relationship from one class to another has a cardinality that indicates whether there are one or multiple
associated instances. A reference is used for a cardinality of one, and a collection is used when there can be more than
one instance.

The syntax needed to access these related instances corresponds to the standard practice of navigating instances in
memory. The application does not need to make any direct calls to JDO interfaces between lines [3] and [7]. It simply
traverses among objects in memory. The related instances are not read from the datastore and instantiated in memory
until they are accessed directly by the application. Access to the datastore is transparent; instances are brought into
memory on demand. Some implementations provide facilities separate from the Java interface that allow you to
influence the implementation's access and caching algorithms. Your Java application is insulated from these
optimizations, but it can take advantage of them to affect its overall performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

optimizations, but it can take advantage of them to affect its overall performance.

The access of related persistent instances in a JDO environment is identical to the access of transient instances in a
non-JDO environment, so you can write your software in a manner that is independent of its use in a JDO environment.
Existing software written without any knowledge of JDO or any other persistence concerns is able to navigate objects in
the datastore through JDO. This capability yields dramatic increases in development productivity and allows existing
software to be incorporated into a JDO environment quickly and easily.

1.4.2.3 Executing a query

It is also possible to perform a query on an Extent. The JDO Query interface is used to select a subset of the instances
that meet certain criteria. The remaining examples in this chapter need to access a specific Actor or Movie based on a
unique name. These methods, shown in Example 1-12, are virtually identical; getActor() performs a query to get an
Actor based on a name, and getMovie() performs a query to get a Movie based on a name.

Example 1-12. Query methods in the PrototypeQueries class

package com.mediamania.prototype;

import java.util.Collection;
import java.util.Iterator;
import javax.jdo.PersistenceManager;
import javax.jdo.Extent;
import javax.jdo.Query;

public class PrototypeQueries {
 public static Actor getActor(PersistenceManager pm, String actorName)
 {
 Extent actorExtent = pm.getExtent(Actor.class, true); [1]
 Query query = pm.newQuery(actorExtent, "name == actorName"); [2]
 query.declareParameters("String actorName"); [3]
 Collection result = (Collection) query.execute(actorName); [4]
 Iterator iter = result.iterator();
 Actor actor = null;
 if (iter.hasNext()) actor = (Actor)iter.next(); [5]
 query.close(result); [6]
 return actor;
 }
 public static Movie getMovie(PersistenceManager pm, String movieTitle)
 {
 Extent movieExtent = pm.getExtent(Movie.class, true);
 Query query = pm.newQuery(movieExtent, "title == movieTitle");
 query.declareParameters("String movieTitle");
 Collection result = (Collection) query.execute(movieTitle);
 Iterator iter = result.iterator();
 Movie movie = null;
 if (iter.hasNext()) movie = (Movie)iter.next();
 query.close(result);
 return movie;
 }
}

Let's examine getActor(). On line [1] we get a reference to the Actor extent. Line [2] creates an instance of Query using
the newQuery() method defined in the PersistenceManager interface. The query is initialized with the extent and a query
filter to apply to the extent.

The name identifier in the filter is the name field in the Actor class. The namespace used to determine how to interpret
the identifier is based on the class of the Extent used to initialize the Query instance. The filter expression requires that
an Actor's name field is equal to actorName. In the filter we can use the == operator directly to compare two Strings,
instead of using the Java syntax (name.equals(actorName)).

The actorName identifier is a query parameter, which is declared on line [3]. A query parameter lets you provide a value
to be used when the query is executed. We have chosen to use the same name, actorName, for the method parameter
and query parameter. This practice is not required, and there is no direct association between the names of our Java
method parameters and our query parameters. The query is executed on line [4], passing getActor()'s actorName
parameter as the value to use for the actorName query parameter.

The result type of Query.execute() is declared as Object. In JDO 1.0.1, the returned instance is always a Collection, so we
cast the query result to a Collection. It is declared in JDO 1.0.1 to return Object, to allow for a future extension of
returning a value other than a Collection. Our method then acquires an Iterator and, on line [5], attempts to access an
element. We assume here that there can only be a single Actor instance with a given name. Before returning the result,
line [6] closes the query result to relinquish any associated resources. If the method finds an Actor instance with the
given name, the instance is returned. Otherwise, if the query result has no elements, a null is returned.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4.3 Modifying an Instance

Now let's examine two applications that modify instances in the datastore. Once an application has accessed an
instance from the datastore in a transaction, it can modify one or more fields of the instance. When the transaction
commits, all modifications that have been made to instances are propagated to the datastore automatically.

The UpdateWebSite application provided in Example 1-13 is used to set the web site associated with a movie. It takes
two arguments: the first is the movie's title, and the second is the movie's web site URL. After initializing the application
instance, executeTransaction() is called, which calls the execute() method defined in this class.

Line [1] calls getMovie() (defined in Example 1-12) to retrieve the Movie with the given title. If getMovie() returns null,
the application reports that it could not find a Movie with the given title and returns. Otherwise, on line [2] we call
setWebSite() (defined for the Movie class in Example 1-1), which sets the webSite field of Movie to the parameter value.
When executeTransaction() commits the transaction, the modification to the Movie instance is propagated to the datastore
automatically.

Example 1-13. Modifying an attribute

package com.mediamania.prototype;

import com.mediamania.MediaManiaApp;

public class UpdateWebSite extends MediaManiaApp {
 private String movieTitle;
 private String newWebSite;

 public static void main (String[] args) {
 String title = args[0];
 String website = args[1];
 UpdateWebSite update = new UpdateWebSite(title, website);
 update.executeTransaction();
 }
 public UpdateWebSite(String title, String site) {
 movieTitle = title;
 newWebSite = site;
 }
 public void execute() {
 Movie movie = PrototypeQueries.getMovie(pm, movieTitle); [1]
 if (movie == null) {
 System.err.print("Could not access movie with title of ");
 System.err.println(movieTitle);
 return;
 }
 movie.setWebSite(newWebSite); [2]
 }
}

As you can see in Example 1-13, the application does not need to make any direct JDO interface calls to modify the
Movie field. This application accesses an instance and calls a method to modify the web site field. The method modifies
the field using standard Java syntax. No additional programming is necessary prior to commit in order to propagate the
data to the datastore. The JDO environment propagates the modifications automatically. This application performs an
operation on persistent instances, yet it does not directly import or use any JDO interfaces.

Now let's examine a larger application, called LoadRoles, that exhibits several JDO capabilities. LoadRoles, shown in
Example 1-14, is responsible for loading information about the movie roles and the actors who play them. LoadRoles is
passed a single argument that specifies the name of a file to read, and the constructor initializes a BufferedReader to
read the file. It reads the text file, which contains one role per line, in the following format:

movie title;actor's name;role name

Usually, all the roles associated with a particular movie are grouped together in this file; LoadRoles performs a small
optimization to determine whether the role information being processed is for the same movie as the previous role
entry in the file.

Example 1-14. Instance modification and persistence-by-reachability

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 1-14. Instance modification and persistence-by-reachability

package com.mediamania.prototype;

import java.io.FileReader;
import java.io.BufferedReader;
import java.util.StringTokenizer;
import com.mediamania.MediaManiaApp;

public class LoadRoles extends MediaManiaApp {
 private BufferedReader reader;

 public static void main(String[] args) {
 LoadRoles loadRoles = new LoadRoles(args[0]);
 loadRoles.executeTransaction();
 }
 public LoadRoles(String filename) {
 try {
 FileReader fr = new FileReader(filename);
 reader = new BufferedReader(fr);
 } catch(java.io.IOException e){
 System.err.print("Unable to open input file ");
 System.err.println(filename);
 System.exit(-1);
 }
 }
 public void execute() {
 String lastTitle = "";
 Movie movie = null;
 try {
 while (reader.ready()) {
 String line = reader.readLine();
 StringTokenizer tokenizer = new StringTokenizer(line, ";");
 String title = tokenizer.nextToken();
 String actorName = tokenizer.nextToken();
 String roleName = tokenizer.nextToken();
 if (!title.equals(lastTitle)) {
 movie = PrototypeQueries.getMovie(pm, title); [1]
 if (movie == null) {
 System.err.print("Movie title not found: ");
 System.err.println(title);
 continue;
 }
 lastTitle = title;
 }
 Actor actor = PrototypeQueries.getActor(pm, actorName); [2]
 if (actor == null) {
 actor = new Actor(actorName); [3]
 pm.makePersistent(actor); [4]
 }
 Role role = new Role(roleName, actor, movie); [5]
 }
 } catch (java.io.IOException e) {
 System.err.println("Exception reading input file");
 System.err.println(e);
 return;
 }
 }
}

The execute() method reads each entry in the file. First, it checks to see whether the new entry's movie title is the same
as the previous entry. If it is not, line [1] calls getMovie() to access the Movie with the new title. If a Movie with that title
does not exist in the datastore, the application prints an error message and skips over the entry. On line [2] we
attempt to access an Actor instance with the specified name. If no Actor in the datastore has this name, a new Actor is
created and given this name on line [3], and made persistent on line [4].

Up to this point in the application, we have just been reading the input file and looking up instances in the datastore
that have been referenced by a name in the file. We perform the real task of the application on line [5], where we
create a new Role instance. The Role constructor was defined in Example 1-3; it is repeated here so that we can
examine it in more detail:

public Role(String name, Actor actor, Movie movie) {
 this.name = name; [1]
 this.actor = actor; [2]
 this.movie = movie; [3]
 actor.addRole(this); [4]
 movie.addRole(this); [5]
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Line [1] initializes the name of the Role. Line [2] establishes a reference to the associated Actor, and line [3] establishes
a reference to the associated Movie instance. The relationships between Actor and Role and between Movie and Role are
bidirectional, so it is also necessary to update the other side of each relationship. On line [4] we call addRole() on actor,
which adds this Role to the roles collection in the Actor class. Similarly, line [5] calls addRole() on movie to add this Role to
the cast collection field in the Movie class. Adding the Role as an element in Actor.roles and Movie.cast causes a modification
to the instances referenced by actor and movie.

The Role constructor demonstrates that you can establish a relationship to an instance simply by initializing a reference
to it, and you can establish a relationship with more than one instance by adding references to a collection. This process
is how relationships are represented in Java and is supported directly by JDO. When the transaction commits, the
relationships established in memory are preserved in the datastore.

Upon return from the Role constructor, load() processes the next entry in the file. The while loop terminates once we
have exhausted the contents of the file.

You may have noticed that we never called makePersistent() on the Role instances we created. Still, at commit, the Role
instances are stored in the datastore because JDO supports persistence-by-reachability. Persistence-by-reachability
causes any transient (nonpersistent) instance of a persistent class to become persistent at commit if it is reachable
(directly or indirectly) by a persistent instance. Instances are reachable through either a reference or collection of
references. The set of all instances reachable from a given instance is an object graph that is called the instance's
complete closure of related instances. The reachability algorithm is applied to all persistent instances transitively
through all their references to instances in memory, causing the complete closure to become persistent.

Removing all references to a persistent instance does not automatically delete the instance. You need to delete
instances explicitly, which we cover in the next section. If you establish a reference from a persistent instance to a
transient instance during a transaction, but you change this reference and no persistent instances reference the
transient instance at commit, it remains transient.

Persistence-by-reachability lets you write a lot of your software without having any explicit calls to JDO interfaces to
store instances. Much of your software can focus on establishing relationships among the instances in memory, and the
JDO implementation takes care of storing any new instances and relationships you establish among the instances in
memory. Your applications can construct fairly complex object graphs in memory and make them persistent simply by
establishing a reference to the graph from a persistent instance.

1.4.4 Deleting Instances

Now let's examine an application that deletes some instances from the datastore. In Example 1-15, the DeleteMovie
application is used to delete a Movie instance. The title of the movie to delete is provided as the argument to the
program. Line [1] attempts to access the Movie instance. If no movie with the title exists, the application reports an
error and returns. On line [6] we call deletePersistent() to delete the Movie instance itself.

Example 1-15. Deleting a Movie from the datastore

package com.mediamania.prototype;

import java.util.Collection;
import java.util.Set;
import java.util.Iterator;
import javax.jdo.PersistenceManager;
import com.mediamania.MediaManiaApp;

public class DeleteMovie extends MediaManiaApp {
 private String movieTitle;

 public static void main(String[] args) {
 String title = args[0];
 DeleteMovie deleteMovie = new DeleteMovie(title);
 deleteMovie.executeTransaction();
 }
 public DeleteMovie(String title) {
 movieTitle = title;
 }
 public void execute() {
 Movie movie = PrototypeQueries.getMovie(pm, movieTitle); [1]
 if (movie == null) {
 System.err.print("Could not access movie with title of ");
 System.err.println(movieTitle);
 return;
 }
 Set cast = movie.getCast(); [2]
 Iterator iter = cast.iterator();
 while (iter.hasNext()) {
 Role role = (Role) iter.next();
 Actor actor = role.getActor(); [3]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Actor actor = role.getActor(); [3]
 actor.removeRole(role); [4]
 }
 pm.deletePersistentAll(cast); [5]
 pm.deletePersistent(movie); [6]
 }
}

But it is also necessary to delete the Role instances associated with the Movie. In addition, since an Actor includes a
reference to the Role instance, it is necessary to remove this reference. On line [2] we access the set of Role instances
associated with the Movie. We then iterate through each Role and access the associated Actor on line [3]. Since we will
be deleting the Role instance, on line [4] we remove the actor's reference to the Role. On line [5] we make a call to
deletePersistentAll() to delete all the Role instances in the movie's cast. When we commit the transaction, the Movie
instance and associated Role instances are deleted from the datastore, and the Actor instances associated with the Movie
are updated so that they no longer reference the deleted Role instances.

You must call these deletePersistent() methods explicitly to delete instances from the datastore. They are not the inverse
of makePersistent(), which uses the persistence-by-reachability algorithm. Furthermore, there is no JDO datastore
equivalent to Java's garbage collection, which deletes instances automatically once they are no longer referenced by
any instances in the datastore. Implementing the equivalent of a persistent garbage collector is a very complex
undertaking, and such systems often have poor performance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.5 Summary
As you can see, a large portion of an application can be written in a completely JDO-independent manner using
conventional Java modeling, syntax, and programming techniques. You can define your application's persistent
information model solely in terms of a Java object model. Once you access instances from the datastore via an extent
or query, your software looks no different from any other Java software that accesses instances in memory. You do not
need to learn any other data model or access language like SQL. You do not need to figure out how to provide a
mapping of your data between a database representation and an in-memory object representation. You can fully exploit
the object-oriented capabilities of Java without any limitation. This includes use of inheritance and polymorphism, which
are not possible using technologies like JDBC and the Enterprise JavaBeans (EJB) architecture. In addition, you can
develop an application using an object model with much less software than when using competitive architectures. Plain,
ordinary Java objects can be stored in a datastore and accessed in a transparent manner. JDO provides a very easy-to-
learn and productive environment to build Java applications that manage persistent data.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. An Overview of JDO Interfaces
JDO's interfaces are defined in two packages: javax.jdo and javax.jdo.spi. You use the interfaces defined in the javax.jdo
package to write your applications. This chapter introduces and describes each of these interfaces at a high level. Each
method defined in these interfaces is covered thoroughly in this book. You can use the index to find information on a
particular method.

The javax.jdo.spi package contains interfaces that JDO implementations use (spi stands for service provider interface). It
is a common practice to have such a package that defines interfaces for use by the implementation of a Java API,
distinct from the package that contains the interfaces for use of the API. You should not directly use any of the
interfaces defined in javax.jdo.spi. We provide brief coverage of a few of the javax.jdo.spi interfaces that are directly
involved in the management of persistent class instances. If you are interested in a thorough understanding of the
interfaces in javax.jdo.spi, we encourage you to read the JDO specification.

We conclude this chapter by enumerating the optional features in JDO.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.1 The javax.jdo Package
The javax.jdo package contains all the interfaces you should use:

PersistenceManager

PersistenceManagerFactory

Transaction

Extent

Query

InstanceCallbacks

It also contains the JDOHelper class and a set of exception classes.

This is the complete set of JDO application interfaces! JDO has a relatively small API, allowing you to learn it quickly and
become productive applying it. JDO uses your Java classes as the data model for representing and managing data,
which is major contributing factor in its simplicity and ease of use.

Every method in each of these interfaces is described somewhere in this book. We introduce basic JDO concepts first
and gradually progress to more advanced topics. Semantically related methods are often covered in the same section,
but coverage of the methods for a particular interface is usually dispersed throughout the text. Appendix C provides the
signature for every method in each interface. The index provides a reference to each place in the book where a method
is covered. Here's a brief description of each interface in the package:

PersistenceManager

PersistenceManager is your primary interface when using JDO. It provides methods to create query and
transaction objects, and it manages the lifecycle of persistent instances. Each chapter introduces a few
PersistenceManager methods. The interface is used for the basic and advanced features in JDO.

PersistenceManagerFactory

The PersistenceManagerFactory is responsible for configuring and creating PersistenceManager instances. It
represents the particular JDO implementation you are using; it has methods to determine the properties and
optional features the implemention supports. PersistenceManagerFactory also provides methods to control property
values used to establish a datastore connection and affect the configuration of the runtime environment in
which the PersistenceManager instances run; these methods are covered in Chapter 7.

JDOHelper

JDOHelper is a class that provides several static utility methods. As shown in Chapter 1, it is used to construct a
PersistenceManagerFactory instance from a Properties object. It also provides methods to interrogate the lifecycle
state of instances (covered in Chapter 11).

Transaction

The Transaction interface provides methods to manage the demarcation (begin and commit/rollback) of
transactions. Chapter 7 covers these methods in detail. Each PersistenceManager instance has one associated
Transaction instance, accessible via currentTransaction(). Transaction also has methods for controlling the values of
transaction options.

Extent

The Extent interface is used to access all the instances of a class (and, potentially, its subclasses). You acquire
an Extent by calling the getExtent() method of a PersistenceManager. You can either iterate over the Extent or use it
to perform a query. Chapter 8 covers the Extent interface in detail.

Query

You use the Query interface to perform queries. A Query instance has several components, and the interface
provides methods to specify a value for each of them. The query evaluates a filter expressed in the JDO Query
Language (JDOQL). Chapter 9 covers the Query interface in detail.

InstanceCallbacks

The InstanceCallbacks interface provides a means for you to specify some behavior to perform when specific
lifecycle events occur in an instance of a persistent class. The interface defines methods that are called on an
instance when it undergoes a lifecycle change. A persistent class must implement the InstanceCallbacks interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instance when it undergoes a lifecycle change. A persistent class must implement the InstanceCallbacks interface
for these methods to be called. Chapter 12 and Chapter 13 cover this interface and its callback methods.

Figure 2-1 illustrates the relationships among the JDO interfaces and shows the method used to create or navigate to
the related instance.

Figure 2-1. Relationships among instances of JDO interfaces

Some methods in the JDO interfaces are used to perform advanced operations. Some applications may use advanced
JDO features, but a large percentage of the software in such applications will use only a small subset of JDO's methods.
The following list of core JDO interfaces provide the majority, and, in many cases, all of the functionality necessary to
use JDO:

PersistenceManagerFactory properties

javax.jdo.PersistenceManagerFactoryClass

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionUserName

javax.jdo.option.ConnectionPassword

JDOHelper

getPersistenceManagerFactory(Properties)

PersistenceManagerFactory

getPersistenceManager()

PersistenceManager

makePersistent(Object)

deletePersistent(Object)

close()

newQuery(Class, String)

currentTransaction()

Transaction

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Transaction

begin()

commit()

rollback()

Query

declareParameters(String)

execute()

We demonstrated the use of most of these methods in Chapter 1. The fact that this list of interfaces is so small is a
major reason JDO is so easy to use.

Your persistent classes can have fields of the following standard Java types: byte, short, char, int, long, float, double, Byte,
Short, Character, Integer, Long, Float, Double, BigInteger, BigDecimal, String, Date, Set, and HashSet. Your persistent classes can
contain references to both persistent and transient classes. You can also define inheritance hierarchies and have
references that refer to instances of subclasses. JDO directly supports the persistence of your Java object models,
without requiring you to learn and use any new datatypes.

2.1.1 JDO Exception Classes

There are many opportunities for a component to fail that are not under the application's control. A JDO implementation
is often built as a layer on an underlying datastore interface, which itself might use a layered protocol to another tier in
a system's architecture. The source of an error may be caused by the application, the JDO implementation, or the
underlying datastore on one or several tiers in an architecture.

JDO's exception philosophy is to treat all exceptions as runtime exceptions. This preserves the transparency of JDO's
interface as much as possible, allowing you to choose which specific exceptions to catch based upon your application
requirements.

JDO exceptions fall into several broad categories, each of which is treated separately:

Program errors that can be corrected and retried

Program errors that cannot be corrected, because the state of underlying components has been changed and
cannot be undone

Logic errors internal to the JDO implementation, which should be reported to the vendor's technical support

Errors in the underlying datastore that can be corrected and retried

Errors in the underlying datastore that cannot be corrected, due to a failure of the datastore or the
communication path to the datastore

JDO uses several interfaces external to the JDO API itself (e.g., the Collection interfaces). An exception that results from
using one of these interfaces is used directly, without modification. If an exception occurs in the underlying datastore,
the exception is wrapped inside a JDO exception. If your application causes a JDO exception, the exception contains the
reason it was thrown.

Figure 2-2 illustrates the JDO exception inheritance hierarchy. The base exception class is called JDOException, and it
extends RuntimeException. The classes that extend JDOException divide exceptions into those that are fatal and those that
can be retried. The hierarchy is then extended based on the original source of the error. JDO exceptions are
serializable.

Figure 2-2. JDOException inheritance hierarchy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This chapter provides complete coverage of the exception classes in the book. Let's examine each exception class:

JDOException

JDOException is the base class for all JDO exceptions. Since it is a subclass of RuntimeException, JDO exceptions do
not need to be declared or caught. The class includes a toString() method that returns a value indicating the
nature of the exception. If the PersistenceManager is internationalized, the descriptive string is also
internationalized.

If an exception is relative to a specific instance of one of your classes, you can call getFailedObject() to retrieve
the instance. If the exception is caused by multiple instances, then each instance is wrapped in its own
exception instance, and all of these exceptions are nested inside an exception that is thrown to the application.
Such nested exceptions can occur as a result of multiple underlying exceptions or from an exception that
involves multiple instances. You may have called a method that accepts a collection of instances, and multiple
instances in the collection failed the operation. Or you may have called commit() in Transaction, which can fail on
instances accessed during the transaction. In these cases, you can call getNestedExceptions() on the thrown
exception to retrieve the array of nested exceptions. Each nested exception may have its own failed instance,
returned by getFailedObject().

JDOException contains all of the functionality needed to access information about the exception. Its subclasses do
not add any additional functionality to access information; they are used strictly to categorize the type of
exception and provide a means for the application to catch and respond to an exception differently, based on its
type and associated category.

JDOCanRetryException

This is the base class for exceptions that can be retried.

JDODataStoreException

This is the base class for datastore exceptions that can be retried.

JDOUserException

This is the base class for exceptions caused by your application that can be retried.

JDOUnsupportedOptionException

This exception is thrown if you attempt to use an optional JDO feature that the implementation does not
support.

JDOObjectNotFoundException

This exception occurs if an attempt is made to fetch an object that does not exist in the datastore.

JDOFatalException

This is the base class for exceptions that are fatal and cannot be retried. Usually, when this exception is thrown,
the transaction has been rolled back and should be abandoned.

JDOFatalInternalException

This is the base class for all failures within the JDO implementation itself. There is no action that can be taken
to recover from this exception. You should report this exception to the JDO vendor for corrective action.

JDOFatalUserException

This is the base class for exceptions caused by your application that cannot be retried.

JDOFatalDataStoreException

This is the base class for fatal datastore exceptions. When this exception is thrown, the transaction has been
rolled back. The cause of the exception may be a connection timeout, an unrecoverable media error, an
unrecoverable concurrency conflict, or some other cause outside of the application's control.

JDOOptimisticVerificationException

A verification step (which is described in Chapter 15) is performed on all instances that are new, modified, or
deleted when you make a call to commit an optimistic transaction. If any instances fail this verification step, a
JDOOptimisticVerificationException is thrown. It contains an array of nested exceptions; each nested exception
contains an instance that failed verification. More details on optimistic transactions and the verification step can
be found in Chapter 15.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

be found in Chapter 15.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.2 The javax.jdo.spi Package
The javax.jdo.spi package defines interfaces used by JDO implementations. Your application should not use the interfaces
in this package. However, a few interfaces in this package are useful for you to be aware of, as they are directly
responsible for managing the state of persistent instances.

PersistenceCapable

The PersistenceCapable interface allows an implementation to manage the values of fields and the lifecycle state
of persistent instances. Every instance managed by a PersistenceManager needs to be of a class that implements
PersistenceCapable. When you enhance a persistent class, code is added to the class to implement the
PersistenceCapable interface.

You should not directly use the PersistenceCapable methods added by the enhancer. Some of its methods provide
information useful to your application; these methods are made accessible to you through the JDOHelper and
PersistenceManager interfaces.

StateManager

Every persistent and transactional instance has a reference to a StateManager instance. (Chapter 13 covers
transactional instances.) A StateManager interfaces with the PersistenceManager and is responsible for managing
the values of fields and state transitions of an instance. (Chapter 11 covers state transitions.)

JDOPermission

The JDOPermission class is used to grant the JDO implementation permission to perform privileged operations if
you have a Java security manager in your Java runtime environment. JDOPermission extends
java.security.BasicPermission. The following permissions are defined:

setStateManager

This permission allows a StateManager instance to manage an instance of PersistenceCapable, allowing it to
access and modify any of the fields in the class that are defined as persistent or transactional. (Chapter
12 covers transactional fields.)

getMetadata

This permission allows a StateManager instance to access the metadata of any registered persistent class.

closePersistenceManagerFactory

This permission must be granted to close a PersistenceManagerFactory.

Use of the JDOPermission class allows the security manager to restrict potentially malicious classes from
accessing information contained in instances of persistent classes.

Assume that you have placed the jar files for the JDO implementation you are using in the /home/jdoImpl
directory. The following sample policy-file entry grants any jars or class files in that directory permission to get
metadata and manage the state of persistent instances:

grant codeBase "file:/home/jdoImpl/" {
 permission javax.jdo.spi.JDOPermission "getMetadata";
 permission javax.jdo.spi.JDOPermission "setStateManager";
};

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.3 Optional Features
JDO defines some features that are optional; JDO-compliant implementations are not required to implement them. Each
optional feature is identified by a unique name, which includes a javax.jdo.option prefix. You can call the supportedOptions(
) method, defined in PersistenceManagerFactory, to determine which options an implementation supports; it returns a
Collection of Strings that contain an option string. Chapter 7 presents an example using this method. Here we enumerate
all the optional features and their names.

The optional features can be grouped into the following categories:

Identity options

Optional collections

Transaction-related optional features

2.3.1 Identity Options

Each instance managed in a JDO environment must have a unique identifier. The following options are associated with
identity:

javax.jdo.option.ApplicationIdentity

javax.jdo.option.DatastoreIdentity

javax.jdo.option.NonDurableIdentity

javax.jdo.option.ChangeApplicationIdentity

The first three options represent different kinds of identity. The fourth option indicates whether you can change the
value of the fields that represent the application identity of an instance.

Support for each form of identity is optional. However, an implementation must support either datastore or application
identity, and may support both. In Chapter 1 we used datastore identity, which is supported by all of the current JDO
implementations. Until we cover identity in depth in Chapter 10, all of our examples will use datastore identity.

2.3.2 Optional Collections

All JDO implementations support the Collection and Set collection interfaces and the HashSet collection class defined in the
java.util package. Other collections are optional in JDO, though current implementations support most of them. The
following collection options are associated with a corresponding collection interface or class in the java.util package:

javax.jdo.option.ArrayList

javax.jdo.option.HashMap

javax.jdo.option.Hashtable

javax.jdo.option.LinkedList

javax.jdo.option.TreeMap

javax.jdo.option.TreeSet

javax.jdo.option.Vector

javax.jdo.option.Map

javax.jdo.option.List

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

javax.jdo.option.Array

javax.jdo.option.NullCollection

Chapter 4 discusses optional collections in more detail. The Array option indicates whether Java's built-in arrays are
supported. The NullCollection option indicates whether you can have a null value for a reference to a collection.

2.3.3 Transaction-Related Optional Features

The following options deal with transactions and special handling of instances relative to transactions:

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.RetainValues

javax.jdo.option.TransientTransactional

javax.jdo.option.Optimistic

Some implementations allow you to read or modify an instance in memory outside of a transaction; this capability is
indicated by the NontransactionalRead and NontransactionalWrite options. Some allow the instances you access during a
transaction to be retained and made available after the transaction commits; this capability is determined by the
RetainValues option. Chapter 14 covers nontransactional access and retaining of instances after commit. Some
implementations let you have instances that are transient yet also support transactional semantics; these are called
transient transactional instances, and they are covered in Chapter 13. The Optimistic option indicates whether optimistic
transactions are supported; these transactions are covered in Chapter 15.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. JDO Architectures
One of JDO's primary objectives is to provide you with a transparent, Java-centric view of persistent information stored
in a wide variety of datastores. You can use the Java programming model to represent the data in your application
domain and transparently retrieve and store this data from various systems, without needing to learn a new data-
access language for each type of datastore. The JDO implementation provides the necessary mapping from your Java
objects to the special datatypes and relationships of the underlying datastore. Chapter 4 discusses Java modeling
capabilities you can use in your applications. This chapter provides a high-level overview of the architectural aspects of
JDO, as well as examples of environments in which JDO can be used. We cannot enumerate all such environments in
this book, because JDO is capable of running in a wide variety of architectures.

A JDO implementation is a collection of classes that implement the interfaces defined in the JDO specification. The
implementation may be provided by an Enterprise Information System (EIS) vendor or a third-party vendor; in this
context, we refer to both as JDO vendors. A JDO implementation provided by an EIS vendor will most likely be
optimized for the specific EIS.

The JDO architecture simplifies the development of scalable, secure, and transactional JDO implementations that
support the JDO interface. You can access a wide variety of storage solutions that have radically different architectures
and data models, but you can use a single, consistent, Java-centric view of the information from all the datastores.

The JDO architecture can be used to access and manage data contained in local storage systems and heterogeneous
EISs, such as enterprise resource planning (ERP) systems, mainframe transaction processing systems, and database
systems. JDO was designed to be suitable for a wide range of uses, from embedded small-footprint systems to large-
scale enterprise application servers. A JDO implementation may provide an object-relational mapping tool that supports
a broad array of relational databases. JDO vendors can build implementations directly on the filesystem or as a layer on
top of a protocol stack with multiple components.

JDO has been designed to work in three primary environments:

Nonmanaged, single transaction

Involves a single transaction and a single JDO implementation, where compactness is the primary concern.
Nonmanaged refers to the lack of distribution and security within the JVM. The security of the datastore is
implemented by name/password controls.

Nonmanaged, multiple transactions

Identical to the first, except that the application uses extended features, such as concurrent transactions.

Managed

Uses the full range of capabilities of an application server, including distributed components and coordinated
transactions. Security policies are applied to components based on user roles and security domains.

You can focus on developing your application's business and presentation logic without having to get involved in the
issues related to connecting to a specific EIS. The JDO implementation hides the EIS-specific issues, such as datatype
mapping, relationship mapping, and the retrieval and storage of data. Your application sees only a Java view of the
data, organized as classes using native Java constructs. EIS-specific issues are important only during deployment of
your application.

In a nonmanaged environment, you do not rely on the managed services of security, transaction, and connection
management offered by a middle-tier application server. Chapter 1 through Chapter 15 cover the uses of JDO in a
nonmanaged environment, most of which also apply to a managed environment.

When JDO is deployed in a managed environment, it uses the J2EE Java Connector Architecture, which defines a set of
portable, scalable, secure, and transactional mechanisms for integrating an EIS with an application server. These
mechanisms focus on important aspects of integration with heterogeneous systems: instance management, connection
management, and transaction management. The Java Connector Architecture enables a standard JDO implementation
to be pluggable across application servers from multiple vendors.

Managed environments also provide transparency for application components' use of system-level mechanisms
—distributed transactions, security, and connection management—by hiding the contracts between JDO implementation
and the application server. Chapter 16 covers the use of JDO in the web server environment. Chapter 17 explains how
to use JDO to provide persistence services in a J2EE application-server environment, which supports the Enterprise
JavaBeans (EJB) architecture.

Multiple JDO implementations—possibly multiple implementations per type of EIS or local storage—can be plugged into
an application server concurrently, or they can be used directly in a two-tier or embedded architecture. JDO also allows
a persistent class to be used concurrently with multiple JDO implementations in the same Java Virtual Machine (JVM) or
application-server environment. This enables application components—deployed on a middle-tier application server or
client-tier—to access the underlying datastores using the same consistent, Java-centric view of data.

The persistent classes that you define can migrate easily from one environment to another. This also allows you to
debug persistent classes and parts of your application code in a simple one- or two-tier environment and deploy them in
another tier of the system architecture.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

another tier of the system architecture.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.1 Architecture Within Application JVM
JDO supports a variety of architectures within the application's JVM context. Your application can have one or multiple
PersistenceManagers accessing the same or different datastores concurrently. Each PersistenceManager has its own
persistent instance cache and its own associated Transaction instance, which manages a distinct transactional context. A
JDO implementation may also maintain a shared cache of instances (not visible to applications) to optimize the
application's access of data in the datastore.

3.1.1 Single PersistenceManager

The simplest JDO application architecture has a single PersistenceManager, as illustrated in Figure 3-1. A
PersistenceManager is the primary interface used by the application to access persistent services. It is an interface that is
implemented by an instance of the JDO implementation. The persistent instances are managed in a cache, where they
are used directly by the application. The JDO implementation manages the persistent instances both by using
application control (e.g., using PersistenceManager and Query methods), and transparently (when the application accesses
a field that is not loaded). The cache contains other artifacts, used to track the identity and state of the instances, but
these artifacts are not visible to the application. Whenever we mention the cache, we are referring to the cache of
persistent instances.

Figure 3-1. Application using a single PersistenceManager to access a datastore

The application cache is not a specific region of memory, as Figure 3-1 might imply; it is simply part of the JVM's object
heap. Each persistent class has a field, named jdoStateManager, added by the enhancer to reference a StateManager. The
StateManager manages the field values and lifecycle state of the instance, and has a reference to its associated
PersistenceManager. A PersistenceManager may use one or more StateManagers; this detail is implementation-specific. The
jdoStateManager field for any instance being managed (either a persistent or transient transactional instance) is set to
reference a StateManager; otherwise, the jdoStateManager field is null.

A persistent instance in the cache can directly reference other persistent instances in the same cache. You can navigate
from one instance to another using standard Java syntax. Instances of transient classes (for example, your application
class) can also reference these persistent instances. A persistent instance in the cache can also reference transient
instances of both persistent and transient classes. The persistent classes themselves are responsible for managing
references to transient instances; the JDO implementation does not manage these references.

Figure 3-2 shows the relationships between the persistent instances, the StateManager, and the PersistenceManager. Each
persistent instance contains a reference to a StateManager, which can manage one or more persistent instances. Each
StateManager contains a reference to its PersistenceManager, which can manage one or more StateManagers. Each
PersistenceManager contains a reference to its PersistenceManagerFactory, which can manage one or more
PersistenceManagers. Each PersistenceManager can manage one transaction serially, and contains a reference to its
Transaction instance. The PersistenceManager uses a StoreManager to interact with the datastore; this relationship is not
defined by the JDO specification.

Figure 3-2. UML diagram of persistent instance cache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-2. UML diagram of persistent instance cache

3.1.2 Multiple PersistenceManagers Accessing the Same Datastore

You can instantiate multiple PersistenceManagers in your application from the same or different PersistenceManagerFactorys.
Figure 3-3 illustrates an application with two PersistenceManagers from the same PersistenceManagerFactory.

Figure 3-3. Application with multiple PersistenceManagers

Each PersistenceManager manages its own transaction context and application cache. In this particular example, both
PersistenceManagers access the same datastore and are from the same JDO implementation. This is the typical
architecture for managed environments where different instances of the same component access the same datastore
via different PersistenceManagers.

Both PersistenceManagers may have the same datastore instance in their caches, represented by different persistent
instances. This architecture provides for transactional isolation of changes made to the same datastore instance by
different transactions.

3.1.3 Multiple PersistenceManagers Accessing Different Datastores

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-4 illustrates PersistenceManagers accessing different datastores. These PersistenceManagers could be from the
same or different implementations. For example, one datastore may be a relational database and the other an object
database. Due to JDO's binary-compatibility contract (covered in Chapter 6), PersistenceManagers from different
implementations can manage different instances of the same persistent classes. JDO is the first database-interface
technology to offer this high level of portability across database architectures.

Figure 3-4. Application with multiple JDO implementations

3.1.4 Shared Implementation Cache

In addition to the application cache, some JDO implementations also maintain their own persistent instance cache that
sits between the application cache and the datastore. Your application does not have access to this implementation
cache. Its role is to cache the state of objects from the datastore in memory, so they can be provided to the application
without requiring access to the datastore. Use of caches can result in significant performance improvements. A shared
implementation cache is most useful when you use nontransactional access, covered in Chapter 14, or optimistic
transactions, covered in Chapter 15. When you use datastore transactions, the shared cache is usually bypassed.

3.1.4.1 Shared implementation cache within a single JVM

Figure 3-5 illustrates a shared implementation cache that is managed within a single JVM. It allows each of the
PersistenceManagers to quickly access the state of objects that have been accessed from the same datastore.

Figure 3-5. Implementation of a shared cache for transactions accessing the same
datastore

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

datastore

For example, if one PersistenceManager accesses a particular instance, the implementation needs to read the instance
from the datastore. But if the other PersistenceManager then accesses the same instance, the implementation can use the
data in the shared implementation cache and avoid having to access the datastore.

3.1.4.2 Shared implementation cache distributed among JVMs

Several JDO implementations provide a distributed cache architecture, which allows them to migrate the state of
objects between JVMs. Figure 3-6 illustrates this architecture.

Figure 3-6. Implementation use of distributed, synchronized caches

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Again, the goal with these implementations is to avoid a datastore access whenever possible. For some systems where
multiple applications may access the same objects, these implementations demonstrate substantial performance
improvements.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.2 Datastore Access
We have explored the architecture in the application's JVM and discussed the application cache and implementation
cache. Now let's examine the architectures of JDO implementations. We'll discuss each type of datastore separately.

These architectures don't affect your application's programming model, but they affect the configuration of the
environment in which your application executes. In particular, the ConnectionURL property of the Properties instance used
to construct the PersistenceManagerFactory refers to a local or remote datastore.

3.2.1 Direct Access of Filesystem or Local Datastore

Some JDO implementations store the objects directly in a local filesystem or datastore. Figure 3-1 illustrates this
architecture. There is only a single process context in this architecture. The JDO implementation uses the Java I/O
classes directly to manage the storage of the objects in a file. The JDO Reference Implementation implements this
architecture, as do some object databases.

3.2.2 Remote Access of a JDO Server

Some JDO implementations connect to a separate server that manages the datastore, as illustrated in Figure 3-7. The
JDO Reference Implementation implements this architecture, as do most object databases. In this particular example,
the JDO implementation itself provides a server built specifically for object storage, which then manages the filesystem
directly. The component that executes in the same JVM as the JDO implementation and communicates with the remote
server is called a resource adapter. The protocols between the client JVM and the JDO Server are vendor-specific.

Figure 3-7. Client access of a JDO server

3.2.3 Remote Access of a SQL Datastore

Figure 3-8 illustrates the use of a relational database server for object storage. This is the most common architecture
used by current commercial JDO implementations. Since the application is written in Java, the JDO implementation uses
JDBC to communicate with the database server. When you deploy your application, you use a proprietary tool supplied
by the JDO vendor to map your application's Java objects to tables in the relational database. Some JDO
implementations use your application's persistent object model to create the relational schema for you.

Figure 3-8. Client access of a SQL datastore

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-8. Client access of a SQL datastore

The relational vendor or a third party provides a JDBC driver to communicate with the database, using protocols specific
to the database. The JDBC driver is the resource adapter in this architecture.

Since the JDBC interface is well defined, this architecture offers a high degree of portability. JDO implementations have
been written to use a variety of datastores that provide a JDBC driver implementation. While the JDBC interface is
standard, the SQL data manipulation language, used by the relational databases, varies considerably; the JDO
implementation hides these differences from JDO applications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.3 System Architectures with a JDO Application
Now we'll examine where JDO objects and application logic can be placed relative to an application's overall system
architecture, including both managed and nonmanaged environments. In the remaining examples in this chapter, we
don't show the details of how the JDO implementation manages the storage for the persistent instances.

3.3.1 JDO Rich Client with Local Datastore

The simplest form of system architecture is a one- or two-tier application that may be executed from the command line,
from a shell script, or via a graphical user interface. We refer to the application as a rich client to distinguish it from a
browser that simply displays HTML and executes applets. The application uses local filesystem and JDO persistent
services directly.

3.3.2 JDO Applications in a Web Server

Figure 3-9 illustrates how an application can use JDO to provide persistent services to the implementation of a web
servlet or JavaServer Pages (JSP). When using JSP pages, the application typically will use JDO in one of two ways: by
calling JDO's APIs directly in Java, or using a JSP tag library to abstract the JDO API (similar to the way the JSP
Standard Tag Library abstracts the JDBC API).

Figure 3-9. JDO application running in a web server

With this architecture, the servlet/JSP page gets data from the browser in the form of strings from an HTTP doGet() or
doPost() request and uses JDO to implement the request. Your application may use the Struts framework to implement
the servlets and JSP pages in this architecture. We will discuss the web-server access patterns in detail in Chapter 16.

3.3.3 JDO Applications as Web Services

Figure 3-9 also illustrates the use of JDO as the persistence implementation for a web server implementation of a web
services endpoint. The web server may register the service using UDDI and a registry service, and clients may find the
service via the same registry.

A web server implementation uses a servlet to implement the service endpoint. The servlet can use the JDO API for the
persistent service, exactly as it does for servicing HTTP requests. The primary difference between SOAP and standard
HTTP is that with SOAP requests, the message data in the HTTP message is formatted as SOAP XML instead of get/post
data.

3.3.4 Rich Client Connecting to Application Server with EJB Components

Figure 3-10 illustrates a rich client connecting directly to an application server using EJB beans. This architecture
typically is implemented behind the firewall of a company, as it directly exposes enterprise services to clients. The
clients use the JNDI services of the J2EE client container to look up services by name (including EJB beans) and to
connect to the server via RMI/IIOP or a proprietary protocol. Alternatively, a client may use SOAP protocols to access
the middle-tier server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-10. Rich-client connection to an application server using EJB beans

The EJB components inside the EJB container use other EJB components to implement their services. They use a
combination of JDBC and JDO to access persistent services. Session beans and message-driven beans use JDO and
JDBC directly. Entity beans use JDO transparently (the container implements CMP entity beans using JDO but does not
expose JDO as an API to the CMP developer).

3.3.5 Web Server with EJB Server

Figure 3-11 illustrates servlets and JSP pages that use the services of an EJB container to implement the business logic
of an enterprise application. The EJB beans executing inside the EJB container use JDO as their persistence service. The
web and EJB containers often reside in the same JVM in this architecture, even though they represent different tiers of
the architecture.

Figure 3-11. Servlets and JSP pages access services of the EJB container

3.3.6 EJB Session Beans Using Session Bean Façades

Figure 3-12 illustrates the session bean delegating parts of the business logic to session bean façades that use JDO as
their implementation. This architecture allows location transparency among the components. For example, if the session
bean that interacts directly with clients delegates part of the functionality to other session-bean components, this
architecture allows the other components to be located in different machines. Chapter 17 describes this architecture in
detail.

Figure 3-12. EJB session beans using session bean delegates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-12. EJB session beans using session bean delegates

3.3.7 JDO Providing Container-Managed Persistence

As a side note, an EJB server may implement J2EE container-managed persistence (CMP) entity beans using JDO as the
persistence layer. The J2EE components and the users of these components are unaware that JDO is used for the
implementation of the persistence service.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. Defining Persistent Classes
A Java program consists of many different kinds of classes, including:

Classes that model business objects

Classes that serve as user interface objects

Classes that provide various kinds of glue between different parts of the application

System classes of various sorts

JDO focuses on the classes whose data has a corresponding representation in the underlying datastore: classes that
represent business objects or classes that represent application-specific data that must remain persistent between
application invocations.

These classes may represent data that comes from a single entity in the datastore, or they may represent data from
several entities; JDO doesn't place any limitations on where the data comes from. For example, the data may come
from:

A single object in an object-oriented database

A single row of a relational database

The result of a relational database query, consisting of several rows

The merging of several tables in a relational database

The execution of a method from a data retrieval API that accesses an Enterprise Resource Planning (ERP)
system

A JDO implementation maps data from its representation in the datastore to its representation in memory as a Java
object, and vice versa. The mapping is based on metadata, which must be available both when the Java class is
enhanced and at runtime. JDO does not standardize the mapping to a specific datastore.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.1 Kinds of Classes and Instances
First, we must define some terms and provide some distinctions that are essential for understanding JDO. The term
"object" often refers to either a class or an instance of a class, which can be confusing sometimes. Therefore, we will
use the terms "instance" and "class" instead of "object," because it will be essential for you to understand which we are
discussing.

4.1.1 Kinds of Classes

When using JDO, every class falls into one of the following two categories:

Persistent class

A persistent class can have its instances stored in the datastore. To be persistent, a class must be specified in a
metadata file and enhanced. The JDO specification refers to these as persistence-capable classes.

Transient class

A transient class cannot have its instances stored in the datastore. Transient classes are not listed in a
metadata file.

Furthermore, classes can be distinguished by their use of the JDO API:

JDO-aware class

A JDO-aware class makes direct use of the JDO API. For example, it can perform a JDO query to retrieve
instances from the datastore, or make specific instances persistent.

JDO-transparent class

A JDO-transparent class does not make direct use of the JDO API.

Whether a class is JDO-aware or JDO-transparent is unrelated to whether it is persistent. For example, the persistent
classes Movie, Actor, and Role that we introduced in Chapter 1 are JDO-transparent, because they never made an explicit
call to the JDO API. On the other hand, the MediaManiaApp class is JDO-aware, because it uses the JDO API directly: it
creates a PersistenceManager and uses it to execute transactions. MediaManiaApp is not persistent.

4.1.2 Kinds of Instances

JDO supports several kinds of instances. The names we introduce in this section are used throughout the book to refer
to these different kinds of instances. In particular, we use specific terminology to differentiate a transient instance of a
transient class from a transient instance of a persistent class. All JDO implementations support the first three kinds of
instances listed here; the last two are optional:

Instance of a transient class

All instances of a transient class are transient. For the most part, however, we focus on instances of persistent
classes.

Transient instance

A transient instance is an instance of a persistent class that is not associated with the datastore. It is simply an
instance you create in your application that is never made persistent and is used independent of the datastore.

Persistent instance

A persistent instance is an instance of a persistent class whose behavior is linked to a transactional datastore.
Its fields are watched by the JDO implementation and saved to or restored from the datastore, as appropriate.
The datastore manages the state of its persistent fields and information identifying its class.

Transient transactional instance

A transient transactional instance is transient and is not represented in the datastore. But it is transactional,
and its state is rolled back if a transactional rollback occurs. For JDO to manage a transient transactional
instance, you need to enhance its class. Transient transactional instances are covered in Chapter 13.

Persistent nontransactional instance

A persistent-nontransactional instance is persistent, but it is not managed as part of a transaction. Persistent
nontransactional instances are discussed in Chapter 14.

Table 4-1 illustrates these different kinds of instances, based on their persistence and transactional behavior.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 4-1 illustrates these different kinds of instances, based on their persistence and transactional behavior.

Table 4-1. Kinds of instances

Behavior Instance of atransient
class Transient instance Persistent instance

Transactional Transient transactional
instance Persistent instance

Nontransactional Instance of a transient class Transient instance Persistent nontransactional
instance

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.2 Java Classes and Metadata
You can make most of your classes persistent in a JDO environment. JDO has the ability to make plain ordinary Java
objects (POJOs) persistent. This includes classes that represent the entities in your application domain, utility classes
that model other data, and abstractions you need to support your application's functionality. Your classes can also use
all of Java's class and field modifiers, including: private, public, protected, static, transient, abstract, final, synchronized, and
volatile. In some cases, as we will explore later in this chapter, some of these modifiers cannot be used with persistent
fields.

The persistent state of a persistent class is represented entirely by the values of its Java fields. If you have a class that
has some state that needs to be preserved and it depends on inaccessible or remote objects (e.g., it extends
java.net.SocketImpl or uses Java Native Interface (JNI)), you cannot make the class persistent. You also cannot have a
persistent nonstatic inner class, because the state of the inner class instance depends on the state of its enclosing
instance.

With a few exceptions, system-defined classes (those defined in java.lang, java.io, java.net, etc.) cannot be persistent.
They are also not allowed to be the type of a persistent field. This includes classes such as System, Thread, Socket, and
File. We list the system classes that are supported in Table 4-2 later in this chapter. You may be using an
implementation that supports additional system-defined classes, especially those for modeling state information.
Relying on support for these additional types will make your software dependent on that implementation.

As discussed in Chapter 1, each persistent class needs to have a no-arg constructor. If your class does not define any
constructors, the Java compiler generates a no-arg constructor automatically (called the default constructor). But if you
do define one or more constructors with arguments in a persistent class, then you must also define a no-arg constructor
manually.

When your application first accesses a persistent instance, the JDO implementation needs to construct an instance, so it
calls the no-arg constructor. The availability of a no-arg constructor is the only requirement JDO imposes on your
persistent classes. Some JDO enhancers can generate this no-arg constructor for you if it does not already exist, but
they are not required to do so.

You may not want other classes in your application calling the no-arg constructor. If this is the case, you can declare it
to be private. Or, if the class will have subclasses, declare it to be protected so that the subclass constructors can call it.

4.2.1 JDO Metadata

Every class that you want to be persistent must be declared in a JDO metadata file. This file cannot include any system
classes. Any class that is not declared in a metadata file is a transient class, except for the system classes that all
implementations support. You typically place additional persistence-related information that is not expressable in Java
in the metadata file. This metadata is used when a class is enhanced and also at runtime.

JDO metadata is stored in XML format. An XML Document Type Definition (DTD) defines the elements in a JDO
metadata file. The JDO DTD is provided in Appendix B. It should be identical across all implementations.

4.2.1.1 Metadata filenames

You can place the metadata for your application's classes in one or more XML files. A few rules exist for the naming and
directory placement of metadata files to assure portability among implementations. For portability, metadata files
should be available via resources loaded by the same class loader as the persistent classes.

If you have a metadata file that contains information for a package or multiple packages, then the name of the XML file
should be package.jdo. (Here we literally mean the word "package," not the name of an actual Java package.) The
package.jdo file can be placed in one of the following directories:

META-INF

In this case, package.jdo can contain metadata for any class in your application.

WEB-INF

Files like package.jdo should be placed in this directory when deploying a JDO application in a web container.

(no directory)

The package.jdo file is not in any subdirectory of the classpath.

<package>

The package.jdo file is placed in the subdirectory that corresponds to the package defined in the metadata.
Thus, if package.jdo contains the metadata for the com.mediamania.content package, it would placed in the
com/mediamania/content directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

com/mediamania/content directory.

If you have a metadata file that only contains information for a single class named classname, then its filename should
be classname.jdo and it should reside in the same directory as the class file, based on the package of the class.

When the JDO implementation needs metadata for a class and the metadata has not been loaded yet, the metadata is
searched in the following order:

1. META-INF/package.jdo

2. WEB-INF/package.jdo

3. package.jdo

4. <package>/package.jdo

5. <package>/<class>.jdo

where <package> represents the directory corresponding to the package of the class and <class> represents the name
of the class.

A search for the metadata for the Customer class in the com.mediamania.store package is performed in the following order:

1. META-INF/package.jdo

2. WEB-INF/package.jdo

3. package.jdo

4. com/package.jdo

5. com/mediamania/package.jdo

6. com/mediamania/store/package.jdo

7. com/mediamania/store/Customer.jdo

If no metadata is found for the Customer class in any of these locations, it is considered a transient class.

Once the metadata for a class has been loaded, it is not replaced. Metadata contained in a file higher in the search
order is used instead of metadata lower in the search order. This search order is optimized so that implementations can
cache metadata as soon as it is encountered, reducing the number of file accesses that are needed to load the
metadata.

Metadata that is not in its natural location may override metadata that is in its natural location. For example, when the
JDO implementation searches for the metadata for com.mediamania.content.Movie, it may find the metadata for the
com.mediamania.store.Rental class in the com/mediamania/package.jdo file. In this case, a subsequent search for the
metadata for com.mediamania.store.Rental will use the metadata that has already been cached, instead of looking in
com/mediamania/store/package.jdo or com/mediamania/store/Rental.jdo.

These rules for the name and location of the metadata files apply both during enhancement and at runtime. From now
on, the term "metadata" refers to the aggregate of all the JDO metadata for all packages and classes, regardless of
their physical packaging in multiple files and directory placement.

4.2.1.2 jdo, package, and class metadata elements

The jdo element is the highest-level XML element in the metadata hierarchy. It does not have any attributes of its own.
It contains one or more nested package elements. A package element is used to represent a specific Java package. It has
a single required attribute, called name, that contains the completely qualified name of the Java package.

Within a package element, you can nest one or more class elements. A class element identifies a specific Java class in the
enclosing package as persistent. The class element's only required attribute is name, which is given the name of the
class. You should only list classes in the metadata that you want to be persistent.

The class element has the following additional optional attributes:

identity-type

objectid-class

requires-extent

persistence-capable-superclass

The identity-type attribute indicates which type of identity should be used with the class. It defaults to datastore identity,
which does not require any additional effort from you. The objectid-class attribute identifies a class defined by the
application to serve as the application identity of the class. Chapter 10 covers the various forms of identity in detail;
until then, we will use datastore identity in all of our examples. The requires-extent attribute indicates whether an extent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

until then, we will use datastore identity in all of our examples. The requires-extent attribute indicates whether an extent
is maintained for the class. Extents are covered in Chapter 8. The persistence-capable-superclass attribute identifies the
closest superclass in the inheritance hierarchy that is persistent, if there is one.

4.2.1.3 Vendor extensions

The extension element specifies vendor-specific metadata extensions in a uniform manner. All JDO metadata elements
can have nested extension elements. The required vendor-name attribute associates the extension with a specific vendor.
Each vendor uses a unique name to identify metadata extensions for their implementation. The vendor name "JDORI" is
reserved for use with the JDO reference implementation. A JDO implementation ignores any extension elements that
have a vendor-name value that does not correspond to their implementation. The extension element also has optional key
and value attributes. A key may or may not have an associated value. The vendor chooses values for these attributes
that they recognize and interpret. Consult your documentation to see what metadata extensions are provided.

4.2.1.4 Nesting of metadata elements

The following illustrates the hierarchical nesting of metadata elements:

jdo
 package
 class
 field
 collection
 extension
 extension
 field
 map
 extension
 field
 array
 extension
 extension
 extension
 extension
 extension

One or more extension elements can be nested within each of these elements (including extension itself) to provide
vendor-specific information. The field metadata elements (field, collection, map, and array) are covered later in this
chapter.

4.2.2 Inheritance

Each class in an inheritance hierarchy can be transient or persistent, independent of the persistence of other classes in
the hierarchy. Thus, a class can be persistent, even if its superclass is not. This allows you have a persistent class that
extends a transient class that was not designed to be persistent. Likewise, a subclass of a persistent class may be
transient or persistent.

If a persistent class has one or more persistent superclasses, the class element's persistence-capable-superclass attribute
must identify the most immediate persistent superclass. If the superclass is in a different package, it must be specified
with its fully qualified name. If the superclass is in the same package, you can omit the package qualifier. You may
wonder why you need to specify this in the metadata. After all, the Java class declarations specify the branch of
superclasses from a class up to Object in an inheritance hierarchy, and your metadata identifies which of these classes
are persistent. But the metadata for a superclass may be specified in a different metadata file. JDO is designed such
that the enhancer can enhance a class in a stateless fashion, independent from other classes. The order in which
classes are enhanced is irrelevant, and a class can be enhanced without the presence of any other classes. This greatly
supports the simplicity of enhancer design, ease of use, integration with classloaders, and—last, but not least—easy
reproducability of errors.

To illustrate these concepts, the UML diagram in Figure 4-1 describes two inheritance hierarchies. We use the
stereotyping facility in UML to indicate whether a class is persistent or transient. In practice, you are not likely to have
an inheritance hierarchy with such a complicated mix of persistent and transient classes. In many cases, the classes in
an inheritance hierarchy are either all transient or all persistent. But JDO provides you with the flexibility to choose
whether each class in an inheritance hierarchy is transient or persistent, as we have demonstrated here.

Figure 4-1. Persistence within an inheritance hierarchy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-1. Persistence within an inheritance hierarchy

The following metadata identifies the persistent superclass for each persistent class shown in Figure 4-1. This metadata
is placed in the com/mediamania/inheritexample/package.jdo file.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jdo PUBLIC
 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
<jdo>
 <package name="com.mediamania.inheritexample" >
 <class name="A" />
 <class name="C"
 persistence-capable-superclass="A"/>
 <class name="E"
 persistence-capable-superclass="A"/>
 <class name="G"
 persistence-capable-superclass="C"/>
 <class name="H"
 persistence-capable-superclass="A"/>
 <class name="K" />
 <class name="M" />
 <class name="O"
 persistence-capable-superclass="K"/>
 </package>
</jdo>

4.2.3 The Media Mania Object Model

Let's examine the object model we use in most of the examples throughout this book. Media Mania, Inc. provides a
system in their stores that contains information about the various forms of media that customers can rent or purchase.
In Chapter 1 we created a prototype application contained in com.mediamania.prototype. Now, we replace this prototype
with two new packages: com.mediamania.content and com.mediamania.store.

The com.mediamania.content Java package contains classes that represent generic media content information. The content
handled by the stores includes movies and games. The Movie and Game classes extend an abstract base class called
MediaContent. The Studio class contains information about the studio that produced the game or movie. Figure 4-2
illustrates the relationships among these classes.

Figure 4-2. Studio and MediaContent classes in com.mediamania.content package

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-2. Studio and MediaContent classes in com.mediamania.content package

Each person involved in a movie, as either the director or an actor, is represented by an instance of MediaPerson. Figure
4-3 illustrates the relationships among Movie and MediaPerson instances.

Figure 4-3. Movie, Role, and MediaPerson classes in com.mediamania.content
package

A Movie instance has one or more Role instances representing the cast of the movie. It also has a reference to the
MediaPerson for the director of the movie. We assume a movie has a single director (though in real life this is not always
the case). The Role class references its Movie and a MediaPerson who served as the actor for the particular role. Given a
specific MediaPerson instance, it is possible to access all the movies they directed and all the roles they have played in a
movie. This model also allows for an actor who has played multiple roles in the same movie.

In addition to the media content information, each store tracks the rental and purchase activities of its customers. The
com.mediamania.store package contains the classes representing store-specific information. Figure 4-4 illustrates the
relationships among these classes.

Figure 4-4. Classes in the com.mediamania.store package (except MediaContent in
the content package)

Each customer that has rented or purchased some media content at the store is represented by an instance of the
Customer class. An Address instance contains address information for the customer. The store tracks two kinds of
transactions: rentals and purchases. These are represented by Rental and Purchase classes that extend a Transaction base
class. The store tracks the current items the customer has out for rent and also keeps a history of all the customer's
transactions.

A MediaItem instance represents a particular format of a given MediaContent item. For example, a Movie can exist in VHS
and DVD formats and a Game may be supported in formats for the Playstation, Playstation 2, Xbox, and Nintendo
GameCube. The stock of media items is designated as items to be sold or rented. A RentalItem instance exists for each
individual item that can be rented to a customer. The items in stock that are currently available for rent are represented
by RentalItem instances that have a null value for their currentRental field. The model does not track the individual items
that are sold, but the MediaItem class tracks how many items for purchase are in stock and how many have been sold
year-to-date. Each Purchase instance contains a reference to the specific MediaItem that the customer bought.

The store has different rental policies and prices, based on the popularity of an item and how recently it became
available. A RentalCode instance maintains information about a particular rental policy. Each MediaItem instance is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

available. A RentalCode instance maintains information about a particular rental policy. Each MediaItem instance is
associated with a particular RentalCode, which may change over time.

A Rental instance represents a customer's rental of a particular media item; it references the specific RentalItem rented.
This is necessary so the store can track which item has been rented and update the customer account when it is
returned, taking into account any late fees that may be due. The RentalCode associated with the MediaItem at the time of
rental is associated with the Rental instance. This is necessary because the RentalCode for a MediaItem will change
occasionally.

Appendix E provides all the classes for the model. The following metadata specifies the packages and persistent classes
for the object model. Since it contains metadata information for the com.mediamania.content and com.mediamania.store
packages, we place the metadata in a file named com/mediamania/package.jdo, based on their common base package
name.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jdo PUBLIC
 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
<jdo>
 <package name="com.mediamania.content" >
 <class name="Studio" >
 </class>
 <class name="MediaContent" />
 <class name="Movie"
 persistence-capable-superclass="MediaContent">
 </class>
 <class name="MediaPerson" >
 </class>
 <class name="Game" />
 <class name="Role" />
 </package>
 <package name="com.mediamania.store" >
 <class name="MediaItem" >
 </class>
 <class name="RentalItem"/>
 <class name="Customer" >
 </class>
 <class name="Address" />
 <class name="Transaction" />
 <class name="Purchase"
 persistence-capable-superclass="Transaction"/>
 <class name="Rental"
 persistence-capable-superclass="Transaction"/>
 <class name="RentalCode" />
 </package>
</jdo>

The metadata lists each persistent class in the content and store packages. If an inheritance relationship exists, the
metadata specifies the persistent superclass. Later in this chapter, we will add more information that provides
information about the fields and relationships.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.3 Fields
Fields contain the state of an instance. JDO provides for the access, management, and storage of an instance's fields in
a datastore. All of Java's field type categories are supported: primitive types, reference types, and interface types. JDO
also supports all of Java's field modifiers, including private, public, protected, static, transient, final, and volatile. But static and
final fields cannot be persistent, as we will discuss later in this chapter.

As we explained earlier, you can have both transient and persistent instances of a persistent class. The individual fields
of a persistent class can also be transient or persistent for all of the class's persistent instances. A field's type and
modifiers determine whether it is persistent or transient, by default. You can override the default persistence of a field
in the metadata. We cover transient fields later in this chapter.

You can specify persistence-related information about a field by using the field metadata element. Its required name
attribute should have the name of the field in the Java class declaration. It has attributes to control the field's
persistence and the type of its elements if it is a collection. We cover these attributes later in this chapter. If the class
uses application identity, one or more fields need to indicate they are a primary-key field; Chapter 10 covers this in
detail. Chapter 12 addresses advanced field-management facilities enabled by the remaining field element attributes.

You do not need to provide metadata for every field in a class. Default values are assumed for any fields that lack
metadata declarations. These default values usually provide the behavior that you need. So, in many circumstances,
you do not need to provide field metadata.

4.3.1 Supported Types

You cannot make many system-defined classes persistent, nor can you have a field of a system-defined class. Table 4-2
lists the system-defined types in the Java language environment that JDO implementations do support.

Table 4-2. Supported field types
Primitives java.lang java.util java.math

boolean Boolean Locale BigInteger

byte Byte Date BigDecimal

short Short HashSet

char Character Collection

int Integer Set

long Long

float Float

double Double

 String

 Number

 Object

You can declare a field to refer to a persistent class instance. In addition, you can use Java's polymorphism to declare a
field that refers to a base class and have it reference a subclass instance. You should be accustomed to using
polymorphic references in your object models. Object databases have supported them for many years, but this
modeling capability has not been available in relational database schemas and interfaces. The JDO implementation is
responsible for implementing such polymorphic references on top of the underlying datastore, including a relational
datastore. If a field is declared to be a reference to a transient class, and you assign a reference to an instance of a
subclass that is persistent, the instance is not stored, because the field's declared type is not persistent.

You can use fields of Object and interface types. You can assign a reference to an instance of any class to an Object field,
and an instance of any class implementing an interface can be assigned to an interface. You can also use interface
inheritance in your model. Interface fields are transient by default, so you need to declare the field persistent explicitly
in your metadata. We recommend you assign only instances of types supported by JDO to Object and interface fields. If
an implementation restricts the type of instance that can be assigned to such a field, it will throw a ClassCastException
when an incorrect assignment is made.

4.3.1.1 Collections

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3.1.1 Collections

You can use a collection to represent multiple values of a given type or to represent to-many relationships among
classes in an object model. Table 4-3 lists the Collection and Set collection interfaces and the HashSet collection class from
the java.util package that are available in all JDO implementations. Additional collection classes that are optional in JDO
are listed with their associated option property name. If an implementation supports the collection, it will return the
collection's associated property string when you call PersistenceManagerFactory.supportedOptions().

Table 4-3. Collection interfaces and classes
Interface in the

java.util package

Class implementing the

interface in the java.util package
JDO option property

Collection portable (all implementations)

Set portable (all implementations)

 HashSet portable (all implementations)

Hashtable javax.jdo.option.Hashtable

 TreeSet javax.jdo.option.TreeSet

List javax.jdo.option.List

 ArrayList javax.jdo.option.ArrayList

 LinkedList javax.jdo.option.LinkedList

 Vector javax.jdo.option.Vector

Map javax.jdo.option.Map

 HashMap javax.jdo.option.HashMap

 TreeMap javax.jdo.option.TreeMap

You use a collection element to specify a collection's characteristics in the metadata. By default, collection-typed fields
are persistent with an Object element type. You use the collection element's element-type attribute to specify the
collection's element type. Specifying the element type is not required, but we recommend you specify it. The type name
you specify uses Java's rules for naming: if no package is provided in the name, the package is assumed to be the same
package as the enclosing persistent class in the metadata. Inner classes are identified with the $ marker. At some point,
the Java language may allow you to specify a collection's element type directly when you declare the collection in your
Java code, in which case this metadata will no longer be necessary.

A Map maintains a set of key-value pairs; both the key and value have a type. You use a map element to specify the
characteristics of map's keys and values in the metadata. By default, map-typed fields are persistent and their key and
value types are Object. You can use the map element's key-type and value-type attributes to specify a more specific type.
As with collections, Java's rules for naming apply if the package is not provided, and inner classes can be identified with
the $ marker.

We encourage you to specify the types of collection elements and the keys and values of Maps. Some implementations
use a far less efficient means of accessing the elements if you do not specify the type.

4.3.1.2 Arrays

Array fields are optional in JDO. The JDO javax.jdo.option.Array option property indicates whether an implementation
supports them. You should not share a specific array among several persistent instances. The JDO specification does
not state whether multidimensional arrays are supported. Support for multidimensional arrays varies among
implementations.

4.3.2 Persistence of Fields

A field's type and modifiers in a Java class declaration determine whether it is persistent by default. You can also
override the default persistence of a field by declaring it as persistent or transient in the metadata.

Some fields cannot be persistent. A field declared in Java to be static or final is always transient. A static field has only
one value; the field is associated with the class itself and shared by all instances. A final field has one value per
instance. But a final field is initialized once by the constructor and its value can never be changed once the instance is
constructed. Each constructor may initialize a final field differently. JDO implementations call the no-arg constructor to
create an instance you access from the datastore. The field values from the datastore are set after the no-arg
constructor is called. Thus, it is not possible for the JDO implementation to manage a final field's persistent state in
memory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

memory.

Fields of the following types are persistent by default:

Any type identified in Table 4-2 or Table 4-3 (except for Object)

References to instances of persistent classes

Fields of the following types are transient by default:

References to transient application classes

References to system classes defined in JDK packages (unless supported in JDO)

Interface references

Object references

Though interface and Object references are transient by default, you can still declare them to be persistent in the
metadata.

4.3.2.1 Controlling field persistence with metadata

Java's transient modifier is used to specify whether a field and the object graph it may reference should be serialized. By
default, a field declared transient in a Java class declaration is transient from a JDO perspective, but you can override
this in the metadata. You can use the field element's persistence-modifier attribute to specify whether a field is persistent,
by giving it one of the following values:

"persistent"

The field is persistent.

"none"

The field is transient.

"transactional"

The field is a transactional field, which is a transient field that has transactional behavior. Chapter 12 covers
transactional fields.

So, a transient field in Java (specified via the transient modifier in the Java class declaration) is distinct from a transient
field in JDO. If you declare a field in a Java class declaration with the transient modifier, it can be transient or persistent
in JDO; and if a field does not have the Java transient modifier, it can also be transient or persistent, depending on the
field's persistence-modifier attribute. If you do not specify the persistence-modifier attribute in the metadata, its default
value is based on the field's type and modifiers, as defined in the Java class declaration.

There is no restriction on the type of a transient field. Transient fields are managed entirely by the application, not by
the JDO implementation. A JDO implementation calls the no-arg constructor to instantiate an instance when the
application accesses it from the datastore. You can define the default constructor to initialize transient and final fields.
The InstanceCallbacks interface can also be used to manage the state of transient fields; this is covered in Chapter 12.

Persistent and transactional fields are also referred to as managed fields, since the JDO implementation manages their
state. Figure 4-5 illustrates which kinds of fields are managed and which are transient.

Figure 4-5. Managed and transient fields

4.3.2.2 Inherited fields

A class's metadata cannot specify characteristics for any field it inherits from a superclass, so a subclass cannot alter
the persistence of an inherited field. Therefore, a field identified as persistent by the class's metadata is persistent in all
subclasses; if it is transactional, it is transactional in all subclasses, and if it is transient, it is transient in all subclasses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subclasses; if it is transactional, it is transactional in all subclasses, and if it is transient, it is transient in all subclasses.

