
[Team LiB]

• Table of Contents
• Index
• Reviews
• Examples
• Reader Reviews
• Errata
• Academic
Java Database Best Practices

By George Reese

Publisher: O'Reilly

Pub Date: May 2003

ISBN: 0-596-00522-9

Pages: 286

Unlike other books on this topic, which focus on a single way to do things, Java Database Best Practices takes you
through a wide variety of different ways to store and access data, enabling you to learn which "persistence model" is
most appropriate for each type of application. This unique book covers Enterprise JavaBeans, Java Data Objects, the
Java Database Connectivity API (JDBC) and other, lesser-known options.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Reviews
• Examples
• Reader Reviews
• Errata
• Academic
Java Database Best Practices

By George Reese

Publisher: O'Reilly

Pub Date: May 2003

ISBN: 0-596-00522-9

Pages: 286

 Copyright

 Dedication

 Preface

 Audience

 Organization of This Book

 Conventions Used in This Book

 Comments and Questions

 About the Philosophers

 Acknowledgments

 Part I: Data Architecture

 Chapter 1. Elements of Database Applications

 Section 1.1. Database Application Architectures

 Section 1.2. Component Models

 Section 1.3. Persistence Models

 Chapter 2. Relational Data Architecture

 Section 2.1. Relational Concepts

 Section 2.2. Modeling

 Section 2.3. Normalization

 Section 2.4. Denormalization

 Section 2.5. Object-Relational Mapping

 Chapter 3. Transaction Management

 Section 3.1. Transactions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.2. Concurrency

 Section 3.3. JDBC Transaction Management

 Section 3.4. Transaction Management Paradigms

 Part II: Persistence Models

 Chapter 4. Persistence Fundamentals

 Section 4.1. Patterns of Persistence

 Section 4.2. A Guest Book Application

 Chapter 5. EJB CMP

 Section 5.1. Which CMP Model to Use?

 Section 5.2. The EJB 1.0 CMP Model

 Section 5.3. The EJB 2.0 CMP Model

 Section 5.4. Beyond CMP

 Chapter 6. EJB BMP

 Section 6.1. EJBs Revisited

 Section 6.2. BMP Patterns

 Section 6.3. State Management

 Section 6.4. Exception Handling

 Chapter 7. JDO Persistence

 Section 7.1. JDO or EJB?

 Section 7.2. Basic JDO Persistence

 Section 7.3. EJB BMP with JDO

 Chapter 8. Alternative Persistence Frameworks

 Section 8.1. Why Alternative Frameworks?

 Section 8.2. Persistence Approach

 Section 8.3. Persistence Operations

 Section 8.4. Searches

 Section 8.5. Beyond the Basics

 Part III: Tutorials

 Chapter 9. J2EE Basics

 Section 9.1. The Platform

 Section 9.2. Java Naming and Directory Interface

 Section 9.3. JavaServer Pages

 Section 9.4. Remote Method Invocation

 Section 9.5. Enterprise JavaBeans

 Chapter 10. SQL

 Section 10.1. Background

 Section 10.2. Database Creation

 Section 10.3. Table Management

 Section 10.4. Data Management

 Chapter 11. JDBC

 Section 11.1. Architecture

 Section 11.2. Simple Database Access

 Section 11.3. Advanced JDBC

 Chapter 12. JDO

 Section 12.1. Architecture

 Section 12.2. Enhancement

 Section 12.3. Queries

 Section 12.4. Changes

 Section 12.5. Transactions

 Section 12.6. Inheritance

 Colophon

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright
Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly & Associates, Inc. is independent of Sun
Microsystems. The licenses for all the open source tools presented in this book are included with the online examples.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps. The association between the image of a taguan and the topic of
Java database best practices is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dedication
To my beautiful wife, Monique, and the child she carries.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preface
It is never too late to become reasonable and wise; but if the insight comes late, there is always more
difficulty in starting the change.

—Immanuel Kant, Prolegomena to Any Future Metaphysics

Java database programming has grown much more complex than it was in 1996 when I wrote the first edition of my
book Database Programming with JDBC and Java (O'Reilly & Associates). The J2EE platform did not exist. Distributed
programming was RMI, JDBC was simple, and transaction management and persistence did not exist in the Java
vocabulary. Database programming in 1996 was quite simply JDBC programming.

To place database programming in a real-world context, I spent much of that book introducing ways to build robust
persistence models and manage transactions using only the JDBC API. As you can imagine, you had to do a lot of things
for yourself that developers now take for granted in the Java platform.

The Java world has certainly changed since then. Not only does Java provide you with a persistence model, it provides
you with three different persistence models built right into the core J2EE platform. Outside the J2EE platform is the
popular JDO persistence model. In addition, many tools exist to enable you to effectively use third-party and custom
persistence models. All of these choices present a problem for database programmers that simply did not exist in 1996:
what are the best approaches to database programming with the Java language?

This book seeks to aid the Java developer in appreciating the different approaches Java provides for database
programming. It helps you assess what approaches fit which problems, and what the best practices are under each
model.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Audience
This book is not an introductory text. It is also not a tutorial on any particular API. It is, instead, a description of the
best practices for using a database to drive a variety of Java application architectures. It assumes you have at least a
passing familiarity with one or more of the Java enterprise APIs, as well as SQL. You do not, however, need to be an
expert in all of them. To help you with any holes in your knowledge of these tools, I provide a few tutorial chapters at
the end of the book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Organization of This Book
This book is divided into three distinct sections. The first two sections are the meat of this book: best practices for Java
database architecture and development. The first section focuses on the architecture aspect and the second section on
the development aspect.

Part I

Chapter 1 is an overview of the art of database programming. It examines the various tools and skills needed for
database programming and covers common database application architectures. The chapter is mostly review material
for experienced database programmers.

Chapter 2 tackles one of the more difficult aspects of database programming, especially for the object-oriented
programmer: data architecture. This chapter begins with relational theory and covers critical topics such as
normalization and object-relational modeling. It is a very important chapter for database programmers of all levels of
experience.

Though relational architecture is one of the more difficult aspects of database programming, transaction management is
where database programmers make most of their mistakes. Chapter 3 covers transactions and transaction
management.

Part II

The second section begins with an overview of persistence concepts. In short, persistence is the practice of saving
application state to a data store. Chapter 4 introduces this practice with an eye on using relational databases as your
data store for Java applications.

Chapter 5 through Chapter 8 go into the best practices for different Java persistence models. Chapter 5 begins with
container-managed persistence under the Enterprise JavaBeans component model—for Versions 1 and 2. Chapter 6
tackles the other EJB persistence model, bean-managed persistence. Chapter 7 dives into an evolving, popular
persistence model, Java Data Objects. Finally, Chapter 8 looks at alternatives to the standard Java persistence models.

Part III

The third section of the book contains tutorials on the core technologies covered in this book. No reader should need to
read all of the tutorial chapters. Instead, I expect that most readers will be familiar with the subject in several, but not
all, of the tutorial chapters. The tutorial chapters provide the basic knowledge necessary to understand key concepts
used in the first two sections. Don't look to any of the tutorial chapters to make you an expert in its subject matter. I
have provided tutorials on the J2EE platform (Chapter 9), SQL (Chapter 10), JDBC (Chapter 11), and JDO (Chapter 12).

I recommend reading the first two sections in order, breaking that order only to refer to a tutorial chapter for a subject
on which you lack familiarity.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Used for filenames and directory names, programs, compilers, tools, utilities, URLs, emphasis, and first use of a
technical term.

Constant width

Used in code examples and to show the contents of files. Also used for tags, attributes, and environment
variable names appearing in the text.

Constant width italic

Used as a placeholder to indicate an item that should be replaced with an actual value in your program.

Constant width bold

Used to highlight a particular section or change in code, such as a custom tag or a change in a transaction.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can access this page
at:

http://www.oreilly.com/catalog/javadtabp

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web site
at:

http://www.oreilly.com

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

About the Philosophers

Daniel Dennett (Chapter 1)

Dennett, who teaches at Tufts University, is probably my favorite philosopher. His books are actually well
written, which is a rare quality among philosophy texts. His works run the spectrum of philosophy, but his
greatest influence lies in the philosophies of mind and science. If you want a fun philosophy book to read that
does not require you to be a philosopher, pick up his book Elbow Room. If you are looking for something more
weighty, but equally accessible, read Darwin's Dangerous Idea.

René Descartes (Chapter 2)

Though he lived from 1596 until 1650, Descartes's writings mark the beginning of modern philosophy. He was a
French philosopher who emphasized a solipsistic approach to epistemology. He is the author of the famous
quote "Cogito, ergo sum," or "I think, therefore I am."

Donald Davidson (Chapter 3)

Donald Davidson is among the most important philosophers of the late 20th century. He is particularly
influential in the philosophy of language and action theory. He is currently a professor at the University of
California, Berkeley. My senior thesis at Bates College was based on his writings.

Ludwig Wittgenstein (Chapter 4)

Ludwig Wittgenstein was a German philosopher who lived from 1889 until 1951. His primary contributions to
philosophy were in the philosophy of language. He once wrote that "philosophy is a battle against the
bewitchment of our intelligence by means of language."

Friedrich Nietzsche (Chapter 5)

Nietzsche, who lived in Germany from 1844 until 1900, is likely the most controversial "serious" philosopher.
His writings have influenced nearly every kind of philosophy but have had their greatest impact—both positive
and negative—in the area of ethics.

Martin Heidegger (Chapter 6)

Heidegger, another 20th-century German philosopher, made popular the movement started by Edmund Husserl
known as phenomenology. Phenomenology attempts to understand things as they present themselves rather
than to appeal to some sort of essential nature hidden from us. This movement eventually led to the most
popularly known philosophical movement, existentialism.

David Kolb (Chapter 7)

David Kolb was my major adviser at Bates College in Lewiston, Maine, where he is a Charles A. Dana Professor
of Philosophy. He has written extensively on Hegelian philosophy and nonlinear writing in philosophy.

Immanuel Kant (Preface, Chapter 8)

Immanuel Kant may be the most influential philosopher of the second millennium. He was a German
philosopher who lived from 1724 until 1804. He emphasized a rational approach to all philosophical pursuits.
This rationalism has had its greatest impact in the area of ethics, where moral principles are, according to Kant,
derived entirely from reason.

David Hume (Chapter 9)

David Hume was an 18th-century Scottish philosopher who wrote on a range of philosophical subjects. He is
largely responsible for the school of philosophy known as empiricism.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ruth Garrett Millikan (Chapter 10)

Ruth Garrett Millikan is a professor of philosophy at the University of Connecticut. She is an influential modern
philosopher in the philosophy of language and epistemology.

Noam Chomsky (Chapter 11)

Born in 1928, Noam Chomsky is perhaps the most famous living philosopher. While often known for his political
activism—especially during the Vietnam era—his greatest contributions to philosophy lie in the philosophy of
language.

Jean-Paul Sartre (Chapter 12)

Sartre was a novelist, a philosopher, and a member of the French Resistance during World War II. As a
philosopher, he is best known as the force behind the existentialism movement. Existentialism goes beyond
phenomenology in its claims about the essential nature of things. While phenomenology claims that we should
not appeal to an essential nature of a thing in order to understand it, existentialism says that no such essential
nature exists. A thing is exactly as it presents itself.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments
So much work other than that of the author goes into putting together a solid book. First of all, Brett McLaughlin's
editing skills and general Java knowledge have been critical to keeping me in line. Also critical to the book was the
contribution of Chapter 8 on alternative persistence frameworks by Justen Stepka. I am not much of a fan of leaving
the core platform, so this book would have been incomplete without his contribution.

Several people contributed to reviewing this book: Nick Kokotovich, Justen Stepka, and Henri Yandell. In addition,
Monique Girgis, Andy Oram, and John Viega have all at times provided a critical eye on this content.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part I: Data Architecture
Database programming begins with the database. To build effective database applications, you need to
fully appreciate the work the database does for those applications. This first section addresses the best
practices in data architecture--the design of relational database elements that support database
applications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. Elements of Database Applications
If Life is a Tree, it could have arisen from an inexorable, automatic rebuilding process in which designs
would accumulate over time.

—Daniel C. Dennett, Darwin's Dangerous Idea

Once upon a time, database programming on the Java platform was an exercise in native programming; nothing existed
within the Java platform to support database programming efforts. The first tool in the database programming arsenal
arrived in March 1996 in the form of Java's first proposed enterprise API, JDBC. JDBC enabled application developers to
use a single API to access any database from any vendor.

JDBC, however, is the start—not the end—of database programming. JDBC simply enables you to access a database; it
does not address all elements of database programming. It does not:

Ensure your database meets the need of your application

Automate the mapping of Java classes into relational entities

Provide a model for structuring your Java components

Manage application transactions

This book is about database programming; it is not about JDBC. However, because JDBC plays such a critical role in
database programming, it will play a critical role in this book. If you need to brush up on your JDBC skills, take a look at
the tutorial in Chapter 11 or my earlier book, Database Programming with JDBC and Java (O'Reilly). This book
addresses all of the elements of database programming and their respective roles in supporting real world database
applications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 Database Application Architectures
Database applications require an entire network of software in order to function. Even the most basic of database
applications—the command-line SQL tool—is a complex system involving the database engine and a separate client
utility. Architecture is the space in which all of the elements of an application operate. Before we look at each of those
elements, we should first take a look at the space itself.

Architecture identifies the hardware and software necessary to support an application and specifies how those tools
communicate within a network. When referring to architecture, different people tend to have different things in mind. In
some cases, architecture refers to the way hardware is placed on a physical network. This kind of architecture is called
network architecture. Other times, however, architecture refers to the system architecture—the way different logical
and physical components work together to create a complex network application. The last kind of architecture is
software architecture, when architecture refers to the design of one of the pieces of software that make up the system
architecture.

1.1.1 The Network Architecture

The network architecture focuses on hardware issues and how they connect to one another. The quality of your network
architecture affects security and bandwidth and limits the ability of your applications to talk with different parts of the
system. Figure 1-1 is a simple network architecture diagram.

Figure 1-1. A database server in a network architecture diagram

It shows how the network separates the Internet from the network in which the web server runs with a firewall.
Similarly, this network diagram places the database server in a separate network segment, again separated by a
firewall. In spite of the fact that very little about network architecture is specific to database applications, it can make a
significant impact on the performance of those applications. It is therefore helpful to understand those aspects most
relevant to database systems.

1.1.1.1 Network segmentation

Segmentation is the way in which the network is divided for performance and security. Routers, bridges, and firewalls
are all tools of network segmentation.

The first rule of segmentation is to divide your network into regions of equal hostility and sensitivity. Hostility describes
the attitude of people with access to a given network segment. The Internet, for example, is considered an extremely
hostile network. Your home network—assuming you have no children—is conversely minimally hostile.

Sensitivity represents the risk profile of the data within a network segment. A high-risk profile means that public
exposure or destruction of the data can cause significant harm. A sensitive network segment is therefore one that
houses data that must be kept private at all costs. IRS database servers have a very high degree of sensitivity, whereas
a Quake server ranks on the low end.

BEST PRACTICE: Place your database servers on a high-sensitivity, low-hostility network
segment. In other words, you should never place a database server directly on the
Internet or a network segment that is even routable to the Internet.

If two software components have very different levels of sensitivity, they should be on different network segments
separated by firewalls that limit the interaction between their networks. Because databases serve as primary data
storage points, they tend to have higher sensitivity profiles than other software components. As a good general rule of
thumb, database servers should be protected in a high-security network segment. In Figure 1-1, for example, a firewall
separates the web server from the database server.

BEST PRACTICE: Segment your network into regions of equal hostility and sensitivity.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEST PRACTICE: Segment your network into regions of equal hostility and sensitivity.

1.1.1.2 Bandwidth

Databases are the fountain from which data streams to all kinds of applications on the network. It is therefore critical—
especially for high-volume database servers—to allocate the necessary bandwidth to database servers. It is not
uncommon for database servers to be connected to the network through multiple fiber-based gigabit Ethernet ports.

Proper bandwidth also means paying attention to issues other than the raw size of your pipe. A good network architect
also structures the topology of the network to minimize packet collisions and bring the database network as close as
possible to the other networks that rely on the databases.

BEST PRACTICE: Place your database servers on gigabit or 100-megabit network
segments. Never use anything less than 10 megabits.

1.1.1.3 Hardware

Database engines are among the most resource-intensive applications commonly found in business environments. Solid
performance for database applications demands the proper hardware for all parts of the application. If you were to
choose only one thing to spend money on, you should spend it on RAM. Running a very close second to RAM in
importance, however, is disk access speed.

BEST PRACTICE: When selecting hardware for database servers, spend your money on
RAM and high-speed disk access.

Ultimately, a database will run faster if it can cache a lot of data in RAM. Ideally, you have more memory for your
database engine than you have data. In reality, however, that much memory is rarely possible. Good database
performance therefore needs a solid array of disks. Though SCSI disks are the ideal, a RAID of IDE disks can support a
web site's database just fine. The disks should then be divided into at least three sets of responsibilities:

System data

Database log files

 Database tables and indexes

It is even better if your database engine enables you to split up tables and indexes on different disks. You want the
database tables and indexes on the fastest drives you have available.

BEST PRACTICE: Split your tables and indexes across different physical drives to
maximize database performance.

1.1.2 Various System Architectures

The role of the system architect is to look at the overall technology objectives of an organization and establish a system
architecture that maximizes the reuse of critical components. A simple web application can work well in any number of
different system architectures; it works best, however, when it fits nicely with the other applications in that
architecture. For example, you can build an excellent web application using Perl and MySQL. If the organization you are
building it for, however, has an established J2EE (Java 2 Enterprise Edition) infrastructure with an Oracle backend, you
are introducing new components requiring maintenance that cannot be easily integrated into that organization's existing
environment.

The starting point for determining an appropriate system architecture is to understand the basic enterprise platform for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The starting point for determining an appropriate system architecture is to understand the basic enterprise platform for
the organization. Because I am covering database programming in a J2EE environment, I will assume your basic
enterprise platform is J2EE. Alternatives include .NET and general web services. These platforms all come with basic
approaches to different kinds of architectural requirements. In this section, I will briefly discuss the different system
architectures that fit inside the J2EE platform.

Making Architectural Decisions
A lot of time, technical people want to believe there is one true architecture. Unfortunately, there is no
such thing. There is only the right architecture for the right organization. I have developed tools I call
architectural principles that I use to help me make technology decisions. They help with questions like:

What should the organization's enterprise platform be?

What is the appropriate system architecture within that platform?

What application server/content management server/database engine should we use?

In other words, architectural principles form the basis of every technology decision.

Architectural principles are maxims that no technology decision can violate without rigorous justification
for the violation. They complete the phrase, "Without strong justification to the contrary, all of our
technologies will..." Examples of architectural principles include:

Be based on open standards.

Leverage open source technologies.

Be fully internationalized and localized.

BEST PRACTICE: Develop architectural principles and use them as the basis for all
technology decisions for your application.

1.1.2.1 The client/server architecture

The client/server architecture is one of the oldest distributed computing architectures in use on the J2EE platform. You
will sometimes hear people refer to the client/server architecture as a two-tier architecture. The term two-tier describes
the way in which application processing can be divided in a client/server application. A two-tier application ideally
provides multiple workstations with a uniform presentation layer that communicates with a centralized database. The
presentation layer is generally the client, and the database layer is the server.

Figure 1-2 shows how two-tier systems provide clients with access to centralized data. A client like a Java Swing
application talks directly to a database and displays the data in the user interface.

Figure 1-2. The client/server architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A client/server architecture is definitely appropriate for some applications. Specifically, any application that must deal
directly with the database needs to be a client/server application. For example, the command-line tools that enable you
to enter arbitrary SQL statements are client/server applications that fit this profile. In fact, just about any database
administration tool is a good candidate for a client/server architecture.

A client/server architecture falls apart, however, when application logic needs to operate on the data from the database
or when application logic needs to be shared among multiple clients. The client/server architecture suffers specifically
from the following problems:

The fat client

Perhaps you have seen a client/server application evolve over time to include more and more application logic
operating on data from the database. Ideally, the client/server architecture is supposed to let each machine do
only the processing relevant to its specialization—graphical presentation of data on the client and the storage
and retrieval of data on the server. This breakdown, however, does not clearly provide a place for application
logic—also known as business logic. As more and more business logic ends up in the client, you end up with a
problem known as the fat client. Fat client systems are notorious for their inability to adapt to changing
environments and scale with growing user and data volume.

Object reuse

Object reuse[1] is a very vague, yet central concept to object-oriented software engineering. You can reuse
code through cutting and pasting or through linking either statically or dynamically to an API, or you can reuse
shared object instances. The ideal form of reuse is to reuse shared object instances among applications. Of
course, that requires a single point of focus for applications. Only the database is shared under the two-tier
model. In order to reuse object instances, you need to embed them in the server—and create a fat server—or
move to a different architecture.

[1] I am talking specifically about reuse in the development workflows of a project. The most effective
reuse occurs in the analysis and design workflows.

As I mentioned before, in spite of its shortcomings, a two-tier architecture does have a place in application
development. In addition to applications tied directly to the database, simple applications with immediate deadlines and
no maintenance or reuse requirements are prime candidates. The following checklist provides important questions to
ask before committing yourself to a two-tier design. If you can answer "yes" to each of the questions in the checklist,
then a two-tier architecture is likely your best solution. Otherwise, you should consider one of the other architectures
supported by the J2EE platform.

Does your application emphasize time-to-market over architecture?

Does your application use a single database?

Is your database engine located on a single host?

Is your database likely to stay approximately the same size over time?

Is your user base likely to stay approximately the same size over time?

Is there no web interface to your application?

Are your requirements fixed with little or no possibility of change?

Do you expect minimal maintenance after you deliver the application?

1.1.2.2 The simple web site architecture

Perhaps the simplest—and most familiar—architecture to Internet developers is that of the simple web site. Figure 1-3
shows the simple web site architecture with a page generation technology like JSPs (JavaServer Pages) or servlets
talking directly to a database engine. In short, this is the web equivalent to the client/server architecture. Its critical
difference is that an intermediate tier is structuring the data for display and providing it to the client.

Figure 1-3. The simple web site architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-3. The simple web site architecture

In general, all of the faults of the client/server architecture apply to this architecture. It does, however, provide some
flexibility on the display side. You can use the web server as the location for your shared object access. Unfortunately,
you cannot access the objects directly; you must access them through the display information provided by the web
server. The advantage this architecture has over the pure client/server architecture is that you can now provide
multiple views of the same object instances. Unfortunately, these views must be browser-based and have roughly the
same content.

1.1.2.3 Peer-to-peer

Peer-to-peer (P2P) is a new name for an old architecture. Every other architecture presented in this book seeks to
break processing down into specialized tiers that handle one kind of application processing. The peer-to-peer
architecture still has physical divisions among different kinds of logic, but it hides those divisions behind an egalitarian
logical façade. Under the P2P architecture, all logical players can perform all tasks.

Figure 1-4 shows how the P2P architecture divides the network into equal nodes. Each node is capable of making direct
contact with any other node and requesting services from that node. Similarly, each node is capable of providing
services to any other node.

Figure 1-4. The logical view of the P2P architecture

Within a P2P node, the system can be performing any number of tasks. One of the beauties of the P2P architecture is
that the details of how a given node is providing its services are completely hidden from the other nodes. You could, for
example, implement a P2P auction network in which one node consisted of a database server and a GUI and another
node consisted of flat files and a command-line utility.

Another advantage of a P2P architecture is that there's no single point of failure. Assuming the problem domain is
appropriate to P2P, the failure of any one node—or even a large group of nodes—doesn't affect the functionality of the
system built on top of the architecture. The remaining nodes simply seek services from one another.

In reality, the development of a scalable P2P system is quite a challenge. No one has truly gotten this right yet. Pure
P2P networks like Gnutella suffer from serious scalability issues and an inability of many nodes to actually request
services from other nodes. Other P2P systems like the infamous Napster compromise on the P2P architecture and thus
compromise on its advantages. Napster created a single point of failure for the network and thus ceased to exist in a
meaningful sense when that point of failure was shut down.

You should consider a P2P architecture under the following conditions:

You need massive failover capabilities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You need massive failover capabilities.

Replication of services to all nodes is practical.

The source of services is not important—i.e., no security or trust issues exist.

1.1.2.4 Distributed architectures

Logic in distributed architectures is divided among any number of specialized tiers for handling that data. The number of
tiers runs well beyond the extra tier demanded by client/server for business logic. Distributed architectures include tiers
for business logic, content services, and everything else you can imagine.

Like the P2P architecture, distributed architectures are logical in that they provide for a high-level division of labor
among the following tiers:

User interface layer

The user interface (UI) layer is responsible for all direct user interaction. A physical implementation of the UI
layer could consist of a web browser or be a combination of browser, command-line, and Swing applications.

Content generation layer

The content generation layer is responsible for structuring content for display to the UI layer and subsequently
routing user input. It is generally a web server or cluster of web servers using static and dynamic content
generation tools to pull content from a content management layer.

Content management layer

The content management layer stores content from structuring and transmission to a UI. It includes content
management systems and digital asset management systems.

Web services layer

Whereas the content generation layer serves content to human users, the web services layer serves it to other
applications. It is the integration point for modern applications across a LAN (Local Area Network). It exchanges
messages with web services clients using open standards like XML (Extensible Markup Language).

Business logic layer

Business objects in the business logic layer execute business logic on behalf of web services and users. It
serves as a shared point for all business logic within an organization.

Integration services layer

The integration services layer ties modern applications to their legacy counterparts through tools like enterprise
messaging services and proprietary APIs.

Data storage

This layer is where the database sits. In a real enterprise, the data storage layer consists of many different
databases serving up various kinds of data.

Figure 1-5 shows an architecture for distributed applications.

Figure 1-5. An architecture for distributed Internet applications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-5. An architecture for distributed Internet applications

When you are writing EJB (Enterprise JavaBeans) applications, you're using a distributed architecture. How many of the
layers you use depends on the needs of your application. Regardless of how many layers you use, this architecture is
definitely the most complex architecture covered in this book. Unlike the P2P architecture, no level of generality hides
the physical services behind each layer. The business logic layer seeking data storage services knows what kind of data
storage services it seeks.

Though a distributed architecture provides many advantages over other architectures, it is not without its drawbacks. I
have already mentioned the complexity it adds to a system. It is also hard to find system architects proficient in all
layers of a distributed application architecture. Though the J2EE platform attempts to mitigate these issues, it does not
mitigate them completely.

1.1.3 Software Architecture

Software architecture describes the internal design of a software component. It identifies the classes that make up the
piece of software and what processes those classes support. Standard software development methodologies provide for
two common views of a software architecture: a static view and a behavioral view. Figure 1-6 is a UML (Unified
Modeling Language)[2] class diagram that serves as the static view, and Figure 1-7 is a UML sequence diagram
providing the behavioral view.

[2] UML is the standard language in which architects communicate software design decisions.

Figure 1-6. A UML class diagram

Figure 1-7. A UML sequence diagram

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In designing an application, you need to pick out design patterns that will provide a level of reliability to its underlying
logic. The first step to identifying the design patterns is identifying problems in generic terms. In database
programming, you need design patterns to support persistence and encapsulation of business logic.

Over the course of this book, we will encounter many different design patterns. In this section, my goal is simply to
provide an overview of these patterns. If you do not fully understand them after this section, you should not be
concerned. I will be talking in more detail about each of them later.

BEST PRACTICE: Leverage design patterns when your problem matches an established
pattern.

1.1.3.1 User interface patterns

The UI provides a view of the system specific to the role of the user in question. Good UI patterns help keep the user
interface decoupled from the server. Though to some degree UI patterns depend on the UI technology, there are also
some generic patterns like the model-view-controller pattern that serve any form of UI.

1.1.3.1.1 The model-view-controller pattern.

Java Swing is based entirely on a very important UI pattern called the model-view-controller pattern (MVC). In fact, this
key design pattern is what makes Java so perfect for distributed enterprise development. The MVC pattern separates a
GUI component's visual display (the view) from the thing it is a view of (the model) and the way in which the user
interacts with the component (the controller).

In a client/server application that displays the rows from a database table in a Swing display, for example, the database
serves as the model. In this application, the columns and rows of the Swing table match the columns and rows of the
database table. The Swing table is the view. The controller is a less obvious object that handles user mouse clicks and
key presses and determines what the model or view should do in response to those user actions.

Swing actually uses a variant of this pattern called the model-delegate pattern. The model-delegate pattern combines
the view and the controller into a single object that delegates to its model.

BEST PRACTICE: Use the MVC paradigm or a variation on the MVC paradigm in all
applications with user interface needs.

The MVC pattern is not limited to Swing applications. It is also the preferred way of building the HTML (Hypertext
Markup Language) pages for web applications. Figure 1-8 illustrates the MVC pattern in a JSP-based web application. In
this case, the JSP page is the view, the servlet the controller, and the EJB or JavaBean the model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-8. The MVC pattern in a JSP application

1.1.3.1.2 The listener pattern.

For the Swing example of MVC, it would be nice if the view could be told about any changes to the model. The listener
pattern provides a mechanism by which interested parties are notified of events in other objects. You have probably
seen this pattern in Swing development as well.

The listener pattern enables one object to listen to specific events that occur to another object. A common listener in
the JavaBeans component model is something called a PropertyChangeListener. One object can declare itself a
PropertyChangeListener by implementing the java.beans.PropertyChangeListener interface. It then tells other objects that it is
interested in property changes by calling the addPropertyChangeListener() method in any JavaBean it cares about. The
important part of this pattern is that the object being listened to needs to know nothing about its listeners except that
those objects want to know when a property has changed. Consequently, you can design objects that live well beyond
the uses originally intended for them.

1.1.3.2 Business patterns

As a general rule, the midtier business logic is likely to use just about every design pattern in common use. The two
most common general patterns I have encountered are the composite and factory patterns. More important to the
business logic, however, is the component model.

The component model defines the standards you rely on for encapsulating your application logic. Java has two major
component models: JavaBeans and Enterprise JavaBeans. JavaBeans defines a contract between applications and their
components that tells applications how to find out what attributes are supported by a component and how to trigger
that component's behavior. Enterprise JavaBeans takes the basic contract of JavaBeans into the realm of distributed
computing. EJB provides for communication among components across a network, the ability to search for components,
and the ability to include components in transactions.

1.1.3.2.1 The composite pattern.

The composite pattern appears everywhere in the real world. It represents a hierarchy in which some type of object
may both be contained by similar objects and contain similar objects. Figure 1-9 shows a UML diagram describing the
composite pattern.

Figure 1-9. A class diagram of the composite pattern

BEST PRACTICE: Look carefully for the composite pattern in the problems you are
modeling. It appears everywhere in problem domains.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To put a more concrete face on the composite pattern, think of a virtual reality game that attempts to model your
movements through a maze. In your game, you might have a Room class that can contain Item objects. Some of those
Item objects (like a bag) can contain other Item objects. Your room is a container, and bags are containers. On the other
hand, things like money and stones cannot contain anything. To complicate matters further, the room cannot be
contained by anything greater than it. The result is the class diagram in Figure 1-10.

Figure 1-10. The composite pattern in practice

1.1.3.2.2 The factory pattern.

Another common pattern found in the core Java libraries is the factory pattern. The pattern encapsulates the creation of
objects behind a single interface. Java internationalization support is peppered with implementations of the factory
design pattern. The java.util.ResourceBundle class, for example, contains logic that enables you to find a bundle of
resources for a specific locale without having to know which subclass of ResourceBundle is the right one to instantiate. A
ResourceBundle is an object that might contain translations of error messages, menu item labels, and text labels for your
application. By using a ResourceBundle, you can create an application that will appear in French to French users, in
German to German users, and in English to English and American users.

Because of the factory pattern, using a ResourceBundle is quite easy. To create a Save button, for example, you might
have the following code:

ResourceBundle bundle =
 ResourceBundle.getBundle("labels", Locale.getDefault());
Button button = new Button(bundle.getString("SAVE");

This code actually shows two factory methods: Locale.getDefault() and ResourceBundle.getBundle(). Locale.getDefault()
constructs a Locale instance representing the locale in which the application is running.

The goal of this pattern is to capture the creation logic of certain objects in a single method. The benefit of providing a
single location for that logic is that the logic can vary without impacting applications that rely on those classes. Sun
Microsystems, for example, could change the getBundle() method to look for XML-based property bundles as well as
traditional Java property bundles without any impact to the masses of legacy Java systems.

1.1.3.3 Persistence patterns

One key to smooth development in a distributed architecture is providing a clear division between data storage code
and business logic code. At some point, a business object needs to save itself to a data store. You will chose a
persistence model that supports the persistence of your business components. The goal is to make sure that the
business object knows nothing about how it is stored in the database—in fact, it should not even know that its
persistence form is a database.

The form of your persistence model will determine the underlying pattern you use. Later in the book, we will get into a
custom persistence model based on the data access object pattern.

1.1.3.3.1 The data access object pattern.

The data access object pattern—also referred to as the persistence delegate pattern—relies on a delegate to make a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The data access object pattern—also referred to as the persistence delegate pattern—relies on a delegate to make a
component persistent. Each business component sees generic methods in its delegate for persistence operations like
loading, creating, saving, and deleting the component. Behind those methods are implementations for a specific data
storage technology and schema. In our case, the data storage technology is a relational database.

BEST PRACTICE: Use the data access object pattern in your database applications. It is a
key aspect of most of the chapters in this book. I describe it in greater detail in Chapter 4.

1.1.3.3.2 The memento pattern.

In the persistence delegate pattern, how does the persistence delegate know about the state of the object it is
persisting? You could pass the object to the persistence methods, but that action requires your delegate to know a lot
more about the objects it supports that you probably want. Another design pattern—the memento pattern—comes to
the rescue here.

A memento is a tool for capturing an object's state and safely passing it around. The advantage of the memento pattern
is that it enables you to modify the components and the delegates independently. A change to the component has no
effect on the delegate and a change to the delegate has no effect on the component. The persistence handler knows
only how to get the data it needs to support the underlying data storage schema from the memento. I provide a
concrete implementation of the memento pattern later in the book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 Component Models
We have already touched a bit on component models. A component model defines the various aspects of encapsulating
business logic in software. The Java platform provides two major component models:

The JavaBeans component model

The Enterprise JavaBeans component model

Enterprise JavaBeans work well only in distributed architectures and the P2P architecture. JavaBeans, on the other
hand, work in any architecture. If you use JavaBeans in a distributed architecture, however, you will have to write your
own logic to support interprocess communication, security, transaction management, and other functionality that comes
free with EJBs.

1.2.1 JavaBeans

The JavaBeans specification defines the way in which you should write your components so they can be used by other
components and application elements. When you write JavaBeans, applications that know nothing about those beans
can still use them. One example of JavaBeans in action is the development of JSP tag libraries. Your tag handlers are
JavaBeans components. A JSP container can access the properties in your tag library because the way in which you
write those properties uses standard getter and setter methods defined by the JavaBeans specification.

The beauty of the JavaBeans specification is its simplicity. To conform to it, you need only write your getters and setters
using standard getXXX() and setXXX() method calls. You can optionally implement listener support to enable applications
to listen for changes in properties. There is really nothing much more to the component model.

Just as simplicity is JavaBeans advantage, it is also its disadvantage. The JavaBeans specification does not provide for
many of the following pieces necessary in distributed architectures:

Transaction support

Transaction support enables your components to put in database transactions without requiring a programmer
to worry about when to start and end the transaction. If you want transaction support with JavaBeans, you
need to write your own transaction logic.

Distributed access

Distributed access provides direct access to your component through some distributed component model—RMI,
CORBA, EJB, DCOM, etc. Because JavaBeans is not a distributed component model, you have to manually
combine your JavaBeans with another component model—generally, RMI—for exporting components.

Security

If you make your components available over a network, you need a mechanism for securing them against
unauthorized access. If you are using JavaBeans, you will have to write your own code to authenticate clients
and authorize their component access.

Persistence management

Persistence management automatically maps your components to a data store. In other words, with a
component model that provides persistence management, you never have to write any JDBC code. JavaBeans,
however, requires you to become quite familiar with JDBC in order to save the state of the beans to a relational
database.

Searching

Searching enables applications to search for the components they need. Again, if you are using JavaBeans, you
will have to write your own search methods and leverage JDBC queries to support component searching.

1.2.2 Enterprise JavaBeans

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Enterprise JavaBeans component model is basically a component model for distributed architectures. It provides
many of the features lacking in JavaBeans at the cost of JavaBeans simplicity. Because the EJB component model
handles all of these aspects of distributed component management, you can literally pick and choose the best-designed
business components from different vendors and make them work and play well with one another in the same
environment. EJB is now the standard component model for capturing distributed components on the Java platform. It
hides from you the details you would have had to worry about with JavaBeans.

One of the benefits of the EJB approach is that it separates different application development roles into distinct parts so
that the outputs of one role are usable in different environments by the players of the other roles. You can use your EJB
container, for example, to house components written by third-party vendors or custom written by your team. Similarly,
a JDBC service provider can deploy their JDBC drivers in any EJB container without impacting transaction management.

Figure 1-11 illustrates what it takes to code a single component under the EJB component model. You have the actual
bean, the home interface, and a remote interface. When you deploy a bean in a container, the container creates
implementations of your home and remote interfaces. Contrast all of this work with the simplicity of the JavaBeans
component model. Not only do you write just one class, but what you see is what you get—nothing fancy happens out
of your view.

Figure 1-11. The EJB component model

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.3 Persistence Models
A persistence model dictates how your components persist themselves to a data store. The EJB component model, for
example, comes with a built-in persistence model in the form of container-managed persistence. When you use the
container-managed persistence model with Enterprise JavaBeans, you do not have to write a line of database access
code. Instead, you specify a database mapping when you deploy the application through deployment configuration files.
The EJB container manages the rest.

Other persistence models may perform all or part of the work necessary to implement component persistence. Over the
course of this book, we will examine the most popular persistence models for both the JavaBeans and EJB component
models.

1.3.1 EJB Persistence

Until recently, container-managed persistence in EJB has proven to be insufficient for most application development.
Most EJB developers write their own persistence logic for their beans—a practice called bean-managed persistence.
Bean-managed EJB programmers use some other persistence model when constructing their components. The full
gamut of EJB-specific persistence models include:

EJB 1.x CMP

This model is container-managed persistence (CMP) under the EJB 1.x specification. As I noted earlier, few
people actually use this persistence model. It has difficulties with such basic persistence operations as searching
and primary key management. It also does not provide a solid mapping of many-to-many relationships.

BMP

Bean-managed persistence (BMP) is not itself a persistence model. It instead means that you are using some
non-EJB persistence model for storage of your EJB components.

EJB 2.x CMP

Because of the massive shortcomings of EJB 1.x CMP, EJB 2.0 introduced a new container-managed persistence
model. Though it is not yet widely supported, it does promise to address the shortcomings of EJB 1.x CMP. To
meet this challenge, however, it introduces a new query language. Because many alternative persistence
models have evolved, it is unclear if EJB 2.x CMP will be accepted.

1.3.2 Other Persistence Models

Many persistence models have evolved both to address shortcomings in EJB persistence models and to support the
persistence of non-EJB systems. If you have read my book Database Programming with JDBC and Java, then you have
seen one such alternative persistence model. Among today's most popular alternatives is Java Data Objects (JDO). We
will examine JDO and my custom persistence model as well as several others over the course of this book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. Relational Data Architecture
Good sense is the most evenly shared thing in the world, for each of us thinks that he is so well
endowed with it that even those who are the hardest to please in all other respects are not in the habit
of wanting more than they have. It is unlikely that everyone is mistaken in this. It indicates rather that
the capacity to judge correctly and to distinguish true from false, which is properly what one calls
common sense or reason, is naturally equal in all men, and consequently the diversity in our opinions
does not spring from some of us being more able to reason than others, but only from our conducting
our thoughts along different lines and not examining the same things.

—René Descartes Discourse on the Method

Database programming begins with the database. A well-performing, scalable database application depends heavily on
proper database design. Just about every time I have encountered a problematic database application, a large part of
the problem sat in the underlying data model. Before you worry too much about writing Java code, it is important to lay
the proper foundation for that Java code in the database.

Relational data architecture is the discipline of structuring databases to serve application needs while remaining scalable
to future demands and usage patterns. It is a complex discipline well beyond the scope of any single chapter. We will
focus instead on the core data architecture needs of Java applications—from basic data normalization to object-
relational mapping.

Though knowledge of SQL (Structured Query Language) is not a requirement for this chapter, I use it to illustrate some
concepts. I provide a SQL tutorial in the tutorial section of the book should you want to dive into SQL now. You will
definitely need it as we get further into database programming.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.1 Relational Concepts
Before we approach the details of relational data architecture, it helps to establish a base understanding of relational
concepts. If you are an experienced database programmer, you will probably want to move on to the next section on
normalization. In this section, we will review the key concepts behind relational databases critical to an in-depth
understanding of relational data architecture.

Databases and Database Engines
Developers new to database programming often run into problems understanding just what a database is.
In some contexts, it represents a collection of data like the music library. In other contexts, however, it
may refer to the software that supports that collection, a process instance of the software, or even the
server machine on which the process is running.

Technically speaking, a database is really the collection of related data and the relationships supporting
the data. The database software—a.k.a the database management system (DBMS)—is the software, such
as Oracle, Sybase, MySQL, and DB2, that is used to store that data. A database engine, in turn, is a
process instance of the software accessing your database. Finally, the database server is the computer on
which the database engine is running.

In the industry, this distinction is often understood from context. I will therefore continue to use the term
"database" interchangeably to refer to any of these definitions. It is important, however, to database
programming to understand this breakdown.

2.1.1 The Relational Model

A database is any collection of related data. The files on your hard drive and the piles of paper on your desk all count as
databases. What distinguishes a relational database from other kinds of databases is the mechanism by which the
database is organized—the way the data is modeled. A relational database is a collection of data organized in
accordance with the relational model to suit a specific purpose.

Relational principles are based on the mathematical concepts developed by Dr. E. F. Codd that dictate how data can be
structured to define data relationships in an efficient manner. The focus of the relational model is thus the data
relationships. In short, by organizing your data according to the relational model as opposed to the hierarchical
principles of your filesystem or the random mess of your desktop, you can find your data at a later date much easier
than you would have had you stored it some other way.

A relationship in relational parlance is a table with columns and rows.[1] A row in the database represents an instance
of the relation. Conceptually, you can picture a table as a spreadsheet. Rows in the spreadsheet are analogous to rows
in a table, and the spreadsheet columns are analogous to table attributes. The job of the relational data architect is to
fit the data for a specific problem domain into this relational model.

[1] You will sometimes see a row referred to as a tuple—especially in more theoretical discussions of relational
theory. Columns are often referred to as attributes or fields.

Other Data Models
The relational model is not the only data model. Prior to the widespread acceptance of the relational
model, two other models ruled data storage:

The hierarchical model

The network model

Though systems still exist based on these models, they are not nearly as common as they once were. A
directory service like ActiveDirectory or OpenLDAP is where you are most likely to engage in new
hierarchical development.

Another model—the object model—is slowly coming into favor for limited problem domains. As its name
implies, it is a data model based on object-oriented concepts. Because Java is an object-oriented
programming language, it actually maps best to the object model. However, it is not as widespread as the
relational model and is definitely not proven to support systems on the scale of the relational model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1.2 Entities

The relational model is one of many ways of modeling data from the real world. The modeling process starts with the
identification of the things in the real world that you are modeling. These real world things are called entities. If you
were creating a database to catalog your music library, the entities would be things like compact disc, song, band,
record label, and so on. Entities do not need to be tangible things; they can also be conceptual things like a genre or a
concert.

BEST PRACTICE: Capture the "things" in your problem domain as relational entities.

An entity is described by its attributes. Back to the example of a music library, a compact disc has attributes like its title
and the year in which it was made. The individual values behind each attribute are what the database engine stores.
Each row describes a distinct instance of the entity. A given instance can have only a single value for each attribute.

Table 2-1 describes the attributes for a CD entity and lists instances of that entity.

Table 2-1. A list of compact discs in a music library
Artist Title Category Year

The Cure Pornography Alternative 1983

Garbage Garbage Grunge 1995

Hole Live Through This Grunge 1994

The Mighty Lemon Drops World Without End Alternative 1988

Nine Inch Nails The Downward Spiral Industrial 1994

Public Image Limited Compact Disc Alternative 1986

Ramones Mania Punk 1988

The Sex Pistols Never Mind the Bollocks, Here's the Sex Pistols Punk 1977

Skinny Puppy Last Rights Industrial 1992

Wire A Bell Is a Cup Until It Is Struck Alternative 1989

You could, of course, store this entire list in a spreadsheet. If you wanted to find data based on complex criteria,
however, the spreadsheet would present problems. If, for example, you were having a "Johnny Rotten Night" party
featuring music from the punk rocker, how would you create this list? You would probably go through each row in the
spreadsheet and highlight the compact discs from Johnny Rotten's bands.

Using the data in Table 2-1, you would have to hope that you had in mind an accurate recollection of which bands he
belonged to. To avoid taxing your memory, you could create another spreadsheet listing bands and their members. Of
course, you would then have to meticulously check each band in the CD spreadsheet against its member information in
the spreadsheet of musicians.

2.1.3 Constraints

What constitutes identity for a compact disc? In other words, when you look at a list of compact discs, how do you
know that two items in the list are actually the same compact disc? On the face of it, the disc title seems as if it might
be a good candidate. Unfortunately, different bands can have albums with the same title. In fact, you probably use a
combination of the artist name and disc title to distinguish among different discs.

The artist and title in our CD entity are considered identifying attributes because they identify individual CD instances. In
creating the table to support the CD entity, you tell the database about the identifying attributes by placing a constraint
on the database in the form of a unique index or primary key. Constraints are limitations you place on your data that
are enforced by the DBMS. In the case of unique indexes (primary keys are a special kind of unique index), the DBMS
will prevent the insertion of two rows with the same values for the entity's identifying attributes. The DBMS would
prevent, for example, the insertion of another row with values of 'Ramones' and 'Mania' for the artist and title values in a
CD table having artist and title as a unique index. It won't matter if the values for all of the other columns differ.

BEST PRACTICE: Use constraints to help enforce the data integrity of your system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEST PRACTICE: Use constraints to help enforce the data integrity of your system.

Constraints like unique indexes help the DBMS help you maintain the overall data integrity of your database. Another
kind of constraint is formally known as an attribute domain. You probably know the domain as its data type. Choosing
data types and indexes along with the process of normalization are the most critical design decisions in relational data
architecture.

2.1.3.1 Indexes

An index is a constraint that tells the DBMS about how you wish to search for instances of an entity. The relational
model provides for three main kinds of indexes:

Index

An index in the generic sense is a simple tool that tells the DBMS what kind of searches you intend to perform.
With this information, the DBMS can organize information to make the searches go quickly. A very crude way to
think of an index is as a Java HashMap in which the key is your index attribute and the values are arrays of
matching rows.

Unique index

A unique index is an index whose values are guaranteed to be unique. In other words, instead of an array of
matching rows, this index is like a HashMap that returns a single value for its key. The index created earlier for
the artist and title columns in the CD table is an example of a unique index.

Primary key

A primary key is a special unique index that acts as the main identifier for the row. A table can have any
number of unique indexes, but it can have only one primary key.

We can examine the impact of indexes by creating the CD entity as a table in a MySQL database and using a special
SQL command called the EXPLAIN command. The SQL to create the CD table looks like this:

CREATE TABLE CD (
 artist VARCHAR(50) NOT NULL,
 title VARCHAR(100) NOT NULL,
 category VARCHAR(20),
 year INT
);

The EXPLAIN command tells you what the database will do when trying to run a query. In this case, we want to look at
what happens when we are looking for a specific compact disc:

mysql> EXPLAIN SELECT * FROM CD
 -> WHERE artist = 'The Cure' AND title = 'Pornography';
+-------+------+---------------+------+---------+------+------+------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------+------+---------------+------+---------+------+------+------------+
| CD | ALL | NULL | NULL | NULL | NULL | 10 | where used |
+-------+------+---------------+------+---------+------+------+------------+
1 row in set (0.00 sec)

The important information in this output for now is to look at the number of rows. Given the data in Table 2-1, we have
10 rows in the table. The results of this command tell us that MySQL will have to examine all 10 rows in the table to
complete this query. If we add a unique index, however, things look much better:

mysql> ALTER TABLE CD ADD UNIQUE INDEX (artist, title);
Query OK, 10 rows affected (0.20 sec)
Records: 10 Duplicates: 0 Warnings: 0
mysql> EXPLAIN SELECT * FROM CD
 -> WHERE artist = 'The Cure' AND title = 'Pornography';
+-------+-------+---------------+--------+---------+-------------+------+
| table | type | possible_keys | key | key_len | ref | rows |
+-------+-------+---------------+--------+---------+-------------+------+
| CD | const | artist | artist | 150 | const,const | 1 |
+-------+-------+---------------+--------+---------+-------------+------+
1 row in set (0.00 sec)
mysql>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql>

The same query can now be executed simply by examining a single row.

BEST PRACTICE: Make indexes for attributes you intend to search against.

Unfortunately, the artist and title probably make a poor unique index. First of all, there is no guarantee that a band will
actually choose distinct names for its albums. Worse, in some circumstances, bands have chosen to have the same
album carry different names. Public Image Limited's Compact Disc is an example of such an album. The cassette
version of the album is called Cassette.

Even if artist and title were solid identifying attributes, they still make for a poor primary key. A primary key must meet
the following requirements:

It can never be NULL.

It must be unique across all entity instances.

The primary key value must be known when the instance is created.

In addition to these requirements, good primary keys have the following characteristics:

The primary key should never change value.

The primary key attributes should have no meaning except to uniquely identify the entity instance.

It is very common for people to find attributes inherent in an entity and chose one or more of those identifying
attributes as a primary key. Perhaps the best example of this practice is the use of an email address as a primary key.
Email addresses, however, can and do change. A change to a primary key attribute can cause an instance to become
inaccessible to anyone with old information about the instance. In plain English, it can break your application.

Another example of a common primary key with meaning is a U.S. Social Security number. It is supposed to be unique.
It is never supposed to change. You, however, have no control over its uniqueness or whether it changes. As it turns
out, sometimes the uniqueness of Social Security numbers is violated. In addition, they do sometimes change.
Furthermore, in many cases, the law restricts your ability to share this information. It is therefore best to choose a
primary key with no external meaning; you will control exactly how it is used and have the full power to enforce its
uniqueness and immutability.

BEST PRACTICE: Never use meaningful attributes or attributes whose values can change
as primary keys.

The solution is to create a new attribute to serve as the primary identifier for instances of an entity. For the CD table,
we will call this new attribute the cdID. The SQL to create the table then looks like this:

CREATE TABLE CD (
 cdID INT NOT NULL,
 artist VARCHAR(50) NOT NULL,
 title VARCHAR(100) NOT NULL,
 category VARCHAR(20),
 year INT,
 PRIMARY KEY (cdID),
 INDEX (artist, title),
 INDEX (category),
 INDEX (year)
);

You may have noted that my naming style does not redundantly name columns like title
cdTitle. Yet I chose to name the primary key for the CD table cdID instead of id. This choice
basically makes the use of data modeling tools a lot simpler. In short, data modeling tools
look for natural joins—joins between two tables when the common columns share the
same name, data type, and value. I discuss natural joins in more detail in Chapter 10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEST PRACTICE: Include the table name in the primary key name to assist data modeling
tools.

