
[Team LiB]

• Table of Contents
• Index
• Examples
JavaScript™ by Example

By Ellie Quigley

Publisher: Prentice Hall

Pub Date: June 19, 2003

ISBN: 0-13-140162-9

Pages: 752

In JavaScript by Example, Ellie Quigley teaches JavaScript using the same proven approach that's made her the world's
favorite scripting author and instructor. This book's unique and classroom-tested learning path contains hundreds of
small, easy-to-understand examples that demonstrate the full range of JavaScript's power. One step at a time, Quigley
guides new JavaScript programmers through every essential technique, from script setup to advanced DOM and CSS
programming. Coverage includes:

Data types, literals, and variables

Operators, control structures, and functions

Building dialog boxes and working with JavaScript objects using the Browser object: navigator, windows,
frames, dynamic images, and links

Event handling, regular expressions, and form validation

The JavaScript Document Object Model (DOM), Cascading Style Sheets (CSS), and Dynamic HTML

Whether you're a first-time or long-time scripter, a Web professional or sysadmin, Ellie Quigley will help you write rock-
solid JavaScripts that get the job done.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Examples
JavaScript™ by Example

By Ellie Quigley

Publisher: Prentice Hall

Pub Date: June 19, 2003

ISBN: 0-13-140162-9

Pages: 752

 Copyright

 About Prentice Hall Professional Technical Reference

 Preface

 Acknowledgments

 Chapter 1. Introduction to JavaScript

 Section 1.1. What JavaScript Is

 Section 1.2. What JavaScript Is Not

 Section 1.3. What JavaScript Is Used For

 Section 1.4. JavaScript and Events

 Section 1.5. What Versions? What Browsers?

 Section 1.6. Where to Put JavaScript>

 Section 1.7. JavaScript and Old or Disabled Browsers

 Section 1.8. JavaScript from External Files

 EXERCISES

 Chapter 2. Script Setup

 Section 2.1. The HTML Document and JavaScript

 Section 2.2. Syntactical Details

 Section 2.3. Generating HTML and Printing Output

 Section 2.4. About Debugging

 EXERCISES

 Chapter 3. The Building Blocks: Data Types, Literals, and Variables

 Section 3.1. Data Types

 Section 3.2. Variables

 Section 3.3. Bugs to Watch For

 EXERCISES

 Chapter 4. Dialog Boxes

 Section 4.1. Interacting with the User

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 4.1. Interacting with the User

 EXERCISES

 Chapter 5. Operators

 Section 5.1. About JavaScript Operators and Expressions

 Section 5.2. Types of Operators

 Section 5.3. Number, String, or Boolean? Datatype Conversion

 Section 5.4. Special Operators

 EXERCISES

 Chapter 6. Under Certain Conditions

 Section 6.1. Control Structures, Blocks, and Compound Statements

 Section 6.2. Conditionals

 Section 6.3. Loops

 EXERCISES

 Chapter 7. Functions

 Section 7.1. What Is a Function?

 Section 7.2. Debugging

 EXERCISES

 Chapter 8. Objects

 Section 8.1. What Are Objects?

 Section 8.2. User-Defined Objects

 Section 8.3. Manipulating Objects

 EXERCISES

 Chapter 9. JavaScript Core Objects

 Section 9.1. What Are Core Objects?

 Section 9.2. Array Objects

 Section 9.3. Array Properties and Methods

 Section 9.4. The Date Object

 Section 9.5. The Math Object

 Section 9.6. What Is a Wrapper Object?

 EXERCISES

 Chapter 10. The Browser Objects: Navigator, Windows, and Frames

 Section 10.1. JavaScript and the Browser Object Model

 EXERCISES

 Chapter 11. The Document Objects: Forms, Images and Links

 Section 11.1. The Document Object Model

 Section 11.2. Introduction to Forms

 Section 11.3. Introduction to Images

 Section 11.4. Introduction to Links

 EXERCISES

 Chapter 12. Handling Events

 Section 12.1. Introduction to Event Handlers

 Section 12.2. Event Handlers as JavaScript Methods

 Section 12.3. Handling a Window or Frame Event

 Section 12.4. Handling Mouse Events

 Section 12.5. Handling Link Events

 Section 12.6. Handling a Form Event

 Section 12.7. Handling Key Events: onKeyPress, onKeyDown, and onKeyUp

 Section 12.8. Handling Error Events

 Section 12.9. The event Object

 EXERCISES

 Chapter 13. Regular Expressions and Pattern Matching

 Section 13.1. What Is a Regular Expression?

 Section 13.2. Creating a Regular Expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 13.2. Creating a Regular Expression

 Section 13.3. Getting Control—The Metacharacters

 Section 13.4. Form Validation with Regular Expressions

 EXERCISES

 Chapter 14. Cookies

 Section 14.1. What Are Cookies?

 Section 14.2. Creating a Cookie with JavaScript

 EXERCISES

 Chapter 15. Dynamic HTML: Style Sheets, the DOM, and JavaScript

 Section 15.1. What Is Dynamic HTML?

 Section 15.2. What Is a Style Sheet?

 Section 15.3. Types of Style Sheets

 Section 15.4. Where Does JavaScript Fit In?

 EXERCISES

 Appendix A. JavaScript Web Resources

 Appendix B. HTML Documents: A Basic Introduction

 Section B.1. Intro to the Intro

 Section B.2. What Is HTML?

 Section B.3. HTML Tags

 Section B.4. The Minimal HTML Document

 Section B.5. Character Formatting

 Section B.6. Linking

 Section B.7. Adding Comments

 Section B.8. Case Sensitivity

 Section B.9. Graphics and Images

 Section B.10. Troubleshooting

 Section B.11. Metatags, Cascading Style Sheets, and Java

 Section B.12. Looking Behind the Scenes (or, What Did We Do Before the Right-Click?)

 Section B.13. What About Frames?

 Section B.14. Some Final Thoughts

 Appendix C. CGI and Perl: The Hyper Dynamic Duo

 Section C.1. What Is CGI?

 Section C.2. Internet Communication Between Client and Server

 Section C.3. Creating a Web Page with HTML

 Section C.4. How HTML and CGI Work Together

 Section C.5. Log Files

 Section C.6. Where to Find CGI Applications

 Section C.7. Getting Information Into and Out of the CGI Script

 Section C.8. Processing Forms with CGI

 Section C.9. The CGI.pm Module

 EXERCISE C.1

 EXERCISE C.2

 License Agreement and Limited Warranty

 About the CD-ROM

 Using the CD-ROM Contents

 System Requirements

 License Agreement

 Technical Support

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright
Library of Congress Cataloging-in-Publication Data

Quigley, Ellie.
 JavaScript by example / Ellie Quigley.
 p. cm.
 ISBN 0-13-140162-9
 1. JavaScript (Computer program language) I. Title.
 QA76.73.J39Q54 2003
 005.13'3--dc21
 2003050630

Production editor/compositor: Vanessa Moore

Cover design director: Jerry Votta

Cover designer: Anthony Gemmellaro

Manufacturing buyer: Maura Zaldivar

Editor-in-chief: Mark Taub

Editorial assistant: Sarah Hand

Marketing manager: Curt Johnson

Full-service production manager: Anne R. Garcia

© 2004 by Pearson Education, Inc.

Publishing as Prentice Hall Professional Technical Reference

Upper Saddle River, NJ 07458

Prentice Hall books are widely used by corporations and government agencies for training, marketing, and resale.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales. For more information, please contact:

U.S. Corporate and Government Sales

1-800-382-3419; corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales

1-317-581-3793; international@pearsontechgroup.com

All products or services mentioned herein are the trademarks or registered trademarks of their respective owners. All
rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing
from the publisher.

JavaScript 1.5 Core Reference © 2000 Netscape Communications Corporation. All rights reserved. JavaScript is a
registered trademark of Sun Microsystems used under license for technology developed and owned by Netscape. All
other trademarks are the exclusive property of their respective owners. Learn more about Netscape DevEdge at
http://devedge.netscape.com/ or find links to Netscape's browser download site at
http://channels.netscape.com/ns/browsers/download.jsp.

Printed in the United States of America

1st Printing

Pearson Education Ltd.
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education—Japan
Pearson Education Malaysia, Pte. Ltd.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

About Prentice Hall Professional Technical
Reference
With origins reaching back to the industry's first computer science publishing program in the 1960s, and formally
launched as its own imprint in 1986, Prentice Hall Professional Technical Reference (PH PTR) has developed into the
leading provider of technical books in the world today. Our editors now publish over 200 books annually, authored by
leaders in the fields of computing, engineering, and business.

Our roots are firmly planted in the soil that gave rise to the technical revolution. Our bookshelf contains many of the
industry's computing and engineering classics: Kernighan and Ritchie's C Programming Language, Nemeth's UNIX
System Adminstration Handbook, Horstmann's Core Java, and Johnson's High-Speed Digital Design.

PH PTR acknowledges its auspicious beginnings while it looks to the future for inspiration. We continue to evolve and
break new ground in publishing by providing today's professionals with tomorrow's solutions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preface
After years of teaching scripting languages, I recently decided it was time to try teaching JavaScript, and went on a
search for the right book for my students. There were so many JavaScript books on the bookshelves, it was hard to
know where to begin. I started buying one at a time, reading and sifting through them, always feeling that something
was missing. Like Cinderella's shoe, I couldn't find the right fit. Either the book was too heavy on the technical side, but
lacking in pictures and examples, or it was filled with slide shows, rollovers, and scrolling banners, but brief on the
technical side. I wanted something that did both, a book that would demonstrate both the technical and the fun
elements of JavaScript. I searched and searched, and found many excellent sources, but in the end, I couldn't find the
perfect book for my class, so I decided to write my own.

With books and manuals piled high around my computer desk, I weeded through the best and the worst, gleaning out
information and beginning to compile my new "By Example" book. I browsed through Internet tutorials and student
guides, and studied Web pages, always looking for the best way to get the material across. I even delved into Adobe
Photoshop and Macromedia Dreamweaver, while roaming from Maine to San Francisco with my digital camera, snapping
pictures that would enhance my examples and add to the colorful side of JavaScript. And after much cutting and
pasting, cropping and trimming, testing and trying, a new book has evolved—the one I was looking for. The shoe finally
fits!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments
Many thanks go to the folks at Prentice Hall: Mark L. Taub, editor-in-chief, and the most supportive person I know;
Vanessa Moore, production editor, for being the very best in her business and for polishing a rough diamond into a
gem. Thanks also to Dan Livingston and Tony Arguelles for technical proofing; Frank Peters for starting the idea; Steve
Dobbins for setting the stage in San Francisco; my daughter, Jody Savage, for early proofing; and baby William and
Christian for posing for pictures.

Ellie Quigley
May, 2003

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. Introduction to JavaScript

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 What JavaScript Is
JavaScript is a popular general-purpose scripting language used to put energy and pizzaz into otherwise dead Web
pages by allowing a static page to interact with users and respond to events that occur on the page. JavaScript has
been described as the glue that holds Web pages together.[1] It would be a hard task to find a commercial Web page,
or almost any Web page, that does not contain some JavaScript code (see Figure 1.1).

[1] But the creator of JavaScript, Brendan Eich, says it's even more! In his article, "Innovators of the Net: Brendan
Eich and JavaScript," he says, "Calling JavaScript 'the glue that holds web pages together' is short and easy to use,
but doesn't do justice to what's going on. Glue sets and hardens, but JavaScript is more dynamic than glue. It can
create a reaction and make things keep going, like a catalyst."

Figure 1.1. A dynamic Web page using JavaScript to give it life. For example, if the
user rolls his mouse over any of the links or items in the navigation bars, those

items will change color.

JavaScript, originally called LiveScript, was developed by Brendan Eich at Netscape in 1995 and was shipped with
Netscape Navigator 2.0 beta releases. JavaScript is a scripting language that gives life, hence LiveScript, to otherwise
static HTML pages. It runs on most platforms and is hardware independent. JavaScript is built directly into the browser
(although not restricted to browsers), Netscape and Microsoft Internet Explorer being the most common browsers. In
syntax, JavaScript is similar to C, Perl, and Java; e.g., if statements and while and for loops, are almost identical. Like
Perl, it is an object-oriented, interpreted language, not a compiled language.

Because JavaScript is associated with a browser, it is tightly integrated with HTML. While HTML is handled by its own
networking library and graphics renderer, JavaScript programs are executed by a JavaScript interpreter normally built
right into the browser. When the browser requests such a page, the server sends the full content of the document,
including HTML and JavaScript statements, over the network to the client. When the page loads, HTML content is read
and rendered line by line until a JavaScript opening tag is read, at which time the JavaScript interpreter takes over.
When the closing JavaScript tag is reached, the HTML processing continues.

JavaScript handled by a browser is called client-side JavaScript. Although JavaScript is used mainly as a client-side
scripting language, it can also be used in contexts other than a Web browser. Netscape created server-side JavaScript
to be programmed as a CGI language, such as Perl or ASP, but this book will address JavaScript as it is most commonly
used—running on the client side.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 What JavaScript Is Not
JavaScript is not Java. Java was developed at Sun Microsystems. JavaScript was developed at Netscape. Java
applications are independent of a Web page whereas JavaScript programs are embedded in a Web page and must be
run in a browser window.[2] Java is a strongly typed language with strict guidelines while JavaScript is loosely typed
and flexible. Java data types must be declared. JavaScript types such as variables, parameters, and function return
types do not have to be declared. Java programs are compiled. JavaScript programs are interpreted by a JavaScript
engine that lives in the browser

[2] The JavaScript interpreter is normally embedded in a Web browser, but is not restricted to the browser. Servers
and other applications can also use the JavaScript interpreter.

JavaScript is not HTML, but JavaScript code can be embedded in an HTML document and is contained within HTML tags.
JavaScript has its own sytax rules and expects statements to be written in a certain way. JavaScript doesn't understand
HTML, but it can contain HTML content within its statements. All of this will become clear as we proceed.

JavaScript is object based but not strictly object oriented because it does not support the traditional mechanism for
inheritance and classes found in object-oriented programming languages, such as Java and C++. The terms private,
protected, and public do not apply to JavaScript methods as with Java and C++.

JavaScript is not the only language that can be embedded in an application. VBScript, for example, developed by
Microsoft, is similar to JavaScript, but is embedded in Microsoft's Internet Explorer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.3 What JavaScript Is Used For
JavaScript programs are used to detect and react to user-initiated events, such as a mouse going over a link or graphic.
They can improve a Web site with navigational aids, scrolling messages and rollovers, dialog boxes, dynamic images,
shopping carts, and so forth. JavaScript lets you control the appearance of the page as the document is being parsed.
Without any network transmission, it lets you validate what the user has entered into a form before submitting the form
to the server. It can test to see if the user has plug-ins and send them to another site to get the plug-ins if needed. It
has string functions and supports regular expressions to check for valid e-mail addresses, social security numbers,
credit card data, and the like. JavaScript serves as a programming language. Its core language describes such basic
constructs as variables and data types, control loops, if/else statements, switch statements, functions, and objects.[3] It
is used for arithmetic calculations, manipulates the date and time, and works with arrays, strings, and objects.
JavaScript also reads and writes cookie values, and dynamically creates HTML based on the cookie value.

[3] The latest version of the core JavaScript language is JavaScript 1.5, supported by Netscape 6 and Microsoft
Internet Explorer 5.5 and 6.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.4 JavaScript and Events
HTML is static. It can be used to create buttons and boxes and fillout forms, but it cannot by itself react to user input.
Normally, the browser bundles up the form information and sends it off to a server to be handled. But JavaScript is not
static; it is dynamic. It can interact asynchronously with users on the client side. For example, when a user fills out a
form; presses a button, link, or image; or moves his mouse over a link, JavaScript can respond to the event and
interact dynamically with the user. For example, JavaScript can examine user input and validate it before sending it off
to a server, or cause a new image to appear if a mouse moves over a link or presses a button. Events are discussed in
detail in Chapter 12, "Handling Events," but you should be made aware of them right at the beginning because they are
inherently part of what JavaScript does, and there will be examples throughout this text that make use of them.

The events are tied to HTML. In the following example, an HTML form is created with the <form> tag and its attributes.
Along with the type and value attributes, the JavaScript onClick event handler is just another attribute of the HTML
<form> tag. The type of input box is called a "button" and the value assigned to the button is "Pinch me". When the
user clicks on the button in the browser window, a JavaScript event, called Click, will be triggered. The onClick event
handler is assigned a value which is the command that will be executed after the button has been clicked. In our
example, it will result in an alert being sent to the user, displaying "OUCH!!". See the output of Example 1.1 in Figures
1.2 and 1.3.

Example 1.1

 <html>
 <head><title>Event</title></head>
 <body>
1 <form>
2 <input type ="button"
3 value = "Pinch me"
4 onClick="alert('OUCH!!')" >
5 </form>
 </body>
 </html>

Figure 1.2. The onClick event is triggered when the button is pressed.

Figure 1.3. JavaScript handles the onClick event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some of the events that JavaScript can handle are listed in Table 1.1.

Table 1.1. JavaScript event handlers.
Event Handler What Caused It

onAbort Image loading was interrupted.

onBlur The user moved away from a form element.

onChange The user changed a value in a form element.

onClick The user clicked on a button-like form element.

onError The program had an error when loading an image.

onFocus The user activated a form element.

onLoad The document finished loading.

onMouseOut The mouse moved away from an object.

onMouseOver The mouse moved over an object.

onSubmit The user submitted a form.

onUnLoad The user left the window or frame.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.5 What Versions? What Browsers?
When a user receives a page that includes JavaScript, the script is sent to the JavaScript interpreter, which executes
the script. Since each browser has its own interpreter, there are often differences on how the code will be executed.
And as the competing companies improve and modify their browsers, new inconsistencies may occur. There are not
only different types of browsers to cause the incompatibilities but also different versions of the same browser.

1.5.1 Versions

JavaScript has a history. Invented by Netscape, the first version was JavaScript 1.0. It was new and buggy and has
long since been replaced by much cleaner versions. Microsoft has a scripting language comparable to JavaScript called
JScript. The Table 1.2 lists versions of both JavaScript and JScript.

Table 1.2. JavaScript and JScript.
JavaScript or JScript Version Browsers Supported

JavaScript 1.0 Netscape Navigator 2.0, Internet Explorer 3.0

JavaScript 1.1 Netscape Navigator 3.0, Internet Explorer 4.0

JavaScript 1.2 Netscape Navigator 4.0–4.05, Internet Explorer 4.0

JavaScript 1.3 Netscape Navigator 4.06–4.7x, Internet Explorer 5.0

JavaScript 1.5 Netscape Navigator 6.0+, Mozilla (open source browser), Internet Explorer 5.5+

JScript 1.0 Internet Explorer 3

JScript 2.0 Internet Explorer 3

JScript 3.0 Internet Explorer 4

JScript 4.0 Internet Explorer 4

JScript 5.0 Internet Explorer 5

JScript 5.5 Internet Explorer 5

JavaScript is supported by Netscape 2, Explorer 3, Opera 3, and all newer versions of these browsers. In addition,
HotJava 3 supports JavaScript, as do iCab for the Mac, WebTV, OmniWeb for OS X, QNX Voyager and Konqueror for
the Linux KDE environment. NetBox for TV, AWeb and Voyager 3 for Amiga, and SEGA Dreamcast and ANT Fresco on
RISC OS also support JavaScript.

1.5.2 Standardizing JavaScript (The EMCA Specification)

To guarantee that there is one standard version of JavaScript available to companies producing Web pages, ECMA
(European Computer Manufacturers Association) is working with Netscape to provide an international standardization of
JavaScript called ECMA-Script. ECMAScript is based on core JavaScript and behaves the same way in all applications
that support the standard. The first version of the ECMA standard is documented in the ECMA-262 specification. After
ironing out many of the inconsistencies between JavaScript and ECMA-262, JavaScript 1.3 is fully compatible with
ECMA-262. The Netscape DevEdge or ECMA Web site has online documentation and PDF versions of the ECMA-262
specifications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.6 Where to Put JavaScript>
Before learning JavaScript, you should be familiar with HTML and how to create an HTML document. This doesn't mean
that you have to be an expert, but you should be familiar with the structure of HTML documents and how the tags are
used to display various kinds of content on your browser. Once you have a static HTML document, then adding basic
JavaScript statements is quite easy. (See Appendix B for an HTML tutorial.)

Client-side JavaScript programs are embedded in an HTML document between HTML head tags <head> and </head>
or between the body tags <body> and </body>. Many developers prefer to put JavaScript code within the <head>
tags, and at times, as you will see later, it is the best place to store function definitions and objects. If you want text
displayed at a specific spot in the document, you may want to place the JavaScript code within the <body> tags (as
shown in Example 1.2). Or you may have multiple scripts within a page, and place the JavaScript code within both the
<head> and <body> tags. In either case, a JavaScript program starts with a <script> tag, and and ends with a
</script> tag. And if the JavaScript code is going to be long and involved, or may be reused, it can be placed in an
external file (ending in .js) and loaded into the page.

When a document is sent to the browser, it reads each line of HTML code from top to bottom, and processes and
displays it. As JavaScript code is encountered, it is read and executed by the JavaScript interpreter until it is finished,
and then the parsing and rendering of the HTML continues until the end of the document is reached.

Example 1.2

1 <html>
2 <head><title>First JavaScript Sample</title></head>
3 <body bgcolor="yellow" text="blue">
4 <script language = "JavaScript" type="text/javascript">
4 document.writeln("<h2>Welcome to the JavaScript
 World!</h1>");
5 </script>
6 This is just plain old HTML stuff.
7 </body>
8 </html>

EXPLANATION

1. This is the starting tag for an HTML document.

2. This is the HTML <head> tag. The <head> tags contain all the elements that don't belong in the body of the
document, such as the <title> tags, and JavaScript tags.

3. The <body> tag defines the background color and text color for the document.

4. This <script> tag is the starting HTML tag for the JavaScript language. JavaScript instructions are placed
between this tag and the closing </script> tag. JavaScript understands JavaScript instructions, not HTML.

The JavaScript writeln function is called for the document. The string enclosed in parentheses is passed to the
JavaScript interpreter. If the JavaScript interpreter encounters HTML content, it sends that content to the HTML
renderer and it is printed into the document on the browser. The normal HTML parsing and rendering resumes
after the closing JavaScript tag is reached.

5. This is the ending JavaScript tag. The output is shown in Figure 1.4.

Figure 1.4. Example 1.2 output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. HTML tags and text continue in the body of the document.

7. The body of the document ends here.

8. This is the ending tag for the HTML document.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.7 JavaScript and Old or Disabled Browsers

1.7.1 Hiding JavaScript from Old Browsers

There are many versions of browsers available to the public and 99 percent of the public uses Netscape or MSIE. So
why worry? Well, just because a browser supports JavaScript, does not mean that everyone has JavaScript enabled.
There are also some older text browsers that don't support JavaScript and with the advent of cell phones and Palm
handhelds providing browser support but not JavaScript, there has to be some alternative way to address those Web
browsers that do not have JavaScript. (See http://www.internet.com/.)

HTML Comments

If you put a script in a Web page, and the browser is old and doesn't know what a <script> tag is, the JavaScript code
will be treated as regular HTML. So if you hide the JavaScript code within HTML comments, then the old browser will
ignore it. If the browser has JavaScript enabled, then any HTML tags (including HTML comments) inserted between the
<script> </script> tags will be ignored. See Examples 1.3 and 1.4.

Example 1.3

 <html>
 <head><title>Old Browsers</title></head>
 <body>
 <div align=center>
1 <script language="JavaScript" type="text/javascript">
2 <!-- Hiding JavaScript from Older Browsers
3 document.write("<h2>Welcome to Maine!</h2>");
4 // Stop Hiding JavaScript from Older Browsers -->
5 </script>

Bailey's Island
 </body></html>

EXPLANATION

1. The JavaScript program starts here.

2. The <!-- symbol is the start of an HTML comment and will continue until --> is reached. Any browser not
supporting JavaScript will treat this whole block as a comment. JavaScript itself uses two slashes or C style
syntax, /* */, and will ignore the HTML comment tags.

3. The document.write function displays this line in the page. Any HTML tags inserted in the quoted strings will be
handled by the HTML renderer. JavaScript does not know how to interpret HTML by itself. If the browser
supports JavaScript, the line Welcome to Maine! will appear just above the image. If the browser does not
support JavaScript, this section of code is ignored. See the two examples of output shown in Figures 1.5 and
1.6.

Figure 1.5. Example 1.3 output in a JavaScript-disabled browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.6. Example 1.3 output in a JavaScript-enabled browser.

4. This line starts with two slashes, the start of a JavaScript comment. This is done so that if JavaScript is
interpreting this section, it won't see the HTML closing comment tag, -->. Why don't we want JavaScript to see
the closing tag if it could see the opening tag? Because JavaScript would see the double dash as one of its
special operators, and produce an error. Netscape's error:

5. The JavaScript program ends here with its closing </script> tag.

Example 1.4

 <html><head><title>Enabled/Disabled Browsers</title>
 <script>
1 <!--> Sorry,
 <!--> you are not JavaScript enabled
2 <!-- hiding from non-JavaScript enabled browsers
 document.write("Testing to see if JavaScript is turned on.");
3 // done hiding -->
 </script>
 <head>
 <body></body>
 </html>

EXPLANATION

1. The <!--> is like an empty HTML comment. JavaScript-enabled browsers will ignore these lines, just as they
ignore the <!-- hide... line, because they begin with a comment marker. If the browser is disabled for
JavaScript, this line and the next one start as empty HTML comments, causing the text that follows to be
printed.

2. A non–JavaScript-enabled browser will see this as the start of another HTML comment, thus keeping the script
section hidden.

Netscape's <noscript> Tag

Netscape Navigator 3.0[4] provided a set of tags called <noscript></noscript> that enable you to provide alternative
information to browsers that are either unable to read JavaScript or have disabled JavaScript. Today it's more likely
that JavaScript has been disabled for security reasons or to avoid cookies than it is to find an old browser still in use. All
JavaScript-enabled browsers recognize the <noscript> tag. They will just ignore whatever is between <noscript> and
</noscript>. Browsers that do not support JavaScript do not know about the <noscript> tag. They will ignore the tags
but will display whatever is in between. See Example 1.5.

[4] Warning: Netscape 2.0 always displays the contents of the <noscript> tag.

Example 1.5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 1.5

 <html>
 <head>
 <title>Has JavaScript been turned off?</title>
 </head>
 <body>
1 <script language = "JavaScript" type="text/javascript">
2 <!--
 document.write("<h2>");
3 document.writeln("Your browser supports
 JavaScript!</h2>");
 // -->

 </script>
4 <noscript>

5 Please turn JavaScript on if you want to see this page!

 Netscape: Edit/Preferences/Advanced/Scripts and
 Plugins

 MSIE: Tools/Internet Options/Security/Custom
 Level/Scripting</br>
6 </noscript>

 </body>
 </html>

EXPLANATION

1. The JavaScript program starts here with the opening <script> tag.

2. This is an HTML comment. This hides JavaScript from JavaScript-disabled browsers until the ending comment
tag.

3. This line is displayed on the Web page only if JavaScript is enabled.

4. The <noscript> tag is read by browsers that support JavaScript. They will ignore everything between the
<noscript> and </noscript> tags. Disabled browsers will not recognize the <noscript> tag and thus ignore
them, displaying all text that follows.

5. JavaScript-disabled browsers will display the message shown in Figure 1.7. These instructions help the user
enable JavaScript on Netscape 6+ and IE 5+ browsers. For directions on enabling/disabling JavaScript in all
versions of Netscape and IE, see http://www.lithosjigs.com/cart/enablejava.html

Figure 1.7. Output from Example 1.5.

6. The </noscript> tag ends here.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.8 JavaScript from External Files
When Web pages contain long scripts or functions that will be used by other documents, these scripts can be placed in
external files. The external JavaScript files must end with a .js extension. The name of the external JavaScript file is
assigned to the src attribute of the <script> tag in the HTML file. The name includes the full URL if the script is on
another server, or just the script name if in the local directory. You can include more than one .js script in a file.

<script language="JavaScript" src="http://servername/javascriptfile.js">
</script>

Example 1.6

 <html>
 <head><title>First JavaScript Sample</title>
1 <script language = "JavaScript" src="welcome.js">
2 </script>
 </head>
 </body>
3 <script language = "JavaScript">
4 document.write("<body bgcolor='yellow' text='blue'>");
 document.write("This is just plain old
 HTML stuff.
 ");
 </script>
 </body>
 </html>

EXPLANATION

1. The JavaScript <script> tag's src attribute is assigned the name of a file (name must end in .js) that contains
JavaScript code. The file's name is welcome.js and it contains a JavaScript program of its own.

2. The JavaScript program ends here.

3. A new JavaScript program starts here.

4. The document.write() method displays output in the browser window.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: What browser are you using? What version?

2: Where was JavaScript developed?

3: What is an example of a JavaScript event handler?

4: What is the difference between JavaScript and JScript?

5: Where do JavaScript tags go in an HTML page?

6: How do you set up JavaScript in an external file?

7: How do you hide JavaScript from older browsers?

8: What method sends output to the browser?

9: Write a JavaScript program that prints a welcome message. Check to see if JavaScript is enabled. Use
comments to explain what you are doing.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. Script Setup
Section 2.1. The HTML Document and JavaScript

Section 2.2. Syntactical Details

Section 2.3. Generating HTML and Printing Output

Section 2.4. About Debugging

EXERCISES

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.1 The HTML Document and JavaScript
Unlike shell and Perl scripts, JavaScript scripts are not stand-alone programs. They are run in the context of an HTML
document. When programming on the client side, the first step will be to create an HTML document in your favorite text
editor, such as UNIX vi or emacs, or Windows Notepad[1] or WordPad. Since the file you create is an HTML document,
its name must include either an .html or .htm extension. JavaScript programs are embedded within the HTML document
between the <script> and </script> tags. Please note that throughout the code examples in this book, any
whitespace shown at the beginning of the lines is only for easier readability and you should not type it in
your actual file. The following example is an HTML file containing JavaScript code:

[1] If you are using Windows Notepad, be sure to turn off word wrap (under the Format menu) to avoid errors in
your program.

<html><head><title>Hello</title></head>
<body>
<script language="JavaScript">
 <!-- Hide script from old browsers.
 document.write("Hello, world!");
 // End the hiding here. -->
</script>
<p>So long, world.
</body>
</html>

2.1.1 Script Execution

Since a JavaScript program is embedded in an HTML document, you will execute it in your browser window. If using
Netscape Navigator or Internet Explorer, follow these instructions:

1. Go to the File menu and open the file by browsing for the correct one.

2. Click OK to open it. In this example, the file hello.html is displayed in the browser.

3. Or you can type the URL (complete address) in the navigation bar of your browser as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Or you can type the URL (complete address) in the navigation bar of your browser as shown here.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.2 Syntactical Details
Rules, rules, rules. Just like English, French, or Chinese, all programming languages have their rules. Many of the rules
are similar and many have individual quirks. But in order to do anything at all, you have to obey the rules, or your
program simply won't work. If you have experience programming in other languages, you will find the JavaScript rules
and syntax quite familiar, especially if you know Perl or languages derived from C. When you write JavaScript
programs, you have to deal with HTML rules as well as JavaScript rules, since JavaScript does not stand alone.

2.2.1 Case Sensitivity

The HTML tags in a document are not case sensitive. If you type the title tag as <title>, <Title>, <TItle>, or any
combination of upper or lowercase characters, the HTML renderer will not care. But JavaScript names, such as
variables, keywords, objects, functions, and so on, are case sensitive. If, for example, you spell the Boolean value true
with any uppercase letters (e.g., TrUE), JavaScript will not recognize it and will produce an error or simply ignore the
JavaScript code. Although most names favor lowercase, some JavaScript names use a combination of upper and
lowercase (e.g., onClick, Math.floor, Date.getFullYear).

2.2.2 Free Form and Reserved Words

JavaScript ignores whitespace (i.e., spaces, tabs, and newlines) if the whitespace appears between words. For example:
A function name, such as onMouseOver(), toLowerCase(), or onClick(), cannot contain whitespace even though it
consists of more than one word.

1. var name="Tom"; 1 and 2 are equivalent statements
2. var name =
 "Tom";

3. onMouseOver() 3 and 4 are not the same
4. on Mouse Over()

Whitespace is preserved when it is embedded within a string or regular expression. For example, the whitespace in the
string, "Hello there" will be preserved because it is enclosed within double quotes. Of course, you can't break up a word
such as switch, if, else, window, document, and so on, because it would no longer be the same word. Because extra
whitespace is ignored by the JavaScript interpreter, you are free to indent, break lines, and organize your program so
that it is easier to read and debug.

There are a number of reserved words (also called keywords) in JavaScript. Being reserved means that keywords are
special vocabulary for the JavaScript language and cannot be used by programmers as identifiers for variables,
functions and labels, and the like. Words such as if, for, while, return, null, and typeof are examples of reserved words.
Table 2.1 gives a list of reserved words.

Table 2.1. Reserved keywords.
abstract boolean break byte case catch

char class const continue default delete

do double else extends false final

finally float for function goto if

implements import in instanceof int interface

long native new null package private

protected public return short static super

switch synchronized this throw throws transient

true try typeof var void volatile

while with

2.2.3 Statements and Semicolons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Just like sentences (which represent complete thoughts) in the English language, JavaScript statements are made up of
expressions. The statements are executed top down, one statement at a time. If there are multiple statements on a
line, the statements must be separated by semicolons. Although not a rule, it is good practice to terminate all
statements with a semicolon to make it clear where the statement ends. Because JavaScript is free form, as long as
statements are terminated with a semicolon, the lines can be broken, contain whitespace, etc. A statement results in
some action unless the statement is a null statement, in which case, it does nothing.

The following two lines are both technically correct:

var name = "Ellie" <-- a
var name = "Ellie"; <-- b

(a)no semicolon, valid

(b)better

The following line is incorrect:

var name = "Ellie" document.write("Hi "+name); <-- a

(a)wrong, two statements

It should be:

var name = "Ellie"; document.write("Hi " + name); <-- a

(a)semicolon needed to separate two statements on the same line

If the statements are grouped in a block of curly braces, they act as a single statement.

if (x > y) { statement; statement; } <-- a

(a)Statements enclosed in curly braces act as a single statement

2.2.4 Comments

A comment is text that describes what the program or a particular part of the program is trying to do and is ignored by
the JavaScript interpreter. Comments are used to help you and other programmers understand, maintain, and debug
scripts. JavaScript uses two types of comments: single-line comments and block comments.

Single line comments start with a double slash:

// This is a comment

For a block of comments, use the /* */ symbols:

/* This is a block of comments
 that continues for a number of lines
*/

2.2.5 The <script> Tag

JavaScript programs must start and end with the HTML <script> and </script> tags, respectively. Everything within
these tags is considered JavaScript code, nothing else. The script tag can be placed anywhere within an HTML
document. If you want the JavaScript code to be executed before the page is displayed, it is placed between the
<head> and </head> tags. This, for example, is where function definitions are placed (see Chapter 7, "Functions"). If
the script performs some action pertaining to the body of the document, then it is placed within the <body> and
</body> tags. A document can have multiple <script> tags, each enclosing any number of JavaScript statements.

FORMAT

<script>
 JavaScript statements...
</script>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2.1

<script>
 document.write("Hello, world!
");
</script>

Attributes

The <script> tag also has attributes to modify the behavior of the tag. The attributes are

language

type

src

Any JavaScript-enabled browser can identify that the scripting language is JavaScript, if the language attribute is set to
JavaScript[2] rather than, for example, VBScript or JScript. You normally set the language attribute as follows:

[2] Although common to most scripts, the language attribute has been deprecated as of HTML 4.0 in favor of the
type attribute.

<script language="JavaScript">

Each time a new version of JavaScript is released, it contains new or modified features. Some browsers haven't caught
up or do not support a newer version. Netscape Navigator 6.x, Internet Explorer 6, and Opera 5 all support JavaScript
1.5, but HotJava 3.0 doesn't. So to ensure that users of the various browser versions avoid problems when viewing
pages that use JavaScript, the language attribute can be assigned a version number to specify what version of
JavaScript is supported. If the browser doesn't recognize the version, the script will be totally ignored. You shouldn't
have to worry about this if you are using the latest version of a particular browser, but just in case, here's how you
specify a version number.

<script language="JavaScript1.5">
</script>

The type attribute is used to specify both the scripting language and the Internet content type.

<script language="JavaScript"
 type="text/javascript">
</script>

The src attribute is used when the JavaScript code is in an external file, the filename ending with a .js extension. The
src attribute is assigned the name of the file, which can be prefixed with its location (e.g., a directory tree or URL).

<script language="JavaScript"
 type="text/javascript"
 src="sample.js">
</script>

<script language="JavaScript"
 type="text/javascript"
 src="directory/sample.js">
</script>

<script language="JavaScript"
 type="text/javascript"
 src="http://hostname/sample.js">
</script>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.3 Generating HTML and Printing Output
When you create a program in any language, the first thing you want to see is the output of the program displayed on a
screen. In the case of JavaScript, you'll see your output in the browser window. Of course, browsers use HTML to
format output. Although JavaScript doesn't understand HTML per se, it can generate HTML output with its built-in
methods, write() and writeln().

2.3.1 Strings and String Concatenation

A string is a character or set of characters enclosed in matching quotes. Since the methods used to display text take
strings as their arguments, this is a good time to talk a little about strings. See Chapter 9, "JavaScript Core Objects,"
for a more complete discussion. All strings must be placed within a matched set of either single or double quotes; for
example:

"this is a string" or 'this is a string'

Double quotes can hide single quotes; for example:

"I don't care"

And single quotes can hide double quotes; for example:

'He cried, "Ahoy!"'

Either way, the entire string is enclosed in a set of matching quotes.

Concatenation is caused when two strings are joined together. The plus (+) sign is used to concatenate strings; for
example:

"hot" + "dog or "San Francisco" + "</br>"

For more information on strings, see Chapter 3, "The Building Blocks: Data Types, Literals, and Variables."

2.3.2 The write() and writeln() Methods

One of the most important features of client-side JavaScript is its ability to generate pages dynamically. Data, text, and
HTML itself can be written to the browser on the fly. The write() method is a special kind of built-in JavaScript function
used to output HTML to the document as it is being parsed. When generating output with write() and writeln(), put the
text in the body of the document (rather than in the header) at the place where you want the text to appear when the
page is loaded.

Method names are followed by a set of parentheses. They are used to hold the arguments. These are messages that will
be sent to the methods, such as a string of text, the output of a function, or the results of a calculation. Without
arguments, the write() and writeln() methods would have nothing to write.

JavaScript defines the current document (i.e., the HTML file that contains the script) as a document object. (You will
learn more about objects later.) For now, whenever you refer to the document object, the object name is appended
with a dot and the name of the method that will manipulate the document object. In the following example the write()
method must be prepended with the name of the document object and a period. The browser will display this text in the
document's window. The syntax is

document.write("Hello to you");

The writeln() method is essentially just like the write() method, except when the text is inserted within HTML <pre> or
<xmp> tags, in which case writeln() will insert a newline at the end of the string. The HTML <pre> tag is used to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xmp> tags, in which case writeln() will insert a newline at the end of the string. The HTML <pre> tag is used to
enclose preformatted text. It results in "what you see is what you get." All spaces and linebreaks are rendered literally,
in a monopitch typeface. The <xmp> tag is an obsolete HTML tag that functions much like the <pre> tag.

Example 2.2

 <html>
 <head><title>Printing Output</title></head>
 <body bgcolor="yellow" text="blue">
 Comparing the document.write and document.writeln
 methods

 <script language="JavaScript">
1 document.write("<h3>One, "); // No newline
2 document.writeln("Two, ");
 document.writeln("Three, ");
3 document.write("Blast off....
"); // break tag
4 document.write("The browser you are using is " +
 navigator.userAgent + "
");
5 </script>
6 <pre>
7 <script language="JavaScript">
8 document.writeln("With the HTML <pre>
 tags, ");
 document.writeln("the writeln method produces a
 newline.");
 document.writeln("Slam");
 document.writeln("Bang");
 document.writeln("Dunk!");
9 </script>
10 </pre>
 </body></html>

EXPLANATION

1. The document.write() method does not produce a newline at the end of the string it displays. HTML tags are
sent to the HTML renderer as the lines are parsed.

2. The document.writeln() method doesn't produce a newline either, unless it is in an HTML <pre> tag.

3. Again, the document.write() method does not produce a newline at the end of the string. The
 tag is added
to produce the line break.

4. The document.write() method does not produce a newline. The
 tag takes care of that. userAgent is a
special navigator property that tells you about your browser.

5. The first JavaScript program ends here.

6. The HTML <pre> tag starts a block of preformatted text; i.e., text that ignores formatting instructions and
fonts.

7. This tag starts the JavaScript code.

8. When enclosed in a <pre> tag, the writeln() method will break each line it prints with a newline; otherwise, it
behaves like the write() method (i.e., you will have to add a
 tag to get a newline).

9. This tag marks the end of the JavaScript code.

10. This tag marks the end of preformatted text. The output is shown in Figure 2.1.

Figure 2.1. The output from Example 2.2 demonstrates the difference
between the document.write() and document.writeln() methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.4 About Debugging
Have you ever tried to draw a picture or do your resume for the first time without a mistake either in the layout, order,
type, style, whatever? In any programming language, it's the same story. And JavaScript is no exception. It's especially
tricky with JavaScript because you have to consider the HTML as well as the JavaScript code when your page doesn't
turn out right. You might get errors on the console or get a totally blank page. Finding errors in a script can get quite
frustrating without proper debugging tools. Before we go any further, this is a good time to get acquainted with some of
the types of errors you might encounter.

2.4.1 Types of Errors

Load or Compile Time

Load-time errors are the most common errors and are caught by JavaScript as the script is being loaded. These errors
will prevent the script from running at all. Load-time errors are generally caused by mistakes in syntax, such as missing
parentheses in a function or misspelling a keyword. You may have typed a string of text and forgotten to enclose the
string in quotes, or you may have mismatched the quotes, starting with single quotes but ending with double quotes.

Runtime

Runtime errors, as the name suggests, are those errors that occur when the JavaScript program actually starts running.
An example of a runtime error would be if you asked the user for a number between 1 and 5 and he gave you a 7, or
you put some code between the <head></head> tags and it should have been placed within the <body></body>
tags, or you referenced a page that doesn't exist.

Logical

Logical errors are harder to find because they imply that you didn't anticipate an event or that you inadvertently
misused an operator, but your syntax was okay. For example, if you are checking to see if two expressions are equal,
you should use the == equality operator, not the = assignment operator.

2.4.2 Debugging Tools

The javascript: URL Protocol

For simple debugging or testing code, you can use the URL pseudoprotocol, javascript: followed by any valid JavaScript
expression or expressions separated by semicolons. The result of the expression is returned as a string to your browser
window, as shown in Example 2.3 and Figures 2.2 and 2.3.

Figure 2.2. Internet Explorer and the javascript: protocol.

Figure 2.3. Netscape and the javascript: protocol.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.3. Netscape and the javascript: protocol.

FORMAT

javascript: expression

Example 2.3

javascript: 5 + 4

Netscape's JavaScript Console

Netscape 6 and 7 provide the JavaScript Console. You invoke it via the Tasks or Tools/Web Development menu, or by
typing javascript: in the location bar of the browser. The JavaScript Console displays the lines containing the errors.
Leave the console open and watch your errors build up. You can also type expressions to be evaluated.

Example 2.4

 <html>
 <head>
 <title>First JavaScript Sample</title>

1 <script language = "JavaScript">
2 document.writeln("<h2>Welcome to the JavaScript World!</h1>);
3 // Bug in line2: Missing double quote!!
 </script>
 </head>
 <body bgcolor="yellow" text="blue">
 This is just plain old HTML stuff.
 </body>
 </html>

EXPLANATION

1. JavaScript code starts here.

2. In this line, the string starts with a double quote, but doesn't terminate with one. Since the quotes are not
matched, JavaScript produces an error. If you go to the location window of the browser and type javascript: the
console window will open with a list of program errors and little markers to show you where the potential error
took place, as shown in Figures 2.4–2.8. You can leave the console window open and watch errors as they
occur, using the clear button to start with a clean console window.

Figure 2.4. Type javascript: in the navigation bar and the console window
will open.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.8. Netscape and the javascript: protocol.

Figure 2.5. Netscape—The JavaScript Console indicates where errors are found.

Figure 2.6. Netscape—The JavaScript Console.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.7. Netscape 7 console window.

For JavaScript debuggers available for download for Netscape, go to
http://developer.netscape.com/software/tools/index.html or http://www.mozilla.org/projects/venkman/index.html for
the Netscape JavaScript debugger known as Venkman.

Debugging in Explorer

Microsoft's Internet Explorer provides a debugging window as an advanced Internet option (see Figure 2.9). When an
error occurs in your JavaScript program, a little triangle appears in the left-hand corner of the browser window. If you
double-click the triangle, a debugging window opens explaining the error and the line number where it occurred (see
Figure 2.10).

Figure 2.9. To enable debugging in IE, go to Tools > Internet Options > Advanced.

Figure 2.10. In Internet Explorer, look in left-hand bottom corner for a triangle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.10. In Internet Explorer, look in left-hand bottom corner for a triangle.

Also see http://msdn.microsoft.com/scripting/ to find the Microsoft Script Debugger (MSSD), a free debugging tool that
works with IE 3.01 and above (see Figure 2.11). You can write and debug your scripts (called JScript by Microsoft)
using this debugger.

Figure 2.11. Web site for the Microsoft scripting tools.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: What is a reserved word? Give an example.

2: Is JavaScript case sensitive?

3: What is the purpose of enclosing statements within curly braces?

4: What is the latest version of JavaScript? Where can you find this information?

5: What is the difference between the JavaScript src and type attributes?

6: How would you concatenate the following three strings with JavaScript?

"trans" "por" "tation"

7: Write a script that demonstrates how concatenation works.

8: Create a JavaScript program that will print "Hello, world! Isn't life great?" in an Arial bold font, size 14, and
make the background color of the screen light green.

9: Add two strings to the first JavaScript program—your first name and last name—concatenated and printed
in a blue sans-serif font, size 12.

10: In the Location field of your browser, test the value of an expression using the javascript: protocol.

11: Find the errors in the following script:

<html>
<head>
 <title>Finding Errors</title>
</head>
<body bgcolor="yellow" text="blue">
<script language="JavaScript"
 document.writeln("Two, ")
 document.writeln ("Three, ")
 document.write('Blast off....
");
</script>
</body>
</html>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. The Building Blocks: Data Types, Literals,
and Variables

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.1 Data Types
A program can do many things, including calculations, sorting names, preparing phone lists, displaying images,
validating forms, ad infinitum. But in order to do anything, the program works with the data that is given to it. Data
types specify what kind of data, such as numbers and characters, can be stored and manipulated within a program.
JavaScript supports a number of fundamental data types. These types can be broken down into two categories,
primitive data types and composite data types.

3.1.1 Primitive Data Types

Primitive data types are the simplest building blocks of a program. They are types that can be assigned a single literal
value such as the number 5.7, or a string of characters such as "hello". JavaScript supports three core or basic data
types:

numeric

string

Boolean

In addition to the three core data types, there are two other special types that consist of a single value:

null

undefined

Numeric Literals

JavaScript supports both integers and floating-point numbers. Integers are whole numbers and do not contain a decimal
point; e.g., 123 and –6. Integers can be expressed in decimal (base 10), octal (base 8), and hexadecimal (base 16),
and are either positive or negative values. See Example 3.1.

Floating-point numbers are fractional numbers such as 123.56 or –2.5. They must contain a decimal point or an
exponent specifier, such as 1.3e–2. The letter "e" for exponent notation can be either uppercase or lowercase.

JavaScript numbers can be very large (e.g., 10308 or 10–308).

Example 3.1

12345 integer

23.45 float

.234E–2 scientific notation

.234e+3 scientific notation

0x456fff hexadecimal

0x456FFF hexadecimal

0777 octal

String Literals and Quoting

String literals are rows of characters enclosed in either double or single quotes.[1] The quotes must be matched. If the
string starts with a single quote, it must end with a matching single quote, and likewise if it starts with a double quote,
it must end with a double quote. Single quotes can hide double quotes, and double quotes can hide single quotes:

[1] Any string without quotations marks surrounding it is considered the name of a variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"This is a string"
'This is another string'
"This is also 'a string' "
'This is "a string"'

An empty set of quotes is called the null string. If a number is enclosed in quotes, it is considered a string; e.g., "5" is a
string, whereas 5 is a number.

Strings are called constants or literals. The string value "hello" is called a string constant or literal. To change a string
requires replacing it with another string.

Strings can contain escape sequences (a single character preceded with a backslash), as shown in Table 3.1. Escape
sequences are a mechanism for quoting a single character.

Table 3.1. Escape sequences.
Escape

Sequence
What It Represents

\' Single quotation mark

\" Double quotation mark

\t Tab

\n Newline

\r Return

\f Form feed

\b Backspace

\e Escape

\\ Backslash

Special Escape Sequences

\XXX The character with the Latin-1 encoding specified by up to three octal digits XXX between 0 and 377.
\251 is the octal sequence for the copyright symbol.

\xXX The character with the Latin-1 encoding specified by the two hexadecimal digits XX between 00 and FF.
\xA9 is the hexadecimal sequence for the copyright symbol.

\uXXXX The Unicode character specified by the four hexadecimal digits XXXX. \u00A9 is the Unicode sequence
for the copyright symbol.

Example 3.2

 <html>
 <head>
 <body>
1 <pre>

2 <script language="JavaScript">
 <!-- Hide script from old browsers.
3 document.write("\t\tHello\nworld!\n");
4 document.writeln("\"Nice day, Mate.\"\n");
5 document.writeln('Smiley face: \u263a\n');
 //End hiding here. -->
 </script>
 </pre>
 </body>
 </html>

EXPLANATION

1. The escape sequences will work only if in a <pre> tag or an alert dialog box.

2. The JavaScript program starts here.

3. The write() method sends to the browser a string containing two tabs (\t\t), Hello, a newline (\n), world!, and
another newline (\n).

4. The writeln() method sends to the browser a string containing a double quote (\"), Nice day, Mate., another
double quote (\"), and a newline (\n). Since the writeln() method automatically creates a newline, the output
will display two newlines: the default value and the \n in the string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

will display two newlines: the default value and the \n in the string.

5. This string contains a backslash sequence that will be translated into Unicode. The Unicode hexidecimal
character 233a is preceded by a \u. The output is a smiley face. See Figure 3.1.

Figure 3.1. Escape sequences.

Putting Strings Together

The process of joining strings together is called concatenation. The string concatenation operator is a plus sign (+). Its
operands are two strings. If one string is a number and the other is a string, JavaScript will still concatenate them as
strings. If both operands are numbers, the + will be the addition operator. The following examples output "popcorn"
and "Route 66", respectively.

document.write("pop" + "corn");
document.write("Route " + 66);

The expression 5 + 100 results in 105, whereas "5" + 100 results in "5100".

Boolean Literals

Boolean literals are logical values that have only one of two values, true or false. You can think of the values as yes or
no, on or off, or 1 or 0. They are used to test whether a condition is true or false. When using numeric comparison and
equality operators, the value true evaluates to 1 and false evaluates to 0. (Read about comparison operators in Chapter
5, "Operators.")

answer1 = true;

or

if (answer2 == false) { do something; }

The typeof Operator

The typeof operator returns a string to identify the type of its operand (i.e., a variable, string, keyword, or object). You
can use the typeof operator to check whether a variable has been defined because if there is no value associated with
the variable, the typeof operator returns undefined.

FORMAT

typeof operand
typeof (operand)

Example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typeof(54.6)
typeof("yes")

Example 3.3

 <html>
 <head>
 <title>The typeof Operator</title>
 <script language="JavaScript">
1 document.write(typeof(55),"
"); // Number
2 document.write(typeof("hello there"),"
"); // String
3 document.write(typeof(true),"
"); // Boolean
 </script>
 </head>
 </html>

EXPLANATION

1. The integer, 55, is a number type.

2. The text "hello there" is a string type.

3. The true or false keyword represent a boolean type. See Figure 3.2.

Figure 3.2. Output from Example 3.3.

Null and Undefined

The difference between null and undefined is a little subtle. The null keyword represents "no value," meaning "nothing,"
not even an empty string or zero. It is a type of JavaScript object (see Chapter 8, "Objects"). It can be used to initialize
a variable so that it does not produce errors or to clear the value of a variable, so that there is no longer any data
associated with that variable, and the memory used by it is freed. When a variable is assigned null, it does not contain
any valid data type.

A variable that has been declared, but given no initial value, contains the value undefined and will produce a runtime
error if you try to use it. (If you declare the variable and assign null to it, null will act as a placeholder and you will not
get an error.) The word undefined is not a keyword in JavaScript. If compared with the == equality operators, null and
undefined are equal, but if compared with the identity operator, they are not identical (see Chapter 5, "Operators").

Example 3.4

 <html>
 <head>
 <title>The typeof Operator with Null and Undefined</title>
 <script language="JavaScript">
1 document.write("null is type // null is an object
 "+ typeof(null),"
");
2 document.write("undefined is type
 "+ typeof(undefined),"
");
 </script>
 </head>
 </html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </html>

EXPLANATION

1. The null keyword is a type of object. It is a built-in JavaScript object that contains no value.

2. Undefined is returned when a variable has been given no initial value or when the void operator is used (see
Table 5.17 on page 91). See output in Figure 3.3.

Figure 3.3. Output from Example 3.4.

3.1.2 Composite Data Types

We mentioned that there are two types of data: primitive and composite. This chapter focuses on the primitive types:
numbers, strings, and Booleans—each storing a single value. Composite data types, also called complex types, consist
of more than one component. Objects, arrays, and functions, covered later in this book, all contain a collection of
components. Objects contain properties and methods; arrays contain a sequential list of elements; and functions
contain a collection of statements. The composite types are discussed in later chapters.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.2 Variables
Variables are fundamental to all programming languages. They are data items that represent a memory storage
location in the computer. Variables are containers that hold data such as numbers and strings. Variables have a name,
a type, and a value.

num = 5; // name is "num", value is 5, type is numeric
friend = "Peter"; // name is "friend", value is "Peter", type is string

The values assigned to variables may change throughout the run of a program whereas constants, also called literals,
remain fixed. (JavaScript 1.5 introduced constants and since they are so new, they are only recognized by Netscape 6.)

JavaScript variables can be assigned three types of data:

numeric

string

Boolean

Computer programming languages like C++ and Java require that you specify the type of data you are going to store in
a variable when you declare it. For example, if you are going to assign an integer to a variable, you would have to say
something like:

int n = 5;

And if you were assigning a floating-point number:

float x = 44.5;

Languages that require that you specify a data type are called "strongly typed" languages. JavaScript, conversely, is a
dynamically or loosely typed language, meaning that you do not have to specify the data type of a variable. In fact,
doing so will produce an error. With JavaScript, you would simply say:

n = 5;
x = 44.5;

and JavaScript will figure out what type of data is being stored in n and x.

3.2.1 Valid Names

Variable names consist of any number of letters (an underscore counts as a letter) and digits. The first letter must be a
letter or an underscore. Since JavaScript keywords do not contain underscores, using an underscore in a variable name
can ensure that you are not inadvertently using a reserved keyword. Variable names are case sensitive; e.g., Name,
name, and NAme are all different variable names. Refer to Table 3.2.

Table 3.2. Valid and invalid variable names.
Valid Variable Names Invalid Variable Names

name1 10names

price_tag box.front

_abc name#last

Abc_22 A-23

A23 5

3.2.2 Declaring and Initializing Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Variables must be declared before they can be used. To make sure that variables are declared first, you can declare
them in the head of the HTML document. There are two ways to declare a variable: either explicitly preceded by the
keyword var, or not. Although laziness may get the best of you, it is a better practice to always use the var keyword.

You can assign a value to the variable (or initialize a variable) when you declare it, but it is not mandatory, unless you
omit the var keyword. If a variable is declared but not initialized, it is "undefined."

FORMAT

var variable_name = value; // initialized
var variable_name; // unitialized
variable_name; // wrong

To declare a variable called firstname, you could say

var first_name="Ellie"

or

first_name ="Ellie";

or

var first_name;

You can declare multiple variables on the same line by separating each declaration with a comma. For example, you
could say

var first_name, var middle_name, var last_name;

Example 3.5

 <html>
 <head>
 <title>Using the var Keyword</title>
 <script language="JavaScript">
1 var language="English"; // Variable is initialized
2 var name; // OK, undefined variable
3 age; // Not OK! var keyword missing ERROR!
4 document.write("Name is "+ name);
 </script>
 </head>
 <body></body>
 </html>

EXPLANATION

1. The variable called language is defined and initialized. The var keyword is not required here, but is
recommended.

2. Because the variable called name is not initialized, the var keyword is required here.

3. The variable called age is not assigned an initial value. The var keyword is required. Without it, the program
produces errors, shown in the output for Netscape and Explorer, in Figures 3.4 and 3.5, respectively.

Figure 3.4. Netscape error (JavaScript Console).

Figure 3.5. Internet Explorer error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.5. Internet Explorer error.

4. This line will not be printed until the variable called age is defined properly. Just use the var keyword as good
practice, even if it isn't always required!

3.2.3 Dynamically or Loosely Typed Language

Remember, strongly typed languages like C++ and Java require that you specify the type of data you are going to store
in a variable when you declare it, but JavaScript is loosely typed. It doesn't expect or allow you to specify the data type
when declaring a variable. You can assign a string to a variable and later assign a numeric value. JavaScript doesn't
care and at runtime, the JavaScript interpreter will convert the data to the correct type. Consider the following variable,
initialized to the floating-point value of 5.5. In each successive statement, JavaScript will convert the type to the proper
data type; see Table 3.3.

Table 3.3. How JavaScript converts datatypes.
Variable Assignment Conversion

var item = 5.5; Assigned a float

item = 44; Converted to integer

item = "Today was bummer"; Converted to string

item = true; Converted to Boolean

item = null; Converted to the null value

Example 3.6

 <html>
1 <head>
 <title>JavaScript Variables</title>
2 <script language="JavaScript">
3 var first_name="Christian"; // first_name is assigned a value
4 var last_name="Dobbins"; // last_name is assigned a value
5 var age = 8;
6 var ssn; // Unassigned variable
7 var job_title=null;
 </script>
8 </head>
9 <body bgcolor="lightblue">
 <font="+1">
10 <script language="JavaScript">
11 document.write("Name: " + first_name + " "
 + last_name + "
");
12 document.write("Age: " + age + "
");
13 document.write("Ssn: " + ssn + "
");
14 document.write("Job Title: " + job_title + "
");
15 ssn="xxx-xx-xxxx";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15 ssn="xxx-xx-xxxx";
16 document.write("Now Ssn is: " + ssn , "
");
 </script>
17 <body><p></body>
 </html>

Output:

11 Name: Christian Dobbins
12 Age: 8
13 Ssn: undefined
14 Job Title: null
16 Now Ssn is: xxx-xx-xxx

EXPLANATION

1. This JavaScript program is placed within the document head. Since the head of the document is processed
before the body, this assures you that the variable definitions will be defined first.

2. This is where the first JavaScript program begins.

3. The string "Christian" is assigned to the variable called first_name.

4. The string "Dobbins" is assigned to the variable called last_name.

5. The number 8 is assigned to the variable called age.

6. The variable called ssn is not assigned any value at all. It is an uninitialized variable. The return value is
undefined.

7. The value null is assigned to the variable called job_title. Null is used to set a variable to an initial value
different from other valid types, but if used in an expression the value of null will be converted to the
appropriate type.

8. The document head ends here.

9. The body of the document starts here.

10. A new JavaScript program starts here. All the variables declared in the head of the document are available
here. Variables that are available throughout the entire document are called global variables.

11. The document.write() method concatenates the values of the strings with the + sign and sends them to the
browser to display on the screen.

12. The value of the variable called age is displayed.

13. The variable called ssn was declared, but not initialized. It has no value, which JavaScript calls undefined.

14. The variable job_title was assigned null, a place-holder value. The null string is returned.

15. The variable ssn is assigned a string value. It is no longer undefined. Even though the variable was declared in
the head of the document, as long as it was declared, it can be assigned a value anywhere else in the
document.

16. The value of the variable ssn is displayed. Figure 3.6 shows the output in Internet Explorer.

Figure 3.6. Output from Example 3.6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.4 Scope of Variables

Scope describes where a variable is visible, or where it can be used, within the program. JavaScript variables are either
of global or local scope. A global variable can be accessed from any JavaScript script on a page, as shown in Example
3.6. The variables we have created so far are global in scope.

It is often desirable to create variables that are private to a certain section of the program, thus avoiding naming
conflicts and accidentally changing a value in some other part of the program. Private variables are called local
variables. Local variables are created when a variable is declared within a function. Local variables must be declared
with the keyword, var. They are accessible only from within the function from the time of declaration to the end of the
enclosing block, and they take precedence over any global variable with the same name. (See Chapter 7, "Functions.")

3.2.5 Concatenation and Variables

To concatenate variables and strings together on the same line, the + sign is used. The + sign is an operator because it
operates on the expression on either side of it (each called an operand). Sometimes the + sign is a string operator and
sometimes it is a numeric operator when used for addition. Addition is performed when both of the operands are
numbers. In expressions involving numeric and string values with the + operator, JavaScript converts numeric values to
strings. For example, consider these statements:

var temp = "The temperature is " + 87;
 // returns "The temperature is 87"
var message = 25 + " days till Christmas";
// returns "25 days till Christmas"

But, if both operands are numbers, then addition is performed:

var sum = 10 + 5; // sum is 15

Example 3.7

 <html>
 <head><title>Concatenation</title></head>
 <body>
 <script language="JavaScript">
1 var x = 25;
2 var y = 5 + "10 years";
3 document.write(x + " cats" , "
");
4 document.write("almost " + 25 , "
");
5 document.write(x + 4, "
");
6 document.write(y, "
");
7 document.write(x + 5 + " dogs" , "
");
8 document.write(" dogs" + x + 5 , "
");

 </script>
 </body>
 </html>

Output:

3 25 cats
4 almost 25
5 29
6 510 years
7 30 dogs
8 dogs255

EXPLANATION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Variable x is assigned a number.

2. Variable y is assigned the string 510 years. If the + operator is used, it could mean the concatenation of two
strings or addition of two numbers. JavaScript looks at both of the operands. If one is a string and one is a
number, the number is converted to a string and the two strings are joined together as one string, in this
example, the resulting string is 510 years. If one operand were 5 and the other 10, addition would be
performed, resulting in 15.

3. A number is concatenated with a string. The number 25 is converted to a string and concatenated to " cats",
resulting in 25 cats.

4. This time, a string is concatenated with a number, resulting in the string almost 25.

5. When the operands on either side of the + sign are numbers, addition is performed.

6. The value of y, a string, is displayed.

7. The + operators works from left to right. Since x and y are both numbers, addition is performed, 25 + 5. 30 is
concatenated with the string " dogs".

8. Since the + works from left to right, this time the first operand is a string being concatenated to a number, the
number is converted to string dogs25 and concatenated with string 5.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.3 Bugs to Watch For
Try to declare all your variables at the beginning of the program, even if you don't have values for them yet. This will
help you find misspelled names faster. Watch that you use proper variable names. Don't used reserved words and
words that are too long to remember or type easily. Remember that variable names are case sensitive. MyName is not
the same as myName. Avoid giving two variables similar names, such as MyName and myNames. Avoid one-character
differences in variable names, such as Name1 and Names1. Even though you aren't always required to use the var
keyword, do it anyway. It's safer. And, of course, be sure that the variables you use are spelled properly throughout the
script.

When you use strings don't forget to enclose the strings in either double or single quotes. Quoting will get the best of
programmers every time!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: Create a script that uses the three primitive data types and prints output for each type. In the same script,
print the following:

She cried, "Aren't you going to help me?"

2: Go to http://www.unicode.org/charts/PDF/U2600.pdf and find a symbol. Use JavaScript to display one of
the symbols in a larger font (+5).

3: Write a script that displays the number 234 as an integer, a floating-point number, an octal number, a
hexadecimal number, and the number in scientific notation.

4: When is it necessary to use the var keyword?

5: Write a script that contains four variables in the head of the document: the first one contains your name,
the second contains the value 0, the third one is declared but has no value, and the last contains an empty
string. In the body of the document, write another script to display the type of each (use the typeof
operator).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. Dialog Boxes

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.1 Interacting with the User
Programs like to talk, ask questions, get answers, and respond. In the previous chapter, we saw how the write() and
writeln() methods are used to send output to the browser. A method is how you do something, and JavaScript methods
are the action words, the "doers" of the JavaScript language. They make things happen.

JavaScript uses dialog boxes to interact with the user. The dialog boxes are created with three methods:

alert()

prompt()

confirm()

4.1.1 The alert() Method

We saw in the last chapter that the write() and writeln() were JavaScript methods used to send output to the Web
page. Another way to send output to the browser is with the alert() method. The alert() method creates a little
independent box—called a dialog box—which contains a small triangle with an exclamation point. A user-customized
message is placed after the triangle, and beneath it, an OK button. When the dialog box pops up, all execution is
stopped until the user presses the OK button in the pop-up box. The exact appearance of this dialog box may differ
slightly on different browsers, but its functionality is the same.

The message for the alert dialog box is a string of text (or a valid expression) enclosed in double quotes, and sent as a
single argument to the alert() method. HTML tags are not rendered within the message string but you can use the
escape sequences, \n and \t.

FORMAT

alert("String of plain text");
alert(expression);

Example:

alert("Phone number is incorrect");
alert(a + b);

Example 4.1

 <html>
 <head><title>Dialog Box</title></head>
 <body bgcolor="yellow" text="blue">
 Testing the alert method

1 <script language="JavaScript">
2 document.write("");
 document.write("It's a bird, ");
3 document.write("It's a plane,
");
4 alert("It's Superman!");
5 </script>
 </body>
 </html>

EXPLANATION

1. The <script> tag starts the JavaScript program. The JavaScript engine starts executing code from here until the
closing </script> tag. JavaScript does not understand HTML tags unless they are embedded in a string.

2. The document.write() method sends its output to the browser. The HTML font tag is embedded in the string and
will be sent to the browser for rendering.

3. This is another document.write() method that outputs its text followed by a newline
.

4. The alert() method will produce a little dialog box, independent of the current document, and all processing will
be stopped until the user presses the OK button. This little box can be moved around the screen with your
mouse.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mouse.

5. A closing </script> tag ends the JavaScript program. The output is shown in Figure 4.1.

Figure 4.1. Example 4.1 output using Netscape (left) and Internet Explorer
(right).

Example 4.2

 <html>
 <head>
 <title>Using JavaScript alert box</title>
1 <script language="JavaScript">
2 alert("Welcome to\nJavaScript Programming!");
3 var message1="Match your Quotes and ";
4 var message2="Beware of Little Bugs ";
5 alert(message1 + message2);
 </script
 </head>
 </html>

EXPLANATION

1. The JavaScript program starts here with the <script> tag.

2. The alert() method contains a string of text. Buried in the string is a backslash sequence, \n. There are a
number of these sequences available in JavaScript (see Table 3.1 on page 32). The \n causes a line break
between the two strings. The reason for using the \n escape sequence is because HTML tags such
 are not
allowed in this dialog box. After the alert dialog box appears on the screen, the program will stop until the user
presses the OK button.

3. The string "Match your Quotes and " is assigned to a variable called message1.

4. The string "Beware of Little Bugs " is assigned to the variable message2.

5. The alert() method not only accepts literal strings of text, but also variables as arguments. The + sign is used
to concatenate the values of the two string together and create one string. That string will appear in the alert
dialog box as shown in the output in Figure 4.2.

Figure 4.2. Output from Example 4.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.2 The Prompt Box

Since JavaScript does not provide a simple method for accepting user input [as it does for sending output with
document.write()], the prompt dialog box and HTML forms are used (forms are discussed in Chapter 11, "The
Document Objects: Forms, Images, and Links"). The prompt dialog box pops up with a simple textfield box. After the
user enters text into the prompt dialog box, its value is returned. The prompt dialog box takes two arguments: a string
of text that is normally displayed as a question to the user, prompting him to do something, and another string of text
which is the initial default setting for the box. If this argument is an empty string, nothing is displayed in the box. The
prompt method always returns a value. If the user presses the OK button, all the text in the box is returned; otherwise
null is returned.

FORMAT

prompt(message);
prompt(message, defaultText);

Example:

prompt("What is your name? ", "");
prompt("Where is your name? ", name);

Example 4.3

 <html>
 <head>
 <title>Using the JavaScript prompt box</title>
 </head>
 <body>
 <script language = "JavaScript">
1 var name=prompt("What is your name?", "");
2 document.write("
Welcome to my world! "
 + name + ".
");
3 var age=prompt("Tell me your age.", "Age");
4 if (age == null){ // If user presses the cancel button
5 alert("Not sharing your age with me");
6 }
 else{
7 alert(age + " is young");
 }
8 alert(prompt("Where do you live? ", ""));
 </script>
 </body>
 </html>

EXPLANATION

1. The return value of the prompt() method is assigned to the variable called name. The prompt() method takes
two arguments, one is the text that will prompt the user to respond. This text will appear above the prompt
dialog box. The second argument provides default text that will appear at the far left, inside the box. If the
second argument is an empty string, the prompt box will be empty.

2. After the user typed his response in the prompt textbox, the response was assigned to the variable name. The
document.write() method displays that value on the screen.

3. The variable called age will be assigned whatever the user types into the prompt box. This time a second
argument, "Age", is sent to the prompt() method. When the prompt box appears on the screen, the word Age
will appear inside the box where the user will type his response.

4. If the user presses the Cancel button, the value returned by the prompt() method is null. This if statement tests
to see if the value of age is null.

5. If the return value was null, this line is printed in the alert dialog box.

6. This closing curly brace terminates the if block.

7. If the user did type something in the prompt dialog box, the return value was assigned to variable age, and is
displayed by the alert dialog box.

8. The prompt() method is sent as an argument to the alert() method. After the user has pressed OK in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8. The prompt() method is sent as an argument to the alert() method. After the user has pressed OK in the
prompt box, the return value is sent to the alert() method, and then displayed on the screen. See Figures 4.3
through 4.7.

Figure 4.3. Prompt without a default argument.

Figure 4.7. The response is in an alert box.

Figure 4.4. Prompt with a default argument.

Figure 4.5. Prompt without a default.

Figure 4.6. User types in the prompt box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.6. User types in the prompt box.

4.1.3 The Confirm Box

The confirm dialog box is used to confirm a user's answer to a question. A question mark will appear in the box with an
OK button and a Cancel button. If the user presses the OK button, true is returned; if he presses the Cancel button,
false is returned. This method takes only one argument, the question you will ask the user.

Example 4.4

 <html>
 <head>
 <title>Using the JavaScript confirm box</title>
 </head>
 <body>
 <script language = "JavaScript">
 document.clear // Clears the page
1 if(confirm("Are you really OK?") == true){
2 alert("Then we can proceed!");
 }
 else{
3 alert("We'll try when you feel better? ");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The confirm dialog box takes only one argument, the question that you want to ask the user. It returns true if
the user presses the OK button and false if he presses the Cancel button. He has to press either one in order to
continue. If the return value is equal to true, then the alert() method on line 2 will be executed (see Figure
4.8).

Figure 4.8. The confirm dialog box.

2. The user pressed OK. The alert dialog box will display its message (see Figure 4.9).

Figure 4.9. After the user presses OK (left) or Cancel (right).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. If the user pressed Cancel, this alert dialog box will display its message (see Figure 4.9).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: What is wrong with the following alert box?

alert("Hello
", "world!
");

Create a JavaScript program that produces the previous alert box. When the alert dialog box appears, what
does the program do?

2: What is the return value of the prompt method if the user doesn't enter anything? Where is the return value
stored?

3: Create a JavaScript program that prompts the user for a phone number and then asks him for confirmation.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. Operators

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.1 About JavaScript Operators and Expressions
Data objects can be manipulated in a number of ways by the large number of operators provided by JavaScript.
Operators are symbols, such as +, –, =, >, and <, that produce a result based on some rules. An operator manipulates
data objects called operands; for example, 5 and 4 are operands in the expression 5 + 4. Operators and operands are
found in expressions. An expression combines a group of values to make a new value, n = 5 + 4. And when you
terminate an expression with a semicolon, you have a complete statement (e.g., n = 5 + 4;).

In the numeric expression, 5 + 4 – 2, three numbers are combined. The operators are the + and – signs. The operands
for the + sign are 5 and 4. After that part of the expression is evaluated to 9, the expression becomes 9 – 2. After
evaluating the complete expression, the result is 7. Since the plus and minus operators each manipulate two operands,
they are called a binary operators. If there is only one operand, the operator is called a unary operator. If there are
three operands, it is called a ternary operator. We'll see examples of these operators later in the chapter.

The operands can be either strings, numbers, Booleans, or a combination of these. We have already used some of the
operators: the concatenation operator to join two strings together, the typeof operator to determine what data type is
being used, and the assignment operator used to assign a value to a variable. Now let's look at a plethora of additional
JavaScript operators and see how they manipulate their operands.

5.1.1 Assignment

An assignment statement evaluates the expression on the right-hand side of the equal sign and assigns the result to the
variable on the left-hand side of the equal sign. The equal sign is the assignment operator.

var total = 5 + 4;
var friend = "Tony";

5.1.2 Precedence and Associativity

When an expression contains a number of operators and operands, such as 5 * 4 + 3 / –2.2, and the order of
evaluation is ambiguous, then JavaScript must determine what to do. This is where the precedence and associative
rules come in. They tell JavaScript how to evaluate such an expression. Precedence refers to the way in which the
operator binds to its operand, such as, should addition be done before division or should assignment come before
multplication? The precedence of one operator over another determines what operation is done first. As shown in Table
5.1, the operators are organized as a hierarchy, the operators of highest precedence at the top, similar to a social
system where those with the most power (or money) are at the top. In the rules of precedence, the multiplication
operator is of higher precedence than the addition operator, technically meaning the operator of higher precedence
binds more tightly to its operands. The assignment operators are low in precedence and thus bind loosely to their
operand. In the expression sum = 5 + 4 the equal sign is of low precedence, so the expression 5 + 4 is evaluated first
and then the result is assigned to sum. Parentheses are of the highest precedence. An expression placed within
parentheses is evaluated first; thus, in the expression 2 * (10 – 4), the expression within the parentheses is evaluated
first and that result is multiplied by 2. When parentheses are nested, the expression contained within the innermost set
of parentheses is evaluated first.

Associativity refers to the order in which an operator evaluates its operands: left to right in no specified order, or right
to left. When all of the operators in an expression are of equal precedence, normally the association is left to right; in
the expression 5 + 4 + 3, the evaluation is from left to right. In Example 5.1, how is the expression evaluated? Is
addition, multiplication, or division done first? And in what order, right to left or left to right?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

addition, multiplication, or division done first? And in what order, right to left or left to right?

In Table 5.1 the operators on the same line are of equal precedence. The rows are in order of highest to lowest
precedence.

Table 5.1. Precedence and associativity.
Operator Description Associativity

() Parentheses Left to right

++ –– Auto increment, decrement Right to left

! Logical NOT Right to left

* / % Multiply, divide, modulus Left to right

+ – Add, subtract Left to right

+ Concatenation Left to right

< <= Less than, less than equal to Left to right

> >= Greater than, greater than equal to Left to right

= = != Equal to, not equal to Left to right

= = = != = Identical to (same type), not identical to Left to right

& Bitwise AND Left to right

| Bitwise OR

^ Bitwise XOR

~ Bitwise NOT

<< Bitwise left shift

>> Bitwise right shift

>>> Bitwise zero-filled, right shift

&& Logical AND Left to right

|| Logical OR Left to right

? : Ternary, conditional Right to left

= += – = *= /= %= <<= >>= Assignment Right to left

, (comma)

Example 5.1

 <html><head><title>First JavaScript Sample</title>
1 <script language = "JavaScript">
2 var result = 5 + 4 * 12 / 4;
3 document.write("result = " + result,"
");
4 </script>
 </head>
 <body bgcolor="yellow" text="blue"></body>
 </html>

EXPLANATION

1. This is the starting JavaScript tag.

2. The order of associativity is from left to right. Multiplication and division are of a higher precedence than
addition and subtraction, and addition and subtraction are of higher precedence than assignment. To illustrate
this, we'll use parentheses to group the operands as they are grouped by JavaScript. In fact, if you want to
force precedence, use the parentheses around the expression to group the operands in the way you want them
evaluated. The following two examples produce the same result:

var result = 5 + 4 * 12 / 4;

could be written

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

could be written

result = (5 + ((4 * 12) / 4));

3. The expression is evaluated and the result is assigned to variable, result. The value of result is displayed on the
browser.

4. This is the closing JavaScript tag.

Figure 5.1. Output from Example 5.1.

Example 5.2

 <html>
 <head>
 <title>Precedence and Associativity</title>
 </head>
 <body>
 <script language = "JavaScript">
1 var x = 5 + 4 * 12 / 4;
2 document.writeln("<h3>The result is " + x + "
");
3 var x = (5 + 4) * (12 / 4);
4 document.writeln("The result is " + x);
 </script>
 </body>
 </html>

EXPLANATION

1. The variable, called x, is assigned the result of the expression.

var x = 5 + 4 * 12 / 4;

results in

x = 5 + 48 / 4

results in

x = 5 + 12

results in

17

Since multiplication and division are higher on the precedence table than addition, those expressions will be
evaluated first, associating from left to right.

2. The result of the previous evaluation, the value of x, is sent to the browser.

3. The expressions enclosed in parentheses are evaluated first and then multiplied.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var x = (5 + 4) * (12 / 4);

results in

x = 9 * 3

results in

27

4. The result of the previous evaluation, the value of x, is sent to the browser. The output of the script is shown in
Figure 5.2.

Figure 5.2. Output from Example 5.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.2 Types of Operators

5.2.1 Arithmetic Operators

Arithmetic operators take numerical values (either literals or variables) as their operands and return a single numerical
value. The standard arithmetic operators are addition (+), subtraction (–), multiplication (*), and division (/). See Table
5.2.

Table 5.2. Arithmetic operators.
Operator/Operands Function

x + y Addition

x – y Subtraction

x * y Multiplication

x / y Division[a]

x % y Modulus

[a] The / operator returns a floating-point division in JavaScript, not a truncated division as it does in languages
such as C or Java. For example, 1/2 returns 0.5 in JavaScript and 1/2 returns 0 in Java.

Example 5.3

 <html>
 <head><title>Arithmetic Operators</title></head>
 <body>
 <h2>Arithmetic operators</h2>
 <p>
1 <script language="JavaScript">
2 var num1 = 5;
 var num2 = 7;
3 var result = num1 + num2;
4 document.write("<h3>num1 + num2 = "+ result);
5 result = result + (10 / 2 + 5);
6 document.write("<h3>12 + (10 / 2 + 5) = " + result);
7 </script>
 </body>
 </html>

EXPLANATION

1. This is the start of a JavaScript program.

2. Variables num1 and num2 are declared and assigned values 5 and 7, respectively.

3. The variable result is assigned the sum of num1 and num2.

4. The results are displayed by the browser. Note that the + sign in this expression is used to concatenate two
strings. When a string is concatenated to a number, JavaScript converts the number to a string. The value
stored in the variable result is converted to a string and joined to the string on the left-hand side of the + sign.

5. The expression on the right-hand side of the = sign is evaluated and assigned to the variable, result, on the
left-hand side of the = sign. (The parentheses are not needed, but used for clarity.) The browser output is
shown in Figure 5.3.

Figure 5.3. Ouput from Example 5.3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.3. Ouput from Example 5.3.

5.2.2 Shortcut Assignment Operators

The shortcut assignment operators allow you to perform an arithmetic or string operation by combining an assignment
operator with an arithmetic or string operator. For example, x = x + 1 can be written x+=1. See Table 5.3.

Table 5.3. Assignment operators.
Operator Example Meaning

= var x = 5; Assign 5 to variable x.

+= x += 3; Add 3 to x and assign result to x.

–= x –= 2; Subtract 2 from x and assign result to x.

*= x *= 4; Multiply x by 4 and assign result to x.

/= x /= 2; Divide x by 2 and assign result to x.

**= x **= 2; Square x and assign result to x.

%= x %= 2 Divide x by 2 and assign remainder to x.

Example 5.4

 <html>
 <head>
 <title>Assignment and Shortcut Operators</title>
1 <script language = "JavaScript">
2 var num=10;
3 document.write("" + "
" +
 "num is assigned " + 10);
4 num += 2;
 document.write("
num += 2; num is " + num);
5 num -= 1;
 document.write("
num -= 1; num is " + num);
6 num *= 3;
 document.write("
num *= 3; num is " + num);
7 num %= 5;
 document.write("
num %= 5; num is " + num);
8 </script>
 </head>
 <body bgcolor="yellow" text="blue">

EXPLANATION

1. JavaScript program starts here.

2. The variable num is assigned 10.

3. Output is sent to the browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. The shortcut assignment operator, +=, adds 2 to the variable num. This is equivalent to num = num + 1;.

5. The shortcut assignment operator, –=, subtracts 1 from the variable num. This is equivalent to num = num -
1;.

6. The shortcut assignment operator, *, multiplies the variable num by 3. This is equivalent to num = num * 3;.

7. The shortcut assignment modulus operator, %, yields the integer amount that remains after the scalar num is
divided by 5. The operator is called the modulus operator or remainder operator. The expression var%=5 is
equivalent to num = num % 5;.

8. JavaScript ends here. The output is shown in Figure 5.4.

Figure 5.4. Output from Example 5.4.

5.2.3 Autoincrement and Autodecrement Operators

To make programs easier to read, to simplify typing, and, at the machine level, to produce more efficient code, the
autoincrement (++) and autodecrement (– –) operators are provided.

The autoincrement operator performs the simple task of incrementing the value of its operand by 1, and the
autodecrement operator decrements the value of its operand by 1. The operator has two forms: the first form prefixes
the variable with either ++ or – – (e.g., ++x or – –x); the second form postfixes (places the operator after) the
variable name with either ++ or – – (e.g., x++ or x– –). For simple operations, such as x++ or x– –, ++x or – –x, the
effect is the same; both ++x and x++ add one to the value of x, and both – –x and x– – subtract one from the value of
x.

Now you have four ways to add 1 to the value of a variable:

x = x + 1;

x += ;

x++;

++x;

and four ways to subtract 1 from the value of a variable:

x = x – 1;

x –= 1;

x– –;

– –x;

Refer to Table 5.4. In "Loops" on page 101, you'll see these operators are commonly used to increment or decrement
loop counters.

Table 5.4. Autoincrement and autodecrement operators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 5.4. Autoincrement and autodecrement operators.
Operator Function What It Does Example

++x Pre-increment Adds 1 to x x = 3; x++; x is now 4

x++ Post-increment Adds 1 to x x = 3; ++x; x is now 4

– –x Pre-decrement Subtracts 1 from x x = 3; x – –; x is now 2

x– – Post-decrement Subtracts 1 from x x = 3; – –x; x is now 2

Autoincrement and Autodecrement Operators and Assignment

The placement of the operators does make a difference in more complex expressions, especially when part of an
assignment; for example, y = x++ is not the same as y = ++x.

Example 5.5

 <html>
 <head><title>Auto-increment and Auto-decrement</title></head>
 <body>
 <script language = "JavaScript">
1 var x=5;
 var y=0;
2 y = ++x; // add one to x first; then assign to y
 document.write("<h3>Pre-increment:
");
3 document.write("y is " + y + "
");
 document.write("x is " + x + "
");
 document.write("-----------------------
");
4 var x=5;
 var y=0;
5 y=x++; // assign value in x to y; then add one to x

 document.write("<h3>Post-increment:
");
6 document.write("y is " + y + "
");
 document.write("x is " + x + "
</h3>");
 </script>
 </body>
 </html>

EXPLANATION

1. The variables, x and y, are intialized to 5 and 0, respectively.

2. The pre-increment operator is applied to x. This means that x will be incremented before the assignment is
made. The value of x was 5, now it is 6. The variable y is assigned 6. x is 6, y is 6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

made. The value of x was 5, now it is 6. The variable y is assigned 6. x is 6, y is 6.

3. The new values of y and x are displayed in the browser window.

4. The variables x and y are assigned values of 5 and 0, respectively.

5. This time the post-increment operator is applied to x. This means that x will be incremented after the
assignment is made. The number 5 is assigned to the variable y, and then x is incremented by 1. So x is 5 and
y is 6.

6. The new values of y and x are displayed in the browser window. See Figure 5.5.

Figure 5.5. Output from Example 5.5.

5.2.4 Concatenation Operator

As shown in previous examples, the + sign is used for concatenation and addition. The concatenation operator, the +
sign, is a string operator used to join together one or more strings. In fact, the concatenation operator is the only
operator JavaScript provides to manipulate strings.

In the example, "correct" + "tion" + "al" , the result is "correctional". If the operands are a mix of strings and numbers,
JavaScript will convert the numbers to strings. For example, "22" + 8 results in "228", not 30. If the operands are
numbers, then the + sign is the addtion operator as in 5 + 4. But suppose we say, "22" * 1 + 4. In this case,
JavaScript sees the multiplication operator (*) and converts the string "22" to a number, resulting in 22 + 4 or 26.
Netscape Navigator provides the JavaScript console for testing these expressions or you can type javascript: in the URL,
followed by the expression you want to test, as shown in Figures 5.6 and 5.7.

Figure 5.6. Evaluating expressions in the javascript: URL. The result of the test,
26, is displayed in the browser window.

Figure 5.7. Concatenation of a string and a number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.7. Concatenation of a string and a number.