Consider class E, contained in the inheritance hierarchy depicted in Figure 4-1. E is a persistent class that extends the
transient class B. B extends the persistent class A. For any instance of B, E, or any class extending E, the fields of B are
transient, and you cannot make them persistent in the metadata unless you make B a persistent class.

Of course, you can declare a class with a field that has the same name as a field in a superclass. Even though the field
name is the same, these are two different fields. Therefore, you can have different values for their persistence-modifier
attribute.

4.3.3 Complete Metadata for the Media Mania Model

Now we can present the complete metadata for our Media Mania model, including the additional metadata we have
covered:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jdo PUBLIC
 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
<jdo>
 <package name="com.mediamania.content" >
 <class name="Studio" >
 <field name="content" >
 <collection element-type="MediaContent"/>
 </field>
 </class>
 <class name="MediaContent" >
 <field name="mediaItems" >
 <collection element-type="com.mediamania.store.MediaItems"/>
 </field>
 </class>
 <class name="Movie"
 persistence-capable-superclass="MediaContent">
 <field name="cast" >
 <collection element-type="Role"/>
 </field>
 </class>
 <class name="MediaPerson" >
 <field name="actingRoles" >
 <collection element-type="Role"/>
 </field>
 <field name="moviesDirected" >
 <collection element-type="Movie"/>
 </field>
 </class>
 <class name="Game"
 persistence-capable-superclass="MediaContent" />
 <class name="Role" />
 </package>
 <package name="com.mediamania.store" >
 <class name="MediaItem" >
 <field name="rentalItems">
 <collection element-type="RentalItem"/>
 </field>
 </class>
 <class name="RentalItem"/>
 <class name="Customer" >
 <field name="currentRentals">
 <collection element-type="Rental"/>
 </field>
 <field name="transactionHistory">
 <collection element-type="Transaction"/>
 </field>
 </class>
 <class name="Address" />
 <class name="Transaction" />
 <class name="Purchase"
 persistence-capable-superclass="Transaction"/>
 <class name="Rental"
 persistence-capable-superclass="Transaction"/>
 <class name="RentalCode" />
 </package>
</jdo>

We specified each collection's element type in the model. The mediaItems field in MediaContent is the only collection
whose element type is a class in a different package, so we specified the full package name.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. Datastore Mappings
JDO supports the storage of your object model in a variety of datastore architectures. The primary datastore
architectures envisioned for use with JDO are:

Relational database

Organized as a set of tables, each containing a set of rows and columns. A column can store values of a
particular atomic type. Each table cell in a particular row and column stores a value of the column's type. The
value stored can be a null value. Instances are identified uniquely by the value of primary-key columns.
Relationships are defined, and may be enforced, by annotating specific columns as foreign keys that reference
columns in a table.

Pure object database

An extension of the JVM object model. Domain objects are stored with their primitive fields, just as instances
are stored in the JVM. Instances are identified by a system-generated unique identifier. References are stored
as objects, including instances of system-defined classes. Unreferenced instances are garbage collected. An
extent is not an intrinsic construct in a pure object database; it is implemented as a class containing a set of
objects. In this model, any reference type can be shared among multiple objects, and changes made to the
instance of the reference type are visible to all objects that reference it.

Hybrid object database

Organized as a set of class extents, each containing a set of instances in which primitive and complex fields are
stored. Domain objects are stored with their primitive fields; some complex field types (e.g., collections of
primitive types and reference types) are also stored with the domain object. Instances are identified by a
system-generated unique identifier. Unreferenced instances must be deleted explicitly.

Application Programming Interface (API)

Defined by an API to an abstract domain model. The API defines methods to create, read, update, and delete
abstract domain instances. The underlying datastore implementation is completely hidden by the API. Many
complex system products use this type of architecture.

The JDO 1.0.1 Specification does not specify a standard for mapping to specific datastores. JDO implementations
support one or more datastores and often provide a means for you to direct the mapping process by specifying
additional, vendor-specific metadata. These mapping directives can be placed in the JDO metadata files or in an
implementation-specific location. Some vendors allow you to specify the mapping via a graphical environment that
depicts the Java and datastore models, allowing you to associate items in the two models to define a mapping.
Regardless of where this vendor-specific mapping information is placed, it does not affect your Java source code.

Current JDO implementations provide support for relational databases, as well as pure and hybrid object databases. As
JDO implementations become available for other database architectures, other mapping facilities will likely be
considered. For example, there are databases based on the XML data model. Mappings might soon be defined between
the XML database and a set of Java classes. Such an interface would likely be based on the Java Architecture for XML
Binding (JAXB) standard.

SQL is the dominant relational language in use. Today, most Java applications access a relational database through Java
Database Connectivity (JDBC), which provides an interface for Java applications to issue SQL commands to a relational
database. Since a relational database uses the relational data model, which is different from Java's object model, a
mapping is required between the modeling constructs of Java and the relational database.

Since relational databases are prevalent, and because most people are familiar with the relational data model, we will
focus on the mapping strategies and approaches employed when JDO is used with a relational database. However,
much of the discussion is fairly generic and can apply to other database architectures.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.1 Mapping Approaches
Several approaches can be used to establish a mapping between your persistent Java classes and a relational schema:

Generate a relational schema from your persistent Java classes

If you are developing a new application in Java and you do not have an existing relational database schema,
you can let the JDO implementation generate a relational schema from your object model. This approach is
commonly called forward engineering the model. This approach yields a high level of development productivity
because all of the schema design and mapping work is done automatically by the JDO implementation. The JDO
specification does not require support for the automatic generation of a schema. Some implementations do not
support this approach and require you to define the mapping to an existing schema. Many of the
implementations that do support schema generation let you specify some metadata to help direct the
algorithms generating the schema.

Generate your persistent Java classes from a relational schema

In many cases, you may already be using a relational database schema and you would like to write a new
application with an object view of the data. In this scenario, many implementations provide tools you can use
that analyze your relational schema and generate a Java object model for you. This approach lets you develop
an object-oriented Java application quickly. It is commonly called reverse-engineering the model.

Define a mapping between Java classes and a relational schema

You may have an existing relational schema and a separately designed object model and you would like to
define a mapping between the two. In this case, you can use metadata directives to define how a class and its
fields should be mapped to the underlying datastore. This approach is commonly called a bridge mapping
between the two models.

If you are using JDO with a relational database, JDO does not preclude you from having some applications access the
datastore with JDBC and others access it with JDO. This capability allows you to migrate to JDO gradually from a suite
of JDBC-based applications. If you have an existing relational schema, you will likely use reverse-engineering or a
bridge mapping. If you access the relational database with JDO and JDBC, it becomes more important to understand
how the object model is mapped to the relational schema and follow any rules the implementation may have about
accessing the additional columns and tables it requires.

Once you have developed a JDO application with an object model and associated datastore, the object model and the
datastore schema will likely evolve as the needs of your application evolve. The JDO metadata can be used to deal with
this evolution of the two data models. JDO does not define any specific support for datastore-schema evolution, object-
model evolution, or the associated aspects of evolving the two distinct data models. Support for these is
implementation-specific.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.2 Relational Modeling Constructs
Before we discuss the mapping between Java classes and a relational schema, we will first provide a brief summary of
the modeling constructs found in relational schemas. This is not meant to cover all aspects of a relational schema; it will
simply define the terms we use in this chapter.

A relational schema is organized as a set of tables. A table is usually defined for each entity in the application domain
you are modeling. When you design an object model, an entity is represented by a class. Each table consists of rows
and columns. A row contains the data for a specific instance of an entity being modeled. A column contains the values
for one of the attributes of the entity. A table cell is the intersection of a particular row and column in the table, and it
contains the value of an attribute for a specific entity instance.

The type of a column is the same for all rows of a table. Relational databases do not support Java's capability for a field
to reference one of many different types. ANSI SQL 92 defines a standard set of supported column datatypes.
Relational database products support these standard datatypes and usually support their own additional, proprietary
datatypes. One issue developers often contend with is the use of a datatype that is specific to one database product but
not supported by another. JDO helps insulate your applications from these datatype differences, since you only deal
with Java types, which are then mapped to the various underlying datastore types.

Often, one or more columns are defined as the table's primary key to identify a row uniquely. A table can have only one
primary-key constraint. The primary-key constraint requires that the columns have a unique value for each row, and
the primary-key columns cannot contain a null value.

One or more columns in a table may be defined as a foreign-key constraint, which is used to enforce referential
integrity in the datastore. A row's foreign-key columns contain the same values as columns in a specific row of the
referenced table.

A relationship between the rows of tables can be coerced by specifying a join condition, which is an expression that
uses the columns of the tables being joined. Primary-key and foreign-key constraints can be used to define
relationships between tables, and, they can be used as the basis of a join. To establish a relationship between table A
and B, where table B has a foreign key referencing table A, a join condition requires that the foreign key in B is equal to
the primary key in A. This is the primary means of expressing a relationship between rows, so relational databases have
optimized their performance of these join conditions using indexes. But it is not necessary to use columns in primary-
and foreign-key constraints to perform a join; any columns in the tables may be used to establish an association among
tables.

A table may have one or more indexes, associated with one or more columns. Indexes are used to optimize the
performance of access to rows with specific values or a range of values for one or more columns. Indexes help optimize
the performance of join operations.

5.2.1 SQL 99

The SQL 99 specification includes some support for defining object constructs in SQL. It has introduced the notion of
table inheritance: a table can have subtables. In addition, a column can contain structured datatypes, such as arrays
and User-Defined Types (UDTs). You can also define inheritance hierarchies of UDTs.

At this time, the level of support for SQL 99 varies considerably among relational databases. Some databases do not
support any of the constructs defined in SQL 99. Others have implemented only a subset of its facilities, sometimes
with nonstandard syntax.

Many applications do not use the object capabilities found in those databases that do support them. Many developers
defining objects in languages like Java prefer to specify their object model once in Java and then use an interface like
JDO to map their Java modeling constructs to the underlying datastore. As the relational database vendors broaden
their support for SQL 99 object constructs, JDO implementations will be able to map the Java models onto the SQL 99
constructs, based on customer demand. The examples in this book do not assume the availability of SQL 99 facilities.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.3 Modeling Constructs in Java and Relational Models
The Java object model and the relational data model are two separate and distinct data models with separate type
systems and approaches for representing data and expression computations. Table 5-1 summarizes the typical data-
specific mappings that are specified between an object model and a relational schema.

Table 5-1. Mapping between object models and relational schemas
Java modeling construct Relational modeling construct

Class Table

Field Column

Instance Row

Identity Primary key

Reference Foreign key

Interface No relational equivalent

Collection No relational equivalent

Class inheritance One or multiple tables

Collections in JDO can be represented only as memory instances, with no direct representation as a collection in the
datastore. They are instantiated on demand and discarded when they are no longer needed. There are exceptions to
these general rules, and some implementations support more advanced mappings. This chapter examines several ways
of representing a Java collection in a relational datastore.

If you start with a set of Java classes and let the JDO implementation generate a relational schema for them, it will
choose an appropriate relational representation of your Java model and define the mapping between your classes and
the relational tables. The implementation will make a number of relational schema design decisions, including choosing
names for tables and columns, column types for your Java fields, and how collections and relationships in your model
are represented. It may provide graphical tools or metadata extensions that you can use to help direct its schema
generation and relational mapping process.

It is beneficial to understand the various mapping decisions that are made. This will allow you to assess the flexibility
that various JDO implementations offer and determine which ones will integrate more easily into your current
environment. We don't describe specific vendor capabilities in this book, because more JDO implementations are
becoming available and each vendor's capabilities are also broadening. Vendor-specific descriptions would soon be out-
of-date.

The following sections describe the various relational mapping situations and how implementations typically address
them.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.4 Mapping Classes to Tables
If your object model does not use inheritance, you usually have a separate relational table for each class. We cover the
mapping of classes in an inheritance hierarchy later in this chapter. To establish a mapping from a Java class to a
specific table, in most JDO implementations you specify the mapping in your JDO metadata with an extension element
nested within the class element. For example, the following example illustrates the metadata necessary to map the
MediaItem class to a table called Items:

<class name="MediaItem" >
 <field name="rentalItems">
 <collection
element-type="RentalItem"/>
 </field>
 <extension
vendor-name="vendorX" key="table" value="Items" />
 <extension vendor-name="vendorY" key="sqlname" value="Items" />
</class>

You identify the implementation you are using in the vendor-name attribute. As we mentioned previously, the datastore
mappings in JDO 1.0.1 are implementation-specific. This may be standardized in JDO 2.0. Each JDO vendor provides
documentation explaining which value to use for the vendor-name attribute and which values are supported for the key
attribute.

In the previous code, we provided the metadata for two vendors, identified as vendorX and vendorY. An implementation
will use only metadata extensions that it recognizes. This allows you to place the metadata for multiple vendors in the
same JDO metadata file. vendorX uses a value of "table" for the key attribute to indicate which relational table the
MediaItem class should be mapped to, and vendorY uses the value "sqlname". You should check the implementation's
documentation to see which values they require. We provide the name of the table (Items) in the relational schema in
the value attribute. If you were to port your application to another JDO implementation, you would need to add an
extension element that has values in the vendor-name and key attributes that are appropriate for that implementation.
However, your Java class would not have to change.

If you don't specify a table for a class, most implementations assume that you would like them to generate the table
name for you. You may or may not like the name that they use. If you are just prototyping your application and do not
have an existing schema to map to, it can be more productive to just let the implementation generate any name. Once
you move beyond the prototype stage of your project, you can always add this metadata to specify a specific name for
the table.

You may wish to partition the fields of your class across multiple tables. Not all relational JDO implementations support
this capability. To partition the fields of a class among several tables, you need to specify which table (and column)
each field should be mapped to. An extension that is similar, or identical, to the one provided earlier would be placed in
the field element instead of the class element.

If you use optimistic transactions, the JDO implementation requires either a version-number column or a list of columns
whose values are used to detect concurrency violations. These track whether another transaction has performed a
concurrent update on an instance. Another approach is to have a timestamp field that is updated whenever a row
changes. Chapter 15 covers optimistic transactions and how they are implemented. Most implementations allow you to
specify the name of the version column. If you don't specify the column name, the implementation uses a default
column name.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.5 Mapping a Single-Valued Field to a Column
A primitive or single-valued Java field usually is mapped to a single column of a table. Some implementations allow a
field to be mapped to multiple columns, but such a feature is not supported by most implementations or needed in most
applications. When mapping a Java field to a relational column, you need to consider the name and the type to be used
for the associated column. The types are always different, since Java and SQL have their own distinct type systems. The
name of the field and column can be either the same or different.

5.5.1 Name-Mapping

When you're mapping a field in Java to a relational column, you can use different names. In some cases, you may have
to use a different name, because some names in Java may not be allowable as a column name in the relational
database. In Java, class and field names are case-sensitive Unicode characters. Some relational databases and JDBC
drivers may have restrictions on the names that are used (e.g., the table and column names must be US ASCII, names
are case-insensitive, or names must be uppercase). Using a field or class name that is a keyword in SQL or the
relational database also necessitates a mapping to a different name in the datastore.

You may wish to map the firstName field of the Customer class to a column named fname:

<class name="Customer" >
 <field name="firstName" >
 <extension
vendor-name="vendorX" key="column" value="fname"/>
 <extension vendor-name="vendorY" key="sqlname" value="fname"/>
 </field>
</class>

If the firstName field does not already have a field element, you need to add one to specify the column name in a nested
extension element. In this case, to specify the column to map the field to, vendorX uses a value of "column" and vendorY
uses a value of "sqlname" for the key attribute. Again, the value for the key attribute is implementation-specific and you
can provide extension elements for multiple implementations without any interference.

5.5.2 Type-Mapping

Besides specifying the name of the column, you may also want to indicate the column's datatype. The datatypes that
can be used for a specific Java type vary across relational datastores and JDO implementations. The supported column
types for each Java datatype in each underlying datastore should be specified in your JDO implementation's
documentation. Table 5-2 provides a list of the relational column datatypes commonly supported for the Java types
supported by JDO.

Table 5-2. Java types and corresponding column types found in relational
databases

Java type Column datatypes

Boolean, boolean BIT, TINYINT, SMALLINT, BYTE, INT2

Byte, byte TINYINT, SMALLINT, BYTE, INT2

Character, char INTEGER, CHAR, VARCHAR

Short, short SMALLINT, INTEGER, NUMBER, INT2

Integer, int INTEGER, NUMBER, INT4

Long, long BIGINT, DECIMAL, INT8

Float, float FLOAT, DECIMAL, REAL

Double, double DOUBLE, NUMBER, DECIMAL

BigInteger DECIMAL, NUMBER, NUMERIC, BIGINT

BigDecimal DECIMAL, NUMBER, DOUBLE

String CHAR, VARCHAR, VARCHAR2, LONGVARCHAR, CLOB

Date TIMESTAMP, DATE, DATETIME

Locale VARCHAR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ANSI SQL defines some of these column types. Others are supported by specific relational databases and found in
applications' schemas. Some implementations allow you to specify the maximum size of a String stored in the datastore.

BLOBs
You may be using JDO with an existing relational schema that has a column defined as a binary large
object (BLOB) and wonder how JDO deals with them. The short answer is that the JDO 1.0.1 Specification
does not directly specify the mapping for any datastore-specific datatype. Your JDO implementation
defines the mappings it supports from Java types to the datatypes of the underlying datastore.

You should ask yourself what kind of data the BLOB contains and why it is being stored as a BLOB. In
some circumstances, a BLOB contains structured data that may be more appropriately and easily
represented as persistent objects in JDO. Sometimes BLOBs are used as a denormalizing technique to
simplify the modeling and access of a complex graph of data. In other cases, BLOBs and denormalization
are used as an optimization technique because a normalized representation of the data cannot be
efficiently accessed.

The best approach for dealing with data commonly found in a BLOB depends on the kind of data involved
and how effective your JDO implementation and datastore are in dealing with the data.

5.5.3 Indexes

JDO does not define the concept of an index. Indexes can be added to columns independent of the JDO environment.
However, some implementations may allow you to specify indexes in the metadata, allowing you to provide the index
information relative to the fields in your Java classes. An index on a single field is usually specified as a nested extension
of a field element. If the index includes more than one column, it will likely be specified with an extension of the class
element, so that you can specify the order of the fields in the index.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.6 Identity
An instance is identified uniquely in the datastore via an identity value. JDO has two durable types of identity: datastore
and application. With both types, the identity value is stored in one or more columns of the class's table. Those columns
become the table's primary key.

For example, we use datastore identity for the Movie class defined in the com.mediamania.content package. The JDO
implementation may represent datastore identity as an INTEGER in the relational schema. Line [1] of Example 5-1
illustrates the use of the oid column to store the datastore identity value for the Movie table, which is defined as the
table's primary key on line [2].

Example 5-1. Datastore identity stored in a primary-key column

CREATE TABLE Movie (
 oid INTEGER [1]
 title VARCHAR(24),
 rating CHAR(4),
 genres CHAR(16),
 PRIMARY KEY(oid) [2]
)

Each implementation has its own default name for this column, but you can usually specify the name that should be
used.

You may have a table with no primary key defined, but instead have a unique index defined for one or more columns.
With either a primary key or a unique index, the associated columns are used for storing the identity value. If you use a
unique index for a JDO identity, none of the columns in the index can have a null value.

With datastore identity, either the JDO implementation or the datastore itself provides a unique identity value for each
instance. The datastore identity value is separate from the fields you define in your class. The representation of the
datastore identity is managed entirely by the JDO implementation.

Some databases automatically generate primary keys when rows are inserted into a table. These columns typically use
a special sequence type. Essentially, they are read-only columns whose values cannot be changed when they are under
application control. Some JDO implementations may allow you to map datastore identity to use these columns.

With application identity, you specify one or more Java fields in a class to be the primary-key fields. These fields are
mapped onto the columns that serve as the primary key of the class's table. When using application identity you must
specify which fields in the class are primary-key fields and define an application-identity class.

Chapter 10 covers identity in detail, but feel free to examine this chapter if you would like more on this now. An
understanding of identity does not require any material in the intervening chapters. If you are trying to implement a
JDO application as you read this book, and you are using an existing relational database schema that has defined
primary keys, you may want to jump ahead and read Chapter 10. Otherwise, just assume while reading this chapter
that your table contains one or more columns that serve as identity columns, and that they correspond to some specific
fields in your class.

JDO implementations often use a unique number to provide a datastore-identity value. These numbers are often
generated by a sequence facility. Your application may use a sequence generator in your existing relational schemas to
provide unique values for a primary key. Some JDO implementations allow you to identify a specific sequence in the
datastore to use for obtaining unique identity values for datastore identity. This sequence is often specified in the
metadata using a vendor-specific extension element. Currently, applications cannot directly access such a sequence
generator to assist in generating unique values for application identity using a standard JDO syntax. However, some
JDO implementations provide facilities for generating unique values for your application-identity classes. If you are
using application identity and do not have a real-world identifier that defines the identify for a particular instance, you
will need to use an interface provided by the JDO implementation or datastore to obtain unique values. Such a facility is
being considered for a future JDO release.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.7 Inheritance
You may have one or more inheritance hierarchies in your object model. JDO implementations provide an assortment of
approaches for mapping the Java classes in an inheritance hierarchy into the nonhierarchical relational tables. To
understand the different mapping alternatives that are available, consider the inheritance hierarchy in Figure 5-1.

Figure 5-1. Inheritance hierarchy to be mapped to tables

JDO implementations support one or more of the following mapping strategies:

Each class in the hierarchy has a separate table. With this approach, a separate table is used for each
class: A, B1, B2, C1, C2, C3, C4. Each table contains only the fields from its associated class. To access all the
fields of a C1 instance, including the fields inherited from A and B1, it is necessary to access the tables
corresponding to A, B1, and C1. Accessing a B2 instance requires accessing A and B2.

With this approach, typically the primary keys for B1 and B2 are defined as foreign keys on A, the primary keys
for C1 and C2 are defined as foreign keys on B1, and the primary keys for C3 and C4 are defined as foreign
keys on B2.

Each class in the hierarchy has a separate table, but inherited fields are duplicated in the tables for
each subclass. This approach avoids the need to access the tables for A and B1 when accessing an instance of
C1; only C1 needs to be accessed. However, when you use this mapping strategy, support for inheritance and
polymorphism becomes very cumbersome. Accessing an instance of class A requires a join of all of A's tables.

The hierarchy is flattened into a single table containing all the classes. This is the default approach used
for many JDO implementations. All of the classes in the hierarchy are placed in one table, which must have a
column for every field of every class in the hierarchy. Essentially, all of the classes in a hierarchy are merged
into one table. This approach relies on the datastore's efficient storage-management support of null fields, since
a row for an instance of C2 will not use the fields of C1, B2, C3, and C4.

With this approach, the JDO implementation uses an additional type-discriminator column that has a unique
value for each class stored in the table. When you retrieve the values for an instance, the value of this column
determines the class of the instance to be constructed.

Combination of separate classes and flattened hierarchy. This approach combines fields from multiple
classes into a number of tables, but the mapping between classes and tables is not one to one. For example,
suppose you define three tables: A, B1, and B2.

Table A contains the primary key, a type-discriminator column, and all the fields declared in class A.

Table B1 contains a primary key that is also a foreign key to table A, and columns for each field in
classes B1, C1, and C2.

Table B2 contains a primary key that is also a foreign key to table A, and columns for each field in
classes B2, C3, and C4.

Leaves of the hierarchy determine the tables. This approach results in four tables, corresponding to the
C1, C2, C3, and C4 classes. But there may also be instances of A, B1, and B2. The classes are grouped, by
default, into the following tables:

Table 1 contains the data for the A, B1, and C1 classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 1 contains the data for the A, B1, and C1 classes.

Table 2 contains the data for the C2 class.

Table 3 contains the data for the B2 and C3 classes.

Table 4 contains the data for the C4 class.

A vendor may support one or more of these inheritance-mapping approaches. All of the approaches are vendor-specific;
JDO does not standardize inheritance-mapping. Each approach has performance implications, since an instance's field
values may be spread among several tables that must be joined and accessed. If a vendor supports more than one
inheritance-mapping approach, the vendor usually will have a metadata extension that you can use to specify which
approach to use. As you can imagine, only one approach can be used for each inheritance hierarchy.

For a class in an inheritance hierarchy, when the fields of an instance are mapped to multiple tables, the columns
containing the instance's identity value need to exist in each table used to represent the class. So, when you use the
first inheritance-mapping approach, an instance of C1 has the same primary-key value in the tables that correspond to
classes A, B1, and C1. Some implementations let you specify the names of the primary-key columns for each table used
in the inheritance hierarchy.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.8 References
The datastore's representation of a reference to an instance (either a class or interface reference) depends on the
identity type defined for the reference's class. The class's identity type determines the primary-key (or unique-key)
columns of the class's table. In addition, a class may be mapped to one or more tables. A Java reference is represented
in the datastore by a foreign key that refers to the tables associated with the class of the reference. For example,
Example 5-1 defined the Movie table. Example 5-2 defines a Role table for the Role class in the com.mediamania.content
package. The Role class has a reference, named movie, to the Movie class. On line [1], the Role table defines a foreign
key to reference the primary key of the Movie table.

Example 5-2. Foreign key used to reference a primary-key column

CREATE TABLE Role (
 oid INTEGER,
 name VARCHAR(20),
 movie INTEGER,
 PRIMARY KEY(oid),
 FOREIGN KEY(movie) REFERENCES Movie(oid) [1]
)

Your application does not have to deal with primary and foreign keys; it simply uses standard Java syntax, using the
reference to access the object in memory. You also do not need to specify anything specific in the metadata for a
reference; its declaration in Java provides all of the necessary information.

JDO supports Java's polymorphism, allowing a reference to refer to an instance of any subclass of the reference's
declared class. A JDO implementation must be able to determine the type of the instance being referred to, so that it
can access the right table (or tables). Implementations employ various techniques to store this type information. With
some inheritance-mapping approaches, the implementation requires a type-discriminator column to identify the type of
an instance. Most implementations allow you to specify the name for the type-discriminator column.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.9 Collections and Relationships
In a relational data model, relations are usually normalized. A relation is in first normal form if the cells of a table
contain only a single atomic value, which is nondecomposable as far as the database is concerned. Initially, relational
databases supported only simple types, such as integers, strings, and dates. Over time, they have added support for
column types that can represent a set of data. But most relational database schema designs represent a collection of
values with a set of rows.

You can represent a collection using a foreign key or a join table. We will examine each of these techniques in the
following subsections. We'll consider the Movie and Role classes in the com.mediamania.content package and examine
alternate ways of representing the relationship between these two classes in Java and a relational schema. For this
discussion, we will ignore the inheritance relationship between Movie and MediaContent. We'll focus on the one-to-many
relationship that exists between Movie and Role.

This mapping discussion is important when you are mapping between an existing relational schema and Java classes. If
you're letting the JDO implementation generate a relational schema for you, or letting it generate your Java classes
automatically from a relational schema, you do not need to be as concerned with the following discussion. However, as
your object model and relational schema evolve, understanding the following material will become more important.

5.9.1 Using a Foreign Key

A one-to-many relationship between tables A and B usually is represented in a relational schema with a foreign key in B
referencing the primary key in A. In the case of Movie and Role, the Role table should contain a foreign key that
references the primary key of the Movie table. Example 5-3 uses this technique in the definition of the Movie and Role
tables.

Example 5-3. SQL tables using a foreign key to represent a collection

CREATE TABLE Movie (
 oid INTEGER,
 title VARCHAR(24),
 rating CHAR(4),
 genres CHAR(16),
 PRIMARY KEY(oid)
)

CREATE TABLE Role (
 oid INTEGER,
 name VARCHAR(20),
 movie INTEGER, [1]
 PRIMARY KEY(oid),
 FOREIGN KEY(movie) REFERENCES Movie(oid)
)

Suppose you have Movie and Role tables, defined in SQL as shown in Example 5-3. With this schema, each Role row can
reference only one Movie row. Multiple Role rows can reference the same Movie row via their movie column, declared on
line [1]. Thus, the foreign-key column movie establishes the one-to-many relationship between Movie and Role in a
relational schema.

The following SQL query accesses the Role rows that are associated with a specific Movie:

SELECT name
FROM Movie, Role
WHERE title = 'Braveheart' AND Movie.oid = Role.movie

The join of the oid column in the Movie table with the movie column in the Role table associates the rows in the Role table
with the one row in the Movie table that has a title column equal to 'Braveheart'.

You may have an existing relational schema that represents a collection or relationship using this foreign-key technique,
and you may have to use this schema in your JDO application. Alternatively, if you do not have an existing schema, you
may want to use a foreign key to represent your collection, as shown in Example 5-3. We will now examine several
Java class designs to represent the relationship between Movie and Role with this relational schema.

5.9.1.1 Isomorphic mapping

Example 5-4 provides our first Java class design, in which we define a direct isomorphic mapping (identical form and
structure) with the relational tables in Example 5-3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

structure) with the relational tables in Example 5-3.

Example 5-4. Isomorphic mapping between classes and tables

public class Movie {
 private String theTitle;
 private String movieRating;
 private String genres;
}

public class Role {
 private String name;
 private Movie movie; [1]
}

The Java classes do not have the oid table columns that are used to store the datastore identity in the relational tables.
The Role class's movie field, declared on line [1], provides a reference to the associated Movie instance.

The following JDO metadata defines the mapping between the schema defined in Example 5-3 and the Java classes
declared in Example 5-4:

<jdo>
 <package name="com.mediamania.content" >
 <class name="Movie" >
 <field name = "theTitle" >
 <extension vendor-name="vendorX" key="column" value="title" />
 </field>
 <field name = "movieRating" >
 <extension vendor-name="vendorX" key="column" value="rating" />
 </field>
 <field name = "genres" >
 <extension vendor-name="vendorX" key="column" value="genres" />
 </field>
 <extension vendor-name="vendorX" key="table" value="Movie" />
 </class>
 <class name="Role" >
 <field name="name" >
 <extension vendor-name="vendorX" key="column" value="name" />
 </field>
 <field name="movie" >
 <extension vendor-name="vendorX" key="column" value="movie" />
 </field>
 <extension vendor-name="vendorX" key="table" value="Role" />
 </class>
 </package>
</jdo>

However, the Java model in Example 5-4 does not provide a means to navigate from a Movie instance to its associated
Role instances. Java and the JVM do not have the join facility found in a relational database. You could implement
equivalent functionality in Java by examining all the Role instances to determine which instances reference a specific
Movie instance. But this would be very inefficient if there were a large number of Role instances. Furthermore, this is not
how you would normally represent and access such a relationship in Java.

If you are interested in accessing all the Role instances associated with a Movie referenced by the variable movie, and pm
is initialized to the PersistenceManager, you can execute the following code:

Query q = pm.newQuery(Role.class);
q.setFilter("movie == param1");
q.declareParameters("Movie param1");
Collection result = (Collection) q.execute(movie);

This query returns an unmodifiable collection of Roles that refer to the Movie. The performance of this query would likely
be similar to the performance you would get if the foreign key were represented by a collection, as we will describe in
the following section.

You can also implement a method in the Movie class to add a Role to the movie:

 void addRole(Role role) {
 role.setMovie(this);
 }

This method removes the Role from whatever Movie it currently refers to and replaces it with the Movie (referenced by
this). But this technique does not allow you to execute a portable query that navigates from a Movie to a Role, which can
be done by using the contains() construct (described in Chapter 9). In order to do this, you would need to define a
collection in Movie and map it to the datastore.

5.9.1.2 Defining a collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.9.1.2 Defining a collection

You may want to define a collection in your Movie class that contains the set of associated Role instances, modeled by
the foreign key movie (declared on line [1] in Example 5-3). Example 5-5 shows the Java classes for such a model.

Example 5-5. Using the foreign key to represent a collection

public class Movie {
 private String theTitle;
 private String movieRating;
 private String genres;
 private Set cast; [1]
}

public class Role {
 private String name;
}

With this mapping, the movie column in the Role table represents the cast collection in the Movie class, which contains the
Roles associated with a movie. Line [1] of the JDO metadata shown in Example 5-6 identifies the use of the movie
column in the Role table for this purpose.

Example 5-6. JDO metadata for Java classes in Example 5-5 and schema in
Example 5-3

<jdo>
 <package name="com.mediamania.content" >
 <class name="Movie" >
 <field name = "theTitle" >
 <extension vendor-name="vendorX" key="column" value="title" />
 </field>
 <field name = "movieRating" >
 <extension vendor-name="vendorX" key="column" value="rating" />
 </field>
 <field name = "genres" >
 <extension vendor-name="vendorX" key="column" value="genres" />
 </field>
 <field name="cast" >
 <collection element-type="Role"/>
 <extension vendor-name="vendorX" key="rel-column" value="Movie" /> [1]
 </field>
 <extension vendor-name="vendorX" key="table" value="Movie" />
 </class>
 <class name="Role" >
 <field name="name" >
 <extension vendor-name="vendorX" key="column" value="name" />
 </field>
 <extension vendor-name="vendorX" key="table" value="Role" />
 </class>
 </package>
</jdo>

The use of the rel-column on line [1] tells the implementation that the relation should be treated as a one-to-many
association.

5.9.1.3 Defining a collection and a reference

Instead of using the Java model shown in Example 5-4, you are more likely to define the Movie class with a collection to
contain the set of associated Role instances (as shown in line [1] of Example 5-7), in addition to the Movie reference in
Role.

Example 5-7. Using a foreign key for both a collection and a reference in Java

public class Movie {
 private String theTitle;
 private String movieRating;
 private String genres;
 private Set cast; [1]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private Set cast; [1]
}

public class Role {
 private String name;
 private Movie movie; [2]
}

The metadata for the Java classes in Example 5-7 would be similar to Example 5-6, except we would also associate the
movie field in the Role class with the movie column in the Role table. Adding a Role reference to a particular Movie
instance's cast collection establishes a relationship between the Movie and Role instances. You can acquire an Iterator
from a Movie instance's cast collection to access each Role instance associated with the Movie instance.

However, this model has a complication. Suppose you have two Movie instances. What happens if your Java application
adds the same Role reference to the cast collection in both Movie instances? In Java, each cast collection could easily
contain a reference to the same Role instance. But the collection is represented in the datastore via the foreign-key
column named movie in the Role table. The movie column for a given Role row can reference only a single Movie row. How
would this be handled at commit time? The implementation cannot store the fact that two Movie instances are
referencing the same Role, given the schema defined in Example 5-3; it can store only one reference. The
implementation should throw an exception at commit, or it may silently store only one of the Movie references. Consider
the movie reference in the Role class, which can reference only a single Movie. If the Role instance is in memory, it may
reference one of the Movie instances (let's call it M) that reference the Role in their cast collection. This may result in M
being the one Movie that gets associated with the Role in the datastore.

However, if a Role can be referenced by multiple Movies and a Movie can reference multiple Roles, this is really a many-
to-many relationship. But our design states that there should be a one-to-many relationship between Movie and Role.
So, this situation should not occur if your Java application is honoring the cardinality of the relationship. Representing a
many-to-many relationship in Java requires a collection in the classes at both ends of the relationship.

5.9.1.4 Managed relationships

Using a foreign key in the relational datastore to represent a collection in Java becomes especially cumbersome when
the foreign key is represented by a reference at one end of the relationship and a collection at the other end. Some JDO
implementations handle the mapping of a single foreign key to both sides of a relationship by providing a managed
relationship. With this capability, if the application updates one side of a relationship, the JDO implementation updates
the other side automatically. Some vendors do not support managed relationships, because they result in behavior that
differs from the behavior of Java when using references and collections in non-JDO environments.

For example, if the application adds a Role instance to a Movie instance's cast collection, the implementation
automatically sets the Role instance's movie reference to the Movie instance. Or, if the application removes a Role from a
Movie instance's cast collection, the Role instance's movie reference is set to null automatically. Similarly, if the application
sets the Role instance's movie reference to a particular Movie instance A, the implementation automatically removes the
Role from the cast collection of the Movie instance currently referenced by movie (unless it is null) and it adds the Role to
A's cast collection.

Currently, JDO does not support managed relationships, but some JDO implementations do support them.
Implementations that support managed relationships provide a metadata extension that allows you to identify a field's
inverse member, which is the member at the other end of the relationship. The metadata for specifying a managed
relationship between Movie and Role would look like this:

<jdo>
 <package name="com.mediamania.content" >
 <class name="Movie" >
 <field name="cast" >
 <collection element-type="Role"/>
 <extension vendor-name="vendorX" [1]
 key="inverse" value="Role.movie"/>
 </field>
 <extension vendor-name="vendorX" key="table" value="Movie" />
 </class>
 <class name="Role" >
 <field name="movie" >
 <extension vendor-name="vendorX" key="column" value="movie"/>
 <extension vendor-name="vendorX" [2]
 key="inverse" value="Movie.cast"/>
 </field>
 <extension vendor-name="vendorX" key="table" value="Role" />
 </class>
 </package>
</jdo>

On line [1], an extension element is nested within the field element for Movie.cast to specify that Role.movie is its inverse
member in the relationship. On line [2], an extension element is also nested in the field element for Role.movie to specify
that Movies.cast is its inverse member.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that Movies.cast is its inverse member.

Use of managed relationships in a JDO implementation is not portable to other JDO implementations. Many Java
developers may consider such automatic maintenance behavior unusual. But it solves the problem of an application
attempting to establish a relationship between Java instances that cannot be represented in the datastore with the
schema defined in Example 5-3. A future JDO release may add support for managed relationships, if an approach can
be designed that preserves JDO's level of transparency and consistency with Java.

5.9.2 Using a Join Table

We have presented three Java class designs that could be used to represent the schema defined in Example 5-3. Now
let's consider another datastore representation of the Movie.cast collection. Some JDO implementations represent a
collection with a set of rows in a join table. Each row contains the value for one collection element. Instead of having a
foreign key in the Role table, a separate join table is defined to contain the elements of the cast collection. Example 5-8
provides a schema using a join table named Movie_cast.

Example 5-8. Use of a join table to represent a collection

CREATE TABLE Movie (
 oid INTEGER,
 title VARCHAR(24),
 rating CHAR(4),
 genres CHAR(16),
 PRIMARY KEY(oid)
)

CREATE TABLE Role (
 oid INTEGER,
 name VARCHAR(20),
 PRIMARY KEY(oid),

)

CREATE TABLE Movie_cast (
 movieoid INTEGER NOT NULL,
 roleoid INTEGER,
 PRIMARY KEY(movieoid, roleoid),
 FOREIGN KEY(movieoid) REFERENCES Movie(oid), [1]
 FOREIGN KEY(roleoid) REFERENCES Role(oid), [2]
 CONSTRAINT r UNIQUE(roleoid) [3]
)

The Movie_cast join table has two columns: movieoid references the associated Movie row (line [1]), and roleoid references
the associated Role row (line [2]). Each element in a Movie.cast collection has a corresponding row in the Movie_cast
table.

If a table like Movie_cast is used to represent a one-to-many relationship, you should define a unique constraint on the
join table columns that correspond to the many side of the relationship. In this case, the roleoid has a unique constraint,
shown on line [3], because it would be illegal to have the same Role appear more than once in the table. Even though
the JDO implementation might allow you to add the Role to two different Movies, the datastore would disallow the
operation at commit time.

Most JDO implementations let you specify the name of the join table representing a collection. We would specify the
name of the table for the Movie.cast field by nesting a vendor-specific metadata extension within the collection element
specified for Movie.cast. Most JDO implementations also let you specify the name of each column in the table.

Example 5-8 actually illustrates how many-to-many relationships normally are represented in a relational schema
(except you would not have the UNIQUE constraint specified on line [3]). A given row in the Movie table can be
associated with multiple rows in the Movie_cast table via the movieoid foreign key, and a given row in the Role table can
be associated with multiple rows in the Movie_cast table. You would represent the many-to-many relationship in Java
with a collection in both classes involved in the relationship. However, with this particular relational schema, it would be
necessary to define a managed relationship to represent the many-to-many relationship. A single row in the Movie_cast
table would represent the existence of an element in the collections of both classes involved in the many-to-many
relationship.

5.9.3 One-to-One Relationships

In Java, you represent a one-to-one relationship between two classes by having a reference in each class that refers to
an instance of the other class. As an example, consider the one-to-one relationship that exists between the Rental and
RentalItem classes in the Media Mania application, illustrated in Figure 4-4. The Rental class has a field named rentalItem
that references an instance of RentalItem. Likewise, the RentalItem class has a field named currentRental that references a
Rental instance. We would likely define one or two methods that would preserve the relationship between these two
classes and ensure that an instance of Rental and an instance of RentalItem refer to one another with these references.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

classes and ensure that an instance of Rental and an instance of RentalItem refer to one another with these references.

For this example, we ignore the inheritance relationship between the Rental and Transaction classes. We define two
relational tables, named Rental and RentalItem:

CREATE TABLE Rental (
 oid INTEGER,
 item INTEGER, [1]
 return TIMESTAMP,
 actualReturn TIMESTAMP,
 code INTEGER,
 PRIMARY KEY(oid),
 FOREIGN KEY(item) REFERENCES RentalItem(oid), [2]
 FOREIGN KEY(code) REFERENCES RentalCode(oid)
 CONSTRAINT uniqitem UNIQUE(item) [3]
)

CREATE TABLE RentalItem (
 oid INTEGER,
 mediaItem INTEGER,
 serial VARCHAR(16),
 currentRental INTEGER,
 PRIMARY KEY(oid),
 FOREIGN KEY(currentRental) REFERENCES Rental(oid),
 FOREIGN KEY(mediaItem) REFERENCES MediaItem(oid),
 CONSTRAINT uniqcurr UNIQUE(currentRental)
)

The Rental and RentalItem tables each have a foreign key that references the other table. The Rental table has a column
named item, declared on line [1], that is a foreign key (line [2]) that references the RentalItem table. The RentalItem
table has a column named currentRental, declared on line [4], that is a foreign key (line [5]) that references a row in
the Rental table.

The uniqitem unique constraint on line [3] in the Rental table ensures that only a single row in Rental refers to a
particular row in the RentalItem table. Likewise, the uniqcurr unique constraint on line [6] in the RentalItem table ensures
that there is only a single row in the RentalItem table that refers to a particular row in the Rental table. While this
relational representation directly mirrors our use of references in Java, it is actually redundant to maintain a foreign key
in both tables in the relational model.

It is sufficient to define a foreign key in only one of the tables, having it reference the primary key of the other table.
The tables could be defined as follows:

CREATE TABLE Rental (
 oid INTEGER,
 return TIMESTAMP,
 actualReturn TIMESTAMP,
 code INTEGER,

 item INTEGER, [1]
 PRIMARY KEY(oid),
 FOREIGN KEY(item) REFERENCES RentalItem(oid), [2]
 FOREIGN KEY(mediaItem) REFERENCES MediaItem(oid),
 CONSTRAINT uniqitem UNIQUE(item) [3]
)

CREATE TABLE RentalItem (
 oid INTEGER,
 mediaItem INTEGER,
 serial VARCHAR(16),
 PRIMARY KEY(oid)
)

The item column declared on line [1] in the Rental table is a foreign key (line [2]) that references a row in the RentalItem
table. The uniqitem unique constraint on line [3] makes sure that only a single row in Rental refers to a particular row in
the RentalItem table. The item column is sufficient to model the one-to-one relationship between Rental and RentalItem.

One-to-one relationships have some of the same issues that we explored with one-to-many relationships, relative to
their representation in a relational datastore and how they are mapped into Java. To deal with these issues, some
implementations support one-to-one managed relationships.

5.9.4 Representing Lists and Maps

Suppose we decide to use an ordered list of Roles in the Movie class. In Java, a List is used to represent an ordered
collection. We redefine the Movie class as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

collection. We redefine the Movie class as follows:

public class Movie {
 private String title;
 private String rating;
 private String genres;
 private List cast;
}

A JDO implementation must preserve a List's ordering in the datastore. To do so, it must maintain an ordering column
to indicate the relative ordering of each collection element. If the collection is represented by a join table, as in Example
5-8, the ordering column is placed in the join table. The Movie_cast table then has the column declared on line [1]:

CREATE TABLE Movie_cast (
 movieoid INTEGER,
 roleoid INTEGER,
 elementidx INTEGER, [1]
 FOREIGN KEY(movieoid) REFERENCES Movie(oid)
 FOREIGN KEY(roleoid) REFERENCES Role(oid)
)

If the collection is represented by a foreign key (as in Example 5-3), the ordering column is placed in the table
containing the foreign key. Thus, the ordering column is placed directly in the Role table. Most implementations let you
state the name of this ordering column.

By default, an implementation must preserve the ordering of the elements in a List in the datastore. Java does not
provide an unordered collection class that allows duplicate elements. Some JDO implementations allow a List to be used
to represent a collection when the ordering of the elements is not preserved in the datastore. You can specify this by
nesting an extension element in the List's field or collection metadata element. If you do not need to preserve the order of
a collection, this provides a more efficient mapping to the datastore.

If your persistent class has a Map, you must store the key and value of each Map element. The join table requires a
column for the key and the value. Implementations usually let you declare the names of these columns. A Map does not
require an ordering column.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. Class Enhancement
You need to enhance a persistent class before you can use it in a JDO runtime environment. Class enhancement
enables the state of a persistent instance in memory to be synchronized with its representation in the datastore. A
persistent class must be enhanced so that it implements the javax.jdo.spi.PersistenceCapable interface. The
PersistenceCapable interface defines a set of methods that the JDO implementation uses to manage instances.

You also need to enhance every class that directly accesses a managed field of a persistent class. JDO field-mediation
code needs to be inserted to ensure proper access and management of the field. If your persistent class has a managed
field that is not private, any class that directly accesses the field needs to be enhanced. Such a class is referred to as a
persistence-aware class. This is distinct from a class being JDO-aware, which describes a class that makes direct calls to
JDO interfaces at the source level. A persistence-aware class may itself be transient or persistent. So, even though you
have a class that is transient, if it directly accesses a managed field, you need to enhance it. You would not list a
transient persistence-aware class in the metadata, because any class listed in a metadata file is persistent. So, the only
place you identify that a transient class is persistence-aware is in your build files that enhance the class.

We recommend that you declare all of your managed fields to be private; this is considered a best practice in object-
oriented development. Independent of the need in JDO to enhance persistence-aware classes, such accesses represent
a loss of encapsulation and can often lead to data-integrity issues. Fields declared private cannot be accessed directly by
another class. Using private fields thus minimizes the number of persistence-aware classes that need to be enhanced. If
a nonmediated access occurs because you forgot to enhance a persistence-aware class, your application will likely
behave incorrectly. So, always declare your fields to be private.

The JDO specification defines a standard reference-enhancement contract, which thoroughly specifies all the
requirements to enhance a class. Enhanced classes are independent of any particular JDO implementation and
datastore.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.1 Enhancement Approaches
You may not be familiar with class enhancement, but it is not JDO-specific and it has been applied in other software
technologies. There are several approaches that can be used to enhance a class. Enhancement can be performed by:

Implementing enhancement yourself manually

Using a source-code enhancer

Using a byte-code enhancer

Each enhancement approach requires access to the JDO metadata you have defined.

You may explicitly declare that your class implements PersistenceCapable. In this case, you need to implement the
PersistenceCapable contract fully, as specified by the JDO specification. An enhancer ignores a class if you have explicitly
declared that it implements PersistenceCapable. We do not recommend this approach; it is tedious and error-prone.

A source-code enhancer reads your original source code and adds the source necessary to support the JDO
enhancement contract. The revised source is compiled and is then ready for execution in a JDO environment. At the
time this book was written, only one vendor supported a source-code enhancer; the vender also supported a byte-code
enhancer.

The most common approach for enhancing a class is to use a JDO byte-code enhancer. It reads a class file produced by
the Java compiler and generates a new class file that has been enhanced. With a byte-code enhancer, you can make
classes persistent even if you do not have the source code. Figure 6-1 illustrates the process of using a byte-code
enhancer to enhance the Movie class.

Figure 6-1. Byte-code enhancement process

All persistent and persistence-aware classes need to be enhanced before they can be used in a JDO runtime
environment. They must be enhanced before or during their loading into the JVM at runtime. Some implementations
may enhance classes in the class loader itself during the class-loading process. Class enhancement is often performed
as an additional step in the build process. Most vendors provide an Ant task you can use to enhance your classes in an
Ant build file.

Consult your implementation's documentation to determine which technique they use for class enhancement; this will
ensure your classes implement the PersistenceCapable interface. At the time this book was written, most JDO
implementations supported a byte-code enhancer, so we assume that you are using one.

6.1.1 Reference Enhancer

The JDO reference implementation, implemented by Sun Microsystems, includes a reference enhancer that enhances
class files according to the reference-enhancement contract.

The following command uses the reference enhancer to enhance the persistent classes in the Media Mania object
model:

java com.sun.jdori.enhancer.Main -d enhanced -s classes \
 classes/com/mediamania/content/Studio.class \
 classes/com/mediamania/content/MediaContent.class \
 classes/com/mediamania/content/Movie.class \
 classes/com/mediamania/content/Game.class \
 classes/com/mediamania/content/Role.class \
 classes/com/mediamania/content/MediaPerson.class \
 classes/com/mediamania/store/MediaItem.class \
 classes/com/mediamania/store/RentalItem.class \

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 classes/com/mediamania/store/RentalItem.class \
 classes/com/mediamania/store/RentalCode.class \
 classes/com/mediamania/store/Customer.class \
 classes/com/mediamania/store/Address.class \
 classes/com/mediamania/store/Transaction.class \
 classes/com/mediamania/store/Purchase.class \
 classes/com/mediamania/store/Rental.class

This command places the enhanced class files in a separate directory hierarchy named enhanced. You can also enhance
the class files in place, replacing your original class file with the enhanced form by using the -f command option.
Another useful option is -v, which produces verbose output indicating the actions performed by the enhancer.

6.1.2 Vendor-Specific Enhancement

A JDO vendor can use Sun's reference enhancer directly with their implementation, or they can implement their own
enhancer that performs the same function. A vendor can extend the enhancements required in the reference-
enhancement contract by adding their own methods and fields to be used in their runtime environment. However, these
additional implementation-specific enhancements cannot conflict with the reference-enhancement contract.

The reference-enhancement contract establishes guidelines for how a vendor can add enhancements, so the enhanced
classes are usable with any other JDO implementation's runtime environment. The reference-enhancement contract
adds fields and methods whose names begin with "jdo". Any methods and fields added by another vendor's enhancer do
not have a name that begins with "jdo"; they begin with some other string that has a vendor-identifying name followed
by the string "jdo".

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.2 Binary Compatibility
The standard enhancement interface defined by the JDO reference-enhancement contract provides binary compatibility
among all enhancers and runtime environments. It requires that:

A class enhanced by the reference enhancer is usable with any JDO-compliant runtime environment.

A class enhanced by a JDO-compliant vendor's enhancer is usable by the reference implementation's runtime
environment.

A class enhanced by a JDO-compliant vendor's enhancer is usable by any other JDO-compliant runtime
environment.

Furthermore, an enhanced class file can be shared concurrently in a JVM among several coresident JDO
implementations.

An implementation's runtime environment can determine whether a class was enhanced by its own enhancer. If it has,
the implementation's runtime environment can use any implementation-specific enhancements that were placed in the
class file. Otherwise, it must use the standard reference-enhancement interface contract. Table 6-1 shows which
enhancement interface a JDO runtime environment will use, based on the enhancer used to enhance the class.

Table 6-1. Enhancement interfaces used
Enhancer used Reference runtime Vendor A runtime Vendor B runtime

Reference enhancer Reference enhancement Reference enhancement Reference enhancement

Vendor A enhancer Reference enhancement Vendor A enhancement Reference enhancement

Vendor B enhancer Reference enhancement Reference enhancement Vendor B enhancement

You can distribute your classes in either their enhanced or unenhanced form. Both forms are portable across
implementations. If you are distributing the classes as a third-party class library that will be used in a variety of
applications, you probably should distribute them unenhanced. The developers using your classes can then choose
which enhancer to use. In this case, we recommend you provide them with the necessary metadata for your classes,
which they may need to customize. If you are deploying an application that uses a specific JDO implementation, you
may distribute your persistent classes in their enhanced form. It does not matter though, because a class distributed in
its enhanced form can still be used with any JDO-compliant implementation. If you expect your classes will be used with
multiple JDO implementations and you wish to distribute them in their enhanced form, we recommend that you use the
Sun reference enhancer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.3 Enhancement Effects on Your Code
It is important for you to understand how enhancement affects your persistent classes. Enhancement does not alter the
logic or functional behavior that you have defined. It adds code to mediate all access to a field to ensure that its value
has been read from the datastore and that any modifications are tracked. You will not see any behavioral differences
between transient instances of enhanced classes and transient instances of the same nonenhanced classes.

The PersistenceCapable interface is designed to avoid name conflicts with fields and methods that you define. All of its
declared method names are prefixed with "jdo". To avoid selecting a name the enhancer uses, you should not declare a
persistent class with fields or methods that start with "jdo". The reference-enhancement contract adds additional
methods and fields that begin with "jdo" to your classes.

The enhancer does not change the behavior of introspection. All of the fields and methods added to an enhanced class
are exposed when you use the Java reflection APIs.

Your enhanced classes will have dependencies on the JDO JDOImplHelper, StateManager, and PersistenceCapable interfaces,
defined in the javax.jdo.spi package. Therefore, your enhanced classes need to have the jdo.jar file that contains their
definitions available in your classpath at runtime.

Class enhancement will not impact source-line-level debugging. You can debug your enhanced classes using the line
numbers of your original source code. You will be able to work at the source level as if the class had not been
enhanced. If the enhancer makes any code modifications that change the offset of any byte codes within a method, it
updates the line number references to reflect the change.

However, as you will learn in this chapter and Chapter 12, a JDO implementation has some flexibility as to when it
initializes an instance's persistent fields. The enhancer places field-mediation code in your application classes to ensure
the field is loaded before your application classes access a field. But this field mediation is not applied to debuggers or
software that uses introspection. These will access the field directly, even when it has not been loaded by the JDO
implementation. This may confuse you, because the field's value will change when it is loaded from the datastore. This
can even occur if the specific field you are examining in the debugger has not been accessed by the application; it could
get loaded as a result of an access to another field in the instance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.4 Changes Made by the Enhancer
The remainder of this chapter describes in more detail some of the changes made to your class files by the enhancer.
We do not cover all the methods added by an enhancer. Nor do we explain all of the functionality added to a class to
enable transparent persistence. You do not need to understand all the details of class enhancement; your application
should never directly use the fields and methods added by enhancement. But it is useful, though not necessary, to have
a basic understanding of how your classes are modified by the process. We list all the fields that are added by class
enhancement and some of the methods. To gain a thorough understanding of the enhancement contract, you should
read the JDO specification. You do not need to understand the remaining material in this chapter to use JDO. If you are
not interested in the details of enhancement, you can skip over the remainder of this chapter.

The enhancer adds an interface, fields, and methods to your persistent classes so that they can be stored in a datastore
transparently. The enhancer adds the following line to the definition of a persistent class:

implements javax.jdo.spi.PersistenceCapable

The PersistenceCapable interface defines methods the JDO implementation uses to manage instances in a JDO runtime
environment. The enhancer adds the implementation of these PersistenceCapable methods. It also adds metadata
information to each class, which is used by the JDO runtime environment to manage the fields.

A getfield byte-code instruction performs all field-read accesses at the class-file level, and a putfield byte-code instruction
performs all field modifications. There is a different getfield and putfield instruction for each type in Java. The JDO
implementation mediates all accesses and updates to a managed field to ensure its value has been retrieved from the
datastore before your application accesses it and all modifications have been captured. The enhancer replaces each
getfield and putfield byte-code instruction for a managed field with a call to a method it generates to provide this
mediation.

6.4.1 Metadata

The enhancer generates its own metadata, based on the class declaration and the metadata you have defined. This
metadata is added during enhancement to each persistent class as static fields. The JDO runtime environment uses this
information to manage the fields of the class. Access of this metadata information is much more efficient than using
Java reflection.

6.4.1.1 Class metadata

The following static fields are added to represent class-level metadata:

private final static int jdoInheritedFieldCount;
private final static Class jdoPersistenceCapableSuperclass;
private final static long serialVersionUID;

jdoInheritedFieldCount

Initialized to the number of managed fields inherited from superclasses.

jdoPersistenceCapableSuperclass

Initialized to the Class instance of the most immediate superclass that is persistent within the hierarchy. It is null
if the class is the topmost persistent class in the hierarchy or if it is not in an inheritance hierarchy.

serialVersionUID

Added only if it does not already exist in the class. It is used with serialization and has the same value as the
class in its non-enhanced form. This allows you to serialize a persistent instance and later deserialize it into an
instance of the class in its unenhanced form.

6.4.1.2 Field metadata

The following fields provide information about each managed field in the class:

private final static String[] jdoFieldNames;
private final static Class[] jdoFieldTypes;
private final static byte[] jdoFieldFlags;

Each managed field has an index value that is used to identify it uniquely. A field's index value is used to access its
entries in these arrays.

jdoFieldNames

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

jdoFieldNames

Contains the name of each field.

jdoFieldTypes

Contains the type of each field.

jdoFieldFlags

Contains some flags to indicate the form of access and mediation that should be performed for the fields. It also
has a flag to indicate whether the field should be serialized.

6.4.1.3 Class registration

A static initializer is added to each persistent class. This static initialization code is executed after any other initialization
you may have defined in the class. It registers the class with the JDO runtime environment by calling the static
registerClass() method defined in the JDOImplHelper class. This class is defined in the javax.jdo.spi package, and it provides
utility methods used by JDO implementations. If the persistent class is not abstract, a helper instance of the class is
constructed and passed to registerClass().

The generated static metadata fields are passed as arguments to registerClass(). The JDOImplHelper class provides
methods that allow this information to be shared by all JDO implementations that manage instances of the class in the
JVM.

6.4.2 Instance-Level Data

The reference enhancer adds the following two fields to the least-derived (topmost) persistent class in an inheritance
hierarchy:

protected transient javax.jdo.spi.StateManager jdoStateManager;
protected transient byte jdoFlags;

These are the only two fields added to a class that affect the size of an instance in memory.

jdoStateManager

This field contains a reference to the StateManager that manages the fields of persistent and transient
transactional instances. This field is null for nontransactional transient instances.

jdoFlags

This field indicates the state of the fields in the instance.

The StateManager instance referenced by jdoStateManager manages the value of the jdoFlags field. Since these two fields
are transient, they do not impact serialization.

6.4.3 Field Mediation

Access to a managed field is mediated by the JDO implementation to ensure its value has been retrieved from the
datastore before it is accessed by the application and to capture all application modifications to the field. Nonmanaged
fields are ignored by the enhancer. No enhancement is performed on access to nonmanaged fields, because they lie
outside the domain of persistence and may be accessed like any normal Java field, obeying the accessibility rules
dictated by the public, private, and protected modifiers and default package access.

6.4.3.1 Generated accessors and mutators

The enhancer generates a get and set method for each managed field in a persistent class. These methods have the
following form:

final static mmm ttt jdoGetField(theclass instance);
final static mmm void jdoSetField(theclass instance, ttt newValue);

with the following elements:

Field

This is the name of the field in the class.

mmm

This is the same access modifier (public, private, or protected) as the corresponding field in the nonenhanced
class. This ensures the security of instances by preserving the same field access restrictions that are declared in
the class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the class.

ttt

This is the type of the field in the nonenhanced class.

theclass

This is the class in which this static method is defined. This parameter is used to pass an instance of the class to
the static method.

These generated methods examine the values in jdoFlags and jdoFieldFlags and perform the appropriate behavior to get
or set the field's value. These methods provide access mediation of the managed fields.

The enhancer must enhance every class that has a getfield or putfield byte-code instruction for a managed field of a
persistent class. Each getfield is replaced with a call to the corresponding jdoGetField(), and each putfield is replaced with
a call to the corresponding jdoSetField(). The jdoSetField() methods enable the StateManager to track which fields in each
instance are modified by the application. The PersistenceManager can then automatically propagate all instance
modifications to the datastore at transaction commit.

As it turns out, the stack signature required for the getfield and putfield byte codes matches the stack signature needed
for the call to jdoGetField() and jdoSetField(). The enhancer needs to replace only a single byte-code instruction—getfield
or putfield—without needing to add or alter any other byte-code instructions. So, replacing these byte codes does not
increase the size of the byte code in your class.

The timing of managed field accesses, for both transient and persistent instances, will be different from the timing of
field accesses in an unenhanced class, because the getfield and putfield byte-code instructions are replaced with calls to
these generated static methods. But the methods are defined as static and final, which reduces their method-call
overhead. Furthermore, since they are static and final methods, a HotSpot or other Just-In-Time (JIT) environment can
optimize the byte code by removing the method call entirely.

6.4.3.2 Management of field values

The methods described in this section are used to mediate application access to managed fields. The StateManager
instance referenced by the jdoStateManager field manages the state of the managed fields in a persistent instance by
using the following two methods added by enhancement:

public void jdoReplaceField(int field);
public void jdoProvideField(int field);

The parameter passed to these methods is the index value that uniquely identifies a field.

Since jdoReplaceField() and jdoProvideField() are placed in the class, the StateManager can access and alter every managed
field, regardless of the field's access modifier (e.g., default package-level, private, and protected). At the same time, it
preserves the field-accessibility restrictions for all classes except the StateManager, which must be granted permission
explicitly in Java runtime environments that enforce security. You must use the JDOPermission class, described in
Chapter 2, to grant permission to the StateManager.

The StateManager uses jdoReplaceField() to store values from the datastore in the instance. jdoReplaceField() calls the
StateManager method replacingXXXField() to get a value for the field. The XXX corresponds to one of the specific field
types handled in JDO. The StateManager has a replacingXXXField() method for each field type. The jdoReplaceField()
method assigns to the field the value that is returned by replacingXXXField().

The StateManager uses jdoProvideField() to retrieve a field value from an instance. jdoProvideField() calls the StateManager
method providedXXXField() to access a field's value. There is a providedXXXField() method for each field type, denoted by
XXX.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. Establishing a JDO Runtime Environment
This chapter describes how to establish a JDO runtime environment. This includes specifying the particular JDO
implementation to be used, connecting to the datastore, and setting various properties that control the management of
transactions and the cache of persistent instances.

Your primary interface when using JDO is the PersistenceManager interface. You configure a PersistenceManager instance by
using a PersistenceManagerFactory instance, which you can create by calling a method defined in JDOHelper. Or, in a Java 2
Platform, Enterprise Edition (J2EE) environment, you would likely use Java Naming and Directory Interface (JNDI) to
store and look up one or more PersistenceManagerFactory instances.

You can initialize and set various properties within the PersistenceManagerFactory, including the information needed to
connect to the datastore. Once you have established the desired configuration, you call a PersistenceManagerFactory
method to create a PersistenceManager instance. You can create multiple PersistenceManagers from a single
PersistenceManagerFactory, and you can alter some of the properties in a PersistenceManager once it has been created.

A PersistenceManager instance has a one-to-one relationship with an associated Transaction instance. The
PersistenceManager interface provides a method to access this instance. The property settings in the PersistenceManager
and Transaction instances control the runtime behavior of the JDO runtime environment.

Figure 7-1 illustrates the relationships among these classes and the methods you can use to access and create the
associated instances. This chapter describes the capabilities these interfaces provide, so you can configure your
application's runtime environment for accessing the datastore.

Figure 7-1. Interfaces used to configure and control the JDO runtime environment

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.1 Configuring a PersistenceManagerFactory
A PersistenceManagerFactory has a number of properties you can use to configure a PersistenceManager. You should initialize
these property values when the PersistenceManagerFactory is first created via the JDOHelper interface. Once you have
constructed a PersistenceManagerFactory with the necessary property values, you call getPersistenceManager() to construct a
PersistenceManager instance. The values of the properties in the PersistenceManagerFactory instance become the default
settings for the properties in all the PersistenceManager instances created by the factory.

To create a PersistenceManagerFactory, initialize a Properties instance and pass it as a parameter to one of the following
JDOHelper methods:

public static PersistenceManagerFactory
 getPersistenceManagerFactory(Properties props, ClassLoader cl);

public static PersistenceManagerFactory
 getPersistenceManagerFactory(Properties props);

The second method, without a ClassLoader parameter, uses the ClassLoader in the calling thread's current context to
resolve the class name.

Table 7-1 lists the keys that you can specify in the Properties object to initialize the PersistenceManagerFactory. A JDO
implementation may have some of its own additional properties that are necessary. Such vendor-specific properties
should not have the javax.jdo.option prefix; instead, they should use a prefix that identifies the specific implementation.

Table 7-1. Standard property keys used to initialize a PersistenceManagerFactory
javax.jdo.PersistenceManagerFactoryClass

javax.jdo.option.ConnectionUserName

javax.jdo.option.ConnectionPassword

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionDriverName

javax.jdo.option.ConnectionFactoryName

javax.jdo.option.ConnectionFactory2Name

javax.jdo.option.IgnoreCache

javax.jdo.option.Optimistic

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.Multithreaded

javax.jdo.option.RetainValues

javax.jdo.option.RestoreValues

The keys and values in a Properties instance are represented by String instances. Each property listed in Table 7-1 has a
corresponding property value in PersistenceManagerFactory that is either a String or a boolean. The value of a String property
is used directly, without change. In the case of a boolean property, the String value in the Properties instance is
considered true if it compares equal to "true" (ignoring case); otherwise, it is initialized to false.

You must include the javax.jdo.PersistenceManagerFactoryClass property, which is used to specify the implementation-
specific class of the instance this method returns. The name associated with this property should be the fully qualified
name of the implementation's class that implements the PersistenceManagerFactory interface. Your implementation's
documentation should provide you with the name of this class.

If you do not initialize a property, the implementation can choose the default value. A JDO vendor will likely choose
default values that work best with its implementation. Therefore, the default values are not likely to be consistent
across different implementations. To ensure that your application is portable and has consistent behavior across
implementations, you should initialize the values of all the properties that are relevant to your application.

The following code populates a Properties instance with JDO properties and constructs a PersistenceManagerFactory using
JDOHelper. The RestoreValues property is initialized to false, because its property value is not equal to "true" (ignoring
case).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

case).

import java.util.Properties;
import javax.jdo.JDOHelper;
import javax.jdo.PersistenceManagerFactory;

...

PersistenceManagerFactory pmf = null;
Properties properties = new Properties();
properties.put("javax.jdo.PersistenceManagerFactoryClass",
 "com.sun.jdori.fostore.FOStorePMF");
properties.put("javax.jdo.option.ConnectionURL", "fostore:database/fostore");
properties.put("javax.jdo.option.ConnectionUserName", "dave");
properties.put("javax.jdo.option.ConnectionPassword", "jdo4me");
properties.put("javax.jdo.option.Optimistic", "false");
properties.put("javax.jdo.option.IgnoreCache", "false");
properties.put("javax.jdo.option.RetainValues", "true");
properties.put("javax.jdo.option.RestoreValues", "yes"); // will be set to false
pmf = JDOHelper.getPersistenceManagerFactory(properties);

The two getPersistenceManagerFactory() methods delegate to a static getPersistenceManagerFactory() method, which should
exist in the class named in the javax.jdo.PersistenceManagerFactoryClass property. If any exceptions are thrown while trying
to call this static method, a JDOFatalUserException or JDOFatalInternalException is thrown, depending on whether the
exception is due to your application or the implementation. The nested exception indicates the cause of the exception. A
JDOFatalUserException is thrown if the class specified by the javax.jdo.PersistenceManagerFactoryClass property is not found or
accessible. If the class exists, but it does not have a public static implementation of
getPersistenceManagerFactory(Properties), a JDOFatalInternalException is thrown. If the method does exist, but it throws an
exception, it is rethrown by the JDOHelper method.

Implementations may manage a map of instantiated PersistenceManagerFactory instances that have specific property key
values, and return a previously instantiated PersistenceManagerFactory instance with the property values you request. The
same PersistenceManagerFactory instance can be returned when the application makes multiple calls to construct an
instance with the same property values, using the same or different Properties instances.

The PersistenceManagerFactory interface provides methods to get and set the values of its properties. However, since
getPersistenceManagerFactory() can return a previously constructed PersistenceManagerFactory instance, the returned
instance is sealed (i.e., its properties cannot be changed), and any call to alter a property with a set method throws an
exception. Portable applications should therefore completely initialize the PersistenceManagerFactory with the properties in
a Properties instance. If you want to call the set methods to initialize property values, you can construct the
PersistenceManagerFactory with a vendor-specific constructor. This will return a nonsealed instance that can have its
properties changed, but using such vendor-specific constructors is not portable.

7.1.1 Connection Properties

The following connection properties are used to configure a datastore connection:

javax.jdo.option.ConnectionURL

The ConnectionURL property identifies the specific datastore to access. The syntax and value of this parameter is
determined by the underlying datastore. If you are using a JDO implementation that is layered on top of a JDBC
connection, you will likely specify the same value a JDBC application would use to establish a connection. The
JDO implementation uses the ConnectionURL property value to establish its internal JDBC connection.

javax.jdo.option.ConnectionDriverName

The ConnectionDriverName property is used to specify the particular database driver. For example,
oracle.jdbc.driver.OracleDriver is a common driver used with Oracle. A ConnectionDriverName is normally required
when accessing a relational database with JDBC. Some datastores, such as an object database, do not have
multiple drivers. For these datastores, it is not necessary to provide a value for ConnectionDriverName.

javax.jdo.option.ConnectionUserName and javax.jdo.option.ConnectionPassword

Most datastores perform access authentication by requiring a username and password. The ConnectionUserName
and ConnectionPassword properties are used to initialize these connection properties. An alternative to providing
these two values in the Properties object used to initialize the PersistenceManagerFactory is to call the
getPersistenceManager() method that accepts the userid and password as parameters.

javax.jdo.option.ConnectionFactoryName

The ConnectionFactoryName property identifies the name of the connection factory from which the JDO
implementation should obtain datastore connections. JNDI is used to locate the connection factory with the
given name.