Ideally, you always search on unique indexes. In the real world, however, you will select on attributes like the year or
genre that are not unique. You can still help the database organize the underlying data storage by creating plain
indexes. In general, you want any attribute you commonly search on to be indexed. An index does, however, come with
some downsides:

Indexes are stored apart from the table data. Every index thus adds to the disk space requirements of the
database.

Every change to the table requires every index to be updated to reflect the changes.

In other words, if you have a table on which you perform a significant number of write operations, you want to
minimize your indexes to those attributes that appear frequently in queries.

Finally, as you have already seen, you can have indexes—including primary keys—that are formed out of any number of
identifying columns so long as those columns together sufficiently identify a single entity instance. It is always a good
idea, however, to build primary keys out of the minimal number of columns possible.

BEST PRACTICE: Use the smallest number of columns possible in your primary keys.

2.1.3.2 Domains

The proper choice of data type is another critical aspect of relational data architecture. It constrains the kind of data
that can be stored for a given attribute. By creating an email attribute as a text value, you prevent people from storing
numbers in the field. A time-oriented domain like a SQL DATE enables you to perform time arithmetic on date values.

The domains that exist in a relational database depend on the DBMS of choice. Those that support the SQL specification
generally support a core set of data types. Just about every database engine comes with its own, proprietary data
types. When modeling a system, you should use SQL-standard data types.

Primary keys deserve special consideration when you are putting domain constraints on an entity. Because they are the
primary mechanism for getting access to an entity instance, it is important that the database is able to do quick
matches against primary key values. In general, numeric types form the best primary keys. I recommend the use of
64-bit, sequentially generated integers for primary key columns. The only exception is for lookup tables.

A lookup table is a small table with a known, finite set of data like a table containing a list of states or, with respect to
the music library example, a set of genres. In the case of lookup tables, they more often than not have codes against
which you will do most lookups. For example, you will almost always retrieve the state of Maine from a State table by its
abbreviation ME. It therefore makes more sense to use fixed character data types like SQL's CHAR for primary keys in
lookup tables. The length of these fixed character values should be no more than a few characters.

BEST PRACTICE: Use fixed character data types like CHAR for primary keys in lookup
tables.

The data types for other kinds of attributes vary with the diversity in the kinds of data you will want to store in your
databases. These days, many databases even support the creation of user-defined data types. These pseudo-object
data types prove particularly useful in the development of Java database applications.

2.1.4 Relationships

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The creation of relationships among the entities in the database lies at its heart. These relationships enable you to
easily answer the question, "On what compact discs in my library did Johnny Rotten play?" Unlike other models, the
relational model does not create hard links between two entities. In the hierarchical model, a hard relationship exists
between a parent entity and its child entities. The relational model, on the other hand, creates relationships by
matching a primary key attribute in one entity to a foreign key attribute in another entity.

The relational model supports three kinds of entity relationships:

One-to-one

One-to-many

Many-to-many

With any of these relationships, one side of the relationship may be optional. An optional relationship allows the foreign
key to contain NULL values to indicate the relationship does not exist for that row.

2.1.4.1 One-to-one relationships

The one-to-one relationship is the most rare relationship in the relational model. A one-to-one relationship says that for
every instance of entity A, there is a corresponding instance of entity B. It is so rare that its appearance in a data model
should be met with skepticism as it generally indicates a design flaw. You indicate a one-to-one relationship in the same
way you indicate a one-to-many relationship.

BEST PRACTICE: Recheck your design whenever you encounter one-to-one relationships,
as they are often indicators of problematic design choices.

2.1.4.2 One-to-many relationships

A one-to-many relationship means that for every instance of entity A, there can be multiple instances of entity B. As
Figure 2-1 shows, the "many" side of the relationship houses the foreign key that points to the primary key of the "one"
side of the relationship.

Figure 2-1. A One-to-Many Relationship

Table 2-2 lists data from a Song table whose rows are dependent on rows in the CD table.

Table 2-2. The Song entity with a foreign key from the CD entity
Attribute Domain Notes NULL?

songID INT PRIMARY KEY No

cdID INT FOREIGN KEY No

title VARCHAR(100) No

length INT No

Under this design, one compact disc is associated with many songs. The placement of cdID into the Song table as a
foreign key indicates the dependency on a row of the CD table. In databases that manage foreign key constraints, this
dependency will prevent the insertion of songs into the Song table that do not already have a corresponding CD.
Similarly, the deletion of a disc will cause the deletion of its associated songs. You should note, however, that not all
database engines support foreign key constraints. Of those that do support them, you often have the option of turning
them on or off.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

them on or off.

Why would you want foreign key constraints off? Many application environments—
particularly multitier distributed object systems—prefer to manage dependencies in the
object layer instead of the database. It is generally a trade-off between a combination of
speed with object purity and guaranteed data integrity. When foreign key constraints are
not checked in the database, updates occur more quickly. Furthermore, you do not end up
with a situation in which objects exist in the middle tier that have been automatically
deleted by the database. On the other hand, if your middle-tier logic is not sound, your
application can damage the data integrity without proper foreign key constraints.

You now have a proper relationship between compact discs and their songs. To ask which songs are on a particular
compact disc, you need to ask the Song table which songs have the disc's cdID. Assuming you are looking for all songs
from the disc Garbage (cdID 2), the SQL to find the songs looks like this:

SELECT songID, title FROM Song WHERE cdID = 2;

More powerfully, however, you can ask for all songs from a compact disc by the disc title:

SELECT Song.songID, Song.title
FROM Song, CD
WHERE CD.title = 'Last Rights'
AND CD.cdID = Song.cdID;

The last part of the query where the cdID was compared in both tables is called a join. A join is where the implicit
relationship between two tables becomes explicit.

2.1.4.3 Many-to-many relationships

A many-to-many relationship allows an instance of entity A to be associated with multiple instances of entity B and an
instance of entity B to be associated with multiple instances of entity A. These relationships require the creation of a
special table to manage the relationship. You may hear these tables referred to by any number of names: composite
entities, join tables, cross-reference tables, and so forth. This extra table creates the relationship by having the primary
keys of each table in the relationship as foreign keys. It then uses the combination of foreign keys as its own compound
primary key. If, for example, we had an Artist table in our music library, we indicate a many-to-many relationship
between an Artist and a CD through an ArtistCD join table. Table 2-3 shows this special table.

Table 2-3. The ArtistCD table creates a many-to-many relationship between Artist
and CD

Attribute Domain Notes NULL?

cdID INT FOREIGN KEY, PRIMARY KEY No

artistID INT FOREIGN KEY, PRIMARY KEY No

You can now ask for all of the compact discs by Garbage:

SELECT CD.cdID, CD.title
FROM CD, ArtistCD, Artist
WHERE ArtistCD.cdID = CD.cdID
AND ArtistCD.artistID = Artist.artistID
AND Artist.name = 'Garbage';

BEST PRACTICE: Use join tables to model many-to-many relationships.

Another useful aspect of join tables is that you can use them to contain information about a relationship. If, for
example, you wanted to track guest artists on albums, where would you store that information? It really is not an
attribute of an artist or a compact disc. It is instead an attribute of the relationship between the two entities. To capture
this information, you would therefore add a column to ArtistCD called guest. Finding which compact discs on which Sting
appeared as a guest artist would then be as simple as:

SELECT CD.cdID, CD.title
FROM CD, ArtistCD, Artist
WHERE ArtistCD.cdID = CD.cdID
AND ArtistCD.artistID = Artist.artistID
AND Artist.name = 'Sting'
AND ArtistCD.guest = 'Y';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AND ArtistCD.guest = 'Y';

2.1.5 NULL

NULL is a special value in relational databases that indicates the absence of a value. If you have a pet store site that
gathers information on your users, for example, you may track the number of pets your users have. Without the
concept of NULL, you have no proper way to indicate that you do not know how many pets a user has. Applications
commonly resort to nonsense values (like -1) or unlikely values (like 9999) as a substitute for NULL.

BEST PRACTICE: Use NULL to represent unknown or missing values.

Though the basic concept of NULL is pretty straightforward, beginning database programmers often have trouble
figuring out how NULL works in database operations. A basic example would come about by adding a new column to our
Song table that is a rating. It can be NULL since it is unlikely anyone wants to rate every single song in their library. The
following SQL may not do what you think:

SELECT songID, title FROM Song WHERE rating = NULL;

No matter what data is in your database, this query will always return zero rows. Relational logic is not Boolean; it is
three-value logic: true, false, and unknown. Most NULL comparisons therefore result in NULL since a NULL comparison is
indeterminate under three-value logic. SQL provides special mechanisms to test for NULL in the form of IS NULL and IS
NOT NULL so that it is possible to ask for the unrated songs:

SELECT songID, title FROM Song WHERE rating IS NULL;
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.2 Modeling
Throughout this book, I will be using industry-standard diagrams to illustrate designs. A critical part of relational data
architecture is understanding a special kind of diagram called an entity relationship diagram, or ERD. An ERD
graphically captures the entities in your problem domain and illustrates the relationships among them. Figure 2-2 is the
ERD of the music library database.

Figure 2-2. The ERD for the music library

There are in fact several forms of ERDs. In the style I use in this book, each entity is indicated by a box with the name
of the entity at the top. A line separates the name of the entity from its attributes inside the box. Primary key attributes
have "PK" after them, and foreign key attributes have "FK" after them.

The lines between entities indicate a relationship. At each end of the relationship are symbols that indicate what type of
relationship it is and whether it is optional or mandatory. Table 2-4 describes these symbols.

Table 2-4. Symbols for an ERD
Symbol Description

The many side of a mandatory one-to-many or many-to-many relationship

The one side of a mandatory one-to-one or one-to-many relationship

The many side of an optional one-to-many or many-to-many relationship

The one side of an optional one-to-one or one-to-many relationship

Our ERD therefore says the following things:

One compact disc contains one or more songs.

One song appears on exactly one compact disc.

One compact disc features one or more artists.

One artist is featured on one or more compact discs.

An artist can optionally be part of one or more artists (bands).

This ERD is a logical representation of the music library. The entities in a logical model are not tables. First of all, you
probably noticed there is no composite entity handling the relationship between an artist and a compact disc—I have
drawn the relation directly as a many-to-many relationship. Furthermore, all of the entity names and attributes are in
plain English. Finally, no foreign keys are shown.

BEST PRACTICE: Develop an ERD to model your problem before you create the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEST PRACTICE: Develop an ERD to model your problem before you create the database.

The physical data model transforms the logical data model into the tables that will be created in the working database.
A data architect works with the logical data model while DBAs (database administrators) and developers work with the
physical data model. You translate the logical data model into a physical one by adding join tables, turning domains into
database-specific data types, and using table and column names appropriate to your DBMS. Figure 2-3 shows the
physical data model for the music library as it would be created in MySQL.

Figure 2-3. The physical data model for the music library

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.3 Normalization
When beginning the development of a data architecture for a project, you first want to capture all the entities in your
problem domain and the attributes associated with those entities. Depending on your software engineering processes,
these entities may be driven by your object model or your object model may be driven by the logical ERD. Either way,
you should not initially concern yourself in any way with issues like performance, scalability, or flexibility—the task is to
model the problem domain properly.

Unlike other areas of software architecture, relational data architecture provides a very formal process for optimizing
your model for efficient resource usage, scalability, and flexibility. This formal process is known as normalization.
Normalization seeks to achieve the following goals:

Remove redundant data

A fully normalized database repeats nothing other than foreign keys. Removal of redundant data guarantees
that you are storing the minimum data necessary to model your domain and protects the integrity of your data
by requiring just a single point of maintenance for any piece of information.

Protect the relational model

The process of normalization forces you to examine all aspects of your data model to make certain that you are
not violating any of the basic principles of the relational model (e.g., all attributes must be single-valued; only
the table name, column name, and primary key value should be needed to identify a row; etc.).

Improve scalability and flexibility

A normalized database guarantees the ability of the data model to evolve with even the most drastic of changes
in the problem domain with a minimal impact on the applications it supports.

As I noted earlier, normalization is a formal process. It defines very specific criteria for your data model that it breaks
out into normal forms. The normal forms establish a stringent and objective set of rules to which a data model must
adhere. Each one builds on requirements of the previous, as is shown in Figure 2-4, and improves upon the overall
design of the model.

Figure 2-4. The six normal forms build on top of one another

Before a data model can be said to be in a certain normal form, it must meet all of the requirements of that normal
form and any lesser normal forms. The second normal form, for example, necessitates that a data model meet the
requirements for both the first and second normal forms.

No matter what your problem domain, you will want to normalize your data model at least to the third normal form. For
most simple problem domains, the third normal form is good enough. Deeper normal forms represent specific data
modeling issues that do not apply to most data models. Most data models in the third normal form are therefore
already in the fifth normal form. If you have a very complex system, you should go ahead and verify that it is in at least
the fourth normal form. Formally normalizing your data model to the fifth normal form should be left for very specific
problem domains. I will dive into the details of each of these normal forms later in the chapter.

BEST PRACTICE: Very complex systems should be normalized to the fourth normal form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to the six normal forms noted here, a seventh normal form called the domain/key normal form (DKNF)
exists. The rule for DKNF is that every logical restriction on attribute values results from the definition of keys and
domains. In theory, a table in DKNF cannot contain anomalies. If nothing about DKNF makes any sense to you, don't
worry about it—no process exists to prove a table is in DKNF and therefore it is not used in real world modeling.

2.3.1 Before Normalization

Before you begin the process of normalization, you should already have a logical ERD describing your problem domain.
This logical ERD should describe all of the entities that make up the problem domain, their major attributes, and their
relationships. For the purposes of this section, I will be referring to a data model to support a web site for film fans. It
specifically stores information about films and enables people to browse the films in the database based on that
information. Figure 2-5 shows the data model before normalization.

Figure 2-5. The raw film site data model

Because we want this web site to be accessible to all North American visitors, it has translations into Spanish and
French. These translations are supported through a duplication of the logical data model into three separate physical
databases.

2.3.2 Basic Normalization

Basic normalization addresses the design demands common to any relational database. As a data architect, you will
always want to carry your design through to the third normal form.

2.3.2.1 First normal form

A table is in the first normal form (1NF) when all attributes are single-valued. This requirement is not simply a good
design requirement; it is a fundamental requirement of the relational model. At its simplest, it means that only a single
value may exist at the intersection of a column and a row.

The film database has three different violations of 1NF:

The productionCompanies attribute in the Film table is multivalued.

The genre1 and genre2 columns in effect represent a multivalued attribute.

The duplication of the database for multilingual content also represents turning all values into multivalue
attributes.

The problem with the first violation is that it makes the database very inflexible. For one thing, searching for films by a
specific production company is difficult. You cannot use a simple equality check like:

SELECT filmID, title
FROM Film
WHERE productionCompanies = 'Imaginary Productions';

That column, after all, contains a comma-separated list of companies. Instead, you need a much less efficient query
like:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

like:

SELECT filmID, title
FROM Film
WHERE productionCompanies LIKE '%Imaginary Productions%';

The solution to the problem of multivalued attributes is to create a new entity to support that attribute. In the case of
the film database, we should create a ProductionCompany table with foreign key references to the primary key in the Film
table. We now have a one-to-many relationship between films and their production companies.

Another, less obvious multivalue attribute is the genre support for films. Because of a need to support the classification
of films like Blazing Saddles that fall into two genres, we have in our data model two genre columns. This approach has
several problems associated with it.

The problems are:

It limits the assignment of genres to films to two genres.

Searching for a film by genre becomes a complex operation.

Space is wasted for any film with a single genre.

The solution, again, is the creation of a new entity to support the multiple values. In this case, we will create a lookup
table for genres and a many-to-many relationship between Film and Genre.

The final problem with the raw data model is the fact that the entire database is duplicated for every language we want
to support. In order to add a new language, we need to create a new duplicate of that database and replace its text
values with translations for the target language. The application then needs to be configured to use that database as a
data source for the new language.

For this problem, we need to create translation entities for each of the text attributes in the database. Adding support
for a new language means nothing more than adding new rows to each translation table.

Figure 2-6 contains the film database in 1NF.

Figure 2-6. The film database in 1NF

2.3.2.2 Second normal form

A table is in the second normal form (2NF) when it is in 1NF and all non-key attributes are functionally dependent on
the table's entire primary key. Functional dependency means that an attribute is determined by another attribute. In
the case of filmID and title, the title is functionally dependent on the filmID because which film the row represents
determines what its title is. On the other hand, the title of the film does not necessarily indicate which film you are
dealing with.

When an attribute is not dependent on the entire primary key of the table it is in, it has likely been placed in the wrong
table. Our data model has this problem in the reviewer attribute of the Film entity. The purpose of this attribute is to
capture the name of the person who initially reviewed the film for the site. The reviewer attribute, however, does not
depend on the filmID—the reviewer exists independent of the film.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

depend on the filmID—the reviewer exists independent of the film.

The existence of attributes that violate 2NF causes database anomalies. A database anomaly is an error or
inconsistency that occurs when some event takes place. Specifically, there are:

Insertion anomalies

An insertion anomaly occurs when you are forced to know information about an entity instance that may not yet
be knowable in order to create an instance of another entity. In the case of reviewer, a person cannot be a
reviewer until he has reviewed a film. More to the point, we cannot capture any information about our reviewers
until they have reviewed a film.

Deletion anomalies

A deletion anomaly occurs when a delete causes data that is not related to the instance being deleted to be
removed from the database. In our existing model, removing a film may remove the reviewer from the
database.

Update anomalies

An update anomaly occurs when the same data must be changed in more than one location to preserve
database integrity. If a reviewer has a name change, our data model requires the change be made to each film
reviewed and every other place in the database with that reviewer's name.

Again, the solution to this normalization problem is the creation of a new entity to remove the nondependent attribute.
This entity, Reviewer, contains the name of the reviewer and is related to many films.

Figure 2-7 shows our data model in 2NF.

Figure 2-7. The film database in 2NF

2.3.2.3 Third normal form

A table is in the third normal form (3NF) when it is in 2NF and no transitive dependencies exist. A transitive dependency
occurs when a functional dependency is inherited through some other identifying attribute. In our data model, the
forChildren attribute depends on the rating attribute, which in turn depends on the filmID. Because the forChildren attribute
has no direct dependency on the filmID, it is thus transitively dependent on the filmID.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

has no direct dependency on the filmID, it is thus transitively dependent on the filmID.

Violation of 3NF causes database anomalies. First of all, if the MPAA changes which ratings are suitable for children, you
will need to update every instance of the Film entity to reflect that change. An insertion anomaly also exists in that any
new ratings for children will not be reflected in existing films. Of course, the insertion anomaly is not a huge problem for
this database since films rarely change ratings. Finally, deletion of the only row with a rating associated with being for
children causes us to lose all information about it being for children.

BEST PRACTICE: Normalize your data model minimally to the third normal form.

To fix this problem, you need to move the transitively dependent value into a table that provides functional
dependency. In other words, move the forChildren attribute into the Rating table as shown in Figure 2-8.

Figure 2-8. The film database in 3NF

2.3.3 Specialized Normalization

Having your database in 3NF is generally good enough to guarantee your system is free of the most common
anomalies. The other forms of normalization handle special situations. In fact, if your database is not subject to the
special considerations of Boyce-Codd normal form or fourth normal form, your database is automatically in 4NF. The
fifth normal form is impossible to verify without computer-aided modeling tools and is rarely worth seeking.

2.3.3.1 Boyce-Codd normal form

A table is in Boyce-Codd normal form (BCNF) when every determinant is a candidate key. A candidate key is a set of
attributes that could potentially serve as a primary key. BCNF is essentially a more generalized form of 3NF. It
specifically addresses issues that arise in tables with one or more of the following characteristics:

Multiple candidate keys

Composite candidate keys

Overlapping candidate keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Overlapping candidate keys

Our data model contains no relations to which BCNF applies. To illustrate BCNF, consider a table that contains three or
more columns with a couple of the combinations capable of uniquely identifying a row. An example might be a Showing
table that represents when a real estate agent shows a house to a client. The table has the structure shown in Table 2-
5.

Table 2-5. The structure of a table meeting BCNF
Attribute Domain Notes NULL?

propertyID BIGINT PRIMARY KEY, FOREIGN KEY No

agentID BIGINT PRIMARY KEY, FOREIGN KEY No

timeslot INT PRIMARY KEY, FOREIGN KEY No

buyerID BIGINT FOREIGN KEY No

notes VARCHAR(255)

For the sake of this example, assume that a buyer gets only one chance to view a property. Furthermore, only one
agent can show a property to one buyer in a given time slot. In that case, it is possible for notes to be determined by
either of the following combinations:

propertyID, agentID, timeslot

propertyID, agentID, buyerID

You could choose either of the two combinations. BCNF simply states that as long as every column that determines
notes is a candidate key, the table is in BCNF.

2.3.3.2 Fourth normal form

A table is in the fourth normal form when it is in BCNF and all multivalued dependencies are also functional
dependencies. The problem here with the current model is the FilmReviewer table. It ties film reviewers with the films
and genres they review. Table 2-6 shows some sample data from the table.

Table 2-6. Data in FilmReviewer
filmID reviewerID genreCode

101 1 ACT

101 1 SCI

102 2 DRA

102 2 COM

103 1 ACT

103 1 SCI

The full set of columns forms the primary key for this table. It is thus normalized to BCNF. Unfortunately, it still contains
redundant data. The redundancy is caused by multivalued dependencies. Specifically, reviewerID determines the values
of filmID and genreCode independently. In the relations we have seen so far, the determinant establishes the full set of
values that together form the instance.

We can fix this problem by splitting genreCode's dependence into one table and reviewerID's dependence into another. For
example, we can create a ReviewGenre table that captures the genres the reviewer specializes in. We can similarly create
a ReviewerFilm table that contains the film reviews. Figure 2-9 shows the resulting data model.

Figure 2-9. The film database in 4NF

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-9. The film database in 4NF

Spending time normalizing to the fourth normal form is useful only for data models that have a lot of complex join
tables. If you have just a few such tables, you are probably already in 4NF anyway. If you are not, the anomaly is
almost certainly of no consequence to your system.

2.3.3.3 Fifth normal form

A table is in the fifth normal form (5NF) if it is in 4NF and cannot have lossless decomposition into any number of
smaller tables. It is actually very hard to tell when a table is truly in 5NF—just about any table in 4NF is also in 5NF. It
can occur in situations in which you have a many-to-many-to-many relationship as exists with Film, Actor, and Role.
Given certain data, the database can end up making claims that simply are not true.

For simplicity's sake, assume that the database has a single actor in it who has appeared in two separate films playing
two separate roles. The joined information from these tables looks like the data in Table 2-7.

Table 2-7. Joining actor, film, and role
actorID filmID roleName Description

1 101 The president Stanley Anderson (1) played the president in Armageddon (101).

1 102 Edwin Sneller Stanley Anderson (1) played Edwin Sneller in The Pelican Brief (102).

So far, this structure should seem quite normal to you. The three entities have three corresponding join tables ActorFilm,
FilmRole, and ActorRole to help manage the relationships. The problem arises when you insert particular data, such as
adding Robert Culp who also played the president, but in the movie The Pelican Brief. In short, we add one row to Actor,
one row to ActorFilm, one row to ActorRow, and one row to FilmRole. No rows are added to Role or Film. The join suddenly
ends up with both true claims and some utterly false ones as Table 2-8 shows.

Table 2-8. The false claims (in italic) of a database not in 5NF
actorID filmID roleName Description

1 101 The president Stanley Anderson (1) played the president in Armageddon (101).

1 102 Edwin Sneller Stanley Anderson (1) played Edwin Sneller in The Pelican Brief (102).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 102 Edwin Sneller Stanley Anderson (1) played Edwin Sneller in The Pelican Brief (102).

2 102 The president Robert Culp (2) played the president in The Pelican Brief (102).

1 102 The president Stanley Anderson (1) played the president in The Pelican Brief (102).

2 101 The president Robert Culp (2) played the president in Armageddon (101).

The important thing to note about the database is that there is nothing wrong with the data in the tables. The only thing
wrong is what the relationships among the tables imply given a very specific data set.

By now, you have probably guessed that the solution is to create another entity to manage this trinary relationship. The
Appearance table in the fully normalized Figure 2-10 manages this solution.

Figure 2-10. The film database in 5NF

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.4 Denormalization
Denormalization is the process of consciously removing entities created through the normalization process. An
unnormalized database is not a denormalized database. A database can be denormalized only after it has been
sufficiently normalized, and solid justifications need to exist to support every act of denormalization.

Nevertheless, fully normalized databases can require complex programming and generally require more joins than their
unnormalized or denormalized counterparts. Joins are resource-intensive operations; thus, the more joins, the more
time a query will take.

To deal with queries that take too long or are too complex to be maintainable, a database architect denormalizes the
database. As we have seen from the process of normalization, each lower normal form introduces database anomalies
that can compromise the integrity, maintainability, and extensibility of the database. Denormalization is thus a
reasoned trade-off between query complexity/performance and system integrity, maintenance, and extensibility.

The Perils of Denormalization
Denormalization must be approached with caution. In general, a table should have proven it requires
denormalization in testing or even in production before you actually denormalize it. Data architects very
commonly denormalize based on hunches about performance or experience with similar applications in the
past—a practice that leads down the path to a poorly designed database.

Denormalization can in some circumstances incur performance penalties. More important, however, most
of the time you do not see the kinds of performance improvements from denormalization that actually
make a difference. When you denormalize without concrete performance benchmarks backing the
denormalization, you end up:

Denormalizing tables without appreciable performance improvement

Denormalizing again later, after you have done performance testing

The result is a database that looks more unnormalized than denormalized. The best rule of thumb is to
prove the database needs denormalization and document that need for the people who will be maintaining
the database. Subsequently, you should prove that your denormalization actually improves performance
and back out the changes if they fail to address the performance concerns.

In most cases, you can deal with complexity simply by creating views that hide the complexity. Performance is thus the
general driver of denormalization. To determine whether denormalization makes sense, I recommend Craig Mullins's
simple guidelines posted in an online article for The Data Administration Newsletter in an article called "Denormalization
Guidelines" (http://www.tdan.com/i001fe02.htm):

Can you achieve performance goals without denormalization?

Will the system still fail to achieve performance goals with denormalization?

Will the system be less reliable as a result of denormalization?

If you answer "yes" to any of these questions, you should not use denormalization as your performance tuning tool.

BEST PRACTICE: Denormalize only when you have concrete proof that denormalization
will boost performance.

The most common temptation to denormalize comes from queries that require joins to retrieve a single value. Any
query pulling a film's suitability for children along with the film from the database would fall into this category. For
example:

SELECT Film.title, Film.language, Film.year, Rating.forChildren
FROM Film, Rating
WHERE Film.filmID = 2
AND Film.rating = Rating.code;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AND Film.rating = Rating.code;

Denormalization would move the rating code and suitability for children back into the Film table. Wouldn't the query
perform much better without that join? Actually, it probably would not perform noticeably better—the join is done using
a unique index (Rating.code). Denormalization, however, would incur all of the anomalies that led us to normalize the
table in the first place.

A better candidate for normalization might be pulling a state name into an Address table along with the state code used
in the join. If most queries actually want the state name and the query would definitely benefit from avoiding the join to
the State table, it can make sense to add an extra column to Address for stateName. You do not, however, remove the
State table. This denormalization works—assuming real performance benefits are achieved for the application—because
the state name is a candidate key for the State table. Though stateName would technically be a transitive depencency in
the Address table (and thus violate 3NF), its status as a candidate key for State makes it almost a functional depencency
and consequently almost acceptable to put into the Address table.

A common situation in which performance does truly become a problem is reporting. For reporting, database
normalization is just one of many factors that lead to performance degradation. Because complex reports generally eat
server resources regardless of normalization issues, it is generally a bad idea to empower users to execute complex
reports against live tables. Instead, you can denormalize by replicating the data into special tables designed to support
reporting needs. To create a table for reporting on westerns, we might create a WesternReport table that looks like the
table in Table 2-9.

Table 2-9. A table for reporting on westerns
Attribute Domain Notes NULL?

filmID BIGINT PRIMARY KEY No

title VARCHAR(100) No

rating CHAR(5) Yes

forChildren CHAR(1) DEFAULT 'N' No

otherGenres VARCHAR(255) Yes

directors VARCHAR(255) Yes

actors VARCHAR(255) Yes

ranking INT No

year INT No

Reporting on all of the westerns from 1992 would look like this:

SELECT * FROM WesternReport
WHERE year = 1992;

The alternative is to have users constantly executing the following query against the tables that actually maintain your
data:

SELECT Film.filmID, Film.title, Film.rating,
IFNULL(Rating.forChildren, 'N'), Film.ranking, Film.year
FROM Film, FilmGenre
LEFT OUTER JOIN Rating ON Film.rating = Rating.code

WHERE FilmGenre.code = 'WES'
AND year = 1992
AND Film.filmID = FilmGenre.filmID;

Use follow-up queries to get other genres, directors, and actors associated with the film.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.5 Object-Relational Mapping
You now have your data structured for optimal performance and extensibility in your database. To make use of that
data, you need to pull it into applications—in our case, Java applications—that manipulate the data. Java is an object-
oriented programming language. In other words, it models its problem domain using object-oriented principles. In
general, object-oriented principles can be summed up as:

Encapsulation

Encapsulation is the hiding of the data and behavior of a thing behind a limited and well-described interface. In
Java terms, the limited and well-described interface is the set of your public methods and attributes.

Abstraction

Abstraction is the modeling of only the essential characteristics of a thing and ignoring or hiding the details of
its nonessential characteristics. A Java interface is an example of an abstraction.

Polymorphism

Polymorphism means that a single interface can be used for a generic class of actions rather than a single
specific action. The equals() method in Object is an example of a polymorphic interface because it means
different specific things in different classes even though it generally means testing for equality.

Inheritance

Inheritance is the ability for one thing to take on the behavior and characteristics of another. Java supports
inheritances through extending classes.

Though a relational database is a model of a problem domain, it is a different kind of model. Your Java application
models behavior and uses data to support that behavior. The database, however, models the data in your problem
domain and its relationships. Java application logic is inefficient at determining what actors who have played the
president during their career have appeared in films together. Similarly, a database is a poor tool for determining
pricing rules for a set of products.

When a Java application needs to save its state to some sort of data storage, it is said to require persistence. Often,
complex Java applications persist against a relational database. The use of a relational database for persistence has
several advantages:

Relational databases are efficient at storing data for later retrieval using complex criteria. You cannot search on
your stored objects nearly as efficiently if they are serialized to a filesystem or stored somewhere in XML.

Java's JDBC API is simple to learn. Other persistence mechanisms tend to be much harder. Java's file access
APIs, for example, are painful to write cross-platform code with.

Most people have easy access to a relational database. MySQL and PostgresSQL are freely available to those
with limited budgets, and most organizations already have a huge investment in enterprise database engines
like Oracle and DB2.

When you attempt to persist your Java objects to a relational database, however, you run into the problem of the
object-relational mismatch. The most basic question facing the object-oriented developer using a relational database is
how to map relational data into objects. Your immediate thought might be to simply map object attributes to entity
attributes. Though this approach creates a solid starting point, it does not create the perfect mapping for two reasons:

Unlike relational attributes, object attributes are multivalued. An object stores within itself attributes with
multiple simple values as well as direct references to groups of complex objects.

The relational model has no natural way of modeling inheritance relationships.

BEST PRACTICE: Normalize data models based on object-relational mapping just as you
would normalized any other data model: to 3NF or 4NF.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-11 contains a sample class diagram for a system that should persist against a relational database. In the class
diagram, you are modeling a person who can play many roles—including the roles of employee and customer. Each
employee has many addresses and phone numbers.

Figure 2-11. A simple class diagram for a persistent system

2.5.1 Inheritance Mapping

The biggest difficulty in object-relational mapping arises in inheritance mapping—the mapping of class inheritance
hierarchies into a relational database. In our class diagram, this problem appears in the structure related to roles. Do
you need separate entities for Role, Employee, and Customer? Or does it make more sense to have Employee and Customer
entities? Or perhaps just a Role entity will sufffice?

Depending on the nature of your class diagram, all three solutions can work. Figure 2-12 shows three possible data
models for supporting the class diagram from Figure 2-11.

Figure 2-12. Three possible data models for roles

As you can see from all three data models, the relational model's inability to support abstraction does some serious
damage to the application. While the class diagram enables the addition of new roles to the system without impacting
the Person class, you cannot accomplish the same flexibility in the data model. All three data models demand some
understanding of all possible roles available.

The simplest data model—the one with only a Role entity—must contain all data associated with all possible roles. This
approach to object-relational inheritance mapping when the implementation classes contain mostly the same data and
the differences among the roles from a data perspective can be summarized through a role type.

On the other hand, if the commonalities in the different roles are not interesting from a data perspective, you can solve
the problem with the second data model. In other words, model each role with its own entity and ignore the entire Role
abstraction in the database. This approach fails if you need to ask questions like "What roles does this person have?"
without necessarily knowing what possible roles can exist.

The third approach is a sometimes unwieldy compromise between the first and second approaches. When you need to
deal with the roles both abstractly and concretely, you have to create a relationally artificial structure to model those
nuances. In this data model, the entities for the concrete classes—Employee and Customer—borrow their primary keys
from the Role entity. Only the Role entity contains the foreign key of Person with whom the role is associated. You can
now deal with the roles in an abstract sense by joining with the Role entity, or you can get specific information about
individual roles through a complex join.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

individual roles through a complex join.

In short, the proper way of modeling an inheritance relationship depends heavily on what sort of queries you intend to
use to retrieve that data. When in doubt, refer to this set of rules to help you in inheritance mapping:

Model only the superclass

If your queries rely heavily on data associated with the superclass and

If your queries do not rely on data associated with the subclasses and

If the subclasses do not contain a significant number of distinct attributes

Model only the subclasses

If your queries rely heavily on data associated with the subclasses and

If your queries do not rely on data associated with the superclass

Model the superclass and its subclasses

For all other circumstances.

BEST PRACTICE: When modeling OO (object-oriented) inheritance, consider whether
your database will be used by non-OO systems. If it is being used by non-OO systems,
focus more on the data model and less on mapping the OO concepts to the relational
world.

2.5.2 Multivalued Attributes

Collections such as arrays, HashMaps, and ArrayLists present another problem to object-relational mapping. In relational
terms, these kinds of object attributes represent multivalued attributes. The solution to this problem starts with the
same solution for multivalued attributes in your relational model: create entities to support the multivalued attributes.

That approach is simple enough for collections of objects like the Phone and Address classes in our class diagram. You
create a Phone entity with a foreign key of personID and a primary key of personID and type and you are done. The
mapping becomes tricky with attributes like int arrays or String collections.

BEST PRACTICE: If your database engine supports SQL3 data types, map multivalued
attributes to the SQL ARRAY type.

In our class diagram, we store a list of favorite colors as a String[]. The solution again is to handle this mapping in the
same way you would handle the normalization of an entity with multivalued attributes: create a new entity. In this case,
we would create a FavoriteColor table with personID and color as a primary key.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. Transaction Management
Substances owe their special importance in the enterprise of identification to the fact that they survive
through time. But the idea of survival is inseparable from the idea of surviving certain sorts of change—
of position, size, shape, colour, and so forth. As we might expect, events often play an essential role in
identifying a substance... Neither the category of substance nor the category of change is conceivable
apart from the other.

—Donald Davidson The Individuation of Events

This quote from Donald Davidson comes from a paper he wrote in the field of event theory. Event theory is an entire
subdiscipline of philosophy focused on the question of what it means to be an event. As a software architect for a
database application, your job is to be an event theorist. Specifically, you identify what changes will occur in your
database and how they combine into indivisible sequences that will not leave the database in an inconsistent state.

This is the practice of event management. You then package those indivisible events into a database operation called a
transaction. A transaction is a group of database events that must execute without interference from other
transactions; and they must execute together or not at all. The transaction helps you guarantee the integrity of the
data in your database.

The classic example of a database transaction is the transfer of money from one bank account to another. When
executing a transfer, a banking application needs to make sure that both the debit from the source account and the
credit to the target account execute. If one should fail, the system should return to the state it was in before the debit.
Without the ability to abort the transaction, a successful debit followed by a failed credit (perhaps the server crashed
between the two operations) will result in missing money.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.1 Transactions
A transaction is an event or sequence of events that takes a database from one consistent state to the next. If any of
the events fails or the sequence fails to complete, the system is returned to its initial state. Once it completes, it is
guaranteed to be in the new consistent state until it is acted upon to completion by another transaction.

3.1.1 ACID Requirements

Formally, a transaction is a group of database operations that together have a shared set of guaranteed properties—
commonly known as ACID properties. ACID is an acronym that stands for Atomicity, Consistency, Isolation, and
Durability.

Atomicity

The atomicity of a transaction means that it represents an indivisible unit of work. Any attempt to break the
transaction into smaller parts breaks the transaction. Atomicity is what guarantees that all of the operations
that make up a transaction succeed or none of them succeeds.

Consistency

The consistency of a transaction means that all of the operations that make up a transaction operate on a
consistent set of data and leave the database in a consistent state once it has completed. In other words, the
transaction is ignorant of any changes made to the database by other transactions. Data is considered
consistent when all of its constraints such as unique indexes and foreign indexes are intact.

Isolation

A transaction should be ignorant of the existence of any other transactions. In other words, from the point of
view of a given transaction, it is the only thing operating on the database.

Durability

When a transaction commits, its changes are permanent—even in the event of a system failure.

In other words, if you have an account transfer, it meets ACID requirements in the following ways:

The transfer is atomic if and only if the sum of the two bank accounts is the same before and after the transfer.
The debit to the savings account cannot occur without the credit to the checking account following.

The transfer is consistent as long as nothing else happens to either account while the transfer is in process. For
example, the checking account cannot be deleted from the database while the debit to the savings is occurring.

The transfer is isolated as long as another transaction is incapable of seeing the debited savings account before
the transfer has completed.

The transfer is durable as long as the transfer can survive a catastrophic event such as a server crash or other
kind of system failure.

Your database engine is largely responsible for guaranteeing the ACIDity of your transactions. You, the software
architect, are nevertheless responsible for identifying what events make up a transaction and how the application
should package those transactions for the database.

BEST PRACTICE: Choose technologies that will guarantee the ACIDity of your
application's transactions.

3.1.2 Transaction Design

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The key to identifying transactions is determining what stages in your use cases represent consistent database states.
If we examine the transfer example, we see two distinct events that make up the transfer:

1. Debit the savings account.

2. Credit the checking account.

After the debit of the savings account, the database is said to be in an inconsistent state because important information
about the system would be lost should the transfer fail to complete. In this case, the important information is
someone's money!

Inconsistency can also mean having orphaned data in the database. Consider, for example, the deletion of a person
from a database with the following steps:

1. Delete the person from the Person table.

2. Delete all addresses for the person from the Address table.

3. Delete all phone numbers for the person from the Phone table.

If something goes wrong after the first step, you could end up with a database full of unreferenced addresses and
phone numbers unless the transaction returns the system to its initial state. The database is therefore in an inconsistent
state until all addresses and phone numbers are deleted.

Though you want your transactions to be large enough to prevent the database from entering inconsistent states, you
also want them as small as possible. As you will see later in this chapter, transactions make huge demands on a
database. The larger the transaction, the more resources it eats and the worse the performance of your application.

BEST PRACTICE: Define your transactions to have the minimum number of steps
necessary while leaving the data store in a consistent state.

To illustrate this problem in action, consider an e-commerce application that needs to create a customer before the
customer can place an order. To make the application as easy to use for the customer as possible, you may let her
enter her customer information along with her first order. The use case thus looks something like this:

1. Add the customer information to the Customer table.

2. Add address information to the Address table.

3. Add phone information to the Phone table.

4. Create an order in the Order table.

5. Add a line item in the LineItem table.

6. Decrease the inventory count in the Product table.

It is the combined job of the business analyst and information architect to craft this use case as the best way for a new
customer to buy something. It is your job as the software architect to figure out its implications on the database. In
many situations, there will be a one-to-one correspondence between use cases and transactions. In this case, however,
we have two separate transactions because the database can be in a consistent state with the customer information
and no order information. In other words, steps 1-3 make up the first transaction and steps 4-6 make up the second.
Figure 3-1 contrasts the use case from the client's perspective with the sequence from the architect's perspective.

Figure 3-1. A multitransaction use case from the perspectives of a client
application and an architect

By breaking this one use case into two transactions, you will not sacrifice database consistency but you will gain
performance. The division enhances performance because you enable other transactions that may be waiting on
resources blocked only by the first three steps to execute prior to the completion of the entire use case. If you
encapsulated the use case in a single transaction, then those other transactions would have to wait until the completion
of the use case. Figure 3-2 shows how breaking the use case into two transactions can reduce blocking.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of the use case. Figure 3-2 shows how breaking the use case into two transactions can reduce blocking.

Figure 3-2. Reduced blocking by dividing work between two transactions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.2 Concurrency
Transaction management is a big enough problem worrying only about consistency, atomicity, and durability. Perhaps
one of the biggest issues is isolation—how do you manage the concurrent access to database resources by many
different users? The mechanism your database uses is generally hidden from the software architect and database
programmer. A data architect, however, should be familiar with how their database of choice manages isolation.

3.2.1 Isolation Levels

Before talking about the various mechanisms to support transaction isolation, it is useful to examine the concept in
more detail. As I mentioned earlier, isolation is the I in ACID. When a second transaction attempts to read the data
being modified by a first transaction, that second transaction will not see any changes the first transaction has made.
For example, if my wife read a joint savings account balance at the same time I was transferring money from savings to
checking, the following events might occur:

1. I see a savings account balance of $1,000.

2. I initiate a transfer of $500 from savings to checking.

3. The system debits my savings account.

4. My wife requests the balance for the savings account and sees $1000.

5. The system credits my checking account.

My wife should see $1,000 as the balance in the savings account even though the system has already debited the
savings account. She reads the old value because the transfer transaction is in an inconsistent state at the time of her
request.

So far in this chapter, we have looked at transaction isolation only in the context of full transaction isolation—where a
transaction can act on the database as if it were the only thread operating on that database. In the real world,
databases must support concurrent access by multiple transactions. Business applications in particular have significant
concurrency demands. Because of the performance penalty of full transaction isolation, it is rarely practical for most
systems.

ANSI SQL identifies four distinct transaction isolation levels that enable you to balance performance needs with data
integrity needs. In order to understand the different transaction isolation levels, however, you should first understand a
few terms relating to the interaction of concurrent transactions:

Dirty read

A dirty read occurs when one transaction views the uncommitted changes of another transaction. If the original
transaction rolls back its changes, the one that read its changes is said to have "dirty" data.

Nonrepeatable read

A nonrepeatable read occurs when one transaction reads different data from the same query when it is issued
multiple times and other transactions have changed the rows between reads by the first transaction. In other
words, a transaction that mandates repeatable reads will not see the committed changes made by other
transactions. An application needs to start a new transaction to see those changes.

Phantom read

A phantom read deals with changes occurring in other transactions that would result in new rows matching your
transaction's WHERE clause. For example, if you had a transaction that reads all accounts with a balance of less
than $100 and your transaction performs two reads of that data, a phantom read allows for new rows to appear
in the second read based on changes made by other transactions. This situation can occur if someone withdrew
money between your reads. The new rows are called phantom rows.

The four ANSI SQL transaction isolation levels are:

Read uncommittted transactions

The transaction allows dirty reads, nonrepeatable reads, and phantom reads.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Read committed transactions

Only data committed to the database may be read. The transaction can, however, perform nonrepeatable and
phantom reads.

Repeatable read transactions

Committed, repeatable reads as well as phantom reads are allowed. Nonrepeatable reads are not allowed.

Serializable transactions

Only committed, repeatable reads are allowed. Phantom reads are specifically disallowed at this level.

Assuming your database engine supports these levels of transaction isolation, a Java database application can control
its transaction isolation level through the JDBC Connection interface using the setTransactionIsolation() method:

Connection conn = dataSource.getConnection();

conn.setTransactionIsolation(
 Connection.TRANSACTION_READ_COMMITTED);
// perform your transaction

To find out what transaction isolation levels your database engine and driver support, use the
supportsTransactionIsolationLevel() method in DatabaseMetaData. Table 3-1 shows the transaction isolation constants in
java.sql.Connection. You may also want to check whether the database supports transactions at all (mSQL, for example,
does not support them). The method supportsTransactions() answers this question.

Table 3-1. Constants for managing JDBC transaction isolation levels
Constant Meaning

TRANSACTION_NONE
Transactions are not supported by the database engine. You never set the
transaction isolation level with this value. It is simply a return value from drivers
when transactions are not supported.

TRANSACTION_READ_UNCOMMITTED Reads are read uncommitted. This level represents the least-restrictive form in
databases in which transactions are supported.

TRANSACTION_READ_COMMITTED Reads pull only committed data from the database.

TRANSACTION_REPEATABLE_READ Reads are repeatable, but phantom reads are allowed.

TRANSACTION_SERIALIZABLE Phantom reads are not allowed.

As an application architect, your job is to balance database integrity with application performance. You therefore want
to select the lowest level of transaction isolation that will protect the integrity of the data as you have it structured in
your data model.

BEST PRACTICE: Use the lowest transaction isolation level that will still maintain the
integrity of your database.

3.2.2 Locking

The way in which your database engine manages concurrency is specific to your database engine. As long as it
maintains ACIDity, it does not matter from a standards perspective how it does it. Nevertheless, database engines all
use some form of locking.

Conceptually, concurrency at the database level can be understood using Java as an example. Java, of course, uses
locks on objects to manage concurrent access to synchronized blocks of Java code. Consider the following three
methods:

public class MyClass {
 public synchronized void first() {
 // do something
 }

 public void second() {
 synchronized(this) {
 // do something else
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }

 public void third() {
 synchronized(otherObject) {
 // do yet a third thing
 }
 }
}

If two threads call first() at the same time, one will be allowed to execute the method to completion before the other
can start. This sequencing occurs because the synchronized keyword indicates that you are locking against a monitor.
In the default case, the monitor is always this. Thus the monitor in first() and second() is this and the monitor for third()
is otherObject. Only one thread at a time can execute code monitored by a common object. In this example, first() and
the synchronized section of second() cannot be executed concurrently by multiple threads. However, first() and third()
can be concurrently executed by two separate threads since they are guarded by different monitors.

Databases use a different concurrency mechanism, but the Java concepts are relevant. A database allows for locks to
be taken on different scopes of data. A database can lock a table at any of the following levels:

Table
Page
Row

Depending on your database engine, your lock level can also be modified as read, update, exclusive, shared, or any
other number of attributes. SQL Server, for example, supports the following kinds of locks:

Intent
Shared
Update
Exclusive
Schema
Bulk update

You need a nice spreadsheet and an understanding of your database of choice to appreciate how two kinds of locks
interact. For example, many different threads can acquire a shared lock. These shared locks may—depending on the
database engine—prevent another thread from acquiring an update lock until the shared locks are released. Because
interaction varies by database, a discussion is beyond the scope of this book.

The easiest lock level to understand is a table-level lock. In this case, only one thread can touch the locked table during
the lifetime of the lock. This approach is much like using MyClass.class as the monitor for access to all methods in your
MyClass class. In other words, no two threads would be able to access any MyClass instance concurrently. As you can
imagine, such a trick would not perform well in a Java application. Similarly, table-level locking performs horribly for
databases. Page-level locking has no Java analogy. In short, it prevents concurrent access to all of the rows in a single
page of memory. If, for example, you have rows 1-3 in one page of memory and 4-6 in another, access to data from
rows 1-3 with page-level locking prevents other threads from accessing any of those three rows. A concurrent thread
can, however, access the data in rows 4-6.

Row-level locking is like making every nonstatic method in a Java class synchronized. It prevents concurrent access by
two threads to the same row in the database. Two threads may, however, access two different rows concurrently.

On one hand, locking is necessary to guarantee proper transaction isolation in a concurrent environment. On the other,
locking slows down database applications. Any transaction that has a long duration and a large number of resources
associated with it is going to drag down any application. Later in the chapter, I introduce some approaches to
concurrency that enable you to strike a balance between isolation and performance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.3 JDBC Transaction Management
No matter what style of database programming you select or what persistence model you follow, transactions will
always be the most fundamental element in database programming. Consequently, we will be returning to transaction
management repeatedly over the course of this book. For now, it is time to lay the foundation for that database
programming by showing the basics of transaction management in Java code.

3.3.1 Basic Transaction Management

In any programming language, basic transaction management is indicating the start and end of a transaction as well as
handling any errors that come up during the transaction. In JDBC, a transaction begins implicitly whenever you create a
statement of any kind. It ends when you call commit() in the Connection instance. Finally, you abort the transaction and
return the database to its initial state by calling rollback() in the Connection instance.

The Connection governs all of this transaction management. You therefore cannot use statements from different
Connection instances in the same transaction. You also have to tell the connection that your application is managing
transactions; otherwise, it will commit every statement after you send it to the database. The following code executes
two updates in a single transaction and rolls back on any errors:

public void transfer(Account targ, float amt) {
 Connection conn = null;

 try {
 PreparedStatement stmt;

 conn = dataSource.getConnection();
 conn.setAutoCommit(false);
 stmt = conn.prepareStatement("UPDATE Account SET balance = ? " +
 "WHERE id = ?");
 stmt.setFloat(1, balance-amt);
 stmt.setInt(2, id);
 stmt.executeUpdate();

 stmt.setFloat(1, targ.balance + amt);
 stmt.setInt(2, targ.id);
 stmt.executeUpdate();
 balance -= amt;
 targ.balance += amt;
 conn.commit();
 }
 catch(SQLException e) {
 try { conn.rollback(); }
 catch(SQLException e) { }
 }
 finally {
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
 }
}

3.3.2 Optimistic Concurrency

In the days of client/server programming, applications often started a transaction by reading data from a database and
ended the transaction by modifying that data. In other words, you locked the data you read so that someone else didn't
overwrite any changes you made. For example, if you and I read a customer record from the database with my goal to
change the phone number and your goal to change the last name, one of us runs the risk of overwriting the other's
changes if neither of us has a read lock. If I saved my changes first, your client application will likely overwrite my
phone number change with the old phone number since applications tend to send all fields with their updates. Figure 3-
3 illustrates what can go wrong in this example.

Figure 3-3. Updates overwriting each other

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-3. Updates overwriting each other

I can prevent you from overwriting my changes by starting a transaction when I read the data. That way you cannot
even read the customer record until my change is saved. This technique is called pessimistic concurrency, and it is a
terrible bottleneck. If I manage to walk away from my desk while entering the phone number, your client will be waiting
a long time to read that data. In web-based applications, this kind of pessimistic concurrency is completely untenable.