The concatenation operator is summarized in Table 5.5. To explicitly convert strings to numbers, JavaScript provides
built-in functions called parseInt() and parseFloat(), discussed in Sections 5.3.1 and 5.3.2, respectively.

Table 5.5. The concatenation operator.
Operator Example Meaning

+ "hot" +
"dog"

Concatenates (joins) two strings; creates "hotdog".

 "22" + 8 Converts number 8 to string "8", then concatenates resulting in "228". In statements
involving other operators, JavaScript does not convert numeric values to strings.

+= x ="cow"; x
+= "boy";

Concatenates two strings and assigns the result to x; x becomes "cowboy".

5.2.5 Comparison Operators

When operands are compared, relational and equality operators are used. The operands can be numbers or strings. The
result of the comparison is either true or false—a Boolean value. Strings are compared letter by letter (lexographically)
using Unicode[1] values to represent the numeric value of each letter; thus, "A" is less than "B", and when comparing
"Daniel" with "Dan", "Daniel" is greater than "Dan". When comparing strings, JavaScript pads "Dan" with three spaces
to make it the same length as "Daniel". Refer to Table 5.6.

[1] Unicode is not supported in versions of JavaScript prior to 1.3. Unicode is compatible with ASCII characters. The
first 128 Unicode characters correspond to the ASCII character set and have the same byte value.

Table 5.6. Comparison operators.
Operator/Operands Function

x == y x is equal to y

x != y x is not equal to y

x > y x is greater than y

x >= y x is greater than or equal to y

x < y x is less than y

x <= y x is less than or equal to y

x = = = y x is identical to y in value and type

x != = y x is not identical to y

What Is Equal?

In an ideal world, there would be equality between the sexes and among the races and religions, but in the real world
equality is a debatable topic, often determined by governments. In JavaScript, operators determine the equality or
inequality of their operands, based on more specific rules. When using the == or != equality operators, the operands
may be of any given data type—numbers, strings, Booleans, objects, arrays, or a combination of these—and there are
rules that govern whether they are equal. For example, two strings are equal when they have the same sequence of
characters, same length, and same characters in corresponding positions. Two numbers are equal when they have the
same numeric value. If a string is compared with a number, they are equal if the number has the same characters as
the string; for example, "500" is equal to 500. NaN (Not a Number) is not equal to anything, including NaN. Positive
and negative zeros are equal. Two objects are equal if they refer to the same object. Two Boolean operands are equal if
they are both true or both false. Null and undefined types are equal. To test any of the expressions shown in Table 5.7,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

they are both true or both false. Null and undefined types are equal. To test any of the expressions shown in Table 5.7,
use the JavaScript Console. Figure 5.8 shows an example using Netscape.

Figure 5.8. Testing the equality of two strings. Is "William" equal to "william"?
Nope.

Table 5.7. Equality test with strings and numbers.
Test Are They Equal?

"William" == "William" true

"william" == "William" false

5 == 5.0 true

"54" == 54 true

"5.4" == 5.4 true

NaN == NaN false

null == null true

–0 == +0 true

false == false true

true == 1 true

null == undefined true

What Is Identical?

Men are equal; clones are identical. The === and !== equality operators test that its operands are not only of the
same value, but also of the same data type. String "54" is equal to number 54, but not identical because one is a string
and the other is a number, even though their values are equal. See Table 5.8.

Table 5.8. Identity test with strings and numbers.
Test Are They Equal?

"William" === "William" true

"william" == "William" false

5 == 5.0 true

"54" === 54 false

NaN == NaN false

null == null true

-0 == +0 true

false == false true

true == 1 false

null == undefined false

Comparing Numbers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Comparing Numbers

When the comparison operators are used to compare numbers, numeric values are compared; as in, is 50 > 45? A
Boolean value of either true or false is returned.

x > y x is greater than y

x >= y x is greater than or equal to y

x < y x is less than y

x <= y x is less than or equal to y

Example 5.6

 <html>
 <head>
 <title>Comparing Numbers</title>
 </head><body>
1 <script language = "JavaScript">
2 var x = 5;
 var y = 4;

3 var result = x > y;
4 document.writeln("<h3>The result is "+ result + ".
");
5 result = x < y;
6 document.writeln("The result is " + result + ".
");
7 </script>
 </body>
 </html>

EXPLANATION

1. The JavaScript program starts here.

2. The variables x and y are assigned values to be compared later in the program.

3. If the value of x is greater than the value of y, a Boolean value of either true or false is returned and assigned
to the variable result.

4. The Boolean result of the comparison is displayed by the browser. It is true; x is greater than y.

5. If x is less than y, true is assigned to the variable, result; otherwise it is assigned false.

6. The Boolean result of the comparison is displayed by the browser. It is false; x is not greater than y.

7. This tag marks the end of the JavaScript program. The output is shown in Figure 5.9.

Figure 5.9. Output from Example 5.6.

Comparing Strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Comparing Strings

The difference between comparing strings and numbers is that numbers are compared numerically and strings are
compared alphabetically, based on the ASCII character set. The strings are compared letter by letter, from left to right,
and if they are exactly the same all the way to end, they are equal. Once a letter in one string differs from the
corresponding letter in the second string, the comparison stops and each of the differing letters is evaluated. For
example, if the string "Dan" is compared with "dan", the comparison stops at the first letters D and d. "Dan" is smaller
than "dan", because the letter D has a lower ASCII value than the letter d. D has an ASCII decimal value of 68, and d
has an ASCII value of 100.

To avoid the case-sensitivity issue when comparing strings, JavaScript provides the built-in string functions,
toUpperCase() and toLowerCase(), discussed in "Free Form and Reserved Words" on page 17 and Table 9.10 on page
184.

"string1" > "string2" "string1" is greater than "string2"

"string1" >= "string2" "string1" is greater than or equal to "string2"

"string1" < "string2" "string1" is less than "string2"

"string1" <= "string2" "string1" is less than or equal to "string2"

Example 5.7

 <html>
 <head>
 <title>Comparing Strings</title>
 </head><body>
1 <script language = "JavaScript">
2 var fruit1 = "pear";
 var fruit2 = "peaR";

3 var result = fruit1 > fruit2;
4 document.writeln("<h3>The result is "+ result + ".
");

5 result = fruit1 < fruit2;
6 document.writeln("The result is " + result + ".
");

7 result = fruit1 === fruit2;
 // Are they identical; i.e., value and type are the same?
8 document.writeln("The result is " + result + ".
");
 </script>
 </body>
 </html>

EXPLANATION

1. This is the start of the JavaScript program.

2. The variables, fruit1 and fruit2, are assigned to string values, differing by only one letter.

3. The string values are compared and a Boolean value of true or false will be returned and assigned to the
variable, result. "pear" is greater than "peaR" because the r has an ASCII value of 114 and the R has an ASCII
value of 82.

4. The result of the comparison in line 3 is true and the result is sent to the browser.

5. This time "pear" is compared to "peaR" with the less than operator. The result is false.

6. The result of the comparison in line 5 is false and the result is sent to the browser.

7. The identical equality operator is used. Since the strings are not identical, the result is false.

8. The result of the comparison in line 7 is false and the result is sent to the browser. The output of the script is
shown in Figure 5.10.

Figure 5.10. Output from Example 5.7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.10. Output from Example 5.7.

5.2.6 Logical Operators

The logical operators allow you combine the relational operators into more powerful expressions for testing conditions
and are most often used in if statements. They evaluate their operands from left to right, testing the Boolean value of
each operand in turn: Does the operand evaluate to true or false? In the expression if (x > 5 && x < 10), the && is a
logical operator. The expression simplified means, "if x is greater than 5 and x is also less than 10, then do something";
in the case of the logical AND (&&), if the first expression returns true and the second expression also returns true, then
the whole expression is true. If instead of && we used ||, the operator means OR and only one of the expressions must
be true.

Sometimes the result of a test is not Boolean. When logical operators have numeric operands, such as 5 && 6, the
result of the entire expression is the value of the last evaluated expression. A numeric operand is true if it evaluates to
any number that is not zero. 5, –2, and 74 are all true. 0 is false. For example, when using the && (AND) operator,
both operands must be true for the whole expression to be true. The value returned from an expression such as 5 && 6
is 6, the last value evaluated by the operator. 5 is not zero (true) and 6 is not zero (true), therefore, the expression is
true. 5 && 0, 0 && 0 and 0 && 5 all yield 0, which is false. See Table 5.9.

The three logical operators are the logical AND, logical OR, and logical NOT. The symbol for AND is &&, the symbol for
OR is ||, and the symbol for NOT is !.

Table 5.9. Logical operators and their functions.
Operator/Operands Function

num1 && num2 True, if num1 and num2 are both true. Returns num1 if evaluated to false; otherwise returns
num2. If operands are Boolean values, returns true if both operands are true; otherwise
returns false.

num1 || num2 True, if num1 is true or if num2 is true.

! num1 Not num1; true if num1 is false; false if num1 is true.

The && Operator (Logical AND)

We all know the meaning of the English statement, "If you have the money and I have the time...." Whatever is
supposed to happen is based on two conditions, and both conditions must be met. You must have the money and I
must have the time. JavaScript uses the symbol && to represent the word AND. This operator is called the logical AND
operator. If the expression on the left-hand side of the && evaluates to zero, null, or the empty string "", the expression
is false. If the expression on the left-hand side of the operator evaluates to true (non-zero), then the right-hand side is
evaluated, and if that expression is also true, then the whole expression is true. If the left-hand side evaluates to true,
and the right-hand side is false, the expression is false. If evaluated as Booleans, the same rules apply, except the
returned value will be either Boolean true or false. See Table 5.10.

Table 5.10. Logical AND examples.
Expression What It Evaluates To

true && false false

true && true true

"honest" && true true

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"honest" && true true

true && "" (empty string)

true && "honest" honest

5 && 0 0

5 && –6 –6

5 && false false

null && 0 null

null && "" null

null && false null

"hello" && true && 50 50

"this" && "that" that

Example 5.8

 <html>
 <head><title>Logical AND Operator</title>
 </head>
 <body bgcolor="lightblue">
 <font="+1">
 <script language="JavaScript">
1 var answer = prompt("How old are you? ", "");
2 if (answer > 12 && answer < 20) {
 alert("Teenagers rock!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The user is prompted for his age. The variable called answer is assigned the value he enters. (See Figure 5.11.)

Figure 5.11. The user enters his age.

2. If the value of answer is greater than 12 and also less than 20, the statement enclosed within the curly braces
is executed: an alert box appears displaying Teenagers rock! (See Figure 5.12.) If the user enters any other
value, nothing happens.

Figure 5.12. If the user enters his age and it is greater than 12 and less than
20, this alert box appears.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The || Operator (Logical OR)

In the English statement "If you have some cash or I have a credit card..." the word or is used in the condition. With
the or, only one of the conditions must be met (hopefully that you have the cash!). JavaScript uses the || symbol to
represent the logical OR. If the expression on the left-hand side of the || operator is evaluated as true (non-zero), the
value of the expression is true, and no further checking is done. If the value on the left-hand side of the || operator is
false, the value of the expression on the right-hand side of the operator is evaluated, and if true, the expression is true;
that is, only one expression must be true. Once an expression returns true, the remaining expressions can be either
true or false. It doesn't matter, as long as one expression is true. Refer to Table 5.11.

Table 5.11. Logical OR examples.
Expression What It Evaluates To

true || false true

true || true true

"honest" || true honest

true && "" true

true || "honest" true

5 || 0 5

5 || –6 5

5 || false 5

null || 0 0

null || "" (empty string)

null || false false

"hello" || true || 50 hello

"this" || "that" this

Example 5.9

 <html>
 <head>
 <title>Logical OR Operator</title>
 </head>
 <body bgcolor="lightblue">
 <font="+1">
 <script language="JavaScript">

1 var answer = prompt("Where should we eat? ", "");
2 if (answer == "McDonald's" || answer == "Taco Bell" ||
 answer == "Wendy's"){
3 alert("No fast food today, thanks.");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The user is prompted to choose a place to eat. The variable called answer is assigned the value he enters. (See
Figure 5.13.)

Figure 5.13. The user enters a value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.13. The user enters a value.

2. If the value of answer is any one of McDonald's or Taco Bell or Wendy's, the statement enclosed within the curly
braces, is executed: an alert box appears displaying No fast food today, thanks. (See Figure 5.14.) If he enters
any other value, nothing happens.

Figure 5.14. If the user enters any one of the values in line 2, this alert box
appears.

The ! Operator (Logical NOT)

In the English statement "That's not true!" the word not is used for negation: not true is false, and not false is true.
JavaScript provides the NOT (!) operator for negation. The ! operator is called a unary operator because it has only one
operand; for example, ! true or ! 5. It returns true if the expression evaluates to false and returns false if the
expression evaluates to true. See Table 5.12.

Table 5.12. Logical NOT examples.
Expression What It Evaluates To

! "this" false

! 0 true

!2 false

! false true

! null true

! undefined true

Example 5.10

 <html>
 <head>
 <title>Logical NOT Operator</title>
 </head>
 <body bgcolor="lightblue">
 <font="+1">
 <script language="JavaScript">
1 var answer = true;
2 alert("Was true. Now " + ! true);
 </script>
 </body>
 </html>

EXPLANATION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. The Boolean value true is assigned to the variable answer.

2. The expression sent to the alert dialog box, ! true, negates the value true, (not true) making it false. (See
Figure 5.15.)

Figure 5.15. The ! operator caused true to become false.

In summary, the following example illustrates the logical operators and the values they return.

Example 5.11

 <html>
 <head>
 <title>Logical (Boolean) Operators</title>
 </head>
 <body>
 <script language = "JavaScript">
1 var num1=50;
 var num2=100;
 var num3=0;
2 document.write("<h3>num1 && num2 is " + (num1 && num2) +
 ".
");
3 document.write("num1 || $num2 is " + (num1 || num2) +".
");
4 document.write("! num1 is " + !num1 +".
");
5 document.write("!(num1 && num2) is " + !(num1 && num2) +
 ".
");
6 document.write("!(num1 && num3) is " + !(num1 && num3) +
 ".
");
 </script>
 </body>
 </html>

EXPLANATION

1. Three variables, num1, num2, and num3, are initialized.

2. The && operator expects both of its operands to be true, if the expression is to be true. A true value is any
number that is not zero. In the expression, 50 && 100, both operands are true. The value of the last true
operand, 100, is returned.

3. The || operator expects only one of its operands to be true if the whole expression is to be true. 50 || 100 is
true because the first operand evaluates to a non-zero value. Because 50 is true and only one operand must be
true, the evaluation stops here and 50 is returned.

4. The ! (NOT) operator negates its operand. ! 50 means ! true; that is, false.

5. Because the expression num1 && num2 is enclosed in parentheses, it is evaluated first, resulting in 50 && 100,
true. Then the ! (NOT) operator evaluates ! (true), resulting in Boolean false.

6. The expression, num1 && num3, enclosed in parentheses, is evaluated first. Since num3 is 0, the expression
evaluates to false. ! (false) is true. See Figure 5.16.

Figure 5.16. Output from Example 5.11.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.16. Output from Example 5.11.

5.2.7 The Conditional Operator

The conditional operator is called a ternary operator because it requires three operands. It is often used as a shorthand
method for if/else conditional statements. (See Chapter 6, "Under Certain Conditions.") Although we cover if/else in
Chapter 6, the format below shows both the conditional operator and how it translates to an if/else statement.

FORMAT

conditional expression ? expression : expression

Examples:

x ? y : z If x evaluates to true, the value of the expression
 becomes y, else the value of the expression becomes z

big = (x > y) ? x : y If x is greater than y, x is assigned to
 variable big, else y is assigned to
 variable big

The same conditional operator as an if/else statement:

if (x > y) {
 big = x;
}
else{
 big = y;
}

Example 5.12

 <html>
 <head>
 <title>Conditional Operator</title>
 </head>
 <body bgcolor="lightblue">
 <font="+1">
 <script language="JavaScript">
1 var age = prompt("How old are you? ", "");
2 var price = (age > 55) ? 0 : 7.50;
3 alert("You pay $" + price + 0);
 </script>
 </body>
 </html>

EXPLANATION

1. The user is prompted for input. The value he enters in the prompt box is assigned to the variable age. (See

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. The user is prompted for input. The value he enters in the prompt box is assigned to the variable age. (See
Figure 5.17.)

Figure 5.17. The user enters 12. This value is assigned to variable age in the
program.

2. If the value of age is greater than 55, the value to the right of the ? is assigned to the variable price; if not, the
value after the : is assigned to the variable price.

3. The alert dialog box displays the value of the variable price. (See Figure 5.18.)

Figure 5.18. Since the age is not greater than 55, the price is assigned 7.50.
(IE displays $7.50.)

5.2.8 Bitwise Operators

Bitwise operators treat their operands as a set of 32 bits (zeros and ones), rather than as decimal, hexadecimal, or
octal numbers. For example, the decimal number nine has a binary representation of 1001. Bitwise operators perform
their operations on such binary representations, but they return standard JavaScript numeric values. Refer to Table
5.13.

Table 5.13. Bitwise operators.
Operator Function Example What It Does

& Bitwise AND x & y Returns a 1 in each bit position if both corresponding bits are 1.

| Bitwise OR x | y Returns a 1 in each bit position if one or both corresponding bits are 1.

^ Bitwise XOR x ^ y Returns a 1 in each bit position if one, but not both, of the corresponding bits
are 1.

– Bitwise NOT –x Inverts the bits of its operands. 1 becomes 0; 0 becomes 1.

<< Left shift x << y Shifts x in binary representation y bits to left, shifting in zeros from the right.

>> Right shift x >> y Shifts x in binary representation y bits to right, discarding bits shifted off.

>>> Zero-fill
right shift

x >>> b Shifts x in binary representation y bits to the right, discarding bits shifted off,
and shifting in zeros from the left.

When using the bitwise operations &, |, ^, and –, each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on. For example, the binary representation for 5 &
4 is 101 & 100.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 101 101 101
& 100 | 100 ^ 100
----- ----- -----
 100 101 001

Bitwise Shift Operators

The bitwise shift operators take two operands: the first is a quantity to be shifted, and the second specifies the number
of bit positions by which the first operand is to be shifted. The direction of the shift operation is controlled by the
operator used.

<< (left shift)

This operator shifts the first operand the specified number of bits to the left. Excess bits shifted off to the left
are discarded. Zero bits are shifted in from the right.

>> (sign-propagating right shift)

This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off to the right
are discarded. Copies of the leftmost bit are shifted in from the left.

>>> (zero-fill right shift)

This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off to the right
are discarded. Zero bits are shifted in from the left. For example, 19>>>2 yields 4, because 10011 shifted two
bits to the right becomes 100, which is 4. For non-negative numbers, zero-fill right shift and sign-propagating
right shift yield the same result.

Shift operators convert their operands to 32-bit integers and return a result of the same type as the left operator.

Example 5.13

 <html>
 <head>
 <title>Bitwise Operators</title>
 </head>
 <body bgcolor="lightblue">

 <h3> Testing Bitwise Operators</h3>
 <script language="JavaScript">
1 var result = 15 & 9;
 document.write("15 & 9 yields: " + result);
2 result = 15 | 9;
 document.write("
 15 | 9 yields: " + result);
3 result = 15 ^ 9;
 document.write("
 15 ^ 9 yields: " + result);
4 result = 9 << 2;
 document.write("
 9 << 2 yields: " + result);
5 result = 9 >> 2;
 document.write("
 9 >> 2 yields: " + result);
6 result = -9 >> 2;
 document.write("
 -9 >> 2 yields: " + result);
7 result = 15 >>> 2;
 document.write("
 15 >>> 2 yields: " + result);
 </script>
 </body>
 </html>

EXPLANATION

1. The binary representation of 9 is 1001, and the binary representation of 15 is 1111. When the bitwise & (AND)
operator is applied to 1111 & 1001, the result is binary 1001 or decimal 9.

2. When the bitwise | (OR) operator is applied to 1111 | 1001, the result is binary 1111 or decimal 15.

3. When the bitwise ^ (Exclusive OR) is applied to 1111 ^ 1001, the result is binary 0110 or decimal 6.

4. 9<<2 yields 36, because 1001 shifted two bits to the left becomes 100100, which is decimal 36.

5. 9>>2 yields 2, because 1001 shifted two bits to the right becomes 10, which is decimal 2.

6. –9 >> 2 yields –3, because the sign is preserved.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. 15 >>> 2 yields 3, because 1111 shifted two bits to the right becomes 0011, which is decimal 3. For non-
negative numbers, zero-fill right shift and sign-propagating right shift yield the same result.

Figure 5.19. Output from Example 5.13.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.3 Number, String, or Boolean? Datatype Conversion
As defined earlier, JavaScript is a loosely typed language, which really means that you don't have to be concerned
about what kind of data is stored in a variable. You can assign a number to x on one line and on the next line assign a
string to x, you can compare numbers and strings, strings and Booleans, and so on. JavaScript automatically converts
values when it assigns values to a variable or evaluates an expression. If data types are mixed (i.e., a number is
compared with a string, a Boolean is compared with a number, a string is compared with a Boolean), JavaScript must
decide how to handle the expression. Most of the time, letting JavaScript handle the data works fine, but there are
times when you want to force a conversion of one type to another. For example, if you prompt a user for input, the
input is set as a string. But, suppose you want to perform calculations on the incoming data, making it necessary to
convert the strings to numbers. When using the + operator you want to add two numbers that have been entered as
strings, not concatenate them, so you will then need to convert the data from string to number.

JavaScript provides three methods to convert the primitive data types. They are:

String()

Number()

Boolean()

Example 5.14

 <html>
 <head><title>The Conversion Methods</title></head>
 <body>
 <p>
 <h3>Data Conversion</h3>
 script language="JavaScript">
1 var num1 = prompt("Enter a number: ","");
 var num2 = prompt("Enter another number: ","");
2 var result = Number(num1) + Number(num2);
 // Convert strings to numbers
3 alert("Result is "+ result);
4 var myString=String(num1);
5 result=myString + 200; // String + Number is String
6 alert("Result is "+ result); // Concatenates 200 to the
 // result; displays 20200
7 alert("Boolean result is "+ Boolean(num2)); // Prints true
 </script>
 </body>
 </html>

EXPLANATION

1. The user is prompted to enter a number (see Figure 5.20). The variable num1 is assigned the number. On the
next line, num2 is assigned another number entered by the user (see Figure 5.21).

Figure 5.20. The user is prompted to enter a number.

Figure 5.21. The user is prompted to enter another number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.21. The user is prompted to enter another number.

2. The JavaScript Number() method converts strings to numbers. After the variables, num1 and num2 have been
converted to numbers, the + sign will be used as an addition operator (rather than a concatenation operator),
resulting in the sum of num1 and num2. Unless converted to numbers, the string values 30 + 20 would be
concatenated, resulting in 3020.

3. The alert() box displays the sum of the two numbers entered by the user (see Figure 5.22).

Figure 5.22. The result is displayed.

4. The variable num1 is converted to a string; its value is assigned to the variable, result.

5. The value of myString, 20, is concatenated to 200 and assigned to result. The result is 20200.

6. The alert() box displays the result from line 5.

7. The value of num2 is converted to Boolean, either true or false. Since the value of num2 is not 0, true is
displayed in the alert() dialog box.

5.3.1 The parseInt() Method

This method converts a string to a number. It starts parsing at the beginning of the string and returns all integers until
it reaches a non-integer and then stops parsing. If the string doesn't begin with an integer, NaN[2] (not a number) is
returned. For example, parseInt("150cats") becomes 150, whereas parseInt("cats") becomes NaN. You can also use
octal and hexadecimal numbers. In the two-argument format, the first argument to parseInt() is a string containing a
number base (radix) ranging from 2 to 36. The default is base 10. In the statement, parseInt("17", 8), the result is 15.
The first argument is the string to be parsed and the second argument, 8, is the number base of the number (here,
octal 17). The value returned is decimal 15. Refer to Tables 5.14 and 5.15.

[2] NaN is not supported in JavaScript 1.0; instead of NaN, 0 is returned.

FORMAT

parseInt(String, NumberBase); Default base is 10
parseInt(String);

Example:

parseInt("111", 2); 7 (111 in base 2 is 7)
parseInt("45days"); 45

Table 5.14. parseInt(String).
String Result

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"hello" NaN

"Route 66" NaN

"6 dogs" 6

"6" 6

"-6" –6

"6.56" 6

"0Xa" 10

"011" 9

Table 5.15. parseInt(String, NumberBase).
String Base Result (decimal)

"111" 2 (binary) 7

"12" 8 (octal) 10

"b" 16 (hex) 11

Example 5.15

 <html>
 <head>
 <title>Using the parseInt() Function</title></head>
 <body>

 <script language = "JavaScript">
1 var grade = prompt("What is your grade? ", "");
 // Grade entered as a string
2 grade=parseInt(grade); // Grade converted to an integer
3 document.write("grade type is " + typeof(grade));
4 grade+=10;
5 document.write("
After a 10 point bonus, your grade is "
 + grade + "!
");
 </script>
 </body>
 </html>

EXPLANATION

1. The user is prompted to enter a grade. The string value entered in the prompt box is assigned to the variable
grade. (See Figure 5.23.)

Figure 5.23. The user enters a grade.

2. The parseInt() method will convert the grade to an integer value.

3. The typeof() operator returns the data type of the variable grade.

4. The value of grade is incremented by 10.

5. The new value of grade is sent to the browser. (See Figure 5.24.)

Figure 5.24. The new value of grade is displayed in the browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.24. The new value of grade is displayed in the browser.

5.3.2 The parseFloat() Method

The parseFloat() method is just like the parseInt() method except that it returns a floating-point number. A floating-
point[3] number is a number that contains a fractional part, such as 3.0, –22.5, or .15. The decimal point is allowed in
the string being parsed. If the string being parsed does not start with a number, NaN (not a number) is returned.

[3] The term "floating point" means that there are not a fixed number of digits before or after the decimal point;
the decimal point floats.

FORMAT

parseFloat(String);

Example:

parseFloat("45.3 degrees");

Table 5.16. parseFloat(String).
String Result

"hello" NaN

"Route 66.6" NaN

"6.5 dogs" 6.5

"6" 6

"6.56" 6.56

Example 5.16

 <html>
 <head>
 <title>Using the parseFloat() Function</title>
 <script language = "JavaScript">
1 var temp = prompt("What is your temperature? ", "");
2 temp=parseFloat(temp);
3 if(temp == 98.6){
4 alert("Your temp is normal");
 }
5 else{
 alert("You are sick!");
 }
 </script></head><body></body></html>

EXPLANATION

1. The user is prompted for input and the result is assigned as a string to the variable temp. (See Figure 5.25.)

Figure 5.25. User enters a string. The parseFloat() method will convert it to a
floating-point number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

floating-point number.

2. The parseFloat() method converts the string into a floating-point number and assigns it to temp.

3. Although we haven't formally covered if statements, this example should be easy to follow. If the value of temp
is equal to 98.6, then the following block of statements will be executed.

4. If is the user entered 98.6, the alert box sends the message "Your temp is normal" to the browser.

5. If line 3 is not true, the block of statements following else is executed. An alert box will appear in the browser
window saying, "You are sick!". (See Figure 5.26.)

Figure 5.26. Output from Example 5.16.

5.3.3 The eval() Method

The eval() method evaluates a string of JavaScript statements and evaluates the whole thing as a little program,
returning the result of the execution.[4] If there is no result, undefined is returned.

[4] The eval() method takes a primitive string as its argument, not a String object. If a String object is used, it will
be returned as is.

FORMAT

eval(String);

Example:

eval("(5+4) / 3");

Example 5.17

 <html>
 <head>
 <title>The eval() Function</title>
 </head>
 <body bgcolor="lightblue">

 <script language="JavaScript">
1 var str="5 + 4";
2 var num1 = eval(str);
3 var num2 = eval(prompt("Give me a number ", ""));
4 alert(num1 + num2);
 </script>
 </body>
 </html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </html>

EXPLANATION

1. The string "5 + 4" is assigned to the variable str.

2. The eval() method evaluates the string expression "5 + 4" as a JavaScript instruction. The variable num1 is
assigned 9, the sum of 5 + 4.

3. The eval() method evaluates the string value that is entered into the prompt dialog box. (See Figure 5.27.) The
prompt() method always returns a string value. If the value in the string is a number, eval() will convert the
string to a number, return the number, and assign it to num2.

Figure 5.27. The eval() method converts the user input, a string, to a
number.

4. The alert() method displays the sum of num1 and num2 in the browser window. (See Figure 5.28.)

Figure 5.28. Output from Example 5.17.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.4 Special Operators
In this chapter, we have covered the most commonly used JavaScript functions. Table 5.17 lists some of the other
operators available to be discussed in later chapters when they are applicable.

Table 5.17. Other useful JavaScript operators.
Operator What It Does

, (comma) Evaluates two expressions and returns the result of the second expression

delete Deletes an object, an object's property, or an element at a specified index in an
array

function Defines an anonymous function

in (Netscape 6+, IE 5.5+) Returns true if the property is a property of a specified object

instanceof (Netscape 6+, IE
5+)

Returns true if the object is of a given object type

new Creates an instance of a user-defined object type or of one of the built-in object
types

this Keyword that you can use to refer to the current object

void Specifies an expression to be evaluated without returning a value

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: In the expression 6 + 4 / 2 % 2 what are the operands and in what order are they evaluated? Show
operator preference by using parentheses.

2: How can JavaScript tell if the + is used for concatenation or addition? Write a short program to
demonstrate.

3: a. If x is assigned the value of 5, what is y in the following two statements:

y = --x;
y = x--;

b. Explain the output of the preceding two statements.

4: a. Are the following true or false:

22 == "22"
22 === "22"
"2" > "100"

b. Write a script to prove your answers to the preceding. In the same script, use the following two
statements:

document.write("3" + "4");
document.write(3 + 4);

c. Explain the output of the two preceding statements.

5: Example 5.8 prompts the user for his age. The user's response is assigned to the variable answer as a
string value. Rewrite the program to assure that the age entered is a number before testing it. How do you
do this?

6: Ask the user for a Fahrenheit temperature, and then convert it to Celsius. Use parseFloat(). To specify the
precision of the number, see "The Number Object" on page 190 in Chapter 9. Formula for conversion: C =
5/9(F – 32).

7: The user is visiting Thailand. He has 65 U.S. dollars. Tell him how many baht that amounts to. There are
approximately 42 baht to a U.S. dollar. Display an image of the Thai flag on the same page.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. Under Certain Conditions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.1 Control Structures, Blocks, and Compound Statements
If you were confronted with the above signpost, you'd have to decide which direction to take. People control their lives
by making decisions, and so do programs. In fact, according to computer science books, a good language allows you to
control the flow of your program in three ways. It lets you

Execute a sequence of statements

Branch to an alternative sequence of statements, based on a test

Repeat a sequence of statements until some condition is met

Well, then JavaScript must be a good language. We've already used programs that execute a sequence of statements,
one after another.

Now we will examine the branching and looping control structures that allow the flow of the program's control to change
depending on some conditional expression.

The decision-making constructs (if, if/else, if/else if, switch) contain a control expression that determines whether a
block of statements will be executed. The looping constructs (while, for) allow the program to execute a statement
block repetitively until some condition is satisfied.

A compound statement or block consists of a group of statements surrounded by curly braces. The block is syntactically
equivalent to a single statement and usually follows an if, else, while, or for construct.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.2 Conditionals
Conditional constructs control the flow of a program. If a condition is true, the program will execute a block of
statements and if the condition is false, flow will go to an alternate block of statements. Decision-making constructs (if,
else, switch) contain a control expression that determines whether a block of expressions will be executed. If the
condition after the if is met, the result is true, and the following block of statements is executed; otherwise the result is
false and the block is not executed.

FORMAT

if (condition){
 statements;
}

Example:

if (age > 21){
 alert("Let's Party!");
}

The block of statements (or single statement) is enclosed in curly braces. Normally, statements are executed
sequentially. If there is only one statement after the conditional expression, the curly braces are optional.

6.2.1 if/else

"You better pay attention now, or else . . . " Ever heard that kind of statement before? JavaScript statements can be
handled the same way with the if/else branching construct. This construct allows for a two-way decision. The if
evaluates the expression in parentheses, and if the expression evaluates to true, the block after the opening curly
braces is executed; otherwise the block after the else is executed.

FORMAT

if (condition){
 statements1;
}
else{
 statements2;
}

Example:

if (x > y){
 alert("x is larger");
}
else{
 alert("y is larger");
}

Example 6.1

 <html>
 <head>
 <title>Conditional Flow Control</title>
 </head>
 <body>
1 <script language=javascript>
 <!-- Hiding JavaScript from old browsers
 document.write("<h3>");
2 var age=prompt("How old are you? ","");
3 if(age >= 55){
4 document.write("You pay the senior fare! ");
5 }
6 else{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6 else{
7 document.write("You pay the regular adult fare. ");
 }
 document.write("</h3>");
 //-->
8 </script>
 </body>
 </html>

EXPLANATION

1 JavaScript program starts here.

2 The prompt dialog box will display the message "How old are you?". Whatever the user types into the
box will be stored in the variable age. (See Figure 6.1.)

Figure 6.1. The user is prompted for input.

3, 4 If the value of the variable age is greater than or equal to 55, line 4 is executed. (See Figure 6.2.)

Figure 6.2. If the age was entered was greater than 55, this message is
displayed.

5 This closing curly brace closes the block of statements following the if expression. Because there is
only one statement in the block, the curly braces are not required.

6, 7 The else statement, line number 7, is executed if the expression in line 3 is false.

8 This tag marks the end of the JavaScript program.

6.2.2 if/else if

"If you've got $1, we can go to the Dollar Store; else if you've got $10, we could get a couple of movies; else if you've
got $20 we could buy a CD . . . else forget it!" JavaScript provides yet another form of branching, the if/else if
construct. This construct provides a multiway decision structure.

FORMAT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (condition) {
 statements1;
}
else if (condition) {
 statements2;
}
else if (condition) {
 statements3;
}
else{
 statements4;
}

If the first conditional expression following the if keyword is true, the statement or block of statements following the
expression are executed and control starts after the final else block. Otherwise, if the conditional expression following
the if keyword is false, control branches to the first else if and the expression following it is evaluated. If that
expression is true, the statement or block of statements following it are executed, and if false, the next else if is tested.
All else ifs are tested and if none of their expressions are true, control goes to the else statement. Although the else is
not required, it normally serves as a default action if all previous conditions were false.

Example 6.2

 <html>
 <head>
 <title>Conditional Flow Control</title>
 </head>
 <body>
1 <script language=javascript>
 <!--
 document.write("<H2>");
2 var age=eval(prompt("How old are you? ",""));
3 if(age > 0 && age <= 12){
4 document.write("You pay the child's fare. ");
 }
5 else if(age > 12 && age < 60){
6 document.write("You pay the regular adult fare. ");
 }
7 else {
 document.write("You pay the senior fare! ");
 }
 document.write("</H2>");
 //-->
8 </script></body></html>

EXPLANATION

1 JavaScript program starts here.

2 The prompt dialog box will display the message "How old are you? ". Whatever the user types into the
box will be converted to a number by the eval() method and then stored in the variable age.

3, 4 If the value of the variable age is greater than 0 and age is also less than or equal to 12, then line
4 is executed.

5, 6 If the expression on line 3 is false, the JavaScript interpreter will test this line, and if the age is
greater than 12 and also less than 60, the block of statements that follow will be executed. You can
have as many else ifs as you like.

7 The else statement, line number 7, is executed if all of the previous expressions test false. This
statement is called the default and is not required.

8 This tag marks the end of the JavaScript program.

6.2.3 switch

The switch statement is an alternative to if/else if conditional construct (commonly called a "case statement") and may
make the program more readable when handling multiple options. It is supported in both Netscape Navigator and
Internet Explorer.[1]

[1] Added to JavaScript 1.2 and supported by Internet Explorer 4.0+ and Netscape 4+.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[1] Added to JavaScript 1.2 and supported by Internet Explorer 4.0+ and Netscape 4+.

FORMAT

switch (expression){
case label :
 statement(s);
 break;
case label :
 statement(s);
 break;
 ...
default : statement;
}

Example:

switch (color){
case "red":
 alert("Hot!");
 break;
case "blue":
 alert("Cold.");
 break;
default:
 alert("Not a good choice.");
 break;
}

The value of the switch expression is matched against the expressions, called labels, following the case keyword. The
case labels are constants, either string or numeric. Each label is terminated with a colon. The default label is optional,
but its action is taken if none of the other cases match the switch expression. After a match is found, the statements
after the matched label are executed for that case. If none of the cases are matched, the control drops to the default
case. The default is optional. If a break statement is omitted, all statements below the matched label are executed until
either a break is reached or the entire switch block exits.

Example 6.3

 <html>
 <head>
 <title>The Switch Statement</title>
 </head>
 <body>
 <script language=javascript>
 <!--
1 var color=prompt("What is your color?","");
2 switch(color){
3 case "red":
 document.bgColor="color";
 document.write("Red is hot.");
4 break;
5 case "yellow":
 document.bgColor=color;
 document.write("Yellow is warm.");
6 break;
7 case "green":
 document.bgColor="lightgreen";
 document.write("Green is soothing.");
8 break;
9 case "blue":
 document.bgColor="#RRGGBB";
 document.write("Blue is cool.");
10 break;
11 default:
 document.bgColor="white";
 document.write("Not available today. We'll use white");
12 break;
13 }
 //-->
 </script>
 </body>
 </html>

EXPLANATION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXPLANATION

1. The prompt dialog box will ask the user to type a color. After the user presses the OK button, the switch
statement is entered. (See Figure 6.3.)

Figure 6.3. The user enters a color value.

2. The color value of the switch expression is matched against the values of each of the case labels below.

3. The first case that is tested is "red". If the user typed red as his choice, then the background color of the
document's window will turn red and the message "Red is hot." will be displayed in the document.

4. The break statement causes program control to continue after line 13. Without it, the program would continue
executing statements into the next case, "yellow", and continue doing so until a break is reached or the switch
ends—and we don't want that.

5. The first case that is tested is "red". If the user typed yellow as his choice, then the JavaScript interpreter will
skip the "red" case and test the next one which is "yellow". Since that value is matched successfully against the
value of the color variable, the background color of the document's window will turn yellow and the message
"Yellow is warm." will be displayed in the document.

6. The break statement sends control of the program to line 13.

7. If "red" and "yellow" are not matched successfully against the value of the color variable, then "green" is
tested, and if there is a match, then its block of statements is executed. (See Figure 6.4.)

Figure 6.4. Output from Example 6.3. The "green" case was matched
successfully.

8. The break statement sends control of the program to line 13.

9. If "red", "yellow", or "green" are not matched successfully against the value of the color variable, then "blue" is
tested, and if there is a match, then its block of statements are executed. (The color is assigned the RGB
hexidecimal value.)

10. The break statement sends control of the program to line 13.

11. The default statement block is executed if none of the above cases are matched.

12. This final break statement is not necessary, but is good practice in case you should decide to replace the default
with an additional case label.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with an additional case label.

13. The final curly brace ends the switch statement.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.3 Loops
Loops are used to execute a segment of code repeatedly until some condition is met. JavaScript's basic looping
constructs are

while

for

do/while

6.3.1 The while Loop

The while statement executes its statement block as long as the expression after the while evaluates to true; that is,
non-null, non-zero, non-false. If the condition never changes and is true, the loop will iterate forever (infinite loop). If
the condition is false control goes to the statement right after the closing curly brace of the loop's statement block.

The break and continue functions are used for loop control.

FORMAT

while (condition) {
 statements;
 increment/decrement counter;
}

Example 6.4

 <html>
 <head>
 <title>Looping Constructs</title>
 </head>
 <body>
 <h2>While Loop</h2>
1 <script language="JavaScript">
 document.write("");
2 var i=0; // Initialize loop counter
3 while (i < 10){ // Test
4 document.writeln(i);
5 i++; // Increment the counter
6 } // End of loop block
7 </script>
 </body>
 </html>

EXPLANATION

1. The JavaScript program starts here.

2. The variable i is initialized to 0.

3. The expression after the while is tested. If i is less than 10, the block in curly braces is entered and its
statements are executed. If the expression evaluates to false, (i.e., i is not less than 10), the loop block exits
and control goes to line 6.

4. The value of i is displayed in the browser window. (See Figure 6.5.)

Figure 6.5. Output from Example 6.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.5. Output from Example 6.4.

5. The value of i is incremented by 1. If this value never changes, the loop will never end.

6. This curly brace marks the end of the while loop's block of statements.

7. The JavaScript program ends here.

6.3.2 The do/while Loop

The do/while statement executes a block of statements repeatedly until a condition becomes false. Owing to its
structure, this loop necessarily executes the statements in the body of the loop at least once before testing its
expression, which is found at the bottom of the block. The do/while loop is supported in Netscape Navigator and
Internet Explorer 4.0, JavaScript 1.2, and ECMAScript v3.

FORMAT

do
 { statements;}
while (condition);

Example 6.5

 <html>
 <head>
 <title>Looping Constructs</title>
 </head>
 <body>
 <h2>Do While Loop</h2>
 <script language="JavaScript">
 document.write("");
1 var i=0;
2 do{
3 document.writeln(i);
4 i++;
5 } while (i < 10)
 </script>
 </body>
 </html>

EXPLANATION

1. The variable i is initialized to 0.

2. The do block is entered. This block of statements will be executed before the while expression is tested. Even if
the while expression proves to be false, this block will be executed the first time around.

3. The value of i is displayed in the browser window. (See Figure 6.6.)

Figure 6.6. Output from Example 6.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.6. Output from Example 6.5.

4. The value of i is incremented by 1.

5. Now, the while expression is tested to see if it evaluates to true (i.e., is i less than 10?). If so, control goes back
to line 2 and the block is re-entered.

6.3.3 The for Loop

The for loop consists of the for keyword followed by three expressions separated by semicolons and enclosed within
parentheses. Any or all of the expressions can be omitted, but the two semicolons cannot. The first expression is used
to set the initial value of variables and is executed just once, the second expression is used to test whether the loop
should continue or stop, and the third expression updates the loop variables; that is, it increments or decrements a
counter, which will usually determine how many times the loop is repeated.

FORMAT

for(Expression1;Expression2;Expression3)
 {statement(s);}
for (initialize; test; increment/decrement)
 {statement(s);}

The above format is equivalent to the following while statement:

Expression1;
while(Expression2)
 { Block; Expression3};

Example 6.6

 <html>
 <head>
 <title>Looping Constructs</title>
 </head>
 <body>
 <h2>For Loop</h2>
 <script language="JavaScript">
 document.write("");
1 for(var i = 0; i < 10; i++){
2 document.writeln(i);
3 }
 </script>
 </body>
 </html>

EXPLANATION

1. The for loop is entered. The expression starts with step 1, the initialization of the variable i to 0. This is the only
time this step is executed. The second expression, step 2, tests to see if i is less than 10, and if it is, the
statements after the opening curly brace are executed. When all statements in the block have been executed
and the closing curly brace is reached, control goes back into the for expression to the last expression of the
three. i is now incremented by one and the expression in step 2 is retested. If true, the block of statements is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

three. i is now incremented by one and the expression in step 2 is retested. If true, the block of statements is
entered and executed.

2. The value of i is displayed in the browser window. (See Figure 6.7.)

Figure 6.7. Output from Example 6.6.

3. The closing curly brace marks the end of the for loop.

6.3.4 The for/in Loop

The for/in loop is like the for loop, except it is used with JavaScript objects. Instead of iterating the statements based
on a looping condition, it operates on the properties of an object. This loop is discussed in Chapter 9, "JavaScript Core
Objects," and is only mentioned here in passing, because it falls into the category of looping constructs.

6.3.5 Loop Control with break and continue

The control statements, break and continue, are used to either break out of a loop early or return to the testing
condition early; that is, before reaching the closing curly brace of the block following the looping construct.

Table 6.1. Control statements.
Statement What It Does

break Exits the loop to the next statement after the closing curly brace of the loop's statement block.

continue Sends loop control directly to the top of the loop and re-evaluates the loop condition. If the condition is
true, enters the loop block.

Example 6.7

 <html>
 <head>
 <title>Looping Constructs</title>
 </head>
 <body>
 <h2>While Loop</h2>
1 <script language="JavaScript">
 document.write("");
2 while(true) {
3 var grade=eval(prompt("What was your grade? ",""));
4 if (grade < 0 || grade > 100) {
 document.write("Illegal choice
");
5 continue; // Go back to the top of the loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5 continue; // Go back to the top of the loop
 }
6 if(grade > 89 && grade < 101) {document.write("A
");}
7 else if (grade > 79 && grade < 90)
 {document.write("B
");}
 else if (grade > 69 && grade < 80)
 {document.write("C
");}
 else if (grade > 59 && grade < 70)
 {document.write("D
");}
8 else {document.write("You Failed.
");}
9 answer=prompt("Do you want to enter another grade? ","");
10 if(answer != "yes"){
11 break; // Break out of the loop to line 12
 }
12 document.write("So long.
");
 </script>
 </body>
 </html>

EXPLANATION

1 The JavaScript program starts here.

2 The while loop is entered. The loop expression will always evaluate to true, causing the body of the
loop to be entered.

3 The user is prompted for a grade, which is assigned to the variable grade.

4 If the variable grade is less than 0 or more than 100, "Illegal choice" is printed.

5 The continue statement sends control back to line 2 and the loop is re-entered, prompting the user
again for his grade.

6 If a valid grade was entered, and it is greater than 89 and less than 101, the grade "A" is displayed.

7 Each else/if branch will be evaluated until one of them is true.

8 If none of the expressions are true, the else condition is reached and "You Failed" is displayed.

9 The user is prompted to see if he wants to enter another grade.

10, 11 If his answer is not yes, the break statement takes him out of the loop, to line 12.

6.3.6 Nested Loops and Labels

Nested Loops

A loop within a loop is a nested loop. A common use for nested loops is to display data in rows and columns. One loop
handles the rows and the other handles the columns. The outside loop is initialized and tested, the inside loop then
iterates completely through all of its cycles, and the outside loop starts again where it left off. The inside loop moves
faster than the outside loop. Loops can be nested as deeply as you wish, but there are times when it is necessary to
terminate the loop owing to some condition.

Example 6.8

 <html>
 <head>
 <title>Nested loops</title>
 </head>
 <body>
 <script language=javascript>
 <!-- Hiding JavaScript from old browsers
1 var str = "@";
2 for (var row = 0; row < 6; row++){
3 for (var col=0; col < row; col++){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3 for (var col=0; col < row; col++){
 document.write(str);
 }
4 document.write("
");
 }
 //-->
 </script>
 </body>
 </html>

EXPLANATION

1. The variable str is assigned a string "@".

2. The outer for loop is entered. The variable row is initialized to 0. If the value of row is less than 6, the loop
block (in curly braces) is entered (i.e., go to line 3).

3. The inner for loop is entered. The variable col is initialized to 0. If the value of col is less than the value of row,
the loop block is entered and an @ is displayed in the browser. Next, the value of col will be incremented by 1,
tested, and if still less than the value of row, the loop block is entered, and another @ displayed. When this loop
has completed, a row of @ symbols will be displayed, and the statements in the outer loop will start up again.

4. When the inner loop has completed looping, this line is executed producing a break in the rows. (See Figure
6.8.)

Figure 6.8. Nested loops: rows and columns. Output from Example 6.8.

Labels.

Labels are identifiers followed by a colon and placed on a line by themselves. They can be named the same as any
other legal identifier that is not a reserved word. They are used if you want to branch to some other part of the
program. By themselves, labels do nothing. You name labels as you would name any other identifier. Labels are
optional, but can be used to control the flow of a loop. A label looks like this, for example:

Top:

Normally, if you use loop-control statements such as break and continue, the control is directed to the innermost loop.
There are times when it might be necessary to switch control to some outer loop. This is where labels most often come
into play. By prefixing a loop with a label, you can control the flow of the program with break and continue statements
as shown in Example 6.9. Labeling a loop is like giving the loop its own name.

Example 6.9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXPLANATION

1. The label outer: is on a line by itself. It labels the while loop.

2. Here is another label called middle:. It will label the while loop below it.

3. If the expression is true, the break statement, with the label, causes control to go to line 6; it breaks out of the
outer: loop.

4. This label applies to the for loop below it.

5. If the expression is true, the continue statement causes control to go back to line 1, the outer: loop.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: Create a while loop that displays numbers as: 10 9 8 7 6 5 4 3 2 1.

2: Ask the user what the current hour is. If the hour is between 6 and 9 a.m., tell him, "Breakfast is served." If
the hour is between 11 a.m. and 1 p.m., tell him, "Time for lunch." If the hour is between 5 and 8 p.m., tell
him, "It's dinner time." For any other hours, tell him, "Sorry, you'll have to wait, or go get a snack."

3: Create a conversion table using the following formula:

C = (F – 32) / 1.8;

Start with a Fahrenheit temperature of 20 degrees and end with a temperature of 120 degrees; use an
increment value of 5. The table will have two columns, one for Fahrenheit temperature values and one for
those same temperatures converted to Celsius.

4: Ask the user for the name of the company that developed the JavaScript language. Alert him when he is
wrong, and then keep asking him until he gets the correct answer. When he gets it right, confirm it.

5: Use a switch statement to evaluate the menu item selected to produce output similar to what you see
below.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. Functions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.1 What Is a Function?
A pocket calculator performs certain functions. You push the buttons, send information to the calculator, it performs a
calculation, and sends back the results. You don't care about what transpires inside the calculator, you just want the
results. That's what a function does. Functions are self-contained units of a program designed to accomplish a specified
task such as calculating mortgage payments, displaying random images, or checking for valid input. They can be used
over and over again and thus save you from repetitious programming. They are also used to break up a program into
smaller modules to keep it better organized and easier to maintain. JavaScript has a large number of its own built-in
functions, and now you can create your own.

By definition, a function is a block of statements that not only performs some task, but also returns a value. A function
is independent of your program and not executed until called. A function is often referred to as a "black box." It's like
the pocket calculator: Information goes into the black box (or calculator) as input and the action or value returned from
the box is its output. What goes on inside the box is transparent to the user. The programmer who writes the function
is the only one who cares about those details. When you use document.write(), you send something like a string of text
to the function, and it sends some text back to the browser. You don't care how it does its job, you just expect it to
work. If you send bad input, you get back bad output or maybe nothing, hence the expression "Garbage in, garbage
out."

Functions are like mini-scripts. They contain JavaScript statements that behave as a single command and can be called
repeatedly throughout a program without rewriting the code.

The terms "function" and "method" are often used interchangeably. A method refers to a function that is used with
JavaScript objects (covered in Chapter 8, "Objects"). A function, as used in this chapter, is a standalone block of
statements, independent of the program until invoked by a caller.

7.1.1 Function Declaration and Invocation

Functions must be declared before they can be used. Normally functions are placed in the <head> tag of the HTML
document to ensure that they are defined before used. Within the <script> tag itself, they can go anywhere. Function
definitions can also be located in external JavaScript files (see "JavaScript from External Files" on page 13 of Chapter
1).

To define a function, the function keyword is followed by the name of the function, and a set of parentheses. The
parentheses are used to hold parameters, values that are received by the function. The function's statements are
enclosed in curly braces.

function bye() { document.write ("Bye, adios, adieu, au revoir..."); }

Once you define a function, you can use it. JavaScript functions are invoked by calling the function; for example, bye().
A function can be called directly from within the <script> tag, from a link, or called when an event is triggered, such as
when the user presses a key. When called, the function's name is followed by a set of parentheses that may contain
messages that will go to the function. These messages are called arguments.

To check whether the function has been defined or if it is truly a function, use the typeof operator; for example,
typeof(function_name).

FORMAT

Example 7.1

 <html>
 <head>
 <title>A Simple Function</title>
 <script language=JavaScript>
1 function welcome(){ // Function defined within <head> tags

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 function welcome(){ // Function defined within <head> tags
2 var place="San Francisco";
3 alert("Welcome to "+ place + "!");
4 }
5 welcome(); // Function call
 </script>
 </head>
 <body bgcolor="lightblue">

 <center>
 San Francisco

6
 </center>
 </body>
 </html>

EXPLANATION

1 Functions must be defined before they can be used. Therefore, functions are normally placed in a
JavaScript program, between the HTML <head></head> tags. In this example, the function is defined,
but it will not do anything until it is called from somewhere in the file.

The function keyword is followed by the user-defined name of the function called welcome and a set of
parentheses. The parentheses are used to hold parameters, information being received by the function.
What the function actually does is defined in a set of statements enclosed within curly braces. The
function statements are enclosed in a set of curly braces.

2, 3 This is the code that is run whenever the function is called. It is called the function definition. When
this function is called, the string San Francisco will be assigned to the variable called place and the alert
dialog box will display "Welcome to San Francisco!" in the browser window. (See Figure 7.1.)

Figure 7.1. After the function welcome() is called, output is sent to the
browser.

4 This is the final closing curly brace that ends the function definition.

5 This is where the function is invoked or called. When the function welcome() is called, the statements
within its definition will be executed.

6 Since the function is called in the head of the document, this image will not appear until the user
presses the OK button in the alert dialog box. (See Figure 7.2.)

Figure 7.2. After the user presses the OK button in the alert box, this
image loads.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passing Arguments

If a user wants to send values to a function, the values are enclosed in the parentheses right after the function name
and sent as a comma-separated list of arguments when the function is called. The arguments are received by the
function in a list of corresponding values called parameters. The names of the arguments are not necessarily the same
names in the parameter list, but they correspond to the same values. These values can be assigned to local variables
within the function. Local variables disappear when the function exits. JavaScript doesn't keep track of the number of
arguments sent to the function to make sure they match up with the number of parameters specified in the function
definition at the other end. If you send three arguments, and there are only two parameters defined within the function,
the third argument is ignored. If you send three arguments, and there are four parameters waiting within the function,
then the fourth parameter is undefined. It's similar to sending messages to an answering machine. If you send a
message and the message machine is full, your message is ignored, and if you send a message and there's room for
more messages, the message you sent is stored, and the unused space is still there, but not defined.

Figure 7.3. In the analogy of the pocket calculator, you are the caller when you
press the buttons, and the internal functions inside the calculator are the receiver.

Example 7.2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXPLANATION

1. The function, greetings(), has one parameter, called pal. This parameter holds a value that is sent to the
function when it was called. The parameter name is any valid JavaScript variable name.

2. The alert method will display the string, "Greetings to you, " concatenated to the value stored in pal; in this
example that value is "Birdman!".

3. The JavaScript program is in the body of the document. It contains a function call that will invoke a function
defined in the head of the document.

4. The function greetings() is called with one argument, "Birdman!". This argument will be sent to the function,
and assigned to the parameter, pal. If the function had been called in the head of the document as it was in
Example 7.1, the background image would not appear until after the user pressed the OK button in the alert
box (see Figure 7.4), but in this example, the image was loaded before the function was called.

Figure 7.4. Output from the greetings() function in Example 7.2.

Calling a Function from a Link

A function can be called directly from a link, by using the JavaScript pseudoprotocol, javascript:, instead of a normal
URL. The javascript: protocol and the function call are placed within quotes and assigned to the href attribute of the
<a> tag. When the user clicks his mouse on the link, instead of the program going to the URL of another page, a
JavaScript function will be called.

Example 7.3

 <html>
 <head>
 <title>Functions</title>
1 <script language=javascript>
2 function greetings(){ // Function defined within <head> tags
 document.bgColor="lightblue";
3 alert("Greetings to you!");
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 </script>
 </head>
 <body><center>
4 <big>Click here for
 Salutations</big>

 </center>
 </body>
 </html>

EXPLANATION

1 The JavaScript program starts here in the head of the document. The function is defined within the
head of the document to guarantee that it will be defined before being called.

2, 3 The function greetings() is defined. It is very simple. It causes the background color of the
document to be a light blue color and causes an alert box to appear with a greeting message.

4 The href attribute of the link tag is assigned a string consisting of the javascript: pseudoprotocol,
followed by the name of the function to be called. When the user clicks on this link, JavaScript calls the
function, greetings(). (See Figure 7.5.)

Figure 7.5. After clicking on the link, the function is called, causing the
alert dialog box to appear.

Calling a Function from an Event

An event is triggered when a user performs some action, like clicking on a button or moving his mouse over a link. The
function assigned to the event is called an event handler. When the event is triggered, the function is called. In the
following example, when the user clicks on the Welcome button, the function is called.

Example 7.4

 <html>
 <head<title>Functions and Events</title>
1 <script language=javascript>
2 function greetings(){ // Function definition
3 document.bgColor="pink";
 alert("Greetings and Salutations! ");
 }
 </script>
 </head>

4 <body><center>
5 <form>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5 <form>
6 <input type="button"
7 value="Welcome button"
8 onClick="greetings();"
 >
 </form>
 </body>
 </html>

EXPLANATION

1. The JavaScript program starts here. The function is defined in the head of the document.

2. The function greetings() is defined here.

3. The body of the function—what it does—is found here between the curly braces.

4. The body of the page starts here.

5. An HTML form starts here. It will be used to create a button input device.

6. The type of input device is a button.

7. The value that will be displayed in the button is "Welcome button". (See Figure 7.6.)

Figure 7.6. When the button is pressed, the event is triggered.

8. When the user presses or clicks on the button, the onClick event will be triggered, causing the greetings()
function to be called. The value assigned to the onClick event is a JavaScript function enclosed in quotation
marks. (See Figure 7.7.)

Figure 7.7. A function is called after the event is triggered. The function
"handles" the event.

Calling a Function from JavaScript

In the first examples of this chapter, functions were defined in one JavaScript program and called from another.
Although it is valid to define and call the function from the same JavaScript program, it is often desirable to define the
function in the head of the document, to be sure it has been defined before it is called. Then you can call the function
from a link, an event, or another JavaScript program. Since the document is defined within the <body></body> tags,
the body is often the place from where you will call functions. The general rule of thumb is: If your script is designed to
write data to the page, put the <script></script> tags within the <body></body> tags. Example 7.2 called a function
from one JavaScript program within the body, but defined the function in another JavaScript program within the head.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from one JavaScript program within the body, but defined the function in another JavaScript program within the head.

Scope of Variables in Functions

The scope of a variable describes where the variable is visible in the program; that is, where it can be used in the
program. Variables declared outside of functions are global in scope, meaning they can be used or changed anywhere in
the program. If a variable is declared within a function with the var keyword, then the variable is local in scope—the
variable can be used only within the function where it is defined.

Example 7.5

 <html>
 <head><title>Function Scope</title>
 <script language=javascript>
1 var name="William";
2 var hometown="Chico";
 function greetme(){
3 var name="Daniel"; // Local variable
 document.bgColor="lightblue";
4 document.write("<h2>In function, name is "
 + name);
5 document.write(" and hometown is "+ hometown);
6 }
7 greetme();
8 document.write("
Out of function, name is "
 + name);
9 document.write(" and hometown is " + hometown);
 </script>
 </head>
 </html>

EXPLANATION

1. The variable called name is global in scope. It is visible throughout the JavaScript program.

2. The variable called hometown is also global in scope and is visible throughout the program.

3. Any variables declared within a function with the var keyword are local to that function. In fact, you must use
the var keyword when declaring local variables; otherwise, the variables will be global. The variable called name
has been declared inside the function. This is a local variable and has nothing to do with the variable of the
same name on line 1. This variable will go out of scope when the function ends on line 6, at which point the
global variable will come back in scope.

4. The variable called name was defined inside this function and is local in scope. It will stick around until the
function exits.

5. The global variable called hometown is visible here.

6. The closing curly brace marks the end of the function definition.

7. The function greetme() is called here.

8. The global variable called name has come back into scope.

9. The global variable called hometown is still in scope. (See Figure 7.8.)

Figure 7.8. Output from Example 7.5.

7.1.2 Return Values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Functions may return values with a return statement. The return keyword is optional and can only exist within a
function. When the return keyword is reached in a function, no further processing within the function occurs. A return
can be used to send back the result of some task, such as a calculation, or to exit a function early if some condition
occurs. If a function doesn't have a return statement, it returns the undefined value.

FORMAT

return;
return expression;

Example:

function sum (a, b) {
 var result= a + b;
 return result;
}

If the call to the function is made part of an expression, the returned value can be assigned to a variable. In the
following example the sum function is called with two arguments, 5 and 10. The sum function's return value will be
assigned to the variable total.

var total=sum(5, 10);

Example 7.6

EXPLANATION

1. A function called mileage() is defined in this JavaScript program.

2. The return statement sends back to the caller of the function the result of the division. That returned value will
be assigned to the variable, rate, on line 4.

3. The user is asked for input. The number of miles driven and the amount of gas used are assigned to the
variables called distance and amount, respectively. (See Figure 7.9.)

Figure 7.9. The user is asked for input.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.9. The user is asked for input.

4. The mileage() function is called, passing two arguments. Since the mileage() function is on the right-hand side
of the assignment operator (the = sign), whatever is returned from the function will be assigned to the variable,
called rate, on the left-hand side of the = sign.

5. The alert dialog box displays the value returned from the function: the number of miles used per gallon. (See
Figure 7.10.)

Figure 7.10. The number miles per gallon is returned by the mileage()
function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function.

Recursion

Definition of recusion:

recursion: See recursion.

The above definition is a well-known joke in the computer world. JavaScript supports recursion. So what is it? A
recursive function is a function that calls itself. It's a chain of function calls to the same function. The first time it calls
itself is the first level of recursion, the second time is the second level, and so on. When a function calls itself, execution
starts at the beginning of the function, and when the function ends, the program backs up to where it was when it
called the function and starts executing from that point. Most importantly there must be a way to stop the recursion, or
it will be infinite, and probably cause the program to crash.

Example 7.7

 <html>
 <head>
 <title>Recursion</title>
 <script language=JavaScript>
1 function upDown(num){
2 document.write("Level "
 + num + "
");
3 if(num < 4){
4 upDown(num + 1); // Function calls itself
5 document.write("Level "+ num + "
");
 }
 }
 </script>
 </head>
 <body bgcolor="lightblue">
 <h2>Recursion</h2>
 <script language="JavaScript">
6 upDown(1);
 </script>
 </body>
 </html>

EXPLANATION

1. The first time this function is called it is passed the number 1.

2. The function prints out the level number, Level 1.

3. If the value of num is less than 4, the function calls itself.

4. When the function calls itself, it adds 1 to the value of num. When the function calls itself it restarts execution
at the top of the function, this time with the value of num equal to 2. Each time the function calls itself, it
creates a new copy of num for that recursion level. The other copy is on hold until this one is finished. The
function keeps calling itself and printing level numbers in bold text until the if statement fails; that is, until the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function keeps calling itself and printing level numbers in bold text until the if statement fails; that is, until the
value of num is not less than 4.

5. This line won't be executed until the recursion stops—when the value of num is 4. When that happens, the
current version of upDown() is finished, and we back off to the previous called function and start execution at
line 5. This process continues until all of the functions have completed execution.

6. This is the first call to the upDown() function. The argument is the number 1. The output is shown in Figure
7.11.

Figure 7.11. Output from Example 7.7.

7.1.3 Functions Are Objects

For a discussion on how functions behave as objects, see "Creating the Object with a User-Defined Function" on page
133 in Chapter 8.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.2 Debugging
When working with functions there are some simple syntax rules to watch for.

1. Did you use parentheses after the function name?

2. Did you use opening and closing curly braces to hold the function definition?

3. Did you define the function before you called it? Try using the typeof operator to see if a function has been
defined.

4. Did you give the function a unique name?

5. When you called the function is your argument list separated by commas? If you don't have an argument list,
did you forget to include the parentheses?

6. Do the number of arguments equal the number of parameters?

7. Is the function supposed to return a value? Did you remember to provide a variable or a place in the expression
to hold the returned value?

8. Did you define and call the function from within a JavaScript program?

Figure 7.12 shows function errors displayed by the JavaScript Console in Netscape. These error messages make
troubleshooting your scripts much easier.

Figure 7.12. Function errors in the JavaScript Console (Netscape).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: Copy the following file and execute it in your browser. What's wrong with it and why? Can you fix it?

<html><head><title>link</title>
<script language="JavaScript">
function addem(){
 var n = 2;
 var y = 3;
 document.write(n + y , "
");
}
</script>
</head>
<body bgcolor=red>
Click here
<h2>Hello</h2>
</body>
</html>

2: Write a function that will calculate and return the amount that should be paid as a tip for a resturant bill.
The tip will be 20 percent of the total bill.

3: Create a function called changeColor() that will be called when the user presses one of two buttons. The
first button will contain the text "Press here for a yellow background". The second button will contain the
text "Press here for a light green background". The function will take one parameter, a color. Its function is
to change the background color of the current document.

4: What is recursion? What is the danger of using it?

5: Write a function that returns the total cost of any number of buckets of paint. Ask the user how many
buckets he is going to buy and for the cost of one bucket. Ask him the color of the paint. Calculate and
return what he owes. Change the color of the font to the color of the paint.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. Objects

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.1 What Are Objects?
Objects are things we deal with every day. JavaScript deals with objects, as do most programming languages, and
these languages are called object-oriented programming (OOP). Some people are apprehensive at the thought of
tackling this kind of programming, and are perfectly happy to stick with top-down, procedural programs. But just as the
everyday objects we use are not necessarily switchblades and chain saws, neither are programming objects. They are
just a way of representing data. JavaScript is based on objects, so it's time to jump in.

When talking about JavaScript data types in Chapter 3, we discussed two types: primitive and composite. Objects are
composite types. They provide a way to organize a collection of data into a single unit. Object-oriented languages, such
as C++ and Java, bundle up data into a variable and call it an object. So does JavaScript.

When you learn about objects, they are usually compared to real-world things, like a cat, a book, or a triangle. Using
the English language to describe an object, the object itself would be like a noun.

Nouns are described with adjectives. For the cat, it might be described as fat, furry, smart, or lazy. The book is old,
with 400 pages, and contains poems. The triangle has three sides, three angles, and red lines. The adjectives that
collectively describe these objects are called properties or attributes. The object is made up of a collection of these
properties, or attributes.

In English, verbs are used to describe what the object can do or what can be done to it. The cat eats, sleeps, and
meows. The book is read, its pages can be turned forward and backward, and it can be opened or closed by the reader.
The triangle's sides and angles can be increased and decreased, it can be moved, and it can be colored. These verbs
are called methods in object-oriented languages.

JavaScript supports several types of objects. They are as follows:

1. User-defined objects defined by the programmer

2. Core or built-in objects, such as Date, String, and Number (see Chapter 9)

3. Browser and Document objects (see Chapter 10)

8.1.1 Object Models and the Dot Syntax

An object model is a hierarchical tree-like structure used to describe all of the components of an object. When accessing
an object in the tree, the object at the top of the tree is the root or parent of all parents. If there is an object below the
parent it is called the child, and if the object is on the same level, it is a sibling. A child can also have children. A dot (.)
is used to separate the objects when descending the tree; for example, a parent is separated from its child with a dot.
In the following example, the pet object is subdivided into subordinate or child objects: a cat and a dog. The cat and
the dog objects each have properties associated with them. In order to navigate down the tree to the cat's name, for
example, you would stipulate pet.cat.name, and to get the dog's breed you would stipulate pet.dog.breed.

8.1.2 Creating an Object with a Constructor

JavaScript allows you to create an object in a number of ways, as discussed in detail in "User-Defined Objects" on page
131. One such way is with a constructor. A constructor is a special kind of method that creates an instance of an object.
JavaScript comes with several built-in constructors. The new keyword precedes the name of the constructor that will be
used to create the object.

var myNewObject = new Object(argument, argument, ...)

To create the pet object, for example, you could say:

var pet = new Object();

The Object() constructor, a special predefined constructor function, returns a reference to an object called pet, as
shown in Example 8.1. The pet object has been instantiated and is ready to be assigned properties and methods.

Example 8.1

 <html>
 <head><title>The Object() Constructor</title>
 <script language = "javascript">
1 var pet = new Object();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 var pet = new Object();
2 alert(pet);
 </script>
 </head>
 <body></body>
 </html>

EXPLANATION

1. The Object() constructor creates and returns a reference to a pet object. It is an empty object; i.e., it has no
properties.

2. The returned value from the Object() constructor is a reference to an object, as shown in the Figure 8.2.

Figure 8.2. Output from Example 8.1.

The pet object could also be further subdivided as shown in Figure 8.1.

pet.cat = new Object();
pet.dog = new Object();

Figure 8.1. A hierarchical tree-like structure used to describe components of an
object.

8.1.3 Properties of the Object

Properties describe the object and are connected to the object they describe with a dot. In Figure 8.1, the top object is
the pet object. Although cat is an object in its own right, it is also considered a property of the pet object. In fact, any
object subordinate to another object is also a property of that object. Both the cat and dog objects are properties of the
pet object. The cat and the dog objects also have properties that describe them, such as name, color, size, and so
forth.

To assign properties to the cat object, the syntax would be as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pet.cat.name = "Sneaky";
pet.cat.color="yellow";
pet.cat.size="fat";
pet.cat.attitude = "stuck up";

Example 8.2

 <html>
 <head><title>The Object() Constructor</title>
 <script language = "javascript">
 var pet = new Object();
1 pet.cat = new Object();
2 pet.cat.name = "Sneaky";
 pet.cat.color = "yellow";
 pet.cat.size = "fat";
 pet.cat.attitude = "stuck up";
 </script>
 </head>
 <body></body>
 </html>

EXPLANATION

1. New new object cat is created. It is subordinate to the pet object, so it is also a property of the pet object.

2. The cat object is assigned a name property with the value, "Sneaky". It is also assigned color, size, and attitude
properties.

In JavaScript you might see the syntax

window.document.bgColor = "lightblue";

The window is the top object in the hierarchy, the parent of all parents; the document is an object but, because it is
subordinate to the window, it is also a property of the window object. Although the background color, bgColor, is a
property of the document object, by itself it is not an object. (It is like an adjective because it describes the document.)

window
 document
 bgColor

8.1.4 Methods of the Object

Methods are special functions that object-oriented languages use to describe how the object behaves or acts. The cat
purrs and the dog barks. Methods, like verbs, are action words that perform some operation on the object. For
example, the cat object may have a method called sleep() or play() and the dog object may have a method called sit()
or stay(), and both of them could have a method called eat().

The dot syntax is used to call the methods just as it was used to separate objects from their properties. The method,
unlike the property, is followed by a set of parentheses.

pet.cat.play();

Methods, like functions, can take arguments, or messages that will be sent to the object:

pet.dog.fetch("ball");

A JavaScript example:

window.close();
window.document.write("Hello\n");
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.2 User-Defined Objects
All user-defined objects and built-in objects are descendants of an object called Object.

8.2.1 The new Operator

The new operator is used to create an instance of an object. To create an object, the new operator is followed by the
constructor method. In the following example, the constructor methods are Object(), Array(), and Date(). These
constructors are built-in JavaScript functions. A reference to the object is returned and assigned to a variable.

var car = new Object();
var friends = new Array("Tom", "Dick", "Harry");
var now= new Date("July 4, 2003");

8.2.2 The Object() Constructor

A constructor is a function (or method) that creates (constructs) and initializes an object. JavaScript provides a special
constructor function called Object() to build the object. The return value of the Object() constructor is assigned to a
variable. The variable contains a reference to the new object. The properties assigned to the object are not variables
and are not defined with the var keyword. See Example 8.3.

FORMAT

var myobj = new Object();

Example 8.3

 <html>
 <head><title>User-defined objects</title>
1 <script language = "javascript">
2 var toy = new Object(); // Create the object
3 toy.name = "Lego"; // Assign properties to the object
 toy.color = "red";
 toy.shape = "rectangle";
4 </script>
 </head>
 <body bgcolor="lightblue">
5 <script language = "javascript">
6 document.write("The toy is a " + toy.name + ".");
7 document.write("
It is a " + toy.color + " "
 + toy.shape+ ".");
8 </script>
 </body>
 </html>

EXPLANATION

1. JavaScript code startes here.

2. The Object() constructor is called with the new keyword to create an instance of an object called toy. A
reference to the new object is assigned to the variable, toy.

3. The toy object's name property is assigned "Lego". The properties describe the characteristics or attributes of
the object. Properties are not variables. Do not use the var keyword.

4. This is the end of the JavaScript program.

5. A new JavaScript program starts here in the body of the page.

6. The global object called toy is available within the script. The value of the toy object's name property is
displayed.

7. The values for the color and shape properties of the toy object are displayed.

8. This is the end of the JavaScript program. The output is shown in Figure 8.3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8. This is the end of the JavaScript program. The output is shown in Figure 8.3.

Figure 8.3. The toy object and its properties.

8.2.3 Creating the Object with a User-Defined Function

To create user-defined objects, you can create a function that specifies the object's name, properties, and methods.
The function serves as a template or prototype of an object. When the function is called with the new keyword, it acts
as a constructor and builds the new object, and then returns a reference to it.

The this keyword is used to refer to the object that has been passed to a function.

Example 8.4

 <html>
 <head><title>User-defined objects</title></head>
 <script language = "javascript">

1 function book(title, author, publisher){
 // Defining properties
2 this.title = title;
3 this.author = author;
4 this.publisher = publisher;
5 }

 </script>
 <body bgcolor="lightblue"></body>
 <script language = "javascript">
6 var myBook = new book("JavaScript by Example",
 "Ellie", "Prentice Hall");
7 document.writeln("" + myBook.title +
 "
" + myBook.author +
 "
" + myBook.publisher
);
 </script>
 </body>
 </html>

EXPLANATION

1. This is a user-defined constructor function with three parameters.

2. The this keyword refers to the current object that is being created. The object is being assigned properties. The
title of the book, "JavaScript by Example", is being passed as the first parameter and assigned to the title
property.

3. The author, "Ellie", is assigned to the author property.

4. The publisher, "Prentice Hall", is assigned to the publisher property.

5. This is the closing curly brace that terminates the function definition.

6. The variable, myBook, is assigned a reference to the newly created object.

7. The title property of the myBook object will be displayed. All of the properties of the book object are displayed
in Figure 8.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.4. Output from Example 8.4.

8.2.4 Defining Methods for an Object

The previous examples demonstrate how the constructor creates the object and assigns properties. But we need to
complete the definition of an object by assigning methods to it. The methods are functions that let the object do
something or let something be done to it. There is little difference between a function (see Chapter 7, "Functions") and
a method, except that a function is a standalone unit of statements and a method is attached to an object and can be
referenced by the this keyword.

Example 8.5

 <html>
 <head><title>Simple Methods</title>
 <script language = "javascript">
1 function distance(r, t){ // Define the object
2 this.rate = r; // Assign properties
 this.time = t;
 }
3 function calc_distance(){ // Define a function that will
 // be used as a method
4 return this.rate * this.time;
 }
 </script>
 </head>
 <body bgcolor="lightblue">
 <script language="javascript">
5 var speed=eval(prompt("What was your speed
 (miles per hour)? ",""));
 var elapsed=eval(prompt("How long did the trip take?
 (hours)?" ,""));

6 var howfar=new distance(speed, elapsed);
 // Call the constructor
7 howfar.distance=calc_distance; // Create a new property
8 var d = howfar.distance(); // Invoke method
9 alert("The distance is " + d + " miles.");
 </script>
 </body>
 </html>

EXPLANATION

1. This is the constructor function. It creates and returns a reference to an object called distance. It takes two
parameters, r and t.

2. The object (referenced by the this keyword) is assigned properties.

3. The function calc_distance() will be used later as a method for the object.

4. The function returns the results of this calculation to the variable, d, on line 8.

5. The user is prompted for input in this statement and the next. (See Figure 8.5.) The string he enters is
evaluated by the eval() method and assigned as a number to the variables speed and elapsed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

evaluated by the eval() method and assigned as a number to the variables speed and elapsed.

Figure 8.5. The user is prompted for input.

6. A new object called howfar is created with the new constructor. Two arguments are passed, the rate (in miles
per hour) and the time (in hours).

7. A new property for the howfar object is created. It is assigned the name of the function, calc_distance, that will
be used as a method. Note: only the name of the function is assigned without the parentheses. Putting them
there would result in an error.

8. The method called distance() is invoked for the howfar object. The returned value is assigned to variable, d.

9. The alert box displays the distance traveled. (See Figure 8.6.)

Figure 8.6. Final output displayed from Example 8.5.

A Method Defined in a Constructor

Methods can automatically be assigned to an object in the constructor function so that the method can be applied to
multiple instances of an object.

Example 8.6

 <html>
 <head><title>User-defined objects</title>
 <script language ="javascript">
1 function book(title, author, publisher){ // Receiving
 // parameters
2 this.pagenumber=0; // Properties
 this.title = title;
 this.author = author;
 this.publisher = publisher;
3 this.uppage = pageForward; // Assign function name to
 // a property
4 this.backpage = pageBackward;
 }
5 function pageForward(){ // Functions to be used as methods
 this.pagenumber++;
 return this.pagenumber;
 }
6 function pageBackward(){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6 function pageBackward(){
 this.pagenumber--;
 return this.pagenumber;
 }
 </script>
 </head>
 <body bgcolor="lightblue">
 <script language = "javascript">

7 var myBook = new book("JavaScript by Example", "Ellie",
 "Prentice Hall"); // Create new object
8 myBook.pagenumber=5;
9 document.write(""+ myBook.title +
 "
" + myBook.author +
 "
" + myBook.publisher +
 "
Current page is " + myBook.pagenumber);
 document.write("
Page forward: ");
10 for(i=0;i<3;i++){
11 document.write("
" + myBook.uppage());
 // Move forward a page
 }
 document.write("
Page backward: ");
 for(;i>0; i--){
12 document.write("
" + myBook.backpage());
 // Move back a page
 }
 </script>
 </body>
 </html>

EXPLANATION

1. This is the constructor function that is used to build the object by assigning it properties and methods. The
parameter list contains the values for the properties title, author, and publisher.

2. The this keyword refers to the book object. The book object is given a pagenumber property initalized to 0.

3. A method is defined by assigning the function to a property of the book object. this.uppage is assigned the
name of the function, pageForward, that will serve as the object's method. Note that only the name of the
method is assigned to a property. There are no parentheses following the name. This is important. If you put
parentheses here, you will receive an error message. When the method is called you use parentheses.

4. The property this.downpage is assigned the name of the function, pageBackward, that will serve as the object's
method.

5. The function pageForward() is defined. Its purpose is to increase the page number of the book by one, and
return the new page number.

6. The function pageBackward() is defined. Its purpose is to decrease the page number by one and return the new
page number.

7. A new object called myBook is created. The new operator invokes the book() function with three arguments:
the title of the book, the author, and the publisher.

8. The pagenumber property is set to 5.

9. The properties of the object are displayed in the browser window.

10. The for loop is entered. It will loop three times.

11. The uppage() method is called for the myBook object. It will increase the page number by 1 and display the
new value, each time through the for loop.

12. The backpage() method is called for the myBook object. It will decrease the page number by 1 and display the
new value, each time through the loop. The output is shown in Figure 8.7.

Figure 8.7. Calling user-defined methods. Output from Example 8.6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties Can Be Objects

In "Properties of the Object" on page 129 we said that any object subordinate to another object is also a property of
that object; thus, if a parent object has objects below it in the hierarchy, those child objects are properties of their
parent and separated from their parent with a dot. So how would you create subordinate objects? You create a
subordinate object just as you create any other object—with a constructor method. The one thing you must remember
is that if the object being created is already a property of another object, you cannot use the var keyword preceding its
name. For example, var pet.cat = new Object() will produce an error because cat is a property of the pet object and
properties are never variables. (See Figure 8.1.) Weird, huh?

Example 8.7

 <html>
 <head><title>Properties Can be Objects</title>
 <script language = "javascript">
1 var pet = new Object(); // pet is an object
2 pet.cat = new Object(); // cat is a property of the pet
 // object. cat is also an object
3 pet.cat.name="Sylvester"; // cat is assigned properties
 pet.cat.color="black";
4 pet.dog = new Object();
 pet.dog.breed = "Shepherd";
 pet.dog.name = "Lassie";
 </script>
 </head>
 <body bgcolor="lightblue">
 <script language = "javascript">
5 document.write("The cat's name is " +
 pet.cat.name + ".");
6 document.write("
The dog's name is " +
 pet.dog.name + ".");
 </script>
 </body>
 </html>

Output:

5 The cat's name is Sylvester.
6 The dog's name is Lassie.

EXPLANATION

1. A new pet object is created with the Object() constructor.

2. The Object() constructor creates a cat object below the pet in the object hierarchy; that is, a cat object
subordinate to the pet object and also a property of it. You cannot precede pet.cat with the keyword var
because properties are never considered variables.

3. The new object also has a property called name which is assigned a value, Sylvester.

4. The Object() constructor creates an dog object below the pet in the object hierarchy; that is, a dog object
subordinate to the pet object and also a property of it.

5. The name property for the cat object is displayed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. The name property for the dog object is displayed.

8.2.5 Object Literals

When an object is created by assigning it a comma-separated list of properties enclosed in curly braces, it is called an
object literal. Each property consists of the property name followed by a colon and the property value. An object literal
can be embedded directly in JavaScript code.

FORMAT

var object = { property1: value, property2: value };

Example:

var area = { length: 15, width: 5 };

Example 8.8

 <html>
 <head><title>Object Literals</title>
 </head>
 <body bgcolor="yellow">
 <script language = "javascript">
1 var car = {
2 make: "Honda",
 year: 2002,
 price: "30,000",
 owner: "Henry Lee",
3 };
4 var details=car.make + "
";
 details += car.year + "
";
 details += car.price + "
";
 details += car.owner + "
";
 document.write(details);
 </script>
 </body>
 </html>

EXPLANATION

1. An object literal car is created and initialized.

2. The properties for the car object are assigned. Properties are separated from their corresponding values with a
colon and each property/value pair is separated by a comma.

3. The object definition ends here.

4. The variable called details is assigned the properties of the car object for display. The output is shown in Figure
8.8.

Figure 8.8. Literal object properties. Output from Example 8.8.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.3 Manipulating Objects

8.3.1 The with Keyword

The with keyword is used as a kind of shorthand for referencing an object's properties or methods.

The object specified as an argument to with becomes the default object for the duration of the block that follows. The
properties and methods for the object can be used without naming the object. (If a method is used, don't forget to
include the parentheses after the method name.)

FORMAT

with (object){
 < properties used without the object name and dot>
}

Example:

with(employee){
 document.write(name, ssn, address);
}

Example 8.9

 <html>
 <head><title>The with Keyword</title>
 <script language = "javascript">
1 function book(title, author, publisher){
2 this.title = title; // Properties
 this.author = author;
 this.publisher = publisher;
3 this.show = display; // Define a method
 }

4 function display(anybook){
5 with(this){ // The with keyword
6 var info = "The title is " + title;
 info += "\nThe author is " + author;
 info += "\nThe publisher is " + publisher;
7 alert(info);
 }
 }
 </script>
 </head>
 <body bgcolor="lightblue">
 <script language = "javascript">
8 var childbook = new book("A Child's Garden of Verses",
 "Robert Lewis Stevenson",
 "Little Brown");
9 var adultbook = new book("War and Peace",
 "Leo Tolstoy",
 "Penguin Books");
10 childbook.show(childbook); // Call method for child's book
11 adultbook.show(adultbook); // Call method for adult's book
 </script>
 </body>
 </html>

EXPLANATION

1. The book constructor function is defined with its properties.

2. The book object is described with three properties: title, author, and publisher.

3. The book object's property is assigned the name of a function. This property will serve as a method for the
object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object.

4. A function called display is defined.

5. The with keyword will allow you to reference the properties of the object without using the name of the object
or the this keyword. (See "The Math Object" on page 172 in Chapter 9.)

6. A variable called info is assigned the property values of a book object. The with keyword allows you to specify
the property name without a reference to the object (and dot) preceding it.

7. The alert box displays the properties for a book object.

8. The constructor function is called and returns an instance of a new book object called childbook.

9. The constructor function is called and returns an instance of another book object called adultbook.

10. The show() method is called passing a reference to the childbook object.

11. The show() method is called passing a reference to the adultbook object.

Figure 8.9. The childbook object and its properties.

Figure 8.10. The adultbook object and its properties.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3.2 The for/in Loop

JavaScript provides the for/in loop, which can be used to iterate through a list of object properties or array elements.
The for/in loop reads: for each property in an object (or for each element in an array) get the name of each property
(element), in turn, and for each of the properties (elements), execute the statements in the block that follows.

The for/in loop is a convenient mechanism for looping through the properties of an object.

FORMAT

for(var property_name in object){
 statements;
}

Example 8.10

 <html>
 <head><title>User-defined objects</title>
 <script language = "javascript">
1 function book(title, author, publisher){
2 this.title = title;
 this.author = author;
 this.publisher = publisher;
3 this.show=showProps; // Define a method for the object
 }
4 function showProps(obj, name){
 // Function to show the object's properties
 var result = "";
5 for (var prop in obj){
6 result += name + "." + prop + " = " +
 obj[prop] + "
";
 }
7 return result;
 }
 </script>
 </head>
 <body bgcolor="lightblue">
 <script language="javascript">
8 myBook = new book("JavaScript by Example", "Ellie",
 "Prentice Hall");
9 document.write("
" + myBook.show(myBook, "myBook"));
 </script>
 </body>
 </html>

EXPLANATION

1. The function called book will define the properties and methods for a book object. The function is a template for
the new object. An instance of a new book object will be created when this constructor is called.

2. This is the first property defined for the book object. The this keyword refers to the current object.

3. A function name called showProps is assigned to a property of the object, thus creating a method for the object.

4. The function called showProps is defined, tasked to display all the properties of the object.

5. The special for/in loop executes a set of statements for each property of the object.

6. The name and value of each property is concatenated and assigned to a variable called result. obj[prop] is used
to key into each of the property values of the book object.

7. The value of the variable result is sent back to the caller. Each time through the loop, another property and
value are displayed.