Instead of providing the name of the factory, you can directly provide the ConnectionFactory instance by passing
it as a parameter to setConnectionFactory().

If you are running in a managed environment that has other connection properties that you can and want to set in your
application, you can configure a connection factory. When you use a connection factory, the ConnectionURL,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

application, you can configure a connection factory. When you use a connection factory, the ConnectionURL,
ConnectionUserName, and ConnectionPassword connection properties are overridden by the ConnectionFactory and
ConnectionFactoryName properties.

If you set multiple connection properties, they are evaluated in order. If you specify ConnectionFactory, all other
connection properties are ignored. If you do not specify ConnectionFactory, but you specify ConnectionFactoryName, all
other properties are ignored.

If you use a connection factory, you should provide values for the following properties, if the datastore has a
corresponding concept:

URL

The URL of the datastore

UserName

The name of the user establishing the connection

Password

The password for the user

DriverName

The driver name for the connection

ServerName

The name of the server for the datastore

PortNumber

The port number for establishing a connection to the datastore

MaxPool

The maximum number of connections in the connection pool

MinPool

The minimum number of connections in the connection pool

MsWait

The number of milliseconds to wait for an available connection from the connection pool before throwing a
JDODataStoreException

LogWriter

The PrintWriter to which messages should be sent

LoginTimeout

The number of seconds to wait for a new connection to be established to the datastore

The PersistenceManagerFactory instance may also support additional properties that are specific to the datastore or
PersistenceManager.

In an application-server environment, a connection factory always returns connections that are enlisted in the thread's
current transaction context. Using optimistic transactions requires an additional connection factory that returns
connections that are not enlisted in the current transaction context. (Chapter 15 discusses this in detail.) For this
purpose, the ConnectionFactory2Name property and setConnectionFactory2() method are used:

javax.jdo.option.ConnectionFactory2Name

The ConnectionFactory2Name property identifies the name of the connection factory from which nontransactional
datastore connections are obtained. JNDI is used to locate the connection factory by name.

Alternatively, you can specify the connection factory instance directly by passing it as a parameter to
setConnectionFactory2().

The following list provides the get and set methods for each of the connection properties:

javax.jdo.option.ConnectionURL

Get method: String getConnectionURL()

Set method: void setConnectionURL(String)

javax.jdo.option.ConnectionUserName

Get method: String getConnectionUserName()

Set method: void setConnectionUserName(String)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set method: void setConnectionUserName(String)

javax.jdo.option.ConnectionPassword

Get method: none

Set method: void setConnectionPassword(String)

javax.jdo.option.ConnectionFactoryName

Get methods: String getConnectionFactoryName(), Object getConnectionFactory()

Set methods: void setConnectionFactoryName(String), void setConnectionFactory(Object)

javax.jdo.option.ConnectionFactory2Name

Get methods: String getConnectionFactory2Name(), Object getConnectionFactory2()

Set methods: void setConnectionFactory2Name(String), void setConnectionFactory2(Object)

javax.jdo.option.ConnectionDriverName

Get method: String getConnectionDriverName()

Set method: void setConnectionDriverName(String)

7.1.2 Optional Feature Properties

Properties are also available to initialize the settings of the optional features. Specifically, the following transaction
properties can be initialized (they are covered in detail in later chapters):

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.Optimistic

javax.jdo.option.RetainValues

These properties affect the runtime behavior of the application. You can provide a value for these flags when you
configure your JDO runtime environment. The flags can be initialized in the Properties object used to construct the
PersistenceManagerFactory. If you attempt to set one of these properties to true and the implementation does not support
it, a JDOUnsupportedOptionException is thrown.

The following list provides the get and set methods for the optional feature properties:

javax.jdo.option.NontransactionalRead

Get method: boolean getNontransactionalRead()

Set method: void setNontransactionalRead(boolean)

javax.jdo.option.NontransactionalWrite

Get method: boolean getNontransactionalWrite()

Set method: void setNontransactionalWrite(boolean)

javax.jdo.option.Optimistic

Get method: boolean getOptimistic()

Set method: void setOptimistic(boolean)

javax.jdo.option.RetainValues

Get method: boolean getRetainValues()

Set method: void setRetainValues(boolean)

7.1.3 Flags

You can also set some additional flags to control the behavior of your JDO environment. These flags have the following
properties, which can be used to configure the PersistenceManagerFactory:

javax.jdo.option.IgnoreCache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

javax.jdo.option.IgnoreCache

javax.jdo.option.Multithreaded

javax.jdo.option.RestoreValues

We discuss Multithreaded and RestoreValues later in this chapter. Chapter 8 and Chapter 9 describe IgnoreCache.

7.1.4 Flags Settings in Multiple Interfaces

Some features have flags that you can get and set to control the behavior of your JDO environment. These flags are
maintained in several JDO interfaces. Table 7-2 lists these features and the JDO interfaces that have associated flags
and methods for managing their settings.

Table 7-2. Methods to manage flags for features
Feature Interfaces with methods to get/set flags

NontransactionalRead PersistenceManagerFactory, Transaction

NontransactionalWrite PersistenceManagerFactory, Transaction

Optimistic PersistenceManagerFactory, Transaction

RetainValues PersistenceManagerFactory, Transaction

RestoreValues PersistenceManagerFactory, Transaction

IgnoreCache PersistenceManagerFactory, PersistenceManager, Query

All of these flags have Boolean values. For example, the following methods are defined in Transaction and
PersistenceManagerFactory:

void setOptimistic(boolean flag);
boolean getOptimistic();

If the implementation does not support an optional feature, the value of the associated flag in these interfaces is false. If
you attempt to set the flag to true, a JDOUnsupportedOptionException is thrown. For optional features that the
implementation does support, it can choose a default value of true or false for the flag. A JDO vendor usually selects a
default value most suited to their implementation.

If you want to guarantee that your application behaves consistently across implementations, you should set the values
of these flags explicitly (assuming that the implementation supports the feature you wish to enable). Setting a flag to
false protects you from unexpected behavior in the future, if the implementation later enables the feature with a default
setting of true. You can initialize these flags within the property file that you use to construct the
PersistenceManagerFactory.

7.1.5 Determining the Optional Features and Default Flag Settings

You can determine which optional features an implementation supports by calling the following PersistenceManagerFactory
method:

Collection supportedOptions();

This method returns a Collection of String values, where each element represents an optional feature or query language
that the implementation supports. If the implementation does not support an optional feature, this method does not
return its associated option string.

The string "javax.jdo.query.JDOQL" indicates that the standard JDO query language is supported. An implementation may
also support other query languages; if so, a value is returned to identify each supported query language. These
alternative, implementation-specific query languages (and their associated names) are not defined in the JDO
specification.

Example 7-1 is a small application that lists the optional features and default flag values for the optional features listed
in Table 7-2. It extends the MediaManiaApp class used in Chapter 1. To get the implementation's default values, the
property file used to initialize the PersistenceManagerFactory should not initialize the properties. The application calls
supportedOptions() on line [1] to access the options supported by the implementation. Lines [2] through [7] call
PersistenceManagerFactory methods to access the default values for the optional feature flags.

Example 7-1. Getting an implementation's optional features and default flag
values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

values

package com.mediamania;

import java.util.Collection;
import java.util.Iterator;
import javax.jdo.PersistenceManagerFactory;

public class GetOptions extends MediaManiaApp {

 public static void main(String[] args) {
 GetOptions options = new GetOptions();
 options.print();
 }

 public void print() {
 Collection options = pmf.supportedOptions(); [1]
 Iterator iter = options.iterator();
 System.out.println("Supported options:");
 while (iter.hasNext()) {
 String option = (String) iter.next();
 System.out.println(option);
 }
 System.out.println("\nDefault values for flags:");
 System.out.print("IgnoreCache ");
 System.out.println(pmf.getIgnoreCache()); [2]
 System.out.print("NontransactionalRead ");
 System.out.println(pmf.getNontransactionalRead()); [3]
 System.out.print("NontransactionalWrite ");
 System.out.println(pmf.getNontransactionalWrite()); [4]
 System.out.print("Optimistic ");
 System.out.println(pmf.getOptimistic()); [5]
 System.out.print("RestoreValues ");
 System.out.println(pmf.getRestoreValues()); [6]
 System.out.print("RetainValues ");
 System.out.println(pmf.getRetainValues()); [7]
 }
 public void execute() {
 }
}

Sun's JDO reference implementation produces the following output for this program:

Supported options:
javax.jdo.option.TransientTransactional
javax.jdo.option.NontransactionalRead
javax.jdo.option.NontransactionalWrite
javax.jdo.option.RetainValues
javax.jdo.option.Optimistic
javax.jdo.option.ApplicationIdentity
javax.jdo.option.DatastoreIdentity
javax.jdo.option.ArrayList
javax.jdo.option.HashMap
javax.jdo.option.Hashtable
javax.jdo.option.LinkedList
javax.jdo.option.TreeMap
javax.jdo.option.TreeSet
javax.jdo.option.Vector
javax.jdo.option.Array
javax.jdo.option.NullCollection
javax.jdo.query.JDOQL

Default values for flags:
IgnoreCache true
NontransactionalRead true
NontransactionalWrite false
Optimistic true
RestoreValues true
RetainValues true

Notice that all of the flags in Table 7-2 have a setting maintained in a PersistenceManagerFactory instance. When you call
getPersistenceManager() to construct a PersistenceManager instance, the values of the flags in the PersistenceManagerFactory
are copied into the PersistenceManager instance. When you call currentTransaction() to access the associated Transaction
instance, the transaction-related flags in the Transaction instance get the same values that were set in the
PersistenceManagerFactory instance. If you want a flag in the Transaction instance to have a different value, you can call the
flag's set method in the Transaction interface. But do not call these methods when a transaction is active.

The value of the IgnoreCache flag in a PersistenceManager affects the behavior of extent iteration and queries. Basically, it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The value of the IgnoreCache flag in a PersistenceManager affects the behavior of extent iteration and queries. Basically, it
determines whether changes you have already made to instances in the application cache should be reflected in extents
and the results of queries. The IgnoreCache flag is covered in Chapter 8 and Chapter 9 when we cover extents and
queries, respectively.

In a nonmanaged environment, you can use multiple PersistenceManager instances. Each call to
PersistenceManagerFactory.getPersistenceManager() returns a new instance for your use. You can change the IgnoreCache flag
in a PersistenceManager instance. So, it is possible to have two PersistenceManager instances, where one has its IgnoreCache
flag set to true, and the other has it set to false.

The IgnoreCache setting in a PersistenceManager establishes the initial value of the IgnoreCache flag in each Query you
construct via a call to PersistenceManager.newQuery(). So, you can construct multiple Query instances and set the values of
their respective IgnoreCache flags independently.

7.1.6 Vendor-Specific Properties

A JDO implementation can define its own property keys. You can use the property keys to initialize implementation-
specific properties when you configure a PersistenceManagerFactory. Each such property key should have a prefix that
associates it with the vendor's implementation. Implementations silently ignore any properties that they do not
recognize. If they recognize a property key that they do not support and you specify a value that enables the feature, a
JDOFatalUserException is thrown when you call getPersistenceManagerFactory().

7.1.7 Nonconfigurable Properties

A JDO vendor may provide nonconfigurable properties and make them available to your application via a Properties
instance, which can be retrieved with the following PersistenceManagerFactory method:

Properties getProperties();

Each key and value is a String. All JDO implementations support two standard keys:

VendorName

The name of the JDO vendor

VersionNumber

The release number of the vendor's implementation

Other properties returned by getProperties() are vendor-specific. This method does not return the configurable properties
we covered previously. Your application can modify the returned Properties instance, but the modifications do not affect
the behavior of the PersistenceManagerFactory instance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.2 Acquiring a PersistenceManager
Once you have configured a PersistenceManagerFactory with the appropriate property settings, you can call one of the
following PersistenceManagerFactory methods to construct a PersistenceManager instance:

PersistenceManager getPersistenceManager();
PersistenceManager getPersistenceManager(String userid, String password);

The returned instance may come from a pool of PersistenceManager instances, but the property values in the returned
PersistenceManager instance are equal to their values in the PersistenceManagerFactory instance.

After your first call to getPersistenceManager(), none of the set methods in the PersistenceManagerFactory will succeed. You
may be able to modify the setting of operational parameters dynamically using a vendor-specific interface.

If you acquire the PersistenceManager by calling the getPersistenceManager() method that has the userid and password
parameters, all of the manager's accesses to get a connection from the connection factory use the provided userid and
password. If PersistenceManager instances are pooled, then getPersistenceManager() returns only a PersistenceManager
instance with the same userid and password.

You may need to access the PersistenceManagerFactory that was used to create a PersistenceManager. You can call the
following PersistenceManager method to access it:

PersistenceManagerFactory getPersistenceManagerFactory();

If a PersistenceManagerFactory instance was not used to create the PersistenceManager instance (e.g., a call to a vendor-
specific PersistenceManager constructor was used), this method returns null.

7.2.1 User Object

Your application may use multiple PersistenceManager instances concurrently. You may find it useful to define a class that
is responsible for managing and tracking the set of PersistenceManager instances. In such circumstances, it is useful to
associate the manager object responsible for each PersistenceManager instance and be able to access the manager object
from the PersistenceManager instance. The following PersistenceManager methods allow you to set and get an instance to be
associated with a PersistenceManager instance:

void setUserObject(Object object);
Object getUserObject();

You have complete freedom in how this user object is used. The implementation does not inspect or use it in any way.

7.2.2 Closing a PersistenceManager

A PersistenceManager maintains a set of resources that it uses to manage persistent instances. If you are finished using a
PersistenceManager, you can close it to free up its resources by calling its close() method:

void
close();

After you call close(), all methods on the PersistenceManager instance (except isClosed()) throw a JDOFatalUserException. If
the current transaction is active when you call close(), a JDOUserException is thrown.

When the PersistenceManager instance is closed, it might be returned to a pool of PersistenceManager instances or garbage-
collected, at the choice of the implementation. Before it can be used to satisfy another getPersistenceManager() request,
its properties are reset to the values specified in its associated PersistenceManagerFactory instance.

You can call the following PersistenceManager method to determine whether a PersistenceManager is closed:

boolean isClosed();

Once the PersistenceManager instance has been constructed or retrieved from a pool, it returns false. It returns true only
after close() has successfully closed the instance.

7.2.3 Closing a PersistenceManagerFactory

A PersistenceManagerFactory also maintains significant resources. If you no longer need a PersistenceManagerFactory, you
can close it with the following method:

void close();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void close();

This method disables the PersistenceManagerFactory and relinquishes its associated resources.

Closing a PersistenceManagerFactory prematurely can have a significant impact on the operation of the JDO environment.
Therefore, a security check is made for JDOPermission("closePersistenceManagerFactory") to determine whether the caller
has been granted permission to close a PersistenceManagerFactory. If the permission check fails, close() does not close the
PersistenceManagerFactory and throws a SecurityException.

This close() method automatically closes all PersistenceManager instances that are still open and do not have an active
Transaction. If some PersistenceManager instances do have active Transaction instances, a JDOUserException is thrown. The
JDOUserException instance thrown to the caller of close() does not have a failed instance. It has a nested exception array
that contains a JDOUserException for each PersistenceManager that could not be closed. Each nested JDOUserException
references a PersistenceManager as the failed instance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.3 Transactions
Accesses and updates to persistent instances are performed in the context of a transaction. The JDO Transaction
interface provides the methods you use to begin and commit a transaction. It also has methods to manage the settings
of transaction flags. It is similar in functionality to a javax.transaction.UserTransaction. Both interfaces have begin(), commit(
), and rollback() methods with the same semantics and behavior.

A one-to-one relationship exists between a PersistenceManager and its associated Transaction instance. A PersistenceManager
instance represents a single view of persistent data, including persistent instances that have been cached across
multiple serial transactions. If your application needs multiple concurrent transactions, each transaction will have its
own Transaction instance and associated PersistenceManager instance.

You call methods in the JDO Transaction interface to perform operations on a transaction. The underlying datastore has
its own representation for a transaction, with its own operations and interfaces. JDO supports a type of transaction
referred to as a datastore transaction. This is not the transaction in the underlying datastore. We refer to the
transaction at the datastore level as the transaction in the datastore, to distinguish it from the JDO datastore
transaction.

7.3.1 Properties of Transactions

Transactions have a set of common properties that are referred to as the ACID (Atomic, Consistent, Isolated, Durable)
properties of a transaction. JDO transactions support these properties.

Atomic

Within a transaction, either all or none of the changes made to instances are propagated to the datastore.

Consistent

A change to a value in an instance is consistent with changes to any other values in the same instance and all
other instances in the same transaction.

Isolated

Changes to instances are isolated from changes made in other transactions.

Durable

Changes to persistent instances survive the end of the Java Virtual Machine context in which they are made.

7.3.2 Transactions and Locking in the Datastore

Instead of attempting to redefine the semantics of datastore transactions, JDO defines operations on persistent
instances that use the underlying datastore operations. In order to understand the differences between the JDO
transaction modes, it is useful to understand how transaction guarantees are implemented in datastores.

Durability is mainly a datastore-implementation detail, in which changes are guaranteed to be persistent in the face of
various failure modes of hardware, software, and the computing environment.

Atomicity means that the datastore manages the changes associated with each instance, such that at commit time all of
the changes to each instance are applied, and a failure to apply any change invalidates the entire set of changes.
Additionally, all changes are made to the instances, or none are made.

Consistency is a responsibility shared between the application and the datastore. It applies to all of the instances that
were accessed during a transaction, whether the access was for read or write. Consistency requires that if multiple
instances are related in some way, then changes in one of the instances are made consistently with changes in other
instances.

7.3.2.1 Transaction-isolation levels

Isolation is the most complex of the transaction guarantees, and datastore vendors adopt many strategies to achieve it.
Isolation is so complex because there is a significant performance penalty associated with strict isolation, which requires
that transactions execute as if they operated completely independent of each another. Therefore, datastores provide
varying levels of isolation with different performance characteristics, allowing applications to choose a level of isolation
that provides an appropriate balance between consistency and performance.

The isolation levels can be characterized as follows:

Level 0 (Dirty Read; Read Uncommitted)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Level 0 (Dirty Read; Read Uncommitted)

Transactions might read data from transactions that have not yet committed; therefore, there is no guarantee
of consistency, although concurrency is highest.

Level 1 (Cursor Stability; Read Committed)

Transactions will read data only from committed transactions. Updates in one transaction will not overwrite
updates from another transaction. Reading the same data twice might result in different data the second time.

Level 2 (Repeatable Read)

Updates in one transaction will not overwrite updates from another transaction. Reading the same data twice is
guaranteed to return the same results each time, but queries might return different results due to inserted data
between the queries (sometimes called phantom reads).

Level 3 (Serializable; Isolated)

Updates in one transaction will not overwrite updates from another transaction. Reading the same data twice is
guaranteed to return the same results each time. Reading data prevents other transactions from updating the
data. Queries return the same results if they are executed twice.

It is significant to note here that JDO does not mandate any specific isolation level; decisions regarding which isolation
level to use, whether to expose the isolation level to applications, and how to expose the level are made by the JDO
implementation.

7.3.2.2 Locking in the datastore

To implement level 1, level 2, and level 3 transaction isolation, datastores often implement isolation of transactions in
the datastore using locking. Locking is typically implemented by associating a lock instance with each datastore
operation. The lock instance contains the transaction identifier, the lock mode, and the datastore instance. Locks are
stored in a lock table.

When an operation is performed to read, write, insert, or delete a datastore instance, the datastore creates a lock
instance for the current operation and tries to add the lock to the lock table. The lock addition fails if an incompatible
lock already exists in the lock table. Depending on the datastore implementation, the incompatibility might result in the
transaction waiting for some timeout period, or immediately failing. During the timeout period, the transaction with the
conflicting lock might commit or roll back, thereby allowing the waiting transaction to proceed.

Lock compatibilities are typically implemented using a lock-compatibility matrix, a simplified version of which is
illustrated in Table 7-3. Most datastores implement a much more sophisticated version of this matrix.

Table 7-3. Lock-compatibility matrix
 Lock Requested

Lock Held Exclusive Shared

Exclusive No No

Shared No OK

Read requests use shared locks, while insert, update, and delete requests use exclusive locks. Thus, multiple
transactions can read the same datastore instances without conflict, but if a transaction is reading an instance, that
instance cannot be updated or deleted by another transaction until all transactions holding the shared lock complete.
Similarly, if a transaction deletes an instance, no other transaction can access that instance until the transaction holding
the exclusive lock on the deleted instance completes.

The effect of locking with long transactions is significant. While the long transaction is active, all other transactions that
attempt to access instances used in it are subject to the compatibility rules of the lock table. Even if the long
transaction only holds read locks, other transactions that attempt to update the same instances will wait for completion
of the long transaction.

This is a simplified view of datastore locks; for a more detailed understanding of database locking, you should consult
your JDO implementation's documentation.

7.3.3 Types of Transactions in JDO

Transactions are a fundamental aspect of JDO. All changes to instances that should be reflected in the datastore are
performed in the context of a transaction. JDO supports three transaction-management strategies:

Nontransactional access

The ability to access instances from the datastore without having a transaction in the datastore in progress is an
optional feature in JDO. The NontransactionalRead and NontransactionalWrite features determine whether an
application can read and modify instances in memory outside of a transaction. But any modifications you make
to instances in memory outside of a transaction cannot be propagated directly to the datastore.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to instances in memory outside of a transaction cannot be propagated directly to the datastore.

Datastore transaction

When you use a datastore transaction, all the operations you perform on persistent data are done within a
single transaction in the datastore. This means that between the first data access in the transaction and the
commit of that transaction, a single active transaction is used in the datastore. Datastore transactions are
supported in all JDO implementations.

Optimistic transaction

When you use an optimistic transaction, operations on instances in memory outside a JDO transaction or before
transaction commit are implemented by the JDO implementation with a series of short local transactions in the
datastore. If an optimistic transaction has updates that need to be propagated to the datastore, when you
commit the optimistic transaction the JDO implementation uses an underlying transaction in the datastore to
verify that the proposed changes do not conflict with updates that may have been committed by other,
concurrent transactions. Optimistic transactions are an optional feature in JDO.

If you anticipate that you will primarily have concurrent transactions attempting to access and modify the same
instances, resulting in lock conflicts, then you should use datastore transactions. If you anticipate that lock conflicts will
not occur, you should consider optimistic transactions. In these situations, optimistic transactions place fewer demands
on the datastore, because locks are not maintained throughout the duration of the optimistic transaction. We continue
to use datastore transactions until we cover nontransactional access in Chapter 14 and optimistic transactions in
Chapter 15.

7.3.4 Acquiring a Transaction

You can access the Transaction instance associated with a PersistenceManager by calling the following PersistenceManager
method:

Transaction currentTransaction();

All calls you make to currentTransaction() for a given PersistenceManager instance return the same Transaction instance until
you have closed the PersistenceManager instance with a call to close(). You can use the same Transaction instance to
execute multiple serial transactions. If you want to execute multiple parallel transactions in a JVM, then you can use
multiple PersistenceManager instances.

You can call the following Transaction method to access its associated PersistenceManager instance:

PersistenceManager getPersistenceManager();

7.3.5 Setting the Transaction Type

PersistenceManagerFactory and Transaction instances each maintain a flag that indicates whether to use a datastore or
optimistic transaction. If an implementation does not support optimistic transactions, these PersistenceManagerFactory and
Transaction flags will always be false. If the application attempts to set the flag to true, a JDOUnsupportedOptionException is
thrown. If the implementation supports optimistic transactions, whether the default value is true or false is the
implementation's choice.

You can initialize the Optimistic flag when the PersistenceManagerFactory instance is constructed. You can also get and set
the Optimistic flag in the PersistenceManagerFactory and Transaction instances with the following methods:

void setOptimistic(boolean flag);
boolean getOptimistic();

Calling setOptimistic() with a false parameter value indicates that datastore transactions should be used, and calling it
with a true value indicates that optimistic transactions should be used. You cannot call these methods when a Transaction
instance is active (i.e., after you call begin() and before you call commit() or rollback()).

7.3.6 Transaction Demarcation

Your application is responsible for transaction demarcation in a nonmanaged environment. In the managed environment
of an application server, transaction demarcation is performed for you automatically. One exception is when you use
bean-managed transactions. The following discussion applies only when you are running in a nonmanaged environment
or using bean-managed transactions in an EJB environment. Managed environments are covered in Chapter 16 and
Chapter 17. If you call these transaction-demarcation methods in a managed environment with container-managed
transactions, a JDOUserException is thrown.

You call the following Transaction method to begin a transaction:

void begin();

You then call commit() or rollback() to complete the transaction:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void commit();
void rollback();

Calling commit() indicates that you want all the updates that were made in the transaction to be propagated to the
datastore. Calling rollback() indicates that none of the changes should be made in the datastore.

The following code illustrates the use of begin(), commit(), and rollback(). It also shows that you can use the same
Transaction instance to execute multiple transactions serially. In addition, it demonstrates that repeated calls to
currentTransaction() for a PersistenceManager instance return the same Transaction instance.

// assume pmf variable is initialized to a PersistenceManagerFactory
PersistenceManager pm = pmf.getPersistenceManager();
Transaction tx = pm.currentTransaction();
try {
 tx.begin();

 // place application's access of database here

 tx.commit();
} catch (JDOException jdoException) {
 tx.rollback();
 System.err.println("JDOException thrown:");
 jdoException.printStackTrace();
}

// ...

try {
 tx.begin();

 // place application's access of database here

 tx.commit();
} catch (JDOException jdoException) {
 tx.rollback();
 System.err.println("JDOException thrown:");
 jdoException.printStackTrace();
}

// ...

Transaction trans = pm.currentTransaction(); // trans and tx reference same instance [1]
try {
 trans.begin();

 // place application's access of database here

 trans.commit();
} catch (JDOException jdoException) {
 trans.rollback();
 System.err.println("JDOException thrown:");
 jdoException.printStackTrace();
}

We call currentTransaction() on line [1] to get a Transaction instance. We do this here only to point out that the Transaction
instance returned on line [1] is the same instance referenced by the tx variable. All calls you make to currentTransaction(
) for a given PersistenceManager return the same Transaction instance.

7.3.6.1 Notification of transaction completion

The javax.transaction package has an interface, called Synchronization, that is used to notify an application when a
transaction-completion process is about to begin. And when the completion process has finished, it provides a status
indicating whether the transaction committed successfully.

The Synchronization interface has the following two methods:

void beforeCompletion();
void afterCompletion(int status);

The beforeCompletion() method is called prior to the start of the transaction-commit process; it is not called during
rollback. The afterCompletion() method is called after the transaction has been committed or rolled back. The status
parameter passed to afterCompletion() indicates whether the transaction committed or rolled back successfully. Its value
is either STATUS_COMMITTED or STATUS_ROLLEDBACK; these are defined in the javax.transaction.Status interface. These two
methods provide an application with some control over the environment in which the transaction completion executes
(for example, to validate the state of instances in the cache before transaction completion) and the ability to perform
some functionality once the transaction completes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

some functionality once the transaction completes.

JDO supports the Synchronization interface. To use it, you must declare a class that implements it. You can register one
instance of the class with the Transaction instance using the following method:

void setSynchronization(javax.transaction.Synchronization sync);

Calling this method replaces any Synchronization instance already registered. If you need more than one instance to
receive notification, then your Synchronization class is responsible for managing this, forwarding callbacks as necessary.
If you pass a null to the method, this indicates that no instance should be notified. If you call setSynchronization() during
commit processing (within beforeCompletion() or afterCompletion()), a JDOUserException is thrown.

You can retrieve the currently registered Synchronization instance by calling the following Transaction method:

javax.transaction.Synchronization getSynchronization();

7.3.6.2 Commit processing

Transaction.commit() performs the following operations:

It makes a call to beforeCompletion() on the Synchronization instance registered with the Transaction (if there is
one).

It flushes (propagates) modified persistent instances to the datastore.

It notifies the underlying datastore to commit the transaction.

It transitions the states of persistent instances according to the JDO instance lifecycle specification; this is
covered in Chapter 11 and Appendix A.

It makes a call to afterCompletion() for the Synchronization instance registered with the Transaction (if there is one),
passing the results of the datastore commit operation.

Additional steps are taken with optimistic transactions, which are covered in Chapter 15.

7.3.6.3 Rollback processing

Transaction.rollback() performs the following operations:

It rolls back changes made in this transaction in the datastore.

It transitions the states of persistent instances according to the JDO instance lifecycle specification.

It makes a call to afterCompletion() for the Synchronization instance registered with the Transaction (if there is one).

7.3.7 Restoring Values on Rollback

The RestoreValues feature controls the behavior that occurs at transaction rollback. If it is true, persistent and
transactional instances are restored to their state as of the beginning of the transaction; if it is false, the state of
instances is not restored. If RestoreValues is true, the values of fields of instances made persistent during the transaction
are restored to their state as of the call to makePersistent(). If RestoreValues is false, they keep the values they had when
rollback() was called.

You call the following Transaction methods to get and set the RestoreValues flag:

boolean getRestoreValues();
void setRestoreValues(boolean flag);

The value of the flag parameter replaces the currently active RestoreValues setting. You can call this method only when
the transaction is not active; otherwise, a JDOUserException is thrown.

7.3.8 Determining Whether a Transaction Is Active

Call the following Transaction method to determine whether a transaction is active:

boolean isActive();

It returns true after the transaction has been started and until Synchronization.afterCompletion() has been called.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It returns true after the transaction has been started and until Synchronization.afterCompletion() has been called.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.4 Multiple PersistenceManagers
A PersistenceManager supports one transaction and uses one connection to the underlying datastore at a time. A
PersistenceManager might use multiple transactions serially, and it might use multiple connections in the datastore
serially.

But you may want to perform multiple transactions concurrently. You can do this by instantiating multiple
PersistenceManager instances. Each will have its own Transaction instance. Each call to
PersistenceManagerFactory.getPersistenceManager() returns a new PersistenceManager instance. Each persistent instance in
the JVM is associated with a single PersistenceManager. Multiple PersistenceManager instances may have their own separate
copy of the same datastore instance. A common application-programming technique is to have a separate thread or
thread group for each PersistenceManager that is managing a set of instances.

You can also use multiple PersistenceManager instances from different JDO implementations in the same JVM. This is how
things operate in an application-server environment, where each active session has its own transaction. Each active
session has its own PersistenceManager instance. Because of JDO's binary compatibility capabilities, these
PersistenceManager instances can manipulate instances of the same persistent classes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.5 Multithreading
You may have a simple application that requires only a single transaction at a time. It would use a single
PersistenceManager and may perform successive transactions using the associated Transaction instance. You may have
only a single thread accessing the persistent instances and instances of the JDO interface, but you may want multiple
threads to access instances. In this case, you need to inform the JDO implementation that multiple threads are
accessing the JDO environment.

A JDO implementation is thread safe, which means that its behavior is predictable in the presence of multiple
application threads. When the application accesses and modifies persistent or transactional fields of persistent
instances, the PersistenceManager performs its operations as if the operations were serialized. It is free to serialize
internal data structures and order multithreaded operations in any way it chooses. The only application-visible behavior
is that operations might block indefinitely (but not infinitely) while other operations complete.

Synchronizing a PersistenceManager instance is a relatively expensive operation. Many applications do not need multiple
threads using the same PersistenceManager instance. If your application has multiple threads accessing a
PersistenceManager or the instances it manages (e.g., persistent or transactional instances of persistent classes, instances
of Transaction or Query, query results, etc.), you need to notify the PersistenceManager that multiple threads may access it.

You notify a PersistenceManager that it may be used by multiple application threads by setting the Multithreaded flag to
true. This instructs the PersistenceManager to synchronize internally to avoid corruption of data structures due to multiple
application threads. You call the following methods to get and set the Multithreaded flag:

boolean getMultithreaded();
void setMultithreaded(boolean flag);

These methods are available in the PersistenceManagerFactory and PersistenceManager interfaces. You can also set the flag
via the javax.jdo.option.Multithreaded property when you construct the PersistenceManagerFactory. You can also perform your
own synchronization. In this case, you would set the Multithreaded flag to false.

JDO implementations do not use user-visible instances (e.g., instances of PersistenceManagerFactory, PersistenceManager,
Transaction, Query, etc.) as synchronization objects, with one exception. The implementation must synchronize instances
of persistent classes during a state transition that replaces the StateManager. This occurs if the application attempts to
make the same instance persistent concurrently in multiple PersistenceManager instances.

If your application needs to serialize its own operations, you must implement your own appropriate synchronizing
behavior, using instances visible to the application. This may include JDO interface instances (e.g., PersistenceManager,
Query, etc.) and instances of your persistent classes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. Instance Management
Your object model is usually composed of a set of classes with many interrelationships. The graph of all the related
instances of those classes may include the entire contents of the datastore, but typically your applications deal with
only a small number of the persistent instances at a time. JDO provides the illusion that your application can access the
entire graph of connected instances, while in reality it only instantiates the small subset of instances that the application
needs. This concept is called transparent data access, transparent persistence, or simply transparency.

A PersistenceManager manages the persistent instances accessed from a datastore. It provides methods to make
instances persistent and to delete instances from the datastore. It also provides factory methods to construct Extent and
Query instances, which you use to access instances from the datastore.

A PersistenceManager can manage any number of persistent instances at a time. Each instance of a persistent class is
associated with one PersistenceManager or zero PersistenceManagers. A transient instance is not associated with any
PersistenceManager instance. As soon as an instance is made persistent or transactional, it is associated with exactly one
PersistenceManager.

You can use a static JDOHelper method to access the PersistenceManager associated with a persistent instance:

static PersistenceManager getPersistenceManager(Object obj);

It returns null if the obj parameter is null, a transient instance of a persistent class, or an instance of a transient
(nonpersistent) class.

This chapter describes how to make instances persistent, access them via an extent, navigate among persistent
instances, modify their state, and delete instances from the datastore. These are referred to as the CRUD operations of
using a database: Create, Read, Update, and Delete. Chapter 13 covers advanced operations for managing instances.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.1 Persistence of Instances
A class is persistent if it has been specified in a JDO metadata file and enhanced. An instance of a persistent class can
be either transient or persistent. The JDO specification refers to a persistent class as persistence-capable to emphasize
that while a class provides support for persistence, it allows instances to be transient or persistent. We just use the
phrase persistent class and note that instances can be either transient or persistent. We refer to classes that are not
persistent as transient classes. All instances of a transient class are transient.

All instances of transient and persistent classes that you construct in your applications are initially transient. They
become persistent explicitly when you pass them to makePersistent(), or implicitly if they are referenced by a persistent
instance at transaction commit.

8.1.1 Explicit Persistence

You can call the following PersistenceManager method to make a transient instance persistent explicitly:

void makePersistent(Object obj);

You must call it in the context of an active transaction, or a JDOUserException is thrown.

Null Parameters
The PersistenceManager interface has methods that are passed references to one or more instances; the
parameters are defined as one of the following types: Object, Object[], and Collection. You can pass a null
value for these parameters. If you pass a null to a method taking an Object parameter, the method has no
effect. If you pass null as the value for a parameter of the Object[] or Collection type, the method throws a
NullPointerException. If you pass a non-null Object[] or Collection that contains elements that are null, the
operation is applied to the non-null elements and the null elements are ignored.

The following program creates some Studio instances and makes them persistent with makePersistent():

package com.mediamania.content;

import com.mediamania.MediaManiaApp;
import javax.jdo.PersistenceManager;

public class LoadStudios extends MediaManiaApp {
 public static void main(String[] args) {
 LoadStudios studios = new LoadStudios();
 studios.executeTransaction();
 }
 public void execute() {
 Studio studio = new Studio("Buena Vista");
 pm.makePersistent(studio);
 studio = new Studio("20th Century Fox");
 pm.makePersistent(studio);
 studio = new Studio("DreamWorks SKG");
 pm.makePersistent(studio);
 }
}

You can also call one of the following PersistenceManager methods to make an array or collection of instances persistent:

void makePersistentAll(Object[] objs);
void makePersistentAll(Collection objs);

These methods have no effect on any of the parameter instances that are already persistent and managed by this
PersistenceManager. A JDOUserException is thrown if a parameter instance is managed by a different PersistenceManager.

When One or More Instances Fail an Operation
The PersistenceManager interface has several methods that perform operations on an array or collection of
objects. These methods include:

deletePersistentAll()

evictAll()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

makeNontransactionalAll()

makePersistentAll()

makeTransactionalAll()

makeTransientAll()

refreshAll()

retrieveAll()

Some of these methods can be called without any parameter instances, implying the operation is applied
to all instances managed by the PersistenceManager.

The operation is attempted on all of the instances, even if the operation fails for one or more of them. The
succeeding instances transition to a specific lifecycle state based on their current state and the operation
being applied. Chapter 11 covers lifecycle states and transitions. Instances that fail the operation remain
in their current state, and the method throws a JDOUserException with a nested exception array that
contains a nested exception for each failing instance.

The following program makes an array of RentalCode instances persistent:

package com.mediamania.store;

import com.mediamania.MediaManiaApp;
import javax.jdo.PersistenceManager;
import java.math.BigDecimal;

public class LoadRentalCodes extends MediaManiaApp {
 private static BigDecimal cost6 = new BigDecimal("6.00");
 private static BigDecimal cost5 = new BigDecimal("5.00");
 private static BigDecimal cost4 = new BigDecimal("4.00");
 private static BigDecimal cost2 = new BigDecimal("2.00");
 private static BigDecimal cost1 = new BigDecimal("1.00");

 private static RentalCode[] codes = {
 new RentalCode("Hot", 1, cost6, cost6),
 new RentalCode("New", 2, cost5, cost4),
 new RentalCode("Recent", 4, cost5, cost2),
 new RentalCode("Standard", 5, cost4, cost2),
 new RentalCode("Oldie", 7, cost2, cost1)
 };
 public static void main(String[] args) {
 LoadRentalCodes loadRentalCodes = new LoadRentalCodes();
 loadRentalCodes.executeTransaction();
 }
 public void execute() {
 pm.makePersistentAll(codes);
 }
}

It is a common mistake to pass an array or collection to makePersistent(), which has a single instance parameter and
makes it persistent. In this case, makePersistent() throws an exception because, although arrays and collections are
objects, they cannot be persistent by themselves. So, be sure that you call makePersistentAll() when making an array or
collection of instances persistent. Each PersistenceManager operation that can accept multiple instances, passed by an
array or collection, has a method name that ends with the word All.

8.1.2 Persistence-by-Reachability

Within application memory, instances of transient classes and the transient and persistent instances of persistent
classes can reference one another. When a persistent instance is committed to the datastore, transient instances of
persistent classes that are referenced by persistent fields of the flushed instance also become persistent. This behavior
propagates to all instances in the closure of instances reachable through persistent fields. This behavior is called
persistence-by-reachability.

Figure 8-1 illustrates persistence-by-reachability in an instance diagram.

Figure 8-1. Persistence-by-reachability

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-1. Persistence-by-reachability

Each rectangle represents an instance, identified by the names i1 through i9. The UML stereotype notation of
«stereotype» is used to indicate whether the class and instance are transient or persistent. The specific class of each
instance is not identified, but the topmost stereotype indicates whether the class is persistent or transient. Only i4 is an
instance of a transient class; all the others are instances of a persistent class. The stereotype below the instance
identifier indicates whether the specific instance is transient or persistent. In the top half of Figure 8-1, i1 is persistent
and all other instances are transient. The field c1 is a collection that contains references to i5, i6, and i7. Instance i2
contains a transient field named f2, and it references i3.

The top half of the diagram indicates the persistence of instances in memory prior to commit; the bottom half specifies
their persistence after commit. The instances identified as transient in the bottom half of the figure are not in the
datastore. Each reference depicted in this model is a persistent field, except for the f2 field in instance i2. The
reachability algorithm does not include transient instances referenced by a transient fields. As you can see, the
reachability algorithm transitively traverses through references and collections, making all instances of persistent
classes persistent. Instance i4 is an instance of a transient class, so it does not become persistent. Instance i3,
referenced by the transient field f2, also does not become persistent.

When you explicitly make an instance persistent, any transient instances that are reachable transitively via persistent
fields of this instance become provisionally persistent. The reachability algorithm runs again at commit. Any instance
that was made provisionally persistent during the transaction, but is no longer reachable from a persistent instance at
commit, reverts to a transient instance.

The following program loads information about new movies into the database, making extensive use of persistence-by-
reachability. In addition, it creates a RentalItem instance for each item that will be rented to customers. A large
percentage of the code deals strictly with parsing the input data. Line [1] creates a Movie instance, which is then made
persistent on line [2]. After reading a line of data with movie-content data, the program reads some information about
the particular formats of the movie (e.g., DVD and VHS), represented by a MediaItem instance. The parseMediaItemData()
method reads the information required to initialize a MediaItem instance. Line [4] creates the MediaItem instance. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method reads the information required to initialize a MediaItem instance. Line [4] creates the MediaItem instance. The
input data then contains a line for each rental unit that provides its unique serial number. Line [5] creates RentalItem
instances with the provided serial number and line [6] associates it with the MediaItem instance. When
parseMediaItemData() returns the MediaItem instance, line [3] associates it with the Movie instance.

package com.mediamania.store;

import java.io.FileReader;
import java.io.BufferedReader;
import java.io.IOException;
import java.util.Calendar;
import java.util.Date;
import java.util.StringTokenizer;
import java.math.BigDecimal;
import javax.jdo.PersistenceManager;
import com.mediamania.MediaManiaApp;
import com.mediamania.content.*;

public class LoadNewMovies extends MediaManiaApp {
 private BufferedReader reader;

 public static void main(String[] args) {
 LoadNewMovies loadMovies = new LoadNewMovies(args[0]);
 loadMovies.executeTransaction();
 }
 public LoadNewMovies(String filename) {
 try {
 FileReader fr = new FileReader(filename);
 reader = new BufferedReader(fr);
 } catch (Exception e) {
 System.err.print("Unable to open input file ");
 System.err.println(filename);
 System.exit(-1);
 }
 }
 public void execute() {
 try {
 while (reader.ready()) {
 String line = reader.readLine();
 parseMovieData(line);
 }
 } catch (IOException e) {
 System.err.println("Exception reading input file");
 System.err.println(e);
 }
 // when execute returns and the transaction commits, each of the
 // transient Studio, MediaPerson, MediaItem, RentalItem instances
 // associated with the Movie instance we explicitly made persistent
 // will become persistent through reachability
 }

 public void parseMovieData(String line) throws IOException {
 StringTokenizer tokenizer = new StringTokenizer(line, ";");
 String title = tokenizer.nextToken();
 String studioName = tokenizer.nextToken();
 Studio studio = ContentQueries.getStudioByName(pm, studioName);
 if (studio == null)
 studio = new Studio(studioName); // creates a transient Studio
 String dateStr = tokenizer.nextToken();
 Date releaseDate = Movie.parseReleaseDate(dateStr);
 String rating = tokenizer.nextToken();
 String reasons = tokenizer.nextToken();
 String genres = tokenizer.nextToken();
 int runningTime = 0;
 try {
 runningTime = Integer.parseInt(tokenizer.nextToken());
 } catch (java.lang.NumberFormatException e) {
 System.err.print("Exception parsing running time for ");
 System.err.println(title);
 }
 String directorName = tokenizer.nextToken();
 MediaPerson director = ContentQueries.getMediaPerson(pm, directorName);
 if (director == null) {
 System.err.print("Director named ");
 System.err.print(directorName);
 System.err.print(" for movie ");
 System.err.print(title);
 System.err.println(" not found in the database");
 director = new MediaPerson(directorName); //creates transient MediaPerson
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 Movie movie = new Movie(title, studio, releaseDate, rating, reasons, [1]
 genres, runningTime, director); // creates transient Movie
 pm.makePersistent(movie); [2]

 int numFormats = 0;
 try {
 numFormats = Integer.parseInt(tokenizer.nextToken());
 } catch (java.lang.NumberFormatException e) {
 System.err.print("Exception parsing number of formats for ");
 System.err.println(title);
 }
 for (int i = 0; i < numFormats; ++i) {
 MediaItem mediaItem = parseMediaItemData(movie);
 movie.addMediaItem(mediaItem); // adds transient MediaItem [3]
 }
 }
// the following method returns a transient MediaItem
// and a set of associated transient RentalItems
 private MediaItem parseMediaItemData(MediaContent content)
 throws IOException {
 String line = reader.readLine();
 StringTokenizer tokenizer = new StringTokenizer(line, ";");
 String format = tokenizer.nextToken();
 String priceString = tokenizer.nextToken();
 BigDecimal price = new BigDecimal(priceString);
 String rentalCodeName = tokenizer.nextToken();
 RentalCode rentalCode = StoreQueries.getRentalCode(pm, rentalCodeName);
 int Nrentals = 0;
 try {
 Nrentals = Integer.parseInt(tokenizer.nextToken());
 } catch (java.lang.NumberFormatException e) {
 System.err.print("Exception parsing # of rentals for ");
 System.err.println(content.getTitle());
 }
 int NforSale = 0;
 try {
 NforSale = Integer.parseInt(tokenizer.nextToken());
 } catch (java.lang.NumberFormatException e) {
 System.err.print("Exception parsing # for sale of ");
 System.err.println(content.getTitle());
 }
 MediaItem mediaItem = new MediaItem(content, format, price, [4]
 rentalCode, NforSale);
 for (int r = 0; r < Nrentals; ++r) {
 String serialNumber = reader.readLine();
 RentalItem rentalItem = new RentalItem(mediaItem, serialNumber); [5]
 mediaItem.addRentalItem(rentalItem); // add transient RentalItem [6]
 }
 return mediaItem;
 }
}

When the Movie instance is made persistent on line [2], a MediaPerson and Studio instance are created and referenced by
the Movie instance if they are not found in the database. In this case, when the call is made to makePersistent() on line
[2], the MediaPerson and Studio instances become provisionally persistent. References are established from the newly
persistent Movie instance to MediaItem instances. References are then established from these MediaItem instances to
RentalItem instances on line [6]. The reachability algorithm runs when the transaction commits. If a MediaPerson or Studio
instance is still associated with the Movie instance at commit, it becomes persistent. Further, each MediaItem instance
associated with the Movie instance and each RentalItem instance associated with each such MediaItem instance are
reachable from the Movie instance and become persistent.

A major benefit of persistence-by-reachability is that most of your application can be written entirely independent of
JDO, without making any explicit calls to JDO interfaces. Most of your application can use standard Java practices to
create and associate instances in memory, without knowing that a datastore or transaction is involved. The JDO
implementation automatically handles all the work of storing new persistent instances and associations that you have
established established between persistent instances.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.2 Extent Access
An extent provides you with access to all the persistent instances of a class and, optionally, its subclasses. You can
iterate over the elements of the extent or perform a query on the extent. The JDO Extent interface represents the extent
of a class. Later in this chapter, we will discuss the IgnoreCache flag, which controls whether instances made persistent
or deleted during the current transaction are contained in the extent.

You control whether an extent is maintained for a class in the metadata. You use the metadata class element's requires-
extent attribute to indicate whether the persistent class has an extent. It has a default value of "true".

If your application does not need to iterate over the instances of a class or perform a query on the extent, you can set
the requires-extent attribute to "false" explicitly. Even if a class does not have an extent, you can still make instances
persistent, establish references to them, and navigate to them in your application and queries.

JDO 1.0.1 requires that if a class has a requires-extent set to "true", none of its subclasses can set requires-extent to "false".
If your application specifies the subclass's parameter to be true when calling the getExtent() method for a base class, all
subclass instances are included in the iteration of the extent.

8.2.1 Accessing an Extent

You access the Extent associated with a class by calling the following PersistenceManager method:

Extent getExtent(Class persistentClass, boolean subclasses);

It returns an Extent that contains all the instances in the class specified by the persistentClass parameter and all the
instances of its subclasses, if the subclasses parameter is true. If the class identified by the persistentClass parameter does
not have an extent, a JDOUserException is thrown. This occurs only if the metadata for the class has the requires-extent
attribute set to "false".

The Extent interface has methods you can use to access the components that were used initially to construct the Extent:

PersistenceManager getPersistenceManager();
Class getCandidateClass();
boolean hasSubclasses();

An Extent is not a Java collection instance that has all the instances of the class populated in memory. This is a common
misunderstanding. Common Collection behaviors are not possible. For example, you cannot determine whether one
Extent contains another, the size of the Extent, or whether the Extent contains a specific instance. Such operations are
performed by executing a query against the Extent. An Extent instance is logically a holder of the following information:

The class of the instances in the Extent

Whether subclasses are part of the Extent

A collection of active iterators over the Extent

No datastore action is taken when you construct an Extent. The contents of the Extent are accessed when a query is
executed or you use an Iterator to iterate over its elements. An Extent is often used as a parameter to a Query instance.
When you perform a query on an Extent, the Extent is used only to identify the prospective datastore instances; its
elements are typically not instantiated in the JVM. Chapter 9 covers queries in detail.

8.2.2 Extent Iteration

You call the following Extent method to acquire an Iterator to iterate over all the instances in the Extent:

Iterator iterator();

You can call iterator() multiple times to construct multiple Iterator instances that can iterate over the extent
independently. Extent does not provide any other Collection methods. If you call any mutating Iterator method, including
remove() , an UnsupportedOperationException is thrown. If you have already accessed a specific instance in the Extent and it
is in memory, it is returned. This instance also contains any updates you may have made to it.

An Extent can have a very large number of instances. It might be common for you to iterate over the elements of an
Extent. Extents are supposed to be implemented such that you do not get out-of-memory conditions during iteration. If
your application does have limitations on the number of instances that can reside in memory, Chapter 13 describes the
ability to evict instances from the cache as a means of limiting memory growth.

When you have finished using an extent Iterator, you should close it to free all its associated resources. You can call the
following Extent method to close an Iterator acquired from the Extent:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following Extent method to close an Iterator acquired from the Extent:

void close(Iterator iterator);

After this call, the Iterator returns false to hasNext() and throws NoSuchElementException if next() is called. The Extent itself
can still be used to acquire other iterators and perform queries. You can also call the following Extent method to close all
of the iterators acquired from the Extent:

void closeAll();

The following program demonstrates the use of an Extent. It accesses the MediaContent extent on line [1] and acquires
an Iterator on line [2]. It then iterates through the extent, accessing each MediaContent instance on line [3].

package com.mediamania.store;

import java.util.Iterator;
import javax.jdo.PersistenceManager;
import javax.jdo.Extent;
import com.mediamania.MediaManiaApp;
import com.mediamania.content.MediaContent;

public class GetMediaContent extends MediaManiaApp {
 public static void main(String[] args) {
 GetMediaContent content = new GetMediaContent();
 content.executeTransaction();
 }
 public void execute() {
 Extent mediaExtent = pm.getExtent(MediaContent.class, true); [1]
 Iterator iter = mediaExtent.iterator(); [2]
 while (iter.hasNext()) {
 MediaContent media = (MediaContent) iter.next(); [3]
 System.out.println(media.getDescription());
 }
 }
}

8.2.3 Ignoring the Cache

The IgnoreCache flag in the PersistenceManager controls whether instances made persistent or deleted in the current
transaction are included during Extent iteration or queries. We cover the effect of IgnoreCache on queries in Chapter 9. If
you have set the IgnoreCache flag to false, an implementation that performs queries in the datastore server will need to
flush the instances in the application cache to the datastore, so their currently cached state can be reflected in the
query result. You can set IgnoreCache to true as a performance-optimizing hint, so the implementation can avoid flushing
the cache when a query is executed or an Extent is iterated.

You can use the following PersistenceManager methods to get and set the IgnoreCache flag associated with a
PersistenceManager:

boolean getIgnoreCache();
void setIgnoreCache(boolean flag);

The IgnoreCache flag affects the extent Iterators for all Extents obtained from the PersistenceManager.

If you have the IgnoreCache flag set to false in the PersistenceManager when you call iterator() to obtain an Iterator instance
from an Extent, then:

The Iterator will return instances that were made persistent in the transaction prior to calling iterator().

The Iterator will not return instances deleted in the transaction prior to the call to iterator().

Setting the IgnoreCache flag to true is only a hint that the Extent can return approximate results by ignoring persistent
instances that have been added, modified, or deleted in the current transaction. If IgnoreCache is set to true in the
PersistenceManager when an Iterator is obtained, new and deleted instances in the current transaction might be ignored by
the Iterator, but it is at the option of the implementation. That is, new instances might not be returned, and deleted
instances might be returned. Iterating an Extent with IgnoreCache set to true can differ among implementations.
Therefore, to be portable you should set the IgnoreCache flag to false.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.3 Accessing and Updating Instances
Once you have accessed some instances by iterating an Extent or executing a query, you can access related instances
by traversing references and iterating through collections contained in the accessed instances. The JDO implementation
ensures that the related objects are instantiated and read from the datastore. All classes that can access a field—based
on its access modifier (public, private, etc.)—can directly access and modify the field, just as they would if the application
were not running in a JDO environment.

The following program accesses a specific Movie instance and determines how many DVD copies of the Movie are
currently available for rent. It accesses a specific Movie instance and then navigates to related instances. Line [1]
accesses the Movie, based on its title. Appendix E contains the implementation of the StoreQueries class. Line [2]
accesses the set of associated MediaItem instances. We access each MediaItem instance on line [3] and determine if it is
a DVD format on line [4]. If so, line [5] accesses its set of associated RentalItem instances. We acquire a reference to
each RentalItem instance on line [6]. On line [7], we determine whether the RentalItem is currently being rented. If it is
currently rented to a customer, the value of rental will not be null. If rental is null, then it should be in stock and available
for rent. In this case, we increment the dvdRentalsInStock counter. Once all the instances have been accessed, we print
the value of dvdRentalsInStock on line [8].

package com.mediamania.store;

import java.util.Iterator;
import java.util.Set;
import javax.jdo.PersistenceManager;
import javax.jdo.Extent;
import com.mediamania.MediaManiaApp;
import com.mediamania.content.Movie;

public class DVDMovieInStock extends MediaManiaApp {
 private String title;

 public DVDMovieInStock(String title) {
 this.title = title;
 }
 public static void main(String[] args) {
 DVDMovieInStock inStock = new DVDMovieInStock(args[0]);
 inStock.executeTransaction();
 }
 public void execute() {
 int dvdRentalsInStock = 0;
 Movie movie = StoreQueries.getMovieByTitle(pm, title); [1]
 Set items = movie.getMediaItems(); [2]
 Iterator iter = items.iterator();
 while (iter.hasNext()) {
 MediaItem item = (MediaItem) iter.next(); [3]
 if (item.getFormat().equals("DVD")) { [4]
 Set rentals = item.getRentalItems(); [5]
 Iterator rentalIter = rentals.iterator();
 while (rentalIter.hasNext()) {
 RentalItem rentalItem = (RentalItem) rentalIter.next(); [6]
 Rental rental = rentalItem.getCurrentRental();
 if (rental == null) dvdRentalsInStock++; [7]
 }
 }
 }
 System.out.print(dvdRentalsInStock); [8]
 System.out.print(" DVD copies of the movie ");
 System.out.print(title);
 System.out.println(" are in stock");
 }
}

When you modify the field of a persistent instance, the instance is automatically marked as modified. When you commit
the transaction, all of the updates are propagated to the datastore.

The following method is defined in the MediaItem class. It is called whenever one or more copies of a particular item are
sold to a customer. An application calls this method to update the count of the quantity in stock and the number of
items sold year-to-date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

items sold year-to-date.

 public void sold(int qty) {
 if (qty > quantityInStockForPurchase) {
 // report error
 }
 quantityInStockForPurchase -= qty;
 soldYTD += qty;
 }

These MediaItem field updates are propagated to the datastore at commit.

8.3.1 Explicit Marking of Modified Instances

Instances are automatically marked as modified when a field is changed, except for array fields. An array is a Java
system object, and there is no means to associate it with a particular persistent instance that should be notified when it
is updated. Some implementations may be able to track changes to an array in the enhanced code of the persistent
class. Furthermore, some may track changes to an array that is passed as a reference outside the owning class to
another class that has not been enhanced. But these are advanced capabilities that most implementations cannot
support, and they are not required by JDO. Thus, if you change an array field in a persistent instance, the changes
might not be flushed to the datastore. If you would like your applications to be portable and work correctly across all
JDO implementations, you should not depend on the automatic tracking of array changes.

You can call the following JDOHelper method to mark a specific field as being dirty (modified), so that its values are
propagated to the datastore when the instance is flushed:

static void makeDirty(Object obj, String fieldName);

The fieldName parameter identifies the field to be marked as dirty; it can optionally include the field's fully qualified
package and class name. This method has no effect if the obj parameter is transient, null, or not a persistent class, or if
the field identified by fieldName is not a managed field.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.4 Deleting Instances
You can call one of the following PersistenceManager methods to delete one or more persistent instances from the
datastore:

void deletePersistent(Object obj);
void deletePersistentAll(Object[] objs);
void deletePersistentAll(Collection objs);

They must be called in the context of an active transaction, or a JDOUserException is thrown. The representation of the
instance in the datastore is deleted when it is flushed to the datastore (via commit() or evict()). Chapter 13 covers the
evict() method. These methods have no effect on instance parameters that are already deleted in the transaction. They
throw a JDOUserException if a parameter is transient or managed by a different PersistenceManager.

The following application is used to delete a customer from the datastore. This includes deleting all the customer's
transactions. Line [1] accesses the Customer instance. If line [2] determines that Rental instances are still associated
with the Customer instance, the application prints an error message and returns without removing any data. Otherwise,
it deletes the Customer instance and its associated Address and Transaction instances.

package com.mediamania.store;

import java.util.Set;
import java.util.List;
import com.mediamania.MediaManiaApp;

public class DeleteCustomer extends MediaManiaApp {
 private String lastName;
 private String firstName;

 public DeleteCustomer(String fname, String lname) {
 lastName = lname;
 firstName = fname;
 }
 public static void main(String[] args) {
 DeleteCustomer deleteCustomer = new DeleteCustomer(args[0], args[1]);
 deleteCustomer.executeTransaction();
 }
 public void execute() {
 Customer customer = StoreQueries.getCustomer(pm, firstName, lastName); [1]
 Set rentals = customer.getRentals();
 if (!rentals.isEmpty()) { [2]
 System.err.print(firstName); System.err.print(" ");
 System.err.print(lastName);
 System.err.print(" cannot be deleted until current rentals ");
 System.err.println("are returned");
 return;
 }
 List transactions = customer.getTransactionHistory();
 Address address = customer.getAddress();
 pm.deletePersistent(address);
 pm.deletePersistentAll(transactions);
 pm.deletePersistent(customer);
 }
}

Some datastores and JDO implementations support integrity constraints—similar to referential integrity constraints—
that could prevent the deletion of an instance. If your application uses these non-JDO facilities, it is implementation-
defined whether an exception is thrown at commit or the delete operation is simply ignored. Explicit support for
automatic relationship maintenance, delete propagation, and referential integrity constraints are being considered as a
possible feature in the next release of JDO.

The behavior of deletePersistent() and deletePersistentAll() is not exactly the inverse of makePersistent() and
makePersistentAll(), due to the transitive nature of persistence-by-reachability, which is not used when you delete
instances. You need to call deletePersistent() or deletePersistentAll() explicitly for all instances that need to be deleted. Any
instances that are referenced by the deletePersistent() and deletePersistentAll() parameters are not deleted, unless they
are also parameters to these methods.

8.4.1 Delete Propagation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some implementations support delete propagation. On a persistent class basis, you would indicate which references and
collections should be traversed to establish a set of related instances to be deleted. When the application deletes an
instance of the class, the JDO implementation automatically deletes the specified set of related instances. This capability
is similar to the persistence-by-reachability algorithm, except it performs the inverse operation.

This relies on implementation-specific facilities that are not covered by the JDO specification. Some implementations
allow you to specify this behavior in the metadata and invoke it automatically when the application calls deletePersistent(
) or deletePersistentAll(). If you want your application to be portable, you should use deletePersistent() or deletePersistentAll(
) for all deletions from the datastore, and you should not depend on implementation-specific reachability algorithms that
automatically delete related instances.

A portable approach for delete propagation is to use the jdoPreDelete() callback, defined in the JDO InstanceCallbacks
interface. If your persistent class has declared that it implements InstanceCallbacks, this method is called during the
execution of deletePersistent():

public void jdoPreDelete();

This method is useful when you have a composite-aggregation association, where the related instances are considered
existence-dependent components of the composite object. The deletion semantics of the composite aggregate can be
defined by deleting the dependent instances in this method. This method can reference and use any of the fields in the
class. But when the method completes, you cannot access any of the deleted instance's fields, or a JDOUserException is
thrown.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. The JDO Query Language
In Chapter 8 we learned how to access all the instances of a class by using an Extent. Once we have accessed some
instances from the datastore, we can navigate to other related instances in Java by traversing references and iterating
through collections. This allows us to access an application-specific closure of related instances to perform the
functionality provided by the application.

But when you iterate an Extent, you potentially access all the instances of a class. We may only care about one or a
small number of instances of the class that meet certain criteria. Once these initial instances have been accessed, we
typically then navigate to instances related to those initial instances. However, getting to the first few persistent
instances is a bootstrap issue. JDO provides a query language, called JDO Query Language (JDOQL), that is used to
access persistent instances based on specified search criteria.

You perform queries in JDO by using the Query interface. The PersistenceManager interface is a factory for creating Query
instances, and queries are executed in the context of the PersistenceManager instance used to create the Query instance.
JDO queries allow you to filter out instances from a set of candidate instances specified by either an Extent or a
Collection. A filter consisting of a Boolean expression is applied to the candidate instances. The query result includes all
of the instances for which the Boolean expression is true.

The JDO query facility was designed with the following goals:

Query language neutrality. The underlying query language might be a relational query language such as
SQL, an object database query language such as the Object Data Management Group's (ODMG) Object Query
Language (OQL), or a specialized API to a hierarchical database or mainframe EIS system.

Optimization to a specific query language. The query interface must be capable of optimizations; therefore,
enough information should be specified so that the implementation can exploit datastore-specific query
features. In particular, JDO specifies JDOQL so that all queries can be executed by a standard SQL-92 back-end
datastore.

Accommodation of multitier architectures. A query may be executed entirely in application memory,
delegated to a query engine running in a back-end datastore server, or executed using a combination of
processing in the application and datastore server processes.

Large result set support. A query might return a massive number of instances. The query architecture must
be able to process the results within the resource constraints of the execution environment.

Compiled query support. Parsing a query may be resource intensive. In many applications, the parsing can
be done during application development or deployment prior to execution. The query interface must allow you
to compile queries and bind values to parameters at runtime for optimal query execution.

The execution of a query might be performed by the PersistenceManager or it might be delegated to the underlying
datastore. Thus, the actual underlying datastore query executed might be implemented in a language very different
from Java, and it might be optimized to take advantage of a particular query-language implementation.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.1 Query Components
The JDO query facility applies a Boolean filter to a collection of candidate instances and returns the instances that
evaluate to true. The collection of candidate instances can be either an Extent or a Collection. The class of candidate
instances is another query component. Instances are returned in the query result only if they are instances of the
candidate class.

Let's begin by examining a method that performs a query that accesses Customer instances in the Media Mania model.
We assume that an application has started a transaction and called queryCustomers(), passing the PersistenceManager
instance and values to filter the Customer instances to those whose addresses are in a specific city and state.

public static void queryCustomers(PersistenceManager pm,
 String city, String state) {
 Extent customerExtent = pm.getExtent(Customer.class, true); [1]
 String filter = "address.city == city && state == address.state"; [2]
 Query query = pm.newQuery(customerExtent, filter); [3]
 query.declareParameters("String city, String state"); [4]
 query.setOrdering([5]
 "address.zipcode ascending, lastName ascending, firstName ascending");
 Collection result = (Collection) query.execute(city, state); [6]
 Iterator iter = result.iterator();
 while (iter.hasNext()) { [7]
 Customer customer = (Customer) iter.next();
 Address address = customer.getAddress();
 System.out.print(address.getZipcode()); System.out.print(" ");
 System.out.print(customer.getFirstName()); System.out.print(" ");
 System.out.print(customer.getLastName()); System.out.print(" ");
 System.out.println(address.getStreet());
 }
 query.close(result); [8]
}

This code performs a query on the Customer extent, which we access on line [1]. When we create the Query instance on
line [3], we provide the Customer extent as the collection of candidate instances to be evaluated in the query. When you
use an Extent, as we have here, it also identifies the class of the candidate instances. We use the candidate class to
establish the namespace for the identifiers used in the query filter. Line [2] specifies the filter for the query. It uses the
Customer field address and navigates to the associated Address instance to access the city and state fields. The city and
state identifiers in the filter are query parameters, which are declared on line [4]. We access all Customer instances that
live in a specific city and state. The Java == operator expresses equality, and the Java operator && performs a
conditional AND operation. You will find JDOQL very easy to learn, because it uses Java operators and syntax. You also
express your queries using the identifiers in your object model. On line [5], we establish an ordering for the instances
that are in the query result. First we order customers based on their ZIP code; we then order all customers in the same
ZIP code by their last name and then first name, all in ascending order. This ordering specification is similar to SQL's
ORDER BY clause.

Line [6] executes the query. We pass the city and state method parameters to execute() as query parameters, which are
also named city and state. It is not necessary for the method parameters to have the same names as the query
parameters, but we do so to make it clear to anyone reading the code that they are associated. Line [4] declares the
query parameters and their order. The order in this declaration establishes the order that the query parameter values
should be passed to execute() on line [6].

The result of the query must be cast to a Collection in JDO 1.0.1. The execute() method is defined to return Object, to
allow for future extensions that may return a single instance. In general, you should call iterator() only on the return
value of execute(). Once we have an Iterator, we can iterate through all the returned Customer instances. The code also
navigates from the returned Customer instance to its associated Address instance. Once we are done with the query
result, we close it on line [8].

Every query requires three components:

Class of candidate instances

This specifies the class of the instances that should be included in the query result. All of the candidate
instances should be of this class or one of its subclasses. The class provides a scope for the names in the query
filter, similar to the scope established for field names in a Java class definition. In the previous example, the
Customer extent established the class of candidate instances when we called newQuery().

Collection of candidate instances

The collection of candidate instances is either a java.util.Collection or an Extent. We used the Extent for the
Customer class in the previous example. We use the Extent when we intend the query to be filtered by the
datastore, not by in-memory processing. The Collection might be a previous query result, allowing for
subqueries. If you do not explicitly provide the collection of candidate instances but you do provide the class of
candidate instances, the candidate collection defaults to the extent of the class of candidate instances, including
subclass instances.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subclass instances.

Any instances in the collection of candidate instances that are not of this class are silently ignored and are not
included in the query result. This can occur when the set of candidate instances is a Collection containing
instances of multiple classes.

Query filter

The query filter is a String that contains a Boolean expression that is evaluated for each instance in the
candidate collection. The query result returns the candidate instances that have a true result for the query filter.
If the query filter is not specified, the filter results in a true value for all of the candidate instances. The query
filter in the previous example is specified on line [2].

The collection and class of the candidate instances and the query filter can be initialized when a Query is constructed by
calling one of several newQuery() methods defined in the PersistenceManager interface (as we did on line [3]). Once a
Query has been constructed, all of the query components can be set; each has an associated set method.

A query may also include the following components:

Parameters

A parameter provides a means of passing a value to be used in the query filter expression. Parameters serve a
role similar to formal method parameters in Java. The query in our example had query parameters named city
and state, declared on line [4]. The declaration of query parameters' name and type has the same syntax as
method parameters. You provide a value for the query parameters when the query is executed.

Variables

A variable is used in a query filter to reference the elements of a collection. The use and declaration syntax of
query variables is similar to the local variables in a method. Our example did not access elements of a
collection, so we did not use a query variable. A variable is bound to the elements of a collection by a contains()
expression (covered later in this chapter). Some implementations allow a variable that is not bound to a
collection to be associated with an Extent. In this case, the variable is referred to as an unbound variable, and it
may represent any instance in the extent of the class in the datastore.

Import statements

Parameters and variables can be of a class different from the candidate class; an import statement declares
their type names. Types supported by JDO and defined in the java.lang package do not need to be imported. This
includes the String class, the type of the query parameters in our example, so we did not need to import any
types. Examples of import are provided later in this chapter.

Ordering specification

You can specify the order of the instances returned in the query result by providing an ordering specification,
which is a list of expressions with an indicator to specify whether the values should be in ascending or
descending order. We provided an ordering specification on line [5] in our example.

You need to create and initialize these query components before you execute a query. Query components can be
initialized when a Query is constructed or via a set method provided for the query component. The order in which you
initialize the query components before the Query is executed does not matter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.2 Creating and Initializing a Query
The PersistenceManager interface contains a set of Query factory methods used to construct Query instances. They mainly
differ in which query components are initialized. Query instances may be constructed at any time before a
PersistenceManager is closed.

The following PersistenceManager method constructs an empty Query instance with none of the components initialized:

Query newQuery();

The following PersistenceManager methods construct a Query instance with an Extent as the collection of candidate
instances:

Query newQuery(Extent candidates);
Query newQuery(Extent candidates, String filter);

The candidate class is initialized with the class of the Extent. The second method also initializes the query filter. We used
this second method when we constructed the Query on line [3] in our example.

Alternatively, a collection can serve as the set of candidate instances in a query. The following PersistenceManager
methods construct a Query instance with a Collection as the set of candidate instances:

Query newQuery(Class candidateClass, Collection candidates);
Query newQuery(Class candidateClass, Collection candidates, String filter);

When performing a query on a collection, it is necessary to specify the class of the candidate instances explicitly.