You can make pessimistic concurrency a little more acceptable by performing a SELECT FOR UPDATE just prior to actually
sending changes to the database using the values returned from the first query. If the rows no longer match the
original select, then you will receive no rows and lock no resources in the database. Though this form of pessimistic
concurrency locks resources for a much shorter time than the original, it is still a relatively long-lived transaction. It
also requires placing columns that are probably not indexed in a SELECT statement. The following example illustrates
this flow:

SELECT firstName, lastName, phone, birthDay
FROM Customer
WHERE id = ?;

// on the client, make changes here
// this could take a long, long time
// minutes, even tens of minutes

SELECT firstName, lastName, phone, birthDay
FROM Customer
WHERE id = ?
AND firstName = ?
AND lastName = ?
AND phone = ?
AND birthDay = ?
FOR UPDATE

UPDATE Customer
SET firstName = ?,
lastName = ?,
phone = ?,
birthDay = ?
WHERE id = ?

The alternative is optimistic concurrency. Where pessimistic concurrency pessimistically assumes that some other
transaction will attempt to make changes to your data behind your back, optimistic concurrency happily hopes that such
a situation will not occur. As a backup, it uses values from the original row in the WHERE clause:

SELECT firstName, lastName, phone, birthDay
FROM Customer
WHERE id = ?

// again, make changes here... this could take a long time

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// again, make changes here... this could take a long time

UPDATE Customer
SET firstName = ?,
lastName = ?,
phone = ?,
birthDay = ?
WHERE id = ?
AND firstName = ?
AND lastName = ?
AND phone = ?
AND birthDay = ?

Under optimistic concurrency, you acquire a lock only when you are actually performing your changes. You still avoid
overwriting the changes of another because you match your update against the values you read. If someone else
changes the lastName field, then your WHERE clause will not match and the update will fail. Unfortunately, you are still
very likely matching against unindexed columns.

The approach I use in nearly every database application I write is to create a special column or two to store a value
unique to each update. For example, you could use the natural primary key of the table along with a last update
timestamp. Each time you modify the database, you modify the last update timestamp and use the old one in your
WHERE clause:

Connection conn = null;

try {
 PreparedStatement stmt;
 long ts;

 conn = ds.getConnection();
 stmt = conn.prepareStatement("UPDATE Customer " +
 "SET firstName = ?, lastName = ?, phone = ?, " +
 "birthDay = ?, lastUpdateTS = ? " +
 "WHERE id = ? AND lastUpdateTS = ?");
 stmt.setString(1, firstName);
 stmt.setString(2, lastName);
 stmt.setString(3, phone);
 stmt.setDate(4, birthDate);
 stmt.setLong(5, ts = System.currentTimeMillis());
 stmt.setInt(6, id);
 stmt.setLong(7, lastUpdateTS);
 stmt.executeUpdate();
 lastUpdateTS = ts;
}
catch(SQLException e) {
 e.printStackTrace();
}
finally {
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
}

Figure 3-4 contrasts how optimistic concurrency prevents this mishap, in contrast to Figure 3-3.

Figure 3-4. Optimistic concurrency prevents dirty writes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This approach has the advantage of preserving database integrity just like pessimistic concurrency while at the same
time minimizing the lifetime of the transaction and guaranteeing that only indexed values are in the WHERE clause. The
only true downside is that you are also updating an indexed column, and updates to indexes have their own
performance impact.

BEST PRACTICE: Use optimistic concurrency along with timestamps to help maintain data
integrity while still getting solid performance.

3.3.3 Batch Transactions

We have been dealing with transactions in an interactive context—where a user is initiating the transaction through
some action in a user interface. Complex business systems have not only interactive transactions, but also batch
transactions. Batch transactions are sets of transactions that occur on the server independent of user interaction. For
example, the monthly process that calculates interest for a savings account is a batch transaction.

Until JDBC 2.0, Java was a miserable language for the execution of major batch transactions. Sometimes, people would
have processes that needed to execute nightly but took two days to run. The overhead, of course, was partly due to the
interpreted nature of Java and the lack of HotSpot VMs (virtual machines) at that time. It was also due to the fact that
batch JDBC programming required a lot of back-and-forth between the batch application and the database as well as
unnecessary string processing.

JDBC 2.0 introduced a batch processing mechanism that addressed the non-VM issues (HotSpot addressed the VM
issues). Specifically, JDBC enables you to store multiple statements on the client to be sent over to the database as a
group—as a batch. When running that monthly interest process, you previously could send the update for each account
to the database only one at a time. Now you can choose to send the updates for all accounts at once, or you can group
a bunch of the updates together and send them in waves.

As a general rule, the more updates you hold on the client, the faster the batch processing occurs. However, you are
limited in the number you can hold by several factors:

RAM

You have to store those updates in memory. Thus, the more updates you hold for batch execution, the more
RAM you are eating. If you eat up so much RAM that you start swapping, you will destroy the performance
benefits of batch processing.

The database transaction log

If you have auto-commit turned off, then the whole batch sent to the database is executed as a single
transaction. If you send too many updates over, you risk filling up the database's transaction log.

Recovery processing

If you have auto-commit on and you are batching numerous transactions, recovery processing is much more
involved because you have to figure out what the last successful update was in your batch and then recover
from there. The more updates, the more complex the recovery process can potentially be.

The trick is to batch up a reasonable number of updates together. Unfortunately, a reasonable number depends on the
amount of RAM available to the application, the size of your database transaction log, the amount of RAM on the
database server, and the complexity of any recovery processing. In some situations, it makes sense to batch up 10
updates, while in others 100 or more makes sense. The following code illustrates batching together 10 statements at a
time for updating account balances:

PreparedStatement stmt;

conn.setAutoCommit(false);
stmt = conn.prepareStatemment("UPDATE account " +
 "SET balance = ? " +
 "WHERE id = ?");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "WHERE id = ?");
for(int i=0; i<accts.length; i++) {
 int[] rows;

 while((i%10 != 9) && (i<accts.length)) {
 accts[i].calculateIntterest();
 stmt.setDouble(1, accts[i].getBalance());
 stmt.setInt(2, accts[i].getId());
 stmt.addBatch();
 i++;
 }
 rows = stmt.executeBatch();
}

For a more complete discussion of the way JDBC manages batch processing, see the tutorial in Chapter 11.

3.3.4 Savepoints

While JDBC 2.0 added batch processing to the transaction arsenal of the JDBC programmer, JDBC 3.0 added something
called savepoints. Without the benefit of savepoints, JDBC allows for only two possible consistent states in a
transaction: the beginning state and the end state. Some transactions, however, may have more than two possible
consistent database states. For example, you may have a transaction in which an error condition during processing is
itself meaningful to the transaction and thus should cause an alternate flow with an alternate consistent end state.

BEST PRACTICE: Use savepoints to support transactions with multiple possible consistent
end states.

I honestly have never encountered a situation in business programming in which I felt I needed savepoints. One
possible example, however, would be a flexible tool for managing the addition of new users to a web site. On your web
site, you probably want to empower users to identify themselves by unique names but you want them to be able to
change those names. Because they can change, they make poor candidates for a primary key. Instead, you
automatically generate an otherwise meaningless primary key and let them pick meaningful names that are used as a
unique index.

Of course, it is possible that whatever name a user chooses is already in use. To make the process as simple for the
user as possible, you would have the following events in your transaction:

1. Generate a unique primary key from a Sequence table (requires an update).

2. Save the user contact information to the Contact table.

3. Add the username and timestamp to a new user log.

4. Insert the user profile information (including username) into the Profile table.

5. If the chosen username is a duplicate, insert the profile information into the Profile table using the primary key
as a temporary username. After that, log the new user ID and timestamp to the new user log.

In this example, you could set a savepoint after step 2 and roll back the transaction to that point in the event the
chosen username is a duplicate. Using a savepoint, you can guarantee that the user will appear in the new user log
under the proper username.

Of course, you can avoid the need for savepoints by restructuring this contrived transaction. Nevertheless, it does
illustrate the conditional processing inherent in savepoint transactions. The following code shows how it works in
practice:

Connection conn = null;

try {
 // the sequencer generates unique user ID's for us
 Sequencer seq = Sequencer.getInstance("userID");
 PreparedStatement stmt;
 Savepoint sp;
 long id;

 conn = ds.getConnection();
 conn.setAutoCommit(false);
 id = seq.next(conn);
 stmt = conn.prepareStatement("INSERT INTO Contact (userID, email) " +
 "VALUES (? , ?)");
 stmt.setLong(1, id);
 stmt.setString(2, email);
 stmt.executeUpdate();
 sp = conn.setSavepoint("contact");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sp = conn.setSavepoint("contact");
 stmt = conn.prepareStatement("INSERT INTO NewUser (userName, when) " +
 "VALUES (?, ?)");
 stmt.setString(1, userName);
 stmt.setLong(2, System.currentTimeMillis());
 stmt.executeUpdate();
 stmt = conn.prepareStatement("INSERT INTO Profile (userID, userName, pass) "+
 "VALUES (?, ?, ?)");
 stmt.setLong(1, id);
 stmt.setString(2, userName);
 stmt.setString(3, password);
 try {
 stmt.executeUpdate();
 }
 catch(SQLException e) {
 conn.rollback(sp);
 userName = "" + userID;
 stmt = conn.prepareStatement("INSERT INTO NewUser (userName, when) " +
 "VALUES (?, ?)");
 stmt.setString(1, userName);
 stmt.setLong(2, System.currentTimeMillis());
 stmt.executeUpdate();
 stmt = conn.prepareStatement("INSERT INTO Profile (userID, userName, " +
 "pass) VALUES (?, ?, ?)");
 stmt.setLong(1, id);
 stmt.setString(2, userName);
 stmt.setString(3, password);
 stmt.executeUpdate();
 }
}
catch(SQLException e) {
 try { conn.rollback(); }
 catch(SQLException e) { }
}
finally {
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.4 Transaction Management Paradigms
By this point, you should understand the role of transactions in database programming and the tools that Java provides
through JDBC to enable you to manage transactions. The final step is to understand how they fit into the bigger picture,
into the overall architecture of a transactional system.

There is no "one size fits all" paradigm for transactional systems. Different programming tasks require different design
patterns to help you support your database transactions. The most common paradigms are:

Auto-commit transactions

This pattern is the simplest transaction management pattern. You simply let the database commit every
statement you send by leaving the connection in auto-commit mode. Unfortunately, there are few real world
problems for which you can use auto-commit mode.

JDBC transactions

This paradigm is the one you see in most JDBC texts. You turn off auto-commit and manage the transactions
yourself. You are responsible for commits, rollbacks, and recovery in your Java code.

Stored procedure transactions

Using stored procedures, you can capture the complexity of any transaction and leave your Java code as simple
as auto-commit mode programming. The stored procedure begins the transaction and contains commits and
rollbacks. This approach would be the ideal if stored procedures did not require writing in some proprietary
stored procedure language.

EJB transactions

In an EJB environment, you can have the EJB container manage your transactions for you. If you are unfamiliar
with the term "container," we will cover that and other details of the J2EE platform in Chapter 9. For now, using
EJB transactions means you do not have to have to do any transaction handling in your Java code. A third-party
product manages the transactions for you.

Distributed transactions

Any one of the preceding transactions can also be a distributed transaction. A distributed transaction is one that
spans multiple databases. You will generally be using distributed transactions in an EJB environment.
Consequently, your Java code does not do any transaction management—distributed transactions are also
managed by the container.

Throughout the rest of the book I will build on these transaction patterns and show different persistence metaphors that
rely on these transaction management patterns.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part II: Persistence Models
In the object-oriented world of Java development, Java objects are said to persist against a data store.
In other words, the objects that make up your Java application save their data to a relational database
so that data may be referenced at a later time. The approach you take to mapping your Java objects to
the data store is called a persistence model .

These days, Java programmers have many persistence models from which to choose. In this section,
we look at many of the most popular persistence models, including:

EJB, both container-managed and bean-managed

Java Data Objects

Third-party tools such as Hibernate and Castor

Custom persistence models

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. Persistence Fundamentals
Objects contain the possibility of all situations.

—Ludwig Wittgenstein, Tractatus Logico Philosphicus

Persistence grants immortality to your business applications. Without it, you lose all of your application data every time
the server shuts down. Database programming is the development of persistence mechanisms to save an application's
state to a relational database. In this book, I will cover a variety of persistence mechanisms, but this chapter introduces
the basics through a custom guest book JSP application.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.1 Patterns of Persistence
The excellent book Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-
Wesley) has popularized the concept of design patterns. They are recurring forms in software development that you can
capture at a low level and reuse across dissimilar applications. Within any application scope are problems you have
encountered; patterns are the result of recognizing common problems and leveraging a common solution.

People have been writing database applications for nearly three decades. Over that time, many best practices have
evolved into design patterns. As we explore different modes of persistence in this book, we will see many of these
patterns over and over again.

4.1.1 Division of Labor

Perhaps the most essential element of good persistence design is a clear separation of application logic into the
following areas:

View logic

The view logic is responsible for displaying the user interface. It is the user's window into the control and
business logic.

Control logic

The control logic handles user actions and decides what should happen based on those actions. It handles data
validation and triggers the appropriate business logic on behalf of the user.

Business logic

Business logic[1] encapsulates the basic business concepts behind your application. They provide the view with
getter methods to access business data and provide the interface for creating, searching, modifying, and
deleting the business objects they support.

[1] You do not need to be writing a business application to have business logic. Business logic is a generic
term that refers to any of the basic concepts in your problem domain. If you are building a first-person
shooter game, your "business objects" are monsters, weapons, hazards, and the like.

Data access logic

Data access logic maps business objects to the data storage layer. They are the heart of persistence.

Data storage logic

The database engine provides you with this type of logic, which simply ensures your data is not lost at
application shutdown.

Separation of logic with dependencies based on simple interfaces is a core principle of object-oriented software
engineering. When you capture the essence of a business concept in a business object without burdening it with other
logic, you enable it to be reused in other environments. For example, a bank account object that does not contain
display or data access logic can be reused with JSP, Swing, and other kinds of frontends. It can also persist against
different database engines.

BEST PRACTICE: Divide application functionality into different logical components to
facilitate component reuse.

This same principle extends beyond the business object layer. It also makes it easier to divide the work of building
software among developers with different skills. With a good tag library, the view developer needs to know only XHTML
and your tag library to write the view. The more difficult work of JDBC programming can be easily handed off to an
experienced JDBC programmer without having to hand the entire application to a JDBC programmer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEST PRACTICE: Divide application logic into multiple tiers to match the complexity of
your application.

4.1.2 Sequence Generation

In almost any database application, you need to generate unique identifiers to serve as primary keys in your database.
Most databases have some sort of proprietary mechanism to help you generate sequences. Unfortunately, you cannot
port a database application that relies on these proprietary schemes to other databases without changing the code that
relies on those schemes.

I always recommend the use of a database-independent approach to sequence generation. Later in this chapter, I
develop a sequence generator that will work for most database applications. It stores sequence seeds in the database.
When an application needs a new unique number, it requests the unique number from the sequence generator. If the
sequence generator has the seed in memory, it uses the following formula to create a new unique number:

unique = (seed * 1000000) + last;
last++;

If the seed is not in memory, it is loaded from the database, incremented, and the incremented value is stored back in
the database. When the seed runs out of unique values—when last reaches 1000000[2]—it loads a new seed from the
database, increments that new seed, and saves the incremented seed back to the database.

[2] The value 1,000,000 depends on the system. You will want lower numbers for systems with short uptimes and
larger numbers for systems with long uptimes.

This approach has several important features:

It generates unique values in a distributed environment. Multiple application servers can save business objects
to multiple databases and still have the guarantee that the sequences being generated are unique across the
entire system.

You do not need to go to the database every single time you generate a sequence. You go to the database only
every million sequences.

The sequences are not tied to a specific table. You can create a sequence that is shared among several tables or
even across the entire database. Similarly, you can have multiple values in the same table rely on different
sequences.

BEST PRACTICE: Use database-independent sequence generation.

4.1.3 Mementos

In the division of labor discussed earlier, the data access object needs to know about the state of the object it is
persisting. You could pass the business object to the data access object, but doing so would require the data access
object to know the intimate details of how the business object is implemented. The memento design pattern from the
Design Patterns book comes to the rescue here.

A memento enables one object to share its state with another without either object needing to know anything about the
other. Consider a common situation in which you have one class (class A) that references the values of another (class
B). If you delete an attribute in class B, class A will no longer compile if it has direct references to the deleted attribute
of class B. In general, this behavior is exactly what you want.

Sometimes—especially in mapping objects to a database—you want a looser coupling between two classes. The
memento pattern creates this independence. It specifically enables you to make code changes to the business objects
and data access objects independently of each other. A change to the business object will not require any changes to
the data access object unless you are adding new data elements or removing obsolete ones. The data access object
knows that the only changes it will care about come in the form of changes in the data contained in the memento.
Similarly, any change to the underlying tables in the database is hidden from the business object. It always passes its
state to the data access object and lets the data access object worry about persistence issues.

BEST PRACTICE: Use mementos to pass component state between application tiers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEST PRACTICE: Use mementos to pass component state between application tiers.

4.1.4 Object Caching

A database application must use the database as a persistent store—not as a memory store. In other words, you need
to pull data from the database and hold it in memory in business objects. If you go to the database every time you
want to display some data about a business object, your database application will perform terribly and fail to scale at
all.

On the other hand, you don't want to load the entire database in memory and keep it there. If you have a large amount
of data, you will quickly run out of memory. It is therefore important to develop an object caching mechanism that
strikes a solid balance between memory usage and database access.

In architectures like the EJB architecture, the application server automatically manages caching for you. The Guest
Book later in this chapter, however, does not use EJBs. It therefore needs something else to manage caching. It
leverages a Cache class that uses a SoftReference to cache objects loaded from the database.

BEST PRACTICE: If you are building your own persistence system, implement an efficient
caching scheme to prevent exhausting system resources.

A SoftReference is a special kind of object in java.lang.ref that creates a soft reference to the object it stores. In Java,
references between objects are generally strong references. For example:

StringBuffer buffer = new StringBuffer();

The reference to buffer is a strong reference. The strong reference is in force as long as the reference is in scope. If the
references fall out of scope, then the object is said to be no longer strongly reachable. It is thus potentially available for
garbage collection.

A soft reference is a reference via a SoftReference object. By storing an object indirectly through a SoftReference instead
of directly, you make the object available for potential garbage collection while still maintaining the ability to access the
object until it is garbage collected.

The Cache class implements the Java Collection interface. Internally, it even uses a HashMap internally to store data.
When an application loads an object from the database, it can put it in the cache using the cache() method:

public void cache(Object key, Object val) {
 cache.put(key, new SoftReference(val));
}

This method creates a soft reference around the business object and then stores the soft reference in the internal
HashMap. As time goes by and the business object is no longer in use, the soft reference will expire and the memory the
business object occupies will be freed. The code that checks for the existence of a specific business object in the cache
thus needs to verify that the soft reference has not expired:

public boolean contains(Object ob) {
 Iterator it = cache.values().iterator();

 while(it.hasNext()) {
 SoftReference ref = (SoftReference)it.next();
 Object item = ref.get();

 if(item != null && ob.equals(item)) {
 return true;
 }
 }
 return false;
}

The get() method has to perform similar checks:

public Object get(Object key) {
 SoftReference ref = (SoftReference)cache.get(key);
 Object ob;

 if(ref = = null) {
 return null;
 }
 ob = ref.get();
 if(ob = = null) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(ob = = null) {
 release(key);
 }
 return ob;
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.2 A Guest Book Application
To illustrate these most fundamental persistence concepts, I will use a simple Guest Book JSP application from my web
site. You can see this example in action at http://george.reese.name/guestbook.jsp. The Guest Book enables visitors to
a web site to leave comments and view the comments left by others. To prevent abuse, the application also includes an
administrative approval mechanism. The full code for the Guest Book can be found on O'Reilly's FTP site.

In accordance with the common persistence design patterns described earlier in the chapter, this application divides
into view, control, business, data access, and data storage logic. Figure 4-1 is a UML class diagram illustrating this
division.

Figure 4-1. A UML class diagram for the Guest Book application

The view and control logic exist in two separate JSP pages. These JSP pages reference a Comment object containing the
business logic. They are blissfully ignorant of any persistence logic—or of the existence of persistence at all. The
Comment object, however, knows only that its data is persisted, but not how that data is persisted, because it delegates
its data access through a CommentDAO data access object.

I have chosen here to break down the data access even further, into individual objects supporting specific database
operations. Without this trick, the data access object fills up with a jumble of SQL and JDBC that becomes difficult to
manage.

4.2.1 The View

The view is a JSP page that displays a form and then lists all approved comments. Example 4-1 contains the code for
this JSP.

Example 4-1. A JSP view that lists comments and accepts new ones

<%@ page info="Guest Book Form" %>

<%@ page import="java.util.ArrayList" %>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<%@ page import="java.util.ArrayList" %>
<%@ page import="org.dasein.gb.Comment" %>

<%@ taglib uri="/WEB-INF/tlds/dasein.tld" prefix="dasein" %>

<jsp:useBean id="user" scope="session" class="org.dasein.security.User"/>

<% pageContext.setAttribute("user", user); %>

<% String d = request.getParameter("done"); %>
<% boolean done = ((d= =null) ? false : d.trim().equalsIgnoreCase("true")); %>
<% String email, name, comment; %>

<% email = request.getParameter(Comment.EMAIL); %>
<% name = request.getParameter(Comment.NAME); %>
<% comment = request.getParameter(Comment.COMMENT); %>
<% if(user != null) { %>
 <% String fn = user.getFirstName(); %>
 <% String ln = user.getLastName(); %>

 <% name = ((fn = = null) ? "" : (fn + " ")) + ((ln = = null) ? "" : ln); %>
 <% email = user.getEmail(); %>
<% } %>
<% if(email = = null) { %>
 <% email = ""; %>
<% } else { %>
 <% email = email.trim(); %>
<% } %>
<% if(name = = null) { %>
 <% name = ""; %>
<% } else { %>
 <% name = name.trim(); %>
<% } %>
<% if(comment = = null) { %>
 <% comment = ""; %>
<% } else { %>
 <% comment = comment.trim(); %>
<% } %>

<% String err = request.getParameter("errorID"); %>
<% if(err != null) { %>
 <% err = err.trim(); %>
 <% if(err.length() < 1) { %>
 <% err = null; %>
 <% } %>
<% } %>
<% if(err != null) { %>
 <dasein:printError/>
<% } else if(done) { %>
 <p class="text">
 Thank you for your comment! I will review the comment. Assuming
 you did nothing offensive, it will appear below after I review it.
 </p>
<% } %>
<% if(!done) { %>
 <p class="text">
 <form method="POST" action="guestbook-action.jsp">
 <label class="text" for="<%=Comment.NAME%>">Name:</label>
 <input id="<%=Comment.NAME%>" type="text" name="<%=Comment.NAME%>"
 value="<%=name%>" size="25"/>

 <label class="text" for="<%=Comment.EMAIL%>">Email:</label>
 <input id="<%=Comment.EMAIL%>" type="text" name="<%=Comment.EMAIL%>"
 value="<%=email%>" size="25"/>

 <label class="text" for="<%=Comment.COMMENT%>">Comments:</label>

 <textarea id="<%=Comment.COMMENT%>" name="<%=Comment.COMMENT%>"
 wrap="virtual" rows="10"
 cols="60"/><dasein:clean><%=comment%></dasein:clean></textarea>

 <input type="submit" value="Submit"/>
 </form>
 </p>
<% } %>
<h3 class="section">Comments</h3>
<dl class="guestbook">
 <% ArrayList cmts = Comment.getApproved(); %>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <% ArrayList cmts = Comment.getApproved(); %>
 <% pageContext.setAttribute("cmts", cmts); %>
 <dasein:foreach id="cmt" source="cmts" className="org.dasein.gb.Comment">
 <dt>On <%= cmt.getCreated() %>, <%=cmt.getName()%> wrote:</dt>
 <dd><%=cmt.getComment()%></dd>
 </dasein:foreach>
</dl>

The first part of this example pulls CGI (Common Gateway Interface) parameters into Java variables. It is specifically
looking for all of the form fields as well as a done parameter and an errorID parameter. As we will see in the controller,
whenever an error occurs, it sets the errorID parameter and redisplays the view. If any field values are passed in, it uses
those values as default values for the form. On success, it will redisplay the list of comments—minus the form.

After the initial parameter parsing logic, it displays a form unless the done parameter was set. Finally, the page uses a
tag library containing a looping construct in the form of the dasein:foreach tag. For each comment it pulls from the
Comment.getApproved() call, it displays the data from the comment.

4.2.2 The Controller

The form from the view posts to the controller page. Example 4-2 shows this simple code.

Example 4-2. The Guest Book controller that handles new comments

<%@ page info="Guest Book Action" %>

<%@ taglib uri="/WEB-INF/tlds/dasein.tld" prefix="dasein" %>
<%@ taglib uri="/WEB-INF/tlds/guestbook.tld" prefix="guestbook" %>

<%@ page import="org.dasein.jsp.Log" %>

<guestbook:addComment error="error">
 <% response.sendRedirect("guestbook-form.jsp?done=true"); %>
</guestbook:addComment>

<dasein:isNull name="error">
 <dasein:when state="false">
 <jsp:include page="guestbook-form.jsp">
 <jsp:param name="errorID" value="<%=Log.storeException(error)%>"/>
 </jsp:include>
 </dasein:when>
</dasein:isNull>

The complexity of this action controller is hidden inside a couple of tag libraries. The first is the guestbook:addComment
tag. It triggers the action of adding a new comment to the database. On success, the body of the comment is executed.
In this case, the body of the comment redirects to the view page with the done parameter set.

BEST PRACTICE: Delegate controller logic in JavaServer Pages through custom tags.

The special tag dasein:isNull will execute the body of the tag if the specified value—in this case, error—is a null value. In
this page, error will be null only if an error occurred while attempting to add a comment. It therefore stores the error
message for later retrieval and displays the view page again so that the user may correct the error.

As you can see from this simple page, a controller does not do much in and of itself. It simply acts as a traffic cop,
determining what should actually happen in response to a user action. In this case, it triggers an event in the business
object through a tag library. The code in the tag library is shown in Example 4-3.

Example 4-3. A custom tag to trigger business logic

public int doStartTag() throws JspException {
 try {
 ServletRequest request = pageContext.getRequest();
 String name = request.getParameter(Comment.NAME);
 String email = request.getParameter(Comment.EMAIL);
 String comment = request.getParameter(Comment.COMMENT);
 HashMap data = new HashMap();
 Comment cmt;

 if(name != null) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(name != null) {
 name = name.trim();
 if(name.length() < 1) {
 name = null;
 }
 }
 if(name = = null) {
 if(error != null) {
 pageContext.setAttribute(error, NO_NAME);
 error = null;
 return SKIP_BODY;
 }
 else {
 throw new JspException(NO_NAME);
 }
 }
 data.put(Comment.NAME, name);
 if(email != null) {
 email = email.trim();
 if(email.length() < 1) {
 email = null;
 }
 }
 data.put(Comment.EMAIL, email);
 if(comment != null) {
 comment = comment.trim();
 if(comment.length() < 1) {
 comment = null;
 }
 }
 if(comment = = null) {
 if(error != null) {
 pageContext.setAttribute(error, NO_COMMENT);
 error = null;
 return SKIP_BODY;
 }
 else {
 throw new JspException(NO_COMMENT);
 }
 }
 data.put(Comment.COMMENT, comment);
 cmt = Comment.create(data);
 pageContext.setAttribute(error, null);
 return EVAL_BODY_TAG;
 }
 catch(PersistenceException e) {
 if(error != null) {
 pageContext.setAttribute(error, "<p class=\"error\">" +
 e.getMessage() +"</p>");
 error = null;
 return SKIP_BODY;
 }
 else {
 throw new JspException(e.getMessage());
 }
 }
}

This tag library reads all of the form parameters and validates them. If they are not valid values, it sets an error value
and ignores its body. Valid values are stuck in a HashMap that acts as a memento. This memento is then passed to the
Comment.create() method to create a new comment in the database.

4.2.3 The Business Object (Model)

Business objects form the heart of any major application. They model the underlying concepts of the application's
problem domain. In the case of the Guest Book, the underlying concepts are users and the comments they leave
behind. For simplicity's sake, we are not capturing users as objects in this system. In a more complex system, we
probably would.

The only business object being modeled here, then, is the Comment object. The guestbook-form.jsp view is, in short, a
view of Comment objects. The Comment business object encapsulates everything there is about being a comment. It
stores comment data captured in the comment forms and manages the creation, deletion, approval, and retrieval of
comments. These operations have two elements:

Metaoperations such as creation and retrieval of comments via static methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Metaoperations such as creation and retrieval of comments via static methods

Object-specific operations via instance methods

Example 4-4 contains the meta-operations.

Example 4-4. The metaoperations of the Comment business object

package org.dasein.gb;

import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
import java.util.Iterator;

import org.dasein.gb.persist.CommentDAO;
import org.dasein.persist.PersistenceException;
import org.dasein.persist.Sequencer;
import org.dasein.util.Cache;

public class Comment {
 static private final Cache cache = new Cache();

 static public final String APPROVED = "approved";
 static public final String COMMENT = "comment";
 static public final String COMMENT_ID = "commentID";
 static public final String CREATED = "created";
 static public final String EMAIL = "email";
 static public final String NAME = "name";

 static public Comment create(HashMap data) throws PersistenceException {
 Sequencer seq = Sequencer.getInstance(Comment.COMMENT_ID);
 Comment cmt;
 Long id;

 id = new Long(seq.next());
 data.put(Comment.COMMENT_ID, id);
 CommentDAO.create(data);
 cmt = new Comment(id, data);
 synchronized(cache) {
 cache.cache(id, cmt);
 }
 return cmt;
 }

 static public ArrayList getApproved() throws PersistenceException {
 Iterator results = CommentDAO.getApproved().iterator();
 ArrayList cmts = new ArrayList();

 while(results.hasNext()) {
 Long id = (Long)results.next();

 cmts.add(Comment.getComment(id.longValue()));
 }
 return cmts;
 }

 static public Comment getComment(long cid) throws PersistenceException {
 Long id = new Long(cid);

 synchronized(cache) {
 Comment cmt = (Comment)cache.get(id);

 if(cmt = = null) {
 HashMap data = CommentDAO.getComment(cid);

 data.put(Comment.COMMENT_ID, id);
 cmt = new Comment(id, data);
 cache.cache(id, cmt);
 }
 return cmt;
 }
 }

 static public ArrayList getPending() throws PersistenceException {
 Iterator results = CommentDAO.getPending().iterator();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Iterator results = CommentDAO.getPending().iterator();
 ArrayList cmts = new ArrayList();

 while(results.hasNext()) {
 Long id = (Long)results.next();

 cmts.add(Comment.getComment(id.longValue()));
 }
 return cmts;
 }
}

In addition to representing a comment, the Comment class acts as a factory that contains four meta-operations:

create()

Creates new comment objects

getApproved()

Retrieves all approved comments

getComment()

Retrieves a specific comment by its comment ID

getPending()

Retrieves all comments awaiting approval

The central data element for these operations is the comment cache stored in the static cache attribute. This cache uses
the Cache class described earlier in the chapter. Whenever a comment is sought externally, this cache is checked first to
see if the desired Comment instance has already been loaded. If not, the class will go to the data access object to load a
new instance from the database. Otherwise, we can avoid a costly trip to the database and pull the object straight from
the cache.

BEST PRACTICE: Always define literal values in constants.

You probably also notice the constants defined at the top of the class. We saw them referenced earlier in the view page.
It is simply a solid coding practice never to use literals in code. Instead, you should use constants like these to help
avoid application bugs caused by spelling errors.

 private Boolean approved = null;
 private String comment = null;
 private Long commentID = null;
 private Date created = null;
 private String email = null;
 private String name = null;

 private Comment(Long cid, HashMap data) {
 super();
 commentID = cid;
 load(data);
 }

 public String getComment() {
 return comment;
 }

 public long getCommentID() {
 return commentID.longValue();
 }

 public Date getCreated() {
 return created;
 }

 public String getEmail() {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public String getEmail() {
 return email;
 }

 public String getName() {
 return name;
 }

 public boolean isApproved() {
 return approved.booleanValue();
 }

 private void load(HashMap data) {
 approved = (Boolean)data.get(Comment.APPROVED);
 comment = (String)data.get(Comment.COMMENT);
 commentID = (Long)data.get(Comment.COMMENT_ID);
 created = (Date)data.get(Comment.CREATED);
 email = (String)data.get(Comment.EMAIL);
 name = (String)data.get(Comment.NAME);
 }

 public void remove() throws PersistenceException {
 HashMap data = new HashMap();

 data.put(Comment.COMMENT_ID, commentID);
 CommentDAO.remove(data);
 synchronized(cache) {
 cache.release(commentID);
 }
 }

 public void save(HashMap data) throws PersistenceException {
 data.put(Comment.COMMENT_ID, commentID);
 CommentDAO.save(data);
 load(data);
 }
}

The instance operations are largely simple getter methods. The exceptions are the following:

load()

The load method pulls data from our HashMap memento and assigns that data to instance variables.

remove()

The remove() method deletes the object and removes it from the cache.

save()

The save() method tells the data access object to save changes to the comment.

The most critical thing to notice about the business object is that it hides all knowledge about persistence from the view
and the controller. The view and controller simply do not need to know if the object persists or how it persists. In fact,
the business object knows only that it persists—it knows nothing about how it persists. That knowledge is saved for the
data access objects.

4.2.4 The Data Access Objects

The data access object, CommentDAO, provides a simple interface to the business object for persisting comments to the
database. In short, it has methods to load, delete, update, and create comments. When the methods require data from
the comment, the data is passed via a memento. They throw generic persistence exceptions. The data access object
thus needs to know nothing about the internal structure of comments, and comments need to know nothing about the
persistence details of the data access object. Example 4-5 contains the code for the CommentDAO class.

Example 4-5. The CommentDAO data access object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 4-5. The CommentDAO data access object

package org.dasein.gb.persist;

import java.util.ArrayList;
import java.util.HashMap;

import org.dasein.gb.Comment;
import org.dasein.persist.Execution;
import org.dasein.persist.PersistenceException;

public abstract class CommentDAO {
 static public void create(HashMap data) throws PersistenceException {
 CreateComment.getInstance().execute(data);
 }

 static public ArrayList getApproved() throws PersistenceException {
 HashMap data = new HashMap();

 data.put(Comment.APPROVED, new Boolean(true));
 data = ListComments.getInstance().execute(data);
 return (ArrayList)data.get(ListComments.COMMENTS);
 }

 static public HashMap getComment(long cid) throws PersistenceException {
 HashMap data = new HashMap();

 data.put(Comment.COMMENT_ID, new Long(cid));
 data = LoadComment.getInstance().execute(data);
 return data;
 }

 static public ArrayList getPending() throws PersistenceException {
 HashMap data = new HashMap();

 data.put(Comment.APPROVED, new Boolean(false));
 data = ListComments.getInstance().execute(data);
 return (ArrayList)data.get(ListComments.COMMENTS);
 }

 static public void save(HashMap data) throws PersistenceException {
 SaveComment.getInstance().execute(data);
 }

 static public void remove(HashMap data) throws PersistenceException {
 RemoveComment.getInstance().execute(data);
 }
}

This data access object further delegates to operation-specific objects to avoid clutter in this class.

4.2.4.1 Loading comments

These delegates use the framework I described earlier in the chapter. Example 4-6 shows the LoadComment delegate
that performs the SQL to load a comment from the database.

Example 4-6. Loading a comment through a special delegate

package org.dasein.gb.persist;

import java.sql.SQLException;
import java.util.HashMap;

import org.dasein.gb.Comment;
import org.dasein.persist.Execution;
import org.dasein.persist.PersistenceException;

public class LoadComment extends Execution {
 static public LoadComment getInstance() {
 return (LoadComment)Execution.getInstance(LoadComment.class);
 }

 static private final String LOAD =
 "SELECT approved, email, name, comment, created " +

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "SELECT approved, email, name, comment, created " +
 "FROM Comment " +
 "WHERE Comment.commentID = ?";

 static private final int COMMENT_ID = 1;

 static private final int APPROVED = 1;
 static private final int EMAIL = 2;
 static private final int NAME = 3;
 static private final int COMMENT = 4;
 static private final int CREATED = 5;

 public HashMap run() throws PersistenceException, SQLException {
 long id = ((Long)data.get(Comment.COMMENT_ID)).longValue();
 HashMap res = new HashMap();
 String tmp;

 statement.setLong(COMMENT_ID, id);
 results = statement.executeQuery();
 if(!results.next()) {
 throw new PersistenceException("No such comment: " + id);
 }
 tmp = results.getString(APPROVED);
 res.put(Comment.APPROVED,
 new Boolean(tmp.trim().equalsIgnoreCase("Y")));
 tmp = results.getString(EMAIL);
 if(results.wasNull()) {
 res.put(Comment.EMAIL, null);
 }
 else {
 res.put(Comment.EMAIL, tmp.trim());
 }
 res.put(Comment.NAME, results.getString(NAME));
 res.put(Comment.COMMENT, results.getString(COMMENT));
 res.put(Comment.CREATED, results.getDate(CREATED));
 return res;
 }

 public String getDataSource() {
 return "jdbc/george";
 }

 public String getStatement() {
 return LOAD;
 }
}

You should notice here again the liberal use of constants instead of literals throughout the code. This practice is very
important in JDBC programming since the most efficient way to access columns in a result set is by column number.

BEST PRACTICE: Access JDBC columns by number and use constants to keep those
column values readable and maintainable.

The code executes a SQL SELECT and places the result into a memento. That memento goes back to the calling business
object, which then sends it through the business object's load() method. If a JDBC error or some other exception
occurs, the exception will be wrapped up in a PersistenceException and sent back to the calling business object.

4.2.4.2 Sequence generation

Throughout this book, I reference the best practice of relying on your own, database-independent primary key
generation mechanism. No discussion of the data access tier would be complete without a discussion of primary key
generation.

Every database engine provides a feature that enables applications to automatically generate values for identity
columns. MySQL, for example, has the concept of AUTO_INCREMENT columns:

CREATE TABLE Person (
 personID BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
 lastName VARCHAR(30) NOT NULL,
 firstName VARCHAR(25) NOT NULL
);

When you insert a new person into this table, you omit the primary key columns:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you insert a new person into this table, you omit the primary key columns:

INSERT INTO Person (lastName, firstName)
VALUES ('Wittgenstein', 'Ludwig');

MySQL will automatically generate the value for the personID column based on the highest current value. If one row
exists in the database with a personID of 1, Ludwig Wittgenstein's personID will be 2. Some other databases have similar
ways to generate primary keys; others provide wildly different tools.

Reliance on your database engine's primary key generation tools has the following drawbacks:

Every database engine handles key generation differently. It is thus difficult to build a truly portable JDBC
application that uses proprietary key generation schemes.

Until JDBC 3.0, a Java application had no clear way of finding out what keys were generated on an insert.

In many databases, you can autogenerate only a single unique value per table.

In many databases, you cannot use the primary key generation mechanism to generate values unique across
multiple tables.

I recommend the development of a database-independent primary key generation API that stores potential primary key
values in the database. If you take this approach, you need to take care not to make too many trips to the database.
You can avoid this pitfall by generating keys in memory and storing seed values in the database.

The heart of this database-independent scheme is the following table:

CREATE TABLE Sequencer (
 name VARCHAR(20) NOT NULL,
 seed BIGINT UNSIGNED NOT NULL,
 lastUpdate BIGINT UNSIGNED NOT NULL,
 PRIMARY KEY (name, lastUpdate)
);

The first time your application generates a key, it grabs the next seed from this table, increments the seed, and then
uses that seed to generate keys until the seed is exhausted. Example 4-7 through Example 4-9 contain some of the
code for a database-independent utility that handles unique number generation. It enables your application to simply
use the following calls to create primary keys:

Sequencer seq = Sequencer.getInstance("personID");

personID = seq.next();

The tool guarantees that you will receive a value that is unique across all personID values. Example 4-7 contains the
static elements that implement the singleton design pattern to hand out shared sequencers.

Example 4-7. The code to serve up sequencers

public class Sequencer {
 static private final long MAX_KEYS = 1000000L;
 static private final HashMap sequencers = new HashMap();

 static public final Sequencer getInstance(String name) {
 synchronized(sequencers) {
 if(!sequencers.containsKey(name)) {
 Sequencer seq = new Sequencer(name);

 sequencers.put(name, seq);
 return seq;
 }
 else {
 return (Sequencer)sequencers.get(name);
 }
 }
 }

 ...
}

The code provides two critical guarantees for sequence generation:

All code that needs to create new numbers for the same sequence (like personID) will share the same sequencer
object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object.

Because of the synchronized block, two attempts to get a previously unreferenced sequence at the same instant
will not cause two different sequencers to be generated.

The attribute declarations and initialization for a sequencer define two attributes that correspond to values in the
Sequencer table as well as a third attribute, sequence, to track the values handed out for the current seed, as shown in
Example 4-8.

Example 4-8. Setting up the sequencer

private String name = null;
private long seed = -1L;
private long sequence = 0L;

private Sequencer(String nom) {
 super();
 name = nom;
}

The core element of the sequencer—its public API—is the next() method. It contains the algorithm for generating unique
numbers. The algorithm has the following process:

Check to see if the seed is valid. The seed is invalid if this is a newly generated sequencer or if the seed is
exhausted. A seed is exhausted if the next sequence has a value greater than MAX_KEYS.

If the seed is not valid, get a new seed from the database.

Increment the sequence.

Multiply the seed by MAX_KEYS and add that value to the incremented sequence. This is the unique key.

Example 4-9 contains the algorithm.

Example 4-9. Generating a sequence ID

public synchronized long next() throws PersistenceException {
 Connection conn = null;

 // when seed is -1 or the keys for this seed are exhausted,
 // get a new seed from the database
 if((seed = = -1L) || ((sequence + 1) >= MAX_KEYS)) {
 try {
 String dsn = System.getProperty(DSN_PROP, DEFAULT_DSN);
 InitialContext ctx = new InitialContext();
 DataSource ds = (DataSource)ctx.lookup(dsn);

 conn = ds.getConnection();
 reseed(conn);
 }
 catch(SQLException e) {
 throw new PersistenceException(e);
 }
 catch(NamingException e) {
 throw new PersistenceException(e);
 }
 finally {
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
 }
 }
 // up the sequence value for the next key
 sequence++;
 // the next key for this sequencer
 return ((seed * MAX_KEYS) + sequence);
}

The rest of the code is the database access that creates, retrieves, and updates seeds in the database. The next()
method triggers a database call via the reseed() method when the seed ceases to be valid.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method triggers a database call via the reseed() method when the seed ceases to be valid.

The logic for reseeding the sequencer is fairly straightforward:

Fetch the current values for the sequence in question from the database.

If the sequence does not yet exist in the database, create it.

Increment the seed from the database.

Update the database

Set the new seed and reset the sequence attribute to -1 (this makes the first number generated 0).

You can find the full code for the Sequencer class on O'Reilly's FTP site in the directory for this book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. EJB CMP
Blessed are the sleepy ones: for they shall soon doze off.

—Friedrich Nietzsche, Also Sprach Zarathustra

Container-managed persistence (CMP) is a persistence model in which the EJB container worries about persistence
issues while you worry about business logic management. Under the CMP model, you leave most of the EJB persistence
methods— ejbFindXXX(), ejbLoad(), ejbStore(), and ejbRemove()—empty. Based on a mapping you define in the
application's deployment descriptor, the container implements those methods and crafts the SQL to map your beans to
the database.

EJB 2.0 CMP is a drastic departure from—and improvement upon—EJB 1.0 CMP. Nevertheless, the majority of systems
in production these days are still in EJB 1.x environments. This chapter takes a look at both CMP models and describes
how to use them in a production environment. As with any automated persistence mechanism, there is not a lot that
EJB CMP requires you as the developer to do. The focus for this chapter is specifically on the aspects of the EJB 1.0 and
EJB 2.0 CMP models that most impact persistence issues. Once you understand these concepts, you will find that you
are left with almost no persistence coding to do under EJB CMP—all your work lies in setting up the database and
writing deployment descriptors.

This chapter assumes you have a basic understanding of Enterprise JavaBeans. It specifically assumes that you know
the difference between entity and session beans and are familiar with home interfaces, remote interfaces, and
implementation objects. If you do not have this background, you should review the Enterprise JavaBeans section of
Chapter 9. I also strongly recommend the book Enterprise JavaBeans (O'Reilly) by Richard Monson-Haefel if you intend
to do serious programming in an EJB environment.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.1 Which CMP Model to Use?
While container-managed persistence sounds great, the initial EJB implementations of CMP through EJB 1.1 have had
some serious drawbacks:

Most EJB servers will provide automated persistence only against JDBC-supported database engines. If you are
using some other data storage product like an object-oriented database or a specialized digital asset
management data store, you will have to do the work yourself.

Container-managed persistence demands that your persistent attributes have public visibility. Public attributes
violate a key element of good OO design: encapsulation. Consequently, container-managed beans make it very
easy for people to make poor design choices that rely on the public nature of those attributes.

Container-managed persistence makes it difficult to tweak your data model for maximum performance. For
example, if you want to perform lazy-loading of certain attributes, you must use bean-managed persistence.

Container-managed persistence is incapable of supporting the complex class relationships common to enterprise
systems. For example, container-managed persistence cannot support some one-to-many or many-to-many
relationships. If your analysis models require those kinds of relationships, your architecture must use an
alternative persistence model.

Lazy-loading is a technique through which certain attributes in an object are not restored
from the database immediately but are instead restored in a background thread or when
the system asks for that data. A Country object, for example, may be associated with quite
a few cities—likely more cities than you want to load into memory when most clients are
looking only for the name and ISO code for the country. Using lazy-loading, you can put
off loading all associated cities until a later time.

In spite of its drawbacks, EJB 1.x CMP does have some redeeming qualities. Specifically, it is a great tool if you are
writing a simple application but you do not want to worry about the database at all. By simple application, I mean an
application that has no complex dependencies among entity beans and whose attributes are primitives or serializable
objects. The minute the slightest complexity enters the picture or you need to control the data model, EJB 1.x CMP falls
apart.

BEST PRACTICE: Use CMP—especially EJB 2.0 CMP—whenever possible, but be prepared
to use BMP if EJB 2.0 CMP is not an option.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.2 The EJB 1.0 CMP Model
EJB 1.x CMP generates the code to map persistent entity bean fields to columns in a relational database. Under this
model, you can map only Java primitives and serializable fields. You cannot, for the most part, map entity beans or any
other nonserializable Java object. Table 5-1 shows the attributes of two analysis-level business objects: an Author class
and a Book class.

Table 5-1. The attributes of two business objects and EJB 1.x CMP's ability to
manage them

Class Attribute Type Manageable by EJB 1.x CMP?

Author authorID long Yes

 firstName String Yes

 lastName String Yes

Book bookID long Yes

 author Author No

 title String Yes

EJB 1.1 introduced the ability to map entity bean references to the database. The actual implementation of this support,
unfortunately, varies from container to container. As a general rule, you should store the primary keys of any entity
bean references and let the request object map it to the entity reference. The Book bean in Table 5-1, for example,
could have an authorID field instead of an author field. Example 5-1 shows this approach.

Example 5-1. A container-managed Book bean that references an Author bean

package book;

import javax.ejb.EntityBean;
import javax.ejb.EntityContext;

public class BookEntity implements EntityBean {
 public Long authorID;

 public Long bookID;
 public EntityContext context;
 public String title;

 public void ejbActivate() {
 }

 public Long ejbCreate(Long bid, Long aid, String ttl) {
 bookID = bid;
 authorID = aid;
 title= ttl;
 return null;
 }

 public void ejbLoad() {
 }

 public void ejbPassivate() {
 }

 public void ejbPostCreate(Long bid, Long aid, String ttl) {
 }

 public void ejbRemove() {
 }

 public void ejbStore() {
 }

 public Long getAuthorID() {
 return authorID;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return authorID;
 }
 public Long getBookID() {
 return bookID;
 }

 public String getTitle() {
 return title;
 }

 public void setEntityContext(EntityContext ctx) {
 context = ctx;
 }

 public void unsetEntityContext() {
 context = null;
 }
}

I will discuss the details of this class later. If I have code that needs the author of the book, I can get the authorID and
then request the Author by its primary key:

public Author getBookAuthor(Book book) throws Exception {
 Context ctx = new InitialContext();
 Object ref = ctx.lookup("java:comp/env/Author");
 AuthorHome home =
 (AuthorHome)PortableRemoteObject.narrow(ref, AuthorHome.class);

 return home.findByPrimaryKey(book.getAuthorID());
}

This approach has two virtues. First, it avoids the lack of ability in EJB 1.x CMP to map between entities. Second, it
creates the same effect as lazy-loading by loading the Author only when a client actually needs access to it.

5.2.1 Field Mapping

One of the weaknesses in the EJB 1.x CMP model lies in how it maps attributes to the database. Each container
provides its own mechanism for defining the mapping between an entity bean and a table. In most cases, you can use a
GUI tool that enables you to relate a bean attribute to a relational column. If you do not care at all about the underlying
data model, you can simply write up an XML deployment descriptor that enumerates the entity attributes to be mapped.
Example 5-2 shows a sample deployment descriptor.

Example 5-2. A sample EJB deployment descriptor

<?xml version="1.0"?>
<!DOCTYPE ejb-jar
 PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.2//EN"
 "http://java.sun.com/j2ee/dtds/ejb-jar_1_2.dtd">

<ejb-jar>
 <description>
 </description>
 <enterprise-beans>
 <entity>
 <description>
 </description>
 <ejb-name>BookBean</ejb-name>
 <home>book.BookHome</home>
 <remote>book.Book</remote>
 <ejb-class>book.BookEntity</ejb-class>
 <primkey-class>java.lang.Long</primkey-class>
 <reentrant>False</reentrant>
 <persistence-type>Container</persistence-type>
 <cmp-field><field-name>bookID</field-name></cmp-field>
 <cmp-field><field-name>title</field-name></cmp-field>
 <cmp-field><field-name>authorID</field-name></cmp-field>
 <primkey-field>bookID</primkey-field>
 </entity>
 <entity>
 <description>
 </description>
 <ejb-name>AuthorBean</ejb-name>
 <home>book.AuthorHome</home>
 <remote>book.Author</remote>
 <ejb-class>book.AuthorEntity</ejb-class>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ejb-class>book.AuthorEntity</ejb-class>
 <primkey-class>java.lang.Long</primkey-class>
 <reentrant>False</reentrant>
 <persistence-type>Container</persistence-type>
 <cmp-field><field-name>authorID</field-name></cmp-field>
 <cmp-field><field-name>firstName</field-name></cmp-field>
 <cmp-field><field-name>lastName</field-name></cmp-field>
 <primkey-field>authorID</primkey-field>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>BookBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>AuthorBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

This deployment descriptor tells your container that you have created an entity bean with the specified home, remote,
and implementation classes. The fields in the <cmp-field> tags identify which BookEntity attributes should persist to your
database.

If you deploy this simplistic application on an Orion Server, it will create a BookBean table in your database and set up
bookID, title, and authorID columns for you with bookID established as the primary key. You do not have to write any
JDBC code. You do not have to write any SQL. You do not have to create any tables.

If you have a data model constructed already, you will need to use the proprietary tools that come with your J2EE
container to map the bean to the data model. In the case of Orion Server, for example, you can create an orion-ejb-
jar.xml file to handle custom mappings. Most application servers provide a GUI to help identify the mappings.