8. A new book object called myBook is created (instantiated).

9. The properties for the book object are shown in the browser window; see Figure 8.11. Notice how the method
and its definition are displayed.

Figure 8.11. The book object's properties.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.11. The book object's properties.

8.3.3 Extending Objects with Prototypes

Object-oriented languages support a feature called inheritance, where one object can inherit the properties of another.
JavaScript implements inheritance with prototypes. As of Netscape Navigator 3.0, it is possible to add properties to
objects after they have been created by using the prototype object.

JavaScript functions are automatically given an empty prototype object. If the function serves as the constructor for an
object, then the prototype object can be used to implement inheritance. When the properties are assigned to a given
object by a constructor function, the prototype object gets the same properties. Each time a new object of the same
class is created, that object also inherits the prototype object and all the same properties. The good news is that even
after an object has been created, it can be extended with new properties that will also become part of the prototype.
Then any objects created after that will automatically inherit the new properties.

What Is a Class?

In object-oriented languages, the object's data describes the properties. The object, along with its properties and
methods, is bundled up into a container called a class, and one class can inherit from another, and so on. Even though
JavaScript doesn't have a class mechanism per se, it mimics the class concept with the constructor and its prototype
object.

Each JavaScript class has a prototype object and one set of properties. Any objects created in the class will inherit the
prototype properties. Let's say we define a constructor function called Employee() with a set of properties. The
prototype object has all the same properties. The Employee() constructor function represents a class. The constructor is
called and instantiates an object called janitor, and then the constructor is called again and instantiates another object
called manager, and so on. Each instance of the Employee() class automatically inherits all the properties defined for
the Employee through its prototype.

After an object has been created, new properties can be added with the prototype property. This is how JavaScript
implements inheritance.

Example 8.11

 <html>
 <head><title>User-defined objects and Inheritance</title>
 <script language = "javascript">
1 function Book(title, author, publisher){ // The Book class
 this.title = title;
 this.author = author;
 this.publisher = publisher;
 this.show=showProps;
 }
2 function showProps(obj,name){
 var result = "";
 for (var i in obj){
 result += name + "." + i + " = " + obj[i] + "
";
 }
 return result;
 }
 </script>
 </head>
 <body bgcolor="lightblue">
 <script language="javascript">
 // Add a new function
3 function lastEdition(){
 this.latest=prompt("Enter the latest edition for
 "+this.title,"");
 return (this.latest);
 }
 // Add a new property with prototype
4 Book.prototype.edition=lastEdition;
5 var myBook=new Book("JavaScript by Example", "Ellie",
 "Prentice Hall");
 // Define a new method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Define a new method
 document.write("
" + myBook.show(myBook,"myBook")+"
");
6 document.write("The latest edition is "+ myBook.edition()+"
");
 </script>
 </body>
 </html>

EXPLANATION

1. The function called Book defines the properties and methods for a Book object. Book is a JavaScript class. Each
object has a prototype whose properties it inherits. An instance of a new Book object will inherit all of these
properties.

2. A function called showProps is defined. It uses the special for loop to iterate through all the properties of an
object. It will be used to create a method for the Book object, called show().

3. A function called lastEdition() is defined. It returns the latest edition of the book.

4. A new property is given to the Book object using the prototype property, followed by the property name,
edition. This property is assigned the name of a function called lastEdition, thus creating a new method for the
Book class.

5. A new Book object, called myBook, is created. It has inherited all of the original properties of the Book class,
plus the new property defined by the prototype property, called edition.

6. The new method is called for the myBook object.

Extending a JavaScript Object

Since all objects have the prototype object, it is possible to extend the properties of a JavaScript built-in object, just as
we did for a user-defined object. (See Chapter 9, "JavaScript Core Objects.")

Example 8.12

 <html><head><title>Prototypes</title>
 <script language = "javascript">
 // Customize String Functions
1 function uc(){
2 var str=this.big();
3 return(str.toUpperCase());
 }
4 function lc(){
5 var str=this.small();
6 return(str.toLowerCase());
 }
7 String.prototype.bigUpper=uc;
8 String.prototype.smallLower=lc;

9 var string="This Is a Test STRING.";

10 string=string.bigUpper();
 document.write(string+"
");
11 document.write(string.bigUpper()+"
");
12 document.write(string.smallLower()+"
");
 </script>
 </head>
 <body bgcolor="lightblue"></body>
 </html>

EXPLANATION

1. A function called uc is defined. It will manipulate a String object.

2. The big() method is an HTML method that will increase the font size (one size larger than the current font) for
the String object.

3. The string will be returned with a larger font and all letters in uppercase.

4. A function called lc is defined. It will also manipulate the String object.

5. The small() method is an HTML method that will decrease the font size (one size smaller than the current font)
for the String object.

6. The string will be returned with a smaller font and all letters in lowercase.

7. The function uc is assigned to the String.prototype.bigUpper property, creating a new method for the String
object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8. The function lc is assigned to the String.prototype.smallLower property, creating another new method for the
String object.

9. This is the String object that will be manipulated by the new methods created by the prototype property.

10. When the string.bigUpper() method is called, the string is converted to uppercase with all letters in a bigger
font.

11. The string.bigUpper() method is called again, creating a larger string all in capital letters.

12. When the string.smallLower() method is called, the string is converted to lowercase with all letters in a smaller
font. See output in Figure 8.12.

Figure 8.12. Extending properties to a built-in class. Output from Example
8.12.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: Create a circle object and a method that will calculate its circumference.

2: Write a function that will create a clock object.

a. It will have three properties: seconds, minutes, and hours.

b. Write two methods: setTime() to set the current time and displayTime() to display the time.

c. The user will be prompted to select either a.m., p.m., or military time. The value he chooses will be
passed as an argument to the display() method.

d. The output will be either

14:10:26 or 2:10:26

depending on what argument was passed to the display() method.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. JavaScript Core Objects

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.1 What Are Core Objects?
Like an apple, JavaScript has a core, and at its core are objects. Everything you do in JavaScript will be based on
objects; you may create your own or use JavaScript's core objects, those objects built right into the language.
JavaScript provides built-in objects that deal with date and time, math, strings, regular expressions, numbers, and
other useful entities. The good news is that the core objects are consistent across different implementations and
platforms and have been standardized by the ECMAScript 1.0 specification, allowing programs to be portable. Although
each object has a set of properties and methods that further define it, this book does not detail every one, but
highlights those that will be used most often. For a complete list of properties and objects, see the CD-ROM in the back
of this book or go to http://developer.netscape.com.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.2 Array Objects
An array is a collection of like values—called elements—such as an array of colors, an array of strings, or an array of
images. Each element of the array is accessed with an index value enclosed in square brackets (see Figure 9.1). An
index is also called a subscript. There are two types of index values: a non-negative integer and a string. Arrays
indexed by strings are called associative arrays.[1] In JavaScript, arrays are built-in objects with some added
functionality.[2]

[1] Creating a multidimensional array (i.e., an array with more than one index) is not officially supported by
JavaScript, but can be simulated with some trickery.

[2] Arrays were introduced in JavaScript 1.1.

Figure 9.1. An Array object called color. Index values are in square brackets.

9.2.1 Declaring an Array

Like variables, arrays must be declared before they can be used. The new keyword is used to dynamically create the
Array object. It calls the Array object's constructor, Array(), to create a new Array object. The size of the array can be
passed as an argument to the constructor, but it is not necessary. Values can also be assigned to the array when it is
constructed, but this is not required either. Let's examine some ways to create an array.

The following array is called array_name and its size is not specified.

var array_name = new Array();

In the next example, the size or length of the array is passed as an argument to the Array() constructor. The new array
has 100 undefined elements.

var array_name = new Array(100);

And in the next example, the array is given a list of initial values of any data type:

var array_name = new Array("red", "green", "yellow", 1 ,2, 3);

Although you can specify the size of the array when declaring it, it is not required. JavaScript allocates memory as
needed to allow the array to shrink and grow on demand. To populate the array, each element is assigned a value.
Each element is indexed by either a number or string. If the array index is a number, it starts with 0. JavaScript doesn't
care what you store in the array. Any combination of types, such as numbers, strings, Booleans, and so forth, are
acceptable. Example 9.1 creates a new Array object called book and assigns strings to each of its elements.

Using the new Constructor

To create an Array object, call the Array() constructor with the new keyword and pass information to the constructor if
you know the size and/or what elements you want to assign to the array. Values can be added or deleted throughout
the program; JavaScript provides a number of methods to manipulate the array (these are listed in "Array Methods" on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the program; JavaScript provides a number of methods to manipulate the array (these are listed in "Array Methods" on
page 158).

Example 9.1

 <html>
 <head><title>The Array Object</title>
 <h2>An Array of Books</h2>
 <script language="JavaScript">
1 var book = new Array(6); // Create an Array object
2 book[0] = "War and Peace"; // Assign values to its elements
 book[1] = "Huckleberry Finn";
 book[2] = "The Return of the Native";
 book[3] = "A Christmas Carol";
 book[4] = "The Yearling";
 book[5] = "Exodus";
 </script>
 </head>
 <body bgcolor="lightblue">
 <script language="JavaScript">
 document.write("<h3>");
3 for(var i in book){
4 document.write("book[" + i + "] "+ book[i] + "
");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The variable book is assigned a new Array object containing six elements.

2. The first element of the book array is assigned the string "War and Peace". Array indices start at zero.

3. The special for loop is used to access each of the elements in the book array.

4. Each of the elements of the book array are displayed in the browser. (See Figure 9.2.)

Figure 9.2. An array called book displays its elements. Output from Example
9.1.

Populating an Array with a for Loop

Populating an array is the process of assigning values to it. In Example 9.2, the for loop is used to fill an array. The
initial value of the index starts at zero; the looping will continue as long as the value of the index is less than the final
size of the array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

size of the array.

Example 9.2

 <html><head><title>The Array Object</title><body>
 <body>
 <h2>An Array of Numbers</h2>
 <script language="JavaScript">
1 var years = new Array(10);
2 for(var i=0; i < years.length; i++){
3 years[i]=i + 2000;
4 document.write("years[" + i + "] = "+ years[i]
 + "
");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The Array() constructor is called to create a 10-element array called years.

2. The for loop starts with an initial value of i set to 0, which will be the value of the first index in the array. As
long as the value of i is less than the length of the array, the body of the loop will be executed. Each time
through the loop, i is incremented by 1.

3. The array is populated here. Each time through the loop, years[i] is assigned the value of i + 2000.

4. The value of the new array element is displayed for each iteration of the loop. (See Figure 9.3.)

Figure 9.3. Output from Example 9.2.

Creating and Populating an Array Simultaneously

When creating an array, you can populate (assign elements to) it at the same time by passing the value of the
elements as arguments to the Array() constructor. Later on, you can add or delete elements as you wish. See Example
9.3.

Example 9.3

 <html><head><title>The Array Object</title></head>
 <body>
 <h2>An Array of Colored Strings</h2>
 <script language="JavaScript">
1 var colors = new Array("red", "green", "blue", "purple");
2 for(var i in colors){
3 document.write("");
4 document.write("colors[" + i + "] = "+ colors[i]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 document.write("colors[" + i + "] = "+ colors[i]
 + "
");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. A new array called colors is created and assigned five colors.

2. The special for loop iterates through each element of the colors array, using i as the index into the array.

3. The color of the font is assigned the value of the array element.

4. The value of each element of the colors array is displayed. The color of the font matches the value. (See Figure
9.4.)

Figure 9.4. Each string is a different font color. Output from Example 9.3.

Associative Arrays

An associative array is an array that uses a string as an index value, instead of a number. There is an association
between the index and the value stored at that location. The index is often called a key and the value assigned to it, the
value. Key/value pairs are a common way of storing and accessing data. In the following array called states, there is an
association between the value of the index, the abbreviation for a state (e.g., "CA"), and the value stored there—the
name of the state (e.g., "California"). The special for loop can be used to iterate through the elements of an associative
array.

Example 9.4

 <html><head><title>Associative Arrays</title></head>
 <body>
 <h2>An Array Indexed by Strings</h2>
1 <script language="JavaScript">
2 var states = new Array();
3 states["CA"] = "California";
 states["ME"] = "Maine";
 states["MT"] = "Montana";
4 for(var i in states){
 document.write("The index is: "+ i);
 document.write(". The value is: " + states[i]
 + ".
");
 }
 </script>
 </body>
 </html>

EXPLANATION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. The JavaScript program starts here.

2. The Array() constructor is called and returns a new Array object called states.

3. The index into the array element is a string of text, "CA". The value assigned is "California". Now there is an
association between the index and the value.

4. The special for loop is used to iterate through the Array object. The variable, i, represents the index value of the
array, and states[i] represents the value found there. It reads: For each index value in the array called states,
get the value associated with it. (See Figure 9.5.)

Figure 9.5. An associative array.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.3 Array Properties and Methods
Since an array is an object in JavaScript, it has properties to describe it and methods to manipulate it. The length of an
array, for example, can be determined by the length property, and the array can be shortened by using the pop()
method. For a complete list of array properties and methods, see Tables 9.1 and 9.2.

9.3.1 Array Object Properties

The Array object only has three properties. The most used is the length property which determines the number of
elements in the array, that is, the size of the array.

Table 9.1. Array object properties.
Property What It Does

constructor References the object's constructor

length Returns the number of elements in the array

prototype Extends the definition of the array by adding properties and methods

Example 9.5

 <html>
 <head>
 <title>Array Properties</title>
 <h2>Array Properties</h2>
 <script language="JavaScript">
1 var book = new Array(6); // Create an Array object
 book[0] = "War and Peace"; // Assign values to elements
 book[1] = "Huckleberry Finn";
 book[2] = "The Return of the Native";
 book[3] = "A Christmas Carol";
 book[4] = "The Yearling";
 book[5] = "Exodus";
 </script>
 </head>
 <body bgcolor="lightblue">
 <script language="JavaScript">
 document.write("<h3>");

2 document.write("The book array has " + book.length
 + " elements
");
 </script>
 </body>
 </html>

(Output)
The book array has 6 elements.

EXPLANATION

1. A six-element Array object is declared.

2. The length property is used to get the length of the array. The length is 6.

9.3.2 Array Methods

Whether you have an array of colors, names, or numbers, there are many ways you might want to manipulate the
array elements. For example, you might want to add a new name or color to the beginning or end of the array, remove
a number from the end of the array, or sort out all the elements, reverse the array, and so on. JavaScript provides a
whole set of methods for doing all of these things and more. See Table 9.2.

Table 9.2. Array methods.
Method What It Does

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

concat() Concatenates elements from one array to another array

join() Joins the elements of an array by a separator to form a string

pop() Removes and returns the last element of an array

push() Adds elements to the end of an array

reverse() Reverses the order of the elements in an array

shift() Removes and returns the first element of an array

slice() Creates a new array from elements of an existing array

sort() Sorts an array alphabetically, or numerically

splice() Removes and/or replaces elements of an array

toLocaleString() Returns a string representation of the array in local format

toString() Returns a string representation of the array

unshift() Adds elements to the beginning of an array

The concat() Method

The concat() method concatenates the elements passed as arguments onto an existing array (JavaScript 1.2), returning
a new concatenated list.

FORMAT

newArray=oldArray.concat(new elements);

Example:

names = names.concat("green, "blue");

Example 9.6

 <html>
 <head><title>Array concat() methods</title>
 </head>
 <body>
 <script language="JavaScript">
1 var names1=new Array("Dan", "Liz", "Jody");
2 var names2=new Array("Tom", "Suzanne");
 document.write("First array: "+ names1 + "
");
 document.write("Second array: "+ names2 + "
");
 document.write("After the concatenation
");
3 names1 = names1.concat(names2);
 document.write(names1);
 </script>
 </body>
 </html>

EXPLANATION

1. The first Array object, called names1, is created.

2. The second Array object, called names2, is created.

3. After concatenating the names2 array to names1, the result is returned to names1. The concat() method allows
the elements of one array to be added to another.

Figure 9.6. The concat() method. Output from Example 9.6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.6. The concat() method. Output from Example 9.6.

The pop() Method

The pop() method deletes the last element of an array and returns the value popped off.

FORMAT

var return_value=Arrayname.pop();

Example:

var popped = myArray.pop();

Example 9.7

 <html>
 <head><title>Array pop() method</title>
 </head>
 <body>
 <script language="JavaScript">
1 var names=new Array("Tom", "Dan", "Liz", "Jody");
2 document.write("Original array: "+ names +"
");
3 var newstring=names.pop(); // Pop off last element of array
4 document.write("Element popped: "+ newstring);
5 document.write("
New array: "+ names + "");
 </script>
 </body>
 </html>

EXPLANATION

1. The Array() constructor creates a new array called names and intializes the array with four values: "Tom",
"Dan", "Liz", and "Jody".

2. The contents of the array called names is displayed.

3. The last element of the array is removed. The value removed is returned and assigned to the variable called
newstring.

4. The popped value is displayed.

5. The shortened array is displayed. (See Figure 9.7.)

Figure 9.7. Output from Example 9.7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The push() Method

The push() method adds new elements onto the end of an array, thereby increasing the length of the array. JavaScript
allocates new memory as needed.

FORMAT

Arrayname.push(new elements); // Appended to the array

Example:

myArray.push("red", "green", "yellow");

Example 9.8

 <html>
 <head><title>Array push() method</title>
 </head>
 <body>
 <script language="JavaScript">
1 var names=new Array("Tom", "Dan", "Liz", "Jody");
2 document.write("Original array: "+ names + "
");
3 names.push("Daniel","Christian");
4 document.write("New array: "+ names + "");
 </script>
 </body>
 </html>

EXPLANATION

1. An Array object called names is declared and intialized.

2. The contents of the array (i.e., all of its elements) are displayed.

3. The push() method appends two new elements, "Daniel" and "Christian", to the end of the names array.

4. The array has grown. It is displayed in the browser window with its new elements. (See Figure 9.8.)

Figure 9.8. Output from Example 9.8.

The shift() and unshift() Methods

The shift() method removes the first element of an array and returns the value shifted off; the unshift() method adds
elements to the beginning of the array. These methods are just like pop() and push() except that they manipulate the
beginning of the array instead of the end of it.

FORMAT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FORMAT

var return_value=Arrayname.shift();
Arrayname.shift(new elements); // Prepended to the array

Example:

var shifted_off = myArray.shift();
myArray.shift("blue","yellow");

Example 9.9

 <html>
 <head><title>Array shift() and unshift() methods</title>
 </head>
 <body>
 <script language="JavaScript">
1 var names=new Array("Dan", "Liz", "Jody");
 document.write("Original array: "+ names + "
");
2 names.shift();
 document.write("New array after the shift: " + names);
3 names.unshift("Nicky","Lucy");
 // Add new elements to the beginning of the array
 document.write("
New array after the unshift: " + names);
 </script>
 </body>
 </html>

EXPLANATION

1. A new Array object called names is created.

2. The first element of the array is shifted off, shortening the array by 1.

3. The unshift() method will prepend to the beginning of the array, the names "Nicky" and "Lucy", thereby making
it longer by two elements. (See Figure 9.9.)

Figure 9.9. The shift() and unshift() methods. Output from Example 9.9.

The slice() Method

The slice() method copies elements of one array into a new array. The slice() method takes two arguments: the first
number is the starting element in a range of elements that will be copied, and the second argument is the last element
in the range, but this element is not included in what is copied. Remember that the index starts at zero, so that a
beginning position of 2 is really element 3. The orginal array is unaffected unless you assign the result of the slice back
to the original array.

FORMAT

var newArray = Arrayname.slice(first element, last element);

Example:

var ArraySlice = myArray.slice(2,6); // ArraySlice contains elements
 // 2 through 5 of myArray.

Example 9.10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9.10

 <html>
 <head><title>Array slice() method</title>
 </head>
 <body>
 <script language="JavaScript">
1 var names=new Array("Dan", "Liz", "Jody", "Christian",
 "William");
 document.write("Original array: "+ names + "
");
2 var sliceArray=names.slice(2, 4);
 document.write("New array after the slice: ");
3 document.write(sliceArray);
 </script>
 </body>
 </html>

EXPLANATION

1. This is the original array of names.

2. The slice() method will start at position 2, copy Jody into the new array, then Christian, and stop just before
position 4, William. The original array is not affected by the slice.

3. The new array created by the slice() method is displayed. (See Figure 9.10.)

Figure 9.10. Using slice() to create a new array.

The splice() Method

The splice() method [not to be confused with slice()] removes a specified number of elements from some starting
position in an array and allows you to replace those items with new ones. (Don't confuse this method with the slice()
method. Ropes, tapes, and films are spliced; bread, meat, and golf balls are sliced.)

FORMAT

Arrayname.splice(index position, number of elements to remove);
Arrayname.splice(index position, number of elements to remove,
 replacement elements);

Example:

myArray.splice(3, 2);
myArray.splice(3, 2, "apples","oranges");

Example 9.11

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9.11

 <html>
 <head><title>Array splice() method</title>
 </head>
 <body>
 <script language="JavaScript">
 // splice(starting_pos, number_to_delete, new_values)
1 var names=new Array("Tom","Dan", "Liz", "Jody");
 document.write("Original array: "+ names + "
");
2 names.splice(1, 2, "Peter","Paul","Mary");
3 document.write("New array: "+ names + "");
 </script>
 </body>
 </html>

EXPLANATION

1. An Array object called names is declared and intialized.

2. The splice() method allows you to delete elements from an array and optionally replace the deleted elements
with new values. The first arguments to the splice method are 1, 2. This means: start at element 1, and remove
a length of 2 elements. In this example, element 1 starts with "Dan" (element 0 is "Tom"). "Liz" is the second
element. Both "Dan" and "Liz" are removed. The next three arguments, "Peter", "Paul", and "Mary", are then
inserted into the array, replacing "Dan" and "Liz".

3. The new names array is displayed in the browser window. (See Figure 9.11.)

Figure 9.11. The splice() method. Output from Example 9.11.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.4 The Date Object

JavaScript provides the Date object for manipulating date and time.[3] Like the String and Array objects, you can create
as many instances as you like.

[3] For more information about the time and date, see http://www.timeanddate.com/worldclock/.

As we'll see, the Date object provides a number of methods for getting or setting specific information about the date
and time. The date is based on the UNIX date starting at January 1, 1970 (in Greenwich Mean Time[4] [GMT]), and
doesn't support dates before that time. Figure 9.12 gives you an idea of the difference between GMT and local time.
Time is measured in milliseconds (one millisecond is one thousandth of a second). Since client-side JavaScript programs
run on a browser, the Date object returns times and dates that are local to the browser, not the server. Of course, if
the computer is not set to the correct time, then the Date object won't produce the expected results. Figure 9.13 shows
a typical date and time control panel.

[4] Greenwich Mean Time (GMT) is now called Universal Coordinate Time (UTC). The current time in Greenwich,
England is five hours + New York's present time, or eight hours + San Francisco's present time.

Figure 9.12. 24-hour world time zones map with current time. Courtesy of
http://www.worldtimezone.com/index24.html.

Figure 9.13. The computer's date and time settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If no arguments are passed to the Date object constructor, it returns the local date and time (based on the accuracy of
the clock on your client machine). There are five formats that can be passed as arguments when creating a Date object.
They are shown in Example 9.12.

Example 9.12

var Date = new Date(); // The new constructor returns a Date object.
var Date = new Date("July 4, 2004, 6:25:22");
var Date = new Date("July 4, 2004");
var Date = new Date(2004, 7, 4, 6, 25, 22);
var Date = new Date(2004, 7, 4);
var Date = new Date(Milliseconds);

9.4.1 Using the Date Object Methods

The Date object comes with a large number of methods (see Table 9.3) and only a prototype property. For browser
versions supporting Date methods, see http://www.w3schools.com/js/js_datetime.asp.

Table 9.3. Date object methods.
Method What It Does

getDate Returns the day of the month (1–31)

getDay Returns the day of the week (0–6); 0 is Sunday, 1 is Monday, etc.

getFullYear Returns the year with 4 digits[*]

getHours Returns the hour (0–23)

getMilliseconds Returns the millisecond[*]

getMinutes Returns hours since midnight (0–23)

getMonth Returns number of month (0–11); 0 is January, 1 is February, etc.

getSeconds Returns the second (0–59)

getTime Returns number of milliseconds since January 1, 1970

getTimeZoneOffset Returns the difference in minutes between current time on local computer and UTC
(Universal Coordinated Time)

getUTCDate() Returns the day of the month[*]

getUTDDay() Returns the day of the week converted to universal time[*]

get UTCFullYear() Returns the year in four digits converted to universal time[*]

getUTCHours() Returns the hour converted to universal time[*]

getUTCMilliseconds() Returns the millisecond converted to universal time[*]

parse() Converts the passed-in string date to milliseconds since January 1, 1970

setDate(value) Sets day of the month (1–31)

setFullYear() Sets the year as a four-digit number[*]

setHours() Sets the hour within the day (0–23)

setHours(hr,min,sec,msec) Sets hour in local or UTC time

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setMilliseconds Sets the millisecond[*]

setMinutes(min,sec, msec) Sets minute in local time or UTC

setMonth(month,date) Sets month in local time

setSeconds() Sets the second

setTime() Sets time from January 1, 1970, in milliseconds

setUTCdate() Sets the day of the month in universal time

setUTCFullYear() Sets the year as a four-digit number in universal time[*]

setUTCHours() Sets the hour in universal time[*]

setUTCMilliseconds() Sets the millisecond in universal time[*]

setUTCMinutes() Sets the minute in universal time[*]

setUTCMonth() Sets the month in universal time[*]

setUTCSeconds() Sets the second in universal time[*]

setYear() Sets the number of years since 1900 (00–99)

toGMTString() Returns the date string in universal format

toLocaleString Returns string representing date and time based on locale of computer as 10/09/99
12:43:22

toSource Returns the source of the Date object[*]

toString Returns string representing date and time

toUTCString Returns string representing date and time as 10/09/99 12:43:22 in universal time[*]

UTC() Converts comma-delimited values to milliseconds[*]

valueOf() Returns the equivalence of the Date object in milliseconds[*]

[*] Starting with Netscape 4.0 and IE 4.0.

Example 9.13

 <html>
 <head><title>Time and Date</title></head>
 <body bgcolor="lightblue"><h2>Date and Time</h2>
 <script language="JavaScript">
1 var now = new Date(); // Now is an instance of a Date object
 document.write("");
 document.write("Local time: " + now + "
");
2 var hours=now.getHours();
3 var minutes=now.getMinutes();
4 var seconds=now.getSeconds();
5 var year=now.getFullYear();
 document.write("The full year is " + year +"
");
 document.write("The time is: " +
 hours + ":" + minutes + ":" + seconds);
 document.write("");
 </script>
 </body>
 </html>

EXPLANATION

1. A new Date object called now is created. It contains a string: Thu Feb 6 20:02:02 PST 2003.

2. The variable called hours is assigned the return value of the getHours() method.

3. The variable called minutes is assigned the return value of the getMinutes() method.

4. The variable called seconds is assigned the return value of the getSeconds() method.

5. The variable called year is assigned the return value of the getFullYear() method, 2003. The output is shown in
Figure 9.14.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.14. Output from Example 9.13.

9.4.2 Manipulating the Date and Time

JavaScript stores dates in milliseconds, so if you have more complicated calculations to perform, such as the number of
days before a date, or between two dates, the information in Table 9.4 might be helpful in converting milliseconds to
minutes, hours, days, and so forth.

Table 9.4. Basic units of time.
Unit of Time Milliseconds

1 second 1000

1 minute second * 60 (1000 * 60)

1 hour minute * 60 (1000 * 60 * 60)

1 day hour * 24 (1000 * 60 * 60 * 24)

1 week day * 7 (1000 * 60 * 60 * 24 * 7)

Example 9.14

 <html><head><title>Countdown 'till Christmas</title></head>
 <body bgColor="#00FF99">

 <script language="JavaScript">
1 var today = new Date();
2 var fullyear = today.getFullYear();
3 var future = new Date("December 25, "+ fullyear);
4 var diff = future.getTime() - today.getTime();
 // Number of milliseconds
5 var days = Math.floor(diff / (1000 * 60 * 60 * 24));
 // Convert to days
6 var str="Only <u>" + days + "</u> shopping days left
 \'til Christmas! ";
 document.write(str+"
");
 </script>
 </body>
 </html>

EXPLANATION

1. A new Date object called today is created.

2. The getFullYear() method returns the year as 2003.

3. Another Date object called future is created. It will contain the future date, Christmas, passed as its argument.

4. The difference between the future time and the present time is calculated and returned in milliseconds with the
getTime() method.

5. The Math object is used to round down the result of converting milliseconds to days.

6. This string contains the number of days between the present date and Christmas. (See Figure 9.15.)

Figure 9.15. The number of days between two dates has been calculated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.15. The number of days between two dates has been calculated.

9.4.3 Customizing the Date Object with the prototype Property

The Date object has a prototype property that allows you to extend the capabilities of the object. You can customize the
time and the date by providing new methods and properties that will be inherited by all instances of this object. Since
the Date object provides methods that return zero-based months, weeks, years, and other measures you may want to
create a prototype method where "January" is month number 1 instead of 0, and the day is "Monday" instead of 1, etc.

Example 9.15

 <html><head><title>The Prototype Property</title>
 <script language = "javascript">
 // Customize the Date
1 function weekDay(){
2 var now = this.getDay();
3 var names = new Array(7);
 names[0]="Sunday";
 names[1]="Monday";
 names[2]="Tuesday";
 names[3]="Wednesday";
 names[4]="Thursday";
 names[5]="Friday";
 names[6]="Saturday";
4 return(names[now]);
 }
5 Date.prototype.DayOfWeek=weekDay;
 </script>
 </head>
 <body bgcolor="pink">

 <center>
 <script language="JavaScript">
6 var today=new Date();
7 document.write("Today is " + today.DayOfWeek() + ".
");
 </script>
 </body></html>

EXPLANATION

1. The function called weekday() is defined.

2. The variable now is assigned a number representing the day of the week, where 0 is Sunday.

3. A new Array object called names is created. It will contain seven elements. Each element will be assigned the
name of the weekday, e.g., "Sunday".

4. The value in now, a number between 0 and 6, will be used as an index in the names array. If now is 6, then the
value of names[6], "Saturday", will be returned.

5. A prototype method called DayOfWeek is assigned the name of the function that defines the method.

6. A new Date object is created with the Date() constructor method.

7. The new prototyped method is called, and returns the string value of today's date, "Saturday". (See Figure
9.16.) The capabilities of the Date object have been extended to provide a method that will return the name of
the weekday.

Figure 9.16. The day is converted to a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.5 The Math Object
The Math object allows you to work with more advanced arithmetic calculations, such as square root, trigonometric
functions, logarithms, and random numbers, than are provided by the basic numeric operators. If you are doing simple
calculations, you really won't need it.

Unlike other objects, you don't have to create an instance of the Math object with the new keyword. It is a built-in
object and has a number of properties (see Table 9.5) and methods (see Table 9.6). The Math object always starts with
an uppercase M.

Table 9.5. Math object properties.
Property Value Description

Math.E 2.718281828459045091 Euler's constant, the base of natural logarithms

Math.LN2 0.6931471805599452862 Natural log of 2

Math.LN10 2.302585092994045901 Natural log of 10

Math.LOG2E 1.442695040888963387 Log base-2 of E

Math.Log10E 0.4342944819032518167 Log base-10 of E

Math.PI 3.14592653589793116 Pi, ratio of the circumference of a circle to its diameter

Math.SQRT1_2 0.7071067811865475727 1 divided by the quare root of 2

Math.SQRT2 1.414213562373985145 Square root of 2

Table 9.6. Math object methods.
Method Functionality

Math.abs(Number) Returns the absolute (unsigned) value of Number

Math.acos(Number) Arc cosine of Number, returns result in radians

Math.asin(Number) Arc sine of Number, returns results in radians

Math.atan(Number) Arctangent of Number, returns results in radians

Math.atan2(y,x) Arctangent of y/x; returns arctangent of the quotient of its arguments

Math.ceil(Number) Rounds Number up to the next closest integer

Math.cos(Number) Returns the cosign of Number in radians

Math.exp(x)[*] Euler's constant to some power (see footnote)

Math.floor(Number) Rounds Number down to the next closest integer

Math.log(Number) Returns the natural logarithm of Number (base E)

Math.max(Number1,
Number2)

Returns larger value of Number1 and Number2

Math.min(Number1,
Number2)

Returns smaller value of Number1 and Number2

Math.pow(x, y) Returns the value of x to the power of y(xy), where x is the base and y is the
exponent

Math.random() Generates pseudorandom number between 0.0 and 1.0

Math.round(Number) Rounds Number to the closest integer

Math.sin(Number) Arc sine of Number in radians

Math.sqrt(Number) Square root of Number

Math.tan(Number) Tangent of Number in radians

Math.toString(Number) Converts Number to string

[*] Returns the value of Ex where E is Euler's constant and x is the argument passed to it. Euler's constant is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[*] Returns the value of Ex where E is Euler's constant and x is the argument passed to it. Euler's constant is
approximately 2.7183.

Square Root, Power of, and Pi

The Math object comes with a number of common mathematical constants (all uppercase), such as PI and natural log
values, as well as methods to find the square root of a number, the power of a number, and so on. Example 9.16
demonstrates how to use some of these properties; the output is shown in Figure 9.17.

Example 9.16

 <html>
 <head><title>The Math Object</title></head>
 <body>
 <h2>Math object Methods--sqrt(),pow()

 Math object Property--PI</h2>
 <P>
 <script language="JavaScript">
1 var num=16;
 document.write("<h3>The square root of " +num+ " is ");
2 document.write(Math.sqrt(num),".
");
 document.write("PI is ");
3 document.write(Math.PI);
 document.write(".
"+num+" raised to the 3rd power is ");
4 document.write(Math.pow(num,3));
 document.write(".</h3>");
 </script>
 </body></html>

Figure 9.17. Output from Example 9.16.

9.5.1 Rounding Up and Rounding Down

There are three Math methods available for rounding numbers up or down. They are the ceil(), floor(), and round()
methods (see Table 9.7 for examples). The differences between the methods might be confusing because all three
methods truncate the numbers after the decimal point and return a whole number. If you recall, JavaScript also
provides the parseInt() function, but this function truncates the number after the decimal point, without rounding either
up or down.

The ceil() Method

The ceil() method rounds a number up to the next largest whole number and then removes any numbers after the
decimal point; thus, 5.02 becomes 6 because 6 is the next largest number, and –5.02 becomes –5 because –5 is larger
than –6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

than –6.

The floor() Method

The floor() method rounds a number down to the next lowest whole number and then removes any numbers after the
decimal point; thus, 5.02 now becomes 5, and –5.02 becomes –6.

The round() Method

The round() method rounds up only if the decimal part of the number is .5 or greater. Otherwise, it rounds down to the
nearest integer; thus, 5.5 is rounded up to 6, and 5.4 is rounded down to 5.

Table 9.7. Rounding up and down.
Number ceil() floor() round()

2.55 3 2 3

2.30 3 2 2

–2.5 –2 –3 –2

–2.3 –2 –3 –2

Example 9.17

 <html>
 <head><title>The Math Object</title></head>
 <body>
 <h2>Rounding Numbers</h2>
 <p>
 <h3>
 <script language="JavaScript">
1 var num=16.3;
 document.write("<I>The number being manipulated is: ", num,
 "</I>

");
2 document.write("The <I>Math.floor</I> method rounds down: " +
 Math.floor(num) + "
");
3 document.write("The <I>Math.ceil</I> method rounds up: " +
 Math.ceil(num) +"
");
4 document.write("The <I>Math.round</I> method rounds to\
 the nearest integer: " + Math.round(num) + "
");
 </script>
 </h3>
 </body>
 </html>

Figure 9.18. Output from Example 9.17.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.5.2 Generating Random Numbers

Random numbers are frequently used in JavaScript programs to produce random images (such as banners streaming
across a screen), random messages, or random numbers (such as for lotteries or card games). There are examples
throughout this text where random numbers are used.

The Math object's random() method returns a random fractional number between 0 and 1 and is seeded with the
computer's system time. (The seed is the starting number for the algorithm that produces the random number.) The
Math object's floor() method truncates numbers after the decimal point and returns an integer.

Example 9.18

 <html><head><title>Random Numbers</title>

 <script language="JavaScript">
1 var n = 10;
2 for(i=0; i < 10;i++){
 // Generate random numbers between 0 and 10
3 document.write(Math.floor(Math.random()* (n + 1)) +
 "
");
 }
 </script>
 </head>
 <body></body>
 </html>

EXPLANATION

1. The variable n is assigned an initial value of 10. This value will be the outside range of numbers randomly
produced.

2. The for loop is entered and will cause the body of the block to be executed 10 times, thus producing 10 random
numbers between 0 and 10.

3. The formula produces a random number between 0 and some number, n, using the Math object's random
method. The output is shown in Figure 9.19.

Figure 9.19. Random numbers. Output from Example 9.18.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.6 What Is a Wrapper Object?
The primitive man wraps himself up in an animal skin to keep warm or to protect his skin. A primitive data type can
also have a wrapper. The wrapper is an object bearing the same name as the data type it represents. For each of the
primitive data types (string, number, and Boolean), there is a String object, a Number object, and a Boolean object.
These objects are called wrappers and provide properties and methods that can be defined for the object. For example,
the String object has a number of methods that let you change the font color, size, and style of a string; and the
Number object has methods that allow you to format a number to a specified number of significant digits. Whether you
use the object or literal notation to create a string, number, or Boolean, JavaScript handles the internal conversion
between the types. The real advantage to the wrapper object is its ability to apply and extend properties and methods
to the object, which in turn, will affect the primitive.

9.6.1 The String Object

We have used strings throughout this book. They were sent as arguments to the write() and writeln() methods, they
have been assigned to variables, they have been concatenated, and so on. As you may recall, a string is a sequence of
characters enclosed in either double or single quotes. The String object (starting with JavaScript 1.1) is a core
JavaScript object that allows you to treat strings as objects. The String object is also called a wrapper object because it
wraps itself around a string primitive, allowing you to apply a number of properties and methods to it.

You can create a String object implicitly by assigning a quoted string of text to a variable, called a string primitive (see
"Primitive Data Types" on page 31 of Chapter 3), or by explicitly creating a String object with the new keyword and the
String() object constructor method. Either way, the properties and methods of the String object can be applied to the
new string variable.

FORMAT

var string_name = "string of text";
var string_name = new String("string of text");

Example:

var title="JavaScript by Example";
var title=new String("JavaScript by Example");

Example 9.19

 <html><head><title>The String Object</title></head>
 <body bgcolor=pink>
 <h2>Primitive and String Objects</h2>
 <script language="JavaScript">
1 var first_string = "The winds of war are blowing.";
2 var next_string = new String("There is peace in the valley.");
3 document.write("The first string is of type "+
 typeof(first_string));
 document.write(".
The second string is of type "+
4 typeof(next_string) +".
");
 </script>
 </body>
 </html>

EXPLANATION

1. This is the literal way to assign a string to a variable, and the most typical way. The string is called a string
primitive. It is one of the basic building blocks of the language, along with numbers and Booleans. All of the
properties and methods of the String object behave the same way whether you create a String literal or a
String object as shown next. For all practical purposes, both methods of creating a string are the same, though
this one is the easiest.

2. The String() constructor and the new keyword are used to create a String object. This is the explicit way of
creating a string.

3. The typeof operator demonstrates that the first string, created the literal, implicit way, is a String data type.

4. The typeof operator demonstrates that this string, created with the String() constructor, is an object type.
Either way, when properties and methods are applied to a string, it is treated as a String object. (See Figure
9.20.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.20.)

Figure 9.20. Output from Example 9.19.

The Properties of the String Object

The string properties (see Table 9.8) describe the attributes of the String object. The most common string property is
the length property, which lets you know how many characters there are in a string. The prototype property allows you
to add your own properties and methods to the String object, that is, you can customize a string.

Table 9.8. String object properties.
Property What It Does

length Returns the length of the string in characters

prototype Extends the definition of the string by adding properties and methods

Example 9.20

 <html><head><title>The String Object</title></head>
 <body bgColor="lightblue">

 <h3>Length of Strings</h3>
 <script language="JavaScript">
1 var first_string = "The winds of war are blowing.";
 var next_string = new String("There is peace in the valley.");
2 document.write("\""+first_string +"\" contains "+
 first_string.length + " characters.");
3 document.write("
\""+ next_string+"\" contains "+
 next_string.length+" characters.
");
 document.write("...not to imply that war is
 equal to peace...
");
 </script>
 </body>
 </html>

EXPLANATION

1. Two strings are created, one the literal way (a string primitive) and the other with the constructor method (a
String object).

2. The length property is applied to the first string. When the property is applied to a literal string, it is temporarily
converted to an object, and then after the operation, it is reverted back to a string primitive.

3. The length property is applied to the second string, a String object. (It is just a coincidence that both strings are
of the same length.) (See Figure 9.21.)

Figure 9.21. Using the String object's length property. Output from Example
9.20.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9.21

 <html><head><title>The Prototype Property</title>
 <script language = "javascript">
 // Customize String Functions
1 function ucLarge(){
 var str=this.bold().fontcolor("white").
 toUpperCase().fontsize("22");
 return(str);
 }
2 String.prototype.ucL=ucLarge;
 </script>
 </head>
 <body bgcolor=black><center>
 <script language="JavaScript">
3 var string="Watch Your Step!!";
4 document.write(string.ucL()+"
");
 </script>

 </body></html>

EXPLANATION

1. The ucLarge() function is defined. Its purpose is to generate and return an uppercase, bold, white font, with a
point size of 22.

2. The prototype property allows you to customize an object by adding new properties and methods. The name of
the customized method is ucL, which is the name of a new method that will be used by the String object. It is
assigned the name (without parentheses) of the function ucLarge(), that performs the method's actions and
returns a value.

3. A new string is created.

4. The prototyped method, ucL(), is applied to the String object, str. It will modify the string as shown in the
output in Figure 9.22.

Figure 9.22. Using the String object's prototype property. Output from
Example 9.21.

String Methods

There are two types of string methods: the string formatting methods that mimic the HTML tags they are named for,
and the methods used to manipulate a string such as finding a position in a string, replacing a string with another
string, making a string uppercase or lowercase, and the like.

Table 9.9 lists methods that will affect the appearance of a String object by applying HTML tags to the string, for
example, to change its font size, font type, and color. Using these methods is a convenient way to change the style of a
string in a JavaScript program, much easier than using quoted HTML opening and closing tags.

Table 9.9. String object (HTML) methods.
Method Formats as HTML

String.anchor(Name) String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.anchor(Name) String

String.big() <big>String</big>

String.blink() <blink>String</blink>

String.bold() String

String.fixed() <tt>String</tt>

String.fontcolor(color) String

e.g., String

String.fontsize(size) String

e.g., String

String.italics() <i>String</i>

String.link(URL) String

e.g., String

String.small() <small>String</small>

String.strike() <strike>String</strike> (puts a line through the text)

String.sub() _{String} (creates a subscript)

String.sup() ^{String} (creates a superscript)

Example 9.22

 <html>
 <head><title>String object</title>
 </head>
 <body bgcolor="yellow">

 <h2>Working with String Objects:</h2>
 <script language="JavaScript">
1 var str1 = new String("Hello world!"); // Use a String constructor
2 var str2 = "It's a beautiful day today.";
 document.write(str1) + "
";
3 document.write(str1.fontcolor("blue")+"
");
4 document.write(str1.fontsize(8).fontcolor("red").
 bold()+"
");
5 document.write(str1.big()+ "
");
6 document.write("Good-bye, ".italics().bold().big() +
 str2 + "
");
 </script>
 </body></html>

EXPLANATION

1 A String object is created with the String() constructor.

2 A string primitive is created the literal way.

3 The fontcolor() method is used to change the color of the string to blue. This method emulates the
HTML tag, .

4 The fontsize(), fontcolor(), and bold() methods are used as properties of the string.

5, 6 The HTML method is concatenated to the string "Good-bye, " causing it to be displayed in italic,
bold, big text. (See Figure 9.23.)

Figure 9.23. Properties of the String object are used to change its
appearance and determine its size. Output from Example 9.22.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

appearance and determine its size. Output from Example 9.22.

There are a number of methods (see Table 9.10) provided to manipulate a string.

Table 9.10. Methods for string manipulation.
Method What it Does

charAt(index) Returns the character at a specified index position

charCodeAt(index) Returns the Unicode encoding of the character at a specified index position

concat(string1, ..., stringn) Concatenates string arguments to the string on which the method was invoked

fromCharCode(codes) Creates a string from a comma-separated sequence of character codes

indexOf(substr, startpos) Searches for first occurrence of substr starting at startpos and returns the
startpos(index value) of substr

lastIndexOf(substr,
startpos)

Searches for last occurrence of substr starting at startpos and returns the startpos
(index value) of substr

replace(searchValue,
replaceValue)

Replaces searchValue with replaceValue

search(regexp) Searches for the regular expression and returns the index of where it was found

slice(startpos, endpos) Returns string containing the part of the string from startpos to endpos

split(delimiter) Splits a string into an array of words based on delimiter

substr(startpos, endpos) Returns a subset of string starting at startpos up to, but not including, endpos

toLocaleLowerCase() Returns a copy of the string converted to lowercase

toLocaleUpperCase() Returns a copy of the string converted to uppercase

toLowerCase() Converts all characters in a string to lowercase letters

toString() Returns the same string as the source string

toUpperCase() Converts all characters in a string to uppercase letters

valueOf Returns the string value of the object

Methods That Find a Position in a String

A substring is a piece of an already existing string; thus eat is a substring of both create and upbeat, and java is a
substring of javascript. When a user enters information, you want to see if a certain pattern of characters exist, such as
the @ in an e-mail address or a zip code in an address. JavaScript provides a number of methods to assist you in
finding substrings.

The indexOf() and the lastIndexOf() methods are used to find the first instance or the last instance of a substring within
a larger string. They are both case sensitive. The first character in a string is at index value 0, just like array indices. If
either of the methods finds the substring, it returns the position of the first letter in the substring. If either method can't
find the pattern in the string, then a –1 is returned.

Example 9.23

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9.23

 <html><head><title>Substrings</title>
 </head>
 <body bgcolor=lightgreen>

 Searching for an @ sign
 <script language="JavaScript">
1 var email_addr=prompt("What is your email address? ","");
2 while(email_addr.indexOf("@") == -1){
3 alert("Invalid email address.");
 email_addr=prompt("What is your email address? ",""); }
 document.write("
OK.
");
 </script>
 </body></html>

EXPLANATION

1. The user is prompted for his e-mail address and the input is assigned to a string called email_addr.

2. The loop expression uses the indexOf() String method to see if there is an @ symbol in the e-mail address. If
there isn't, the indexOf() method returns –1 and the body of the loop is executed.

3. If the indexOf() method didn't find the @ substring, the alert box appears and the user is prompted again (see
Figures 9.24 and 9.25). The loop terminates when the user enters an e-mail address containing an @ sign. Of
course, this is just a simple test for validating an e-mail address; more elaborate methods of validation are
discussed in Chapter 13, "Regular Expressions and Pattern Matching."

Figure 9.24. Using the indexOf() String method.

Figure 9.25. The user entered an e-mail address without the @ symbol.

Example 9.24

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9.24

 <html>
 <head><title>String Manipulation</title></head>
 </head>
 <body>
 <h2>Working with String Manipulation Methods</h2>
 <script language="JavaScript">
 function break_tag(){
 document.write("
");
 }
 document.write("<h3>");
1 var str1 = new String("The merry, merry month of June...");
 document.write("In the string: "+ str1);
2 document.write(" the first 'm' is at position " +
 str1.indexOf("m"));
 break_tag();
3 document.write("The last 'm' is at position " +
 str1.lastIndexOf("m"));
 break_tag();
4 document.write("str1.substr(4,5) returns " +
 str1.substr(4,5));
 break_tag();
 document.write(str1.toUpperCase());
 document.write("</h3>");
 </script>
 </body>
 </html>

Figure 9.26. Output from Example 9.24.

Methods that Extract Substrings from a String

You may have to do more than just find a substring within a string, you may need to extract that substring. For
example, we found the @ in the e-mail address, now we may want to get just the user name or the server name or
domain name. To do this, JavaScript provides methods such as splice(), split(), charAt(), substr(), and substring().

Example 9.25

 <html><head><title>Extracting Substrings</title>
 </head>
 <body bgcolor=lightgreen>

 Extracting substrings

 <script language="JavaScript">
1 var straddr = "DanielSavage@dadserver.org";
 document.write("
His name is " +
2 straddr.substr(0,6) + ".
");
3 var namesarr = straddr.split("@");
4 document.write("The user name is " + namesarr[0] +
 ".
");
5 document.write("and the mail server is " + namesarr[1] +

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5 document.write("and the mail server is " + namesarr[1] +
 ".
");
6 document.write("The first character in the string is " +
 straddr.charAt(0)+ ".
");
7 document.write("and the last character in the string is "
 + straddr.charAt(straddr.length - 1)
 + ".
");
 </script>
 </body></html>

EXPLANATION

1. A string is assigned an e-mail address.

2. The substr() starts at the first character at position 0, and yanks 6 characters from the starting position. The
substring is Daniel.

3. The split() method creates an array, called namesarr, by splitting up a string into substrings based on some
delimiter that marks where the string is split. This string is split using the @ sign as its delimiter.

4. The first element of the array, namesarr[0], that is created by the split() method is DanielSavage, the user
name portion of the e-mail address.

5. The second element of the array, namesarr[1], that is created by the split() method is dadserver.org, the mail
server and domain portion of the e-mail address.

6. The charAt() method returns the character found at a specified position within a string; in this example, position
0. Position 0 is the first character in the string, a letter D.

7. By giving the charAt() method the length of the string minus 1, the last character in the string is extracted, a
letter g. (See Figure 9.27.)

Figure 9.27. The charAt(), split(), and substr() methods. Output from
Example 9.25.

Search and Replace Methods

In word processing software you'll always find some mechanism to search for patterns in strings and to replace one
string with another. JavaScript provides methods to do the same thing, using the String object. The search() method
searches for a substring and returns the position where the substring is found first. The match() method searches a
string for substrings and returns an array containing all the matches it found. The replace() method searches for a
substring and replaces it with a new string. These methods are discussed again in Chapter 13, "Regular Expressions and
Pattern Matching," in more detail.

Example 9.26

 <html><head><title>Search and Replace</title>
 </head>
 <body bgcolor=lightgreen>

 Search and Replace Methods

 <script language="JavaScript">
1 var straddr = "DanielSavage@dadserver.org";
 document.write("The original string is "+ straddr + "
");
 document.write("The new string is "+
2 straddr.replace("Daniel","Jake")+"
");
3 var index=straddr.search("dad");
 document.write("The search() method found \"dad\" at
 position "+ index +"
");
4 var mysubstr=straddr.substr(index,3);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 var mysubstr=straddr.substr(index,3);
 document.write("After replacing \"dad\" with \"POP\"
");
5 document.write(straddr.replace(mysubstr,"POP")+"
");
 </script>
 </body></html>

EXPLANATION

1. An e-mail address is assigned to the string variable straddr.

2. The replace() method takes two arguments, the search string and the replacement string. If the substring
Daniel is found, it is replaced with Jake.

3. The search() method takes a subtring as its argument and returns the first position where a substring is found
in a string. In this example the substring dad is searched for in the string DanielSavage@dadserver.org and is
found at position 13.

4. The substr() method returns the substring found at position 13, 3 in the string, DanielSavage@dadserver.org:
dad.

5. The substring dad is replaced with POP in the string. (See Figure 9.28.)

Figure 9.28. The search() and replace() String methods. Output from
Example 9.26.

9.6.2 The Number Object

Now that we've travelled this far in JavaScript, have you wondered how to format a floating-point number when you
display it, as you can with the printf function in C or Perl? Well, the Number object, like the String object, gives you
properties and methods to handle and customize numeric data. The Number object is a wrapper for the primitive
numeric values (see Chapter 2, "Script Setup"), which means you can use a primitive number type or an object number
type and JavaScript manages the conversion back and forth as necessary. The Number object was introduced in
JavaScript 1.1.

The Number() constructor takes a numeric value as its argument. If used as a function, without the new operator, the
argument is converted to a primitive numeric value, and that number is returned; if it fails, NaN is returned. The
Number object has a number of properties and methods, as listed in Tables 9.11 and 9.12.

FORMAT

var number = new Number(numeric value);
var number = Number(numeric value);

Example:

var n = new Number(65.7);

Table 9.11. The Number object's properties.
Property What It Describes

MAX_VALUE The largest representable number, 1.7976931348623157e+308

MIN_VALUE The smallest representable number, 5e–324

NaN Not-a-number value

NEGATIVE_INFINITY Negative infinite value; returned on overflow

POSITIVE_INFINITY Infinite value; returned on overflow

prototype Used to customize the Number object by adding new properties and methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prototype Used to customize the Number object by adding new properties and methods

Table 9.12. The Number object's methods.
Method What It Does

toString() Converts a number to a string using a specified base (radix)

toLocaleString() Converts a number to a string using local number conventions

toFixed()[1] Converts a number to a string with a specified number of places after the decimal point

toExponential() Converts a number to a string using exponential notation and a specified number of places after the
decimal point

toPrecision() Converts a number to a string in either exponential or fixed notation containing the specified
number of places after the decimal point

[1] These methods are part of the ECMA 3.0, IE5.5+, Netscape 6.0+.

Using Number Constants and Different Bases

The constants MAX_VALUE, MIN_VALUE, NEGATIVE_INFINITY, POSITIVE_INFINITY, and NaN, are properties of the
Number() function, but are not used with instances of the Number object; thus, var huge = Number.MAX_VALUE is
valid, but huge.MAX_VALUE is not. NaN is a special value that is returned when some mathematical operation results in
a value that is not a number.

The methods provided to the Number object manipulate instances of number objects. For example, to convert numbers
to strings representing different bases, the toString() method manipulates a number, either primitive or object. See
Example 9.27.

Example 9.27

 <html>
 <head><title>Number Contants</title>
 </head>
 <body bgcolor=orange>
 <h2>
 Constants
 </h2>
 <script language="JavaScript">
1 var largest = Number.MAX_VALUE;
2 var smallest = Number.MIN_VALUE;
3 var num1 = 20; // A primitive numeric value
4 var num2 = new Number(13); // Creating a Number object
 document.write("The largest number is " + largest+ "
");
 document.write("The smallest number is "+ smallest + "
");

5 document.write("The number as a string (base 2): "+
 num1.toString(2));
6 document.write("
The number as a string (base 8): "+
 num2.toString(8));
7 document.write("
The square root of -25 is: "+
 Math.sqrt(-25) + "
");
 </script>
 </body>
 </html>

EXPLANATION

1. The constant MAX_VALUE is a property of the Number() function. This constant cannot be used with an instance
of a Number object.

2. The constant MIN_VALUE is a property of the Number() function.

3. A number is assigned to the variable called num1.

4. A new Number object is created with the Number() constructor and assigned to num2.

5. The number is converted to a string represented in binary, base 2.

6. The number is converted to a string represented in octal, base 8.

7. The square root of a negative number is illegal. JavaScript returns NaN, not a number, when this calculation is
attempted. (See Figure 9.29.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

attempted. (See Figure 9.29.)

Figure 9.29. Constants, number conversion, and NaN. Output from Example
9.27.

Formatting Numbers

To convert floating-point numbers to a string with a specified number of significant digits, JavaScript provides the
toFixed() and toExponential() methods.

Example 9.28

 <html>
 <head><title>Number Object</title>
 </head>
 <body bgcolor=orange>
 <h2>
 Formatting Numbers
 </h2>
 <script language="JavaScript">
1 var n = new Number(22.425456);
2 document.write("The unformatted number is " + n + "
");
3 document.write("The formatted number is "+ n.toFixed(2) +
 "
");
4 document.write("The formatted number is "+ n.toFixed(3) +
 "
");
 </script>
 </body>
 </html>

EXPLANATION

1. A new Number object is created and assigned to the variable n.

2. The value of the number is displayed as a large floating-point number, 22.425456.

3. The Number object's toFixed() method gets an argument of 2. This fixes the decimal point two places to the
right of the decimal point and rounds up if necessary. The new value is 22.43.

4. This time the toFixed() method will format the number with three numbers to the right of the decimal point.
(See Figure 9.30.)

Figure 9.30. Using the toFixed() Number method. Output from Example 9.28.

9.6.3 The Boolean Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Boolean object was included in JavaScript 1.1. It is used to convert a non-Boolean value to a Boolean value, either
true or false. There is one property, the prototype property, and one method, the toString() method, which converts a
Boolean value to a string; thus, true is converted to "true" and false is converted to "false".

FORMAT

var object = new Boolean(value);

Example:

var b1 = new Boolean(5);
var b2 = new Boolean(null);

Example 9.29

 <html><head><title>Boolean Object</title>
 </head>
 <body bgcolor=aqua>

 The Boolean Object

 <script language="JavaScript">
1 var bool1= new Boolean(0);
 var bool2 = new Boolean(1);
 var bool3 = new Boolean("");
 var bool4 = new Boolean(null);
 var bool5 = new Boolean(NaN);
2 document.write("The value 0 is boolean "+ bool1 +"
");
 document.write("The value 1 is boolean "+ bool2 +"
");
 document.write("The value of the empty string is boolean "+
 bool3+ "
");
 document.write("The value of null is boolean "+ bool4+ "
");
 document.write("The value of NaN is boolean "+ bool5 +"
");
 </script>
 </body></html>

EXPLANATION

1. The argument passed to the Boolean object constructor is the initial value of the object, either true or false. If
the initial value is 0, the empty string "", NaN, or null, the result is false; otherwise, the result is true.

2. The Boolean object's values are displayed as either true or false. (See Figure 9.31.)

Figure 9.31. True or False? Output from Example 9.29.

9.6.4 The Function Object

The Function object (added in JavaScript 1.1) lets you define a function as an object dynamically. It allows a string to
be defined at runtime and then compiled as a function. You can use the Function() constructor to create a variable that
contains the function. Since the function has no name, it is often called an anonymous function and its arguments are
passed as comma-separated strings. The last argument is the body of statements that will be executed when the
function is called. If the Function() constructor does not require arguments, then the body of statements, treated as a
string, will be passed to the Function() constructor to define what the function is to do. Since functions are objects, they
also have properties (see Table 9.13) and methods (see Table 9.14).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

also have properties (see Table 9.13) and methods (see Table 9.14).

Function objects are evaluated each time they are used, causing them to be slower in execution than normal JavaScript
functions.

Table 9.13. Properties of the Function object.
Property What It Does

length Returns the number of arguments that are expected to be passed (read only)

prototype Allows the object to be customized by adding new properties and methods

Table 9.14. Methods of the Function object.
Property What It Does

apply()[*] Allows you to apply a method from one function to another

call() Allows you to call a method from another object

[*] Supported on versions Netscape 4.06+ and Internet Explorer 5.5+.

FORMAT

var nameOfFunction = new Function (arguments, statements_as_string: }

Example Function Definition:

var addemUp = new Function ("a", "b", "return a + b;");

Example Function Call:

document.write(addemUp (10, 5));

Example 9.30

 <html><head><title>Function Object</title>
 </head>
 <body bgcolor=lightgreen>

 <center>
 Anonymous Functions and the Function Constructor<p>
 <script language="JavaScript">
1 var sum = new Function("a","b", "return a + b; ");
2 window.onload = new Function ("document.bgColor='yellow';");
3 document.write("The sum is " + sum(5,10)+ "
");
 document.write("The background color is yellow
");
 </script>
 </body></html>

EXPLANATION

1. A variable called sum is a Function object, created by the Function() constructor. It has two arguments, "a" and
"b". The function statements are the last string in the list. These statements will be executed when the function
is called.

2. This Function() constructor only has one argument, the statement that will be executed when the function is
called. Since the function is assigned to the onload event method for the window object, it will act as an event
handler and cause the background color to be yellow when the document has finished loading.

3. The sum function is called with two arguments. (See Figure 9.32.)

Figure 9.32. Output from Example 9.30.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.32. Output from Example 9.30.

9.6.5 The with Keyword Revisited

In Chapter 8, we used the with keyword with user-defined objects to make it easier to manipulate the object properties.
Recall that any time you reference the object within the block following the keyword, you can use properties and
methods without the object name. This saves a lot of typing and reduces the chances of spelling errors, especially when
the properties have long names. The String object is used in the following example to demonstrate how with is used.

Example 9.31

<html><head><title>The with Keyword</title>
</head>
<body>
<h2>Using the with keyword</h2>
<p>
<h3>
<script language="JavaScript">
 var yourname=prompt("What is your name? ","");
 // Create a string object
 with(yourname){
 document.write("Welcome " + yourname + " to our planet!!
");
 document.write("Your name is " + length + " characters in
 length.
");
 document.write("Your name in uppercase: " + toUpperCase() +
 ".
");
 document.write("Your name in lowercase: " + toLowerCase() +
 ".
");
 }
</script>
</h3>
</body></html>

Figure 9.33. Using the with keyword to reference an object.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: Create an array of five animals. Use a for loop to display the values stored there. Now add two more
animals to the end of the array and sort the array. (Use JavaScript's built-in array methods.) Display the
sorted array.

2: Create an associative array called colors. Each element of the array is a string representing the color, e.g.,
red or blue. Use the for/in loop to view each element of the array with a color of the font the same color as
the value of the array element being displayed.

3: Create a function that will return the current month by its full name. Use the Date object to get the current
month. Months are returned as 0 for January, 1 for February, 2 for March, etc. Output should resemble:

The current month is January.

Hint: You can create an array, starting at index 0, and assign a month value to it; e.g.,
month[0]="January" or use a switch statement, e.g., case 0: return "January".

4: An invoice is due and payable in 90 days. Write a function that will display that date.

5: How many days until your birthday? Write a function to calculate it.

6: To calculate the balance on a loan, the following formula is used:

PV = PMT * (1 – (1 + IR)–NP) / IR

PV is the present value of the loan; PMT is the regular monthly payment of the loan; IR is the loan's
interest rate; NP is the number of payments remaining. Write a JavaScript statement to represent this
formula.

7: Using the formula to calculate the loan balance from the last exercise, write a function that will calculate
the principle balance left on a loan where the monthly payments are $600, the annual interest rate is
5.5%, and there are 9 years remaining on the loan. Use the toFixed() Number method to format the
output.

8: Apply the ceil(), floor(), and round() methods to the number 125.5567 and display the results.

9: Create an array of 10 fortune cookies that will be randomly displayed each time the user reloads the page.

10: Create a string prototype that can be used to create an italic, Verdana font, point size 26.

11: Calculate the circumferance of a circle using the Math object.

12: Write a JavaScript program that uses the Array and Math objects. Create an array of 5 sayings, for
example: "A stitch in time saves 9", or "Too many cooks spoil the broth". Each time the Web page is
visited, print a random saying.

13: a. Use the Date object to print today's date in this format:

Today is Friday, June 16, 2003.

b. Calculate and display the number of days until your next birthday.

c. Create a prototype for the Date object that will print the months starting at 1 instead of 0.

14: a. Create a String object containing "Jose lived in San Jose for many years."

b. Find the index for the second Jose.

c. Get the substring ear from years.

d. Display the string in a blue, italic font, point size 12, all uppercase.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. The Browser Objects: Navigator,
Windows, and Frames

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.1 JavaScript and the Browser Object Model
JavaScript programs are associated with a browser window and the document displayed in the window. The window is a
browser object and the document is an HTML object. In the browser object model, sometimes called BOM, the window
is at the top of the tree, and below it are objects: window, navigator, frames[], document, history, location, and screen.
See Figure 10.1.

Figure 10.1. The hierarchy of the browser object model.

If you are writing a JavaScript program that needs to manipulate the window, then you would use the window object
and properties and methods associated with it. For example, the status property of the window object is used when you
want to display text in the status bar, and the window's alert method allows you to send a message to a dialog box.

The document object model refers to the HTML document and all the elements and attributes associated with it. Since
your Web page is so closely linked to HTML (or XML), JavaScript uses the document object model, also called DOM, to
access the HTML elements and attributes within a page. The document is the root of this model. Each HTML element is
assigned to an object: there are image objects, form objects, link objects, and so on (see Figure 10.2). (See Chapter
11, "The Document Objects," for more on document objects and the document object model.)

Figure 10.2. The hierarchy of the document object model.

By combining the browser and document object models, JavaScript allows you to manipulate all of the elements in a
page as objects, from the window down the hierarchy, as shown in Figure 10.3.

Figure 10.3. The browser and document object models combined (only a partial
diagram).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1.1 Working with the navigator Object

The navigator object contains properties and methods that describe the browser. Netscape Navigator and Internet
Explorer support the navigator object, but some browsers do not.

The navigator object can be used for platform-specific checking to determine the version of the browser being used,
whether Java is enabled, what plug-ins are available, and so on.

Table 10.1 lists the properties that describe the navigator object.

Table 10.1. Properties of the navigator object.
Property What It Describes

appCodeName Code name for the browser

appName Name of the browser

appVersion Version of the browser

mimeTypes An array of MIME types supported by the browser

platform The operating system where the browser resides

userAgent HTTP user-agent header sent from the browser to the server

Example 10.1

 <html>
 <head><title>Navigator Object</title></head>
 <body>
1 <script language="JavaScript">
 document.write("\
 The properties of the \"navigator\" object are:
");
2 for(var property in navigator){
3 document.write(property + "
");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The JavaScript program starts here.

2. The special for loop assigns, in turn, each property of the navigator object to the variable called property.

3. Each property of the navigator object is displayed in the browser window. See Figures 10.4 and 10.5.

Figure 10.4. In Netscape Navigator, the browser window displaying the
properties of the navigator object. Output from Example 10.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

properties of the navigator object. Output from Example 10.1.

Figure 10.5. In Internet Explorer, the browser window displaying the
properties of the navigator object. Output from Example 10.1.

What Is Your Browser's Name? Version Number?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What Is Your Browser's Name? Version Number?

Browsers support different features, properties, and methods; for example, Internet Explorer may display a page in a
slightly different form than Netscape Navigator, one version of Netscape might support a feature not supported by an
older version, a version of IE might not support a feature supported by Netscape, and so on. Then if you take into
consideration all the other browsers and their unique features, it can be tricky to please all of the browsers all of the
time or even some of the browsers all of the time. Browser detection allows you to check for specific browser names,
versions, whether cookies are enabled, what types of plug-ins are loaded, and so on. The navigator object contains a
number of properties that allow you to detect information about the user's browser so you can customize your Web
page in a way that is transparent to the user.

What Is a Browser Sniffer?

A browser sniffer is a program that makes browser detection easy. Many Web sites provide free browser sniffers that
determine the types of different browsers. If you want to know more about your browser, go to
http://www.perlscriptsjavascripts.com/js/browser_sniffer.html.

Example 10.2

 <html><head>
 <title>The Navigator Object</title></head>
 <body>
 <h2>About The Browser</h2>
 <script language="JavaScript">
1 var BrowserName= navigator.appName;
2 var BrowserVersion = navigator.appVersion;
3 var BrowserAgent= navigator.userAgent;
 var platform=navigator.platform;
 document.write("");
4 document.write("The Browser's name is: " +
 BrowserName + "
");
5 document.write("The Browser version is: " +
 BrowserVersion + "
");
6 document.write("The Browser's \"user agent\" is: " +
 BrowserAgent + "
");
7 document.write("The Browser's platform is: " +
 platform + "
");
 document.write("");
 </script>
 </body>
 </html>

EXPLANATION

1. The value of the navigator object's appName property is assigned to variable BrowserName. The value is the
name of the browser.

2. The value of the navigator object's appVersion property is assigned to variable BrowserVersion. The value is the
current version of the browser.

3. The value of the navigator object's userAgent property is assigned to variable BrowserAgent. The value is sent
from the browser to the server in the HTTP header as the user agent.

4. The common name of the browser, Netscape or Microsoft Internet Explorer, is displayed.

5. The version number of the browser is displayed.

6. User-agent strings, as shown in this navigator property, are one of many environmental variables used to
identify a program to HTTP or mail and news servers, for usage tracking and other purposes
(HTTP_USER_AGENT). User agents can be browsers, spiders, robots, crawlers ,and the like. For a database of
user agents, see http://www.icehousedesigns.com/useragents/. For a complete descripton of each part of the
user-agent string see http://www.mozilla.org/build/user-agent-strings.html.

7. The operating system is in the navigator's platform property. The Windows operating system is the platform on
which this browser is currently running. See Figures 10.6 and 10.7 for the complete output.

Figure 10.6. The output from Example 10.2 shown in Netscape Navigator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.6. The output from Example 10.2 shown in Netscape Navigator.

Figure 10.7. The output from Example 10.2 shown in Internet Explorer.

Detecting Plug-Ins

Plug-ins are special software programs that can be downloaded to add the ability to listen to audio, watch videos and
movie clips, display animation, and create special image viewing files. Some examples of plug-ins are Macromedia
Shockwave or Flash player, Adobe Acrobat Reader, and RealNetworks RealPlayer. Plug-ins can be platform dependent
and their MIME types may vary as well. If you are using Netscape, go to the Help menu and select About Plug-ins to get
more information about the plug-ins supported on your client.

The plugins[] array of the navigator object (starting with Navigator 3) contains a complete list of installed plug-ins and
can be numerically indexed to see all plug-ins installed for this browser, specifically Netscape. Each element of the
plugins[] array represents a plugin object. The properties of the plugin object are shown in Table 10.2. When you use
the HTML <embed> tag in a document, you are creating a plugin object. Each instance of the <embed> tag creates
another object. See "The embeds Object" on page 346 in Chapter 11, and the discussion on page 210 of the <object>
tag for embedding objects.

Table 10.2. Properties of the plugin object.
Property What It Describes

description A description of the plug-in

filename The disk filename of the plug-in

length The number of elements in the plugins[] array's mimeType object; e.g.,
navigator.plugins["Shockwave"].length

name The name of the plug-in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10.3

 <html><head><title>Plugin Detection</title></head>
 <script language="JavaScript">
1 function pluginDetector(type) {
2 if (navigator.plugins[type]){
 return true;
 }
 else{
 return false;
 }
 }
 <body bgcolor="magenta">

 <script language="JavaScript">
3 var plugin = prompt("What plugin do you want to check
 for?","");
4 if (pluginDetector(plugin)){ // Does the browser
 // support plug-ins?
 alert("You have the plugin "+ plugin);
 }
 else{
 alert("Don't have the plugin");
 }
 </script>
 </body></html>

EXPLANATION

1. A JavaScript function, called pluginDetector(), is defined. It takes one parameter, the name for a type of plug-
in.

2. If the plug-in is installed, the function will return true; otherwise false.

3. The user is asked to input the name of a plug-in he would like to check for. See Figure 10.8.

Figure 10.8. Checking for a Netscape plug-in called Shockwave Flash.

4. If the pluginDectector() function returns true, the alert message will report that the user's browser supports the
named plug-in. See Figure 10.9.

Figure 10.9. The plug-in is installed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10.4

 <html><head><title>Plugin Detection</title>
 </head><body bgcolor="lightgreen">

 <h2>Installed Plugins (Netscape)</h2>
 <script language="JavaScript">
1 for (var i = 0;i < navigator.plugins.length; i++){
2 document.write ("
"+navigator.plugins[i].name+"
");
3 if(navigator.plugins[i].description){
 document.write (""+
4 navigator.plugins[i].description+
 "<font size='+1'
");
 }
 }
 </script>
 </body></html>

EXPLANATION

1. The plugins[] array consists of a list of plug-ins that have been installed in this browser. The for loop is used to
go through the array, one by one, listing each plug-in. The length property specifies the number of elements in
the plugins[] array. If using IE for Windows, then you will need to use the HTML <object> tag and identify a
class ID. (See http://msdn.microsoft.com/library/default.asp?
url=/workshop/components/activex/activex_ovw_entry.asp for a tutorial on ActiveX.)

2. The name property specifies the actual name of the plug-in.

3. The description property gives more detail about what the plug-in does. If it is not null, the block is entered.

4. A description of the plug-in is displayed, as shown in Figure 10.10.

Figure 10.10. Netscape plug-ins.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What Is ActiveX?

Athough IE 4 defines the plugins[] array, it is always empty because Internet Explorer for Windows versions 5.5 SP2
and 6.0 no longer support Netscape-style plug-ins. Instead of plug-ins, Microsoft has something called ActiveX controls.

IE for Windows uses ActiveX controls instead of Netscape plug-ins or Java applets. ActiveX controls are used as a
means to embed objects or components into a Web page. Online spreadsheets, word processors, patches, and timers
are examples of such components. The plug-ins we describe here are ActiveX controls and can be downloaded from
vendor sites on the Internet. You can add ActiveX controls to your Web pages by using the standard HTML <object>
tag. The <object> tag takes a set of parameters that specify which data the control should use and define its
appearance and behavior.

Example 10.5

 <html><head>A Sample of ActiveX Control
 <title>ActiveX Example</title></head>
 <body>
1 <object id="realaudio1" width=0 height=0
2 classid="clsid:CFCDAA03-8BE4-11CF-B84B-0020AFBBCCFA">
3 <param name="_ExtentX" value="0">
 <param name="_ExtentY" value="0">
 <param name="AUTOSTART" value="0">
 <param name="NOLABELS" value="0">
4 </object>
 </body>

EXPLANATION

1. The ActiveX control is found in the <body> of the HTML document. It starts with the <object> tag to represent
the ActiveX control. The ID contains information about the type of control; in this example, the ID is
RealAudio1.

2. Then classid is assigned clsid, which gives the location of the control: in CFCDAA03-8BE4-11CF-B84B-
0020AFBBCCFA.

3. The parameters are used to control the appearance and functionality of the control.

4. The ActiveX control is closed with the </object> tag. (See http://msdn.microsoft.com/library/default.asp?
url=/workshop/components/activex/activex_ovw_entry.asp for a tutorial on ActiveX.)

What Are MIME Types?

MIME stands for Multi-purpose Internet mail extensions.[1] It is a standard format for sending mail messages across the
Internet. Now it is used to exchange all kinds of file types across the Internet, such as audio, video, and image files. All
browsers have a list of MIME types. JavaScript 1.1 implemented the mimeType object (see Table 10.3). These objects
are predefined JavaScript objects that allow you to access the mimeTypes[] array, a property of both the navigator
object and the plugin object. (Note: The mimeTypes[] array will not produce output in IE.)

[1] Available with NN3+ and IE5+ on the Mac, but not on Windows IE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[1] Available with NN3+ and IE5+ on the Mac, but not on Windows IE.

audio/x-pn-realaudio-plugin is an example of a MIME type for RealPlayer G2 LiveConnect-Enabled Plug-In.

Table 10.3. Properties of the mimeType object.
Property What It Describes

description A description of the MIME type

enabledPlugin A reference to the plugin object for this MIME type

suffixes A string of filename extensions allowed for this MIME type; e.g., jpeg, jpg, jpe, jfif, pjpeg, pjp object;
e.g., navigator.plugins["Shockwave"].length

type The name of the MIME type; e.g., image/jpeg

Example 10.6

 <html>
 <head><title>Mime Detection</title>
 </head><body bgcolor="lightgreen">

 <h2><u>Mime Types (Netscape)</u></h2>

 <script language="JavaScript">
 for (var i=0;i < navigator.mimeTypes.length; i++){
1 if(navigator.mimeTypes[i].enabledPlugin != null){
 document.write ("
"+
2 navigator.mimeTypes[i].type+"
");
 document.write("
 Enabled Plugin Name: "+
3 navigator.mimeTypes[i].enabledPlugin.name+"
");
 document.write("Description: "+ ""+
4 navigator.mimeTypes[i].description+
 "
Suffixes: "+ ""+
5 navigator.mimeTypes[i].suffixes+"
");
 }
 }
 </script>
 </body></html>

EXPLANATION

1. If the MIME type for a plug-in is not null, the information about it is printed.

2. This is the MIME type of the plug-in, such as application/x-mplayer2 or application/x-shockwave-flash.

3. This is the enabled plug-in referred to by this MIME type.

4. The MIME type is described; such as Acrobat(*.pdf) or Network Interface Plugin (*.nip).

5. The suffixes are the filename extensions that this MIME type supports, such as .rpm, .wav, .pdf, and so on.
Partial output is shown in Figure 10.11.

Figure 10.11. MIME types. Output from Example 10.6 (partial list).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1.2 Working with the window Object

The window object is where all the action happens in a browser. It's at the top of the JavaScript hierarchy, and is
automatically defined for each window that you open, as represented in Figure 10.12. When you start up your browser,
you may stay in the current window until you exit the browser, or you may have any number of windows open at the
same time. Within each window you browse the Internet, read e-mail, search for cheap airline tickets, and buy a new
book. Each new page you bring up is a document within the current window. The window is often partitioned into
independent display areas, called frames, which are windows within windows. (Frames are discussed in "Working with
Frames" on page 231.)

Figure 10.12. Any number of windows, each with assorted objects.

The window object comes with a number of properties and methods. Since it is the basis of all objects, the name of the
window object can be excluded when applying methods to it; for example, it is not necessary to specify
window.alert("Watch out!") or window.document.write("OK"). You simply use alert("Watch out!") or
document.write("OK").

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

document.write("OK").

When a user clicks on a button or rolls the mouse over a link, an event occurs which often effects the behavior of a
window. Such user-intiated events are discussed in Chapter 12, " Handling Events."

The window Object's Properties and Methods

The window object has a number of properties, which are also objects in their own right. Table 10.4 lists those
properties and how they describe the attributes of the window.

Table 10.4. Properties of the window object.
Property What It Describes

closed True if the window is closed

defaultStatus The default status message displayed in the status bar at the bottom of the window

document The document object that is currently displayed in the window

frames An array of frame objects within the window

history The history object containing the URLs last loaded into the window

length The number of frames within the window

location The URL of the current window

name The name of the window

offscreenBuffering Used to draw new window content and then copy it over existing content when complete;
Controls screen updates

opener The window that opened the current window

parent Indicates a window that contains another window (used with frames)

screen Displays information about the screen, e.g., height, width (in pixels)[a]

self Refers to the current window

status Specifies a temporary message in the status bar, resulting user interaction

top The topmost window containing a particular window (used with frames)

window Identifies the current window being referenced

[a] A new property of the window object, version 4 and above of Netscape and Internet Explorer.

The window object also has a number of methods that define its behavior, such as how to open, close, scroll, and clear
a window. They are listed in Table 10.5.

Table 10.5. Methods of the window object.
Method What It Does

alert(text) Creates a triangular dialog box with a message in it

blur() Removes focus from the window

clearInterval(interval) Clears a previously set interval timer

clearTimeOut(timer) Clears a previously set timeout

close() Closes a window

confirm() Creates a dialog box for user confirmation

focus() Gives the focus to a window

open(url, name, [options]) Opens a new window and returns a new window object

prompt(text, defaultInput) Creates a dialog prompt box to ask for user input

scroll(x, y) Scrolls to a pixel position in a window

setInterval(expression, milliseconds) After a specified interval, evaluates an expression (see Examples 10.10 and
10.12)

setInterval(function, milliseconds, After a specified interval, evaluates a function (see Examples 10.10 and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setInterval(function, milliseconds,
[arguments])

After a specified interval, evaluates a function (see Examples 10.10 and
10.12)

setTimeout(expression, milliseconds) After a timeout period has elapsed, evaluates an expression (see Examples
10.10, 10.11, and 10.13)

setTimeout(function, milliseconds,
[arguments])

After a timeout period has elapsed, evaluates a function (see Examples 10.10,
10.11, and 10.13)

Opening and Closing Windows

You can open a new browser window by going to the File menu and selecting New Window (Netscape and IE), or
you can open a new window from a JavaScript program with the window's open method.

FORMAT

var window_object = window.open("url", windowname, [options]);

Example:

var winObj= window.open("http://localhost/windows/winter.jpg",
 "winter","width=1150,height=350,resizable=yes,scrollbars=yes,
 location=yes");

Example 10.7

 <html>
 <head><title>Opening a New Window</title>
 <script language="JavaScript">
1 function newWindow(){
2 var winObj=open("winter.jpg", "winter");
 }
 </script>
 </head>
 <body bgColor="lightblue">
 <h2>Winter Scene from the Old Country</h2>
 <h3>Click here to see through my winter window

3 Winter Scene</h3>
 </body>
 </html>

EXPLANATION

1. The JavaScript function newWindow is defined.

2. The open method is called and returns a window object that is assigned to the variable, winObj. The first
agument to the open method is the URL of the new window; in this case the document is an image file called
winter.jpg located in the current directory. The name to be associated with this window is winter.

3. When the user clicks on the line Winter Scene, the JavaScript user-defined function, newWindow, is called (see
Figure 10.13). This function is responsible for opening the new window. Instead of a URL, the HTML <a href>
tag is assigned name of a JavaScript function. The javascript: label allows the function to be called when the
user clicks on the link. Without the javascript: label, the browser will try to find a URL address called
newWindow(), and fail.

Figure 10.13. A new window showing a winter scene is opened.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The window object's open() method has a number of options that allow you to further customize the new window. They
are listed in Table 10.6.

Table 10.6. The open() method and its options.
Option Values Gives the Window

directories() yes/no or 1/0 Directory buttons

height integer value Height in pixels

location() yes/no or 1/0 A location box

menubar() yes/no or 1/0 A menu bar

resizable yes/no or 1/0 The ability to be resized

scrollbars yes/no or 1/0 Scrollbars along the side

status() yes/no or 1/0 A status bar

toolbar() yes/no or 1/0 A toolbar

width integer value Width in pixels

Example 10.8

 <html>
 <head><title>Opening a New Window with Parameters
 and Closing It</title>
 <script language="JavaScript">
1 function newWindow(){
2 winObj=window.open("http://localhost/windows/winter.jpg",
 "winter","width=1150,height=350,resizable=yes,
 scrollbars=yes,location=yes");
3 winObj.focus();
4 //winObj.blur();
 }
5 function closeWindow(){
6 winObj.close();
 }
 </script>
 </head>
 <body bgColor="lightblue">
 <h2>Winter Scene from the Old Country</h2>
 <h3>Click the link to see my winter window

7 Winter Scene
 <p>When you are ready to close the window, click here

8 Close the window</h3>
 </body></html>

EXPLANATION

1. The function newWindow() is defined.

2. The open() method is passed the URL of the jpeg image file that will be displayed in the new window called
winter. The width and height of the new window are 1150 and 350 pixels, respectively. The window is
resizeable and has scrollbars. A location box appears in the top of the new window. The name of the window
object created by the open method is winObj. It is important that you use no spaces or linebreaks between the
commas in the list of parameters.

3. The focus() method brings the new window into focus: it appears in front of the parent window or any other

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The focus() method brings the new window into focus: it appears in front of the parent window or any other
windows.

4. The blur() method (commented out) would push the window behind any other windows that are open.

5. The user-defined function, closeWindow(), is defined.

6. The reference to the window object, winObj, will call the close() method to close the new window that was
opened.

7. The newWindow function is called when the user clicks on the link Winter Scene. The label, javascript:, prevents
the link from trying to activate a URL, and instead goes to the JavaScript program and calls the function
closeWindow(). See Figure 10.14.

Figure 10.14. Opening a new resizeable window with a scrollbar and size
dimensions in pixels. Output from Example 10.8.

8. When the user clicks on this link, the new window will be closed. The original or parent window will remain in
the browser. If the name of the new window object is not provided, the close() method will try to close the
parent window.

Moving and Resizing a Window

JavaScript provides several methods with which to resize and move a window object. The window can be moved or
resized absolutely, or relative to its current position or size. The numbers, given as arguments, are the pixel
coordinates. They are listed in Table 10.7.

Table 10.7. Move and resize methods.
Method Example What It Doe

moveBy moveBy(20,20) Moves the window relatively by 20 pixels

moveTo moveTo(0,0) Moves to the top, left-hand corner of the screen

resizeBy resizeBy(15,10) Resizes the window relatively by 15 x 10 pixels

resizeTo resizeTo(450,350) Resizes the window absolutely to 450 x 350 pixels

Example 10.9

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10.9

 <html>
 <head><title>Move a New Window</title>
 <script language="JavaScript">
 function directions(){
1 winObj=window.open("myplace.html","myplace",
 "width=200,height=300,resizable=no");
2 winObj.moveTo(0, 0); // Move window to top left-hand corner
3 winObj.focus();
4 parent.window.moveTo(215, 0); // Move the parent window
5 parent.window.resizeTo(400,400); // Resize browser window
 }
 function closeWindow(){
 winObj.close();
 }
 </script>
 </head>
 <body bgColor="lightblue">
 <h2>We've moved!</h2>
 For directions to our new place,

 click the button
6 <form >
 <input type="button"
 value="Simple Directions"
7 onClick="directions();">
 <p>When you are ready to close the window, click here

 Close the window</h3>
 </body>
 </html>

EXPLANATION

1. A new window object is created. If the resizeable option is turned off, the user will not be able to maximize the
window. A maximized window cannot be moved with the moveTo() method.

2. The moveTo() method determines the position where the window will be moved. The arguments 0,0 represent
the x,y coordinates (column,row) in pixels.

3. The new window will be put into focus, meaning it will be at the top of the window hierarchy, in front of all the
other windows.

4. The parent window is the original window we started in. It is moved to coordinates 215 x 0 pixels.

5. The parent (original) window is resized to 400 x 400 pixels.

6. This is the start of a simple HTML form. It creates a simple input device called a button on the screen.

7. This is the onClick event. When the user presses the button, the event is triggered and the handler, a function
called directions(), will be called. The new window is moved to the top left-hand corner and put into focus. See
Figure 10.15.