The elements in the collection should be persistent instances associated with the same PersistenceManager as the Query
instance. If the collection contains instances associated with another PersistenceManager, a JDOUserException is thrown
during execute(). An implementation might allow you to perform a query on a collection of transient instances, but this
is a nonportable, implementation-specific capability.

You can also construct a Query instance without initializing the set of candidate instances by calling one of the following
PersistenceManager methods:

Query newQuery(Class candidateClass);
Query newQuery(Class candidateClass, String filter);

Once the Query is constructed, the collection of candidate instances can be set by calling one of its two setCandidates()
methods, or it will default to the extent of the candidate class (including subclasses) identified by the candidateClass
parameter passed to one of these two newQuery() methods. This allows you to perform a query without having to deal
with an Extent.

A Query instance can be serialized. This allows you to create queries, serialize them, store them on disk, and later use
them in a different execution environment. The serialized fields include the candidate class, the filter, parameter
declarations, variable declarations, imports, the IgnoreCache setting, and the ordering specification. Of course, the
candidate collection is not serialized with the Query instance. When a serialized Query instance is restored, it is no
longer associated with its former PersistenceManager.

The following PersistenceManager method is used to construct a new Query instance from an existing or deserialized Query
instance:

Query newQuery(Object query);

The query parameter might be a restored Query instance that was serialized from the same JDO implementation but a
different execution environment, or it might be currently bound to a PersistenceManager from the same implementation.
All of the query components from the query parameter are copied to the new Query instance, except for the candidate
Collection or Extent. You can initialize this query component with a call to setCandidates().

Lastly, you can use the following PersistenceManager method to construct a Query that uses a query language different
than JDOQL:

Query newQuery(String language, Object query);

The Query instance is constructed using the specified language and query parameters. The language parameter specifies
the query language used by the query parameter. The query instance must be an instance of a class defined by the
query language. For JDOQL, the value of the language parameter is "javax.jdo.query.JDOQL". The JDO specification does
not specify other query languages that can be specified and used by this method; it is implementation-specific.

Once you have constructed a Query, you can access the PersistenceManager instance you originally used to create the
Query instance by calling the following Query method:

PersistenceManager getPersistenceManager();

A null is returned if the Query was restored from a serialized form.

You can have multiple Query instances active simultaneously in the same PersistenceManager instance. The queries may

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can have multiple Query instances active simultaneously in the same PersistenceManager instance. The queries may
be executed simultaneously by different threads, but the implementation may execute them serially. In either case, the
execution is thread-safe.

The Query interface provides methods to bind query components before the query is executed. Their parameters replace
the previously set query component (i.e., the methods are not additive). For example, if a query needs multiple
variables, they all must be specified in the same call to declareVariables().

You can use the following Query methods to set the required components of the query, including the candidate class,
candidate set, and filter:

void setClass(Class candidateClass);
void setCandidates(Collection candidates);
void setCandidates(Extent candidates);
void setFilter(String filter);

If you specify an Extent as the set of candidate instances, the candidate class defaults to the class of the Extent. When
you perform a query on a collection, you need to specify the class of the candidate instances explicitly. In other words,
if you pass a Collection to setCandidates(), you must also call setClass() before compiling or executing the query.

If you specify the class of candidate instances but do not provide the collection of candidate instances, the collection
defaults to the Extent of the candidate class, with subclass instances included. Therefore, each of the following
approaches produces an equivalent Query initialization:

// Approach 1
Query query = pm.newQuery(MediaContent.class);

// Approach 2
Query query = pm.newQuery();
query.setClass(MediaContent.class);

// Approach 3
Query query = pm.newQuery(pm.getExtent(MediaContent.class, true));

// Approach 4
Query query = pm.newQuery();
query.setCandidates(pm.getExtent(MediaContent.class, true));

If a collection serving as the set of candidates has an element that has been deleted by a call to deletePersistent(), the
element is ignored. If instances are added or removed from the candidates collection after setCandidates() is called, it is
implementation-specific whether those elements take part in the query or a NoSuchElementException is thrown during
execution of the query. So, you should not alter the collection once it has been passed to setCandidates().

You declare query parameters, variables, and their types after the Query has been constructed by calling the following
methods:

void declareParameters(String parameters);
void declareVariables(String variables);
void declareImports(String imports);

The following method initializes the ordering specification:

void setOrdering(String ordering);

We cover each of these methods and their parameter syntax later in this chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.3 Changes in the Cache
When you use an Extent for the set of candidate instances in a query, the instances you retrieve depend on the setting
of the IgnoreCache flag. This flag indicates whether changes you have made to instances during the transaction should
be reflected in the query results.

If IgnoreCache is false, instances that were made persistent in the current transaction are included in the set of candidate
instances; instances deleted in the current transaction are not included in the set of candidate instances. Furthermore,
instances changed in the transaction are evaluated with their current values.

Setting IgnoreCache to true tells the query engine that you would like queries to be optimized and to return approximate
results by ignoring any changes in the cache. Instances made persistent in the current transaction might not be
considered part of the candidate instances, and instances deleted in the current transaction might not be considered
part of the candidate instances.

For portability, you should set the IgnoreCache flag to false. An implementation may choose to ignore the setting of the
IgnoreCache flag, always returning exact results that reflect current cached values, just as if the value of the flag were
false. The results of iterating Extents and executing queries may differ among implementations when IgnoreCache is set to
true.

The PersistenceManager interface has the following methods to get and set the value of the IgnoreCache flag for all Query
instances created by the PersistenceManager:

boolean getIgnoreCache();
void setIgnoreCache(boolean flag);

The initial value of the IgnoreCache setting in a Query instance is set to the value that the IgnoreCache flag in the
PersistenceManager had when the Query was constructed. It is also possible to get and set the IgnoreCache option on a
specific Query instance by using the following Query methods:

void setIgnoreCache(boolean flag);
boolean getIgnoreCache();

The IgnoreCache flag is preserved when you construct a query instance from another query instance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.4 Query Namespaces
Two namespaces exist in JDOQL queries; they contain:

The names of types

The names of fields, parameters, and variables

Parameters and variables are given a name and type when they are declared. The types of the parameters and
variables are placed in the first namespace; the parameter and variable names are placed in the latter namespace.

9.4.1 Type Names

When a type name is used (e.g., in a parameter or variable declaration), it must be one of the following:

The name of the candidate class

The name of a class or interface declared in the java.lang package

The name of a class or interface imported by a call to declareImports()

The name of a class or interface in the same package as the candidate class

A name imported by a type-import-on-demand declaration, as in "import <package>.*;"

The type namespace automatically includes the name of the candidate class and the names of other classes in the same
package. It also automatically includes the names of the public types declared in the java.lang package, just as if there
had been a type-import-on-demand declaration (import java.lang.*).

You must include any additional types names necessary for the types of parameters and variables. You import the types
into a Query instance by calling the following Query method:

void declareImports(String imports);

The String parameter imports contains one or more import statements, separated by a semicolon. The syntax of the
parameter is identical to Java's import statements. All imports must be declared in the same call to declareImports().

For example, we may have a query that accesses the Transaction instances associated with a Customer, returning those
with an acquisitionDate field that is greater than a specific Date value. This query would have a Transaction variable used to
reference the elements of the transactionHistory collection in Customer. It would also have a query parameter of type Date.
We would specify the following import declaration:

query.declareImports(
 "import com.mediamania.store.Transaction; import java.util.Date");

The declareImports() method adds the names of the imported class or interface types into the type namespace. It is valid
to specify the same import multiple times. When a query is compiled, an error occurs if you have more than one type-
import-on-demand declaration and the same type name (excluding the package name) is imported from more than one
package. In this case, the specific type to which a type name refers would be ambiguous. This error is reported when
you call compile() or execute().

9.4.2 Field, Parameter, and Variable Names

The other query namespace contains the names of fields, parameters, and variables. The names of the fields in the
candidate class are automatically placed in this namespace. The declareParameters() method introduces the parameter
names, and the declareVariables() method introduces the variable names. The parameter and variable names must be
unique, so their use is not ambiguous in the query filter.

The this keyword can be used in the query filter to denote the current candidate instance being evaluated. This
reference can be used as an operand of the expressions in the query filter. It is possible to have a parameter or
variable name with the same name as a field in the candidate class. In this case, the candidate class field is hidden. You
can use this to access any fields of the candidate class that may be hidden by a parameter or variable of the same
name. The hidden field is accessed by using the this qualifier: this.fieldName. However, we recommend that you use
parameter and variable names that are unique and distinct from the field names. Your queries will be shorter and easier
for others to understand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for others to understand.

9.4.3 Keywords

JDOQL defines keywords in the following categories:

Primitive type names: boolean, byte, short, int, long, char, float, double

Boolean literals: true, false

Expressions: null, this

Import declarations: import

Ordering specification: ascending, descending

You cannot use these keywords as field names, though most of them are Java keywords anyway. The exceptions are
ascending and descending; you will not be able to use fields with these names in a query.

9.4.4 Literals

Expressions in a query filter can include literals of the following types:

int, long (42, -7, 2048L, 4096l)

float, double (3.14, 3.14f, 3.14F, 0.6180339887d, 1.6180339887D)

boolean (true, false)

char ('J')

String ("JDO is great!")

null

The syntax used for these literals is identical to their syntax in Java, as described in the Java Language Specification.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.5 Query Execution
When a query executes, the query filter is evaluated for each element of the candidate collection. Those instances that
evaluate to true for the filter are included in the query result, which is a subset of the instances in the candidate
collection. The query result should be cast to a Collection (execute() is declared to return an Object). You should then
aquire an Iterator to access the instances in the result.

9.5.1 Parameter Declarations

When you execute a query, you often need to provide one or more values to be used in the query filter's expressions.
One technique is to generate the query filter string dynamically, providing the necessary values directly in the filter. But
this approach does not allow the same query to be compiled and reused in subsequent query executions, which are
likely to require the same filter expressions but with different values.

Query parameters allow you to specify such values dynamically when the query is executed. The parameter names are
used in the filter expression to specify constraints. A parameter name can be used zero, one, or multiple times in the
query filter. When you execute the query, each parameter must be provided a value; these values are substituted for
each use of the parameter name in the filter. You can use parameters to minimize the need to construct a unique query
filter dynamically each time you execute a query.

You need to declare a name and type for each query parameter. In addition, you may need to import the type of the
parameter using declareImports(). The parameter declaration is a String containing one or more parameter type
declarations, separated by commas. This follows the Java syntax for declaring the parameters of a method. All the
query parameters are declared in a single String. The following Query method binds the parameter declarations to the
Query instance:

void declareParameters(String parameters);

Each parameter must be bound to a value when the query is executed. They are passed to the query execute() methods
as Java Objects; these values might be of simple wrapper types or more complex object types. The first example in this
chapter had the following query parameter declaration:

query.declareParameters("String city, String state");

You may want to have a parameter of a primitive type, such as int. You can declare a parameter to have type int, but
the value passed in the call to execute() must be the primitive's wrapper type, since it is passed as an Object. So, a
query parameter declared with type int requires an Integer value to be passed to execute(). In addition, the parameter
value passed to execute() for primitive type parameters cannot be null, because there would not be a valid value for the
parameter in the query expressions. A query parameter can be used in the filter as an operand of any query operator
that accepts a value of the parameter's type.

You can also have a query parameter that is an instance of a persistent class. Such a parameter and the fields it
references can be used with any of the supported query expressions, including the ability to navigate to other instances.
The instances should be persistent or transactional and be associated with the same PersistenceManager as the Query
instance. If a persistent instance associated with another PersistenceManager is passed as a parameter, a JDOUserException
is thrown during execute(). Some implementations may support a query parameter that is a transient instance of a
persistent class, but implementations are not required to support this.

9.5.2 Executing a Query

The Query interface provides methods to execute a query with zero or more parameters. The execute() method has been
overloaded so you can pass zero, one, two, or three parameters:

Object execute();
Object execute(Object parameter1);
Object execute(Object parameter1, Object parameter2);
Object execute(Object parameter1, Object parameter2, Object parameter3);

Two other methods, described later in this section, allow you to pass more query parameters using a different
parameter-passing technique. Each query parameter is an Object. As discussed earlier, you use a wrapper type (Integer)
to pass the value for a primitive parameter (int). The parameters passed to execute() are associated with the declared
parameters, based on their order. The parameters passed to the execute methods are used only for the current
execution and are not preserved for use in subsequent query executions. If the PersistenceManager that constructed a
Query is closed when an execute method is called, a JDOUserException is thrown.

In the following example, we access all the Movie instances with a specific rating, a running time shorter than a specific
duration, and a particular director:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

duration, and a particular director:

public static void queryMovie1(PersistenceManager pm,
 String rating, int runtime, MediaPerson dir) {
 Extent movieExtent = pm.getExtent(Movie.class, true);
 String filter =
 "rating == movieRating && runningTime <= runTime && dir == director";
 Query query = pm.newQuery(movieExtent, filter);
 query.declareParameters("String movieRating, int runTime, MediaPerson dir"); [1]
 Collection result = (Collection)
 query.execute(rating, new Integer(runtime), dir); [2]
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next();
 System.out.println(movie.getTitle());
 }
 query.close(result);
}

We declare three parameters on line [1]. The second parameter is of type int, and the third parameter is of type
MediaPerson, one of our persistent classes. Since MediaPerson is in the same package as the Movie candidate class, we do
not need to import MediaPerson explicitly with an import declaration. The JDOQL implementation will convert the Integer
parameter passed on line [2] to the int declared on line [1]. The query would also have been valid if we had declared
the runTime query parameter to be an Integer. Even though we compare runTime with the int field runningTime, JDOQL
handles such conversions automatically (see the Promotion of Numeric Operands sidebar in this chapter).

The execute() methods execute the query with the supplied parameters and return a result. An element of the candidate
collection is returned in the result if it is assignment-compatible with the candidate class of the Query, and for all
variables in the query there exists a value for which the query filter expression evaluates to true. We will cover variables
later in this chapter. If the query filter is not specified when the query is executed, then the filter defaults to true and
the input collection is filtered to include only instances of the candidate class.

The return type of the execute() methods is Object. In JDO 1.0.1, the execute() methods return an object that supports
the operations of an unmodifiable Collection; the value returned should be cast to a Collection. A future JDO release may
support queries that return a single instance; the method has been defined to return Object to allow for this future
extension. An implementation of a non-JDOQL query language might return a value of a different type (e.g.,
java.sql.ResultSet).

You can iterate the unmodifiable Collection returned by the execute() methods to access the query results. Executing any
operation that might change the Collection causes an UnsupportedOperationException. Although the object returned by
execute() is declared to implement Collection, most implementations do not return a collection that has been fully
populated with the results of the query. The primary use of the returned object is to acquire an Iterator via the iterator()
method defined in the Collection interface. The returned Collection can also serve as the set of candidate instances for an
additional query, supporting a form of subqueries.

The execute() methods described in this section support a maximum of three parameters. It is also possible to pass
parameters via a Map:

Object executeWithMap(Map parameters);

The executeWithMap() method is similar to execute(), but it takes its parameters from a Map instance. The Map contains
key/value pairs, where the key is the parameter's declared name and the value is the actual value to use for the
parameter in the query. Unlike execute(), you can pass an unlimited number of parameters to executeWithMap().

The following example extends the previous example to return only Movie instances that were released after a specified
date. This query requires four parameters, so we will use executeWithMap(). At line [1], we begin populating a HashMap
with the query parameters. The Map entry's key is the parameter name, as specified in declareParameters(), and its value
is the value to use for the parameter.

public static void queryMovie2(PersistenceManager pm,
 String rating, int runtime, MediaPerson dir, Date date) {
 Extent movieExtent = pm.getExtent(Movie.class, true);
 String filter = "rating == movieRating && runningTime <= runTime && " +
 "dir == director && releaseDate >= date";
 Query query = pm.newQuery(movieExtent, filter);
 query.declareImports("import java.util.Date");
 query.declareParameters(
 "String movieRating, int runTime, MediaPerson dir, Date date");
 HashMap parameters = new HashMap();
 parameters.put("movieRating", rating); [1]
 parameters.put("runTime", new Integer(runtime));
 parameters.put("dir", dir);
 parameters.put("date", date);
 Collection result = (Collection) query.executeWithMap(parameters); [2]
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next();
 System.out.println(movie.getTitle());
 }
 query.close(result);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Parameters can also be passed with an array:

Object executeWithArray(Object[] parameters);

The executeWithArray() method is also similar to execute(), but it takes its parameters from an array instance. The array
contains Objects; the position of parameters in the parameter declaration determines the position of their corresponding
values in the array. The number of elements in the array must be equal to the number of parameters that have been
declared. Similar to executeWithMap(), the number of parameters is not limited.

The following example performs the same query as the previous one, except this time we use executeWithArray(). The
order in which the parameters are declared on line [1] must correspond with the order in which the values are
populated in the array on line [2].

public static void queryMovie3(PersistenceManager pm,
 String rating, int runtime, MediaPerson dir,
 Date date) {
 Extent movieExtent = pm.getExtent(Movie.class, true);
 String filter = "rating == movieRating && runningTime <= runTime && " +
 "dir == director && releaseDate >= date";
 Query query = pm.newQuery(movieExtent, filter);
 query.declareImports("import java.util.Date");
 query.declareParameters(
 "String movieRating, int runTime, MediaPerson dir, Date date"); [1]
 Object[] parameters = { rating, new Integer(runtime), dir, date }; [2]
 Collection result = (Collection) query.executeWithArray(parameters);
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next();
 System.out.println(movie.getTitle());
 }
 query.close(result);
}

The result of a query can be very large, depending on the size of the candidate collection and filter. An application can
iterate through the result or pass it to another Query as its candidate instances. The size() method defined in Collection
might return Integer.MAX_VALUE if the actual size of the result is not known. A portable application should not use size().

You can call any of these execute methods repeatedly for the same Query instance. All of the query components,
including the candidate collection, are maintained by the Query instance after execution. This allows you to reexecute
the same query with different query parameter values. You can also change any of the query components of a Query
after it has been executed. The Query will be recompiled before it is executed.

9.5.3 Compiling a Query

Before you can execute a query, it is compiled to verify its correctness. Compiling a Query validates its components and
reports any inconsistencies by throwing a JDOUserException. When execute() is called, if the Query has not compiled or if a
query component has been changed since the Query was last compiled, the Query compiles automatically.

You can verify the correctness of a query before executing it by compiling it directly. The following Query method
compiles a query:

void compile();

Calling compile() tells the Query instance to prepare and optimize an execution plan for the query. Once a Query is
compiled, it can be executed repeatedly without incurring the initial parsing and optimization overhead.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.6 The Query Filter
The query filter is a Boolean expression that is evaluated for each candidate instance; the query result includes only
those instances that are true. The filter contains expressions supported by the JDO Query Language (JDOQL). Appendix
D contains the Backus-Naur Form (BNF) syntax for JDOQL.

The query filter is specified with respect to the object model defined by your persistent classes, using the field names in
your persistent classes. You do not use the names and representation found in the underlying datastore. You write your
applications using the single data model of your persistent classes.

The filter can access the fields in your classes directly, even though they may be declared private. Some developers say
that this breaks encapsulation, but database query languages express constraints on the values of fields. A JDOQL
query will never modify the value of a field, and only the JDO implementation can access these fields in your application
directly, which it needs to do anyway to manage their state. Those that argue this breaks encapsulation believe that
only the methods of a class should access its fields. JDOQL has been designed so that query execution can take place in
either the application's execution environment or the datastore server. Requiring the use of methods would require the
datastore server to support Java and the loading of your application classes. This would severely limit the number of
datastores that JDO could support. In most cases, the Java field names used in the query filter get remapped to the
names of data constructs in the underlying datastore, which are then accessed in the datastore server environment.

The names of persistent fields are supported as identifiers in query expressions. You may find some implementations
supporting nonpersistent fields (including final and static fields), but implementations are not required to support these
fields. So, if you want to write queries that will be portable across all implementations, do not use nonpersistent, final,
or static fields in your filter expressions.

You can provide the query filter to a Query when it is constructed, by using one of the newQuery() methods that takes a
filter as a parameter, as we have done in the previous examples. Or, you can set the filter by calling the following Query
method:

void setFilter(String filter);

9.6.1 General Characteristics of Expressions

The identifiers in the filter should be in the namespace of the specified candidate class, with the addition of declared
imports, parameters, and variables. As in the Java language, this is a reserved word that refers to the current candidate
instance being evaluated from the collection or extent.

JDOQL uses operators taken directly from the Java language, so Java developers will be familiar with them. Parentheses
can be used to mark operator precedence explicitly. Whitespace—nonprinting characters, including space, tab, carriage
return, and line-feed—in the filter is a separator and is otherwise ignored.

Query expressions are nonmutating and have no side effects. The assignment operators (=, +=, etc.), pre- and post-
increment, and pre- and post-decrement are not supported. JDOQL defines a few methods on String and Collection
instances. But methods defined by the application, including object construction, are not supported. Nonmutating
method calls may be supported in an implementation as a nonstandard extension.

9.6.2 Query Operators

A subset of Java's operators can be used in the filter expression. The operators apply to all the types as defined in the
Java language, except for a few cases that we will note in this section. You can use operator composition to construct
arbitrarily complex expressions. You can use parentheses to control the precedence of multiple operators and make the
expressions easier for others to read and understand.

9.6.2.1 Equality and inequality operators

Table 9-1 specifies the equality operators. These expressions have a Boolean result. We have used these in our
previous query examples.

Table 9-1. Equality operators
Operator Description

== Equal

!= Not-equal

The equal and not-equal operators are valid for all the operand types that are valid in Java. In addition, you can use
them with the following operands:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

them with the following operands:

Primitives and instances of wrapper classes (see the Promotion of Numeric Operands sidebar)

Date values (fields and parameters)

String values (fields, parameters, literals, and results of String expressions)

Promotion of Numeric Operands
Numeric operands are promoted when you use equality, comparison, and arithmetic operations. The
promotion rules follow the rules defined in the Java Language Specification (see Chapter 5) and have been
extended to support BigDecimal, BigInteger, and the numeric wrapper classes:

If either operand is of type BigDecimal, the other is converted to BigDecimal.

Otherwise, if either operand is a BigInteger and the other is a floating-point type (float, double) or
one of its wrapper classes (Float, Double), both operands are converted to BigDecimal.

Otherwise, if either operand is a BigInteger, the other is converted to a BigInteger.

Otherwise, if either operand is a double, the other is converted to a double.

Otherwise, if either operand is a float, the other is converted to a float.

Otherwise, if either operand is a long, the other is converted to a long.

Otherwise, both operands are converted to int.

An operand that is one of the numeric wrapper classes is treated as its corresponding primitive type. If
one operand is an instance of a numeric wrapper class and the other operand has a primitive numeric
type, the rules in this sidebar apply and the result type is the corresponding numeric wrapper class.

In Java, the this.rating == movieRating expression compares the identity (references) of the String instances. In JDOQL, an
expression evaluating the equality of Date and String values does not compare the object references as in Java. Instead,
it tests the equality of their values.

Comparisons between floating-point values are, by nature, inexact. Therefore, you should be cautious when using
equality comparisons (== and !=) with floating-point values. If you need precise comparisons, use the type BigDecimal
instead.

Persistent instances compare equal if they have the same identity (i.e., they are the same instance in the datastore).
Equality of references for nonpersistent types uses the equals() method defined for the class. A persistent and
nonpersistent instance are never considered equal.

If a datastore supports null values for Collection types, it is valid to compare a collection field to null. If you are using a
datastore that does not support a null value for a Collection type, then a subexpression that compares a collection field to
null evaluates false. If the datastore supports null values for Collection types, the javax.jdo.option.NullCollection option should
be included in the list of supported options.

9.6.2.2 Comparison operators

Table 9-2 lists the comparison operators, which have a Boolean result.

Table 9-2. Comparison operators
Operator Description

< Less-than

<= Less-than or equal

> Greater-than

>= Greater-than or equal

These comparison operators are valid for all the operand types defined in Java. In addition, they are valid for the
following operands:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following operands:

Primitives and instances of wrapper classes (see the Promotion of Numeric Operands sidebar)

Date values (fields and parameters)

String values (fields, parameters, literals, and results of String expressions)

The comparison of two Date instances or two String instances compares the values represented by the instances. The
ordering used in String comparisons is not defined in JDO. This allows implementations to order them according to a
datastore-specific ordering, which might be locale-specific.

9.6.2.3 Boolean operators

Table 9-3 lists the supported Boolean operators. These expressions have Boolean operands and compute a Boolean
result.

Table 9-3. Boolean operators
Operator Description

& Boolean logical AND (not bitwise)

&& Conditional AND

| Boolean logical OR (not bitwise)

|| Conditional OR

! Logical complement (negate)

The following example uses these Boolean operators to access all the Movie instances that have a rating other than G or
PG and a running time between an hour and an hour and 45 minutes:

public static void queryMovie4(PersistenceManager pm) {
 Extent movieExtent = pm.getExtent(Movie.class, true);
 String filter = "!(rating == \"G\" || rating == \"PG\") && " +
 "(runningTime >= 60 && runningTime <= 105)";
 Query query = pm.newQuery(movieExtent, filter);
 Collection result = (Collection) query.execute();
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next();
 System.out.println(movie.getTitle());
 }
 query.close(result);
}

You can use these Boolean operators and parentheses to compose query expressions as nested and complex as
necessary to express your filter.

The previous example also demonstates the use of String and int literals. Since String literals in a JDOQL filter use Java's
syntax of double-quote delimiters, you need to use the backslash character (\) when specifying your filter with a Java
String literal in your application. These back-quotes are not needed in JDOQL's syntax, and they are not placed in this
String filter we have declared. Query filters are simpler if you use a query parameter instead of a String literal. A
parameter also provides more flexibility than a literal, because it allows you to provide an alternative value in the
query.

The operators listed in Table 9-3 lists correspond to Java's Boolean (&, |) and conditional (&&, ||) operators. In Java, the
Boolean operators always evaluate both operands, but the conditional operators first evaluate the left operand and
evaluate the right operand only if necessary to determine the Boolean result. In Java, && evaluates the right operand
only if the value of the left operand is true, and || evaluates the right operand only if the value of the left operand is
false. This aspect of Java's conditional operators is not preserved in JDOQL. There are no side effects of operators in
JDOQL, which could be leveraged by such conditional evaluations. JDOQL implementations may or may not evaluate the
right operand based on the evaluation of the left operand; this is purely an optimization decision. Some underlying
datastores, such as those based on SQL, do not have such conditional operators. A SQL implementation would likely
map both & and && to the SQL AND operator.

9.6.2.4 Arithmetic operators

Table 9-4 lists the supported arithmetic operators.

Table 9-4. Arithmetic operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 9-4. Arithmetic operators
Operator Description

+ Binary and unary addition

- Binary subtraction or numeric-sign inversion

* Multiplication

/ Division

~ Integral unary-bitwise complement

The result type of these expressions depends on the operand types, as explained in the Promotion of Numeric Operands
sidebar.

Let's examine a query that uses these arithmetic operators:

public static void queryProfits(PersistenceManager pm, BigDecimal value,
 BigDecimal sellCost, BigDecimal rentCost) {
 Query query = pm.newQuery(MediaItem.class); [1]
 query.declareImports("import java.math.BigDecimal");
 query.declareParameters([2]
 "BigDecimal value, BigDecimal sellCost, BigDecimal rentCost");
 query.setFilter("soldYTD * (purchasePrice - sellCost) + " + [3]
 "rentedYTD * (rentalCode.cost - rentCost) > value");
 Collection result = (Collection) query.execute(value, sellCost, rentCost);
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 MediaItem item = (MediaItem) iter.next();
 // process MediaItem
 }
 query.close(result);
}

We initialize a Query instance on line [1], where we set the candidate class. Notice that we do not explicitly specify the
candidate collection. If we specify the candidate class but not the candidate collection (as we do here), the candidate
collection defaults to the Extent of the candidate class, with subclasses included (the Extent component that indicates
subclasses should be included is true). In this query we retrieve all the MediaItem instances whose profit this year
exceeds the value parameter. There are costs associated with the selling and renting of an item; the values for these
costs are passed via the sellCost and rentCost query parameters, declared on line [2]. These values are subtracted from
the price charged to purchase or rent the item in the filter specified on line [3]. We multiply the per-item profits by the
number of items sold and rented year-to-date. We then determine whether the profits for an item exceed the threshold
specified by the value query parameter. The query returns only those items whose profits exceed the value parameter.

The precedence of the arithmetic operators in the JDOQL filter is identical to their precedence in Java. We have used
parentheses to override the precedence. We could add additional parentheses to make the expression more clear for
those that are not always certain of the operator precedences.

9.6.2.5 String expressions

Two String methods are defined, startsWith() and endsWith():

boolean startsWith(String str);
boolean endsWith(String str);

These methods operate on a String within a query. The startsWith() method returns true if the String begins with the value
in the str argument. The endsWith() method returns true if the String ends with the value in the str argument.

These methods provide support for wild card queries. However, no special semantics are associated with the str
argument; in particular, no specific wild-card characters are supported.

A typical nonstandard implementation based on a SQL datastore would map the JDOQL query expression:

name.startsWith("%Tina")

to the SQL LIKE operation:

NAME LIKE ('%Tina%')

The '%' wild-card character represents zero or more characters. The startsWith() method adds a '%' at the end of its
parameter's value when it is mapped to SQL.

The + operator can be used to specify String concatenation, but it is supported only for String operands. Thus, this is
supported:

"Movie: " + title

But this expression is not:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

But this expression is not:

title + 5

9.6.3 References

You can use the . (dot) operator to navigate through reference fields, as in Java. You can also use the . operator to
navigate through multiple references in your object model. For example, the following expression assumes that we have
a filter operating on a set of RentalItem candidate instances:

currentRental.customer.address.city

We navigate from the RentalItem to the Rental instance by using the currentRental field, then use the customer field
inherited from Transaction to access the specific Customer that has rented the RentalItem. We then use the address field to
get the customer's address and access the city. This example also illustrates that your expressions can access inherited
fields; we access the customer field in Transaction, the base class of Rental.

Using such navigations does not change the candidate class; you cannot return the instances accessible via navigation.
If your main goal is to query and return instances of a class accessible via such a navigation, the class of the instances
that you want in your result should be your candidate class and you should provide a filter that may include a
navigation that performs the inverse of your original navigation expression.

In Java, when you navigate through a null reference, a NullPointerException is thrown. But if a subexpression in a query
traverses through a null reference, the subexpression does not throw an exception; it evaluates as false. Only the
subexpression is false, not the entire filter. Other subexpressions in the filter or other values for variables may still
qualify the candidate instance for inclusion in the result set.

9.6.3.1 Cast expression

Java and JDO allow a base class reference to contain a reference to an instance of a subclass. In addition, Java and JDO
allow you to declare a reference to an interface and initialize it with a reference to an instance of any class that has
been declared to implement the interface. We have demonstrated that when you have a reference to a subclass
(Rental), you can directly use fields in a base class (Transaction). But suppose you have a reference to a base class and
want to have a query expression that determines whether the reference is to a particular subclass and, if so, accesses a
field of the subclass. Likewise, suppose you have an interface reference. You cannot call the methods of the Java
interface in a query expression, but you may want to determine whether the reference refers to an instance of a
specific class and, if so, have a query expression using a field of that class.

You can express such queries in JDOQL by using a cast expression. The syntax of the cast expression is identical to its
use in Java. Precede the reference expression with a type name, enclosed in parentheses. If you cast a reference to a
specific class, an attempt is made to convert the reference to the class. If the cast fails (which would throw a
ClassCastException in Java), the most-nested Boolean subexpression in which the cast was performed is false. This
behavior also occurs if you navigate through a null reference in JDOQL. If the cast succeeds, then the reference can be
used to access the referenced instance as an instance of the type used in the cast.

The following example uses the collection of historical transactions associated with a particular Customer as its candidate
set of instances:

public static void queryTransactions(PersistenceManager pm, Customer cust) {
 Query query = pm.newQuery(com.mediamania.store.Rental.class, [1]
 cust.getTransactionHistory());
 String filter = "((Movie)(rentalItem.mediaItem.content)).director." + [2]
 "mediaName == \"James Cameron\"";
 query.declareImports("import com.mediamania.content.Movie"); [3]
 query.setFilter(filter); [4]
 Collection result = (Collection) query.execute();
 Iterator iter = result.iterator();
 while (iter.hasNext()){
 Rental rental = (Rental) iter.next();
 MediaContent content =
 rental.getRentalItem().getMediaItem().getMediaContent();
 System.out.println(content.getTitle());
 }
 query.close(result);
}

The transactionHistory collection in Customer contains Transaction instances, which are either Rental or Purchase instances.
We only want to process the Rental instances in the collection, so we set the Rental class as the candidate class in the
call to newQuery() on line [1]. In the filter, declared on line [2], we navigate from the Rental instance to the RentalItem,
from the RentalItem to the MediaItem, and from the MediaItem to the MediaContent instance. The MediaContent instance can
be either a Movie or a Game instance. We want to determine which movies the customer is currently renting that were
directed by James Cameron. So, we cast the MediaContent reference to a Movie instance on line [2]. This allows us to
access the director field defined in the Movie class. We then determine whether this movie was directed by James
Cameron. Line [4] sets the filter for the query. Since our Rental candidate class is defined in the com.mediamania.store
package and we are casting to the Movie class, which is defined in the com.mediamania.content package, it is necessary to
import the Movie class on line [3].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import the Movie class on line [3].

In this example, we constrain the transactionHistory collection to Rental instances by specifying Rental as the candidate
class. An alternative, less-elegant approach would be to cast to Rental in the filter itself. Lines [1] and [2] could be
replaced with the following lines:

 Query query = pm.newQuery(com.mediamania.store.Transaction.class,
 cust.getTransactionHistory());
 String filter = "((Movie)(((Rental)this).rentalItem.mediaItem.content))." +
 "director.mediaName == \"James Cameron\"";

But the use of multiple casts results in a more-complex filter. The first solution is simpler. As we noted previously, we
could simplify the filter by passing the director's name as a parameter instead of using the String literal.

9.6.4 Collections

You can also use collections in your query expressions. The isEmpty() and contains() methods are defined for use with a
collection in a query.

The method isEmpty() determines whether a collection is empty:

boolean isEmpty();

Not all datastores allow a null-valued collection to be stored. Portable queries on these collections should use isEmpty()
instead of comparing to null. A null collection field is treated as if it is empty if a method is called on it. In particular,
isEmpty() returns true, and contains() returns false.

You can also have a query expression that examines a collection to determine whether an element exists in the
collection that has a true value for a provided query expression. This allows you to navigate to a set of related instances
in the datastore. You navigate by using the contains() method, which lets you associate a variable with the elements of
a collection. The variable can then be used to express constraints on the collection elements.

9.6.4.1 Variable declaration

To access the elements of a collection, you must declare the variable with its name and type. Variables are declared in
a String containing one or more variable declarations, separated by a semicolon if there there is more than one variable
declaration. It uses the same syntax you use in Java to declare a method's local variables.

The following Query method binds a variable declaration to the Query instance:

void declareVariables(String variables);

You will need to import the type using declareImports() if the variable's type is not already in the query's type
namespace.

9.6.4.2 The contains() method

The contains() method is used in conjunction with an AND expression to determine whether an element of a collection
results in a true result for at least one element of the collection. You associate a variable with the elements of a
collection by passing the variable to contains(). The contains() method must be the left operand of an AND expression in
which the variable used is the right operand:

boolean contains(Object o);

The contains() method returns true if at least one collection element results in a true result for the right operand of its
associated AND expression.

A portable query filter must constrain all of its variables that are used in any of its expressions, by applying the contains(
) clause to a persistent field of a persistent class. That is, each occurrence of an expression in the filter using the
variable includes a contains() clause ANDed with an expression using the variable.

The following example finds all Movie instances for which the director also played an acting role in the movie:

 Extent movieExtent = pm.getExtent(Movie.class, true);
 String filter = "cast.contains(role) && role.actor == director"; [1]
 Query query = pm.newQuery(movieExtent, filter);
 query.declareVariables("Role role"); [2]
 Collection result = (Collection) query.execute();

In this query, we declare a variable, named role, on line [2] to reference the Role instances in the cast collection. We use
the contains() method on line [1] to associate the role variable with the elements of cast. The contains() expression is the
left operand of &&, and the right operand has an expression using the role variable. The right operand's expression
checks to see whether the MediaPerson referenced by the actor field is equal to the director field in the Movie instance.

You use the contains() method to see whether at least one element exists in the collection that is true for the expression
in the right operand. Since only one collection element needs to have a true result for the right operand, not all of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the right operand. Since only one collection element needs to have a true result for the right operand, not all of the
collection elements need to be processed. Evaluation can stop once the first collection element is found with a true
result for the right operand. The contains() method and its associated ANDed right operand are considered an
expression. Negating this expression with the ! operator asks if it is true that no element exists in the collection that is
true for the right operand (i.e., that there is no element in the collection for which the right operand is true).

The following example illustrates the use of multiple variables. In fact, it navigates through multiple collections by using
the second variable to access elements of a collection accessed by the first variable. This query finds all the Movie
instances currently being rented by customers that live in a city with a given name.

public static void queryMoviesSeenInCity(PersistenceManager pm, String city) {
 String filter = "mediaItems.contains(item) &&" + [1]
 "(item.rentalItems.contains(rentalItem) && " + [2]
 "(rentalItem.currentRental.customer.address.city == city))"; [3]
 Extent movieExtent = pm.getExtent(Movie.class, true);
 Query query = pm.newQuery(movieExtent, filter);
 query.declareImports("import com.mediamania.store.MediaItem; " + [4]
 "import com.mediamania.store.RentalItem");
 query.declareVariables("MediaItem item; RentalItem rentalItem"); [5]
 query.declareParameters("String city");
 Collection result = (Collection) query.execute(city);
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next();
 System.out.println(movie.getTitle());
 }
 query.close(result);
}

Line [5] declares the variables item and rentalItem. Line [1] associates the item variable with the MediaItem instances of
the current Movie candidate instance. The rest of the filter is the right operand of the associated AND operator. We
access the RentalItem instances associated with the MediaItem instances (referenced by item) by binding the rentalItem
variable with the rentalItems collection. We then use the rentalItem variable to access the current Rental transaction and
navigate to access the city of the customer renting the movie.

For a portable query, the contains() clause must be the left expression of an AND expression in which the variable is
used in the right expression. The filter specified on line [1] illustrates a situation where you need to use parentheses to
override Java's left-associativity rule that applies when there are two or more operators with the same precedence in a
filter expression. If we had declared the filter as:

String filter = "mediaItems.contains(item) &&" +
 "item.rentalItems.contains(rentalItem) && " +
 "(rentalItem.currentRental.customer.address.city == city)";

it would have been evaluated as:

String filter = "(mediaItems.contains(item) &&" +
 "item.rentalItems.contains(rentalItem)) && " +
 "(rentalItem.currentRental.customer.address.city == city)";

which is not valid, because rentalItem on the third line is not the right operand of an AND expression whose left operand
binds rentalItem with a contains().

A portable query will constrain all of its variables with a contains() method in each OR expression the filter may have. A
variable that is not constrained with an explicit contains() method is constrained by the extent of the persistent class
(including subclasses) in the database, based on the variable's declared class. Such a variable is referred to as an
unbound variable. If the variable's class does not manage an Extent, then no results will satisfy the query.

For example, the following query returns all movies from the same director that were released after a particular movie,
specified by title:

public static void queryRecentMovies(PersistenceManager pm, String title) {
 Extent movieExtent = pm.getExtent(Movie.class, true);
 String filter = "this.releaseDate > movie.releaseDate && " +
 "this.director == movie.director && movie.title == title";
 Query query = pm.newQuery(movieExtent, filter);
 query.declareParameters("String title");
 query.declareVariables("Movie movie");
 Collection result = (Collection) query.execute(title);
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next();
 // process Movie
 }
}

The movie variable of type Movie is unconstrained, so it is evaluated relative to the Movie extent. In this particular query,
the unbound variable accesses the same extent as the query, but this just a coincidence, as the extent accessed by an
unconstrained variable is based on the variable's declared type.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.7 Ordering Query Results
An application can specify an order for the query result by providing an ordering statement, specified by a String that
contains one or more ordering declarations, separated by commas. Each ordering declaration is a Java expression of an
orderable type, followed by either ascending or descending. Your ordering expression may use the . operator to navigate
references.

Each ordering expression must be one of the following types:

Any primitive type except boolean

Any wrapper type except Boolean

BigDecimal

BigInteger

String

Date

We mentioned earlier that JDO does not define the ordering of Strings when you use the comparison operators (<, <=,
>, and >=). This also applies for the ordering of query results.

The following Query method binds the ordering statement to the Query instance:

void setOrdering(String ordering);

The ordering statement may include multiple ordering expressions. The result of the leftmost expression is used first to
order the results. If the leftmost expression evaluates to the same value for two or more elements, then the second
expression is used to order those elements. If the second expression also evaluates to the same value, then the third
expression is used, and so on, until the last expression is evaluated. If the values of all of the ordering expressions are
equal for two or more elements, then the ordering of those elements is unspecified.

The following example demonstrates the use of ordering:

public static void queryTransactionsInCity(PersistenceManager pm,
 String city, String state, Date acquired) {
 Extent transactionExtent =
 pm.getExtent(com.mediamania.store.Transaction.class, true);
 Query query = pm.newQuery(transactionExtent);
 query.declareParameters("String thecity, String thestate, Date date"); [1]
 query.declareImports("import java.util.Date"); [2]
 String filter = "customer.address.city == thecity && " + [3]
 "customer.address.state == thestate && acquisitionDate >= date";
 query.setFilter(filter);
 String order = "customer.address.zipcode descending, " + [4]
 "customer.lastName ascending, " +
 "customer.firstName ascending, acquisitionDate ascending";
 query.setOrdering(order); [5]
 Collection result = (Collection) query.execute(city, state, acquired);
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 com.mediamania.store.Transaction tx =
 (com.mediamania.store.Transaction) iter.next();

 // process Transactions
 }
 query.close(result);
}

The query returns all Transaction instances that occurred on or after a specified date for customers in a given city and
state. Line [1] declares these necessary parameters. We also need to import the Date class for the date parameter on
line [2]. The filter declared on line [3] uses these parameters to limit the Transaction instances returned by the query.
We specify the ordering expression on line [4] and set it on line [5]. The Transaction instances are ordered first in
descending order, based on the customer's ZIP code. All instances in the same ZIP code are placed in ascending order,
based on the customer's last and first name. Transaction instances for specific customers with unique last and first
names are placed in ascending order, based on the date they acquired the media content. The ordering declarations are
separated by a comma in the ordering expression.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

separated by a comma in the ordering expression.

The ordering of instances is not specified when the fields used in the ordering expression have null values.
Implementations may differ in how they perform the ordering; they may place the instances containing null-valued
fields either before or after instances whose fields contain non-null values.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.8 Closing a Query
When you are finished with the result of a query, you can close the results, allowing the release of resources used in
implementing the query (e.g., database cursors or iterators). You can use the following Query methods to close query
results:

void close(Object queryResult);
void closeAll();

The close() method closes the result that was returned by one call to execute(). You use closeAll() to close all the results
from calls to execute() on the Query instance. Both methods release the query result's resources. After they complete,
you cannot use the query result (e.g., to iterate the returned elements). Closing a query result does not affect the state
of its instances. Once you have closed a result, any Iterator that was acquired returns false to hasNext() and throws
NoSuchElementException if next() is called. But the Query instance is still valid and can be used to execute more queries.
Each query example in this chapter closed its query result.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. Identity
Java defines two concepts that determine whether two instances are the same: identity and equality. Two instances
have the same Java identity if and only if they occupy the same memory location within the Java Virtual Machine (JVM).
Java identity is managed entirely by the JVM, whereas Java equality is determined by the class. Two distinct instances
with different identities are equal if they represent the same value, based on the abstraction being modeled. For
example, two distinct instances of Integer with separate Java identities may have the same integer-abstraction value;
they are considered equal. Or, two distinct HashSet instances may contain the same elements and be considered equal,
even though they may have a completely different organization of their internal data structures, as a result of the order
in which elements were added and removed. If you are a Java developer, you likely understand the Java concepts of
identity and equality already.

JDO has its own requirements for uniquely identifying a persistent instance. The same datastore instance can be in
multiple transactions in the JVM at the same time, so the Java notion of identity cannot be used. The application doesn't
necessarily implement equals(), so it cannot be used.

Therefore, JDO defines its own identity abstraction to identify an instance uniquely in the datastore. This identity is used
in the datastore to establish a reference to an instance. It is also used to determine if two in-memory instances
represent the same object in the datastore. We refer to this new form of identity as JDO identity, when necessary, to
distinguish it from Java identity. JDO identity is defined differently from both Java identity and Java equality.

The JDO implementation manages a cache of persistent instances for each PersistenceManager, such that each instance
from the datastore is represented by a single instance in the cache of the PersistenceManager. This cache is not a specific
region of memory; it simply consists of the set of all instances managed by the PersistenceManager. The JDO
implementation allows an application to navigate through persistent references and collections of references accessed
from the datastore by using simple Java references. The JDO identity of the persistent class determines the
representation of these references in the datastore and how the implementation accesses an instance in the datastore
when your application uses a reference.

If the JVM has multiple PersistenceManager instances, each has its own associated cache of persistent instances. Two or
more of these PersistenceManager instances may have their own distinct copy of the same datastore instance. In this
case, each copy of the datastore instance has a distinct Java identity, but they all have an identical JDO identity.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.1 Overview
JDO has several types of identity. You must select the type of identity to use for each persistent class. An identity class
represents an identity value, and its form depends on the type of identity. Each persistent class has an associated
identity class that represents a unique identity value for each persistent instance. If you have two instances of identity
classes for two persistent instances, they will compare equal if and only if the persistent instances have the same JDO
identity. JDO provides methods to map between a persistent instance and its associated identity.

10.1.1 JDO Identity Types

JDO defines three types of identity:

Datastore identity

The identity is managed by the JDO implementation or the datastore and is not associated with the values of
any fields in the instance.

Application identity

The identity is managed by the application, and its uniqueness is enforced by the JDO implementation or
datastore. The identity is composed of one or more fields of the class, referred to as the primary-key fields. The
composite value of the primary-key fields must uniquely identify each persistent instance in the datastore. You
must define an application identity class with fields that correspond, in name and type, to the primary-key fields
in the persistent class.

Nondurable identity

Some datastores do not support a unique identifier for some of their data. For example, a log file or a table in a
relational database may not have a primary-key constraint. For the JDO implementation to manage instances
that do not have a durable identity, nondurable identity provides a unique identity for each instance while it is in
the JVM; but this identity is not preserved or used in the datastore.

JDO uses these three different types of identity to model existing datastores. Many relational databases use application-
visible primary-key columns in which the values of the columns represent real-world concepts. For example, a purchase
order's line item table contains an purchase-order number and a line number as a composite primary key, and these
columns have significance in the application domain. Most object databases provide identity for persistent instances that
do not depend on application-visible values. In order to support natural mappings for both of these styles of identity,
JDO provides both application identity and datastore identity.

There are other cases, primarily from the relational-database domain, where there is no identity associated with a row
in a table. For example, there is no natural key for a log-file entry, and although there may be queryable columns,
there is no uniqueness requirement. Support for these kinds of tables is provided by nondurable identity.

Each type of identity is an optional feature in JDO, but a JDO implementation must support either datastore or
application identity and may support both. They have the following property names:

javax.jdo.option.DatastoreIdentity

javax.jdo.option.ApplicationIdentity

javax.jdo.option.NondurableIdentity

You can call supportedOptions(), defined in PersistenceManagerFactory, to determine which types of identity your
implementation supports.

10.1.2 Metadata

You need to select an identity type for each persistent class. You declare the identity type in the metadata using the
identity-type attribute in the class element for the persistent class. It can be given one of the following values:

"datastore"

"application"

"nondurable"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"nondurable"

The application can explicitly specify a value for identity-type or let it have a default value. If you decide to use
application identity for a persistent class, you need to define an application identity class and specify it in the metadata
in the class element's objectid-class attribute. Some implementations can generate this class for you. Only application
identity uses the objectid-class attribute. So, if you specify the objectid-class attribute for a persistent class, its identity-type
attribute defaults to "application"; otherwise, it defaults to "datastore". Furthermore, the identity type you select for the
least-derived persistent class in an inheritance hierarchy is used as the identity type for all the persistent classes in the
inheritance hierarchy. Once you have enhanced a persistent class, its identity type is fixed.

Table 10-1 summarizes which type of identity you will get based on the values you provide for these metadata
attributes. The MyApplId class denotes an application identity class that you have defined.

Table 10-1. Identity types, based on value of identity-type and objectid-class
metadata attributes

Value of identity-type Value of objectid-class Identity type used for the class

No value provided No value provided Datastore identity

No value provided "MyApplId" Application identity

"datastore" No value provided Datastore identity

"datastore" "MyApplId" Error

"application" No value provided Error

"application" "MyApplId" Application identity

"nondurable" No value provided Nondurable identity

"nondurable" "MyApplId" Error

If you have a class C that extends class B, where B has a value specified for the objectid-class attribute, class C must also
use application identity and must either use class B's objectid-class (if the objectid-class is concrete) or define its own
objectid-class that extends B's objectid-class. You never specify the objectid-class attribute for subclasses of concrete
classes.

10.1.3 Identity Class

Every persistent class has an associated identity class that is used to represent the unique identity of each persistent
instance. The JDO implementation defines the classes used to represent datastore and nondurable identity. The
implementation may use the same identity class for multiple persistent classes, or a different identity class for each
persistent class. On the other hand, when you use application identity, you must define an application identity class
yourself.

Every persistent instance has a unique identity value, which can be represented by an instance of the identity class. You
can acquire a copy of the identity instance associated with a persistent instance; you can save it, retrieve it later from
durable storage (by serialization or some other technique), and use it to obtain a reference to the same persistent
instance. The JDO implementation does not necessarily maintain an instantiation of the identity instance in the cache
for each persistent instance in the cache, but it can construct an instance for use by your application.

When you make an instance persistent via makePersistent(), the instance is assigned an identity. If the metadata states
that the instance's class has an identity type that the implementation does not support, a JDOUserException is thrown for
that instance. The enhancer in some implementations may also produce a warning or error when the class is enhanced
if the implementation does not support the identity type.

The identity of a persistent instance is managed by the JDO implementation. For classes with a durable identity
(datastore or application identity), each PersistenceManager instance manages at most one instance in the memory cache
for a given object in the datastore, regardless of how your application accessed the persistent instance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.2 Datastore Identity
Datastore identity can be used with datastores that provide an identifier that does not depend on the values of fields in
an instance. This is the form of identity that object databases have provided for years. It is also supported in a
relational JDO implementation by managing an additional primary-key column that is distinct from the columns
containing field values.

Existing relational schemas often have a primary-key column that contains a value provided by a sequence or some
other facility that can generate unique values for the application. This is especially useful when the entity being modeled
does not have an attribute that is a natural real-world identifier, or when the number of attributes necessary to identify
an instance uniquely becomes excessive.

The implementation guarantees that the identity value is unique for all instances. You cannot change the identity of an
instance if its class uses datastore identity. Datastore identity is the easiest type of identity to use, because the
implementation and datastore handle everything automatically; it does not require any additional development on your
part.

A JDO implementation's datastore identity class has the following characteristics:

It is public.

It implements Serializable, allowing you to serialize identity instances.

The type of all its nonstatic fields are serializable.

All of its serializable fields are public.

It has a public no-arg constructor.

It overrides toString(), returning a String that can be used as the parameter for the following String constructor.

It has a constructor with a String parameter that creates an identity instance that compares equal to any other
identity instance whose toString() returns a String that is equal to the String parameter.

The last two characteristics are necessary to create a String representation of an identity and later reconstruct an
identity instance with the String by using newObjectIdInstance(), covered later in this chapter. You cannot test the
equality of two datastore identity instances if they were acquired from different JDO implementations.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.3 Application Identity
You can use application identity with a datastore that allows the values in an instance to determine its identity. The
values of one or more persistent fields in the instance form a unique value that is referred to as the primary key; the
fields are referred to as the primary-key fields. The application is responsible for generating the values of the primary-
key fields to ensure they collectively have a unique value for each instance in the datastore. The primary-key fields
must have a unique value for a given class and its subclasses that use the same application identity class.

10.3.1 Primary-Key Fields

You indicate that a Java field is a component of the primary key in the metadata by setting the primary-key attribute of
the field's associated field element to "true". Each field of the primary key must have this attribute set to "true"; it has a
default value of "false". The primary-key fields of a persistent class must be persistent. Therefore, the persistence-modifier
attribute of the field metadata element cannot be set to "transactional" or "none". The primary-key fields become a
property of the persistent class that cannot be changed after the class is enhanced. If you need to change the set of
fields in a primary key, you will need to enhance the class again. Read access to primary-key fields is never mediated.

The type of primary-key fields must be serializable and should be one of the primitive types, String, Date, Byte, Short,
Integer, Long, Float, Double, BigDecimal, or BigInteger. JDO implementations are required to support these types and might
support other reference types.

When a transient instance is made persistent, the implementation uses the values of the primary-key fields to construct
an identity for the instance. A JDOUserException is thrown during makePersistent() if an instance in the PersistenceManager
cache already has the same primary key, or during the flush of the new instance to the datastore if the datastore
already has an instance with the same primary key.

The primary-key fields of a persistent class uniquely identify an instance in the datastore. Your Java object model will
likely contain references and collections of references to instances of the class. The declaration and use of these
references is performed with standard Java syntax. The JDO implementation automatically maps the references used at
the Java level to primary keys when things are mapped to the underlying datastore. Your application does not need to
know that application identity is being used, nor does it need to know what the primary-key fields are for a particular
persistent class. You simply use the Java references.

10.3.2 Persistent Class equals() and hashCode() Methods

It is important for you to understand the interaction between JDO identity and equality. The equals() method in Object
simply uses the Java identity based on the address of the instance in the JVM. The Java identity of a persistent instance
is guaranteed neither between PersistenceManagers, nor across space and time. You should implement equals() for your
persistent classes that use application identity differently from the default implementation in Object.

If you store persistent instances of classes using application identity in the datastore and query them using the ==
query operator, or refer to them by a persistent collection that enforces equality (Set, Map), then the implementation of
equals() should exactly match the JDO implementation of equality, using the identity value (primary-key fields). To be
portable, the equals() and hashCode() methods of any persistent class using application identity should depend on all of
the primary-key fields.

This policy is not enforced, but if it is not correctly implemented, the semantics of standard transient collections and the
persistent collections may differ. Specifically, the Set and Map collections call the equals() and hashCode() methods of
their elements to enforce uniqueness constraints and manage their element look up mechanisms. The identity
(represented by the primary-key fields) to identify an instance uniquely in the datastore must be used in the
management of these collections in the cache.

10.3.3 The Application-Identity Class

You need to implement an application-identity class for your classes that use application identity. You can either define
it by hand or use a tool some vendors provide to generate the class for you. The identity class needs to have fields that
correspond, in name and type, with the primary-key fields in the persistent class. It should also have all of the
characteristics of an RMI remote object for the class that will be used as a primary-key class in EJB. Specifically, the
application identity class should have the following characteristics:

It must be public.

It must implement Serializable.

If it is an inner class, it must be static.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If it is an inner class, it must be static.

It must have nonstatic fields with the same name and type as each of the primary-key fields in the persistent
class.

The type of these fields must be serializable and should be one of the primitive types, String, Date, Byte, Short,
Integer, Long, Float, Double, BigDecimal, or BigInteger. JDO implementations are required to support these types
and might support other reference types.

All of its serializable, nonstatic fields must be public.

Its equals() and hashCode() methods must use the values of all the fields that correspond to the primary-key
fields in the persistent class. The implementation of these methods in the identity class must match the
implementation in the persistent class.

It must have a public no-arg constructor, which may be the default constructor.

It must override toString() , as defined in Object, and return a String that can be used as the parameter of the
following String constructor.

It must provide a String constructor that returns an instance that compares equal to another instance that
returned the String parameter via toString().

These restrictions allow you to construct an instance of the application identity class by providing only the values for the
primary-key fields or, alternatively, by providing the result of toString() from an existing application identity instance.

The names and types of the primary-key fields in the persistent class must be the same as the fields in the application
identity class, and the fields in the application identity class must have a public access modifier. But you can choose any
access modifier that you want for the primary-key fields in the persistent class. In particular, we recommend that you
declare your primary-key fields private, since changing them is dependent on the implementation supporting the optional
ChangeApplicationIdentity feature, covered later in this chapter.

You must specify the application identity class in the metadata with the objectid-class attribute class element of the
persistent class. You should use Java's rules for naming when specifying the objectid-class value: if you do not include a
package in the name, it is assumed to be in the same package as the persistent class. If you use an inner class, use the
$ marker before the inner class name.

An implementation is permitted to extend the application-identity class to include additional fields not provided by the
application, to further identify the instance in the datastore. Thus, the identity instance returned by an implementation
might be a subclass of the user-defined application identity class. An implementation must be able to use an application
identity instance from any other JDO implementation.

10.3.4 A Single-Field Primary Key

Let's start with a simple example. We'll create a new version of the RentalCode class that we defined in the
com.mediamania.store package and place it in a new package called com.mediamania.store.appid. The sole reason we place
the RentalCode class and its application identity class in a separate package is to distinguish between the class that uses
datastore identity and the class that uses application identity. Your object model would normally have one class with
one type of identity. The fields and a few of the methods of the new RentalCode class are declared as follows:

package com.mediamania.store.appid;

import java.math.BigDecimal;

public class RentalCode
{
 private String code; [1]
 private int numberOfDays;
 private BigDecimal cost;
 private BigDecimal lateFeePerDay;

 RentalCode()
 { }

// methods, etc...

 public boolean equals(Object obj) { [2]
 return obj instanceof RentalCode &&
 ((RentalCode)obj).code.equals(code);
 }
 public int hashCode() { [3]
 return code.hashCode();
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The code field declared on line [1] should contain a unique String value for each RentalCode instance, providing a natural
primary-key. We also define equals() and hashCode() in terms of the primary-key field code on lines [2] and [3].

We specify the following metadata for the class:

 <package name="com.mediamania.store.appid">
 <class name="RentalCode"
 objectid-class="com.mediamania.store.appid.RentalCodeKey" >
 <field name="code" primary-key="true" />
 </class>
 </package>

The metadata specifies the code field as the one primary-key field in RentalCode.

We also specify the RentalCodeKey class as the application identity class for RentalCode. Let's examine the class in detail:

package com.mediamania.store.appid;

import java.io.Serializable;

public class RentalCodeKey implements Serializable { [1]
 static { [2]
 RentalCode code = new RentalCode();
 }
 public String code; [3]

 public RentalCodeKey(String code) { [4]
 this.code = code;
 }
 public RentalCodeKey() { [5]
 code = new String("");
 }
 public String toString() { [6]
 return code;
 }
 public boolean equals(Object obj) { [7]
 return obj instanceof RentalCodeKey &&
 ((RentalCodeKey)obj).code.equals(code);
 }
 public int hashCode() { [8]
 return code.hashCode();
 }
}

On line [1], we declare that RentalCodeKey implements Serializable. The application identity class must have public fields
that correspond to the primary-key fields in the persistent class; line [3] declares the code field. The class needs to
have a public, no-arg constructor, which we define on line [5]. We also define a constructor on line [4], which takes a
String argument. In the case of RentalCodeKey, only a single String field corresponds to the primary-key, so we can just
assign the String argument to the code field. As we will see in the next example, if there are multiple primary-key fields,
you will need to parse the values in the String argument to this constructor. Having the single code field of type String
also makes our required toString() trivial as well. We also define equals() and hashCode() on lines [7] and [8],
respectively. These methods delegate to the code field and call the corresponding String methods.

Class registration code is placed in the static initialization method that the enhancer adds to your persistent class. The
association between a persistent class and its application identity class is established when the persistent class is
registered in the JDO environment. The JDO implementation does not know the specific application identity class for a
persistent class until the persistent class has been loaded into the JVM and had this static initialization method
executed.

Often, the first time an application accesses a persistent instance via its identity, the application has not yet used the
persistent class. The application creates and initializes an application identity instance, passing it to getObjectById(). But
the persistent class may not be loaded in the JVM yet, so the registration of the persistent class and its identity class
has not occurred. The JDO implementation may throw an exception, indicating that you have passed an invalid identity
value.

To prevent this from happening, we must make sure that the persistent class has been loaded before we use an
instance of the identity class to access an instance. By placing the static initialization block at line [2] in RentalCodeKey,
we force the loading of RentalCode when RentalCodeKey is loaded. The RentalCode instance created in the static
initialization block is garbage-collected once the block has finished, but this has the effect of loading the RentalCode class
when the identity class is loaded.

10.3.5 A Compound Primary Key

The application identity can consist of multiple primary-key fields. Now let's cover another example that illustrates
additional approaches and techniques that can be used when defining an application identity class.

We will now consider the following persistent Customer class that we have placed in the com.mediamania.store.appid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We will now consider the following persistent Customer class that we have placed in the com.mediamania.store.appid
package. This is a simplied version of the Customer class defined in the com.mediamania.store package. To provide a
unique primary key, we use a combination of the firstName, lastName, and phone fields.

With this persistent class, we define the application identity class as a static inner class, named Id, on line [2]. Since
there is a tight coupling between an application identity class and its persistent class, it makes sense to define it as an
inner class. But the inner class must be static; you cannot use a nonstatic inner class for the application identity class.
Adopting this approach across all of your persistent classes simplifies development by instituting a single consistent
naming mechanism for all your application identity classes.

package com.mediamania.store.appid;

import java.io.Serializable;
import java.util.StringTokenizer;

public class Customer {
 private String firstName; // primary-key field
 private String lastName; // primary-key field
 private String phone; // primary-key field
 private String email;

// other fields removed for brevity in the example

 Customer()
 { }
 public Customer(String firstName, String lastName,
 String phone, String email) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.phone = phone;
 this.email = email;
 }
 public String getFirstName() {
 return firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public String getPhone() {
 return phone;
 }
 public String getEmail() {
 return email;
 }
 public boolean equals(Object obj) { [1]
 if(!(obj instanceof Customer)) return false;
 Customer c = (Customer)obj;
 Id id1 = new Id(firstName, lastName, phone);
 Id id2 = new Id(c.firstName, c.lastName, c.phone);
 return id1.equals(id2);
 }
 public int hashCode() {
 Id id = new Id(firstName, lastName, phone);
 return id.hashCode();
 }

 public static class Id implements Serializable { [2]
 static {
 Customer customer = new Customer();
 }
 public String firstName;
 public String lastName;
 public String phone;

 public Id(String fname, String lname, String phone) { [3]
 firstName = fname;
 lastName = lname;
 this.phone = phone;
 }
 public Id() { [4]
 firstName = "";
 lastName = "";
 phone = "";
 }
 public Id(String val) { [5]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public Id(String val) { [5]
 StringTokenizer tokenizer = new StringTokenizer(val, "|");
 firstName = tokenizer.nextToken();
 lastName = tokenizer.nextToken();
 phone = tokenizer.nextToken();
 }
 public String toString() { [6]
 StringBuffer buffer = new StringBuffer();
 buffer.append(firstName);
 buffer.append("|");
 buffer.append(lastName);
 buffer.append("|");
 buffer.append(phone);
 return buffer.toString();
 }
 public boolean equals(Object obj) { [7]
 if (!(obj instanceof Id)) return false;
 Id id = (Id) obj;
 if (!phone.equals(id.phone)) return false;
 if (!lastName.equals(id.lastName)) return false;
 return firstName.equals(id.firstName);
 }
 public int hashCode() { [8]
 return toString().hashCode();
 }
 }
}

We need to define equals() and hashCode() in Customer, and they must be based on the values of the primary-key fields.
Line [1] defines these methods. Since the functionality that manages the composite value of the three primary-key
fields is defined in the Id class, equals() and hashCode() delegate to temporary Id instances already in Id, instead of
duplicating the code. This strategy also makes sure they implement the same functionality. This may or may not always
make sense for your persistent classes.

The Id class provides three constructors. The constructors defined on lines [4] and [5] are required of all application
identity classes. Since this persistent class has multiple primary-key fields, the constructor defined on line [5] must
parse the String to initialize each component of the primary key. An application identity class does not require the
constructor defined on line [3], but it provides a useful means of initializing all the primary-key components. We define
the required application identity method toString() on line [6]; its result can be used by the String method on line [5] to
initialize a new Id instance.

We need to define equals() and hashCode() in our application identity classes, and they should be based on the values of
all the primary-key fields. On line [7], we define equals() for Id. We define hashCode() on line [8], and it uses Id's
toString() method to construct a String containing all the primary-key field values and then calls String's hashCode() to
compute the hash code for Id.

Let's examine the metadata for Customer:

<package name="com.mediamania.store.appid">
 <class name="Customer" identity-type="application"
 objectid-class="Customer$Id" >
 <field name="firstName" primary-key="true" />
 <field name="lastName" primary-key="true" />
 <field name="phone" primary-key="true" />
 </class>
</package>

We provide field elements to specify each of the primary-key fields. Since we provide a value for objectid-class, inclusion
of the identity-type attribute is optional. We let the package of the objectid-class attribute value default to the same
package as the persistent class, since we do not include the package name. Since Id is an inner class, we use $ between
the class name and inner class name to denote Id.

10.3.6 A Compound Primary Key That Contains a Foreign Key

It is common in relational schemas to have a compound primary key that includes a foreign key column. For example,
assume you have a table in your relational database, called Order, to represent an order placed by a customer. The
Order table has a primary-key column containing a unique order number. A separate table, called LineItem, contains the
individual items in the customer's order. There is a one-to-many relationship between Order and LineItem, represented
by the LineItem table having a foreign key reference to a row in the Order table. To identify a particular LineItem row
uniquely, we define a primary key for LineItem that consists of the order number, which is a foreign key reference to
Order, and a line-item number that is unique within the particular order. A primary key, like the one defined for the
LineItem table, is very common in relational schemas.

Let's examine the Java classes and metadata necessary to represent such a model. An Order class could be defined as
follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

follows:

package com.mediamania.store;

import java.io.Serializable;

public class Order {
 private int orderNumber; // primary-key field
 private Customer customer;

 public Order() {
 orderNumber = 0;
 }
 public Order(Customer cust, int orderNum) {
 customer = cust;
 orderNumber = orderNum;
 }
 public boolean equals(Object obj) {
 return obj instanceof Order && ((Order)obj).orderNumber == orderNumber;
 }
 public int hashCode() {
 return orderNumber;
 }

 public static class Id implements Serializable {
 static {
 Order order = new Order();
 }
 public int orderNumber;

 public Id() {
 orderNumber = 0;
 }
 public Id(int orderNum) {
 orderNumber = orderNum;
 }
 public Id(String orderNum) {
 orderNumber = 0;
 try {
 Integer.parseInt(orderNum);
 } catch(NumberFormatException e) { }
 }
 public String toString() {
 return Integer.toString(orderNumber);
 }
 public boolean equals(Object obj) {
 return obj instanceof Id && ((Id)obj).orderNumber == orderNumber;
 }
 public int hashCode() {
 return orderNumber;
 }
 }
}

In a real application, the class would likely have more fields and methods, but we primarily want to describe the
application identity classes that are appropriate for this model. The orderNumber field in Order has a unique value that
uniquely identifies an Order instance. We define the application identity class for Order as a static inner class named Id.
The Id class has a corresponding orderNumber field. The application needs to have a means of acquiring a unique value
for orderNumber. JDO does not currently provide a facility for generating unique application values, but it is being
considered for a future release. Some JDO implementations provide such a facility now. The Order.Id class implements
all the functionality necessary in an application identity class.

Now let's examine the LineItem class. As in the Order class, we do not provide all the fields and functionality a real
application would have, but we include fields and methods relevant to our discussion.

package com.mediamania.store;

import java.io.Serializable;
import java.math.BigDecimal;

public class LineItem {
 private int orderNumber; // primary-key field
 private int itemNumber; // primary-key field
 private String description;
 private BigDecimal price;
// other fields

 LineItem() {
 orderNumber = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 orderNumber = 0;
 itemNumber = 0;
 }
 public LineItem(int orderNum, int itemNum, String desc, BigDecimal price) {
 orderNumber = orderNum;
 itemNumber = itemNum;
 description = desc;
 this.price = price;
 }
 // other methods

 public static class Id implements Serializable {
 static {
 LineItem item = new LineItem();
 }
 public int orderNumber;
 public int itemNumber;

 public Id() {
 orderNumber = 0;
 itemNumber = 0;
 }
 public Id(int orderNum, int itemNum) {
 orderNumber = orderNum;
 itemNumber = itemNum;
 }
 public Id(String val) {
 int separatorIndex = val.indexOf('|');
 orderNumber = 0;
 itemNumber = 0;
 try {
 orderNumber = Integer.parseInt(val.substring(0,separatorIndex));
 } catch (NumberFormatException e) { }
 try {
 itemNumber = Integer.parseInt(val.substring(separatorIndex+1));
 } catch (NumberFormatException e) { }
 }
 public String toString() {
 return Integer.toString(orderNumber) + "|" +
 Integer.toString(itemNumber);
 }
 public boolean equals(Object obj) {
 if (!(obj instanceof Id)) return false;
 Id id = (Id) obj;
 return orderNumber == id.orderNumber && itemNumber == id.itemNumber;
 }
 public int hashCode() {
 return orderNumber*1000 + itemNumber;
 }
 }
}

LineItem has two primary-key fields: orderNumber and itemNumber. Again, we define the application identity class as a
static inner class Id. It contains the two fields of the primary key: orderNumber and itemNumber.