5.2.2 Persistence Methods

If you look back to Example 5-1, you will notice that most of the methods required for an EJB entity bean are empty.
They are empty because the container is handling the persistence operations for you. The persistence operations that
generally contain code under a CMP model are the ejbCreate() and ejbPostCreate() methods.

The container passes both methods the values specified by the client. It calls ejbCreate() before persisting the bean to
the database and ejbPostCreate() afterward. Assuming you have no business logic associated with object creation, the
responsibility of ejbCreate() is to assign the initial values to the bean:

public Long ejbCreate(Long bid, Long aid, String ttl) {
 bookID = bid;
 authorID = aid;
 title= ttl;
 return null;
}

The return value has no meaning under CMP. You should therefore return null as I did in the BookEntity class.

You must make sure you assign the primary key value in all ejbCreate() methods. You consequently cannot rely on any
underlying database tools, such as the MySQL AUTO_INCREMENT feature, to generate primary keys. At the end of
Chapter 4, I introduced a database-independent approach to generating unique values. This approach uses a Sequencer
object to generate unique long values. The AuthorEntity class takes advantage of the Sequencer:

public Long ejbCreate(String fn, String ln) throws CreateException {
 try {
 Sequencer seq = Sequencer.getInstance(AUTHOR_ID);

 authorID = new Long(seq.next());
 }
 catch(PersistenceException e) {
 throw new CreateException(e.getMessage());
 }
 firstName = fn;
 lastName = ln;
 return null;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Instead of requiring the client to worry about primary key generation, the burden has been placed where it belongs—
inside the creation logic for the bean.

BEST PRACTICE: Perform primary key generation in your CMP EJB instead of the client.

The container calls ejbPostCreate() once the bean is established as a persistent entity to enable you to perform any extra
initialization. The state differs at the time of ejbCreate() in two significant ways:

A record is inserted into the database or other persistent store between the two calls.

The association between the bean and the EJB object is established between the two calls.

5.2.3 Searches

One of the great weaknesses of EJB 1.x CMP is its poor support for searching on anything but the primary key. To
search for a book with a specific title, for example, you would add a finder method to your home interface:

Collection findByTitle(String ttl)
throws RemoteException, FinderException;

The good news is that you do not have to code anything other than the basic search signature in the home interface.
The bad news is that there is no container-neutral method for telling an EJB container exactly what findByTitle() is
supposed to do. Is it supposed to look for exact matches? Is the ttl value being passed a regular expression? The only
thing a container knows from a finder method signature is whether that method is expected to find a unique value or
multiple hits. The EJB 1.x specifications say nothing about how a container is supposed to identify what you mean to
search for. As a result, you must rely on proprietary deployment tools to assist the container in defining your EJB finder
methods.

5.2.4 Transactions

Without being flip, I believe it is safe to say that if you need complex transactions you probably should not be using EJB
1.x CMP—you should instead be using 2.x CMP or BMP. You describe the level of transaction support your beans need in
the EJB deployment descriptor. The deployment descriptor in Example 5-2 had no transaction support. Indeed, this
simple application needed no transaction support.

EJB lets you specify the transaction characteristics of beans on a method-by-method basis as part of the deployment
descriptor. The deployment descriptor approach is called declarative transaction management. Declarative transaction
management is a huge advantage of all EJB persistence models. Whereas most other models require the programmer
to manage transaction semantics in code—the hardest part of database programming—EJB does not require the
programmer to understand anything about transaction semantics. Only the deployer needs to worry about such things,
and the deployer can tweak the transactional attributes of the system without modifying and recompiling code.

If you are unfamiliar with the basic concepts of transaction management, now is an
excellent time to go back and read Chapter 3.

When you deploy a bean—entity or session—you assign it a transactional attribute in the deployment descriptor. The
transactional attribute tells the container how to handle transactions for that bean. You can even assign different
transactional attributes to different methods within the bean if you desire that level of control. The transactional
attributes are:

NotSupported

No transaction scope is propagated to the method. In other words, if this method is called in the middle of
another transaction, that transaction is suspended to allow this method to execute. No transactional context
exists for any calls made within this method. Once this method completes, the original transaction resumes.

Supports

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Supports

This attribute says that the method in question will act with whatever transaction scope it is executed in. If not
called in an existing transactional scope, it will not attempt to create one.

Required

A method with a Required attribute must be executed in a transactional context. If not called in an existing
transactional context, it will initiate a new one.

RequiresNew

No matter what context in which the method in question is called, this method will create a new transaction
context. It will suspend any existing transactional context until it completes.

Mandatory

The method in question can never initiate its own transactional context—it must always occur inside a caller's
transactional context. If it is called without any transactional context, the container will throw an exception.

Never

The opposite of Mandatory, Never means that the method in question can never be called inside a transactional
context. If it is, the container will throw an exception.

The transactional attributes in Example 5-2 were specified in the following lines:

<container-transaction>
 <method>
 <ejb-name>BookBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
</container-transaction>
<container-transaction>
 <method>
 <ejb-name>AuthorBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
</container-transaction>

This descriptor states that transactions for all methods in both beans are not supported. If for some reason a client calls
them within a transactional context, that context will be suspended until the methods in these beans complete.

The <container-transaction> tag associates a method with a transactional attribute. Inside the <method> tag, I use * for
the method name to indicate that the attribute applies to all methods in the specified bean. The <trans-attribute> tag is
the tag that identifies which transactional attribute to assign. You can override a * value by naming a specific method in
a later <container-transaction> tag.

I have just touched on the basics of transaction management in the EJB 1.x CMP persistence model. Much of the detail,
however, applies both to the BMP and EJB 2.x CMP persistence models, which are covered in the next section and later
in this chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.3 The EJB 2.0 CMP Model
EJB 2.0 is a significant, revolutionary improvement over the original EJB specification—especially when it comes to
component persistence. Persistence changes include a more solid CMP architecture and a specialized EJB query
language (EJBQL) for performing bean searches. Beyond persistence, EJB 2.0 provides for exciting features such as
message-driven beans.

5.3.1 Container-Managed Relationships

Under EJB 1.x, container-managed persistence meant the container managed keeping all bean attributes in sync with
the data store. This job became problematic for any attributes representing relationships to other beans. The general
solution was to store a primary key for the relationship and let clients worry about referencing the other bean.

EJB 2.0 introduces a concept called container-managed relationships, or CMR. A CMR field is a bean attribute that is a
relationship to another bean. CMR relationships can take any of the following forms:

One-to-one
One-to-many
Many-to-many

In addition, each relationship can be unidirectional or bidirectional. If, for example, the relationship between Author and
Book is unidirectional, I can ask for all books by a specific author but I cannot ask for the author of a specific book. In
other words, the Author bean has a reference to its Book instances but the Book bean has no reference to its author. Of
course, it would be more appropriate for this particular relationship to be bidirectional, meaning that I can navigate
from Author to Book and Book to Author.

BEST PRACTICE: Try to make relationships unidirectional unless absolutely necessary.

5.3.1.1 CMR basics

You identify CMR relationships in your deployment descriptor inside the <relationships> tag. For each relationship, you
specify an ejb-relation element:

<ejb-jar>
 ...
 <enterprise-beans>
 <entity>
 <ejb-name>BookEJB</ejb-name>
 <local-home>com.imaginary.ora.BookHome</local-home>
 <local>com.imaginary.ora.Book</local>
 <cmp-version>2.x</cmp-version>
 ...
 </entity>
 <entity>
 <ejb-name>AuthorEJB</ejb-name>
 <local-home>com.imaginary.ora.AuthorHome</local-home>
 <local>com.imaginary.ora.Author</local>
 <cmp-version>2.x</cmp-version>
 ...
 </entity>
 </enterprise-beans>
 <relationships>
 <ejb-relation>
 <ejb-relation-name>Book-Author</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 A Book has an Author
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <cascade-delete/>
 <relationship-role-source>
 <ejb-name>BookEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <cmr-field>
 <cmr-field-name>author</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 An Author has many Books
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>AuthorEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>books</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>
 </relationships>
 ...
</ejb-jar>

Though for our purposes the bean declarations themselves are not relevant to persistence, I included part of their
declarations to show that the relationships section references by the names you declare in the <ejb-name> tags under
the enterprise-beans element.

This deployment descriptor says that an author has many books and a book has one author. The Author bean tracks its
books via the CMR field books. Similarly, the Book bean tracks its author by the author CMR field.

You must define a pair of accessor methods—a getter and setter—for any CMR fields you declare. You declare these
methods as abstract in the bean implementation class. The return type for the getter and parameter for the setter is a
Collection for the "many" side of a one-to-many or many-to-many relationship. You can use implementations of Collection
to suit the underlying needs of the relationship: TreeSet instances for ordered lists, Set instances for unique lists, and so
on. Similarly, the type for the "one" side of a one-to-one or one-to-many relationship is the local interface.[1] The Book
interface therefore has these methods:

[1] In addition to remote interfaces, EJB 2.0 added the concept of local interfaces for reference within the
container.

public abstract Author getAuthor();

public abstract void setAuthor(Author auth);

Similarly, the Author interface includes:

public abstract Collection getBooks();

public abstract void setBooks(Collection bks);

In practice, you rarely want to set the whole list of books associated with an author at all once. Instead, you probably
want to add books as new books are written. You can add other methods such as an addBook() method to support these
needs. The EJB specification, however, demands that you write at least a getter and setter.

5.3.1.2 CMR magic

The beauty of EJB 2.0 CMR is its ability to manage the referential integrity of these relationships. If you assign one
bean's collection of relationships to another bean, that collection is automatically removed from the first bean. If you
delete the primary bean in a relationship marked in the descriptor with a <cascade-delete> tag, its dependent beans are
also deleted.[2] In the sample descriptor, a Book will be deleted whenever its Author is deleted from the database to
prevent us from having books with no authors.

[2] This feature is also known as a cascade delete.

5.3.2 EJB QL

Besides entity relationships, EJB 1.x CMP also had difficulties with searches. The main problem was that you had to
write a different finder method to support every way you could possibly search for a bean or set of beans. Furthermore,
the semantics of these finder methods left a lot to interpretation. For example, everyone knows what getTitle() and
setTitle() do. Do you know what findBooksByYear() does? On the face of it, you would think it would provide all books
published in a specific year. However, it can also mean find all books published after a specific year or before a specific
year or even by authors born in a specific year. A container simply has no way to know from the EJB 1.x semantics.

5.3.2.1 Finders

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3.2.1 Finders

EJB 2.0 introduced a query language called the EJBQL to address these searching issues. The best way to think of
EJBQL is as SQL for EJBs. In other words, as SQL enables you to query tables in a relational database, EJBQL lets you
query beans in your application.

You define EJBQL queries inside your deployment descriptor:

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>BookEJB</ejb-name>
 <local-home>com.imaginary.ora.BookHome</local-home>
 <local>com.imaginary.ora.Book</local>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Book</abstract-schema-name>
 <primkey-field>bookID</primkey-field>
 <cmp-field><field-name>title</field-name></cmp-field>
 <query>
 <query-method>
 <method-name>findByTitle</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(b) FROM Book b WHERE b.title = ?1
 </ejb-ql>
 </query>
 </entity>
 ...
 </enterprise-beans>
 ...
</ejb-jar>

The <query> tag introduces a query that applications can perform on the bean. It has two parts. The first part—<query-
method>—describes the external interface, a finder method called findByTitle(String). The second part—<ejb-ql>—
describes the actual query. It looks a lot like SQL but is different enough to make you tilt your head sideways.

The key to the EJB QL is the bean's abstract schema name. When you construct an EJB QL statement, you reference
beans by their abstract schema names. In this example, the Book bean has the abstract schema name of Book. Thus,
any time a book is referenced, it is referenced through the Book abstract schema name. Naturally, no two beans can
share the same abstract schema name.

Two other pieces to the query are very much un-SQL. The first piece is the superfluous function OBJECT(). It is
supposedly an indicator to the container that you expect an EJB reference for that value. Of course, since you specified
it as a Book, that desire is rather obvious. Just humor the container and use OBJECT() wherever you are referencing an
EJB.

The last piece is the ?1 token. This token parallels JDBC prepared statement tokens. The major difference is that you
add a parameter number after the ?. Thus ?1 represents the first parameter to the findByXXX() method, ?2 the second,
and so on.

For the most part, the rest of EJB QL continues to look a lot like SQL—except with less functionality. It is missing many
of the functions such as MAX() that are basic to SQL.[3] Furthermore, it has no concept of ordering. A full discussion of
EJB QL's syntax is beyond the scope of this book.

[3] Some containers provide container-specific implementations of these missing functions.

You can define a finder method in your home interface to return single instances or collections. It will not matter to the
container. It will generate the appropriate code for your finder based on the return type you specify in the interface's
declaration for the finder.

5.3.2.2 Selectors

The audience for finders is external clients and other beans. EJB 2.0 also introduced a brand new class of query
methods called selectors. Selectors support internal queries by a bean. In other words, you cannot call a selector
externally.

Inside your bean implementation class, you provide abstract declarations for any selectors you desire:

public abstract Author ejbSelectWithBook()
 throws FinderException;

This query—which could appear in any bean implementation class that needs it—identifies the author with the specified
book. It is accompanied by a deployment descriptor with the following <query> tag:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

book. It is accompanied by a deployment descriptor with the following <query> tag:

<query>
 <query-method>
 <method-name>ejbSelectWithBook</method-name>
 <method-params>
 <method-param>com.imaginary.ora.Book</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(a) FROM Author a IN (a.books) bk WHERE bk = ?1
 </ejb-ql>
</query>

In addition to being another way to query for beans, selectors also enable you to query for data from beans:

SELECT b.title FROM Book b WHERE b.title LIKE '%rain%'

This code provides the titles of all books as a Collection of String instances for the books that have the substring "rain" in
their titles.

You cannot use query parameters in EJBQL LIKE comparisons.

Selectors and finders are very similar animals. As you can see from the ability of selectors to return partial bean data,
however, selectors have slightly richer capabilities. The huge difference is their visibility. Selectors are not part of the
remote or local bean interfaces; finders are. Finders are meant to enable external components to find beans matching
some set of criteria. Selectors, on the other hand, are meant to enable a bean to perform its own arbitrary searches.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.4 Beyond CMP
Container-managed persistence is the ideal. It enables you to build large-scale enterprise applications without worrying
about the database. This chapter has described some best practices from a persistence perspective should you choose
one of the two CMP models that EJB offers. However, EJB CMP is not a panacea. In the remaining chapters of this
section, we will address the options out there that allow you to adhere to standard persistence models.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. EJB BMP
Beings are, so to speak, interrogated with regard to their being. But if they are to exhibit the
characteristics of their being without falsification, they must for their part have become accessible in
advance as they are in themselves. The question of being demands that the right access to being be
gained and secured in advance with regard to what it interrogates.

—Martin Heidegger, Being and Time

If you want something done right, sometimes you have to do it yourself. This is definitely true of building persistence
into EJB 1.x systems. As you read in Chapter 5, EJB 1.x CMP is amazingly simple, but it is also amazingly simplistic. I
have already spent enough time on the drawbacks of the model. To address these drawbacks, you may need to handle
bean persistence yourself.

This chapter tells you how to handle persistence on your own using the EJB bean-managed persistence (BMP) model.
Even if you are interested in some form of container-managed persistence, you should spend some time with this
chapter since I cover many issues common to all three EJB persistence models in this chapter. Furthermore, through an
understanding of the detailed mechanics of the BMP model, you will have a better understanding of the magic you are
taking for granted under container-managed models.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.1 EJBs Revisited
As in the chapters before this one, I here assume that you have a basic understanding of Enterprise JavaBeans. Chapter
9 provides an introduction to Enterprise JavaBeans that you should review if you do not have this foundation.
Nevertheless, I want to start off with a review of the basic elements of the EJB architecture. If you have no experience
with Enterprise JavaBeans, you will find this review lacking. I therefore recommend going through a book on the subject
such as Enterprise JavaBeans (O'Reilly) by Richard Monson-Haefel to go in depth into EJB programming.

6.1.1 The Components of a Bean

Figure 6-1 is a UML class diagram that shows all of the elements of a single entity bean.

Figure 6-1. The classes that make up a single EJB

Each EJB requires three classes:

A home interface

A remote interface

An implementation class

Though coding three classes to manage one basic business concept can be tedious, many IDEs manage that tedium for
you these days.

The home interface identifies the metaoperations that control the bean at a class level. It manages the creation of new
instances, the deletion of instances, and the searching for bean instances. It is basically your gateway to the bean.

The remote interface defines the public business operations supported by the bean. You include in this interface only
those operations you want clients to be able to trigger.

Finally, the implementation class is where your attention should be focused. It is not an implementation of either the
home or remote interfaces—though you do have to implement some of the methods they prescribe. The EJB container
generates classes to implement your home and remote interfaces. Those container-generated classes delegate their
behavior to the actual business logic that you write in the implementation class. It also handles the persistence
operations I will be describing later in the chapter.

You create the server side of an EJB application by putting together a set of session and entity beans to support your
business transactions and the logic behind them. Session beans manage the business transactions and entity beans
manage the persistent concepts involved in those transactions. For example, in Chapter 5, I introduced two entity
beans: a book and an author. If we were to create a library system that enabled you to manage books in a library, you
might have a "front desk" session bean to handle check-in and check-out operations. Figure 6-2 illustrates these
dynamics.

Figure 6-2. Session and entity beans working together

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-2. Session and entity beans working together

6.1.2 Kinds of Beans

The core persistent elements in any EJB system are the entity beans. They represent the concepts in your problem
domain that transcend the particulars of workflow. If you were to build a travel reservations system, for example, you
would have core concepts like a seat on a plane, a room in a hotel, or a rental car. No matter what kind of travel
agency you have—business travel or leisure travel, major agency or a one-person shop—these concepts will not vary.

In an enterprise system, entity beans represent those timeless concepts that operate independent of the particulars of
the workflows in which they are managed. What vary are the workflows that describe the way in which these timeless
things interact. For example, the rules governing the booking of travel for business travel vary greatly from the rules
for leisure travel. Session beans are the EJB tools for describing those rules.

6.1.2.1 Entity beans

Under the initial EJB paradigm published by Sun, an entity bean was any persistent object. As people began developing
EJBs, they found that treating entity beans so narrowly resulted in unworkable applications. Looking back to the
example of the card catalog from the previous chapter, a client application listing books might be inclined to call
getBookID() and getTitle() on each book to display the list in a table.

While elegant in theory, this approach is unworkable in practice. The first problem is that long lists of entities end up
being loaded into memory on the server when only a subset of data from a handful of them is required. For a travel
reservations system in which a client will pull from a list of thousands of flights, the result is a system that cannot meet
performance demands.

Another problem with this approach is the need to make multiple network calls to get the necessary data. For each
book in the list, the client makes two network calls—one for each method. It also needs to make a network call for the
initial bean lookup and another call for the subsequent book search.

These days, EJB developers hide entity beans from clients using a variety of techniques I will cover throughout this
chapter. The entity bean is still the ultimate representation of transcendental business concepts. Instead of being the
business concept as it was originally intended, it can now be thought of as the soul of the business concept.

BEST PRACTICE: Never access entity beans from client applications.

6.1.2.2 Session beans

As entity beans were designed as persistent business objects, session beans were designed as nonpersistent business
objects. A nonpersistent business object is a business object that exists, at most, for the lifetime of the application
instance. A user session in a web application is the eponymous example of a concept that should be represented as a
session bean. The user session exists only as long as the user is logged in. When the user goes away, the session goes
away.

As we shall see as we dive deeper into this chapter, session beans have become the windows through which client
applications access the system. Through them, you execute transactions and gain access to the information
encapsulated in entity beans.

6.1.2.3 Message-driven beans

The EJB 2.0 specification introduced a new kind of bean, the message-driven bean. Unlike regular beans, message-
driven beans are asynchronous. In other words, a client calls one of their methods and returns immediately. The logic—
generally involving sending messages to external systems—happens in another thread. Practically speaking, message-
driven beans enable you to build EJB components that interact with Java Message Service (JMS) API-supported
messaging services like IBM Websphere MQ.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messaging services like IBM Websphere MQ.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.2 BMP Patterns
The fundamental philosophy behind bean-managed persistence is that the EJB container manages the components and
the transactions while you manage their persistence. The container tells you when interactions with the data store need
to take place, and you make those interactions happen. The persistence patterns I described in Chapter 4 are therefore
critical to bean-managed persistence. Figure 6-3 places the library business objects from Figure 6-2 into a real world
BMP system.

Figure 6-3. EJBs in the real world using BMP

To support three basic concepts, I have added a host of new classes. Some of them—such as the data access objects—
provide direct support for bean-managed persistence. Others—like the value objects—are useful to real world EJB
applications no matter what persistence model you follow.

As you can see from Figure 6-3, programming in an EJB context brings with it a lot of overhead. That overhead is
necessary to support large-scale enterprise applications that require clustering, high-availability, and robust transaction
management. If you have a fairly simple application, the use of EJBs will make that application unnecessarily complex.

BEST PRACTICE: Be certain Enterprise JavaBeans are the right tool for the job.

Looking back at Chapter 4, our application model included view logic, controller logic, business logic, data access logic,
and data storage logic. As this book is about database programming, we assume the data storage logic is handled by a
relational database. EJB does not address the view or controller logic. It is primarily concerned with the business logic.
If you are using CMP, it cares about the data access logic. Under BMP, however, you provide the data access logic. In
Figure 6-3, the data access objects—BookDAO and AuthorDAO—manage the data access logic.

The value objects in Figure 6-3 are not directly related to persistence. They are instead tools to help model entity beans
and minimize the overhead that comes with entity beans. Because they do minimize database access, however, they
are critical to the proper operation of a persistent EJB system.

6.2.1 Data Access Objects

I introduced the general concept of data access objects in Chapter 4. In the case of BMP, a data access object is a
delegate for an EJB to handle its persistence operations. We can see how this works in practice by combining code from
Chapter 4 and Chapter 5.

The persistence code under the CMP model for an AuthorBean looked like this:

public Long ejbCreate(Long bid, Long aid, String ttl) {
 bookID = bid;
 authorID = aid;
 title= ttl;
 return null;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

public void ejbLoad() {
}

public void ejbPassivate() {
}

public void ejbPostCreate(Long bid, Long aid, String ttl) {
}

public void ejbRemove() {
}

public void ejbStore() {
}

The only thing remotely interesting was ejbCreate(), which assigned initial values to a new bean. We could, of course,
add the logic to create the book in the database inside the ejbCreate() method:

static private final String CREATE =
 "INSERT INTO Book (bookID, authorID, title) " +
 "VALUES (?, ?, ?)";

public Long ejbCreate(Long bid, Long aid, String ttl)
 throws CreateException {
 PreparedStatement stmt = null;
 Connection conn = null;

 bookID = bid;
 authorID = aid;
 title = ttl;
 try {
 Context ctx = new InitialContext();
 DataSource ds = (DataSource)ctx.lookup("jdbc/ora");

 conn = ds.getConnection();
 stmt = conn.prepareStatement(CREATE);
 stmt.setLong(1, bookID.longValue());
 stmt.setLong(2, authorID.longValue());
 stmt.setString(3, title);
 if(stmt.executeUpdate() != 1) {
 throw new CreateException("Failed to add book: " + bookID);
 }
 return bookID;
 }
 catch(NamingException e) {
 throw new EJBException(e);
 }
 catch(SQLException e) {
 throw new EJBException(e);
 }
 finally {
 if(stmt != null) {
 try { stmt.close(); }
 catch(SQLException e) { }
 }
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
 }
}

Though this example code works and is the way most books should teach you BMP, it is not how you want to build your
beans in real world applications. In order to better divide the work of persistence, it helps to pull the database code out
of our entity bean and place it into a data access object. With a data access object in place, the ejbCreate() method
evolves into something much simpler:

static public final String AUTHOR_ID = "authorID";
static public final String BOOK_ID = "bookID";
static public final String TITLE = "title";

public Long ejbCreate(Long bid, Long aid, String ttl)
 throws CreateException {
 HashMap memento = new HashMap();

 memento.put(BOOK_ID, bookID = bid);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 memento.put(BOOK_ID, bookID = bid);
 memento.put(AUTHOR_ID, authorID = aid);
 memento.put(TITLE, title = ttl);
 CommentDAO.create(memento);
 return bookID;
}

BEST PRACTICE: Under EJB BMP, separate persistence logic from bean logic through the
use of data access objects.

Each bean-managed EJB has at least four persistence operations. The code for each persistence operation is fairly
involved and has little or nothing to do with the business logic that the bean represents. By moving persistence logic
into a data access object, we have simplified the bean using a logical division of labor. Maintenance of persistence logic
can now occur without requiring changes to the bean, and changes to business logic can now occur without requiring
changes to the persistence handlers.

If you are wondering what the data access object code looks like for the bean, you are about to get another bonus of
following this model: it looks exactly like the data access object from Chapter 4. In other words, using data access
objects not only makes the maintenance of your application simpler, it makes it possible to port an application between
vastly different component models.

Both the data access object and the memento from Chapter 4 combined to give the persistence logic total
independence from the business logic—and vice versa. Thus, we are not only able to take our persistence logic from the
homegrown component model of Chapter 4, we could also take our entity bean from this chapter and write a data
access object to store the bean to an object database or a filesystem.

6.2.2 Value Objects

As we have already encountered, the distributed paradigm under which entity beans operate represent operational
challenges for an EJB system. One of the tools for mitigating this problem is the value object—an object that
encapsulates the state of an entity bean for a remote client.

Chapter 4 did not work under a distributed programming model. As a result, its components did not face the issues I
have presented for entity beans. The component itself was, in a matter of speaking, its own value object.

Unfortunately, value objects violate the sensibility of object purists. This clash between object-oriented elegance and
real world performance demands has resulted in a variety of approaches to building value objects. Which approach you
prefer depends largely on where you sit on the object purity/convenience continuum.

BEST PRACTICE: Use value objects to share entity bean data with clients.

6.2.2.1 Simple value objects

Simple value objects sit strongly on the convenience side of the equation. You've seen the simplest form of a value
object in the HashMap memento. Depending on the operation in question, your entity bean can shove the minimum
amount of information necessary to support that operation into a HashMap and give it out to clients. One network call
provides the client with everything it needs to know about an entity.

On the other hand, this approach throws most of the benefits of object-orientation out the window. You get absolutely
no type safety and you risk chaos with calculated fields.

6.2.2.2 Complex value objects

Complex value objects basically attempt to be serializable mirrors of their entity bean counterparts. They have all of the
methods and some of the business logic supported by the entity bean. As a result, type safety and encapsulation of
logic are guaranteed.

Unfortunately, complex value objects are difficult to maintain. Any logic around getting and setting values must be
maintained in two places—the entity bean and its value object—and you add yet another class to code for every single
business concept you have in your domain model.

6.2.2.3 Other alternatives

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2.2.3 Other alternatives

Many alternatives to these two extremes exist. Examples include:

Providing only methods to access value objects in the entity bean. You can thus maintain the business logic in
only the complex value objects and avoid doing it in the entity bean.

Having no primitive attributes in the entity bean, but instead storing the data in a value object in the bean.

Managing the internal representation of the value object as a HashMap while providing an object-oriented
wrapper around the HashMap.

6.2.3 Sessions as Transactions

Value objects are just one part of insulating entity beans.[1] Another approach is the use of sessions as the gateways
into all server-side operations. In essence, any transaction—read or write—should go through a session bean. The
session bean thus becomes a transactional business object.

[1] This section also applies to applications using container-managed persistence.

BEST PRACTICE: Use session beans to encapsulate all transactional logic.

When you think of transactions, you probably conjure up examples of transactions in which you are changing the state
of the data store. Some of the most problematic transactions from a pure EJB perspective, however, are read
transactions like searches and lookups.

6.2.3.1 Searches

If you remember the way searching occurs in EJB 1.x, you have to write finder methods for each kind of search you
want to support. The finder methods then return collections of matching primary keys. When you want the data for
those matching keys, the container will load each of the entities from which you request data. Searching under EJB 1.x
is thus problematic for a variety of reasons:

You have to write finder methods to match every conceivable manner of searching and place that logic inside
your entity bean implementation class.

You need to load a ton of entity beans just to get minimal information from each bean in a result set.

You end up making many database calls just to support a simple search.

By placing searching logic into a session bean and combining this approach with the use of value objects, you can
mitigate most problems. To find all books by Stephen King, we could create a session bean called BookSearch with a
method that looks like this:

static private final String FIND =
 "SELECT title FROM Book WHERE authorID = ?";

public Collection getTitles(Long aid) throws FinderException {
 PreparedStatement stmt = null;
 Connection conn = null;
 ResultSet rs = null;

 try {
 Context ctx = new InitialContext();
 DataSource ds = (DataSource)ctx.lookup("jdbc/ora");
 ArrayList results = new ArrayList();

 conn = ds.getConnection();
 stmt = conn.prepareStatement(FIND);
 stmt.setLong(1, aid.longValue());
 rs = stmt.executeQuery();
 while(rs.next()) {
 results.add(rs.getString(1));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 results.add(rs.getString(1));
 }
 return results;
 }
 catch(NamingException e) {
 throw new EJBException(e);
 }
 catch(SQLException e) {
 throw new EJBException(e);
 }
 finally {
 if(rs != null) {
 try { rs.close(); }
 catch(SQLException e) { }
 }
 if(stmt != null) {
 try { stmt.close(); }
 catch(SQLException e) { }
 }
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
 }
}

You still have to write many finder methods to support a variety of needs. Nevertheless, you get the entire overhead
associated with entity beans out of the way. A more common approach than simply providing a title would be to provide
the minimal information necessary for the client to support a list view plus a primary key. The client can then reference
a specific bean by primary key if it wishes to drill down further or execute a write transaction.

6.2.3.2 Updates

Sessions are critical for updates as well as reads. In the context of an update, they help glue together all of the
individual entities that are involved in a given transaction. Figure 6-4 shows how a session can be used to "glue
together" two bank accounts into a transfer transaction.

Figure 6-4. Hiding the details of a transfer behind a session bean

In this example, the client calls a single method, transfer() in the AccountManager session bean. That session bean, in
turn, modifies the account balances for each account. The entire transaction succeeds or fails together.

It is important to note here that, although you are managing the persistence, you are not managing the transactions.
While it is possible to manually handle transactions using bean-managed transactions, bean-managed transactions and
bean-managed persistence are two distinct concepts. In general, you never want to use bean-managed transactions.

BEST PRACTICE: Avoid using bean-managed transactions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEST PRACTICE: Avoid using bean-managed transactions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.3 State Management
As a developer of the persistence logic for a bean-managed bean, your job is to make sure that the state of the bean
matches the state of the database. The container's role is simply to let you know when interesting things relating to the
bean state occur.

6.3.1 Lazy-Loading

Loading a simple bean is fairly straightforward using the tools we have discussed in this chapter and previous chapters.
One of the drawbacks I mentioned for container-managed persistence, however, was the inability to perform lazy-
loading.

Lazy-loading is a tool that enables you to put off making queries to support complex bean relationships until that
information is actually needed. An example of such a relationship includes a one-to-many relationship in which the
many side requires a complex query or represents very many. Another example is an entity bean that stores a huge
chunk of binary data.

For binary data like a Video bean representing a video clip, you do not want to load that video into memory for several
reasons. First, it is a lot of data to load into memory. In fact, you never really want the whole clip to be in memory—
you want to stream it. The other reason not to load it is because it will take a long time to load and thus hold up simple
queries against the video's metadata.

BEST PRACTICE: Take advantage of lazy-loading when your entity bean stores large
binary or text values or has complex object relationships.

The following code shows the ejbLoad() method (without using data access objects) for a Video bean implementation:

static private final String LOAD =
 "SELECT title, runningTime, size FROM Video WHERE videoID = ?";

public void ejbLoad() {
 PreparedStatement stmt = null;
 Connection conn = null;
 ResultSet rs = null;

 try {
 Context ctx = new InitialContext();
 DataSource ds = (DataSource)ctx.lookup("jdbc/ora");
 Long id = (Long)context.getPrimaryKey();

 conn = ds.getConnection();
 stmt = conn.prepareStatement(LOAD);
 stmt.setLong(1, id.longValue());
 rs = stmt.executeQuery();
 if(!rs.next()) {
 throw new EJBException("No matching value.");
 }
 videoID = id;
 title = rs.getString(1);
 runningTime = rs.getString(2);
 size = rs.getLong(3);
 if(rs.next()) {
 throw new EJBException("Multiple matching values.");
 }
 }
 catch(NamingException e) {
 throw new EJBException(e);
 }
 catch(SQLException e) {
 throw new EJBException(e);
 }
 finally {
 if(rs != null) {
 try { rs.close(); }
 catch(SQLException e) { }
 }
 if(stmt != null) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(stmt != null) {
 try { stmt.close(); }
 catch(SQLException e) { }
 }
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
 }
}

The actual video is not loaded. The loading occurs when a client calls for it:

static private final String STREAM =
 "SELECT dataStream FROM Video WHERE videoID = ?";

public DistributedDataInputStream getStream() {
 PreparedStatement stmt = null;
 Connection conn = null;
 ResultSet rs = null;

 try {
 Context ctx = new InitialContext();
 DataSource ds = (DataSource)ctx.lookup("jdbc/ora");
 DistributedDataInputStream is ;
 Clob clob;

 conn = ds.getConnection();
 stmt = conn.prepareStatement(STREAM);
 stmt.setLong(1, videoID.longValue());
 rs = stmt.executeQuery();
 if(!rs.next()) {
 throw new EJBException("No matching value.");
 }
 clob = rs.getClob(1);
 is = new DistributedDataInputStream(clob.getBinaryStream());
 if(rs.next()) {
 throw new EJBException("Multiple matching values.");
 }
 return is;
 }
 catch(NamingException e) {
 throw new EJBException(e);
 }
 catch(SQLException e) {
 throw new EJBException(e);
 }
 finally {
 if(rs != null) {
 try { rs.close(); }
 catch(SQLException e) { }
 }
 if(stmt != null) {
 try { stmt.close(); }
 catch(SQLException e) { }
 }
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
 }
}

For this example to work, of course, you need some kind of special streaming class that will send an input stream
across the network to be read by a distributed client. That class is represented in the example by the
DistributedDataInputStream class.

Depending on your database of choice, storing binary data in a database may be a bad idea. As a general rule of
thumb, I recommend against storing any binary data in a database for a couple of reasons:

Many database engines are incapable of properly streaming binary data. Even though they may support the
JDBC Clob interface, they are really reading the entire binary value into memory and faking the streaming. If
your database does not natively support streaming (for example, MySQL), this general rule of thumb should be
an inviolable law.

The database becomes an intermediary between your application and the data on the disk and thus slows down
performance. At its core, this is exactly what a database is supposed to be. With binary data, however, the
advantages of having this intermediary begin to be outweighed by the disadvantages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

advantages of having this intermediary begin to be outweighed by the disadvantages.

Moving binary data to the filesystem, however, has its drawbacks. Most notably, you risk data integrity when you move
the binary data directly to the filesystem. Your EJB must handle both the deletion of the metadata in the database and
the file on the filesystem. More problematic, however, is the fact that you cannot do both as an atomic transaction.

BEST PRACTICE: Avoid storing binary data in the database; store it on the filesystem
with pointers in the database.

Regardless of the approach you choose, lazy-loading can help you gain the optimal efficiency for managing large binary
and character attributes.

6.3.2 To Store or Not to Store

Containers can be a little ejbStore() happy. If the container thinks there is the slightest possibility that a bean could
have been modified during the course of a transaction, it will trigger a call to ejbStore(). This approach is great when all
of the beans involved in a transaction actually had state changes. In a transaction that touches dozens of beans yet
modifies only one or two, however, this can seriously harm system performance.

A very common practice in EJB development with bean-managed persistence is to create a "dirty" flag and set it
whenever a transaction actually modifies a bean. In our book example, we might have a setTitle() method that looks
like this:

public void setTitle(String ttl) {
 title = ttl;
}

We can add a simple call to:

dirty = true;

This call will indicate to ejbStore() that the bean has, in fact, undergone a state change. We can then write ejbStore() like
this:

public void ejbStore() {
 if(!dirty) {
 return;
 }
 // perform the actual save
}

After a call to setTitle(), ejbStore() saves the bean to the database. If the store-happy container, however, triggers
ejbStore() without having modified the bean, nothing will happen. This trick thus saves at least one unnecessary trip to
the database.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.4 Exception Handling
The final piece in bean-managed persistence is exception handling. The EJB specification classifies three different
exception conditions:

Remote exceptions

EJB exceptions

Application exceptions

All bean interface methods throw remote exceptions—java.rmi.RemoteException. The underlying distributed computing
architecture throws a remote exception whenever something goes wrong with the network. You should never throw one
in your code.

EJB exceptions—javax.ejb.EJBException—are signals from your code to the container that something has gone wrong with
the application outside of the normal application states. In the examples earlier in this chapter, I threw EJB exceptions
for database errors and JNDI errors. As a developer, you should never catch an EJBException.

Anything that represents a flaw in the application state counts as an application exception. The container ignores
application exceptions.

From the perspective of database access, your first task is to turn all data access exceptions into EJB exceptions as
shown in the examples in this chapter. On the other hand, when you check for valid values, you will throw application
exceptions to indicate a failure to match the required value. In the code to create a book, for example, I could have
added the following check that throws a CreateException:

if(bookID.longValue() < 0L) {
 throw new CreateException("Invalid book ID.");
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. JDO Persistence
Those who feel that liberation from tradition is a good thing rejoice at this change, while those who fear
the results lament the loss of roots.

—David Kolb, The Critique of Pure Modernity

JDBC provides your application with direct access to a relational data store. Though JDBC tries to objectify the data
store using objects that represent relational database concepts, it does not provide an object-oriented picture of your
problem domain. Your job in JDBC programming is to use information from those database objects to build an OO
picture of your problem domain. This task is the problem of object-relational mapping we talked about in Chapter 4.

Also in Chapter 4, I introduced the concept of the data access object pattern. Using this pattern, business objects
delegate their persistence to something else called a data access object. Chapter 4 then showed you how to use JDBC
to build data access objects. Chapter 6 showed you how to use the data access object pattern in an EJB system to
provide JDBC-based persistence.

You do not need to write the persistence layer for this pattern to be valid. EJB CMP "delegates" its persistence
operations to the container. EJB CMP, however, is not the only automated persistence option for Java architects and
developers. This chapter covers the major standard option to EJB CMP, the Java Data Objects (JDO) specification. If you
are not familiar with this specification, Chapter 12 provides a tutorial to introduce you to JDO programming.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.1 JDO or EJB?
This question is actually too simplistic. Your persistence options are much richer than JDO or EJB:

JDBC

JDO

Alternative persistence systems

Serialization

EJB CMP

EJB BMP + JDBC

EJB BMP + JDO

EJB BMP + alternative persistence systems

EJB BMP + serialization

Each of these options—even serialization—can be the right answer for a particular persistence issue. EJB is overkill for
small web applications. Using EJB will kill the performance of your small application and require significant effort to get
initial functionality out the door. JDBC, on the other hand, is a bad solution for a programming team with limited
database programming experience or with a significant number of persistent objects to code. JDO, finally, is poorly
suited to teams with little understanding of transaction management or that require massive scalability. Table 7-1
describes different problems and the persistence mechanisms best suited to them. It is definitely not comprehensive
and does not address the advantages of alternative persistence systems.

BEST PRACTICE: Do not use a one-size-fits-all approach to persistence--choose the
persistence option that fits the requirements and scale of your application.

Table 7-1. Sample applications and matching persistence models

Application Persistence
model Rationale

Embedded PDA phone
book JDO

Enables the development of a persistent application with the lightest footprint
besides serialization. Unlike serialization, however, the use of JDO preserves
object relationships in the data store.

Enterprise CRM system EJB + EJB
2.0 CMP

Supports the scalability needs of a massive enterprise system while hiding
the complexities of transaction management and object-relational mapping.
Also enables developers with less experience to be more productive in the
development of the system—fewer bottlenecks created by architects and
senior Java developers.

Medium-sized web
application against a
legacy database

JDBC Provides the greatest ability to control the object-relational mapping for an
application with light transactional and scalability demands.

Massive web application
against a legacy
database

EJB + JDBC Provides the greatest ability to control the object-relational mapping for an
application with heavy transactional and scalability demands.

Massive web application
with a gradual
migration from a legacy
data store to a new
data store

EJB + JDBC
and JDO

Enables control over object-relational mapping in the short term with the
advantages of automated persistence for simpler components while avoiding
mixing CMP and BMP models.

Swing application that
needs to save its state
across executions

Serialization Supports quick storage and retrieval of the JavaBeans representing your
application state with none of the overhead of the other tools.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The issues in Table 7-1 are just the surface issues. In short, you really need to know your problem domain and the
pluses and minuses of each persistence mechanism in order to choose the best tool to support your application. One of
the purposes of this book is, of course, to arm you with an understanding of the different persistence options so you
can make that decision for the systems you design and build.

The most fundamental distinction between the two persistence models, however, lies in the concept of transparency. In
order to take advantage of EJB persistence—whether BMP or CMP—you must adhere to the EJB component model. Any
components outside of that model cannot be made persistent. JDO, on the other hand, enables you to make any user-
defined class persistent. In other words, the persistence model is transparent to the developer. Though you do not write
any persistence code under EJB CMP, you are still writing your classes to adhere to the EJB CMP persistence.

BEST PRACTICE: When not building your business objects to a specific component model
such as Enterprise JavaBeans, design your business objects to the JavaBeans specification.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.2 Basic JDO Persistence
Most JDO applications fall into the small-to-medium scale. In general, you have a simple to moderately complex domain
model built into any one of the following kinds of architectures:

Web application

Server application

Two-tier client/server

The tutorial in Chapter 12 covers the basics of building such an application.

7.2.1 Transaction Management

Though JDO persistence is designed to be transparent to the business component developer, it is not transparent to the
application developer. The examples in Chapter 12 show only how to manage persistent objects in the main() method of
a contrived application. In reality, you will be managing persistent objects through JSPs and servlets, Swing
components, and even other persistent objects.

Figure 7-1 shows how JDO might interact with a web application. The JSP views perform queries and display data from
the persistent objects. Controllers create, modify, and delete the persistent objects. In other words, the JSP pages
perform the same role as the main() method from Chapter 12's examples.

Figure 7-1. JDO in a simplistic web application

This approach works and you will see no problems from it until your domain model begins growing in complexity. One
of the drawbacks of JDO, however, is that it does not manage object relationships automatically—you are responsible
for maintaining the integrity of all relationships among persistent objects. When you embed the logic for the creation
and deletion of persistent objects in views and controllers, you create a maintenance problem.

For example, your web application could have two controllers: one that deletes an author and another that deletes a
book. Each controller would require code that not only calls deletePersistent(), but that also protects the integrity of the
relationship between Author and Book. If the rules governing this relationship change, you need to make sure you find all
places in the application where the relationship is being managed and make the appropriate changes.

To diminish the risk of managing relationships in your application, you need to centralize the logic for managing your
persistent object relationships. I recommend the creation of an EJB session bean-like class that performs
metaoperations on your persistent classes. Example 7-1 shows such a class.

BEST PRACTICE: Centralize the logic for managing object relationships to preserve their
integrity and the integrity of the underlying data store.

Example 7-1. A Bookshelf class to manage object relationships

package com.imaginary.ora;

import javax.jdo.*;

public abstract class Bookshelf {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public abstract class Bookshelf {
 static private PersistenceManager getPersistenceManager() {
 PersistenceManagerFactory factory;
 Properties props = new Properties();

 // load JDO properties
 factory = JDOHelper.getPersistenceManagerFactory(props);
 return factory.getPersistenceManager();
 }

 static public void createAuthor(Author auth) {
 PersistenceManager mgr = getPersistenceManager();
 Transaction trans;

 trans = mgr.currentTransaction();
 trans.setOptimistic(false);
 try {
 trans.begin();
 mgr.makePersistent(auth);
 trans.commit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 finally {
 if(trans.isActive()) {
 trans.rollback();
 }
 mgr.close();
 }
 }

 static public void deleteAuthor(Author auth) {
 PersistenceManager mgr = getPersistenceManager();
 Transaction trans;

 trans = mgr.currentTransaction();
 try { trans.setOptimistic(true); }
 catch(JDOUnsupportedOptionException e) { }
 try {
 Iterator books = auth.getBooks().iterator();

 trans.begin();
 while(it.hasNext()) {
 mgr.deletePersistent((Book)it.next());
 }
 mgr.deletePersistent(auth);
 trans.commit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 finally {
 if(trans.isActive()) {
 trans.rollback();
 }
 mgr.close();
 }
 }

 static public void createBook(Author auth, Book book) {
 PersistenceManager mgr = getPersistenceManager();
 Transaction trans;

 trans = mgr.currentTransaction();
 try { trans.setOptimistic(true); }
 catch(JDOUnsupportedOptionException e) { }
 try {
 trans.begin();
 book.setAuthor(auth);
 auth.addBook(book);
 mgr.makePersistent(book);
 trans.commit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 finally {
 if(trans.isActive()) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(trans.isActive()) {
 trans.rollback();
 }
 mgr.close();
 }
 }

 static public void deleteBook(Book book) {
 PersistenceManager mgr = getPersistenceManager();
 Transaction trans;

 trans = mgr.currentTransaction();
 try { trans.setOptimistic(true); }
 catch(JDOUnsupportedOptionException e) { }
 try {
 trans.begin();
 book.getAuthor().removeBook(book);
 mgr.deletePersistent(book);
 trans.commit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 finally {
 if(trans.isActive()) {
 trans.rollback();
 }
 mgr.close();
 }
 }
}

This class performs two critical tasks:

It clearly demarcates the boundaries of transactions involving Author and Book instances.

It centralizes all logic relating to the management of Author and Book relationships.

It also has the hidden benefit of making the persistence model transparent to your controller classes. The JSP code to
create a new author looks like this:

<% Bookshelf.createAuthor(new Author(firstName, lastName)); %>

This code also uses optimistic transaction management for optimal performance. In doing so, it checks for the
possibility that the JDO implementation does not support optimistic transaction management. Not all JDO
implementations support optimistic transaction management, and not all transactions are well suited to optimistic
transaction management. In general, optimistic transaction management works when you are performing multiple
operations and each operation targets a different object.

The exception in this example was the code to create a new Author. Because the operation touched only the Author class
for a single operation, it is going to see better performance under data store transaction management.

BEST PRACTICE: Use optimistic transaction management for long transactions involving
multiple persistent objects.

7.2.2 Query Control

The previous section made the use of JDO transparent to controllers—views still use JDO queries to retrieve collections
of persistent objects. This issue is not the maintenance problem that running creates and deletes in multiple locations
produced. It would nevertheless be nice to centralize query logic to provide view pages with the same transparency as
well as give us a single location to tweak query logic. The Bookshelf class looks like a good candidate. On the other hand,
it probably makes more sense to have a one-to-one association between a persistent class and the class that manages
its queries. Example 7-2 shows an AuthorFinder class to handle queries.

Example 7-2. A class that centralizes query logic for Author instances

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-2. A class that centralizes query logic for Author instances

package com.imaginary.ora;

import java.util.*;

import javax.jdo.*;

public abstract class AuthorFinder {

 static private final String GENRE = "gen";
 static private final String YEAR = "yr";

 static public Collection findByGenreYear(String gen, int yr) {
 Extent ext = mgr.getExtent(Author.class, true);
 Query query = mgr.newQuery(ext,
 "books.contains(book) & (book.year=yr & book.genre = gen)");
 HashMap params = new HashMap();

 query.declareParameters("int yr, String gen");
 query.declareVariables("com.imaginary.ora.Book book");
 params.put(GENRE, gen);
 params.put(YEAR, yr);
 return(Collection)query.executeWithMap(params);
 }
}

This example provides a single query, but in reality it will likely contain a variety of queries to help support various
Author searches. This particular query provides the application with a list of all authors who published a book of a
specific genre in a specific year. Even though the search has only two parameters, I used executeWithMap() because it
helps prevent any maintenance ugliness associated with matching parameter order.

BEST PRACTICE: Use executeWithMap() when executing multiparameter queries.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.3 EJB BMP with JDO
From a JDO perspective, persisting EJBs as part of a bean-managed persistence model has little difference from
persisting other kinds of objects. The most common difference is that you tend to be in a managed environment when
working with EJBs; similarly, you tend to be in a nonmanaged environment when building other kinds of applications.
You can, of course, build web applications in a managed environment and EJB applications that use bean-managed
transactions.

One key differentiator between working with JDO in a managed J2EE container versus a nonmanaged environment—
besides the obvious impact of transaction management—is the way you reference the PersistenceManagerFactory class. In
a non-J2EE container or a nonmanaged environment, you pass a set of properties to the JDOHelper class. The JDOHelper
class then hands you the appropriate PersistenceManagerFactory.

When working in a J2EE container, you can rely on JNDI to provide you with a PersistenceManagerFactory without worrying
about properties:

Context ctx = new InitialContext();
PersistenceManagerFactory factory;

factory = (PersistenceManagerFactory)ctx.lookup("jdo/pmf");

7.3.1 Transaction Management

Because you are working in an EJB environment, transaction management issues disappear from your radar when using
JDO as a bean-managed persistence tool. The exception to this advantage comes when you decide to use bean-
managed transactions. Managing your own transactions is one of the pitfalls of working with JDO in a nonmanaged
environment. You definitely do not want to introduce that pitfall into this environment unless something makes bean-
managed transactions your only option. If you do opt for bean-managed transactions, you should remember that it is a
really bad idea to mix bean-managed and container-managed transactions. Chapter 5 has a detailed discussion of this
topic.

BEST PRACTICE: Avoid bean-managed transactions unless there is an overriding need for
them.

7.3.2 Persistence Strategies

In an EJB application, session beans perform the role we set aside for the Bookshelf class in the previous section. They
may also create value objects for the entities that match any queries performed by the session bean. The entity beans,
on the other hand, contain the business logic behind any persistent object. Depending on your EJB architecture
philosophy, either the entity bean itself or its value object can be the JDO PersistenceCapable class. Using the value
object, however, and having the entity bean delegate to the value object for all state information enables you to
maintain state information in a single location.

If you take the approach of using the JDO instance as your value object, you need to take care that it is not involved in
an uncommitted transaction when you serialize it to the client. Doing so may cause unpredictable exceptional
conditions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. Alternative Persistence Frameworks
Reason must in all its undertakings subject itself to criticism; should it limit freedom of criticism by any
prohibitions, it must harm itself, drawing upon itself a damaging suspicion. Nothing is so important
through its usefulness, nothing so sacred, that it may be exempted from this searching examination,
which knows no respect for persons. Reason depends on this freedom for its very existence. For reason
has no dictatorial authority, its verdict is always simply the agreement of free citizens, of whom each
one must be permitted to express, without let or hindrance, his objection or even his veto.

—Immanuel Kant, The Critique of Pure Reason

As an enterprise application architect, you have more options than just choosing between a persistence model blessed
by Sun and rolling your own model. In fact, alternative persistence models have been gaining in popularity recently for
a variety of reasons:

EJBs are complex and heavy and they require an application server.