Figure 10.15. After moving, focusing, and resizing both the new window and
the parent window. Output from Example 10.9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Timed Events

The window object provides a method that acts like an alarm clock so that you can time when you want certain things
to happen in your program. The setTimeout() method evaluates an expression after a specified amount of time. The
setTimeout() method has two arguments: a quoted expression, and the time in milliseconds to delay execution of the
expression. (A minute contains 60,000 milliseconds, so 30 seconds would be 30,000 milliseconds.) Since JavaScript
sees time in terms of milliseconds, Table 10.8 gives you a little conversion table to help determine the time in
milliseconds.

Table 10.8. Basic units of time.
Unit of Time Milliseconds

1 second 1000

1 minute second * 60 (1000 * 60)

1 hour minute * 60 (1000 * 60 * 60)

1 day hour * 24 (1000 * 60 * 60 * 24)

1 week day * 7 (1000 * 60 * 60 * 24 * 7)

If a function contains a setTimeout() method that in short intervals keeps invoking the function, the result can give the
effect of continuous motion such a scrolling panorama or message, or even animation.[2] Often, timers are used to
scroll messages in the title or status bars repeatedly. You must decide what is tasteful on your Web page and what is
annoying, but that aside, we use setTimeout() and clearTimeout() methods for scheduling something to happen in the
future.

[2] For an example of a timer to create animation, see Chapter 15, "Dynamic HTML: Style Sheets, the DOM, and
JavaScript."

As of JavaScript 1.2, the setInterval() and clearInterval() methods were introduced for automatically rescheduling the
execution of code at defined intervals.

The setTimeout() method is a window method. It takes two parameters:

1. The statements to execute, enclosed in quotes

2. The time in milliseconds to wait before the statements are executed

FORMAT

var timeout = setTimeout("expression", delaytime);
var timeout= setInterval("expression", intervaltime);

Example:

var timeout = setTimeout("timer()", 15000); // In 15 seconds call the
 // function "timer()"
var timerId = setInterval("scroller()", 500); // In .05 seconds call
 // "scroller()"

To clear the timed event use the clearTimeout() or clearInterval() methods:

clearTimeout(timeout);
clearInterval(timerID);

Example 10.10

 <head><title>The setTimeout method</title>
 <script language="JavaScript">
1 function changeStatusBar(){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 function changeStatusBar(){
2 window.status = "See me now before I disappear!";
3 timeout =setTimeout("window.status=''", 6000);
 // alert(timeout); This value differs in Netscape and IE
 }
 </script>
 <body>
 <center>

 The timeout is set for 6 seconds.

4
 <p>
 Watch the status bar

5 <form>
 <input type="button"
 value="click here"
6 onClick="changeStatusBar();">
 </form>
 </center>
 </body>
 </html>

EXPLANATION

1. A JavaScript function, called changeStatusBar(), is defined. Its purpose is to print a message in the status bar
of the window for six seconds.

2. A string value is assigned to the status property of the window. The string "See me now before I disappear!"
will appear in the status bar at the bottom of the window.

3. The setTimeout() method is a window method. After six seconds, the status bar will be set to an empty string.

4. This is an image of a clock that displays on the screen, just for decoration.

5. An HTML form starts here. The user will see a button, with the text "click here," on the button.

6. When he presses the button, the onClick event is triggered, causing the event handler, changeStatusBar(), to
be invoked. See Figure 10.16.

Figure 10.16. Click the button and watch the status bar. Output from
Example 10.10.

Example 10.11

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10.11

 <html>
 <!-- This script is a modification of a free script found at
 the JavaScript source.
 Author: Asif Nasir (Asifnasir@yahoo.com)
 -->
 <head>
 <script language="JavaScript">
1 var today = new Date();
2 var future = new Date("December 25, 2003");
3 var diff = future.getTime() - today.getTime();
 // Number of milliseconds
4 var days =Math.floor(diff / (1000 * 60 * 60 * 24));
 // Convert to days
5 var str=
 "Only " + days + " shopping days left until Christmas!";
6 function scroller(){
7 str = str.substring(1, str.length) + str.substring(0,1);
8 document.title=str;
9 window.status=str;
10 setTimeout("scroller()", 300); // Set the timer
 }
 </script>
 </head>
 <body onLoad = "scroller()">

 Get Dizzy. Watch the title bar and the status bar!!

11 <image src="christmasscene.bmp">
 </body>
 </html>

EXPLANATION

1. The Date() constructor creates an instance of a new Date object, called today.

2. Another Date object is created with the date "December 25, 2003" assigned to the variable, called future. It
would probably be a good idea to make the year a variable, so that we are not always looking at 2003. Try the
getFullYear() method to get the current year in four digits.

3. The difference in millieseconds between the future time and the current time is assigned to the variable called
diff.

4. The milliseconds of time are converted into days, and the result is rounded down by the Math object's floor()
method.

5. The string variable, "Only (number of days goes here) shopping days left until Christmas!", is assigned to str.

6. A function called scroller() is defined.

7. This looks kind of tricky, but here's what's happening. The substr() method extracts everything between the
first character and the rest of the string substr(1, str.length), resulting in "nly 19 shopping days left until
Christmas!". Next, another subtsr(0,1) method extracts the first character from the string, the "O". The "O" is
added onto the end of the new string, resulting in "nly 19 shopping days left until Christmas!O" and after .03
seconds the scroll() function will be called again. Then the string will become "ly 19 shopping days left until
Christmas!On", and then "19 shopping days left until Christmas!Onl" and so on. Since the substr() method is
being called so rapidly, the effect is a scrolling banner.

8. The new string, str, created by the two substr() methods will appear in the document's title bar. Every time the
function is called (i.e., every .03 seconds), the new string will appear, giving a scrolling effect.

9. The new string will also appear in the status bar of the window.

10. The timer is set here. The first argument is the name of the function that will be called, and the second
argument is how often it will be called, in this case, once every 300 milliseconds or .03 seconds (300/1000).
The display is shown in Figure 10.17.

Figure 10.17. The string "Only 19 shopping days left until Christmas!" scrolls
continuously in the title bar and in the status bar. How annoying!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

continuously in the title bar and in the status bar. How annoying!

Example 10.12

 <html><head><title><Timeout></title>
 <script language="JavaScript">
1 var today = new Date();
2 var future = new Date("December 25, 2003");
3 var diff = future.getTime() - today.getTime();
 // Number of milliseconds
 var days =Math.floor(diff / (1000 * 60 * 60 * 24));
 // Convert to days
 var str=
 "Only " + days + " shopping days left until Christmas! ";
4 function startup(){
5 setInterval("scroller()",500);
 }
6 function scroller(){
 str = str.substring(1, str.length) + str.substring(0,1);
 document.title=str;
 window.status=str;
 }
 </script>
 </head>
7 <body onLoad = "startup()" bgColor=red>

 Get Dizzy. Watch the title bar and the status bar!!

 <image src="christmasscene.bmp">
 </body>
 </html>

EXPLANATION

1. The Date() constructor creates an instance of a new Date object, called today.

2. Another Date object is created with the date "December 25, 2003" assigned to the variable, called future. It
would probably be a good idea to make the year a variable, so that we are not always looking at 2003. Try the
getFullYear() method to get the current year in four digits.

3. The difference in milliseconds between the future time and the current time is assigned to the variable called
diff. The milliseconds of time are converted into days, and the result is rounded down by the Math object's
floor() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

floor() method.

4. A function called startup() is defined. It contains the timer method, setInterval().

5. The setInterval() method is executed and calls scroller() at intervals of 500 milliseconds, and will continue to do
so until the window is exited or the clearInterval() method is called. In Example 10.11 we used setTimeout()
instead of setInterval().

6. The scroller() function is being called every .05 seconds to send a string to the title bar and status bar of the
window. It is explained in detail in Example 10.11. See Figure 10.17 for output.

7. When the document has finished loading, the onLoad event is triggered. It will call the startup() function and
change the background color to red.

Scrolling

Scrolling allows you to move to a particular place in text or an image. If you open up another window, you may want to
scroll to a particular place in the window based on the user's selection from a menu in the main window, or you may
want to use scrolling to produce an animated effect. For example, if you have a large image that can't be seen in the
new window, you can set up scrolling so that you start at the left-hand side of the image and slowly move to the right-
hand side and back again, giving a panoramic effect. Scrolling may have different behavior on different browsers.[3]

[3] Example 10.13 works fine on the Netscape browser, but does not work on Internet Explorer because the image
is scaled to fit the window no matter what size it is. For this example to work in IE, go to Tools Internet
Options Advanced Multimedia, then uncheck the "Enable Automatic Image Resizing" option.

The scrollTo() method takes two arguments, the horizontal and vertical coordinates in pixels to represent the window
position, where 0,0 would scroll to the left-hand top corner of the window, and position 0,350 would scroll down 350
pixels from the starting position, and 350,0 would scroll to the right 350 pixels from the starting position, and so on.

FORMAT

window_object.scrollTo(horizontal_pixel_position,vertical_pixel_position);

Example:

parent.window.scrollTo(0,350);

Example 10.13

 <html>
 <head><title>Scrolling through Autumn</title>
 <script language="JavaScript">
1 winObj=window.open("fallscene.gif","mysscene",
 "width=350,height=292,resizable=no"); // Create the new window
 // with an image.
2 winObj.moveTo(0, 0);
3 winObj.focus();
4 var pixelpos=0;
5 var ImgWidth=1096;
6 var pixelstep = 2;
7 var timeout;
8 function startScroll(){

9 if (pixelpos <= (ImgWidth - 350)){
 // Check that scrolling is still within the
 // boundaries of the window.
10 pixelpos += pixelstep;
11 winObj.scrollTo(pixelpos,0); // Go to that position in
 // the new window
12 timeout=setTimeout("startScroll()",20);
 }
 }

13 function scrollAgain(){
 pixelpos = 0; // Reset the horizontal pixel position to 0
14 startScroll(); // Start scrolling again
 }
 function stopHere(){
15 clearTimeout(timeout); // Stop the clock to stop scrolling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15 clearTimeout(timeout); // Stop the clock to stop scrolling
 }
 function closeWindow(){
16 winObj.close();
 }
 </script>
 </head>
 <body bgColor="lightgreen">

<center>
 A Window into an Autumn Day
 <form>
17 <input type="button"
 value="Start scrolling"
 onClick="startScroll();">
 <input type="button"
 value="Stop scrolling"
 onClick="stopHere();">
 <input type="button"
 value="Start over"
 onClick="scrollAgain();">
 </form>

 <p>When you are ready to close the window, click here

18 Close the window</h3>
 </body>
 </html>

EXPLANATION

1. A new window object is created. It will contain a .gif image of a fall scene.

2. The new window object is moved up to the top left-hand corner of the browser (coodinates 0,0).

3. The focus() method puts the window on top of all other opened windows.

4. The initial pixel position that will be used for scrolling is set to 0.

5. The variable ImgWidth is assigned 1096, which will be used to represent the size of the image in pixels.

6. Each time the image moves to the right, it will be moved 2 pixels in intervals of .02 seconds.

7. A variable called timeout is declared. It will hold the value returned from the setTimeout() method.

8. A function called startScroll() is defined. It will start the image scrolling from the left of the screen to the right.
If the scrolling is stopped before it reaches the end, this function will start scrolling where it left off.

9. If the value of the variable pixelpos is less than the width of the window, keep going.

10. Add one to the pixel postition.

11. Scroll horizontally to the new pixel position in the window. Moves over one pixel to the right.

12. Set the timeout to 20 milliseconds: scroll the image to the right, 50 times per minute.

13. A function called scrollAgain() is defined.

14. Scrolling starts again.

15. Stops the scrolling by clearing or turning off the timer.

16. This function closes the window.

17. Three buttons will be displayed. A function to start, stop, or restart the scrolling will be called depending on
which button the user presses.

18. If the user clicks on this link, the window with the image will be closed. See Figures 10.18 and 10.19.

Figure 10.18. The new window on the left has a scene that will scroll by
slowly; it can be stopped, and then restarted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

slowly; it can be stopped, and then restarted.

Figure 10.19. This is the scene that will be scrolling by in the small window
above.

10.1.3 Working with Frames

When you look out the window from the room where you might be at the moment, it may be one big pane of glass like
a picture window, or the window may be divided up into panes of squares or rectangles, as shown in Figure 10.20.

Figure 10.20. Windows can have many frames.

The browser is a virtual window that can be divided up into frames—independent windows, like panes, within the main
window, where each frame is used to display different information. Frames were invented by Netscape.[4] Web
designers have debated the merit of using frames because they are often misused and have some distinct
disadvantages discussed later in this chapter.

[4] Netscape versions below 2.0 do not support frames.

The file that defines the layout of the frames is called the parent window, and each of the frames it describes is called a
child (see Figure 10.21). Although you can't see the parent window, it will show up in the browser's source for the page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.21. The parent window is divided into child frames.

To build frames in a Web page, you use the HTML <frameset> tags instead of the <body> tags (see Table 10.9). At
least three files are needed to create frames. The first file defines the layout of the frames (or subwindows) by defining
the size and position of the frames. The rows and cols attributes of each frameset specify how much room the frame
will need within the window. These values use exact pixels as a default, although you can also use percentages to
represent a section of the window, or an asterisk * to allocate leftover space. (These size values will be shown in
Examples 10.14 and 10.15.)

Creating HTML Frames

In Example 10.14 the window is divided into two frames: a left-hand frame that takes up 25 percent (in columns) of the
window and a right-hand frame that takes up 75 percent (in columns) of the rest of the window. Since files are required
to accomplish this, the main file defines the frameset, the second file contains the HTML code for the left-hand frame,
and the third file contains the HTML code for the right-hand frame.

Table 10.9. HTML frame tags.
Tag Attribute What It Does

<FRAMESET> Defines a collection of frames or other framesets

 BORDER Sets frame border thickness (in pixels) between all the frames

 FRAMEBORDER Draws 3D separators between frames in a frameset. A value of 1 or yes turns frame
borders on; a value of 0 or no turns them off

 ROWS Defines the number and size of rows in a frameset

 COLS Defines the number and size of columns in a frameset

<FRAME> Defines attributes of specific frames

 NAME Used by JavaScript to reference the frame by name

 SRC The URL or location of the frame

Example 10.14

 <html>
 <head><title>Frame Me!</title></head>
 <!-- Creating the framesets for two files -->
 <!-- This file is named: framesets.html -->
1 <frameset cols="25%,75%">
2 <frame src="leftframe.html" >
3 <frame src="rightframe.html" >
4 </frameset>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 </frameset>
 </html>
--
 <html>
 <head><title>Left Frame</title></head>
 <!--This file is named: leftframe.html -->
5 <body bgColor="yellow">
 <h2>
6 Just to show you that this is the left frame
 </h2>
 </body>
 </html>
--
 <html>
 <head><title>Right Frame</title></head>
7 <!--This file is named: rightframe.html -->
8 <body bgColor="lightgreen">
 <h2>
 Just to show you that this is the right frame
 </h2>
 </body>
 </html>

EXPLANATION

1. This is the parent file that defines how the window will be divided into frames. The first frame will take up 25
percent of the page in columns and the second frame will take up the rest of the page, 75 percent.

2. The frame src attribute is assigned the URL of the first HTML file, leftframe.html, that will be displayed in the
window.

3. The frame src attribute is assigned the URL of the second HTML, rightframe.html, that will be displayed in the
window.

4. The frameset definition ends with the </frameset> tag.

5. The background color of the left-hand frame will be yellow.

6. This text appears in the left frame.

7. This section represents the right-hand frame.

8. The background color of this frame is light green. See Figure 10.22.

Figure 10.22. Two vertically positioned frames. Output from Example 10.14.

The next example shows a window partitioned into three horizontal frames.

Example 10.15

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10.15

 <html>
 <head><title>Frame Me!</title></head>
 <!-- This file simply defines the frames; it points to other
 HTML files (not shown) that comprise the HTML
 content -->
1 <frameset rows="130,*,*" frameborder="yes"
 border="1" framespacing="0">
2 <frame src="topframe.html" >
3 <frame src="main.html" scrolling="no">
 <!--main.html is the middle frame -->
 <frame src="bottomframe.html" >
4 </frameset>
 </html>

EXPLANATION

1. This time the frameset will be divided up into three sections by rows. The first frame will be a horizontal frame
consisting of 130 pixels in a row. Based on the amount of space taken up by the first frame, the remaining
frames will be allocated whatever space is left in the window. There are three frames that will be placed
horizontally on the page.

2. This is the URL to the first frame, topframe.html, which will be at the top of the window.

3. This is the URL to the second frame, main.html, which will be in the middle of the window.

4. This is the URL to the third frame, bottomframe.html, which will be at the bottom of the window.

Figure 10.23. Three horizontal frames created in Example 10.15.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The frame Object

HTML frames in JavaScript are represented as an array of frame objects. The frames[] array is a property of the
window object and is referenced with the window's parent property. Each element of the array represents a frame in
the order in which it appears in the document; thus, window.parent.frames[0] would reference the first frame defined
in a frameset (see Figure 10.24). If you name the frame, then you can reference the frame element by its name. If the
frame is named leftframe, it can be referenced as window.parent.leftframe.

Figure 10.24. The JavaScript hierarchy.

Since frames are just little windows, they share many of the same properties and methods of the window object. See
Table 10.10 for a list of properties and Table 10.11 for a list of methods.

Table 10.10. Properties of the frame object.
Property What It Describes

document The document currently loaded in the frame

frames An array of frames

length The number of elements in the frames array; i.e., the number of frames

name The name of the frame assigned to the HTML name attribute

parent The main window from which the child frames are defined

self The current frame

top The window that started the script

window The current window or frame

Table 10.11. Methods of the frame object.
Method What It Does

blur() Removes focus from the frame

clearInterval() Clears a timed interval

clearTimeout() Clears a timeout

focus() Puts focus into the frame

print() Invokes a print dialog box

setInterval() Sets a timed interval

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setTimeout() Sets a timeout

unwatch() Unsets the watchpoint

watch() Sets a watchpoint on a frame property; if a property changes, calls a function

Creating Menus and Navigation Bars

Since frames can be used to divide a page, it is common to use one of the frames as a menu of items and the other as
the main page where a page is loaded depending on the user's selection. If one frame contains a selection of links, then
it can serve as a navigation bar. When the user clicks on a link, the page at that URL will be loaded into the main frame.

In Example 10.16 the frames are defined for two frames. Example 10.17 displays the content of the two frame files.
The left-hand frame will represent a menu of links. The background color in the right-hand frame will change when the
user clicks on a link in the left-hand frame.

Example 10.16

 <html>
 <head><title>Frame Me!</title></head>
 <!--Creating the framesets for two frames -->
 <!--This HTML file is named: framedef.html -->

1 <frameset cols="25%,75%">
2 <frame src="leftmenu.html" name=lframe>
3 <frame src="rightcolor.html" name=rframe>
4 </frameset>
 </html>

EXPLANATION

1. The HTML <frameset> tag replaces the <body> tag when working with frames. The size is determined by the
ROWS and COLS attributes of the <frameset> tag. In this example, the first frame will occupy 25 percent of the
window, and the second frame will occupy 75 percent of the window (in columns). The default is to set ROWS
and COLS in pixels. (ROWS and COLS are not case sensitive.)

2. The first frame, named lframe occupies 25 percent of the left-hand side of the window. Its content is in an src
file called leftmenu.html.

3. This frame, called rframe, occupies 75 percent of the right-hand side of the window. Its content is in an src file
called rightcolor.html.

4. The HTML </frameset> tag ends the definition of the frames.

Example 10.17

 <html>
 <head><title>Left Frame</title>
 <!--This HTML file is named: leftmenu.html -->
1 <script language="JavaScript">
2 function setBgColor(color){
3 parent.frames[1].document.bgColor=color;
 // Or use the frame's name: parent.rframe.document.bgColor
 }
 </script>
 </head>
 <body bgColor="white">
 <h3>
 Pick a color:

4 red

 yellow

 green

 blue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 blue
 </h3>
 </body>
 </html>
 --
 <html>
 <head><title>Right Frame</title></head>
 <body>
 <h2>
 This is the frame where colors are changing.

 In your javascript function, this is frame[1].
 </h2>
 </body>
 </html>

EXPLANATION

1. A JavaScript program starts here.

2. A function called setBgColor() is defined. It takes one parameter, a reference to a color being passed by the
user.

3. Going down the document tree, start with the parent window, to the second frame, frames[1] (remember array
subscripts start at 0), to the frame's document, and then the document's property, bgColor. Assign a color..
This assignment will cause the background color in the right-hand frame to change.

4. When the user clicks on any of the following links, the JavaScript function setBgColor() will be called, with the
color sent as an argument to the function. The javascript: pseudo URL prevents the link from going to a real
URL. The display is shown in Figure 10.25.

Figure 10.25. When the user clicks on a link in the left-hand frame, the
background color in the right-hand frame changes. Ouput from Example

10.17.

Using the top Property to Keep the Main Window out of a Frame

If you create a Web page, it should load into the user's main browser window, not in one of the frames. You can use the
location method to force your page to load in the main window by putting the JavaScript code shown in Example 10.18
into the <head> portion of the page. Every window and frame has a top property, a reference to the topmost window
object currently loaded in the browser. (See "The location Object" on page 244.)

Example 10.18

 <html><head><title>Forcing the Frame</title>
1 <script language = "JavaScript">
2 if (window != top) { // True if window is not the top
 // window in the hierarchy
3 top.location.href = location.href;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3 top.location.href = location.href;
 // Put this window on top
 }
 </script>
4 <body bgcolor="lightblue">
 <h1>
 The important page that we're talking about
 <h2>
 </body>
 </html>

EXPLANATION

1. The script begins here.

2. If the current window is not at the top of the window hierarchy in the browser, the statement in the block is
evaluated. The top property references the highest object in the window hierarchy.

3. If the current window isn't at the top of the window hierarchy (if it's not the main window), this assignment
forces the page, location.href, into the main window, top.location.href.

4. This is the body of the fictitious page that will be loaded into the main window of whoever views it.

Collapsing Toolbars and Menu Bars

You don't always necessarily want to look at the toolbar or menu bar. It can be in the way of what you're viewing in the
main page. Example 10.19 collapses the frame in order to bring the main frame to the foreground so that it will be
viewed in the entire window.

Example 10.19

 <html>
 <head>
 <title>Untitled Document</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">
 </head>
 <frameset cols="117,450" rows="*">
 <frame src="toctoolbar.html" name="menu">
 <frame src="tocmain.html" name="main">
 </frameset>
 <noframes><body bgcolor="#FFFFFF">
 </body></noframes>
 </html>
--
 (The Startup Main Page)
 <html>
 <head>
 <title>Untitled Document</title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1">
 </head>
 <body bgcolor=yellow>
 <h1>This is the main page</h1>
 <body bgcolor="#FFFFFF">
 </body>
 </html>
--

 (The Menu Bar Page)
 <html>
 <head>
 <title>Menu Bar</title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1">
 <script language="javascript">
 var myUrl;
1 function openSite(url){
2 parent.main.location = url;
3 myUrl=url;
 }
4 function collapse(){
 if (! myUrl){
5 parent.location = "tocmain.html";}
 else{
6 parent.location=myUrl; // Force this page into the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6 parent.location=myUrl; // Force this page into the
 // parent location
 }
 }
 </script>
 </head>
 <body bgcolor="#FFFFFF">
7 <p>Home<p>
 <p>
 Page 1</p>
 <p>
 Page 2</p>
 <p>
 Page 3</p>
8 <p>Hide Menu<p>
 </body>
 </html>

EXPLANATION

1. A function called openSite is defined. It takes one parameter, the URL of the Web site.

2. The parent is the main window where the frames are defined. main.location is the frame on the right-hand side
of the toolbar. It was named main when the framesets were defined. The main frame is assigned the URL of
one of the Web sites after the user clicks on a link in the menu bar.

3. The global variable url gets the URL of the current Web site shown in the right frame.

4. The function called collapse() is defined. Its function is to make the right frame fit into the whole window, hiding
the menu bar.

5. If the user hasn't selected any page prior to selecting Hide Menu, the main frame will take up the whole
window. The location property of the window object refers to the location of the parent window, the main
window from where the frames were created.

6. The location property of the parent window is assigned the URL of the window currently being viewed in the
right-hand frame. This forces the right frame to take up the entire window. The menu bar is no longer
displayed.

7. This list of links makes up the menu bar and is in the left-hand frame.

8. When the user clicks this link, the collapse() function is called, and the menu disappears causing the right frame
to take up the entire window.

Figure 10.26. Two frames, a menu, and the main frame. The user clicked on Page
1.

Figure 10.27. The user clicked Hide Menu. The larger frame has expanded to fill
the entire page.Backpaging will take you back to the menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the entire page.Backpaging will take you back to the menu.

10.1.4 The location Object

The location object is a property of the window object and is used to access the URL of the document currently loaded
in the window. In previous examples, we have seen location as a window property, but because it is really also an
object itself, it also has properties used to describe the different parts of a URL. (See Table 10.12.)

If you are writing a page containing frames, the entire page may not be picked up by a search engine, such as Yahoo!
or Google. Anyone linking to your page via the search engine will only get part of the page, not the complete frameset.
Also, when a page is divided into frames, the visitor cannot bookmark the page if the browser is not in the top
frameset. The location object can be used to make sure the topmost window is the one currently loaded in the browser.
(See "Using the top Property to Keep the Main Window out of a Frame" on page 240.)

FORMAT

javascript: window.location.href="URL";
javascript: window.location.replace("URL");

Example:

javascript: window.location.href="http://www.legos.com/";
javascript: window.location.replace("http://www.legos.com/");

Table 10.12. Properties of the location object.
Property What It Describes in the URL

hash If it exists, the anchor part

host The hostname:port

hostname The hostname

href The entire URL

pathname The pathname

port The port number

protocol The protocol and colon

search The query string

Table 10.13. Methods of the location object.
Method What It Does

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Method What It Does

reload() Reloads the current URL

replace() Replaces the current page with a new one

unwatch() Removes a watch point on the location property

watch() Sets a watch point on the location property; i.e., calls a function if the property changes

Two methods of interest are replace() and reload(). The replace() method is used to change the location of the current
page; that is, to point to another page. It is similar to the href property, but where href puts the new page at the top of
the history list, the replace() method removes the current page from the history list and replaces it with the new page.
The reload() method behaves like the browser's Reload button. It causes the window's current document to be
reloaded.

Loading a New Page into a Frame with the location Object

In Example 10.20, the location object changes the location of the current page. By selecting a Web site, the user is
taken to that site, which is displayed in the bottom frame of a frameset.

Example 10.20

 (The file defining the framesets)
 <html><title>Changing Location</title>
 <html>
 <head><title>Frames</title></head>
 <frameset rows="130,*" frameborder="yes" border="8"
 framespacing="0">
 <frame src="location.html" scrolling="no">
 <frame src="emptyframe.html" >
 </frameset>
 </html>

 (The empty file which will be the bottom frame)
 <html>
 <head><title>Empty Frame</title>
 </head>
 <body>
 </body>
 </html>

 <html><head><title>Changing Location</title>
 </head>
 <script language="JavaScript">
1 function loadPage(urlAddress){
2 parent.frames[1].location.href = urlAddress;
 }
 </script>
 </head>
 <body bgcolor="F8C473">

 Pick your bookstore and we'll take you there!
3 <form>
 <input type="button"
 value="Amazon"
4 onClick="loadPage('../amazon.com/default.htm');">
 <input type="button"
 value="Borders"
 onClick="loadPage('../borders.com/default.htm');">
 <input type="button"
 value="Prentice Hall"
 onClick="loadPage('../prenhall.com/default.htm');">
 </form>
 </body>

EXPLANATION

1. When the function loadPage() is called, it gets the URL address of the bookstore as its only parameter and
assigns the address to the location object.

2. There are two frames in this document. The first frame contains the buttons with the names of bookstores to
pick from—Amazon, Borders, and Prentice Hall. The second frame is empty until the user makes a selection.
This statement assigns the URL of the chosen bookstore to the location object by traversing the JavaScript

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This statement assigns the URL of the chosen bookstore to the location object by traversing the JavaScript
hierarchy, starting at the parent window, to the bottom frame, frames[1] and to the href property of the
location object. By doing this, the browser will find the home page of the bookstore, and display it in the bottom
frame.

3. The HTML form starts here. It is a form that displays three graphical buttons. When the user presses on one of
the buttons, a function called loadPage() will be invoked and the bottom frame will display its Web page.

4. The JavaScript onClick event is triggered when the user clicks on the button. The function called loadPage() will
be called with the URL of the bookstore. The display is shown in Figure 10.28.

Figure 10.28. Two frames: The top frame puts the location of the bookstore
in the bottom frame.

10.1.5 The history Object

The history object is a property of the window object. It keeps track of the pages (in a stack) that the user has visited.
The history object is most commonly used in JavaScript to move back or forward on a page, similar to the back button
and forward button supported by your browser. The history object can reference only those pages that have been
visited; that is, those pages on its stack. It has a length property and three methods called go(), back() and
forward().[5]

[5] Not predictable on Netscape 6.

FORMAT

Examples:

history.go(-3) // Go back three pages
history.go(2) // Go forward three pages
back() // Same as history.go(-1)
forward() // Same as history.go(1)

Example 10.21

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10.21

 <html><head>
 <title>The History Object</title>
 </head>
 <script language="JavaScript">
 function loadPage(urlAddress){
1 parent.frames[1].location.href = urlAddress;
 }
 </script>
 </head>
 <body>

 <form name="form1">
 <input type="button"
 value="Amazon"
 onClick="loadPage('../amazon.com/default.htm');">
 <input type="button"
 value="Borders"
 onClick="loadPage('../borders.com/default.htm');">
 <input type="button"
 value="Barnes&Noble"
 onClick="loadPage('../barnesandnoble.com/default.htm');">
 </form>
 <form name="form2">
2 <input type="button"
 value="go back"
3 onClick="javascript: history.go(-1);">
4 <input type="button"
 value="go forward"
5 onClick="javascript: history.go(1);">
 </form>
 </body>
 </html>

EXPLANATION

1. When the user presses the back or forward buttons, he will be moved back and forth to pages opened in the
bottom frame of the page. This line loads the page. The other two files that set up the frames are shown in
Example 10.20.

2. This input button will be used if the user wants to go back to the previous page.

3. The history.go(-1) method will send you back to the previous page you have visited. If nothing happens, you
haven't been anywhere yet.

4. This input button will be used if the user wants to move to the next page.

5. If you move forward and nothing happens, it's because you don't have anything on the history stack yet; you
haven't gone anywhere. But once you load a new page, then go back, you will be able to move foward. The
history.go(1) method will then move you forward one page. Output is shown in Figures 10.29 and 10.30.

Figure 10.29. The user can go back to the previous page or move forward to
the next page in the history stack. Output from Example 10.21.

Figure 10.30. The user presses the "go back" button to go to the previous
page he visited. Output from Example 10.21.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

page he visited. Output from Example 10.21.

10.1.6 The screen Object

The screen object is a property of the window object and is automatically created when a user loads a Web page. It
gives you access to the various properties of the user's screen such as its height, width, color depth, and so on. These
are listed in Table 10.14. This can be helpful when designing pages that will require specific dimensions. For example, if
the user's available screen width is less that 650 pixels (640x480), you may want to load a smaller image, whereas if it
is over 1000 pixels (1024x768), a larger image can be loaded. There are no event handlers for this object.

Table 10.14. Properties of the screen object.
Property What It Describes

availHeight The pixel height of the screen, minus toolbars, etc.

availLeft The x coordinate of the first pixel, minus toolbars, etc.

availTop The y coordinate of the first pixel, minus toolbars, etc.

availWidth The pixel width of the screen, minus toolbars, etc.

colorDepth The maximum amount of colors that the screen can display

height The pixel height of the screen

pixelDepth The number of bits per pixel of the screen

width The pixel width of the screen

Example 10.22

 <html><head><title>Screen Properties</title>
 </head>
 <body bgcolor="orange" >
 <script language="JavaScript">
 document.write("The Screen
");
 document.write("<table border=2>");
 document.write("<tr><th>Screen Property</th><th>Value</tr>");
1 document.write("<tr><td>Height</th><th>",screen.height,"
 </td></tr>");
 document.write("<tr><td>Available Height</th><th>",
2 screen.availHeight,"</td></tr>");
 document.write("<tr><td>Width</th><th>",screen.width,"
 </td></tr>");
 document.write("<tr><td>Available Width</th><th>",
3 screen.availWidth,"</td></tr>");
 document.write("<tr><td>Color Depth</th><th>",
4 screen.colorDepth,"</td></tr>");
 document.write("</table>");
 </script>
 </body>
 </html>

EXPLANATION

1. The height property of the screen object contains the height of the screen in pixels.

2. The available height is the height minus any toolbars or other objects attached to the window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The width property of the screen object contains the width of the screen in pixels.

4. The colorDepth refers to the maximum number of colors that the screen can display in bit format. The display is
shown in Figure 10.31.

Figure 10.31. Tables showing properties of the screen object in Internet
Explorer (left) and Netscape (right).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: In a new window, print all the properties of the navigator object.

2: Write a script that will display the name of your browser, the version, and the operating system you are
using. (Use the parseInt() function to print just the version number.)

3: Does your browser support Shockwave Flash? Write a JavaScript program to show whether the plug-in is
installed.

4: Create two links, one to open a new window and one to close it. The new window will display this message
in a big font: The eye is the window to your soul. The new window will be positioned in the left-hand corner
of your screen, will be resizable, have a scrollbar, and it will have the focus.

5: Create an HTML document that contains four frames (i.e., four panes in a window, as in Figure 10.21). Each
frame will display a different image. In another window, use JavaScript to display the number of frames in
the original window and the name of the original window.

6: Create a program that produces a page containing frames. The first frame will span across the top of the
page and contain a centered heading entitled, A Virtual Zoo. A second frame will be used as a navigation
bar at the left-hand side of the screen. It will contain links to five animals. When the user presses a link, an
image of that animal will appear in a frame of its own to the right side of the navigation bar.

7: In an alert dialog box, display the pixel height, width, and color depth of your screen. Each value will be
separated by a newline.

8: Create a program that will create a digital clock in the status bar. Use the setInterval() method to update
the status bar once every minute with the current time.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11. The Document Objects: Forms, Images
and Links

Section 11.1. The Document Object Model

Section 11.2. Introduction to Forms

Section 11.3. Introduction to Images

Section 11.4. Introduction to Links

EXERCISES

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.1 The Document Object Model
In Chapter 10 we addressed the browser object model. The properties and methods of different browsers vary since
there is no standard for defining what a browser does. The document object model (DOM), on the other hand, deals
specifically with a document, and there are now standards that dictate how the objects in an HTML (or XML) page
should be represented. The DOM is a hierarchical tree-like structure,consisting of a collection of objects, all relating to
the document. According to the World Wide Web Consortium (WC3), a DOM is a platform- and language-independent
object model that "allows programs and scripts to dynamically access and update the content, structure, and style of
documents."[1] It mimics the structure of the document it models. When working with JavaScript, the DOM mimics the
HTML document. Each element of an HTML document, such as an image, form, link, or button, can be represented as a
JavaScript object, and each object contains properties and methods to describe and manipulate these objects. (See
http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html for more on HTML-specific DOMs.)

[1] World Wide Web Consortium (W3C), http://www.w3.org/DOM/.

The W3C abstract states: "The Document Object Model provides a standard set of objects for representing HTML and
XML documents, a standard model of how these objects can be combined, and a standard interface for accessing and
manipulating them. Vendors can support the DOM as an interface to their proprietary data structures and APIs, and
content authors can write to the standard DOM interfaces rather than product-specific APIs, thus increasing
interoperability on the Web."[2]

[2] World Wide Web Consortium (W3C), http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/.

The W3C defines DOM Level 1 to create an industry standard for all browsers, fully supported by Netscape 6 and
Internet Explorer 5 and 6. The standard consists of two parts: the first defines how to navigate and manipulate the
HTML and XML structure for the core objects, properties, and methods; the second defines a set of objects strictly
related to HTML. In addition to DOM Level 1, there are two other levels, still in progress. What all that boils down to is
that the DOM specifies a standard set of objects that will work with HTML and XML documents no matter what browser,
no matter what scripting language.

Example 11.1 shows an HTML document and how it is represented structurally.

Example 11.1

(The HTML Document)
<html>
 <head>
 <title>My Page</title>
 </head>
 <body>
 <h1>Level 1</h1>
 <h2>Level 2</h2>
 <h3>Level 3</h3>
 </body>
</html>

(The DOM as a Tree)

The DOM hierarchy—a tree structure, similar to a family tree—consists of parents and children called nodes (no, not
nerds, but nodes). Each leaf in the tree is called a node. The topmost node, the <html> tag, is the root node. The
<head> and <body> tags are child nodes of the <html> parent node. If the nodes are at the same level, they are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<head> and <body> tags are child nodes of the <html> parent node. If the nodes are at the same level, they are
called siblings, like a real family. Nodes may have a parent and a number of child nodes. The DOM provides a set of
objects, with properties and methods, that allow access to this tree structure within a JavaScript program. With the
advent of dynamic HTML, the DOM has control over every element of a Web page, and specifies base objects such as
Node, NodeList, and NamedNodeMap, and high-level objects to represent all elements of the document. We'll see more
on dynamic HTML and the DOM in Chapter 15, "Dynamic HTML: Style Sheets, the DOM, and JavaScript." For now we
will use the DOM to navigate through the document object and its children, and see how to manipulate these objects
with their many properties and methods.

11.1.1 The JavaScript Hierarchy

Since the JavaScript document objects are arranged in a DOM hierarchy, each node in the tree can be referenced using
the dot syntax. In JavaScript, the window object is at the top of the tree, the ultimate parent because everything takes
place within the window. The window is called the top, self, or parent object. It has child nodes. They are listed below:

1. The navigator object

2. The frames object

3. The history object

4. The location object

5. The document object

6. The screen object

7. The event object

We discussed the window as part of the browser object model in the last chapter. The DOM is concerned only with those
nodes that make up the document object. Documents contain text, images, forms, links, etc. The most commonly used
object is the document object. Subordinate to the document object are another set of objects, its children:

1. The anchors object

2. The images object

3. The forms object

4. The links object

5. The applets object

6. The embeds object

Figure 11.1. The document model.

Revisiting the Dot Syntax

To refer to an object, you start with the window object (parent), followed by a dot, then the next object in the
hierarchy, then another dot, and so on until you reach the desired object; for example, window.location or
window.document.forms[0]. When referencing a child of the window object it is not necessary to include the window,
because JavaScript knows that the window is at the top of the tree. Instead of saying window.document.bgColor, you
can simply say document.bgColor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can simply say document.bgColor.

11.1.2 The Document Itself

The document object is a property of the window object, and if the window is partitioned into frames (subwindows),
each frame is a property of the window object.

Every window (or frame) contains a document object that corresponds to the HTML document shown in the window.
This object corresponds mainly to the body of the document—that is, what is inserted between the <body></body>
tags—although it can also be found in a limited way within the <head></head> tags. JavaScript programs manipulate
this object to bring life to otherwise dead, static pages. Since the document object is below the window object, the
document object can be represented as a property of the window by saying window.document. The forms object is an
array of objects below the document object, so the forms object is a property of the document object and is
represented as window.document.forms[].

As stated before, because the window object is at the top of the hierarchy, any objects just below it, such as the
document or location objects, are window properties and the word window is not required; thus, specifying
window.document.bgColor is the same as document.bgColor.

The syntax for describing the background color (bgcolor) property for a document object is shown in the following
example:

document.bgColor = "yellow";

Document Properties

The document object is defined when the HTML <body> tag is encountered on the page and stays in existence until the
page is unloaded, and the <body> tag has a number of attributes that define the appearance of the page. The
document object has properties that correspond to the HTML <body> tag attributes, as shown in Tables 11.1 and 11.2.
The properties of the document object are shown in the output of Example 11.2. (See Chapter 12, "Handling Events,"
for events that are associated with the <body> tag.)

Table 11.1. HTML <body> tag attributes.
Attribute What It Specifies

alink Color of an active link; i.e., while the mouse is on the link

background URL of a background image

bgcolor Background color of the page

fgcolor Text or foreground color

link Color of an unvisited link

vlink Color of a visited link

Table 11.2. Some document object properties.
Property What It Describes

anchors[] An array of anchors objects

applets[] An array of applets objects, relating to Java applets

bgColor, fgColor Determines the background color and text color, related to the HTML <body> tag

cookie Allows reading and writing HTTP cookies (see Chapter 14, "Cookies")

domain A security property for Web servers in the same domain

forms[] An array of forms objects, related to the HTML <form> tag

images[] An array of images objects, related to the HTML tag

lastModified A string with the date when the page was last modified

linkColor, alinkColor,
vlinkColor

Determines the color of unvisited links, active links, and visited links, respectively; related to
link attributes of the HTML <body> tag

links[] An array of links objects, related to the HTML <a href> tags

location The URL of the document (deprecated)

referrer URL of the document that linked the browser to this document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

title The title of the current document, related to the text between the <title></title> tags found
in the head of the document

URL A string containing the URL of the document

Example 11.2

 <html><head><title>Looping through Object Properties</title></head>
 <body>
 <script language="JavaScript">
1 var props=new Array();
2 for (var property in window.document){
3 props.push(property);
 }
4 for(i=0;i<props.length; i++){
5 document.write(props[i] + " ");
 if(i>0 && i%3 == 0){
 document.write("
");
 }
 }
 </script>
 </body></html>

EXPLANATION

1. A new array object called props is created with the Array() constructor.

2. The for/in loop allows you to enumerate (list one by one) the properties of an object, in this case the document
object. The body of the for/in loop is executed once for each property of the document object. If a property has
been flagged as read-only, it will not be listed.

3. Each time through the loop, a new property of the document object is pushed onto the props array.

4. This for loop iterates through the props array to list the properties that were assigned to it.

5. Each property of the document object is displayed in groups of three. The output differs somewhat on different
browsers.

Figure 11.2. Using the for/in loop to display the properties of the document object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the document Object Properties in JavaScript

The following example demonstrates how the properties that describe the document are used in a JavaScript program.
The write() method displays a description of each of these properties as they pertain to the current document. The
background color is silver, the text is forest green, the unvisited link is blue, and the visited link is purple.

Example 11.3

 <html><head><title>Document Object Properties</title></head>
 <body bgColor="silver" text="forestgreen" link="blue"
 vlink="purple">

 <script language="JavaScript">
 var beg_tag=""; end_tag="
";
 document.write("The location of the document"+ beg_tag +
1 document.location + end_tag);
 document.write("The document's title: "+ beg_tag+
2 document.title + end_tag);
 document.write("The background color: "+ beg_tag+
3 document.bgColor + end_tag);
 document.write("The link color is: "+ beg_tag+
4 document.linkColor + end_tag);
 document.write("The text color is: "+ beg_tag+
5 document.fgColor + end_tag);
 document.write("The document was last modified: "+ beg_tag +
6 document.lastModified + end_tag);
 </script>
7 Thanks!
 </body></html>

EXPLANATION

1. This property contains the location of the document; i.e., the full path name to the document.

2. This property contains the title of the document, shown in the title bar at the top of the window.

3. This property describes the hexidecimal color of the document's background, in this example, silver.

4. This property describes the hexidecimal color of links, blue in this example.

5. This property describes the hexidecimal color of the text, forest green in this example.

6. This displays the date and time when the document was last modified.

7. The link will change color from blue to purple once it has been visited. Complete output is shown in Figure 11.3.

Figure 11.3. Document properties. Output from Example 11.3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.3. Document properties. Output from Example 11.3.

The document Object Methods

The document object has methods to tell the object how to behave or what to do. Table 11.3 lists these methods. We
have used the write() and writeln() methods throughout this text to send output to the screen dynamically, as shown
below:

document.writeln("<h2>Welcome to the JavaScript World!</h1>");

Methods, like properties, use the dot syntax to define the object they are manipulating; for instance, document.clear()
or window.open(). (The parentheses differentiate a method from a property.)

Table 11.3. Methods of the document object.
Method What It Does

clear() Clears the current document window

close() Closes the document window for writing

focus() Brings the document into focus

open() Begins a new document, erasing the old one

write() Writes and appends text into the current document

writeln() Same as write(), but appends a newline if in a <pre> tag

When you open a new document, the current document will be replaced with a new document and all of its content
overwritten. Example 11.4 opens a new document in an existing frame. The original text in the document is
overwritten. After the document is opened, it must be closed.

Example 11.4

 <html>
 <head><title>Frame Me!</title></head>

 <!-- Creating the framesets for two files -->
 <!-- This HTML file is named: framedef.html -->

 <frameset cols="25%,75%">
 <frame src="leftframe.html" name=lframe>
 <frame src="rightframe.html" name=rframe>
 </frameset>
 </html>

 <html>
 <head><title>Right Frame</title></head>

 <!-- This file is named: rightframe.html -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- This file is named: rightframe.html -->

 <body bgColor="lightgreen">
 <h2>
 Just to show you that this is the right frame
 </h2>
 </body>
 </html>

 <html>
 <!-- This file is named: leftframe.html -->
 <head><title>Left Frame</title></head>
 <body bgColor="yellow">
 <h2>
 left frame writes to right frame
 </h2>
 <script language="JavaScript">
 // Methods of the document object
1 parent.frames[1].document.open();
2 parent.frames[1].document.write("<body bgcolor='black'>",
 "",
 "<h1>Hey brother, let me write all over you!</h2>");
3 parent.frames[1].document.close();
 </script>
 </body>
 </html>

EXPLANATION

1. From the left frame, parent.frames[0], the right frame is referenced as parent.frames[1]. A new document is
opened in the right-hand frame with the open() method. Whatever was in that frame is erased by the new
document. The open() method is optional because when the write() method is called, JavaScript will
automatically open a new document and send the output there. There are times when this might happen, and
you didn't want to overwrite everything. Since the document is parsed top to bottom, if the browser has
finished parsing, then any attempts to write to the document will cause the whole thing to be overwritten. This
might happen if you call a function as a result of some event being triggered.

2. The write() method sends content to the right-hand frame, including the background color, the color of the font,
and a string of text. Take note that the write() [and writeln()] methods take a comma-separated list of
arguments. In previous examples, we used the + (the concatenation operator) to join the strings together, but
here, commas are used to separate the strings. The write() method displays its arguments in the order they are
given.

3. The document in the right-hand frame is officially closed. Whereas the open() method was optional, the close()
method is required. When using Internet Explorer, the content of the frame remained unchanged after closing
the frame, but with Netscape, the old document reappeared. See Figures 11.4 and 11.5.

Figure 11.4. Left frame opened a new document in right frame, replacing
what was there.

Figure 11.5. After the document in the right-hand frame is closed, the
original document reappears (Netscape 7).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

original document reappears (Netscape 7).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.2 Introduction to Forms
At the heart of the Web is the form. It is used to pass information from the browser to the server. Anytime you go
online and order a book, trade at an auction, fill out a survey, or send an e-mail using a Web browser, you are working
with a form.

An HTML form offers you a number of ways to accept input, such as radio buttons, checkboxes, pop-up menus, and text
boxes; these are called virtual input devices. Once the form has been filled out by a user, it normally is sent to a server
where the input is processed by a server-side program, such as a CGI, ASP, or PHP application.

11.2.1 HTML Review of Forms

All forms are in HTML documents. They begin with a <form> tag and its attributes, followed by the input fields where
the user enters form information, and end with a </form> tag.

[View full width]

<form action="URL to server program" method="post">
The body of the form goes here, including input devices for filling out the form (see

 Table 11.4 for a complete example).
</form>

The action attribute is assigned the URL of the server program that will be executed when the data is submitted by
pressing the submit button.

A method attribute may be assigned to the <form> tag. The method attribute indicates how the form will be processed.
The get method is the default (and does not need to be specified) and the post method is the most commonly used
alternative. The get method is preferable for operations that will not affect the state of the server; that is, simple
document retrieval, database lookups, and the like. The post method is preferred for handling operations that may
change the state of the server, such as adding or deleting records from a database. (See Appendix C for a complete
discussion.)

The browser gets input from the user by displaying fields that can be edited. The fields are created by the HTML
<INPUT TYPE=key/value> tag. These fields appear as checkboxes, text boxes, radio buttons, and other forms. The data
that is entered into the form is sent to the server in an encoded string format in a name/value pair scheme. The value
represents the actual input data. Before the server-side program is called, JavaScript can be used to validate the data
that was entered into the form by using event handlers.

If the form is not going to be sent to the server for processing, then the action, target, and method attributes are not
necessary.

A summary of the steps in producing a form follows:

1. START: Start the form with the HTML <form> tag.

2. ACTION: The action attribute of the <form> tag is the URL of the server-side (CGI) script that will process the
data input from the form. For a complete discussion of CGI, see Appendix C.

3. METHOD: Provide a method on how to process the data input. The default is the get method.

4. CREATE: Create the form with buttons, boxes, and whatever looks attractive using HTML tags and fields.

5. SUBMIT: Create a submit button so that the form can be processed. This will launch the CGI script listed in the
action attribute.

6. END: End the form with the </form> tag.

11.2.2 Input Types for Forms

Table 11.4 shows the various form input types.

Table 11.4. HTML form input types.
Input
Type

Attribute Description

button name Creates a generic button for user input. It has no default action.

text name, size, Creates a text box for user input. size specifies the size of the text box. maxlength

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

text name, size,
maxlength

Creates a text box for user input. size specifies the size of the text box. maxlength
specifies the maximum number of characters allowed.

textarea name, size,
rows,cols

Creates a text area that can take input spanning multiple lines. rows and cols specify the
size of the box.

password name, value Like text box but input is hidden. Asterisks appear in the box to replace characters typed.

checkbox name, value Displays a square box that can be checked. Creates name/value pairs from user input.
Multiple boxes can be checked.

radio name, value Like checkboxes, except only one button (or circle) can be checked.

select name,
option, size,
multiple

Provides pop-up menus and scrollable lists. Only one can be selected. Attribute multiple
creates a visibly scrollable list. A size of 1 creates a pop-up menu with only one visible box.

file name Specifies files to be uploaded to the server. MIME type must be multipart/form-data.

hidden name, value Provides name/value pair without displaying an object on the screen.

submit name, value When pressed, executes the form; launches cgi.

image src, value,
align

Same as submit button, but displays an image instead of text. The image is in a file found
at src.

reset name, value Resets the form to its original position; clears all input fields.

First let's see how input gets into the form by looking at a simple document (see Figure 11.6) and the HTML code used
to produce it (see Example 11.5). The user will be able to click on a button or enter data in the text box. The input in
this example won't be processed when the submit button is pressed. Nothing will be displayed by the browser.

Example 11.5

 <html><head><title>An HTML Form</title></head>
 <body>
1 <form action="/cgi-bin/bookstuff/form1.cgi" method="post"><p>
 <fieldset><legend> All About You</legend>
 <p>
 Type your name here:
2 <input type="text" name="namestring" size="50">
 <p>
 Talk about yourself here:

3 <textarea name="comments" align="left" rows="5" cols="50">I was
 born...
 </textarea>
 <p>
 Choose your food:

4 <input type="radio" name="choice" value="burger">Hamburger
 <input type="radio" name="choice" value="fish">Fish
 <input type="radio" name="choice" value="steak">Steak
 <input type="radio" name="choice" value="yogurt">Yogurt
 <p>
 Choose a work place:

5 <input type="checkbox" name="place" value="LA">Los Angeles

 <input type="checkbox" name="place" value="SJ">San Jose

 <input type="checkbox" name="place" value="SF" checked>
 San Francisco
 <p>
 Choose a vacation spot:

6 <select multiple name="location">
 <option selected value="hawaii"> Hawaii
 <option value="bali">Bali
 <option value="maine">Maine
 <option value="paris">Paris
 </select>
 <p></fieldset>
7 <input type="submit" value="Submit">
8 <input type="reset" value="Clear">
9 </form>
 </body>
 </html>

Figure 11.6. A simple HTML form. Output from Example 11.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.6. A simple HTML form. Output from Example 11.5.

EXPLANATION

1. This is the beginning of a <form> tag that specifies where the browser will send the input data and the method
that will be used to process it. The default method is the get method. When the data is submitted, a server-side
program, usually a CGI script, will be executed by the server. The CGI script is located under the server's root
directory in the cgi-bin directory, the directory where CGI scripts are normally stored. In this example, the CGI
script is stored in a directory called bookstuff below the cgi-bin directory.

2. The input type is a text box that will hold up to 50 characters. When the user types text into the text box, that
text will be stored in the user-defined name value, namestring. For example, if the user types Stefan
Lundstrom, the browser will assign to the query string, namestring=Stefan Lundstrom. If assigned a value
attribute, the text field can display a default text string that appears in the text box when it is first displayed by
the browser.

3. The user is asked for input. The text area is similar to the text field, but will allow input that scans multiple
lines. The <textarea> tag will produce a rectangle named "comments" with dimensions in rows and columns (5
rows x 50 columns) and an optional default value (I was born...).

4. The user is asked to pick from a series of menu items. The first input type is a list of radio buttons. Only one
button can be selected at a time. The input type has two attributes: a type and a name. The value of the name
attribute "choice", for example, will be assigned "burger" if the user clicks on the Hamburger option.
choice=burger is passed onto the CGI program. And if the user selects Fish, choice=fish will be assigned to the
query string. These key/value pairs are used to build a query string to pass onto the CGI program after the
submit button is pressed.

5. The input type this time is in the form of checkboxes. More than one checkbox may be selected. The optional
default box is already checked. When the user selects one of the checkboxes, the value of the name attribute
will be assigned one of the values from the value attribute; place=LA if Los Angeles is checked.

6. The user is asked for input. The <select> tag is used to produce a pop-up menu (also called a drop-down list)
or a scrollable list. The name option is required. It is used to define the name for the set of options. For a pop-
up menu, the size attribute is not necessary; it defaults to 1. The pop-up menu initially displays one option and
expands to a menu when that option is clicked. Only one selection can be made from the menu. If a size
attribute is given, that many items will be displayed. If the multiple attribute is given (as <select multiple
name="whatever">), the menu appears as a scrollable list, displaying all of the options.

7. If the user clicks the submit button, the CGI script listed in the form's action attribute will be launched.

8. If the reset button ("Clear") is pressed, all input boxes are reset to their defaults.

9. This tag ends the form. The output is shown in Figure 11.6.

11.2.3 JavaScript and the forms Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the previous example, the HTML form had nothing to do with JavaScript. After a form has been filled out, the
information is normally sent from the browser to a server in a URL encoded format. The server then calls a CGI
program to handle the information. So where does JavaScript come into all of this? Well, before sending the form off to
the server, JavaScript can check to see if the form was filled out properly. If we like, every input field can be validated
by JavaScript. It can check for empty fields. It can check for a valid credit card number, e-mail address, zip code, and
so on. In addition, rather than having the user submit the form, submission can be controlled by JavaScript with its own
submit() method. And by naming the forms, JavaScript can handle multiple forms and input types, respond to user-
initiated events, and call functions to handle the data that was submitted.

As shown in the HTML Example 11.5 a document may have a number of HTML forms and input types such as simple
text boxes, radio buttons, checkboxes, and so on. JavaScript provides objects that parallel HTML tags; for example, the
JavaScript forms object parallels the HTML <form> tag and the JavaScript elements object parallels the input devices
such as radio buttons or checkboxes.

In this section we will focus on the structure of the JavaScript forms object and how to use it in terms of the DOM. In
Chapter 12, "Handling Events," you will learn how to catch the form before it is sent to the server. In Chapter 13,
"Regular Expressions and Pattern Matching," you will learn how to check all the input fields of a form before processing
it, using the magic of regular expressions and pattern matching.

The forms[] Array

Since the document contains forms, the forms object is also a property of the document object. Every time you create a
form in a given document, the browser creates a unique form object and assigns it as an element of an array, called the
forms[] array. The index value of the array, starting at 0, corresponds to the order in which the form occurs in the
document; the first form is assigned to forms[0], and each successive form would get the next index value. When
accessing a form from JavaScript, the first form to appear in the page would be referred to as document.forms[0] and
the next form document.forms[1], and so on. See Figure 11.7.

Figure 11.7. How the forms[] array is created.

If you name the form (name is an attribute of the HTML <form> tag), you can use that name to represent the
JavaScript forms object. Rather than saying document.forms[0] or document.forms[1], you can reference the form by
its name. For example, if the first HTML form is named myform1, the corresponding JavaScript object,
document.forms[0], can now be referenced as document.myform1.

The elements[] Array

HTML forms contain input types like buttons and text boxes, also called fields. Similarly, the JavaScript forms object
consists of a property called elements. This is a JavaScript array that parallels all of the HTML fields within the form.
Each of the input types in the elements[] array is also an object in its own right. See Figure 11.8.

Figure 11.8. How the elements[] array is created.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When going down the DOM hierarchy, document.forms[0].elements[0] refers to the first field in a form. The elements
objects also contains properties, such as the name, type, and value of the field. For example,
document.forms[0].elements[0].name references the name of the field and document.forms[0].elements[0].type
references the type of the field, such as submit, reset, button, text, radio, or checkbox.

If you name the field or input types, those names can be used to reference the corresponding JavaScript object. For
example, document.myform1.yourname.value is easier to read and type than document.forms[0].elements[0].value,
although they reference the same field value.

The following example contains two forms, each containing input types. The name of the first form is form1 and the
name of the second form is form2. Each form is an element of the forms[] array.

Example 11.6

(Two Forms)

<form name="form1">
 <input type="text"
 name="yourname">: Type your name here

 <input type="button"
 name="button1"
 value="Push Button"
</form>

<form name="form2">
 <input type="radio"
 name="veggie1"
 value="bean">Beans
 <input type="radio"
 name="veggie2"
 value="carrot">Carrots
</form>

(Object Hierarchy)

HTML JavaScript Object JavaScript Named Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTML JavaScript Object JavaScript Named Object
<form name="form1"> document.forms[0] document.form1
 <input type="text" document.forms[0].elements[0] document.form1.yourname
 name="yourname"
 <input type="button"> document.forms[0].elements[1] document.form1.button1
 name="button1">
<form name="form2"> document.forms[1] document.form2
 <input type="radio"> document.forms[1].elements[0] document.form2.veggie1
 name="veggie1">

Properties and Methods

The forms object is a property and child of the document object. Each form is an element of the forms[] array and each
form has properties that correspond to the HTML attributes of the form as well as properties that describe the form. As
discussed previously, these properties may be objects in their own right; for example, the button property of the form
is also an object with its own properties. Some of the properties of the forms object are listed in Table 11.5 and
methods are listed in Table 11.6. Properties of the elements object are listed in Table 11.7.

Table 11.5. Properties of the forms object.
Property What It Describes

action The URL to the server (where the form is sent)

button An object representing a generic button

checkbox An object representing a checkbox field

elements An array containing an element for each form field (radio button, checkbox, button, etc.) defined within a
form

encoding MIME type (application/x-www-urlencoded or multipart/form-data)

FileUpload An object representing a file-upload form field

hidden An object representing a hidden field in a form

length The number of fields defined within the form

method get or post how the form is sent to the server)

name The name of the form

password An object representing a password field

radio An object representing a radio button field

reset An object representing a reset button

select An object representing a selection list

submit An object representing a submit button

target References the HTML target tag attribute, the name of the frame where the user's reponse to the
submitted form will be displayed

text An object representing a text field

textarea An object representing a text area field

Table 11.6. Methods of the forms object.
Method What It Does

reset() Resets the form fields to their default values (see page 290)

submit() Submits a form

Table 11.7. Properties of the elements object.
Property What It Describes

form The name of the form object where the element was defined (read-only)

name The name of the input device as specified in the HTML name attribute (read-only)

type The type of input device, such as radio, checkbox, password, etc. (read-only)

value The text that is associated with the input device, such as the text entered into the text area or text box,
the text that appears in a button, etc. (read/write)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2.4 Naming Forms and Buttons

How JavaScript References a Form by Name

The <form> tag has a name attribute that allows you to give your form a name. It is somewhat easier and more
readable to reference a form by its name than by using the array syntax, such as forms[0] and forms[1].

In the following example, two HTML forms are created: one contains a text box, and the other a button. Each of the
forms is given a name with the name attribute. In the JavaScript program, the two forms are accessed by walking down
the JavaScript tree hierarchy, starting at the top of the tree, separating each of the nodes with a dot.

Example 11.7

 <html>
 <head><title>Naming Forms object</title></head>
 <body>
1 <form name="form1">
 Enter your name:
2 <input type="text"
 name="namefield"
 value="Name: ">
3 </form>

4 <form name="form2">
5 <input type="button" value="Press here">
6 </form>

7 <script language="JavaScript">
 // How do we reference the form in JavaScript?
 // Go down the document tree: window/document/form.property
 // The window object can be left off, since it is at the top
8 document.write("The first form is named: "+
 window.document.form1.name);
9 document.write("The second form is named: "+
 document.form2.name);
 </script>
 </body></html>

EXPLANATION

1. This is the first HTML form, named form1.

2. The input type for this form is a rectangular text field with a default value "Name: ".

3. This tag ends the form.

4. This is the second form, named form2.

5. The input type for this form is a button with the value "Press here", which will appear as text in the button.

6. This tag ends the second form.

7. The JavaScript program starts here.

8. To display the name of the first form, descend the JavaScript tree, starting at the window, to the document, to
the form named form1, to its name property.

9. To display the name of the second form, descend the JavaScript tree as in line 8. This time we left out the
window object, which is fine because Javascript knows that the window is always at the top of the tree. See
Figure 11.9.

Figure 11.9. Name those forms!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.9. Name those forms!

The elements and properties of the HTML <form> tag are shown in Table 11.8.

Table 11.8. <form> tag elements and properties.
Object Property Purpose

button name, type, value A general purpose GUI button

checkbox checked, defaultChecked, name, type, value A set of (or one) clickable boxes allowing multiple
selections

FileUpLoad name, type, value A field allowing a file to be submitted as part of a form

hidden name, type, value A field where the content is not shown in the form

password defaultValue, name, value A field for entering a password, masking the real
characters typed

radio checked, defaultChecked, name, type, value A set of (or one) clickable boxes allowing only one
selection

reset name, type, value A button that clears and resets the form fields

select length, name, options, selectedIndex, type,
value

A pop-up or scrolling list of items from which to choose

submit name, type, value, A button used for submitting form data

text defaultValue, name, type, value A rectangular field allowing one line of input

textarea defaultValue, name, type, value A rectangular box allowing multiple lines of input value

How JavaScript References the Form Elements by Name

Each form object is an element of the forms[] array and each form contains input types such as buttons, text boxes,
checkboxes, and so on. Each of the input types is also stored in an array called elements[] in the order the input device
in found in the document. In the following example, there is one form, called myform. It contains two elements, button
input types, named button1 and button2, respectively.

Example 11.8

 <html><head><title>Naming Buttons</title>
 </head>
 <body bgcolor="cyan">
 Naming buttons

1 <form name="myform">
2 <input type="button" name="button1" value="red"></input>
3 <input type="button" name="button2" value="blue"></input>
4 </form>
 <script language="JavaScript">
 document.write("
Form name is: "
5 +document.myform.name);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5 +document.myform.name);
 document.write("
Name of first button is: "
6 +document.myform.button1.name);
 document.write("
Value of button1 field: "
7 +document.myform.button1.value);
 document.write("
Name of second button is: "
 +document.myform.button2.name);
 document.write("
Value of button2 field: "
 +document.myform.button2.value);
 </script>
 </body>
 </html>

EXPLANATION

1. The HTML form starts here. It is named myform. JavaScript can now reference the form by its name.

2. The input type is a button named button1 and assigned a value of red. JavaScript can now reference the button
by its name.

3. The input type is a button named button2 and assigned a value of blue.

4. The form ends here.

5. Within the JavaScript program the form is referenced by its name. It is a property of the document object.
Without naming the form, it would be referenced as document.forms[0].name.

6. The name assigned to the first button is displayed. See Figure 11.10. Without naming the form or the button, it
would be referenced as document.forms[0].elements[0].value. Easy to misspell words here. The first time I
wrote this program, I spelled myform.name as myform1.name; the output was form[0] is null or not an object.
See Figure 11.11.

Figure 11.10. Name that button!

Figure 11.11. What went wrong? Watch your spelling! We tried to reference
a form by the wrong name!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the following example, the document contains two named forms, myForm1 and myForm2. Each of the forms contain
input types: the first form contains a text box and the second form contains three buttons. A JavaScript program gets
access to the forms and properties by using their names to reference them.

Example 11.9

 <html><head><title>Form and Element Properties</title>
 </head>
 <body>
1 <form name="myForm1">
 Enter something:
2 <input name="enter"
 type="text"
 value="hello">
 </form>
3 <form name="myForm2">
 Button test

4 <input type="button" name="button1" value="red"></input>
 <input type="button" name="button2" value="blue"></input>
 <input type="button" name="button3" value="green"></input>
 </form>
 <script language="JavaScript">
 document.write("
Form name is: "
5 +document.myForm1.name);
 document.write("
Number of button fields: "
6 +document.myForm2.length);
 document.write("
Value of the text field: "
7 +document.myForm1.enter.value);
 document.write("
Value of button1 field: "
8 +document.myForm2.button1.value);
 document.write("

The name of the first form,
 document.forms[0].name, is: "
9 +document.forms[0].name);
 document.write("
The name of the second form,
 document.forms[1].name, is: "
 +document.forms[1].name);
 document.write("<p>Accessing the \"elements[]\" name,
 type, and value properties: ");
10 for(var i = 0; i < document.myForm2.length; i++){
11 document.write("
name: " +
 document.myForm2.elements[i].name +"
");
12 document.write("value: "
 +document.forms[1].elements[i].value+"
");
 document.write("type: "
 +document.forms[1].elements[i].type
 +"
");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The HTML form is named myForm1, accessible in JavaScript as document.forms[0] or document.myForm1.

2. The HTML input type is a text field, named enter and accessible in JavaScript as
document.MyForm1.elements[0] or document.myForm1.enter.

3. Another HTML form, called myForm2 is started.

4. The HTML input type for the second form is a set of simple button devices, each one named button1, button2,
and button3, respectively.

5. The name property for the first form is used by JavaScript to display the form name.

6. The length property for the second form is used by JavaScript to display the number of fields defined within the
form. There are three buttons, so the length is 3.

7. The value in the text field called enter is displayed (whatever the user typed into the text box).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. The value in the text field called enter is displayed (whatever the user typed into the text box).

8. The value property of the first button, red, is the text you see inside the first button.

9. The name property of the first form, myForm1, is displayed.

10. The for loop is entered to iterate through each of the field elements in the second form.

11. The name property of the second form, myForm2, is displayed.

12. The value and type property for the three elements of the second form are displayed, one at a time. Instead of
using names to represent each of the field elements, they are accessed with their element array names. See
Figure 11.12.

Figure 11.12. Naming forms and their elements.

11.2.5 Submitting Fillout Forms

Submitting an HTML Form Without JavaScript

When the user clicks on a submit button, the form is normally sent right off to the server for further processing by
another application such as a CGI script. Before the server gets the form, its content is gathered by the browser,
encoded, and then sent to the URL address supplied in the action attribute of the form. (In the previous examples, the
action attribute was not used because there was no reason to process the sample forms.) The application on the server
side is started up to decode and process the form information. From there, an acknowledgement may be sent back to
the user, an e-mail delivered, the processed information sent to a database, or whatever else we define. Now let's look
at an example of an HTML form and how it is submitted to a server application.

Example 11.10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11.10

 <html><head><title>An HTML Form</title></head>
 <body>
1 <form action="/cgi-bin/bookstuff/form1.cgi" method="post"><p>
 <fieldset><legend> All About You</legend>
 <p>
2 Type your name here:
 <input type="text" name="namestring" size="50">
 <p>
3 Choose a work place:

 <input type="checkbox" name="place" value="LA">Los Angeles

 <input type="checkbox" name="place" value="SJ">San Jose

 <input type="checkbox" name="place" value="SF" checked>San
 Francisco<p>
 Choose a vacation spot:

4 <select multiple name="location">
 <option selected value="hawaii"> Hawaii
 <option value="bali">Bali
 <option value="maine">Maine
 <option value="paris">Paris
 </select>
 <p></fieldset>
5 <input type="submit" value="Submit">
6 <input type="reset" value="Clear">
7 </form>
 </body>
 </html>

EXPLANATION

1. The form starts here. The action attribute contains the URL of the server program that will get the form. The
method being used (how the form will be sent) is the post method. This is the most common method used with
forms.

2. The user is asked to type something into a text field box.

3. The user is asked to check a box for his place of work.

4. The user is asked to select a vacation spot from a select menu, or drop-down list.

5. When the user clicks the submit button, the form is sent to the URL (server program) assigned to the action
attribute of the <form> tag.

6. If the user presses the Clear button, all fields will be reset to their defaults.

7. This tag marks the end of the form. See Figure 11.13.

Figure 11.13. A filled-out HTML form awaiting submission to the server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Submitting a Form with an Image

The image input type gives you another way to submit a form. You can replace the standard submit button with a
graphical image. The src attribute must be included to specify the location (URL) of the image. As with other image
tags, the alt attribute (HTML 4.0) should be used to give replacement text for browsers that cannot load the image.
Many browsers rely on either the name or value attribute as alternate text, so if there is any doubt, all three attributes
for the same purpose should be used.

Example 11.11

 <html><head><title>An Image Input Type</title>
 <body bgcolor="magenta">
 <center>
 Enter your name:

1 <form action="example.cgi" method="post">
2 <input type="text" size=50 >
 <p>

3 <input type="image" src="submit.gif" alt="submit">

4 <input type="reset">
5 </form>
 </center>
 </body>
 </html>

EXPLANATION

1. The HTML form starts here.

2. The input type is text. The user enters his name here.

3. The input type is a graphical submit button. When the user clicks on the image, the form will be submitted and
sent to the CGI program assigned to the form's action attribute. The src attribute is assigned the URL of the
submit.gif image. If the image can't be loaded, the alt attribute will cause the word "submit" to appear where
the image should go.

4. When the user presses the Reset button, the text box will be cleared.

5. The HTML form ends here.

Figure 11.14. An image as a Submit button (IE).

Submitting a Form with JavaScript (Event Handlers)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Submitting a Form with JavaScript (Event Handlers)

A discussion of forms would be incomplete without mentioning how JavaScript implements form events (See Chapter
12, "Handling Events," for a complete discussion.) Events are triggered by a user when he initiates some action, like
pressing a key, clicking his mouse on a button, or moving his mouse over a link. When such an action occurs, the
browser detects it, and depending on what event is triggered, something will be done in response. A function may be
called, a form can be validated—something happens. See Figure 11.15.

Figure 11.15. The user initiates an action, and an event is triggered.

With a form, an event handler allows you to control whether the form is submitted or cleared. For example, after the
user has filled out the form, normally it is sent right off to a CGI, PHP, or ASP program on the server side to be
processed. But if a JavaScript event handler is set up, then when the user presses the submit button, the handler can
check the input data, and based on what comes in, determine whether to go ahead with the submission of the form
data or reject it. That way, the user doesn't have to wait for the form to go to the server, have it validated there, and
then sent back for mistakes that he could have corrected right away. (See "Form Validation with Regular Expressions"
on page 446 in Chapter 13 for a complete discussion.) Likewise, before clearing all the values typed into the form, an
event handler can confirm with the user that this is really what he wants to do, before resetting all the input devices to
their default values.

With forms there are two event handlers that allow you to catch the form before it goes to the server. They are the
onClick event handler and the onSubmit event handler. The onReset event can be used to clear the form's input devices
or to stop them from being cleared.

The onClick Event Handler

One way to either accept or reject the submission is to use the onClick event handler. The onClick event handler is an
attribute of the HTML submit or button input type. When the user presses the button, the event is triggered, and if the
handler function returns true, the form will be submitted; otherwise, it will be rejected.

Example 11.12

 <html><head><title>onClick Event Handler and Forms</title>
 <script language="JavaScript">
1 function readySubmit(){
 if(confirm("Are you ready to submit your form? ")){
 return true;
 }
 else{
 return false;
 }
 }
 </script>
 </head>
 <body>
2 <form action="/cgi-bin/testform.cgi"
 method="post">
 Enter your user id:

3 <input type="text"
 name="textbox"
 value="">

 Type your password:
 <input type="password"
 name="secret">
 <p>
4 <input type="submit"
 onClick="readySubmit();">
 </body></html>

EXPLANATION

1. The JavaScript function called readySubmit() is defined. It will display a confirm dialog box. If the user clicks
the OK button, a true value will be returned and the form will be submitted. If the user clicks the Cancel button,
false will be returned, and the form will be stopped.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. The form starts here. When submitted, it will go to the server-side CGI program. The URL of the CGI program is
assigned to the action attribute of the HTML <form> tag.

3. The input types for this form are a text field and a password field.

4. When the user clicks the submit button, the onClick event handler is triggered. It will handle the event by
invoking the JavaScript function called readySubmit().

Figure 11.16. Submitting a form and the onClick event.

The onSubmit Event Handler

Another important form event handler, called onSubmit, will also be triggered when the user presses the submit button
or the Enter key, just before the form is submitted. The onSubmit event handler is added as an attribute of the <form>
tag, (and only the <form> tag), to control what happens when the user presses the submit button. When a function is
assigned to the onSubmit event handler, if the value returned by the function is true, the form will be submitted to the
server, but if it returns false, the form will be stopped and the user will be given a chance to re-enter data in the form.
The following example produces the same output as the previous one, but notice the placement of the handler. Instead
of being associated with a button, it is associated with the form and set as an attribute of the <form> tag.

Example 11.13

 <html>
 <head><title>onSubmit Event Handler and Forms</title>
 <script language="JavaScript">
1 function readySubmit(){
 if(confirm("Are you ready to submit your form? ")){
 return true;}
 else{
 return false;}
 }
 </script>
 </head>
 <body>
 <form action="/cgi-bin/testform.cgi"
 method="post"
2 onSubmit="return(readySubmit());" >
 Enter your user id:
 <input type="text"
 name="textbox"
 value="">

 Type your password:
 <input type="password"
 name="secret">
 <p>
3 <input type="submit" >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3 <input type="submit" >
 </body>
 </html>

EXPLANATION

1. The JavaScript function called readySubmit() is defined. It will display a confirm dialog box. If the user clicks
the OK button, a true value will be returned and the form will be submitted. If the user clicks the Cancel button,
false will be returned, and the form will be stopped.

2. The onSubmit event is an attribute of the HTML <form> tag. It will catch the form just before it is sent off to
the server. When the user presses the submit button, the event handler readySubmit() will be invoked. If the
event handler is called by the onSubmit attribute of the <form> tag, an explicit return must be used.

3. The input type is a submit button. When the user presses this button, the JavaScript onSubmit event is
triggered. (See line 2.)

Figure 11.17. Submitting a form and the onSubmit event.

The onReset Event Handler

The HTML reset button allows the user to clear the form fields and set them back to their default values. JavaScript will
let you set up an onReset event handler to either accept or reject this action. This event handler can be used to make
sure that clearing an entire form is really what you want to do before it's too late, especially if you've done a lot of
typing and don't want to re-enter all that data.

Example 11.14

 <html>
 <head><title>The onReset Event</title>
 <script language="JavaScript">
1 function resetAll(){
2 if(confirm("Do you want to reset the form to its default
 values? ")){
3 return true;
 }
 else{
4 return false;
 }
 }
 </script>
 </head>
 <body>
5 <form action="/cgi-bin/testform.cgi"
 method="post"
6 onReset="return resetAll();" >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6 onReset="return resetAll();" >
 Enter your user id:
7 <input type="text"
 name="textbox"
 value="">

 Type your password:
8 <input type="password"
 name="secret">
 <p>
 <input type="submit"
 onClick="readySubmit();">
9 <input type="reset"
 value="Reset Form">
 </body>
 </html>

EXPLANATION

1 The function called resetAll() is defined. It is invoked when the onReset event is triggered.

2 If the user presses OK when he sees this confirm dialog box, a true value will be returned by this
function, allowing the reset to clear all the input fields and set them back to their original values.

3 The value true is returned

4 If a value of false is returned by this function, the reset action will be dismissed.

5 The form starts here.

6 When the user presses the reset button the onReset event handler is triggered, causing the JavaScript
function called resetAll() to be invoked.

7, 8 The input types for this form are a text field and a password field.

9 The reset button is used to reset the form fields back to their original values. When this button is
pressed, the onReset event will be triggered. See Figure 11.18.

Figure 11.18. The user pressed the Reset Form button. The dialog box
confirms the choice before the input boxes are reset to their default

values.

The this Keyword

The this keyword is especially helpful when dealing with forms. The this keyword refers to the current object. For forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The this keyword is especially helpful when dealing with forms. The this keyword refers to the current object. For forms
containing multiple items, such as checkboxes, radio buttons, and text boxes, it is easier to refer to the item with the
this keyword than by using its full name when calling a function.

When using an event handler, the this keyword always refers to the object that triggered the event. If the event is
triggered from within the <form> tag, this refers to the current form, but if it is triggered by an element within the
form, such as an input device, then it references that element. Each element has a form property that references the
form in which it was created. In the following segment of an HTML document, note that when the onClick event handler
is triggered within the first button input type, the form property is used to reference the form itself, whereas in the
second button, the this keyword refers to the current button.

FORMAT

<form> <-- The JavaScript form object
<input type="button" <-- This a JavaScript element
 value="Print Form Stuff"
 onClick="display_formval(this.form);" > <-- this keyword references the
 form object by using the
 element's form property
<input type="button"
 value="Print Button Stuff"
 onClick="display_buttonval(this);" > <-- this keyword references the
 current object, the button
</form>

Example 11.15

 <html>
 <head><title>An HTML form and the "this" keyword and
 Event Handler</title>
 <script language="JavaScript">
1 function checkForm(yourinfo){
2 if(yourinfo.namestring.value == ""){ // Check for an
 // empty string
 alert("Please type in your name");
 return(false);
 }
 else{
 return(true);
 }
 }
 </script>
 </head>
 <body>

 <form name="info" action="/cgi-bin/bookstuff/form1.cgi"
 method="post"
3 onSubmit="return checkForm(this)"><p>
 <p>
 Type your name here:
4 <input type="text" name="namestring" size="50">
 <p>
5 <input type="submit" value="Submit">
 <input type="reset" value="Clear">
 </form>
 </body>
 </html>

EXPLANATION

1. The function called checkForm() is passed an argument called yourinfo, which contains a reference to the form
created on line 3.

2. When following the document object model hierarchy, yourinfo refers to document.forms[0] or
document.info.yourinfo.namestring.value refers to the text field called namestring and the input value assigned
to it after the user has entered something in the text box.

3. The onSubmit handler sends one argument, this, to the function checkForm(). The keyword this is a shorthand
name for the current object; in this example the current object is a form, document.forms[0].

4. The HTML input type is a text field called namestring that will display up to 50 characters.

5. The HTML input type is a submit button. When the user presses this button, the onSubmit handler in line 3 is
triggered. If the return value from the function check_Form is true, the form will be submitted to the server,
located at the URL shown in the action attribute of the form named info.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the button Input Type Rather than submit

As shown in the previous examples, before the browser sends data to the server, an onSubmit or onClick event handler
is triggered when the user presses the submit button or the Enter key. But what if you don't want the form to go off to
the server? Then you will have to reject the submission or the browser will reset all the field values to their defaults.

If the form is not going to submit data to a server, the button input type can be used instead of the submit button. The
button object has no default behavior and is used as a triggering device so that when the user presses the button, it
causes something to happen. The onClick event handler is commonly used with buttons and is set as an attribute of the
button input type. The onClick event handler is triggered when the user clicks the button associated with it.

Example 11.16

 <html>
 <head><title>button input type</title>
 <script language="JavaScript">
1 function greetme(){
 alert("Why did you click me like that? ");
 }
 </script>
 </head>
 <body>
2 <form name="form1">
 <!-- event handler for a button is an attribute for its
 input type -->
3 <input type="button"
 value="Click me!"
4 onClick="greetme()">
 </form></body>
 </html>

EXPLANATION

1. This function called greetme() is called when the user clicks on the button device.

2. A form called form1 is started.

3. The input type is a simple graphical button containing the text Click me!

4. When the user presses the button, the onClick event handler is triggered and the function called greetme() is
called. It will send an alert dialog box to the screen, as shown in Figure 11.19.

Figure 11.19. Forms and buttons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The submit() and reset() Methods

In addition to event handlers, JavaScript provides two methods for the forms object, the submit() and the reset()
methods. These methods emulate the event handlers of the same name: the submit() method submits the form just as
though the user had pressed the submit button, and the reset() method resets the form elements to their defaults just
as if he had typed the reset button. Neither of these methods trigger the onSubmit or onReset event handlers. (Note
that the methods must be spelled with lowercase letters.)

Example 11.17

 <html><head><title>An HTML Form</title></head>
 <body>

1 <form name=myForm
 action="http://localhost/cgi-bin/environ.pl"
 method="post">
 <p>
 <fieldset><legend> All About You</legend>
 <p>
 Type your name here:
2 <input type="text"
 name="namestring"
 size="50">
 <p>
 Talk about yourself here:

3 <textarea name="comments"
 align="left"
 rows="5" cols="50">I was born...
 </textarea>
 <p>
 Choose a work place:

4 <input type="checkbox"
 name="place"
 value="LA">Los Angeles

 <input type="checkbox"
 name="place"
 value="SJ">San Jose

 <input type="checkbox"
 name="place"
 value="SF"
 checked>San Francisco
 <p></fieldset>
 </form>
 <p>

5
 Click here to submit this form
 <p>
6
 Click here to reset this form
 </body>
 </html>

EXPLANATION

1. The form called myForm starts here. When the form is submitted, it will go to the address assigned to the
action attribute, and the method—how the form is sent—is the post method.

2. The text field input type will accept a line of text from the user.

3. The text area box will accept up to 5 rows of text from the user.

4. The user can select any of the checkboxes. The default, San Francisco, is checked.

5. The link has been deactivated with the #. When the user presses the link, the onClick event will be triggered
and cause the JavaScript submit() method to be invoked. The form data will be sent to the URL assigned to the
action attribute of the form. The URL is a CGI program residing on the local server. Note that there is no need
for the submit button here.

6. The link has been deactivated with the #. When the user presses the link, the onClick event will be triggered
and cause the JavaScript reset() method to be invoked. The input boxes will all be cleared and set back to their
default values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.20. When the user clicks one of the links, either the submit() or the
reset() method will be invoked.

Displaying A Form's Content in a Pop-Up Window

After filling out a form, you may want to display the form content for confirmation before submitting it to a server. This
can be done by creating another window, called a pop-up, and outputting the form data dynamically into that window.
Example 11.18 uses JavaScript to open a new window to display the gathered form data from another file.

Example 11.18

 <html><head><title>Display Form Input</title>
 <script language="JavaScript">
1 function showForm(myform) {
2 NewWin=window.open('','','width=300,height=200');
3 name_input="Your name: " + myform.user_name.value
 + "
";
4 NewWin.document.write(name_input);
 phone_input="Your phone: " + myform.user_phone.value
 + "
";
5 NewWin.document.write(phone_input);
 }
6 function close_window(){
 NewWin.window.close();
 }
 </script>
 </head><hr>
 <body><h3> Display form data in a little window</h2><p>
7 <form name="formtest" >
8 Please enter your name:

 <input type="text" size="50" name="user_name">
 <p>
 Please enter your phone:

 <input type="text" size="30" name="user_phone">
 <p>
9 <input type="button"
 value="show form data"
 onClick="showForm(this.form)";>
 </form>

10
 Click here to close little window

 </body>
 </html>

EXPLANATION

1. A JavaScript function called showForm() is defined. Its only parameter is a reference to the name of the form;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. A JavaScript function called showForm() is defined. Its only parameter is a reference to the name of the form;
in this example, myform.

2. A new window object is created with the window's open() method.

3. The variable called name_input is assigned a string that will contain HTML tags and the value that was assigned
to the form's text field.

4. The document of the new window will display the string value assigned to the variable name_input in line 3.

5. The document of the new window will display the string value assigned to phone_input.

6. This function will close the new window.

7. The HTML form called formtest starts here.

8. The input type for this form consists of two text fields that will be used to obtain the name and the phone of the
user.

9. When the button input device is clicked, the onClick handler will be invoked. This is when you will see the new
little window appear on the screen with all the form data.

10. The JavaScript void(0) operator has the effect of deactivating the link so that it will not try to go to some URL
when clicked (like the # in Example 11.17). Instead, event handler close_window() will be invoked and the little
window that was opened to display the form data, will be closed. See Figure 11.21.

Figure 11.21. Form data is displayed in another window, called a pop-up
window.

11.2.6 Programming Input Devices

With JavaScript, you can alter the contents of the form's input devices dynamically. Since each input device is an
object, each has properties and methods, and can be manipulated like any other JavaScript object (i.e., it can be
assigned to, changed, deleted, etc.). You can program checkboxes, assign values to text areas and text boxes, change
the value in fields, add choices to drop-down menus, verify password entries, and do all of this on the fly. The following
section shows you how to program input devices.

The text Object

The text object parallels the HTML text field <input type="text"> and also has name and value fields. To reference a
text field from JavaScript, go down the document tree, starting at the document, then to the form, and then the text
element. To get a value in the text field, for example, you would use the following syntax:

document.form1.textbox1.value,

where form1 is the name of the form and textbox1 is the name of the text field. Shown in Figure 11.22 is the JavaScript
object hierarchy for the text object. Table 11.9 lists its properties and Table 11.10 lists its methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object hierarchy for the text object. Table 11.9 lists its properties and Table 11.10 lists its methods.

Figure 11.22. The text object within the JavaScript hierarchy.