You may consider it more appropriate to declare the primary-key fields as follows:

 private Order order; // primary-key field
 private int itemNumber; // primary-key field

Since the LineItem table in the database has a foreign-key reference to the Order table, this would seem to be the
natural mapping. But the type of primary-key fields in JDO should be one of the primitive, String, Date, or Number types.
The fields in the application identity class and the application identity class itself must be serializable. But if we use the
preceding order field, when the identity instance is serialized it will also serialize the Order and possibly other persistent
instances.

You may still want to have a reference to Order that you can use to navigate to the instance. You could declare the
following fields in the LineItem class:

 private int orderNumber; // primary-key field
 private int itemNumber; // primary-key field
 private Order order;
 private String description;
 private BigDecimal price;

How this gets mapped to the underlying datastore depends on the capabilities of the JDO implementation you are using.
Some implementations would require the underlying datastore to have a redundant orderNumber field, since the order
field declared in this example would be represented in the datastore by the primary key of Order, declared to be an
order number. There are some implementations that would allow the orderNumber and order fields to be mapped onto

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

order number. There are some implementations that would allow the orderNumber and order fields to be mapped onto
the same column in a relational database. These implementations also ensure that these two fields are always kept in
sync, as a change to one of the fields necessitates a change to the other.

Here is the metadata for the Order and LineItem classes:

<package name="com.mediamania.store" >
 <class name="Order" objectid-class = "Order$Id" >
 <field name="orderNumber" primary-key="true" />
 </class>
 <class name="LineItem" objectid-class="LineItem$Id" >
 <field name="orderNumber" primary-key="true" />
 <field name="itemNumber" primary-key="true" />
 </class>
</package>

10.3.7 Application Identity in an Inheritance Hierarchy

There are special considerations when using application identity for persistent classes in an inheritance hierarchy. Only
certain persistent classes in the inheritance hierarchy can have primary-key fields, and there are restrictions on the
definition and metadata specification of their associated application identity classes. Every class in the hierarchy must
have exactly one nonabstract (concrete) application identity class. A least-derived (topmost), concrete persistent class
must have an associated application identity class, specified either in the objectid-class attribute of its own persistent
class's metadata, or in the objectid-class attribute of one of its abstract superclasses. The persistent class and all its
subclasses use this concrete application identity class. The subclasses must not specify a value for the objectid-class
attribute. You can declare primary-key fields only in abstract superclasses and in the topmost, concrete classes in an
inheritance hierarchy. You need to define an application identity class for each persistent class in the hierarchy that has
a primary-key field. Each of these application identity classes must declare fields that correspond to the primary-key
fields in their respective persistent class. Within an inheritance hierarchy, you can have intermediate classes between
two persistent classes that have primary-key fields, in which the intermediate classes do not have any primary-key
fields.

The simplest design is to define one application identity class for the entire inheritance hierarchy, specified at the least-
derived persistent class in the hierarchy, regardless of whether it is concrete or abstract. If you require multiple
application identity classes for the persistent classes in an inheritance hierarchy, the application identity classes form an
inheritance hierarchy that corresponds to the inheritance hierarchy of their associated persistent classes.

Let's look at an example, illustrated in Figure 10-1. If a Component abstract class declares a masterId primary-key field,
the ComponentKey application identity class (which should be abstract as well) must also declare a field of the same
name and type.

Figure 10-1. Inheritance of application identity classes in inheritance hierarchies

The following code declares a subset of the Component class:

package productdesign;

public abstract class Component {
 private String masterId; // primary-key field
 private int x;
 private int y;
// other fields

 protected Component()
 { }
 protected Component(String id) {
 masterId = id;
 x = 0;
 y = 0;
 }
// other methods
}

We define the ComponentKey class as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We define the ComponentKey class as follows:

package productdesign;

import java.io.Serializable;

public abstract class ComponentKey implements Serializable {
 static {
 Component comp = new Component();
 }
 public String masterId;

 public ComponentKey() {
 masterId = "";
 }
 public ComponentKey(String id) {
 masterId = id;
 }
 public String toString() {
 return masterId;
 }
 public boolean equals(Object obj) {
 return obj instanceof ComponentKey &&
 ((ComponentKey)obj).masterId.equals(masterId);
 }
 public int hashCode() {
 return masterId.hashCode();
 }
}

A concrete Part class that extends Component must declare a concrete application identity class (for example, PartKey)
that extends ComponentKey. Part might not have its own primary-key fields, as we illustrate in this example. Persistent
subclasses of Part must not have their own application identity class.

We define the Part class as follows:

package productdesign;

public class Part extends Component {
 private String designer;
// other fields

 protected Part()
 { }
 public Part(String assemId, String designer) {
 super(assemId);
 this.designer = designer;
 }
 public String getDesigner() {
 return designer;
 }
// other methods
}

Here is a portion of the associated PartKey class:

package productdesign;

public class PartKey extends ComponentKey {
 static {
 Part part = new Part();
 }
 public PartKey(String id) {
 super(id);
 }
 public PartKey() {

 }
// other identity methods
}

The concrete Assembly class that extends Component must declare a concrete application identity class (for example,
AssemblyKey) that extends ComponentKey. If Assembly has a assemblyId primary-key field, the assemblyId field must also be
declared in AssemblyKey with the same name and type.

Here is a part of the Assembly class declaration:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here is a part of the Assembly class declaration:

package productdesign;

import java.util.HashSet;

public class Assembly extends Component {
 private int assemblyId; // primary-key field
 private HashSet components;

 private Assembly()
 { }
 public Assembly(String componentId, int aid) {
 super(componentId);
 assemblyId = aid;
 components = new HashSet();
 }
 public int getAssemblyId() {
 return assemblyId;
 }
}

We define the AssemblyKey class as follows:

package productdesign;

public class AssemblyKey extends ComponentKey {
 static {
 Assembly assembly = new Assembly();
 }
 public int assemblyId;

 public AssemblyKey() {
 assemblyId = 0;
 }
 public AssemblyKey(String id) {
 super(id.substring(0, id.indexOf('|')));
 assemblyId = 0;
 try {
 assemblyId = Integer.parseInt(id.substring(id.indexOf('|')+1));
 } catch(Exception e) { }
 }
 public AssemblyKey(String master, int id) {
 super(master);
 assemblyId = id;
 }
 public String toString() {
 return super.toString() + "|" + Integer.toString(assemblyId);
 }
 public boolean equals(Object obj) {
 if (!(obj instanceof AssemblyKey)) return false;
 AssemblyKey assemKey = (AssemblyKey) obj;
 if (assemblyId != assemKey.assemblyId) return false;
 return super.equals(assemKey);
 }
 public int hashCode() {
 return assemblyId * super.hashCode();
 }
}

Persistent subclasses of Assembly must not have their own application identity class.

There might be other abstract or nonpersistent classes in the inheritance hierarchy between Component and Part, or
between Component and Assembly. The application identity classes and primary-key fields ignore these classes.

Here is the metadata for these classes:

<jdo>
 <package name="productdesign" >
 <class name="Component" objectid-class="ComponentKey" >
 <field name="masterId" primary-key="true" />
 </class>
 <class name="Part" objectid-class="PartKey"
 persistence-capable-superclass="Component"/>
 <class name="Assembly" objectid-class="AssemblyKey"
 persistence-capable-superclass="Component" >
 <field name="assemblyId" primary-key="true" />
 <field name="components" >
 <collection element-type="Part" /> [1]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <collection element-type="Part" /> [1]
 </field>
 </class>
 </package>
</jdo>

There is an interesting modeling issue to consider in the Assembly class. It contains a collection named components. An
Assembly abstraction models a set of components that should be treated as a single design unit in a product design. On
line [1] in the metadata we declare that components contains Part instances. We may also want to allow an Assembly to
contain references to Component instances, which could include references to other Assembly instances. But in the object
model we have defined here, Component introduces only a partial primary key. Though the Part class is the first concrete
class in its branch of the inheritance hierarchy and it does not add any additional fields to identify a Part instance, the
Assembly class does introduce additional fields that are necessary to reference an Assembly instance. Many other classes
may extend Component and introduce their own additional primary-key fields. In general, you should not rely on support
of partial primary keys to represent references when using application identity (though some implementations may
support it). If your model needs support of such references, you should either have the persistent class at the root of
the inheritance hierarchy completely define the primary key for its class and all subclasses, or you should use datastore
identity, which does not have this issue.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.4 Nondurable Identity
Some datastores cannot provide a unique identity that can be used to locate a specific piece of data. This limitation can
be common in log files, history files, and similar files, where performance is a primary concern and there is no need for
the overhead associated with managing a durable identity for each datastore instance. Objects are typically inserted
into the datastore with transactional semantics, but they are not accessed by key. They may have references to
instances elsewhere in the datastore, but often they have no keys or indexes themselves. They might be accessed by
other attributes, and they might be deleted in bulk. JDO defines a nondurable identity type for use when accessing
instances in such datastores.

Multiple objects in the datastore might have the same values; we refer to them as duplicate objects. An application may
want to treat the duplicate objects individually. For example, the application should be able to count the persistent
instances to determine how many have the same values. In addition, if the application changes a single field of one
duplicate instance, exactly one instance has its field changed in the datastore. If multiple duplicate instances are
modified in memory, then instances in the datastore are modified to correspond with the instances modified in memory.
Similarly, if an application deletes a specific number of duplicate objects, it should delete this same number of objects in
the datastore.

As another example, a single datastore instance using nondurable identity may be loaded twice into the JVM by the
same PersistenceManager. Since there is no durable identity to distinguish instances from the datastore, two separate
instances are instantiated in memory with two different nondurable identities, even though all of the values in the
instances are the same. Only one of these instances can be updated or deleted. If only one instance is updated or
deleted, then the changes made to that instance are reflected in the datastore at commit by changing the single
datastore instance. However, if both instances are changed, the transaction fails at commit because changes to distinct
instances in memory can be applied only to different datastore instances. In this case, there are multiple instances in
memory and only one instance in the datastore.

Because nondurable identity is not visible in the datastore, it has special behaviors:

After a transaction terminates (via commit or rollback), neither an instance in memory with nondurable identity
nor its identity can be accessed, and any attempt to access them causes a JDOUserException to be thrown.

A nondurable identity cannot be used in a different PersistenceManager instance than the one that issued it, and
attempts to use it, even indirectly, throw a JDOUserException.

The results of a query in the datastore always create and return new instances that are not already in the JVM.
So, if the results of multiple queries contain the same instances in the datastore, additional instances of the
datastore instances are instantiated in memory with the same values, but with different identities.

makePersistent() succeeds even if another instance has the same values for all its persistent fields.

The implementation's class that implements nondurable identity has the following characteristics:

It is public.

All of its fields are public.

The types of all of its fields are serializable.

It has a public no-arg constructor, possibly the default constructor.

You should be aware that, at the time of this writing, there has been very limited support of nondurable identity (just
one vendor supports it). The level of support may improve over time, but it obviously has not been a vendor priority.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.5 Identity Methods
JDO provides methods to map between identity instances and their associated persistent instances, and between an
identity instance and a String value. You can acquire an identity instance for a persistent instance by using getObjectId(),
and you can access a persistent instance if you have an identity instance with getObjectById(). Figure 10-2 shows these
methods.

Figure 10-2. Methods to map between a persistent instance and its identity

You can also convert an identity instance to a String by using toString(). You can then use the returned String to
reconstruct a corresponding identity instance with newObjectIdInstance(). These capabilities are the reasons why you
need to define toString() and a constructor that accepts a single String argument. Now let's describe the functionality of
these methods in detail. These methods work for each identity type.

10.5.1 Get the Identity Class

You can access the identity class of a persistent class by calling the following PersistenceManager method:

Class getObjectIdClass(Class persistentClass);

Passing the Class of a persistent class that uses datastore or nondurable identity returns the implementation-defined
identity class. Passing the Class of a persistent class that uses application identity returns your application identity class.
The method returns null if the parameter is null, the class referenced by persistentClass is abstract or not persistent, or
the metadata specifies that the persistent class uses application identity and the implementation does not support
application identity.

When using the JDO reference implementation, the following lines of code:

Class c1 = pm.getObjectIdClass(com.mediamania.store.Customer.class);
System.out.println(c1.toString());
Class c2 = pm.getObjectIdClass(com.mediamania.store.appid.Customer.class);
System.out.println(c2.toString());

produce the following output:

class com.sun.jdori.fostore.OID
class com.mediamania.store.appid.Customer$Id

10.5.2 Get the Identity of an Instance

JDO provides two methods to access the identity of a persistent instance. You can use either the PersistenceManager
method:

Object getObjectId(Object obj);

or the JDOHelper method:

static Object getObjectId(Object obj);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static Object getObjectId(Object obj);

These methods return null if the obj instance is transient, null, or not of a persistent class. Otherwise, they return an
identity instance for the obj parameter. The identity instance returned is guaranteed to be unique only in the context of
the PersistenceManager that created the identity and only for datastore and application identity. Within a transaction, the
identity returned will be unique when compared with the identity of all the other persistent instances associated with
the PersistenceManager, regardless of their type of identity.

There are only a small number of RentalCode instances in our example; this is reference data that rarely changes in the
datastore. Suppose a MediaMania store application needs to establish references to RentalCode instances quickly. Here
we deal specifically with the RentalCode class defined in the com.mediamania.store package. For example, consider the
application that creates new MediaItem instances when the store receives new DVDs. The application wants to reference
them by their code value. Instead of performing a query to access a specific RentalCode instance, the following utility
class maintains a mapping from the code value to the RentalCode instance:

package com.mediamania.store;

import java.util.Iterator;
import java.util.HashMap;
import javax.jdo.PersistenceManager;
import javax.jdo.Extent;

public class RentalCodeAccessor {
 private static HashMap rentalCodes;
 private static PersistenceManager pm;

 public static synchronized void initialize(PersistenceManager thePM) {
 pm = thePM;
 rentalCodes = new HashMap();
 Extent rentalCodeExtent = pm.getExtent(RentalCode.class, true);
 Iterator iter = rentalCodeExtent.iterator();
 while (iter.hasNext()) {
 RentalCode rentalCode = (RentalCode) iter.next();
 Object id = pm.getObjectId(rentalCode); [1]
 rentalCodes.put(rentalCode.getCode(), id);
 }
 rentalCodeExtent.close(iter);
 }
 public static Object getId(String code) { [2]
 return rentalCodes.get(code);
 }
}

The class has a static initialize() method that is called to read the RentalCode instances from the datastore and populate a
Map, where the key of an entry is the code value of a RentalCode, and the entry's value is the identity of the RentalCode
instance. We acquire the identity for a RentalCode instance on line [1] and place an entry into the Map on the next line.
On line [2], we define getId(), which returns the identity instance associated with a particular code value, or null if there
is no entry for the provided code.

The application can then make calls to getId() to access identity instances:

Object id = RentalCodeAccessor.getId("Hot");
System.out.println(id.toString());
id = RentalCodeAccessor.getId("Recent");
System.out.println(id.toString());
id = RentalCodeAccessor.getId("Oldie");
System.out.println(id.toString());

When using the reference implementation, these lines of code produce the following output:

OID: 102-11
OID: 102-13
OID: 102-15

The RentalCode class defined in the com.mediamania.store package uses datastore identity. This output shows the
reference implementation's representation of a datastore identity value. The String representation of datastore identity
is different with each JDO implementation. The value 102 denotes a specific class (RentalCode) and the numbers 11, 13,
and 15 identify specific instances.

The identity value returned by getObjectId() is the identity of the instance at the beginning of the transaction. Later in
this chapter, we'll discuss the case where you can change the application identity of an instance during a transaction. In
this situation, you use another method to return the current identity of an instance.

An identity instance does not necessarily contain any of the internal state of a persistent instance, nor is it necessarily
an instance of the class the implementation uses internally to manage identity. The returned instance represents the
identity for the application to use. Multiple identity instances obtained from the same PersistenceManager for the same
persistent instance have the same identity value, and a call to equals() on two such instances returns true. The identity
instances used as parameters or returned by getObjectId(), getTransactionalObjectId(), and getObjectById() are not saved
internally; rather, they are copies of the implementation's internal representation, or they are used to find instances of
the internal representation. Therefore, you can modify the instance returned by getObjectId(); you will not affect the
persistent instance or its identity.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

persistent instance or its identity.

10.5.3 Getting an Instance via Its Identity

The following PersistenceManager method attempts to find an instance in the cache with the specified identity:

Object getObjectById(Object oid, boolean validate);

The oid parameter is an identity instance that might have been returned by an earlier call to getObjectId() or
getTransactionalObjectId(), or it might be an application identity instance constructed by the application. We use the
validate flag to tell the implementation whether or not it should verify that the instance associated with the oid identity
parameter currently exists in the datastore.

We add the following method to the RentalCodeAccessor utility class:

 public static RentalCode getRentalCode(String code) {
 Object id = rentalCodes.get(code); [1]
 if (id == null) return null;
 RentalCode rentalCode = (RentalCode) pm.getObjectById(id, true); [2]
 return rentalCode;
 }

On line [1], we look up the code value in the Map, returning null if it is not found. Otherwise, we call getObjectById() on
line [2] to access the RentalCode instance associated with the identity value. RentalCodeAccessor provides access to
RentalCode instances defined in the com.mediamania.store package, which use datastore identity. You should declare Object
references to refer to instances of a vendor's datastore identity class.

Now let's look at an example of using getObjectById() to access instances that use application identity. In the
com.mediamania.store.appid package we declared RentalCode and Customer persistent classes, with RentalCodeKey and
Customer.Id identity classes, respectively. The following lines of code create instances of these application identity
classes and access the associated instances:

 RentalCodeKey key = new RentalCodeKey("High Demand");
 RentalCode code = (RentalCode) pm.getObjectById(key, true);

 Customer.Id id = new Customer.Id("Brian", "Mathie", "330-555-2020");
 Customer cust = (Customer) pm.getObjectById(id, true);

If the PersistenceManager cannot convert the oid parameter passed to getObjectById() to a valid identity instance, then it
throws a JDOUserException. This could occur if the parameter is an instance of an application identity class and the
implementation does not support application identity. Or, the instance may be of a class that is different from the one
specified in the metadata.

If you pass a value of false for the validate parameter, the following behavior occurs:

If there is already an instance in the cache with the same identity as the oid parameter, the instance is
returned. No change is made to the state of the returned instance.

If there is not already an instance in the cache with the same identity as the oid parameter, then an instance
with the specified identity is created and returned.

If the instance does not exist in the datastore, this method may or may not fail. An implementation may
immediately throw a JDODataStoreException, or it may return an instance. However, if it returns an instance, a
subsequent access of its fields causes a JDODataStoreException to be thrown if the instance does not exist at that
time. Further, if a relationship is established to this instance and the instance does not exist when the instance
is flushed to the datastore, the transaction in which the association was made will fail.

The implementation decides whether to access the datastore, if required to determine the exact class of the persistent
instance. This is the case with inheritance, where multiple persistent classes can share the same identity class.

If you pass true for the validate parameter, the following behavior occurs:

If a transactional instance is already in the cache with the same identity as the oid parameter, the instance is
returned. The state of the returned instance is not changed.

If a nontransactional instance is in the cache with the same identity as the oid parameter, a transaction is
active, and the instance exists in the datastore, a transactional instance is returned with a state consistent with
the datastore.

If an instance with the same identity as the oid parameter is not in the cache but it does exist in the datastore,
an instance with the specified identity is created and returned.

If an instance is already in the cache with the same identity as the oid parameter, the instance is not
transactional, and the instance does not exist in the datastore, then a JDOObjectNotFoundException is thrown.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transactional, and the instance does not exist in the datastore, then a JDOObjectNotFoundException is thrown.

If an instance with the same identity as the oid parameter is not in the cache and it does not exist in the
datastore, then a JDOObjectNotFoundException is thrown.

No change is made to the status of a transaction if JDOObjectNotFoundException is thrown. You will never get this
exception as a result of executing a query. You can retrieve the failed instance by calling the exception's getFailedObject(
) method. Of course, the fields of the failed instance will not be initialized, since the instance does not exist in the
datastore. But you can access the identity of the instance by calling getObjectId(), which may be useful to debug the
application.

All calls to getObjectById() with the same identity value and the same PersistenceManager instance return the same
instance with the same Java identity (assuming the instances were not garbage-collected between calls). So, the
following code outputs "same instance" to the output stream:

 RentalCodeKey key = new RentalCodeKey("High Demand");
 RentalCode code = (RentalCode) pm.getObjectById(key, true);
 RentalCodeKey key2 = new RentalCodeKey("High Demand");
 RentalCode code2 = (RentalCode) pm.getObjectById(key2, true);
 if (code == code2) System.out.println("same instance");

Suppose we use different PersistenceManager instances (from the same PersistenceManagerFactory) in calls to getObjectById(
) with the same identity value. The instances returned will represent the same persistent instance, but they will have a
different Java identity, because each PersistenceManager manages its own copy of persistent instances.

10.5.4 Changing the Application Identity of an Instance

If you change the value of a primary-key field during a transaction, this action constitutes an attempt to change the
identity of the instance. Changing the identity of an instance is supported only for application identity, and it is an
optional JDO feature. The javax.jdo.option.ChangeApplicationIdentity option property indicates whether an implementation
supports this feature. If it is not supported, the implementation throws a JDOUnsupportedOptionException whenever you
attempt to change a primary-key field. Since this feature is optional, your application is more portable if it never
changes a primary-key field.

For implementations that support the changing of an application identity, the implementation detects changes to
primary-key fields. Changing the value of a primary-key field changes the identity value. The new identity value is
either unique or already in use by another instance. If another persistent instance already has the identity value, a
JDOUserException is thrown and the statement that attempted to change the field does not complete. If the resulting
identity is unique, it is associated with the instance immediately upon completion of the statement that changed the
primary-key field. If the transaction commits successfully, the existing instance in the datastore is updated with the
values of any primary-key fields that have changed.

You need to take into account the fact that a change to the value of a primary-key field changes the identity of an
instance in the datastore. This might result in a loss of integrity in a production environment that keeps an audit trail of
all changes, as the historical record of all changes would not reflect the current identity of the instance in the datastore.
In these environments it is best if you do not change the value of a primary-key field.

10.5.5 Get the Current Application Identity of an Instance

The PersistenceManager method getObjectId() returns the identity of an instance as of the beginning of a transaction. If
the application changes the identity of an instance during a transaction, getObjectId() continues to return the identity as
of the beginning of the transaction until afterCompletion() has been called, at which point it returns a different identity
value if the transaction commits successfully. Chapter 7 describes the afterCompletion() method of the Synchronization
interface.

The PersistenceManager method:

Object getTransactionalObjectId(Object obj);

and the JDOHelper method:

static Object getTransactionalObjectId(Object obj);

return the current identity of an instance, taking into account any changes that may have been made to primary-key
fields. These methods return null if the instance is transient, null, or not of a persistent class. If no transaction is in
progress or if none of the primary-key fields have been modified, then these methods have the same behavior as
getObjectId().

10.5.6 The String Representation of Identity

The getObjectId() method returns an identity instance, declared to be of type Object. You can call toString() on the
identity instance to obtain a String representation of the identity value. This String can be written to a file or passed to
some other software outside the current JVM context. If the persistent class has application identity, the toString() you
defined for the application identity class will determine the form of the String's value. If the persistent class uses

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defined for the application identity class will determine the form of the String's value. If the persistent class uses
datastore or nondurable identity, the String value is implementation-specific.

You can later use the String value to construct an identity instance. The following PersistenceManager method returns an
identity instance, given the Class and String parameters:

Object newObjectIdInstance(Class persistentClass, String str);

The str parameter should be the result of a previous call to toString() on an identity instance. The persistentClass
parameter specifies the class of the instance identified by the str parameter. The newObjectIdInstance() method calls the
identity class's public constructor that takes a String argument to initialize the identity instance.

In some development projects, we have passed the String representation of identity to an HTML screen to serve as a
handle for referencing a persistent object in the browser's separate process context. The string representation of the
identity value can be kept in a hidden element in the HTML. Each persistent instance rendered in the user interface can
have its associated identity value. Then, when some user action in the browser requires an action to be performed on
the instance in the cache, you can pass the identity string back to the application and use newObjectIdInstance() and
getObjectById() to access the instance in the cache quickly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.6 Advanced Topics
There are a few advanced identity topics, which we will consider in this section.

10.6.1 Choosing an Identity Type

If you are not mapping your JDO object model onto an existing relational schema and you are using an implementation
that supports both datastore and application identity, you frequently have the freedom to choose the form of identity.
Datastore identity is the logical choice if there is not a natural primary key to identify instances of the class. It is also
useful if you prefer to have the JDO implementation generate a unique identity value. Datastore identity also requires
less development work on your part. But for some entities being modeled, a primary key is the most suitable solution
because of a natural primary-key value that is used to identify the data.

The primary difference between datastore and application identity in your persistent class is the need to define equals()
and hashCode() methods for your persistent classes that use application identity. The only other difference is the
specification of the identity type in your metadata. You can develop a persistent class and define an application identity
class for it, but then in the metadata you could switch between datastore and application identity. If you do change the
identity in the metadata, you need to enhance your classes again, as the enhanced class contains identity-specific
information.

10.6.2 Using Identity Versus a Query

If you want to have the flexibility of changing the type of identity used for a persistent class, you should insulate your
applications from the particular identity type you choose. When you access an instance with application identity, you
initialize an instance of the application identity class with values for the primary-key fields and call getObjectById().

As an alternative to getObjectById(), you could execute a Query, where the filter tests the equality of query parameters
with fields in the class. Such a query will work regardless of whether the class uses datastore or application identity.
You could define a method for this purpose, possibly a static method of your persistent class. It would have a
parameter for each field needed to identify an instance and the PersistenceManager to use. Internally, the method could
issue a query, or, if you eventually decide to use application identity, it could call getObjectById(). Be aware, though,
that calling getObjectById() will likely perform better than a query.

10.6.3 Identity Across PersistenceManagers

Under some circumstances, you can use identity instances across different PersistenceManager instances from the same
or different implementations. For example, when using multiple PersistenceManager instances retrieved from the same
PersistenceManagerFactory, you can use the following code to get an instance in a PersistenceManager (referenced by the pm
variable) with the same identity as an instance from a different PersistenceManager:

pm.getObjectById(JDOHelper.getObjectId(obj), validate);

If multiple PersistenceManager instances (which have been returned by the same PersistenceManagerFactory instance) have
their own copy of the same persistent instance in their cache, all the identity instances that are returned by calls to
getObjectId() return true to equals(), since they all refer to the same persistent object, even though the identity
instances were acquired from distinct copies of the same persistent instance.

You can use getObjectById() only for instances of persistent classes using application identity when you are working with
PersistenceManager instances of different JDO implementations. Since each implementation has its own representation for
datastore identity, you cannot pass a datastore identity value from one implementation to a PersistenceManager of a
different implementation in a call to getObjectById().

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11. Lifecycle States and Transitions
An instance of a persistent class has a lifecycle state that the JDO implementation manages. This lifecycle state is used
to determine whether the instance is persistent, loaded, modified, or deleted. During a persistent instance's lifetime in
memory, as operations are performed on it, it transitions among various lifecycle states, until it is finally garbage-
collected by the JVM.

This chapter describes the lifecycle states required in all JDO implementations. We assume that the RetainValues flag is
set to false. Chapter 14 covers the effect of having RetainValues set to true. We discuss the methods available to
determine the lifecycle state of an instance. We conclude by discussing the various state transitions that occur to
instances during a transaction, when a transaction completes, and between transactions.

As a developer using JDO, you do not really need to understand these lifecycle states and transitions or directly use
their related APIs to write your application. These lifecycle states primarily concern JDO implementations, to ensure
they correctly implement the JDO APIs. You may occasionally want to determine the state of an instance in more
complex usage scenarios; knowing the state of an instance may be useful during debugging. Being aware of these
states will give you a better understanding of how an implementation manages instances and the in-memory cache.
Some of the early JDO adopters focused considerable attention on these states, giving many the impression that they
were a fundamental aspect of using JDO. In reality, most applications never need to deal with these states directly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.1 Lifecycle States
JDO has a total of 10 lifecycle states. The following 7 states are required:

Transient

Persistent-new

Hollow

Persistent-clean

Persistent-dirty

Persistent-deleted

Persistent-new-deleted

There are also three optional states:

Transient-clean

Transient-dirty

Persistent-nontransactional

If a JDO implementation does not support the transaction-related optional features that allow transient transactional
and persistent-nontransactional instances, these three optional states are not reachable. This chapter focuses on the
required states. Chapter 13 and Chapter 14 discuss these optional features and associated lifecycle states.

11.1.1 Transient

When you call a constructor to create an instance of a class, the instance is placed in the transient state. Each instance
created by the application starts its life as a transient instance. Transient instances do not have a JDO identity, because
identity is only a characteristic of persistent instances. A transient instance should behave exactly as an instance of the
class would if the class were not persistent. No JDO exceptions are thrown for a transient instance.

Many developers wonder how much overhead is involved when transient instances of an enhanced class are
manipulated. Fields of transient instances have slightly slower access and modification than they would if the class were
not persistent and enhanced. No mediation of access or modification of fields is performed on instances in the transient
state. In particular, a transient instance never makes a call to a method of the JDO implementation, specifically those
defined in the StateManager interface. To understand the exact overhead involved, read the sidebar Overhead of
Accessing a Field of a Transient Instance.

Overhead of Accessing a Field of a Transient Instance
The enhancer replaces the getfield and putfield instructions that access a field at the byte-code level with a
call to a generated static method. The code generated for these static methods has different logic,
depending on whether the specific field is in the default fetch group. Chapter 12 discusses field fetch
groups and the default fetch group.

For a field in the default fetch group, the first line of the generated static method checks the jdoFlags field
(generated by the enhancer) for equality with the PersistenceCapable constant READ_WRITE_OK. If they are
equal, the field is accessed and the method returns. A transient instance has its jdoFlags field set to
READ_WRITE_OK, so this one equality comparison with jdoFlags is the only additional software executed for
fields in the default fetch group.

For a field that is not in the default fetch group, the first line of the generated static method checks to see
whether the jdoStateManager field is null; if so, the field access or modification is performed and the method
returns. Transient instances have their jdoStateManager field set to null, so this one equality comparison with
the jdoStateManager field is the only additional software executed for a field that is not in the default fetch
group.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JDO does not support the demarcation of transaction boundaries for instances in the transient lifecycle state. Indeed,
transient instances have no transactional behavior, unless they are referenced by persistent instances at commit time.
In that case, they transition to the persistent-new state. Transient-transactional instances are instances that are
transient and have transactional behavior. Chapter 13 covers transient-transactional instances.

11.1.2 Persistent-New

Instances that have been made persistent in the current transaction are placed in the persistent-new state. This occurs
if the application makes an instance persistent explicitly by passing it as a parameter to makePersistent(), or implicitly
through persistence-by-reachability. Thus, instances that become provisionally persistent via the reachability algorithm
also transition to the persistent-new state. Only transient instances (which include transient, transient-clean, and
transient-dirty instances) can transition to the persistent-new state, and this only occurs as a result of making them
persistent.

During the transition from transient to persistent-new, the following actions are performed:

The associated PersistenceManager becomes responsible for implementing state interrogation and all further state
transitions. This is implemented by setting the jdoStateManager field in the instance to reference the associated
StateManager.

If the RestoreValues flag is true, the values of persistent and transactional nonpersistent fields are saved in a
before image to be used during transaction rollback.

The implementation assigns an identity to the instance. This identity uniquely identifies the instance inside the
PersistenceManager and might uniquely identify the instance in the datastore. The instance must have a unique
identity at transaction commit for classes with a durable identity.

11.1.3 Hollow

The JDO implementation instantiates every object accessed from the datastore in memory. The implementation
constructs a hollow instance by calling the no-arg constructor. An instance in memory is in the hollow state if it
represents a specific object in the datastore whose values have not yet been loaded from the datastore into the
instance. Instances transition to the hollow state at transaction commit when RetainValues is false.

An instance can be in the hollow state if it is:

Committed from a previous transaction

Acquired by getObjectById()

Returned by iterating an Extent

Returned in the result of a query

Accessed by navigating a persistent field reference

However, with these operations an implementation may choose to return the instances in a different state that is
reachable from hollow. An implementation can transition an instance from the hollow state to another state at any time,
just as if a field were read. Therefore, the hollow state might not be visible to the application.

Primary-key fields are always available in an instance, regardless of its state. So, the primary-key fields of a hollow
instance are initialized. Read access of primary-key fields is never mediated. The JDO implementation is not required to
load values into any other field until the application attempts to read or modify the field.

Once the JDO implementation has initialized a reference or collection of references to persistent instances in the cache,
these references need to refer to actual Java instances in memory. So, the JDO implementation needs to instantiate
instances to refer to; it instantiates instances and places them in the hollow state. It is important for you to know that
these hollow instances exist and that they consume memory resources in the JVM. If your application never accesses
them, their state may never be initialized from the datastore.

A hollow instance maintains its identity and association with its PersistenceManager instance. A PersistenceManager must
not hold a strong (nonweak) reference to a hollow instance. Thus, if your application does not hold a strong reference
to a hollow instance, it might be garbage-collected during or between transactions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to a hollow instance, it might be garbage-collected during or between transactions.

Furthermore, instances transition to hollow at transaction commit. If your application still has a strong reference to a
hollow instance after transaction commit, the JVM garbage collector will not free up its associated memory resources. If
the instances your application refers to have their own references that refer to additional instances in the cache, those
instances cannot be freed either. So, it is very important that your application does not refer to such instances after
transaction commit, unless you intend to continue using them after commit, between transactions, or in a subsequent
transaction. Chapter 14 covers the access and use of persistent instances after commit.

11.1.4 Persistent-Clean

An instance in the persistent-clean lifecycle state represents a specific instance in the datastore whose values have not
been changed in the current transaction. If any persistent field other than a primary-key field of a hollow instance is
read, the instance transitions to persistent-clean. The field values of a persistent-clean instance in memory are identical
to their values in the datastore.

11.1.5 Persistent-Dirty

When a field is modified, an instance may become inconsistent with the state it had in the datastore at the beginning of
the transaction. This includes instances that have been modified or deleted. These instances are referred to as dirty.

If the value of a managed field is modified, the instance is marked as dirty and placed in the persistent-dirty state. If
your application does not modify any managed field of an instance, the instance is not marked as dirty. In one special
circumstance, the application modifies a managed field, but the new value is equal to the old value. If the field is of an
array type, the implementation marks the field as modified and makes the instance dirty. Otherwise, the
implementation decides whether to consider the instance dirty.

During the commit of a transaction in which a dirty instance's values have changed (including a new persistent
instance), the underlying datastore is changed to have the transactionally consistent values from the instance and the
instance transitions to hollow.

A JDO implementation might store the state of persistent instances in the datastore at any time; this process is called
flushing. This does not affect the dirty state of the instances. This flushing behavior is not visible to the application and
does not impact the rollback of a transaction.

11.1.6 Persistent-Deleted

A persistent instance that has been deleted in the current transaction by a call to deletePersistent() is in the persistent-
deleted state. You can read the primary-key fields of a deleted instance, because the primary-key fields always have
their values populated. But accessing any other persistent field throws a JDOUserException.

11.1.7 Persistent-New-Deleted

An instance that has been made newly persistent and also deleted in the current transaction is placed in the persistent-
new-deleted state. You can read its primary-key fields, but any other persistent field access throws a JDOUserException.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.2 State Interrogation
The JDOHelper class provides the following methods to interrogate the state of an instance:

static boolean isPersistent(Object obj);
static boolean isTransactional(Object obj);
static boolean isDirty(Object obj);
static boolean isNew(Object obj);
static boolean isDeleted(Object obj);

Each of these methods returns false if the instance is null, transient, or of a class that is not persistent. Otherwise, these
methods return the following:

isPersistent()

Returns true for an instance that represents a persistent object in the datastore

isTransactional()

Returns true for an instance whose state is associated with the current transaction

isDirty()

Returns true for an instance whose state has changed in the current transaction

isNew()

Returns true for an instance made persistent in the current transaction

isDeleted()

Returns true if the instance has been deleted in the current transaction

Table 11-1 specifies the values these methods return for each required lifecycle state. You could write a method that
calls each of these methods and returns a String denoting the instance's lifecycle state. This can be useful if you are
debugging or would like to know the lifecycle state of instances.

Table 11-1. State interrogation method return values
State of Instance isPersistent() isTransactional() isDirty() isNew() isDeleted()

Transient false false false false false

Hollow true false false false false

Persistent-new true true true true false

Persistent-clean true true false false false

Persistent-dirty true true true false false

Persistent-deleted true true true false true

Persistent-new-deleted true true true true true

Table A-1 in Appendix A provides a complete listing of the values these methods return for all the lifecycle states.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.3 State Transitions
An instance transitions from one lifecycle state to another as the application or JDO implementation performs various
operations on it. These state transitions occur during a transaction and at the completion of a transaction. A transition
can occur as a result of the passing of an instance as a parameter to a method, such as makePersistent(). An instance
can also transition from one state to another without the application performing any direct operations on the instance.
For example, an instance made persistent via reachability changes state without the application directly passing the
instance to a method. An instance in the hollow or persistent-clean state will transition to persistent-dirty if it contains a
collection field and you add or remove an element from the collection.

11.3.1 State Transitions During a Datastore Transaction

Figure 11-1 illustrates the state transitions that occur when you make a call to makePersistent() or deletePersistent(), or
when you access a managed field. In the figure, Start State 1 represents the application calling a constructor to create
an instance, and Start State 2 occurs when the JDO implementation calls the no-arg constructor to instantiate an
instance from the datastore.

Figure 11-1. Lifecycle-state transitions

If any persistent field of a hollow instance other than a primary-key field is read, the instance transitions to persistent-
clean. If a managed field of a hollow or persistent-clean instance is modified, the instance transitions to persistent-dirty.
Once an instance enters the persistent-deleted or persistent-new-deleted state during a transaction, no further state
transitions occur until transaction completion.

11.3.2 State Transitions When a Transaction Completes

When a transaction completes via a call to commit() or rollback(), instances in every lifecycle state, except hollow and
transient, transition to a new lifecycle state; hollow and transient instances remain in their current state. Figure 11-2
illustrates the state transitions that occur when you call commit() or rollback() and the RetainValues flag is set to false.
Chapter 14 covers the behavior that occurs when the RetainValues flag is true.

Figure 11-2. State transitions at transaction completion with RetainValues = false
and RestoreValues = false

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As illustrated in Figure 11-2, persistent-clean, persistent-dirty, and persistent-new instances transition to hollow at
commit. In addition, instances that were persistent at the beginning of the transaction (including those in the hollow,
persistent-clean, persistent-dirty, or persistent-deleted state) transition to hollow at rollback, and they retain their
identity and association with their PersistenceManager instance.

A persistent-deleted instance transitions to transient at commit. Since it has been deleted from the datastore, it is not
associated with a datastore instance. During its transition to the transient state, it loses its identity and association with
its PersistenceManager, and its persistent fields are initialized with their Java default values.

A persistent-new-deleted instance transitions to transient at commit and rollback. During these transitions, it also loses
its identity and association with its PersistenceManager. When a transaction commits, its persistent fields are initialized
with their Java default values.

All instances that transition to transient lose their identity and association with their PersistenceManager, whereas all
instances transitioning to hollow retain their identity and association with their PersistenceManager. Primary-key fields are
always accessible, regardless of the state of the instance. Read access to these fields is never mediated.

11.3.3 States Between Transactions

A hollow instance maintains its identity and association with its PersistenceManager instance. Between transactions, the
hollow state guarantees that there is a single, unique copy of a persistent instance with a specific identity in the cache.
Furthermore, if the application makes a request (via query, navigation, or look up by identity) for the same instance in
a subsequent transaction, using the same PersistenceManager instance, the identical Java instance in memory is returned,
assuming it has not been garbage-collected.

If the instance's class uses application identity, the primary-key fields are maintained. These fields can be accessed
between transactions. If the implementation does not support the NontransactionalRead or NontransactionalWrite optional
features, access of any other fields between transactions throws a JDOUserException.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12. Field Management
JDO provides interfaces that allow you to have some control over the management of the fields in a persistent class,
including their access and storage. In addition, you can specify how a field with a null value is handled if the underlying
datastore does not support null values. JDO metadata controls many of these field-management capabilities.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.1 Transactional Fields
A JDO implementation manages two kinds of fields: persistent fields that are stored in the datastore and transactional
fields. A transactional field is not persistent, but it participates in a transaction by having its values restored if a rollback
occurs. Persistent and transactional fields are referred to collectively as managed fields. The state of a transactional
field is saved before certain lifecycle-state transitions, so it can be restored if a transaction rollback occurs. The JDO
implementation modifies a transactional field only during rollback for instances that have been modified by your
application.

You specify that a field is transactional by setting its persistence-modifier attribute to "transactional" in the metadata. A
transactional field can be of any type; there are no restrictions. The JDO implementation mediates the modification of a
transactional field, but it does not mediate field reads.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.2 null Values
A field of an object type can have a null value in Java. The datastore you access may or may not support null values,
and the support may vary depending on the type of the data. Therefore, you should specify how the JDO
implementation should handle a field with a null value when it is written to a datastore that cannot store a null value.

The field element's null-value attribute in the metadata specifies how this situation should be handled. This attribute can
be given one of the following values:

"none"

Indicates that a Java null value should be stored as a null in the datastore. If the datastore cannot store a null
value, a JDOUserException is thrown.

"exception"

Indicates that a JDOUserException should always be thrown when a field has a null value, even if the datastore
can store a null value for the field.

"default"

Indicates the implementation should convert the Java null value to the datastore's default value for the field's
datatype.

If you do not provide a value for the null-value attribute, it defaults to "none". If you never want to store a field with a
null value, then you should set the null-value attribute to "exception".

If the null-value attribute for a field is set to "default" and the field is null in a transaction, the datastore's default value is
stored, based on the field's datastore datatype. The next transaction that accesses the instance will obtain this
datastore default value. You will have lost the fact that the field was originally null.

For example, if an Integer field that is null is mapped to the datastore's representation of an integer value, you may get
a value of zero stored in the datastore. The next transaction accessing the field will also get a zero and it will not know
the field was originally null. Similarly, a String field with a null value could be written as a zero-length string in the
datastore. There is no good way to represent a null collection in a relational database, but a collection field with a null
value could be represented in the datastore as an empty collection. Furthermore, the default value used for a datatype
may vary across datastores.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.3 Retrieval of Fields
You should not be concerned about how and when the JDO implementation accesses fields from the datastore. When
you access a field, the JDO implementation provides the field's value. But some facilities let you instruct the JDO
implementation to load all or a particular subset of fields of an instance together. You can analyze your application's
field-access requirements and optimize the performance of accessing fields from the datastore.

12.3.1 Default Fetch Group

A fetch group is a group of fields retrieved together from the datastore. JDO implementations usually can retrieve a
group of fields as a unit more efficiently than they can retrieve each field individually. In addition, you may have a
specific subset of fields that your applications always use together; in this case, accessing these fields as a unit may be
more efficient. Conversely, fields that are rarely accessed could be placed in a separate fetch group that is retrieved
only when necessary. When fields that are not contained in any fetch group are accessed, they can be retrieved from
the datastore individually.

JDO defines one fetch group, called the default fetch group (DFG). A field element's default-fetch-group attribute specifies
whether a field should be in the default fetch group. This attribute defaults to "true" for nonkey fields of the following
types:

Primitive types

java.util.Date

Fields in the java.lang package of the types listed in Table 4-2

java.math.BigDecimal and java.math.BigInteger

An instance in the hollow state does not have its default fetch group fields loaded, but they get loaded when the
instance transitions to persistent-clean or persistent-dirty.

The default fetch group can only contain persistent fields, so you cannot set the default-fetch-group attribute to "true" for
fields whose persistence-modifier is "transactional" or "none". You cannot place a primary-key field in the default fetch
group; a primary-key field is always loaded in an instance. When an instance is first instantiated from the datastore and
placed in the hollow state, the primary-key fields are set. Since they uniquely identify an instance in the datastore, they
are used to fetch the other field values when they are needed.

In fact, the following field-level metadata declarations are mutually exclusive; only one can be specified:

default-fetch-group = "true"

primary-key = "true"

persistence-modifier = "transactional"

persistence-modifier = "none"

An implementation can support other fetch groups in addition to the default fetch group. A class can have multiple fetch
groups, which you must specify in the metadata using vendor-specific metadata extensions. Such additional fetch
groups allow you to partition a class's fields into separate groups that should be processed as distinct units.

12.3.2 Retrieving All Fields

In some situations, you need to fetch all the field values for one or more instances from the datastore. For example,
when you execute a query, a Collection is returned that you can iterate through to access each of its elements. The
instances in the query result might not be fetched from the datastore. It will probably be more efficient to access them
from the datastore as a group, rather than individually.

You can call the following PersistenceManager methods to make sure that all of the persistent fields have been loaded into
the parameter instances:

void retrieve(Object obj);
void retrieveAll(Collection objs);
void retrieveAll(Object[] objs);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void retrieveAll(Object[] objs);

These methods do not read and set any fields that have been modified in the transaction; any updates you may have
made to fields will not be lost. Furthermore, if an instance in the persistent-dirty state is passed to retrieve() or
retrieveAll(), it will be persistent-dirty upon return. These retrieve() and retrieveAll() methods load all of the fields that
have not been loaded already.

Suppose you want to load only the fields in the default fetch group. You can do so by calling one of the following
methods, passing true for the DFGonly parameter:

void retrieveAll(Collection objs, boolean DFGonly);
void retrieveAll(Object[] objs, boolean DFGonly);

This tells the JDO implementation that you need to retrieve only the fields in the default fetch group. After you call this
method, if you access any of the default fetch group fields of the parameter instances, the implementation will not need
to access the datastore to retrieve the field value. Passing a value of false for the DFGonly parameter is equivalent to
calling retrieve() or retrieveAll() without the DFGonly parameter. Since these methods are just a hint, the implementation
may still retrieve all the fields, regardless of the DFGonly parameter value. You may notice that there is no method
named retrieve() that accepts the DFGonly parameter. We omitted this deliberately, because in most of the cases where
you want to retrieve only the fields in the default fetch group, you have a collection of instances.

Using the retrieveAll() methods with the DFGonly parameter optimizes performance in applications that need to retrieve a
large number of instances in the cache, when you need only the fields in the default fetch group and do not want to
incur the overhead of retrieving all the fields. A common example is passing a partial result (e.g., the first 10 instances
of the query result) of a JDOQL query to retrieveAll() with a value of "true" for DFGonly.

Figure 12-1 illustrates the state transitions that occur when you call these methods. In addition, jdoPostLoad() is called if
the instance's class implements the InstanceCallbacks interface. We cover the InstanceCallbacks interface later in this
chapter.

Figure 12-1. State transitions when retrieve methods are called in a datastore
transaction

If you call retrieve() for an instance that contains references to other persistent instances, the references are initialized
to refer to the related instances. The referenced instances must be instantiated in the cache, if they are not already
resident in the cache. They may be in the hollow state; their fields do not need to be fetched.

Some implementations support a preread policy that you can use to instruct the JDO implementation to fetch the field
values of related instances when an instance is accessed. You usually specify preread policies with vendor-specific
metadata, since JDO 1.0.1 does not specify them. The JDO expert group is considering this as a possible feature in JDO
2.0.

12.3.3 The Management of Fields

The JDO implementation completely controls whether the fields of a persistent instance are fetched from the datastore.
During enhancement, the jdoFlags field is added to a persistent class to indicate the state of the default fetch group. The
value of the jdoFlags field directly affects the behavior of default-fetch-group field accesses.

An implementation can choose from a variety of field-management strategies:

Never cache any field values in an instance, but fetch a field's value each time it is accessed by the application.

Selectively fetch and cache the values of specific fields in the instance.

Fetch the values for all the fields in the default fetch group at one time, taking advantage of this performance
optimization when managing the instance.

Manage updates to fields in the default fetch group individually. This results in the instance always delegating
field changes to the PersistenceManager. With this strategy, the PersistenceManager can reliably tell when any field
changes, and it can optimize the writing of data to the datastore.

Your application is insulated from the specific techniques an implementation uses to manage fields. Class enhancement
makes your application binary-compatible across all implementations, with an interface that gives implementations a lot
of flexibility in how they manage fields. Be aware that each implementation employs one or more field-management
strategies that can affect the performance of your application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

strategies that can affect the performance of your application.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.4 Serialization
When an instance is serialized in Java, the graph of instances reachable via non-transient fields is written to an output
stream. In this context, non-transient refers to fields that have not been declared transient in Java. Java's transient fields
and JDO's managed fields are independent concepts, so any combination of Java's transient or non-transient fields with
JDO's persistent, transactional, or transient fields is possible in your persistent classes.

You can serialize and deserialize instances of your persistent classes. You do not need to do anything special for
serialization to work. In fact, the JDO implementation automatically fetches the graph of instances, even if they have
not yet been loaded into the JVM from the datastore.

However, you should be aware that the instances reachable from the instance being serialized might include a large
number of instances from the datastore. If your persistent classes are highly interconnected, you may unintentionally
serialize a large percentage of your datastore. You can use Java's transient modifier to prevent the serialization of
referenced instances. Chapter 4 showed how to make Java transient fields persistent in JDO by setting the persistent-
modifier attribute to "persistent". This lets you serialize persistent instances in JDO without extracting and serializing a
large portion of the data from your datastore.

JDO enhancement allows you to serialize transient and persistent instances of persistent classes to a format that can
later be deserialized with an enhanced or unenhanced form of the class. Deserializing a serialized graph of instances
that are persistent in JDO results in a graph of transient instances. So, no JDO-specific functionality is necessary to
deserialize the instances. Subsequently, you can make these instances persistent, but they will not have any association
with the original persistent instances that were serialized.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.5 Managing Fields During Lifecycle Events
While a persistent instance is in memory, it transitions through certain lifecycle events, as we described in Chapter 11.
You may want to execute some functionality when these events occur. For example, if you have a persistent class with
nonpersistent fields, you may want to initialize the values of the fields when instances from the datastore are
instantiated in memory. This is enabled in JDO by a mechanism called an instance callback.

JDO defines the InstanceCallbacks interface to support instance callbacks. This interface has four methods, each of which
is called when a particular lifecycle event occurs. If you declare that a persistent class implements the InstanceCallbacks
interface, the following methods must be defined and are called when their associated lifecyle event occurs:

void jdoPostLoad()

Called for an instance after the values have been loaded into its default fetch group fields. This occurs when the
instances transition from hollow to persistent-clean or persistent-dirty. In this method, you should initialize
nonpersistent fields that depend on fields in the default fetch group. Another use for this method is to register it
with other objects in the runtime environment.

The enhancer does not add field mediation code to this method; so, you should access only fields in the default
fetch group, since you are not guaranteed that the other fields have been fetched. The context in which
jdoPostLoad() is called does not allow access to other persistent instances.

void jdoPreStore()

Called before the field values of persistent-new and persistent-dirty instances are flushed to the datastore
during commit or to perform a query in the datastore server. It is not called for instances being deleted, which
are in the persistent-deleted or persistent-new-deleted state. If you want the stored value for a persistent field
to be based on the value of another field that is not persistent, you should set the persistent field's value in this
method. The enhancer modifies this method so that the changes you make to persistent fields are propagated
to the datastore. You can also access the instance's PersistenceManager and other persistent instances in the
method.

void jdoPreClear()

Called before an instance's persistent fields are cleared (set to their Java default value). This occurs during
commit when persistent-new, persistent-clean, and persistent-dirty instances transition to the hollow state. In
this method, you should clear nonpersistent fields, nontransactional fields, and associations that exist between
the instance and other objects in the runtime environment. The enhancer does not add the field-mediation code
to this method, and you can access only transient, transactional, and default fetch group fields.

void jdoPreDelete()

Called during the execution of deletePersistent() for an instance, before the state of the instance transitions to
persistent-deleted or persistent-new-deleted. The enhancer adds the field-mediation code to this method, so
you can access all the fields. But once this method completes, you can no longer access the fields. In Chapter 8,
we described the use of this method to implement a composite-aggregation association, which would propagate
the deletion to existence-dependent instances. This is also referred to as a cascading delete.

You can use jdoPostLoad() and jdoPreClear() in concert to establish and remove relationships between your persistent
instances and transient instances in the application environment as the persistent instances enter and leave the cache.
The jdoPostLoad() method could initialize a transient field to some transient instance in the application, which could also
reference the persistent instance. In jdoPreClear(), you could remove the reference to the persistent instance held by
the transient instance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.6 First- and Second-Class Objects
JDO provides a natural mapping of your object model to an underlying datastore using different architectures. Most of
the differences between datastores are handled for you automatically. In JDO, you identify the classes of your object
model that should be stored in the datastore. Instances of these classes are stored with unique identifiers and can be
queried efficiently using the values of their fields. Relationships between instances are modeled as references or
collections.

In Java, your application classes, such as Movie and Role, and system-defined classes, such as java.util.Date and
java.lang.Integer, are not treated differently. They are all referenceable objects in memory. However, there is a
fundamental difference between these objects from the standpoint of JDO and most datastores.

The instances of your persistent classes that you would like to be referenced by two or more instances in the datastore
are called first-class objects (FCOs). They each have a unique identity in the datastore, they can be queried, and they
can be deleted under application control. In addition, the JDO runtime environment guarantees that only a single
instance of an FCO with a durable identity is instantiated in memory for a given PersistenceManager cache.

JDO also supports second-class objects (SCOs), which represent values. They do not represent entities that you would
want to reference in the datastore. A second-class object is associated and stored as part of a single first-class object.
The second-class object is embedded in the first-class object that references and owns it. The class of a first-class
object has a field that references the second-class object. This field is declared in the metadata as embedded to indicate
that it refers to a second-class object.

An SCO instance represents a value. It may have an object representation in Java, but in the datastore it is not a
distinct, referenceable piece of data. In a relational datastore, an SCO usually is mapped to one or more columns of a
table. These columns are placed in the table in which the owning FCO is stored. Java types such as int, Integer, String,
Date, and BigInteger represent values. Except for int, these types are all considered objects in Java. They are used as the
types of fields in your persistent classes. In the datastore, they are stored as values with their associated persistent
class instance.

An SCO instance tracks all changes that are made to itself and notifies its owning FCO that it has been changed. A
change to an SCO is reflected as a change to its owning FCO. If an FCO instance is in the persistent-clean state, when
one of its associated SCO instances changes, it transitions to the persistent-dirty state. When an FCO instance is
instantiated in the JVM, fields declared as embedded are assigned SCO instances that track changes made to
themselves and notify their owning FCO that they have been changed.

If a persistent class has a field of type int and you change the value of this field in an instance, the JDO implementation
automatically marks the instance as dirty. Similarly, if the persistent class has a Date field that references a Date object,
and you change the Date object's value via setTime(), the Date object notifies the persistent class instance that its value
has been changed. In the datastore, the Date field is stored as a value in the instance (e.g., in a TIMESTAMP column in a
relational datastore). In JDO, an SCO allows specific instances of classes to behave more like primitive values that are
contained in an object, rather than as separate referenceable objects. While they are still separate referenceable
objects in Java, they are not separate and referenceable in the datastore.

Some of the system-defined classes that are used as field types in your object model are most naturally modeled as
second-class objects when stored in the datastore. Table 12-1 identifies the system-defined classes that all JDO
implementations support as second-class objects. Fields of these types are embedded by default and many
implementations support them only as second-class objects.

Table 12-1. System-defined types that default to second-class objects
Primitives java.lang java.util java.math

boolean Boolean Date BigInteger

byte Byte Locale BigDecimal

short Short ArrayList

char Character Collection

int Integer HashMap

long Long HashSet

float Float Hashtable

double Double LinkedList

 String List

 Number Map

 TreeMap

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TreeSet

 Set

 Vector

When discussing second-class objects, there are two kinds of classes to consider: mutable and immutable. A mutable
class provides methods to change the value of an instance; an immutable class maintains a value that cannot be
changed. JDO supports the following immutable classes:

java.lang package

Boolean, Character, Byte, Short, Integer, Long, Float, Double, and String

java.util package

Locale

java.math package

BigDecimal and BigInteger

JDO and Java support and encourage sharing instances for fields of these immutable classes. However, you should
compare the equality of the fields with the equals() method; you should not compare them by applying the == operator
to their references.

Setting or defaulting the embedded attribute to "true" for fields of the system-defined types listed in Table 12-1 implies
containment. You should not delete instances of these classes from the datastore; the JDO implementation deletes
them automatically when the owning instance is deleted. In fact, passing an instance of one of these types to
deletePersistent() causes a JDOUserException to be thrown. You should only pass instances of your persistent classes to
deletePersistent().

Implementations support mutable system-defined classes by defining a new class that extends the system-defined
class. The new class provides its own implementation of each method that alters the state of the object in the base
class. These redefined methods notify the owning FCO instance that the SCO instance has changed and call the
corresponding method in the base class to perform the state change (e.g., Date.setTime()). Therefore, you should not
depend on knowing the exact class of a system-defined class instance. The JDO implementation may substitute an SCO
instance with an instance of a subclass that has the same value when they are compared by calling equals(). But you
are guaranteed that the actual class of the instance is assignment-compatible with the field's declared type.

In order to make your application code and persistent classes portable across multiple JDO implementations, there are
a few simple rules to follow:

Do not assign the same instance of a system-defined mutable class to multiple persistent fields. Instead, make
a copy of a mutable instance before assigning it to another persistent field.

Initialize collection fields in a class's constructor and do not assign a new value to the collection field. To clear
the contents of the collection, call the clear() method to remove the elements instead of assigning an empty
collection, or null, to the field.

Do not expose second-class objects as public fields or have a method that returns a reference to a field,
because you cannot control when they may be used, in or out of a transaction.

12.6.1 Specifying a Second-Class Object

An instance becomes a second-class object if it is referenced by a field that you have declared in the metadata as
embedded. You specify whether a field is embedded by using the field element's embedded attribute. When a reference
field has an embedded attribute value of "true", the referenced object is a second-class object and its state is embedded
within the owning object that refers to it. The embedded attribute defaults to "true" for a field of a type listed in Table 12-
1.

Let's consider the following revisions to the metadata for some of the classes in the com.mediamania.store package, which
we illustrated in Figure 4-4:

 <package name="com.mediamania.store" >
 <class name="Customer" >
 <field name="currentRentals">
 <collection element-type="Rental"/>
 </field>
 <field name="transactionHistory">
 <collection element-type="Transaction"/>
 </field>
 <field name="address" embedded="true" /> [1]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <field name="address" embedded="true" /> [1]
 </class>
 <class name="Address" />
 <class name="Rental"
 persistence-capable-superclass="Transaction">
 <field name="rentalCode" embedded="true" /> [2]
 </class>
 <class name="MediaItem" >
 <field name="rentalItems">
 <collection element-type="RentalItem"/>
 </field>
 </class>
 <class name="RentalCode" />
 </package>

Line [1] declares that the address field should be embedded. Both the Rental and MediaItem classes have a reference to
a RentalCode instance. On line [2], we declare that the rentalCode field in the Rental instance is embedded. However, we
do not declare that the rentalCode field is embedded in MediaItem. The RentalCode instances referenced by MediaItem
instances will be found in the extent maintained for the RentalCode class. A Rental instance will have its own copy of a
RentalCode instance referenced by its rentalCode field; this RentalCode instance does not have an identity and may have
the same value as a RentalCode instance in the extent. Such an approach may be valuable to this application, because it
can preserve for historical record-keeping purposes the specific RentalCode value used for a Rental, yet have all the
MediaItem instances reference the latest values of a RentalCode instance that is shared by all MediaItem instances in the
datastore.

In a relational JDO implementation, an embedded object may be represented by columns for its fields in the table of the
referencing class. For example, the Rental class declares that the rentalCode field, referring to an instance of RentalCode,
should be embedded. The RentalCode class contains several fields: code, numberOfDays, cost, and lateFeePerDay. The table
that contains the fields of the Rental class would have a column for each of these RentalCode fields.

12.6.2 Embedding Collection Elements

You specify a collection field as embedded by using the embedded attribute in the collection's field element. You can also
specify that the collection's elements should be embedded within the collection.

The collection and array metadata elements have an embedded-element attribute to specify whether the collection
elements' values should be embedded with the collection instance in the datastore, instead of as separate FCO
instances. This attribute defaults to "false" for persistent classes and interface types and "true" for other types.

You use the embedded-key and embedded-value attributes in the map metadata element to specify whether the map's key
and value should be embedded. These attributes default to "false" for persistent classes and interface types and "true"
for other types.

12.6.3 Persistent Classes as Second-Class Objects

Many JDO implementations can support your persistent classes as second-class objects, but this support is not a
required feature in JDO 1.0.1. For implementations that support SCO instances of your persistent classes, both FCO and
SCO instances of a specific persistent class may be possible, but this depends on the implementation. The persistent
classes that you define can be either mutable or immutable.

The behavior of SCOs for your persistent classes may not be consistent relative to extents and queries. If the persistent
class has a maintained extent, the FCO instances will be in the extent, but an implementation may or may not place the
SCO instances in the extent. Furthermore, if a field of one of your persistent classes is an SCO instance, an
implementation may or may not be able to access it in a query.

You cannot rely on the automatic deletion of SCO instances for embedded fields of your persistent classes; some
implementations will delete them, while others will not. You can always delete instances of your persistent classes
explicitly, whether or not they are embedded. We recommend that you delete them explicitly; this will be portable
across all JDO implementations.

Using one of your persistent classes as an SCO may offer you some performance and modeling advantages, but there is
a tradeoff: they will lack portability and consistency, relative to extents and queries. If you intend to use them, you
should verify that your JDO implementation supports them. Here, we describe the behavior of second-class objects with
the assumption that the JDO implementation supports them for your persistent classes. If you do not have a specific
need to define a persistent class and use it as a second-class object and you want to have a portable application, then
you should avoid using instances of your persistent classes as second-class objects, in which case you can skip the
remainder of this chapter.

12.6.4 Sharing of Instances

The most visible difference to your application between a field that is an FCO or an SCO is in sharing. Multiple FCO
instances can have a reference to the same FCO instance and share it. If the referenced FCO instance changes, its
changes are visible to all the FCO instances that refer to it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

changes are visible to all the FCO instances that refer to it.

For example, consider Figure 12-2. If FCO1 is assigned to a persistent field in FCO2 and FCO3, then any changes to
instance FCO1 will be visible to FCO2 and FCO3. FCO2 and FCO3 will continue to reference FCO1 in the datastore after
the transaction commits and will refer to it when they are accessed by subsequent transactions (until the reference to
FCO1 is changed).

Figure 12-2. Sharing of an FCO instance

The same instance of a mutable class can be assigned to the embedded field of multiple FCO instances, but this is
nonportable and strongly discouraged. If you assign an instance to an embedded field of multiple persistent-new,
persistent-clean, or persistent-dirty FCO instances, the Java identity of the referenced SCO instances might change
when the transaction commits. If an assignment is made to an embedded field of a transient instance and the instance
subsequently becomes persistent by being passed to makePersistent() or through persistence-by-reachability, the
embedded field is replaced immediately with a copy of the SCO instance and the instance is no longer shared. Figure
12-3 illustrates the copying that is performed with SCO instances.

Figure 12-3. SCOs can be shared from assignment only until commit or
makePersistent()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13. Cache Management
This chapter covers additional operations that you can perform on instances in the cache. In fact, the operations this
chapter describes affect only the cache and the instances in the cache; they do not affect the datastore.

First, we describe some operations you can perform to explicitly control the management of instances in the cache. We
discuss what occurs when you make a clone of a persistent instance. We introduce transient-transactional instances,
which are transient instances that have transactional behavior. The chapter concludes by describing how you can
convert a persistent instance into a transient instance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.1 Explicit Management of Instances in the Cache
Normally, a persistent instance is managed in the cache automatically and this management is completely transparent
to the application. When you query instances, navigate to instances, or modify instances, the instances are instantiated
and their field values are fetched from the datastore. The implementation determines when to fetch a field's value from
the datastore, which can occur at any time prior to the application's access of the field.

Instances that are no longer referenced in memory are garbage-collected without requiring your application to perform
any explicit action. When you commit a transaction in which persistent instances were created, deleted, or modified, the
transaction-completion mechanisms automatically handle the eviction of instances from the cache. So, you usually do
not need to evict instances explicitly. By eviction, we mean that the PersistenceManager no longer holds a strong
reference to the instances, allowing them to be garbage-collected. The JVM is still responsible for reclaiming the
memory held by the instances.

13.1.1 Refreshing Instances

JDO provides a means to refresh instances in the cache with their current values in the datastore. This can be useful
outside of a transaction (Chapter 14 covers nontransactional access). It is also useful when you use optimistic
transactions (covered in Chapter 15). Refreshing an instance can also be used with datastore transactions. If you use a
transaction-isolation level of read-committed, the values in the datastore might change between reads. (If you do not
want this behavior, then the JDO implementation should use a repeatable-read isolation level). If you really want to
guarantee that you have the current state of the object, you can refresh the instance. However, be aware that right
after you refresh the instance, it can be changed in the datastore by another transaction.

You can use the following PersistenceManager methods to refresh the state of instances in memory with their current
state in the datastore:

void refresh(Object obj);
void refreshAll();
void refreshAll(Object[] objs);
void refreshAll(Collection objs);

These methods perform the following actions on each instance:

Load the state of the instance in the datastore into the instance

Call the jdoPostLoad() method if the class implements InstanceCallbacks and the default fetch group fields have not
been loaded yet

Transition persistent-dirty instances to persistent-clean in a datastore transaction or persistent-nontransactional
in an optimistic transaction (Chapter 14 covers the persistent-nontransactional lifecycle state and Chapter 15
covers optimistic transactions)

Since these methods refresh an instance with its current state in the datastore, any changes you may have made to an
instance will be lost. This is different from retrieve(), which does not overwrite fields that have been modified.

The jdoPostLoad() method is only called after the default fetch group has been loaded. So, if the default fetch group had
already been loaded prior to invoking refresh() or refreshAll(), jdoPostLoad() is not executed again.

13.1.2 Evicting Instances

Your application may run in a memory-constrained environment. Or, it may access a large number of instances and
need to access them only once in the transaction. In these situations, it could be useful to evict from the cache
instances that you no longer need. Eviction allows the instances to be subsequently garbage-collected, freeing memory
resources.

You can call the following PersistenceManager methods to evict instances from the cache:

void evict(Object obj);
void evictAll();
void evictAll(Object[] objs);
void evictAll(Collection objs);

If you call evictAll() with no parameters, all of the persistent-clean instances in the cache will be evicted. Calling these
methods is only a hint to the PersistenceManager that your application no longer needs the instances in the cache. The
implementation is not required to evict the instances.

The PersistenceManager performs the following actions for each evicted instance:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The PersistenceManager performs the following actions for each evicted instance:

Calls the jdoPreClear() method if the class implements InstanceCallbacks and the instance is not in the hollow state

Clears the persistent fields by setting them to their Java default value

Sets the instance's lifecycle state to hollow

An implementation may evict a persistent-dirty instance, but it needs to flush the state to the datastore. The
PersistenceManager needs to keep only a weak reference to the persistent-dirty instances that have been evicted; it does
not need to maintain a reference to any evicted persistent-clean instances. Once instances have been evicted, they can
be garbage-collected.

The values of evicted instances are not retained after transaction completion, regardless of the setting of the
RetainValues and RestoreValues flags. If you want to evict all the transactional instances at transaction commits, set the
RetainValues flag to false (Chapter 14 covers the RetainValues flag). If you want them to be evicted on rollback, set the
RestoreValues flag to false (Chapter 7 covers the RestoreValues flag). In these cases, you do not need to call the evict() and
evictAll() methods.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.2 Cloning
If you make a clone of a persistent instance, the clone is a separate transient instance. The clone does not have a JDO
identity and it is not associated with the PersistenceManager of the instance that was cloned. The clone is a shallow copy
of the original instance, without regard for the persistent fields. Therefore, the fields might not have been fetched from
the datastore yet, causing you to get a null for fields that are references, including types like Integer and references to
other persistent instances. Normally, the fields in the default fetch group have been fetched from the datastore, but not
always. You should therefore call retrieve() to make sure the field values have been fetched from the datastore.

Another issue to consider is that the persistent instance may have references to other persistent instances. For
example, a RentalItem has a reference to a MediaItem. If we retrieve all the fields of a RentalItem instance and then create
a clone of it, the clone will have a reference to the MediaItem, but this clone is transient and does not really have a
relationship with the MediaItem instance. JDO has a well-defined behavior that allows implementations to create a clone
of a persistent instance properly, but we recommend that you do not clone persistent instances.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.3 Transient-Transactional Instances
You can cause transient instances to observe transaction boundaries, such that their state is preserved at commit and
restored on rollback. A transient instance that observes transaction boundaries is called a transient-transactional
instance. Support for transient-transactional instances is optional; their use requires support of the optional
TransientTransactional feature. If your implementation does not support TransientTransactional, it will not include the
functionality that causes the state transitions associated with transient-transactional instances.

You can use the following PersistenceManager methods to make transient instances transactional:

void makeTransactional(Object obj);
void makeTransactionalAll(Object[] objs);
void makeTransactionalAll(Collection objs);

After these methods complete, the instances observe transaction boundaries. If the transaction commits, the transient-
transactional instances retain their values. The makeTransactional() method throws a JDOUnsupportedOptionException if you
pass a transient instance as a parameter and the implementation does not support the optional TransientTransactional
feature.

If the call to makeTransactional() is made within the current transaction and the transaction is rolled back, the fields of
the transient-transactional instances are restored to the values they had when makeTransactional() was called, using
their captured before image (discussed in Chapter 14). If the call to makeTransactional() is made before the beginning of
the current transaction and the transaction is rolled back, the fields are restored to their values as of the beginning of
the transaction.