JDBC is time-consuming and requires a significant degree of database programming skill.

JDO is late on the scene and still lacking in implementations.

A quick search of the Internet will reveal a variety of alternative persistence systems. Two of the most popular are the
Castor JDO (not an implementation of the Sun JDO specification) and Hibernate projects.[1] This chapter looks at Castor
and Hibernate as alternative XML object-relational mapping tools.

[1] Both are open source projects available at SourceForge (http://www.sourceforge.net).

Software Requirements
Castor and Hibernate are not a standard part of any Java platform. You therefore need a host of tools to
support these APIs. Each API has a different set of requirements, which you can find more about at their
respective home pages:

Castor

http://castor.exolabs.org.

Hibernate

http://hibernate.sf.net.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.1 Why Alternative Frameworks?
The Java philosophy is heavy on the idea that you adhere to the standards and compete on implementation. As a
general rule of thumb in the Java world, you should avoid deviating from standards unless the standards in question
simply do not meet your needs. Java's persistence models, however, are far from well-accepted standards. Part of the
reason behind this divergence is that no single persistence model can support the needs of every application. Each
approach to persistence requires design decisions that necessarily exclude features provided by other systems.

Each alternative framework brings its own advantages to database programming. As a general rule, alternative
frameworks offer you:

The ability to meet specific needs not addressed in the EJB or JDO standards.

As with EJB and JDO, Hibernate and Castor rely on XML descriptor files for persistence mapping. This lends itself
to providing a very easy to understand mapping file that describes complex database relationships.

The alternatives in this chapter limit the amount of code developers need to write in order to make objects
persistent.

The alternatives in this chapter are open source. As such, they come with all of the benefits—and the drawbacks
—of open source tools.

BEST PRACTICE: Use alternative persistence frameworks in applications designed for
low-cost deployment environments or for applications that have niche requirements for
which an alternative framework is uniquely suited.

Alternative persistence APIs are not without their own drawbacks:

Alternative persistence APIs are simply that: an alternative. These APIs do not conform to recognized standards
such as EJB 1.1, EJB 2.0, and JDO.

Alternative persistence APIs do not provide a container-managed transaction system such as those provided by
the EJB container. With EJBs, the transaction demarcation is done automatically by defining the transaction
attributes in your deployment descriptor and is strictly enforced by the container.

The Open Source Model
The open source model is a model for distributing software based on the philosophy that the people who
use software should have the right to the source code for the software, including the ability to modify the
source code. Though it is often associated with the concept of free—meaning without cost—software, open
source software describes itself as free, as in speech. In other words, open source software may or may
not cost any money.

The benefits of open source software include:

Greater control over your software, including the ability to improve the software instead of waiting
for a vendor to fix it for you.

Given a large contributor base, open source software tends to have a more diverse developer base
than proprietary software.

Open source software—even when it is not free—is generally cheaper than proprietary software
since the business models for open source companies tend to be based on services around their
software.

On the other hand, open source software has its drawbacks:

Support for the software often depends on the whims of its developers rather than a solid service
agreement.

Releases of open source software without large developer bases are inconsistent and even prone
to long periods of inactivity.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to long periods of inactivity.

The benefits of the greater control over your software can become liabilities if you lose the ability
to maintain your changes.

BEST PRACTICE: Do not use alternative frameworks for applications meant to be
deployed in a variety of corporate environments. In such environments, adherence to
standards is critical to the confidence of those who will be responsible for supporting the
application.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.2 Persistence Approach
As you have seen with all of the other automated persistence systems in this book, Castor and Hibernate both persist
component attributes by reading an XML configuration file that defines persistence mapping. Table 8-1 shows the
attributes of two business objects we might want to persist to a database.

BEST PRACTICE: Though each framework lets you specify all persistence mapping in a
single XML file, you should limit each XML file to describing the mapping of a single class.

Table 8-1. The attributes of two business objects with the mapping type to be
used

Class Attribute Type

Author authorID Long

 firstName String

 lastName String

 Publications List

Book bookID Long

 Author Author

 Title String

Example 8-1 contains the code for the Author class described in Table 8-1.

Example 8-1. A persistent Author class

package book;

public class Author {
 private long authorID;
 private String firstName;
 private String lastName;
 private Set publications;

 public long getAuthorID () {
 return authorID;
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public Set getPublications () {
 return publications;
 }

 public void setAuthorID (long id) [
 authorID = id;
 }

 public void setFirstName(String fn) {
 firstName = fn;
 }

 public void setLastName(String ln) {
 lastName = ln;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 lastName = ln;
 }

 public void setPublications (Set pubs) {
 publications = pubs;
 }
}

This business class is very simple—nothing but getters and setters to manage the attributes. No persistence code is
present. Example 8-2 contains the basic code for the Book class.

Example 8-2. Book value object that contains an Author value object reference

package book;

public class Book {
 private Author author;
 private long bookID
 private String title;

 public Author getAuthor () {
 return author;
 }

 public long getBookID () {
 return bookID;
 }

 public String getTitle () {
 return title;
 }

 public void setAuthor (Author auth) {
 author = auth;
 }

 public void setBookID (long id) {
 bookID =id;
 }

 public String setTitle (String ttl) {
 title = ttl;
 }
}

8.2.1 Castor Field Mapping

The key to Castor and Hibernate persistence is the XML file. Each API has it own definition language for defining the
mapping between objects and a table. Example 8-3 shows how Castor maps the business objects to a database.

Example 8-3. Castor XML mapping descriptor

<?xml version="1.0"?>
<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Mapping DTD Version 1.0//EN" "http://castor.
exolab.org/mapping.dtd">

<mapping>
 <class name="book.Author" identity="authorID" key-generator="MAX">
 <map-to table="AUTHOR"/>
 <field name="authorID" type="long">
 <sql name="AUTHORID"/>
 </field>
 <field name="firstname" type="java.lang.String">
 <sql name="FIRSTNAME"/>
 </field>
 <field name="lastname" type="java.lang.String">
 <sql name="LASTNAME"/>
 </field>
 <field name="publications" type="book.Book" collection="set">
 <sql many-key="authorid"/>
 </field>
 </class>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <class name="book.Book" identity="bookID" key-generator="MAX">
 <map-to table="BOOK"/>
 <field name="bookID" type="long">
 <sql name="BOOKID"/>
 </field>
 <field name="title" type="java.lang.String">
 <sql name="TITLE"/>
 </field>
 <field name="author" type="book.Author">
 <sql name="AUTHORID"/>
 </field>
 </class>
</mapping>

For each class you wish to map, you have a class[2] entry in your XML-descriptor. This tag identifies the following:

[2] The use of the word class makes this XML dialect technically illegal since class is a reserved word in XML.

The name of the Java class being mapped.

The name of the identity attribute (the attribute that uniquely identifies an instance of the class).

 The key generation tool to use to generate identity values. Both Castor and Hibernate provide several methods
of generating unique values.

BEST PRACTICE: Choose the sequence generation method that best suits your
persistence framework of choice.

Castor supports the following key generation algorithms:

HIGH-LOW

This algorithm uses a mechanism similar to the custom sequence generation algorithm described in Chapter 4.
It requires a special sequence table whose keys are the names of tables and whose columns are seed values for
sequence generation. For more on seed values, look at the sequence generation part of Chapter 4.

IDENTITY

The value generated is based on the value generated by the proprietary identity generation scheme of the
underlying database engine. Supported databases include Hypersonic SQL, MS SQL Server, MySQL, and Sybase
ASE/ASA.

MAX

The value generated is one greater than the maximum value currently in the database.

SEQUENCE

The value generated comes from the proprietary SEQUENCE concept of Interbase, Oracle, PostgreSQL, and SAP
DB.

UUID

This algorithm generates a globally unique value based on the IP address, current system time in milliseconds,
and a static counter.

The SEQUENCE and HIGH-LOW algorithms require parameters. You can specify the parameters using the key-generator
tag outside the class tag:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tag outside the class tag:

<key-generator name="HIGH-LOW">
 <param name="table" value="Sequence"/>
 <param name="key-column" value="name"/>
 <param name="value-column" value="seed"/>
 <param name="grab-size" value="1000000"/>
</key-generator>

BEST PRACTICE: Use the HIGH-LOW key generation algorithm.

Within the <class></class> enclosure is the set of tags that defines the mapping of class attributes to database tables.
The first tag in the group is the map-totable tag. As its name suggests, it specifies the name of the database table to
which the attributes of this class map.

The rest of the tags define the actual field-to-column mappings. The tag of special interest is the one that defines how
an Author relates to Book. Instead of identifying a column in the AUTHOR table, it identifies an attribute in the Book class.
Castor then uses the mapping of this column to perform the appropriate joins.

8.2.2 Hibernate Field Mapping

Field mapping in Hibernate is quite similar. Example 8-4 shows the XML descriptor that defines that mapping of the
sample classes to a database.

Example 8-4. Hibernate XML mapping descriptor

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN" "http://
hibernate.sourceforge.net/hibernate-mapping-1.1.dtd">

<hibernate-mapping >
 <class name="book.Author" table="AUTHOR">
 <id name="authorID" column="AUTHORID" type="long">
 <generator class="vm.long"/>
 </id>
 <property name="firstname" column="FIRSTNAME" type="string"/>
 <property name="lastname" column="LASTNAME" type="string"/>
 <set role="publications" lazy="true">
 <key column="AUTHORID"/>
 <one-to-many class="book.Book"/>
 </set>
 </class>
 <class name="book.Book" table="BOOK">
 <id name="bookID" column="BOOKID" type="long">
 <generator class="vm.long"/>
 </id>
 <property name="title" column="TITLE"/>
 </class>
</hibernate-mapping>

The Hibernate code is similar to the Castor code, yet different in many important ways. Again, Hibernate uses a class
tag to define the persistence mapping for a specific Java class. Unlike Castor, Hibernate defines the table mapping as a
tag attribute.

Within a class, you identity the ID, properties, and sets of the class. The ID is the primary key field. The id tag contains
a generator tag to specify a key generation algorithm to use for automated key generation. This tag identifies a Java
class that performs a key generation algorithm. If the algorithm requires parameters, they may be specified in the body
of the generator tag as param tags:

<generator class="org.dasein.persist.Sequence">
 <param>sequence</param>
</generator>

The generator class is an implementation of cirrus.hibernate.id.IdentifierGenerator. Hibernate provides the following built-in
generators:

assigned

Enables the application to generate its own identifiers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enables the application to generate its own identifiers.

hilo.hex

This algorithm is the same as hilo.long, except the result is a string of 16 characters.

hilo.long

Generates unique long values using a HIGH-LOW algorithm. This generator should not be used in JTA
environments or with user-supplied connections.

native

Generates a unique value based on the identity columns for DB2, MS SQL Server, MySQL, Sybase, and
Hypersonic SQL.

seqhilo.long

Generates a unique long value for a named sequence using the HIGH-LOW algorithm.

sequence

Generates a unique value based on the SEQUENCE concept from DB2, Interbase, Oracle, PostgreSQL, and SAP
DB.

uuid.hex

Generates a globally unique 32-character string.

uuid.string

Identical to uuid.hex, except it generates a 16-character ASCII string. This algorithm should not be used with
PostgreSQL.

vm.hex

Generates unique strings based on hexadecimal digits. This algorithm should not be used in a cluster.

vm.long

Generates unique long values. This algorithm should not be used in a cluster.

BEST PRACTICE: Most persistence platforms offer a variety of sequence generation
approaches; it is important to use a sequence generator that will fit your overall high-level
architecture for system requirements such as clustering.

Properties are the basic attributes of the class. Sets, on the other hand, represent the one-to-many or many-to-many
mappings for the class. Again, our objects map one author to many books. Hibernate captures this relationship through
the set tag.

Hibernate supports six different collection tags:

<array>

<bag>

<list>

<map>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<primitive-array>

<set>

For all of these set types except arrays, you can enable lazy-loading through the lazy="true" attribute. Using lazy-loading
can greatly increase the speed of your application for operations such as searching. Additional approaches such as
caching can also greatly increase the speed of your application. It is worthy to note that most alternative persistence
APIs offer some type of built-in object caching that can be turned on or off.

BEST PRACTICE: When choosing a persistence API it is important to fully understand the
different mapping types that an API supports. Each persistence system will have its own
weaknesses and may not support advanced mapping types such as one-to-many and
many-to-one mapping types.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.3 Persistence Operations
The Author and Book classes in Example 8-1 and Example 8-2 do not contain any persistence-related methods. Both
Castor and Hibernate, however, require you to add code to trigger persistence operations.

With any database-intensive application, the flushing of new state to the database is a time-expensive process. One
advantage to controlling when the flushing of your data occurs is that you can manage this expense.

With both persistence systems, persistence operations are done by loading the mapping files, obtaining a database
connection, calling for an object to be persisted, and closing out the transaction. Abstracting the persistence code with a
data access object will help you create a cleaner implementation.

BEST PRACTICE: Encapsulate persistence operations using both frameworks in data
access objects similar to those we have used in other persistence models in this book. This
will allow you to easily refactor your code to an alternative persistence system such as
EJBs.

8.3.1 Castor Persistence

In our example, we need the ability to add a new book to an author's list of books. In Castor, the method to perform
this task might look like this:

public Book addBook (Book book) throws Exception {
 JDO jdo = new JDO("alternativepersistencedb");
 jdo.loadConfiguration("database.xml");
 Database db = jdo.getDatabase();
 db.begin();
 db.create(book);
 db.commit();
 db.close();
 return book;
}

BEST PRACTICE: Using a singleton to manage the loading and parsing of your
persistence configuration files will increase the speed of your persistence operations.

This code references a new XML file, the database.xml configuration file. It describes your database connections to
enable Castor to access a JDBC data source. Example 8-5 shows what such a file looks like.

Example 8-5. Castor database connection descriptor

<!DOCTYPE databases
 PUBLIC "-//EXOLAB/Castor JDO Configuration DTD Version 1.0//EN"
 "http://castor.exolab.org/jdo-conf.dtd">

<database name="aps" engine="sql-server">
 <driver class-name="net.sourceforge.jtds.jdbc.Driver" url="jdbc:jtds:sqlserver://
localhost:1433/aps">
 <param name="user" value="aps"/>
 <param name="password" value="research"/>
 </driver>
 <mapping href="mapping.xml"/>
</database>

With the connection information defined, a database session is established by calling the JDO class method getDatabase(
). To start a transaction, the begin() method is called on the Database session. The Book class is now ready to be
persisted. This is accomplished by calling create() on the Database session. The new Book has been persisted, and
connection cleanup needs to be performed by closing the transaction with commit() and close() on the Database session.
If a transaction error occurs, a TransactionAbortedException will be thrown by the Database session.

8.3.2 Hibernate Persistence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hibernate persistence works very much like Castor persistence. You basically have to make calls to methods with
similar names in different classes:

public Book addBook (Book book) throws Exception {
 Datastore ds = Hibernate.createDatastore();
 ds.storeFile("hibernate.xml");
 SessionFactory sessionFactory = ds.buildSessionFactory();
 Session session = sessionFactory.openSession();
 session.beginTransaction();
 session.saveOrUpdate(book);
 session.flush();
 session.connection().commit();
 session.close();
}

The first line of code calls createDatastore(), which loads the Hibernate connection descriptor (an example is provided in
Example 8-6). An XML-based connection descriptor is also available.

Example 8-6. Hibernate database connection descriptor

hibernate.connection.driver_class=net.sourceforge.jtds.jdbc.Driver
hibernate.connection.url=jdbc:jtds:sqlserver://localhost:1433/aps
hibernate.connection.username=aps
hibernate.connection.password=research

With the connection information loaded, the storeFile() method then reads in the mapping descriptor. The SessionFactory
is used to manage session connections across the application. For our example, we are creating the SessionFactory with
each request. To start a transaction, the beginTransaction() method on the current Session is called. The saveOrUpdate()
method is then called to create or update any object that needs to be persisted. The flush() must be called at the end of
any transaction cycle. Flushing is used to synchronize the database with persistent objects in memory. To close the
transaction, the commit() method is called, and the transaction is closed with the close() method. Transaction errors will
throw a SQLException.

BEST PRACTICE: Both frameworks support database connection pooling or the use of
JNDI data sources. Take advantage of this support in your database applications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.4 Searches
Searching with both persistence systems looks similar to JDO. They both use object-based query languages and
leverage a similar API set.

8.4.1 Castor Searches

Castor uses the Object Query Language (OQL). OQL queries are similar to standard ANSI SQL but use object names in
place of column fields. Example 8-7 details the implementation of a book search with Castor.

Example 8-7. Searching for a book by title with Castor

public Book findBookByTitle(String title) throws Exception {
 JDO jdo = new JDO("alternativepersistencedb");
 jdo.loadConfiguration("database.xml");
 Database db = jdo.getDatabase();
 db.begin();
 OQLQuery query = db.getOQLQuery("SELECT b FROM book.Book b WHERE
 title=$1");
 query.bind("Alternative Persistence Systems");
 QueryResults results = query.execute();
 // assume the first book found is the desired book
 Book book = (Book) results.next();
 db.commit();
 db.close();
 return book;
}

As before, all configuration information needs to be loaded and ready before any database operations can be
performed. Once the connection has been established, the OQLQuery and QueryResults classes are used for searching.
The most important line here is the getOQLQuery() method. This particular search looks for all entities that have a title
value equal to the title attribute supplied by the calling method. If no results exist when next() is called, a
NoSuchElementException will be thrown.

8.4.2 Hibernate Searches

Searching with Hibernate is almost identical to that with Castor. Example 8-8 details the implementation of searching
with Hibernate.

Example 8-8. Searching for a book by title with Hibernate

public Book findBookByTitle(String title) throws Exception {
 Datastore ds = Hibernate.createDatastore();
 ds.storeFile("hibernate.xml");
 SessionFactory sessionFactory = ds.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Book book = null;
 List results = session.find("from o in class book.Book where title =
 ?", title, Hibernate.STRING);
 if (results.isEmpty()) {
 throw new Exception ("Entity not found: " + title);
 } else {
 book = results.get(0);
 }
 session.close();
 return book;
}

The difference with Hibernate is that rather than throwing an exception when no entities are found, the framework
supplies the method isEmpty() to determine if your search yielded no results.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.5 Beyond the Basics
A full discussion of the details of each alternative framework is well beyond the scope of this book. Furthermore, Castor
and Hibernate are not your only alternatives. You should now, however, have an appreciation of how these two
frameworks operate, some things to look for, and the role of alternative persistence frameworks in database
programming.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part III: Tutorials
The first two sections of the book cover a variety of technologies. You should be familiar with many of
the them, but you may not be familiar with all of them. As an EJB programmer, you probably know J2EE
technologies like EJB and JNDI well, but you may not be familiar with JDO. This section provides a JDO
tutorial just for you. Because you know EJB and JNDI so well, however, you will find no use for the J2EE
tutorial.

In short, not every tutorial chapter is for every reader of this book. Some advanced readers, in fact, will
have no use for any of the tutorial chapters. I do expect most readers will find the need to reference at
least one of these chapters before tackling a chapter earlier in the book. If you have no experience in
JDO, for example, you probably want to look at the JDO tutorial before reading the chapter on JDO
persistence. If you have no EJB experience, read the J2EE chapter before tackling either of the EJB
persistence chapters. Finally, you need to understand the material in the JDBC and SQL tutorials to
appreciate just about any chapter in Part I or Part II.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. J2EE Basics
We must know the secret union of soul and body, and the nature of both these substances; by which
the one is able to operate, in so many instances, upon the other.

—David Hume, An Enquiry Concerning Human Understanding

Most of the time when you are working with a database in a Java environment, you are working in some aspect of the
J2EE framework. Rarely will you build a pure JDBC application with no reliance on the J2EE platform. It is therefore no
surprise that many of the chapters in this book assume some level of appreciation for the J2EE APIs.

This tutorial is far from a comprehensive how-to on building J2EE applications. If you are looking to learn J2EE, then
you should pick up a book dedicated to the subject. In this chapter, I offer an overview of the most important concepts
in the J2EE platform so that you can tackle the subject matter of this book's first eight chapters.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.1 The Platform
A platform provides application developers with a full abstraction of a generic computing environment. The Windows
platform, for example, is a suite of APIs that enables developers to write desktop applications for any system running
Windows, regardless of the underlying hardware they are using. The main Java platform, Java 2 Standard Edition
(J2SE), does the same thing except its abstraction spans all desktop systems.

Whereas the J2SE platform creates a standard for desktop programming independent of hardware and operating
system, the J2EE platform provides a standard for enterprise systems. It is a superset of J2SE. It adds the following
abstractions:

Enterprise JavaBeans (EJB)

Java Servlets

JavaServer Pages (JSP)

Java Naming and Directory Interface (JNDI)

Java Transaction Architecture (JTA)

Java Message Service (JMS)

Java Mail

J2EE Connector API

XML support

Two APIs critical to the J2EE platform, JDBC Data Access and Remote Method Invocation (RMI), predate the J2EE
platform and exist in the J2SE platform.

The focus of this book is simply one aspect of J2EE programming, application persistence through relational databases.
A full discussion of the J2EE platform is thus beyond the scope of this book. Nevertheless, as a database programmer, a
foundation in a few of these APIs is important. I provide an overview of JNDI, JavaServer Pages, RMI, and Enterprise
JavaBeans here. Later in the book, I provide a more detailed tutorial on JDBC.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.2 Java Naming and Directory Interface
The Java Naming and Directory Interface API provides a single set of classes for accessing any kind of naming or
directory service. If you are intent on learning just one enterprise API, you should learn JNDI with it; it is the door
through which you will have to work to program in an enterprise environment.

BEST PRACTICE: If you intend to work with the J2EE APIs, make sure you learn JNDI.

9.2.1 Naming and Directory Services

Naming and directory services are among the most fundamental tools of computing. They enable us to access
computing resources using human-friendly names. It would be hard to imagine using a computer in which you had to
access a file on a hard drive by its physical location or select a printer for a print job based on its I/O port. Instead, you
have a filesystem that lets you use a name that is automatically translated to a physical location on request. Before you
can access just about any resource—local or remote—you need to access a naming or directory service.

A naming service is nothing more than a database that associates familiar names with technical values. A very simple
example of a naming service is the Internet Domain Name Service (DNS). DNS associates computer names with IP
addresses. If you want to access my web site, you type in www.imaginary.com and the application checks with a DNS
server to translate that name value to the IP address that provides the actual location of my server on the Internet. Not
only is www.imaginary.com easier to remember than a quad of numbers; the use of an easy-to-remember name
enables me to change the physical location of the server without impacting your ability to access it.

A directory service is simply an extension of a naming service that enables you to structure data in a hierarchical
namespace. In other words, not only does a directory service support access to some network object by an easy-to-
remember name, but it also enables you to create a tree of information in which that object is stored. A domain object,
for example, could contain many hosts. Microsoft's Active Directory Service (ADS) is among the newest examples of
directory services. In ADS, Windows 2000 stores a variety of network resources, including users, computers, domains,
and printers.

You may be wondering what the differences are between a directory service storing user information and a relational
database storing user information. Both directory services and relational databases are specific kinds of databases. A
directory service stores information in a hierarchical format and a relational database in a more complex format
consistent with relational theory. A directory service is best suited to read-heavy, hierarchical data. By read-heavy, I
mean that access to that data is mostly read access with occasional writes.

When writing database applications, you will deal with a variety of directory services. The most common directory
services include:

ActiveDirectory

LDAP

NIS

The most common directory service you will access, however, is the directory service built into your J2EE application
server. It may use LDAP or some other directory service, or it may follow a proprietary format. You will use it to look up
J2EE resources such as JDBC data sources.

9.2.2 JNDI Architecture

JNDI is the J2EE gateway into different naming and directory services. Using JNDI, an application can store information
in and retrieve information from naming and directory services. Like other Java enterprise APIs, the beauty of JNDI is
that the application does not care what kind of naming or directory service is being used. The same API serves to
access LDAP directories, OpenDirectory, ADS, NIS+, NDS, DNS, and more. Sun even provides an implementation of
JNDI that stores information in a regular filesystem.

Some of the J2EE APIs serve as abstractions for common kinds of architectural components in enterprise systems. JNDI
is one of these architectural abstractions. Enterprise applications talk to a JNDI service provider using the generic JNDI
API. Figure 9-1 illustrates this architecture.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-1. The JNDI architecture

No matter what naming or directory service you are using, your application will use the exact same JNDI calls to
perform the exact same functions. The JNDI classes know how to find the service providers for different services based
on the application's runtime configuration. These service providers implement an API called the JNDI Server Provider
Interface (SPI). The SPI is specifically a set of Java interfaces that a service provider must implement in order to give
JNDI access to its directory service. The advantage of this approach is that you can literally switch an application from
NIS to ActiveDirectory simply by changing configuration information—no code changes are required. For the most
current list of service providers, visit http://java.sun.com/products/jndi/serviceproviders.html.

9.2.3 The Basics of JNDI Programming

A Java application basically wants to do one of two things with a directory service:

Find objects stored in the directory service

Bind new or modified objects to the directory service

Because a directory service is a read-heavy data store, applications really spend most of the time looking up objects
stored in the directory.

9.2.3.1 InitialContext

The first JNDI code you write in any JNDI application is code that creates an initial context. A context is simply a base
from which everything is considered relative. In your local phone book, for example, the context is your country code
and often an area code. The numbers in the phone book do not mention their country code or area code—you just
assume those values from the context. A JNDI context performs the exact same function. The initial context is simply a
special context to get you started with a particular naming and directory service. The simple form of initial context
construction looks like this:

Context ctx = new InitialContext();

In this case, JNDI grabs its initialization information from your system properties. In using this format, you make it
possible for an application to be directory service-independent. You can, however, specify your own initialization values
by passing the properties to the InitialContext constructor:

Properties props = new Properties();
Context ctx;

// Specify the name of the class that will serve
// as the context factory
props.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
ctx = new InitialContext(props);

This code will create an initial context for the filesystem provider. You can now use this context to bind Java objects to
the filesystem or to look them up. The most common configuration properties are:

java.naming.factory.initial (Context.INITIAL_CONTEXT_FACTORY)

This property identifies the service provider to be used by specifying the fully qualified class name of the factory
class that creates the initial context object.

java.naming.language (Context.LANGUAGE)

This property stores the language preferences of the user accessing the naming or directory service. This value
can be a colon-separated list of language tags. If left unspecified, the service provider determines the language
preference.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

preference.

java.naming.security.authentication (Context.SECURITY_AUTHENTICATION)

This property stores the security level to be used by the service provider. Its value must be one of the following
strings: "none", "simple", or "strong". The security level is dependent on the service provider when this
property is not specified.

java.naming.security.credentials (Context.SECURITY_CREDENTIALS)

This property stores whatever data will help authenticate the user (principal) to the naming or directory service.
For example, this property could store a user's password or X.509 certificate.

java.naming.security.principal (Context.SECURITY_PRINCIPAL)

This property identifies the principal using the naming or directory service. The actual value depends on the
authentication scheme being used. For example, with username/password authentication, this property will
store the username.

java.naming.security.protocol (Context.SECURITY_PROTOCOL)

This property stores text identifying the security protocol to be used. For example, it might contain the text
"ssl" to specify SSL (Secure Sockets Layer). If left unspecified, the service provider can interpret this property
as it sees fit.

When you create a new InitialContext, the InitialContext class—which implements the Context interface—asks the service
provider's initial context factory for an initial context. That object then delegates to the service provider's initial context
to handle any operations.

9.2.3.2 Lookups

Lookups under JNDI are very simple. The following code finds a printer using the fileservice provider:

Printer p = (Printer)ctx.lookup("printers/laser");

This code will do a search in the directory for the object with the matching DN. If the matching object is not a printer,
then you will see a ClassCastException.

Names are one of the tricky parts of JNDI. Specifically, each naming and directory service has its own name format.
Examples from different domains include:

cn=George Reese,ou=Web,dc=imaginary,dc=com

c=us,o=imaginary,ou=Web,cn=Sal

/usr/local/bin/python

Of course, there are also names that span multiple directory services. The URL
http://www.imaginary.com/Java/index.html, for example, references the file /prd/www/html/Java/index.html (a
filename) on the machine www.imaginary.com (a DNS name). JNDI provides the Name class to help abstract away from
naming service-specific conventions. All Context methods that look for a name as an argument will accept either a String
representation of the name or a Name object representation.

Before you can look and object up in JNDI, it must first be bound to the directory. The task of assigning an object to a
DN is called binding:

Printer = new Printer();
Context ctx = new InitialContext(props);

p.setManufacturer("HP");
p.setModel("LaserJet 4ML");
ctx.bind("printers/Laser", p);
ctx.close();

9.2.3.3 References

This code shows JNDI returning a Java Printer object from the directory. JNDI supports two different ways of storing
Java objects in a directory:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Java objects in a directory:

Directly via Java serialization

Indirectly using special reference objects

The direct method stores the Java object in a directory as binary data representing the serialized form of the Java
object. Many directory services, however, do not understand serialization. Furthermore, not all applications accessing a
directory service are written in Java. JNDI therefore supports an alternate mechanism for storing Java objects in a
directory in the form of references.

The JNDI Reference class enables a directory service to save the internal state of a Java object to a directory. A Reference
also knows how to instantiate a copy of the desired Java object from data in the directory. In order to enable your Java
objects to be stored by reference instead of serialization, they need to implement the Referenceable interface. This
interface prescribes a single method: getReference(). The job of this method is to create a Reference instance populated
with the attributes to be stored. Example 9-1 shows how a User object might accomplish this task.

Example 9-1. Implementing Referenceable for storage in JNDI

import javax.naming.NamingException;
import javax.naming.Reference;
import javax.naming.Referenceable;
import javax.naming.StringRefAddr;

public class User implements Referenceable {
 private String email = null;
 private String userID = null;

 public User(String uid, String em) {
 super();
 userID = uid;
 em = email;
 }

 public String getEmail() {
 return email;
 }

 public Reference getReference() throws NamingException {
 String cname = UserFactory.class.getName();
 Reference ref =
 new Reference(getClass().getName(), cname, null);

 ref.add(new StringRefAddr("email", email));
 ref.add(new StringRefAddr("userID", userID));
 return ref;
 }

 public String getUserID() {
 return userID;
 }
}

The UserFactory class referenced in the User class is used by the service provider to create a User instance when an
application reads a User object from the directory service. Example 9-2 provides an implementation of this class.

Example 9-2. A factory for User instances

import java.util.Hashtable;
import javax.naming.NamingException;
import javax.naming.Reference;
import javax.naming.spi.ObjectFactory;

public class UserFactory extends ObjectFactory {
 public UserFactory() {
 super();
 }

 public Object getObjectInstance(Object ob,m Name nom,
 Context ctx, Hashtable env) {
 if(ob instanceof Reference) {
 Reference ref = (Reference)ob;

 if(ref.getClassName().equals(User.class.getName())) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(ref.getClassName().equals(User.class.getName())) {
 RefAddr tmp = ref.get("userID");
 String uid, em;

 if(tmp != null) {
 uid = (String)tmp.getContent();
 }
 tmp = ref.get("email");
 if(tmp != null) {
 em = (String)tmp.getContent();
 }
 return new User(uid, em);
 }
 }
 return null;
 }
}

9.2.3.4 Attribute manipulation

Reading from a directory means more than doing straight lookups. An application will also look up object attributes. In
such cases, your application should get a specific kind of context, the directory context. A directory context is
represented by the JNDI class DirContext:

DirContext ctx = new InitialDirectoryContext();

You can then grab the attributes associated with a DN using the following code:

Attributes atts =
 ctx.getAttributes("cn=Sal,ou=Web,dc=imaginary,dc=com");

The Attributes class is a collection holding all of the attributes associated with an object in the directory. You can get a
specific attribute from the collection using the get() method:

Attribute pw = attrs.get("password");

Finally, you can access the actual attribute value using the Attribute class's get() method:

System.out.println("Your password is: " + pw.get());

Though getting attributes from a directory is pretty straightforward, changing them can be downright bizarre. You have
to create a ModificationItem instance with an Attribute representing the attribute to modify. Finally, you tell the directory
context to make the change:

ModificationItem[] changes = new ModificationItem[1];
BasicAttribute attr = new BasicAttribute("password", "secret");

changes[0] = new ModificationItem(DirContext.REPLACE_ATTRIBUTE,
 attr);
ctx.modifyAttributes("cn=Sal,ou=Web,dc=imaginary,dc=com",
 changes);

All of this code does nothing more than change Sal's password to "secret". Under this paradigm, however, you can
change multiple attributes for the same object at once. You need only add more elements to the changes array. In
addition to replacing an attribute, you can use this API to add a new attribute or delete an obsolete attribute:

ModificationItem[] changes = new ModificationItem[2];
BasicAttribute tel, cell;

tel = new BasicAttribute("telephone", "+1.763.555.1778");
cell = new BasicAttribute("cellphone");
changes[0] = new ModificationItem(DirContext.ADD_ATTRIBUTE,
 tel);
changes[1] = new ModificationItem(DirContext.REMOVE_ATTRIBUTE,
 cell);
ctx.modifyAttributes("cn=Sal,ou=Web,dc=imaginary,dc=com",
 changes);

9.2.3.5 Searching the directory

Attributes instances are also critical to searching the directory for objects. To perform a simple search, you construct an
instance of BasicAttributes—which implements the Attributes interface—and specify the attributes on which you wish to
search:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

search:

DirContext ctx = new DirContext();
Attributes attrs = new BasicAttributes(true);
NamingEnumeration res;

attrs.put(new BasicAttribute("favoriteColor", "red"));
res = ctx.search("ou=Web", attrs);
while(res.hasMoreElements()) {
 // process matching element
}

The result, of course, is a list of all of the people in the web department whose favorite color is red. The true parameter
passed to the BasicAttributes constructor says that we do not want case sensitivity in our attribute matching. Each
element in the resulting enumeration is actually an instance of a class called SearchResult. The SearchResult represents
the object bound in the directory service. If you want the actual object, you can call getObject(). On the other hand, you
can just grab its attributes if that is all you are after:

while(res.hasMoreElements()) {
 SearchResult sr = (SearchResult)res.nextElement();
 Attributes attrs = sr.getAttributes();
 Attribute cn = attrs.get("cn");

 System.out.println(cn.get() + " likes red!");
}

This simple search is not particularly interesting. You may want to ask questions like "Who has a Social Security number
starting with 042?" or "Who has a last name of Smith?" For these more complex searches, you need to use search
filters. If you are familiar with regular expressions from languages like Perl or Python, JNDI search filters will be at least
somewhat familiar to you. Specifically, JNDI relies on RFC 2254 for defining its matching rules. Table 9-1 lists the
symbols included in this RFC with their meanings.

Table 9-1. JNDI search filter symbols from RFC 2254
Symbol Name Description

& Conjunction The expression is true if all component expressions are true.

| Disjunction The expression is true if only one component expression is true.

! Negation Negates the truth-value of the expression.

= Equality The expression is true if the attribute matches the specified value in accordance with the
matching rules for that attribute.

~= Approximate
equality

The expression is true if the attribute comes close to matching the specified value in
accordance with the matching rules for that attribute.

>= Greater than The expression is true if the attribute is greater than the specified value in accordance with
the matching rules for that attribute.

<= Less than The expression is true if the attribute is less than the specified value in accordance with the
matching rules for that attribute.

=* Presence The attribute has a value, but the actual value is unimportant.

* Wildcard Matches zero or more characters in its position.

\ Escape Escapes special symbols, including (and), when they appear in a filter.

The format of the search filters is a bit unintuitive. Each expression is enclosed by parentheses. Two expressions may
be joined by a & or | symbol. For example:

(&(cn=* Reese)(favoriteColor=red))

This expression translates to all objects in which the cn ends with "Reese" (i.e., a last name of Reese) and the
favoriteColor value is "red". You can end up with some fairly LISP-like[1] expressions on complex search filters. The
following code performs a search using a more complex search filter:

[1] If you missed out on the joys of LISP in college, it is a rather odd programming language in which all notation is
in reverse-polish notation, the format shown in the examples.

NamingResult res;
String flt;

flt = "(&(favoriteColor=red)(|(cn=* Reese)(cn=* Viega)))";
res = ctx.search("ou=Web", flt, null);
while(res.hasMoreElements()) {
 // process results
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

9.2.4 Access to Enterprise Components via JNDI

If you have done any JDBC programming, you know what a nightmare it can be to connect to the database. Your
application must both register a vendor-specific class with JDBC and provide connection information specific to that
driver, including such information as the driver-specific URL, user ID, and password. In short, your application needs to
know a lot about the specific connection requirements of a specific vendor tool to access a specific database. The result
is a cumbersome connection process that is too easily tied to proprietary components.

In a robust architecture, components reference one another by name only. Just as the IP address for my web server
can change without affecting your ability to reach my web site because you are using a name via a naming service, you
can code your application to find other architectural components by name by registering them with some sort of naming
service. For JDBC, you can store database configuration information in a directory service under a specific name. An
application seeking a database connection then accesses the desired database by name. As a result, system
administrators can change configuration information in the directory service without any impact on the production
application.

JNDI is probably the single most important API on the J2EE platform exactly because most APIs rely on a directory
service to store information about enterprise resources. The best way to access JDBC and RMI is through JNDI. The
only way to access EJB is through JNDI.

9.2.4.1 JNDI and JDBC

On the J2EE platform, an application gains access to a database via JDBC's DataSource class. A DataSource instance
contains all of the information necessary to make a connection. Using this class, an application can connect using the
following simple code:

Connection conn;
DataSource ds;

// some code to get a DataSource instance goes here
conn = ds.getConnection();

So where does the application get a DataSource instance? Naturally, it retrieves it from a directory service via JNDI. At
deployment time, a system administrator goes into the administrative tool appropriate for the directory service being
used and enters information about the database to which the DataSource should connect. The system administrator then
assigns a name to this DataSource and saves the configuration.

How the configuration actually works is naturally dependent on the directory service being used. Ideally, this
information will be stored in a serialized DataSource object in the directory service. If the directory service is incapable of
storing serialized Java objects, then the configuration tool will use an alternative mechanism. Either way, your
application does not care. The earlier missing code looks like this:

Context ctx = new InitialContext();
Connection conn;
DataSource ds;

ds = (DataSource)ctx.lookup("enterpriseExamples");
conn = ds.getConnection();

9.2.4.2 JNDI and EJB

EJB, like JDBC, has a special class through which applications access the system. Unlike JDBC, an application does not
seek access to the EJB application server as a whole, but instead to specific business objects within the application
server. The special class through which these business objects are accessed is called their home. A Flight business
object, for example, would have a FlightHome home.

Homes are configured during the process of deploying an Enterprise JavaBeans application. The EJB application server
takes the information from the deployment process and creates an entry in its directory service. A client then uses the
application server's JNDI implementation to gain access to the deployed EJB.

In order to access a specific Flight instance, you need to know only the name under which the home is registered and
the primary key for the flight being sought:

Context ctx = new InitialContext();
FlightHome home;
Flight flight;

home = (FlightHome)ctx.lookup("FlightHome");
flight = home.findByPrimaryKey(somePK);

9.2.4.3 JNDI and other enterprise components

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2.4.3 JNDI and other enterprise components

You should see a pattern emerging here. Everywhere one enterprise component needs to access another, it does so via
JNDI. All of the information required for that access is stored in a JNDI-supported directory. This architecture enables
components to change drastically without any effect on the other components in the system. The freedom to
reconfigure components in a runtime is critical to scalability. For example, an application that was launched with the
web server, application server, and database server all on the same physical machine can be reconfigured to run on
three different machines without requiring any code changes or regression testing.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.3 JavaServer Pages
JavaServer Pages are the Java way to build web-based user interfaces using Java as a scripting language for generating
dynamic XHTML.[2] In other words, JSP enables you to embed Java code inside your XHTML so that the full content of
the XHTML page can be dependent on the state of the system when a user requests a page. Example 9-3 shows your
obligatory "Hello World" application as a JSP page.

[2] JSPs are not limited to XHTML. They can generate HTML, XML, or any other kind of textual markup.

Example 9-3. A simple JSP page

<%@ page info="Hello World" %>

<% String msg = "Hello World!"; %>

<html>
 <head>
 <title><%=msg%></title>
 </head>

 <body>
 <h1><%=msg%></h1>
 <p>
 Though this example is largely uninteresting, it does
 demonstrate how Java can be embedded in an XHTML page to
 generate content dynamically.
 </p>
 </body>
</html>

As with any "Hello World" application, this one is mind-numbingly dull. What you should take from it, however, is the
basic structure that enables you to call methods in Java objects and drive content from Java values. Though I used a
simple String instance in this example, the <title> and <h1> values could have been drawn from a database.

The web server or application server in which the JSP runs interprets anything between <% and %> as Java code and
anything between <%= and %> as values to be printed out. When a request is made for a JSP page, that page is turned
into a Java object. Your embedded Java code becomes part of that compilation. The XHTML in your page becomes a
string to send out. The server then executes the method into which your Java code was compiled.

This compile happens only once as long as the server remains running and no one changes the JSP source. If you make
a change to the JSP source, however, the server will recompile it the next time it is requested.

JSPs become interesting when you hook them up to an EJB system or a database. Naturally, we will be doing just that
throughout Part II of this book. This section simply describes the basics behind JavaServer Pages.

9.3.1 Page Structure

A JSP page consists of static content, JSP directives, Java code, and JSP tags:

Static content

Static content is the XHTML into which your JSP code is embedded.

JSP directives

These elements appear between <%@ and %> markers. They indicate directives to the server prior to compiling
the JSP page.

Java code

Java code is everything between <% and %> and between <%= and %> tags. This code is executed for each
page view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSP tags

A JSP tag is an XML-like interface into a library of Java code. The JSP specification prescribes a core set of tags,
but you can add your own through custom tag libraries.

As a general rule, the fewer lines of Java code in your JSP page, the better. When you add a lot of Java code to a JSP
page, you, in a sense, defeat the purpose of using JSPs over the Java Servlet API. Specifically, defining your user
interface as a set of JSPs enables you to transfer the work of user interface writing to XHTML programmers instead of
Java programmers. This transfer hopefully results in more creative resources being responsible for UI development.

9.3.2 JSP Programming

Example 9-4 provides a more typical JSP page than the "Hello World" code in Example 9-3.

Example 9-4. A JSP page that drives content from a content management database

<%@ page info="Page Loader" %>
<%@ page import="org.dasein.tractatus.jsp.ErrorLog" %>
<%@ page import="org.dasein.tractatus.jsp.Tractatus" %>

<%@ taglib uri="/WEB-INF/tld/tractatus.tld" prefix="tractatus" %>

<jsp:useBean id="user" scope="session" class="org.dasein.security.User"/>
<% pageContext.setAttribute(Tractatus.USER, user); %>
<% user.setPreferredLocale(request.getLocale()); %>

<tractatus:setTarget/>

<% pageContext.setAttribute("template", target.getTemplate()); %>
<% if(target.getContent() != null) { %>
 <% pageContext.setAttribute("contentTemplate",
 target.getContent().getTemplate()); %>
<% } else { %>
 <% pageContext.setAttribute("contentTemplate", null); %>
<% } %>

<tractatus:authorize>
 <tractatus:allowed>
 <tractatus:isNull name="template">
 <tractatus:true>
 <tractatus:isNull name="contentTemplate">
 <tractatus:true>
 <tractatus:printContent/>
 </tractatus:true>
 <tractatus:false>
 <jsp:include page="<%=target.getContent().getTemplate().getRelativeURL()%>"/>
 </tractatus:false>
 </tractatus:isNull>
 </tractatus:true>
 <tractatus:false>
 <jsp:include page="<%=target.getTemplate().getRelativeURL()%>"/>
 </tractatus:false>
 </tractatus:isNull>
 </tractatus:allowed>
 <tractatus:denied>
 <% String msg = "<p class=\"error\">Access denied.</p>"; %>
 <jsp:include page="page.jsp">
 <jsp:param name="target"
 value="<%=target.getSite().getErrorPage().getPageID()%>"/>
 <jsp:param name="error" value="<%=ErrorLog.storeException(msg)%>"/>
 </jsp:include>
 </tractatus:denied>
 <tractatus:unauthenticated>
 <%
 response.sendRedirect(target.getSite().getLoginPage().getRelativeURL() +
 "&previous=" + target.getPageID());
 %>
 </tractatus:unauthenticated>
</tractatus:authorize>

Though all of the content for this page is dynamically generated, very little of it is direct Java code. It starts out with
three directives:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

three directives:

<%@ page info="Page Loader" %>
<%@ page import="org.dasein.tractatus.jsp.ErrorLog" %>
<%@ page import="org.dasein.tractatus.jsp.Tractatus" %>

<%@ taglib uri="/WEB-INF/tld/tractatus.tld" prefix="tractatus" %>

The first directive provides metainformation about the JSP page for tools. The second and third directives tell the server
what Java import statements to use for this page when compiling it. The final one tells the server where to find
definitions for the custom tags in use in this page.

Only the last directive requires any elaboration. When you build a library of Java objects that can serve as JSP tags, you
need to create an XML descriptor file that maps tag names to Java classes. The uri value for the taglib directive points to
this XML file. The prefix value then names what prefix will appear for the tags in this JSP page. In this case, the prefix is
tractatus.

You will use the tag in the next line of code, <jsp:useBean>, in almost all of your JSP pages. It enables you to store and
access a regular JavaBean as part of the user session information. In this case, I am storing a User object representing
the site visitor.

The next two lines are the first bit of actual Java code:

<% pageContext.setAttribute(Tractatus.USER, user); %>
<% user.setPreferredLocale(request.getLocale()); %>

You probably gather that the user variable in the second line comes from the call to <jsp:UseBean>. On the other hand,
it is entirely unclear where the pageContext variable comes from. A JSP page defines several page-level variables to
which you have access. The two you will most commonly use are pageContext and request. The pageContext variable
represents information about the context of the page execution. In this example, I am setting an attribute that can be
used by my custom tags. The Tractatus.USER constant is simply a String constant for "user".[3]

[3] I believe it is a good solid practice never to have literal values in your source code, except as constant
definitions. This line reflects that practice.

The other variable you will commonly need, request, represents the HTTP request coming in from the browser. It
contains information about the requester and the headers of the request. In the second line, I am looking for
internationalization information from the request. Specifically, I am trying to find out what locales the browser is set to
accept.

The next line is the first custom tag in this JSP page:

<tractatus:setTarget/>

Behind this tag's simplicity is some complex Java code for setting a variable named target to a custom Java object of
type org.dasein.tractatus.Page based on the request sent to the server. For example, if the URL was
http://www.imaginary.com/page.jsp?target=5, then the <tractatus:setTarget> tag will go to the database, find the Page
with a pageID of 5, and then set the target variable to that Page instance.

Perhaps you can imagine the level of complexity I would have added to this page had I not hidden everything behind a
JSP tag. Now, XHTML programmers do not need to know anything about looking up custom objects hidden in a
database. They simply include this one empty tag and they are all set.

The rest of the code is mostly custom tags with a small mix of Java code. In short, it does the following:

1. Verifies that the user has access to the requested page.

2. Verifies that the user is disallowed, allowed, or not yet authenticated:

If disallowed, the user is redirected to a page telling him he does not have the proper permissions.

If allowed, the user is shown the actual content through the <jsp:include> tags.

If the user has yet to be authenticated and the web page is not open to the public, the user is
redirected to a login page.

9.3.3 Custom Tags

The power of JavaServer Pages lies in the ability to build reusable Java components and then hide them behind custom
tags. The creation of custom tags is quite simple. You write a class that implements a specific API and then map that
class to a tag name via an XML descriptor file. A simple custom tag looks like Example 9-5.

Example 9-5. A simple custom tag

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-5. A simple custom tag

package org.dasein.tractatus.jsp;

import java.io.IOException;
import java.util.Locale;

import javax.servlet.ServletRequest;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.TagSupport;

import org.dasein.persist.PersistenceException;
import org.dasein.security.User;
import org.dasein.tractatus.Page;

public class HTMLTitleTag extends TagSupport {
 public int doEndTag() throws JspException {
 try {
 Page p = (Page)pageContext.getAttribute(Tractatus.TARGET);
 User u = (User)pageContext.getAttribute(Tractatus.USER);
 Locale def = p.getSite().getDefaultLocale();
 String ttl;

 ttl = "<title>" + p.getTitle(u.getPreferredLocale(def))
 + "</title>";
 pageContext.getOut().println(ttl);
 }
 catch(IOException e) {
 throw new JspException(e.getMessage());
 }
 catch (PersistenceException e) {
 throw new JspException(e.getMessage());
 }
 return EVAL_PAGE;
 }
}

This custom tag extends the TagSupport class from the JSP API and implements a single method, doEndTag(). This
method is triggered when the server reaches the end tag of your custom tag. Because this particular tag is an empty
tag, the end happens right after the start. In this example, the tag finds the current target value (previously set by
<tractatus:setTarget>) as well as the current user value (previously set by <jsp:useBean>). It then prints out the XHTML for
the page's title translated into the user's preferred language.

To add this tag to the web site, you need to edit the XML tag library descriptor file to map a tag name to this class. If
this tag were the only tag in the tag library, the descriptor file would look like Example 9-6.

Example 9-6. Sample tag descriptor

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1/EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>tractatus</shortname>

 <tag>
 <name>htmlTitle</name>
 <tagclass>org.dasein.tractatus.jsp.HTMLTitleTag</tagclass>
 <bodycontent>empty</bodycontent>
 </tag>

</taglib>

The code in bold shows the definition of the custom tag. It maps the name htmlTitle to the class
org.dasein.tractatus.jsp.HTMLTitleTag and establishes the constraint that the tag should be an empty tag. Consequently,
whenever the server encounters the following in a JSP page:

<tractatus:htmlTitle/>

The server prints out the title of the page referenced by the target variable localized for the user.

Custom tags do get more complicated. Some contain XHTML code, while others contain other custom tags. A full
description of this API is well beyond the scope of this book. For more information, take a look at JavaServer Pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

description of this API is well beyond the scope of this book. For more information, take a look at JavaServer Pages
(O'Reilly) by Hans Bergsten.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.4 Remote Method Invocation
The object is the center of the Java world. Distributed object technologies provide the infrastructure that enables two
objects running on two different machines to talk to each other using an object-oriented paradigm. Using traditional
networking, you need to write IP socket code to let two objects on different machines communicate. While the socket-
based approach works, it is prone to error. The ideal solution is to let the Java virtual machine do the work. You call a
method in an object, and the virtual machine determines where the object is located. If it is a remote object, it will
perform all the dirty network work for you.

Several technologies, like the Common Object Request Broker Architecture (CORBA), predate Java. CORBA enables
developers to provide a clean, distributed programming architecture. CORBA has a very wide reach and is wrought with
complexities associated with its grandiose goals. For example, it supports applications whose distributed components
are written in different languages. In order to support everything from writing an object interface in C to handling more
traditional object languages such as Java and Smalltalk, it has built up an architecture with a very steep learning curve.

CORBA does its job very well, but it does a lot more than you need in a pure Java environment. This extra functionality
has a cost in terms of programming complexity. Unlike other programming languages, Java has distributed support built
into its core. Borrowing heavily from CORBA, Java supports a simpler, pure Java distributed object solution called RMI.