Table 11.9. Properties of the text object.
Property What It Describes

defaultValue The value assigned to the value attribute, and the default value the user sees in the text box when it
first appears

form The name of the form where the text box is defined

name The name used to reference the text box

type The type of the input device; i.e., text

value The value attribute that will be assigned whatever the user types in the text box

Table 11.10. Methods of the text object.
Method What It Describes

blur() Removes focus from the object

focus() Puts focus on the object

handleEvent() Invokes the handler for a specified event (JavaScript 1.2)

select() Selects or highlights text in the box

unwatch() Turns off the watch for a particular property

watch() Watches, and when a property is changed, calls a function

Example 11.19

 <html>
 <head><title>Text Boxes</title></head>
 <body bgcolor="pink">
1 <form name="form1">
 Enter your name:

2 <input type="text"
 name="namefield"
 size=30 value="Name: "
3 onFocus="document.form1.namefield.select()">
4 // onFocus="this.select()">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 // onFocus="this.select()">
 </form>

 <script language="JavaScript">
 // How do we reference the form in JavaScript?
 // Go down the document tree: document.form[].element.property

5 document.write("The type of the input device is: "+
 document.form1.namefield.type);
 document.write("
The textbox is named: "+
 document.form1.namefield.name);
 document.write("
The value in the text field is: "+
 document.form1.namefield.value);
 document.write("
The size of the text field is: "+
 document.form1.namefield.size);
 </script>
 </body><html>

EXPLANATION

1. The form starts here in the body of the document.

2. The input type is a text box, named namefield with a default value "Name: ".

3. When the mouse cursor is clicked in this box, the onFocus event is triggered and the select() method causes the
value in the text box to be highlighted.

4. Instead of using the long, drawn-out, DOM hierarchy, the this makes it easier to reference this input type.

5. The properties for the text box, named namefield, are accessed using the DOM hierarchy. The output is shown
in Figure 11.23.

Figure 11.23. The text box and its properties.

Example 11.20

 <html>
 <head><title>Assigning Value on the Fly to a Text
 Field</title></head>
 <body bgcolor="aquamarine">

1 <form name="form1">
 Enter your name
2 <input type="text"
 name="yourname"
 size=60>
 <p>
 Click in the box
4 <input type="text"
5 name="message"
 size=60
6 onClick="this.value='Greetings and Salutations, '+
 document.form1.yourname.value+ '!';">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 document.form1.yourname.value+ '!';">
 <p>
7 <input type="reset">
 </form>
 </body>

EXPLANATION

1. An HTML form called form1 is started.

2. The input type for this form is a text box that will hold up to 60 characters.

3. The name of the text box is yourname.

4. The second input type is also a text box.

5. The name of this text box is message.

6. The onClick event handler is triggered when the user clicks inside this text box. It concatenates the message
"Greetings and Salutations" to whatever was typed in the first box, and assigns that value to this text box,
called message.

7. To clear all the boxes, the user can click on the Reset button. See Figures 11.24 and 11.25.

Figure 11.24. The user enters his name in the first text field.

Figure 11.25. When the user clicks in the second text box, a message
appears.

The password Object

The password object is much like the text object except that the input does not appear as text, but as asterisks or
bullets, depending on the browser. The idea is to prevent a snoopy onlooker from seeing what is being typed in the box,
but this is hardly a safe or secure type of password. If you look at the source of the HTML document, anywhere the
actual password is spelled out, it appears in plain text for the viewer of the source.

The password object parallels the HTML password field <input type="password"> and also has name and value fields.
To reference a text field from JavaScript, you go down the document tree, starting at the document, the form, and then
the text element. To get a value in the text field, for example, you would use document.form1.passwd.value, where
form1 is the name of the form and passwd is the name of the password field. Figure 11.26 shows the JavaScript object
hierarchy for the password object. Tables 11.11 and 11.12 show properties and methods of the password object.

Figure 11.26. The password object within the JavaScript hierarchy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.26. The password object within the JavaScript hierarchy.

Table 11.11. Properties of the password object.
Property What It Describes

defaultValue The value assigned to the value attribute, and the default value the user sees in the password box
when it first appears

form The name of the form where the password box is defined

name The name used to reference the password box

type The type of the input device (i.e., password)

value The value attribute that will be assigned whatever the user types in the password box

Table 11.12. Methods of the password object.
Method What It Describes

blur() Removes focus from the password box

focus() Puts focus on the password box

handleEvent() Invokes the handler for a specified event (JavaScript 1.2)

select() Selects or highlights text in the box

unwatch() Turns off the watch for a particular property

watch() Watches, and when a property is changed, calls a function

Example 11.21

 <html>
 <head><title>Password Boxes</title>
 <script language="Javascript">
1 function verify(pw){
2 if (pw.value == "letmein"){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2 if (pw.value == "letmein"){
 alert("The chamber door will open now!");
 }
3 else{
 alert("Sorry, you cannot enter. Please leave.");
 }
 }
 </script>
 </head>
 <body bgcolor="#330033">
 <center>
 <h2> Welcome To The Secret Chamber<h2>

 To enter, a password is required:

4 <form name="form1">
5 <input type="password"
 name="passwfield"
 size="30"
6 onBlur="return verify(this)">
 </form>
7 <input type=button value="Knock to verify">

 </body>

EXPLANATION

1. The function called verify() is defined with one parameter, a reference to a password object.

2. If the value of the password box is equal to the string letmein, the user is told he can enter.

3. If the user didn't type in the correct password, he will be sent a message in an alert box.

4. The HTML form named form1 starts here.

5. The input type is a password box. When the user types something into the box, a series of dots appears.

6. The onBlur event handler function, called verify(), is invoked when the user leaves the box and clicks his cursor
anywhere else on the page. The purpose of the handler is to check that the user typed in a correct password.

7. When the user clicks on the button, the onBlur event handler is triggered. See Figures 11.27 and 11.28.

Figure 11.27. The password object.

Figure 11.28. The user enters a password that isn't correct and receives the
alert message.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

alert message.

The textarea Object

If you don't have enough room to say it all in a text field, then you can use the text area box for multiple lines of input.
The textarea object parallels the HTML <textarea> tag. The number of characters in a line is specified with the cols
attribute of the <textarea> tag, and the number of rows in the box are specified by the rows attribute. If the wrap
attribute is defined, when the user reaches the end of a line, a newline will be inserted and the input will start on the
next line; otherwise a scrollbar will appear. The textarea object, like the text object, has a number of properties and
methods that make it possible to access and change the text area from within a JavaScript program. These are shown
in Tables 11.13 and 11.14.

To reference a text area box from JavaScript, you go down the document tree, starting at the document, then to the
form, and then the textarea element. To get a value in the text area box, for example, you would use
document.form1.textarea1.value, where form1 is the name of the form, and textarea1 is the name of the text area.
Figure 11.29 shows the JavaScript object hierarchy for the textarea object.

Figure 11.29. How the textarea object is created within the JavaScript hierarchy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 11.13. Properties of the textarea object.
Property What It Describes

defaultValue The value assigned to the value attribute, and the default value the user sees in the text area when it
first appears

form The name of the form where the text area is defined

name The name used to reference the text area

type The type of the input device; i.e., textarea

value The value attribute that will be assigned whatever the user types in the text area

Table 11.14. Methods of the textarea object.
Method What It Describes

blur() Removes focus from the text area box

focus() Puts focus on the text area box

handleEvent() Invokes the handler for a specified event (JavaScript 1.2)

select() Selects or highlights text in the text area box

unwatch() Turns off the watch for a particular property

watch() Watches, and when a property is changed, calls a function

Example 11.22

 <html>
 <head><title>Text Area Boxes</title></head>

 <body bgcolor="lightgreen">
 <form name="form1">
 Finish the story

1 <textarea name="story" rows=8 cols=60 >
 Once upon a time, there were three little ...
 </textarea>
 </form>
 <script language="JavaScript">
 document.write("The type of the input device is: "+
2 document.form1.story.type);
 document.write("
The text area is named: "+
3 document.form1.story.name);
 document.write("
The number of rows in the text area
4 is: "+ document.form1.story.rows);
 document.write("
The value in the text area is: "+
5 document.form1.story.value);
 document.write("
The number of cols in the text area
6 is:"+ document.form1.story.cols);
 </script>
 </body>
 </html>

EXPLANATION

1. An HTML text area is defined. Its name is story and it consists of 8 rows and 60 columns. The text, "Once upon
a time, there were three little..." appears in the text area.

2. The name of the text area is story. It is a textarea object. Its type is textarea.

3. The value of the name property is displayed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The value of the name property is displayed.

4. The rows property of the text area contains the number of rows that were assigned in the rows attribute of the
text area.

5. This is the value of the text that appears inside the box.

6. The cols property of the text area contains the number of columns that were assigned in the cols attribute of
the text area. The output is shown in Figure 11.30.

Figure 11.30. The textarea object.

Selection Lists (Drop-Down Menus)

The HTML <select> tag defines a field for display as a drop-down or a scrolling box. A select list consists of menu items
called options. JavaScript supports a select object. The select object can be named but the options cannot. However,
the select object has an options property that is an array of all the option items, so that if you have to get access to one
of the options, you can use the options array. The selectedIndex property contains a number that represents the index
number of the option that has been selected. If, for example, the first option in the menu is selected, then the value of
the selectedIndex property is 0 (since array elements start at 0). To get a value in the selection list, you could use, for
example, document.form1.select1.options[0].value, where form1 is the name of the form, select1 is the name of the
select object, and options[0] is the first option in the list. Tables 11.15 and 11.16 list the properties and methods of the
select object. Figure 11.31 shows the JavaScript object hierarchy for the select object.

Figure 11.31. How the select object is created within the JavaScript hierarchy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 11.15. Properties of the select object.
Property What It Describes

form The name of the form where the select is defined

length The number of items in the select list; same as options.length

name The name used to reference the select menu

options[] An array of option objects describing each of the selection options. Can modify select options
(Javascript 1.1). The options object has properties: index length, text, selected, value

selectedIndex The integer index value of a selected option, –1 if no option is selected. This value can be modified. If
set to an index value, that option is selected, and all others deselected

type Two possible values for the select object; if multiple is on, the value is select-one and if not, select-
multiple

Table 11.16. Methods of the select object.
Method What It Does

blur() Removes focus from the select box

focus() Puts focus in the select box

handleEvent() Invokes the handler for a specified event (JavaScript 1.2)

unwatch() Turns off the watch for a particular property

watch() Watches, and when a property is changed, calls a function

Example 11.23

 <html>
 <head><title>Drop Down Menus</title></head>
 <body bgcolor=lightgreen>

 Select a Course
1 <form name="form1">
2 <select name="menu1" size="4" >
3 <option name="choice1" value="Perl1">Intro to Perl</option>
 <option name="choice2" value="Perl2">Advanced Perl</option>
 <option name="choice3" value="Unix1">Intro to Unix</option>
 <option name="choice4" value="Shell1">Shell
 Programming</option>
4 </select><p>
 </form>
5 <script language="JavaScript">
 document.write("The name of the selection list is ",
6 document.form1.menu1.name);
 document.write("
The number of items in the selection list
7 is ", document.form1.menu1.length);
 document.write("
The item currently selected is option["+
8 document.form1.menu1.selectedIndex + "]");
 document.write("
The text in the first selection is "+
9 document.form1.menu1.options[0].text);
 document.write("
The text in the second selection is "+
 document.form1.menu1.options[1].text);
 </script>
 </body>
 </html>

EXPLANATION

1. The HTML form named form1 starts here. The name and value attributes are not really necessary here because
this form is not being sent to a server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. The select tag starts a drop-down list named menu1; it has four options.

3. The options that will appear in the menu are listed.

4. This ends the select list.

5. The JavaScript program starts here. It displays the properties of the select object.

6. The name of the select object is displayed.

7. The number of options in the select list is displayed.

8. The index value of the option selected by the user is displayed. If no option has been selected, the value of
selectedIndex is –1. If one has been selected, the index value of the option is displayed. The options are in an
array where the index starts at 0. The first option is at index 0, the second option is index 1, and so on.

9. The actual text shown in the list for the first option is displayed, followed by the text in the second selection.
The output is shown in Figures 11.32 and 11.33.

Figure 11.32. A selection list's properties before anything has been selected.

Figure 11.33. A selection list's properties after an item has been selected.

Example 11.24

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11.24

 <html>
 <head><title>Drop-Down Menus</title>
 <script language="JavaScript">
1 function schedule(f){
2 if(f.menu1.selectedIndex == 0){
 // Could also say: document.form1.menu1.selectedIndex
3 f.text1.value="PL100, Feb 3-7, 9am to 5pm, Room 2133,
 Dr. Baloney "
 // Could also say: document.form1.text1.value
 }

 if(f.menu1.selectedIndex == 1){
 f.text1.value="PL200 Feb 10-13 9am to 5pm, Room 209B,
 Ms. Eclectic";
 }
 if(f.menu1.selectedIndex == 2){
 f.text1.value="UX101 Mar 2-6 9am to 5pm, Room 209,
 Mr. Nerdly";
 }
 if(f.menu1.selectedIndex == 3){
 f.text1.value="SH201 Apr 10-13 9am to 5pm, Room 209B,
 Miss Bashing";
 }
 }
 </script>
 <body bgcolor=lightgreen>

4 <form name="form1">
 Select a Course

5 <select name="menu1" size="4" onChange="schedule(this.form)">
6 <option name="choice1" value="Perl1">Intro to Perl</option>
 <option name="choice2" value="Perl2">Advanced Perl</option>
 <option name="choice3" value="Unix1">Intro to Unix</option>
 <option name="choice4" value="Shell1">Shell
 Programming</option>
 </select><p>
7 <input type="text" name="text1" size=60 />
 </form>
 </body></html>

EXPLANATION

1. A function called schedule() is defined. The parameter, f, represents the form object; i.e., document.form1.

2. If the first item in the select menu is checked, the selectedIndex value is 0. The number represents the index
into the options[] array, where options[0] is the first option.

3. If the first option was selected in the menu, then the value of the text box, called textbox1, is assigned a string
describing the "Intro to Perl" course. This assignment updates the text box field dynamically.

4. The form, named form1, starts here.

5. The select menu called menu1 will contain a list of four options. The onChange event will be triggered for this
event as soon as something is entered in one of the options.

6. An option list for the select input device is created. This will produce a menu with choices.

7. An input text box device, named text1, is created. The output is shown in Figures 11.34 and 11.35.

Figure 11.34. After the user selected the third option in the menu, the text
box is updated dynamically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.35. The user selects another menu item.

Multiple Selects

If you use the multiple attribute of a select list, more than one option can be selected. To select more than one item,
hold down the Control key while clicking on an item. If more than one item is chosen, the selectedIndex value will
indicate only the first one that was selected. To test whether more than one option has been selected, you can use the
selected property of the options object. This property will result in true if an option has been selected; false otherwise.
See Example 11.25.

Example 11.25

 <html>
 <head><title>Drop Down Menus</title>
 <script language="JavaScript">
1 function showme(form){
2 var choices="";

3 for (i=0;i< form.vacation.options.length;i++){
4 if(form.vacation.options[i].selected == true){
5 choices += form.vacation.options[i].text+"\n";
 }
 }
6 alert(choices);
 }
 </script>
 <body bgcolor=lightgreen>

7 <form name="form1" onSubmit="showme(this);">
 Where do you want to go?

8 <select name="vacation" size=4 multiple>
 <option>Maui
 <option>Jamaica
 <option>Bali
 <option>Virgin Islands
 </select>
 <p>
 <input type="submit">
 <input type="reset">
 </form>
 </body>
 </html>

EXPLANATION

1. The function called showme() is defined. It is passed one parameter, a reference to a form object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. The function called showme() is defined. It is passed one parameter, a reference to a form object.

2. The variable called choices is declared and assigned an empty string.

3. The for loop is entered. The initial value, i, is set to 0. As long as the value of i is less than the length of the
options array, the body of the loop will be entered; thus, as long as we haven't looped through all the options in
the menu, the loop will be entered.

4. If the option from the menu was selected, the selected property will evaluate to true.

5. If an option was selected, the variable, called choices, will be assigned the text value of the option; perhaps
Maui or Bali will be assigned to choices. Each time through the for loop, if an option is selected, it will be
appended to the variable, resulting in a string that contains all of the selected options.

6. The alert dialog box will display the string value containing all the options that were selected.

7. The HTML form called form1 starts here.

8. The HTML select menu called vacation starts here. It will contain four menu options, and allow multiple
selections. See Figure 11.36.

Figure 11.36. Multiple selections were made by the avid traveller.

Radio Buttons

Like the buttons on an old-fashioned radio, you can only push one button when using HTML radio buttons. When a radio
button is checked, it is selected, and when another button is checked, the previously checked one is deselected. In
short, only one button at a time can be checked. This type of button is useful if you want a user to be able to select
only one of a list of items.

Figure 11.37. Play that tune! HTML radio buttons are similar to buttons on an old-
fashioned radio: only one can be pressed at a time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fashioned radio: only one can be pressed at a time.

Radio buttons are created with the HTML <input type="radio"> and are represented in JavaScript as a radio object with
specific properties and methods used to manipulate the object. Each button is a property of the radio object and
assigned to an array of elements in the order they are placed in the form. The checked property of the radio object
specifies whether a button was checked. It returns Boolean true if the button was selected, and false if not.

To reach a value in the radio list, for example, you would use: document.form1.radio1, where form1 is the name of the
form, and radio1 is the name of the radio object.

Figure 11.38 shows the JavaScript object hierarchy for the radio object. Tables 11.17 and 11.18 list the properties and
methods of the radio object.

Figure 11.38. How the radio object is created within the JavaScript hierarchy.

Table 11.17. Properties of the radio object.
Property What It Describes

checked Is true if the radio button was selected, false if not

defaultChecked Refers to the checked attribute of the radio input tag—what the user sees as a default checked box
when the buttons first appear

form The name of the form where the radio buttons are defined

name The name used to reference the radio input tag

type Refers to the type attribute of the radio input tag

value Refers to the value attribute of the radio input tag

Table 11.18. Methods of the radio object.
Method What It Does

blur() Removes focus from the select box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

click() Simulates a mouse being clicked on the button

focus() Puts focus in the select box

handleEvent() Invokes the handler for a specified event (JavaScript 1.2)

unwatch() Turns off the watch for a particular property

watch() Watches, and when a property is changed, calls a function

Example 11.26

 <html>
 <head><title>Radio Buttons</title>
 <script name="JavaScript">
1 function changeBg(f){
2 for (var i = 0; i < f.color.length;i++){
3 if(f.color[i].checked){
4 document.bgColor= f.color[i].value;
 }
 }
 }
 </script>
 </head>
 <body bgcolor="#CCFFFF">

5 <form name="formradio">
 Pick a background color:<p>
6 <input type=radio
 name="color"
 value="#0099CC">dark cyan

 <input type=radio
 name="color"
 value="#339966">teal

 <input type=radio
 name="color"
 value="#F33CC">magenta

 <input type=radio
 name="color"
 value="#FFFF66">light yellow

 <input type=radio
 name="color"
 value="#FF9933">light orange

 <p>
 <input type=button
7 value="Click for Color" onClick="changeBg(this.form);">
 <input type=reset>
 </form>
 </body>
 </html>

EXPLANATION

1. A function called changeBg() is defined. It will take one parameter, a reference to the form where the radio
buttons are defined. The parameter f could also be written using the DOM hierarchy: document.form[0] or
document.formradio (the form's name).

2. The for loop is entered. The variable, i, will be used to index through each of the elements of the radio object.
The name color is a reference to each object in the forms elements[] array. The length property specifies how
many radio buttons were created in the form. When all of the buttons have been tested, the loop will exit.

3. If a radio button was checked, the checked property will return true.

4. If checked, the color of the background will be changed by assigning the value of the radio button's value
attribute to the bgColor property of the document.

5. The form is defined. It is named formradio.

6. The input type is a radio button, named color. Only one button can be selected. The value is a hexidecimal color
code.

7. When the user clicks this button, the onClick event handler is triggered and the handler function changeBg() is
called, using the this keyword and the form object as its argument.

Figure 11.39. Using radio buttons; only one can be checked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.39. Using radio buttons; only one can be checked.

Checkboxes

Although radio buttons can only be checked once, a user can check as many checkboxes as he wants. When a checkbox
is clicked, it is on, and when it is not, it is off.

Checkboxes are created with the HTML <input type="checkbox"> and are represented in JavaScript as a checkbox
object with specific properties and methods used to manipulate the object. Each checkbox is a property of the checkbox
object and assigned to an array of elements in the order they are placed in the form. The checked property of the
checkbox object specifies whether a box was checked. It returns true if checked, and false if not.

To reach a value in the checkbox list, you could use, for example, document.form1.check1, where form1 is the name of
the form, and check1 is the name of the checkbox object. Figure 11.40 shows the JavaScript object hierarchy for the
checkbox object. Tables 11.19 and 11.20 list the properties and methods of the checkbox object.

Figure 11.40. How the checkbox object is created within the JavaScript hierarchy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 11.19. Properties of the checkbox object.
Property What It Describes

checked Returns true if the checkbox is checked

defaultChecked Returns true if the <input> tag includes the checked attribute, a default box that is initially checked;
otherwise, returns false

form The name of the form where the checkbox is defined

name A string that names the checkbox

type The type of input device; i.e., checkbox

value The text assigned to the value attribute

Table 11.20. Methods of the checkbox object.
Method What It Does

blur() Removes focus from the checkbox

click() Simulates a mouse being clicked in the checkbox

focus() Puts focus in the checkbox

handleEvent() Invokes the handler for a specified event (JavaScript 1.2)

unwatch() Turns off the watch for a particular property

watch() Watches, and when a property is changed, calls a function

Example 11.27

 <html>
 <head><title>Checkboxes</title>
 <script name="JavaScript">
1 function check(f){
 var str="";
2 for (var i = 0; i < f.topping.length;i++){
3 if(f.topping[i].checked){
4 str += f.topping[i].value + "\n"; // Create a string
 // of items checked
 // by the user
 }
 }
5 f.order.value=str; // Put str value into the text area
 }
6 function OK(){
 var result= confirm("Are you sure you are ready to
 order? ");
 if(result == true){
7 document.formchbox.submit();
 }
 else { return false;}
 }
 </script>
 </head>
 <body bgColor="#CCFF33">

 <table border="4"><tr><td>Checkboxes</td></tr></table>
8 <form name="formchbox"
 method="post"
 action="/sambar50/cgi-bin/chb.pl" >
 Pick your pizza toppings:<p>

9 <input type="checkbox"
 name="topping"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 name="topping"
 value="tomatoes">Tomatoes

 <input type="checkbox"
 name="topping"
 value="salami">Salami

 <input type=checkbox
 name="topping"
 value="pineapple">Pineapple

 <input type=checkbox
 name="topping"
 value="Canadian bacon">Canadian bacon

 <input type=checkbox
 name="topping"
 value="anchovies">Anchovies

 <input type=checkbox
 name="topping"
 value="extra cheese">Extra cheese

 <p>
 Pizza Toppings

10 <textarea name="order" rows=6 cols=35
11 onFocus="javascript:check(this.form);">
 Click here to check your order!!
 </textarea>
 <p>
 Press the pizza man to order!

12 <input type=image src="Pizza_chef.gif"
 onClick="javascript:return OK();">

 <input type=reset value="Clear the form">
 </form>
 </body>
 </html>

EXPLANATION

1. A JavaScript function called check() is defined. It takes one parameter, a reference to a form. Instead of f, the
form could also be referenced as document.forms[0] or document.formchbox.

2. A for loop is entered to go through each of the checkboxes in the form. The name of the checkbox object is
topping. The length property refers to how many checkboxes were defined. After all of the checkboxes have
been inspected, the loop exits.

3. If the checkbox element, called topping[i], is checked, the check property has a value true; otherwise false.

4. A string called str is assigned the value stored in the checkbox, and for each box that is checked, its value will
be appended to the string.

5. After all of the checkboxes have been tested, their values will be found in the str variable. These values are
assigned to the text area box, called order.

6. A function, called OK(), is defined. Its purpose is to confirm that the user is ready to submit his order.

7. If he clicks OK in the confirmation box, the checkbox's submit() method is invoked. Otherwise, nothing
happens.

8. The HTML form called formchbox is defined.

9. The input type is a checkbox, named topping. Each of the checkbox choices are created for this form.

10. An HTML text area, named order, is defined. It consists of 6 rows and 35 columns.

11. When the text area gets focus, (that is, when the user clicks his mouse anywhere in the text area box), the
hander check() is invoked. A reference to this form is passed as an argument.

12. This is an image input type used instead of a submit button. When the user clicks on the image of the pizza
man, the OK() handler will be invoked.

Figure 11.41. The initial form with empty checkboxes (left) and after the user has
clicked on some of the checkboxes (right).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clicked on some of the checkboxes (right).

Figure 11.42. When the user clicks on the pizza man, a confirmation box appears.

11.2.7 Simple Form Validation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Have you ever filled out a form to buy something, clicked the submit button, waited, waited, and then received a big
red message saying that the card number you entered was invalid? And then after all that waiting, you had to retype
the entire form because all of the fields were reset? By letting JavaScript do some preliminary checking of the form
input for obvious mistakes and erroneous information, you can save the user a lot of time and aggravation. Then, after
the preliminary checking is done, the form is ready to go off to a server program, such as Perl or PHP, where it can be
further validated and processed. This section will show you a little about validating forms: doing preliminary checking to
see if a password is the correct length, making sure a field isn't empty, checking for unwanted characters, and more.
Chapter 13, "Regular Expressions and Pattern Matching," shows you how to validate e-mail addresses, credit cards, zip
codes, names, phone numbers, social security numbers, and the like by using regular expressions, a powerful pattern
matching tool provided by JavaScript.

Checking for Empty Fields

Forms often have mandatory fields that must be filled out before the form can be submitted. The following example
checks for empty fields.

Example 11.28

 <html><head><title>An HTML Form and the onSubmit Event
 Handler</title>
 <script language="JavaScript">
1 function checkForm(yourinfo){
2 if(yourinfo.namestring.value == "" ||
 yourinfo.namestring.value == null){
 // Check for an empty string or null value
3 alert("Please type in your name");
4 return(false);
 }
 else{
5 return(true);
 }
 }
 </script>
 </head>
 <body>

6 <form name="info" action="/cgi-bin/bookstuff/form1.cgi"
 method="post"
7 onSubmit="return checkForm(document.info)"><p>
 <p>
 Type your name here:
8 <input type="text" name="namestring" size="50">
 <p>
9 <input type="submit" value="Submit">
 <input type="reset" value="Clear">
 </form>
 </body>
 </html>

EXPLANATION

1. The function called checkForm() has one argument, yourinfo, which is a reference to the form defined on line 6.

2. If the user didn't enter anything into the text box, the value of the input type will be null. The expression
if(yourinfo.namestring.value == "") checks for an empty field.

3. The user didn't enter anything into the text box, an alert dialog box will appear on the screen, and after he
presses OK, he will have a chance to fill out the form again.

4. If false is returned from this function, the form will not be submitted to the server.

5. If true is returned from this function, the form will be submitted to the server.

6. The HTML form starts here. The form, document.forms[0], is named info. The action attribute contains the URL
of the program that will process the form, a CGI script on the server. The method attribute defines the HTTP
method that determines how the data will be sent to the server.

7. The onSubmit event is an attribute of the HTML <form> tag. It is triggered when the user presses the submit
button. The event handler is a function called checkForm(). Its parameter is the name of the form,
document.info (also could use its array name: document.forms[0]). (See the this keyword in the next
example.) The return keyword is required when using the onSubmit event handler. One of two values will be
returned: either true or false.

8. The input type for this form is a text field box. Its name is namestring and it can hold a string of up to 50

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8. The input type for this form is a text field box. Its name is namestring and it can hold a string of up to 50
characters.

9. The input type is the submit button. When the user presses this button, the onSubmit event handler on line 7 is
activated. See Figure 11.43.

Figure 11.43. Using the onSubmit event handler to stop a form if the user
didn't enter anything in the field.

Checking for Alphabetic Characters

If checking input fields for alphabetic characters, such as a user name, the following example will go through a loop
evaluating each character in a string to guarantee it is an alphabetic. See Chapter 13, "Regular Expressions and Pattern
Matching," for more on this type of validation.

Example 11.29

 <html><head><title>Verifying a Name</title>
 <script language="JavaScript">
1 function validate(form){
2 if(alpha(form.first) == false){
 alert ("First name is invalid");
 return false;
 }
3 if(alpha(form.last) == false){
 alert("Last name is invalid");
 return false;
 }
 return true;
 }
4 function alpha(textField){
5 if(textField.value.length != 0){
6 for (var i = 0; i < textField.value.length;i++){
7 var ch= textField.value.charAt(i);
 // alert(ch); # Using alert to see what characters
 // are coming in
8 if((ch < "A" || ch > "Z") && (ch< "a" || ch >"z")){
 return false;
 }
 }
 }
 else {
9 return true;
 }
 }
 </script>
 </head>
 <body bgcolor="lightgreen">

10 <form name="alphachk" onSubmit="return validate(this);">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10 <form name="alphachk" onSubmit="return validate(this);">
 Enter your first name:

11 <input name="first"
 type="text"
 size=60>
 <p>
 Enter your last name:

12 <input name="last"
 type="text"
 size=60>
 <p>
13 <input type=submit value="Check it out">
 <input type=reset>
 </form>
 </body>
 </html>

EXPLANATION

1. A JavaScript function called validate() is defined. It takes one parameter, a reference to a form object.

2. The if expression invokes a function, called alpha(), and passes the text object to it. The first name is validated
by the alpha() function. If false is returned, the block is entered and the user is alerted that he did not enter a
valid first name. If this function returns false to the onSubmit handler that invoked it, on line 10, the form will
not be submitted.

3. As in line 2, the alpha() function is being called, only this time to verify the last name of the user.

4. The function called alpha() is defined. All the validation work is done here. This function will validate that the
user entered something in the text box, and that what he entered is alphabetic characters, and only alphabetic
characters, either uppercase or lowercase.

5. If the length of characters entered in the text field is not equal to 0, then the block is entered.

6. The for loop is used to check each character, one at a time, that was entered in the text field.

7. The charAt() string method returns a character at a specified position in the string. Each time through the loop,
a new character is assigned to the variable, ch.

8. This is the test for alphabetic characters. Since each character is represented internally as an ASCII number, (
"A" is ASCII 65, "B" ASCII 66, etc.), any character outside the range "A" to "Z" and "a" to "z" is not an
alphabetic character.

9. If true is returned by the alpha() function, the form will be submitted.

10. The name of the form is alphachk. The onSubmit event is triggered when the user presses the submit button on
line 13.

11. The input type is a text field, called first. This is where the user will enter his first name.

12. The input type is a text field, called last. This is where the user will enter his last name.

13. The input type is a submit button. When the user presses this button, the onSubmit event is triggered, and if
the form was valid, it will be submitted to the server. (In this example, it isn't going anywhere, because the
action attribute of the form wasn't specified.) See Figure 11.44.

Figure 11.44. The user enters a valid first name and an invalid last name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Checking E-Mail Addresses

You are frequently asked to include your e-mail address when filling out a form. There are some requirements for a
valid e-mail address such as TommyTucker@somewhere.com. One requirement is that there is an @ symbol after the
user name, and that there is at least one dot (.) in the address. The following example is a preliminary check for the
existence of both of those characters, but it is far from a complete check. See Chapter 13, "Regular Expressions and
Pattern Matching," for a much more robust version of e-mail validation using regular expressions.

Example 11.30

 <html><head><title>Checking Email</title>
 <script language="JavaScript">
1 function email(form){ // Validate the address
2 if(form.address.value.indexOf("@") != -1 &&
 form.address.value.indexOf(".") != -1){
 alert("OK address!");
3 return true;
 }
 else {
 alert("Invalid address");
4 return false;
 }
 }
 </script>
 </head>
 <body bgcolor="lightgreen">

 <center>

5 <form name="mailchk"
 action="/cgi-bin/ml.pl"
 method="post"
 onSubmit="return email(this);">
 Enter your email address:
 <p>
6 <input name="address"
 type="text"
 size=60>
 <p>
7 <input type=submit value="Check it out">
 <input type=reset>
 </form>
 </center>
 </body>
 </html>

EXPLANATION

1. A JavaScript function called email() is defined. It takes one parameter, a reference to a form.

2. If the string method, indexOf, does not return a –1, then the @ character and a dot (.) were found in the value
entered by the user in the text box, and an alert message will let the user know his e-mail address is okay. This
is where the validation takes place.

3. If true is returned, the form will be submitted.

4. If false is returned, the form is stopped, and will not be submitted.

5. The HTML form, called mailchk, starts here. The onSubmit event will be triggered when the user presses the
submit button on line 7.

6. The form's input type is a text box named address that will hold up to 60 characters.

7. When the user presses the submit button, the onSubmit handler on line 5 is triggered. It invokes the handler
function, called email, and passes a reference to the form as an argument. See Figures 11.45 and 11.46.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function, called email, and passes a reference to the form as an argument. See Figures 11.45 and 11.46.

Figure 11.45. The user enters a valid e-mail address.

Figure 11.46. The user enters an invalid e-mail address. A dot is missing in
the address.

Checking Password Fields

There are a number of checks made on password entries. Does it have the right number of characters? Does it contain
one numeric character? Is it case sensitive? The following example is a simple validation routine to check for
alphanumeric characters and that the number of characters in the password field is not less than six.

Example 11.31

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11.31

 <html><head><title>Verifying a Password</title>
 <script language="JavaScript">
1 function valid(form){
2 if(form.pass.value.length == 0){
 alert("Please enter a password");
 return false;
 }
3 if(form.pass.value.length < 6){
 alert("Password must be at least 6 characters");
 return false;
 }
 for (var i = 0; i < form.pass.value.length;i++){
 var ch= form.pass.value.charAt(i);
4 if((ch < "A" || ch > "Z") && (ch< "a" || ch >"z")
 && (ch < "0" || ch > "9")){
 alert("Password contains illegal characters");
 return false;
 }
 }
5 alert("OK Password");
 return true;
 }
 </script>
 </head>
 <body bgcolor="red">

 <center>
6 <form name="passchk" onSubmit="return valid(this);">
 Enter your password:

7 <input name="pass"
 type="password"
 size=33>
 <p>
 <input type=submit value="Submit Password">
 <input type=reset>
 </form>
 </center>
 </body>
 </html>

EXPLANATION

1. A JavaScript function called valid() is defined. It takes one parameter, a reference to a form.

2. If the password entered by the user has a length of 0 characters, an alert message is sent.

3. If the password entered by the user has a length of less than 6 characters, an alert message is sent.

4. If the value of the password entered by the user contains any character that is not an alphabetic character and
not a number, an alert message is sent.

5. If the password was at least 6 characters and contained only alphanumeric characters (letters and numbers),
then the validation test was passed, and the user is alerted. A value of true is returned to the onSubmit
handler, allowing the form to be submitted.

6. The HTML form called passchk is started here. Its onSubmit handler is triggered when the user presses the
submit button.

7. The input type is a password box, called pass. This is where the user will enter his password. See Figure 11.47.

Figure 11.47. The user enters a password of less than 6 characters (left) or
enters a password that contains illegal characters (right).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.3 Introduction to Images
A picture is worth a thousand words. Whether it's a slide show, banner, movie, or photo album, the Web contains a
huge collection of images. Any time you buy something online, there is usually an image associated with the item,
maybe a small image, and then a bigger image if you want more detail. Whatever it is, a book, a house, a pair of shoes,
or a toy, we like to see it before we put it in our virtual shopping cart and pay the money.

Images can be links, clickable image maps, banners, marquees, billboards, or rollovers—you name it. With HTML, the
images you load are static, and just sit on the page. They cannot be changed without loading a brand-new page, and
loading a lot of images takes time. JavaScript brings a new dimension to working with images. Instead of viewing a
static image on the page, now you can create rollovers, slide shows, cycling banners, and more. You can create
dynamic images that can be changed on the fly, adding animation and drama to your Web page. Before getting into the
fun of images, we will look at how JavaScript views the image. In Chapter 12, "Handling Events," and Chapter 15,
"Dynamic HTML: Style Sheets, the DOM, and JavaScript," you utilize what you learn here to see the full potential of
image creation with JavaScript.

11.3.1 HTML Review of Images

Before using images with JavaScript, the following section reviews the basics of using images in a static Web page.

Table 11.21. HTML image tags.
Tag Attributes Description

IMG Starting tag for loading an image.

 ALIGN Floats the image either to the left or right side of the page, or aligns the image with text in
directions, texttop, top, middle, absmiddle, bottom, or absbottom.

 ALT Alternative text in case the image doesn't appear.

 BORDER The width in pixels of an image border.

 HEIGHT Height of the image in pixels.

 HSPACE Adds space, in pixels, to both the right and left sides of the image.

 SRC Contains the URL, location of the image relative to the document root of the Web page.

 VSPACE Adds space, in pixels, to both the top and bottom of the image.

 WIDTH Width of the image in pixels.

MAP Starting tag for an image map. Image maps link areas of an image with a set of URLs. Clicking on
an area of the map sends the user to that page.

 ID The name of the image map.

 NAME Also the name of the image map.

AREA Defines the clickable areas of the image map.

 ALT Describes what happens when the user clicks.

 COORDS Determines the shape of a rectangle, circle, or polygon in x,y pixel coordinates.

 HREF The address of the page that will appear when the user clicks in a particular area.

 SHAPE Assigned a type, where type represents the shape of the area.

Using an Image in an HTML Web Page

The following example is an HTML file linked to an image. In this example, we review the way inline images are created
in a document.

Example 11.32

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11.32

 <html>
 <head><title>HTML Images</title></head>
 <body bgcolor="lightblue">
 <h2> This Is Baby William</h2>
1 <img src="baby.jpg" alt="baby" border=2 align="left" hspace="10"
2 width="220" height="250">
3 <pre>
 Father calls me William,
 sister calls me Will,
 Mother calls me Willie,
 but the fellers call me Bill!
 Mighty glad I ain't a girl--
 ruther be a boy,
 Without them sashes, curls, an' things
 that's worn by Fauntleroy!
 Love to chawnk green apples
 an' go swimmin' in the lake--
 Hate to take the castor-ile
 they give for belly-ache!
 Most all the time, the whole year round,
 there ain't no flies on me,
 But jest 'fore Christmas
 I'm as good as I kin be!
 </pre></body>
 </html>

Eugene Field, Jest 'Fore Christmas, in Childcraft, Vol. 2, (Chicago: Field Enterprises, Inc., 1949).

EXPLANATION

1. The image src attribute defines where the image is located. This image, baby.jpg, is located where the HTML file
called image.html is found, normally under the document root of your browser. If the image can't be loaded,
the alt attribute specifies text that will appear in its place. The image will be aligned at the left-hand side of the
page and will have a thin black border around it. There will be 10 pixels of space on both the left- and right-
hand sides of the image. This keeps the text from jamming up too close to the picture.

2. The width and height attributes of the img tag allow you to specify the size of your image in pixels. If you right-
click on an image (Windows), a pop-up window will appear where you can select Properties to obtain info about
your image.

3. This is a <pre> tag that is followed by all the text that appears at the right-hand side of the image. See Figure
11.48.

Figure 11.48. Using images in an HTML page. Output from Example 11.32.

11.3.2 JavaScript and the image Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The image object is a property of the document object and gives you access to the images that have been loaded into a
document. It corresponds to the HTML tag. As each HTML form is a JavaScript element of the forms[] array,
each image is assigned to the images[] array[3] in the order in which the image appears within the document. The first
image would be represented as document.image[0], the next as document.image[1], and so on. As with forms, images
can also be named. The properties for the image object correspond to the HTML attributes of the tag, such as
width, height, border, vspace, and hspace, are shown in Table 11.22.[4] As of Netscape 6 and Internet Explorer 4, it is
possible to assign values to these properties to dynamically change the size, shape, and border of the image. There are
no common methods for the image object.

[3] Implemented starting in JavaScript 1.1.

[4] These properties are common to both Netscape and Internet Explorer. IE, however, supports many more than
those listed here.

JavaScript also provides the image object with event handlers that are triggered when the image is loaded, a mouse
crosses the image, or the image is replaced when the user clicks on a link. The event handlers are discussed in Chapter
12, "Handling Events."

For preloading offscreen images, JavaScript provides an image constructor. The constructor is used if you have large
images that will take time to download or images that are being replaced dynamically within the page. The images are
preloaded into memory (but not displayed) and available from the cache when the user requests them, thus making the
response time much faster.

Table 11.22. image object properties.
Property HTML

Attribute
Description

border border An integer value determining the width of an image border in pixels

complete A Boolean value returning true if Navigator has finished downloading the
image

height height An integer representing the height of the image in pixels

hspace hspace An integer representing the horizontal space (pixels) around the image

lowsrc lowsrc Specifies an optional image to display for a low-resolution device

name name A string containing the name of the image

prototype Used to add user-specified properties to an image object

src src A string containing the path and name of the image

vspace vspace An integer representing the vertical space (pixels) around the image

width width An integer representing the width of the image in pixels

Replacing Images Dynamically with the src Property

By changing the src property of an image, it is possible to dynamically replace one image with another. You can create
an array of images with the Array() constructor, and dynamically assign any one of these images to the src property of
the JavaScript images[] array.

Example 11.33

 <html>
 <head><title>HTML Images</title>
 <script language="JavaScript">
1 var myImages=new Array("baby1.jpg", "baby2.jpg", "baby3.jpg",
 "baby4.jpg");
2 index_val=0;
3 function next_image(){
4 index_val++;
5 if (index_val < myImages.length){
6 document.images["display"].src = myImages[index_val];
 // could say document.display.src or
 // document.images[0].src

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // document.images[0].src
 }
7 else{
 index_val=0;
 document.images["display"].src = myImages[index_val];
 }
 }
8 function previous_image(){
 index_val--;
9 if (index_val >= 0){
 document.images["display"].src = myImages[index_val];
 }
10 else{
 index_val=myImages.length - 1;
 document.images["display"].src = myImages[index_val];
 }
 }
 </script>
 </head>
 <body bgcolor="cornflowerblue">
 <h2> Baby Gallery</h2>
11

12
 Go to next baby

13
 Go to previous baby

 </body>
 </html>

EXPLANATION

1. The array myImages consisting of four images is created by the Array() constructor.

2. The index value for the array is assigned to a variable called index_val.

3. A function called next_image() is defined. When called, the function will cause the next image in the array to be
displayed.

4. By increasing the value of the index, the next image in the array will be accessed.

5. As long as the end of the array hasn't been reached, the block will be entered and the new image displayed.

6. The name of the image, display, is used as an index into the images[] array to reference the default image by
name. By assigning a new image (from the myImages array) to the images src property, the current image will
be replaced by the new image.

7. If the end of the array has been reached, the statements within the else block will be executed, resetting the
array index back to the beginning, index 0.

8. A function called previous_image() is defined. When called, it will go backward in the array and cause the
previous image to be displayed.

9. If the index value is still 0, we are still within the boundaries of the array.

10. If by subtracting one from the index value, we have ended up with a value of –1, we are out of the bounds of
the array, and will set the index value back to the size of the array, its length –1.

11. This is the initial image displayed on the screen before the user initiates an action.

12. When this link is clicked, the JavaScript function called next_image() is invoked.

13. When this link is clicked, the JavaScript function called previous_image() is invoked. See Figure 11.49.

Figure 11.49. Output from Example 11.33.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11.34

 <html>
 <head><title>HTML Replacing Images</title></head>
 <body bgcolor="cornflowerblue">
 <h2> This Is Baby William</h2>
1
 <script language="JavaScript">
2 var myImages=new Array("baby1.jpg", "baby2.jpg", "baby3.jpg");
3 var n = prompt("Pick a number between 1 and 3","");
4 n--;
5 document.images["display"].src = myImages[n];
 // document.images[0].src = myImages[n]
 </script></body>
 </html>

EXPLANATION

1. An HTML inline image called display is created. Its source is a file called baby.jpg with the width and height
defined in pixels.

2. An array object called myImages is created with the Array() constructor. The elements of the array are three
.jpg files.

3. The user is prompted to pick and number between 1 and 3, which will determine which image will be displayed.
The user input is assigned to variable n.

4. Array indices start at 0. The user entered a number between 1 and 3, and since n will be used as an index into
the array, it must be decremented to produce an index number ranging from 0 to 2.

5. The images array can be indexed by number or name. In this example, display is the name given to the default
image shown on the screen, baby.jpg. By changing the src property, the default image will be replaced by any
one of the images listed in the myImages array. See Figure 11.50.

Figure 11.50. Output from Example 11.34 (left) after the user picks a number
(right).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preloading Images and the Image() Constructor

If you assign a new image to the src property of an image object, there may be some lag in the time it takes to
download the image from the server. And if you have a slow connection, this can be a real turnoff, to the point that you
don't even bother to wait for the image to load. To solve this problem, the Image() constructor allows you to preload an
offline image; this puts the image in the browser's cache before it is used. This technique of caching the image makes
the response time much faster, especially when you have large images, animation, rollovers, and the like. The Image()
constructor can also define the size (height and width, in pixels) of the cached image. For seamless transition when
replacing one image with another, both images should be of the same size. To use the Image() constructor, see below.

FORMAT

var newImage = new Image();
var newImage = new Image(height, width)
newImage.src="image.gif";

Example:

var myImage = new Image(200,300);
myImage.src="baby.gif";

A Simple Rollover with a Mouse Event

We talked about event handlers with the form object and now we will demonstate the use of an event handler with the
image object. For a complete discussion, see Chapter 12, "Handling Events." The objective of the next example is to
change the image when the mouse rolls over a link, and to change it back when the mouse moves away from the link.
There are two images involved: the image that initially appears on the page and the image that replaces it when the
mouse rolls over the link associated with it. Both of the images are preloaded with the Image() constructor. The
JavaScript onMouseOver event handler is triggered when the user's mouse moves onto the link, and the onMouseOut
event is triggered when the mouse moves away from the link.

Example 11.35

 <html>
 <head><title>Preloading Images</title></head>
 <h2> This Is Baby William</h2>
 <script language="JavaScript">
1 if(document.images){
2 var baby1=new Image(); // Preload an image
3 baby1.src="baby1image.jpg";
 }
 if (document.images){
4 var baby2=new Image(); // Preload an image

5 baby2.src="baby2image.jpg";
 }
 </script>
 <body bgcolor="cornflowerblue">
6 <a href="#" onMouseOver="document.willy.src=baby2.src;"
7 onMouseOut="document.willy.src=baby1.src;">
8 <img name="willy"
 src="baby1image.jpg"
 align="left"
 alt="baby" border=2 hspace="10"
 width="220" height="250">
 </body>
 </html>

EXPLANATION

1. Dynamic images are not available on browsers older than Navigator 3 and IE 4. The if statement checks for the
existance of the image object. If the image object is unavailable, this block will not be executed.

2. The Image() constructor creates and preloads a new image object called baby1.

3. The src property is assigned the name of the external image file called baby1image.jpg.

4. The Image() constructor creates and preloads a new image object called baby2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. The src property is assigned the name of the external image file called baby2image.jpg.

6. The # (hash mark) disables the link so that the browser does not try to go to a URL when clicked. The link is an
image. The onMouseOver event handler is triggered when the user's mouse moves onto the link, and the
onMouseOut event handler is triggered when the user's mouse moves away from the link (image). When the
mouse moves over the image, the baby image changes from the first image to the second one. When the
mouse is moved away from the image, the original image is displayed. Going down the JavaScript hierarchy, we
start with the document, then to willy (images[0] or images["willy"]), then to the src property that is assigned
the image object. One image is replaced with another.

7. When the mouse is moved away from the link, the intial image baby1image.jpg will reappear on the screen.

8. The initial external image called baby1image.jpg is named willy and is aligned on the left-hand side of the
screen. The output is shown in Figure 11.51.

Figure 11.51. Before the mouse rolls over the image (left), as the mouse
hovers over the image (middle), and when the mouse moves away from the

image (right).

Randomly Displaying Images and the onClick Event

By using the Math object's random() method, it is sometimes fun to randomly generate pictures from a list of images.
Example 11.36 demonstrates how to change the src attribute of an image object by using a random number as the
index of an elment in an image array. All of the images are preloaded by using the Image() constructor, greatly
improving on the time it takes to load the images.

Example 11.36

 <html>
 <head><title>Preloading Images</title></head>
 <script language="JavaScript">
1 ImageHome=new Array(3);
2 for(var i=0; i<3; i++){
 ImageHome[i]=new Image();
 }
3 ImageHome[0].src="baby1.jpg";
 ImageHome[1].src="baby2.jpg";
 ImageHome[2].src="baby3.jpg";
4 function myRandom(){
5 var n=ImageHome.length - 1;
6 var randnum=Math.floor(Math.random() * (n + 1));
7 document.images["display"].src = ImageHome[randnum].src;
 }
 </script>
 </head>

 <body bgcolor="cornflowerblue"><center>
 <h2> This Is Baby William</h2>
8 <img name="display"
 src="baby.jpg"
 border=5
 width="200" height="250" >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 width="200" height="250" >
 <p>
 <form>
9 <input type="button"
 value="Click Here for Baby Picture"
10 onClick="myRandom()"
 >
 </form>
 </center>
 </body>
 </html>

EXPLANATION

1. The Array() constructor creates an array object to consist of three elements. This array will be used to hold
three images.

2. The Image() constructor will preload and cache three images and assign them to the array created in line 1.

3. The src property of the first element of the image array is assigned an image called baby1.jpg. Each array
element is assigned a different image.

4. The function called myRandom() is defined. It produces a random number that will be used as the index into
the image array, causing a random picture to be displayed on the screen.

5. The variable called n is assigned the value of the length of the image array minus 1.

6. The variable called randnum is assigned a random whole number between 1 and 3, the value returned from the
Math object's random method.

7. Instead of using a number to access the image array, a string is used. The string is the name given to the HTML
image defined on line 8. This is the image that initially appears in the browser window. In the JavaScript tree,
this image is represented as document.images[0].src or document.display.src or
document.images["display"].src. Either way, this image will be replaced with the value of the image in the array
ImageHome[randnum].src.

8. The inline image, called baby.jpg is displayed on the screen when the program starts. It is named display.

9. This form input type creates a button on the screen.

10. When the user clicks the button, the onClick event is fired up, and the event is handled by calling myRandom(),
which displays a random image. See Figure 11.52.

Figure 11.52. Each time the user clicks the button, a random picture is
displayed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.4 Introduction to Links
Links are fundamental to the Web. They get you where you want to go, and often take you so far away that you forgot
where you were when you started. In fact, Web crawlers are programs that use links to move all over the Internet.
HTML hypertext links are usually created by assigning a Web address or a filename to the HTML <a href> tag, for
example:

Go Home

11.4.1 JavaScript URLs

With JavaScript, you can also assign a function to the <a href> tag that will be launched when the user clicks his mouse
on the link. For example,

 Do Something

or, to use an event handler with a link (see Chapter 12, "Handling Events"):

11.4.2 The links Object

The links object is a property of the document object and gives you access to the hypertext links that have been loaded
into a document. It corresponds to the HTML <a href> tag. As each HTML form is a JavaScript element of the forms[]
array, and each image is assigned to the images[] array, so each link is assigned to the links[] array in the order in
which the link appears within the document. The first link would be represented as document.links[0]. The properties
for the links object are shown in Table 11.23.[5] There are no methods common to both Netscape Navigator and
Internet Explorer for the links object.

[5] These properties are common to both Netscape and Internet Explorer. IE, however, supports many more than
are listed here.

A links object contains a URL, similar to the window's location object, and shares the same properties. See "The location
Object" on page 244. There are nine events that can be triggered by a link: onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseUp, onMouseOver, and onMouseOut. (For details, see Chapter 12,
"Handling Events.")

Table 11.23. Properties of the links object.
Property What It Describes

hash Anchor part of the URL (if any)

host The hostname:port part of the URL

hostname The hostname (machine) part of the URL

href The entire URL

pathname The pathname part of the URL

port The port part of the URL

protocol The protocol part of the URL, including the colon following

search The query string part of the URL

target The HTML target attribute of the link

Example 11.37

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11.37

 <html><title>Using Links </title>
 </head>
 <h2>Links and their Properties</h2>
 <body>
1
 Search for JavaScript Stuff
 <p>
2 Go to Google
 <p>
 Click here for Yahoo

3

 <script language = "JavaScript">
4 document.write("
This document contains "
 +document.links.length + " links.
");
5 for (i = 0; i< document.links.length; i++){
 document.write("<u>document.links["+i+"]:</u>
");
 document.write("hostname: "
 +document.links[i].hostname +"
");
6 document.write("href: "
 +document.links[i].href +"
");
7 document.write("pathname:"
 +document.links[i].pathname +"
");
8 document.write("port: "
 +document.links[i].port +"
");
9 document.write("query: "
 +document.links[i].search +"
");
10 document.write("protocol: "
 +document.links[i].protocol +"

");
 }
 </script>
 </body>
 </html>

EXPLANATION

1 This link goes to the Yahoo! search engine and searches for the word "javascript."

2 This link goes to the Google search engine.

3 This link goes to the Yahoo! search engine.

4 The size of the links[] array is determined by the length property. It displays the number of links in
the document.

5–10 The for loop is used to iterate through the links array and display some of its properties. The
output is shown in Figure 11.53.

Figure 11.53. Properties of the links object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11.38

 <html><title>Using Links </title>
 <head>
1 <map name="my_image_map">
2 <area shape="rect" href="union4.jpg" coords="157,117,287,203">
 <area shape="rect" href="union1.jpg" coords="10,12,134,96">
 <area shape="rect" href="union2.jpg" coords="171,12,286,91">
 <area shape="rect" href="union3.jpg" coords="5,118,132,201">
 <area shape="default" href="christmas.jpg">
3 </map>
 </head>
 <body>
 <h2>Christmas on Union Square</h2>
4 <img src="union1.jpg" width=300 height=240
5 usemap="#my_image_map">
 <script language="JavaScript">
 var lstr = "";
6 for (var i = 0; i < document.links.length; i++){
 lstr += "<a href=" + document.links[i].href;
 lstr += ">link[" + i + "] \n";
 }
7 lstr += "";
8 document.open();
9 document.write(lstr);
10 document.close();
 </script>
 </body>
 </html>

EXPLANATION

1. This is the start of an image map.

2. This is an image map[a] that creates rectangular "hotspots" on the default Christmas image displayed on the
page. By pressing one of the hotspots, a link to a Christmas image is activated and displayed in the browser.
(All of the scenes were taken at Union Square in San Francisco just before dusk.)

[a] The image map was created by Macromedia's Dreamweaver.

3. The HTML image map tag ends here.

4. This is the default image that appears on the screen.

5. A string called lstr is created by iterating through the links[] array.

6. For each HTML hyperlink created in the document, there is a corresponding element in the JavaScript links[]
array. The string lstr will contain HTML links for each of the images created in the image map part of the
document. This string will be created and dynamically displayed in a new document.

7. The last HTML tag, to end the bullet list, is closed, and concatenated to the lstr string.

8. The document's open() method opens a new HTML document.

9. The string lstr is displayed in the new document. It contains the bulleted list of links.

10. The document that was opened, is closed. The output is shown in Figure 11.54.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10. The document that was opened, is closed. The output is shown in Figure 11.54.

Figure 11.54. By pressing in any corner of the image or by clicking on a link,
a new image will be displayed.

11.4.3 The anchor Object

An anchor is a place in an HTML document that can be reached with a link. Anchors allow you to access specific parts of
a Web page. JavaScript 1.1 introduced the anchor object, which represents an HTML <a> element. The anchors object
is a property of the document object and gives you access to the links that have been loaded into a document. As each
HTML hypertext link is a JavaScript element of the links[] array, and each image is assigned to the images[] array, so
each anchor is assigned to the links[] array in the order in which the anchor appears within the document. The first
anchor would be represented as document.anchors[0]. The only standard property defined for the anchor object is the
name property. Any other properties found with this object are browser specific and not supported by the W3C DOM
standard. There are no methods common to both Netscape Navigator and Internet Explorer for the anchor object.

11.4.4 The embeds Object

The embeds object (Navigator 3.0), like the forms and image objects, creates an array representing each embedded
object in a page, such as a movie, spreadsheet, or audio clip, in the order the object is found in the page. The first
embedded object is assigned to embeds[0], the second to embeds[1], and so on. You can also index the embeds[]
array by string; just use the name of the embedded object in quotes.

In the following example, when the page is loaded, the embedded sound clip will automatically start playing, and will be
stopped if the user presses the link, "Stop that noise!". The assumption is that you are using Netscape Navigator with
the LiveAudio plug-in installed. Not all audio plug-ins support .wav files. It is more likely that you have a newer version

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the LiveAudio plug-in installed. Not all audio plug-ins support .wav files. It is more likely that you have a newer version
of Netscape or are using IE or Opera, in which case you are probably using RealPlayer by RealNetworks or Microsoft's
Windows Media Player. The example is just a demonstration of how the embeds object is used in JavaScript.

Example 11.39

 <html><head>
 <script language="JavaScript">
1 function playme(){
2 if (document.embeds){
3 if(navigator.appName == "Netscape")
 //document.embeds[0].play();
4 document.classical.play();
 }
 else{
5 document.embeds[0].run();
 }
 }
6 function stopSound(){
 document.classical.stop();
 }
 </script>
 </head>
7 <body onLoad="playme();" bgcolor="green" link="white">
 <center>

 <h2>Beethoven's 5th Symphony Playing...</h2>

8 <embed src="Beeth5th.wav"
 name="classical"
 hidden=true <!-- hide Live Audio's control panel -->
 loop=false
 volume=100
 autostart=true>
9 Stop that noise!

 </body></html>

EXPLANATION

1. The JavaScript function called playme() is defined. It will be used to start the music file.

2. If there is an embeds[] array in the document, enter the if block.

3. If the browser is Netscape Navigator, start the music with LiveAudio's play() method. Communicator doesn't
come with LiveAudio; you may user RealPlayer instead. The methods will differ for play() and stop().

4. The play() method starts the music.

5. On other browsers, the run() method will start the music. You may try DoRun() and DoStop() for Real Player.

6. A function called stopSound() is defined.

7. Once the document has finished loading, the function playme() will be invoked.

8. The source attribute of the <embed> tag is assigned the name of the audio clip, Beeth5th.wav, which will be
started automatically.

9. When the user clicks on this link, the stopSound() function is invoked.

Figure 11.55. Plays the embedded .wav file until it is finished or the user presses
the link.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.56. The stop() method isn't supported in IE. The music plays until the
clip finishes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: What's a BOM? What's a DOM?

2: Create an HTML document that contains two forms. One form consists of a text field, the other a text area.
Name the forms and the input devices. Use JavaScript to print out the names and values in the forms.

3: Add a button to the last example. If the user clicks it, display the form content in another window.

4: Create two text fields. In one text field, the user will enter his birth month and day. Write a JavaScript
program that will print the number of days until his birthday in the second text field.

5: Write a JavaScript function that will finish the story in Example 11.22.

6: Write a multiple choice quiz. It has five questions and the user can only select one answer. After he selects
an answer, alert him if he is wrong, and show him the correct answer in a separate text box field.

7: Change Example 11.36 so that a confirmation box will appear, asking the user to confirm his vacation
choices. The vacation choices will be listed in a pop-up window.

8: Create a JavaScript program called slideshow.html that will produce a slide show. It will contain an array of
four images. Preload the images. A timer will be set so that a new image replaces another image every 10
seconds. If the user presses a button labeled Start, the timer starts the image replacement and if he
presses a button labeled Stop, the timer stops it.

9: Create a form that uses a text input type. Ask the user to type his name in uppercase letters. The submit
button will be an image. Validate that the form is not empty and that the user typed his name in only
uppercase letters. Send the form to a CGI program if it is valid.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12. Handling Events

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.1 Introduction to Event Handlers
We have been talking about events since Chapter 1, "Introduction to JavaScript," because events are inherently part of
almost all Web pages and they make the pages interactive and dynamic. JavaScript events are asynchronous, meaning
that they can happen at any time. They are actions that are initiated by a user visiting a Web page; for example, if the
user submits a form or moves the mouse over a link or an image, he may trigger an event.[1] When an event occurs,
JavaScript can execute code in response to the user's action. As shown in previous examples, if the user presses the
submit button, JavaScript may check to see if a form was filled out properly; or if the mouse moves over a link,
JavaScript may replace one image with a new one. JavaScript's response to one of these user-initiated events is called
event handling. If the user presses a button, for example, JavaScript may handle the event by calling a function that
will perform some designated task, such as to open a new window or bring a window into focus or submit a fillout form.

[1] An event is initiated by a user. The event itself may be blur, click, change, or the like. The event handler is the
event preceded with "on". For example, onBlur and onClick are attributes of an HTML tag, and are used to handle
the event for which they are named.

JavaScript event handlers are not enclosed between <script></script> tags. Event handlers are attributes of HTML tags
(specified in the HTML 4 specification). If the event is associated with a form tag, then it will be an attribute of the
<form> tag, and if associated with a link, it will be an attribute of the <a href> tag, and so on. The string that is
assigned to the event handler is the command that will be executed when the event is triggered by the user. The
command is a JavaScript built-in function or user-defined function. The function will be called when the event is
triggered.

Whereas a property or method may be associated with a single object, events are usually associated with a collection of
objects. The onClick event handler, for example, may be associated with a form's input tag, but it could also be
associated with a link tag, or an image map area, or a simple button.

(Note the spelling convention used for the event handlers. The first word, on, is all lowercase, and the first letter of
each subsequent word is capitalized. Unless the event is being used as a method in a JavaScript program (see "Event
Handlers as JavaScript Methods" on page 356), it is not case sensitive. Using onClick or onclick are both fine.)

Consider the following example:

<form><input type="button"
 value="Wake me"
 onClick="wakeupCall()">
</form>

The HTML <form> tag contains an input tag with three attributes: type, value, and onClick. The input type is a
"button"; it has a value of "Wake me", and a JavaScript event handler called onClick. The onClick event handler is
assigned a function called "wakeupCall()". When the user clicks the button labeled Wake me!, the onClick event handler
is triggered, and the wakeupCall() function will be executed, as demonstrated in Example 12.1 and shown in Figure
12.1.

Example 12.1

 <html>
 <head><title>Wake up call</title>
1 <script language="javascript">
2 function wakeupCall(){ // Function is defined here
3 setTimeout('alert("Time to get up!")',5000);
 }
4 </script>
5 </head>
 <body bgcolor="lightblue">
6 <form>
7 <input type="button"
8 value="Wake me"
9 onClick="wakeupCall()">
 </form></body></html>

Figure 12.1. Before clicking the button (left); after clicking and waiting five
seconds (right).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

seconds (right).

EXPLANATION

1. The start of the JavaScript program.

2. The wakeupCall() function is defined in the JavaScript program, between the <script></script> tags. When the
user clicks the form button, the function assigned to the event handler is called; that is, wakeupCall() is called.
The function itself is defined in a JavaScript program, even though it is called from outside the program.

3. The timer is set for 5,000 milliseconds. The alert dialog box will pop up on the screen five seconds after the
user clicks the button.

4. End of the JavaScript program.

5. End of the HTML <head> tag.

6. This is the start of an HTML <form> tag.

7. The type of form uses a "button" input type.

8. The value is shown in the button as the text, "Wake me".

9. The onClick event is assigned the name of a function. When the user presses the button, the onClick event
handler, wakeupCall(), will be called.

A list of JavaScript event handlers and their uses is given in Table 12.1.

Table 12.1. JavaScript events and what they do.
Event

Handler
What It Affects When It Happens

onAbort Images When image loading has been interrupted.

onBlur Windows, frames, all form
objects

When focus moves out of this object except hidden; e.g., when the
cursor leaves a text box.

onChange Input, select, and text areas When a user changes the value of an element and it loses the input
focus. Used for form validation.

onClick Links, buttons, form objects,
image map areas

When a user clicks on an object. Return false to cancel default
action.

onDblClick Links, buttons, form objects When a user double-clicks on an object.

onDragDrop Windows When a user drops an object, such as a file, onto the browser
window.

onError Script When an error in the script occurs; e.g., a syntax error.

onFocus Windows, frames, all form
objects

When a mouse is clicked or moved in a window or frame and it gets
focus; except hidden.

onKeyDown Documents, images, links,
forms

When a key is pressed.

onKeyPress Documents, images, links,
forms

When a key is pressed and released.

onKeyUp Documents, images, links,
forms

When a key is released.

onLoad Body, framesets, images After the document or image is loaded.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

onMouseOut Links (and images within links) When the mouse moves away from a link.

onMouseOver Links (and images within links) When the mouse moves over a link. Return true to prevent link from
showing in the status bar.

onMove Windows When the browser window is moved.

onReset Forms reset button When the forms reset button is clicked. Return false to stop reset.

onResize Windows When the browser window changes size.

onSelect Form elements When a form element is selected.

onSubmit Forms When you want to send a form to the server. Return false to stop
submission to the server.

onUnload Body, framesets After the document or frameset is closed or reset.

12.1.1 Creating the Event Handler

There are two parts to setting up an event handler:

1. The event handler is assigned as an attribute of an HTML tag such as a document, form, or link. If you want the
event to affect a document, then it would become an attribute of the <body> tag; if you want the event to
affect a button, then it would become an attribute of the form's <input> tag, and if you want the event to affect
a link, then it would become an attribute of the <a href> tag. For example, if the event is to be activated when
a document has finished loading, the onLoad event handler is used, and if the event happens when the user
clicks on an input device, such as a button, the onClick event handler is fired up.

<body onLoad="alert('Welcome to my Web site')"; >
<form>
<input type="button"
 value="Tickle me "
 onClick="alert('Hee hee ho hee')";
</form></body>

2. The next step is to assign a value to the event handler. The value may be a built-in method such as alert() or
confirm(), a user-defined function, or a string of JavaScript statements. Although the event handler is an
attribute of an HTML tag, if a user-defined function is assigned to the event handler, then that function must be
defined either in a JavaScript program or as direct script statements (separated by semicolons).

And be careful with quotes! The handling function must be enclosed within either double or single quotes. If you have
double quotes within the function, surround the whole thing in single quotes, and if you have single quotes within the
function, either escape the single quote with a backslash, or surround the whole thing in double quotes.

built-in method --> onClick="window.open('myhome.html', 'newWin')"

user-defined function --> onUnLoad="timeOver();"

group of statements --> onChange="if (!checkVal(this.value, 1, 10)){
 this.focus(); this.select();}"

Example 12.2

 <html>
 <head><title>An event</title></head>
1 <body bgcolor="magenta" onUnload="alert('So long, stranger!')";>
 <center>
2 <form>
3 <input type="button"
4 value="Click here to be alerted"
5 onClick='alert("Watch out! An asteroid is approaching
 earth!")'>
6 </form>
 </center>
 </body>
 </html>

EXPLANATION

1. The <body> tag contains the onUnload event handler. When the user browses to another page or exits the
page, the alert() method will be triggered. Normally you would use this event for a quick cleanup or exit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

page, the alert() method will be triggered. Normally you would use this event for a quick cleanup or exit
function, such as closing a window or clearing a page. Starting some time-consuming process at this point
would be annoying to the user, since he is trying to leave this page without silly delays. The only purpose for
this example, is to demonstrate when the event happens.

2. The form starts here with the <form> tag.

3. The input type for this form is "button".

4. The value on the button is "Click here to be alerted".

5. The onClick event is an attribute of the HTML form's input tag. When the user clicks the mouse on the button
(the onClick event), the alert() method is called. See Figure 12.2.

Figure 12.2. When the user presses the button, the onClick event is activated
(left); when the page is refreshed or exits, the onUnload event is activated

(right).

6. The HTML form tag ends here. The output is shown in Figure 12.2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.2 Event Handlers as JavaScript Methods
An event handler is an attribute of an HTML tag. Since HTML elements are also treated as objects in a JavaScript
program, there are a number of event methods that can be used to simulate events (see Table 12.2). When an event
method is applied to an object, the object to which it refers behaves as though the event has happened; e.g., the
click() method behaves like the onClick event, the blur() method behaves like the onBlur event, and so on.[2] The event
method is applied to the object with the dot syntax, as are all other methods; e.g., in a JavaScript program you might
see something like the following:

[2] Event methods behave as though the event has happened but in themselves do not trigger an event handler.
For example, the click() method does not trigger the onClick event handler.

document.test.button1.click(), window.focus()

Table 12.2. Event methods.
Event Method Event Handler It Simulates Effect

blur() onBlur Removes focus from windows, frames, form fields

click() onClick Simulates a mouse click in form fields

focus() onFocus Puts focus in a window, frame, form field

reset() onReset Clears the form fields

select() onSelect Selects or highlights text in a form field

submit() onSubmit Submits a form

Example 12.3

 <html>
 <head><title>Simulation Methods</title></head>
 <body bgcolor="yellow">
1 <form name="myform"
2 action="http://localhost/cgi-bin/doit.pl"
 method="post">
 Enter your name:

 <input type="text"
 name="namefield"
 size="30"
 value="Name: "
3 onFocus="this.select()">
 <p>
 Enter your address:

4 <input type="text"
 name="addressfield"
 size="30"
 value="Address: "
5 onFocus="this.select()">
 <p>
 </form>
6
 Click here to submit your form
 <p>
7
 Click here to reset your form
 </body>
 </html>

EXPLANATION

1. A form named myform is started.

2. This is the URL where the form will be processed after it is submitted.

3. The onFocus event handler is assigned an event method called select(). For this textbox, when the mouse
cursor is clicked in the box, the onFocus event is triggered and the event is handled by highlighting or selecting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cursor is clicked in the box, the onFocus event is triggered and the event is handled by highlighting or selecting
the text in the box.

4. Another text box is defined to hold the user's address.

5. When the cursor is moved into this field, the text box gets focus and the select() method is called to highlight
this box, as in line 3.

6. A deactivated link is assigned an onClick event handler. When the user clicks on the link, the JavaScript code is
executed. The pseudo javascript: protocol is followed by a reference to the form and a submit() method, which
causes the form to be submitted when the user clicks on the link.

7. A deactivated link is assigned an onClick event handler. When the user clicks on the link, the JavaScript code is
executed. The pseudo javascript: protocol is followed by a reference to the form and a reset() method, which
clears the form fields. See Figure 12.3.

Figure 12.3. The focus is in the first box and the field is selected
(highlighted).

12.2.1 Return Values

Sometimes the event handler's return value is necessary if a certain action is to proceed. The browser's default actions
can be suppressed by returning a false value, or a form's submission can be completed by sending back a true value.
For example, if the onSubmit handler gets a true value back from a function or method, then a form may be submitted
to the server, and if not, the form will be stopped. In Chapter 11, "The Document Objects: Forms, Images, and Links,"
we saw that when validating a form, return values are used. The following example illustrates these return values.

Example 12.4

 <html><head><title>An HTML Form and the onSubmit Event
 Handler</title>
 <script language="JavaScript">
1 function checkForm(yourinfo){
2 if(yourinfo.namestring.value == "" ||
 yourinfo.namestring.value == null){
 // Check for an empty string or null value
3 alert("Please type in your name");
4 return(false);
 }
 else{
5 return(true);
 }
 }
 </script>
 </head>
 <body>

6 <form name="info" action="/cgi-bin/bookstuff/form1.cgi"
 method="post"
7 onSubmit="return checkForm(document.info)"><p>
 <p>
 Type your name here:
8 <input type="text" name="namestring" size="50">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8 <input type="text" name="namestring" size="50">
 <p>
9 <input type="submit" value="Submit">
 <input type="reset" value="Clear">
 </form>
 </body>
 </html>

EXPLANATION

1. The function called checkForm() has one argument, yourinfo, which is a reference to the form defined on line 6.

2. If the user didn't enter anything into the text box, the value of the input type will be null. The expression
if(yourinfo.namestring.value == "") checks for an empty field.

3. The user didn't enter anything into the text box. An alert dialog box will appear on the screen, and after he
presses OK, he will have a chance to fill out the form again.

4. If false is returned from this function, the form will not be submitted to the server.

5. If true is returned from this function, the form will be submitted to the server.

6. The HTML form starts here. The form, document.forms[0], is named "info". The action attribute contains the
URL of the program that will process the form, a CGI script on the server. The method attribute defines the
HTTP method that determines how the data will be sent to the server.

7. The onSubmit event handler is an attribute of the HTML <form> tag and is triggered when the user presses the
submit button. The event handler is a function called checkForm(). Its parameter is the name of the form,
document.info (also could use its array name: document.forms[0]). The return keyword is required when using
the onSubmit event handler. One of two values will be returned: either true or false.

8. The input type for this form is a text field box. Its name is "namestring" and it can hold a string of up to 50
characters.

9. The input type is the submit button. When the user presses this button, the onSubmit event handler on line 7 is
activated. See Figure 12.4.

Figure 12.4. Using the onSubmit event and return values. If the return value
is true the form is submitted; otherwise, it is stopped.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.3 Handling a Window or Frame Event
A window is the main Web page, unless it is divided up into frames. There are a number of events that will affect
windows and frames; these are described in Table 12.3. The following examples illustrate some of the events that affect
windows and frames.

Table 12.3. Window and frame events.
Event Handler When It Is Triggered

onBlur When the mouse moves away from the window or frame and it loses focus

onFocus When the mouse is clicked or moved in a window or frame and it gets focus

onLoad When a document or image has finished loading

onMove When a window is moved[a]

onUnLoad When a page is exited or reset

[a] The onMove event handler in Netscape Navigator 4.0 is enabled only for the window object.

12.3.1 The onLoad and onUnLoad Events

The onLoad event handler is invoked when a document, its frameset, or images have completely finished loading. This
includes the point at which all functions have been defined and scripts have been executed, and all forms are available.
This event can be helpful in synchronizing the loading of a set of frames, particularly when there may be large images
that need to be loaded or all of the frame data hasn't arrived from the server.

The onUnLoad event handler is invoked when the page is exited or reset.

Example 12.5

 <html><head><title>Mouse Events</title>
1 <script language="JavaScript">
2 var sec=0;
3 function now(){
 var newdate= new Date();
 var hour=newdate.getHours();
 var minutes=newdate.getMinutes();
 var seconds=newdate.getSeconds();
 var timestr=hour+":"+minutes+":"+seconds;
4 window.setInterval("trackTime()", 1000);
5 alert("Your document has finished loading\n"+
 "The time: "+timestr);
 }
6 function trackTime(){
7 sec++;
 }
8 function howLong(){
 alert("You have been browsing here for "+ sec+" seconds");
 }
 </script>
 </head>
9 <body background="blue hills.jpg" onLoad="now();"
10 onUnLoad="howLong();">

 When you leave or reload this page,
an alert dialog box
 will appear.
 </body>
 </html>

EXPLANATION

1. The JavaScript program starts here.

2. A global variable called sec is declared.

3. The user-defined function now() contains several of the Date object's methods to calculate the time. This

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The user-defined function now() contains several of the Date object's methods to calculate the time. This
function is used to keep track of how long the user browses from the time the page is loaded until it is exited.

4. The window object's setInterval() method is set to call the function trackTime() every 1,000 milliseconds (one
second) starting when the document is loaded until it is unloaded.

5. The alert dialog box pops up when the page finishes loading.

6. This is a user-defined function that keeps track of the number of seconds that have elapsed since the page was
loaded.

7. The variable called sec is increased by one each time trackTime() is called.

8. This function is called when the page is exited or reloaded. It is the event that is triggered by the onUnLoad
handler on line 10.

9. When the document has finished loading, the onLoad event handler is triggered. The onLoad event handler is an
attribute of the <body> tag. The event handler is assigned a function called now() that sets up a timer that will
go off every second while the page is opened. After a second passes another function called trackTime() will
keep updating a variable that stores the number of seconds that have elapsed. The background attribute of the
HTML <body> tag is set to an image of blue hills.

10. The onUnLoad event handler is triggered when the user either leaves or reloads the page. See Figure 12.5.

Figure 12.5. If you exit, or press the reload button, this alert box appears.

12.3.2 The onload() and ununload() Methods

The onload() method, window.onload(), simulates the onLoad event handler. The ununload() method,
window.ununload(), simulates the behavior of the onUnload event handler. All JavaScript event methods must be in
lowercase, such as onload() or ununload(). The event handlers themselves, used as HTML attributes, are not case

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lowercase, such as onload() or ununload(). The event handlers themselves, used as HTML attributes, are not case
sensitive, so ONUNLOAD, onUnLoad, and onunload are all acceptable.

12.3.3 The onFocus and onBlur Event Handlers

When an object has the focus, it is waiting for the user to do something, such as press a button, click on a link, start or
stop an animation. If you are moving between frames, the frame where the mouse is pointing has the focus, and when
the cursor moves out of the frame, it loses focus or is "blurred." The onFocus event handler allows you to initiate a
window or frame type function when the mouse is moved into a window, and the onBlur event handler is triggered
when you leave a window or frame. When a window has focus, it becomes the top window in a stack of windows. The
following example changes the background color of the left frame to pink when it goes into focus and to yellow when it
goes out of focus. The status bar at the bottom of the window reflects what frame has the focus.

Example 12.6

 <html>
 <head><title>Frame Me!</title></head>
1 <frameset cols="25%,75%">
2 <frame src="leftfocus.html" name="left">
3 <frame src="rightfocus.html" name="right" >
 </frameset>
 </html>
--
 <!-- The right frame file -->
 <html>
4 <head><title>Right Frame</title></head>
5 <body bgColor="lightblue">
 right frame

 </body>
 </html>
--
 <html>
 <head><title>Left Frame</title>
6 <script language="JavaScript">
7 function focus_on_me(){
 document.bgColor="pink"; // Current doc is the left frame
8 window.status="focus leftframe";
 }
9 function defocus_me(){
 parent.left.document.bgColor="yellow"; // Another way to
 // reference
10 window.status="focus rightframe"; // See the status bar
 }
 </script>
 </head>
11 <body onFocus="focus_on_me()" // Event handlers
12 onBlur="defocus_me()"
 bgColor="lightgreen">
 <image src="signs.jpg">
 </body>
 </html>

EXPLANATION

1. In this example, there are three files involved with frames. This is the HTML file that defines the frameset. It
consists of a main window divided into two frames, a left frame consisting of 25 percent of the window, and
right frame consisting of 75 percent of the window.

2. The left-hand frame's source code is in a file called leftfocus.html.

3. The right-hand frame's source code is in a file called rightfocus.html.

4. This HTML document is the content for the right-hand frame.

5. The background color of the right-hand frame is lightblue.

6. This is the start of the JavaScript program found in the file called leftfocus.html.

7. This user-defined function, called focus_on_me(), is called when the onFocus event handler is triggered; that is,
when the user's cursor has focus in that window. It assigns a pink background color to the left-hand frame by
going down the JavaScript hierarchy: parent.left.document.bgcolor.

8. The status bar in the window is assigned the string "focus leftframe". Look in the status bar.

9. This user-defined function, called defocus_me, is called when the onBlur event handler is triggered; that is,
when the user's cursor loses focus in that window. It assigns a yellow background color to the right-hand frame
by going down the JavaScript hierarchy: parent.right.document.bgcolor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

by going down the JavaScript hierarchy: parent.right.document.bgcolor.

10. The status bar in the window is assigned the string "focus rightframe". Look in the status bar.

11. An onFocus event handler is assigned to the <body> tag for the file called leftfocus.html. As soon as focus goes
into this window (frame), the handler's function called focus_on_me() is called.

12. An onBlur event handler is assigned to the <body> tag for leftfocus.html. When focus leaves this frame (i.e.,
the user clicks his mouse in another window), the function called defocus_me() is called. The output is shown in
Figure 12.6.

Figure 12.6. When focus is on the left frame, it turns pink. When focus leaves
the left frame, it turns yellow. Notice the mouse pointer is in the right frame.

That's where the focus is. Check the status bar.

12.3.4 The focus() and blur() Methods

The focus() and blur() methods behave exactly the same as their like-named events. These methods are applied to an
object, such as a window or form object, and are called from the JavaScript program. When the focus() method is
applied to an object, it will cause that object to be in focus and when the blur() method is applied to an object, it will
lose its input focus.

Example 12.7

 <html>
 <head><title>The focus and blur methods</title>
 <script language="JavaScript">
1 function newWindow(){
2 winObj=window.open("summertime.jpg",
 "summer","width=650,height=200,resizable=yes,
 scrollbars=yes,location=yes");
3 winObj.moveTo(0,0); // Move to left-hand corner of screen
4 winObj.focus(); // New window gets the focus
 //windObj.blur();
 }
5 function closeWindow(){
6 winObj.close(); // Close the new window
 }
 </script>
 </head>
 <body bgColor="lightgreen">
 <h2>Summer Scene from the Old Country</h2>
 <form>
 <input type=button
 value="Open Window"
7 onClick="javascript:newWindow();">
 <input type=button
 value="Close Window"
8 onClick="javascript:closeWindow();">
 </form>
 </body>
 </html>

EXPLANATION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXPLANATION

1. A user-defined function, called newWindow(), will create a new window object with the window object's open()
method, specified with a number of options to further define the window.

2. The new window object is an image called summertime.jpg.

3. The new window is moved to the left-hand corner of the screen, pixel position (0,0).

4. The new window gets focus. It will be on top of all the other windows.

5. This user-defined function is responsible for closing the new window.

6. The close() method of the window object causes the new window to be closed.

7. When the user clicks this button, the onClick event handler is triggered, and a new window will be opened.

8. When the user clicks this button, the onClick event handler is triggered, and the new window will be closed. The
output is shown in Figures 12.7 and 12.8.

Figure 12.7. The parent window.

Figure 12.8. The new window is in focus and will appear on top of its parent
window.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.4 Handling Mouse Events
In many previous examples, we've seen uses of the onClick event handler to initiate an action when a user clicks his
mouse in a button or on a link. There are a number of other events that can be fired up because of some action of the
mouse. When the user moves the mouse pointer over a link, image, or other object, the onMouseOver event handler is
triggered, and when he moves the mouse pointer away from an object, the onMouseOut event is triggered. Table 12.4
lists events that are triggered when mouse movement is detected.

Table 12.4. Mouse events.
Event Handler When It Is Triggered

onClick When the mouse is clicked on a link and on form objects like button, submit

onDblClick When the mouse is double-clicked on a link, document, form object, image

onMouseDown (NN6+) When the mouse is pressed on a link, document

onMouseMove (NN6+) When the mouse touches the link, form object

onMouseOut When a mouse is moved out of a link, image map

onMouseOver When a mouse is moved over a link, image map

onMouseUp When the mouse is released from a link, document

12.4.1 How to Use Mouse Events

The onMouseOver and onMouseOut event handlers occur when the user's mouse pointer is moved over or out of an
object. The onMouseMove event occurs when the mouse just touches the object. In the following example, every time
the user touches the button labeled onMouseMove with his mouse, a function called counter() is invoked to keep track
of the number of mouse moves that have taken place. That number is displayed in an alert dialog box, as shown in
Figure 12.9. If the user double-clicks his mouse anywhere on the page, the a message will appear, and if OK is clicked,
the window will be closed.

Example 12.8

 <html><head><title>Mouse Events</title>
1 <script language="JavaScript">
2 var counter=0;
3 function alertme(){
 alert("I'm outta hea!");
4 window.close();
 }
5 function track_Moves(){
6 counter++;
 if(counter==1){
 alert(counter + " mouse moves so far!");
 }
 else{
 alert(counter + " mouse moves so far!");
 }
 }
 </script>
 </head>
7 <body bgColor="CCFF00" onDblClick="alertme()";>
 <p>
 Double click anywhere on this page to get out!
 <p>
 When the mouse moves over the link, an event is triggered.
8 onMouseOver
 <p>
 When the mouse moves away from a link, an event is triggered.
9 onMouseOut
 <p>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <p>
 When the mouse moves in or out of the button, a function

 is called that keeps track of how many times the mouse touched
 the button.
10 <form>
 <input type="button"
 value="onMouseMove"
11 onMouseMove="track_Moves();">
 </form>
 </body>
 </html>

Figure 12.9. Links and mouse events.

EXPLANATION

1. A JavaScript program starts here.

2. A global variable called counter is initialized.

3. If the user double-clicks his mouse anywhere on the page, an alert dialog box will appear; if he OKs it, the
window will be closed.

4. The window's close method causes the current window to be closed.

5. This function is called when the onMouseOver event handler is triggered. This event happens when the user
touches his mouse on an object, in this case, a button object.

6. The counter is incremented by one every time the user touches the button.

7. The onDblClick event handler is an attribute of the HTML <body> tag. When the user double-clicks his mouse,
the alertme() function will be called, and the window closed.

8. The onMouseOver event handler is an attribute of the <a href> link tag. It is triggered anytime the user moves
his mouse over the link. (The link has been deactivated by using the # sign.) When this event occurs, the alert
method is called.

9. The onMouseOut event handler is an attribute of the <a href> link tag. Any time the user moves his mouse
away from this link, the event is triggered, and the alert method is called.

10. The form starts here. The input type is a button.

11. When the user's mouse touches the button, the onMouseMove event handler is triggered, and the
track_Moves() function is called. This function will simply increment a counter by one, each time it is called, and
then alert the user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.4.2 Mouse Events and Images—Rollovers

The onMouseOver and onMouseOut event handlers are commonly used to create a rollover, an image that is replaced
with a different image every time the mouse moves over a link or image. (See "A Simple Rollover with a Mouse Event"
on page 336 in Chapter 11.) In the following example, if the user touches the first link, the picture of the first mouse
will be replaced with a new picture, giving the illusion that the mouse's eyes are moving.

Example 12.9

 <html><title>Mouse Events</title>
 </head>
 <body bgColor="orange">
1
 onMouseOver <p>
2
 onMouseOut<p>
3
 </body>
 </html>

EXPLANATION

1. The onMouseOver event handler is assigned to a deactivated link (# causes the link to be inactive). When the
mouse rolls onto the link, the event is triggered, and a new image, called mouse.gif will replace the original
image, mousestart.gif.