The PersistenceManager also provides makeNontransactional() to make a persistent instance nontransactional. Chapter 14
covers this in detail.

13.3.1 Transient-Transactional Lifecycle States

Transient-transactional instances are either clean or dirty, based on whether they have been modified in the current
transaction. If a clean instance is not modified, it remains clean. If a clean instance is modified, its field values are
saved. If the transaction rolls back, field values of dirty instances are restored from the saved field values. If the
transaction commits, the saved field values are discarded. For either commit or rollback, dirty instances become clean.

Managing the behavior of transient-transactional instances requires additional lifecycle states and state transitions.
Similar to persistent instances, transient-transactional instances have the transient-clean and transient-dirty lifecycle
states to indicate their change status. An instance can be in the transient-clean or transient-dirty state only if the
implementation supports the optional TransientTransactional feature.

13.3.1.1 Transient-clean

A transient-transactional instance that has not been changed in the current transaction is in the transient-clean state.
When a transient instance is passed as a parameter to makeTransactional(), it transitions to the transient-clean state.
You can make changes to a transient-clean instance outside of a transaction without changing its lifecycle state.
Chapter 14 covers nontransactional access.

13.3.1.2 Transient-dirty

If you change any managed field of a transient-clean instance in a transaction, it transitions to the transient-dirty state.
This is similar to a persistent-clean instance transitioning to persistent-dirty. When you first modify a managed field of a
transient-clean instance, before the field's value is changed, the PersistenceManager saves the instance's fields in a before
image that is used if a rollback occurs.

13.3.2 State Interrogation

Table 13-1 specifies the values that the JDOHelper lifecycle-state interrogation methods return for the three transient
lifecycle states.

Table 13-1. Values returned by the state interrogation methods for all the
transient states

State of Instance isPersistent() isTransactional() isDirty() isNew() isDeleted()

Transient false false false false false

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Transient-clean false true false false false

Transient-dirty false true true false false

13.3.3 State Transitions

Figure 13-1 illustrates the state transitions that occur with transient-transactional instances.

Figure 13-1. State transitions of transient transactional instances

If you pass a transient-clean instance to makeNontransactional(), it transitions to transient; but if you pass a transient-
dirty instance, a JDOUserException is thrown.

At commit, a transient-dirty instance transitions to transient-clean and it retains its values. If a transaction rollback
occurs and the instance was made transactional in the current transaction, the instance's field values are restored with
the before image to the values they had when makeTransactional() was called.

If an instance was made transactional in a previous transaction and a transaction rollback occurs, the instance's fields
are restored to their values as of the beginning of the current transaction. When transaction-rollback processing
completes, the before images of transient-transactional instances are discarded and the instances transition to
transient-clean.

If you pass a transient-dirty instance to makePersistent(), it transitions to persistent-new. What happens if a transaction
rollback occurs? The before image that was saved when the instance transitioned to transient-dirty is used to restore
the instance. However, as with any persistent-new instance, the instance reverts to transient at rollback, even if it was
previously a transient-transactional instance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.4 Making a Persistent Instance Transient
Suppose you have a persistent instance that you want to make accessible to a client application via Remote Method
Invocation (RMI). Suppose your code is executing in a Common Object Request Broker Architecture (CORBA) or
application-server environment, where the transaction context will no longer exist once your servlet or session bean
returns from a client invocation. When RMI serializes your instance, the transaction is no longer active. You do not want
the PersistenceManager to mediate access to a persistent instance outside of a transaction context. So, to pass the
persistent instance to a remote client, you must convert it into a transient instance. This is necessary to disassociate
the instance with the PersistenceManager, so field access is not mediated.

You do this by making the persistent instance transient. You can use the following PersistenceManager methods to make
persistent instances transient:

void makeTransient(Object obj);
void makeTransientAll(Object[] objs);
void makeTransientAll(Collection objs);

When the instances transition to transient, they lose their identity and association with the PersistenceManager. They are
no longer associated with their representation in the datastore, so their in-memory state does not affect the persistent
state in the datastore. Even though the instance in memory is transient, the instance still exists in the datastore.
Making a persistent instance transient is not equivalent to calling deletePersistent(). The effect of these methods is
immediate and permanent; if a transaction rollback occurs, the instances remain transient. If a parameter is already
transient, these methods have no effect.

A persistent-dirty instance has changes to field values that are not committed to the datastore until transaction commit.
You do not want to lose these changes, which occurs when an instance is disassociated with its PersistenceManager.
Therefore, if you pass a persistent-dirty instance to these methods, a JDOUserException is thrown.

Before calling makeTransient(), you should call retrieve() or retrieveAll() to fetch all the field's values from the datastore.
Otherwise, some of the fields may not be fetched. The makeTransient() methods do not change the values of the fields in
the parameter instances.

Another use for makeTransient() is to copy an instance from one transaction to another that is running in the same JVM.
The following code copies a persistent instance from one PersistenceManager instance (pm1) to another (pm2):

RentalCodeKey key = new RentalCodeKey("High Demand");
RentalCode code = (RentalCode) pm1.getObjectById(key, true);
pm1.retrieve(code);
pm1.makeTransient(code);
pm2.makePersistent(code);

The PersistenceManager referenced by pm2 might be from the same JDO implementation as pm1 but a different datastore.
Or, pm1 and pm2 could be from different JDO implementations and datastores.

If you want the instances to remain transient at transaction commit, you must make sure that all references to them
from other persistent instances in memory are changed; you should also make the referring persistent instances
transient. Otherwise, the persistence-by-reachability algorithm will cause the instances to become persistent again at
commit. Since the original persistent instance still exists in the datastore, if the instance becomes persistent again as a
result of persistence-by-reachability, there might be two copies of the instance in the datastore. If the class uses
datastore identity, the new transient instance is assigned a new identity value. However, if the class uses application
identity and you did not change the value of the primary key, you get an exception indicating that you have a duplicate
primary-key value.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14. Nontransactional Access
Transactional management of persistent data is a core feature of JDO. Using transactions helps guarantee the
consistency of data in the datastore. However, there are many cases where transactional consistency is not important
to the application. Data that is known to be relatively static can be used outside of a transaction without harm. For
example, having the most up-to-date description of movies in the Media Mania datastore isn't critical to the integrity of
the database.

Using nontransactional data may make your application perform better, because you don't need to begin and complete
transactions in order to access the persistent data in the datastore. This is especially noticeable when the application is
in one process and the datastore is in a different process. Beginning and completing transactions often require one or
more messages to be passed from one process to the other, in addition to the messages to retrieve the data itself.
Avoiding transactions in this environment results in fewer messages.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.1 Nontransactional Features
As you have seen earlier, the JDO runtime contains an instance cache managed by the PersistenceManager, and in the
transaction modes we have presented thus far, instances in the cache have always been transactional. We now
introduce the behavior of the cache and the instances contained in the cache in light of nontransactional behavior.
There are five independent flags that govern this behavior.

NontransactionalRead

This flag enables your application to iterate extents, perform queries, access persistent values of persistent
instances, and navigate the entire graph of persistent instances, without having a transaction active.

NontransactionalWrite

This flag enables your application to make changes to the cache that will never be committed to the datastore.
Most applications expect that changes made to persistent instances will be stored in the datastore at some
point. NontransactionalWrite caters to applications that manage a cache of persistent instances where the changes
to the datastore are made by a different application.

Optimistic

This flag enables your application to execute transactions that improve the concurrency of datastore access, by
deferring locking of data until commit. We discuss optimistic transactions in detail in Chapter 15; we introduce it
here because instances used in an optimistic transaction are read nontransactionally, so they share common
characteristics of data that is read with NontransactionalRead.

RetainValues

This flag enables your application to retain the field values of instances in the cache at the end of committed
transactions, to improve performance. Subsequent nontransactional accesses to cached values do not need to
access the datastore.

RestoreValues

This flag enables your application to retain the field values of instances in the cache at the end of rolled-back
transactions, to improve performance. Subsequent nontransactional accesses to cached values do not need to
access the datastore.

The JDO implementation governs the availability of these features. Except for RestoreValues, the features are optional,
and an implementation might support any or all of them, although if an implementation supports any of Optimistic,
RetainValues, or NontransactionalWrite, it will logically support NontransactionalRead as well.

Attempts to use an unsupported feature result in the JDO implementation throwing an exception. For example, if an
implementation does not support NontransactionalRead, attempting to set the NontransactionalRead option to true throws a
JDOUnsupportedOptionException.

The runtime behavior of the PersistenceManager depends on the current settings of these flags, which are accessed via
the Transaction instance associated with the PersistenceManager. You can read the current settings by using the property
access method for the flag of interest. This example shows an application-specific method that returns the current
setting for a given PersistenceManager instance:

boolean retrieveNontransactionalReadSetting(PersistenceManager pm) {
 Transaction tx = pm.currentTransaction();
 return tx.getNontransactionalRead();
}

You can set the property values using the property access methods. Once set, they remain unchanged until they are set
to a different value. This example shows an application-specific method that changes the NontransactionalRead setting for
the given PersistenceManager:

void setNontransactionalReadSetting(PersistenceManager pm, boolean value) {
 Transaction tx = pm.currentTransaction();
 tx.setNontransactionalRead(value);
}

The settings for the flags are initialized from the PersistenceManagerFactory that created the PersistenceManager. You can
read the default settings from the PersistenceManagerFactory. This example shows an application-specific method that
returns the default setting for a given PersistenceManagerFactory instance:

boolean retrieveNontransactionalReadSetting(PersistenceManagerFactory pmf) {
 return pmf.getNontransactionalRead();
}

The default values for these PersistenceManagerFactory flags are JDO implementation-specific. You can configure the
PersistenceManagerFactory to have specific default values by using the property access methods with an existing
PersistenceManagerFactory, or by including the appropriate values in the Properties instance used to configure the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PersistenceManagerFactory, or by including the appropriate values in the Properties instance used to configure the
PersistenceManagerFactory.

For example, to guarantee that the PersistenceManagerFactory used by your application has the NontransactionalRead
property set to true, you can use one of the following techniques:

PersistenceManagerFactory createPMF() {
 PersistenceManagerFactory pmf;
 pmf = new com.sun.jdori.fostore.FOStorePMF();
 // set other required properties
 // the following might throw JDOUnsupportedOptionException
 pmf.setNontransactionalRead(true);
 return pmf;
}

Note that this code refers to a JDO implementation-specific class that is not part of the JDO specification. The
advantage of the following technique is that you can compile this code without reference to any JDO implementation-
specific class:

PersistenceManagerFactory createPMF(Properties props) {
 // other required properties are already in the props instance
 PersistenceManagerFactory pmf;
 props.put("javax.jdo.option.NontransactionalRead", "true");
 // the following might throw an Exception
 pmf = JDOHelper.getPersistenceManagerFactory(props);
 return pmf;
}

If your application depends on any of the optional features, you should make sure that the JDO implementation that
you are using supports them, either by constructing the PersistenceManagerFactory with the property set to true, or by
dynamically querying the optional features of the PersistenceManagerFactory during initialization using supportedOptions().
This will avoid exceptions in your application logic that might be awkward to handle.

You might execute your application in an environment where a different component constructs the
PersistenceManagerFactory and you must use it. For example, the PersistenceManagerFactory might be constructed and
registered as a named entry in a Java Naming and Directory Interface (JNDI) context. Your application looks up the
entry and verifies that it supports the required feature.

The required feature can be verified by a simple contains() check:

PersistenceManagerFactory pmf;
pmf = (PersistenceManagerFactory)ctx.lookup("MoviePMF");
Collection supportedOptions = pmf.supportedOptions();
if (!supportedOptions.contains("javax.jdo.option.NontransactionalRead")) {
 throw new ApplicationCannotExecuteException
 ("NontransactionalRead is not supported");
}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.2 Reading Outside a Transaction
NontransactionalRead allows your application to access the datastore without ever beginning a transaction; it also allows
you to access the datastore and read cached instances and fields between completing one transaction and beginning
the next. This allows read-only applications nearly full access to the features of JDO, without the overhead of beginning
and completing transactions. Access in the NontransactionalRead case includes iterating extents, querying the datastore,
accessing persistent field values, and navigating among instances using persistent relationships.

Note that you must always have an active transaction in order to insert new persistent instances, delete existing
instances, or change existing data in the datastore.

One use for the NontransactionalRead mode of operation is to access slowly changing information. For example, access to
the MediaContent instances can be nontransactional, because in most cases the information is static. At times, the
datastore might be updated with new MediaContent instances, but for the most part, the information does not change.

When executing your application outside a transaction, the cache contains persistent instances whose field values came
from the datastore, but there is no guarantee that the field values are consistent with the current datastore contents, or
are even consistent with other field values from the same persistent instance. This is because field values are retrieved
from the datastore on demand.

For example, if you query the datastore and access a field in a persistent instance, the JDO implementation might
retrieve only the field accessed. A subsequent read of a different field might come from the cache or might result in a
datastore access to retrieve the current value from the datastore. None of the field values retrieved earlier will be
refreshed from the datastore, so the persistent instance might contain fields that represented the datastore at different
times.

Therefore, before using this mode, make sure that dirty reads are acceptable for correct operation of your application.

Another common pattern is to use nontransactional read to navigate an object graph to locate a particular instance, and
then begin a transaction to update the instance. This is possible because the identity of every instance in the cache is
known, even though the field values are nontransactional.

Nontransactional instances in the cache will remain nontransactional even if a transaction is subsequently begun. If they
are not accessed during subsequent transactions, they will remain nontransactional.

If your application accesses nontransactional instances during a datastore transaction, they become transactional at the
time of the first access in the transaction. When this happens, the JDO implementation discards the cached field values
and, just as for hollow instances, retrieves transactionally consistent field values from the datastore.

If your application accesses nontransactional instances for read during an optimistic transaction, they will remain
nontransactional and might not be refreshed unless your application explicitly refreshes them by calling
PersistenceManager.refresh().
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.3 Persistent-Nontransactional State
The use of instances outside a transaction introduces another instance lifecycle state: persistent-nontransactional. From
the application program perspective, this state is indistinguishable from the hollow state. That is, the results of
executing the interrogatives in JDOHelper (isNew(), isDirty(), etc.) are the same for instances in both states. Your
application generally should not be aware of the difference between instances in the hollow and persistent-
nontransactional states.

From a performance perspective, your application might run faster, because accessing field values of instances in the
persistent-nontransactional state might be done without a datastore access. Your application can retrieve field values
cached in the instance and navigate the object graph to other instances, relying only on the cached values. The only
time the datastore must be accessed is when a field that has not yet been loaded from the datastore is read.

With datastore transactions, existing persistent instances begin their lifecycle in the cache as persistent-clean or
persistent-dirty. With the first access to persistent instances outside a transaction, they begin their lifecycle in the cache
in the persistent-nontransactional state. This can be the result of an Extent iteration, a query execution, or navigation
from another persistent-nontransactional instance.

With NontransactionalRead set to true, outside a transaction:

Your application can read field values, navigate the object graph, execute queries, and iterate extents. The JDO
implementation decides whether the instances returned to your application are in the hollow or persistent-
nontransactional state. Key fields are instantiated regardless of the instances' states.

The first time your application accesses a managed, nonkey field of a hollow instance, the instance transitions
to persistent-nontransactional. This state transition is shown in Figure 14-1.

Persistent-nontransactional instances remain in this state until they are accessed in a subsequent transaction.

Figure 14-1. State transitions outside a transaction

With NontransactionalRead set to false, outside a transaction:

If your application attempts to read field values, navigate the object graph, execute queries, or iterate extents,
the JDO implementation throws a JDOUserException.

Persistent instances remain in the hollow state until accessed in a transaction.

We will now discuss a more complete example, based on the Media Mania application. MediaManiaApp declares an
abstract method, execute(), which is implemented by a derived class. In the derived classes, we have seen examples of
main(), which calls executeTransaction(). This method then begins a transaction, calls execute(), and commits the
transaction.

For this example, we will implement main() to call execute() instead of executeTransaction(), which will make the program
run without a transaction. The program is PrintMovies in the com.mediamania.nontx package:

package com.mediamania.nontx;
import com.mediamania.MediaManiaApp;
import com.mediamania.content.Movie;
public class PrintMovies {

We don't define a constructor, so the compiler generates a no-arg constructor that calls the superclass to construct the
PersistenceManagerFactory. The superclass constructor calls getPropertyOverrides(), which is implemented in this class to
specify the required NontransactionalRead property:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specify the required NontransactionalRead property:

 protected static Map getPropertyOverrides() {
 Map overrides = new HashMap();
 overrides.put("javax.jdo.option.NontransactionalRead", "true");
 return overrides;
 }

In this class, main() constructs a new instance of PrintMovies and calls execute():

 public static void main(String[] args) {
 PrintMovies printMovies = new PrintMovies();
 printMovies.execute();
 }

The superclass defines the pmf and pm fields and initializes them in the constructor. The execute() method gets an Extent
of Movie and iterates it, calling Utilities.printMovie() to display the contents on System.out:

 public void execute() {
 Extent extent = pm.getExtent(Movie.class, true);
 Iterator iter = extent.iterator();
 while (iter.hasNext()){
 Movie movie = (Movie) iter.next();
 Utilities.printMovie(movie, System.out);
 }
 }
}

As an alternative to using getPropertyOverrides(), execute() could be slightly different, setting the NontransactionalRead
property of the Transaction instance to true.

 public void execute() {
 pm.currentTransaction().setNontransactionalRead(true);
 Extent extent = pm.getExtent(Movie.class, true);
 Iterator iter = extent.iterator();
 while (iter.hasNext()){
 Movie movie = (Movie) iter.next();
 Utilities.printMovie(movie, System.out);
 }
 }
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.4 Retaining Values at Transaction Commit
We have seen how reading data outside a transaction results in caching nontransactional instances. Another way for
nontransactional instances to exist in the cache is to execute a transaction and then retain the field values at commit
time. You can specify this behavior by setting the RetainValues property to true. This is shown in Figure 14-2.

Figure 14-2. RetainValues at transaction commit

With RetainValues set to true, persistent transactional instances transition to persistent-nontransactional at commit. But
with RetainValues set to false, fields of persistent transactional instances are cleared at transaction commit, and the
instances transition to hollow.

The result is that your application can use the cached instances between transactions, and the instances used in the
transaction retain their last-committed values. Instances not used in transactions remain nontransactional.

Since the RetainValues flag only affects the behavior of transaction commit(), your application can change it at any time,
using setRetainValues() in Transaction. Regardless of how many times the value changes, the value currently in effect at
commit is used.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.5 Restoring Values at Transaction Rollback
We have seen how an application can retain persistent field values in cached instances across transactions by using the
RetainValues property. But this property is effective only at commit. If you want to preserve cached values even if a
transaction rolls back, you need to use the RestoreValues property. Unlike RetainValues, RestoreValues is not an optional
feature, and the property setting affects the treatment of new instances as well as persistent-clean and persistent-dirty
instances.

With RestoreValues set to false, persistent transactional instances have their values cleared at transaction rollback, and
the instances transition to hollow. This is shown in Figure 14-3. Subsequent reads of fields in these instances require
access to the datastore. In order to allow accesses of the values in the instances without accessing the datastore, the
application sets the RestoreValues flag to true.

Figure 14-3. Rollback with RestoreValues true

Similar to RetainValues, there are several ways to set the RestoreValues property:

Your application can include the javax.jdo.option.RestoreValues property with a value of true or false in the Properties
instance used to construct the PersistenceManagerFactory.

Your application can set the property using setRestoreValues() in PersistenceManagerFactory.

Your application can set the property using setRestoreValues() in Transaction.

Since this flag affects the way persistent fields are managed during a transaction, the property must be changed only
between transactions. If an attempt is made to execute setRestoreValues() during an active transaction, a
JDOUserException is thrown.

14.5.1 Before Image

With RestoreValues set to true, the JDO implementation must make a before image of instances that are made persistent
and persistent instances that are changed or deleted during the transaction. The before images contain the state of
persistent and transactional fields as of the first access of the fields in the transaction, and they supply the field values
restored during rollback. The before image contains a shallow copy of all the fields in the instance as of the call to
makePersistent(), deletePersistent() , or a method that changes a managed field.

A shallow copy means that the field values are copied exactly as they are stored in the instance; values of primitive
fields are copied, and references are copied. There is no copy made of the contents of reference types.

Making a before image can adversely affect performance, as there is extra work for the JDO implementation to do when
the instance is made persistent, deleted, or made dirty. Therefore, applications should carefully consider the use of this
flag.

With RestoreValues set to false, the JDO implementation does not need to remember the state of fields of transient
instances that are made persistent. If the transaction is rolled back, the instances revert to transient, and the state of
the fields is unchanged. Normally, your application will discard these instances and allow them to be garbage-collected.
Similarly, there is no requirement to remember the state of instances that are changed or deleted. At transaction
rollback, the instances transition to hollow, and the field contents are cleared.

14.5.2 Restoring Persistent Instances

At rollback, with RestoreValues set to true, persistent-clean, persistent-dirty, and persistent-deleted instances transition
to persistent-nontransactional. Persistent-clean instances retain their values as of the end of the transaction. Persistent-
dirty and persistent-deleted instances are restored as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dirty and persistent-deleted instances are restored as follows:

Fields of primitive types (int, float, etc.), wrapper types (Integer, Float, etc.), immutable types (Locale, etc.), and
PersistenceCapable types are restored to their values as of the beginning of the transaction.

Fields of mutable types (Date, Collection, etc.) are marked by the JDO implementation as not loaded. Subsequent
accesses of these fields will cause the JDO implementation to read the values from the datastore.

14.5.3 Restoring Persistent-New Instances

At rollback, with RestoreValues set to true, persistent-new and persistent-new-deleted instances transition to transient
and all fields are restored to their values in the before image.

The before image allows the JDO implementation to restore the instance to the state it had at the time the instance was
made persistent. But consider that the state of reference type fields is also part of the state of the instance and cannot
necessarily be restored to its state as of the time the referring instance was made persistent.

For example, consider the following code, which makes an instance of Movie persistent and rolls back the transaction:

Calendar calendar = Calendar.newInstance();
calendar.set(Calendar.YEAR, 1965);
Date released = calendar.getTime();
Movie movie = new Movie("Sound of Music", released, 174, "G", "musical, biography");
tx.setRestoreValues(true);
tx.begin();
pm.makePersistent(movie); [1]
calendar.set(Calendar.YEAR, 1987);
released.setTime(calendar.getTimeInMillis()); // AVOID [2]
calendar.set(Calendar.YEAR, 1999);
released = calendar.getTime(); [3]
tx.rollback(); // movie.released now is 1987; released is 1999

[1] During makePersistent(), a shallow copy of movie is made and the copy becomes the before image. The
releaseDate field in the persistent movie instance is replaced with a new instance of a JDO implementation-
defined subclass of Date, containing the same millisecond value of the original released instance. There are now
two instances of Date; both represent the year 1965.

Any change to the Date instance referred to by released after makePersistent() does not affect the persistent
instance, but it changes the instance in the before image.

[2] In the preceding example, the instance referred to by the before image is changed to represent the year
1987. Similarly, any change to the value of the field in the persistent instance does not affect the value of
released or the before image.

[3] When a new Date is created and assigned to released, there is now a third instance of Date, which contains a
value representing the year 1999.

At rollback, the value of the field releaseDate in instance movie is restored to its original value of released, but because the
released object was modified to represent the year 1987, these modifications remain. Thus, even though the fields in the
movie instance itself were restored, the releaseDate field contains changes made subsequent to makePersistent().

After rollback, the original instance of released becomes the restored value of releaseDate in the movie instance; the JDO
implementation-defined subclass of Date, representing 1965, is not referenced and can be garbage-collected; and the
third instance, representing 1999, is now the value of the released variable.

To avoid this situation, you should never modify instances referred by fields of persistent instances once they are made
persistent; instead you should replace the fields or use accessor/mutator methods defined in the persistent class.
Replacing the fields leaves the instance in the before image as it was, and using mutator methods in the persistent
class modifies the copy of the original instance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.6 Modifying Persistent Instances Outside a Transaction
JDO manages updates to the datastore by tracking changes made to persistent instances during a transaction. To avoid
losing updates, you should have an active transaction when changing fields of persistent instances. When the
transaction commits, the changes are made in the datastore.

However, you can write applications that manage a cache of nontransactional persistent instances, where the datastore
is updated outside your application. With these applications, the cache becomes stale relative to the current state in the
datastore. But if your application is made aware of these changes—for example, by receiving a stream of change
notifications—your application can update the cache to reflect the current state of the datastore instances. The stream
might consist only of the keys of the instances, in which case the application can simply invalidate the cached instances
by calling evict() or refresh().

But if the stream contains not only the keys but also the changed values for persistent fields, your application can use
the stream values to update the cached instances to reflect the current contents of the datastore.

With the NontransactionalWrite property set to false, the only way to update nontransactional instances is to invalidate
them in the cache and then fetch the instances from the datastore when they are next needed. But with
NontransactionalWrite set to true, your application can update the persistent instances in the cache without beginning a
transaction and updating the instances. Your application can make updates to any values, but the most useful approach
updates the values in the cache to reflect the current values in the datastore.

Note that the values of fields in persistent-nontransactional instances that have been modified outside a transaction will
never be stored in the datastore by the JDO implementation. Any changes made outside of a transaction are lost.

This is due to the behavior of transactional instances. In a subsequent datastore transaction, if the instance is accessed
(by field access, extent iteration, query, or navigation), a fresh copy of the instance will be fetched into the cache and
the values written outside the transaction will simply be discarded without notice.

With NontransactionalWrite set to false, if your application attempts to make a change to any persistent instance outside a
transaction, the JDO implementation will throw a JDOUserException. This includes executing any method that changes a
field in the instance and executing JDOHelper.makeDirty() , referencing a field of any persistent instance.

14.6.1 Hot Cache Example

For example, consider an application that executes in multiple JVMs, each of which manages a hot cache of Movie
instances that track changes to a Movie's web site via a live feed. One of the JVMs executes MasterDriver, the application
responsible for updating the datastore; the others execute SlaveDriver, an application that updates its copy of the
instances in its cache when updates arrive.

Both MasterDriver and SlaveDriver extend AbstractDriver. The constructor of AbstractDriver connects to the source of cache
updates and cache requests. We open the request and update input streams from a URL, which might be a file, or in a
more realistic application, a stream from an external source. The results of a request are output to System.out, which is
not realistic but demonstrates the concept:

public class AbstractDriver {
 protected BufferedReader requestReader;
 protected BufferedReader updateReader;
 protected CacheAccess cache;
 protected int timeoutMillis;
 protected AbstractDriver(String updateURL, String requestURL,
 String timeout) {
 updateReader = openReader(updateURL);
 requestReader = openReader(requestURL);
 timeoutMillis = Integer.parseInt(timeout);
 }

The BufferedReader allows us to read lines from the input source:

 protected BufferedReader openReader (String urlName) {
 try {
 URL url = new URL(urlName);
 InputStream is = url.openStream();
 Reader r = new InputStreamReader(is);
 return new BufferedReader(r);
 } catch (Exception ex) {
 return null;
 }
 }

ServiceReaders will service the updateReader and requestReader until there is no work to do for a specified timeout period,
or until it is interrupted:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

or until it is interrupted:

 protected void serviceReaders() {
 boolean done = false;
 boolean lastTime = false;
 try {
 while (!done) {
 if (updateReader.ready()) {
 handleUpdate();
 done = false;
 lastTime = false;
 } else if (requestReader.ready()) {
 handleRequest();
 done = false;
 lastTime = false;
 } else {
 try {
 Thread.sleep (timeoutMillis);
 if (lastTime) done = true;
 lastTime = true;
 } catch (InterruptedException ex) {
 done = true;
 }
 }
 }
 } catch (Exception ex) {
 return;
 }
 }

HandleRequest reads a line from the requestReader and prints the title of the movie to System.out. A more realistic
application would return the results to the requester.

 protected void handleRequest() throws IOException {
 String request = requestReader.readLine();
 Movie movie = cache.getMovieByTitle(request);
 System.out.println("Movie: " + movie.getTitle());
 }

HandleUpdate reads a line from the updateReader, parses it into a movie title and a web site, and then calls updateWebSite.

 protected void handleUpdate() throws IOException {
 String update = updateReader.readLine();
 StringTokenizer tokenizer = new StringTokenizer(update, ";");
 String movieName = tokenizer.nextToken();
 String webSite = tokenizer.nextToken();
 cache.updateWebSite (movieName, webSite);
 }
}

The interface to the cache is defined by com.mediamania.hotcache.CacheAccess. There are two implementations of this
interface: MasterCache and SlaveCache, with a common AbstractCache implementation.

MasterCache performs the updates to the datastore as well as updating the cache. It will retrieve the Movie into the cache
if it is not already cached. SlaveCache updates the cache only if the Movie is already cached.

MasterCache needs the NontransactionalRead option set to true because lookups are done outside a transaction, and the
RetainValues option set to true so values are retained in the cache at the end of an update transaction. SlaveCache needs
the NontransactionalRead and NontransactionalWrite options set to true, because reads and updates are done without a
transaction active. Both classes use getPropertyOverrides() to initialize the PersistenceManagerFactory with the correct
options.

AbstractCache implements the CacheAccess interface:

public interface CacheAccess {
 Movie getMovieByTitle (String title);
 void updateWebSite (String title, String website);
}

MasterCache and SlaveCache use the same lookup method implemented in AbstractCache to find a Movie with a particular
title. If the Movie does not exist in the cache, it is loaded (outside a transaction) into the cache.

public abstract class AbstractCache extends MediaManiaApp
 implements com.mediamania.hotcache.CacheAccess {
 protected Map cache; // key:name value:Movie
 public Movie getMovieByTitle(String title) {
 Movie movie = (Movie)cache.get(title);
 if (movie == null) {
 movie = super.getMovie(title);
 if (movie != null) {
 cache.put(title, movie);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cache.put(title, movie);
 }
 return movie;
 }
}

The difference between MasterCache and SlaveCache is in how the update is handled. MasterCache first loads the Movie into
the cache if it isn't already there, and then uses a transaction to perform the update:

public class MasterCache extends AbstractCache
 implements CacheAccess {
 protected static Map getPropertyOverrides() {
 Map overrides = new HashMap();
 overrides.put ("javax.jdo.options.NontransactionalRead", "true");
 overrides.put ("javax.jdo.options.RetainValues", "true");
 return overrides;
 }

 public void updateWebSite(String title, String website) {
 Movie movie = getMovieByTitle(title);
 if (movie != null) {
 tx.begin();
 movie.setWebSite(website);
 tx.commit();
 }
 }
}

SlaveCache locates the movie in the cache. If the Movie is not in the cache, SlaveCache ignores the message. If the Movie is
in the cache, SlaveCache updates it:

public class SlaveCache extends AbstractCache
 implements CacheAccess {

 protected static Map getPropertyOverrides() {
 Map overrides = new HashMap();
 overrides.put ("javax.jdo.options.NontransactionalRead", "true");
 overrides.put ("javax.jdo.options.NontransactionalWrite", "true");
 return overrides;
 }

 public void updateWebSite(String title, String website) {
 Movie movie = (Movie)cache.get(title);
 if (movie != null) {
 movie.setWebSite(website);
 }
 }
}

To complete the example, MasterDriver initializes the cache to be a MasterCache:

public class MasterDriver extends AbstractDriver {
 protected MasterDriver(String updateURL, String requestURL,
 String timeout) {
 super(updateURL, requestURL, timeout);
 cache = new MasterCache();
 }

 public static void main(String[] args) {
 MasterDriver master = new MasterDriver(
 args[0], args[1], args[2]);
 master.serviceReaders();
 }
}

SlaveDriver initializes the cache to be a SlaveCache; otherwise, the implementation is the same as MasterDriver:

public class SlaveDriver extends AbstractDriver {
 protected SlaveDriver(String updateURL, String requestURL,
 String timeout) {
 super(updateURL, requestURL, timeout);
 cache = new SlaveCache();
 }

 public static void main(String[] args) {
 SlaveDriver slave = new SlaveDriver(
 args[0], args[1], args[2]);
 slave.serviceReaders();
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 15. Optimistic Transactions
Earlier in this book, we discussed using datastore transactions to guarantee the following properties: atomicity,
consistency, isolation, and durability. All operations between begin() and commit() of a JDO transaction are performed in
the context of an underlying datastore transaction.

The datastore transaction model assumes that the duration of JDO transactions is relatively short. For longer
transactions, JDO defines optimistic transactions, in which some of the transaction properties are implemented by JDO
instead of the datastore.

Optimistic transactions are most useful for long-running transactions that rarely affect the same instances. These
applications exhibit higher performance and better concurrency by deferring datastore locking on modified instances
until commit. Whether you use optimistic or datastore transactions for your applications is a complex issue, because if
there is significant contention for transactional instances, optimistic transactions can be less efficient than datastore
transactions.

For example, JDO transactions performed in an application server with very high throughput and high concurrency are
probably best implemented as datastore transactions. However, if JDO transactions include user "think time," then
optimistic transactions are a good choice. The changes made to the cache might be made over a long period of time,
during which no locks associated with any of the retrieved instances will be held in the datastore.

In the following summary, "transactional datastore context" refers to the transaction context of the underlying
datastore, while "transaction," "datastore transaction," and "optimistic transaction" refer to the JDO transaction
concepts.

JDO datastore transactions perform all datastore operations using the same transactional datastore context, which the
JDO application delimits using the JDO Transaction methods. Thus, persistent instances accessed within the scope of an
active JDO transaction are guaranteed to be associated with the transactional datastore context.

Prior to commit, JDO optimistic transactions perform all datastore operations using short transactional datastore
contexts. Thus, persistent instances accessed within the scope of an active JDO transaction prior to commit are only
briefly associated with a transactional datastore context. At JDO transaction commit, a transactional datastore context
is used to perform all datastore modification operations.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.1 Verification at Commit
With optimistic transactions, instances queried or read from the datastore are not treated as transactional unless they
are modified, deleted, or marked by the application as transactional. At commit time, the transactional datastore
context is used for verification of inserted, deleted, and updated datastore instances involved in the transaction.

The verification algorithm is not part of the JDO specification, although updates to the same field in the same instance
by different transactions must cause a verification failure. The verification can be implemented by different strategies,
based on the support provided by different datastores:

A JDO implementation might use a special timestamp field in each datastore instance and compare this field for
verification. Some datastores provide a special timestamp type that automatically updates its value with every
transaction that changes any value in the instance. If such a type is not available, an implementation might
simply use an extra field, not visible to the application, to track these changes and manage the values itself.

An implementation might use an application-specific set of fields whose values are compared.

An implementation might allow your application to aggregate fields into groups and compare all of the values in
each affected group to verify that no field in any group has changed.

An implementation might allow you to choose a different policy for each persistent class in your model.

Thus, it is possible for different optimistic transactions to perform updates to different fields of the same instance
without resulting in an optimistic conflict. The JDO implementation provides a default policy for treating this situation
and might allow some application control over the policy.

The JDO implementation verifies that the optimistic assumptions are true before permanently making changes to the
datastore. For each transactional instance in the cache, the JDO implementation verifies that the values of the instances
in the datastore match the assumed values of the optimistic transaction:

Unmodified instances that have been made transactional are verified against the current contents of the
datastore. As noted earlier, the verification might be done by comparing timestamps or field values.

For application identity, new instances are verified in the datastore to ensure that they do not have the same
identity as existing datastore instances. There is no such checking in the case of datastore identity, as this
situation cannot occur.

Deleted instances are verified to ensure that they have not been deleted or modified by a concurrent
transaction.

Updated instances are verified to ensure that they have not changed since being fetched into the cache.

If any instance fails verification, the JDO implementation throws a JDOOptimisticVerificationException, which contains an
array of JDOExceptions, one for each instance that failed the verification. In this case, the optimistic transaction fails.

15.1.1 Recovery from a Failed Transaction

If an optimistic transaction fails verification at commit time, the transaction rolls back, just as if your application had
called rollback(). The changes made to cached instances revert to their pre-transaction state. Since the optimistic failure
indicates that the cache is inconsistent with the state of the datastore, you should refresh the failed instances identified
in the exception if you intend to continue to use the cache to retry the failed transaction or to perform new
transactions.

After refreshing the cached instances, your application can report the failure to the user or it might attempt to replay
the transaction. Replaying is only possible if your application has maintained a change list to reapply changes.

In order to replay the transaction, all instances involved in the transaction must be updated. After beginning a new
optimistic transaction, the changes to each instance can be replayed:

Unmodified instances that failed verification can be reloaded from the datastore using PersistenceManager.refresh(
).

New instances that failed verification can be loaded from the datastore by performing a query or by getting the
instance by its primary key.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instance by its primary key.

New instances that did not fail verification can be made persistent again.

Deleted instances that failed verification because they were already deleted can simply be ignored.

Deleted instances that did not fail verification can be deleted again.

Updated instances that failed verification can be loaded from the datastore using PersistenceManager.refresh().

Updated instances that did not fail verification can be updated again.

Note that you must reapply inserts, updates, and deletes using application-consistency rules; otherwise, the
consistency guarantees of the datastore are meaningless.

15.1.2 Setting Optimistic Transaction Behavior

Optimistic transactions are an optional feature of a JDO implementation. If an implementation does not support
optimistic transactions, it will throw JDOUnsupportedOptionException when you attempt to set the value of the Optimistic
property to true.

The Optimistic flag that activates optimistic transactions is a property of PersistenceManagerFactory and Transaction. You can
set the property in the Properties instance used to create the PersistenceManagerFactory and access it via getOptimistic() and
setOptimistic(). The setting of the property in PersistenceManagerFactory is used as the default for all PersistenceManager
instances obtained from it.

Setting the Optimistic flag to true changes the lifecycle-state transitions of persistent instances; therefore you can change
the flag only when a transaction is not active. If you attempt to change the flag while a transaction is active, the
implementation will throw JDOUserException.

15.1.3 Optimistic Example

To illustrate the programming techniques used in optimistic transactions, we'll modify the UpdateWebSite program to use
optimistic transactions. First, we need to set the Optimistic property to true before beginning the transaction. We define
executeOptimisticTransaction() to set the Optimistic property to true before calling execute(). We return a boolean to indicate
whether the transaction commits successfully:

public boolean executeOptimisticTransaction() {
 try {
 tx.setOptimistic(true);
 tx.begin();
 execute();
 tx.commit();
 return true;
 } catch (JDOException exception){
 analyzeJDOException(exception, System.out);
 return false;
 } catch (Throwable throwable) {
 throwable.printStackTrace(System.out);
 return false;
 } finally {
 if (tx.isActive()) {
 try {
 tx.rollback();
 } catch (Exception ex) {
 }
 }
 }
 }

When execute() locates the movie by title, the movie is not transactional. When the movie is updated in setWebSite(), it
transitions to transactional and the JDO implementation saves information about the movie to be used at commit:

public void execute()
 {
 Movie movie = PrototypeQueries.getMovie(pm, movieTitle);
 if(movie == null){
 System.err.print("Could not access movie with title of ");
 System.err.println(movieTitle);
 return;
 }
 movie.setWebSite(newWebSite);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

At commit, the saved information is used to verify that the update did not conflict with a concurrent transaction; if the
verification succeeds, the update is performed and the transaction completes.

Define the analyzeJDOException() method to analyze failed optimistic transactions:

public void analyzeJDOException(JDOException jdoException, PrintStream p) {
 p.println("JDOException thrown:");
 p.println(jdoException.toString());
 Throwable[] nestedExceptions = jdoException.getNestedExceptions();
 int numberOfExceptions = nestedExceptions.length;
 p.println("Number of nested exceptions: " + numberOfExceptions);
 for (int i = 0; i < numberOfExceptions; ++i) {
 Throwable thrown = nestedExceptions[i];
 if (thrown instanceof JDOException) {
 JDOException instanceException = (JDOException)thrown;
 Object instance = instanceException.getFailedObject();
 Object objectId = JDOHelper.getObjectId(instance);
 p.println("Failed instance objectId: " + objectId);
 } else {
 p.println("Nested exception: " + thrown);
 }
 }
 }

We change main() to execute the optimistic transaction and, if it fails, retry once:

public static void main (String[] args) {
 String title = args[0];
 String website = args[1];
 UpdateWebSite update = new UpdateWebSite(title, website);
 if (!update.executeOptimisticTransaction()) {
 System.out.println("Optimistic transaction failed; retrying");
 if (!update.executeOptimisticTransaction()) {
 System.out.println("Failed again.");
 }
 }
 }

Figure 15-1 shows what happens during another example of an optimistic transaction, in which the application queries
for movies, accesses the director of a movie, and then changes the web site of the movie. There is no datastore
transactional context established at optimistic transaction begin(). A short datastore transactional context is established
in order to retrieve information to satisfy iterator.hasNext().

Figure 15-1. Optimistic transaction time line

When the name of the director is accessed, another datastore transactional context is established. At commit time, the
final datastore transactional context is extablished, in which the JDO implementation performs all verification and
updates, and commits the changes to the datastore.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.2 Optimistic Transaction State Transitions
With the Optimistic flag set to true, some of the behavior of the cache changes, due to the requirements of verification at
commit time. Primarily, the JDO implementation saves the state of the instances that are updated or deleted, so it can
verify the instances at commit.

If a persistent field other than one of the primary-key fields is read, a hollow instance transitions to persistent-
nontransactional instead of persistent-clean. Subsequent reads of any of these fields in the same transaction do not
cause a transition from persistent-nontransactional.

Note that the fields in persistent-nontransactional instances might be read from the datastore at different times, either
outside transactions or during transactions where the RetainValues property is set to true.

If the first access to a hollow instance in an optimistic transaction is a write access, the hollow instance transitions to
persistent-dirty. During the transition, the JDO implementation fetches the instance from the datastore and saves the
state of the instance for verification at commit. These state transitions are shown in Figure 15-2.

Figure 15-2. State transitions during optimistic transactions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.3 Deleting Instances
A persistent-nontransactional instance transitions to persistent-deleted if it is a parameter of deletePersistent(). The
values of the fields of the instance in memory are unchanged but are saved for verification during commit. To minimize
the possibility of a conflict at commit, you can load fresh values from the datastore by calling refresh() or refreshAll()
with the instance as a parameter.

A hollow instance transitions to persistent-deleted if it is a parameter of deletePersistent(). Since there is no state loaded
into the instance, the instance will not be verified during commit. To force verification at commit, you should first call
refresh() or refreshAll() with the instance as a parameter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.4 Making Instances Transactional
When an optimistic transaction is in progress, a persistent-nontransactional instance transitions to persistent-clean if it
is a parameter of makeTransactional(). The values in managed fields of the instance in memory are unchanged. To
minimize the possibility of a verification failure at commit, you can first call refresh() or refreshAll() with the instance as
a parameter before making the instance transactional.

It does not matter at what time during the transaction the instance is made transactional. If the verification policy is to
compare field values, the values that are compared include at a minimum all of the fields accessed during the
transaction.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.5 Modifying Instances
A persistent-nontransactional instance transitions to persistent-dirty if your application modifies a managed field while
an optimistic transaction is in progress. The JDO implementation saves the values of the fields of the instance in
memory for use during rollback and for verification during commit. The saved values of fields in the instance in memory
are unchanged before the update is applied. To minimize the possibility of a verification failure at commit, you can call
refresh() or refreshAll() with the instance as a parameter before making the first change to the instance in the
transaction.

If you make changes to instances outside a transaction using the NontransactionalWrite feature, the changes are assumed
to reflect the current state of the field values in the datastore. Therefore, with a policy that uses field-value verification,
if you make changes to the same instances in a subsequent optimistic transaction, the changes made outside the
transaction will be the values used for comparison. With a policy that depends on a special field in the object, the only
way to avoid a verification failure is to refresh the instance prior to making the changes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.6 Commit
At commit, persistent-nontransactional instances do not change their state. Once instances have been read
nontransactionally, they remain in the persistent-nontransactional state until they transition to a transactional or hollow
state.

At commit, transactional instances transition to new states, based on the setting of the RetainValues flag. There is no
difference between datastore and optimistic transactions in this regard.

With RetainValues set to true, persistent-clean and persistent-dirty instances transition to persistent-nontransactional and
the instances retain their values as of the end of the transaction.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.7 Rollback
At rollback, persistent-nontransactional instances do not change their state. If instances have been read
nontransactionally, they remain in the persistent-nontransactional state at rollback.

At rollback, persistent transactional instances transition to new states, based on the setting of the RestoreValues flag.
There is no difference between datastore and optimistic transactions in this regard.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 16. The Web-Server Environment
Up to this point, we have focused on using JDO to write applications in one- and two-tier environments. We now turn to
distributed environments, with an emphasis on writing applications in which your JDO application code runs in a server.

The two most popular server environments in which Java is the implementation language for applications are the web
server and the application server. A web server provides a web container in which servlets and JSP pages execute.
Typically, a web server also provides support for serving static web content (HTML, GIF, and JPEG files, etc.) in addition
to dynamic content. Both web servers and application servers support remote clients using a variety of protocols,
including HTTP (Hypertext Transfer Protocol), HTTPS (HyperText Transfer Protocol over SSL), and SOAP (Simple Object
Access Protocol). In addition, application servers support CORBA IIOP/RMI (Common Object Request Broker
Architecture Internet Inter-Orb Protocol/Remote Method Invocation) protocols. We cover application servers in more
detail in Chapter 17.

With either of these types of servers, the implementation of remote services is opaque to the client; the services could
be implemented by any kind of host running any language that supports the protocols. JDO fits into these environments
to provide access to persistent data for applications that implement dynamic content.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.1 Web Servers
In order to describe where JDO fits into a web server, we start with a brief overview of the web container and how the
container handles requests. The application components that handle the requests can use JDO to provide access to
persistent information used to service the requests.

There is no standard for all the characteristics of web servers and the services they support, but most implementations
support applications written to implement HTTP and HTTPS messages. Since the details of security and secure access to
these services are not important to the implementation using JDO, we will use HTTP to describe both HTTP and HTTPS
protocols. The use of HTTPS is transparent to the application.

HTTP is a request/response protocol in which a browser sends a request to a server at a specific Internet address and
waits for a response from the server. The server parses the request and delegates its handling to the responsible
component, based on policy files used to configure the server.

HTTP responses can be static (i.e., their content never changes). Graphics, web-page templates, banners, and other
artifacts of web pages are primarily static, and web servers typically cache these items and deliver them to users on
request.

Other HTTP responses are dynamic. The response is generated only upon receipt of the request and may depend on
current information (time of day, current price of a stock, etc.) or the requester (contents of a shopper's cart, value of a
portfolio, etc.). These requests must be handled by a program, which in current web servers might be a script-based
component like Common Gateway Interface (CGI) or "PHP: Hypertext Preprocessor," or a programming component.

In a Java-based web server, the programming component that handles the request is either a servlet or a JSP page.
Application developers implement programs that adhere to either the servlet or JSP programming contracts to handle
requests and generate responses to clients.

SOAP is a remote-object protocol that uses HTTP to transmit requests and receive responses. A web server that
supports SOAP provides a layer of processing that interprets SOAP messages, presents them to servlets for processing,
and formats the responses for clients.

A server that supports servlet and JSP pages implements a web container that is responsible for managing the lifecycle
of servlets and JSP pages, receiving and decoding MIME-type HTTP requests, and formatting MIME-type HTTP
responses.

The details of parsing requests and formatting responses will vary based on whether the servlet uses pure HTTP or
SOAP, but these details are beyond the scope of this book. Here, we focus on the programming interface to the JDO
persistence layer.

To implement a servlet that handles HTTP requests, you extend a base class, HttpServlet, provided by the container
implementation. You implement init() and destroy() and override one or more service methods, typically doGet() and/or
doPost(). These methods handle the HTTP-protocol GET and POST requests.

The web container calls init() once per servlet instance it creates, and, upon successful completion of the method, it
places the servlet into service. This is your application's chance to perform any one-time initialization that is required.
You can implement your servlet as a SingleThreadModel, in which multiple requests are dispatched to multiple servlet
instances. The SingleThreadModel should be avoided, because the servlet container has to create multiple instances for
multiple simultaneous requests.

For SingleThreadModel servlets, if the web container needs to reduce the number of active servlet instances, it selects a
servlet instance for destruction and calls destroy(). This is your last chance to clean up any resources that might have
been allocated to this servlet. After this method completes, the servlet will no longer be used and might be garbage-
collected by the JVM. Figure 16-1 shows the lifecycle of a servlet.

Figure 16-1. Servlet lifecycle

16.1.1 Accessing the PersistenceManagerFactory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The servlet programming model is inherently flexible and, theoretically, servlets could dynamically determine which JDO
resource contains the information needed to service a request. But most servlets use the same PersistenceManagerFactory
instance to service all the user requests, and this resource does not change during the lifetime of the servlet. Therefore,
the best time to acquire the PersistenceManagerFactory and save it for future use is during the init() call. There are a
number of alternate techniques that you can use to initialize the reference to the PersistenceManagerFactory, depending on
the support for services provided by the web container.

16.1.1.1 Looking up the PersistenceManagerFactory in JNDI

If the web container is part of a J2EE server, or if it supports the JNDI (Java Naming and Directory Interface) lookup
service, you should use the JNDI lookup method and save the result in a servlet field. The container configures the
PersistenceManagerFactory at server startup and stores it by name in the JNDI namespace.

To use this facility in a J2EE server, you need to define a resource reference in the deployment descriptor of your web
application. This resource reference is part of the servlet specification. The resource-ref element is one of the elements
contained in the web-app element (the root of the web-application deployment descriptor):

<resource-ref>
<res-ref-name>jdo/MediaManiaPMF</res-ref-name>
<res-type>javax.jdo.PersistenceManagerFactory</res-type>
<res-auth>Container</res-auth>
</resource-ref>

Your application performs the lookup by using the initial context provided by the container. This initial context is specific
to your deployed application, so the name is scoped to your application and you can locate resources that are bound to
your application.

The name you look up uses one level of indirection. At deployment time, the deployer makes the association between
the name you specify in your application — in this case, java:comp/env/jdo/MediaManiaPMF — and the actual resource that
is registered in the server. The details of this deployment step are not standardized, but the indirection allows you to
hardcode the resource name and allow the server to bind it to a resource dynamically at deployment time.

This indirection allows multiple applications to use the same hardcoded JNDI name to refer to different resources, as
well as multiple applications to use different hardcoded JNDI names to refer to the same resource:

 PersistenceManagerFactory persistenceManagerFactory;
 String pmfName = "java:comp/env/jdo/MediaManiaPMF";
 public void init(ServletConfig config) throws ServletException {
 try {
 super.init(config);
 Context ic = new InitialContext();
 persistenceManagerFactory = (PersistenceManagerFactory)
 ic.lookup(pmfName);
 } catch (NamingException ex) {
 throw new ServletException("Unable to locate PMF resource: " +
 pmfName);
 }
 }

The server configures the PersistenceManagerFactory at server startup by a server-specific process. Typically, you
configure the URL, username, password, and other properties in an XML-formatted file, and when you look up the
resource by name, you get the configured resource. You cannot use any of the set() methods of
PersistenceManagerFactory to change the properties. If you need to set specific properties, you use the set() methods of
the individual components (Transaction, Query, or PersistenceManager) after you get the PersistenceManager.

16.1.1.2 Constructing the PersistenceManagerFactory from Properties

If you run your servlet outside a J2EE environment and the web container does not support JNDI, you construct and
initialize a PersistenceManagerFactory much as you would in a two-tier environment. Instead of hardcoding the properties
of the PersistenceManagerFactory, we recommend that you load a Properties instance identified by a configuration file
stored in the WEB-INF directory in the deployed application. This way, you can change the resource without changing
any code in your servlet. Simply change the properties file packaged in the war file. This example of initialization is from
the servlet named MovieInfo in the com.mediamania.appserver package:

public class MovieInfo extends HttpServlet {
 PersistenceManagerFactory persistenceManagerFactory;
 PersistenceManager pm;

 public void init() throws ServletException {
 try {
 ServletContext ctx = getServletContext();
 InputStream in = ctx.getResourceAsStream("WEB-INF/pmf.properties");
 Properties props = new Properties();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Properties props = new Properties();
 props.load(in);
 persistenceManagerFactory =
 JDOHelper.getPersistenceManagerFactory(props);
 } catch (IOException ex) {
 throw new ServletException("Unable to locate PMF resource.");
 }
 }

The pmf.properties file in this example has the same contents as the properties file used in a two-tier application:

javax.jdo.PersistenceManagerFactoryClass:com.sun.jdori.fostore.FOStorePMF
javax.jdo.option.ConnectionURL:fostore:/shared/databases/jdo/dbdir
javax.jdo.option.ConnectionUserName:craig
javax.jdo.option.ConnectionPassword:faster
javax.jdo.option.Optimistic:true
javax.jdo.option.NontransactionalRead:true

16.1.2 Servicing Requests

After your servlet has been initialized, the web container sends incoming requests to it. The web container dispatches
each incoming HTTP request to service(), which is implemented by the HttpServlet base class to call one of the HTTP
service methods (doGet() or doPost()) implemented by your servlet class. The following is a typical implementation of
doGet() and doPost(), which both delegate to processRequest(). This implementation is not standard, but it is a common
pattern used by tools that create servlets; it is part of the MovieInfo class.

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {
 processRequest(request, response);
 }
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {
 processRequest(request, response);
 }
 protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {
 pm = persistenceManagerFactory.getPersistenceManager();
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.print(formatMovieInfo());
 out.println("</body>");
 out.println("</html>");
 out.close();
 pm.close();
 }

16.1.3 PersistenceManager per Request

The following method actually performs the application-specific processing that requires the PersistenceManager.
Implementing JDO datastore access as a method in the servlet is not recommended; it is presented only as an
example. Note that the PersistenceManager is obtained from the PersistenceManagerFactory at the beginning of the
processRequest() method and is closed at the end of the method. This pattern, known as PersistenceManager per
Request, is a typical use of PersistenceManager in managed environments. If the request contained multiple methods,
they would all use the same PersistenceManager.

 protected String formatMovieInfo() {
 StringBuffer result = new StringBuffer();
 Extent movies = pm.getExtent(Movie.class, true);
 Iterator it = movies.iterator();
 while (it.hasNext()) {
 result.append("<P>");
 Movie movie = (Movie)it.next();
 result.append(movie.getDescription());
 }
 return result.toString();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.1.4 PersistenceManager per Application

The PersistenceManager per Request pattern is the most common and arguably the most scalable approach to
managing PersistenceManager instances. Another approach, PersistenceManager per Application, may offer better
performance in certain situations.

With this pattern, there is a single PersistenceManager for all servlets and all requests in the application. This approach
might be good for read-only applications that use a relatively small number of persistent instances and don't need
transactions. Since multiple threads can execute request methods simultaneously, access to the PersistenceManager must
be carefully controlled. Either the application needs to serialize access, or the PersistenceManager needs to have the
Multithreaded property set to true.

You should keep the number of instances small to avoid growing the cache. With the PersistenceManager per Request
pattern, most objects can be garbage-collected as soon as the request is done. But with a single PersistenceManager,
newly instantiated instances in the cache tend to stay around for a long time. While the JDO implementation holds only
a weak reference to persistent instances in the cache, managing the weak references might be a challenge for the
garbage collector.

You should avoid transactions, because while one thread is committing a transaction, no other thread can access the
cache. Even with the Multithreaded property set to true, only one thread can access the PersistenceManager during commit.
The benefits of having cached instances can be overshadowed by poor concurrency during commit.

16.1.5 PersistenceManager per Transactional Request

If most requests are nontransactional, with a small number of transactional requests (insert, delete, or update), you
can consider combining the common PersistenceManager approach with PersistenceManager per Transactional Request.
This allows you to navigate the graph of persistent instances in the common cache to find the instance that needs to be
updated, and then use a new PersistenceManager obtained from the same PersistenceManagerFactory to perform the
transaction.

16.1.6 PersistenceManager per Session

Another approach for managing the PersistenceManager is to create a PersistenceManager and store it in a session attribute.
While this makes some of the programming easier, it has significant disadvantages.

Implementations of the PersistenceManager generally do not support serialization, which is the specified implementation
of a persistent session state. Therefore, the application cannot be distributable; all of the requests that are part of a
session must be handled by the same server. Further, migration of sessions in case of system failure is not possible.

These aspects of the runtime environment reduce the scalability and robustness of your application, and we recommend
that you carefully evaluate your reasons to use this pattern. As an alternative, you can store the identity instances of
persistent instances in session attributes and obtain the persistent instances by using getObjectById() from the
PersistenceManager obtained for the request. This is a scalable technique that avoids the problems associated with storing
the PersistenceManager itself in the session state.

16.1.7 Transactions

For many requests, transactions are not required. Looking up information, browsing a datastore, or even displaying
certain types of data for particular users does not necessarily require transactional guarantees. Thus, many requests
can simply use the PersistenceManager to perform a query, navigate to some instances of interest to satisfy the request,
retrieve some persistent fields, and close the PersistenceManager. But to add new instances, update instances in the
datastore, or delete instances, you must begin and commit a transaction.

If you are deploying your servlet outside a J2EE server and don't have access to a UserTransaction, then you use the JDO
Transaction to delimit transactions, using the begin(), commit(), and rollback() methods discussed in earlier chapters. In
this environment, you cannot combine operations from multiple data sources into a single global transaction.

If you are deploying your servlet in a J2EE server, there are two mechanisms that you can use for managing
transactions. The first is to use the JDO Transaction discussed previously. Using the JDO Transaction, your application is
responsible for performing all the operations that are part of the same transaction using the same PersistenceManager.
With this approach, you cannot coordinate transactions that involve multiple resources.

The second mechanism is to use a UserTransaction, available from the server via the JNDI lookup method. The instance
that implements a UserTransaction is created and managed by the server. With a UserTransaction, you can demarcate J2EE
transactions that span multiple data sources, and any operations done between the beginning and completion of the
J2EE transaction will be coordinated with other operations. This allows you to use multiple resources (more than one
JDO PersistenceManager, JDBC DataSource, EJB bean method, etc.) and combine all of their operations into one global
transaction.

In order for the PersistenceManagerFactory to give you the PersistenceManager associated with the proper J2EE transaction,
you call begin() on the UserTransaction prior to getting the PersistenceManager from the PersistenceManagerFactory. During
the execution of getPersistenceManager(), the PersistenceManagerFactory discovers that the UserTransaction is active and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the execution of getPersistenceManager(), the PersistenceManagerFactory discovers that the UserTransaction is active and
automatically begins the JDO transaction for you. The JDO Transaction is marked so that calling any of the JDO
transaction completion methods is a user error. Instead, you must complete the J2EE transaction via UserTransaction
commit() or rollback(). The PersistenceManager is also marked so that, when it is closed by your application, it waits for the
UserTransaction completion before being reused or discarded.

16.1.8 JavaServer Pages

JavaServer Pages technology provides an easy way to generate dynamic web content by embedding actions into HTML
pages. The actions are either callouts to the Java language or references to library routines that encapsulate commonly
needed functions, such as datastore access.

JSP pages allow construction of dynamic web content by using HTML editors to create prototype web pages. The
dynamic content is interpreted by the HTML editor as just another tag that can be edited without further interpretation.
With this approach, web content designers can use WYSIWYG (what you see is what you get) web-page editors, in
which the dynamic content is displayed as text.

Using JSP pages effectively requires libraries of functions, called tag libraries. There are standard tag libraries, which
include functions to access request parameters, access cookies, create and access scoped variables, query a JDBC
database, iterate collections of transient or persistent instances, parse and transform XML documents, and display
information from beans used in the JSP page.

At the time of this writing, there is no standard tag library to define access to JDO. The effort is underway, however.

The shape of a standard tag library for JDO can be seen by examining the JDBC tag library. There are tag elements to
establish the factory, query the datastore, and demarcate transactions.

Until a standard tag library is available for JDO, code JSP pages using JDO with native Java code callouts from the page.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.2 Struts with JDO
Struts is a component framework developed as an open source project (under the auspices of the Jakarta Apache
project) to ease development of scalable web-tier applications. Struts defines an updated Model-View-Controller pattern
(called MVC2) for implementing web-based applications. It also defines servlet and JSP components as either views or
controllers, with the model implemented as business objects accessible to both view and controller components.

Views are either servlets or JSP pages that provide the HTML-generation end of the process. Controllers are usually
servlets and provide the flow control and delegation to the business objects. Many common patterns for generating
web-based forms are implemented in Struts as base classes, making construction of complex forms-based applications
easy.

When using JDO with Struts, the issues are the same as with generic servlet and JSP pages. The
PersistenceManagerFactory (or multiple instances of PersistenceManagerFactory) used with the application is constructed at
server or application startup, and each component that needs JDO services needs to access the PersistenceManagerFactory
in order to get the PersistenceManager used in the business logic.

Struts 1.1 does not include direct support for JDO, but it provides a flexible way to configure the controller servlet: by
defining PlugIn classes that are initialized when the web container loads the Struts servlet. You can exploit this Struts
feature by writing a JDOPlugIn class for JDO that manages the PersistenceManagerFactory. A Struts PlugIn class has an init()
method invoked at servlet initialization, a destroy() method invoked at server shutdown, and an arbitrary number of
configuration methods.

At servlet initialization, the Struts framework creates an instance of PlugIn for each plug-in element found in the struts-
config.xml file in the application's war file. For each set-property element found in the plug-in element, the framework
configures the PlugIn by calling the corresponding PlugIn method, following the JavaBeans get/set pattern. After
configuring the PlugIn, the framework calls init() to have the PlugIn perform the initialization.

The following sample implementation of JDOPlugIn uses three properties: name, path, and jndiName, corresponding to the
methods setName(String), setPath(String), and setJndiName(String), respectively. name is the name under which the PlugIn
registers the PersistenceManagerFactory; it is required. path is the pathname where the properties file is located in the war
file. jndiName is the JNDI name under which the PersistenceManagerFactory was registered by a server-specific process at
server startup. One of path and jndiName is required. The following code shows the field declarations and the set()
methods:

public class JDOPlugIn implements PlugIn {
 private ServletContext ctx;
 private String name;
 private String path;
 private String jndiName;
 public JDOPlugIn() {
 }
 public void setName(String name) {
 this.name = name;
 }
 public void setPath(String path) {
 this.path = path;
 }
 public void setJndiName(String jndiName) {
 this.jndiName = jndiName;
 }

The init() method uses these helper methods to locate or construct the PersistenceManagerFactory:

 private PersistenceManagerFactory
 getPersistenceManagerFactoryFromPath(String path)
 throws IOException {
 Properties props = new Properties();
 InputStream in = ctx.getResourceAsStream(path);
 props.load(in);
 return JDOHelper.getPersistenceManagerFactory(props);
 }
 private PersistenceManagerFactory
 getPersistenceManagerFactoryFromJndi(String jndiName)
 throws NamingException {
 Context ic = new InitialContext();
 return (PersistenceManagerFactory) ic.lookup(jndiName);
 }

The init() method determines whether to load the PersistenceManagerFactory from a properties file using the path property
or to look up the PersistenceManagerFactory from JNDI. It then puts the PersistenceManagerFactory into the servlet context
using the given name:

 public void init(ActionServlet servlet, ModuleConfig config)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void init(ActionServlet servlet, ModuleConfig config)
 throws ServletException {
 ctx = servlet.getServletContext();
 if (name == null || name.length() == 0) {
 throw new ServletException
 ("You must specify name.");
 }
 try {
 PersistenceManagerFactory pmf;
 if (path != null) {
 pmf = getPersistenceManagerFactoryFromPath(path);
 } else if (jndiName != null) {
 pmf = getPersistenceManagerFactoryFromJndi(jndiName);
 } else {
 throw new ServletException
 ("You must specify either path or jndiName.");
 }
 ctx.setAttribute(name, pmf);
 } catch (Exception ex) {
 throw new ServletException(
 "Unable to load PMF: name:" + name +
 ", path: " + path +
 ", jndiName: " + jndiName,
 ex);
 }
 }

To use the JDOPlugIn, add elements to the struts-config.xml file. For each PersistenceManagerFactory you want to use in
your Struts application, add a new plug-in element to the file, with set-property elements:

 <plug-in className="com.mediamania.appserver.JDOPlugIn">
 <set-property property="name" value="jdo.Movies"/>
 <set-property property="path" value="WEB-INF/jdoMovies.properties"/>
 </plug-in>
 <plug-in className="com.mediamania.appserver.JDOPlugIn">
 <set-property property="name" value="jdo.Accounting"/>
 <set-property property="path" value="WEB-INF/jdoAccounting.properties"/>
 </plug-in>

Once the PlugIn has initialized one or more PersistenceManagerFactory instances, any Struts Action component associated
with the ActionServlet can access them by name. Typically, these will be classes acting as controllers executing business
logic. The execute() method in these classes gets the PersistenceManagerFactory by name from the servlet context, gets
the PersistenceManager, performs whatever business logic is required, commits or rolls back the transaction, closes the
PersistenceManager, and returns control to the Struts framework. For example, the execute() method might take a Movie
name from the context as a movieName attribute, look up its description, and put the description into the context as a
movieDescription attribute:

public class LookupMovieAction extends Action {
 PersistenceManagerFactory pmf = null;
 PersistenceManager pm = null;
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 try {
 ServletContext ctx = getServlet().getServletContext();
 pmf = (PersistenceManagerFactory)ctx.getAttribute("jdo.Movies");
 pm = pmf.getPersistenceManager();
 Query q = pm.newQuery(Movie.class, "title == param1");
 q.declareParameters ("String param1");
 String movieName = request.getParameter("movieName");
 Collection movies = (Collection)q.execute(movieName);
 Movie movie = (Movie)movies.iterator().next();
 String description = movie.getDescription();
 ctx.setAttribute("movieDescription", description);
 } catch (JDOException e) {
 } finally {
 if (pm != null) {
 pm.close();
 }
 pm = null;
 }
 return (mapping.findForward("success"));
 }
}

A typical cycle of Struts processing in the web server involves several interactions between the browser and the web
server. In the following sequence, "ACTION" represents a Struts Action component and "JSP" represents a JSP page:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. HTTP request arrives at server.

2. ACTION — initialize session (no JDO access).

3. JSP — display page (includes an input form).

4. HTTP response sent back to user.

5. User fills in form.

6. HTTP request arrives at server.

7. ACTION — update datastore based on the submitted form (transactional update).

8. ACTION — read datastore and set up for next page (possibly nontransactional access).

9. JSP — display page (includes another input form).

10. HTTP response sent back to user.

11. Repeat steps 5 through 10 until the logical conclusion of the interaction ("Thank you for your order") or the user
goes away and the session expires.

12. User fills in form.

13. HTTP request arrives at server.

14. ACTION — update datastore based on the submitted form (transactional update).

15. JSP — display page (no input form).

16. HTTP response sent back to user.

With this pattern, each ACTION gets the configured PersistenceManagerFactory appropriate for the usage (transactional or
nontransactional) and executes the business logic appropriate for that action.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 17. J2EE Application Servers
Application servers provide a reliable, scalable, and secure environment in which applications execute. In the Java
context, an application server is a platform that implements the J2EE (Java 2 Enterprise Edition) contracts to support
applications.

Because of security concerns, many web sites do not allow servers directly facing the Internet to handle business
transactions directly. Instead, web servers delegate the more important transactions to an application server isolated
from the Internet by firewalls and/or additional layers of code. This architecture minimizes the threat of attacks on the
core business infrastructure.

Application servers provide functionality defined strictly by the J2EE platform, typically a superset of functionality
provided by web servers. In addition to supporting applications written to the Servlet and JSP contracts, application
servers support the EJB (Enterprise JavaBeans) architecture, allowing application-server components to be written as
distributed objects. Trusted clients and servlets and JSP pages running in the same or different servers can access
these objects directly.

An application server that implements the J2EE contracts also provides a number of services required by applications.
There are many more services available, but the following are the most important from the JDO developer's viewpoint:

JDBC

Provides access to datastores via a standard protocol.

JNDI (Java Naming and Directory Interface)

Provides a binding between names of services and the instances that implement those services. For example,
the name of a JDBC DataSource resource might be java:comp/env/jdbc/HumanResources and its implementation
might be a DataSource bound to the human-resources database.

JTS (Java Transaction Service)

Coordinates local and distributed transactions to guarantee the atomicity of transactions that span different
resources and processes.

JavaMail

Provides a programming interface to create and send email messages.

JMS (Java Message Service)

Offers a means for applications to send and receive asynchronous messages in transactional contexts.

The EJB architecture is a component architecture for developing and deploying distributed business applications. In this
chapter, we take a look at some common design patterns for implementing multitier applications. This book is not
intended to be a reference for patterns, but the examples illustrate some popular access methods.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.1 Enterprise JavaBeans Architecture
EJB components are similar to servlets/JSP pages in that remote access is built-in. You don't need to write any remote
infrastructure to implement multitier architecture designs. Declaring a bean to be remote generates all of the code
required to make the bean run remotely. Just as the HTTP protocol mediates remote access for web-based clients, the
SOAP and/or RMI/IIOP protocols enable remote access for EJB components. Using standard remote protocols allows you
to focus development on the application logic instead of protocol-handling.

But there are two significant differences between servlets/JSP pages and EJB components.

First, declarative transactions and distributed transactions are built into EJB components. As an application developer,
you don't need to code transactions explicitly into your application logic. Transactions are applied to applications
declaratively, not embedded into code. During application assembly, the assembler specifies the transaction attributes
of each method. Assembly combines application components into larger applications and preserves transaction
semantics. Distributed transactions (transactions that include multiple resource managers) are handled for your
application as transparently as local transactions (those that involve only one resource manager).

Second, security is built into EJB components. You don't need to write security protocols or worry about credentials.
Methods and resources are declared to require security checks; these are administration issues, not programming
concerns. Similar to method-transaction associations, methods that require a specific security context are identified
during application assembly.