9.4.1 The Structure of RMI

RMI is an API that enables you to ignore the fact that you have objects distributed all across the network. You write
Java code that calls methods in remote objects using the same semantics you use in calling local methods. The biggest
problem with providing this kind of API is that you are dealing with two separate virtual machines existing in two
separate memory address spaces. Consider, for example, the situation in which you have a Bat object that calls hit() in
a Ball instance. Located together on the same virtual machine, the method call looks like this:

ball.hit();

You want RMI to use the exact same syntax when the Bat instance is on one machine and the Ball instance is on
another. The problem is that the Ball instance does not exist inside the client's memory. How can you possibly trigger an
event in an object to which there is no reference? The first step is to get a reference.

9.4.1.1 Remote object access

I am going to co-opt the term server for a minute and use it to refer to the virtual machine that holds the real copies of
one or more distributed objects. In a distributed object system, you can have a single host (generally called an
application server) act as an object server—a place from which clients get remote objects—or you can have all systems
act as object servers. Clients simply need to be aware of where the object server(s) is located.[4] An object server has
a single defining function: to make objects available to remote clients.

[4] Using JNDI, they do not even need to know where the server is. Clients just look up objects by name, and the
naming and directory service knows where the server is. You will see this in practice later in the chapter when you
read about EJB.

A special program called rmiregistry that comes with the JDK listens to a port on the object server's machine. The
object server in turn binds object instances to that port using a special URL so clients can later find it. The format of the
RMI URL is rmi://server/object. A client then uses that URL to find a desired object. For the previous bat and ball
example, the ball would be bound to rmi://athens.imaginary.com/Ball. An object server binds an object to a URL by
calling the static rebind() method of java.rmi.Naming:

Naming.rebind("rmi://athens.imaginary.com/Ball", new BallImpl());

The rmi://athens.imaginary.com portion of the preceding URL is self-evident; you cannot bind an object instance to a
URL on another machine in a secure environment. Naming allows you to rebind an object using only the object name for
short:

Naming.rebind("Ball", new BallImpl());

In RMI, binding is the process of associating an object with an RMI URL. The rebind()
method specifically creates this association. At this point, the object is registered with the
rmiregistry application and is available to client systems. Reference by any system to its
URL is thus specifically a reference to the bound object.

The rebind() methods make a specific object instance available to remote objects that do a lookup on the object's URL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The rebind() methods make a specific object instance available to remote objects that do a lookup on the object's URL.
This is where life gets complicated. When a client connects to the object URL, it cannot get the object bound to that
URL. That object exists only in the memory of the server. The client needs a way to fool itself into thinking it has the
object while routing all method calls in that object over to the real object. RMI uses Java interfaces to provide this sort
of hocus-pocus.

9.4.1.2 Remote interfaces

All Java objects that you intend to make available as distributed objects must implement an interface that extends the
RMI interface java.rmi.Remote. You call this step making an object remote. You might do a quick double take if you look
at the source code for java.rmi.Remote. It looks like this:

package java.rmi;

public interface Remote {
}

No, there is no typo there. The interface prescribes no methods to be implemented. It exists so that objects in the
virtual machines on both the local and remote systems have a common base class they can use for deriving all remote
objects. They need this base class since the RMI methods look for subclasses of Remote as arguments.

When you write a remote object, you have to create an interface that extends Remote and specify all methods that can
be called remotely. Each of these methods must throw a RemoteException in addition to any application-specific
exceptions. In the bat and ball example, you might have had the following interface:

public interface Ball extends java.rmi.Remote {
 void hit() throws java.rmi.RemoteException;

 int getPosition() throws RemoteException;
}

The BallImpl class implements Ball. It might look like:

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

public class BallImpl
extends UnicastRemoteObject implements Ball {
 private int position = 0;

 public Ball() throws RemoteException {
 super();
 }

 public int getPosition() {
 return position;
 }

 public void hit() {
 position += calculateDistance();
 }

 protected int calculateDistance() {
 return 10;
 }
}

The java.rmi.server.UnicastRemoteObject class that the BallImpl extends provides support for exporting the ball; that is, it
allows the virtual machine to make it available to remote systems. This may look like what the Naming class does, but it
has a different purpose. Naming ensures that the object is bound to a particular URL, while exporting an object enables
it to be referenced across the network. This means that you can pass the object as a method argument or return it as a
return value. It also means that you can use Naming.rebind() to make the object available through a URL lookup. A URL
lookup looks like this:

ball = (Ball)Naming.lookup("rmi://athens.imaginary.com/Ball");

Because you have just read about JNDI, you might wonder why RMI forces you to know
where the object is located instead of using a simple JNDI name. The answer is simple:
RMI predates JNDI. JNDI now, however, offers a service provider supporting RMI lookups.

Because you may not have the option of extending UnicastRemoteObject, you can export your objects another way using
this syntax in the object constructor:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this syntax in the object constructor:

public BallImpl() throws RemoteException {
 super();
 UnicastRemoteObject.exportObject(this);
}

Both approaches are equally valid. The only difference is the structure of your inheritance tree.

After writing both classes, you compile them just like any other object. This will, of course, generate two .class files,
Ball.class and BallImpl.class.The final step in making the BallImpl class distributed is to run the RMI compiler, rmic,
against it. In this case, run rmic using the following command line:

rmic BallImpl

Like the java command—and unlike the javac command—rmic takes a fully qualified class name as an argument. This
means that if you had the Ball class in a package called baseball, you would run rmic as:

rmic -d classdir baseball.Ball

In this case, classdir represents whatever the root directory for your baseball package class files is. This directory will
likely be in your CLASSPATH. The output of rmic will be two classes: Ball_Skel.class (the skeleton) and Ball_Stub.class
(the stub). These classes will be placed relative to the classdir you specified on the command line.

9.4.1.3 Stubs and skeletons

I have introduced a couple of concepts, stub and skeleton, without any explanation. They are two objects you should
never have to concern yourself with, but they do all of the heavy lifting that makes remote method calls work. In Figure
9-2, I show where these two objects fit in a remote method call.

Figure 9-2. The process of calling a method in a remote object

The process of translating a remote method call into network format is called marshaling; the reverse is called
unmarshaling. When you run the rmic command on your remote-enabled classes, it generates two classes that perform
the tasks of marshaling and unmarshaling. The first of these is the stub object, a special object that implements all of
the remote interfaces implemented by the remote object. The difference is that where the remote object actually
performs the business logic associated with a method, the stub takes the arguments to the method and sends them
across the network to the skeleton object on the server. In other words, it marshals the method parameters and sends
them to the server. The skeleton object, in turn, unmarshals those parameters; it takes the raw data from the network,
translates it into Java objects, and then calls the proper method in the remote object.

The skeleton and stub perform the reverse roles for return values. The skeleton takes the return value from the method
and sends it across the network. The client stub then takes the raw socket data and turns it into Java data, returning
that Java data to the calling method.

9.4.1.4 Remote exceptions

All methods that can be called remotely and all constructors for remote objects must throw a special exception called
java.rmi.RemoteException. The methods you write will never explicitly throw this exception. Instead, the local virtual
machine will throw it when you encounter a network error during a remote method call. Examples of such situations
include one of the machines crashing or a loss of connectivity between the two machines.

A RemoteException is unlike any other exception. When you write an application to be run on a single virtual machine,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A RemoteException is unlike any other exception. When you write an application to be run on a single virtual machine,
you know that if your code is solid, you can predict potential exceptional situations and where they might occur. You
can count on no such predictability with a RemoteException. It can happen at any time during the course of a remote
method call, and you may have no way of knowing why it happened. You therefore need to write your application code
with the knowledge that at any point your code can fail for no discernible reason and have contingencies to support
such failures.

9.4.2 Object Serialization

Not all objects that you pass between virtual machines are remote. In fact, you need to be able to pass the primitive
Java data types as well as many basic Java objects, such as String or HashMap, that are not remote. When a nonremote
object is passed across virtual machine boundaries, it gets passed by value using object serialization instead of the
traditional Java RMI way of passing objects, by reference. Object serialization is a feature that enables you to turn
objects into a data stream that you can use the way you use other Java streams—send it to a file, over a network, or to
standard output. What is important about this method of passing objects across virtual machines is that changes you
make to the object on one virtual machine are not reflected in the other virtual machine.

Most of the core Java classes are serializable. If you wish to build classes that are not remote but need to be passed
across virtual machines, you need to make those classes serializable. A serializable class minimally needs to implement
java.io.Serializable. For almost any kind of nonsensitive data you may want to serialize, just implementing Serializable is
enough. You do not even need to write a method; Object already handles the serialization for you. It will, however,
assume that you do not want the object to be serializable unless you implement Serializable. Example 9-7 provides a
simple example of how object serialization works. When you run it, you will see the SerialDemo instance in the second
block display the values of the one created in the first block.

Example 9-7. A simple demonstration of object serialization

import java.io.*;

public class SerialDemo implements Serializable {
 static public void main(String[] args) {
 try {
 { // Save a SerialDemo object with a value of 5
 FileOutputStream f = new FileOutputStream("/tmp/testing.ser");
 ObjectOutputStream s = new ObjectOutputStream(f);
 SerialDemo demo = new SerialDemo(5);

 s.writeObject(demo);
 s.flush();
 }
 { // Now restore it and look at the value
 FileInputStream f = new FileInputStream("/tmp/testing.ser");
 ObjectInputStream s = new ObjectInputStream(f);
 SerialDemo demo = (SerialDemo)s.readObject();

 System.out.println("SerialDemo.getVal() is: " +
 demo.getVal());
 }
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }

 int test_val = 7; // value defaults to 7

 public SerialDemo() {
 super();
 }

 public SerialDemo(int x) {
 super();
 test_val = x;
 }

 public int getVal() {
 return test_val;
 }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.5 Enterprise JavaBeans
RMI is a distributed object API. It specifies how to write objects so that they can talk to one another no matter where
on the network they are found. I could write dozens of business objects that can, in principal, talk to your business
objects using RMI. At its core, however, RMI is nothing more than an API to which your distributed objects must
conform. RMI says nothing about other characteristics normally required of an enterprise-class distributed environment.
For example, it says nothing about how a client might perform a search for RMI objects matching some criteria. It also
says nothing about how those objects might work together to construct a single transaction.

What is missing from the picture is a distributed component model. A component model is a standard that defines how
components are written so that systems can be built from components by different authors with little or no
customization. You may be familiar with the JavaBeans component model. It is a component model that defines how
you write user interface components so that they may be plugged into third-party applications. The magic thing about
JavaBeans is that there is very little API behind the specification—you neither implement nor extend any special classes
and you need call no special methods. The force of JavaBeans is largely in conformance with an established naming
convention.

Enterprise JavaBeans is a more complex extension of this concept. While there are API elements behind Enterprise
JavaBeans, it is much more than just an API. It is a standard way of writing distributed components so that the
components I write can be used with the components you write in someone else's system. RMI does not support this
ability for several reasons. Consider all of the following issues RMI does not address:

Security

RMI says nothing about security. RMI alone basically leaves your system wide open. Anybody who has access to
your RMI interfaces can forge access to the underlying components. Unless you write some complex security
checks to authenticate clients and verify access, you will have no security. Your components are therefore
unlikely to interoperate with my components unless we agree to share some sort of security model.

Searching

RMI provides the ability to do a lookup for only a specific, registry-bound object. It says nothing about how you
find unbound objects or perform searches for a group of objects meeting certain requirements. Writing a
banking application, you might want to support the ability to find all accounts with negative balances. In order
to do this in an RMI environment, you would have to write your own search methods in bound objects. Again,
your custom approach to handling searches simply won't work with someone else's custom approach to
searching without forcing clients to deal with both search models.

Transactions

Perhaps the most important piece to a distributed component model is support for transactions. RMI says
absolutely nothing about transactions. When you build an RMI-based application, you will need to address how
you will support transactions. In other words, you will need to keep track of when a client begins a transaction,
what RMI objects that client changes, and committing and rolling back those changes when the client is done.
This problem is compounded by the fact that most distributed object systems are supporting more than one
client at a time. Different transaction models are even more incompatible than different search or security
models. While client coders can get around differences in search and security models by being aware of those
differences, transaction models can almost never be made to work together.

Persistence

RMI says nothing about how RMI objects persist across time. Over the course of this book, I will introduce
several different persistence models. EJB is behind three of these persistence models.

Enterprise JavaBeans addresses all of these points and more so that you can literally pick and choose the best designed
business components from different vendors and make them work and play well with one another in the same
environment. EJB is now the standard component model for capturing distributed business components. It hides from
you the details you might have to worry about yourself if you were writing an RMI application.

9.5.1 EJB Roles

One of the benefits of the EJB approach is that it separates different application development roles into distinct parts so
that everything one role does is usable by any possible player of any of the other roles. EJB specifically defines the
following roles:[5]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following roles:[5]

[5] Any given role may be played by multiple players on a project. Similarly, one person may play multiple roles.

The EJB provider

The EJB provider is an expert in the problem domain in question and develops Java objects that capture the
business concepts that make up the problem domain. The EJB provider worries about nothing other than
business logic programming.

The application assembler

The application assembler is an expert in the processes that make up a business and in building user interfaces
that employ the EJB provider's business components.

The deployer

The deployer is an expert in a specific operating environment. The deployer takes an assembled application and
configures it for deployment in the runtime environment.

The EJB server provider

A server provider supports one or more services, such as a JDBC driver supporting database access.

The EJB container provider

The container is where EJB components live. It is the runtime environment in which the beans operate. The
container provider is a vendor that builds the EJB container.

The system administrator

The system administrator manages the runtime environment in which EJB components operate.

An EJB provider captures each of the business components that model a business in Java code. The EJB specification
breaks down each of these business components into three pieces: the home interface, the remote interface, and the
bean implementation. Your job as the EJB provider is thus to write these three classes for each business component in
your system.

9.5.2 Kinds of Beans

EJB specifies two kinds of beans: entity beans and session beans. The distinction between the two is that entity beans
are persistent and session beans are transient. In other words, entity beans save their states across time while session
beans do not. Most business concepts will work best as entity beans—they are the entities that make up your business.
Entity beans are shared by all clients.[6]

[6] This is not necessarily true of all environments. Specifically, EJB allows for a clustered environment in which
multiple application servers work together to serve up beans. In such an environment, the same entity may appear
on different servers and serve different clients. The containers are responsible in those situations for making the
system appear as if the clients share the same entity reference.

Session beans are unique to each client. They come to life only when requested by a client. When that client is done
with them, they go away. An example of a session bean might be a Registration class that represents the registration of
a person for some event. The Registration exists for a specific client to associate a person with an event. It manages the
business logic associated with a registration, but it goes away once the registration is complete. The persistent data is
in the Person and Event classes.

The word bean is a heavily overloaded term in Java. Even within the EJB specification, the
word bean has different meanings in different contexts. It can mean one of the three
classes called the bean implementation or it can mean the business concept as a whole. I
take the approach of using the term bean alone to mean the business component
represented by the three EJB classes and the term bean implementation to mean the one
class that implements the business logic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The home and remote interfaces for both kinds of beans are RMI remote interfaces. That is, they are indirectly derived
from the java.rmi.Remote interface and are exported for remote access. The class extended by a remote interface is
EJBObject. If, for example, you wanted to turn the Ball object from earlier in the chapter into an entity bean, you would
create a BallHome interface, a Ball interface, and a BallBean implementation. The Ball interface would extend
javax.ejb.EJBObject, which in turn extends java.rmi.Remote. The result might be a class that looks like this:

public interface Ball extends javax.ejb.EJBObject {
 void hit() throws java.rmi.RemoteException;

 int getPosition() throws RemoteException;
}

This interface looks a lot like the RMI example from earlier in the chapter. In fact, the only difference is that this one
extends Remote indirectly via EJBObject. The interface specifies only those methods that should be made available to the
rest of the world.

The home interface is where you go to find or create instances of the bean. It specifies different versions of create() or
findXXX()[7] methods that enable a client to create new instances of the bean or find existing instances. If you think
about the problem of a banking system, they might have account beans, customer beans, and teller beans. When the
bank attracts a new customer, its enterprise banking system needs to create a Customer bean to represent that
customer. The bank manager's Windows application that enables the registration of new customers might have the
following code for creating a new Customer bean:

[7] Only entity beans have finder methods.

InitialContext ctx = new InitialContext();
CustomerHome custhome;
Customer cust;

custhome = (CustomerHome)ctx.lookup("CustomerHome");
cust = custhome.create(ssn);

This code provides you with your first look at JNDI support in EJB. Using a JNDI initial context, you look up an
implementation of the customer bean's home interface. That home interface, CustomerHome, provides a create() method
that enables you to create a new Customer bean. In the preceding case, the create() method accepts a String
representing the customer's Social Security number.[8] The EJB specification requires that a home interface specify
create() signatures for each way to create an implementation of that bean. The CustomerHome interface might look like
this:

[8] A Social Security number is a U.S. federal tax identifier.

public interface CustomerHome extends EJBHome {
 Customer create() throws CreateException, RemoteException;

 Customer create(String ssn)
 throws CreateException, RemoteException;

 Customer findByPrimaryKey(CustomerKey pk)
 throws FinderException, RemoteException;

 Customer findBySocialSecurityNumber(String ssn)
 throws FinderException, RemoteException;
}

The finder methods provide ways to look up Customer objects. All except the findByPrimaryKey() method can be named
however you wish to name them, and they should return either a remote reference to the bean in question or a
Collection.

The findByPrimaryKey() method is a special finder for EJBs. Each entity bean instance has a primary key that uniquely
identifies it. The primary key can be any serializable Java class you write. The only requirement is that the class must
implement the equals() and hashCode() in an appropriate fashion. For example, if your beans have a unique numeric
identifier, you might create your own CustomerKey class that stores the identifier as a long. If you do the latter, your
CustomerKey class should look something like the following:

public class CustomerKey implements Serializable {
 private long objectID = -1L;

 public CustomerKey(long l) {
 objectID = l;
 }

 public boolean equals(Object other) {
 if(other instanceof CustomerKey) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(other instanceof CustomerKey) {
 return ((CustomerKey)other).objectID = = objectID;
 }
 return false;
 }

 public int hashCode() {
 return (new Long(objectID)).hashCode();
 }
}

You can even use primitive wrapper classes instead of custom primary key classes. The following example, for instance,
could just as easily have used the Long class for its primary keys.

You do not actually write the class that implements the Customer or CustomerHome interfaces—that is the task of the EJB
container. Generally, the EJB container will have tools that enable a deployer to automatically create and compile
implementation classes for the home and remote interfaces. These automatically generated classes handle issues such
as security and then delegate to your bean implementation class. The bean is where you write your business logic.

The bean class must implement the following methods:

It must implement every method in the class it implements: EntityBean for entity beans and SessionBean for
session beans.

It must implement every method in the remote interface using the exact same signatures found in the remote
interface.

It must implement a variation of the methods in the home interface.[9] For create() methods, it must implement
counterparts called ejbCreate() that each takes the same arguments but returns a primary key object. Similarly,
the findXXX() counterparts for entities are ejbFindXXX() methods that each takes the same arguments and
returns either a primary key object or a collection of primary keys.

[9] This applies only to beans using bean-managed persistence. For container-managed beans, the creates
and finds are implemented by the container.

Consider that the Customer remote interface for the previous home interface looks like this:

public interface Customer extends EJBObject {
 String getSocialSecurityNumber() throws RemoteException;
}

A skeleton of the bean implementation might look something like this (minus the method bodies):

public class CustomerBean implements EntityBean {
 private transient EntityContext context = null;
 private String ssn = null;

 public void ejbActivate() throws RemoteException {
 // you will mostly leave this method empty
 // activation of resources required by
 // an object of this type independent of the
 // customer it represents belong here
 // an example might be opening a file handle
 // for logging
 }

 public CustomerKey ejbCreate() throws CreateException {
 // this method creates a primary key for the
 // customer and inserts the customer into the
 // database
 }

 public CustomerKey ejbCreate(String ssn)
 throws CreateException {
 // this method works the same as ejbCreate()
 }

 public CustomerKey ejbFindByPrimaryKey(CustomerKey pk)
 throws FinderException, RemoteException {
 // this method goes to the database and performs
 // a SELECT and returns the PK if it is in the
 // database
 }

 public CustomerKey ejbFindBySocialSecurityNumber(String ssn)
 throws FinderException {
 // this method goes to the database and performs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // this method goes to the database and performs
 // a SELECT and returns the PK of the row
 // with a matching SSN
 }

 public void ejbLoad() throws RemoteException {
 // this method goes to the database and selects
 // the row that has this object's primary key
 // and then populates this object's fields
 }

 public void ejbPassivate() throws RemoteException {
 // this method is generally empty
 // you should release any system resources held
 // by this object here
 }

 public void ejbPostCreate() {
 // this is called to let you do any initialization
 // for this object after ejbCreate() is called and
 // a primary key is assigned to the object
 }

 public void ejbRemove() throws RemoteException {
 // this method goes to the database and deletes
 // the record with a primary key matching this
 // object's primary key
 }

 public void ejbStore() throws RemoteException {
 // this method goes to the database and saves
 // the state of this bean
 }

 public String getSocialSecurityNumber() {
 // this method is from the Customer remote interface
 return ssn;
 }

 public void setEntityContext(EntityContext ctx)
 throws RemoteException {
 // this method assigns an EntityContext to the
 // bean
 context = ctx;
 }

 public void unsetEntityContext()
 throws RemoteException {
 // this method removes the EntityContext assignment
 context = null;
 }
}

JDBC comes into play under the bean-managed persistence model in the ejbCreate(), ejbFindXXX(), ejbLoad(), ejbStore(),
and ejbRemove() methods. Chapter 6 describes the details of bean-managed persistence. Under container-managed
persistence, you do not worry about any persistence issues. EJB supports two distinct container-managed persistence
models. The old model, EJB 1.x persistence, did not work well at all. The newer model, EJB 2.x persistence, is very
promising though not yet widely implemented in production systems. Chapter 5 covers container-managed persistence.

The book Enterprise JavaBeans (O'Reilly) by Richard Monson-Haefel contains a more complete discussion of EJB
development.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. SQL
Being a part of a sentence is a Normal condition for proper performance of every elementary sentence
part. But it is also more than a Normal condition. It is a necessary condition. For just what each element
is supposed to do cannot be defined except in relation to the rest of the sentence .

—Ruth Garrett Millikan, Language, Thought, and Other Biological Categories

SQL—often apocryphally referred to as the Structured Query Language—is the vehicle for communication with relational
databases. Once you learn SQL, you are in command of the basic tool for talking to Oracle, DB2, MySQL, SQL Server,
Ingres, PostgreSQL, Informix, mSQL, Sybase, Access, and any other relational database engine. Other query languages
like OQL (Object Query Language) exist, but they tend to support interaction with other kinds (i.e., not relational) of
databases. Even when you are accessing your database through a GUI tool or a higher-level abstraction, somewhere
under the hood SQL is probably in play.

SQL is a sort of "natural" language. In other words, an SQL[1] statement should read—at least on the surface—like a
sentence of English text. This approach has both benefits and drawbacks, but the end result is a language unlike
traditional programming languages such as Java and C.

[1] SQL is pronounced "ess-que-el." Some people get very offended when you mispronounce it. A sufficient number
of people do mispronounce it nevertheless. Consequently, the mispronunciation "sequel" is nearly as valid as the
proper pronunciation in spite of the protests of purists

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.1 Background
SQL is "structured" in the sense that it follows a very specific set of rules. A computer program can parse a formulated
SQL query easily. In fact, the O'Reilly book lex & yacc by John Levine, Tony Mason, and Doug Brown implements an
SQL grammar to demonstrate the process of writing a program to interpret a programming language! A query is a fully
specified command sent to the database server. The database server then performs the requested action. Here's an
example of an SQL query:

SELECT name FROM Person WHERE name LIKE 'Stac%';

This statement reads almost like a form of broken English: "Select names from a list of persons where the names are
like `Stac'." SQL uses few of the formatting and special characters generally associated with computer languages.

10.1.1 The SQL Story

IBM invented SQL in the 1970s, shortly after Dr. E. F. Codd invented the concept of a relational database. From the
beginning, SQL was an easy-to-learn yet powerful language. It resembles a natural language, so it is less daunting to a
nontechnical person. In the 1970s, even more than today, this advantage was important. There were no casual
hackers; you were a hardcore programmer or did not program at all. The people who programmed computers knew
everything about how a computer worked. SQL was aimed at the army of nontechnical accountants and business and
administrative staff who would benefit from accessing the power of a relational database.

SQL was so popular with its target audience, in fact, that in the 1980s, the Oracle Corporation launched the world's first
publicly available commercial SQL system. Oracle SQL was a huge hit and it spawned an entire industry built around
SQL. Sybase, Informix, Microsoft, and several other companies have since come forward with their implementations of
SQL-based relational database management systems (RDBMSs).

When Oracle and its competitors first hit the scene, SQL was still relatively new and no standard existed. It was only in
1989 that the ANSI standards body issued the first public SQL standard. These days, that standard is often referred to
as SQL89. Unfortunately, the standard did not go far enough into defining the technical structure of the language. Thus,
even though the various commercial SQL languages were drawing closer together, differences in syntax still made it
nontrivial to switch among implementations. It was not until 1992 that the ANSI SQL standard came into its own.

People refer to the 1992 standard as both SQL92 and SQL2. The SQL2 standard expanded the language to
accommodate as many of the proprietary extensions added by the commercial vendors as possible. Many cross-DBMS
tools—including JDBC—have standardized on SQL2 as their mode of communication with relational databases. Due to
the extensive nature of the SQL2 standard, however, relational databases that implement the full standard are very
complex beasts.

SQL2 is not the last word on the SQL standard. With the growing popularity of object-
oriented database management systems (OODBMS) and object-relational database
management systems (ORDBMS), there has been increasing pressure to capture support
for object-oriented concepts in relational databases. The recent SQL3 (SQL99) standard is
the answer to this problem.

SQL2 defines several levels of compliance to address its complexity. The most important level—the one required by
JDBC—is SQL92, entry level. Entry level defines the core SQL syntax. If your goal is to write portable applications, you
should go no further in the SQL specification than entry level.

10.1.2 Database Interaction

Any number of methods exists for sending SQL to a database engine and retrieving the results of your command.
Throughout most of this book, you are using Java's JDBC API to handle that interaction. For the purposes of this
chapter, however, you will need to use a tool that interactively sends SQL to your database. Each database engine
comes with at least one such tool. In general, there are both command-line and GUI-interactive SQL tools. MySQL, for
example, provides the mysql commands line utility. PostgreSQL similarly provides a similar tool called psql. Before
going any further in this chapter, I recommend you find out the tool that comes with your database so you can try the
examples that come later.

When you run a command-line program like mysql, it prompts you for SQL:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you run a command-line program like mysql, it prompts you for SQL:

[09:04pm] carthage$ mysql -u root -p jtest
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 3.22.29
Type 'help' for help.
mysql>

The previous mysql command says to connect to the MySQL server on the database jtest on the local machine as the
user root (the -u option) with the client prompting you for a password (the -p option). Another option, -h, enables you to
connect to MySQL servers on remote machines:

[09:04pm] carthage$ mysql -u root -h db.imaginary.com -p jtest

Once mysql is running, you can enter your SQL commands all on a single line or split them across multiple lines. MySQL
waits for a semicolon or the \g sequence before executing the SQL:

mysql> SELECT book_number
 -> FROM book
 -> ;

+-------------+
| book_number |
+-------------+
| 1 |
| 2 |
| 3 |
+-------------+
3 rows in set (0.00 sec)

GUI utilities generally provide you with a text box into which you can enter SQL. Pressing Enter or clicking a button to
send the SQL to the database will execute the SQL for you. The tool then displays the results in a graphical table. In
some cases, you can even manipulate the table and the tool will create and send to the database SQL that updates the
underlying database.

10.1.3 Basic Syntax

As I mentioned earlier, SQL resembles a human language more than a computer language because it has a simple,
defined imperative structure. Much like an English sentence, individual SQL commands—called queries—can be broken
down into language parts. Consider the following examples:

CREATE TABLE Person (name CHAR(10));
verb direct object adjective phrase

INSERT INTO Person (name) VALUES ('me');
verb indirect object adjective phrase direct object

SELECT name FROM people WHERE name like '%e';
verb direct object indirect object adjective phrase

Most SQL implementations are case-insensitive. In other words, it does not matter how you type SQL keywords as long
as the spelling is correct. The previous CREATE example is just as valid when written like this:

cREatE TAblE Person (name ChAr(10));

This case-insensitivity extends only to SQL keywords.[2] In some database engines, identifiers are also case-insensitive.
For others, they are case-sensitive. Still, the case-sensitivity of other database engines like MySQL depends on the
underlying operating system. Most MySQL identifiers are case-sensitive; however, table names and database names are
case-sensitive only on operating systems whose filesystems are case-sensitive. It is therefore good practice to assume
that your identifiers are case-sensitive in order to guarantee portability of your SQL across all database engines.

[2] For the sake of readability, I capitalize all SQL keywords in the book. I also recommend this convention as a
solid best-practice technique for all production code.

The first element of an SQL query is always a verb. The verb expresses the action you wish the database engine to
take. The most commonly used verbs are:

CREATE

Creates an object in the database

DELETE

Deletes data from a database table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deletes data from a database table

INSERT

Inserts new data into a database table

SELECT

Retrieves data from the database

UPDATE

Modifies data in a database table

Although what follows the verb varies depending on the verb used, they all follow the same general format: you name
the object upon which you are acting and then describe the data you are using for the action. For example, the query
CREATE TABLE people (name CHAR(10)) uses the verb CREATE, followed by the object TABLE. The rest of the query
describes the table to be created.

An SQL query originates with a client application. The client constructs a query based on user actions and sends the
query to the database engine. The database engine must then process the query and perform the specified action. Once
the server has done its job, it returns some value or set of values to the client.

Because the primary focus of SQL is to communicate actions to the database server, it does not have the flexibility of a
general-purpose language. Most of the functionality of SQL concerns input to and output from the database: adding,
changing, deleting, and reading data. SQL provides other functionality, but always with an eye toward how it can be
used to manipulate data within the database.

In order to execute the SQL in this chapter, you will need the proper access rights.
Different actions naturally demand different levels of access. For example, you should have
no problem executing basic queries. Unless you have the DBA password, however, it is
unlikely you will be able to create database instances.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.2 Database Creation
The first thing you do with any database engine is to create a database instance to work with. It is therefore quite ironic
that no standard mechanism for creating database instances is supported. For the most part, you can create a database
instance in most database engines using some variation of the CREATE DATABASE statement. Its simplest form is
common to all database engines:

CREATE DATABASE name

In essence, this statement creates a brand new, blank database instance. It is all you need to create a MySQL or
PostgreSQL database. PostgreSQL does offer the option of specifying where you place the database files for the
instance:

CREATE DATABASE name WITH LOCATION = 'path'

The more complex database engines require more complex database creation statements. Oracle, for example, allows
you to specify options such as log file specifications, datafile specifications, and character set information. When in
doubt, you can get away with the basic syntax listed earlier. However, you rarely will find any default database creation
values suitable to a production environment. In places like this, you will find the help of a good DBA (database
administrator) with expertise in your database engine of choice invaluable.

Once you have a database to work with, you can work with that database using the CONNECT statement:

CONNECT [TO]
DEFAULT | { [server] [AS name] [USER user] }

For example, to connect to the PostgreSQL database instance library on the server carthage, you would execute the
following SQL:

CONNECT TO library@carthage AS libconn USER webuser

In MySQL, this statement is slightly different:

CONNECT dbname [server [AS user]]

Oracle also provides an alternate syntax:

CONNECT [[user/password] [AS [SYSOPER | SYSDBA]]]

You are now set to begin using your new database instance. In the examples in this chapter, I will be using a database
called jtest.

Once you are done with a database and no longer have use for the data it contains, you can get rid of the instance from
your server using the DROP DATABASE command:

DROP DATABASE dname

Dropping databases—or anything else for that matter—from a database is a very
destructive operation. The only way to recover from an accidental DROP command is to
restore from a backup!

Oracle, however, does not support the DROP DATABASE command. To get rid of a database in Oracle, issue the CREATE
DATABASE command with no parameters using the name of the existing database that should be dropped.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.3 Table Management
Now that you have a clean, new database instance and have connected to it, it is time to create the structures that will
hold your data. The most basic of these structures is the table. Before adding data to a table, you must first create it in
the database.

10.3.1 The Basics of Table Creation

The act of creating a table defines the data the table holds and any constraints placed on that data. The basic elements
of the table structure are the names of its columns, their data types, and their constraints. SQL data types are similar
to data types in other languages. The full SQL standard allows for a large range of data types. The general form for
creating a table is:

CREATE TABLE tblname (
 colname type [modifiers]
 [, colname type [modifiers]]
)

A table may have any number of columns, but too many columns can render the table inefficient. Good database design
can help you avoid unwieldy table structures. By creating properly normalized[3] tables, you can join tables together
and perform searches for data across multiple tables. We discuss the mechanics of a join later in the chapter.

[3] See Chapter 2 for a full discussion of database design and normalization.

Consider, for example, the table structure of the User table in Table 10-1.

Table 10-1. The structure for a User table
Column name Data type Constraints

userID INT UNSIGNED NOT NULL PRIMARY KEY

name CHAR(10) NOT NULL UNIQUE INDEX

lastName VARCHAR(30)

firstName VARCHAR(30)
office CHAR(2) NOT NULL

You can create the table shown in Table 10-1 using the following SQL:

CREATE TABLE User (
 userID INT UNSIGNED NOT NULL,
 name CHAR(10) NOT NULL,
 lastName VARCHAR(30),
 firstName VARCHAR(30),
 office CHAR(2) NOT NULL DEFAULT `NY'
)

This statement creates a table called User with five columns: userID, name, lastName, firstName, and office. After each
column comes the data type for the column and some modifiers. In this example, we describe only the NOT NULL
constraints as part of the CREATE statement. We will define the indexes later.

The NOT NULL modifier indicates that the column may not contain any NULL values. If you attempt to assign a NULL
value to that column, the database will issue an error. A couple of exceptions exist for this rule. First, if the column is
some kind of sequence column,[4] the database will automatically generate a unique value for the column. The second
exception is when you specify a default value for a column as we did for the office column. When you insert a NULL value
into a NOT NULL column with a default value, the default value is inserted in place of the NULL.

[4] Sequence columns are columns for which the database automatically generates values. The mechanics of
sequence columns vary from database to database with very little in common between any two.

To get rid of your newly created table (with the exception of Oracle users), use the DROP statement:

DROP TABLE User

10.3.2 Data Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In a table, each column has a data type. As I mentioned earlier, SQL data types are similar to data types in other
languages. While many languages define a bare minimum set of types necessary for completeness, SQL goes out of its
way to provide types such as DATE that will be useful to everyday users. You could store a date value in a column with a
more basic numeric type, but having a type specifically dedicated to the nuances of date processing adds to SQL's ease
of use—one of SQL's primary goals.

In dealing with data types, you really need to know your database engine of choice. All databases share a small subset
of data types and then extend beyond that core set. Furthermore, two databases may have data types of the same
name that behave differently. Whatever the database you are using, however, some basic best practices can assist you
in your database programming.

Before you create a table, you should know what kind of data you intend to store in the table's columns. Beyond
obvious decisions about whether your data is character-based or numeric, you should also know the approximate size
of the data you wish to store. If it is a numeric field, what is the maximum possible value that could make sense? What
is the minimum possible value? Could that range change in the future? Answering these questions will enable you to
choose a data type sufficient for storing your data without wasting disk space or RAM.

You should always strive for the smallest possible type capable of storing your value range. If, for example, you have a
field that represents the population of a state, use an unsigned numeric type if your database supports unsigned types.
As long as no state has a negative population, your database will operate well. Furthermore, a 32-bit numeric type will
be sufficient for a state's population. It would take a state population roughly the size of the current population of Earth
to get you in trouble with this choice of data type.

10.3.2.1 Numeric types

Numeric data types store uninterpreted number values. Such values can range from simple integers to complex, high-
precision decimals. Your choice of numeric data type depends on what you expect the largest possible value to be, what
you expect the smallest value to be, and how precise you expect that value to be. Table 10-2 shows the major numeric
types for MySQL and Oracle.

Table 10-2. Numeric types in MySQL and Oracle
Database Type Description

MySQL TINYINT Whole 7-bit numbers in the range -128 to 127.

 SMALLINT Whole 8-bit numbers in the range -32758 to 32,757.

 MEDIUMINT Whole 16-bit numbers in the range -8,388,608 to 8,388,607.

 INT Whole 32-bit numbers in the range -2,147,483,548 to 2,147,483,547.

 BIGINT Whole 64-bit numbers in the range -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

 DECIMAL(p,s) Decimal values with s as the scale and p as the precision.

 DOUBLE(p,s) Double-precision values with s as the scale and p as the precision.

 FLOAT(p) Floating point numbers with a precision of 8 or less.

Oracle INTEGER(n) Whole numbers capable of storing up to n digits.

 NUMBER(p,s) Any number where p specifies the precision and s the scale. The precision may be between
1 and 38 and the scale between -84 and 127.

 FLOAT(p) Floating point numbers with a precision up to 126.

10.3.2.2 Character types

Managing character types is much more complicated that managing numeric types. Not only do you have to worry
about minimum and maximum lengths, but you have to worry about the average size, variation, and character set of
the strings. Indexing, which I will cover in the next section, also complicates the choice of character type. It generally
works best when you choose a fixed-length data type for indexed character columns. If your column has little or no
variation in the length of its strings, the fixed-length CHAR data type is probably your best bet. An example of a solid
candidate for the CHAR data type is a column holding a country code. The International Standards Organization (ISO)
provides a comprehensive list of standard two-character codes for countries (e.g., US for the United States, FR for
France, etc.). Because the codes are always two characters, a CHAR(2) is the best way to maintain a column holding
country codes.

A value does not have to have a constant length to be held in a CHAR column. It should, however, have very little
variance. Phone numbers, for example, will fit in a CHAR(13) column even though phone number lengths vary from

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

variance. Phone numbers, for example, will fit in a CHAR(13) column even though phone number lengths vary from
nation to nation. The variance is small enough that there is no point in making the string variable length. The problem
with a CHAR field, however, is that it always takes up the exact same amount of storage no matter what you store in it.
In a CHAR(20) column, the strings "A" and "ABCDEFGHIJKLMNO" all occupy the same amount of storage space. Anything
under 20 characters is padded with spaces. Though the minimal potential waste for phone number values is an
acceptable trade-off for the efficiency of fixed-length searches, it is not acceptable for strings with greater variance.

Variable-length fields address the needs of strings that have a significant variance between their minimum and
maximum lengths. A good, common example of such a value is a web URL. A URL can be as simple as
http://www.imaginary.com or as long as http://code.law.harvard.edu/filtering/test.asp?
URL=http%3A%2F%2Fwww.slashdot.org. If you create a column with a fixed-width field large enough to hold the latter
URL, you will waste a lot of space with the majority of values that look more like the former.

Most character types require you to specify a maximum length for the string. In most databases, the database
truncates any strings that exceed the maximum length. If, for example, you insert the string "happy birthday" into a
CHAR(4) field, the database will store only "happ".

Table 10-3 contains the most common character types for MySQL and Oracle.

Table 10-3. Character types for MySQL and Oracle
Database Type Description

MySQL CHAR(n) Fixed-length character type that holds exactly n characters. Shorter strings are padded with
spaces to n characters.

 NCHAR(n) Same as CHAR, except for Unicode strings.

 VARCHAR(n) Variable-length strings that may store up to n characters. Any excess characters are
discarded.

 NVARCHAR(n) Same as VARCHAR, except for Unicode strings.

Oracle CHAR(n) Fixed-length character type that holds exactly n characters. Shorter strings are padded with
spaces to n characters.

 NCHAR(n) Same as CHAR, except for Unicode strings.

 VARCHAR2 Variable-length strings up to 4000 characters in length.

 NVARCHAR2 Same as VARCHAR2, except for Unicode strings.

10.3.2.3 Other types

SQL supports many other types, from dates and times to binary data and more. The most recent ANSI SQL, SQL99,
adds support for user-defined data types in the mold of object-oriented programming languages. You should check the
documentation for your database of choice to understand the full range of data types available to you.

10.3.3 Indexing

Indexes assist the database in identifying specific rows in a table. Without an index, a search for a specific row in a
table containing a million rows would require the engine to walk through every single row. An index provides the
database with hints about the location of the row and how many possible matches might exist for your search criteria.

The cost of an index is storage space. The most efficient use of indexes is therefore to create indexes for the columns
you intend to search on. You can create an index using the following basic syntax:

CREATE [UNIQUE] INDEX idxname ON tblname (colname [, colname])

As with just about any other SQL statement, each database carries its own variations on this syntax. Nevertheless, you
can create the unique index for the name column in the User table referenced earlier in any database engine using the
following syntax:

CREATE UNIQUE INDEX userName ON User (name)

Some databases also let you create an index while creating the table:

CREATE TABLE User (
 userID INT UNSIGNED NOT NULL,
 name CHAR(10) NOT NULL,
 lastName VARCHAR(30),
 firstName VARCHAR(30),
 office CHAR(2) NOT NULL DEFAULT 'NY',
 UNIQUE INDEX (name)

)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

)

When the database now searches for a row having a specific name value, it knows how to narrow its search to a subset
of the table. Furthermore, because the index is unique, it knows to stop the search when it finds the matching value.

ANSI SQL also supports a special kind of index called a primary key. A relational table can have at most a single
primary key. The primary key is a unique index that signifies the preferred mechanism for uniquely identifying a row in
that table. In all technical respects, the primary key is indistinguishable from a unique index. You are allowed to specify
single-column primary keys on the same line as the column definition in a table CREATE statement:

CREATE TABLE cities (id INT NOT NULL PRIMARY KEY,
 name VARCHAR(100),
 pop INT,
 founded DATE)

Before you create a table, determine which fields, if any, should be keys. As I mentioned earlier, any fields that support
joins are good candidates for primary keys.

You will commonly want to specify multicolumn indexes and primary keys. For example, a translation table for book
titles requires the book ID and language to uniquely identify a title translation:

CREATE TABLE BookTitleTrans (
 bookID INTEGER(9) NOT NULL,
 language CHAR(2) NOT NULL,
 title VARCHAR2(255) NOT NULL,
 PRIMARY KEY (bookID, language));
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.4 Data Management
The first thing you will probably want to do with a newly created table is add data to it. Once the data is in place, you
need to maintain it—add to it, modify it, and perhaps even delete it.

10.4.1 Inserts

Creating a row in a table is one of the more straightforward concepts in SQL. The standard form of the INSERT
statement is:

INSERT [INTO] table_or_view_name (column1, column2, ..., columnN)
{ [DEFAULT] VALUES | VALUES (value1, value2, ..., valueN)
| select_statement }

You specify the columns followed by the values to populate those columns for the new row. When inserting data into
numeric fields, you can insert the value as is; for all other fields, you must wrap them in single quotes. For example, to
insert a row of data into a table of addresses, you might issue the following command:

INSERT INTO Address (name, address, city, state, phone, age)
VALUES('Robert Smith', '123 Fascination St.', 'New London', 'CT',
 '(800) 555-1234', 43)

In addition to the direct specification of the values to add, you can populate the table with a new row containing default
values or even from the results of some other query. For example, to insert the results from a query as new rows in a
table, you might execute the following SQL:

INSERT INTO FavoriteSong (id, name, album, artist)
SELECT Song.id, Song.name, Album.title, Artist.name
FROM Song, Album, Artist
WHERE Song.ranking > 4
AND Song.album = Album.id
AND Album.artist = Artist.id

You should note that the number of columns in the INSERT call matches the number of columns in the SELECT call. In
addition, the data types for the INSERT columns must match the data types for the corresponding SELECT columns.
Finally, the SELECT clause in an INSERT statement cannot contain an ORDER BY modifier and cannot be selected from the
same table in which the INSERT occurs.

10.4.2 Primary Keys

The best kind of primary key is one that has absolutely no meaning in the database except to act as a primary key.
When you use information such as a username or an email address as a primary key, you are in effect saying that the
username or email address is somehow an intrinsic part of who that person is. If that person ever changes the
username or email address, you will have to go to great lengths to ensure the integrity of the data in the database.
Consequently, it is a better design principle to use meaningless numbers as primary keys.

You thus need a mechanism for generating meaningless, yet unique, numbers every time you insert a new row. Every
database provides some kind of extremely proprietary tool for generating unique identifiers. They differ so vastly that I
cannot even begin to provide a generic description of unique identifier generation as I can with most SQL elements.
Because of how greatly they differ, it is a good idea to simply avoid the proprietary database tools. Chapter 4 provides
a database-independent approach to sequence generation.

10.4.3 Updates

The insertion of new rows into a database is just the start of data management. Unless your database is read-only, you
will probably also need to make periodic changes to the data. The standard SQL modification statement looks like this:

UPDATE table_or_view_name
SET column1={DEFAULT |value} [, ...]
[WHERE clause]

You specifically name the table you want to update and the values you want to assign in the SET clause and then
identify the rows to be affected in the WHERE clause. If you fail to specify a WHERE clause, the database will update
every row in the table.

In addition to assigning literal values to a column, you can also calculate the values. You can even calculate the value
based on a value in another column:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

based on a value in another column:

UPDATE Project
SET end_year = begin_year+5

This command sets the value in the end_year column equal to the value in the begin_year column, plus 5, for each row in
that table.

10.4.4 The WHERE Clause

The previous section introduced one of the most important SQL concepts, the WHERE clause. In SQL, a WHERE clause
enables you to pick out specific rows in a table by specifying a value (like a primary key) that must be matched by the
column in question. For example:

UPDATE Band
SET leadSinger = 'Ian Anderson'
WHERE id = 8

This UPDATE specifies that you should change only the leadSinger column for the row where id is 8. If the specified
column is not a unique index, the WHERE clause may match multiple rows. Many SQL commands employ WHERE clauses
to help pick out the rows on which you wish to operate. Because the columns in the WHERE clause are columns on which
you search, you should generally have indexes created around whatever combinations you commonly use. We discuss
the kinds of comparisons you can perform in the WHERE clause later in the chapter.

10.4.5 Deletes

Deleting data is a straightforward operation. You simply specify the table followed by a WHERE clause that identifies the
rows you want to delete:

DELETE FROM table_name [WHERE clause]

As with other commands that accept a WHERE clause, the WHERE clause is optional. If you omit it, you will delete all of
the records in the table! Of all the destructive commands in SQL, this is the easiest one to issue by mistake.

10.4.6 Queries

The last common SQL command, SELECT, enables you to view the data in the database. This action is by far the most
common action performed in SQL. While data entry and modifications do happen on occasion, most databases spend
the vast majority of their lives serving up data for reading. The general form of the SELECT statement is as follows:

SELECT [ALL | DISTINCT] column1 [, column2, ..., columnN]
FROM table1 [, table2, ..., tableN]
[JOIN condition]
[WHERE clause]
[GROUP BY column_list]
[HAVING condition]
[ORDER BY column_list [ASC | DESC]]

The SELECT statement enables you to identify the columns you want from one or more tables. The WHERE clause
identifies the rows with the data you seek.

10.4.6.1 Basic queries

The variations on this syntax are numerous. The simplest form is:

SELECT 1;

This simple, though completely useless query returns a result set with a single row containing a single column with the
value of 1. A more useful version of this query might be the MySQL query that tells you what database you are using:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| jtest |
+------------+
1 row in set (0.01 sec)

The expression DATABASE() is a MySQL function that returns the name of the current database. I will cover functions in
more detail later in the chapter. Nevertheless, you can see how simple SQL can provide a quick-and-dirty way of finding
out important information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

out important information.

Most of the time, however, you should use slightly more complex queries that help you pull data from a table in the
database. The first part of a SELECT statement enumerates the columns you wish to retrieve. You may specify a * to say
that you want to select all columns. The FROM clause specifies which tables those columns come from.

The other optional clauses all determine what rows you are selecting and how to display the results. By now, you should
feel comfortable with the WHERE clause. In the case of a SELECT statement, the WHERE clause tells the database to
return only the rows that match the specified clause. I will cover the more complex clauses later in this chapter.

10.4.6.2 Aliasing

When you use column names that are fully qualified with their table and column names, the names can grow to be quite
unwieldy. In addition, when referencing SQL functions (which will be discussed later in the chapter), you will likely find
it cumbersome to refer to the same function more than once within a statement. You can get around these issues by
using aliases. An alias is usually a shorter and more descriptive way of referring to a cumbersome name. You can use it
anywhere in the same SQL statement in place of the longer name. For example:

A column alias
SELECT long_field_names_are_annoying AS myfield
FROM table_name
WHERE myfield = 'Joe'

A table alias
SELECT people.names, tests.score
FROM tests, really_long_people_table_name AS people

10.4.6.3 Ordering

The results from a SELECT are, by default, indeterminate in the order they will appear. You can tell a database to order
any results you see by a certain column. For example, if you specify that a query should order the results by last_name,
then the results will appear alphabetized according to the last_name value. Ordering is handled by the ORDER BY clause:

SELECT last_name, first_name, age
FROM people
ORDER BY last_name, first_name

In this situation, we are ordering by two columns. You can order by any number of columns.

If you want to see things in reverse order, add the DESC (descending) keyword:

ORDER BY last_name DESC

The DESC keyword applies only to the field that comes directly before it. If you are sorting on multiple fields, only the
field directly before DESC is reversed; the others are sorted in ascending order.

10.4.6.4 Grouping

Grouping lets you group rows with matching values for a specific column into a single row in order to operate on them
together. You usually do this to perform aggregate functions on the results. I will go into functions a little later in the
chapter.

Consider the following:

mysql> SELECT name, rank, salary FROM people;
+--------------+----------+--------+
| name | rank | salary |
+--------------+----------+--------+
Jack Smith	Private	23000
Jane Walker	General	125000
June Sanders	Private	22000
John Barker	Sergeant	45000
Jim Castle	Sergeant	38000
+--------------+----------+--------+
5 rows in set (0.01 sec)

If you want to get a list of different ranks, you can use the GROUP BY clause to get a full account of the ranks:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want to get a list of different ranks, you can use the GROUP BY clause to get a full account of the ranks:

mysql> SELECT rank FROM people GROUP BY rank;
+----------+
| rank |
+----------+
| General |
| Private |
| Sergeant |
+----------+
3 rows in set (0.01 sec)

You should not, however, think of these results as simply a listing of the different ranks. The GROUP BY clause actually
groups all of the rows matching the WHERE clause (in this case, every row) based on the GROUP BY clause. The two
privates are thus grouped together into a single row with the rank Private. The two sergeants are similarly aggregated.
With the individuals grouped according to rank, you can find out the average salary for each rank. Again, we will further
discuss the functions you see in this example later in the chapter.

mysql> SELECT rank, AVG(salary) FROM people GROUP BY rank;
+----------+-------------+
| rank | AVG(salary) |
+----------+-------------+
General	125000.0000
Private	22500.0000
Sergeant	41500.0000
+----------+-------------+
3 rows in set (0.04 sec)

Here you see the true power of grouping. This query uses an aggregate function, AVG() to operate on all of the rows
grouped together for each row. In this case, the salaries of the two privates (23000 and 22000) are grouped together in
the same row, and the AVG() function is applied to them.