2. The onMouseOut event handler is assigned to another deactivated link, this time with another image of the
mouse. When the mouse rolls away from the link, the event is triggered, and a new image, called mouse2.gif
will replace the last image, mouse.gif. By rolling the mouse back and forth, the mouse's eyes seem to move.
The words "hi" and "bye" also keep changing.

3. This is the original image that is displayed before the links are touched. See Figure 12.10.

Figure 12.10. Original display (left), as the mouse moves over the link
(middle), and as the mouse moves away from the link (right).

12.4.3 Creating a Slide Show

By using a timer with an event, you can do all sorts of fun things with images. You can create scrolling banners,
rotating billboards, button rollovers, and more. The following example is a simple slide show. Four images are preloaded
and each image is assigned to an array element. When the user moves his mouse onto one of the pictures, a new
picture will replace the previous one every two seconds, and when he moves his mouse away from the image, the show
stops. Any time the mouse moves over the image, the show starts again.

Example 12.10

 <html>
 <head><title>The Four Seasons</title>
 <script language="JavaScript">
1 var season = new Array();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 var season = new Array();
2 var indx = 0;
3 var timeDelay=2000;
4 if(document.images){
5 season[0]=new Image();
6 season[0].src="winter.jpg";
 season[1]=new Image();
 season[1].src="summer.jpg";
 season[2]=new Image();
 season[2].src="fall.jpg";
 season[3]=new Image();
 season[3].src="spring.jpg";
 }
7 function changeSeason(){
8 var size= season.length - 1;
 if(indx < size) {
 indx++;
 }
 else {
 indx = 0;
 }
9 document.times.src= season[indx].src;
10 timeout=setTimeout('changeSeason()', timeDelay);
 }
11 function stopShow(){
12 clearTimeout(timeout);
 }
 </script>
 </head>
 <body bgcolor="cornflowerblue"><center>
 <h2>The 4 Seasons</h2>
 To see slide show, put your mouse on the image.

 Move your mouse away from the image, to stop it.
13 <a href="javascript:void(null);"
 onMouseOver="return changeSeason();"
 onMouseOut="return stopShow()">
14 <img name="times" src="winter.jpg" align="left"
 border=8 hspace="10" width="700" height="200">

 </body>
 </html>

EXPLANATION

1. A new Array object, called season is declared. It will be used to store an array of images.

2. A global variable called indx is declared and initialized to 0.

3. The value 2000 is assigned to another global variable, called timeDelay.

4. If this browser has an image object, then an array of objects is created with the Image() constructor.

5. Using the Image() constructor preloads and caches the images. Each new image object is assigned to an
element of the season array.

6. The first element of the season array gets a new Image object. The src property (the location and name of the
image) is winter.jpg, located in the present working directory.

7. A user-defined function called changeSeason() is defined. It is called when the onMouseOver event handler is
triggered by the user moving his mouse onto the image. Its purpose is to replace one image with another
image in the season array, every 2 seconds, for as long as the user's mouse is on the image. (It might be nice
to add a little Vivaldi audio clip here to enhance the show!)

8. The size of the array is its length – 1 since array indices start at 0. As long as the array size isn't surpassed, the
index value will keep being incremented by 1.

9. This is where image replacement happens. The name of the original image is times (line 14) and it is referenced
by JavaScript using the DOM hierarchy: docment.times.src is assigned a new image from the season array,
season[indx].src. The new image will be displayed.

10. The window object's setTimeout() method will be set to call the changeSeason() function every 2,000
milliseconds (2 seconds). Every 2 seconds a new image is displayed as long as the user keeps his mouse on an
image.

11. The user-defined function called stopShow() is defined. It is called when the onMouseOut event is triggered by
the mouse moving away from the image. It turns off the timer, stopping the slide show.

12. The setTimeout() method is cleared.

13. The link has two mouse event handlers, onMouseOver and onMouseOut. The pseudo URL, javascript:void(null),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13. The link has two mouse event handlers, onMouseOver and onMouseOut. The pseudo URL, javascript:void(null),
deactivates the link and ensures that if there is a return value from the event, it will be nullified. Since neither
of the events return anything, it would be enough to just use the protocol as javascript:. The display is shown in
Figures 12.11 and 12.12.

Figure 12.11. Watch the seasons change every 2 seconds.

Figure 12.12. Spring image (top), summer image (middle), and fall image
(bottom) are all part of the slide show created in Example 12.10.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.5 Handling Link Events
In many of the previous examples, links have been used to trigger events. When the user clicked or moved his mouse
over a link, a link event was triggered. One link event, onClick, gets sent whenever someone clicks on a link. As we saw
with mouse events, onMouseOver and onMouseOut also cause a link event to occur.

Table 12.5. Link events.
Event Handler When It Is Triggered

onClick When the mouse is clicked on a link

onMouseOut When a mouse is moved out of a link

onMouseOver When a mouse is moved over a link

12.5.1 JavaScript URLs

We have seen JavaScript code in a javascript: URL throughout this text. In the example using mouse events, the event
handler was assigned to a link and the link was deactivated with the javascript: protocol followed by a hash mark:

<a href="#" onClick='alert("This hotlink is out of service!");
 return false;'>Click here

or by using the void operator to guarantee that any return value from the function will be discarded:

<a href="javascript:void(0);" onMouseOver="return changeSeason();"

In either case, the link was not supposed to take the user to another location, but instead to handle an event or call a
function. (Make sure that any function calls in the URL have been defined.) Another note: if the "#" causes the browser
to jump to the top of the page when the link is clicked, you can add a return false statement inside the onClick handler
to keep the browser from checking the content of the href.

The following simple example uses the onClick event handler with a deactivated link and the return statement; the
display is shown in Figure 12.13.

Example 12.11

<html><head><title>Deactivate the hotlink</title></head>
<body>
<center>
<a href="#" onClick='alert("This hotlink is out of service!");
 return false;'>Click here
</center>
</body>
</html>

Figure 12.13. The user clicked on a deactivated link.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.6 Handling a Form Event
As discussed in Chapter 11, "The Document Objects: Forms, Images, and Links," the document object has a forms
property. It contains an array of all the forms that have been defined in the document. Each element of the array is a
form object and the number in the index of the array represents the order in which the form appeared on the page. The
first form would be document.forms[0]. Each form contains elements, also represented as an array. The elements
represent the input types of the form, such as a checkbox, radio button, or text field. By naming each of the forms and
its respective elements, it is much easier to work with them in JavaScript. (See Chapter 11 for a complete discussion of
the forms[] array.) There are a number of events associated with the form's elements. Many of them were also covered
in Chapter 11. They are listed in Table 12.6.

Table 12.6. Event handlers for the form's elements.
Object Event Handler

button onClick, onBlur, onFocus

checkbox onClick, onBlur, onFocus

FileUpLoad onClick, onBlur, onFocus

hidden none

password onBlur, onFocus, onSelect

radio onClick, onBlur, onFocus

reset onReset

select onFocus, onBlur, onChange

submit onSubmit

text onClick, onBlur, onFocus, onChange

textarea onClick, onBlur, onFocus, onChange

12.6.1 Buttons

One of the most common GUI form elements is the button. The button object has no default action and is normally
used to trigger an event such as the OnClick event. HTML 4 allows you to create a <button> tag without the <input>
tag.[3] There are several buttons associated with a form; the buttons are called:

[3] The <button> </button> tags give greater flexibility to the appearance of the button by allowing HTML content
to be displayed instead of plain text that is assigned to the value attribute of a button created using the <input
type="button">.

submit

reset

button

If an event is an attribute of a form tag, then the event occurs when the user presses one of the buttons associated
with the form object.

12.6.2 this for Forms and this for Buttons

The this keyword refers to the current document and is especially helpful when dealing with forms. In forms that
contain multiple items, such as checkboxes, radio buttons, and text boxes, it is easier to refer to the item with the this
keyword, than by using its full name when calling a function or an event handler. (Examples of the this keyword are
shown in Chapter 11.)

In a form, this could be the form itself or one of the input devices. With an event handler, the this keyword by itself
references the current object, such as an input device, whereas this.form references the form object where the input
device was created.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 12.12

 <html><head><title>The this keyword</title>
 <script language="JavaScript">
1 function display_formval(myform){
 alert("text box value is: " + myform.namestring.value);
 }
2 function display_buttonval(mybutton){
 alert("button value is: " + mybutton.value);
 }
 </script>
 </head>
 <body>
 <hr>
3 <form name="simple_form">
 <p>
 Type your name here:
 <input type="text" name="namestring" size="50">
 <p>
4 <input type="button"
 value="Print Form Stuff"
5 onClick="display_formval(this.form);" >
 <input type="button"
 value="Print Button Stuff"
6 onClick="display_buttonval(this);" >
 <input type="reset" value="Clear">
 </form>
 </body></html>

EXPLANATION

1. The function called display_formval() is defined. Its only parameter is a reference to a form started on line 3.
The purpose of this function is to display the text that the user typed in a text box, called "namestring". The
function is called when the onClick event handler is triggered on line 5.

2. The function called display_buttonval() is defined. Its only parameter is a button input type, defined on line 4. It
displays the value in the button.

3. This is the start of a form named simple.

4. The input type is a button in the form named simple.

5. The onClick event handler is triggered when the user presses this button. The argument sent to the
display_formval() function, this.form, is a reference to the form object. Without the form property, the this
keyword would refer to the current object, the button. See line 6. Rather than using the full JavaScript
hierarchy to reference a form, the this keyword simplifies the process.

6. The onClick event is triggered when the user presses this button. Since the handler is assigned to the button,
the this keyword is a reference to the button object. The display is shown in Figure 12.14.

Figure 12.14. The user clicked on the Print Form Stuff button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.6.3 Forms and the onClick Event Handler

The onClick event handler is used most often in forms. The click event occurs when a button in a form, such as a radio
or checkbox, is pressed. It also happens when an option is selected in a Select menu. In Chapter 11, we used many
examples of the onClick event handlers. Here are a few more.

Example 12.13

 <html>
 <head>
 <title>Event Handling and Forms</title>
 <script language=javascript>
1 function greetme(message){
 alert(message);
 }
 </script>
 </head>
 <body bgcolor=white>
 <h2>
 Greetings Message
 </h2>
 <hr>
2 <form>
3 <input type="button" value="Morning"
4 onClick="greetme('Good morning. This is your wakeup
 call!')">
 <input type="button" value="Noon"
 onClick="greetme('Let\'s do lunch.')">
 <input type="button" value="Night"
 onClick="greetme('Have a pleasant evening.\nSweet
 dreams...')">
 </form>
 </body>
 </html>

EXPLANATION

1. A simple function called greetme() is defined. It will be called each time the user presses one of three buttons
and send an alert message to the screen.

2. The HTML form starts here.

3. The input type for this form is three buttons, respectively labeled, "Morning", "Noon", and "Night". See Figure
12.15.

Figure 12.15. Three buttons waiting for a user to click one of them.

4. When the user presses a button, the onClick event is fired up, and the greetme() function is called with a string.
See Figure 12.16. Watch the quotes in the string. Because the outside quotes are double quotes, the inner
quotes are single. And if the outer set of quotes had been single quotes, the inner set would be double. It's very
easy to ruin a program just because the quoting is off, as you well know by now if you've gone this far in the
book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.16. The user clicked on the Night button.

12.6.4 Event Handlers and Event Methods Working Together

You'll find that many JavaScript programs use a combination of event handlers and event methods, especially when
working with forms. The following example uses event handlers and event methods. It creates a random number
between 1 and 10, and asks the user to guess what the number is. As soon as the document is loaded, the onLoad
event handler is triggered, and when the user presses the button, the onClick handler is fired up. The focus() method is
used to put focus in the text box where the user will enter his guess.

Example 12.14

 <html>
 <head><title>Event Handling</title>
 <script language="JavaScript">
 var tries=0;
1 function randomize(){
 // Random number is set when the document has loaded
 var now=new Date();
 num=(now.getSeconds())%10; // Very cool!
 num++;
 }
2 function guessit(form){
 // Function is called each time the user clicks the button
 if (form.tfield.value == num){
 alert("Correct!!");
3 form.tfield.focus();
 n=0;
 randomize();
 }
 else{
 tries++;
4 alert(tries + " Wrong. Try again.");
 form.tfield.value=""; // Clear the text box
 form.tfield.focus(); // Put the cursor in the text box
 }
 }
 // End hiding from old browsers -->
 </script>
 </head>
 <body bgcolor="lightgreen"
5 onLoad="randomize()"> <!--Call function when page is loaded-->
 <center>
 Pick a number between 1 and 10
 <form name="myform">
6 <input type="textbox" size=4
 name="tfield">
 <p>
7 <input type="button"
 name="button1"
8 value="Check my guess"
 onClick="guessit(this.form)">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 onClick="guessit(this.form)">
 </form>
 </body>
 </html>

This script was modified from one written by Andree Growney available at
http://www.htmlgoodies.com/primers/jsp/hgjsp_.html.

EXPLANATION

1. A function called randomize() is defined. It will create a random number by dividing the number of seconds by
10 and returning the remainder (modulus); for example, 59/10 would return the number 9. Then, by adding 1
to that, we get 10.

2. The function called guessit will take one argument, a reference to the form. Its purpose is to see if the number
entered by the user, form.tfield.value, matches the value of the random number calcuated in the randomize()
function.

3. The focus() method puts the cursor in the text field.

4. If the user guessed wrong, the alert dialog box appears and tells him so, the text field is cleared, and focus is
put there.

5. Once the document has loaded, the onLoad event handler is triggered, causing the function randomize() to be
called. This sets the initial random number for the program.

6. The form's input type is a text box. This is where the user will enter his guess.

7. This input type is a button.

8. When the user clicks on this button, the onClick event handler is triggered, causing the guessit() function to be
called with this form as an argument. The display is shown in Figures 12.17 and 12.18.

Figure 12.17. The user makes a guess (left), but is told he guessed wrong
(right).

Figure 12.18. After three wrong guesses (left), the user finally got it (right).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.6.5 Forms and the onFocus and onBlur Event Handlers

The onFocus event handler is triggered when a form element has focus: the cursor is sitting in the box, waiting for key
input or in the case of a button, for the Enter key to be pressed. The onBlur event is triggered when the form element
loses focus: when the cursor is moved away from the input device.

Example 12.15

 <html>
 <head><title>Using the onFocus Event Handler</title>
 <script language="JavaScript">
1 function handler(message){
2 window.status = message; // Watch the status bar
 }
 </script>
 </head>
 <body bgcolor="magenta">The onFocus Event Handler
 <i>(When you click in one of the boxes, focus goes to the status
 bar)</i>
3 <form name="form1">
 <p>Type your name:
4 <input type="text"
 name="namestring"
 size="50"
5 onFocus="handler('Don\'t forget to enter your name')">
 <p>Talk about yourself here:

6 <textarea name="comments"
 align="left"
7 onFocus="handler('Did you add comments?')"
 rows="5" cols="50">I was born...
 </textarea><p>
 <input type="button"
 value="submit">
 <input type="reset"
 value="clear">
 </form>
 </body>
 </html>

EXPLANATION

1. A user-defined function called handler() is defined. It takes a string as its only parameter.

2. The string message, "Don't forget to enter your name" (or "Did you add comments?") is passed to the function
and assigned to the window's status bar.

3. The HTML form starts here.

4. The first input type is a text box.

5. The text box contains the attribute for the onFocus event handler. When this box has focus, the event will be
fired up and call the handler() function.

6. A text area is defined to hold user comments.

7. The text area contains the attribute for the onFocus event handler. When this box has focus, the event will be
fired up and call the handler() function. See Figure 12.19.

Figure 12.19. Look at the status bar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.6.6 Forms and the onChange Event Handler

The onChange event handler is triggered after the user modifies the value or contents of an HTML input, select, or text
area element in a form, and then releases the mouse. This is another event handler that can be useful in checking or
validating user input.

Example 12.16

 <html>
 <head><title>onChange Event Handler</title>
 </head>
 <body>
1 <form>
 Please enter your grade:
2 <input type="text" onChange="
 grade=parseInt(this.value); //Convert to integer
3 if(grade < 0 || grade > 100){
 alert('Please enter a grade between 0 and 100');
 }
4 else{
 confirm('Is '+ grade + ' correct?');
 }
5 " >
6 </form>
 </body>
 </html>

EXPLANATION

1. The HTML form starts here.

2. The input type is a text field. The onChange event is triggered when something changes in the text field box,
such as a user entering input.

Instead of assigning a function to the handle the event, the JavaScript statements are enclosed in double
quotes and will be parsed and executed when the event is triggered. It might be less error prone to write a
function than to try to keep this whole section of code together in quotes.

3. If the input assigned to grade is less than 0 or greater than 100, it is out of the legal range, causing an alert
box to appear.

4. If the input was within the limits, then the else block is executed. A confirm box will appear to verify that this is
what the user meant to type.

5. This quote marks the end of the JavaScript statements, and the > marks the end of the input type tag.

6. The HTML form ends here. The actions of the handler are shown in Figures 12.20 through 12.22.

Figure 12.20. The user enters no value at all: there is no change.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.22. User enters a value. The onChange handler is invoked. The
value entered was out of range, causing the alert box to appear.

Figure 12.21. The user enters a value. A change has taken place. The onChange
handler is invoked.

12.6.7 Forms and the onSubmit Event Handler

The onSubmit event handler was discussed in detail in Chapter 11, but it is included again in this chapter since it is such
an important form event. You will see this event again in Chapter 13, "Regular Expressions and Pattern Matching." If
you recall, the onSubmit event is an attribute of the HTML <form> tag and is triggered when the user presses the
submit button after filling out a form. This event allows the programmer to validate the form before sending it off to the
server. If the return value from the event handler is true, the form will be submitted; if false it won't be submitted. The
following examples demonstrate two different validation programs using an onSubmit event handler.

Example 12.17

 <html><head><title>The onSubmit Event Handler</title></head>
 <body font="arial" size=3>
 <script language="JavaScript">
1 function popUp(){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 function popUp(){
2 newWin=window.open('','NewWin','toolbar=no,
 status=no,width=500,height=200');
3 newWin.document.write("<h3>Form data</h3>");
 newWin.document.write("Your name is: " +
 document.form1.namestring.value);
 newWin.document.write("
Your address is: " +
 document.form1.address.value);
 }
 </script>
 <hr>
4 <form name="form1" onSubmit="popUp();">
 <p>
 Type your name:
5 <input type="text"
 name="namestring"
 size="50">
 <p>
 Type in your address:
 <input type="text"
 name="address"
 size="80">
 <p>
6 <input type="submit" value="Submit form">
 <input type="reset" value="Clear">
 </form></body>
 </html>

EXPLANATION

1. A function called popUp() is defined. It will cause a pop-up window to appear with data that was entered into a
form.

2. This is where the new window object is created and assigned properties.

3. The write() method will send its output to the new window.

4. The HTML form starts here. When the submit button is pressed, the onSubmit event handler will be triggered
and call the popUp() function, causing a new pop-up window to appear containing the information that the user
typed into the form. At this point the program could ask the user if the data is valid and continue to process the
information by sending it to a server. Since the action attribute for the HTML form hasn't been defined, nothing
will happen.

5. The input types for the form are defined here as two text boxes, one for the user's name and one for his
address.

6. The submit button is created here. When the user submits the form, the onSubmit handler on line 4 will be
triggered. The action is shown in Figures 12.23 and 12.24.

Figure 12.23. The fillout form.

Figure 12.24. Pop-up window with form data after submit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.24. Pop-up window with form data after submit.

Example 12.18

 <html><title>Check it Out!</title>
 <head>
 <script language="JavaScript">
 // Script modified from original found at
 // http://javascript.internet.com
1 function okForm(form){
 if (form.accept.checked == true){
 return true;}
 else{
 alert("Please check the box!");
 form.accept.focus();
 return false;}
 }
 </script>
 </head>
 <body bgcolor="silver">

 Thank you for your order. Check the box to continue.
2 <form action="/cgi-bin/checkout.pl"
 method="post"
3 onSubmit="return okForm(this)">
 <input type="checkbox"
 name="accept"
 value="0" >
4 <input type="submit"
 value="Go to checkout" >
 <input type="button"
 value="Go to Home Page"
5 onClick="window.location.replace('../localhost/default.htm');" >
 </form>
 </body>
 </html>

EXPLANATION

1. A function called okForm() is defined. The function is called by the onSubmit event handler. Its purpose is to
ensure that a checkbox has been checked. If it has, the return value is true, and the form will be submitted. If
not, the user will be reminded to check the box, false will be returned, and the form will not be submitted. See
Figure 12.25.

Figure 12.25. The user didn't check the box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.25. The user didn't check the box.

2. The action attribute is the URL of the server where the form data will be sent for processing, once it has been
submitted.

3. The onSubmit event handler is triggered when the user presses the submit button for this form.

4. When this submit button is pressed, the onSubmit handler on line 3 is triggered.

5. When the user presses this button, the onClick handler will be fired up, and cause the current window to be
replaced with another window, the home page for the site.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.7 Handling Key Events: onKeyPress, onKeyDown, and onKeyUp

As of JavaScript 1.2, keyboard actions, not just mouse actions, can be detected in JavaScript programs. This is useful,
for example, in certain types of game programs where keyboard entry must be detected to determine the next action.
The onKeyPress, onKeyDown, and onKeyUp event handlers are triggered when the user presses a key and releases it.
The onKeyPress event is a combination of two actions: after you press down on the key, the event happens just at the
point you release it. The other two key events happen as soon as you press a key down (onKeyDown) and then when
you release it (onKeyUp). The onKeyDown and onKeyPress events keep firing continuously as long as the user keeps a
key depressed, whereas the onKeyUp event fires once when the user releases the key. Some browsers may differ in the
way they handle key events.

Example 12.19

 <html><head><title>Key Events</title></head>
1 <body bgcolor="yellow" onKeyPress="
2 if(navigator.appName=='Netscape')
3 alert('The key pressed:'+ event.which +
4 'ASCII'+ String.fromCharCode(event.which))
 else
5 alert('The key pressed:'+ event.keyCode +
 'ASCII'+ String.fromCharCode(event.keyCode));">

 Press any key on your keyboard and see what happens!
 </body>
 </html>

EXPLANATION

1. The body tag is assigned an onKeyPress event handler. If the user presses a key anywhere in the body of the
document, the event is triggered, causing an alert method to appear and display the value of the key.

2. First we check to see if the browser being used is Netscape. Netscape and IE use different properties to
describe the numeric value of the key being pressed.

3. The which property of the event object describes the numeric ASCII value for the key that was pressed. (See
more of the event object on page 394.)

4. The String method fromCharCode() converts the ASCII value of the key to the character value that is shown on
the key; e.g., ASCII 65 is character "A".

5. If the browser isn't Netscape, the alternative for this example is Internet Explorer. IE uses the keyCode
property to represent the numeric value of the key being pressed. The fromCharCode() String method converts
the number to a character. The output is displayed for both browsers in Figures 12.26 and 12.27.

Figure 12.26. Netscape 7 and the onKeyPress event.

Figure 12.27. Internet Explorer and the onKeyPress event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.27. Internet Explorer and the onKeyPress event.

Example 12.20

 <html>
 <head><title>Key Events</title>
 </head>
 <body bgcolor="white">
 <center></center>
 <center><h2>Events</h2>
 <h3>

A blue bouncing arrow will appear
 when you press a key down
and a red
 jumping arrow appears when you release the key

1 <form>
 Type something in the box:
2 <input type="text" size=10
3 onKeyDown="document.Arrow.src='images/down_arrow.gif'"
4 onKeyUp="document.Arrow.src='images/up_arrow.gif'">
 <input type=reset value="reset">
 </form>
5
 </body></html>

EXPLANATION

1. The HTML form starts here.

2. The input type is a text box field that will hold 10 characters.

3. The onKeyDown event occurs when a user presses one of the keys on his keyboard. This event is assigned an
image of a blue, bouncing down arrow that will appear as soon as the key is pressed and disappear when the
key is released.

4. The onKeyUp event occurs when a user releases a key. This event is assigned an image of a red, bouncing up
arrow that is always bouncing when the keys are not being used, since it is set as the default image on line 5.

5. This is the default image named Arrow; it will be displayed when the document loads. See Figure 12.28.

Figure 12.28. The user starts typing in the text box. When a key is pressed
down, a blue arrow starts bouncing down. When the key is released, the red

arrow starts bouncing upwards

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.8 Handling Error Events

12.8.1 The onError Event

The error event fires when a JavaScript error has occurred (window) or when an image cannot be found (image
elements).

Example 12.21

 <html><head><title>Wake up call</title>
 <script language="javascript">
 function wakeupCall(){ // Function is defined here
 timeout=setTimeout('alert("Time to get up!")',2000);
 }
 </script>
 </head>
 <body bgcolor="white">
 <form>
 <center>
 <p>
1 <image src="Image/java_steam.gif"
2 onError="alert('Image is having trouble loading!')">
 <p>
 <input type="button"
 value="Wake me"
 onClick="wakeupCall()">
 </form>
 <center>
 </body>
 </html>

EXPLANATION

1. The <image> tag identifies the src of a .gif image to be loaded from a subdirectory called Image.

2. The onError event handler is triggered when an error occurs while loading the image. See Figure 12.29.

Figure 12.29. The onError Event handler was triggered because the image src
was wrong (left), and after the image loads (right).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.9 The event Object
Event objects are sent to an event handler with each event that occurs within a document. The object provides
information about the event, described by its many properties, but is implemented differently in Netscape Navigator
and in IE. Table 12.7 provides a list of the properties for Netscape Navigator and Internet Explorer.

Table 12.7. Properties of the event object.
Property What It Describes

altKey, ctrlKey,
shiftKey

Set to true or false to test if Alt, Shift, or Control keys were pressed when the event
occurred (IE)

button The mouse button that was pressed (IE)

cancelBubble Set to true or false to cancel or enable event bubbling

clientX and clientY The cursor's horizontal and vertical position in pixels, relative to the Web page in which the
event occurred (IE)

data Array of URLs for dragged and dropped (NN)

fromElement and
toElement

The HTML element being moved to or from (IE)

height and width Height and width of the window (NN)

keyCode The Unicode key code associated with a keypress event (IE)

layerX and layerY Horizontal and vertical cursor position within a layer (NN)

modifiers The bitmask representing modifier keys such as Alt, Shift, Meta, etc. (NN)

offsetX and offsetY The cursor's horizontal and vertical position in pixels, relative to the container in which the
event occurred (IE)

pageX and pageY Horizontal and vertical cursor position within a Web page (NN)

reason Used to indicate the status of a data transfer for data source objects (IE)

returnValue The return value of the event handler, either true or false (IE)

screenX and screenY Horizontal and vertical cursor position within a screen (NN)

srcElement Same as target for IE

srcFilter Specifies the filter object that caused an onfilterchange event (IE only)

target Object for captured events (NN)

type The type of event that occurred (NN)

which A numeric value for the mouse button that was pressed or the ASCII value of a pressed key
(NN)

x and y The cursor's horizonal and vertical position in pixels, relative to the document in which the
event occurred (IE)

Example 12.22

 <html><head><title>Event Properties</title>
 </head>
 <body bgcolor="yellow"

 <!--Internet Explorer has src.Element property-->
 <!--Netscape has target property-->
1 <form name="form1"
2 onSubmit="alert(event.type + ' ' + event.srcElement);">
3 <input type=button
 name="mybutton"
 value="Click here"
4 onClick="alert(event.type + ' ' +event.target);">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 onClick="alert(event.type + ' ' +event.target);">
 <input type=submit>
 </form>
 </body>
 </html>

EXPLANATION

1. The HTML form starts here.

2. When the user presses the submit button for this form, the onSubmit event is fired up. It will cause an alert
message to appear displaying two event properties: the type of the event and the srcElement (Internet
Explorer) property of the object to which the event was sent. See the left of Figure 12.30.

Figure 12.30. Displaying the event object's property in Internet Explorer
(left), and Netscape (right).

3. The input type for this form is a button with the value "Click here" appearing in the button.

4. When the onClick event is triggered, an alert message will appear displaying two event properties: the type of
the event and the target (Netscape) property or object to which the event was sent. See the right of Figure
12.30.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: Create three buttons, labeled Shoot movies, Shoot guns, and Shoot basketballs. When the user presses any
button, use the onClick event handler to call a function that will send a message based on which button was
pressed.

2: Rewrite Example 12.19 to create a JavaScript function that will test for the browser type and handle the
event.

3: Create a form that contains a two text fields to receive the user's name and address, respectively. When the
user leaves each text field, use the onBlur event handler to check if the user entered anything in the
respective field. If he didn't, send him an alert telling him so, and use the focus() method to return focus
back to the text field he just left.

4: Create a form that will contain a text box. When the user enters text, all the letters will be converted to
lowercase as soon as he clicks anywhere else in the form. (Use the onChange event handler.)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13. Regular Expressions and Pattern
Matching

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.1 What Is a Regular Expression?
A user is asked to fill out an HTML form and provide his name, address, and birth date. Before sending the form off to a
server for further processing, a JavaScript program checks the form to make sure the user actually entered something,
and that the information is in the requested format. We saw in the last chapter some basic ways that JavaScript can
check form information, but now with the addition of regular expressions, form validation can be much more
sophisticated and precise. Before getting into form validation, we will delve into regular expressions and how they work.
If you are savvy with Perl regular expressions (or the UNIX utilities, grep, sed, and awk), you may move rapidly
through this section, since JavaScript regular expressions, for the most part, are identical to those found in Perl.

A regular expression is really just a sequence or pattern of characters that is matched against a string of text when
performing searches and replacements. A simple regular expression consists of a character or set of characters that
matches itself. The regular expression is normally delimited by forward slashes; for example, /abc/.

Like Perl, JavaScript[1] provides a large variety of regular expression metacharacters to control the way a pattern is
found. The metacharacters are used to control the search pattern; you can look for strings containing only digits, only
alphas, a digit at the beginning of the line followed by any number of alphas, a line ending with a digit, and so on. When
searching for a pattern of characters, the possibilities of fine-tuning your search are endless.

[1] JavaScript 1.2, NES 3.0 JavaScript 1.3 added toSource() method. JavaScript 1.5, NES 6.0 added m flag, non-
greedy modifier, non-capturing parentheses, lookahead assertions. ECMA 262, Edition 3.

Again, JavaScript regular expressions are used primarily to verify data input on the client side. When a user fills out a
form and presses the submit button, the form is sent to a server, and then to a CGI script for further processing.
Although forms can be validated by a CGI program, it is more efficient to take care of the validation before sending the
script to the server. This is an important function of JavaScript. The user fills out the form and JavaScript checks to see
if all the boxes have been filled out correctly, and if not, the user is told to re-enter the data before the form is
submitted to the server. Checking the form on the client side allows for instant feedback, and less travelling back and
forth between the browser and server. It may be that the CGI program does its own validation anyway, but if
JavaScript has already done the job, it will still save time and inconvenience for the user. With the power provided by
regular expressions, the ability to check for any type of input, such as e-mail addresses, passwords, social security
numbers, and birthdates is greatly simplified.

The first part of this chapter delves into the construction of regular expressions and how to use regular expression
metacharacters. The second part of the chapter applies this information to validating form input.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.2 Creating a Regular Expression
A regular expression is a pattern of characters. JavaScript regular expressions are objects. When you create a regular
expression, you test the regular expression against a string. For example, the regular expression /green/ might be
matched against the string "The green grass grows". If green is contained in the string, then there is a successful
match.

Building a regular expression is like building a string. If you recall, you can create a String object the literal way or you
can use the String() constructor method. To build a regular expression object, you can assign a literal regular
expression to a variable, or you can use the RegExp constructor to create and return a regular expression object.

13.2.1 The Literal Way

To create a regular expression object with the literal notation, you assign the regular expression to a variable. The
regular expression is a pattern of characters enclosed in forward slashes. After the closing forward slash, options may
be provided to modify the search pattern. The options are i, g, and m. See Table 13.1.

Table 13.1. Options used for modifying search patterns.
Option Purpose

i Used to ignore case

g Used to match for all occurrences of the pattern in the string

m Used to match over multiple lines

FORMAT

var variable_name = /regular expression/options;

Example:

var myreg = /love/;
var reobj = /san jose/ig;

If you are not going to change the regular expression, say, if it is hard-coded right into your script, then this literal
notation is faster, since the regular expression is evaluated at runtime.

13.2.2 The Constructor Method

The constructor method, called RegExp(), creates a RegExp object. The RegExp() constructor takes one or two
arguments. The first argument is the regular expression; it is a string representing the regular expression, for example,
"green" represents the literal regular expression /green/. The second optional argument is called a flag such as i for
case insensitivity or g for global. The constructor method is used when the regular expression is being provided from
some other place, such as from user input, and may change throughout the run of the program. This method is handled
at runtime.

FORMAT

var variable_name = new RegExp("regular expression", "options");

Example:

var myreg = new RegExp("love");
var reobj = new RegExp("san jose", "ig");

Testing the Expression

The RegExp object has two methods that can be used to test for a match in a string, the test() method and the exec()
method, which are quite similar. The test() method searches for a regular expression in a string and returns true if it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method, which are quite similar. The test() method searches for a regular expression in a string and returns true if it
matched and false if it didn't. The exec() method also searches for a regular expression in a string. If the exec()
method succeeds, it returns an array of information including the search string, and the parts of the string that
matched. If it fails, it returns null. This is similar to the match() method of the String object. Table 13.2 summarizes the
methods of the RegExp object.

Table 13.2. Methods of the RegExp object.
Method What It Does

exec Executes a search for a match in a string and returns an array

test Tests for a match in a string and returns either true or false

The test() Method

The RegExp object's test() method is used to see if a string contains the pattern represented in the regular expression.
It returns a true or false Boolean value. After the search, the lastIndex property of the RegExp object contains the
position in the string where the next search would start. (A string starts at character position 0.) If a global search is
done, then the lastIndex property contains the starting position after the last pattern was matched. (See Example 13.4
to see how the lastIndex property is used.)

Steps to test for a match:

1. Assign a regular expression to a variable.

2. Use the regular expression test() method to see if there is a match. If there is a match, the test() method
returns true; otherwise, returns false. There are also four string methods that can be used with regular
expressions. (See "String Methods Using Regular Expressions" on page 408.)

FORMAT

var string="String to be tested goes here";
var regex = /regular expression/; // Literal way
var regex=new RegExp("regular expression"); // Constructor way
regex.test(string); // Returns either true or false

or

/regular expression/.test("string");

Example:

var myString="She wants attention now!";
var regex = /ten/ // Literal way
var regex=new RegExp("ten"); // Constructor way
regex.test(myString); // Looking for "ten" in myString

or

/ten/.test("She wants attention now!");

Example 13.1

 <html>
 <head>
 <title>Regular Expression Objects the Literal Way</title>
 <script language = "JavaScript">
1 var myString="My gloves are worn for wear.";
2 var regex = /love/; // Create a regular expression object
3 if (regex.test(myString)){
4 alert("Found pattern!");
 }
 else{
5 alert("No match.");
 }
 </script>
 </head><body></body>
 </html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </html>

EXPLANATION

1. "My gloves are worn for wear." is assigned to a variable called myString.

2. The regular expression /love/ is assigned to the variable called regex. This is the literal way of creating a
regular expression object.

3. The test() method for the regular expression object tests to see if myString contains the pattern, love. If love is
found within gloves, the test() method will return true.

4. The alert dialog box will display Found pattern! if the test() method returned true.

5. If the pattern /love/ is not found in the myString, the test() method returns false, and the alert dialog box will
display its message, No match.

Example 13.2

 <head>
 <title>Regular Expression Objects with the Constructor</title>
 <script language = "JavaScript">
1 var myString="My gloves are worn for wear.";
2 var regex = new RegExp("love"); // Creating a regular
 // expression object
3 if (regex.test(myString)){
4 alert("Found pattern love!");
 }
 else{
5 alert("No match.");
 }
 </script>
 </head><body></body>
 </html>

EXPLANATION

1 The variable called myString is assigned "My gloves are worn for wear."

2 The RegExp() constructor creates a new regular expression object, called regex. This is the
constructor way of creating a regular expression object. It is assigned the string "love", the regular
expression.

3 The test() method for the regular expression object tests to see if myString contains the pattern, love.
If it finds love within gloves, it will return true.

4, 5 The alert dialog box will display Found pattern! if the test() method returned true, or No match. if it
returns false. See Figure 13.1.

Figure 13.1. "My gloves are worn for wear." contains the pattern love.

The exec() Method

The exec() method executes a search to find a match for a specified pattern in a string. If it doesn't find a match,
exec() returns null; otherwise it returns an array containing the string that matched the regular expression.

FORMAT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FORMAT

array = regular_expression.exec(string);

Example:

list = /ring/.exec("Don't string me along, just bring me the goods.");

Example 13.3

 <html>
 <head>
 <title>The exec() method</title>
 <script language = "JavaScript">
1 var myString="My lovely gloves are worn for wear, Love.";
2 var regex = /love/i; // Create a regular expression object
3 var array=regex.exec(myString);
4 if (regex.exec(myString)){
 alert("Matched! " + array);
 }
 else{
 alert("No match.");
 }
 </script>
 <body></body>
 </html>

EXPLANATION

1. The string "My gloves are worn for wear." is assigned to myString.

2. The regular expression /love/ is assigned to the variable regex.

3. The exec() method returns an array of values that were found.

4. If the exec() method doesn't return null, then there was a match. See Figure 13.2.

Figure 13.2. The array returned by exec() contains love.

13.2.3 Properties of the RegExp Object

There are two types of properties that can be applied to a RegExp object. The first type is called a class property (see
Table 13.3) and applies to the RegExp object as a whole, not a simple instance of a regular expression object. For
example, the input property contains the last string that was matched, and is applied directly to the RegExp object as
RegExp.input. The other type of property is called an instance property and is applied to an instance of the object (see
Table 13.4); for example, mypattern.lastIndex refers to the position within the string where the next search will start
for this instance of the regular expression object, called mypattern.

Table 13.3. Class properties of the RegExp object.
Property What It Describes

input Represents the input string being matched

lastMatch Represents the last matched characters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lastParen Represents the last parenthesized substring pattern match

leftContext Represents the substring preceding the most recent pattern match

RegExp.$* Boolean value that specifies whether strings should be searched over multiple lines; same as the
multiline property

RegExp.$& Represents the last matched characters

RegExp.$_ Represents the string input that is being matched

RegExp.$' Represents the substring preceding the most recent pattern match (see the leftContext
property)

RegExp.$' Represents the substring following the most recent pattern match (see the rightContext
property)

RegExp.$+ Represents the last parenthesized substring pattern match (see the lastParen property)

RegExp.$1,$2,$3... Used to capture substrings of matches

rightContext Represents the substring following the most recent pattern match

Table 13.4. Instance properties of the RegExp object.
Property What It Describes

global Boolean to specify if the g option was used to check the expression against all possible matches in the
string

ignoreCase Boolean to specify if the i option was used to ignore case during a string search

lastIndex If the g option was used, specifies the character position immediately following the last match found by
exec() or test()

multiline Boolean to test if the m option was used to search across multiple lines

source The text of the regular expression

Example 13.4

 <html>
 <head><title>The test() method</title>
 </head>
 <body bgcolor=silver>

 <script language = "JavaScript">
1 var myString="I love my new gloves!";
2 var regex = /love/g; // Create a regular expression object
3 var booleanResult = regex.test(myString);
 if (booleanResult != false){
4 document.write("Tested regular expression "+
 regex.source + ". The result is "
 + booleanResult + "");
 document.write(".
Starts searching again at position " +
5 regex.lastIndex + " in string \"" +
6 RegExp.input + "\"
");
 document.write("The last matched characters were: "+
7 RegExp.lastMatch+"
");
 document.write("The substring preceding the last match is:
8 "+ RegExp.leftContext+"
");
 document.write("The substring following the last match is:
9 "+ RegExp.rightContext+"
");
 }
 else{ alert("No match!"); }
 </script></body>
 </html>

EXPLANATION

1. The string object to be tested is created.

2. A regular expression object, called regex, is created.

3. The test() method returns true or false if the regular expression is matched in the string.

4. The source property is applied to regex, an instance of a RegExp object. It contains the text of the regular
expression, /love/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expression, /love/.

5. The lastIndex property is applied to an instance of a RegExp object. It represents the character position right
after the last matched string.

6. The input class property represents the input string on which the pattern matching (regular expression) is
performed.

7. lastMatch is a class property that represents the characters that were last matched.

8. leftContext is a class property that represents the left-most substring pattern that precedes the last pattern that
was matched; here, whatever string comes before /love/.

9. rightContext is a class property that represents the right-most substring pattern that follows the last pattern
that was matched; here, whatever string comes after /love/. Output is shown in Figure 13.3.

Figure 13.3. Regular expression properties.

13.2.4 String Methods Using Regular Expressions

In addition to the RegExp object's test() and exec() methods, the String object provides four methods that also work
with regular expressions.

Table 13.5. String object regular expression methods.
Method What It Does

match(regex) Returns substring in regex or null

replace(regex, replacement) Substitutes regex with replacement string

search(regex) Finds the starting position of regex in string

split(regex) Removes regex from string for each occurrence

The match() Method

The match() method, like the exec() method, is used to search for a pattern of characters in a string and returns an
array where each element of the array contains each matched pattern that was found. If no match is found, returns
null. With the g flag, match() searches globally through the string for all matching substrings.

FORMAT

array = String.match(regular_expression);

Example:

matchList = "Too much, too soon".match(/too/ig);

Example 13.5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13.5

 <html>
 <head>
 <title>The match() Method</title>
 </head><body>

 <script language = "JavaScript">
1 var matchArray = new Array();
2 var string="I love the smell of clover."
3 var regex = /love/g;
4 matchArray=string.match(regex);
5 document.write("Found "+ matchArray.length +" matches.
");
 </script>
 </body>
 </html>

EXPLANATION

1. A new array object is created.

2. The variable called string is assigned "I love the smell of clover."

3. The regular expression called regex is assigned the search pattern love. The g modifier performs a global
search: multiple occurrences of the pattern will be returned.

4. The match() method is applied to the string. The regular expression is passed as an argument. Each time the
pattern /love/ is found in the string it will be assigned as a new element of the array called matchArray. If the g
modifier is removed, only the first occurrence of the match will be returned, and only one element will be
assigned to the array matchArray.

5. The length of the array, matchArray, tells us how many times the match() method found the pattern /love/. See
Figure 13.4.

Figure 13.4. The pattern love was found twice in the string.

The search() Method

The search() method is used to search for a pattern of characters within a string, and returns the index position of
where the pattern was found in the string. The index starts at zero. If the pattern is not found, –1 is returned. For basic
searches, the String object's indexOf() method works fine, but if you want more complex pattern matches, the search()
method is used, allowing you to use regular expression metacharacters to further control the expression. (See "Getting
Control—The Metacharacters" on page 414.)

FORMAT

var index_value = String.search(regular_expression);

Example:

var position = "A needle in a haystack".search(/needle/);

Example 13.6

 <html>
 <head>
 <title>The search() Method</title>
 </head><body bgcolor="yellow">

 <script language = "JavaScript">
1 var myString="I love the smell of clover."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 var myString="I love the smell of clover."
2 var regex = /love/;
3 var index=myString.search(regex);
 document.write("Found the pattern "+ regex+ " at position "
 +index+"
");
 </script>
 </body>
 </html>

EXPLANATION

1. The variable called myString is assigned the string, "I love the smell of clover."

2. The variable called regex is assigned the regular expression /love/. With the search() method, using the g
modifier is irrelevant. The index position of the pattern where it is first found in the string, is returned.

3. The String object's search() method returns the index position, starting at zero, where the regular expression,
regex, is found. See Figure 13.5.

Figure 13.5. The search() method found the pattern starting at character
position 2, where 0 is the beginning character.

The replace() Method

The replace() method is used to search for a string and replace the string with another string. The i modifier is used to
turn off case sensitivity and the g modifier makes the replacement global; that is, all occurrences of the found pattern
are replaced with the new string. The replace() method is also used with the grouping metacharacters. (See "Grouping
or Clustering" on page 442.)

FORMAT

string = oldstring.replace(regular_expression, replacement_value);

Example:

var str1 = "I am feeling blue".replace(/blue/, "upbeat");
 (str1 is assigned: "I am feeling upbeat.")

Example 13.7

 <html>
 <head>
 <title>The replace() Method</title>
 </head>
 <body bgcolor="yellow">

 <script language = "JavaScript">
1 var myString="Tommy has a stomach ache."
2 var regex = /tom/i; // Turn off case sensitivity
3 var newString=myString.replace(regex, "Mom");
 document.write(newString +"
");
 </script>
 </body>
 </html>

EXPLANATION

1. The variable called myString is assigned the string "Tommy has a stomach ache." Note that the pattern Tom or
tom is found in the string twice.

2. The variable called regex is assigned the regular expression /tom/i. The i modifier turns off the case sensitivity.
Any combination of uppercase and lowercase letters in the pattern tom will be searched for within the string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The String object's replace() method will search for the pattern, regex, in the string and if it finds the pattern
will replace it with Mom. If the g modifier were used, all occurrences of the pattern would be replaced with
Mom. For example, /tom/ig would result in "Mommy has a sMomach ache."

Figure 13.6. The first occurrence of Tom, uppercase or lowercase, is replaced with
Mom.

The split() Method

The String object's split() method splits a single text string into an array of substrings. In a real-world scenario, it would
be like putting little crayon marks at intervals on a piece of string and then cutting the string everywhere a mark
appeared, thus ending up with a bunch of little strings. In the JavaScript world, the crayon mark is called a delimiter,
which is a character or pattern of characters that marks where the string is to be split up. When using the String
object's split() method, if the words in a string are separated by commas, then the comma would be the delimiter and if
the words are separated by colons, then the colon is the delimiter. The delimiter can contain more complex
combinations of characters if regular expression metacharacters are used.

FORMAT

array = String.split(/delimiter/);

Example:

splitArray = "red#green#yellow#blue".split(/#/);
 (splitArray is an array of colors. splitArray[0] is "red")

Example 13.8

 <html>
 <head><title>The split() Method</title></head>
 <body>

 <script language = "JavaScript">
1 var splitArray = new Array();
2 var string="apples:pears:peaches:plums:oranges";
3 var regex = /:/;
4 splitArray=string.split(regex); // Split the string by colons
5 for(i=0; i < splitArray.length; i++){
 document.write(splitArray[i] + "
");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. A new array object is created.

2. The variable called string is assigned a colon-delimited string of text.

3. The variable called regex is assigned the regular expression /:/.

4. The String object's split() method splits the string using colons as the string delimiter (marks the separation
between words), and creates an array called splitArray.

5. Each of the array elements is displayed in the page. See Figure 13.7.

Figure 13.7. The string is split on colons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.7. The string is split on colons.

Example 13.9

 <html>
 <head>
 <title>The split() Method</title>
 </head>

 <script language = "JavaScript">
1 var splitArray = new Array();
2 var myString="apples pears,peaches:plums,oranges";
3 var regex = /[\t:,]/; // Delimeter is a tab, colon, or comma
4 splitArray=myString.split(regex);
 for(i=0; i < splitArray.length; i++){
5 document.write(splitArray[i] + "
");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. A new array object is created.

2. The string "apples pears,peaches:plums,oranges" is assigned to the variable called myString. The delimiters are
a tab, comma, and colon.

3. The regular expression /[\t:,]/ is assigned to the variable called regex.

4. The String object's split() method splits up the string using a tab, colon, or comma as the delimiter. The
delimiting characters are enclosed in square brackets, which in regular expression parlance is called a character
class. (See "Getting Control—The Metacharacters" on page 414.) In simple terms, any one of the characters
listed within the brackets is a delimiter in the string. The split() method will search for any one of these
characters and split the string accordingly, returning an array called splitArray.

5. Each of the array elements is displayed in the page. See Figure 13.8.

Figure 13.8. The string is split on tabs, colons, and commas.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.3 Getting Control—The Metacharacters
Regular expression metacharacters are characters that do not represent themselves. They are endowed with special
powers to allow you to control the search pattern in some way (e.g., find the pattern only at the beginning of line, or at
the end of the line, or if it starts with an upper- or lowercase letter, etc.). Metacharacters will lose their special meaning
if preceded with a backslash. For example, the dot metacharacter represents any single character, but when preceded
with a backslash is just a dot or period.

If you see a backslash preceding a metacharacter, the backslash turns off the meaning of the metacharacter, but if you
see a backslash preceding an alphanumeric character in a regular expression, then the backslash is used to create a
metasymbol. A metasymbol provides a simpler form to represent some of regular expression metachacters. For
example, [0-9] represents numbers in the range between 0 and 9, and \d, the metasymbol, represents the same thing.
[0-9] uses the bracketed character class, whereas \d is a metasymbol (see Table 13.6).

Example 13.10

/^a...c /

EXPLANATION

This regular expression contains metacharacters (see Table 13.6). The first one is a caret (^). The caret metacharacter
matches for a string only if it is at the beginning of the line. The period (.) is used to match for any single character,
including a whitespace. This expression contains three periods, representing any three characters. To find a literal
period or any other character that does not represent itself, the character must be preceded by a backslash to prevent
interpretation.

The expression reads: Search at the beginning of the line for an a, followed by any three single characters, followed by
a c. It will match, for example, abbbc, a123c, a c, aAx3c, and so on, but only if those patterns were found at the
beginning of the line.

Table 13.6. Metacharacters and metasymbols.
Metacharacter/Metasymbol What It Matches

Character Class: Single Characters and Digits

. Matches any character except newline

[a–z0–9] Matches any single character in set

[^a–z0–9] Matches any single character not in set

\d Matches one digit

\D Matches a non-digit, same as [^0–9]

\w Matches an alphanumeric (word) character

\W Matches a non-alphanumeric (non-word) character

Character Class: Whitespace Characters

\0 Matches a null character

\b Matches a backspace

\f Matches a formfeed

\n Matches a newline

\r Matches a return

\s Matches whitespace character, spaces, tabs, and newlines

\S Matches non-whitespace character

\t Matches a tab

Character Class: Anchored Characters

^ Matches to beginning of line

$ Matches to end of line

\A Matches the beginning of the string only

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\b Matches a word boundary (when not inside [])

\B Matches a non-word boundary

\G Matches where previous m//g left off

\Z Matches the end of the string or line

\z Matches the end of string only

Character Class: Repeated Characters

X? Matches 0 or 1 of x

X* Matches 0 or more of x

X+ Matches 1 or more of x

(xyz)+ Matches one or more patterns of xyz

X{m,n} Matches at least m of x and no more than n of x

Character Class: Alternative Characters

was|were|will Matches one of was, were, or will

Character Class: Remembered Characters

(string) Used for backreferencing (see "Remembering or Capturing" on page 443)

\1 or $1 Matches first set of parentheses

\2 or $2 Matches second set of parentheses

\3 or $3 Matches third set of parentheses

New with JavaScript 1.5

(?:x) Matches x but does not remember the match. These are called non-capturing
parentheses. The matched substring cannot be recalled from the resulting array's
elements [1], ..., [n] or from the predefined RegExp object's properties $1, ..., $9.

x(?=y) Matches x only if x is followed by y. For example, /Jack(?=Sprat)/ matches Jack only
if it is followed by >Sprat. /Jack(?=Sprat|Frost)/ matches Jack only if it is followed
by Sprat or Frost. However, neither Sprat nor Frost are part of the match results.

x(?!y) Matches x only if x is not followed by y. For example, /\d+(?!\.)/ matches a number
only if it is not followed by a decimal point. /\d+(?!\.)/.exec("3.141") matches 141
but not 3.141.

If you are searching for a particular character within a regular expression, you can use the dot metacharacter to
represent a single character, or a character class that matches on one character from a set of characters. In addition to
the dot and character class, JavaScript has added some backslashed symbols (called metasymbols) to represent single
characters. See Table 13.7 for the single-character metacharacters, and Table 13.8 on page 423 for a list of
metasymbols.

Table 13.7. Single-character and single-digit metacharacters.
Metacharacter What It Matches

. Matches any character except newline

[a–z0–9_] Matches any single character in set

[^a–z0–9_] Matches any single character not in set

13.3.1 The Dot Metacharacter

The dot metacharacter matches for any single character with exception of the newline character. For example, the
regular expression /a.b/ is matched if the string contains an a, followed by any one single character (except the \n),
followed by b, whereas the expression /.../ matches any string containing at least three characters.

Example 13.11

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13.11

 <html><head><title>The dot Metacharacter</title>
 </head>
 <body>
 <script language="JavaScript">
1 var textString="Norma Jean";
2 var reg_expression = /N..ma/;

3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
4 if (reg_expression.test(textString)){ // if (result)
 document.write("The reg_ex /N..ma/ matched the
 string\""+ textString +"\".
");
 }
 else{
5 document.write("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The variable textString is assigned the string "Norma Jean".

2. The regular expression /N..ma/ is assigned to the variable reg_expression. A match is found if the string being
tested contains an uppercase N followed by any two single characters (each dot represents one character), and
an m and an a. It would find Norma, No man, Normandy, etc.

3. The test method returns true if the string textString matches the regular expression and false if it doesn't. The
variable result contains either true or false.

4. If the string "Norma Jean" contains regular expression pattern /N..ma/, the return from the test method is true,
and the output is sent to the screen as shown in Figure 13.9.

Figure 13.9. The user entered Norma Jean, an N followed by any 2
characters, and ma.

5. If the pattern is not found, No Match! is displayed on the page.

13.3.2 The Character Class

A character class represents one character from a set of characters. For example [abc] matches either an a, b, or c;
and [a-z] matches one character from a set of characters in the range from a to z; and [0-9] matches one character in
the range of digits between 0 to 9. If the character class contains a leading caret, ^, then the class represents any one
character not in the set; thus, [^a-zA-Z] matches a single character not in the range from a to z or A to Z, and [^0-9]
matches a single digit not in the range between 0 and 9.

JavaScript provides additional symbols, called metasymbols, to represent a character class. The symbols \d and \D
represent a single digit and a single non-digit, respectively; the same as [0-9] and [^0-9]; whereas \w and \W
represent a single word character and a single non-word character, respectively; same as [A-Za-z_0-9] and [^A-Za-
z_0-9].

Example 13.12

 <html><head><title>The Character Class</title>
 </head>
 <body>
 <script language="JavaScript">
1 var reg_expression = /[A-Z][a-z]eve/;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 var reg_expression = /[A-Z][a-z]eve/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The reg_ex /[A-Z][a-z]eve/ matched the
 string\""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The variable is assigned a bracketed regular expression containing alphanumeric characters. This regular
expression matches a string that contains at least one uppercase character ranging between A and Z, followed
by one lowercase character ranging between a and z, followed by eve.

2. The variable textString is assigned user input, in this example Steven lives in Cleveland was entered.

3. The regular expression test() method will return true since Steven contains an uppercase character, followed by
a lowercase character, and eve. Cleveland also matches the pattern. The variable result contains either true or
false. See the output in Figures 13.10 and 13.11.

Figure 13.10. The user entered Steven lives in Cleveland, one uppercase
letter [A-Z], followed by one lowercase letter [a-z], followed by eve. This

matches both Steven and Cleveland.

Figure 13.11. When the user entered Believe! (top), it didn't match (bottom).
It would have matched if he had entered BeLieve. Why?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13.13

 <html><head><title>The Character Class</title>
 </head>
 <body>
 <script language="JavaScript">
 // Character class
1 var reg_expression = /[A-Za-z0-9_]/; // A single alphanumeric
 // word character
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The reg_ex /[A-Za-z0-9_]/ matched the
 string\""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. A regular expression object, an alphanumeric character in the bracketed character class [A-Za-z0-9_] is
assigned to the variable called reg_expression. This regular expression matches a string that contains at least
one character in the character class ranging between A and Z, a and z, 0 and 9, and the underscore character,
_.

2. User input is entered in the prompt dialog box and assigned to the variable textString. In this example the user
entered Take 5.

3. The regular expression test method will return true since this string Take 5 contains at least one alphanumeric
character. See Figure 13.12.

Figure 13.12. User entered Take 5 (top). The string contained at least one
alphanumeric character (bottom).

Example 13.14

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13.14

 <html><head><title>The Character Class and Negation</title>
 </head>
 <body>
 <script language="JavaScript">
 // Negation within a Character Class
1 var reg_expression = /[^0-9]/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The reg_ex /[^0-9]/ matched the
 string\""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The caret inside a character class, when it is the first character after the opening bracket, creates a negation,
meaning any character not in this range. This regular expression matches a string that does not contain a
number between 0 and 9.

2. User input is assigned to the variable textString. In this example, abc was entered.

3. The regular expression test() method will return true since the string abc does not contain a character ranging
from 0 to 9.

Figure 13.13. The user entered abc. It contains a character that is not in the range
between 0 and 9.

13.3.3 Metasymbols

Metasymbols offer an alternative way to represent a character class. For example, instead of representing a number as
[0-9], it can be represented as \d, and the alternative for representing a non-number [^0-9] is \D. Metasymbols are
easier to use and to type than metacharacters.

Table 13.8. Metasymbols.
Symbol What It Matches Character Class

\d One digit [0-9]

\D One non-digit [^0-9]

\s One whitespace character (tab, space, newline, carriage return, formfeed, vertical tab)

\S One non-space character

\w One word character [A-Za-z0-9_]

\W One non-word character [^A-Za-z0-9]

Example 13.15

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13.15

 <html><head><title>The Digit Meta Symbol</title>
 </head>
 <body>
 <script language="JavaScript">
1 var reg_expression = /6\d\d/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /6\\d\\d/ matched
 the string\""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The variable is assigned a regular expression containing the number 6, followed by two single digits. The
metasymbol \d represents the character class [0-9].

2. The variable textString is assigned user input; in this example, 126553 was entered.

3. The regular expression test() method will return true since this string abc does not contains a 6 followed by any
two digits. See Figure 13.14.

Figure 13.14. The user entered 126553. It contains a 6 followed by any two
digits.

Example 13.16

 <html><head><title>The Digit Meta Symbol Negated</title>
 </head>
 <body>
 <script language="JavaScript">
1 var reg_expression = /[a-z]\D\D/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /[a-z]\\D\\D/
 matched the string\"" + textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The variable is assigned a regular expression containing a letter, followed by two single non-digits. The
metasymbol \D represents the character class [^0-9].

2. The variable textString is assigned user input; in this example, Hello! was entered.

3. The regular expression test() method will return true since this string Hello!! matches a lowercase letter,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The regular expression test() method will return true since this string Hello!! matches a lowercase letter,
followed by two non-digit characters. See Figure 13.15.

Figure 13.15. The user entered a lowercase letter followed by two non-digits.

Example 13.17

 <html><head><title>Word and Space Metasymbols</title>
 </head>
 <body>
 <script language="JavaScript">
1 var reg_expression = /\w\s\w\W/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /\\w\\s\\w\\W/
 matched the string\""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The variable is assigned a regular expression containing an alphanumeric word character \w, followed by a
space \s, followed by another alphanumeric word character, followed by a non-alphanumeric word character
\W. The metasymbol \w represents the character class [A-Za-z0-9_]. The metasymbol \W represents the
character class [^A-Za-z0-9_], and the metasymbol \s represents a whitespace character (tab, space, newline,
carriage return, formfeed).

2. The variable textString is assigned user input; in this example, ABC D% was entered first.

3. The regular expression test() method will return true since the string ABC D% matches an alphanumeric
character (C), followed by a space, another alphanumeric character (D) and a non-alphanumeric character (%)
(see Figure 13.16). An example of output where the pattern failed is shown in Figure 13.17.

Figure 13.16. The user entered ABC D%. It contained a word character,
followed by a whitespace, another word character, followed by a non-

whitespace.

Figure 13.17. The user entered ABCD#. To match, the string needs a space
between the C and D.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

between the C and D.

13.3.4 Metacharacters to Repeat Pattern Matches

In the previous examples, the metacharacter matched on a single character. What if you want to match on more than
one character? For example, let's say you are looking for all lines containing names and the first letter must be in
uppercase, which can be represented as [A-Z], but the following letters are lowercase and the number of letters varies
in each name. [a-z] matches on a single lowercase letter. How can you match on one or more lowercase letters, or zero
or more lowercase letters? To do this you can use what are called quantifiers. To match on one or more lowercase
letters, the regular expression can be written /[a-z]+/ where the + sign means "one or more of the previous
characters"; in this case, one or more lowercase letters. JavaScript provides a number of quantifiers as shown in the
Table 13.9.

Table 13.9. Quantifiers: The greedy metacharacters.
Metacharacter What It Matches

x? Matches 0 or 1 of x

(xyz)? Matches zero or one pattern of xyz

x* Matches 0 or more of x

(xyz)* Matches zero or more patterns of xyz

x+ Matches 1 or more of x

(xyz)+ Matches one or more patterns of xyz

x{m,n} Matches at least m of x and no more than n of x

The Greed Factor

Normally quantifiers are "greedy"; that is, they match on the largest possible set of characters starting at the left-hand
side of the string and searching to the right, looking for the last possible character that would satisfy the condition. For
example, given the string:

var string="ab123456783445554437AB"

and the regular expression:

/ab[0-9]*/

If the replace() method were to substitute what is matched with an "X":

string=string.relace(/ab[0-9]/, "X");

the resulting string would be:

"XAB"

The asterisk is a greedy metacharacter. It matches for zero or more of the preceding character. In other words, it
attaches itself to the character preceding it; in the above example, the asterisk attaches itself to the character class [0-
9]. The matching starts on the left, searching for ab followed by zero or more numbers in the range between 0 and 9. It
is called greedy because the matching continues until the last number is found; in this example, the number 7. The
pattern ab and all of the numbers in the range between 0 and 9 are replaced with a single X.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pattern ab and all of the numbers in the range between 0 and 9 are replaced with a single X.

Greediness can be turned off so that instead of matching on the maximum number of characters, the match is made on
the minimal number of characters found. This is done by appending a question mark after the greedy metacharacter.
See Example 13.18.

Example 13.18

 <html><head><title></title>
 </head>
 <body>
 <script language="JavaScript">
1 var reg_expression = /\d\.?\d/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /\\d\\.?\\d/
 matched the string\""+textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The variable is assigned a regular expression containing a decimal character \d, and followed by either one or
zero literal periods, \.?. The question mark (zero or one) controls the character preceding it, in this case a
period. There is either one period or no period at all in the string being matched.

2. The variable textString is assigned user input; in this example, 3.7 was entered.

3. The regular expression test method will return true since the string 3.7 matches a decimal number, 3, followed
by a period (or not one) and followed by another decimal number, 7. See the examples in Figure 13.18.

Figure 13.18. The user entered 3.7, or number, period, number (top); the
user entered 456, or number, no period, number (middle); the user entered
5A6, but there must be at least two consecutive digits for a match (bottom).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13.19

 <html><head><title></title>
 </head>
 <body>
 <script language="JavaScript">
 // Greediness
1 var reg_expression = /[A-Z][a-z]*\s/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /[A-Z][a-z]*\\s/
 matched the string"+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The variable is assigned a regular expression containing an uppercase letter, [A-Z], followed by zero or more
lowercase letters, [a-z]*, and a space, \s. There are either zero or more lowercase letters.

2. The variable textString is assigned user input; in this example, Danny boy was entered.

3. The regular expression test method will return true since the string Danny boy matches an uppercase letter D,
followed by zero or more lowercase letters anny, and a space. See Figure 13.19.

Figure 13.19. The user entered Danny boy, or one uppercase letter, zero or
more lowercase letters, and a space (top); the user entered DANNY BOY, or

one uppercase letter, zero lowercase letters, and a space (bottom).

Example 13.20

 <html><head><title></title>
 </head>
 <body>
 <script language="JavaScript">
1 var reg_expression = /[A-Z][a-z]+\s/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /[A-Z][a-z]+\\s/
 matched the string\""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The regular expression reads: Search for an uppercase letter, followed by one or more lowercase letters,
followed by a space.

2. The user is prompted for input.

3. The regular expression test() method checks that the string textString entered by the user, matches the regular
expression and returns true or false. See Figure 13.20.

Figure 13.20. The user entered Danny Boy or one uppercase letter, one or
more lowercase letters, and a space (top); the user entered DannyBoy and

gets no match, since there was no space (bottom).

Example 13.21

 <html><head><title></title>
 </head>
 <body>
 <script language="JavaScript">
1 var reg_expression = /abc\d{1,3}\.\d/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression
 /abc\\d{1,3}\\.\\d/ matched the string\""+
 textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The variable is assigned a regular expression containing the pattern abc\d{1,3}\.\d, where abc is followed by at

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. The variable is assigned a regular expression containing the pattern abc\d{1,3}\.\d, where abc is followed by at
least one digit, repeated by up to three digits, followed by a literal period, and another another digit, \d.

2. The variable textString is assigned user input; here, abc456.5xyz was entered.

3. The regular expression contains the curly brace {} metacharacters, representing the number of times the
preceding expression will be repeated. The expression reads: Find at least one occurrence of the pattern \d and
as many as three in a row. See Figure 13.21.

Figure 13.21. The user entered abc followed by between one and three
numbers, followed by a literal period, and xyz (top); the entered string

matched true (bottom).

Example 13.22

 <html><head><title></title>
 </head>
 <body>
 <script language="JavaScript">
 //Repeating patterns
1 var reg_expression = /#\d{5}\.\d/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /#\\d{5}\\.\\d/
 matched the string ""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The variable is assigned a regular expression that reads: Find a # sign, followed by exactly five repeating digits
\d{5}, a period, and another digit \d.

2. The user is prompted for input.

3. The test() method returns true if the regular expression pattern was found in the input string. See Figure 13.22.

Figure 13.22. The user entered #34234.6, or a # sign, followed by five
repeating digits, a period, and a number (top). This returns true. The user
entered abac#12345.56789 (middle). This returns true; but when the user
entered #234.555 (there are not five repeating digits after the # sign), no

match was made (bottom).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

match was made (bottom).

Example 13.23

 <html><head><title></title>
 </head>
 <body>
 <script language="JavaScript">
 //Repeating patterns
1 var reg_expression = /5{1,}\.\d/;
 var textString=prompt("Type a string of text","");
 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression #\\5{1,}\\.\\d/
 matched the string\" "+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

Figure 13.23. The user entered abc5555555.2, or the number 5 at least 1 time,
followed by a literal period, and any digit, \d (top). This returns true; the user

entered 5.6 (bottom). This also returns true.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Metacharacters That Turn off Greediness

By placing a question mark after a greedy quantifier, the greed is turned off and the search ends after the first match,
rather than the last one.

Example 13.24

 <html><head><title>Greed</title>
 </head>
 <body bgcolor=lightblue>
 <script language="JavaScript">
1 var myString="abcdefghijklmnopqrstuvwxyz";
 document.write("Old string:
 "+myString+"
");
2 myString=myString.replace(/[a-z]+/, "XXX");
 document.write("New string: "+ myString+"
");
 </script>
 </body>
 </html>

EXPLANATION

1. The variable, called myString, is assigned a string of lowercase letters.

2. The regular expression reads: Search for one or more lowercase letters, and replace them with XXX. The +
metacharacter is greedy. It takes as many characters as match the expression; i.e., it starts on the left-hand
side of the string grabbing as many lowercase letters as it can find until the end of the string.

3. The value of myString is printed after the substitution, as shown in Figure 13.24.

Figure 13.24. The + sign is greedy. One or more lowercase letters are
replaced with XXX; i.e., the whole string.

Example 13.25

 <html><head><title></title>
 </head>
 <body>
 <script language="JavaScript">
1 var myString="abcdefghijklmnopqrstuvwxyz";
 document.write("Old string: "
 +myString+"
");
2 myString=myString.replace(/[a-z]+?/, "XXX");
 document.write("New string: "+myString+"
");
 </script>
 </body>
 </html>

EXPLANATION

1. The variable called myString is assigned a string of lowercase letters, just exactly like the last example.

2. The regular expression reads: Search for one or more lowercase letters, but after the + sign, there is a
question mark. The question mark turns off the greed factor. Now instead of taking as many lowercase letters
as it can, this regular expression search stops after it finds the first lowercase character, and then replaces that
character with XXX.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.25. This is not greedy. Output from Example 13.25.

13.3.5 Anchoring Metacharacters

Often it is necessary to anchor a metacharacter down, so that it matches only if the pattern is found at the beginning or
end of a line, word, or string. These metacharacters are based on a position just to the left or to the right of the
character that is being matched. Anchors are technically called zero-width assertions because they correspond to
positions, not actual characters in a string; for example, /^abc/ will search for abc at the beginning of the line, where
the ^ represents a position, not an actual character. See Table 13.10 for a list of anchoring metacharacters.

Table 13.10. Anchors (assertions).
Metacharacter What It Matches

^ Matches to beginning of line or beginning of string

$ Matches to end of line or end of a string

\b Matches a word boundary (When not inside [])

\B Matches a non-word boundary

Example 13.26

 <html><head><title></title>
 </head>
 <body>
 <script language="JavaScript">
1 var reg_expression = /^Will/; // Beginning of line anchor
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /^Will/ matched
 the string\""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The variable is assigned a regular expression containing the beginning of line anchor metacharacter, the caret,
followed by Will.

2. The variable textString is assigned user input; in this example, Willie Wonker was entered.

3. The regular expression test() method will return true since this string Willie Wonker begins with Will. See Figure
13.26.

Figure 13.26. The user entered Willie Wonker. Will is at the beginning of the
line, so this tests true (top); if the user enters I know Willie, and Will is not

at the beginning of the line, the input would test false (bottom).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

at the beginning of the line, the input would test false (bottom).

Example 13.27

 <html><head><title>Beginning of Line Anchor</title>
 </head>
 <body>
 <script language="JavaScript">
1 var reg_expression = /^[JK]/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /^[JK]/ matched
 the string\""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. A regular expression contains a beginning of line anchor, the caret. The regular expression reads: Find either an
uppercase J or uppercase K at the beginning of the line or string.

2. The variable textString is assigned user input; in this example, Jack and Jill.

3. The regular expression test() method will return true since the string Jack matches an uppercase letter J and is
found at the beginning of the string. See Figure 13.27.

Figure 13.27. The string must begin with either a J or K. The user entered
Jack and Jill (top) and this returns true; the user entered Karen Evich

(bottom) and this also returns true.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13.28

 <html><head><title>End of Line Anchor</title>
 </head>
 <body>
 <script language="JavaScript">
1 var reg_expression = /50$/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /50$/ matched
 the string\""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The regular expression /50$/ is assigned to the variable. The pattern contains the dollar sign ($) metacharacter,
representing the end of line anchor only when the $ is the last character in the pattern. The expression reads:
Find a 5 and a 0 followed by a newline.

Example 13.29

 <html><head><title>Anchors</title>
 </head>
 <body>
 <script language="JavaScript">
1 var reg_expression = /^[A-Z][a-z]+\s\d$/;
 // At the beginning of the string, find one uppercase
 // letter, followed by one or more lowercase letters,
 // a space, and one digit.
2 var string=prompt("Enter a name and a number","");
3 if (reg_expression.test(string)){
 alert("It Matched!!");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The regular expression reads: Look at the beginning of the line, ^, find an uppercase letter, [A-Z], followed by
one or more lowercase letters, [a-z]+, a single whitespace, \s, and a digit at the end of the line, \d$.

2. The user is prompted for input.

3. The regular expression test() method tests to see if there was a match and returns true if so, and false if not.
See Figures 13.28 and 13.29.

Figure 13.28. The string begins with a capital letter, followed by one or more
lowercase letters, a space, and ends with one digit (left); the input sequence

matched, so this message is displayed (right).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

matched, so this message is displayed (right).

Figure 13.29. The regular expression does not match because the string ends
in more than one digit (left); the input sequence did not match, so this

message is displayed (right).

Example 13.30

 <html><head><title>The Word Boundary</title>
 </head>
 <body>
 <script language="JavaScript">
 // Anchoring a word with \b
1 var reg_expression = /\blove\b/;
 var textString=prompt("Type a string of text","");
2 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /\blove\b/
 matched the string \""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. The regular expression contains the \b metacharacter, representing a word boundary, not a specific character.
The expression reads: Find a word beginning and ending with love. This means that gloves, lover, clover, and
so on, will not be found.

2. The regular expression test() method will return true since the string love is within word boundary anchors \b.
See Figure 13.30.

Figure 13.30. The user entered I love you!. The word love is between word
boundaries (\b). The match was successfull.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.3.6 Alternation

Alternation allows the regular expression to contain alternative patterns to be matched; for example, the regular
expression /John|Karen|Steve/ will match a line containing John or Karen or Steve. If Karen, John, or Steve are all on
different lines, all lines are matched. Each of the alternative expressions is separated by a vertical bar (the pipe symbol,
|) and the expressions can consist of any number of characters, unlike the character class that only matches for one
character; thus, /a|b|c/ is the same as [abc], whereas /ab|de/ cannot be represented as [abde]. The pattern /ab|de/ is
either ab or de, whereas the class [abcd] represents only one character in the set a, b, c, or d.

Example 13.31

 <html><head><title>Alternation</title>
 </head>
 <body>
 <script language="JavaScript">
 // Alternation: this or that or whatever...
1 var reg_expression = /Steve|Dan|Tom/;
 var textString=prompt("Type a string of text","");
2 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /Steve|Dan|Tom/
 matched the string\""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script></body></html>

EXPLANATION

1. The pipe symbol, |, is used in the regular expression to match on a set of alternative patterns. If any of the
patterns, Steve, Dan, or Tom, are found, the match is successful.

2. The test() method will return true if the user enters either Steve, Dan, or Tom. See Figure 13.31.

Figure 13.31. The user entered Do you know Tommy?. Pattern Tom was
matched in the string.

Grouping or Clustering

If the regular expression pattern is enclosed in parentheses, a subpattern is created. Then, for example, instead of the
greedy metacharacters matching on zero, one, or more of the previous single characters, they can match on the
previous subpattern. Alternation can also be controlled if the patterns are enclosed in parentheses. This process of
grouping characters together is also called clustering.

Example 13.32

 <html><head><title>Grouping or Clustering</title>
 </head>
 <body>
 <script language="JavaScript">
 // Grouping with parentheses
1 var reg_expression = /^(Sam|Dan|Tom) Robbins/;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 var reg_expression = /^(Sam|Dan|Tom) Robbins/;
2 var textString=prompt("Type a string of text","");
3 var result=reg_expression.test(textString); // Returns true
 // or false
 document.write(""+result+"
");
 if (result){
 document.write("The regular expression /^(Sam|Dan|Tom)
 Robbins/ matched the string\""+ textString +"\".
");
 }
 else{
 alert("No Match!");
 }
 </script>
 </body>
 </html>

EXPLANATION

1. By enclosing Sam, Dan, and Tom in parentheses, the alternative now becomes either Sam Robbins, Dan
Robbins, or Tom Robbins. Without the parentheses, the regular expression matches Sam, or Dan, or Tom
Robbins. The caret metacharacter ^ anchors all of the patterns to the beginning of the line.

2. The user input is assigned to the variable called textString.

3. The test() method checks to see if the string contains one of the alternatives: Sam Robbins or Dan Robbins or
Tom Robbins. If it does, true is returned; otherwise, false is returned. See Figure 13.32.

Figure 13.32. The user entered Dan Robbins as one of the alternatives. Sam
Robbins or Tom Robbins would also be okay.

Remembering or Capturing

If the regular expression pattern is enclosed in parentheses, a subpattern is created. The subpattern is saved in special
numbered class properties, starting with $1, then $2, and so on. which will be applied to the RegExp object, not an
instance of the object. These properties can be used later in the program and will persist until another successful
pattern match occurs, at which time they will be cleared. Even if the intention was to control the greedy metacharacter
or the behavior of alternation as shown in the previous example, the subpatterns are saved as a side effect.[2] For
more information on this go to
http://developer.netscape.com/docs/manuals/communicator/jsguide/reobjud.hmt#1007373.

[2] It is possible to prevent a subpattern from being saved.

Example 13.33

 <html><head><title>Capturing</title>
 </head>
 <body>
 <script language="JavaScript">
1 textString = "Everyone likes William Rogers and his friends."
2 var reg_expression = /(William)\s(Rogers)/;
3 myArray=textString.match(reg_expression);
4 document.write(myArray); // Three element array
5 document.write(RegExp.$1 + " "+RegExp.$2);
 // alert(myArray[1] + " "+ myArray[2]);
 // match and exec create an array consisting of the string, and
 // the captured patterns. myArray[0] is "William Rogers"
 // myArray[1] is "William" myArray[2] is "Rogers".
 </script>
 </body>
 </html>

EXPLANATION

1. The string called textString is created.

2. The regular expression contains two subpatterns, William and Rogers, both enclosed in parentheses.

3. When either the String object's match() method or the RegExp object's exec() method are applied to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. When either the String object's match() method or the RegExp object's exec() method are applied to the
regular expression containing subpatterns, an array is returned, where the first element of the array is the
regular expression string, and the next elements are the values of the subpatterns.

4. The array elements are displayed, separated by commas.

5. The subpatterns are class properties of the RegExp object. $1 represents the first captured subpattern, William,
and $2 represents the second captured subpattern, Rogers. See Figure 13.33.

Figure 13.33. Output from Example 13.33.

Example 13.34

 <html>
 <head><title>Capture and Replace</title>

 <script language = "JavaScript">
1 var string="Tommy Savage:203-123-4444:12 Main St."
2 var newString=string.replace(/(Tommy) (Savage)/, "$2, $1");
3 document.write(newString +"
");
 </script>
 </head><body></body>
 </html>

EXPLANATION

1. A string is assigned to the variable, called string.

2. The replace() method will search for the pattern Tommy Savage. Since the search side of the replace() method
contains the pattern Tommy enclosed in parentheses and the pattern Savage enclosed in parentheses, each of
these subpatterns will be stored in $1 and $2, respectively. A third pattern would be stored in $3 and a fourth
pattern in $4, etc. On the replacement side of the replace() method, $2 and $1 are replaced in the string, so
that Savage is first, then a comma, and then Tommy. The first and last names have been reversed.

3. The new string is displayed.

Figure 13.34. Output from Example 13.34.

Example 13.35

 <html>
 <head>
 <title>Capture and Replace</title></head>
 <body>

 <script language = "JavaScript">
1 var string="Tommy Savage:203-123-4444:12 Main St."
2 var newString=string.replace(/(\w+)\s(\w+)/, "$2, $1");
3 document.write(newString +"
");
 </script>
 </body>
 </html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </html>

EXPLANATION

1. A string is created to be used by the replace() method in step 2.

2. The replace() method searches for one or more alphanumeric word characters, followed by a single space, and
another set of alphanumeric word characters. The word characters are enclosed in parentheses, and thus
captured. $1 will contain Tommy, and $2 will contain Savage. On the replacement side, $1 and $2 are reversed.
After the replacement is made, a new string is created.

3. The value of newString shows that the capturing and the substitution occurred successfully, leaving the
remainder of the string as it was. See Figure 13.35.

Figure 13.35. Subpatterns are used in string replacement.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.4 Form Validation with Regular Expressions
When you fill out a form on the Web, you are typically asked for your name, phone, address (a pop-up menu of all the
states is usually provided), and then all sorts of credit card stuff. Sometimes it takes four or five tries to get it right
because you didn't complete the form exactly the way you were asked. A message will appear and you won't be allowed
to submit the form until you get it right. Behind the scenes a JavaScript program is validating the form.

13.4.1 Checking for Empty Fields

There's a form waiting to be filled out. Some of the fields are optional, and some are mandatory. The question is, did
the user fill in the mandatory fields? If he didn't, the form can't be processed properly. Checking for empty or null fields
is one of the first things you may want to check.

Example 13.36

 <html>
 <head>
 <title>Checking for Empty Fields</title>
 <script language="JavaScript">
1 function validate_text(form1) {
2 if (form1.user_name.value == "" || form1.user_name.value ==
 null){
 alert("You must enter your name.");
 return false;
 }
3 if (form1.user_phone.value == "" || form1.user_phone.value ==
 null){
 alert("You must enter your phone.");
 return false;
 }
 else {
4 return true;
 }
 }
 </script>
 </head>
 <hr>
 <body>
 <h2> Checking for Empty fields </h2>
5 <form name="formtest" action="/cgi-bin/form1.cgi" method="get"
 onSubmit="return validate_text(formtest)">
 Please enter your name:

6 <input type="text" size=50 name="user_name">
 <p>
 Please enter your phone number:

7 <input type="text" size=30 name="user_phone">
 <p>
 <input type=submit value="Send">
 <input type=reset value="Clear">
 </form>
 </html>

EXPLANATION

1. A user-defined function called validate_text() is defined. It takes one parameter, a reference to a form.

2. If the value in the first text field is an empty string (represents a string with no text) or null (represents no
value), the user is sent an alert asking him to fill in his name. If a false value is returned, the form is not
submitted.

3. If the value in the second text field is an empty string or null, the user is sent an alert asking him to fill in his
phone. If a false value is returned, the form is not submitted.

4. If both text boxes were filled out, a true value is returned, and the form will be submitted to the server's CGI
program whose URL is listed in the action attribute of the form.

5. The onSubmit event is triggered when the user presses the submit button. The handler function,
validate_text(), will be called with a reference to this form.

6. The input type for this form is a text box that will get the name of the user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. The input type for this form is a text box that will get the name of the user.

7. Another text box is created to hold the phone number of the user. See Figure 13.36.

Figure 13.36. The user left the phone field empty, so the form was not
submitted.

13.4.2 Checking for Numeric Zip Codes

If you ask the user for a five-digit zip code, it is easy to check using a regular expression by matching for exactly five
digits:

/^\d{5}$/

Another way to say the same thing:

/^[0-9][0-9][0-9][0-9][0-9]$/

Some longer zip codes contain a dash followed by four numbers. This long zip code format could be represented as:

/^\d{5}-?\d{4}$/

The beginning and end of line anchors prevent the matched string from containing any extraneous characters at either
end of the string. See Example 13.37.

Example 13.37

 <html>
 <head><title>Testing for a Valid Zip Code</title>
 <script language="JavaScript">
1 function ok_Zip(zip){
2 var regex=/^\d{5}$/; // Match for 5 numbers
3 if (regex.test(zip.value) == false) {
 alert("Zip code must contain exactly five numbers!");
 zip.focus();
 return false;
 }
4 if (zip.value == ""){
 alert("You must enter a zip code");
 zip.focus();
 return false;
 }
 return true;
 }
 </script></head>
 <body>
 <form name="ZipTest" action="/error" >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <form name="ZipTest" action="/error" >
 Enter your zip code:
 <input type="text"
 name="zipcode"
 size=5>
 <input type="button"
 value="Check zip"
5 onClick="if(ok_Zip(ZipTest.zipcode)) {alert('Zip is
 valid.')}">

<input type="reset">
 </form>
 </body>
 </html>

EXPLANATION

1. The function, called ok_Zip(), is defined to validate the zip code entered by the user.

2. The regular expression reads: Look for exactly five digits. The beginning of line and end of line anchors ensure
that there will not be any extraneous characters before or after the five digits.

3. The regular expression test() method checks that the value entered by the user is a valid zip code. If not, an
alert dialog box will tell the user, focus will returned to the text box, and false will be returned.

4. If the user doesn't enter anything, an alert dialog box will appear, focus will be returned to the text box, and
false will be returned.

5. The onClick event is triggered when the user clicks the "Check zip" button. A JavaScript statement to call the
ok_Zip() function is assigned to the event. If the user entered a valid zip code, the alert dialog box will pop up
and say so. See Figure 13.37.

Figure 13.37. The user enters a five-digit zip code (top); the user enters
nothing (middle); the user enters 4 digits and 1 letter (bottom).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.4.3 Checking for Alphabetic Data

To test for entries that must consist strictly of alphabetic input, such as a name, state, or country field, the regular
expression character set can be used; for example, /[a-zA-z]+/ is a regular expression that matches a string containing
one or more uppercase or lowercase letters, and /^[a-zA-Z]+$/ matches a string containing only one or more
uppercase or lowercase letters, because the character set is enclosed within the beginning and ending anchor
metacharacters. To represent one or more alphanumeric word characters, [A-Za-z0-9_], you can use the \w
metasymbol; for example, /\w+/ represents one or more alphanumeric word characters.

Example 13.38

 <html>
 <head><title>Testing for Alphabetic Characters</title>
 <script language="JavaScript">
1 function okAlpha(form){
2 var regex=/^[a-zA-Z]+$/; //Match for upper- or lowercase letters
 if (regex.test(form.fname.value) == false) {
 alert("First name must contain alphabetic characters!");
 form.fname.focus();
 return false;
 }
3 if (form.fname.value == ""){
 alert("You must enter your first name.");
 form.fname.focus();
 return false;
 }
4 return true;
 }
 </script>
 </head>
 <body>
5 <form name="alphaTest"
 method="post"
 action="/cgi-bin/testing.pl"
6 onSubmit="return okAlpha(this)" >
 Enter your first name:
 <input type="text"
7 name="fname"
 size=20>
 <p>
8 <input type="submit" value="Submit">
 <input type="reset">
 </form>
 </body>
 </html>

EXPLANATION

1. A function called okAlpha() is defined. It takes one parameter, a reference to a form. Its purpose is to make
sure the user entered only alphabetic characters in the form.

2. A regular expression is created. It reads: Starting at the beginning of the line, find one or more uppercase or
lowercase letters in the character class [A-Za-z] followed by the end of line anchor ($). The regular expression
is tested against the input that came in from a text box named text. If it doesn't match, the alert box will notify
the user, and false is returned to the onSubmit handler on line 6. The form will not be submitted.

3. If the user didn't enter anything at all and the field is empty, another alert will be sent to the user, and false will
be returned. The form will not be submitted.

4. If the user entered only alphabetic characters in his name, true will be returned, and the form will be submitted.

5. This is where the HTML form starts.

6. The onSubmit handler will be triggered when the user presses the submit button, and the okAlpha() function
will be called, passing a reference to the form called alphaTest.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. The user enters his name in the text field called fname.