The flexibility of transaction and security associations come at a cost. Each time a method is executed via the local or
remote interface, the container checks the transaction and security requirements of the method against the current
thread's transaction and security context.

EJB components come in four flavors:

Stateless session beans

Stateless session beans are the simplest enterprise beans. They have no fixed association with any particular
client. They serve as message endpoints to service clients for execution of remote or local methods defined in
an interface. The interface typically defines a service contract with clients. Each business method is self-
contained and doesn't rely on the results of any previous method.

Stateful session beans

Stateful session beans are service endpoints created on behalf of specific clients for execution of remote or local
methods defined in an interface. They implement conversational behavior with clients. Results of business
methods can be stored in the bean for use by subsequent business methods.

Entity beans

Entity beans model a persistent entity, which might be a record or row in an enterprise information system
(EIS) or relational database, or a collection of related records. Entity beans are identified by a primary key.

Message-driven beans

Message-driven beans serve as the endpoint for a queue or topic to a Java Message Service (JMS) or some
other messaging implementation. They implement synchronous or asynchronous queued service requests.

Your applications can exploit JDO as a component for integration into EJB architecture servers in conjunction with other
components. Servlets, JSP pages, session beans (both stateful and stateless), and message-driven beans can use JDO
persistent classes to implement business objects, either directly as data-access objects (DAO) or through business
delegates.

We start the discussion of high-level architecture by reviewing two aspects of our Media Mania application: casual
browsing of the offerings in the store and business transactions, such as purchase or rental of media. The front end to
both of these is the Web, but for business transactions we delegate to the EJB tier.

In Chapter 16, we discussed some techniques for accessing persistent data from JDO instances. Using a combination of
servlets and JSP pages, clients can browse the offerings of the store, and the servlets/JSP pages maintain persistent
information about their items while shopping. Once a collection of items has been selected for purchase or rental, we
want to complete the transaction and we choose to implement the business logic using EJB components.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.2 Stateless Session Beans
For our example, we assume that the web tier of the Media Mania store handles the interactions with the customer
while he is browsing and shopping. The web tier manages the customer's name and contents of his cart. The web tier
might manage the cart using persistent classes or simply maintain the cart as a session state. When the customer
chooses to check out, the web tier delegates this important function to the EJB tier of the application.

For this purpose, we implement a stateless session bean, called CashierBean, with a checkout() business method. We use
the stateless-session-bean pattern because it best models the semantics of a store cashier. During the time a customer
is checking out, the cashier devotes all of her time to that customer. Once a customer walks away from the cashier, the
cashier forgets all about that customer in order to help the next one. Any information needed from the transaction must
be stored persistently during the interaction with the customer.

A stateless session bean is the most efficient type of bean for this purpose because there is no client state that needs to
be maintained between business methods. Any currently idle bean can service any incoming request from any client.
Therefore, these beans can be managed by the application server easily, based on workload. If more requests arrive for
a particular type of bean than there are beans available, the server can create more quickly. Similarly, if there are too
many idle beans, they can quickly be destroyed because there is no persistent state to save.

17.2.1 Configuring the PersistenceManagerFactory

When you develop a session bean that uses JDO, you associate each instance of the bean with an instance of the
PersistenceManagerFactory that you look up when you initialize the session bean during setSessionContext().

The bean class contains instance variables that hold the associated PersistenceManager and PersistenceManagerFactory.

public class CashierBean implements javax.ejb.SessionBean {
 private javax.ejb.SessionContext context;
 private PersistenceManagerFactory pmf;
 private PersistenceManager pm;
 private static String pmfName = "java:comp/env/jdo/MediaManiaPMF";

When the container calls setSessionContext() to initialize the bean, we look up the PersistenceManagerFactory via JNDI. The
name of the PersistenceManagerFactory is hardcoded into the bean, but JNDI uses an indirection to find the actual
PersistenceManagerFactory. The PersistenceManagerFactory represents the same datastore for all beans sharing the same
datastore resource. This allows the PersistenceManagerFactory to manage the association between the distributed
transaction and the PersistenceManager:

 public void setSessionContext(javax.ejb.SessionContext aContext) {
 context = aContext;
 try {
 Context ic = new InitialContext();
 pmf = (PersistenceManagerFactory)ic.lookup(pmfName);
 } catch (NamingException ex) {
 throw new EJBException("setSessionContext", ex);
 }
 }

This simple bean uses only one PersistenceManagerFactory. If your application requires more than one
PersistenceManagerFactory, each of them should be looked up during setSessionContext() and saved into its own field.

During assembly of the application, the assembler defines the resource-ref element in the session element that describes
the CashierBean in the ejb-jar.xml file. The resource-ref identifies the PersistenceManagerFactory as a resource; the res-ref-
name is the JNDI name in the session bean's JNDI context:

<resource-ref>
 <res-ref-name>jdo/MediaManiaPMF</res-ref-name>
 <res-type>javax.jdo.PersistenceManagerFactory</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

During deployment of the bean, the deployer associates the res-ref-name given in the deployment descriptor with the
actual PersistenceManagerFactory constructed by a server implementation-specific process. The association is indirect; the
name coded into the application is in the session bean's JNDI context and is mapped to the actual resource name. This
allows different applications to use the same name to refer to different resources or to use different names to refer to
the same resource.

The server-resource configuration process, while not standard, typically requires the deployer to write a server-resource
definition file containing the PersistenceManagerFactory class name, properties, and JNDI lookup name. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

definition file containing the PersistenceManagerFactory class name, properties, and JNDI lookup name. For example:

<persistence-manager-factory-resource>
 <jndi-name>jdo/MediaManiaPMF</jndi-name>
 <factory-class-name>com.sun.jdori.FOStorePMF</factory-class-name>
 <property key="ConnectionURL" value="fostore://mmserv/MediaManiaDB"/>
 <property key="ConnectionUserName" value="fortune"/>
 <property key="ConnectionPassword" value="silence"/>
</persistence-manager-factory-resource>

The server typically implements the resource configuration at server initialization by getting the factory class name as a
String and obtaining a corresponding class instance using Class.forName(). The server turns each property's name in the
property list into a method name by using the JavaBeans pattern of capitalizing the first character of the property name
and prepending set to the name. Then, the server looks up the method using Class.getMethod() and invokes the method
with the property value as a parameter. After the server sets all properties, it binds the configured object to the name
specified in the jndi-name element. This binding allows the bean's Context.lookup() method in setSessionContext() to find
the resource during server operation.

We continue the implementation of our bean with the business method. The signature of the checkout() method is
complex, but it illustrates a best practice for remote methods. Instead of decomposing the checkout process into
several methods, the single checkout() method takes as parameters all the information needed to perform the
operation. The benefit of this decomposition is that the transaction and security checks occur only once per checkout,
regardless of the number of items checked out.

The only initialization we assume in Example 17-1 is that the pmf field has the appropriate PersistenceManagerFactory for
this application.

Example 17-1. The CashierBean checkout method

public void checkout(
 java.lang.String lastName,
 java.lang.String firstName,
 java.util.Collection rentals,
 java.util.Collection purchases)
 throws java.rmi.RemoteException {
 PersistenceManager pm = pmf.getPersistenceManager(); [1]
 Customer customer = StoreQueries.getCustomer(pm, firstName, lastName); [2]
 Iterator it = rentals.iterator();
 while (it.hasNext()) {
 RentalValueObject rvo = (RentalValueObject)it.next();
 RentalItem ri = StoreQueries.getRentalItem [3]
 (pm, rvo.serialNumber);
 Rental rental = new Rental(customer, new Date(), ri);
 customer.addTransaction(rental);
 customer.addRental(rental);
 }
 it = purchases.iterator();
 while (it.hasNext()) {
 PurchaseValueObject pvo = (PurchaseValueObject)it.next();
 MediaItem mediaItem = StoreQueries.getMediaItem([4]
 pm, pvo.title, pvo.format);
 Purchase purchase = new Purchase(customer, new Date(), mediaItem);
 customer.addTransaction(purchase);
 }
 pm.close(); [5]
}

We use static methods defined in StoreQueries to find the Customer by first and last name (line [2]), find a RentalItem by
serial number (line [3]), and find a MediaItem by title and format (line [4]). This static-method pattern allows us to
keep the application classes free of any references to the JDO interfaces. Of course, when you design your persistent
classes, you may find it useful to put these finder methods directly into the persistent classes.

In the checkout() method, the customer is identified uniquely by first name and last name, and the rentals and
purchases are represented by collections of value objects.

A value object is a design pattern for representing complex data that can be serialized and sent by value from one
process to another. In our case, the value objects are used only to hold data values; all the information needed to
identify a specific rental or purchase item is contained in the corresponding value object. Since the data elements need
no abstraction, the value-object classes are implemented to have no behavior and all their fields are public. The
compiler generates a public no-arg constructor for each class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

compiler generates a public no-arg constructor for each class:

public class MediaValueObject
 implements java.io.Serializable {
 public String title;
}
public class RentalValueObject extends MediaValueObject {
 public String serialNumber;
}
public class PurchaseValueObject extends MediaValueObject {
 public String format;
}

The strings and value objects in the parameter list of the checkout() method can be serialized and sent by value using
any of a number of protocols, including SOAP, RMI, and IIOP. The details of which protocol is used are not important to
the implementation of the business logic.

17.2.2 Stateless Session Beans with Container-Managed Transactions

In the checkout() method, we update the datastore and insert new instances. Therefore, we need to have an active JDO
transaction. The simplest implementation technique is to use container-managed transactions, in which the container
manages the transactions for us. In order for the container to begin a new transaction for the business method
automatically, the deployer must declare in the deployment descriptor that the business method requires transactions.
This descriptor specifies that checkout() requires an active transaction, and the container will start a transaction if one is
not already active. The container-transaction element is contained in the assembly-descriptor element of the ejb-jar element
in the ejb-jar.xml file:

<container-transaction>
 <method>
 <ejb-name>CashierBean</ejb-name>
 <method-name>checkout</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
</container-transaction>

Because we marked the checkout() method in the deployment descriptor of the CashierBean with trans-attribute given the
value Required, the checkout() method has transactional behavior. Before the container calls the method, it automatically
obtains a UserTransaction and begins a transaction if one is not already in progress. This gives maximum flexibility for the
reuse of components. If a new component is implemented with a method defined as requiring transactions, the new
method can call the checkout() method and the container will simply verify that there is already a transaction in
progress.

When the checkout() method calls getPersistenceManager() on the PersistenceManagerFactory (on line [1] of Example 17-1),
the JDO implementation determines the UserTransaction associated with the thread of control of the caller and checks if
there is an active transaction. If there is already a PersistenceManager associated with an active UserTransaction, the JDO
implementation returns it. If not, the JDO implementation constructs a new PersistenceManager, associates it with the
active UserTransaction, and begins the JDO Transaction in which we perform all of the queries and updates.

When we close the PersistenceManager (on line [5] of Example 17-1), all of the changed and new instances remain in the
PersistenceManager cache. The PersistenceManager will remain active until the container completes the transaction. In this
case, the container completes the transaction as soon as the checkout() method returns. Since we are using container-
managed transactions, we never use the JDO Transaction methods.

Now, we fill in the required methods according to the EJB specification for stateless session beans. The ejbActivate() and
ejbPassivate() methods are used for stateful session beans, and the ejbCreate() and ejbRemove() methods are empty
since there is no special behavior required when creating or removing our stateless session bean:

public void ejbActivate() {
}
public void ejbPassivate() {
}
public void ejbRemove() {
}
public void ejbCreate() {
}

Now that we have seen how to implement a simple session bean using JDO, we will describe the lifecycle and special
requirements for all kinds of session beans. Figure 17-1 shows the lifecycle for stateless session beans.

Figure 17-1. Stateless session bean lifecycle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-1. Stateless session bean lifecycle

The fields of a JDO session bean of any type include:

A reference to the PersistenceManagerFactory, which is initialized by the setSessionContext() method. This method
looks up the PersistenceManagerFactory by JNDI access to the object identified in the deployment descriptor.

A reference to the PersistenceManager, which is acquired by each business method and closed at the end of the
business method.

A reference to the SessionContext, which is initialized by the method setSessionContext().

17.2.3 Stateful Session Beans with Container-Managed Transactions

Stateful session beans are service objects that are created for a particular user, and they may have a state associated
with that user between business methods. A business-method invocation on a reference to a stateful session bean is
dispatched to the specific instance created by the user.

The timeworn example of a stateful session bean is the online shopping cart; the cart that keeps track of all the items
purchased at an online purveyor contains all the information needed when you go to check out. Every item you have
picked from the shelves and all the special discounts you've chosen are put into the cart. No matter when you stop
shopping or when you return, your cart still contains the items that you put into it.

But the burden of managing the cart belongs to the server. And, since stateful session beans are created for a specific
user, the beans' state takes up precious memory space. If the cart's owner doesn't use the cart for an extended period
of time, the server has to deal with storing the contents persistently.

There are a number of other implications that you should consider before using stateful session beans:

The create method for the stateful session bean can take parameters specific to the intended use, so you can
create beans with different behavior based on create parameters. A stateless session bean has only one create
method, and therefore only one type of bean may be created.

The bean is dedicated to the particular user and is therefore bound to a specific server process. Load-balancing
techniques, if implemented by the server at all, are complicated and may require special deployment
descriptors.

If the server needs to manage memory usage in the JVM, it can passivate the bean, but only after a potentially
expensive serialization process to persistent storage (usually a file in a local directory). Management of this
memory and persistent storage can be a significant resource drain on the server. Because memory and
persistent storage are scarce resources, the lifecycle allows the server to destroy a bean that has not been used
for some amount of time, called the timeout period. After the timeout period expires, your bean might be
destroyed without notice.

Implementing the ejbActivate() and ejbPassivate() methods is your responsibility as the bean developer. Any state
that can't simply be serialized must be saved at ejbPassivate() and restored at ejbActivate(). Although ejbPassivate(
) will not be called while a transaction is active, the bean might time out, and your implementation must take
this into account.

You can't preserve a JDO state using serialization, as JDO implementations don't support serialization for JDO-
implementation artifacts such as those that implement PersistenceManager and Transaction. This means that your
bean can save only the object identities of persistent instances, not object references, and your bean then has
to restore them using getObjectById() in business methods.

Otherwise, the behavior of stateful session beans using container-managed transactions is the same as for stateless
session beans. In particular, all business methods in the bean interface acquire a PersistenceManager at the beginning of
the method and close it at the end of the method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the method and close it at the end of the method.

Figure 17-2 shows the lifecycle of a stateful session bean.

Figure 17-2. The lifecycle of a stateful session bean

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.3 Bean-Managed Transactions
Bean-managed transactions offer the stateless session bean developer additional flexibility, but at the cost of additional
complexity.

There are two alternate techniques for demarcating transaction boundaries in your bean code: use the server's
javax.transaction.UserTransaction or use the PersistenceManager's javax.jdo.Transaction. If you use UserTransaction, you can
begin and complete distributed transactions managed by the server's TransactionManager. If you use JDO's Transaction,
you begin and complete local transactions that are managed completely by the JDO implementation, without any help
(or interference) from the container.

17.3.1 javax.transaction.UserTransaction

To use UserTransaction, you obtain it via getUserTransaction() from the SessionContext instance, begin the transaction, and
then obtain the PersistenceManager from the PersistenceManagerFactory. During getPersistenceManager(), the
PersistenceManagerFactory will automatically associate the PersistenceManager with the active UserTransaction.

When your bean invokes methods of beans that use container-managed transactions, the container automatically
associates transactional resources used by the other beans in the current UserTransaction. The transactional resources
can be JDO PersistenceManagers, JDBC Connections, or connector resources.

If you require nontransactional access to JDO, you must obtain the PersistenceManager when the UserTransaction is not
active. After beginning a UserTransaction, if your application needs a PersistenceManager for transactional access, a
different PersistenceManager must be obtained for this purpose. Your application must keep track of which
PersistenceManager is being used for which purpose. Once you complete the UserTransaction by calling commit() or rollback(
), the PersistenceManager associated with that transaction can no longer be used.

Consider the following code fragment, in which ctx is the SessionContext instance:

UserTransaction utx = ctx.getUserTransaction();
PersistenceManager pm1 = pmf.getPersistenceManager();
utx.begin();
PersistenceManager pm2 = pmf.getPersistenceManager();
PersistenceManager pm3 = pmf.getPersistenceManager();
utx.commit();
PersistenceManager pm4 = pmf.getPersistenceManager();
PersistenceManager pm5 = pmf.getPersistenceManager();
utx.begin();
PersistenceManager pm6 = pmf.getPersistenceManager();
PersistenceManager pm7 = pmf.getPersistenceManager();
utx.commit();

In this example, pm1, pm4, and pm5 are references to unique instances of PersistenceManager, and transaction completion
is managed independently by each of the associated Transaction instances. pm2 and pm3 are references to the same
instance, and transaction completion is controlled by the utx instance. pm6 and pm7 are references to the same instance,
and transaction completion is controlled by the utx instance.

17.3.2 javax.jdo.Transaction

As the bean developer, if you choose to use the same PersistenceManager for multiple serial transactions, you must
demarcate transaction boundaries by using the javax.jdo.Transaction instance associated with the PersistenceManager.
Obtaining a PersistenceManager without having an active UserTransaction results in your being able to manage transaction
boundaries via begin(), commit(), and rollback() of javax.jdo.Transaction. In this mode, the JDO implementation does not
access UserTransaction.

Your bean can invoke methods of beans that use container-managed transactions, but since the container doesn't know
about JDO transactions, it cannot automatically associate transactional resources used by the other beans in the
transaction.

17.3.3 Stateless Session Beans with Bean-Managed Transactions

You establish transaction boundaries using one of the techniques detailed in the previous section, but the bean's state
(including the PersistenceManager) cannot be retained across business-method boundaries. Therefore, each business
method must obtain a PersistenceManager and close it before it returns.

17.3.4 Stateful Session Beans with Bean-Managed Transactions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The major difference between stateful and stateless session beans with bean-managed transactions is that with stateful
session beans you can save states between method invocations, including PersistenceManager, and you can even keep
transactions active. However, we recommend that you do not keep transactions open between business methods.

If you use UserTransaction, the server knows that the transaction is open at the end of the business method and it will
leave the bean in a state that cannot be passivated. Since the bean can't be passivated, it will continue to tie up server
resources until the timeout period elapses. If the server does time out the bean, the server automatically rolls back the
transaction and you lose everything in the current transaction.

If you use JDO Transaction instead, the server might not even be aware of your transaction and might passivate the
bean. In this case, you have to close the PersistenceManager in ejbPassivate(), since the PersistenceManager cannot be
serialized. Again, you lose the current transaction.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.4 Message-Driven Beans
Message-driven beans are quite similar to stateless session beans. Both are stateless, and with each method call, the
container establishes a transaction context based on the deployment-descriptor transaction attribute for the message-
listener methods.

Message-driven beans implement the MessageDrivenBean interface for lifecycle callbacks and a message-listener interface
for business methods that is specific to the type of message provider with which the bean is used. Message-driven
beans used with the JMS MessageListener interface have only one business method, onMessage(), that takes one
parameter: an instance of javax.jms.Message. Those that are used with another message provider must implement all of
the methods of the corresponding message-listener interface. The interaction with JDO is the same in all cases.

The lifecycle of a message-driven bean (shown in Figure 17-3) is as simple as a stateless session bean. To use JDO with
message-driven beans, your application uses the setMessageDrivenContext() method to save the context and look up and
save the PersistenceManagerFactory.

Figure 17-3. The lifecycle of a message-driven bean

To process the message-listener method, your application code obtains a PersistenceManager from the
PersistenceManagerFactory and handles the message, performing JDO accesses as required. At the end of the business
method, you close the PersistenceManager.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.5 Persistent Entities and JDO
In the J2EE environment, you have a choice of using native file I/O, serialization, JDBC, entity beans, session beans, or
JDO persistent classes as the implementation strategy for persistence of your application object model (persistent
entities). In many cases, you can use more than one strategy in the same application.

File I/O and serialization based on files are not robust or scalable enough for application-server use beyond trivial
storage of a simple class state, and we will not describe these options further. The choice between the other strategies
depends on your requirements for the persistence abstraction.

17.5.1 Local Persistent Storage

Using JDBC or JDO directly allows your application to store entities using a local-persistence interface with minimum
security and transaction-association options. That is, the security context of the caller of each business method governs
access to the resources, and the transaction context of the caller is the transaction context of all the calls made to the
local-persistence interface. In our example implementation of CashierBean, the transaction and security checks are
performed only when the container receives an invocation on checkout() and calls your application code.

The local-persistence alternatives do not allow transparent execution of the implementation methods in different tiers of
the architecture. All calls are local and use resource managers in the same JVM as the caller.

17.5.1.1 JDO

We have already seen how using JDO as your implementation strategy allows you to use your application-domain object
model directly, including features such as inheritance, polymorphic relationships, dynamic queries, and modeling List
and Map types. And we have already discussed in detail the requirements of the EJB components that use JDO directly
to implement business methods.

17.5.1.2 JDBC

JDBC gives you the most flexibility to customize database access and the most work to do. With JDBC, you implement
every JDBC call to create, read, update, and delete instances in the datastore. Thus, you can handcraft the model and
the datastore accesses to use all features of the datastore, including generation of primary keys, extensions to SQL,
datastore-specific types, and stored procedures.

But this flexibility comes at a significant cost. Much of the code you write is repetitive and error-prone. The server
cannot help you by caching data, because it doesn't know the data-access patterns of your application.

You might reasonably choose to use JDBC in some specific part of your application that has requirements that are not
satisfied by other alternatives. For example, JDO doesn't provide for UNION or GROUP BY functions available in SQL. You
can implement queries that need these features by coding the queries in SQL and using JDBC as the connection vehicle
to the database.

To implement our CashierBean using JDBC, the first task is to understand the entity-relationship model implemented in
the relational database. The most interesting part of the model involves the relationships between the Customer,
MediaContent, Movie, Game, RentalItem, Transaction, Rental, and Purchase entities. Since JDBC does not support inheritance,
in order for your application to access any of the classes modeled as subclasses, you need to code the appropriate joins
into the SQL code used for the queries, deletes, updates, and inserts.

An equally important part of the modeling task involves defining the type mapping between the SQL types and the Java
types. Most primitive types are easy to map, but others are deceptively difficult. Strings might have as many as four
natural mappings in a vendor's implementation of SQL, depending on the access patterns and the maximum length of
the string. For example, CHAR, VARCHAR, VARCHAR2, or CLOB might be the best column-type representation for a string.

Another task is to map the database accesses into native SQL. The number of SQL statements that you need to code
can be estimated by multiplying the number of persistent classes by four or more, and adding the number of business
queries. Typically, you need at least four SQL statements per class:

1. SELECT columns for specific rows from the table.

2. INSERT a row into the table. For subclasses, this might be multiple INSERT statements, depending on how the
inheritance is modeled.

3. DELETE a row from the table.

4. UPDATE some columns in certain rows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. UPDATE some columns in certain rows.

Without going into much more detail, creating the SQL statements and corresponding result analysis for each class in
your application domain is repetitive and error-prone. Many application programmers faced with a reasonably complex
domain model try to write a tool to help with this part of the programming. Unfortunately, the result of the tool typically
must be adjusted and optimized by hand, and the resulting production classes are not easily reused in different
applications.

17.5.2 Remote Persistent Storage

Your domain-model entities may have requirements that cannot be satisfied by direct access to local persistent classes
or JDBC. These requirements include:

Location independence

The location of the datastore might be different from the location of the calling business method. This might be
a factor in the scalability of the system, since adding new server resources might require splitting the access of
some datastores across servers. Defining access to certain entities as possibly remote gives more flexibility in
the system design.

Transaction association per method

When defining the domain model, you might want to define different transaction contexts for different methods
of persistent classes.

Security association per method

When defining the domain model, you might have different security requirements for different methods of
persistent classes.

17.5.2.1 Entity beans

Entity beans are used for modeling large-scale persistent instances that have a natural (intrinsic) identity and are
accessed via business methods. Entity beans have a lifecycle mandated by the EJB specification. The lifecycle governs
whether the bean has a persistent state associated with it and whether the state might need to be synchronized with
the datastore.

Entity beans use a pattern in which information from persistent storage is accessed from the datastore, cached in the
bean, and stored back in the datastore under the direction of the container. The cached data is identified by a key, and
the key can be used to access the bean from local or remote clients.

In terms of complexity, entity beans present a more difficult challenge to the container than stateless session beans do,
but less difficult than with stateful session beans. Entity beans have a state that has to be managed, but since the state
is not associated with a specific user, the container can use pooling techniques to maximize reuse of the beans for
different transactions. Because of the difficulty of managing the state efficiently, most container implementations offer a
range of tuning options for entity beans far beyond the options available for session beans.

Implementing the lifecycle of a bean-managed persistence (BMP) entity bean is a complex task for the bean developer.
For each required method, you need to know whether there is an identity (primary key) associated with the bean,
whether there is already a resource manager associated with the bean, and how to represent relationships to other
entity beans. Even though the lifecycle of the bean is defined elaborately in the EJB specification, container vendors
have chosen quite different strategies to optimize performance, and some of the lifecycle events are implemented
differently by different containers. These differences are important if you want to optimize the performance of your
bean.

For example, the lifecycle defines ejbLoad() to indicate that the state of the bean should be loaded from persistent
storage. And ejbStore() indicates that the state of the bean should be stored into persistent storage. But there is no
lifecycle method to indicate that the transaction context of the bean is changing. And the container does not indicate
whether the bean's state has changed, and therefore whether the state really needs to be stored.

Additionally, the container doesn't indicate to the bean developer why ejbStore() is called. It might be to flush the cache
so that query results are consistent, or it might be the last flush before transaction end. The absence of information
makes it impossible for the bean developer to implement load/store optimizations.

Another example is the definition of the bean context for finder methods. In the bean's implementation of
ejbFindByPrimaryKey(), the bean contract requires that the developer establish whether or not the bean exists in the
database, which requires a database query to execute successfully. An implementation might want to retrieve other
information (e.g., state) from the database as long as a query is required. However, there is no way in the defined
lifecycle to cache the information retrieved by the existence query. Therefore, it is difficult to eliminate the extra query.

Once you understand the strategy of entity-bean development, the complexity of the code is somewhat predictable and
therefore lends itself to code generation. This is why we recommend that if you choose to use entity beans to
implement your persistent object model, you should use container-managed persistence (CMP) entity beans instead of
writing your own BMP entity beans.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

writing your own BMP entity beans.

When using CMP beans, you need to implement more methods and deployment descriptors than you need with session
beans, but fewer compared to BMP beans. And while CMP beans offer significant portability of the code and deployment
descriptors you write, there is no standard to describe the mapping between CMP beans and the corresponding
datastore persistent-data description.

To implement our CashierBean using CMP beans as delegates, the first task is to understand the entity-relationship model
implemented in the relational database. As with JDBC, the most interesting part of the model involves the relationships
between the Customer, MediaContent, Movie, Game, RentalItem, Transaction, Rental, and Purchase entities. Since CMP beans
do not directly support the polymorphic relationships inherent in this object model, you need to change the object
model to remove these relationships.

CMP beans provide for type mapping, so you don't need to hand-code the transformations as you do in JDBC. The
container provides mapping tools that allow you to declare the association between cmp-fields and database columns.
The container handles the type conversions for you.

When using CMP beans with session beans, the application-assembly and deployment processes become more complex.
For each CMP bean used by the session bean, the deployment descriptor must identify the bean's home and local
and/or remote interfaces. The initialization of the session bean itself in the setSessionContext() method must look up and
save references to the home interfaces for all beans that need to be accessed by finder methods.

17.5.2.2 Session beans as façades

When you have a requirement that cannot be implemented by a local persistent class directly, often you can model an
entity bean's semantics by a stateless session bean façade that itself delegates to a JDO business delegate or data
access object. In this model, each business method in the remote interface identifies not only the operation to be
performed, but also the identity of the object upon which to perform it.

Using this pattern provides all the benefits of EJB components, with a small amount of extra work (compared to using
JDO directly). You can use this pattern to implement inheritance that maps directly to JDO inheritance and
polymorphism.

To use this pattern, analyze each method in the JDO persistent class and decide the category to which it belongs:

Private methods

These should not be exposed to outside callers, as they might cause inconsistent state changes if not performed
as part of a larger operation. For example, city, state, and ZIP code should be updated together in the same
business method, although the individual set methods can be implemented as private methods. The method
that updates all three fields can be exposed as a local or remote instance method.

Local instance methods

These change the state of the instance in some trivial way or retrieve some trivial information. For example,
getName() and setName() should be exposed only as local instance methods.

Remote instance methods

These change the state of the instance in a large-scale way or retrieve a substantial amount of information from
the instance. You should use value objects as parameters to these methods.

Local static methods

These usually are defined in the persistent class as static and operate on a number of instances, instead of just
one. For example, query methods that find one or more instances and return them to the caller operate on the
extent of instances in the datastore. Other methods might take a collection of instances as a parameter and
perform a similar operation on each of them.

Remote static methods

These have characteristics similar to local static methods. They include methods that operate on multiple
instances, but they exclude methods that simply find instances.

Define the remote interface to the session bean façade, if needed, to include all remote instance methods and remote
static methods of the persistent class. Declare each method to throw a RemoteException. Modify each instance method to
add an extra parameter that is the JDO identity instance of the instance to which it applies.

Define the local interface to the session bean, if needed, to include all local instance methods and local static methods
of the persistent class. Modify each instance method to add an extra parameter that is the JDO indentity instance of the
instance to which it applies.

Implement each session-bean method that models a persistent-class instance method to obtain the PersistenceManager,
obtain the persistent instance via a call to getObjectById(), and delegate to the persistent-class instance method. Wrap
the entire method in a try-catch block. For remote methods, if an exception is caught, throw a RemoteException with the
caught exception as a nested exception.

Implement each session-bean method that models a persistent-class static method to obtain the PersistenceManager and
delegate to the persistent class method. Wrap the entire method in a try-catch block. For remote methods, if an
exception is caught, throw a RemoteException with the caught exception's toString() as part of the message text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exception is caught, throw a RemoteException with the caught exception's toString() as part of the message text.

Modify methods that return references to persistent instances to return String instead, and in the session-bean method
body, translate the return instance by calling getObjectId().toString(). Similarly, modify methods that take persistent
instances as parameters to take String instead, and look up the persistent instance in the method body by calling
newObjectIdInstance() and getObjectById().

17.5.2.3 JDO or CMP?

Both CMP beans and JDO persistent classes have features that you should consider before committing your project to
use either strategy.

JDO persistent classes are suitable for modeling both coarse-grained and fine-grained persistent instances and in an
application server are typically used behind session beans. CMP beans are typically used behind session beans; their
remote behavior is seldom exploited.

JDO persistent classes can be used without recompilation in any tier of a distributed architecture and can be debugged
in a one- or two-tier environment prior to integration into a web or application server. CMP beans can be debugged only
after deployment into the application server.

Unlike servlets, JSP pages, and EJB components, there is no built-in remote behavior with JDO classes. All of the
distributed, transaction, and security policies are based on the single persistence manager that manages all of the
persistent instances of your model. This means that JDO persistent classes can be used in any tier of a distributed
application and remote behavior is implemented by the container, not the JDO implementation.

CMP beans give you a high degree of portability across application servers. The bean class and required deployment
descriptor are standard. Most of the incompatibilities between implementations are found in unspecified areas of
mapping beans to the underlying datastore, optional features such as read-only beans, and extensions in deployment
and management of beans. JDO implementations vary with regard to the optional features that they support.

With CMP, you identify every bean class, persistent field, and persistent relationship in the deployment descriptor. Using
JDO, you identify every persistent class in the metadata, but you can usually take the default for the persistence of
fields, including relationships.

With CMP, relationships are managed; this means that during the transaction a change to one side of the relationship
immediately affects the other side, and the change is visible to the application. JDO does not support managed
relationships, although some vendors offer them as optional features.

Inheritance is a common paradigm for modeling real-world data, but CMP beans do not support inheritance. CMP makes
a distinction between the implementation class and the bean. The abstract bean-implementation classes and the local
and remote interfaces can form inheritance relationships, but the CMP beans that model the application's persistent
classes cannot. Relationships in CMP are between CMP beans, not implementation classes, and these relationships
cannot be polymorphic. In our example, it would be impossible for a MediaItem CMP bean to have a relationship with a
MediaContent CMP bean, because MediaContent has no instances. In order to implement this kind of model, you would
need to change the MediaItem CMP bean to have two different relationships: one between MediaItem and Movie, and
another between MediaItem and Game. You would need to treat the relationships separately in every aspect of the bean.

The programming model used to access fields is very different between CMP beans and JDO. With CMP beans, all
persistent fields and relationships are defined by abstract get and set methods in the abstract bean class, plus a
declaration in the deployment descriptor. Access to the field value is the responsibility of the concrete implementation
class generated by the CMP code-generation tool. With JDO, persistent fields and relationships are declared or defaulted
in the metadata, and access to the field values is provided by the code in the class for transient instances or by the JDO
implementation for persistent instances. The JDO enhancer generates the appropriate field-access code during the
enhancement process.

JDOQL and EJBQL provide similar access to data in the datastore. Both allow you to select persistent instances from the
datastore to use in your programs. Both use the read-modify-write pattern for updating persistent data. Neither
language is a complete data-manipulation language; both are used only to select instances for manipulation by the
programming language.

CMP beans require active transactions for all business methods. Nontransactional access is not standard or portable.
JDO allows you to choose whether transactions are required. JDO requires inserts, deletes, and updates to be
performed within transactions, but read-only applications, including caching, can be implemented portably without
transactions.

Table 17-1 is a summary comparing CMP beans with JDO persistent classes.

Table 17-1. Comparison of CMP beans and JDO
Characteristic CMP beans JDO persistent classes

Environmental

Portability of
applications Few portability unknowns Documented portability rules

Operating environment Application server One-tier, two-tier, web server, application server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Independence of
persistent classes from
environment

Low: beans must implement EJB
interfaces and execute in server
container

High: persistent classes are usable with no special
interface requirements and execute in many
environments

Metadata

Mark persistent classes Deployment descriptor identifies all
persistent classes Metadata identifies all persistent classes

Mark persistent fields Deployment descriptor identifies all
persistent fields and relationships

Metadata defaults persistent fields and
relationships

Modeling

Domain-class modeling
object CMP bean (abstract schema) Persistent class

Inheritance of domain-
class modeling objects Not supported Fully supported

Field access Abstract get/set methods Any valid field access, including get/set methods

Collection, Set Supported Supported

List, Array, Map Not supported Optional features

Relationships Expressed as references to CMP local
interfaces

Expressed as references to JDO persistent classes
or interfaces

Polymorphic references Not supported Supported

Programming

Query language EJBQL modeled after SQL JDOQL modeled after Java Boolean expressions

Remote method
invocation Supported Not supported

Required lifecycle
methods

setEntityContext, unsetEntityContext,
ejbActivate, ejbPassivate, ejbLoad,
ejbStore, ejbRemove

no-arg constructor (may be private)

Optional lifecycle
callback methods ejbCreate, ejbPostCreate, ejbFind jdoPostLoad, jdoPreStore, jdoPreClear, jdoPreDelete

Mapping to
relationaldatastores Vendor-specific Vendor-specific

Method security policy Supported Not supported

Method transaction
policy Supported Not supported

Nontransactional access Not standard Supported

Required
classes/interfaces

EJBLocalHome, local interface (if local
interface supported);

EJBHome, remote interface (if remote
interface supported);

Abstract beans must implement
EJBEntityBean;

Identity class (if nonprimitiveidentity)

Persistent class;

objectid class (only forapplication identity)

Transaction
synchronization
callbacks

Not supported Supported

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix A. Lifecycle States and Transitions
Table A-1 specifies the values returned by the JDOHelper lifecycle state interrogation methods for all the JDO lifecycle
states.

Table A-1. Lifecycle-state interrogation methods
State of instance isPersistent() isTransactional() isDirty() isNew() isDeleted()

Transient false false false false false

Transient-clean false true false false false

Transient-dirty false true true false false

Hollow true false false false false

Persistent-nontransactional true false false false false

Persistent-new true true true true false

Persistent-clean true true false false false

Persistent-dirty true true true false false

Persistent-deleted true true true false true

Persistent-new-deleted true true true true true

Table A-2 and Table A-3 contain the state transitions for every lifecycle state.

Table A-2. Lifecycle-state transitions
 Current state

Method Transient P-new P-clean P-dirty Hollow

makePersistent P-new unchanged unchanged unchanged unchanged

deletePersistent error P-new-del P-del P-del P-del

makeTransactional T-clean unchanged unchanged unchanged P-clean

makeNontransactional error error P-
nontrans error unchanged

makeTransient unchanged error Transient error Transient

commit withRetainValues = false unchanged Hollow Hollow Hollow unchanged

commit withRetainValues = true unchanged P-
nontrans

P-
nontrans

P-
nontrans unchanged

rollback with RestoreValues = false unchanged Transient Hollow Hollow unchanged

rollback with RestoreValues = true unchanged Transient P-
nontrans

P-
nontrans unchanged

refresh with active datastore transaction unchanged unchanged unchanged P-clean unchanged

refresh with active optimistic transaction unchanged unchanged unchanged P-
nontrans unchanged

evict n/a unchanged Hollow unchanged unchanged

read field outsideof a transaction unchanged impossible impossible impossible P-
nontrans

read field with active optimistic transaction unchanged unchanged unchanged unchanged P-
nontrans

read field with active datastore transaction unchanged unchanged unchanged unchanged P-clean

write field or makeDirty outside of a transaction unchanged impossible impossible impossible P-
nontrans

write field or makeDirty with active transaction unchanged unchanged P-dirty unchanged P-dirty

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

retrieve outside of a transaction or with active
optimistic transaction unchanged unchanged unchanged unchanged P-

nontrans

retrieve with active datastore transaction unchanged unchanged unchanged unchanged P-clean

error: a JDOUserException is thrown; the state does not change

Table A-3. Lifecycle-state transitions (continued)
Current state

T-clean T-dirty P-new-
del P-del P-

nontrans Method

P-new P-new unchanged unchanged unchanged makePersistent

error error unchanged unchanged P-del deletePersistent

unchanged unchanged unchanged unchanged P-clean makeTransactional

Transient error error error unchanged makeNontransactional

unchanged unchanged error error Transient makeTransient

unchanged T-clean Transient Transient unchanged commit withRetainValues = false

unchanged T-clean Transient Transient unchanged commit withRetainValues = true

unchanged T-clean Transient Hollow unchanged rollback withRestoreValues = false

unchanged T-clean Transient P-
nontrans unchanged rollback withRestoreValues = true

unchanged unchanged unchanged unchanged unchanged refresh with active datastore transaction

unchanged unchanged unchanged unchanged unchanged refresh with active optimistic transaction

unchanged unchanged unchanged unchanged Hollow evict

unchanged impossible impossible impossible unchanged read field outsideof a transaction

unchanged unchanged error error unchanged read field with active optimistic transaction

unchanged unchanged error error P-clean read field with active datastore transaction

unchanged impossible impossible impossible unchanged write field or makeDirty outside of a transaction

T-dirty unchanged error error P-dirty write field or makeDirty with active transaction

unchanged unchanged unchanged unchanged unchanged retrieve outside of a transaction or with active
optimistic transaction

unchanged unchanged unchanged unchanged P-clean retrieve with an active datastore transaction

unchanged: no state change takes place; no exception is thrown due to the state change

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix B. JDO Metadata DTD
The following XML DTD describes the form of JDO metadata.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Copyright (c) 2002 Sun Microsystems, Inc.,
901 San Antonio Road,
Palo Alto, California 94303, U.S.A.
All rights reserved.

This is the DTD defining the Java Data Objects 1.0 metadata.
-->

<!NOTATION JDO.1_0 PUBLIC
 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN">
<!--
This is the XML DTD for the JDO 1.0 Metadata.
All JDO 1.0 metadata descriptors must include a DOCTYPE of the following form:
 <!DOCTYPE jdo
 PUBLIC "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
-->

<!ELEMENT jdo ((package)+, (extension)*)>

<!ELEMENT package ((class)+, (extension)*)>
<!ATTLIST package name CDATA #REQUIRED>

<!ELEMENT class (field|extension)*>
<!ATTLIST class name CDATA #REQUIRED>
<!ATTLIST class identity-type (application|datastore|nondurable) #IMPLIED>
<!ATTLIST class objectid-class CDATA #IMPLIED>
<!ATTLIST class requires-extent (true|false) 'true'>
<!ATTLIST class persistence-capable-superclass CDATA #IMPLIED>

<!ELEMENT field ((collection|map|array)?, (extension)*)?>
<!ATTLIST field name CDATA #REQUIRED>
<!ATTLIST field persistence-modifier (persistent|transactional|none) #IMPLIED>
<!ATTLIST field primary-key (true|false) 'false'>
<!ATTLIST field null-value (exception|default|none) 'none'>
<!ATTLIST field default-fetch-group (true|false) #IMPLIED>
<!ATTLIST field embedded (true|false) #IMPLIED>

<!ELEMENT collection (extension)*>
<!ATTLIST collection element-type CDATA #IMPLIED>
<!ATTLIST collection embedded-element (true|false) #IMPLIED>

<!ELEMENT map (extension)*>
<!ATTLIST map key-type CDATA #IMPLIED>
<!ATTLIST map embedded-key (true|false) #IMPLIED>
<!ATTLIST map value-type CDATA #IMPLIED>
<!ATTLIST map embedded-value (true|false) #IMPLIED>

<!ELEMENT array (extension)*>
<!ATTLIST array embedded-element (true|false) #IMPLIED>

<!ELEMENT extension (extension)*>
<!ATTLIST extension vendor-name CDATA #REQUIRED>
<!ATTLIST extension key CDATA #IMPLIED>
<!ATTLIST extension value CDATA #IMPLIED>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix C. JDO Interfaces and Exception Classes
This appendix describes the interfaces and exception classes defined in the javax.jdo package. The name, parameters,
and return type of each method is provided here and its description can be found in one or more chapters of this book.
The index contains an entry for each method so you can locate relevant content.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.1 Interfaces
An application uses the following Java interfaces and JDOHelper class in a JDO environment.

Extent

An Extent is used to access all of the instances of a particular class and, optionally, its subclasses. An application can
either iterate over all the instances or use the extent as the set of candidates instances filtered with a Query.

public interface Extent {
 public void close(Iterator it);
 public void closeAll();
 public Class getCandidateClass();
 public PersistenceManager getPersistenceManager();
 public boolean hasSubclasses();
 public Iterator iterator();
}

Returned by

PersistenceManager.getExtent()

Passed to

PersistenceManager.newQuery(), Query.setCandidates()

InstanceCallbacks

A persistent class can implement the InstanceCallbacks interface so that the following callback methods are called when
particular lifecycle events occur:

public interface InstanceCallbacks {
 public void jdoPostLoad();
 public void jdoPreClear();
 public void jdoPreDelete();
 public void jdoPreStore();
}

JDOHelper

This helper class provides applications with several utility methods. It provides methods to perform the following
functions:

Construct a PersistenceManagerFactory instance via a Properties object

Interrogate the lifecycle state of an instance

Get the object identifier of an instance

Mark a field of an instance as modified

public class JDOHelper {
 public JDOHelper();
 public static Object getObjectId(Object obj);
 public static PersistenceManager
 getPersistenceManager(Object obj);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 getPersistenceManager(Object obj);
 public static PersistenceManagerFactory
 getPersistenceManagerFactory(Properties props);
 public static PersistenceManagerFactory
 getPersistenceManagerFactory(Properties props,
 ClassLoader cl);
 public static Object getTransactionalObjectId(Object obj);
 public static boolean isDeleted(Object obj);
 public static boolean isDirty(Object obj);
 public static boolean isNew(Object obj);
 public static boolean isPersistent(Object obj);
 public static boolean isTransactional(Object obj);
 public static void makeDirty(Object obj, String fieldName);
}

PersistenceManager

The PersistenceManager interface is the primary interface for JDO-aware software. It is the factory for Query and
Transaction instances, and it contains methods to manage the lifecycle of instances.

public interface PersistenceManager {
 public void close();
 public Transaction currentTransaction();
 public void deletePersistent(Object obj);
 public void deletePersistentAll(Object[] objs);
 public void deletePersistentAll(Collection objs);
 public void evict(Object obj);
 public void evictAll(Object[] objs);
 public void evictAll(Collection objs);
 public void evictAll();
 public Extent getExtent(Class persistenceCapableClass,
 boolean subclasses);
 public boolean getIgnoreCache();
 public boolean getMultithreaded();
 public Object getObjectById(Object oid, boolean validate);
 public Object getObjectId(Object obj);
 public Class getObjectIdClass(Class cls);
 public PersistenceManagerFactory
 getPersistenceManagerFactory();
 public Object getTransactionalObjectId(Object obj);
 public Object getUserObject();
 public boolean isClosed();
 public void makeNontransactional(Object obj);
 public void makeNontransactionalAll(Object[] objs);
 public void makeNontransactionalAll(Collection objs);
 public void makePersistent(Object obj);
 public void makePersistentAll(Object[] objs);
 public void makePersistentAll(Collection objs);
 public void makeTransactional(Object obj);
 public void makeTransactionalAll(Object[] objs);
 public void makeTransactionalAll(Collection objs);
 public void makeTransient(Object obj);
 public void makeTransientAll(Object[] objs);
 public void makeTransientAll(Collection objs);
 public Object newObjectIdInstance(Class pcClass, String str);
 public Query newQuery();
 public Query newQuery(Object compiled);
 public Query newQuery(String language, Object query);
 public Query newQuery(Class cls);
 public Query newQuery(Extent cln);
 public Query newQuery(Class cls, Collection cln);
 public Query newQuery(Class cls, String filter);
 public Query newQuery(Class cls, Collection cln, String filter);
 public Query newQuery(Extent cln, String filter);
 public void refresh(Object obj);
 public void refreshAll(Object[] objs);
 public void refreshAll(Collection objs);
 public void refreshAll();
 public void retrieve(Object obj);
 public void retrieveAll(Collection objs);
 public void retrieveAll(Collection objs, boolean DFGonly);
 public void retrieveAll(Object[] objs);
 public void retrieveAll(Object[] objs, boolean DFGonly);
 public void setIgnoreCache(boolean flag);
 public void setMultithreaded(boolean flag);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void setMultithreaded(boolean flag);
 public void setUserObject(Object o);
}

Returned by:

PersistenceManagerFactory.getPersistenceManager(),Extent.getPersistenceManager(), Query.getPersistenceManager(
),Transaction.getPersistenceManager(),JDOHelper.getPersistenceManager()

PersistenceManagerFactory

The PersistenceManagerFactory is used to obtain PersistenceManager instances. All PersistenceManager instances obtained from
the same PersistenceManagerFactory will have the same default properties.

PersistenceManagerFactory instances may be configured and serialized for later use. They may be stored via JNDI and
looked up and used later. Any configured properties will be saved and restored.

If the ConnectionFactory property is set (non-null) then all the other connection properties (including
ConnectionFactoryName) are ignored; otherwise, if ConnectionFactoryName is set (non-null) then all other connection
properties are ignored. Similarly, if the ConnectionFactory2 property is set (non-null), then ConnectionFactory2Name is
ignored.

public interface PersistenceManagerFactory implements Serializable {
 public void close();
 public String getConnectionDriverName();
 public Object getConnectionFactory();
 public Object getConnectionFactory2();
 public String getConnectionFactory2Name();
 public String getConnectionFactoryName();
 public String getConnectionURL();
 public String getConnectionUserName();
 public boolean getIgnoreCache();
 public boolean getMultithreaded();
 public boolean getNontransactionalRead();
 public boolean getNontransactionalWrite();
 public boolean getOptimistic();
 public PersistenceManager getPersistenceManager();
 public PersistenceManager getPersistenceManager(String userid, String password);
 public Properties getProperties();
 public boolean getRestoreValues();
 public boolean getRetainValues();
 public void setConnectionDriverName(String driverName);
 public void setConnectionFactory(Object connectionFactory);
 public void setConnectionFactory2(Object connectionFactory);
 public void setConnectionFactory2Name(
 String connectionFactoryName);
 public void setConnectionFactoryName(
 String connectionFactoryName);
 public void setConnectionPassword(String password);
 public void setConnectionURL(String URL);
 public void setConnectionUserName(String userName);
 public void setIgnoreCache(boolean flag);
 public void setMultithreaded(boolean flag);
 public void setNontransactionalRead(boolean flag);
 public void setNontransactionalWrite(boolean flag);
 public void setOptimistic(boolean flag);
 public void setRestoreValues(boolean restoreValues);
 public void setRetainValues(boolean flag);
 public Collection supportedOptions();
}

Returned by

JDOHelper.getPersistenceManagerFactory(),PersistenceManager.getPersistenceManagerFactory()

Query

The Query interface allows applications to obtain persistent instances from the datastore. The PersistenceManager is the
factory for Query instances. There may be many Query instances associated with a PersistenceManager.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

factory for Query instances. There may be many Query instances associated with a PersistenceManager.

public interface Query implements Serializable {
 public void closeAll();
 public void compile();
 public void declareImports(String imports);
 public void declareParameters(String parameters);
 public void declareVariables(String variables);
 public Object execute();
 public Object execute(Object p1);
 public Object execute(Object p1, Object p2);
 public Object execute(Object p1, Object p2, Object p3);
 public Object executeWithArray(Object[] parameters);
 public Object executeWithMap(Map parameters);
 public boolean getIgnoreCache();
 public PersistenceManager getPersistenceManager();
 public void setCandidates(Extent objs);
 public void setCandidates(Collection objs);
 public void setClass(Class cls);
 public void setFilter(String filter);
 public void setIgnoreCache(boolean ignoreCache);
 public void setOrdering(String ordering);
}

Returned by

PersistenceManager.newQuery()

Transaction

The Transaction interface provides for initiation and completion of transactions under user control. It also provides
methods for setting various options that control transaction behavior during a transaction and cache behavior after the
transaction completes.

public interface Transaction {
 public void begin();
 public void commit();
 public boolean getNontransactionalRead();
 public boolean getNontransactionalWrite();
 public boolean getOptimistic();
 public PersistenceManager getPersistenceManager();
 public boolean getRestoreValues();
 public boolean getRetainValues();
 public Synchronization getSynchronization();
 public boolean isActive();
 public void rollback();
 public void setNontransactionalRead(
 boolean nontransactionalRead);
 public void setNontransactionalWrite(
 boolean nontransactionalWrite);
 public void setOptimistic(boolean optimistic);
 public void setRestoreValues(boolean restoreValues);
 public void setRetainValues(boolean retainValues);
 public void setSynchronization(Synchronization sync);
}

Returned by

PersistenceManager.currentTransaction()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.2 Exceptions
JDO has an exception-class hierarchy used to represent the various kinds of exceptions that may occur. The
JDOException class is at the root of the hierarchy and provides all of the methods that an application calls. All of its
subclasses merely provide constructors called strictly by the JDO implementation to indicate that an error has occurred.
Since an application never calls these constructors, we omit them from the class descriptions.

JDOCanRetryException

This is the base class for errors that can be retried.

public class JDOCanRetryException extends javax.jdo.JDOException {
}

Subclasses

JDOUserException, JDODataStoreException

JDODataStoreException

This class represents datastore exceptions that can be retried.

public class JDODataStoreException extends javax.jdo.JDOCanRetryException {
}

Subclasses

JDOObjectNotFoundException

JDOException

This is the base class for all JDO exceptions. It is a subclass of RuntimeException, and it does not need to be declared or
caught. It includes a descriptive String, an optional nested Exception array, and an optional failed Object.

This class provides methods to retrieve the nested exception array and failed object. If there are multiple nested
exceptions, then each might contain one failed object. This will be the case when an operation requires multiple
instances (such as commit(), makePersistentAll(), etc.).

If the JDO PersistenceManager is internationalized, the descriptive string will also be internationalized.

public class JDOException extends java.lang.RuntimeException {
 public Object getFailedObject();
 public Throwable[] getNestedExceptions();
 public void printStackTrace();
 public void printStackTrace(PrintStream s);
 public void printStackTrace(PrintWriter s);
 public String toString();
}

Subclasses

JDOCanRetryException, JDOFatalException

JDOFatalDataStoreException

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is the base class for fatal datastore errors. It is derived from JDOFatalException. When this exception is thrown, the
transaction has been rolled back without the user asking for it. The cause may be a connection timeout, an
unrecoverable-media error, an unrecoverable-concurrency conflict, or other causes outside of the application's control.

public class JDOFatalDataStoreException extends javax.jdo.JDOFatalException {
}

Subclasses

JDOOptimisticVerificationException

JDOFatalException

This is the base class for errors that cannot be retried. It is derived from JDOException. This exception generally means
that the transaction associated with the PersistenceManager has been rolled back, and the transaction should be
abandoned.

public class JDOFatalException extends javax.jdo.JDOException {
}

Subclasses

JDOFatalDataStoreException, JDOFatalInternalException, JDOFatalUserException

JDOFatalInternalException

This is the base class for JDO implementation failures. It is a derived class of JDOFatalException. This exception should be
reported to the vendor for corrective action. There is no user action to recover.

public class JDOFatalInternalException extends javax.jdo.JDOFatalException {
}

JDOFatalUserException

This is the base class for user errors that cannot be retried. It is derived from JDOFatalException. Reasons for this
exception include:

PersistenceManager was closed. This exception is thrown after close() was called, when any method except
isClosed() is executed on the PersistenceManager instance, or when any method is called on the Transaction
instance or any Query instance, Extent instance, or Iterator instance created by the PersistenceManager.

Metadata is unavailable. This exception is thrown if the implementation cannot locate metadata for a class,
which occurs when the class has not been registered.

public class JDOFatalUserException extends javax.jdo.JDOFatalException {
}

JDOObjectNotFoundException

This exception notifies the application that an object does not exist in the datastore. This exception is thrown when a
hollow instance is used to fetch an object that does not exist in the datastore. This exception might result from a call to
getObjectById() with the validate parameter set to true, or from navigating to an object that no longer exists in the
datastore. You will never get this exception as a result of executing a query.

Throwing this exception does not change the status of any transaction in progress. The getFailedObject() method returns
a reference to the failed instance. The failed instance is in the hollow state and has an identity that can be obtained by
calling getObjectId() with the instance as a parameter. This can be used to determine the identity of the instance that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

calling getObjectId() with the instance as a parameter. This can be used to determine the identity of the instance that
could not be found.

public class JDOObjectNotFoundException extends javax.jdo.JDODataStoreException {
}

JDOOptimisticVerificationException

A verification step (described in Chapter 15) is performed on all instances that are new, modified, or deleted when you
make a call to commit an optimistic transaction. If any instances fail this verification step, a
JDOOptimisticVerificationException is thrown. It contains an array of nested exceptions; each nested exception contains an
instance that failed verification.

public class JDOOptimisticVerificationException
 extends javax.jdo.JDOFatalDataStoreException {
}

JDOUnsupportedOptionException

This class is derived from JDOCanRetryException. This exception is thrown when an implementation does not implement
an optional JDO feature.

public class JDOUnsupportedOptionException extends javax.jdo.JDOUserException {
}

JDOUserException

This is the base class for user errors that can be retried. It is derived from JDOCanRetryException. Reasons for this
exception include:

Instance is not of a persistent class

This exception is thrown when a method requires an instance of a persistent class and the instance passed to
the method does not implement PersistenceCapable. This occurs if the class of the instance is not persistent and
has not been enhanced. getFailedObject() returns the instance causing the exception.

Extent is not managed

This exception is thrown when you call getExtent() with a class that does not have a managed extent.

Object exists

For a class using application identity, the combined value of the primary key fields must be unique. This
exception is thrown if the primary key fields are not unique. This can occur when a new instance, or an existing
persistent instance that has had a primary key field changed, is flushed to the datastore. It might also be
thrown during makePersistent() if an instance with the same primary key is already in the PersistenceManager
cache. The failed Object has the failed instance.

Object is owned by another PersistenceManager

This exception is thrown if you call makePersistent(), makeTransactional(), makeTransient(), evict(), refresh(), or
getObjectId() when the instance is already persistent or transactional in a different PersistenceManager. The failed
Object has the failed instance.

Nonunique identity is not valid after transaction completion

This exception is thrown if you call getObjectId() on an object after transaction completion and the identity is not
managed by the application or datastore.

Unbound query parameter

This exception is thrown during query compilation or execution if there is an unbound query parameter.

Query filter cannot be parsed

This exception is thrown during query compilation or execution if the filter cannot be parsed.

Transaction is not active

This exception is thrown if the transaction is not active and you call makePersistent(), deletePersistent(), commit(),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This exception is thrown if the transaction is not active and you call makePersistent(), deletePersistent(), commit(),
or rollback().

Object deleted

This exception is thrown if you attempt to access any fields of a deleted instance (except to read a primary key
field).

public class JDOUserException extends javax.jdo.JDOCanRetryException {
}

Subclasses

JDOUnsupportedOptionException

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix D. JDO Query Language BNF
The following set of grammars define the syntax of the JDO Query Language. Terminal symbols are shown in bold.
Nonterminal symbols are shown in italic. The name of a nonterminal, followed by a colon, introduces the definition of the
nonterminal. Subsequent lines specify one or more alternatives for the nonterminal with a level of indentation. A blank
line indicates the end of the alternatives. An optional symbol in the syntax may occur with the nonterminals
DeclareParameters, DeclareVariables, DeclareImports, and SetOrdering.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.1 Parameter Declaration
The following grammar describes the syntax of the Query.declareParameters() argument:

DeclareParameters:
 Parameters ,
 Parameters

Parameters:
 Parameter
 Parameters , Parameter

Parameter:
 Type Identifier
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.2 Variable Declaration
The following grammar describes the syntax of the Query.declareVariables() argument:

DeclareVariables:
 Variables ;
 Variables

Variables:
 Variable
 Variables ; Variable

Variable:
 Type Identifier
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.3 Import Declaration
The following grammar describes the syntax of the Query.declareImports() argument:

DeclareImports:
 ImportDeclarations ;
 ImportDeclarations

ImportDeclarations:
 ImportDeclaration
 ImportDeclarations ; ImportDeclaration

ImportDeclaration:
 import Name
 import Name.*
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.4 Ordering Specification
The following grammar describes the syntax of the Query.setOrdering() argument:

SetOrdering:
 OrderSpecifications ,
 OrderSpecifications

OrderSpecifications:
 OrderSpecification
 OrderSpecifications , OrderSpecification

OrderSpecification:
 Expression ascending
 Expression descending
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.5 Type Specification
The following grammar describes a type specification used in the declaration of a parameter or variable and in a cast
expression:

Type
 PrimitiveType
 Name

PrimitiveType:
 NumericType
 boolean

NumericType:
 IntegralType
 FloatingPointType

IntegralType:
 byte
 short
 int
 long
 char

FloatingPointType:
 float
 double
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.6 Names
A name is an identifier, which can be qualified by another name:

Name:
 Identifier
 QualifiedName

QualifiedName:
 Name . Identifier
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.7 Literal
A literal is the source-code representation of a value of a primitive, String, or null. The Java Language Specification
defines the lexical structure used for IntegerLiterals, FloatingPointLiterals, CharacterLiterals, and StringLiterals:

IntegerLiteral: see Java Language Specification...

FloatingPointLiteral: see Java Language Specification...

CharacterLiteral: see Java Language Specification...

StringLiteral: see Java Language Specification...

BooleanLiteral:
 true
 false

NullLiteral:
 null

Literal:
 IntegerLiteral
 FloatingPointLiteral
 BooleanLiteral
 CharacterLiteral
 StringLiteral
 NullLiteral
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.8 Filter Expressions
The following grammar describes the syntax of a JDOQL filter:

Expression:
 ConditionalOrExpression

ConditionalOrExpression:
 ConditionalAndExpression
 ConditionalOrExpression || ConditionalAndExpression

ConditionalAndExpression:
 InclusiveOrExpression
 ConditionalAndExpression && InclusiveOrExpression

InclusiveOrExpression:
 AndExpression
 InclusiveOrExpression | AndExpression

AndExpression:
 EqualityExpression
 AndExpression & EqualityExpression

EqualityExpression:
 RelationalExpression
 EqualityExpression == RelationalExpression
 EqualityExpression != RelationalExpression

RelationalExpression:
 AdditiveExpression
 RelationalExpression < AdditiveExpression
 RelationalExpression > AdditiveExpression
 RelationalExpression <= AdditiveExpression
 RelationalExpression >= AdditiveExpression

AdditiveExpression:
 MultiplicativeExpression
 AdditiveExpression + MultiplicativeExpression
 AdditiveExpression - MultiplicativeExpression

MultiplicativeExpression:
 UnaryExpression
 MultiplicativeExpression * UnaryExpression
 MultiplicativeExpression / UnaryExpression

UnaryExpression:
 + UnaryExpression
 - UnaryExpression
 UnaryExpressionNotPlusMinus

UnaryExpressionNotPlusMinus:
 PostfixExpression
 ~ UnaryExpression
 ! UnaryExpression
 CastExpression

PostfixExpression:
 Primary
 Name

CastExpression:
 (Type) UnaryExpression

Primary:
 Literal
 this
 (Expression)
 FieldAccess
 MethodInvocation

FieldAccess:
 Primary . Identifier

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Primary . Identifier

MethodInvocation:
 Primary . Identifier ()
 Primary . Identifier (ArgumentList)

ArgumentList:
 Expression
 ArgumentList , Expression
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix E. Source Code for Examples
This appendix contains the source code for many of the classes used in the examples of this book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

E.1 The com.mediamania.appserver package
This package includes classes that are described in Chapter 16 and Chapter 17 for using JDO in an application server
environment.

E.1.1 com.mediamania.appserver.CashierBean

 1 package com.mediamania.appserver;
 2
 3 import javax.ejb.*;
 4
 5 import javax.naming.InitialContext;
 6 import javax.naming.Context;
 7 import javax.naming.NamingException;
 8
 9 import java.util.Iterator;
10 import java.util.Date;
11
12 import com.mediamania.store.StoreQueries;
13 import com.mediamania.store.Customer;
14 import com.mediamania.store.Purchase;
15 import com.mediamania.store.Rental;
16 import com.mediamania.store.RentalItem;
17 import com.mediamania.store.MediaItem;
18
19 import javax.jdo.PersistenceManager;
20 import javax.jdo.PersistenceManagerFactory;
21
22 public class CashierBean implements javax.ejb.SessionBean {
23 private javax.ejb.SessionContext context;
24 private PersistenceManagerFactory pmf;
25 private PersistenceManager pm;
26 private String pmfName = "java:comp/env/jdo/MediaManiaPMF";
27
28 /**
29 * @see javax.ejb.SessionBean#setSessionContext(javax.ejb.SessionContext)
30 */
31 public void setSessionContext(javax.ejb.SessionContext aContext) {
32 context = aContext;
33 try {
34 Context ic = new InitialContext();
35 pmf = (PersistenceManagerFactory)ic.lookup(pmfName);
36 } catch (NamingException ex) {
37 throw new EJBException("setSessionContext", ex);
38 }
39 }
40
41 public void ejbActivate() {
42 }
43 public void ejbPassivate() {
44 }
45 public void ejbRemove() {
46 }
47 public void ejbCreate() {
48 }
49
50 public void checkout(
51 final java.lang.String lastName,
52 final java.lang.String firstName,
53 final java.util.Collection rentals,
54 final java.util.Collection purchases)
55 throws java.rmi.RemoteException {
56 PersistenceManager pm = pmf.getPersistenceManager();
57 Customer customer = StoreQueries.getCustomer(pm, firstName, lastName);
58 Iterator it = rentals.iterator();
59 while (it.hasNext()) {
60 RentalValueObject rvo = (RentalValueObject)it.next();
61 RentalItem ri = StoreQueries.getRentalItem
62 (pm, rvo.serialNumber);
63 Rental rental = new Rental(customer, new Date(), ri);
64 customer.addTransaction(rental);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

64 customer.addTransaction(rental);
65 customer.addRental(rental);
66 }
67 it = purchases.iterator();
68 while (it.hasNext()) {
69 PurchaseValueObject pvo = (PurchaseValueObject)it.next();
70 MediaItem mediaItem = StoreQueries.getMediaItem(
71 pm, pvo.title, pvo.format);
72 Purchase purchase = new Purchase(customer, new Date(), mediaItem);
73 customer.addTransaction(purchase);
74 }
75 pm.close();
76 }
77 }

E.1.2 com.mediamania.appserver.JDOPlugIn

 1 package com.mediamania.appserver;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5
 6 import javax.jdo.PersistenceManagerFactory;
 7 import javax.jdo.PersistenceManager;
 8 import javax.jdo.JDOHelper;
 9 import javax.jdo.Extent;
10
11 import java.util.Properties;
12 import java.util.Iterator;
13
14 import java.io.InputStream;
15 import java.io.IOException;
16
17 import javax.naming.Context;
18 import javax.naming.InitialContext;
19 import javax.naming.NamingException;
20
21 import org.apache.struts.action.ActionServlet;
22 import org.apache.struts.action.PlugIn;
23 import org.apache.struts.config.ModuleConfig;
24
25 public class JDOPlugIn implements PlugIn {
26 private ServletContext ctx;
27 private String name;
28 private String path;
29 private String jndiName;
30 public JDOPlugIn() {
31 }
32
33 public void setName(String name) {
34 this.name = name;
35 }
36
37 public void setPath(String path) {
38 this.path = path;
39 }
40
41 public void setJndiName(String jndiName) {
42 this.jndiName = jndiName;
43 }
44
45 public void init(ActionServlet servlet, ModuleConfig config)
46 throws ServletException {
47 ctx = servlet.getServletContext();
48 if (name == null || name.length() == 0) {
49 throw new ServletException
50 ("You must specify name.");
51 }
52 try {
53 PersistenceManagerFactory pmf;
54 if (path != null) {
55 pmf = getPersistenceManagerFactoryFromPath(path);
56 } else if (jndiName != null) {
57 pmf = getPersistenceManagerFactoryFromJndi(jndiName);
58 } else {
59 throw new ServletException
60 ("You must specify either path or jndiName.");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

60 ("You must specify either path or jndiName.");
61 }
62 ctx.setAttribute(name, pmf);
63 } catch (Exception ex) {
64 throw new ServletException(
65 "Unable to load PMF: name:" + name +
66 ", path: " + path +
67 ", jndiName: " + jndiName,
68 ex);
69 }
70 }
71
72 private PersistenceManagerFactory
73 getPersistenceManagerFactoryFromPath(String path)
74 throws IOException {
75 Properties props = new Properties();
76 InputStream in = ctx.getResourceAsStream(path);
77 props.load(in);
78 return JDOHelper.getPersistenceManagerFactory(props);
79 }
80
81 private PersistenceManagerFactory
82 getPersistenceManagerFactoryFromJndi(String jndiName)
83 throws NamingException {
84 Context ic = new InitialContext();
85 return (PersistenceManagerFactory) ic.lookup(jndiName);
86 }
87
88 public void destroy() {}
89 }

E.1.3 com.mediamania.appserver.LookupMovieAction

 1 package com.mediamania.appserver;
 2
 3 import javax.servlet.ServletContext;
 4 import javax.servlet.http.HttpServletRequest;
 5 import javax.servlet.http.HttpServletResponse;
 6 import org.apache.struts.action.Action;
 7 import org.apache.struts.action.ActionForm;
 8 import org.apache.struts.action.ActionForward;
 9 import org.apache.struts.action.ActionMapping;
10
11 import javax.jdo.PersistenceManagerFactory;
12 import javax.jdo.PersistenceManager;
13 import javax.jdo.JDOHelper;
14 import javax.jdo.Extent;
15 import javax.jdo.Transaction;
16 import javax.jdo.Query;
17 import javax.jdo.JDOException;
18
19 import java.util.Collection;
20 import java.util.Iterator;
21 import com.mediamania.content.Movie;
22
23 public class LookupMovieAction extends Action {
24 PersistenceManagerFactory pmf = null;
25 PersistenceManager pm = null;
26 public ActionForward execute(ActionMapping mapping,
27 ActionForm form,
28 HttpServletRequest request,
29 HttpServletResponse response)
30 throws Exception {
31 try {
32 ServletContext ctx = getServlet().getServletContext();
33 pmf = (PersistenceManagerFactory)ctx.getAttribute("jdo.Movies");
34 pm = pmf.getPersistenceManager();
35 Query q = pm.newQuery(Movie.class, "title == param1");
36 q.declareParameters ("String param1");
37 String movieName = request.getParameter("movieName");
38 Collection movies = (Collection)q.execute(movieName);
39 Movie movie = (Movie)movies.iterator().next();
40 String description = movie.getDescription();
41 ctx.setAttribute("movieDescription", description);
42 } catch (JDOException e) {
43 } finally {
44 if (pm != null) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

44 if (pm != null) {
45 pm.close();
46 }
47 pm = null;
48 }
49 return (mapping.findForward("success"));
50 }
51 }

E.1.4 com.mediamania.appserver.MediaValueObject

 1 package com.mediamania.appserver;
 2
 3 import java.io.Serializable;
 4
 5 public class MediaValueObject implements Serializable {
 6 public String title;
 7 }

E.1.5 com.mediamania.appserver.MovieInfo

 1 package com.mediamania.appserver;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5
 6 import javax.jdo.PersistenceManagerFactory;
 7 import javax.jdo.PersistenceManager;
 8 import javax.jdo.JDOHelper;
 9 import javax.jdo.Extent;
10 import javax.jdo.JDOException;
11
12 import java.util.Properties;
13 import java.util.Iterator;
14
15 import java.io.InputStream;
16 import java.io.IOException;
17
18 import javax.naming.Context;
19 import javax.naming.InitialContext;
20 import javax.naming.NamingException;
21
22 import com.mediamania.content.Movie;
23
24 public class MovieInfo extends HttpServlet {
25 PersistenceManagerFactory persistenceManagerFactory;
26 PersistenceManager pm;
27 public void init() throws ServletException {
28 try {
29 ServletContext ctx = getServletContext();
30 InputStream in = ctx.getResourceAsStream("WEB-INF/pmf.properties");
31 Properties props = new Properties();
32 props.load(in);
33 persistenceManagerFactory =
34 JDOHelper.getPersistenceManagerFactory(props);
35 } catch (IOException ex) {
36 throw new ServletException("Unable to load PMF properties.", ex);
37 } catch (JDOException ex) {
38 throw new ServletException("Unable to create PMF resource.", ex);
39 } catch (Exception ex) {
40 throw new ServletException("Unable to initialize.", ex);
41 }
42
43 }
44
45 /**
46 Destroys the servlet.
47 */
48 public void destroy() {
49 }
50
51 /** Processes requests for both HTTP <code>GET</code>
52 * and <code>POST</code> methods.
53 * @param request servlet request
54 * @param response servlet response

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

54 * @param response servlet response
55 */
56 protected void processRequest(HttpServletRequest request,
57 HttpServletResponse response)
58 throws ServletException, java.io.IOException {
59 pm = persistenceManagerFactory.getPersistenceManager();
60 response.setContentType("text/html");
61 java.io.PrintWriter out = response.getWriter();
62 out.println("<html>");
63 out.println("<head>");
64 out.println("<title>Servlet</title>");
65 out.println("</head>");
66 out.println("<body>");
67 out.print(formatMovieInfo());
68 out.println("</body>");
69 out.println("</html>");
70 out.close();
71 pm.close();
72 }
73
74 protected String formatMovieInfo() {
75 StringBuffer result = new StringBuffer();
76 Extent movies = pm.getExtent(Movie.class, true);
77 Iterator it = movies.iterator();
78 while (it.hasNext()) {
79 result.append("<P>");
80 Movie movie = (Movie)it.next();
81 result.append(movie.getDescription());
82 }
83 return result.toString();
84 }
85 /** Handles the HTTP <code>GET</code> method.
86 * @param request servlet request
87 * @param response servlet response
88 */
89 protected void doGet(HttpServletRequest request,
90 HttpServletResponse response)
91 throws ServletException, java.io.IOException {
92 processRequest(request, response);
93 }
94
95 /** Handles the HTTP <code>POST</code> method.
96 * @param request servlet request
97 * @param response servlet response
98 */
99 protected void doPost(HttpServletRequest request,
100 HttpServletResponse response)
101 throws ServletException, java.io.IOException {
102 processRequest(request, response);
103 }
104
105 /** Returns a short description of the servlet.
106 */
107 public String getServletInfo() {
108 return "Movie Information";
109 }
110
111 }

E.1.6 com.mediamania.appserver.PurchaseValueObject

 1 package com.mediamania.appserver;
 2
 3 public class PurchaseValueObject extends MediaValueObject {
 4 public String format;
 5 }

E.1.7 com.mediamania.appserver.RentalValueObject

 1 package com.mediamania.appserver;
 2
 3 public class RentalValueObject extends MediaValueObject {
 4 public String serialNumber;
 5 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 5 }
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

E.2 The com.mediamania.content package
This package includes classes that model information about the media content that is sold or rented at Media Mania
stores.