The power of ordering and grouping combined with the utility of SQL functions enables you to do a great deal of data
manipulation even before you retrieve the data from the server. However, you should take great care not to rely too
heavily on this power. While it may seem more efficient to place as much processing load as possible onto the database
server, this is not really the case. Your client application is dedicated to the needs of a particular client, while the server
is shared by many clients. Because of the greater amount of work a server already has to do, it is almost always more
efficient to place as little load as possible on the database server.

10.4.7 Operators

So far, we have used the = operator for the obvious task of verifying that two values in a WHERE clause equal each
other. Other fairly basic operators include <>, >, <, <=, and >=. Note that though ANSI SQL requires the use of <> to
check for inequality, most database engines also support !=. Table 10-4 contains a full set of ANSI SQL operators.

Not all databases support all operators. In addition, MySQL and SQL Server support
various bitwise operators, including &, |, ^, <<, and >>.

Table 10-4. ANSI SQL Operators
Operator Context Description

+ Arithmetic Addition (also works for date addition on some database engines)

- Arithmetic Subtraction

* Arithmetic Multiplication

/ Arithmetic Division

= Comparison Equal

<> Comparison Not equal

< Comparison Less than

> Comparison Greater than

<= Comparison Less than or equal to

>= Comparison Greater than or equal to

BETWEEN Comparison Between two values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IN Comparison Membership in a list

LIKE Comparison Similarity

AND Logical And

OR Logical Or

NOT Logical Negation

+ Unary Positive

- Unary Negative

~ Unary Complement

ANSI SQL operators have the following order of precedence:

1. + - ~ (unary)

2. NOT

3. * / %

4. + - (arithmetic)

5. < <= > >= = <> IN LIKE

6. BETWEEN IN

7. AND

8. OR

Precedence moves from left to right for operators of equal precedence. You can override the rules of precedence
through the use of parentheses, in which case elements within the parentheses have higher precedence. For
expressions with nested parentheses, the innermost parentheses are evaluated first.

10.4.7.1 Logical operators

SQL's logical operators—AND, OR, and NOT—let you build more dynamic WHERE clauses. The AND and OR operators
specifically let you add multiple criteria to a query:

SELECT name
FROM User
WHERE age > 18 AND status = 'RESIDENT';

This sample query provides a list of all users who are residents and are old enough to vote. In other words, it finds
every resident 18 years or older.

You can build increasingly complex queries and override SQL's order of precedence with parentheses. The parentheses
tell the database which comparisons to evaluate first:

SELECT name
FROM User
WHERE (age > 18 AND status = 'RESIDENT')
OR (age > 18 AND status = 'APPLICANT');

In this more complex query, we are looking for anyone currently eligible to vote as well as people who might be eligible
in the near future. You can also use the NOT operator to negate an entire expression:

SELECT name
FROM User
WHERE NOT (age > 18 AND status = 'RESIDENT');

In this case, negation provides all the users who are not eligible to vote.

10.4.7.2 Comparisons with NULL

NULL is a tricky concept for most people new to databases to understand. As in other programming languages, NULL is
not a value, but the absence of a value. This concept is useful, for example, if you have a customer-profiling database
that gradually gathers information about your customers as they offer it.

When you first create a record, for example, you may not know how many pets the customer has. You want that
column to hold NULL instead of 0 so you can tell the difference between customers with no pets and customers whose
pet ownership is unknown.

The concept of NULL gets a little funny when you use it in SQL calculations. Many programming languages use NULL as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The concept of NULL gets a little funny when you use it in SQL calculations. Many programming languages use NULL as
simply another kind of value. In Java, the following syntax evaluates to true when the variable is NULL and false when it
is not:

str = = NULL

The similar expression in SQL, col = NULL, is neither true nor false—it is always NULL, no matter what the value of the
COL column. The following query will therefore not act as you might expect:

SELECT title FROM Book WHERE author = NULL;

Because the WHERE clause will never evaluate to true no matter what value is in the database for the author column, this
query always provides an empty result set—even when you have author columns with NULL values. To test for
"nullness," use the IS NULL and IS NOT NULL operators:

SELECT title FROM Book WHERE author IS NULL;

10.4.7.3 Membership tests

Sometimes applications need to check whether a value is a member of a set of values or within a particular range. The
IN operator helps with the former:

SELECT title FROM Book WHERE author IN ('Stephen King', 'Richard Bachman');

This query will return the titles of all books written by Stephen King.[5] Similarly, you can check for all books by authors
other than Stephen King with the NOT IN operator.

[5] Richard Bachman is a pseudonym used by Stephen King for some of his books.

To determine whether a value is in a particular range, use the BETWEEN operator:

SELECT title FROM Book WHERE bookID BETWEEN 1 AND 100;

Both of these simple examples could, of course, be replicated with the basic operators. The Stephen King check, for
example, could have been done by using the = operator and an OR:

SELECT title
FROM Book
WHERE author = 'Stephen King' OR author = 'Richard Bachman';

The check on book IDs could also have been done with an OR clause using the >= and <= or > and < operators. As your
queries get more complex, however, membership tests can help you build both readable and better-performing queries
than those you might create with the basic operators.

10.4.8 Functions

Functions in SQL are similar to functions in other programming languages such as C and Perl. A function takes zero or
more arguments and returns some value. For example, the function SQRT(16) returns 4. Within an SQL SELECT
statement, functions may be used in one of two ways:

As a value to be retrieved

This form involves a function in the place of a column in the list of columns to be retrieved. The return value of
the function, evaluated for each selected row, is part of the returned result set as if it were a column in the
database.[6]

[6] You can use aliasing, covered earlier in the chapter, to give the resulting columns "friendly" names.

This query selects the name of each event and today's date for all events more recent than the given time:

SELECT name, CURRENT_DATE()
FROM Event
WHERE time > 90534323

This query selects the title of a paper, the full text of the paper, and the length of the text in bytes for all of the
papers authored by Douglas Adams. The LENGTH() function returns the character length of a given string:

The LENGTH() function returns the character length of
a given string.
SELECT title, text, LENGTH(text)
FROM Paper
WHERE author = 'Douglas Adams'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As part of a WHERE clause

This form involves a function used in place of a constant when evaluating a WHERE clause. The value of the
function is used for comparison for each row of the table.

This query randomly selects the name of an entry from a pool of 35 entries. The RAND()function generates a
random number between 0 and 1. This random value is then multiplied by 34 to turn the value into a number
between 0 and 34. Incrementing the value by 1 provides a number between 1 and 35. The ROUND() function
rounds the result to the nearest integer. The result is a whole number between 1 and 35 and will therefore
match one of the ID numbers in the table:

SELECT name
FROM Entry
WHERE id = ROUND((RAND()*34) + 1)

You may use functions in both the value list and the WHERE clause. This query selects the name and date of
each event less than a day old:

SELECT name
FROM Event
WHERE time > (CURRENT_TIMESTAMP() - (60 * 60 * 24))

You may also use the value of a table field within a function. This example returns the names of people who
used their names as passwords. The ENCRYPT() function from MySQL returns a Unix password-style encryption
of the specified string using the supplied two-character salt. The LEFT() function returns the left-most n
characters of the specified string:

SELECT name
FROM People
WHERE password = ENCRYPT(name, LEFT(name, 2))

Though there is a basic set of ANSI SQL functions, the number of non-ANSI functions in any database engine likely
outnumbers their ANSI counterparts. When programming in SQL, it is therefore always a good idea to have a reference
specific to your database at your side.

10.4.9 Joins

Joins put the "relational" in relational databases by enabling you to relate the data in one table with data in other
tables. The basic form of a join is sometimes described as an inner join. Joining tables is a matter of specifying equality
in columns from two tables:

SELECT Book.title, Author.name
FROM Author, Book
WHERE Book.author = Author.id

This query pulls columns from two different tables when a relationship exists between rows in the two tables.
Specifically, this query looks for situations in which the value of the Author column in the Book table matches the id value
in the Author table. Consider a database in which the Book table looks like Table 10-5, and the Author table looks like
Table 10-6.

Table 10-5. A Book table
ID Title Author

1 Slaughterhouse 5 4

2 Last Rites 2

3 The Vampire Lestat 3

4 The Shining 1

Table 10-6. An Author table
ID Name

1 Stephen King

2 Terry Pratchett

3 Anne Rice

4 Kurt Vonnegut

5 Douglas Adams

An inner join creates a virtual table by combining the fields of both tables for rows that satisfy the query in both tables.
In our example, the query specifies that the author field of the Book table must be identical to the id field of the Author
table. The query's result would look like Table 10-7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

table. The query's result would look like Table 10-7.

Table 10-7. Query results based on an inner join
Book title Author name

The Shining Stephen King

Last Rites Terry Pratchet

Slaughterhouse 5 Kurt Vonnegut

The Vampire Lestat Anne Rice

Douglas Adams is nowhere to be found in these results. He is left out because there is no value for his Author.id value
found in the author column of the Book table. In other words, he did not write any of the books in our database! An inner
join contains only those rows that match the query exactly.

Just about every database supports inner joins via the WHERE clause. Nevertheless, this approach violates the ANSI
standard. ANSI-compliant joins—inner and otherwise—occur in the JOIN clause of your SELECT statement. The book
query is properly written in ANSI SQL as:

SELECT Book.title, Author.name
FROM Author
JOIN Book ON Author.id = Book.author

What you get in your result set involving a join depends on the join type. You have already seen how an inner join fails
to show Douglas Adams since he has no books listed in the Book table. ANSI SQL supports the following kinds of joins:

Inner join

An inner join is the default kind of join. Under an inner join, any rows that do not match from either table are
discarded from the result set.

Left join

A left join enables us to see that we have Douglas Adams in the database with no books. In short, all rows from
the left side of the join are included in the results regardless of whether they match a row from the right side of
the join. Where no match exists, NULL values are shown for fields from the table on the right side of the join.

Right join

Right and left joins are variations of a single kind of join known as an outer join. As a left join provides all the
rows from the left side of the join, a right join provides all the rows from the right side.

Because these two joins are only semantically different, MySQL has chosen not to support
right joins. If you need a right join, you can simply restate your SQL as a left join in order
to achieve the same results.

Full join

A full join is a combination of a right and left join. In other words, all rows from both tables appear in the result
set. If no match exists for each side, NULL values appear in the result set.

Natural join

A natural join looks for columns in the joined tables having identical names, data types, and values. For
example, the inner join we performed on the Book and Author tables could be made a natural join if the author
column in the Book table were renamed authorID and the id column in the Author table renamed authorID:

SELECT Book.title, Author.name
FROM Author
NATURAL JOIN Book;

Cross join

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cross join

A cross join provides the full data from the joined two tables and is the same as specifying no JOIN or WHERE
clause at all. I cannot think of any reason why you would want to perform a cross join.

The left outer join that gives us Douglas Adams in our results looks like:

SELECT Book.title, Author.name
FROM Author
LEFT JOIN Book ON Book.author = Author.id

The results of the outer join would therefore look like this:

+--------------------+----------------+
| Book.title | Author.name |
+--------------------+----------------+
The Shining	Stephen King
Last Rites	Terry Pratchett
The Vampire Lestat	Anne Rice
Slaughterhouse 5	Kurt Vonnegut
NULL	Douglas Adams
+--------------------+----------------+

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11. JDBC
These common thoughts are expressed in a shared public language, consisting of shared signs... a sign
has a "sense" that fixes the reference and is "grasped by everybody" who knows the language...

—Noam Chomsky, Language and Thought

JDBC is one of the oldest programming APIs in the Java platform. In fact, it is the first of the enterprise APIs that
eventually became the J2EE platform. Its goal is to create a shared public language for Java access to any database
engine.

SQL lies at the heart of the JDBC API. I therefore assume a basic knowledge of SQL in this chapter. Chapter 10 contains
a SQL tutorial if you need some background.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.1 Architecture
Working with leaders in the database field, Sun developed JDBC as a unified API for database access. As part of the
JDBC design process, they kept in mind three main goals:

JDBC should be an SQL-level API.

JDBC should capitalize on the experience of existing database APIs.

JDBC should be relatively simple.

As an SQL-level API, JDBC enables you to construct SQL statements and embed them inside API calls. You are
essentially using JDBC to make a smooth transition between the SQL and Java. Your application sends a query to the
database as SQL and gets the results back through a Java object. Any database error you encounter is thrown to your
application as a Java exception.

Database programming in most languages today is very different from what it was just seven years ago. It used to be
that each database engine had its own proprietary C API. If you were programming against Sybase, you had to learn
Sybase's API. On the other hand, you had to learn a very different Oracle API if you needed to talk to Oracle. For
programming in languages other than C, you had to write a bridge to the C API.

JDBC leverages several attempts to provide unified database APIs, including ODBC and X/OPEN SQL. ODBC (Open
Database Connectivity) was initially created as a Windows API for open database access. Although the industry has
accepted ODBC as a standard, it does not translate well into the Java world:

ODBC is primarily a Windows API and best suited for applications on the Windows platform.

ODBC has an overly complex design with a steep learning curve.

In addition to ODBC, the X/OPEN SQL Call Level Interface (CLI) heavily influenced JDBC. Sun wanted to reuse the key
abstractions from both ODBC and X/OPEN in order to ease acceptance of the API by database vendors and thus
capitalize on the existing knowledge capital in the incumbent APIs. In addition, Sun realized that deriving an API from
existing ones can provide quick development of solutions for database engines supporting only the old protocols.
Specifically, Sun worked in parallel with Intersolv to create an ODBC bridge that maps JDBC calls to ODBC calls.
Consequently, every Java VM has the ability to talk to any ODBC-supported database using this bridge.

The JDBC-ODBC bridge is a great tool for developers who are interested in learning JDBC
but may not want to invest in anything beyond the Microsoft Access database that comes
with Microsoft Office. When developing for production sites, however, you almost certainly
want to move to a JDBC driver that is native to your deployment database engine.

JDBC attempts to remain as simple as possible while providing developers with maximum flexibility. A key criterion
employed by Sun is simply asking whether database applications read well. The simple and common tasks use simple
interfaces, while more uncommon or bizarre tasks are enabled through specialized interfaces. For example, a handful of
method calls in three interfaces manage the vast majority of database access. This list of key methods and interfaces
has changed very little since the first JDBC specification in March 1996. JDBC nevertheless provides many other
interfaces for handling more complex and unusual tasks.

11.1.1 The Core Interfaces

JDBC accomplishes its goals through a set of Java interfaces, each implemented differently by individual vendors. The
set of classes that implements the JDBC interfaces for a particular database engine combine into a tool called a JDBC
driver. In building a database application, you do not have to think about the implementation of these underlying
classes at all; the whole point of JDBC is to hide the specifics of each database and enable you to focus on your
application logic. Figure 11-1 illustrates the JDBC architecture.

Figure 11-1. The JDBC architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-1. The JDBC architecture

If you think about a database query for any database engine, it requires you to connect to the database, issue your
SELECT statement, and process any results. Example 11-1 is the JSP code for a very simple SELECT call that pulls all
rows from a table in a MySQL database. It gets a connection from a data source configured in a JNDI directory service
and then uses that connection to execute the query. The values in each row then appear in the generated HTML.

Example 11-1. A simple JSP page displaying the data in a table

<%@ page info="Table Results Page""%>

<%@ page import="java.sql.*""%>
<%@ page import="java.naming.*""%>
<%@ pagge import="javax.sql.DataSource""%>

<html>
 <head>
 <title>Table Results Page</title>
 </head>
 <body>
 <table>
 <tr>
 <th>ID</th>
 <th>Value</th>
 </tr>
 <%
 InitialContext ctx = new InitialContext();
 DataSource ds = ctx.lookup("jdbc/ora");
 Connection conn = ds.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs;

 rs = stmt.executeQuery("SELECT id, val FROM test");
 while(rs.next()) {
 %>
 <tr>
 <td><%=rs.getint(1)%></td>
 <td><%=rs.getString(2)%></td>
 </tr>
 <%
 }
 conn.close();
 %>
 </table>
 </body>
</html>

If you are an experienced JSP programmer, you should be able to follow the flow of this JSP page without knowing any
JDBC. No references to any vendor-specific procedures exist in the sample code. Instead, this page uses only JDBC
interfaces to provide an abstraction of the DBMS-specific implementation. The JDBC implementation, in turn, performs
the actual database access somewhere behind the scenes. Figure 11-2 is a UML class diagram of the basic JDBC classes
and interfaces.

Figure 11-2. The basic classes and interfaces of the JDBC API

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-2. The basic classes and interfaces of the JDBC API

In the simple JSP page of Example 11-1, the JSP code asks JNDI for a DataSource object stored in the directory service
under the name jdbc/ora. Someone should have configured your directory service to hold the information JDBC needs
to make a database connection. We will talk more about this configuration later in the chapter.

The JSP page then gets a Connection instance from the DataSource. This Connection is the JDBC representation of a
physical connection to your database. You can use it to execute all the SQL you like.

11.1.2 Databases and Drivers

Before you can get a connection from JNDI, you need to have a database to connect to. Whatever database you have
the most immediate access to will work. If you do not have access to a database, I recommend using an open source
database like MySQL (www.mysql.com) or PostgreSQL (www.postgresql.org). Both are free and will enable you to learn
JDBC and develop solid database applications. PostgreSQL has the advantage of supporting a fuller range of JDBC
features, whereas MySQL has the advantage of being easier to install and set up.

Once your database engine is installed and your database is all set up, you will need a JDBC driver to connect to that
database engine. Whatever your database of choice, it should be very simple to find a driver free of charge. Most
commercial databases ship with a JDBC driver. Other database engines allow you to download a driver from their web
site. In addition, you can opt for a commercially developed driver that probably performs better than the vendor-
supported driver.

JDBC drivers come in four distinct categories. Sun has named the categories types 1-4.

Type 1

A type 1 driver is a bridge between JDBC and another database-independent API like ODBC. The JDBC-ODBC
driver that comes with the Java SDK is the primary example of a type 1 driver.

Type 2

A type 2 driver translates JDBC calls into a native API provided by the database vendor.

Type 3

Type 3 drivers are network bridges that enable an application to take advantage of the WORA (Write Once, Run
Anywhere) capabilities of type 4 drivers even when your database of choice supports only type 2 drivers.

Type 4

A type 4 driver talks directly to a database using a network protocol. Because it makes no native calls, it can
run on any JVM.

For a list of all currently known drivers, their types, and the version of JDBC they support, visit
http://industry.java.sun.com/products/jdbc/drivers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.2 Simple Database Access
At this point, you have the basics for connecting to a database. Example 11-1, however, did not really do much. It
showed you how to make a database connection and perform simplistic result set management. You are unlikely to ever
have such basic functionality in your applications. The basic database behavior common to most applications, however,
does not require significantly more complex code.

11.2.1 The Connection

JDBC represents a connection to a database through the Connection interface. Thus, connecting to a database requires
you to get an instance of the Connection interface from your JDBC driver. JDBC supports two ways of getting access to a
database connection:

Through the JDBC DataSource (as shown in Example 11-1)

Using the JDBC DriverManager

The data source method is the preferred approach to database connectivity. Data sources, however, tend to be usable
only in application server contexts. You should therefore understand both forms of connectivity since you can rely on
DriverManager connectivity no matter what environment you are working in.

Connection Troubles
The JDBC connection process is the most difficult part of JDBC to get right. The API itself is very
straightforward, but many "gotchas" hide right beneath the surface in the configuration of your
environment. If you used the data source approach, you are less likely to run into configuration problems.
Unfortunately, this approach is only commonly available to applications running inside a J2EE application
server. If you do run into problems making a connection, check whether these problems match the
following:

Connection fails with the message "Class not found"

This message usually results from not having the JDBC driver in your CLASSPATH. You should remember to
enter .zip and .jar files explicitly in your CLASSPATH. If you put all of your application .class files and your
driver .jar file (for this example, driver.jar) in C:\lib, your CLASSPATH should read C:\lib;C:\lib\driver.jar.

Connection fails with the message "Driver not found"

You did not register your JDBC driver with the DriverManager class. This chapter describes several ways to
register your JDBC driver.

11.2.1.1 DataSource connectivity

Data source connectivity is very simple. In fact, the following code makes a connection to any database for any
application:

Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/dsn");
Connection conn = ds.getConnection();

The only requirement is that you have a JNDI-supported directory service containing a DataSource configured with the
name jdbc/dsn.

The first line gets an InitialContext object in accordance with the JNDI[1] specification. If your environment isn't set up
properly, you catch a javax.naming.NoInitialContextException. The InitialContext enables you to navigate a directory service.
You use it in your database applications to look up a JDBC DataSource instance. Finally, once you have found that
DataSource, you use it to make a connection.

[1] You should not be too concerned if you are not familiar with JNDI. For the purposes of basic JDBC connectivity,
the preceding three lines of JNDI code are all you need to know. The only thing that changes from application to
application is the name of the data source.

Technically, DataSource connectivity does not require a directory service. Instead, you can serialize a configured

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Technically, DataSource connectivity does not require a directory service. Instead, you can serialize a configured
DataSource instance out to a filesystem or load one in some other fashion. You will nevertheless find that the most
common situation you will encounter is looking one up in a directory service via JNDI.

You may be wondering how the DataSource gets into the directory service so you can look it up. JNDI does provide a
process for binding objects into a directory service:

SomeDataSourceClass ds = new SomeDataSourceClass();
Context ctx = new InitialContext();

// configure the data source through various setter methods
ctx.bind("jdbc/dsn", ds);

I have two bits of magic in this code. First, the class SomeDataSourceClass is an implementation of javax.sql.DataSource—
generally written by your database or application server vendor. Next, the configuration of your data source—the step I
commented out—is highly dependent on the DataSource implementation you are using. In some cases, you may
configure a user ID, password, database name, and server name. You will likely specify much more.

Fortunately, few programmers actually write code to bind data sources to JNDI directory services. You will mostly
encounter the need to configure a data source via XML or some other means. A sample data-sources.xml file from the
Orion application server looks like this:

<?xml version="1.0"?>
<!DOCTYPE data-sources PUBLIC
 "Orion data-sources"
 "http://www.orionserver.com/dtds/data-sources.dtd">

<data-sources>
 <data-source class="com.evermind.sql.DriverManagerDataSource"
 name="dsn"
 location="jdbc/dsn"
 xa-location="jdbc/xa/HypersonicXADS"
 ejb-location="jdbc/HypersonicDS"
 connection-driver="org.gjt.mm.mysql.Driver"
 username="dvl"
 password="dvl"
 url="jdbc:mysql://localhost/dvl"
 inactivity-timeout="30"/>
</data-sources>

This configuration file places a DataSource instance in the application server's directory service that enables me to
connect to a MySQL database named "dvl" on the localhost using the user ID "dvl" and password "dvl".

11.2.1.2 DriverManager connectivity

One of the few implementation classes in the java.sql package is the class DriverManager. It maintains a list of
implementations of the java.sql.Driver interface and provides you with connections based on a JDBC URL that you
provide. This JDBC URL comes in the form jdbc:protocol:subprotocol. This URL tells a DriverManager which database
engine you wish to connect to and provides the DriverManager with enough information to make a connection.

JDBC uses the word "driver" in multiple contexts. When lowercase, a JDBC driver is the
collection of classes that together implement the JDBC specification. When uppercase, the
Driver is the class that implements java.sql.Driver. Finally, JDBC provides a DriverManager that
can be used to keep track of all the different Driver implementations.

The protocol part of the URL refers to a given JDBC driver. The protocol for the GNU MySQL driver, for example, is
mysql. The subprotocol provides the implementation-specific connection information. Most drivers minimally require the
name of a database to connect to. It is also common to specify a host and even a port number in the subprotocol.

Each driver's JDBC URL is different, and so I cannot say anything more explicit that will tell you what the proper URL is
for your driver. Your driver documentation, however, should have easy-to-find documentation describing the exact form
of its JDBC URL. Whatever the format of the URL, the primary function of the URL is to uniquely identify the driver
needed by the application and pass that driver any information it needs to make a connection to the proper database.

Before you can use a URL to get a connection from the DriverManager, you first need to register your Driver
implementation with the DriverManager. You have two main options for registering a Driver:

Specify the names of the Driver implementation classes you want to register on the command line of your
application using the jdbc.drivers property:

java -Djdbc.drivers=com.caucho.jdbc.mysql.Driver MyAppClass

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

java -Djdbc.drivers=com.caucho.jdbc.mysql.Driver MyAppClass

Explicitly load the class in your program using a new statement or a Class.forName():

Class.forName("com.caucho.jdbc.mysql.Driver").newInstance();

For portability's sake, I recommend that you put all configuration information in some sort of configuration file, such as
a properties file, then load the configuration data at runtime. By taking this approach, your application will not rely on a
particular database or JDBC driver. You can simply change the values in the configuration file to move from one driver
to another or one database to another.

Once you register a driver, you can ask the DriverManager for a Connection by calling the getConnection() method in the
driver with the information identifying the desired connection. This information minimally includes a JDBC URL, a user
ID, and a password:

Connection conn =
 DriverManager.getConnection("jdbc:mysql:/localhost/Web",
 "userID", "password");

This code returns a connection to the MySQL database named Web using the GNU MySQL driver. This connection occurs
under the permissions of the user "userID" identified by the password "password".

An alternative signature to this method enables you to specify a Properties object that may contain values beyond the
basic user ID and password:

Properties p = new Properties();
Connection conn;

p.put("user", "userID");
p.put("password", "password");
p.put("encoding"", "UTF-8");
conn = DriverManager.getConnection("jdbc:mysql:/localhost/Web", p);

Example 11-2 provides a full example that connects to a MySQL database.

Example 11-2. Using the DriverManager to make a connection

import java.sql.*;
import java.util.Properties;

public class Connect {
 static public void main(String[] args) {
 Connection conn = null;

 try {
 String url = "jdbc:mysql:/localhost/Web";
 Properties p = new Properties();

 Class.forName("org.gjt.mm.mysql.Driver").
 newInstance();
 p.put("user", "dvl");
 p.put("password", "password");
 conn = DriverManager.getConnection(url, p);
 }
 catch(SQLException e) {
 e.printStackTrace();
 }
 finally {
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
 }
 }
}

In this example, I have hardcoded the driver name and connection information in the application. The only reason this
is acceptable is because it is an example showing all of the elements of making a connection. In practice, you will
always want to follow the best practices in the next section that avoid hardcoding these values.

11.2.1.3 Portability through properties

Java is a language based on the concept of portability. To most people, portability means that you do not write code
that will run on only one platform. In the Java world, however, portability means no proprietary dependencies—and that
means no database dependencies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

means no database dependencies.

I touched earlier on how the JDBC URL and Driver implementation classes are driver-specific. Because both values are
simple strings, you can pass them as command-line arguments or applet parameters. Unfortunately, this approach is
hardly elegant since it requires users to remember long command lines or to pass authentication credentials as HTML to
an applet tag.

You could, of course, prompt the user for this information. However, this approach demands that the user know a JDBC
URL and driver name. The elegant approach is the use of properties files. Java supports the concept of properties-based
application configuration through java.util.ResourceBundle and its subclasses.

Using a properties file, you can store all configuration information like the JDBC URL, driver class, user ID, and
password and change it as the runtime environment changes. Example 11-3 is a sample properties file.

Example 11-3. A properties file containing driver configuration data

url=jdbc:mysql:/localhost/Web
driver=org.gjt.mm.mysql.Driver
user=dvl
password=dvl

You can now turn Example 11-2 into a portable example of making a connection as shown in Example 11-4.

Example 11-4. Using a properties file to achieve portability

import java.sql.*;
import java.util.*

public class Connect {
 static public void main(String[] args) {
 Connection conn = null;

 try {
 ResourceBundle bdl = ResourceBundle.getBundle("connect");
 String url = bdl.getString("url");
 Properties p = new Propertes();;
 Enumeration keys = bdl.keys();

 while(keys.hasMoreElements()) {
 String prop = (String)keys.nextElement();
 String val = bdl.getString(prop);

 p.setProperty(prop, val);
 }
 Class.forName(bld.getString("driver")).newInstance();
 conn = DriverManager.getConnection(url, p);
 }
 catch(SQLException e) {
 e.printStackTrace();
 }
 finally {
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
 }
 }
}

We no longer have any code specific to MySQL or the GNU driver. This code will now work against any database engine
using any JDBC driver, simply through changing the properties file.

11.2.2 Query Execution

The most basic element of communication over a Connection is the Statement. Your application encapsulates SQL queries
into a Statement or one of its subclasses and processes the results. An SQL query can be an INSERT, UPDATE, DELETE, or
any other valid SQL statement.

11.2.2.1 Simple queries

The Connection class enables you to create Statement instances via the createStatement() method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Connection class enables you to create Statement instances via the createStatement() method:

Statement stmt = conn.createStatement();

You can then use that statement to send SQL to the database:

stmt.executeUpdate("UPDATE test SET val = 'cheese' WHERE id = 1");

In this case, we are sending SQL that modifies the database. If the SQL returned results, however, we would use the
executeQuery() method and get back an instance of ResultSet:

ResultSet rs = stmt.executeQuery("SELECT id, val FROM test");

Example 11-5 shows a query returning results and the processing of those results.

Example 11-5. A query that returns results for processing

Connection conn = null;

try {
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT id, val FROM test");

 while(rs.next()) {
 System.out.println("ID: " + rs.getInt(1) + ", rs.getString(2));
 }
}

The query in Example 11-5 retrieves every row from the table test. The JDBC code loops through those rows and
displays the values for each row's columns.

SQL NULL Versus Java null
SQL and Java do not match up the way they treat the absence of value—null. Specifically, any SQL value
can be NULL. In Java, however, only object types can have null values. After retrieving a value from a
ResultSet, your Java application needs to ask the ResultSet if the value retrieved is a driver representation of
NULL. For example, a call to rs.getInt() might return 0 even though the underlying database value for the
column is NULL. To find out if the value is actually 0 or NULL, you should call rs.wasNull().

Until the first call to next(), the result set does not point to any row returned by the query. The first call makes the
result set point to the first row. Until the next call to next(), any operations you perform on the result set act on that
row. Subsequent calls to next() move the result set forward through the rows in the result set. In this example, I move
through each row until the next() method returns false. A return value of false indicates that there is no next row to
move the result set to.

Dealing with a row means retrieving the values for its columns. Whatever the value in the database, you can retrieve it
using a getter method in the ResultSet interface. In Example 11-5, I used getInt() to retrieve the id column and getString(
) to retrieve the val column. These getter methods can accept either the number of the column—starting with 1—or the
column name. You should, however, avoid retrieving columns by name because it is generally much slower than
retrieving them by number.

11.2.2.2 Scrollable result sets

By default, you are limited to simple forward navigation through a result set. JDBC does, however, provide a tool for
navigating backward and forward through a result set; it is called a scrollable result set. You can get scrollable result
sets back from your queries if you indicate that you want a scrollable result set when you create your statement:

Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

The first argument indicates that you want a scrollable result set. The second argument indicates that you want a read-
only result set. Non-read-only result sets are an advanced topic beyond the scope of this chapter.

With a scrollable result set, you can make calls to:

previous()

To navigate backward through the result set. previous() moves the result set over one row—except it moves the
result set to the row before the current row. It will return false if there is no previous row to move to.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

result set to the row before the current row. It will return false if there is no previous row to move to.

absolute()

To move to an arbitrary row (similar to next()). absolute() requires the number of the row to which you want to
navigate,

relative()

To move to an arbitrary row (similar to next()). relative() moves the number of rows you specify forward or
backward. A negative number moves the result set backward, and a positive number forward. Thus, relative(1) is
like next(), and relative(-1) is like previous().

11.2.3 Transactions

Chapter 3 covered the role of transactions in database programming. The critical job of a transaction is to take the
database from one consistent state to another. Your database handles many of the complexities of transaction
management. When you modify a table, the underlying database acquires the appropriate locks and guarantees that
your changes do not conflict with those of another client.

In order for the database to properly manage your transactions, your application needs to tell it what operations
constitute a single transaction. By default, JDBC treats every distinct SQL execution as a transaction. This default is
called auto-commit. In other words, each statement is committed the minute it completes unless there is application
logic to the contrary. The following code updates the balance of a bank account in the default auto-commit mode:

float ob = account.getBalance();
Connection conn = null;

account.calculateInterest();
try {
 Statement stmt = null;

 conn = ds.getConnection();
 stmt = conn.createStatement();
 stmt.executeUpdate("UPDATE account SET balance = " +
 account.getBalance() +
" WHERE id = " + account.getId());
}
catch(SQLException e) {
 account.resetBalance(ob);
}
catch(Error e) {
 account.resetBalance(ob);
 throw e;
}
catch(RuntimException e) {
 account.resetBalance(ob);
 throw e;
}
finally {
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
}

From a JDBC perspective, nothing in this sample code differs from what you have done so far. What differs is the
exception handling so that your application returns to a state consistent with the database. In this case, when an
exception occurs, the account object gets its balance set back to the value prior to calculating interest.

11.2.3.1 Basic transaction management

Rarely are transactions as simplistic as the previous one. A given transaction can make numerous modifications that
need to occur together or not at all. The classic example of such a transaction is a transfer of funds from your savings
account to your checking account. This transaction includes the following steps:

1. Debit the savings account.

2. Credit the checking account.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Credit the checking account.

If the credit to the checking account fails for whatever reason, you as the account holder certainly want that money
recredited to the savings account. In JDBC's default auto-commit mode, there is no sure way to achieve this
consistency. You therefore need to turn auto-commit off and manually tell JDBC where to commit the transaction. You
also need to handle errors so that it will get rolled back in exceptional conditions. The following code shows this account
transfer:

float sb = savings.getBalance();
float cb = checking.getBalance();
Connection conn = null;
boolean success = false;

savings.transfer(checking, 10.00);
try {
 Statement stmt = null;

 conn = ds.getConnection();
 conn.setAutoCommit(false);
 stmt = conn.createStatement();
 stmt.executeUpdate("UPDATE account SET balance = " +
 savings.getBalance() +
 " WHERE id = " + asavings.getId());
 stmt.executeUpdate("UPDATE account SET balance = " +
 checking.getBalance() +
 " WHERE id = " + achecking.getId());
 success = true;
}
catch(SQLException e) {
 e.printStackTrace();
}
finally {
 if(conn != null) {
 if(success) {
 try { conn.commit(); }
 catch(SQLException e) {
 savings.resetBalance(sb);
 checking.resetBalance(cb);
 try { conn.rollback(); }
 catch(SQLException e) { }
 }
 }
 else {
 savings.resetBalance(sb);
 checking.resetBalance(cb);
 try { conn.rollback(); }
 catch(SQLException e) { }
 }
 try { conn.close(); }
 catch(SQLException e) { }
 }
}

The bold sections illustrate what changes for multi-statement transactions. First, you need to turn off auto-commit
using setAutoCommit(false). You then execute transactions as you always would. When done, you either commit the
transaction (using commit()) or roll it back (using rollback()). In this sample, I have tracked the success or failure of the
transaction and I perform the commit and rollback in the finally block.

11.2.3.2 Savepoints

As described earlier, transactions work well when you have a very straightforward beginning state with only one
possible consistent end state. In other words, the database starts with one set of values and should end up with
another specific set of values when the transaction completes. Some situations, however, allow for multiple possible
consistent end states dependent on the events that occur during the course of the transaction. Such transactions
require a much more fine grained approach to transaction management than the commit/rollback scheme allows. JDBC
manages these transactions through savepoints.

A savepoint is a JDBC tool for marking a database state as a possible final consistent state for a transaction.
Specifically, you can execute a statement and then establish a savepoint with the connection. Depending on what
happens in the transaction, you can commit the transaction, roll it back, or roll it back to the savepoint. If you roll back
to the savepoint, you can chose to commit that work or execute an alternative flow for the transaction.

The mechanics of savepoints are simple:

Connection conn = ds.getConnection();
Statement stmt = conn.createStatement();
Savepoint sp;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stmt.executeUpdate(
 "INSERT INTO test (id, val) VALUES (1, 'test')");
sp = conn.setSavepoint("safety");
stmt.executeUpdate(
 "INSERT INTO other (id, name) VALUES (32, 'sample')");
try {
 stmt.executeUpdate("UPDATE test SET other = 32 WHERE id = 1");
}
catch(SQLException e) {
 conn.rollback(sp);
}
conn.commit();

The application sets the savepoint after the first SQL. It can now guarantee that no matter what else happens, it can
return the database to a state in which a new row is in the test table without missing references or unreferenced values
in the other table. If an error occurs in the SQL updating the test table so that the new test value points to the new other
value, then the transaction is rolled back so that the test value exists alone in the database.

This example begs the question: why not simply commit after the first statement? One reason is performance. You do
not need to release and reacquire any locks to execute the transaction. The other reason, however, would be in more
complex transactions in which some branches of logic after the savepoint is set need to roll back completely while
others need to roll back only to the savepoint.

To illustrate the kind of logic to which savepoints apply, consider a game in which you toss marbles into a jar. The goal
of the game is to end up with the most marbles in the jar. You start the game with no marbles and continue tossing
marbles into the jar until your fourth miss or you call it quits. Your score is the number of marbles in the jar after your
fourth miss.

The trick behind scoring, however, is that missing two in a row returns your marble count to its number after your first
miss. If you miss three in a row, the jar is emptied and your final score is whatever you can get in the jar before your
next miss.

In transactional terms, the following events occur:

First miss: set a savepoint.

Second consecutive miss: roll back to the savepoint.

Third consecutive miss: roll back the entire transaction.

Fourth miss: commit.

11.2.4 Error Handling and Cleanup

All JDBC method calls can throw SQLException or one of its subclasses if something happens during a database call. Your
code should be set up to catch this exception, deal with it, and clean up any database resources that have been
allocated. The basic skeleton of any JDBC code I write looks like this:

Connection conn = null;

try {
 // create the connection and execute your transaction
}
catch(SQLException e) {
 // handle the exception
}
finally {
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
}

Each of the major JDBC interfaces you have encountered—Connection, Statement, and ResultSet—has a close() method.
Practically speaking, however, you need only make sure you close your connection instances because closing a
connection closes all associated statements. The closing of a statement, in turn, closes all associated result sets. By
closing the connection in the finally clause, you guarantee that the connection will be closed even when an error occurs.

11.2.5 Prepared SQL

JDBC Statement instances illustrate basic database programming well, but you rarely want to use them in practice.
Unfortunately, Statement sends your SQL to the database each time you execute it. It provides the database with very
little opportunity to optimize repeated SQL calls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

little opportunity to optimize repeated SQL calls.

Consider the following SQL:

UPDATE account SET balance = 5.00 WHERE id = 2

If you use a Statement to support updating many accounts with a similar SQL call, the database has to process the SQL
and determine how it will execute the query every single time you send it to the database. You can avoid this overhead,
however, through prepared SQL.

Databases support two kinds of prepared SQL: prepared statements and stored procedures. Prepared SQL provides an
advantage over the simple SQL statements you have covered so far; a database can get the SQL ahead of time and
create a query plan while you are doing other application logic. Your SQL should therefore execute faster. Furthermore,
you have a generic reference to the statement for later reuse instead of repeatedly re-creating similar SQL statements.

What Kind of Statement to Use
This tutorial introduces three kinds of JDBC statements. Each kind of statement—even java.sql.Statement—
provides performance benefits under certain situations. Unfortunately, you can rarely be certain which
kind of statement will definitely provide you with the best performance for a given SQL call without
knowing details about the underlying database. I recommend the use of java.sql.PreparedStatement except in
a few situations in which stored procedures are demanded. In other words, you should always avoid
java.sql.Statement. It almost never is the best choice for optimal performance. Even in the few situations in
which it provides the optimal performance, it is uglier code, more error-prone, and more difficult to
maintain. I recommend the use of stored procedures only for complex SQL calls that are known to be
bottlenecks as prepared statements.

The optimization factor comes from the database knowing what you are about to do. When you create a Java instance
of a prepared statement or stored procedure, you notify the database of what SQL you intend to be calling without
providing any specific values. For example, the SQL to update account balances looks like this as a prepared statement:

UPDATE account SET balance = ? WHERE id = ?

Instead of sending this SQL as an argument to executeUpdate(), you pass it to the connection when you create the
statement. You then assign values to the two placeholders and finish by calling executeUpdate(). If you want to make
further calls to update other accounts, you can reassign the statement new values and call executeUpdate() again.

11.2.5.1 Prepared statements

The PreparedStatement interface extends the Statement interface we used earlier in the chapter. It enables a SQL
statement to contain parameters like a function call. You can execute a single statement repeatedly with different
values. The act of assigning values to parameters is called binding parameters. You might want to use a prepared
statement when updating a group of objects stored in the same table. For example, if you update many bank accounts
as described earlier, you might have a loop like this:

Statement stmt = conn.createStatement();

for(int i=0; i<accounts.length; i++) {
 stmt.executeUpdate("UPDATE account " +
 "SET balance = " +
 accounts[i].getBalance() + " " +
 "WHERE id = " + accounts[i].getId());
}
conn.commit();

This statement keeps sending slightly different SQL to the database each time it goes through the loop. Instead of
calling this statement repeatedly with different inputs, you can instead use a PreparedStatement:

PreparedStatement stmt = conn.prepareStatement("UPDATE account " +
 "SET balance = ? " +
 "WHERE id = ?");

for(int i=0; i<accounts.length; i++) {
 stmt.setFloat(1, accounts[i].getBalance());
 stmt.setInt(2, accounts[i].getId());
 stmt.executeUpdate();
 stmt.clearParameters();
}
conn.commit();

With a prepared statement, you send the actual SQL to the database when you get the PreparedStatement object through
the prepareStatement() method in java.sql.Connection. Keep in mind that you have not yet actually executed any SQL. You
execute that prepared SQL statement multiple times inside the for() loop, but you build the query plan only a single
time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

time.

Before each execution of the prepared statement, you tell JDBC which values to use as input for that execution of the
statement. In order to bind the input parameters, PreparedStatement provides setter methods—like setFloat() and setInt(
)—that mirror the getter methods you saw in ResultSet. Just as the getter methods read results according to the order in
which you constructed your SQL, the setter methods bind parameters from left to right in the order you placed them in
the prepared statement. In the previous example, I bound parameter 1 as a float to the account balance that I
retrieved from the account object. The first ? was thus associated with parameter 1.

11.2.5.2 Stored procedures

While prepared statements enable you to access similar database queries through a single PreparedStatement object,
stored procedures attempt to take the "black box" concept for database access one step further. A stored procedure is
built inside the database before you run your application. You access that stored procedure by name at runtime. In
other words, a stored procedure is almost like a method you call in the database. Stored procedures have the following
advantages:

Because the procedure is precompiled in the database for most database engines, it executes much faster than
dynamic SQL. Even if your database does not compile the stored procedure before it runs, it will be precompiled
for subsequent runs just like prepared statements.

Syntax errors in the stored procedure can be caught at compile time rather than runtime.

Java developers need to know only the name of the procedure and its inputs and outputs. The way in which the
procedure is implemented is totally irrelevant.

The downside to stored procedures, however, is that every database has its own stored procedure language. If you use
stored procedures heavily, you can go to great lengths to make sure your Java application is database-independent yet
still be tied to a specific database because of the stored procedures. Worse, different databases do not even share basic
semantics that would facilitate porting between database engines. For example, you can retrieve results from a Sybase
stored procedure using a plain ResultSet. With Oracle, however, retrieving results from a stored procedure is much more
complex.

Using stored procedures, we can revise the balance updating code to the following:

CallableStatement stmt = conn.prepareCall("{call sp_balance(?,?)}");

for(int i=0; i<accounts.length; i++) {
 stmt.setInt(1, accounts[i].getId());
 stmt.setFloat(2, accounts[i].getBalance());
 stmt.executeUpdate();;
}
conn.commit();

This example illustrates how close stored procedures are to prepared statements from a JDBC perspective. The
difference is that you are referencing the stored procedure by name rather than spelling out the SQL you are calling.
The result is simply increased performance at the expense of portability.

Some stored procedures may have output parameters. For those stored procedures, you need to register the output
parameter before you execute the SQL:

CallableStatement stmt =
 conn.prepareCall("{call sp_interest(?, ?)}");

stmt.registerOutParameter(2, java.sql.Types.FLOAT);
for(int i=0; i<accounts.length; i++) {
 stmt.setInt(1, accounts[i].getId());
 stmt.executeUpdate();
 accounts[i].setBalancce(stmt.getFloat(2));
}
conn.commit();

The prepareCall() method creates a stored procedure object that will make a call to a specific stored procedure. This
syntax sets up the order you will use in binding parameters. By calling registerOutParameter(), you tell the
CallableStatement instance to expect the second parameter as output of type float. Once this procedure is set up, you can
bind the ID using setInt() and then get the output using getFloat().
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.3 Advanced JDBC
You can develop entire applications using only the JDBC I have presented so far in this chapter. What you have seen,
however, is not the end of database programming. JDBC provides many more interfaces to support a variety of less
common, yet very important database programming needs.

11.3.1 Batch Processing

Complex systems often require both online and batch processing. Each kind of processing has very different
requirements. Because online processing involves a user waiting on application processing, the timing and performance
of each statement execution in a process is important. Batch processing, on the other hand, occurs when a bunch of
distinct transactions need to occur independent from user interaction. A bank's ATM machine is an example of a system
of online processes. The monthly process that calculates and adds interest to your savings account is an example of a
batch process.

JDBC enables you to assign a series of SQL statements to a JDBC Statement (or one of its subclasses) to be submitted
together for execution by the database. Using the techniques you have learned so far in this book, account interest
calculation processing occurs roughly in the following fashion:

1. Prepare statement.

2. Bind parameters.

3. Execute.

4. Repeat steps 2 and 3 for each account.

This style of processing requires a lot of back and forth between the Java application and the database. JDBC batch
processing provides a simpler, more efficient approach to this kind of processing:

1. Prepare statement.

2. Bind parameters.

3. Add to batch.

4. Repeat steps 2 and 3 until interest has been assigned for each account.

5. Execute.

Under batch processing, there is no back and forth to the database for each account. Instead, all Java-level processing
—the binding of parameters—occurs before you send the statements to the database. Communication with the
database occurs in one huge burst; the huge bottleneck of stop-and-go communication with the database is gone.

Statement and its children all support batch processing through an addBatch() method. For Statement, addBatch() accepts
a String that is the SQL to be executed as part of the batch. The following code shows how to use a Statement object to
batch process interest calculation:

Statement stmt = conn.createStatement();
int[] rows;

for(int i=0; i<accts.length; i++) {
 accts[i].calculateInterest();
 stmt.addBatch("UPDATE account SET balance = " +
 accts[i].getBalance() +
 " WHERE id = " + accts[i].getId());
}
rows = stmt.executeBatch();

The addBatch() method is basically nothing more than a tool for assigning a bunch of SQL statements to a single JDBC
Statement. Because it makes no sense to manage results in batch processing, the statements you pass to addBatch()
should be some form of an update: a CREATE, INSERT, DELETE, or UPDATE statement. Once you are done assigning
statements, your application calls executeBatch(). This method returns an array of rows affected by each statement in
the batch. For example, the first element contains the number of rows affected by the first statement. Upon completion,
the list of SQL calls associated with the Statement instance is cleared.

Using prepared statements and callable statements works very much like regular statements, except you are assigning
batches of parameters instead of batches of individual statements. Interest calculation with a prepared statement looks
like this:

PreparedStatement stmt = conn.prepareStatement("UPDATE account " +
 "SET balance = ? " +
 "WHERE id = ?");
int[] rows;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int[] rows;

for(int i=0; i<accts.length; i++) {
 accts[i].calculateInterest();
 stmt.setDouble(1, accts[i].getBalance());
 stmt.setInt(2, accts[i].getId());
 stmt.addBatch();
}
rows = stmt.executeBatch();

11.3.2 Metadata

The term metadata sounds officious, but it is really nothing more than extra data about some object that would
otherwise waste resources if it were actually kept in the object. For example, simple applications do not need the name
of the columns associated with a ResultSet—the programmer probably knew that when the code was written. Embedding
this extra information in the ResultSet class is thus not considered by JDBC's designers to be part of the core ResultSet
functionality. Data such as column names, however, is very important to some data programmers—especially to those
writing dynamic database access. The JDBC designers provide access to this extra information—the metadata—via the
ResultSetMetaData interface. For example, this class can tell you:

The number of columns in a result set

Whether NULL is a valid value for a column

The label to use for a column header

The name for a column

The source table for a column

The data type of a column

Example 11-6 shows some of the source code from a command-line tool that accepts arbitrary user input and sends it
to a database for execution.

Example 11-6. An application for executing dynamic SQL

import java.sql.*;

public class Exec {
 static public void main(String[] args) {
 Connection conn = null;
 String sql = "";
 for(int i=0; i<args.length; i++) {
 sql = sql + args[i];
 if(i < args.length - 1) {
 sql = sql + " ";
 }
 }
 System.out.println("Executing: " + sql);
 try {
 Class.forName("org.gjt.mm.mysql.Driver")
 .newInstance();
 String url = "jdbc:mysql://localhost/Web";
 Statement stmt;

 conn = DriverManager.getConnection(url, "dvl", "dvl");
 stmt = conn.createStatement();
 if(stmt.execute(sql)) {
 ResultSet rs = stmt.getResultSet();
 ResultSetMetaData meta = rs.getMetaData();
 int cols = meta.getColumnCount();
 int row = 0;

 while(rs.next()) {
 row++;
 System.out.println("Row: " + row);
 for(int i=0; i<cols; i++) {
 System.out.print(meta.getColumnLabel(i+1) + ": " +
 rs.getObject(i+1) + ", ");
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 System.out.println("");
 }
 }
 else {
 System.out.println(stmt.getUpdateCount() +
 " rows affected.");
 }
 stmt.close();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 finally {
 if(conn != null) {
 try { conn.close(); }
 catch(SQLException e) { }
 }
 }
 }
}

This code introduces a few new features. The first is the introduction of the execute() method. As you might guess from
this code, execute() enables you to send arbitrary SQL to the database when you may not know whether it is an update
or a query. It returns true if the SQL you sent it returned results.

When the SQL sent to execute() does return results, you can retrieve them through a call to getResultSet(). On the other
hand, you can get the number of rows touched by an update through getUpdateCount().

The point of this example, however, is to illustrate the use of ResultSetMetaData. When this application executes SQL that
returns results, it needs to find out about those results. It does so by getting the metadata through a call to
getMetaData(). The metadata tells the application how many columns are in the result set so the application can loop
through all of the columns and get the column values.

JDBC supports other kinds of metadata. You will most often be interested in DatabaseMetaData—one of the most massive
interfaces in the entire J2EE platform. DatabaseMetaData provides information about your database connection and the
database to which it is connected. Finally, you can retrieve information on statement parameters through the new
ParameterMetaData interface.

11.3.3 Hidden Features

Some of JDBC's best features are things you never see as a programmer—your JDBC driver handles all the details. You
turn them on through configuration parameters in your data source.

11.3.3.1 Connection pooling

The most important hidden feature is JDBC connection pooling. Up to this point, you have created a connection, done
your database business, and closed the connection. This process clearly works fine for the examples I have presented
to this point in the book. Unfortunately, it does not work in real world server applications. It does not work because the
act of creating a database connection is a very expensive operation for most database engines. If you have a server
application such as a Java servlet or middle-tier application server, that application is likely going back and forth
between the database many times per minute. Suddenly, the "open connection, talk to the database, close the
connection" model of JDBC programming becomes a huge bottleneck.