8. After filling out the form, the user will press the submit button, thereby triggering the onSubmit handler on line
6. See Figure 13.38.

Figure 13.38. The user has a digit in his name. He can only enter alphabetic
characters, or he will see the warning.

13.4.4 Removing Extraneous Characters

Removing Spaces and Dashes

To remove any unwanted spaces or dashes from user input, the String object's replace() method can be used to find
the characters and replace them with nothing, as shown in Example 13.39.

Example 13.39

 <html>
 <head>
 <title>Removing Spaces and Dashes</title>
 </head>
 <body bgcolor="magenta">

 <h2>Removing Spaces and Hyphens</h2>
 <script language = "JavaScript">
1 var string="444- 33 - 12 34"
2 var regex = /[-]+/g;
3 var newString=string.replace(regex, "");
 document.write("The original string: "+string);
 document.write("
The new string: "+ newString +"
");
 </script>
 </body>
 </html>

EXPLANATION

1. The string contains numbers, spaces, and dashes.

2. The variable called regex is assigned a regular expression, which means: Search for one or more spaces or
dashes, globally (multiple occurrences within the string).

3. The replace() method searches in the string for spaces and dashes, and if it finds any, replaces them with the
empty string, "", returning the resulting string to newString. To change the original string, the return value of
the replace() method can be returned back to the original string: var string=string.replace(regex, "");

Figure 13.39. The replace() method is used to remove any spaces or dashes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.39. The replace() method is used to remove any spaces or dashes.

Removing Unwanted Parentheses

You may also want to remove parentheses surrounding area codes or telephone numbers. This is a relatively simple
regular expression used in the replace() method, as shown in next last example.

Example 13.40

 <html>
 <head>
 <title>Removing Parens</title>
 </head>
 <body bgcolor="magenta">

 <h2>Removing Unwanted Parentheses, Spaces, and Dashes</h2>
 <script language = "JavaScript">
1 var string="(408)-332-1234"
2 var regex = /[() -]+/g;
3 var newString=string.replace(regex, "");
 document.write("The original string: "+string);
 document.write("
The new string: "+ newString +"
");
 </script>
 </body>
 </html>

EXPLANATION

1. The string contains numbers, parentheses, spaces, and dashes.

2. The variable called regex is assigned a regular expression, which means: Search for one or more parens (open
or closed), spaces or dashes, globally (multiple occurrences within the string).

3. The replace() method searches in the string for parens, spaces, and dashes, and if it finds any, replaces them
with the empty string, "", returning the resulting string to newString. To change the original string, the return
value of the replace() method can be returned back to the original string: var string=string.replace(regex, "");

Figure 13.40. Parentheses, as well as spaces and dashes, are removed. Numbers
or letters will remain.

Removing any Non-Digits

A character that is not a digit can be represented as [^0-9] or as \D in a regular expression. You may want to remove
any characters that are not digits in the user's input such as zip codes or phone numbers. This can also be done simply
with a regular expression and the replace() method, as shown in the following example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with a regular expression and the replace() method, as shown in the following example.

Example 13.41

 <html>
 <head>
 <title>Removing all Non-digits</title>
 </head>
 <body bgcolor="magenta">

 <h3>If it's not a number, remove it!</h2>
 <script language = "JavaScript">
1 var string="phone is (408)-//[332]-1234@#!!!"
2 var newString=string.replace(/\D/g, "");
 document.write("The orginal string: "+string);
3 document.write("
The new string: "+ newString +"
");
 </script>
 </body>
 </html>

EXPLANATION

1. The string contains all kinds of characters, many which are not numbers.

2. The replace() method searches in the string for all non-digit characters, /\D/g, and if it finds any, replaces them
with the empty string, "", returning the resulting string to newString. To change the original string, the return
value of the replace() method can be returned back to the original string: var string=string.replace(regex, "");

3. The new string is diplayed after all the non-digit characters were replaced with nothing; i.e., they were
removed.

Figure 13.41. Only numbers will remain in the string. All other characters are
removed.

Removing any Non-Alphanumeric Characters

A non-alphanumeric word character [^0-9a-zA-Z_], any character that is not a letter, number, or the underscore, can
be represented as \W. Again we can use the replace() method to remove those characters from a string.

Example 13.42

 <html>
 <head>
 <title>Removing Non-Alphanumeric Characters</title>
 </head>
 <body bgcolor="magenta">

 <h3>If it's not a number or a letter, remove it!</h2>
 <script language = "JavaScript">
1 var string="(408)-//[332]-1234@#!!!"
2 var newString=string.replace(/\W/g, "");
3 document.write("The original string: "+string);
 document.write("
The new string: "+ newString +"
");
 </script>
 </body>
 </html>

EXPLANATION

1. The string contains all kinds of characters, many which are not letters or numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. The string contains all kinds of characters, many which are not letters or numbers.

2. The regular expression, /\W/g, means: Search globally for any non-alphanumeric characters (\W). The
replace() method searches for non-alphanumeric characters and replaces them with the empty string, "",
returning the resulting string to newString. To change the original string, the return value of the replace()
method can be returned back to the original string: var string=string.replace(regex, "");

3. The new string is diplayed after all non-alphanumeric characters are removed.

Figure 13.42. Any non-alphanumeric characters are removed.

13.4.5 Checking for Valid Social Security Numbers

A Social Security number contains exactly nine numbers. There may be dashes to separate the first three numbers and
the last four numbers. The dashes should be optional. Example 13.43 demonstrates a regular expression that tests for
three digits, followed by an optional dash, followed by two more digits, an optional dash, and finally four digits. The
beginning and end of line anchors ensure that the user does not enter extraneous characters on either end of his Social
Security number, such as abd444-44-4444xyz.

Example 13.43

 <html>
 <head><title>Testing for a Social Security Number</title>
 <script language="JavaScript">
1 function okSocial(sform){
2 var regex=/^\d{3}-?\d\d-?\d{4}$/;
3 if (regex.test(sform.ssn.value) == false) {
 alert("Social Security number invalid!");
 sform.ssn.focus();
 return false;
 }
4 if (sform.ssn.value == ""){
 alert("Please enter your Social Security number.");
 sform.ssn.focus();
 return false;
 }
 return true;
 }
 </script>
 </head>
 <body>
 <center>
 <form name="snnTest"
 method=post
 action="/cgi-bin/testing"
5 onSubmit="return okSocial(this)" >
 Enter your Social Security number: xxx-xx-xxxx
 <p>
6 <input type="text"
 name="ssn"
 size=11>
 <p>
7 <input type="submit" value="Submit">
 <input type="reset">
 </form>
 </body>
 </html>

EXPLANATION

1. The function okSocial() is defined. Its purpose is to validate a Social Security number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. The regular expression reads: Start at the beginning of the line, look for three digits, one dash (or not one),
two more digits, another possible dash, and ending in four digits.

3. The regular expression test() method will return true if a valid Social Security number was entered and false, if
not.

4. If nothing was entered in the text box, the user will be alerted, focus will go to the text field, and the form will
not be submitted.

5. The onSubmit event handler will be triggered when the user presses the submit button, line 7.

6. The input type is a text field that will hold up to 11 characters.

7. When the user presses the submit button, the onSubmit event handler will be triggered. It will call the
okSocial() function to validate the Social Security number. See Figure 13.43.

Figure 13.43. User enters a valid Social Security number.

13.4.6 Checking for Valid Phone Numbers

A valid U.S. phone number has ten digits: an area code of three digits, followed by the subscriber number of seven
digits. There may be parentheses surrounding the area code, and dashes or spaces separating the numbers in the
subscriber number. With regular expressions you can test for any or all of these conditions and then, if necessary,
remove the extraneous characters, leaving just numbers. Example 13.44 demonstrates how to validate a simple U.S.
phone number.

Example 13.44

 <html><head><title>Validating Phone Numbers</title>
 <script language="JavaScript">
 function ok_Phone(phform){
1 var regex = /^\(?\d{3}\)?-?\s*\d{3}\s*-?\d{4}$/;
2 if(regex.test(phform.user_phone.value)){
 return true;
 }
 else{
 alert("Enter a valid phone number");
 return false;
 }
 }
 </script>
 </head><hr><body><h2>
 Checking for a Valid Phone Number </h2>
3 <form name="formtest"
 action="http://localhost/cgi-bin/environ.pl" method="post"
4 onSubmit="return ok_Phone(this);">
 <p>
 Please enter your phone:

5 <input type="text" size=40 name="user_phone">
 <p>
 <input type=submit value="Submit">
 <input type=reset value="Clear">
 </form></body></html>

EXPLANATION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXPLANATION

1. The regular expression reads: Start at the beginning of the string, look for an optional literal opening
parenthesis, followed by exactly three digits, and an optional closing parenthesis (the area code), followed by
an optional dash, zero or more spaces, exactly three digits, zero or more spaces, an optional dash, and ending
in exactly four digits, such as (222)-111-2345 or 222-111-2345 or 2221112345.

2. The regular expression is matched, phform.user_phone.value, the test() method will return true, and the form
will be submitted; otherwise, the user will be alerted to enter a valid phone number.

3. The HTML form starts here and is named formtest.

4. The onSubmit event handler is assigned as an attribute of the <form> tag. It will be activated when user
presses the submit button. The handler, ok_Phone, passes the form as an argument. The this keyword refers to
the form named formtest and returns a true or false value. If true, the form will be submitted.

5. The user will enter his phone number in a text field. See Figure 13.44

Figure 13.44. The user enters a valid phone number (top). Parentheses and
the dash are optional; the user enters a number with too many digits, and an

alert box appears (bottom).

Go to http://www.wtng.info, the World Wide Telephone Guide, to get a listing of phone formats for the world, country
by country.

Figure 13.45. Go to http://www.wtng.info/ to look up phone formats around the
world.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

world.

For international phone numbers, the following formats are accepted:

+1 (123) 456 7888

+1123456 7888

+44 (123) 456 7888

+44(123) 456 7888 ext 123

+44 20 7893 2567

02345 444 5555 66

13.4.7 Checking for Valid E-Mail Addresses

When validating an e-mail address, you are looking for the typical format found in such addresses. There may be some
domain names that are more than three characters, but it isn't typical. Also, just because the user types what looks like
a valid e-mail address, that does not mean that it is; for example, the e-mail address santa@northpole.org uses a valid
syntax, but that fact does not prove that santa is a real user.

E-mail addresses usually have the following format:

An @ sign between the username and address (lequig@aol.com)

At least one dot between the address and domain name (.com, .mil, .edu, .se)

At least six characters (a@b.se)[3]

[3] As of this writing, domain names have at least two characters.

Examples of valid e-mail addresses:

username@mailserver.com

username@mailserver.info

username@mailserver.org.se

username.moretext@mailserver.mil

username@mailserver.co.uk

user-name.moretext.sometext@mailserver.se

To break down the regular expression

/^(([\-\w]+)\.?)+@(([\-\w]+)\.?)+\.[a-zA-Z]{2,4}$/;

use the following steps:

Step ^ Go to the beginning of the line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Step
1:

^ Go to the beginning of the line.

Step
2:

([\-
\w]+)\.?

The user name consists of one or more dashes or word characters grouped by parentheses,
followed by one (or not one) literal period. Because the dot is outside the parentheses there will
be either one or zero dots for the list of word characters, not two or three dots in a row.

Step
3:

(([\-
\w]+)\.?)+

The user name may consist of more than one set of word characters separated by a single dots,
as in Joe.Shmoe.somebody.

Step
4:

@ A literal @ symbol is required in the e-mail address.

Step
5:

([\-
\w]+)\.?)+

The mail server's name is like the user's name, a group of word characters separated by a dot.
Same as step 3.

Step
6:

[a-zA-Z]
{2,4}

The domain name follows the mail server's name. A single dot separates the server from the
domain. The domain name consists of between two and four alphabetic characters; e.g.,
savageman@imefdm.usmc.mil or patricia.person@sweden.sun.com.

Step
7:

$ The end of the line anchor assures that no extra characters can be added onto the end of the e-
mail address.

Example 13.45 uses a regular expression to check for a valid e-mail address.

Example 13.45

 <html><head><title>Validating E-Mail Addresses</title>
 <script language="JavaScript">
1 function ok_Email(eform){
2 var regex = /^(([\-\w]+)\.?)+@(([\-\w]+)\.?)+\.[a-zA-Z]{2,4}$/;
3 if(regex.test(eform.user_email.value)){
4 return true;
 }
 else{
5 alert("Enter a valid email address");
 return false;
 }
 }
 </script>
 </head>
 <hr>
 <body>
 <h2> Checking for Valid Email Address </h2>
6 <form name="formtest"
7 action="http://localhost/cgi-bin/environ.pl"
 method="post"
8 onSubmit="return ok_Email(this);">
 <p>
 Please enter your email address:

 <input type="text" size=40 name="user_email">
 <p>
 <input type=submit value="Send">
 </body></html>

EXPLANATION

1. A function called ok_Email is defined. It takes one parameter, a reference to the form started on line 6.

2. The regular expression is assigned the variable regex. The regular expression reads: Start at the beginning of
the string (^), look for one or more alphanumeric characters and/or a dash followed by a literal dot (or not
one). The literal period is outside the parentheses, meaning that in each group of word characters, there will be
only one (or not one) period; e.g., abc.xyz. The entire expression is in parentheses followed by a + sign. This
means that the pattern can be repeated one or more times; e.g., abc.xyz.yaddy.yady.yady. Next comes a literal
@ symbol, required in all e-mail addresses. The mail server name comes right after the @ sign. Like the user
name, it is represented by one or more alphanumeric characters or a dash, followed by a literal dot (\.). Now
we have Joe.Blow@aol or DanSav@stamford, etc. This pattern, like the first pattern, can be repeated one or
more times. The domain name part of the address comes next; a literal dot, and at least two but not more than
four alphabetic characters, [a-zA-Z]{2,4}; e.g., JoeBlow@Chico.com, danny@Stamford.edu, .se, .uk, etc. There
are other varieties that could also be considered, such as john@localhost, but for most e-mail addresses, the
regular expression used in this example should suffice.

3. The regular expression test() method takes the value of the user input, user_email.value, and returns true if
the pattern in the regular expression matched the user's input.

4. The e-mail address entered is tested to be valid. A true value is returned and the form will be submitted to the
server. A valid e-mail address does not mean that if mail is sent to that address it will necessarily be delivered;
e.g., santa@northpole.org is syntactically valid, but there is no guarantee that santa is a real user (unless you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

e.g., santa@northpole.org is syntactically valid, but there is no guarantee that santa is a real user (unless you
still believe!).

5. If an invalid e-mail address was entered, the alert box will appear with this message. The ok_Email() function
will return false, and the form will not be submitted.

6. The form named formtest starts here.

7. This is the URL of the CGI script that will be called on the server side when the form is submitted.

8. The onSubmit event handler is triggered when the user presses the submit button. The value assigned to the
event is a function called ok_Email that will return true if the e-mail address is valid and false, if not. The form
will be sent to the server only if the return value is true. See Figure 13.46.

Figure 13.46. The user enters a valid e-mail address.

13.4.8 Credit Card Validation

When validating a credit card number, you can do some preliminary checking but real card validation is done on the
server side through a software product designed specifically for that purpose.[4] Before issuing a card, there are certain
rules that must be followed when creating card numbers, such as how many numbers there are, what prefix is used by
a particular card type, whether the entire number fits a certain formula, and valid expiration dates. For preliminary
checking, you can test, for example, to see if a person enters valid digits for a Visa card and that the expiration date is
later than the current date, but you can't really tell if the user's card has gone over the limit, was cancelled or stolen, or
that he even owns it. Checking whether the card is active and has a sufficent balance to cover a sale is performed by
the banking system backing the card.

[4] For a guide to credit card validation software, go to http://www.winsite.com/business/cc/.

The Expiration Date of the Card

A valid expiration date is a month and year that haven't gone by. The month and year are represented as two digits: 01
for January, 11 for November, and 03 for the year 2003. The following example defines a function to test for a valid
expiration date based on a one to two-digit month and a two-digit or four-digit year.

Example 13.46

 <html>
 <head>
 <title>Testing Expiration Dates</title>
 <script language="javascript">
1 function validExpire(form) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 function validExpire(form) {
2 var now = new Date();
3 var thismonth = (now.getMonth() + 1);
4 var thisyear = now.getFullYear() ;
5 var expireYear = parseInt(form.expireYear.value);
 var yearLength = form.expireYear.value.length;
 var expireMonth = parseInt(form.expireMonth.value);
 if(yearLength == 2){
 expireYear += 2000;
 }
6 if ((expireMonth < thismonth && expireYear == thisyear)
 || expireMonth > 12){
 alert("Invalid month");
 return false;
 }
7 else if (expireYear < thisyear) {
 alert("Invalid year");
 return false;
 }
 else {
 return true;
 }
 }
 </script>
 </head>
 <body>
8 <form name="myForm"
 action="http://127.0.0.1/cgi-bin/env.cgi"
9 onSubmit="return validExpire(this)">
 <p>
 Enter the month (02 or 2):
 <input name="expireMonth" type="text" size=5>
 <p>
 Enter the year (2003 or 03):
 <input name="expireYear" type="text" size=5>
 <input type="submit" value="submit">
 <input type="reset" value="clear">
 </form>
 </body>
 </html>

EXPLANATION

1. A function called validExpire() is defined. It takes one parameter, a reference to a form. Its purpose is to
validate the expiration date of a credit card.

2. A new Date object is created and assigned to the variable called now.

3. Using the getMonth() method, we get this month (months start at zero) and add 1.

4. Using the getFullYear() method, we get the current year, as 2003.

5. The parseInt() function converts the expiration year, as typed in by the user, to an integer. Then we get the
length of the year, and convert the month into an integer. If the number of characters in the year, yearLength,
is 2, then 2000 is added to the expireYear value. If the user typed 02, then the new value is 2002.

6. If the value of expireMonth is less than the value of thisMonth and the value of expireYear is equal to the value
of thisyear, or the value of expireMonth is greater than 12, the number entered is invalid. So a card in invalid if
it has a month prior to this month and the card expires this year, or the month is over 12, because there are
only 12 months in a year.

7. If the expiration year is prior to this year, it is also invalid.

8. The form starts here.

9. The onSubmit event handler is triggered after the user fills out the form and presses the submit button. When
he does, the function called validExpire() is called. It will return true if the expiration date is valid, and the form
will be sent to the URL assigned to the action attribute of the form. See Figure 13.47.

Figure 13.47. The form before the user enters anything (left); the user
enters a month and year, but the month has already gone by (right).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enters a month and year, but the month has already gone by (right).

Checking for Valid Type, Prefix, and Length

In Figure 13.49 the major credit cards are listed along with the identifying characteristics of account numbers for each.
All the characters must be numbers. Each type of card has a prefix value; e.g., MasterCard's prefix is a number
between 51 and 56, and Visa's is the number 4. Validation routines to check for a prefix and the correct number of
characters are shown in Example 13.47.

Figure 13.49. Some valid credit cards, their prefix, length, and whether they pass
the Lunh test based on modulus 10, shown below. Source:

http://www.beachnet.com/~hstiles/cardtype.html.

Steps for credit card validation:

1. Remove any spaces or dashes, then test that the result is a numeric value.

2. Check to see if the user has selected a valid credit card type such as MasterCard or Visa, the correct prefix for
the card, and a valid length for the number of characters in the card.

3. Apply the Lunh formula for further validation.

Example 13.47

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13.47

 <html>
 <head>
 <title>Checking for Valid CC Type and Length</title>
 <script language="JavaScript">
1 function checkCC(myForm){
 var cc_type;
 var cc_length;
2 if (myForm.select1.selectedIndex==0){
 cc_type="Visa";
 }
 else if(myForm.select1.selectedIndex==1){
 cc_type="MasterCard";
 }
 else if(myForm.select1.selectedIndex==2){
 cc_type="Discover";
 }
 else {
 alert("You didn't select a card type.");
 }
3 cc_length=myForm.text.value.length;
4 switch(cc_type){
5 case "Visa" :
6 if (cc_length == 13 || cc_length == 16){
 return true;
 }
 else{
 alert("Invalid length");
 return false;
 }
 break;
7 case "MasterCard":
 if (cc_length == 16){
 return true;
 }
 else{
 alert("Invalid length");
 return false;
 }
 break;
8 case "Discover":
 if (cc_length == 16){
 return true;
 }
 else{
 alert("Invalid length");
 return false;
 }
 break;
 default:
 alert("Invalid type");
 return false;
 break;
 }
 }
 </script>
 </head>
 <body bgcolor="lightblue">

9 <form name="form1" onSubmit="return checkCC(this);">
 Please select a credit card from the menu:
 <p>
10 <select name="select1" size="3">
 <option value="Visa">Visa</option>
 <option value="MC">MasterCard</option>
 <option value="Dis">Discover</option>
 </select>
 <p>
 Please enter your card number:
 <p>
11 <input type=textbox name="text" size=30>
 <p>
12 <input type=submit value="Check card">
 <input type=reset>
 </form>
 </body>
 </html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </html>

EXPLANATION

1. A function called checkCC() is defined. It takes one parameter, a reference to a form.

2. If the value of selectedIndex is 0, the first option in the select list was chosen, a Visa card. The rest of the
statements in this if block check to see which card was selected if it wasn't this one.

3. The variable cc_length is assigned the number of characters that were typed into the text box; that is, the
number of characters in the credit card number.

4. The switch statement will be used to check for valid card number lengths for whichever card the user selected
from the select menu. The variable cc_type contains the card type: Visa, MasterCard, or Discover.

5. If the card is a Visa card, the case statements will be used to check for a valid length.

6. The valid length for the Visa credit card number is between 13 and 16 characters (as shown in Figure 13.49). If
the card number length is between these numbers, true is returned.

7. MasterCard is checked here. Its number must consist of 16 characters.

8. Discover is checked here. Its number must consist of 16 characters.

9. The form starts here. The onSubmit handler will be triggered when the user presses the submit button. At that
time the credit card will be checked for a valid number of characters in the number provided by the user. This is
not a complete check. You can combine the other functions from this section to provide a more thorough check;
we haven't checked here to see if the value entered is numeric, has strange characters, or empty fields.

10. The select menu starts here with three options, each a credit card type.

11. This is the text box where the user enters the card number.

12. When the user presses the submit button, the onSubmit handler is invoked, and if the credit card number
passes the validity test, off goes the form!

Figure 13.48. The number of characters in the credit card number should be 16 for
Discover card.

The Lunh Formula

The credit card number can be subjected to an additional mathematical test, called the Lunh formula, which it must
pass in order to be valid. The following steps are required to validate the primary account number:

Step 1. Double the value of every other digit starting with the next-to-right-most digit.

Step 2. If any of the resulting values has more than two digits, then its digits must be added together to
produce a single digit.

Step 3. Add the sum of all the digits not doubled in Step 1 to the sum of the digits transformed from Steps 1
and 2.

Step 4. If the result is exactly divisible by 10 (that is, if the result ends in a zero, 30, 40, 50, etc.), then the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Step 4. If the result is exactly divisible by 10 (that is, if the result ends in a zero, 30, 40, 50, etc.), then the
number is valid—providing of course that it's of the correct length and bears a correct prefix for that type of
card.

For example, to validate the primary account number 49927398716:

Step 1. Starting from the next to the right-most digit, multiply every other number by 2 (the number in bold
text).

4 9 9 2 7 3 9 8 7 1 6
 9x2 2x2 3x2 8x2 1x2
 18 4 6 16 2

Step 2. If any numbers resulting from Step 1 have more than one digit, add those numbers together.

(1+8) (1+6)
————————————
 9 7

Step 3. Add up the top row of numbers that were not doubled (not in bold) to the bottom row of numbers after
Step 2 was finished. Bottom numbers are in parentheses.

4 + (9) + 9 + (4) + 7 + (6) + 9 +(7) + 7 + (2) + 6

Step 4. If the result of Step 3 is divisible exactly by 10 (i.e., leaves no remainder), the card is valid. The result
of Step 3 is 70. The card number is valid if the card type is valid, as long as the length of numbers entered is
valid, and it has the correct prefix for that type of card.

13.4.9 Putting It All Together

After writing the functions that validate each field of the form, they will be put together in a single script to check all
form entries. The following example combines just two of the functions, to keep the example from being too large. One
function, ok_Form(), calls the functions that check individual entries; for example, ok_Email() checks for valid e-mail
and returns either true or false, and ok_Phone() checks for a valid phone number. After all of the entries have been
checked, the ok_Form() function returns either true or false to the onSubmit event handler. If ok_Form() returns true,
the form will be submitted to the server; if not, it is stopped. If we add in all the credit card validation functions, this
program will get really large. Why don't you try it?

Example 13.48

 <html><head><title>Validating a Form</title>
 <script language="JavaScript">
1 function ok_Email(emform){
2 var regex=/^(([\-\w]+)\.?)+@(([\-\w]+)\.?)+\.[a-zA-Z]{2,4}$/;
3 if(regex.test(eform.user_email.value)){
 return true;
 }
 else{
 alert("Enter a valid email address");
 return false;
 }
4 function ok_Phone(phform){
5 var regex = /^\(?\d{3}\)?-?\s*\d{3}\s*-?\d{4}$/;
6 if(regex.test(phform.value)){
 return true;
 }
 else{
 return false;
 }
 }
7 function ok_Form(myform){
8 if (ok_Email(myform.user_email)== false){
9 alert("Invalid email address");
10 myform.user_email.focus();
11 myform.user_email.select();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11 myform.user_email.select();
12 return false;
 }
13 if (ok_Phone(myform.user_phone) == false){
 alert("Invalid phone number");
 myform.user_phone.focus();
 myform.user_phone.select();
 return false;
 }
14 return true;
 }
 </script>
 </head>
 <hr>
 <body bgcolor="lightgreen">
 <h2> Checking Form Input</h2>
 <form name="myform"
 action="http://localhost/cgi-bin/environ.pl" method="post"
15 onSubmit="return ok_Form(this);">
 <p>
 Please enter your email address:

 <input type="text" size=40 name="user_email">
 <p>
 Please enter your phone number:

 <input type="text" size=12 name="user_phone">
 <p>
 <input type=submit value="Send">
 </form>
 </body>
 </html>

EXPLANATION

1. The function to validate an e-mail address is defined. It is called by the ok_Form() function on line 8.

2. The local variable called regex is assigned a regular expression, explained in Example 13.45.

3. The e-mail address entered by the user, eform.user_email.value, is tested against the regular expression for
validity. The regular expression test() method returns true or false to the ok_Form function, line 8.

4. The function to validate a phone number is defined. It is called by the ok_Form() function on line 13.

5. The local variable called regex is assigned regular expression.

6. The phone number entered by the user, eform.user_phform.value, is tested against the regular expression for
validity. The regular expression test() method returns true or false to the ok_Form function, line 13.

7. This is the big function that returns the final verdict. Did the user provide a valid e-mail address and phone
number? If so, the function returns true, line 14.

8. The ok_Email() function is called with the user's e-mail input. If the ok_Email() function returns false, the user
entered an invalid address, and he will be alerted.

9. The alert dialog box sends this message if the e-mail address is not valid.

10. The focus() method puts the cursor in the text box, so that the user can start typing there.

11. The select() method highlights the text in a field.

12. If false is returned to the onSubmit handler on line 15, the form will not be submitted.

13. If an invalid phone number was entered, false will be returned to the onSubmit handler on line 15.

14. If both the e-mail address and the phone number are valid, the ok_Form() function returns true to the event
handler on line 15, and the form will be submitted to the server's URL assigned to the form's action attribute.

15. The onSubmit event is triggered when the user presses the submit button. The handler is a function called
ok_Form(). It is the main validation function for this form. If true is returned, the form will be submitted;
otherwise, not. See Figures 13.50 and 13.51.

Figure 13.50. The user enters a valid e-mail address (top); the user entered
an invalid e-mail address because there is only one letter in the domain

name (bottom).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

name (bottom).

Figure 13.51. The focus() and select() methods focus on and highlight the
invalid entry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: Write a regular expression that will:

a. Return true if a string begins with letters between a and f, either upper- or lowercase.

b. Return true if a string contains a number.

c. In the string My friend is Betsy Ann Savage, capture the first and last name and display them in
reverse, as Savage, Betsy.

d. Replace Betsy with Elizabeth in the previous string.

e. In the string 123abcdefg584, replace all the letters with XXX.

f. Prompt the user for a string of text, then print true if the string ends in three or more numbers.

g. Prompt the user for a string of text, then display the first three characters in the string.

h. Prompt the user for a string of text that includes letters and numbers, then print true if the string
does not contain the number 4 or the letter a, or print false if not.

i. Prompt the user for his first and last name. Display true if the name starts with an uppercase letter
followed by lowercase letters. The last name would be similar to the following: Jones, Smith,
McFadden, O'Reilly, and Jones-Smith.

2: Validate an international phone number that is represented as follows:

011 49 762 899 20

3: Start with a one- or two-character code for a United Kingdom postal district, such as B for Birmingham or
RH for Red Hill, followed by a one- or two-digit number to represent a sector within that district. For
example, RH1 is Red Hill district, sector 1; CM23 is the Chelmsford district, sector 23; and B1 is Birmingham
district, sector 1. Following the district and sector is a space, followed by a digit and two characters, such as
4GJ.

For example: CM23 2QP where:

 CM = Chelmsford district

 23 = sector 23

 2QP = a particular road.

Create a regular expression to validate a UK postal code as described above.

4: Validate a credit card number using the Lunh formula.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14. Cookies

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.1 What Are Cookies?
The Web protocol, HTTP, was designed to be stateless to keep transactions between a browser and server brief and cut
down on the overhead of keeping connections open. Stateless means that after a transaction takes place between the
browser and server, the connection is lost and neither the browser nor server have any recollection of what transpired
between one session and the next. But as the Internet grew and people started filling up shopping carts with all kinds of
goodies, ordering everything from groceries to music, books, prescription drugs, and even cars and homes, it became
necessary for merchants to remember what their customers purchased, their preferences, registration numbers, IDs,
and so on. Enter Netscape way back in 1994 with the cookie. A cookie is a local file used to store information, and it is
persistent; that is, it is maintained between browser sessions and remains even when the user shuts down his
computer. The cookie idea became very popular and is now supported by all major browsers.

The term "cookie" comes from an old programming trick for debugging and testing routines in a program. A text file,
called a "magic cookie" was created. It contained text that was shared by two routines so that they could communicate
with each other. The cookie feature started by Netscape[1] is also just a little piece of textual data that is stored in a file
(often called the cookie jar) on the hard drive of the client (browser). It contains information about the viewer that can
be retrieved and used at a later time to welcome him to your site, and based on past visits, show him a new book by
his favorite author, display the latest stock quotes, or take him to CNN Europe when he wants to view the news. The
HTTP server sends the cookie to the browser when the browser connects for the first time and from then on, the
browser returns a copy of the cookie to the server each time it connects. The information is passed back and forth
between the server and browser via HTTP headers.

[1] See www.netscape.com/newsref/std/cookie_spec.html for cookie specification.

Cookies can make a Web page personal and friendly, and store important information about the user's language,
reading, or music preferences, how many times he has visited your site, track items in a shopping cart, and more. But
they can also be annoying, and some question the security of putting unknown data on their hard drive. Love 'em or
hate 'em, they're an intrinsic part of the Web. But you do have a say about whether or not to use them. If you don't like
cookies, you can turn them off, and remove all of them from your hard drive. For example, if using IE, you can delete
cookies by going to the Tools menu and then to Internet options (see Figure 14.1); in Navigator, look at the Tools
menu, go to Cookie Manager, and from there you can block all cookies for this site (see Figure 14.2).

Figure 14.1. Internet Explorer—Enabling and disabling cookies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.2. Netscape 7—Enabling and disabling cookies.

Unlike Grandma's old-fashioned cookie jar that could be packed full of sugar cookies (and the calories kept out of
sight), Web browser cookies occupy a limited amount of space. Browsers usually can't store more than 300 cookies and
servers not more than 20. Storage is usually limited to only 4 kilobytes per cookie, so you can't store a lot of
information. The actual filename that holds the cookie data varies on different platforms. Netscape Navigator (Windows)
stores cookies in a file named cookies.txt in Navigator's system directory; IE stores them in the Window\Cookies
directory, and on the Mac, they are found in a file called MagicCookie.

14.1.1 Cookie Ingredients

Cookies are often sent from a CGI program on the server side to the browser through HTTP request and response
headers, but with JavaScript you can set cookies on the local browser, eliminating the need for the CGI program to
handle them, and thereby cutting down on server activity. The cookie's default lifetime is the length of the current
session. Then they are destroyed. See the expiration attribute below.

Cookies are composed of text in the form of key/value pairs, often nicknamed "crumbs," and up to 20 pairs can be
stored in a single cookie string. The browser stores only one cookie per page.

When making cookies, the crumbs consist of name=value pairs, called attributes, that must be terminated with a
semicolon. Within the string, semicolons, commas, or whitespace characters are not allowed. The HTTP Set-Cookie
header has the following format:

FORMAT

Set-Cookie: name=value; [expires=date};[path=path];
[domain=domainname]; [secure];

Example:

Set-Cookie: id="Bob";expires=Monday, 21-Oct-05 12:00:00
GMT;domain="bbb.com"; path="/"; secure;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.1.2 The Attributes of a Cookie

When setting the cookie, it is important to understand the components of a cookie. It has a name and a value and
another set of optional attributes to determine the expiration date, the domain, path, and whether the cookie must be
sent over a secure communications channel (HTTPS). All of these attributes are assigned as strings.

Name

The actual cookie text consists of the name of the cookie and the value stored there. It can be a session ID, a user
name, or whatever you like.

FORMAT

nameofcookie=value;

Examples:

id=456;
email=joe@abc.com;
name=Bob;

Don't confuse the value with what the cookie is named. The name of the cookie is on the left-hand side of the = sign
and the cookie text that gets stored there is on the right-hand side. The value assigned is a string. To add multiple
values to the string, you must use unique characters to separate the values, such as Bill*Sanders*345. (With JavaScript
you can also use the built-in escape() method, which returns URL encoding for a string, acceptable to the browser. See
"Assigning Cookie Attributes" on page 482.)

Expiration Date

The cookie normally expires when the current browser session ends, which gives it little value, but you can specify an
expiration date that will let it persist, by using the following format:

FORMAT

;expires=Weekday, DD-MON-YY HH:MM::SS GMT

Example:

;expires= Friday, 15-Mar-04 12:00:00 GMT

The day of the week is specified by Weekday, the day of the month by DD, the first three letters of the month by MON,
and the last two numbers of the year by YY (e.g., 03 or 04). The hour, minutes, and seconds are specified in HH:MM:SS
and the GMT time zone is always used. Some cookies last for days, but it's possible for them to even last for years. It's
up to the designer to decide how long a cookie should live. Setting the expiration date also limits the amount of possible
damage that could be done if the cookie is intercepted by some hacker. Once the cookie has expired it is called stale
and is automatically destroyed.

Domain Name

The domain name, not commonly used, specifies a general domain name to which the cookie should apply. It allows the
cookie to be shared among multiple servers instead of just the one you're on. If you don't use the full http://domain
syntax, then a leading dot must precede the domain name.

FORMAT

; domain=.domain_name
; domain=http://somedomain.com

Example:

; domain=.kajinsky.com
; domain=http://kajinksy.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

; domain=http://kajinksy.com

Path

The path is used to specify where the cookie is valid for a particular server. Setting a path for the cookie allows other
pages from the same domain to share a cookie.

FORMAT

; path=pathname

Example:

; path=/home

Secure

If a cookie is secure, it must be sent over a secure communication channel (HTTPS server).

FORMAT

; secure

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.2 Creating a Cookie with JavaScript
In the following examples, we will create a cookie, view the cookie, and then destroy it. It is important to note when
you are setting cookies that they are stored in the browser's memory and not written to the hard drive until you exit
the browser.

14.2.1 The Cookie Object

The cookie is stored by JavaScript as a document object for both reading and writing cookie data. Cookies are made by
assigning attributes to the cookie property. When you start your browser, if there are cookies, they pertain to the
current document. The document.cookie property contains a string of name=value pairs representing the names of all
the cookies and their corresponding values, such as a session ID number or a user ID. All the other attributes set for
the cookie, such as expiration date, path, and secure, are not visible. In a JavaScript program, if you execute the
statement shown in Figure 14.3, you will see all the cookies set for this page.

Figure 14.3. Using alert(document.cookie);.

When you reload the page, the document.cookie property will contain all the cookie text saved for that page.

14.2.2 Assigning Cookie Attributes

To create a cookie, assign the name=value pairs to the document.cookie property. Be careful with quotes, making sure
the variables you use are not quoted, but the text that the cookie needs, such as the word "name", and "=" are quoted.
Also, this will be a big string where the different parts are concatenated together with the + operator. The following
format sets a cookie using all possible attributes. Those attributes enclosed in square brackets are optional:

FORMAT

name=value;[expires=date];[path=path];[domain=somewhere.com];[secure]

Example:

document.cookie="id=" + form1.cookie.value ";expires=" + expiration_date+";path=/";

The escape() and unescape() Built-In Functions

It is important to know that when assigning string name=value attributes to a cookie, you cannot use whitespace,
semicolons, or commas. The escape() function will encode the string object by converting all non-alphanumeric
characters to their hexadecimal equivalent, preceded by a percent sign; for example, %20 represents a space and %26
represents an ampersand. In order to send information back and forth between browser and server, the browser
encodes the data in what is called URI encoding. You can see this encoding in the location bar of your browser; when
you go to Google and search for something, you will see the search string in the location bar of the browser all
encoded. Since the browser handles cookies, the cookie strings can be encoded with JavaScript's built-in escape()
function to ensure that the cookie values are valid.

The unescape() function converts the URI-encoded string back into its original format and returns it. The encodeURI()
and decodeURI() built-in functions are a more recent version of escape() and unescape() and do not encode as many
characters.

Example 14.1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 14.1

 <html><head><title>The escape() Method</title>
 </head><center><h2>URL Encoding </h2>
 <script language="JavaScript">
1 function seeEncoding(form){
 var myString = form.input.value;
2 alert(escape(myString));
 }
3 function seeDecoding(form){
 var myString = form.input.value;
4 alert(unescape(myString));
 }
 </script>
 <body background="cookebg.jpg" >
 <form name="form1">
 Type in a string of text:
 <p>
 <input type="text" name="input" size=40>
 <p>
 <input type="button"
 value="See encoding"
5 onClick="seeEncoding(this.form);">
 <p>
 <input type="button"
 value="See decoding"
6 onClick="seeDecoding(this.form);">
 <p>
 </form>
 </center>
 </body>
 </html>

EXPLANATION

1. A function called seeEncoding() is defined. It takes a reference to a form as its only parameter.

2. The built-in escape() function is used to URI encode the string that was entered as input by the user.

3. A function called seeDecoding() is defined. It takes a reference to a form as its only parameter.

4. The built-in unescape() function is used to convert the URI encoded string back into its original ASCII format.

5. When the user clicks this button, the onClick event is triggered and the encoded string will appear in an alert
dialog box.

6. When the user clicks this button, the onClick event triggers a function that will decode the encoded string. See
Figures 14.4 and 14.5.

Figure 14.4. Using the escape() and unescape() functions.

Figure 14.5. The user pressed the "See encoding" button (top); the user
pressed the "See decoding" button (bottom).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pressed the "See decoding" button (bottom).

14.2.3 Let's Make a Cookie!

Now that we have all the ingredients, let's put them together and make a cookie, then pull it out of the oven (your
program) and voila! a delicious cookie for your browser. The following example creates a cookie called "name". The
value assigned to it will be the user's name. You will see this name=value pair in the document.cookie property.

Example 14.2

 <html><head><title>Making a Cookie</title>
 <script language="JavaScript">
1 function makeCookie(form){
2 var when = new Date();
 when.setTime(when.getTime() + 24 * 60 * 60 * 1000);
 // 24 hours from now
3 when.setFullYear(when.getFullYear() + 1);
 // One year from now
 yname=form.yourname.value;
4 document.cookie=escape("name")+"="+escape(yname)+
 ";expires="+when.toGMTString();
 alert(document.cookie);
 }
5 function welcome(myForm){
 you=myForm.yourname.value;
6 var position=document.cookie.indexOf("name=");
 if (position != -1){
 var begin = position + 5;
 var end=document.cookie.indexOf(";", begin);
 if(end == -1){ end=document.cookie.length;}
7 you= unescape(document.cookie.substring(begin, end));
8 alert("Welcome " + you);
 }

 else{ alert("No cookies today");}
 }
 </script>
 </head>
 <body background="cookiebg.jpg" onLoad="document.form1.reset()" >
 <center>
 <h2> Got milk?</h2>
 <form name="form1">
 What is your name?

9 <input type="text" name="yourname" >
 <p>
10 <input type="button" value="Make cookie"
 onClick="makeCookie(this.form);">
 <p>
11 <input type="button"
 value="Get Cookie" onClick="welcome(this.form);">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 value="Get Cookie" onClick="welcome(this.form);">
 <p>
 </form>
 </body>
 </html>

EXPLANATION

1. A function called makeCookie() is defined. It takes a reference to a form as its only parameter. This is the
function that creates the cookie.

2. A new Date object is created and assigned to the variable called when.

3. The Date object creates a date a year from now. This will be the expiration date for the cookie.

4. The cookie is created. Its name is "name" and its value is the user's name, stored in yname. The attributes are
escaped just in case the user added unwanted characters, such as spaces, commas, or semicolons. The
expiration date is set to a year from now and is converted to GMT time, the required format for the "expires"
attribute. Notice the quotes. If the text is literal for the attribute it must be quoted; if it is a variable value, then
it is not quoted or JavaScript can't interpret it—very tricky getting these right.

5. A function called welcome() is created. It takes a reference to a form as its only parameter. Its purpose is to
greet the user based on the cookie value.

6. The following statements are used to parse out the value attribute of the cookie. The beginning index position is
set to where the "name=" string starts in the cookie string. It will be at position 5 in this example. Starting at
index position 0, position 5 takes us to the character directly after the = sign. The end position is either at the
first semicolon or at the end of the string, whichever applies.

7. After getting the substring, the value part of the cookie, the unescape() function, will convert the URI-encoded
string back into its original ASCII format.

8. The user is welcomed, all based on the value extracted from the cookie. The cookie lets Web sites know who
you are so that you can get a personal greeting when you return to the site.

9. The user will enter his name in a text box field. See Figure 14.6.

Figure 14.6. Making a cookie.

10. When the user clicks this button, the onClick event is triggered, and the cookie will be made. See Figure 14.7.

Figure 14.7. After making the cookie, the value of the document.cookie
property is displayed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

property is displayed.

11. When the user clicks this button, the onClick event is triggered, and the user will be welcomed by the name he
entered in the text box. See Figure 14.8.

Figure 14.8. Retrieve the cookie and welcome the user!!

14.2.4 Retrieving Cookies from a Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When retrieving cookies, you can only get those that were written for the server you are on and written by you. You
cannot read and write cookies that belong to someone else or reside on a different server. In the last example, we got
one cookie; in the following example all the cookies for this page are displayed.

Example 14.3

 <html><head><title>See my Cookies</title>
 </head>
1 <body background="cookebg.jpg" onLoad="document.form1.reset()" >
 <center>
 <h2> Got milk?</h2>
2 <form name="form1">
 Click to see document.cookie property
 <p>
3 <input type="button" value="See Cookie" onClick="seeCookie();">
 <p>
 </form>
 <script language="JavaScript">
4 function seeCookie(){
5 if(document.cookie == ""){
 document.write("No cookies");
 }

 else{
6 var myCookie = document.cookie.split("; ");
7 for(var i=0;i<myCookie.length; i++){
 document.write("<body bgcolor=darkblue>
 ");
 // document.write("Cookie: " +
 myCookie[i].split("=")[0] +"
");
8 document.write("Cookie: " + myCookie[i] +
 "
");
 }
 }
 }
 </script>
 </center>
 </body>
 </html>

EXPLANATION

1. After the document is loaded, the onLoad event is triggered and the values in the form are cleared with the
reset() method.

2. This is the start of an HTML form, called form1.

3. When the user clicks the button, the onClick event is triggered, and the seeCookie() function will be called to
display all the cookies for this page.

4. A function called seeCookie() is defined.

5. First, we check to see if there are any cookies at all. If not, the alert box will say so.

6. The split function splits up the cookie string by semicolons and returns an array called myCookie.

7. The for loop iterates through each element of the myCookie array until the end of the array, myCookie.length,
is reached.

8. The value of the cookie is displayed. See Figure 14.9.

Figure 14.9. IE cookies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.2.5 Deleting a Cookie

If you want to delete a cookie for the current page, set the expiration date of the cookie to a date earlier than the
current date. This will cause the cookie to be deleted when the session ends.

Example 14.4

 <html><head><title>Delete Cookie</title><head>
 <script name = "JavaScript">
 var i = 0;
1 function delCookie (cookieName){
2 document.cookie = cookieName + "=" +"; expires=Thu, 01-Jan-1970
 00:00:01 GMT";
 alert("Cookie was deleted!");
 seeCookie();
 }
3 function seeCookie(){
 if(document.cookie == ""){
 alert("No cookies");
 return false;
 }
 else{
4 var myCookie = document.cookie.split("; ");
 if (i < myCookie.length){
5 document.form1.cookietype.value =
 myCookie[i].split("=")[0];
 i++; // Increase the index value to see the next cookie
 }
 else{alert("No more cookies");}
 }
 }
 </script>
 </head>
6 <body background="cookebg.jpg" onLoad="seeCookie()" >
 <center>
 <h2> Got milk?</h2>
7 <form name="form1">
8 Is this the cookie you want to delete?

 <input type="text" name="cookietype" >
 <p>
9 <input type="radio"
 name="radio"
 value="choice"
9 onClick="delCookie(document.form1.cookietype.value);">Yes

 <input type="radio"
 name="radio"
 value="choice"
10 onClick="seeCookie();">No
 <p>
 </form>
 </center>
 </body>
 </html>

EXPLANATION

1. The function called delCookie() will remove a requested cookie. The name of the cookie, cookieName, is passed
as a parameter to the function.

2. The expiration date of the cookie is set to the beginning of UNIX time, also called epoch time—January 1, 1970.
Certainly this date has passed and the cookie will be deleted. After the cookie has been deleted, the
seeCookie() function will be called, and the user will be presented with another cookie. If he clicks on the Yes
radio button, that cookie will be removed.

3. The function called SeeCookie() will check to see if there are any cookies remaining in the document.cookie
property. If not, the program is over. To actually see if the cookies were deleted, close this session, and then
reopen it.

4. By splitting up the document.cookie property by semicolons, an array is created consisting of a name and value
attribute of the cookie.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. The first element of the array, the name of the cookie, is assigned to the text box represented as
document.form1.cookietype.value. It will appear in the text box for the user to see. Each time the function is
called, the next cookie will be assigned to the text box, giving the user the option to delete that cookie.

6. When the document has finished loading, the onLoad event is triggered, and calls the seeCookie() function. The
first cookie name will appear in the text box.

7. The HTML form starts here.

8. The text box input type will be used to hold the cookie name.

9. This radio button, when clicked, will called the delCookie() function. The user wants to remove this cookie. See
Figure 14.10.

Figure 14.10. The cookie's name is name. If the user clicks Yes (top), the
cookie will be removed (bottom).

10. This radio button, when clicked, means the user doesn't want to delete this cookie but would like to see the
next cookie. When the user clicks No, the seeCookie() function will be called. After all the cookies have been
shown, the alert message will say "No more cookies".

Using the Browser to Remove Cookies

Another way to delete cookies is to go in your browser to the Tools menu in Navigator, then to the Cookie Manager, and
then to Manage Stored Cookies. In IE, go to the Tools menu and Internet Options. See Figure 14.11. Then you can
remove all or some cookies from the hard drive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

remove all or some cookies from the hard drive.

Figure 14.11. Netscape Navigator 7 Cookie Manager from the Tools menu (left);
Internet Explorer from the Tools menu (right).

14.2.6 Cookie Help

Whether you like them, or hate them, you have complete control over whether to accept all cookies, some cookies,
delete cookies, and so on. Check your particular browser for all of your options. For example, under the Help option in
Navigator and IE, some of the cookie topics you might review are shown in Figure 14.12.

Figure 14.12. Cookie Help!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: Create a form that contains a set of checkboxes with different types of coffees—espresso, cappucino,
mocha, and so on. Ask the user for his name and room number and to select a type of coffee. Tell him you
will be sending the coffee to his room number. Create a cookie to remember his preference. The next time
he brings up the page, tell him there is a special rate for his (use the cookie value) favorite coffee.

2: Create a cookie that is assigned the user's favorite color. Change the background color of the document to
that color.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 15. Dynamic HTML: Style Sheets, the DOM,
and JavaScript

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.1 What Is Dynamic HTML?
Dynamic HTML, called DHTML, is really more than just a lively version of HTML. It consists of HTML4, the Document
Object Model (DOM), JavaScript, and CSS (Cascading Style Sheets). CSS was introduced by the World Wide Web
Consortium to help designers get more control over their Web pages by enhancing what HTML can do—it is used to
stylize the content of a Web page. CSS is to a Web page what a hair stylist is to your hair. You can get a simple haircut
for $9 or you can go to a fancy salon and hire a stylist to give you a really cool new look. Plain HTML gives you the $9
Web page, and DHTML takes your page to the styling salon to give it a dramatic new appearance. Whereas HTML is
concerned with the structure and organization of a document, CSS is concerned with its layout and presentation. Since
the initial style of the content is done with CSS, we'll start there. After that we'll use the DOM and JavaScript to
dynamically change the style of the page after it has been loaded. For a complete discussion of Cascading Style Sheets
(both CSS1 and CSS2) see http://www.w3org/Style/CSS.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.2 What Is a Style Sheet?
Webster's Dictionary defines "style" as a manner of doing something very grandly; elegant, fashionable. Style sheets
make HTML pages elegant by allowing the designer to create definitions to describe the layout and appearance of the
page. This is done by creating a set of rules that define how an HTML element will look in the document. For example, if
you want all H1 elements to produce text with a green color, set in an Arial 14-point font face centered in the page,
normally you would have to assign these attributes to each H1 element as it occurs within the document, which could
prove quite time consuming. With style sheets you can create the style once and have that definition apply to all H1
elements in the document. If you don't have a lot of time to learn how to create style sheets, an excellent alternative is
Macromedia's Dreamweaver MX. For more on authoring tools, see http://www.w3.org/Style/CSS/#editors.

15.2.1 What Does CSS Mean?

CSS is short for Cascading Style Sheets and is a standard defined by the World Wide Web Consortium (W3C), first
made official in December of 1996. They are called cascading because the effects of a style can be inherited or
cascaded down to other tags. This gets back to the parent/child relationship we talked about in Chapter 12, "Handling
Events," and the DOM. If a style has been defined for a parent tag, any tags defined within that style may inherit that
style. Suppose a style has been defined for a <p> tag. The text within these tags has been set to blue and the font is
set to Arial. If within the <p> tag, another set of tags is embedded, such as or , then those tags will inherit
the blue color and the Arial font. The style has cascaded down from the parent to the child. But this is a simplistic
definition of cascading. The rules can be very complex and involve multiple style sheets coming from external sources
as well as internal sources. And even though a browser may support style sheets, it may resolve the conflicting CSS
information differently or it may not support the cascading part of it at all.

15.2.2 What Is a CSS-Enhanced Browser?

A CSS-enhanced browser supports CSS and will recognize the style tag <style> as a container for a style sheet, and
based on the definition of the style, will produce the document accordingly. Most modern browsers, such as IE4+,
Netscape 4+, Opera 3.5+, and Apple's Safari Web browser and Mozilla support CSS, and the majority of Web users are
running a CSS-enhanced browser. However, just because a browser is CSS enhanced, doesn't mean that it is flawless
or without limitiations. And just because a browser is not CSS enhanced, doesn't mean that it can't see the content of a
page.[1]

[1] For an updated overview of available browsers, see the W3C overview page:
http://www.w3.org/Style/CSS/#browsers.

Traditionally, browsers have silently ignored unknown tags, so if an old browser happens to encounter a <style> tag, its
content will be treated simply as part of the document. It is also possible to hide the <style> tag within HTML
comments if the browser is too old to recognize CSS, or it might just be a good time to upgrade to a newer model. (See
"CSS Comments" on page 498 for more on this.)

15.2.3 How Does a Style Sheet Work?

A style sheet consists of the style rules that tell your browser how to present a document. The rules consist of two
parts: a selector—the HTML element you are trying to stylize, and the declaration block—the properties and values that
describe the style for the selector.

FORMAT

This rule sets the color of the H2 element to blue:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

H2 { color: blue }

A rule, then, consists of two main parts: the selector (e.g., H2) and the declaration block (e.g., color: blue). The
following example demonstrates this simple rule.

Example 15.1

 <html><head><title>First Style Sheet</title>
1 <style type="text/css">
2 h1 { color: red }
 h2 { color: blue }
 </style>
 </head>
 <body bgcolor=silver>
3 <h1>Welcome to my Stylin' Page</h1>
4 <h2>What do you think?</h2>
 </body>
 </html>

EXPLANATION

1. The style sheet starts with the HTML <style> tag and specifies that the style sheet consists of text and CSS.
The purpose of this style sheet is to customize HTML tags, thus giving them a new style.

2. A selector is one of any HTML elements, such as h1, h2, body, li, p, or ul. In this example, the h1 and h2
elements are selectors. The declaration has two parts: property (color) and value (red). Every time an <h1>
tag is used in the document, it will be red, and every time an <h2> tag is used, it will be blue. (There are
approximately 50 properties beyond the color property that are defined in the CSS specification!)

3. The <h1> tag will be displayed in red, based on the rule in the style sheet.

4. The <h2> tag will be displayed in blue, based on the rule in the style sheet.

Figure 15.1. Style sheet with Internet Explorer (top) and with Nescape (bottom).
If this book was in color, you would be able to see that the h1 is in red, and the h2

is in blue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSS Comments

CSS comments, like C language comments, are enclosed in /* */. They are the textual comments that are ignored by
the CSS parser when your style is being interpreted, and are used to clarify what you are trying to do. They cannot be
nested.

H1 { color: blue } /* heading level 1 is blue */

Grouping

Grouping is used to reduce the size of style sheets. For example, you can group selectors in comma-separated lists, if
you want the same rule to apply to all of the elements:

H1, H2, H3 { font-family: arial; color: blue }

Now all three heading levels will contain blue text in an Arial font face.

You can also group a set of declarations to create the style for a selector(s). The following rule combines a number of
declarations describing the font properties for an H1 element:

H1 {
 font-weight: bold;
 font-size: 12pt;
 line-height: 14pt;
 font-family: verdana;
}

And you can group the values for a particular property as follows:

h2 {font: bold 24pt arial}

Example 15.2

 <html>
 <head><title>Grouping Properties</title>
 <style type="text/css">
1 h1,h2,h3 { color: blue } /* grouping selectors */
2 h1 { /* grouping declarations */
 font-weight: bold;
 font-size: 30pt;
 font-family: verdana;
 }
3 h2 { /* grouping a property's values */
 font: bold 24pt arial
 }
 </style>
 </head>
 <body bgcolor=silver>
4 <h1>Welcome to my Stylin' Page</h1>
5 <h2>What do you think?</h2>
6 <h3>Groovy!</h3>
 </body>
 </html>

EXPLANATION

1. Three selectors, h1, h2, and h3, are grouped together. The declaration block enclosed in curly braces sets the
color property to blue. Whenever any one of the h1, h2, or h3 elements is used in the document, its text will be
blue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

blue.

2. The declaration block for the h1 selector consists of a group of properties and values to further define the font
style for this heading.

3. The font property, in this example, groups the font values as a list, rather than creating individual
property/value pairs as done on line 2.

4. Now the h1 tag is tested to see if the style was applied, and it is!

5. The style for the h2 tag is tested and it has been applied.

6. The only style set for the h3 tag is a blue font, and that's all we get, as shown in Figure 15.2.

Figure 15.2. Grouping selectors and declarations for h1, h2, and h3 HTML
elements.

Units of Measurement

You can express the size of a given property in different units of measurement; for example, a font size can be
expressed in pixels or ems or points (the default is pixels). Colors can also be expressed in combinations of red, green,
and blue, either by the name of the color, or its hexadecimal value.

Measurement is used in three categories: absolute units, relative units, and proportional units. For example, a point size
measurement (e.g., 14pt) would be the actual size (absolute) of a particular font; a value (e.g., 5em) could be relative
to the size of the current font; and a color (e.g., 50%80%100%) could represent red, green, and blue as a percentage
value of the original color. Table 15.1 introduces the types of measurements that are often used in style sheets.

Table 15.1. CSS units of measurement.
Unit of Measurement Description

% Relative value as a percentage of parent element

cm Centimeter

deg Degree; angular measure used in aural styles

em Relative length value proportional to current font size; width of the letter M for that font

ex Vertical height of letter x relative to current font; height of a lowercase x for that font

float Can be specified if a property value has no applicable unit of measurement, same as integer

hz Hertz; for audio content

in Inch, 2.54 cm

integer Can be specified if a property value has no applicable unit of measurement, same as float

mm Millimeter

ms Millisecond, 1/1000 sec

pc Pica, 12 points

pt Point size, 1/72 inch

px Pixel (based on the resolution of the monitor)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rgb(#,#,#) Red, green, blue; e.g., rgb(203,55,266)

rgb(R%,G%,B%) Red, green, and blue percentage values of a color; e.g., rgb(80%,20%,100%)

#rrggbb or #RRGGBB color values (red, green, blue)

sec Second, 1000 ms

Examples:

font-size: 10pt

top: 20px

margin: 1em

margin-right: 20%

color: blue

15.2.4 Common Style Sheet Properties (Attributes)

In the previous examples, font-family and color are properties (also called attributes), and by assigning values to them,
the style of the document is defined. Listed in Table 15.2 are some of the properties commonly used in style sheets.
Many of these properties are used in the style sheets defined throughout this chapter and later as properties of the
style object used with JavaScript. The Web Design Group provides a complete listing of this information at
http://www.htmlhelp.com/reference/css/properties.html.

Table 15.2. Style sheet properties.
Property Value/Example Tags Affected

Fonts

Font 12pt/14pt sans-serif, 80% sans-serif, x-large/110% arial, normal small-caps All

font-family serif, sans-serif, cursive, fantasy, monospace; or any specific font typeface name
may be used

All

font-size 12pt, larger, 150%, 1.5em All

font-size-
adjust

xx-small, x-small, small, medium, large, x-large, xx-large, smaller, larger, 12pt,
25%

All

font-stretch normal, wider, narrower, ultra-condensed, extra-condensed, condensed, semi-
condensed, semi-expanded, expanded, extra-expanded, ultra-expanded

All

font-style normal, italic, oblique All

font-variant normal, small-caps All

font-weight normal, bold, bolder, lighter,100, 200...900 All

Colors and Background

background-
attachment

scroll, fixed All

background-
color

red, blue, #F00, transparent All

background-
image

URL (bay.gif), none All

background-
position

right top, top center, center, bottom, 100% 100%, 0% 0%, 50% 50% Block-level and
replaced elements

background-
repeat

repeat, repeat-x (horizontally), repeat-y (vertically), no-repeat All

color red, green, #F00, rgb(255,0,0) All

Text Alignment

letter-
spacing

normal, 0.1em All

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

spacing

line-height normal, 1.2, 1.2em, 120% All

text-
decoration

underline, overline, line-through, blink All

text-
transform

capitalize, uppercase, lowercase, none All

text-align left, right, center, justify All

text-indent 3em, 15% Block-level
elements

vertical-
align

baseline, sub, super, top, text-top, middle, bottom, text-bottom, 50% Inline elements

word-
spacing

normal, 2em All

Margins and Borders

border-
bottom

<border-bottom-width> or <border-style> or <color> All

border-
bottom-
width

thin, medium, thick, 2em All

border-color red, green, #0C0 All

border-left <border-left-width> or <border-style> or <color> All

border-left-
width

thin, medium, thick, 3em All

border-right <border-right-width> or <border-style> or <color> All

border-
right-width

thin, medium, thick, 1cm All

border-style [none], dotted, dashed, solid, double, groove, ridge[inset,outset]{1,4} All

border-top <border-top-width> or <border-style> or <color> All

border-top-
width

thin, medium, thick, 3em All

border-
width

thin, medium, thick, .5cm All

clear none, left, right, both (allows or disallows floating elements on its sides) All

float left, right, or none (wraps text around an element, such as an image) All

height 12em, auto Block-level and
replaced element

margin 5em, 3em, 2em,1em (top, right, bottom, left) All

margin-
bottom

100px, 50% All

margin-left .5in, 40% All

margin-right 20em,45% All

margin-top 1cm, 20% All

padding 2em, 4em, 6em (right, bottom, left) All

padding-
bottom

2em, 20% All

padding-left .25in, 20% All

padding-
right

.5cm, 35% All

padding-top 20px, 10% All

width 12em, 30%, auto (initial width value) Block-level and
replaced
element[a]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element[a]

[a] A replaced element has set or calculated dimensions, such as img, select, textarea.

Working with Colors

What is style without color? Table 15.3 lists the properties for managing color. You can use these properties to create
color for the document's background and fonts, margins, borders, and more. The colors can be expressed with real
names (e.g., red, blue, yellow, magenta) or their corresponding hexadecimal values (e.g., #FF0000, #0000Ff, #ffff00,
#ff00FF) (see Tables B.1 and B.2 in Appendix B for a full list).

Sometimes colors don't look as crisp and bright as you would expect; pink might look like red, or some of the colors in
a field of flowers might be dull. In Chapter 10, "The Browser Objects: Navigator, Windows, and Frames," we discussed
the screen object. It has a property called colorDepth that will tell you how many colors in bits a computer can handle.
For example, a color-bit depth of 4 will display 16 colors and a color-bit depth of 32 will provide 16.7 million colors. How
many colors can your computer display?

There are a number of color charts available on the Web that provide Web-safe color palettes. See www.lynda.com,
www.paletteman.com, or www.visibone.com.

Table 15.3. Color properties.
Property Value/Example Elements Affected

background-color red, blue, #F00 All

Color red, green, #F00, rgb(255,0,0) All

Example 15.3

 <html><head><title>Colors</title>
 <style type="text/css">
1 body { background-color: blue }
2 h1 {color: #FFFF33;}
3 p { color: white; }
 </style>
 </head>
4 <body>

5 <h1>Welcome to my Stylin' Page</h1>
6 <p>This paragraph is all white text on a blue background.

 Do you like it?
 </p>
 </body>
 </html>

EXPLANATION

1. A style is defined for the background of the document. It will be blue.

2. The text for all <h1> tags will be yellow (#FFFF33 is yellow).

3. Paragraphs will have white text.

4. The body of the page will be blue.

5. The heading level <h1> is displayed in its yellow style.

6. Any text enclosed in <p> </p> will be white against a blue body. See Figure 15.3 for output.

Figure 15.3. Colored text and background.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Fonts

The presentation of a document would be quite boring if you only had one font face and size available. CSS lets you
specify a style for the fonts in a document in a variety of ways—by family, size, color, and others (see Table 15.4).
There are a huge number of fonts to pick from, although it's a good idea to specify fonts that users are likely to have
installed. Like the HTML tag, CSS lets you specify several font families (see Table 15.5), and will go from left to
right, selecting the one available on your computer.

Table 15.4. Font properties.

Property Value/Example
Elements
Affected

font 12pt/14pt sans-serif, 80% sans-serif, x-large/110% arial, normal small-caps All

font-
family

serif, sans-serif, cursive, fantasy, monospace; or any specific font family typeface
name may be used

All

font-size 12pt, larger, 150%, 1.5em All

font-style normal, italic, oblique All

font-
variant

normal, small-caps All

font-
weight

normal, bold, bolder, lighter, 100, 200...900 All

Table 15.5. Font families.
Family Names Specific Family Typeface Names

Serif

Sans-serif

Monospace

Cursive

Fantasy

Example 15.4

 <head><title>Fonts</title>
 <style type="text/css">
 body { background-color: darkblue; }
1 h1 { color: yellow; font-size:x-large;
 font-family: lucida, verdana, helvetica; }
2 h2 { color:lightgreen; font-size:large;
 font-family:courier; }

3 h3 { color:lightblue; font-size:medium;
 font-family:helvetica; }
4 p { color:white; font-size: 22pt;
 font-style: italic;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 font-style: italic;
 font-family: arial;
 font-variant:small-caps; }
 </style>
 </head>
 <body>

 <h1>My name is Papa Bear</h1>
5 <h2>My name is Mama Bear</h2>
 <h3>and I'm the Baby Bear</h3>
 <p>Once upon a time, yaddy yaddy yadda...</p>
 </body>
 </html>

EXPLANATION

1. The h1 element will have yellow text, an extra-large font size from the Lucida family of fonts. If that font is not
available in this browser, Verdana will be used, and if not Verdana, then Helvetica.

2. The h2 element will have a light-green, large, Courier font.

3. The h3 element will have a light-blue, medium, Helvetica font.

4. Paragraphs will have white text, with an italic, Arial font size of 22 points, all in small caps.

5. The <h2> tag is displayed in its big style. See Figure 15.4.

Figure 15.4. Changing fonts.

Working with Text

If you want to make a business card, how do you put extra space between each of the letters of your company name?
If you're writing a science term paper, how do you deal with exponents, equations, or subscripts? And how do you
make it double-spaced? If you're writing a cool poem and want your text in the shape of an hourglass or a circle to give
it visual appeal, or you just want to emphasize certain words to make your point for a presentation, then what to do?
The CSS controls listed in Table 15.6 may be your answer.

Table 15.6. Text alignment properties.
Property Value/Example Elements Affected

letter-spacing normal, 0.1em All

line-height normal, 1.2, 1.2em, 120% All

text-align left, right, center, justify All

text-decoration underline, overline, line-through, blink All

text-indent 3em, 15% Block-level elements

text-transform capitalize, uppercase, lowercase, none All

vertical-align baseline, sub, super, top, text-top, middle, bottom, text-bottom, 50% Inline elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

word-spacing normal, 2em All

Example 15.5

 <html><head><title>First Style Sheet</title>
 <style type="text/css">
1 #title{
2 word-spacing: 10px;
 letter-spacing: 4px;
 text-decoration: underline;
 text-align: center;
 font-size: 22pt ;
 font-family:arial;
 font-weight: bold;
 }
3 p { line-height: 2;
 text-indent: 6%;
 font-family:arial;
 font-size:18; }
 }
 </style>
 </head>

 <body bgcolor="coral">
4 <p id=title>The Color Palette
5 <p>The world is a colorful place. Web browsers display
 millions of those colors every day to make the pages seem
 real and interesting. Browser colors are displayed in
 combinations of red, green, and blue, called RGB. This is a
 system of indexing colors by assigning values of 0 to 255 in
 each of the three colors, ranging from no saturation (0) to
 full saturation (255). Black has a saturation of 0 and
 white has a saturation of 255. In HTML documents these
 colors are represented as six hexadecimal values, preceded
 by a # sign. White is #FFFFFF and black is #000000.
6 <p>
 Although there are millions of different combinations of color,
 it is best when working with Web pages to use what are
 called Web-safe colors.
 </body>
 </html>

EXPLANATION

1 #title is called an ID selector, a way in the style sheet that we can allow any selector to use a style. In
this example, the title of the page is going to be distinct from the text in the rest of the page. For
example, if the <p> tag is used, it can identify itself with this ID selector in order to produce the text
style described in the declaration block (see line #4). If the ID is not used, the rest of the paragraphs
will display text as defined by the rule in line #3. More discussion on ID selectors is presented in "The
ID Selector" on page 523.

2 Text controls are defined in the rule. The text will be centered, underlined, with a 22pt, bold Arial
font. The spacing between each letter and each word is defined in pixels.

3 When the <p> tag is used, a line height of 2 will produce double-spaced lines. The first line of each
paragraph will be indented by 2% from the left margin.

4 This paragraph is identifying itself with the title ID. This means that for this paragraph, the style will
follow the rule defined after line 1.

5, 6 Both of these paragraphs take on the style provided by the rule in line 3.

Figure 15.5. A report with a centered title, double-spaced lines, and indented
paragraphs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

paragraphs.

Working with Backgrounds and Images

The same way that wallpaper in a guest room can create a sense of warmth or calm, background images can add
decoration and design to an otherwise blah page. CSS gives you a number of ways to control the appearance of
background images. Refer to Table 15.7.

Table 15.7. Image and background properties.
Property Value/Example Elements Affected

background-
attachment

scroll, fixed All

background-image URL (bay.gif), none All

background-position right top, top center, center, bottom, 100% 100%, 0% 0%,
50% 50%

Block-level and replaced
elements

background-repeat repeat, repeat-x (horizontally), repeat-y (vertically), no-repeat All

Example 15.6

 <html>
 <head><title>Backgrounds</title>
 <style type="text/css">
1 body {background-color:"pink" ;
2 background-image: url(greenballoon.gif);
3 repeat-x };
4 h1 {font-size: 42pt;text-indent: 25%;
 color:red; margin-top: 14%;
 font-family:fantasy;}
 </style>
 </head>
5 <body>
6 <h1>Happy Birthday!!</h1>
 <h1>Happy Birthday!!</h1>
 </body>
 </html>

EXPLANATION

1. The rule for the body element is to give it a pink background color.

2. The background image will come from a file called greenballoon.gif, in the current directory. The URL specifies
the location of the image.

3. The image will repeat itself horizontally across the screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. The rule for the h1 element is a red 42-point fantasy font, indented 25% from the left of the block, where the
margin is 14% from the top.

5. The body of the document reflects the style that was set for it in line #1.

6. The <h1> tag reflects the rule set for it in line 4.

Figure 15.6. Background color and a repeating image.

Working with Margins and Borders

When you look at your document, it is composed of a number of containers. The <body> tag is a container and it may
contain a heading, a paragraph, a table, or other elements. Each of these elements also can be thought of as a
container. Each container has an outer margin, and the margin can have some padding (space between it and the next
container). The padding is like the CELLPADDING attribute of a table cell. On the inside of the padding is a border that
separates the container from its contents. The border is normally invisible. You can change the margin, create colorful
borders, or increase or decrease the padding, to give the page more style. See Figure 15.7 for a graphic representation,
and Table 15.8 for a list of margin and border properties. Different browsers might handle the borders differently.
Margins and borders will behave better if enclosed within <div> tags.

Figure 15.7. How an element is contained.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 15.8. Margin and border properties.
Property Value/Example Elements Affected

border-bottom <border-bottom-width> or <border-style> or <color> All

border-bottom-width thin, medium, thick, 2em All

border-color red, green, #0C0 All

border-left <border-left-width> or <border-style> or <color> All

border-left-width thin, medium, thick, 3em All

border-right <border-right-width> or <border-style> or <color> All

border-right-width thin, medium, thick, 1cm All

border-style [none], dotted, dashed, solid, double, groove, ridge [inset,outset]{1,4} All

border-top <border-top-width> or <border-style> or <color> All

border-top-width thin, medium, thick, 3em All

border-width thin, medium, thick, .5cm All

margin 5em, 3em, 2em, 1em (top, right, bottom, left) All

margin-bottom 100px, 50% All

margin-left .5in, 40% All

margin-right 20em, 45% All

margin-top 1cm, 20% All

padding 2em, 4em, 6em (right, bottom, left) All

padding-bottom 2em, 20% All

padding-left .25in, 20% All

padding-right .5cm, 35% All

padding-top 20px, 10% All

Example 15.7

 <html>
 <head><title>Margins and Borders</title>
 <style type="text/css">
1 body { margin-top: 1cm; margin-left: 2cm ;
2 margin-bottom: 1cm; margin-right: 2cm;
3 border-width: thick;
 border-style:solid;
 border-color: red blue green yellow; padding:15px;
 }
 h1{ /* grouping properties */
 font-weight: bold;
 font-size: 30pt;
 font-family: verdana;
 }
 h2 { /* grouping a property's values */
4 border-style:dotted; border-color:purple;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 border-style:dotted; border-color:purple;
 font: bold 24pt arial
 }

 </style>
 </head>
 <body bgcolor=silver>
 <h1>Crossing the Border!</h1>
 <h2>Welcome!</h2>
 <h3>Nice country.</h3>
 </body>
 </html>

EXPLANATION

1. The margins and borders are defined for the body of this document.

2. The margin bottom is 1 centimeter up from the bottom of the document and 2 centimeters in from the left.
There will be more whitespace around the headings, paragraphs, and other elements within the body because
of the increased margin sizes.

3. A thick, rainbow-colored border is placed on the inside of the margin.

4. The border style for h2 elements is purple dots. See Figure 15.8.

Figure 15.8. Playing with margins and borders. This is how the colorful
border appears in NN7. (The border looks different in IE6. It surrounds the

entire window.)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.3 Types of Style Sheets
There are several ways to define style sheets within a document:

1. Embedded— the style is defined within the <style> tags for the HTML document.

2. Inline— the style is defined for a specific HTML element.

3. External— the style is defined in an external file.

15.3.1 The Embedded Style Sheet

A style sheet that is created with the HTML <style></style> tags right in the current document is called an embedded
style sheet.

The <style> Tag

The <style></style> tags were introduced into HTML to allow the style sheets to be inserted right into an HTML
document. They are used to create a set of rules to define the style of an HTML element(s). The <style></style> tags
are placed between the <head></head> tags in the document, as shown here:

<html><title>CSS Example</title>
<head>
 <style>
 h1 { color: blue ; }
 </style>
</head>

The type Attribute

Because it is possible to have more than one style sheet language, you can tell the browser what type of style sheet
you are using with the type attribute of the HTML <style> tag. When the browser loads the page, it will ignore the style
sheet if it doesn't recognize the language; otherwise it will read the style sheet.

The following example specifies that the type is text/css; that is, text and cascading style sheet.

FORMAT

<style type="style sheet language">

Example:

<style type="text/css">

Example 15.8

 <html>
 <head><title>Cascading Style Sheets</title>
1 <style type="text/css">
 <!--
2 body { background-color: lightblue; }
3 p { background:yellow;
 text-indent:5%;
 margin-left: 20%;
 margin-right: 20%;
 border-width:10px;
 border-style:groove;
 padding: 15px;
 font-family: times,arial;
 font-size:150%;
 font-weight:900 }
4 h1, h2, h3 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 h1, h2, h3 {
 text-align: center;
 background:blue;
 border-width:5px;
 border-style:solid;
 border-color:black;
 margin-left:20%;margin-right:20%;
 font-family:courier, arial;
 font-weight:900;
 color: white; }
5 h2,h3 { font-size:24; }
6 em { color: green;
 font-weight: bold }
 -->
7 </style>
 </head>
 <body>
8 <h1><center>Stylin' Web Page</center></h1>
9 <p>HTML by itself doesn't give you much other than structure in a
 page and there's no guarantee that every browser out there will
 render the tags in the same way. So along came style sheets.
 Style sheets enhance HTML as a word processor enhances plain text.
 <p>But... no guarantees what a browser might do with a style
 sheet, any more than what a stylist might do to your hair, but we
 can hope for the best.
10 <h2><center>An H2 Element</center></h2>
 <h3><center>An H3 Element</center></h3>
11 <p>This is not a designer's dream style, but it
 illustrates the power.
 </body>
 </html>

EXPLANATION

1. The HTML <style> tag belongs within the <head></head> tags. The is the start of an embedded CSS.

2. A rule is defined for the HTML body element. The background color of the document will be light blue.

3. A rule is defined for the HTML p (paragraph) element. The left and right margins are set at 20%, meaning that
they will be moved inward 20% from their respective edges. They will be surrounded by a grooved border, with
the text given a 15-pixel size padding. The font face is Times or Arial (whichever works on your browser), point
size 150% bigger than its default, weight 900 is the boldest of the bold.

4. A rule is defined for a group of selectors (heading levels h1, h2, and h3). They will be centered on the page, the
text will be white against a blue bordered background, in a Courier or Arial font face.

5. The rule for the h2 and h3 tags sets the font size to 24 points.

6. A rule is defined for an em element. Text will be italicized, green, and bold.

7. This marks the end of the HTML header that encloses the style sheet.

8. As shown in the output (see Figure 15.9), the heading level is displayed according to the style defined in the
style sheet, line 4.

Figure 15.9. HTML and CSS—An embedded style sheet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9. This paragraph is displayed according to the rule set in the style sheet, line 3. Notice how both the left and right
margins have moved toward the center.

10. The heading level is displayed according to the rule set in the style sheet, lines 4 and 5, and the first paragraph
is indented.

11. The tag is embedded within the <p> tag. It inherits from the <p> tag everything but the font color and
weight. These paragraph properties were overridden in the style sheet defined on line 6 for the em element.

15.3.2 The Inline Type and the <style> Attribute

Inline style sheets are also embedded within an HTML document, but are assigned as an attribute of the <style> tag in
the body of the document and are useful for overriding an already exisiting style for a particular element in a linked
style sheet. On the negative side, they have to be redefined for any element that requires that style, element by
element. For example, if the h1 element has been defined to be blue and you want to temporarily change it to red, you
can define the style as an attribute of the style tag for that element:

<h1 style= "color: red; "> This is red text</h1>

Example 15.9

 <html><head><title>Inline Style Sheets</title>
1 <style type="text/css">
2 body { background-color: orange;
 color:darkblue; /* color of text */ }
 </style>
 </head>
 <body>
3 <h1 style="color:darkred;
 text-align:center;
 text-decoration:underline;">Inline Stylin'</h1>
4 <p style="color:black;
 background:white;
 font-family:sans-serif;font-size:large">
 This paragraph uses an inline style. As soon as another paragraph
 is started, the style will revert back to its default.
5 <p> This paragraph has reverted back to its default style, and so
 has the following heading.
 <h1>Default heading</h1>
 </body>
 </html>

EXPLANATION

1. A CSS starts here in the head of the document.

2. The background color is set to orange and the color of the font is set to dark blue.

3. This h1 uses an inline style, an attibute of the <h1> tag and effective for this heading only. The color will be
red, the text centered and underlined.

4. This is an inline style for the paragraph tag. It is an attribute of the <p> tag and is only good for this
paragraph. The text of the paragraph will be black, the background color of the paragraph will be white, and the
font family, sans-serif, large. The next time a <p> tag is used, the style will revert to its former style.

5. This paragraph has reverted to its former style. See Figure 15.10.

Figure 15.10. Inline styles are temporary.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.10. Inline styles are temporary.

15.3.3 The External Type with a Link

External style steets are the most powerful type if you want the style to affect more than one page; in fact, you can use
the same style for hundreds, thousands, or millions of pages. As the name implies, external style sheets are stored in
an external file, not the current HTML file. The filename for the external style sheet has a .css extension, just as the
HTML file has an .html or .htm extension. To link the external file to the existing HTML file, a link is created as shown
here:

<link rel=stylesheet href="style_file.css" type="text/css">

The following examples demonstrate the use of external style sheets. The first example is the HTML file containing a
link to the external file and the second example is the .css file. It contains the style sheet.

Example 15.10

 <html><head><title>External Style Sheets</title>
1 <link rel=stylesheet type="text/css" href="extern.css">
 <!-- Name of external file is extern.css. See Example 15.11 -->
2 </head>
3 <body>
 <h1><u>External Stylin'</u></h1>
 <h2>Paragraph Style Below</h2>
 <p>The style defined for this paragraph is found in an external
 CSS document. The filename ends with .css.
 Now we can apply this style to as many pages as we want to.
 <h2>An H2 Element</h2>
 <h3>An H3 Element</h3>
 <p>This is not a designer's dream style, but it
 illustrates the power. Don't you think so?<p>
 </body>
 </html>

EXPLANATION

1. The link tag is opened within the <head> tags of your HTML document. The link tag has a rel attribute that is
assigned stylesheet. This tells the browser that the link is going to a style sheet type document. The href
attribute tells the browser the name of the CSS file containing the style sheet. This is a local file called
extern.css. If necessary, use a complete path to the file. The link tag is closed with a >.

2. The <head> tag ends here.

3. In the body of the document, each of the HTML tags will be affected by the style defined in the external CSS
file. The output for Examples 15.10 and 15.11 is shown in Figure 15.11.

Figure 15.11. External style sheets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.11. External style sheets.

Example 15.11

(The external extern.css file)
1 body { background-color: pink; }
2 p {
 margin-left:20%;
 margin-right:20%;
 font-family: sans-serif;
 font-size: 14
3 }
 h1, h2, h3 { text-align: center;
 font-family: sans-serif;
 color: darkblue
 }
4 em { color: green;
 font-weight: bold
 }

EXPLANATION

1. This is the external CSS file that will be linked to the file in Example 15.10. Using an external CSS file keeps the
main file size smaller and allows the style sheet to be shared by multiple files.

2. The paragraph <p> style is set to have a margin in 20% from the left and right, the text in size 14, and font
family sans-serif.

3. The heading levels 1, 2, and 3 styles are set to be centered with a dark blue font, from the sans-serif family.

4. The style will be a bold, green font.

15.3.4 Creating a Style Class

Rather than globally defining a style for an element, you can customize the style by defining a class. The class style can
be applied to individual tags when needed. The class name, called the class selector, is preceded by a period and
followed by the declaration enclosed in curly braces.

FORMAT

.classname { style rules; }

Example:

.header { font-family: verdana, helvetica ; }

Once you have defined a class, it can be used on any of the HTML elements in the body of the document as long as that
element understands the style you have applied to it. To apply the class, you use the class attribute. The class attribute
is assigned the name of the class; for example, for the <p> tag, you would stipulate <p class=name> where name is
the name of the class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 15.12

 <html><title>CSS Class Name</title>
1 <head>
2 <style>
3 p { margin-right: 30%;font-family: arial;
 font-size: 16pt;
 color:forestgreen; }
4 .bigfont { font-size: x-large; color:darkblue;
 font-style:bold;}
5 .teenyfont {font-size:small; font-style: italic;color:black;}
 </style>
 </head>
 <body>
6 <p>The text in this paragraph is green and the point size is 16.
 The font family is arial.
7 <p class="bigfont"> This paragraph has a bigger font and is dark
 blue in color.
8 <p>The font style is specified as a class called
 .bigfont.
9 <h1 class="bigfont">Testing the Class on an H1 Element</h1>
10 <p class="teenyfont">Is this a small font?"
 <p>Let's start a new paragraph. This is green with a font size of
 16. What style is in effect here?
 </body></html>

EXPLANATION

1. The style is defined in the <head> of the document.

2. The CSS starts here.

3. A rule is defined for the paragraph (p selector). All paragraphs will have a right-hand margin, 30% in from both
left and right. The Arial font will be 12 point and forest green.

4. A class selector called .bigfont is defined. Class names start with a period. When used on an HTML element, the
font will be extra large, dark blue, and bold.

5. The class selector called .teenyfont is defined. All HTML elements that use this class will have a small, italic,
black font.

6. The paragraph is styled according to the rule on line 3.

7. This paragraph is assigned the bigfont class. The text will be in the style defined for this class on line 4.

8. This paragraph reverts to the style rule on line 3.

9. The <h1> tag is using the bigfont class defined on line 4.

10. The <p> tag is using the teenyfont class defined on line 5. See Figure 15.12.

Figure 15.12. Using a CSS class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.3.5 The ID Selector

The ID selector is another way to create a style that is independent of a specific HTML tag. By using the ID selector, you
can choose the style for the element by assigning it a unique ID. The name of the ID selector is always preceded by a
hash mark (also called a pound sign, #). The declaration block, consisting of properties and values, follows the ID
selector and is enclosed in curly braces.

FORMAT

#IDselector { declaration ; }

Example:

#menu1 { font-family: arial;
 font-size: big;
 color: blue; }

To apply an ID to an HTML tag, use the id attribute. The attribute will be assigned the same name given to the ID
selector; so, to apply an ID selector to a <p> tag, you would stipulate <p id=name> where name is the name of the ID
selector. (See Example 15.13.)

When JavaScript enters the picture, the id attribute is used to identify each element as a unique object so that it can be
manipulated in a JavaScript program. The ID should be unique for an element and not used more than once on a page.
If you need to use the style more than once for multiple elements, it would be better to use the class selector instead.
The ID selector can be used with a class selector of the same name, as #big, .big { }.

Example 15.13

 <html><head><title>ID's</title>
1 <style type="text/css">
2 p{ font-family:arial,sans-serif,helvetica;
 font-style:bold;
 font-size:18
 }
3 #block { /* The ID selector */
 color: red;
 text-decoration:underline;
 }
 </style>
 </head>
 <body >
4 <p>When making my point, I will get quite red and underline what
 I say!!</p>
5 <p id="block">This text is red and underlined!!</P>
6 <p>and now I am somewhat appeased.
 </body>
 </html>

EXPLANATION

1. This is the start of a style sheet; it is placed between the <head></head> tags in the document.

2. The style of the paragraph element is defined. This style will take effect anywhere in the document where the
<p> tag is used. Note that point sizes may be different on different browsers. Pixels will give you more
accuracy.

3. The ID selector is called block and must be preceded by a hash mark. It can be used by any HTML element to
produce red, underlined text. ID selectors should only be used once on a page to serve as a unique ID for the
element.

4. A paragraph containing text will be displayed according to the style defined in the style sheet on line 2.

5. By adding the ID called block, the style for this paragraph will be changed to red, underlined text.

6. The <p> tag will revert to the style defined on line 2. See Figure 15.13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. The <p> tag will revert to the style defined on line 2. See Figure 15.13.

Figure 15.13. Using the ID selector in style sheets.

15.3.6 The Tag

The tags are used if you want to change only a selected portion of text. By doing so, you can create
an inline style that will be embedded within another element and apply only to that portion of the content. In this way
you can add or override a style to an element for which a style has already been defined. Carriage returns and breaks
in the text will not occur with these tags.