E.2.1 com.mediamania.content.ContentQueries

 1 package com.mediamania.content;
 2
 3 import java.util.Iterator;
 4 import java.util.Collection;
 5 import javax.jdo.*;
 6
 7 public class ContentQueries {
 8 public static Studio getStudioByName(PersistenceManager pm,
 9 String studioName) {
10 Extent studioExtent = pm.getExtent(com.mediamania.content.Studio.class,
11 false);
12 Query query = pm.newQuery(studioExtent, "name == studioName");
13 query.declareParameters("String studioName");
14 Collection result = (Collection) query.execute(studioName);
15 Iterator iter = result.iterator();
16 Studio studio = (Studio) (iter.hasNext() ? iter.next() : null);
17 query.close(result);
18 return studio;
19 }
20 public static MediaPerson getMediaPerson(PersistenceManager pm,
21 String person) {
22 Extent personExtent = pm.getExtent(
23 com.mediamania.content.MediaPerson.class, false);
24 Query query = pm.newQuery(personExtent, "mediaName == person");
25 query.declareParameters("String person");
26 Collection result = (Collection) query.execute(person);
27 Iterator iter = result.iterator();
28 MediaPerson mediaPerson =
29 (MediaPerson) (iter.hasNext() ? iter.next() : null);
30 query.close(result);
31 return mediaPerson;
32 }
33 }

E.2.2 com.mediamania.content.Game

 1 package com.mediamania.content;
 2
 3 import java.util.Date;
 4
 5 public class Game extends MediaContent {
 6 private static String[] allRatings = {"EC","K-A","E","T","M","AO","RP"};
 7
 8 public Game() {
 9 }
10 public Game(String title, Studio studio, Date releaseDate,
11 String rating, String reasons) {
12 super(title, studio, releaseDate, rating, reasons);
13 }
14
15 public boolean validRating(String rating) {
16 for (int i = 0; i < allRatings.length; ++i) {
17 if (rating.equals(allRatings[i])) return true;
18 }
19 return false;
20 }
21 }

E.2.3 com.mediamania.content.MediaContent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1 package com.mediamania.content;
 2
 3 import java.util.Date;
 4 import java.util.Set;
 5 import java.util.HashSet;
 6 import java.util.Collections;
 7 import java.text.SimpleDateFormat;
 8 import java.lang.StringBuffer;
 9
10 import com.mediamania.store.MediaItem;
11
12 public abstract class MediaContent {
13 private static SimpleDateFormat yearFmt = new SimpleDateFormat("yyyy");
14 private String title;
15 private Studio studio;
16 private Date releaseDate;
17 private String rating;
18 private String ratingReasons;
19 private Set mediaItems; // MediaItem
20
21 protected MediaContent()
22 { }
23 public MediaContent(String title, Studio studio, Date releaseDate,
24 String rating, String reasons) {
25 this.title = title;
26 this.studio = studio;
27 this.releaseDate = releaseDate;
28 this.rating = rating;
29 ratingReasons = reasons;
30 mediaItems = new HashSet();
31 }
32 public String getTitle() {
33 return title;
34 }
35 public Studio getStudio() {
36 return studio;
37 }
38 public Date getReleaseDate() {
39 return releaseDate;
40 }
41 public String getRating() {
42 return rating;
43 }
44 public String getRatingReasons() {
45 return ratingReasons;
46 }
47 public abstract boolean validRating(String rating);
48 public Set getMediaItems() {
49 return Collections.unmodifiableSet(mediaItems);
50 }
51 public void addMediaItem(MediaItem item) {
52 mediaItems.add(item);
53 }
54 public String getDescription() {
55 StringBuffer buffer = new StringBuffer();
56 buffer.append(title);
57 buffer.append(", ");
58 buffer.append(studio.getName());
59 buffer.append(", release date: ");
60 buffer.append(formatReleaseDate());
61 buffer.append(", rating: ");
62 buffer.append(rating);
63 buffer.append(", reasons for rating: ");
64 buffer.append(ratingReasons);
65 return buffer.toString();
66 }
67 public static Date parseReleaseDate(String val) {
68 Date date = null;
69 try {
70 date = yearFmt.parse(val);
71 } catch (java.text.ParseException exc) { }
72 return date;
73 }
74 public String formatReleaseDate() {
75 return yearFmt.format(releaseDate);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

75 return yearFmt.format(releaseDate);
76 }
77 }

E.2.4 com.mediamania.content.MediaPerson

 1 package com.mediamania.content;
 2
 3 import java.util.Date;
 4 import java.util.Set;
 5 import java.util.HashSet;
 6 import java.util.Collections;
 7
 8 public class MediaPerson {
 9 private String mediaName;
10 private String firstName;
11 private String lastName;
12 private Date birthDate;
13 private Set actingRoles; // Role
14 private Set moviesDirected; // Movie
15
16 private MediaPerson()
17 { }
18 public MediaPerson(String mediaName) {
19 this.mediaName = mediaName;
20 actingRoles = new HashSet();
21 moviesDirected = new HashSet();
22 }
23 public MediaPerson(String mediaName, String firstName, String lastName,
24 Date birthDate) {
25 this.mediaName = mediaName;
26 this.firstName = firstName;
27 this.lastName = lastName;
28 this.birthDate = birthDate;
29 actingRoles = new HashSet();
30 moviesDirected = new HashSet();
31 }
32 public String getName() {
33 return mediaName;
34 }
35 public String getFirstName() {
36 return firstName;
37 }
38 public String getLastName() {
39 return lastName;
40 }
41 public Date getBirthDate() {
42 return birthDate;
43 }
44 public void addRole(Role role) {
45 actingRoles.add(role);
46 }
47 public Set getRoles() {
48 return Collections.unmodifiableSet(actingRoles);
49 }
50 public void addMoviesDirected(Movie movie) {
51 moviesDirected.add(movie);
52 }
53 public Set getMoviesDirected() {
54 return Collections.unmodifiableSet(moviesDirected);
55 }
56 }

E.2.5 com.mediamania.content.Movie

 1 package com.mediamania.content;
 2
 3 import java.util.Date;
 4 import java.util.Set;
 5 import java.util.HashSet;
 6 import java.util.Collections;
 7 import java.lang.StringBuffer;
 8
 9 public class Movie extends MediaContent {
10 private static String[] allRatings = {"G","PG","PG-13","R","NC-17"};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10 private static String[] allRatings = {"G","PG","PG-13","R","NC-17"};
11 private String genres;
12 private Set cast; // Role
13 private MediaPerson director;
14 private int runningTime;
15 private String webSite;
16
17 private Movie()
18 { }
19 public Movie(String title, Studio studio, Date releaseDate,
20 String rating, String reasons, String genres, int runningTime,
21 MediaPerson director) {
22 super(title, studio, releaseDate, rating, reasons);
23 this.runningTime = runningTime;
24 this.genres = genres;
25 cast = new HashSet();
26 this.director = director;
27 if (director != null) director.addMoviesDirected(this);
28 }
29 public boolean validRating(String rating) {
30 for (int i = 0; i < allRatings.length; ++i) {
31 if (rating.equals(allRatings[i])) return true;
32 }
33 return false;
34 }
35 public MediaPerson getDirector()
36 {
37 return director;
38 }
39 public Set getCast() {
40 return Collections.unmodifiableSet(cast);
41 }
42 public void addRole(Role r) {
43 cast.add(r);
44 }
45 public void removeRole(Role r) {
46 cast.remove(r);
47 }
48 public String getDescription() {
49 StringBuffer buffer = new StringBuffer();
50 buffer.append("Movie: ");
51 buffer.append(super.getDescription());
52 buffer.append(", genre: ");
53 buffer.append(genres);
54 buffer.append(" running time: ");
55 buffer.append(runningTime);
56 return buffer.toString();
57 }
58 }

E.2.6 com.mediamania.content.Role

 1 package com.mediamania.content;
 2
 3 public class Role {
 4 private String name;
 5 private MediaPerson actor;
 6 private Movie movie;
 7
 8 private Role()
 9 { }
10 public Role(String name, MediaPerson actor, Movie movie) {
11 this.name = name;
12 this.actor = actor;
13 this.movie = movie;
14 actor.addRole(this);
15 movie.addRole(this);
16 }
17 public String getName() {
18 return name;
19 }
20 public MediaPerson getActor() {
21 return actor;
22 }
23 public Movie getMovie() {
24 return movie;
25 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25 }
26 public void setMovie(Movie theMovie) {
27 movie = theMovie;
28 }
29 }

E.2.7 com.mediamania.content.Studio.java

 1 package com.mediamania.content;
 2
 3 import java.util.Set;
 4 import java.util.HashSet;
 5 import java.util.Collections;
 6
 7 public class Studio {
 8 private String name;
 9 private Set content; // MediaContent
10
11 private Studio()
12 { }
13 public Studio(String studioName) {
14 name = studioName;
15 content = new HashSet();
16 }
17 public String getName() {
18 return name;
19 }
20 public Set getContent() {
21 return Collections.unmodifiableSet(content);
22 }
23 public void addContent(MediaContent mc) {
24 content.add(mc);
25 }
26 public void removeContent(MediaContent mc) {
27 content.remove(mc);
28 }
29 }
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

E.3 The com.mediamania.hotcache package
This package contains the classes that can be used to support a hot cache, as presented in Chapter 14.

E.3.1 com.mediamania.hotcache.AbstractCache

 1 package com.mediamania.hotcache;
 2
 3 import java.util.Map;
 4 import java.util.HashMap;
 5
 6 import com.mediamania.prototype.PrototypeQueries;
 7 import com.mediamania.MediaManiaApp;
 8 import com.mediamania.prototype.Movie;
 9
10 public abstract class AbstractCache extends MediaManiaApp
11 implements com.mediamania.hotcache.CacheAccess {
12
13 protected Map cache = new HashMap();
14
15 /** Creates a new instance of AbstractCache. The AbstractCache is the
16 * base class for MasterCache and SlaveCache.
17 */
18 protected AbstractCache() {
19 }
20
21 /** Get the Movie by title. If the movie is not in the cache, put it in.
22 * @param title the title of the movie
23 * @return the movie instance
24 */
25 public Movie getMovieByTitle(String title) {
26 Movie movie = (Movie) cache.get(title);
27 if (movie == null) {
28 movie = PrototypeQueries.getMovie (pm, title);
29 if (movie != null) {
30 cache.put (title, movie);
31 }
32 }
33 return movie;
34 }
35 }

E.3.2 com.mediamania.hotcache.AbstractDriver

 1 package com.mediamania.hotcache;
 2
 3 import java.io.InputStream;
 4 import java.io.InputStreamReader;
 5 import java.io.IOException;
 6 import java.io.Reader;
 7 import java.io.BufferedReader;
 8
 9 import java.util.StringTokenizer;
10
11 import java.net.URL;
12 import java.net.MalformedURLException;
13
14 import com.mediamania.Utilities;
15
16 import com.mediamania.prototype.Movie;
17
18 public class AbstractDriver {
19 protected BufferedReader requestReader;
20 protected BufferedReader updateReader;
21 protected CacheAccess cache;
22 protected int timeoutMillis;
23 protected AbstractDriver(String updateURL, String requestURL,
24 String timeout) {
25 updateReader = openReader(updateURL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25 updateReader = openReader(updateURL);
26 requestReader = openReader(requestURL);
27 timeoutMillis = Integer.parseInt(timeout);
28 }
29
30 protected BufferedReader openReader (String urlName) {
31 try {
32 URL url = new URL(urlName);
33 InputStream is = url.openStream();
34 Reader r = new InputStreamReader(is);
35 return new BufferedReader(r);
36 } catch (Exception ex) {
37 return null;
38 }
39 }
40
41 protected void serviceReaders() {
42 boolean done = false;
43 boolean lastTime = false;
44 try {
45 while (!done) {
46 if (updateReader.ready()) {
47 handleUpdate();
48 done = false;
49 lastTime = false;
50 } else if (requestReader.ready()) {
51 handleRequest();
52 done = false;
53 lastTime = false;
54 } else {
55 try {
56 Thread.sleep (timeoutMillis);
57 if (lastTime) done = true;
58 lastTime = true;
59 } catch (InterruptedException ex) {
60 done = true;
61 }
62 }
63 }
64 } catch (Exception ex) {
65 return;
66 }
67 }
68
69 protected void handleRequest() throws IOException {
70 String request = requestReader.readLine();
71 Movie movie = cache.getMovieByTitle(request);
72 System.out.println("Movie: " + movie.getTitle());
73 }
74
75 protected void handleUpdate() throws IOException {
76 String update = updateReader.readLine();
77 StringTokenizer tokenizer = new StringTokenizer(update, ";");
78 String movieName = tokenizer.nextToken();
79 String webSite = tokenizer.nextToken();
80 cache.updateWebSite (movieName, webSite);
81 }
82 }

E.3.3 com.mediamania.hotcache.CacheAccess

 1 package com.mediamania.hotcache;
 2
 3 import com.mediamania.prototype.Movie;
 4
 5 /** Manage a cache of persistent Movie instances.
 6 */
 7 public interface CacheAccess {
 8
 9 /** Get the Movie by title.
10 * @param title the title of the movie
11 * @return the movie instance
12 */
13 Movie getMovieByTitle (String title);
14
15 /** Update the Movie website.
16 * @param title the title of the movie

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16 * @param title the title of the movie
17 * @param website the new website for the movie
18 */
19 void updateWebSite (String title, String website);
20 }

E.3.4 com.mediamania.hotcache.MasterCache

 1 package com.mediamania.hotcache;
 2
 3 import java.util.Map;
 4 import java.util.HashMap;
 5
 6 import com.mediamania.prototype.PrototypeQueries;
 7 import com.mediamania.prototype.Movie;
 8
 9 public class MasterCache extends AbstractCache
10 implements com.mediamania.hotcache.CacheAccess {
11
12 /** Creates a new instance of MasterCache. The MasterCache performs
13 * updates of the database and manages a cache of Movie.
14 */
15 public MasterCache() {
16 }
17
18 /** Update the Movie website.
19 * @param title the title of the movie
20 * @param website the new website for the movie
21 */
22 public void updateWebSite(String title, String website) {
23 Movie movie = getMovieByTitle (title);
24 if (movie != null) {
25 tx.begin();
26 movie.setWebSite (website);
27 tx.commit();
28 }
29 }
30
31 public void execute() {
32 }
33
34 protected static Map getPropertyOverrides()
35 {
36 Map overrides = new HashMap();
37 overrides.put ("javax.jdo.options.NontransactionalRead", "true");
38 overrides.put ("javax.jdo.options.RetainValues", "true");
39 return overrides;
40 }
41 }

E.3.5 com.mediamania.hotcache.MasterDriver

 1 package com.mediamania.hotcache;
 2
 3 public class MasterDriver extends AbstractDriver {
 4 protected MasterDriver(String updateURL, String requestURL,
 5 String timeout) {
 6 super(updateURL, requestURL, timeout);
 7 cache = new MasterCache();
 8 }
 9
10 public static void main(String[] args) {
11 MasterDriver master = new MasterDriver(
12 args[0], args[1], args[2]);
13 master.serviceReaders();
14 }
15 }

E.3.6 com.mediamania.hotcache.SlaveCache

 1 package com.mediamania.hotcache;
 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2
 3 import java.util.Map;
 4 import java.util.HashMap;
 5
 6 import com.mediamania.prototype.Movie;
 7
 8 public class SlaveCache extends AbstractCache
 9 implements com.mediamania.hotcache.CacheAccess {
10
11 /** Creates a new instance of SlaveCache. The SlaveCache performs
12 * lookups of the database and manages a cache of Movie.
13 */
14 public SlaveCache() {
15 }
16
17 /** Update the Movie website in the cache, only if it is already there.
18 * The datastore will be updated by the MasterCache.
19 * @param title the title of the movie
20 * @param website the new website for the movie
21 */
22 public void updateWebSite(String title, String website) {
23 Movie movie = (Movie)cache.get (title);
24 if (movie == null)
25 return;
26 movie.setWebSite (website);
27 }
28
29 public void execute() {
30 }
31
32 protected static Map getPropertyOverrides()
33 {
34 Map overrides = new HashMap();
35 overrides.put ("javax.jdo.options.NontransactionalRead", "true");
36 overrides.put ("javax.jdo.options.NontransactionalWrite", "true");
37 return overrides;
38 }
39 }

E.3.7 com.mediamania.hotcache.SlaveDriver

 1 package com.mediamania.hotcache;
 2
 3 public class SlaveDriver extends AbstractDriver {
 4 protected SlaveDriver(String updateURL, String requestURL,
 5 String timeout) {
 6 super(updateURL, requestURL, timeout);
 7 cache = new SlaveCache();
 8 }
 9
10 public static void main(String[] args) {
11 SlaveDriver slave = new SlaveDriver(
12 args[0], args[1], args[2]);
13 slave.serviceReaders();
14 }
15 }
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

E.4 The com.mediamania.store package
This package contains classes that model information that is specific to an individual store. It includes objects
representing the media to be sold or rented, and information about the customers and the media items they have
bought or rented.

E.4.1 com.mediamania.store.Address

 1 package com.mediamania.store;
 2
 3
 4 public class Address {
 5 private String street;
 6 private String city;
 7 private String state;
 8 private String zipcode;
 9
10 private Address()
11 { }
12
13 public Address(String street, String city, String state, String zipcode) {
14 this.street = street;
15 this.city = city;
16 this.state = state;
17 this.zipcode = zipcode;
18 }
19 public String getStreet() {
20 return street;
21 }
22 public String getCity() {
23 return city;
24 }
25 public String getState() {
26 return state;
27 }
28 public String getZipcode() {
29 return zipcode;
30 }
31 }

E.4.2 com.mediamania.store.Customer

 1 package com.mediamania.store;
 2
 3 import java.util.Set;
 4 import java.util.HashSet;
 5 import java.util.List;
 6 import java.util.ArrayList;
 7 import java.util.Collections;
 8
 9 public class Customer {
10 private String firstName;
11 private String lastName;
12 private Address address;
13 private String phone;
14 private String email;
15 private Set currentRentals; // Rental
16 private List transactionHistory; // Transaction
17
18 private Customer()
19 { }
20 public Customer(String firstName, String lastName, Address addr,
21 String phone, String email) {
22 this.firstName = firstName;
23 this.lastName = lastName;
24 address = addr;
25 this.phone = phone;
26 this.email = email;
27 currentRentals = new HashSet();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

27 currentRentals = new HashSet();
28 transactionHistory = new ArrayList();
29 }
30 public String getFirstName() {
31 return firstName;
32 }
33 public String getLastName() {
34 return lastName;
35 }
36 public Address getAddress() {
37 return address;
38 }
39 public String getPhone() {
40 return phone;
41 }
42 public String getEmail() {
43 return email;
44 }
45 public void addRental(Rental rental){
46 currentRentals.add(rental);
47 }
48 public Set getRentals() {
49 return Collections.unmodifiableSet(currentRentals);
50 }
51 public void addTransaction(Transaction trans) {
52 transactionHistory.add(trans);
53 }
54 public List getTransactionHistory() {
55 return Collections.unmodifiableList(transactionHistory);
56 }
57 }

E.4.3 com.mediamania.store.MediaItem

 1 package com.mediamania.store;
 2
 3 import java.util.Set;
 4 import java.util.HashSet;
 5 import java.util.Collections;
 6 import java.math.BigDecimal;
 7 import com.mediamania.content.MediaContent;
 8
 9 public class MediaItem {
10 private MediaContent content;
11 private String format;
12 private BigDecimal purchasePrice;
13 private RentalCode rentalCode;
14 private Set rentalItems; // RentalItem
15 private int quantityInStockForPurchase;
16 private int soldYTD;
17 private int rentedYTD;
18
19 private MediaItem()
20 { }
21
22 public MediaItem(MediaContent content, String format, BigDecimal price,
23 RentalCode rentalCode, int number4sale) {
24 this.content = content;
25 content.addMediaItem(this);
26 this.format = format;
27 purchasePrice = price;
28 this.rentalCode = rentalCode;
29 rentalItems = new HashSet();
30 quantityInStockForPurchase = number4sale;
31 soldYTD = 0;
32 rentedYTD = 0;
33 }
34 public MediaContent getMediaContent() {
35 return content;
36 }
37 public BigDecimal getPurchasePrice() {
38 return purchasePrice;
39 }
40 public String getFormat() {
41 return format;
42 }
43 public RentalCode getRentalCode() {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

43 public RentalCode getRentalCode() {
44 return rentalCode;
45 }
46 public void setRentalCode(RentalCode code) {
47 rentalCode = code;
48 }
49 public void addRentalItem(RentalItem rentalItem) {
50 rentalItems.add(rentalItem);
51 }
52 public Set getRentalItems() {
53 return Collections.unmodifiableSet(rentalItems);
54 }
55 public void sold(int qty) {
56 if (qty > quantityInStockForPurchase) {
57 // report error
58 }
59 quantityInStockForPurchase -= qty;
60 soldYTD += qty;
61 }
62 }

E.4.4 com.mediamania.store.Purchase

 1 package com.mediamania.store;
 2
 3 import java.math.BigDecimal;
 4 import java.util.Date;
 5
 6 public class Purchase extends Transaction {
 7 private MediaItem mediaItem;
 8
 9 private Purchase()
10 { }
11 public Purchase(Customer cust, Date date, BigDecimal price, MediaItem item){
12 super(cust, date);
13 setPrice(price);
14 mediaItem = item;
15 price = item.getPurchasePrice();
16 }
17 public MediaItem getMediaItem() {
18 return mediaItem;
19 }
20 }

E.4.5 com.mediamania.store.Rental

 1 package com.mediamania.store;
 2
 3 import java.util.Date;
 4 import java.util.Calendar;
 5 import java.util.GregorianCalendar;
 6
 7 public class Rental extends Transaction {
 8 private RentalItem rentalItem;
 9 private RentalCode rentalCode;
10 private Date returnDate;
11 private Date actualReturnDate;
12
13 private Rental()
14 { }
15
16 public Rental(Customer cust, Date date, RentalItem item) {
17 super(cust, date);
18 rentalItem = item;
19 item.setCurrentRental(this);
20 rentalCode = item.getMediaItem().getRentalCode();
21 setPrice(rentalCode.getCost());
22 GregorianCalendar cal = new GregorianCalendar();
23 cal.setTime(date);
24 cal.add(Calendar.DATE, rentalCode.getNumberOfDays());
25 returnDate = cal.getTime();
26 actualReturnDate = null;
27 }
28 public RentalItem getRentalItem() {
29 return rentalItem;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

29 return rentalItem;
30 }
31 public MediaItem getMediaItem() {
32 return rentalItem.getMediaItem();
33 }
34 public void setDateReturned(Date d) {
35 actualReturnDate = d;
36 }
37 }

E.4.6 com.mediamania.store.RentalCode

 1 package com.mediamania.store;
 2
 3 import java.math.BigDecimal;
 4
 5 public class RentalCode
 6 {
 7 private String code;
 8 private int numberOfDays;
 9 private BigDecimal cost;
10 private BigDecimal lateFeePerDay;
11
12 private RentalCode()
13 { }
14
15 public RentalCode(String code, int days,
16 BigDecimal cost, BigDecimal lateFee) {
17 this.code = code;
18 numberOfDays = days;
19 this.cost = cost;
20 lateFeePerDay = lateFee;
21 }
22 public String getCode() {
23 return code;
24 }
25 public int getNumberOfDays() {
26 return numberOfDays;
27 }
28 public BigDecimal getCost() {
29 return cost;
30 }
31 public BigDecimal getLateFeePerDay() {
32 return lateFeePerDay;
33 }
34 }

E.4.7 com.mediamania.store.RentalItem

 1 package com.mediamania.store;
 2
 3 public class RentalItem
 4 {
 5 private MediaItem mediaItem;
 6 private String serialNumber;
 7 private Rental currentRental;
 8
 9 private RentalItem()
10 { }
11 public RentalItem(MediaItem item, String serialNum) {
12 mediaItem = item;
13 item.addRentalItem(this);
14 serialNumber = serialNum;
15 currentRental = null;
16 }
17 public MediaItem getMediaItem() {
18 return mediaItem;
19 }
20 public Rental getCurrentRental() {
21 return currentRental;
22 }
23 public void setCurrentRental(Rental rental) {
24 currentRental = rental;
25 }
26 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26 }

E.4.8 com.mediamania.store.StoreQueries

 1 package com.mediamania.store;
 2
 3 import java.util.Iterator;
 4 import java.util.Collection;
 5 import java.util.HashMap;
 6 import java.util.Date;
 7 import java.util.Properties;
 8 import java.io.InputStream;
 9 import java.io.IOException;
10 import java.math.BigDecimal;
11 import javax.jdo.*;
12 import com.mediamania.content.*;
13 import com.mediamania.store.*;
14
15 public class StoreQueries {
16
17 public static RentalCode getRentalCode(PersistenceManager pm,
18 String codeName) {
19 Extent codeExtent = pm.getExtent(RentalCode.class, false);
20 Query query = pm.newQuery(codeExtent, "code == codeName");
21 query.declareParameters("String codeName");
22 Collection result = (Collection) query.execute(codeName);
23 Iterator iter = result.iterator();
24 RentalCode rentalCode =
25 (RentalCode) (iter.hasNext() ? iter.next() : null);
26 query.close(result);
27 return rentalCode;
28 }
29
30 public static Movie getMovieByTitle(PersistenceManager pm,
31 String movieTitle) {
32 Extent movieExtent = pm.getExtent(Movie.class, true);
33 Query query = pm.newQuery(movieExtent, "title == movieTitle");
34 query.declareParameters("String movieTitle");
35 Collection result = (Collection) query.execute(movieTitle);
36 Iterator iter = result.iterator();
37 Movie movie = (Movie) (iter.hasNext() ? iter.next() : null);
38 query.close(result);
39 return movie;
40 }
41
42 public static Customer getCustomer(PersistenceManager pm,
43 String fname, String lname) {
44 Extent customerExtent = pm.getExtent(Customer.class, true);
45 String filter = "fname == firstName && lname == lastName";
46 Query query = pm.newQuery(customerExtent, filter);
47 query.declareParameters("String fname, String lname");
48 Collection result = (Collection) query.execute(fname, lname);
49 Iterator iter = result.iterator();
50 Customer customer = (Customer) (iter.hasNext() ? iter.next() : null);
51 query.close(result);
52 return customer;
53 }
54
55 public static void queryCustomers(PersistenceManager pm,
56 String city, String state) {
57 Extent customerExtent = pm.getExtent(Customer.class, true);
58 String filter = "address.city == city && address.state == state";
59 Query query = pm.newQuery(customerExtent, filter);
60 query.declareParameters("String city, String state");
61 query.setOrdering(
62 "address.zipcode ascending, lastName ascending, firstName ascending");
63 Collection result = (Collection) query.execute(city, state);
64 Iterator iter = result.iterator();
65 while (iter.hasNext()) {
66 Customer customer = (Customer) iter.next();
67 Address address = customer.getAddress();
68 System.out.print(address.getZipcode()); System.out.print(" ");
69 System.out.print(customer.getFirstName()); System.out.print(" ");
70 System.out.print(customer.getLastName()); System.out.print(" ");
71 System.out.println(address.getStreet());
72 }
73 query.close(result);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

73 query.close(result);
74 }
75
76 public static void queryMovie1(PersistenceManager pm,
77 String rating, int runtime, MediaPerson dir) {
78 Extent movieExtent = pm.getExtent(Movie.class, true);
79 String filter =
80 "rating == movieRating && runningTime <= runTime && director == dir";
81 Query query = pm.newQuery(movieExtent, filter);
82 query.declareParameters(
83 "String movieRating, int runTime, MediaPerson dir");
84 Collection result = (Collection)
85 query.execute(rating, new Integer(runtime), dir);
86 Iterator iter = result.iterator();
87 while (iter.hasNext()) {
88 Movie movie = (Movie) iter.next();
89 System.out.println(movie.getTitle());
90 }
91 query.close(result);
92 }
93
94 public static void queryMovie2(PersistenceManager pm,
95 String rating, int runtime, MediaPerson dir,
96 Date date) {
97 Extent movieExtent = pm.getExtent(Movie.class, true);
98 String filter = "rating == movieRating && runningTime <= runTime && " +
99 "director == dir && releaseDate >= date";
100 Query query = pm.newQuery(movieExtent, filter);
101 query.declareImports("import java.util.Date");
102 query.declareParameters(
103 "String movieRating, int runTime, MediaPerson dir, Date date");
104 HashMap parameters = new HashMap();
105 parameters.put("movieRating", rating);
106 parameters.put("runTime", new Integer(runtime));
107 parameters.put("dir", dir);
108 parameters.put("date", date);
109 Collection result = (Collection) query.executeWithMap(parameters);
110 Iterator iter = result.iterator();
111 while (iter.hasNext()) {
112 Movie movie = (Movie) iter.next();
113 System.out.println(movie.getTitle());
114 }
115 query.close(result);
116 }
117
118 public static void queryMovie3(PersistenceManager pm,
119 String rating, int runtime, MediaPerson dir,
120 Date date) {
121 Extent movieExtent = pm.getExtent(Movie.class, true);
122 String filter = "rating == movieRating && runningTime <= runTime && " +
123 "director == dir && releaseDate >= date";
124 Query query = pm.newQuery(movieExtent, filter);
125 query.declareImports("import java.util.Date");
126 query.declareParameters(
127 "String movieRating, int runTime, MediaPerson dir, Date date");
128 Object[] parameters = { rating, new Integer(runtime), dir, date };
129 Collection result = (Collection) query.executeWithArray(parameters);
130 Iterator iter = result.iterator();
131 while (iter.hasNext()) {
132 Movie movie = (Movie) iter.next();
133 System.out.println(movie.getTitle());
134 }
135 query.close(result);
136 }
137
138 public static void queryMovie4(PersistenceManager pm) {
139 Extent movieExtent = pm.getExtent(Movie.class, true);
140 String filter = "!(rating == \"G\" || rating == \"PG\") && " +
141 "(runningTime >= 60 && runningTime <= 105)";
142 Query query = pm.newQuery(movieExtent, filter);
143 Collection result = (Collection) query.execute();
144 Iterator iter = result.iterator();
145 while (iter.hasNext()) {
146 Movie movie = (Movie) iter.next();
147 System.out.println(movie.getTitle());
148 }
149 query.close(result);
150 }
151

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

151
152 public static void getDirectorAlsoActor(PersistenceManager pm) {
153 Extent movieExtent = pm.getExtent(Movie.class, true);
154 String filter = "cast.contains(role) && role.actor == director";
155 Query query = pm.newQuery(movieExtent, filter);
156 query.declareVariables("Role role");
157 Collection result = (Collection) query.execute();
158 Iterator iter = result.iterator();
159 while (iter.hasNext()) {
160 Movie movie = (Movie) iter.next();
161 System.out.print(movie.getTitle());
162 System.out.print(", ");
163 System.out.println(movie.getDirector().getName());
164 }
165 }
166
167 public static void queryTransactions(PersistenceManager pm, Customer cust) {
168 Query query = pm.newQuery(com.mediamania.store.Transaction.class,
169 cust.getTransactionHistory());
170 String filter =
171 "((Movie)(((Rental)this).rentalItem.mediaItem.content)).director." +
172 "mediaName == \"James Cameron\"";
173 query.declareImports("import com.mediamania.content.Movie");
174 query.setFilter(filter);
175 Collection result = (Collection) query.execute();
176 Iterator iter = result.iterator();
177 while (iter.hasNext()){
178 Rental rental = (Rental) iter.next();
179 MediaContent content =
180 rental.getRentalItem().getMediaItem().getMediaContent();
181 System.out.println(content.getTitle());
182 }
183 query.close(result);
184 }
185
186 public static void queryMoviesSeenInCity(PersistenceManager pm,
187 String city) {
188 String filter = "mediaItems.contains(item) &&" +
189 "(item.rentalItems.contains(rentItem) && " +
190 "(rentItem.currentRental.customer.address.city == city))";
191 Extent movieExtent = pm.getExtent(Movie.class, true);
192 Query query = pm.newQuery(movieExtent, filter);
193 query.declareImports("import com.mediamania.store.MediaItem; " +
194 "import com.mediamania.store.RentalItem");
195 query.declareVariables("MediaItem item; RentalItem rentItem");
196 query.declareParameters("String city");
197 Collection result = (Collection) query.execute(city);
198 Iterator iter = result.iterator();
199 while (iter.hasNext()) {
200 Movie movie = (Movie) iter.next();
201 System.out.println(movie.getTitle());
202 }
203 query.close(result);
204 }
205
206 public static void queryTransactionsInCity(PersistenceManager pm,
207 String city, String state, Date acquired) {
208 Extent transactionExtent =
209 pm.getExtent(com.mediamania.store.Transaction.class, true);
210 Query query = pm.newQuery(transactionExtent);
211 query.declareParameters("String thecity, String thestate, Date date");
212 query.declareImports("import java.util.Date");
213 String filter = "customer.address.city == thecity && " +
214 "customer.address.state == thestate && acquisitionDate >= date";
215 query.setFilter(filter);
216 String order = "customer.address.zipcode descending, " +
217 "customer.lastName ascending, " +
218 "customer.firstName ascending, acquisitionDate ascending";
219 query.setOrdering(order);
220 Collection result = (Collection) query.execute(city, state, acquired);
221 Iterator iter = result.iterator();
222 while (iter.hasNext()) {
223 com.mediamania.store.Transaction tx =
224 (com.mediamania.store.Transaction) iter.next();
225 Customer cust = tx.getCustomer();
226 Address addr = cust.getAddress();
227 System.out.print(addr.getZipcode());
228 System.out.print(cust.getLastName()); System.out.print(" ");
229 System.out.print(cust.getFirstName()); System.out.print(" ");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

229 System.out.print(cust.getFirstName()); System.out.print(" ");
230 System.out.println(tx.getAcquisitionDate());
231 }
232 query.close(result);
233 }
234
235 public static void queryProfits(PersistenceManager pm, BigDecimal value,
236 BigDecimal sellCost, BigDecimal rentCost) {
237 Query query = pm.newQuery(MediaItem.class);
238 query.declareImports("import java.math.BigDecimal");
239 query.declareParameters(
240 "BigDecimal value, BigDecimal sellCost, BigDecimal rentCost");
241 query.setFilter("soldYTD * (purchasePrice - sellCost) + " +
242 "rentedYTD * (rentalCode.cost - rentCost) > value");
243 Collection result = (Collection)query.execute(value, sellCost,rentCost);
244 Iterator iter = result.iterator();
245 while (iter.hasNext()) {
246 MediaItem item = (MediaItem) iter.next();
247 // process MediaItem
248 }
249 query.close(result);
250 }
251
252 public static RentalItem getRentalItem(
253 PersistenceManager pm, String serialNumber) {
254 Query query = pm.newQuery(RentalItem.class);
255 query.declareParameters("String serialNumber");
256 query.setFilter("this.serialNumber == serialNumber");
257 Collection result = (Collection)query.execute(serialNumber);
258 Iterator iter = result.iterator();
259 RentalItem item = (RentalItem) (iter.hasNext() ? iter.next() : null);
260 query.close(result);
261 return item;
262 }
263
264 public static MediaItem getMediaItem(
265 PersistenceManager pm, String title, String format) {
266 Query query = pm.newQuery(MediaItem.class);
267 query.declareParameters("String title, String format");
268 query.setFilter("this.format == format && content.title == title");
269 Collection result = (Collection)query.execute(title, format);
270 Iterator iter = result.iterator();
271 MediaItem item = (MediaItem) (iter.hasNext() ? iter.next() : null);
272 query.close(result);
273 return item;
274 }
275
276 public static Query newQuery(PersistenceManager pm, Class cl,InputStream is)
277 throws IOException {
278 Properties props = new Properties();
279 props.load(is);
280 Query q = pm.newQuery(cl);
281 q.setFilter((String)props.get("filter"));
282 q.declareParameters((String)props.get("parameters"));
283 q.declareVariables((String)props.get("variables"));
284 q.setOrdering((String)props.get("ordering"));
285 q.declareImports((String)props.get("imports"));
286 q.setIgnoreCache(Boolean.getBoolean((String)props.get("ignoreCache")));
287 return q;
288 }
289 }

E.4.9 com.mediamania.store.Transaction

 1 package com.mediamania.store;
 2
 3 import java.util.Date;
 4 import java.math.BigDecimal;
 5
 6 public abstract class Transaction
 7 {
 8 protected Customer customer;
 9 protected Date acquisitionDate;
10 protected BigDecimal price;
11
12 protected Transaction()
13 { }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13 { }
14 protected Transaction(Customer cust, Date date) {
15 customer = cust;
16 acquisitionDate = date;
17 }
18 public abstract MediaItem getMediaItem();
19
20 public Customer getCustomer() {
21 return customer;
22 }
23 public Date getAcquisitionDate() {
24 return acquisitionDate;
25 }
26 public BigDecimal getPrice() {
27 return price;
28 }
29 public void setPrice(BigDecimal price) {
30 this.price = price;
31 }
32 }

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of Java Data Objects is a bilby (Macrotis lagotis), also known as a ninu, dalgyte, pinky, or
rabbit-eared bandicoot. Bilbies are rabbit-sized marsupials with silky, blue-gray fur; long, pointed snouts; large, rabbit-
like ears; and long, black tails with white tips. This strange combination of traits may appear awkward, but its delicate
and cute features have actually made the bilby one of Australia's most attractive and celebrated mammals. For many
Australians, the Easter Bilby has even replaced the rabbit as the popular Easter icon.

Bilbies have adapted well to the hot, arid climates they now habitate. Their long, slender tongues help them eat a diet
of seeds, insects, bulbs, fruit, and fungi. Bilbies have well-developed forearms and long claws, which they use to dig the
deep, spiralling burrows in which they live. Bilbies are strictly nocturnal, and during the day they plug the entrances to
their holes with soil to protect them from extreme temperatures. Because bilbies are solitary animals, burrows usually
have a single opening and a single occupant, though females often live with their young. Like other marsupials, females
have a backward-opening pouch with eight teats, used to carry and protect their young for about 80 days. Bilbies
usually have no more than two young at a time.

Once common throughout Australia, disease, agriculture clearing, spreading of the fox and feral cat, and the control
campaign against the destructive rabbit (which was often unfairly grouped with the innocent bilby it resembles) have
limited bilbies' habitats to isolated populations in Western Australia, the Northern Territory, and southwestern
Queensland. Bilbies are now listed as endandered species by many Australian and international conservation groups.

Brian Sawyer was the production editor and copyeditor for Java Data Objects. Colleen Gorman was the proofreader.
Genevieve d'Entremont and Claire Cloutier provided quality control. David Jordan and Craig Russell wrote the index,
with the assistance of Reg Aubry.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover image is a 19th-
century engraving from Animate Creation, Vol. II. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe's ITC Garamond font.

David Futato designed the interior layout. Andrew Savikas prepared this book in FrameMaker 5.5.6. The text font is
Linotype Birka, and the heading font is Adobe Myriad Condensed. The code font is a modified version of LucasFont's
TheSans Mono Condensed, designed by Luc(as) de Groot with modifications suggested by David Jordan. The
illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand
9 and Adobe Photoshop 6. This colophon was written by Brian Sawyer.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Madeleine
Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, and Jeff Liggett.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

!
!=
&
&&
>
>=
<
<=
*
+
-
.
/
== 2nd
|
||
~

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

abstract
ACID transaction properties
Action
ActionServlet
addition
afterCompletion() 2nd 3rd 4th 5th
AND query operator 2nd
antlr.jar
Apache
application assembly
application identity 2nd 3rd
 equals()
 hashCode()
 inner class
 String constructor
 toString()
application-identity class 2nd
ApplicationIdentity 2nd
Array 2nd
array
array support
ArrayList 2nd
 default to SCO
ascending
atomic
atomic value

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

bean-managed persistence
before image 2nd 3rd 4th 5th
beforeCompletion() 2nd
begin() 2nd 3rd 4th
BigDecimal
 default to SCO
 mapping to SQL type
 persistent field
BIGINT SQL type 2nd
BigInteger
 default to SCO
 mapping to SQL type
 persistent field
binary addition
binary compatibility
binary large object (BLOB)
binary subtraction
BIT SQL type
bitwise complement
BMP
Boolean
 default to SCO
 mapping to SQL type
boolean
 mapping to SQL type
 persistent field
Boolean
 persistent field
boolean
 SCO
bridge mapping
btree.jar
business delegates
Byte
 default to SCO
 mapping to SQL type
byte
 mapping to SQL type
 persistent field
Byte
 persistent field
byte
 SCO
BYTE SQL type

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

cache 2nd
candidate class
candidate set
cascading delete 2nd
CashierBean
cast expression 2nd
cell
CGI
ChangeApplicationIdentity 2nd
char
 mapping to SQL type
 persistent field
 SCO
CHAR SQL type
Character
 default to SCO
 mapping to SQL type
 persistent field
class 2nd
class metadata
class metadata attributes
 identity-type 2nd 3rd 4th 5th 6th 7th
 name
 objectid-class 2nd 3rd 4th 5th 6th 7th 8th 9th
 persistence-capable-superclass 2nd
 requires-extent 2nd
ClassCastException
client container
CLOB
clone
close()
 Extent 2nd
 PersistenceManager 2nd 3rd 4th
 PersistenceManagerFactory 2nd
 Query 2nd
closeAll()
 Extent 2nd 3rd
 Query
closePersistenceManagerFactory 2nd
CMP
coarse-grained objects
collection
Collection
collection 2nd
Collection
 default to SCO
 persistent field 2nd
 size() 2nd
collection metadata attributes
 element-type 2nd 3rd 4th 5th 6th 7th 8th 9th
 embedded-element
column 2nd
column datatypes 2nd
commit() 2nd 3rd 4th 5th 6th 7th 8th 9th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Common Gateway Interface
Common Object Request Broker Architecture (CORBA)
compile() 2nd
composite object
composite-aggregation association
connection management 2nd
connection-factory property
 DriverName
 LoginTimeout
 LogWriter
 MaxPool
 MinPool
 MsWait
 Password
 PortNumber
 ServerName
 URL
 UserName
ConnectionDriverName 2nd
ConnectionFactory 2nd 3rd
ConnectionFactory2
ConnectionFactory2Name 2nd 3rd
ConnectionFactoryName 2nd 3rd 4th
ConnectionPassword 2nd 3rd
ConnectionURL 2nd 3rd 4th
ConnectionUserName 2nd 3rd
connector
consistent
container-managed persistence 2nd
container-managed transaction 2nd
containment
contains() 2nd 3rd 4th 5th
controller servlet
CRUD operations
currentTransaction() 2nd 3rd 4th 5th 6th
cursor stability

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

data-access objects (DAO)
datastore identity 2nd
DatastoreIdentity 2nd
Date
 comparing in JDOQL
 default to SCO
 equality in JDOQL
 mapping to SQL type
 persistent field
DATE SQL type
DATETIME SQL type
DECIMAL SQL type
declareImports() 2nd 3rd 4th 5th
declareParameters() 2nd 3rd 4th 5th
declareVariables() 2nd 3rd 4th
default constructor
default fetch group 2nd
default-fetch-group<Default Para Font> attribute 2nd 3rd
delete propagation
deletePersistent() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 jdoPreDelete() 2nd
deletePersistentAll() 2nd 3rd 4th 5th
descending
destroy()
destroy()
different datastores
dirty 2nd
dirty read
distributed transaction 2nd 3rd
division
doGet() 2nd 3rd
doPost() 2nd 3rd
Double
 default to SCO
 mapping to SQL type
double
 mapping to SQL type
 persistent field
Double
 persistent field
double
 SCO
DOUBLE SQL type
DriverName connection-factory property
durable
dynamic content

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

EIS
EJB 2nd
 res-ref-name attribute
 res-type attribute
 resource-ref element
EJB container
EJB Server
ejb-jar element
 assembly-descriptor element
ejb-jar.xml file
ejbActivate()
ejbActivate()
ejbCreate()
ejbFindByPrimaryKey()
ejbLoad()
ejbPassivate() 2nd
ejbPassivate()
EJBQL
ejbRemove()
ejbStore()
element-type attribute 2nd 3rd 4th 5th 6th 7th 8th 9th
embedded attribute 2nd 3rd 4th
embedded-element attribute
embedded-key attribute
embedded-value attribute
endsWith() 2nd
Enterprise Information System
Enterprise JavaBeans 2nd
entity beans
equal (in queries)
equality
equals() 2nd 3rd 4th 5th 6th 7th
 application identity
evict() 2nd 3rd
evictAll() 2nd 3rd 4th 5th 6th
eviction
exceptions
exclusive lock
execute() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
executeWithArray() 2nd
executeWithMap() 2nd
 Query
existence-dependent components
extension
extension metadata attributes
 key
 value
 vendor-name 2nd 3rd 4th 5th
Extent 2nd 3rd
 close() 2nd
 closeAll() 2nd 3rd
 getCandidateClass() 2nd
 getPersistenceManager() 2nd
 hasSubclasses() 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 interface declaration
 iteration 2nd
 iterator() 2nd 3rd 4th 5th 6th
 queries

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

façade
fetch group
field
field mediation
field metadata attributes
 default-fetch-group 2nd 3rd
 embedded 2nd 3rd 4th
 name
 null-value 2nd 3rd
 persistence-modifier 2nd 3rd 4th 5th
 primary-key 2nd
File
file I/O
filter
final field 2nd
final keyword 2nd
fine-grained objects
firewall
first normal form
first-class objects
Float
 default to SCO
 mapping to SQL type
float
 mapping to SQL type
 persistent field
Float
 persistent field
float
 SCO
FLOAT SQL type
flushing
foreign key 2nd 3rd 4th
foreign-key constraint
forward engineering
FOStore
Fostore

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

getCandidateClass() 2nd
getConnectionDriverName() 2nd
getConnectionFactory()
getConnectionFactory2() 2nd
getConnectionFactory2Name() 2nd
getConnectionFactoryName() 2nd
getConnectionURL() 2nd
getConnectionUserName() 2nd
getExtent() 2nd 3rd
getFailedObject() 2nd 3rd 4th
getfield 2nd
getIgnoreCache()
 PersistenceManager 2nd 3rd
 PersistenceManagerFactory
 Query 2nd
getMetadata
getMultithreaded()
 PersistenceManager 2nd
 PersistenceManagerFactory
getNestedExceptions() 2nd
getNontransactionalRead()
 PersistenceManagerFactory 2nd
 Transaction
getNontransactionalWrite()
 PersistenceManagerFactory 2nd
 Transaction
getObjectById() 2nd 3rd 4th
getObjectId()
 JDOHelper 2nd
 PersistenceManager 2nd
getObjectIdClass() 2nd
getOptimistic()
 PersistenceManagerFactory 2nd 3rd 4th
 Transaction 2nd
getPersistenceManager()
 Extent 2nd
 JDOHelper 2nd
 PersistenceManagerFactory 2nd 3rd 4th 5th
 Query 2nd
 Transaction 2nd
getPersistenceManagerFactory()
 JDOHelper 2nd 3rd 4th 5th 6th
 PersistenceManager
getProperties() 2nd 3rd
getRestoreValues()
 PersistenceManagerFactory
 Transaction 2nd
getRetainValues()
 PersistenceManagerFactory 2nd
 Transaction
getSynchronization() 2nd
getTransactionalObjectId()
 JDOHelper 2nd
 PersistenceManager 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getUserObject() 2nd
getUserTransaction()
greater-than
greater-than or equal

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

hashCode() 2nd 3rd 4th 5th
 application identity
HashMap 2nd
 default to SCO
HashSet
 default to SCO
 persistent field 2nd
Hashtable 2nd
 default to SCO
hasNext() 2nd
hasSubclasses() 2nd
hollow state 2nd
HTTP
HTTPS
HttpServlet 2nd
 service()
Hypertext Transfer Protocol

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

identity
identity class 2nd
identity instance
identity-type attribute 2nd 3rd 4th 5th 6th
identity-type<Default Para Font> attribute
IgnoreCache 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
immutable class
index 2nd
inheritance 2nd 3rd
inheritance hierarchy 2nd
inherited fields
init() 2nd
initial context
instance callback
instance of a transient class
InstanceCallbacks 2nd 3rd 4th
 interface declaration
 jdoPostLoad() 2nd 3rd 4th 5th
 jdoPreClear() 2nd 3rd
 jdoPreDelete() 2nd 3rd 4th
 jdoPreStore() 2nd
int
 mapping to SQL type
 persistent field
 SCO
INT2 SQL type
INT4 SQL type
INT8 SQL type
Integer
 default to SCO
 mapping to SQL type
 MAX_VALUE
 persistent field
INTEGER SQL type
inverse member
isActive() 2nd
isClosed() 2nd
isDeleted() 2nd 3rd 4th
isDirty() 2nd 3rd 4th
isEmpty()
isNew() 2nd 3rd 4th
isolated
isomorphic mapping
isPersistent() 2nd 3rd 4th 5th
isTransactional() 2nd 3rd 4th
Iterator
 hasNext() 2nd
 next() 2nd
 remove()
iterator() 2nd 3rd 4th 5th
 Extent

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

J2EE 2nd
J2EE client container
J2EE Java Connector Architecture
Jakarta
Java 2 Enterprise Edition
Java Architecture for XML Binding (JAXB)
Java Database Connectivity (JDBC)
Java Message Service
Java Naming and Directory Interface (JNDI) 2nd
Java Native Interface (JNI)
Java security manager
Java Transaction Service
JavaMail
JavaServer Page
javax.jdo package
javax.jdo.option
javax.jdo.option.ApplicationIdentity 2nd
javax.jdo.option.Array
javax.jdo.option.ArrayList 2nd
javax.jdo.option.ChangeApplicationIdentity 2nd
javax.jdo.option.ConnectionDriverName
javax.jdo.option.ConnectionFactory2Name
javax.jdo.option.ConnectionFactoryName
javax.jdo.option.ConnectionPassword
javax.jdo.option.ConnectionURL
javax.jdo.option.ConnectionUserName
javax.jdo.option.DatastoreIdentity 2nd
javax.jdo.option.HashMap 2nd
javax.jdo.option.Hashtable 2nd
javax.jdo.option.IgnoreCache 2nd
javax.jdo.option.LinkedList 2nd
javax.jdo.option.List 2nd
javax.jdo.option.Map 2nd
javax.jdo.option.Multithreaded 2nd 3rd
javax.jdo.option.NonDurableIdentity 2nd
javax.jdo.option.NontransactionalRead 2nd 3rd
javax.jdo.option.NontransactionalWrite 2nd 3rd
javax.jdo.option.NullCollection 2nd
javax.jdo.option.Optimistic 2nd 3rd
javax.jdo.option.RestoreValues 2nd
javax.jdo.option.RetainValues 2nd 3rd
javax.jdo.option.TransientTransactional 2nd
javax.jdo.option.TreeMap 2nd
javax.jdo.option.TreeSet 2nd
javax.jdo.option.Vector 2nd
javax.jdo.PersistenceManagerFactoryClass
javax.jdo.spi package
javax.transaction.Status
javax.transaction.Synchronization 2nd
javax.transaction.UserTransaction
JDBC 2nd 3rd
JDBC driver
jdo
JDO metadata

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JDO vendor
jdo.jar 2nd
JDOCanRetryException 2nd
 interface declaration
JDOcentral.com
JDODataStoreException 2nd 3rd 4th
 interface declaration
JDOException 2nd 3rd
 getFailedObject() 2nd 3rd 4th
 getNestedExceptions() 2nd
 interface declaration
 printStackTrace() 2nd 3rd
 toString()
JDOFatalDataStoreException 2nd
 interface declaration
JDOFatalException 2nd
 interface declaration
JDOFatalInternalException 2nd 3rd 4th
 interface declaration
JDOFatalUserException 2nd 3rd 4th 5th 6th
 interface declaration
jdoFieldFlags
jdoFlags 2nd 3rd 4th
JDOHelper 2nd
 constructor
 getObjectId() 2nd
 getPersistenceManager() 2nd
 getPersistenceManagerFactory() 2nd 3rd 4th 5th 6th
 getTransactionalObjectId() 2nd
 interface declaration
 isDeleted() 2nd 3rd 4th
 isDirty() 2nd 3rd 4th
 isNew() 2nd 3rd 4th
 isPersistent() 2nd 3rd 4th 5th
 isTransactional() 2nd 3rd 4th
 makeDirty() 2nd 3rd
JDOImplHelper
JDOObjectNotFoundException 2nd 3rd 4th 5th
 interface declaration
JDOOptimisticVerificationException 2nd 3rd
JDOPermission 2nd 3rd
JDOPermission(ÒclosePersistenceManagerFactoryÓ) 2nd
JDOPermission(ÒgetMetadataÓ)
JDOPermission(ÒsetStateManagerÓ)
JDOPlugIn
jdoPostLoad() 2nd 3rd 4th 5th
jdoPreClear() 2nd 3rd
jdoPreDelete() 2nd 3rd 4th
jdoPreStore() 2nd
jdori-enhancer.jar
jdori.jar
jdoStateManager 2nd
JDOUnsupportedOptionException 2nd 3rd 4th 5th 6th 7th 8th 9th
 interface declaration
JDOUserException 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th
 interface declaration
JMS
JNDI 2nd 3rd 4th 5th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

join
join condition
join table 2nd
JSP 2nd
jta.jar
JTS

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

key<Default Para Font> attribute
key-type attribute
keyword in JDOQL

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

less-than (in queries)
less-than or equal
lifecycle state
lifecycle-state interrogation
LinkedList 2nd
 default to SCO
List 2nd
 default to SCO
local datastore
local transaction
Locale
 default to SCO
 mapping to SQL type
 persistent field
location transparency
lock instance
lock table
lock-compatibility matrix
locking
logical complement
LoginTimeout connection-factory property
LogWriter connection-factory property
Long
 default to SCO
 mapping to SQL type
long
 mapping to SQL type
 persistent field
Long
 persistent field
long
 SCO
LONGVARCHAR SQL type

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

makeDirty() 2nd 3rd
makeNontransactional()
makeNontransactionalAll() 2nd 3rd
makePersistent() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
makePersistentAll() 2nd 3rd
makeTransactional() 2nd 3rd 4th 5th
makeTransactionalAll() 2nd 3rd 4th 5th
makeTransient() 2nd
makeTransientAll() 2nd 3rd 4th
managed environment
managed field 2nd 3rd
managed relationship
many-to-many relationship 2nd 3rd
Map 2nd
map 2nd
Map
 default to SCO
map class to a table
map field to column
map metadata attributes
 embedded-key
 embedded-value
 key-type
 value-type
mark field modified
MaxPool connection-factory property
mediation 2nd 3rd 4th
MessageDrivenBean
metadata element
 array
 class
 collection 2nd
 extension
 jdo
 map 2nd
 package
metadata file name
MinPool connection-factory property
Model-View-Controller
MsWait connection-factory property
multiple PersistenceManagers
multiplication
Multithreaded 2nd 3rd 4th 5th 6th 7th
multithreading
mutable class
MVC2

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

name attribute
 class element
 package element
name<Default Para Font> attribute
 field element
name-mapping
newObjectIdInstance() 2nd 3rd
newQuery() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
next() 2nd
no-arg constructor 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
non-static inner class
nondurable identity 2nd 3rd
NonDurableIdentity 2nd
nonmanaged environment
NontransactionalRead 2nd 3rd 4th 5th 6th 7th 8th 9th
NontransactionalWrite 2nd 3rd 4th 5th 6th 7th 8th 9th
normalized
NoSuchElementException 2nd 3rd
not equal (in queries)
NOT operator
null collection
null parameters 2nd
null-value attribute 2nd 3rd
NullCollection 2nd
NullPointerException 2nd
Number
 default to SCO
NUMBER SQL type
numeric sign inversion
NUMERIC SQL type

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Object
 persistent field
object database 2nd 3rd
object identity
object-model evolution
objectid-class attribute 2nd 3rd 4th 5th 6th 7th 8th
objectid-class<Default Para Font> attribute
one-to-many relationship
one-to-one relationship
Optimistic 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
OQL
OR query operator 2nd
ORDER BY
ordering column
ordering expression
ordering specification 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

package
package javax.jdo 2nd
package javax.jdo.spi 2nd
package metadata attribute
 name
parallel transactions
partial primary key
Password connection-factory property
persistence by reachability 2nd
persistence-aware class
persistence-by-reachability 2nd 3rd 4th 5th
persistence-capable
persistence-capable-superclass<Default Para Font> attribute 2nd 3rd
persistence-modifier<Default Para Font> attribute 2nd 3rd 4th 5th
PersistenceCapable 2nd 3rd 4th 5th
PersistenceManager 2nd 3rd
 close() 2nd 3rd 4th
 currentTransaction() 2nd 3rd 4th 5th 6th
 deletePersistent() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 jdoPreDelete() 2nd
 deletePersistentAll() 2nd 3rd 4th 5th
 evict() 2nd 3rd
 evictAll() 2nd 3rd 4th 5th 6th
 getExtent() 2nd 3rd
 getIgnoreCache() 2nd 3rd
 getMultithreaded() 2nd
 getObjectById() 2nd 3rd 4th
 getObjectId() 2nd
 getObjectIdClass() 2nd
 getPersistenceManagerFactory()
 getTransactionalObjectId() 2nd 3rd 4th
 getUserObject() 2nd
 interface declaration
 isClosed() 2nd
 makeNontransactional()
 makeNontransactionalAll() 2nd 3rd
 makePersistent() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 makePersistentAll() 2nd 3rd
 makeTransactional() 2nd 3rd 4th 5th
 makeTransactionalAll() 2nd 3rd 4th 5th
 makeTransient() 2nd
 makeTransientAll() 2nd 3rd 4th
 multiple
 newObjectIdInstance() 2nd 3rd
 newQuery() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
 refresh() 2nd 3rd 4th 5th
 refreshAll() 2nd 3rd 4th 5th 6th
 retrieve() 2nd 3rd 4th 5th
 retrieveAll() 2nd 3rd 4th 5th 6th 7th 8th
 setIgnoreCache() 2nd 3rd
 setMultithreaded() 2nd
 setUserObject() 2nd
PersistenceManager per Application pattern
PersistenceManager per Request pattern 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PersistenceManager per Session
PersistenceManager per Transactional Request pattern
PersistenceManagerFactory 2nd
 close() 2nd
 getConnectionDriverName() 2nd
 getConnectionFactory()
 getConnectionFactory2() 2nd
 getConnectionFactory2Name() 2nd
 getConnectionFactoryName() 2nd
 getConnectionURL() 2nd
 getConnectionUserName() 2nd
 getIgnoreCache()
 getMultithreaded()
 getNontransactionalRead() 2nd
 getNontransactionalWrite() 2nd
 getOptimistic() 2nd 3rd 4th
 getPersistenceManager() 2nd 3rd 4th 5th
 getProperties() 2nd 3rd
 getRestoreValues()
 getRetainValues() 2nd
 interface declaration
 setConnectionDriverName()
 setConnectionFactory() 2nd
 setConnectionFactory2() 2nd 3rd
 setConnectionFactory2Name() 2nd
 setConnectionFactoryName() 2nd
 setConnectionPassword() 2nd
 setConnectionURL() 2nd
 setConnectionUserName() 2nd
 setIgnoreCache()
 setMultithreaded()
 setNontransactionalRead() 2nd
 setNontransactionalWrite() 2nd
 setOptimistic() 2nd 3rd
 setRestoreValues()
 setRetainValues() 2nd
 supportedOptions() 2nd 3rd
PersistenceManagerFactoryClass 2nd 3rd 4th
persistent class
persistent instance
persistent-clean state 2nd
persistent-deleted state 2nd
persistent-dirty state 2nd
persistent-new state 2nd
persistent-new-deleted state 2nd
persistent-nontransactional instance 2nd
persistent-nontransactional state 2nd 3rd
PHP
PlugIn
polymorphism 2nd 3rd 4th 5th
PortNumber connection-factory property
preread policy
primary key 2nd 3rd 4th 5th 6th 7th
primary-key attribute
primary-key field 2nd 3rd
primary-key<Default Para Font> attribute
printStackTrace() 2nd 3rd
private 2nd
processRequest()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties 2nd 3rd
protected 2nd
provisionally persistent 2nd 3rd
public 2nd
putfield 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Query 2nd 3rd
 close() 2nd
 closeAll() 2nd
 compile() 2nd
 declareImports() 2nd 3rd 4th 5th
 declareParameters() 2nd 3rd 4th 5th
 declareVariables() 2nd 3rd 4th
 execute() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 executeWithArray() 2nd
 executeWithMap()
 getIgnoreCache() 2nd
 getPersistenceManager() 2nd
 interface declaration
 setCandidates() 2nd 3rd
 setClass() 2nd 3rd
 setFilter() 2nd 3rd
 setIgnoreCache() 2nd
 setOrdering() 2nd 3rd
query compilation
query imports
query namespaces
query operator
 !
 !=
 &
 &&
 >
 >=
 <
 <=
 *
 +
 -
 .
 /
 == 2nd
 |
 ||
 ~
 contains() 2nd 3rd 4th 5th
 endsWith() 2nd
 isEmpty()
 startsWith() 2nd
query parameter
 declaration
query variable

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

reachability algorithm 2nd
read-committed isolation level 2nd
REAL SQL type
reference enhancer 2nd 3rd
referential integrity
refresh() 2nd 3rd 4th 5th
refreshAll() 2nd 3rd 4th 5th 6th
registry service
relational database 2nd
relational database server
relational query language
Remote Method Invocation (RMI)
remove()
repeatable-read isolation level 2nd
requires-extent attribute
requires-extent<Default Para Font> attribute
resource adapter
resource configuration
resource manager
resource reference
resource-ref
resource-ref servlet element
RestoreValues 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
RetainValues 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
retrieve() 2nd 3rd 4th 5th
retrieveAll() 2nd 3rd 4th 5th 6th 7th 8th
reverse-engineering
rich client 2nd
rollback
rollback() 2nd 3rd 4th 5th 6th 7th 8th
row 2nd
RuntimeException 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

schema evolution
second-class objects
security
SecurityException
sequence 2nd
Serializable 2nd
serializable isolation level
serialization 2nd
ServerName connection-factory property
service endpoint
servlet
session bean façade
Set 2nd 3rd
 default to SCO
 persistent field
set Session Context()
setCandidates() 2nd 3rd
setClass() 2nd 3rd
setConnectionDriverName()
setConnectionFactory() 2nd
setConnectionFactory2() 2nd 3rd
setConnectionFactory2Name() 2nd
setConnectionFactoryName() 2nd
setConnectionPassword() 2nd
setConnectionURL() 2nd
setConnectionUserName() 2nd
setFilter() 2nd 3rd
setIgnoreCache()
 PersistenceManager 2nd
 PersistenceManagerFactory
 Query 2nd
setMessageDrivenContext()
setMultithreaded()
 PersistenceManager 2nd
 PersistenceManagerFactory
setNontransactionalRead()
 PersistenceManagerFactory 2nd
 Transaction
setNontransactionalWrite()
 PersistenceManagerFactory 2nd
 Transaction
setOptimistic()
 PersistenceManagerFactory 2nd 3rd
 Transaction
setOrdering() 2nd 3rd
setRestoreValues()
 PersistenceManagerFactory
 Transaction 2nd 3rd
setRetainValues()
 PersistenceManagerFactory 2nd
 Transaction
setSessionContext()
setSessionContext() 2nd
setStateManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setSynchronization() 2nd
setUserObject() 2nd
shallow copy
shared implementation cache
shared lock
sharing (FCO versus SCO)
Short
 default to SCO
 mapping to SQL type
short
 mapping to SQL type
 persistent field
Short
 persistent field
short
 SCO
SingleThreadModel 2nd
size()
 Collection
SMALLINT SQL type
SOAP 2nd
Socket
SQL 2nd 3rd
SQL 99
SQL datastore 2nd
SQL functions
 GROUP BY
 UNION
SQL LIKE
startsWith() 2nd
state transitions
stateful session beans
stateless session bean façade
stateless session beans
StateManager 2nd 3rd 4th
static 2nd
static content
static field
STATUS_COMMITTED
STATUS_ROLLEDBACK
StoreManager
strict isolation
String
 default to SCO
 mapping to SQL type
 persistent field
strong reference
Struts 2nd
struts-config.xml file 2nd
subtable
subtraction
supportedOptions() 2nd 3rd
Synchronization 2nd 3rd
 afterCompletion() 2nd 3rd 4th 5th
 beforeCompletion() 2nd
synchronized
System

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

table 2nd
table inheritance
tag library 2nd
this
 in queries 2nd
Thread
thread safe
TIMESTAMP SQL type
TINYINT SQL type
to-many relationship
toString()
 application identity
 identity
 JDOException
Transaction 2nd
 begin() 2nd 3rd 4th
 commit() 2nd 3rd 4th 5th 6th 7th 8th 9th
 getNontransactionalRead()
 getNontransactionalWrite()
 getOptimistic() 2nd
 getPersistenceManager() 2nd
 getRestoreValues() 2nd
 getRetainValues()
 getSynchronization() 2nd
 interface declaration
 isActive() 2nd
 rollback() 2nd 3rd 4th 5th 6th 7th 8th
 setNontransactionalRead()
 setNontransactionalWrite()
 setOptimistic()
 setRestoreValues() 2nd 3rd
 setRetainValues()
 setSynchronization() 2nd
transaction demarcation
transaction management
transaction-isolation level 2nd
transaction-required
transactional field
transient 2nd
transient class 2nd
transient field 2nd 3rd
transient instance 2nd
transient lifecycle states
transient state 2nd
transient transactional instance 2nd 3rd 4th
transient-clean state 2nd
transient-dirty state 2nd
transient-transactional instance
TransientTransactional 2nd
transparency
transparent data access
transparent persistence
TreeMap 2nd
 default to SCO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TreeSet 2nd
 default to SCO
type namespace
type-discriminator column 2nd
type-mapping

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

unary addition
unary bitwise complement
unbound variable
UnsupportedOperationException 2nd
URL connection-factory property
User-Defined Type (UDT)
UserName connection-factory property
UserTransaction 2nd 3rd 4th 5th 6th 7th
 begin()
 commit()
 rollback()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

validate
value attribute
value object 2nd
value-type attribute
VARCHAR SQL type 2nd
VARCHAR2 SQL type
Vector 2nd
 default to SCO
vendor-name attribute 2nd 3rd 4th 5th
VendorName
VersionNumber
view servlet
volatile 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

weak reference 2nd
web server
web services
web services endpoint
web-app servlet element
wild-card query

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

xerces.jar
XML

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