Through specialized data sources, JDBC supports the concept of connection pooling. Connection pooling is a mechanism
through which open database connections are held in a cache for use and reuse by different parts of an application. In a
Java servlet, for example, each user initiates the execution of the servlet's doGet() method, which grabs a Connection
instance from the connection pool. When it is done serving that user, it returns the Connection instance to the pool. The
Connection is never closed until the web server shuts down.

Unlike the parts of the JDBC API you have encountered so far, driver vendors do not necessarily implement connection
pooling. As I noted earlier, connection pooling requires the use of specialized data sources. It can therefore be a
function of your application server, your driver, or even your own custom data source. Consequently, you can take
advantage of connection pooling even if your JDBC driver has no support for it.

Because connection pooling occurs in the data source, JDBC code using connection pools looks just like the JDBC code
we have covered to this point. Your data source that supports connection pools provides you with a special, logical
connection implementation that returns the physical connection to the pool when you call close(). Figure 11-3 shows an
activity diagram illustrating JDBC connection pooling.

Figure 11-3. An activity diagram showing how connection pooling works

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-3. An activity diagram showing how connection pooling works

The same as with all other JDBC code, your application grabs a Connection from a DataSource using the getConnection()
method. Internally, the DataSource talks to a ConnectionPoolDataSource that holds pooled database connections. This
ConnectionPoolDataSource enables connection pooling. When you close the connection in your application, it returns to the
connection pool. Any subsequent attempts to close that connection by your application will cause an error .

11.3.3.2 Prepared statement pooling

Prepared statement pooling is to prepared statements as connection pooling is to connections. In other words, prepared
statement pooling enables you to keep a prepared statement open so you can avoid the potential overhead of re-
creating the same prepared statement multiple times.

Prepared statement pooling rides on top of connection pooling and looks exactly like all other JDBC code from an
application perspective. The only difference is that some data sources that support connection pooling keep any
prepared statements associated with their connections open for later reuse. As with connection pooling, when you close
a pooled prepared statement, the close() method returns the prepared statement to the pool.

Connection pooling is naturally a trade-off between storing a number of connections in memory and the cost of making
connections. You nearly always want to opt to take the memory hit. Prepared statement pooling, on the other hand,
does not involve such an obvious trade-off. If you pool all of your prepared statements, you will eat up memory and
database resources. You should therefore plan your prepared statement pooling to pool only those statements for which
pooling will provide an obvious advantage.

11.3.3.3 Distributed transactions

All database access so far in this chapter has involved transactions against a single database. In this environment, your
DBMS manages the details of each transaction. This support is good enough for most database applications. As
companies move increasingly toward an enterprise model of systems development, however, the need for supporting
transactions across multiple databases grows. Where single data source transactions are the rule today, they will likely
prove the exception in large-scale programming in the future.

Distributed transactions are transactions that span two or more data sources. For example, you may have an Informix
database containing your corporate digital media assets and an Oracle database holding product data. When you delete
a product from Oracle, you probably want to delete the commercials and pictures for that product from Informix.
Without support for distributed transactions, you run the risk of one transaction succeeding and the other failing—your
data thus ends up in an inconsistent state.

You could avoid the issue by picking one database to hold everything. If you choose a nice supercomputer with
terabytes of storage space and RAM, such a solution might work. A more practical alternative, however, is to choose
database engines that are well suited for the type of data being stored and split the data across multiple databases.

As with prepared statement pooling, distributed transactions ride on top of JDBC connection pooling. From the
application's point of view, programming with distributed transactions looks nearly like single data source transactions.
Behind the scenes, your one data source actually hides many data sources. When you get a connection from it, you are
actually getting a connection that manages two-phase commits through a midtier transaction monitor.

I say that your application code is nearly the same as code against a single data source because there are some small
differences. In short, your code should not call commit(), rollback(), or setAutoCommit(true). Any attempt to do so will
result in an SQLException. You do not have to add any special code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

result in an SQLException. You do not have to add any special code.

The application server's transaction monitor handles the details of your distributed transaction. The two-phase commit
that it manages is a standard protocol for handling a commit across two data stores. Under a simplistic description, the
following events take place in a two-phase commit:

1. The transaction monitor (TM) asks data source A if it can commit the pending transaction.

2. If data source A cannot commit, the transaction rolls back and ends.

3. The TM asks data source B if it can commit.

4. If data source B cannot commit, the transaction rolls back and ends.

5. The TM logs the transaction to a distributed transaction log.

6. The TM tells data source A to commit.

7. The TM tells data source B to commit.

The only reason either of the actual commits can fail is due to a server crash or some other terrible event. Fortunately,
the transaction log prevents those events from placing the system in an inconsistent state. The transaction monitor
maintains a consistent state by having the individual data sources re-execute their portion of the transaction when they
come back up.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12. JDO
We say that error is appearance. This is false. On the contrary, appearance is always true if we confine
ourselves to it. Appearance is being.

—Jean-Paul Sartre, Truth and Existence

Java Data Objects (JDO) is one of the first APIs to run through the Java Community Process (JCP). JDO enables
application developers to build applications without worrying about persistence issues. In other words, it does for your
application the same thing EJB container-managed persistence does for EJB applications. Where EJB seeks to deliver all
the features of enterprise systems development—such as a distributed component model and full and distributed
transaction management—JDO seeks to provide developers with a more streamlined set of features.

JDO seeks to give applications with persistence needs the following capabilities:

Simplicity

Database independence

Performance

In other words, JDO is a database-independent persistence API that has a simple programming model designed to
support the performance needs of common applications. Though EJB is database-independent, it does not have a simple
programming model and performs poorly for small- to medium-scale applications.

Software Requirements
JDO is not a standard part of any Java platform. You therefore need a host of tools to support JDO
development. Naturally, you need a data store. You also need a JDO implementation. Depending on the
nature of the implementation, you may need a JDBC driver or any other of a number of third-party
components.

The best way to get started is to download Sun's reference JDO implementation at
http://java.sun.com/products/jdo. It uses your filesystem as a data store and frees you from needing
anything else while you are learning JDO.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.1 Architecture
JDO is based on the concept of persistence transparency. In other words, you write regular Java classes without
worrying about conformance to any particular contract. An application uses persistent business components in a JDO
environment supplied by a JDO implementation. Figure 12-1 illustrates this high-level architecture.

Figure 12-1. The JDO architecture

12.1.1 Business Objects

In JDO parlance, business objects are referred to as JDO instances. Because of JDO's transparency, JDO instances can
be regular user-defined Java classes or collections, JavaBeans, or even Enterprise JavaBeans. When you introduce such
a class into a JDO environment, it becomes a persistence-capable class. Example 12-1 shows a simple, persistence-
capable Book class.

Example 12-1. A persistence-capable book class

package com.imaginary.ora;

public class Book {
 String author;
 String isbn;
 String title;

 public Book() {
 super();
 }

 public Book(String auth, String num, String ttl) {
 super();
 author = auth;
 isbn = num;
 title = ttl;
 }

 public String getAuthor() {
 return author;
 }

 public String getIsbn() {
 return isbn;
 }

 public String getTitle() {
 return title;
 }

 public void setAuthor(String auth) {
 author = auth;
 }

 public void setIsbn(String num) {
 isbn = num;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 isbn = num;
 }

 public void setTitle(String ttl) {
 title = ttl;
 }
}

You should not strain yourself looking for anything unfamiliar. This is the exact same Book class you would write in a
nonpersistent application. The only aspect that relates to JDO is that you must have the default constructor. Without it,
some enhancers may fail during the enhancing process. I will cover the enhancing process later in the chapter.

12.1.2 Applications

Your application uses persistent business objects and is responsible for interacting with JDO to make those objects
persistent. Example 12-2 creates a book in the data store using JDO.

Example 12-2. Persisting new books using JDO

package com.imaginary.ora;

import java.util.Properties;

import javax.jdo.*;

public class Librarian {
 static public void main(String[] args) {
 PersistenceManagerFactory factory;
 Properties props = new Properties();
 PersistenceManager mgr;
 Transaction trans;

 // load JDO properties
 factory = JDOHelper.getPersistenceManagerFactory(props);
 mgr = factory.getPersistenceManager();
 trans = mgr.currentTransaction();
 try {
 Book book = new Book("Daniel C. Dennett", "0-262-54053-3",
 "The Intentional Stance");

 trans.begin();
 mgr.makePersistent(book);
 trans.commit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 finally {
 if(trans.isActive()) {
 trans.rollback();
 }
 mgr.close();

 }
 }
}

This sample method is the agent that makes your plain Book class a persistent JDO instance. It finds a persistence
manager, creates a transaction, associates your new Book instance with the transaction, and finally commits the
transaction. In the event of an exception, the code rolls back the transaction. The only hocus-pocus I left out is
something you should be familiar with as a J2EE developer. Namely, I left out setting up the properties that help the
application interact with the JDO implementation it is using.

You have seen this use of properties in JDBC with the calls to DriverManager and you have seen this in JNDI with initial
context properties. What is interesting about JDO properties is that many of them exist to tell the persistence manager
what properties to pass to the JDBC driver that the JDO implementation is using behind the scenes. Naturally, these
properties are highly dependent on your runtime environment. In addition to telling JDO how to find a JDBC driver, they
tell JDO what implementation class to use for a PersistenceManagerFactory class.

12.1.3 Implementations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A JDO implementation is to JDO as a JDBC driver is to JDBC. In other words, it is the set of concrete classes that
implements the interfaces of the JDO specification. The JDO implementation performs the operations that make your
business objects persist against a data store.

As with JDBC drivers, some JDO implementations cost money while others are free. Sun provides a reference
implementation on the JDO web site at http://java.sun.com/products/jdo. Which implementation you use depends on
the runtime environment in which you intend to deploy.

The entry point into a JDO implementation is the PersistenceManagerFactory. Example 12-2 showed the Librarian application
using the PersistenceManagerFactory to get a PersistenceManager class. This task is in fact the PersistenceManagerFactory's
raison d'être. You get access to a PersistenceManagerFactory by calling getPersistenceManagerFactory() in the JDO JDOHelper
class.

Just about all other interaction between an application and a JDO implementation occurs through the PersistenceManager
you got from the factory. Example 12-2 used that PersistenceManager to manage a transaction in which a new Book was
added to the library.

12.1.4 Data Stores

A data store is where you store your data. JDO does not require the data store to be a relational database. While it
most commonly is a relational database, it can be an object database, a CRM system, a filesystem, or something
completely different.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.2 Enhancement
The JDO specification requires every persistent business object to implement the PersistenceCapable interface. Though
this seems to contradict what I have been saying about transparency, it does not. JDO leverages a concept called
enhancement to enable your business objects to implement PersistenceCapable after the fact.

Before deployment of a JDO application, you use a tool on your compiled Java classes to change their bytecode. Your
JDO vendor generally supplies the enhancement tool. No matter what enhancement tool you use, the JDO specification
requires that all vendors be able to support the reference JDO contract for enhancement. In other words, you can
enhance with Vendor A's tools and deploy in an environment using a JDO implementation from Vendor B.

In truth, bytecode enhancement is not a required aspect of JDO. Your vendor, for example, can provide tools to modify
the source code. What is essential to JDO is:

You are not required to code your business objects to any particular specification dictated by JDO.[1]

[1] If you intend to use JDO to support a bean-managed EJB, you need to conform to the EJB specification.

Any bytecode that exists after enhancement can run against any JDO implementation.

12.2.1 Class Metadata

For enhancement to work, you need to tell your enhancement tool about the business object to be made persistent. You
accomplish this task through the creation of an XML file that describes the business object class. Example 12-3 is the
metadata description for the Book class.

Example 12-3. The Book metadata

<?xml version="1.0" ?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">

<jdo>
 <package name="com.imaginary.ora">
 <class name="Book">
 <field name="author"/>
 <field name="isbn"/>
 <field name="title"/>
 </class>
 </package>
</jdo>

This file enables you to identify all persistent business objects and their persistent fields. This example shows only the
most basic metadata description. We can make it more complex by pulling in some design elements from previous
chapters.

<class name="Book">
 <field name="bookID" primary-key="true"/>
 <field name="author"/>
 <field name="isbn"/>
 <field name="title"/>
</class>

This code adds a persistent field for bookID—a field that happens to be a unique value across all Book instances. We can
also add an Author class that has a collection of books:

<class name="Author">
 <field name="authorID" primary-key="true"/>
 <field name="books">
 <collection element-type="com.imaginary.ora.Book"/>
 </field>
 <field name="firstName"/>
 <field name="lastName"/>
</class>

This sample code shows how you can specify a persistent field that is a collection. In this case, it happens to be a
collection of other persistent objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2.2 Running the Enhancer

Once you have written metadata files to describe each persistent object, you run the enhancer on it. The exact syntax
of the enhancer depends greatly on what JDO implementation you are using. To run the reference implementation's
enhancer, you execute the following command line:

Prompt$ java -classpath jdo.jar;jdori.jar;xerces.jar options com.sun.jdori.enhancer.
Main classes and metadata

12.2.3 The Database

At some point, you need to create the tables in your database to support your persistent objects. In general, the JDO
vendor you are using will provide tools that reuse the metadata for your objects to build relational tables. The JDO
specification, however, says nothing about how a relational structure should be created.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.3 Queries
Before you do anything else to your data store of books, you need a way to get them out of the data store. JDO
provides a unique combination of a query API combined with a simplistic query language to enable access to objects in
your data store.

12.3.1 The JDO Extent

JDO makes heavy use of a concept called an extent. An extent is like a virtual collection of persistent objects. By
virtual, I mean that all the objects represented by the extent are probably not loaded into memory. A regular Java
collection, on the other hand, has all elements of the collection in memory. The abstraction of the extent is critical to
JDO programming since it performs important optimization tasks like lazy-loading while hiding these complexities from
your application.

The simplest use of an extent is as a representation for all instances of a particular persistent class. The following code
provides your application with all books in the data store:

Extent ext = mgr.getExtent(Book.class, true);
Iterator books = ext.iterator();

while(books.hasNext()) {
 Book b = (Book)books.next();

 System.out.println("Got: " + b.getTitle());
}
ext.closeAll();

Just as the application worked through the PersistenceManager to create new books, it also works through the
PersistenceManager to get an extent representing existing books. The second parameter—a boolean value—indicates
whether subclasses should be included in the extent. In this example, we indicated that we want subclasses even though
we know Book has no subclasses. The application takes an Iterator from the extent and goes through each one, printing
its title.

12.3.2 The JDO Query

It is rare that you will want the whole list of objects of a certain class. For most applications, you will want to filter that
list based on some set of criteria. The JDO query API provides a key object to enable complex queries, the Query. The
following code provides all books by Anne Rice:

Extent ext = mgr.getExtent(Book.class, true);
Query query = mgr.newQuery(ext, "author= =name");
Collection results;

query.declareParameters("String name");
results = (Collection)query.execute("Anne Rice");

Using your PersistenceManager, you create a query based on an Extent representing all books and a filter for elements in
that Extent. In this case, the filter is based on the author field. It tells the query to look for all books for which the author
equals name. The name token is just a placeholder. In the call to declareParameters(), we tell the query that name is a
parameter to be passed in and that it will be a String. Finally, we get all matching books by calling execute() in the query
with a specific author name—in this case, Anne Rice.

You can specify up to three parameters to any query execution using the preceding syntax. They will be matched to
your parameter declarations in declareParameters() based on order. If you need more than three parameters, you can
use the executeWithArray() method instead of execute():

Extent ext = mgr.getExtent(Person.class, true);
Query query = mgr.newQuery(ext,
 "lastName= =last & city= =cty &state= =st & birthCity = = bc");
Object[] params = { "Allen", "Boston", "MA", "Miami" };
Collection results;

query.declareParameters("String last, String cty, " +
 "String st, String bc");
results = (Collection)query.executeWithArray(params);

This uninteresting query returns all people in your data store with the last name Allen who live in Boston but were born
in Miami.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in Miami.

Whatever syntax you use, the parameter passed should be an object type—the JDO implementation will unwrap into
primitives when appropriate. The best way to execute a multiparameter statement, however, is through the
executeWithMap() method:

Extent ext = mgr.getExtent(Person.class, true);
Query query = mgr.newQuery(ext,
 "lastName= =last & city= =cty &state= =st & birthCity = = bc");
Collection results;
HashMap params;

query.declareParameters("String last, String cty, " +
 "String st, String bc");
params = new HashMap();
params.put("last", "Allen");
params.put("cty", "Boston");
params.put("st", "MA");
pparams.put("bc", "Miami");
results = (Collection)query.executeWithMap(params);

When you use a map, you make your Java code independent of the order specified in your query. You can therefore
make changes to the order of the parameters in the query without having to make any changes to the Java code. If you
had used an array, you would have to make sure the parameters were placed into the array in the proper order.

12.3.3 Complex Queries

JDO supports many different ways for performing queries depending on your application needs. In an application
context, for example, it is common to ask which objects in a subset of objects meet certain criteria. To facilitate these
kinds of queries, JDO enables you to operate on collections as well as extents. The following query provides all of the
books by a particular author published in 1991:

Query query = mgr.newQuery(Book.class, author.getBooks(),
 "year= =yr");
Collection results;

query.declareParameters("int yr");
results = (Collection)query.execute(new Integer(1991));

The code is nearly identical to everything you have seen so far. The key difference is the use of a collection in
constructing the query instead of an extent. In this case, author.getBooks() is a call to get all associated books from an
instance of the Author class representing a specific author. Those books form the set of objects on which the query
operates.

In addition to parameters, JDO also enables you to declare variables to be used in filtering. This feature is useful when
you want to operate on individual elements in a collection field. If, for example, we wanted all authors who had written
for a particular genre, we might execute against the database using the following SQL join:

SELECT Author.authorID
FROM Author, Book
WHERE Author.authorID = Book.bookID
AND Book.genre = "some genre";

JDO does things differently. As before, you start with the Author extent. This time, however, you create a variable that
will represent each of an author's books and compare that book's genre to the target genre:

Extent ext = mgr.getExtent(Author.class, true);
Query query = mgr.newQuery(ext,
 "books.contains(book) & book.genre = =genre");
Collection results;

query.declareParameters("String genre");
query.declareVariables("com.imaginary.ora.Book book");
results = (Collection)query.execute("HORROR");

This critical aspect of variable usage is the contains() call. In truth, it is a rather unintuitive syntactic construct. It is
saying that for each book found in the author's list of books (books), that book will be assigned to the book variable and
used in the comparison book.genre = = genre.

Unlike parameters, multiple variable declarations are separated by semicolons (;).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JDO specification requires that your contains() clause be on the lefthand side of any & expression. Furthermore,
each part of a | expression must have a contains() clause.

Finally, you can order your results using the setOrdering() method in query:

query.setOrdering("lastName descending, firstName descending");

As you would probably expect, this call tells the query to sort on lastName followed by firstName. You can sort on fields of
any primitive type except boolean. In addition, you can sort on fields of a wrapper type (except Boolean), BigDecimal,
BigInteger, String, and Date.

12.3.4 The Filter Language

I have danced around the issue of describing the filtering syntax until now. In general, it is fairly straightforward. It
looks and acts a lot like Java. In fact, the only oddity so far has been the use of a single & for "and". As a whole, the
filter language follows Java syntaxes with some largely natural exceptions. The exceptions include:

The filter syntax provides the ability to compare and operate on primitives and wrappers together.

Objects provide access to only a few methods such as String.startsWith(), String.endsWith(), Collection.contains(),
and Collection.isEmpty().

Operations on NULL values do not throw a NullPointerException. Instead, they evaluate to false.

You use variable declarations to navigate through collections within the filter.

You cannot make assignments in your filters.

& is a logical "and"; && is a conditional "and".

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.4 Changes
You can now create new persistent objects and read them from the underlying data store. The next task is to modify
your persistent objects. JDO does not require any special work for changes to an object—the changes are automatically
reflected in the data store. Deletion, however, requires some work.

Just as the PersistenceManager enables you to create persistent objects through makePersistent(), it enables you to delete
them through deletePersistent():

mgr.deletePersietent(book);

The book is now gone from the data store!

From a technical perspective, deletion is this simple. In reality, JDO does you no favors when it comes to managing
object relationships. The preceding call would, in fact, delete the book from the data store. But it would also leave its
Author object with a NULL value in its list of books. You are responsible for maintaining the integrity of the object
relationships:

Collections books = author.getBooks();
Book book;

// loop through the list, find the one you do not want
books.remove(book);
author.setBooks(books);
mgr.deletePersistent(book);

The integrity of your object relationships and the underlying data store integrity are now protected.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.5 Transactions
Early in the chapter, I introduced some basic transactional semantics in the form of a JDO transaction object that
enables you to begin, commit, and roll back a transaction. In reality, JDO does not require you to operate in a
transactional context. If your environment supports transactions, however, it is a good idea to leverage this
functionality since transactions are ultimately the key factor in long-term data integrity.

12.5.1 The Transaction Class

Each PersistenceManager provides exactly one Transaction to manage transactions. In other words, for operations against a
given PersistenceManager, you can execute at most one transaction at a time.

JDO supports two transaction types:

Data store transaction management

 Optimistic transaction management

Data store transaction management is where JDO lets the underlying data store manage your transactions. From the
time you begin the transaction until the time you commit or roll back, JDO has an open transaction—and all overhead
such as locks associated with it—in the data store. The data store performs and commits or roll backs.

Under optimistic transaction management, a JDO implementation manages transactional integrity locally until a commit
or rollback is issued. For a commit, the implementation verifies the data integrity, opens a transaction with the data
store, and sends all changes at once.

Telling a transaction to use optimistic or data store transaction management is a single method call:

trans.setOptimistic(true);

Passing in true turns on optimistic transaction management, whereas passing in false turns on data store transaction
management. Some JDO implementations will not support optimistic transaction management. In those cases, this
method will throw a JDOUnsupportedOptionException.

12.5.2 Managed Versus Nonmanaged Environments

JDO applications can run either in managed or nonmanaged environments. So far in this chapter, the examples have
assumed a nonmanaged environment. Managed or nonmanaged simply refers to whether the JDO environment
leverages some kind of external transaction management system to manage its transactions. The most common
managed environment you will encounter is using JDO in a J2EE application server to provide bean-managed
persistence to Enterprise JavaBeans.

In a managed environment, your application cannot make calls to commit and roll back transactions. Any attempt to do
so will result in a JDOUserException. Beginning, committing, and rolling back transactions are the job of the application
server.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.6 Inheritance
In object-relational systems, inheritance can be a tricky beast. The problem with inheritance is the lack of support for
inheritance in relational databases. In other words, you need to persist a concept from your application that a relational
system has no way of modeling. Fortunately, JDO handles this beast for you. Figure 12-2 shows a Person class with
many Role instances. Role, however, is an abstract class. Its subclasses include Admin, Employee, Manager, and Contractor.

Figure 12-2. An abstract Role with many implementation classes

We can build this class model using the normal Java approach. The next step is to build a metadata descriptor for the
Person class as shown in Example 12-4.

Example 12-4. A metadata descriptor with abstract persistent fields

<?xml version="1.0" ?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">

<jdo>
 <package name="com.imaginary.ora">
 <class name="Person">
 <field name="personID" primary-key="true"/>
 <field name="lastName"/>
 <field name="firstName"/>
 <field name="title"/>
 <field name="roles">
 <collection element-type="com.imaginary.ora.Role"/>
 </field>
 </class>

 <class name="Role">
 <field name="code"/>
 <field name="name"/>
 </class>

 <class name="Employee"
 persistence-capable-superclass="com.imaginary.ora.Role">
 </class>
 ...
 </package>
</jdo>

This code tells the JDO implementation that Employee is a persistent object and that it derives some or all of its
persistence from the Role class.

Earlier in the chapter, I mentioned how the second argument to getExtent() in PersistenceManager is a boolean indicating
whether subclasses may be counted in the extent. If you tell it not to count subclasses, it will return only exact
instances of the class in question. This feature enables you to limit queries to a specific class or to the class and its
subclasses.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of Java Database Best Practices is a taguan. The taguan (Petaurista petaurista) is giant flying
squirrel. It lives in dense, tropical rainforests, ranging from the eastern regions of Afghanistan to Java, and from
Kashmir, Taiwan, and southern China to Sri Lanka. It is most often found in the Pakistan's temperate forests.

The squirrel conceals its nest in the cavity of a tree, raising 2-3 young at a time. It has a lifespan of approximately 16
years. It is a nocturnal animal, recognizable by its big eyes and reddish color. The taguan consumes a diet of pine
cones, fruit, leaves, and nuts.

The taguan is an excellent climber. Additionally, it is referred to as a "flying" squirrel because of the muscular
membrane that extends from its wrists to its hind legs, enabling it to glide long distances. It leaps from high tree
branches and the tops of trees, controlling the direction of its flight by flexing and relaxing the muscles of the
membrane.

Colleen Gorman was the production editor, and Norma Emory was the copyeditor for Java Database Best Practices .
Linley Dolby and Jane Ellin provided quality control. Angela Howard wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover image is a 19th-
century engraving from Animate Creation, Volume II. Emma Colby produced the cover layout with QuarkXPress 4.1
using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Colleen Gorman.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Madeleine
Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, and Jeff Liggett.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

! (negation, JNDI search filter)
"Denormalization Guidelines" (Mullins)
& (conjunction, JNDI search filter)
& (logical and, JDO filters)
&& (conditional and, JDO filters)
<array> tag
<bag> tag
<cascade-delete> tag
<container-transaction> tag
<ejb-name> tag
<jsp:include> tag
<jsp:useBean> tag
<list> tag
<map> tag
<method> tag
<primitive-array> tag
<query> tag
<relationships> tag
<set> tag
<trans-attribute> tag
* (wildcard, JNDI search filter)
* (multiplication, SQL)
+ (addition, SQL)
- (subtraction, SQL)
/ (division, SQL)
< (less than, SQL)
<%...%> (Java code in JSP) 2nd
<%=...%> (values to print in JSP) 2nd
<%@...%> (directives in JSP)
<= (less than, JNDI search filter)
<= (less than or equal to, SQL)
<> (not equal, SQL)
= (equality, JNDI search filter)
= (equal, SQL)
=* (presence, JNDI search filter)
> (greater than, SQL)
>= (greater than, JNDI search filter)
>= (greater than or equal to, SQL)
\ (escape, JNDI search filter)[\]
| (disjunction, JNDI search filter)
~ (complement, SQL)
~= (approximate equality, JNDI search filter)
1NF [See first normal form]
2NF [See second normal form]
3NF [See third normal form]
4NF [See fourth normal form]
5NF [See fifth normal form]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

absolute() method (JDBC)
abstract schema name
abstraction
accessor methods [See getter methods setter methods]
ACID properties
Active Directory Service [See ADS]
addBatch() method (JDBC)
addition (+), SQL
ADS (Active Directory Service)
aliasing, in SQL
Also Sprach Zarathustra (Nietzsche)
AND operator, SQL
anomalies, database 2nd
application (business) logic
 client/server architecture and
 design patterns supporting
 distributed architectures and
 separation of
application assembler, EJB
application exceptions
applications
 database, architectures for
 developers for separate layers of
 Guest Book example [See Guest Book application]
 JDO 2nd
 persistence against relational database 2nd [See also persistence]
 persistence models for types of
 simple
approximate equality (~=), JNDI search filter
architectures
 database
 network
 principles for
 software 2nd
 system 2nd
 relational data
arithmetic operators, in SQL
articles [See publications]
assigned algorithm (Hibernate)
atomicity of transaction
attribute domain [See data types]
Attributes class (JNDI) 2nd
attributes, entity 2nd
attributes, object
 JNDI lookups of
 multivalued, mapping of
attributes, table [See columns]
auto-commit transactions 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

bandwidth for database servers
batch processing, with JDBC
batch transactions
BCNF [See Boyce-Codd normal form]
bean-managed persistence [See BMP]
beans, types of 2nd
begin() method, Database session
beginTransaction() method
behavioral view, software architecture
Being and Time (Heidegger)
BETWEEN operator, SQL
BIGINT datatype (SQL)
binary data, storing in database
BMP (bean-managed persistence) 2nd
 data access objects for
 exception handling with
 state management for
 using with JDO persistence
 value objects for
books [See publications]
Boyce-Codd normal form (BCNF)
business logic [See also application logic]
 as part of application logic
 for Guest Book application
business logic layer, distributed architectures
business objects, JDO 2nd
 modifying
 querying
business patterns

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Cache class 2nd 3rd
cache() method
caching objects 2nd
Call Level Interface [See CLI, X/OPEN SQL]
CallableStatement interface (JDBC)
candidate key
Castor
 field mapping in XML
 persistence methods
 persistence with
 searches
 software requirements for
 web site for
CHAR datatype (SQL) 2nd
character data types, in SQL
Chomsky, Noam (philosopher) 2nd
ClassCastException
CLASSPATH environment variable
CLI (Call Level Interface), X/OPEN SQL
client, fat
client/server architecture
close() method, Database session
CMP (container-managed persistence) model
 choosing
 EJB 1.x CMP 2nd 3rd
 EJB 2.x CMP 2nd
CMR (container-managed relationships)
Codd, E. F. (relational principles)
columns (attributes)
Comment class 2nd
CommentDAO class 2nd
commit() method (JDBC) 2nd
commit() method, Database session
Common Object Request Broker Architecture [See CORBA]
comparison operators, in SQL
complement (~), SQL
complex value objects
component models 2nd [See also EJB; JavaBeans]3rd 4th
composite entities [See join tables]
composite pattern
concurrency
 optimistic
 pessimistic
conditional and (&&), JDO filters
conjunction (&), JNDI search filter
CONNECT statement (SQL)
Connection interface (JDBC) 2nd 3rd 4th
connection pooling
ConnectionPoolDataSource class (JDBC)
consistency of transaction
constraints 2nd
contact information, O'Reilly & Associates, Inc.
container provider, EJB
container-managed persistence model [See CMP model]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

container-managed relationships [See CMR]
contains() method (JDO)
content generation layer, distributed architectures
content management layer, distributed architectures
control logic
 as part of application logic
 for Guest Book application
conventions used in this book
CORBA (Common Object Request Broker Architecture)
CREATE DATABASE statement (SQL)
CREATE INDEX statement (SQL)
CREATE statement (SQL)
CREATE TABLE statement (SQL)
create() method, Comment class
create() method, Database session
createDatastore() method
createStatement() method (JDBC)
The Critique of Pure Modernity (Kolb)
cross join, in SQL
cross-reference tables [See join tables]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Darwin's Dangerous Idea (Dennett)
data access logic
data access object pattern
data access objects
 for Guest Book application
 mementos used with
data architecture [See relational data architecture]
data integrity, transactions used to ensure
data models 2nd [See also relational model]
data storage layer, distributed architectures
data storage logic
data stores, JDO
data types (attribute domain) 2nd
data types (SQL)
data, dividing among disks
database 2nd 3rd
 anomalies of 2nd
 binary data in
 connecting to, with JDBC
 connection pooling
 creating with SQL
 deleting in SQL
 JDO
 locking by
 metadata about
 object-oriented [See OODBMS ORDBMS]
 persistence using 2nd [See also persistence]
 querying, in SQL 2nd 3rd
 transaction log
database application architectures
 network
 principles of
 software 2nd
 system 2nd
database engine
Database Programming with JDBC and Java (Reese)
database servers
 bandwidth for
 processing load placed on
database software
DatabaseMetaData interface (JDBC)
DataSource class (JDBC) 2nd
DataSource connectivity (JDBC)
Davidson, Donald (philosopher) 2nd
DECIMAL datatype (SQL)
declarative transaction management
declareParameters() method (JDO)
DELETE statement (SQL) 2nd
deletePersistent() method (JDO)
deletion anomalies 2nd
Dennett, Daniel (philosopher) 2nd
denormalization 2nd [See also normalization]
deployer, EJB
Descartes, René (philosopher) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

design patterns 2nd
Design Patterns (Gamma, Helm, Johnson, Vlissides)
development
 EJB roles for
 for separate application layers
diagram [See ERD]
DirContext class (JNDI)
directives, in JSP page
directory service 2nd [See also JNDI]
dirty read
Discourse on the Method (Descartes)
disjunction (|), JNDI search filter
disks 2nd 3rd
distributed architectures
distributed component management
distributed objects, accessing [See RMI]
distributed transactions 2nd
division (/), SQL
DKNF (domain/key normal form) [See seventh normal form]
DNS (Internet Domain Name Service)
doEndTag() method (JSP)
domain [See data types]
Domain Name Service [See DNS]
domain/key normal form [See seventh normal form]
DOUBLE datatype (SQL)
Driver class (JDBC) 2nd 3rd
DriverManager class (JDBC)
DriverManager connectivity (JDBC) 2nd
drivers, JDBC
DROP DATABASE statement (SQL)
durability of transaction

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

EJB (Enterprise JavaBeans) 2nd
 accessing from JNDI 2nd
 compared to JDO
 component model 2nd
 development roles for
 distributed architecture used with
 persistence models
 BMP and 2nd
 BMP with JDO
 EJB 1.x CMP 2nd 3rd
 EJB 2.x CMP 2nd 3rd
 transactions 2nd
 when to use 2nd 3rd
ejbCreate() method 2nd 3rd
EJBException
ejbFindXXX() methods 2nd
ejbLoad() method 2nd
EJBObject class
ejbPostCreate() method
EJBQL (Enterprise JavaBeans Query Language)
ejbRemove() method
ejbStore() method 2nd
encapsulation
ENCRYPT() function (SQL)
enhancer, JDO
An Enquiry Concerning Human Understanding (Hume)
Enterprise JavaBeans [See EJB]
Enterprise JavaBeans (Monson-Haefel) 2nd 3rd
enterprise platforms, types of
entities
entity beans 2nd 3rd
 as JDO PersistenceCapable class
 handling persistence for [See CMP data access objects]
 sharing data with client [See value objects]
entity relationship diagram [See ERD]
EntityBean class
equal (=), SQL
equality (=), JNDI search filter
ERD (entity relationship diagram) 2nd
error handling [See exception handling]
escape (\), JNDI search filter
event management 2nd [See also transactions]
exception handling
 EJB BMP
 JDBC 2nd
 RMI
execute() method (JDBC)
execute() method (JDO)
executeBatch() method (JDBC)
executeQuery() method (JDBC)
executeUpdate() method (JDBC)
executeWithArray() method (JDO)
executeWithMap() method (JDO) 2nd
EXPLAIN command (SQL)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Extent class (JDO)
extents, JDO

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

factory pattern
fat client
fat server
field mapping [See object-relational mapping]
fields, table [See columns]
fifth normal form (5NF)
filter language, JDO
findByPrimaryKey() method
finder methods
 BMP
 EJB 1.x CMP 2nd
 EJB 2.x CMP
first normal form (1NF)
FK, indicating foreign key
FLOAT datatype (SQL) 2nd
flush() method
fonts used in this book
foreign key 2nd
fourth normal form (4NF) 2nd 3rd
full join, in SQL
functional dependencies
functions, in SQL

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Gamma, Erich (Design Patterns)
Garrett Millikan, Ruth (philosopher)
getApproved() method, Comment class
getComment() method, Comment class
getConnection() method (JDBC)
getDatabase() method
getExtent() method (JDO)
getMetaData() method (JDBC)
getOQLQuery() method
getPending() method, Comment class
getPersistenceManagerFactory() method (JDO)
getReference() method (JNDI)
getResultSet() method (JDBC)
getter methods
 for CMR fields
 in JavaBeans
 in ResultSet interface
getUpdateCount() method (JDBC) 2nd
greater than (>), SQL
greater than (>=), JNDI search filter
greater than or equal to (>=), SQL
GROUP BY clause (SQL)
Guest Book application
 business logic for
 cache for
 control logic for
 data access objects for
 design of
 mementos
 sequence generation
 view logic for

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

hardware
HashMap class 2nd 3rd
Heidegger, Martin (philosopher) 2nd
Helm, Richard (Design Patterns)
Hibernate
 field mapping in XML
 persistence methods
 persistence with 2nd
 searches
 software requirements for
 web site for
hierarchical data model
HIGH-LOW algorithm (Castor)
hilo.hex algorithm (Hibernate)
hilo.long algorithm (Hibernate)
history
 of Java database programming 2nd
 of SQL
home for business objects (EJB)
home interface, for beans
hostility of network segment
HTML
 generating dynamically [See JSP]
 MVC pattern used for
Hume, David (philosopher) 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

IDE disks
identifying attributes
IDENTITY algorithm (Castor)
IN operator, SQL
indexes
 creating in SQL
 disk assignments for
 unique
The Individuation of Events (Davidson)
inheritance
 JDO modeling for
 mapping to relational database
InitialContext class (JNDI) 2nd 3rd
inner join, in SQL 2nd
INSERT statement (SQL) 2nd
insertion anomalies 2nd
instance, of entity
INT datatype (SQL)
INTEGER datatype (SQL)
integration services layer, distributed architectures
integrity [See data integrity]
internationalization, factory pattern used by
Internet Domain Name Service [See DNS]
isEmpty() method
isolation levels
isolation of transaction 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

J2EE (Java 2 Enterprise Edition) 2nd
J2SE (Java 2 Standard Edition)
Java 2 Enterprise Edition [See J2EE]
Java 2 Standard Edition [See J2SE]
Java applications [See applications]
Java Data Objects [See JDO]
Java Message Service API [See JMS API]
Java Naming and Directory Interface [See JNDI]
Java Swing 2nd
JavaBeans component model 2nd 3rd
JavaServer Pages [See JSP]
JDBC
 accessing from JNDI
 batch processing
 batch transactions
 classes and interfaces for
 connecting to database
 distributed transactions
 drivers for
 exception handling 2nd
 history of 2nd
 limitations of
 metadata
 ODBC bridge for 2nd
 prepared statements
 batch processing of
 pooling of
 properties file for database connection
 queries, executing 2nd
 savepoints
 SQL standard used by
 stored procedures 2nd
 transaction isolation levels
 transactions 2nd 3rd
 transactions paradigm
 URL 2nd
 when to use
JDO (Java Data Objects)
 applications 2nd
 compared to EJB CMP
 data stores
 database for
 EJB BMP and
 enhancement
 extents
 filter language
 implementations
 inheritance
 instances (business objects) 2nd
 modifying
 querying
 managed and nonmanaged environments
 metadata for business object
 persistence model 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 properties
 software requirements for
 transactions 2nd
 when to use 2nd
JDOHelper class (JDO) 2nd
JDOUnsupportedOptionException
JDOUserException
JMS (Java Message Service) API
JNDI (Java Naming and Directory Interface)
 architecture of
 component access from
 EJB using 2nd
 programming with
 RMI and
 SPI (Server Provider Interface) for
Johnson, Ralph (Design Patterns)
join tables
joins, in SQL 2nd
JSP (JavaServer Pages)
 custom tags for
 page structure for
 programming with
 tag libraries developed with JavaBeans

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Kant, Immanuel (philosopher) 2nd
key generation [See sequence generation]
Kolb, David (philosopher) 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Language and Thought (Chomsky)
Language, Thought, and other Biological Categories (Garrett Millikan)
lazy-loading 2nd 3rd
left join, in SQL
LEFT() function (SQL)
LENGTH() function (SQL)
less than (<), SQL
less than (<=), JNDI search filter
less than or equal to (<=), SQL
LIKE operator, SQL
listener pattern
load() method, Comment class
locking
log files
 disk assignments for
 transactions
logical and (&), JDO filters
logical data model
logical operators, in SQL 2nd
lookup tables
lookups, naming and directory service
lossless decomposition

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

makePersistent() method (JDO)
managed environment, JDO
Mandatory transactional attribute
many-to-many relationships 2nd
mapping [See object-relational mapping]
marshaling
MAX algorithm (Castor)
MEDIUMINT datatype (SQL)
memento design pattern 2nd 3rd
memory
 object caching
 RAM 2nd
message-driven beans
metadata
 in JDBC
 in JDO
Microsoft Active Directory Service [See ADS]
Millikan, Ruth Garrett (philosopher)
missing value [See NULL]
model-delegate pattern
model-view-controller pattern [See MVC pattern]
models [See component models data models persistence, models relational model]
Monson-Haefel, Richard (Enterprise JavaBeans) 2nd 3rd
Mullins, Craig ("Denormalization Guidelines")
multiplication (*), SQL
multivalued attributes
MVC (model-view-controller) pattern
mysql command

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Name class (JNDI)
Naming class (RMI)
naming service 2nd [See also JNDI]
native algorithm (Hibernate)
natural join, in SQL
NCHAR datatype (SQL) 2nd
negation (!), JNDI search filter
network architecture
network data model
network segmentation
Never transactional attribute
next() method (JDBC)
Nietzsche, Friedrich (philosopher) 2nd
NoInitialContextException
nonmanaged environment, JDO
nonrepeatable read
normal forms
normalization 2nd [See also denormalization]
 Boyce-Codd normal form (BCNF)
 fifth normal form (5NF)
 first normal form (1NF)
 fourth normal form (4NF) 2nd 3rd
 goals of
 preparing for
 second normal form (2NF)
 seventh normal form (DKNF)
 third normal form (3NF) 2nd
NoSuchElementException
not equal (<>), SQL
NOT NULL constraint (SQL)
NOT operator, SQL
NotSupported transactional attribute
NULL
 comparisons with, in SQL
 Java treatment of
 NOT NULL constraint, in SQL
NullPointerException
NUMBER datatype (SQL)
numeric data types, in SQL
NVARCHAR datatype (SQL)
NVARCHAR2 datatype (SQL)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

O'Reilly & Associates, Inc., contact information for
object data model
Object Query Language [See OQL]
object reuse 2nd
object serialization
object-oriented database management system [See OODBMS]
object-oriented principles
object-relational database management systems [See ORDBMS]
object-relational mapping
 Castor
 EJB CMP
 Hibernate
objects
 attributes of, multivalued
 caching
 home for (EJB)
 lazy-loading attributes of
 mapping to relational database
 remote, accessing [See RMI]
 sharing state between [See memento design pattern]
 soft references to
 strong references to
ODBC (Open Database Connectivity) 2nd
one-to-many relationships 2nd
one-to-one relationships 2nd
OODBMS (object-oriented database management system)
Open Database Connectivity [See ODBC]
open source software 2nd [See also Castor; Hibernate]
operators, in SQL
optimistic concurrency
optimistic transaction management, JDO 2nd
OQL (Object Query Language)
OQLQuery class
OR operator, SQL
ORDBMS (object-relational database management system)
ORDER BY clause (SQL)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

P2P (peer-to-peer) architecture
patterns, software design [See design patterns]
peer-to-peer architecture [See P2P architecture]
performance
 bandwidth
 denormalization affecting
 disk access speed
 locking affecting
 RAM
 transactions affecting 2nd
persistence
 design patterns 2nd
 JavaBeans not supporting
 models
 BMP 2nd
 Castor 2nd 3rd
 choosing 2nd
 EJB 1.x CMP 2nd 3rd
 EJB 2.x CMP 2nd
 Hibernate 2nd 3rd 4th 5th
 history of
 JDO 2nd 3rd 4th
 JDO with EJB BMP
 standards and
 transparency of
 RMI not supporting
persistence delegate pattern [See data access object pattern]
persistence-capable class, JDO
PersistenceCapable interface (JDO) 2nd
PersistenceException
PersistenceManager class (JDO)
PersistenceManagerFactory class (JDO) 2nd
pessimistic concurrency
phantom read
philosophers quoted in this book
physical data model
PK, indicating primary key
polymorphism
prepareCall() method (JDBC)
prepared statements
 batch processing
 pooling
PreparedStatement interface (JDBC) 2nd 3rd 4th
prepareStatement() method (JDBC)
presence (=*), JNDI search filter
previous() method (JDBC)
primary key 2nd [See also unique index]3rd
 candidate keys for
 data types for
 foreign keys and
 indicating in ERD
 SQL 2nd
 unique identifiers for [See sequence generation]
properties file, for JDBC database connection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

provider, EJB
psql command
publications
 about denormalization
 about design patterns
 about EJB 2nd 3rd
 about JDBC
 about philosophy
 web site listing

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

queries [See EJBQL OQL searches SQL]
Query class (JDO)
QueryResults class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

RAID of IDE disks
RAM
 for database engine
 requirements for batch transactions
RAND() function (SQL)
read committed transactions, isolation level
read uncommitted transactions, isolation level
read-heavy data
rebind() method (RMI) 2nd
recovery, from batch transactions
Reese, George (Database Programming with JDBC and Java)
Reference class (JNDI) 2nd
Referenceable interface (JNDI)
referential integrity, managed by CMR
registerOutParameter() method (JDBC)
Registration class
relational data architecture
 denormalization
 modeling with ERD 2nd
 normalization
relational database [See database]
relational model
 constraints
 entities
 normalization protecting
 NULL value
 relationships in
relative() method (JDBC)
Remote interface (RMI) 2nd
Remote Method Invocation [See RMI]
RemoteException 2nd 3rd
remove() method, Comment class
repeatable read transactions, isolation level
Required transactional attribute
RequiresNew transactional attribute
ResourceBundle class (JDBC)
resources [See publications web sites]
ResultSet interface (JDBC) 2nd
ResultSetMetaData interface (JDBC)
right join, in SQL
RMI (Remote Method Invocation)
 bean interfaces using
 exceptions
 JNDI and
 limitations of
 object serialization
 remote interfaces
 remote object access
rmic command (RMI)
rmiregistry (RMI)
rollback() method (JDBC) 2nd
ROUND() function (SQL)
rows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Sartre, Jean-Paul (philosopher) 2nd
save() method, Comment class
saveOrUpdate() method
savepoints 2nd
scrollable result set, in JDBC
SCSI disks
searches
 BMP
 Castor
 EJB 1.x CMP
 EJB 2.x CMP
 Hibernate
 JavaBeans not supporting
 JDO data store 2nd
 JNDI objects
 RMI not supporting
SearchResult class (JNDI)
second normal form (2NF)
security
 JavaBeans not supporting
 network segmentation and
 RMI not supporting
seeds, for sequence generation
segmentation [See network segmentation]
SELECT statement (SQL) 2nd
selector methods, EJB 2.x CMP
sensitivity of network segment
seqhilo.long algorithm (Hibernate)
SEQUENCE algorithm (Castor)
sequence algorithm (Hibernate)
sequence generation
 Castor
 for Guest Book application
 Hibernate
Serializable interface (RMI)
serializable transactions, isolation level
serialization persistence model
serialization, object
Server Provider Interface for JNDI [See SPI for JNDI]
server provider, EJB
server, fat
session beans 2nd 3rd
SessionBean class
SessionFactory class
setOrdering() method (JDO)
setter methods
 for CMR fields
 in JavaBeans
 in PreparedStatement interface
setTransactionIsolation() method
seventh normal form (DKNF)
simple applications
simple value objects
SMALLINT datatype (SQL)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SoftReference object
software architecture 2nd
SPI (Server Provider Interface) for JNDI
SQL (Structured Query Language)
 batch processing for
 creating database with
 creating indexes
 creating tables
 data types
 deleting database with
 deleting rows
 functions
 history of
 inserting rows in tables
 interactive tools for
 joins
 operators
 queries 2nd 3rd 4th 5th
 standards for
 syntax for
 updating rows in tables
SQLException 2nd 3rd
SQRT() function (SQL)
state management, BMP
state of application, saving to database [See persistence]
Statement interface (JDBC) 2nd 3rd 4th 5th
static content, in JSP page
static view, software architecture
stored procedures 2nd 3rd
storeFile() method
strong references
Structured Query Language [See SQL]
subtraction (-), SQL
Supports transactional attribute
supportsTransactionIsolationLevel() method
supportsTransactions() method
Swing (Java) 2nd
symbols
 in ERDs
 JDO filters
 JNDI search filters
 JSP code tags 2nd
 SQL operators
system administrator
system architecture 2nd
system data, disk assignments for

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

tables
 creating in SQL
 deleting rows, in SQL
 disk assignments for
 indexes for, in SQL
 inserting rows, with SQL
 joining, in SQL 2nd
 lookup tables
 querying, in SQL
 updating rows, in SQL
tags, in JSP page 2nd
TagSupport class (JSP)
The Critique of Pure Reason (Kant)
third normal form (3NF) 2nd
timestamp, used in optimistic concurrency
TINYINT datatype (SQL)
Tractatus Logico Philosphicus (Wittgenstein)
Transaction class (JDO)
transaction log, database
TRANSACTION_NONE constant
TRANSACTION_READ_COMMITTED constant
TRANSACTION_READ_UNCOMMITTED constant
TRANSACTION_REPEATABLE_READ constant
TRANSACTION_SERIALIZABLE constant
TransactionAbortedException
transactions
 auto-commit 2nd
 batch
 BMP 2nd
 BMP with JDO
 concurrent
 corresponding to use cases
 designing
 distributed 2nd
 EJB CMP 2nd
 history of
 isolation levels for
 JavaBeans not supporting
 JDBC 2nd 3rd
 JDO 2nd
 locking
 log file for
 optimistic 2nd
 paradigms
 properties of
 RMI not supporting
 rolling back 2nd
 savepoints 2nd
 stored procedures
 two-phase commits
transitive dependencies
transparency of persistence models
Truth and Existence (Sartre)
tuples [See rows]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

two-phase commits
two-tier architecture [See client/server architecture]
typographical conventions used in this book

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UI (user interface)
 patterns
 view logic for
UI (user interface) layer, distributed architectures
unary operators, in SQL
UnicastRemoteObject class (RMI)
unique index 2nd
unknown value [See NULL]
unmarshaling
update anomalies 2nd
UPDATE statement (SQL) 2nd
URL for JDBC database connection 2nd
use cases, corresponding to transactions
user actions, control logic for
User class (JNDI)
user interface [See UI]
UserFactory class (JNDI)
UUID algorithm (Castor)
uuid.hex algorithm (Hibernate)
uuid.string algorithm (Hibernate)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

value objects 2nd
VARCHAR datatype (SQL)
VARCHAR2 datatype (SQL)
view logic
 as part of application logic
 for Guest Book application
Vlissides, John (Design Patterns)
vm.hex algorithm (Hibernate)
vm.long algorithm (Hibernate)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

wasNull() method (JDBC)
web applications
 EJB for
 JDBC for
 JDO for
 MVC pattern used for
web pages, generating dynamically [See JSP]
web services layer, distributed architectures
web site architecture
web sites
 Castor
 for this book
 Guest Book application
 Hibernate
 JDBC drivers
 JDO reference implementation 2nd
 JNDI service providers
 O'Reilly & Associates, Inc.
WHERE clause (SQL) 2nd
wildcard (*), JNDI search filter
Wittgenstein, Ludwig (philosopher) 2nd
WORA (Write Once, Run Anywhere)
Write Once, Run Anywhere [See WORA]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

X/OPEN SQL, CLI (Call Level Interface)
XHTML, generating dynamically [See JSP]
XML
 Castor field mapping
 EJB CMP field mapping
 generating dynamically [See JSP]
 Hibernate field mapping
 JDO metadata descriptions
 JNDI data source configuration
 JSP class mappings in

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