In the following example, the paragraph style has been defined in a CSS. But later in the body of the document, the
 tag is used to override the font size and to add margins to the text.

Example 15.14

 <html><head><title>Margins</title></head>
 <style type="text/css">
1 body { margin:10%;
 border-width: 10px; border-style:solid;
 border-color: white; padding:5px;}
2 p { color=black;
 font-size: 22pt;
 margin-left:10;
 margin-right:10;
 padding:5px;
 border-style:groove;
 border-color:white;
 background-color:cyan;}
 </style>
 <body bgcolor=blue>
 <p>
3 The Three Little
 Bears
4 </p>
 Once upon a time there were three little bears,
 Mama bear, Papa bear, and Baby bear.
 They lived very happily in the deep woods.
 <p>And then there was Goldilocks!</p>
 </body>
 </html>

EXPLANATION

1. The style rule for the body element is defined. It will have a margin distance increased by 10% on all sides and
a solid, white border with a padding of 5 pixels between the margin and the border. Margin borders will differ in
appearance depending on your browser.

2. The style rule for the paragraph defines black text of a 22 point font, with both right and left margins of 10
pixels, contained within a grooved, white border, against a cyan background.

3. The tag defines a left-hand margin increased by 10% relative to this paragraph, and changes the font
size to 26 points. The only part of the document to be affected is the paragraph in which the
tags are enclosed. The text The Three Little Bears will be displayed according to this style.

4. The tags have no effect on this paragraph. The style reverts to the rule in the style sheet. See Figure
15.14.

Figure 15.14. The tag only affects a specific portion of the text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.14. The tag only affects a specific portion of the text.

15.3.7 Contextual Selectors

Contextual selectors have an inheritance basis. For example, if a tag is nested withing a <p> tag, then the
tag takes on the characteristics assigned to its parent. If the <p> is green, than the bold text will also be green. If a
bullet list has tags nested within it, the bullets take on the characteristics of its parent. If the ul element is
red, then all the bullets and the accompanying text will be red.

When you create a contextual selector, the last element in the selector list is the one that is affected by the style when
it is used in context of the elements preceding it. For example, if you have a selector list: table td em { color: blue ;},
then the em element, the last in the list, will be affected by the style only when it is inside a table cell, td, at which
point the table cell will be contain blue italic text.

Example 15.15

 <head><title>Contextual Selector</title>
 <style type="text/css">
1 table td { color: blue; /* Table cells will take this style */
 font-size: 18pt;
 font-family: verdana; }
 </style>
 </head>
 <body bgcolor=silver><center>
 <h1>The Three Bears</h1>
 <table cellspacing="20" cellpadding="20%" border="3">
 <tr>
2 <td>Mama Bear</td>
 <tr>
3 <td>Papa Bear</td>
 <tr>
4 <td>Baby Bear</td>
 </tr>
 </table>
 </center>
 </body>
 </html>

EXPLANATION

1 A rule is defined for a table cell. The table's data will be blue, the font size 18 points, and the font
family, Verdana. Whenever you create a table, each of the table cells, defined by the <td> tag, will
have this style.

2–4 The table data in these cells will take on the style described in line 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2–4 The table data in these cells will take on the style described in line 1.

Figure 15.15. A table with stylized cells.

Example 15.16

 <html>
 <head><title>Contextual Selector</title>
 <style type="text/css">
1 table td em { color: blue; /* Table cells take this style */
 font-size: 18pt;
 font-family: verdana; }
 </style>
 </head>
 <body bgcolor=silver><center>
2 <h1>The Three Bears</h1>
 <table cellspacing="20" cellpadding="20%" border="3">
 <tr>
3 <td>Mama Bear</td>
 <tr>
4 <td>Papa Bear</td>
 <tr>
5 <td>Baby Bear</td>
 </tr>
 </table>
 </center>
 </body>
 </html>

EXPLANATION

1. When a table is defined, the data cells will take on this style only if the tag is used within the cell. See
line 3.

2. The tag used within this <h1> tag is not affected by the contextual selector because it is not within a
table cell; that is, it is out of context.

3. The tag is embedded within a <td> tag. The table's data will follow the style defined on line 1; it is in
context.

4. This table cell is not using the tag, so will not be affected by the style rule on line 1. It can only be
affected if in context.

5. This table cell will not be affected by the style rule either because it doesn't use the tag. See Figure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. This table cell will not be affected by the style rule either because it doesn't use the tag. See Figure
15.16.

Figure 15.16. A table cell is defined by the contextual selector.

15.3.8 Positioning Elements and Layers

One of the most important features of CSS is the ability to position objects on a page, to size them, and to make them
either visible or invisible. This feature makes it possible to move objects to different sections of a page, move text and
images, create animation, tool tips, scrolling text, and more. Normally when you place tags in an HTML document, the
flow is from top to bottom. Now, with style sheets, you can set the position of an element, even layering one on top of
the other.

A note about Netscape layers. Netscape 4 introduced layer (<layer><ilayer>) tags, a prototype of CSS positioning, to
control the position and visibility of elements on a page, and then with Netscape 6 abandoned the whole thing. This
book does not address the Netscape 4 layer technology since it is fast becoming a thing of the past. However, the term
"layer" is still in use, and is used to refer to objects using the id attribute.

Table 15.9. Positioning styles.
Property What It Specifies

bottom, right The placement of the bottom, right edges of an element

clip A specified region of the element that will be seen

display Whether an element is displayed

overflow What to do if there is an overflow; i.e., there isn't enough space for the element

position How to position the element on the page

top, left The placement of the top, left edges of an element

visibility Whether an element can be seen

width, height The size in width and height of an element's content, not additional padding, margins, borders, etc.

z-index The third dimension in a stack of objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Absolute Positioning

Absolute positioning places an element in a specific location on the page and can be used to achieve full animation; for
instance, moving an image across a page. It is used to specify the absolute coordinates (x,y) of the element in terms of
the browser window itself. The top and left properties are used to determine the coordinates. (See Figure 15.17.) If not
specified, the browser will assume the top left corner of the browser window, where x is 0 and y is 0. The top left corner
of the window is position 0,0 and the bottom right corner depends on the resolution of the screen. If the screen
resolution is set to 800 pixels in width and 600 pixels in height, the bottom right corner is positioned at coordinates
800, 600.

Figure 15.17. Absolute positioning.

If an absolutely positioned element is nested within another absolutely positioned element, it will be positioned relative
to that element.

Example 15.17

 <html>
 <head>
 <title>layers</title>
 <style type="text/css">
 <!--
2 #first{
 background-color: red;
 border-style: solid;
 font-weight:bold;
 top: 20;
2 position: absolute;
 left: 20;
 height: 100;
 width: 100;
 }
3 #second{
 background-color: blue;
 border-style: solid;
 font-weight:bold;
 top: 30 ;
 position: absolute;
 left: 60;
 height: 100;
 width: 100;
 }
4 #third{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 #third{
 background-color: orange;
 border-style: solid;
 font-weight:bold;
 top: 40 ;
 position: absolute;
 left: 100;
 height: 100;
 width: 100;
 }
 </style>
5 <body>
6 <p id="first">
 First position
 </p>
7 <p id="second">
 Second position
 </p>
8 <p id="third">
 Third position
 </p>
 </body>
 </html>

EXPLANATION

1. An ID selector called #first sets the pixel positions for a red block that will be absolutely positioned 20 pixels
from the top of the window, 20 pixels from the left-hand side, and have a size of 100 x 100 pixels (width x
height).

2. The position attribute is specified as absolute. It is independent of all other elements in the body of this
document.

3. An ID selector called #second sets the pixel positions for a blue block that will be absolutely positioned 30 pixels
from the top of the window, 60 pixels from the left-hand side, and have a size of 100 x 100 pixels (width x
height). The blue box will appear to be layered over the red one.

4. An ID selector called #third sets the pixel positions for an orange block that will be absolutely positioned 40
pixels from the top of the window, 100 pixels from the left-hand side, and have a size of 100 x 100 pixels
(width x height). The orange box will appear to be layered over the blue one.

5. The <body> serves as the container for the four objects. The red, blue, and orange boxes will appear in the
window at the absolute positions assigned to them in relationship to their container, the body of the document.

6. The paragraph element is positioned and styled according to the rule for the first ID selector.

7. The paragraph element is positioned and styled according to the rule for the second ID selector.

8. The paragraph element is positioned and styled according to the rule for the third ID selector. See Figure 15.18.

Figure 15.18. Three layers based on absolute positioning (IE5, NN7).

Top, Left, Bottom, Right—Absolute Positions

As shown in the previous example, once the position has been set, the left, top, right, and bottom attributes can be
used to specify exactly where on the page the element should be located. Although we used left and top to define the
position of the element within the body of the document, right and left bottom can also position the element on the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

position of the element within the body of the document, right and left bottom can also position the element on the
page. In the following example, four elements are placed in four corners of the document.

Example 15.18

 <html>
 <head>
 <title>layers</title>
 <style type="text/css">
 <!--
1 #first{
 background-color: red;
 border-style: solid;
 font-weight:bold;
 position: absolute;
 top: 100;
 right: 200;
 height: 100;
 width: 100;
 }
2 #second{
 background-color: blue;
 border-style: solid;
 font-weight:bold;
 position: absolute;
 bottom:200;
 left:200;
 height: 100;
 width: 100;
 }
3 #third{
 background-color: orange;
 border-style: solid;
 font-weight:bold;
 position: absolute;
 top: 100 ;
 left: 200;
 height: 100;
 width: 100;
 }
4 #fourth{
 background color: yellow;
 border-style: solid;
 font-weight:bold;
 position: absolute;
 bottom: 200 ;
 right: 200;
 height: 100;
 width: 100;
 }

 </style>
5 <body>
6 <p id="first">
 First position
 </p>
7 <p id="second">
 Second position
 </p>
8 <p id="third">
 Third position
 </p>
9 <p id="fourth">
 Fourth position
 </p>
 </body>
 </html>

EXPLANATION

1. An ID selector called #first sets the pixel positions for a red block that will be absolutely positioned 100 pixels
from the top of the window, 200 pixels from the right-hand side, and have a size of 100 x 100 pixels (width x
height).

2. An ID selector called #second sets the pixel positions for a blue block that will be absolutely positioned 200

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. An ID selector called #second sets the pixel positions for a blue block that will be absolutely positioned 200
pixels from the bottom of the window, 200 pixels from the left-hand side, and have a size of 100 x 100 pixels
(width x height).

3. An ID selector called #third sets the pixel positions for an orange block that will be absolutely positioned 100
pixels from the top of the window, 200 pixels from the left-hand side, and have a size of 100 x 100 pixels
(width x height).

4. An ID selector called #fourth sets the pixel positions for a yellow block that will be absolutely positioned 200
pixels from the bottom of the window, 200 pixels from the right-hand side, and have a size of 100 x 100 pixels
(width x height).

5. The body is called the container for the elements within it. The red, blue, orange, and yellow boxes will appear
in the window at the absolute positions assigned to them in relationship to their container, the body of the
document.

6. The paragraph element is positioned and styled according to the rule for the first ID selector, the top, right-
hand corner.

7. The paragraph element is positioned and styled according to the rule for the second ID selector, the left-hand,
bottom corner.

8. The paragraph element is positioned and styled according to the rule for the third ID selector, the top, left-hand
corner.

9. The paragraph element is positioned and styled according to the rule for the fourth ID selector, the bottom
right-hand corner. See Figure 15.19.

Figure 15.19. Absolute positions with four blocks.

The <div> Tag

One of the most important containers is the <div> tag. It serves as a container where you can put other elements, give
them color, borders, margins, etc. The <div> tag is also used for absolute positioning of a block of text that separates
itself from other content in the document. It allows you to create a paragraph style independent of the <p> tag. Within
the block, the tags can be used to introduce other styles.

In the following example, the <div> tag is used to create a block. It is absolutely positioned in the window at position
0,0, which is the top, left-hand corner.

Example 15.19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 15.19

 <html><head><title>Positioning</title>
 </head>
1 <style>
2 .divStyle {background-color:blue;
3 position: absolute;
 width: 250px; height: 150px;
 }
 </style>
 </head>
 <body>

4 <div class="divStyle">
5 <p>
 This is a paragraph.
 </p>
 </div>
 </body>
 </html>

EXPLANATION

1. The style sheet starts here with the <style> tag.

2. A class called divStyle is defined.

3. This style will produce a blue box, 250 pixels wide and 150 pixels high. It will be positioned at the top, left-hand
corner of the window (0,0) because the top and left properties are undefined.

4. The div element will use the style defined by the divStyle class.

5. The paragraph element is embedded within the <div> tags. The div box is like a mini window. It will placed at
the top, left-hand corner of the window, because its position has not been defined. See Figure 15.20.

Figure 15.20. The div block is absolutely positioned in the window.

Relative Positioning

Relative positioning places the element in a position relative to the element where it is defined in the document. In the
following example the .ParaStyle class is positioned relative to where it should be placed within its container, a div
block.

Example 15.20

 <html><head><title>Positioning</title>
 </head>
1 <style>
2 .divStyle { background-color:lightblue;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2 .divStyle { background-color:lightblue;
3 position: absolute;
4 width: 250px; height: 150px;
 border-style: solid;
 border-color: darkblue;
 }

5 .paraStyle { color:darkblue;
6 position: relative;
 }
 </style>
 </head>
 <body>

7 <div style="left:50px; top:50px" class="divStyle">
8 <p style="left:15%; top:30%" class="paraStyle">
 This is a paragraph.
 </p>
 </div>
 </body>
 </html>

EXPLANATION

1. The style sheet starts here.

2. A style class called divStyle is defined for the div element.

3. The div box will be absolutely positioned in terms of the browser window.

4. The dimensions of width and height of the div box are set. The border around the div container is a solid, dark
blue.

5. A style class called paraStyle is defined for the paragraph (p) element. The color of the text will be dark blue.

6. The position will be relative to the div box where the paragraph is contained. If top and left properties are not
defined, the paragraph will be in the top, left-hand corner of the box, position 0,0 relative to the div container
where it is placed.

7. An inline style is set for the div element, placing the box 50 pixels from both the top and the left-hand side of
the browser window.

8. An inline style is set for the p element, placing the paragraph at a percentage of 15% from the left and 30%
from the top based on the dimensions of the div box. See Figure 15.21.

Figure 15.21. The paragraph is postioned relative to the div style.

The z-index and Three Dimensions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The z-index and Three Dimensions

The last type of position sets the precedence of a stack of overlapping elements. The absolute position properties
include three coordinates: x, y, and z, where x is the left side of an object, y is the right side, and z is the value of the
stacking position. If you have three containers layered on top of each other, the z position of the bottom layer is 0; the
next layer, 1; and the top layer in the stack is layer 2. In the next section, JavaScript will allow us to move these
objects around, rearranging the stacking order dynamically, by manipulating the z-position.

Example 15.21

 <html><head><title>layers</title></head>
 <body bgcolor=lightgreen>
1 <span style="position: absolute; z-index:0;
 background-color: red; width: 200;height:250;
 top: 50px; left:160px;">
2 <span style="position: absolute; z-index:1;
 background-color:yellow; width: 90;height:300;
 top: 20px; left:210px;">
3 <span style="position: absolute; z-index:2;
 background-color: blue; width: 250;height:100;
 top: 125px; left:134px;">
4 <span style="position: absolute; z-index:3;
 background-color: white; width: 50;height:50;
 top: 140px; left:230px;">
 </body></html>

EXPLANATION

1. A span style is used to create a red rectangle, size 200 pixels x 250 pixels, in the top left-hand corner of the
screen. A z-index of 0 means that this rectangle will be the bottom layer in a stack.

2. A span style is used to create a yellow rectangle, size 90 pixels x 300 pixels, positioned above the red
rectangle, z-index of 1, or on top of it in the stacking order.

3. A span style is used to create a blue rectangle, size 250 pixels x 100 pixels, positioned above the yellow
rectangle, z-index of 2, or on top of it in the stacking order.

4. A span style is used to create a white square, size 50 pixels x 50 pixels, positioned above the blue rectangle, z-
index of 3, or on top of it in the stacking order.

Figure 15.22. Three dimensions and the z-index.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.4 Where Does JavaScript Fit In?
The W3C DOM (level 1) provides JavaScript applications a standard way to access all the elements of the document. In
order for JavaScript to change the style of a document dynamically, the HTML tags must be represented as objects. We
have already discussed the hierarchical tree-like structure of the document object model in Chapter 11, "The Document
Objects: Forms, Images, and Links."

15.4.1 How the DOM Works with Nodes

Now we will take the DOM to a new level. Just as we used the DOM to access forms, images, and links as objects, now
we can use the DOM to access every element in an HTML document. The standard DOM level 1 currently consists of two
parts: the DOM core and the DOM HTML (see http://www.w3.org/TR/REC-DOM-Level-1/introduction.html). The DOM
core specifies a standard way to manipulate document structures, elements, and attributes; the DOM HTML just
extends that functionality to HTML. Recall that the DOM represented an HTML document as a tree: with the DOM, every
HTML element can be defined as part of the tree, as shown in Figure 15.23.

Figure 15.23. The tree-like hierarchy of the document object model.

The purpose of the hierarchal tree is to provide a logical structure to represent a document and a way to navigate that
structure, and to add, modify, or delete elements and content from it. Starting with the document at the top of the tree,
you can traverse down the tree to every element until you reach the element, attribute, or text you are seeking. The
core DOM identifies each element in the tree as a node object. There are parent and child nodes, sibling nodes, and
more (see Table 15.10).

Table 15.10. Some DOM objects.
Object Definition

Node The primary data type that represents an HTML element

Document The root of the document tree

Element An element within an HTML document

Attribute Attributes of an HTML tag

Text The text between markup tags, such as the text between <h1> and </h1>

The DOM views every HTML element shown in Figure 15.24 as a node. In the tree, the top node is the <html> tag,
called the root node of the document. Below it are the <head> and <body> tags, which are called child nodes of the
HTML element. In the <title> is the text My Title, which is also a node, called a text node. Since it is the last node, the
tree-like structure terminates at that node, also called a leaf node. The nodes are divided into three types of nodes: the
element node, attribute node, and the text node. These types are numbered 1, 2, and 3, for element, attribute, and
text node, respectively. In the example, the <title> and </title> tags are element nodes, and the text between the
tags, My Title, is an example of a text node. An attribute node is represented as a property of the HTML element to
which it is assigned. The <a> tag has an href attribute. In the example, , href is
an attribute node and the URL is called its nodeValue. (The text nodes are not supported on all browsers.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an attribute node and the URL is called its nodeValue. (The text nodes are not supported on all browsers.)

Figure 15.24. The node hierarchy.

Refer to Tables 15.11 and 15.12 for a list of node properties and node methods.

Table 15.11. Node properties.
Property What It Does

firstChild Returns the first child node of an element

lastChild Returns the last child node of an element

nextSibling Returns the next child node of an element at the same level as the current child node

nodeName Returns the name of the node

nodeType Returns the type of the node as a number: 1 for element, 2 for attribute, 3 for text

nodeValue Sets the value of the node in plain text

ownerDocument Returns the root node of the document that contains the node

parentNode Returns the element that contains the current node

previousSibling Returns the previous child node of an element at the same level as the current child node

Table 15.12. Node methods.
Method What It Does

appendChild(new node) Appends a new node onto the end of the list of child nodes

cloneNode(child option) Makes a clone of a node

hasChildNodes() Returns true if the node has children

insertBefore(new node, current node) Inserts a new node in the list of children

removeChild(child node) Removes a child node from a list of children

replaceChild(new child, old child) Replaces an old child node with a new one

Siblings

A sibling is a node on the same level as another node. In the example,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<p>
 this is some text
</p>

the parent node is <p> and has two children, the node and the node. Since the and are at the
same level within the text, they are called siblings, like brother or sister nodes.

Parents and Children

When looking at the structure of the tree hierarchy, some nodes are above others. A node above another node is a
parent node, and the ones below the parent node are its children. See Figure 15.25. Any HTML tags that have both an
opening and a closing tag are always parent nodes, for example, <p> and </p>.

Figure 15.25. Tree hierarchy of nodes.

Attributes of an element are not child nodes, but are considered to be separate nodes in their own right. For example,
the href attribute of the <a> tag is an attribute node, not a child of the <a> tag.

The nodeName and nodeType Properties

When walking down DOM tree, you can find out the name of a node and the type of the node with the nodeName and
nodeType properties. Table 15.13 gives the value for each of the properties.

Table 15.13. nodeName and nodeType properties.
Node nodeName Property nodeType Property

Attribute Name of the attribute (id, href) 2

Element Name of the element (h1, p) 1

Text #text 3

Example 15.22

 <html>
 <head><title>The Nodes</title></head>
 <body>
 <h1>Walking with Nodes</h1>
 <p>Who knows what node?</p>
1 <script name="javascript">
2 var Parent=document.childNodes[0];
3 var Child=Parent.childNodes[0];
 document.write("The parent node is: ");
4 document.write(Parent.nodeName+"
");
 document.write("The first child of the parent node is: ");
5 document.write(Child.nodeName+"
");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5 document.write(Child.nodeName+"
");
 document.write("The node below the child is: ");
6 document.write(Child.childNodes[0].nodeName+"
");
 document.write("The text node below title is: ");
7 document.write(Child.childNodes[0].childNodes[0].nodeName+"

");
 document.write("The first child of the parent is: ");
8 document.write(Parent.firstChild.nodeName+"
");
 document.write("The last child of the parent is: ");
9 document.write(Parent.lastChild.nodeName+"
");
 document.write("The node below the body is: ");
10 document.write(Parent.lastChild.childNodes[0].nodeName+
 "
");
 document.write("The next sibling of the h1 element is: ");
11 document.write(Parent.lastChild.childNodes[0].nextSibling.
 nodeName);
 document.write("
The last child's type is: ");
12 document.write(Parent.lastChild.nodeType);
 </script>
 </body>
 </html>

EXPLANATION

1. The JavaScript program will access the HTML elements through the DOM where each element is viewed as a
node.

2. The first node, childNodes[0], is the first node in the HTML hierarchy, the parent node. This node is assigned to
a variable, Parent. The only reason to create the variable is to cut down on the amount of typing and propensity
for errors when we go further down the document tree. Note: Watch your spelling when working with the DOM
in JavaScript.

3. The parent node's first child is document.childNodes[0].childNodes[0]. This portion of the tree is assigned to the
variable Child.

4. The name of a node is found in the nodeName property. The parent node is HTML, the highest element in the
HTML hierarchy.

5. The nodeName of the first child of the parent node is HEAD.

6. The next node in the hierarchy is the child of the HEAD element. It is the title element:

<html>
 <head>
 <title>

7. Continuing the walk down the DOM tree, we come to the text node. It contains the text between the <title>
</title> tags. The name of the text node is preceded by a # mark.

8. Using the firstChild property to simplify things, the first child of the parent again shows to be the HEAD
element.

9. The last child of the HTML parent is the BODY element:

<html>
 <head>
 <body>

10. The node directly below the body is the FONT element:

<body><font size=+2

11. The node below the body, document.childNodes[0].lastChild.nodeName, is the H1 element.

12. The parent's last child node's type is 1. An element node type is type 1, an attribute type is type 2, and a text
node is type 3. See Figure 15.26.

Figure 15.26. Using the nodes to access HTML elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.26. Using the nodes to access HTML elements.

Working with the Elements

As you know, an HTML document is largely a set of elements, enclosed in < >, called tags. H2 is an element, <H2> is a
tag. The DOM is represented as a hierarchal tree of these elements, where each element is represented as a node. But
walking with the nodes is just too much trouble most of the time, so the W3C DOM provides additional methods and
properties to help make the walk easier.

Table 15.14. HTML element properties to represent HTML attributes.
Property Description Example

className Represents the class of a CSS element div2.className="blue";

div2 refers to an HTML element. It is being
assigned the CSS class called blue (see
Example 15.29)

dir Specifies the text direction for a document; e.g., read left
to right (English), or right to left (Hebrew)

element.dir="ltr";

id Value of the unique id of the current element (see Section 15.4.2)

lang Specifies the language in which the text of the document
is written; e.g., en for English, ja for Japanese, and sp
for Spanish

if(document.lang=="ja")

style Value of the CSS inline style attribute (CSS2) div.style.color="green"; (see Section 15.4.4)

title Returns the title of the document found between the
<title> and </title> tags

<title>My Book</title>
strTitle = document.title
strTitle contains "My Book"

15.4.2 All Those DOMs

You will often hear terms, like the Netscape DOM, the IE DOM, and the standard DOM. Before the W3C was able to
create a standard, fourth-generation browsers introduced their own DOMs. Netscape 4, for example, implemented a
layer DOM to control the positioning and visibility of elements, whereas Internet Explorer provided the all DOM to
control positioning, visibility, and appearance of elements. They were not compatible and when you created a page, you
had to perform cross-browser checking to determine which DOM should be used. This book addresses the W3C DOM,
which has been embraced by most modern browsers, including NN6+ and IE5+.[2]

[2] See http://www.mozilla.org/docs/dom/domref/dom_el_ref.html for a complete DOM elements interface.

All browsers that comply with the W3C's DOM should implement the ID method for accessing the elements in a
document. (See the next section for details.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

document. (See the next section for details.)

Here is a little test code you can run to see if your browser is W3C DOM compliant:

isNetScape = (document.layers) ? true:false;
isInternetExplorer = (document.all) ? true: false;
if (document.getElementById){
 alert("DOM compliant!"); // Netscape 6+ and IE5+

Go to http://developer.apple.com/internet/javascript/sniffer.html to see examples of "browser sniffer" programs—
programs that can tell what browser is being used.

The getElementById() Method

All that node stuff can be really tricky and vary on different browsers, but by combining the HTML id attribute with the
getElementById() method of the document object, it is much easier to get a handle on any HTML object. The
getElementById() method returns a reference to the HTML element that can then be manipulated by a JavaScript
program. Suppose you have a <body> tag defined with an id attribute, as:

<body id="bdy1">

Now in JavaScript you can reference the body element with the getElementById() method as follows:

bdyreference = document.getElementById("bdy1")

Before the DOM was standardized, Internet Explorer (version 4+) provided another mechanism for accessing all HTML
elements within the document, called the all property of the document object. The statement shown above written for
IE could be written:

bdyreference = document.all["bdy1"];

And Netscape 4 provided yet another format:

bdyreference = document.layers["bdy1"]

Starting with IE5+ and NN6+, the W3C's getElementID() method is used rather than the all or the layers property. The
newer browsers support the W3C standardized DOM although many Web pages were written using the older formats.

Example 15.23

 <html>
 <head><title>The Dom and Id's</title></head>
1 <body id="body1">
2 <h1 id="head1">Heading Level 1</h1>
3 <p id="para1">
 This is a paragraph
 </p>
 </body>
 <script name="javascript">
4 var h1tag=document.getElementById("head1");
5 var bodytag=document.getElementById("body1");
6 var paratag = document.getElementById("para1");
7 h1tag.style.fontFamily="verdana";
 h1tag.style.fontSize="32";
 paratag.style.fontSize="28";
 paratag.style.color="blue";
 bodytag.style.backgroundColor="pink";
8 document.write(document.getElementById("body1")+"
");
 document.write(document.getElementById("head1")+"
");
 document.write(document.getElementById("para1")+"
");
 </script>
 </body>
 </html>

EXPLANATION

1. The <body> tag is given an id called "body1".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. The <h1> tag is given an id called "head1".

3. The <p> tag is given an id called "para1".

4. In the JavaScript program, the getElementById() method returns a reference to an H1 element, and assigns
that value to the variable called h1tag.

5. The getElementById() method returns a reference to a BODY element, and assigns that value to the variable
called bodytag.

6. The getElementById() method returns a reference to a P element, and assigns that value to the variable called
paratag.

7. Now, by using the style property (for a complete discussion, see "The style Object and CSS" on page 553), the
elements are assigned new values for font size and color, causing them to change change dynamically.

8. The value returned by the getElementById() method is displayed for each of the elements by using their
respective IDs. As shown in the output, each one of these HTML elements is an object. See Figure 15.27.

Figure 15.27. HTML elements are objects.

The getElementsByTagName() Method

To reference a collection of elements, such all the <p> tags, <h1> tags, or <a> tags in your document, you can use
the getElementsByTag Name() method. This method takes the name of the element as its argument and returns a list
of all the nodes of that name in the document. If you need to collectively change the values of a particular element,
such as all the links in an <a> tag, do this by manipulating the reference returned by the getElementsByTagName().

Example 15.24

 <html><head><title>Working with Tags</title>
 </head>
 <body bgcolor=lightblue>
1 <h1> First</h1>
 <h1> Second</h1>
 <h1> Third</h1>

2 <script language="JavaScript">
 var heading1=document.getElementsByTagName("h1");
3 document.write(heading1 + "
");
 document.write("There are "+
4 heading1.length+ " H1 tags.
");
 </script>
 </body>
 </html>

EXPLANATION

1. Three <h1> tags are used in this document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Because of the top-down processing by the HTML renderer, be sure to put the JavaScript program at the end of
the document. This way, the tags will already have been identified before they are put into the HTML collection
returned by the getElementsByName() method.

3. The HTML collection of H1 tags is stored as an array of nodes in the variable, heading1.

4. The length of the array is 3 in this example because there are three H1 elements in the document. See Figure
15.28.

Figure 15.28. Netscape 7 (left), IE 6 (right).

15.4.3 Scrolling with the Nodes

Although the title of this section may sound more like a title for a Star Trek drama, it is really about dynamic HTML. By
using the getElementById() method and a little node knowledge, a scrolling marquee is created in Example 15.25. In
Chapter 10 we saw scrolling in the window's status and title bar. Now we can scroll within the body of the document. In
the following example, a message will continuously scroll across the screen. The original message is placed within a
<div> container. By first identifying the HTML div element—getElementById()—JavaScript can then reference its child
node, which is the text of the message (firstChild). This is depicted in Figure 15.29.

Example 15.25

 <html><head><title>Scrolling Text</title>
 <style>
1 #div1 { background-color:darkgreen;
 color: white;
 font-family:courier;
 font-weight: bold;
 position:absolute;
 border-style:groove;
 border-color:white;
 padding-left:10px;
 top:20px;
 left:10px;
2 width: 595px; height: 6%;
3 overflow: hidden;
 }
4 img { position: absolute; top: 10px;left:60px;
 border-style:solid;border-color="darkgreen";}
 </style>
 <script language="JavaScript">
 <!--
5 /*Modification of text box marquee by Dave Methvin,
 Windows Magazine */
6 var scroll_speed = 200; // 200 milliseconds
 var chars = 1;
7 function init(){
 divElement=document.getElementById("div1");
 }
8 function scroller() {
9 window.setTimeout('scroller()',scroll_speed);
10 var msg=divElement.firstChild.nodeValue;
11 divElement.firstChild.nodeValue = msg.substring(chars)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11 divElement.firstChild.nodeValue = msg.substring(chars)
 + msg.substring(0,chars);
 }
12 scroller();
 //-->
 </script>
 </head>
13 <body bgcolor="#669966" onLoad="init()";>

14 <div id="div1">
 The latest news from Baghdad is not good tonight. Sand and
 rain are hindering our troops. The number of refugees
 continues to increase in the north...
 </div>
 </body>
 </html>

Figure 15.29. Referencing a child node requires first identifying the div element.

EXPLANATION

1. An ID selector is defined with a style for the div element on line 14.

2. The size of the div container is defined.

3. If the text within the div container will not fit within the dimensions of the box, the overflow property will adjust
it to fit.

4. The image is fixed at this absolute position on the screen and has a dark green, solid border.

5. The scroller() routine (line 8) was found at the Java Planet Web site and submitted by Dave Methvin. (Thank
you Dave, wherever you are!) I have greatly modified the original.

6. The initial values used for the scroller() function are assigned values. One is the speed for the timer, the other
the value of an argument to the substr() method.

7. This function, called init(), is called after the document has been loaded. Its purpose is to get a reference to the
div element. The getElementById() method returns a reference to the div element.

8. The function called scroller() is defined. Its function is to cause the text found in the <div> container to scroll
continuously from the right-hand side of the container.

9. The window's setTimeOut() method is used to call the scroller() function every 200 milliseconds (.2 seconds).
It's the timer that creates the action of actually scrolling.

10. The div element is a parent node. It has a child node. The value of its first child,
divElement.firstChild.nodeValue, is the textual content of the message; that is, the text found between the
<div></div> tags. The variable msg gets the value of the child node.

11. The value returned by msg.substr(1) is "he latest news from Baghdad is not good tonight. Sand and rain are
hindering our troops. The number of refugees continues to increase in the north..." Notice that the first
character in the message has been removed. The next substring method will return the first character
—substring(0,1)—and append it to the first value resulting in "he latest news from Baghdad is not good tonight.
Sand and rain are hindering our troops. The number of refugees continues to increase in the north...T". All of
this is assigned back to the value of the child node. In 200 milliseconds, the scroller() function is called again,
and the message becomes "e latest news from Baghdad is not good tonight. Sand and rain are hindering our
troops. The number of refugees continues to increase in the north...Th", and so on.

12. The scroller() function is called for the first time here.

13. In the <body> tag, the onLoad event is triggered as soon as the document has loaded.

14. The <div> tags contain the text of the message that will be scrolled. Its ID, "div1", defines the CSS style that
will be used, and is the unique identifier that will be used by JavaScript to get a reference to it. See the output
in Figure 15.30.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.30. A scrolling marquee continues to print news across the image.
(The U.S. Marine is Major Tom Savage, my son, alongside a fellow officer.)

15.4.4 The style Object and CSS

The style object contains a set of properties corresponding to the CSS attributes supported by your browser. Each HTML
object has a style property (starting with IE4 and NN6) used to access the CSS style attributes assigned to it; for
example, an H1 element may have been defined with a CSS font-style, color, and padding. The style object has
properties to reflect each of the CSS atributes. See Table 15.15.

Many of the CSS style attributes, such as background-color, font-size, and word-spacing, contain hyphens in their
names. Like all objects we have seen in JavaScript, there is a convention for spelling the name of the object. The name
would not contain a hyphen, and multiple words after the first word are usually capitalized. Therefore, the CSS naming
convention is different with the properties of the style object. The hyphen is removed and the first letter of each word
after the hypen is capitalized. For example, the CSS attribute, background-color, when used as a style property, is
spelled backgroundColor, font-size is fontSize, and border-right-width is borderRightWidth.

FORMAT

elementname.style.property="value";

Example:

div2.style.fontFamily = "arial";

Table 15.15. style object properties.
Property Example CSS Value HTML Tags Affected

Fonts

font 12pt/14pt sans-serif, 80% sans-serif, x-large/110% arial,
normal small-caps

All

fontFamily serif, sans-serif, cursive, fantasy, monospace All

fontSize 12pt, larger, 150%, 1.5em All

fontStyle normal, italic, oblique All

fontVariant normal, small-caps All

fontWeight normal, bold, bolder, lighter, 100, 200...900 All

Colors

backgroundColor red, blue, #F00 All

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

color red, green, #F00, rgb(255,0,0) All

Images

backgroundAttachment scroll, fixed All

backgroundImage URL (bay.gif), none All

backgroundPosition right top, top center, center, bottom, 100% 100%, 0% 0%,
50% 50%

Block-level and replaced
elements

backgroundRepeat repeat, repeat-x (horizontally), repeat-y (vertically), no-repeat All

Text Alignment

letterSpacing normal, 0.1em All

lineHeight normal, 1.2, 1.2em, 120% All

textAlign left, right, center, justify All

textDecoration underline, overline, line-through, blink All

textIndent 3em, 15% Block-level elements

textTransform capitalize, uppercase, lowercase, none All

verticalAlign baseline, sub, super, top, text-top, middle, bottom, text-
bottom, 50%

Inline elements

wordSpacing normal, 2em All

Margins and Borders

align All

borderStyle none, solid, 3D All

borderWidth thin, medium, thick, 2em All

margin 5em, 3em, 2em, 1em (top, right, bottom, left) All

marginBottom 100px, 50% All

marginLeft .5in, 40% All

marginRight 20em, 45% All

marginTop 1cm, 20% All

padding 2em, 4em, 6em (right, bottom, left) All

paddingBottom 2em, 20% All

paddingLeft .25in, 20% All

paddingRight .5cm, 35% All

paddingTop 20px, 10% All

length Block-level elements

width 12em, 30%, auto (initial width value) Block-level element

For a complete list of properties, see http://www.w3.org/TR/REC-CSS2/propidx.html.

Example 15.26

 <html>
 <head><title>Changing Background Color Dynamically</title>
1 <script language="JavaScript">
2 function bodyColor(){
3 var i = document.form1.body.selectedIndex;
4 bodycolor = document.form1.body.options[i].value;
5 document.getElementById("bdy").style.backgroundColor =
 bodycolor;
 }
 </script>
 </head>
6 <body ID="bdy">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6 <body ID="bdy">
 <p>
 Pick a background color for this page.
 </p>
7 <form name="form1">
 Color
8 <select name="body" onChange="bodyColor();">
 <option value="pink">pink</option>
 <option value="lightblue">blue</option>
 <option value="yellow">yellow</option>
 <option value="lightgreen">green</option>
 </select>

 </form>
 <p>
 This is a test.
 </p>
 </body>
 </html>

EXPLANATION

1. The JavaScript program starts here.

2. A JavaScript user-defined function called bodyColor() is defined.

3. The number, selectedIndex, of the option chosen from a select list is assigned to variable i.

4. The value of the selected option is one of the colors listed in the select list on line 8.

5. The getElementById() method returns a reference to the body tag, whose ID is bdy. With the style property,
the background color of the document is changed with this statement.

6. The body tag is given an id attribute by which to identify it.

7. An HTML form called form1 starts here.

8. A select menu is defined to give the user options to change the background color of the document on the fly.
The onChange event is triggered when one of the options is selected, and is handled by invoking the function
bodyColor(). The output is shown in Figure 15.31.

Figure 15.31. Changing the background color dynamically (left); now the
color is green (right).

Positioning Text with the style Property

By assigning a position to the style property it is possible to place an element in different sections of the page. In the
following example, by assigning positions, the text is moved after the document has been loaded.

Example 15.27

 <html><head><title>Positioning</title>
1 <script language="javascript">
 var div1,div2,div3;
2 function init(){
3 div1=document.getElementById("first");
 div2=document.getElementById("second");
 div3=document.getElementById("third");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 div3=document.getElementById("third");
 }
4 function movePosition(){
5 div1.style.left = 50;
 div1.style.top = 150;
6 div2.style.left = 100;
 div2.style.top = 100;
7 div3.style.left = 150;
 div3.style.top = 50;
 }
 </script>
 </head>
8 <body onLoad="init()">

9 <div id="first" style="position:absolute; top:50px">one</div>
 <div id="second" style="position:absolute; top:100px">two</div>
 <div id="third" style="position:absolute; top:150px">three</div>
 <form>
 <input type="button" value="move text"
10 onClick="movePosition()">
 </form></body>
 </html>

EXPLANATION

1. The JavaScript program starts here.

2. The first function defined is init(). It will be called after the document has been loaded.

3. The getElementById() method returns references to three div block objects.

4. A function called movePosition() is defined. It is responsible for moving the text to different positions on the
screen.

5. The first block of text will be positioned at 50 pixels from the left-hand side of the screen and 150 pixels from
the top.

6. The second block of text will be positioned at 100 pixels from the left-hand side of the screen and 100 pixels
from the top.

7. And the third block of text will be positioned 150 pixels from the left-hand side of the screen and 50 pixels from
the top.

8. The onLoad event is triggered just after the page has been loaded, and will invoke the init() function.

9. The div containers are assigned absolute positions on the page. Each div block will contain a string of text.

10. When the user clicks on the button labeled "move text", the onClick event will be triggered, causing the text to
be moved to a different location on the page. See Figure 15.32.

Figure 15.32. Before clicking the button (left); after clicking the button
(right).

Now we will change the position values in the program, as shown in Example 15.28. The output is shown in Figure
15.33.

Example 15.28

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 15.28

(See Example 15.27 for the complete program.)

 function movePosition(){
 div1.style.left = 50;
 div1.style.top = 50;

 div2.style.left = 100;
 div2.style.top = 100;

 div3.style.left = 150;
 div3.style.top = 150;
 }

Figure 15.33. After changing the x,y positions in the program.

Changing Color with the className Property

The className property is defined for all HTML elements. With the className property, you can change an element
dynamically by assigning it the name of a class defined in a CSS. The following example contains a cascading style
sheet with three classes.

Example 15.29

 <html><head><title>Coloring Text</title>
 <style type="text/css">
 body { background-color: yellow;
 font-size: 22pt;
 font-weight: bold;
 }

1 .red { color:rgb(255,0,0); /* Defining classes */
 font-style: verdana;
 font-size: 32;
 }
2 .blue { color:blue;
 font-style: verdana;
 font-size: 36;
 }
3 .green { color: green;
 font-style: verdana;
 font-size: 40;
 }
 </style>
 <script language="javascript">
4 function init(){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 function init(){
 div1=document.getElementById("first");
 div2=document.getElementById("second");
 div3=document.getElementById("third");
 }
5 function colorText(){
 div1.style.left = 50;
 div1.style.top = 50;
6 div1.className="red";
 div2.style.left = 100;
 div2.style.top = 100;
7 div2.className="blue";
 div3.style.left = 150;
 div3.style.top = 150;
8 div3.className="green";
 }
 </script>
 </head>
9 <body onLoad="init()">
 <div id="first" style="position:absolute; top:50px">It's a
 one,</div>
 <div id="second" style="position:absolute; top:100px">and a
 two,</div>
 <div id="third" style="position:absolute; top:150px">and
 three!</div>
 <form>
 <input type="button" value="move and color text"
10 onClick="colorText()">
 </form>
 </body>

EXPLANATION

1. A CSS class for a style is defined. Text will be a red, Verdana font, point size 32. The rgb (red, green, blue)
color is used here for demonstration. It would be easier to just assign red to the color property.

2. A CSS class for another style is defined. The text will be a blue, Verdana font, point size 36.

3. A CSS class for a third style is defined. The text will be a green, Verdana font, point size 40. Notice that each
class not only changes the color of the font, but increases its point size.

4. When the onLoad event is triggered, just after the document has been loaded, the user-defined init() function is
called. The getElementById() method returns references to three div objects.

5. A function called colorText() is defined. It sets the position of the div containers and defines the color for the
text in each container.

6. The className property is used to reference the CSS class named red, defined in the document.

7. The className property is used to reference the CSS class named blue, defined in the document.

8. The className property is used to reference the CSS class named green, defined in the document.

9. The onLoad event is triggered just after the document is loaded. It will invoke the init() function.

10. When the user clicks on this button, the onClick event is triggered. It invokes the colorText() function, which
will move and change the text in each of the div containers.

Figure 15.34. The initial appearance of the document (left); after clicking the
button, the color, position, and size of the text is changed (right).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.4.5 Event Handling and the DOM

We have been discussing events since Chapter 1. They are what allow the program to react to user-initiated events.
After browsers got to their fourth version, the events became full-fledged objects. The event object has knowledge
about the event: what caused it, what triggered it, where it occured on the screen, and even the parent of the tag that
triggered it. The event object, like other objects, has a collection of properties and methods associated with it. Not all
browsers support the same event model and not all browsers refer to the event in the same way or even use the same
properties.

Trickling and Bubbling

The way that the events are captured differs by the browser. In Netscape 4, for example, the event comes to life at the
window level and is sent down the tree of nodes until it finally reaches the target object for which it was intended;
whereas with IE the event springs to life for the target it was intended to affect, and then sends information about the
event back up the chain of nodes. With Netscape 4, the event trickles down from the top to its target, and with the IE
approach the event bubbles up from its target. Handling the way events propagate is another browser compatibility
issue.

The W3C DOM level 2 provides an Events module that allows the DOM nodes to handle events with a combination of
these methods, but defaults to the bubble up propagation model. This is supported by Netscape 6+, but not IE 6.

There are a number of event types defined by the DOM HTML Events module, as shown in Table 15.16.

Table 15.16. Event properties.
Name What It Describes

bubbles Boolean to test whether an event can bubble up the document tree

canceleable Boolean to test whether the event can be cancelled

currentTarget The node currently being processed by a handler (NN)

eventPhase A number specifying the phase of the event propagation

fromElement Refers to the object where the mouse was pointing before the mouseover event was triggered (IE)

srcElement Refers to the object of the tag that caused the event to fire

target The node on which the event occurred, not necessarily the same as currentTarget

timeStamp When the event occurred (a Date object)

type The type of the event that occurred, such as click or mouseOut

In the following example, mouseOver and mouseOut events will be used to change the style of a block of text to give it
emphasis. When the mouse rolls over a specific block of text, the event handler invokes a function that can check to
see what block of text the mouse is on and detect when it leaves the box. The node where the event occurred can be
found in the currentTarget property (NN) or the fromElement property (IE).

Example 15.30

 <html><head><title>Positioning</title>
1 <link rel=stylesheet type="text/css"
 href="externstyle.css">
 <script language="javascript">
 function init(){
 div1=document.getElementById("first");
 div2=document.getElementById("second");
 div3=document.getElementById("third");
 }
2 function colorText(e){
3 if(e.currentTarget.id == "first") {
 // Use e.fromElement.id (IE6)
4 div1.className="red";
 }
 else if(e.currentTarget.id == "second"){
 div2.className="blue";
 }
 else{ div3.className="green";}
 }
3 function unColorText(e){
 if(e.currentTarget.id == "first"){
 // use e.srcElement.id (IE6)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // use e.srcElement.id (IE6)
 div1.className="black";
 }
 else if(e.currentTarget.id == "second"){
 div2.className="black";
 }
 else{
 div3.className="black";
 }
 }
 </script>
 </head>

 <body onLoad="init()">
4 <div id="first"
 style="position:absolute; top:50px"
5 onMouseover="unColorText(event);"
6 onMouseout="colorText(event);">Roll over me! </div>
 <div id="second"
 style="position:absolute; top:100px"
 onMouseover="unColorText(event);"
 onMouseout="colorText(event);">and then me,</div>
 <div id="third"
 style="position:absolute; top:150px"
 onMouseover="unColorText(event);"
 onMouseout="colorText(event);">and me too.</div>
 </body>
 </html>

EXPLANATION

1. The style for this document is coming from an external style sheet. It's the same style used in the previous
example and can be found on the CD-ROM in the back of this book.

2. A function called colorText() is defined. It takes one argument, a reference to the event that caused it to be
invoked.

3. The current.Target.id is a property that references the id of the tag where this event occurred: the <div> tag
with the id of "first". If this doesn't work for you, use the IE fromElement property for the mouseOver event. To
get the id name for the div container, use e.fromElement.id. For the mouseOut event, use the src.Element
property and e.srcElement.id.

4. The first div container is defined with an id name "first".

5. When the mouse is moved onto the second div container, the onMouseover event is triggered and the
colorText() function is called. It passes a reference to the event object to the function allowing the function to
know more about the event that just occurred and what div container it applies to.

6. When the mouse is moved away from the div container, the onMouseout event is triggered, and the function
colorText is called, passing a reference to the event object. The output is shown in Figure 15.35.

Figure 15.35. Before the mouse rolls over the first <div> block (top left);
when the mouse rolls over the first <div> block (top right); when the mouse
leaves the first div container and rolls over the next one (midddle left); now
the mouse has rolled over the last <div> container (middle right); after the

mouse has left all three containers (bottom).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.4.6 Back to the z-index and Dynamic Positioning

In the CSS section of this chapter, the zIndex property was described to create a three-dimensional effect with a stack
of <div> containers. In the following example a JavaScript program manipulates the containers so that they can be
moved into different positions.

Example 15.31

 <html><head><title>layers</title>
 <script language="JavaScript">
1 function moveUp(id){
2 var box= document.getElementById(id);
3 if(box.style.zIndex == 100){ // Can't stack higher than 100
4 box.style.zIndex=2;
 }
5 else if(box.style.zIndex != 3){
 box.style.zIndex=100;
 }
 else{
6 box.style.zIndex=0;
 }
 }
 </script>
 </head>
 <body bgcolor=lightgreen>
7 <span id="red" style="position: absolute;z-index:0;
 background-color:red; width:200; height:250;
 top:50px; left:160px;"
8 onClick="moveUp(id);">

9 <span id="yellow" style="position: absolute;z-index:1;
 background-color:yellow; width:90; height:300;
 top:20px; left:210px;"
 onClick="moveUp(id);">

10 <span id="blue" style="position: absolute;z-index:2;
 background-color:blue; width:250; height:100;
 top:125px; left:134px;"
 onClick="moveUp(id);">

11 <span id="white" style="position: absolute;z-index:3;
 background-color:white; width:50; height:50;
 top:140px; left:230px;"
 onClick="moveUp(id);">
 </body>
 </html>

EXPLANATION

1. The JavaScript user-defined function called moveUp() is defined. It has one parameter, the id of the tag from
where it was called.

2. The getElementById() method returns a reference to the object that called this function and assigns it to the
variable, called box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. If the zIndex of the object evaluates to 100, it must be at the top of the stack, because that is as high as the
stack gets.

4. This sets the stack level of the zIndex to 2, causing it to move toward the bottom of the stack.

5. If the zIndex for the object is not 3, it is not at the top. Its zIndex will be set to 100, moving it to the top of the
stack.

6. The object is moved to the bottom of the stack with a zIndex of 0.

7. The tag is used to create a rectangular red box on the screen. With a zIndex of 0, it will be positioned
at the bottom of the stack.

8. When the user clicks on the button, the onClick event is triggered, and the handler function, moveUp(id), is
called.

9. A yellow rectangular box is created with the tag. With a zIndex of 1, it will be positioned above the last
block in the stack.

10. A blue square box is created with the tag. With a zIndex of 2, it will be positioned above the last block
in the stack.

11. A small white rectangular box is created with the tag. With a zIndex of 3, it will be positioned at the top
of the stack. See Figure 15.36.

Figure 15.36. The original configuration of the four rectangles (left); after
manipulating the rectangles by reassigning the z-index (right).

15.4.7 Setting Visibility

The visibility property lets you hide an object and then bring it back into view. You can also use the visibility property to
determine the state: it "visible" or "hidden"?[3] This property is useful when creating interfaces such as drop-down
menus, slide shows, and pop-ups such as extra text to explain a link or image map.[4]

[3] Netscape 4 specifies a value of show or hide with the visibility property of the Layer object.

[4] The visibility property applies to an entire object. The clip property allows you to designate how much of an
element will be visible.

Drop-Down Menus

Drop-down menus are commonly used in Web pages to create submenus that appear and then disappear when no
longer needed. The following example demonstrates the use of the visibility property to create this type of menu. When
the user clicks on one of the links in the main menu, a drop-down menu will appear. If he double-clicks anywhere within
the drop-down menu, it will be hidden from view. Each of the drop-down menus is defined within a <div> container.

Example 15.32

 <html><head><title>Drop-Down Menu</title>
 <style type="text/css">
1 a { font-family: verdana, arial;
 color: darkblue;
 font-weight: bold;
 margin-left: 4px; } /*link style for main menu*/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 margin-left: 4px; } /*link style for main menu*/
2 #menu, .menu { font-stye: verdana;
 font-size:10pt;
 color:black; }
 /* link style for drop-down menu */
3 #menu { position:absolute;
 top:40px;
 border-style:solid;
 border-width:1px;
 padding: 5px;
 background-color:yellow;
 width:75px;
 color: black;
 font-size: 12pt;
4 visibility:hidden; }
5 #menu2 { position:absolute;
 top:40px;
 left:3.2cm;
 border-style:solid;
 border-width:1px;
 padding: 5px;

 background-color:orange;
 width:80px;
 color: black;
 font-size: 12pt;
 visibility:hidden; }

6 #menu3 { position:absolute;
 top:40px;
 left:6.2cm;
 border-style:solid;
 border-width:1px;
 padding: 5px;
 background-color:pink;
 width:80px;
 color: black;
 font-size: 12pt;
 visibility:hidden; }
7 </style>
 <script language="JavaScript">
8 function showMenu(id){
9 var ref = document.getElementById(id);
10 ref.style.visibility = "visible"; // Make the drop-down
 // menu visible
 }
11 function hideMenu(id){
12 var ref = document.getElementById(id);
13 ref.style.visibility = "hidden"; // Hide the drop-down menu
 }
 </script>
 <body bgColor="lightblue">
14 <table width="350" border="2" bgcolor="lightgreen" cellspacing="1"
 cellpadding="2">
 <tr>
 <td width="100">
15 <div id="menu" onDblClick="hideMenu('menu');">
16 US

 World

 Local

 </div>
17 News
 </td>
 <td width="100">
18 <div id="menu2" onDblClick="hideMenu('menu2');">
19 Basketball

 Football

 ">Soccer

 </div>
20 Sports
 </td>
 <td width="100">

21 <div id="menu3" onDblClick="hideMenu('menu3');">
 Movies

 Plays

 ">DVD's

 </div>
 Entertainment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Entertainment
 </td>
22 </tr></table>
 </body>
 </html>

EXPLANATION

1. The a selector is followed by the style definition for the links that appear in the main menu.

2. An ID selector and a class are defined. This style will be used on links in the drop-down menus.

3. This ID selector defines the style of the first drop-down menu. When the user clicks the News link, this yellow
drop-down menu will appear directly under the table cell containing the News link.

4. Initially, the first drop-down menu is hidden from view.

5. This ID selector defines the style of the second drop-down menu. It will be orange and drop down directly under
the Sports link.

6. This ID selector defines the style of the third drop-down menu. It will be pink and drop down directly under the
Entertainment link.

7. The CSS ends here, and the JavaScript program begins on the next line.

8. A function called showMenu is defined. Its only parameter is the id attribute of a div object, that is, the ID of
one of the three drop-down menus.

9. The getElementById() method returns a reference to the div object which contains the drop-down menu.

10. The visibility property is set to visible. The drop-down object comes into view, right below the main menu item
where the user clicked on the link.

11. A function called hideMenu() is defined. Its only parameter is the id attribute of a div object. When this function
is invoked, the drop-down menu being referenced will be hidden from view.

12. The getElementById() method returns a reference to the div object that contains the drop-down menu.

13. The visibility property is set to hidden. The object being referenced disappears from view.

14. An HTML table is defined. It will be light green, 350 pixels wide, and contain one row and three data cells.

15. The first cell of the table contains a <div> container that is positioned and styled by the CSS #menu ID
selector. If the user double-clicks from within this tag, it will be hidden from view.

16. The links within the <div> container are described by the CSS .menu class. The links are deactivated for this
example.

17. When the user clicks on this link, the main link for the cell, called News, the onClick event will be triggered. A
function called showMenu will be invoked, causing the drop-down menu to appear.

18. The second drop-down menu is created and will be made visible when the user clicks on the Sports link.

19. The drop-down menu is defined here.

20. When the user clicks on the Sports link, the onClick event handler will cause a drop-down menu to be made
visible.

21. Like the other two links, the Entertainment link also has a drop-down menu associated with it which will be
made visible when the user clicks on it, and made invisible when the user double-clicks on the drop-down list.

22. The table row and table are closed. See Figure 15.37.

Figure 15.37. The first drop-down menu off the main menu—if the user
double-clicks his mouse anywhere on the drop-down menu, it will be hidden
from view (top); the second drop-down menu (middle); the third drop-down

menu (bottom).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tool Tips

When a user's mouse rolls over a section of text or an image, a little tool tip might appear as a little rectangular box of
text to give helpful hints or clues to clarify the presentation. And when he moves his mouse away from the area, the
tool tip will disappear. You can use the HTML title attribute to create simple tool tips, or you can create your own by
taking advantage of the CSS visibility property and JavaScript event handlers.

Example 15.33

 <html><head><title>A tool tip</title>
 <style type="text/css">
1 #divclass { font-size:12pt;
 font-family: arial;
 font-weight: bold;
 background-color:aqua;
 border:thin solid;
 width: 210px;
 height:40px;
2 visibility: hidden; /* Can't see the container */
 position:absolute;
 top: 50px;
 left: 175px;
3 z-index: 1; /* Put the div container on top */
 }
4 a {
 font-family: cursive;
 font-size: 18pt;
 font-weight: bold;
 color:white;
 position: absolute;
 left: 60px;
 }
5 img { position:absolute; top: 50px; z-index:0; }
 </style>
 <script language = "JavaScript">
 var div1;
6 function init(){
 div1=document.getElementById("divclass");
 }
7 function showHideTip(e) {
8 if(e.type == "mouseover")
 div1.style.visibility="visible";
9 else if(e.type == "mouseout"){
 div1.style.visibility="hidden";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 div1.style.visibility="hidden";
 }
 }
 </script>
 </head>

10 <body bgcolor=black onLoad="init();">
11 <a href="http://www.servant.xxx"
12 onMouseover="showHideTip(event);"
13 onMouseout="showHideTip(event);"
 >At Your Service!

13
14 <div id="divclass">Always tip me at least 20%!</div>
 </body>
 </html>

EXPLANATION

1. A CSS style is defined for the ID selector, #divclass.

2. The visibility property for this style is set to hidden; it will not be seen.

3. The z-index property is set to 1, putting above the image which is set to z-index 0. Remember, the higher the
z-index number, the higher the element is placed on the stack.

4. The style for a link is defined.

5. A style for positioning an image is defined. Its z-index is 0, placing it below any other elements.

6. The init() function is defined to get the ID of a div element. In this example, this will be the ID for the tool tip.

7. The showHideTip() function is defined. It takes one parameter, a reference to an event object. It contains
information about the event that caused this function to be called.

8. If the event was caused by the mouse going over the link, a mouseOver event, then the tool tip will be made
visible.

9. If the event was caused by the mouse moving away from the link, a mouseOut event, then the tool tip will be
hidden from view.

10. As soon as the document has finished loading, the onLoad event is triggered, and the init() function invoked.

11. This is the link that displays as "At Your Service!". Rolling the mouse over it will cause the tool tip to appear.

12. The onMouseOver event is triggered when the user puts his mouse on the link. The tool tip will be shown.

13. When the user moves his mouse away from the link, the tool tip disappears.

14. The image for the waiter is below the tool tip, because its z-index is 0, whereas the tool tip's z-index is 1.

15. The <div> container is used to hold the tool tip text and style defined by the CSS ID selector called divclass.
The output is shown in Figure 15.38.

Figure 15.38. Before the mouse moves over the link (left), and after (right).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.4.8 Simple Animation

Animation on a Web page can be either captivating and attractive or just plain annoying. It all depends on the design.
Whether you are creating banners, slide shows, or animated logos, buttons, or icons, they are attention getters. With
dynamic HTML you can create your own animations. There are a number of programs available for this, such as
Macromedia Fireworks, Stone Design's GIFfun for Mac OS X, and Adobe Photoshop.

The following example takes four GIF images and with the help of a timer, rapidly displays an increasingly smaller
image on different positions of the screen, giving the sensation of simple animation—a green balloon rising into the sky.

Example 15.34

 <html><head><title>balloon</title>
 <script language="JavaScript">
 var position, up, upper, uppermost, upperupmost;
 function init(){
1 var position = 1;
2 var up = new Image();
 up.src="greenballoon.gif";
3 var upper = new Image();
 upper.src="greenballoon2.gif";
 var uppermost = new Image();
 uppermost.src="greenballoon3.gif";
 var upperupmost=new Image();
 upperupmost.src="greenballoon4.gif";
 ball = document.getElementById("balloon");
 }

4 function move() {
5 if (position == 1){
 document.balloonimg.src=up.src;
 ball.balloon.style.left = 50;
 ball.balloon.style.top = 200;
6 position = 2;
 }
7 else if (position == 2){
 document.balloonimg.src=upper.src;
 ball.style.left = 100;
 ball.style.top = 150;
 position = 3;
 }
 }
 else if (position == 3){
 document.balloonimg.src=uppermost.src;
 ball.style.left = 150;
 ball.style.top = 100;
 position = 4;
 }
 else if (position == 4){
 document.balloonimg.src=upperupmost.src;
 ball.style.left = 200;
 ball.style.top = 10;
 position = 1;
 }
 }
 </script>
 </head>
7 <body bgColor="silver" onLoad="init();">
8

 <form>
 <input type="button" name="move" value=" Move "
9 onClick="startMove=setInterval('move()',900);">
 <input type="button" name="stop" value=" Stop "
 onClick="clearInterval(startMove);">
10 </form>
 </body>
 </html>

EXPLANATION

1. The variable position will be assigned 1. This will be the image of the first balloon to be placed on the screen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. The variable position will be assigned 1. This will be the image of the first balloon to be placed on the screen
after the user calls the move() function below.

2. A reference to an image object is assigned to variable, up. The source for the image is a file named
greenballoon.gif.

3. Another image object is created. Its source file is greenballoon2.gif. Each balloon image is scaled down in size.

4. The move() function is defined. Its purpose is to place, in rapid intervals, the balloon images in different
sections of the screen to give the illusion of movement.

5. With position 1, the first image (greenballoon.gif) is positioned at the left bottom part of the screen. The value
of the position is set to 2. When the timer calls the move() function, (approximately 1 second from now), the
position value is 2 and control goes to line 5.

6. Position 2 puts the balloon greenballoon2.gif in the middle of the screen.

7. After the document has been loaded, the onLoad event is triggered and the init() function will be invoked to
initialize variables and get a reference to the balloon object.

8. The tag creates the position of the initial image 10 pixels from the left-hand side of the screen and 250
pixels from the top.

9. When the Move button is clicked, the onClick event is triggered and the setInterval() method will start calling
the move() function every 900 milliseconds. The balloon appears to move from the left to the right, and upward
on the screen, getting smaller as it goes to indicate distance.

10. When the Stop button is clicked, the setInterval() timer is turned off. The output is shown in Figure 15.39.

Figure 15.39. When the user clicks the Move button, the balloon image
changes every second (top); Up, up, and away in my little green balloon...

(bottom row).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISES

1: Create a CSS style sheet that makes all h1 elements italic and blue.

2: Define a class called title that can be used on an element to make the font face Arial, extra large, and bold.

3: Create a style for a paragraph with a unique ID that will define a style for a font family, font size, and font
color.

4: Create a style that will affect all the cells in an HTML table.

5: Create a style that be used with a <div> tag to produce a light green box, positioned in the left-hand corner
of the screen, with a solid, dark green border. The <div> container will contain a paragraph of italic text.

6: Write a JavaScript program that will tell you the name and version of your browser and whether it is DOM
compliant.

7: Rewrite Example 15.34 to use an Array constructor in the init() function. Each image will be referenced as
an array element when the Image constructor is called.

8: Create an animation of a stickman running. You will need to draw several stickmen of the same size in
different running positions. Your program will give the illusion of the stickman running.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix A. JavaScript Web Resources
FreewareJava.com:
http://freewarejava.com/javascript/index.shtml
This site contains a collection of JavaScript tutorials and sample scripts.

The JavaScript Planet:
http://www.geocities.com/SiliconValley/7116/
This site contains a broad collection of free JavaScripts.

CodingForums.com:
http://www.codingforums.com/
This site contains a JavaScript forum where programmers help each other solve JavaScript problems.

JavaScript Central on Netscape's devedge site:
http://devedge.netscape.com/central/javascript/
This site contains a top-notch collection of JavaScript tools and tutorials.

CGI resources:
http://hoohoo.ncsa.uiuc.edu/cgi/intro.html
http://cgi.resourceindex.com/
http://www.scriptarchive.com/
http://www.icthus.net/CGI-City/

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix B. HTML Documents: A Basic Introduction
by Joan Murray
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.1 Intro to the Intro
The progress of HTML (HyperText Markup Language) in the age of the Internet and the World Wide Web has unfolded
much in the way of classic Alpine skiing and X-treme skiing. Even people who don't ski know about the rules: bend the
knees, hold onto the poles, stay on the trails, and follow a curved path down the slope. There is no mention of
snowboarding, hot-dogging, playing catch on skis, or combining skiing with sky-diving. What used to be a winter
pastime of country folk now requires special equipment, clothing, accessories, lodging, and transportation. Like skiing,
HTML started out simply and can still be used simply, but if you follow the trail to the big time you'll find all the fancy
and dangerous complications involved in fashionable pursuits, which is how HTML got mixed up with a scripting
language like Perl in the first place.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.2 What Is HTML?
HTML is described in various ways:

1. A subset of SGML (Standard Generalized Markup Language), the standard for markup languages

2. A collection of platform-independent styles defining various components of a WWW (World Wide Web)
document.

3. Put simply, HTML documents are plain-text (ASCII) files with markup (identifier) tags

B.2.1 HTML: It Used to Be as Easy as Falling Off a Log

The basics still apply, but modern technology, new standards, and the Great Browser Wars have made inroads. This
overview covers what endures, though that too may change. Our secret weapon is using commercially available Web
tools to keep up with the changes. Each section of the overview will contain an update where changes have crept (and
in some cases galloped) in.

The introduction of Web site building software like FrontPage and Dreamweaver might make you think that knowing
HTML is no longer necessary. However, even the best product doesn't always produce desired results, so you need to
be able to tweak where necessary. That brings us to the question:

Why learn HTML code?

1. To know what you're looking at and know how it's done, and, what's better, to be able to do the same yourself

2. To help judge WYSIWYG (what you see is what you get) software products used to create Web pages

3. To get by when you don't have the high-tech tools—even a basic knowledge of HTML will enable you to create a
presentable Web site

Why did "They" think this up in the first place?

The Internet had existed for a decade or two as a way to send and receive messages and other documents when
someone decided that since monitors had replaced teletype as standard output it might be nice to be able to read
material in an orderly fashion on the monitor. One of the results was the invention of a system of embedded codes that
would make this possible. The rules set up for HTML reflect the original interested parties, the military and universities,
using the system and the state of personal computing devices at the time. They reveal themselves in the default colors,
sizes, fonts, and text types and order.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.3 HTML Tags
The nice part about the basic HTML is that it is easy to do. It is time-consuming and complicated, but it is not difficult.
Everything you need is contained in the tags, which are the code identifying an HTML document and the various parts of
its contents to a browser.

The tags all follow a set form—start and stop:

Left angle bracket (<), tag name, right angle bracket (>) for start tag

Left angle bracket (<), slash (/), tag name, right angle bracket (>) for stop tag

These are usually paired in start/stop set (e.g.,<H1> and </H1>). These tags define various parts of the HTML
document. Only a small set of tags is required; the others are advisable to make the document easier for the user to
read.

B.3.1 Required Elements

<HTML>, </HTML> Defines the HTML document

<HEAD>, </HEAD> Defines the part of the document for the browsers use

<TITLE>, </TITLE> Identifies the document to the Web

<BODY>, </BODY> Defines the part of the document we see and use

Believe it or not, this is all that is required in an HTML document. The head and title part are required for use by the
browser. Unless they peek behind the scene, users see only what is presented between the two body tags.

B.3.2 The Order of the Required Elements and Their Tags

<HTML>

<HEAD>

<TITLE> </TITLE>

</HEAD>

<BODY>

</BODY>

</HTML>

B.3.3 The Elements: What They Are and How They Are Used

<HTML>

This tag tells the browser the file contains HTML-coded information. The file extension .html identifies an HTML
document. With DOS-based files use .htm; Windows- and Mac-based files can use .htm or .html. Currently, UNIX files
should use only .html.

<HTML> UPDATE!

There now are .shtml, .stm, .asp, and .xml Web pages, to name a few. UNIX servers undoubtedly recognize these also,
but they are beyond the scope of this overview.

<HEAD>

This tag identifies first part of HTML-coded document. It contains the title. (This does not appear on the page itself.)

<TITLE>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<TITLE>

This tag contains the document title. It is displayed on a browser window only and is not visible on the page itself. On
the Web, it identifies a page subject to search engine criteria. It is used as a "hotlist," "favorites," or "bookmark" entry.
It should be short, descriptive, and unique.

<HEAD> UPDATE!

Most Web page heads contain more than titles. The following are examples of what can be found there.

Metatags: make site topics known to (some) search engines

Style sheets/cascading style sheets (CSS): define aspects of the body

Java scripts and JavaScript: add jazzy elements to the body of the document

<BODY>

This tag contains content of the document organized into various units:

Headings (<H1> to <H6>)

Paragraphs <P>

Lists, which can be ordered or unordered

Preformatted text <PRE>

Addresses <ADDRESS>

Space dividers
, <HR>

Graphic items

<BODY> UPDATE!

Preformatted text is rarely used unless you want something to look like a typed page. Tables replace preformatted text
in most cases. The address portion is now often replaced by a reply form or e-mail address. Many of the interactive
elements such as reply forms use CGI (Common Gateway Interface) scripts, usually written in Perl.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.4 The Minimal HTML Document

<HTML>
<HEAD>
<TITLE>Simple HTML Document. Only the browser sees this title </TITLE>
</HEAD>
<BODY>
<H1>Sample Heading -- You and I see this heading</H1>
<P>This is a sample text representing a paragraph. It will ignore
spaces and keep on being one paragraph <P>This is another paragraph
</BODY>
</HTML>

B.4.1 Headings

Don't confuse these with <HEAD>, which is not visible to the end user. The heading is at the top of the Web document.
Think "Headline." There are six heading tags ordered by size: <H1> is the largest and <H6> the smallest. According to
the original rules it isn't fair to pick and choose headings by appearance. <H1> is a primary heading <H2> a secondary
heading, etc. Those who have been doing this a long time claim it is virtually impossible to distinguish between <H4>,
<H5>, and <H6>.

There are a million ways to solve the heading problem. In some fonts, <H1> is so huge you would only use it for
something of great importance, such as "War is Declared." Because HTML now interacts with Web tools like Java and
XML, the <P> tag now requires a matching </P> tag. Strictly speaking, this is not an HTML requirement because it is
not HTML that is having trouble knowing that the paragraph has finished.

B.4.2 Tags to Separate Text

NOTE: Formerly these did NOT require end tags.

<P>

This tag separates text into paragraphs—a hard return with space (line feed). Originally this tag came after the
paragraph, but since we use monitors and not actual print devices we don't need to signal a hard return. So now <P>
indicates to the browser that what follows is a paragraph.

This breaks text into lines—a hard return with no space between lines.

<HR>

This is a horizontal rule—a graphic representation of a line to separate text areas.

B.4.3 Lists

Lists are perennial favorites of organizations. When the Web began, they represented ways to break up text in a helpful
fashion. They could (and still can) be used for definitions, tables of contents, or just plain lists. The numbered list is a
favorite of the academic community; the bulleted list that of the military; otherwise, they are really self-explanatory.

There are two types of lists:

1. Ordered (numbered) list

 Item number one

 Item number two

2. Unordered (bulleted) list

 First item

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next item

Lists are old fashioned. Use them with discretion. Avoid long lists; instead block topics as subpage(s). Use tables or
links (or both) where possible.

The tag has suffered the same fate as the <P> tag. You must use an tag to be truly up to date. Originally
there were several subcategories of lists, but they've pretty much done away with most of them.

B.4.4 Tables for Fun and Profit

Tables are scary when you look behind the scene and see all those tags and indents. To make a table, use the same
principle as the traveler on the 1,000-mile journey: one step at a time. This overview covers simple tables, the kind
that replaced preformatted <PRE> text. Though complicated they are no more exasperating than counting all the
spaces between words in preformatted text to make the results come out even.

The Basic Table Tags:

<TABLE> </TABLE> Defines table

<TR> </TR> Defines table row

<TD> </TD> Defines table cell (data)

The principle is the same as with the HTML document as a whole: The table <TABLE> contains rows <TR>, which
contain data cells <TD>.

Tailoring Tables:

<TABLE ALIGN="CENTER">

<TABLE BORDER ALIGN="CENTER">

<TABLE BGCOLOR="#FEFEFF">, <TABLE BGCOLOR="AQUA">

You can use many of the same tag elements you use to tweak other page elements. The ALIGN= command puts items
including tables to left, right, or center on page.

Some browsers allow you to add color to the background (Netscape, Internet Explorer). The same is true of background
images, but Netscape and IE treat them differently.

Similar rules guide formatting of table rows and cells. You can adjust text position and background in these units.

How Table Tags Are Used:

This will yield a simple table with two rows and two cells.

<TABLE>

<TR><TD>data</TD><TD>more data</TD></TR>

<TR><TD>data</TD><TD>maybe a picture</TD></TR>

</TABLE>

By adding spacing, alignment, color, and other tags, you can manipulate tables. You can enlarge the table by increasing
the number of rows or data cells. You can specify header rows, make data cells span more than one row and/or column,
put background colors, borders, and more. It's all in the details.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.5 Character Formatting
There are two ways to indicate text formatting:

1. Logical— according to its meaning

2. Physical— according to its appearance

As you familiarize yourself with both of these, you can see the committee mentality at work. Either two groups already
had different codes in place, or someone wanted to go home.

Many pages use physical tags even though logical tags are standard. The rule is, BE CONSISTENT.

WYSIWYGs like FrontPage and Dreamweaver, which don't require a lot of text entry, use the logical tags. (If you don't
have to type again and again, you don't really care that the software package chose to use it
over .)

Cascading style sheets (more on them later) will make font/text tags even more interesting than they are now.

B.5.1 Logical Tags

 For emphasis— usually italics

 For strong emphasis— usually bold

<CODE><KBD> Various— Fixed-width font

B.5.2 Physical Tags

 Bold text

<I> Italic text

<TT> Typewriter Text

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.6 Linking
This is what makes hypertext hyper. It is also the reason to use HTML in the first place. If you like to read, get a book.
If you need to connect to various references, hypertext is the way to go. HTML links text and/or images to other
documents or other parts of the same document using anchors.

The hypertext tag is <A> for anchor; the reference part of tag is HREF="File". The hypertext reference contains the
pathname (relative or absolute) of the document (file) you are trying to access.

B.6.1 Creating a Link

If you can get this next bit, you have mastered the magic of hypertext. Notice that the cue to the user does not have to
be the pathname to the link. (When the Web was young, site builders did not understand this and often would spell out
the path on the Web page, thus causing anxiety in the user.) In the example below, newfile.html is referred to in the
text as My Special Page.

All hypertext link tags take this form:

Hot Link

Sample reference:

My File

Put whatever you wish here leading to My Special Page. The same deal over here.

B.6.2 Links to a URL (Uniform Resource Locator)

The hypertext link tag is the same form for a URL as for any other link:

Hot Link

The URLname portion is written exactly as it appears in the browser's URL window:

http://host.domain/path/filename

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.7 Adding Comments
Form for comments:

<!-- Put Comment Here -->

"Commenting out" questionable code is considered bad form in HTML. Use commenting only for real comments except
as directed to hide Java, JavaScript, XML, CSS, and other scripts from the browser.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.8 Case Sensitivity
HTML per se is not case sensitive. The following tags are only three examples that are all the same to HTML:

<Body>

<BODY>

<body>

UNIX ties are case sensitive:

"Escape sequences" (>)

Filenames (HooXd.u)

Jones & Co.

XML, Java, JavaScript, and CSS all have to be just right.

Sometime during the great parade that the World Wide Web has become, someone noticed that HTML was the only unit
that was not in step with the march of progress. So, beginning with HTML 4.0, all tags are to be in lowercase to
conform with the other elements that make up part of modern Web sites. You can still build a simple Web site without
worrying about case sensitivity, but once you start using the sophisticated tools of Web building, lowercase will be the
rule. (In this review I will stick to UPPERCASE for tags so that they are more visible, but don't try this at home.)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.9 Graphics and Images

B.9.1 Creating an Inline Image

To include an image inline (next to text) or otherwise, use the form:

Graphic files are usually .gif or .jpg. .jpg appears as .jpeg in Windows environments. While the .jpg extension can be
used on Windows, most UNIX environments currently do not support .jpeg.

B.9.2 The Complex Tag

The coding used to create and place images introduces complexity to the tag. The opening anchor tag <A> for a
hyperlink uses this complexity to identify the link (HREF). The image tag adds SRC to identify the image. Since
images on a page create complexity (increased load time, increased file size), complex, not to say complicated, tags
become the norm. You use this complex tag form to define other elements of the Web page such as headings,
paragraphs, and tables.

B.9.3 Sizing and Placing the Image

The warring factions of the Web world are constantly debating what a Web site should be. Much of the debate centers
on images and their effect on page loading time. While many points of the image debate are beyond the scope of this
overview, one is not: the image size attributes. Everyone agrees that it is best to include the width and height of an
image to speed page loading. The browser window can give you the information if you know what to do and where to
look. We will use Netscape directions for our example.

Launch Netscape, click on File in the text menu bar, select Open Page, then Choose File in the pop-up window, and
locate the image on your computer. NOTE: make sure the "Types of Files" bar is set to "All Files (*.*)." Select the
image whose dimensions you want to know and click the OK button. The blue bar at the very top of the browser
window contains the measurements in pixels: width then height.

You position the image on the page by adding ALIGN="LEFT" (or "RIGHT" or "CENTER") inside the image tag.

B.9.4 Creating a Text Alternative for an Image

Not all browsers support graphics; LYNX, one of the oldest, does not.

Some users turn image-loading off, and most graphics are impractical for sight- impaired users. Using a text label to
identify graphic images is good manners and practical. The ALT tag inside the tag identifies text alternatives for
graphics.

The portion identifying the image does not have to be one word or a repeat of the image filename. Newer Browsers
show ALT text when you "mouse over" the image, and inserting a user-friendly phrase such as View of downtown
Rochester, 1948 or Back to Top rather than photo_main_47.jpg and arrow.gif can provide additional information to Web
spiders that the image would otherwise conceal.

B.9.5 Where Do I Find Graphics?

The Web has many sites full of free graphics. You need to use discretion since some folks think that if butterflies are
free, so are Bugs Bunny, Snoopy, Homer Simpson, and the Nike Swoosh, and there they all are on their "free graphics"
Web site. The most useful graphics are part of the 4 B's: buttons, bars, ball, and backgrounds. They used to be very
easy to find; every free Web graphics site had them, but with the new Web tools the trend is toward the "unique" (read
baroque). One site that has the old reliables is the All Free Original Clipart page. Their URL is http://www.free-
graphics.com/. The site is well organized so it is easy to review the small graphic objects you want. To get to the type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

graphics.com/. The site is well organized so it is easy to review the small graphic objects you want. To get to the type
of item you want, choose a category from the menu on the left side of the page. Each section has directions on how to
download the image you want to use. When you work on the exercise to create a page of images you may want to use
selections from this site.

B.9.6 Background Graphics

All but the earliest versions of Netscape and Microsoft Internet Explorer support background graphics, colors, and
textures. You can get images from a Web graphic site such as the one listed above. Since some early browsers (and
they're still out there) don't support background images, you can include code in the tag for a background color as well.
The browser will pick up the color. This is useful, too, for those users who turn graphics off.

B.9.7 Creating Backgrounds

Since a background color or image can be included in as an attribute, the <BODY> tag can become quite complex. For
a background image the form is the following:

<BODY BACKGROUND="filename.gif">

Background color is a bit tricky; it uses hexadecimals, but there are several sites on the Web that list these, and Web
building tools include these codes. Basically, 000000 represents black and FFFFFF represents white. The form for
background color follows:

<BODY BGCOLOR="#FF90CB">

To simplify things, there are some standard colors you can add using their name only. The current HTML standard
names 16 of these colors; aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal,
yellow, and white.

B.9.8 Default Colors

When the standards for the Web were first created, color monitors were VGA at best, and modems were 300 to 1200
baud. So, the default colors are rather mundane. The default background, referred to as light gray, is more of a
battleship gray. Regular text is black. For hotlinks, "Unvisited" hotlink text is blue, an "Active" hotlink text is red, and
"Visited" hotlink text is violet. Additionally, All hotlinks are underlined.

Now in the time of streaming media, monitors capable of displaying thousands of colors, and 56K modems,
backgrounds can be anything, and an Active link changes so quickly to Visited it hardly matters what color it is. For best
contrast on background, try white (FFFFFF) or black (000000). Experiment with near misses; word on the street is that
off-white or black is easier on the eyes.

Besides the 16 named colors there are 216 "Websafe" colors that work on most browsers without doing strange things.
Most graphics tools have a Websafe palette option. See Tables B.1 and B.2.

Hotlinks should be obvious to the user. Purists say stick to the default blue and purple for unvisited and visited. Newer
browsers can disable hotlink underline. Leave the underline intact when you build a site and let the user decide.

Table B.1. Named colors for HTML 4.01 and CSS2.
Color Name Hex 6 Hex 3 RGB RGB% Websafe Reallysafe

black #000000 #000 0,0,0 0%,0%,0% Yes Yes

silver #C0C0C0 #CCC 192,192,192 75%,75%,75% No No

gray #808080 #888 128,128,128 50%,50%,50% No No

white #FFFFFF #FFF 255,255,255 100%,100%,100% Yes Yes

maroon #800000 #800 128,0,0 50%,0%,0% No No

red #FF0000 #F00 255,0,0 100%,0%,0% Yes Yes

purple #800080 #808 128,0,128 50%,0%,50% No No

fuchsia #FF00FF #F0F 255,0,255 100%,0%,100% Yes Yes

green #008000 #080 0,128,0 0%,50%,0% No No

lime #00FF00 #0F0 0,255,0 0%,100%,0% Yes Yes

olive #808000 #880 128,128,0 50%,50%,0% No No

yellow #FFFF00 #FF0 255,255,0 100%,100%,0% Yes Yes

navy #000080 #008 0,0,128 0%,0%,50% No No

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

blue #0000FF #00F 0,0,255 0%,0%,100% Yes Yes

teal #008080 #088 0,128,128 0%,50%,50% No No

aqua #00FFFF #0FF 0,255,255 0%,100%,100% Yes Yes

The HTML 4.01 and CSS2 color names with their corresponding numerical values. Members of the Websafe and
Reallysafe palletes are marked. The information in this table is copyright 2003 Jupitermedia Corporation. All rights
reserved. Used with permission from http://www.webreference.com.

Table B.2. Proprietary color names for Internet Explorer.
Color Name Hex 6 Hex 3 RGB RGB% Websafe Reallysafe

aliceblue #F0F8FF #FFF 240,248,255 94%,97%,100% No No

antiquewhite #FAEBD7 #FED 250,235,215 98%,92%,84% No No

aqua #00FFFF #0FF 0,255,255 0%,100%,100% Yes Yes

aquamarine #7FFFD4 #7FD 127,255,212 49%,100%,83% No No

azure #F0FFFF #FFF 240,255,255 94%,100%,100% No No

beige #F5F5DC #FFD 245,245,220 96%,96%,86% No No

bisque #FFE4C4 #FEC 255,228,196 100%,89%,76% No No

black #000000 #000 0,0,0 0%,0%,0% Yes Yes

blanchedalmond #FFEBCD #FEC 255,235,205 100%,92%,80% No No

blue #0000FF #00F 0,0,255 0%,0%,100% Yes Yes

blueviolet #8A2BE2 #82E 138,43,226 54%,16%,88% No No

brown #A52A2A #A22 165,42,42 64%,16%,16% No No

burlywood #DEB887 #DB8 222,184,135 87%,72%,52% No No

cadetblue #5F9EA0 #59A 95,158,160 37%,61%,62% No No

chartreuse #7FFF00 #7F0 127,255,0 49%,100%,0% No No

chocolate #D2691E #D61 210,105,30 82%,41%,11% No No

coral #FF7F50 #F75 255,127,80 100%,49%,31% No No

cornflowerblue #6495ED #69E 100,149,237 39%,58%,92% No No

cornsilk #FFF8DC #FFD 255,248,220 100%,97%,86% No No

crimson #DC143C #D13 220,20,60 86%,7%,23% No No

cyan #00FFFF #0FF 0,255,255 0%,100%,100% Yes Yes

darkblue #00008B #008 0,0,139 0%,0%,54% No No

darkcyan #008B8B #088 0,139,139 0%,54%,54% No No

darkgoldenrod #B8860B #B80 184,134,11 72%,52%,4% No No

darkgray #A9A9A9 #AAA 169,169,169 66%,66%,66% No No

darkgreen #006400 #060 0,100,0 0%,39%,0% No No

darkkhaki #BDB76B #BB6 189,183,107 74%,71%,41% No No

darkmagenta #8B008B #808 139,0,139 54%,0%,54% No No

darkolivegreen #556B2F #562 85,107,47 33%,41%,18% No No

darkorange #FF8C00 #F80 255,140,0 100%,54%,0% No No

darkorchid #9932CC #93C 153,50,204 60%,19%,80% No No

darkred #8B0000 #800 139,0,0 54%,0%,0% No No

darksalmon #E9967A #E97 233,150,122 91%,58%,47% No No

darkseagreen #8FBC8B #8B8 143,188,139 56%,73%,54% No No

dodgerblue #1E90FF #19F 30,144,255 11%,56%,100% No No

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

forestgreen #228B22 #282 34,139,34 13%,54%,13% No No

indianred #CD5C5C #C55 205,92,92 80%,36%,36% No No

lavender #E6E6FA #EEF 230,230,250 90%,90%,98% No No

lemonchiffon #FFFACD #FFC 255,250,205 100%,98%,80% No No

lightgrey #D3D3D3 #DDD 211,211,211 82%,82%,82% No No

lightseagreen #20B2AA #2BA 32,178,170 12%,69%,66% No No

mediumslateblue #7B68EE #76E 123,104,238 48%,40%,93% No No

navy #000080 #008 0,0,128 0%,0%,50% No No

orange #FFA500 #FA0 255,165,0 100%,64%,0% No No

salmon #FA8072 #F87 250,128,114 98%,50%,44% No No

slateblue #6A5ACD #65C 106,90,205 41%,35%,80% No No

yellowgreen #9ACD32 #9C3 154,205,50 60%,80%,19% No No

Internet Explorer's proprietary color names with their corresponding numerical values. Members of the Websafe and
Reallysafe palletes are marked. The information in this table is copyright 2003 Jupitermedia Corporation. All rights
reserved. Used with permission from http://www.webreference.com.

B.9.9 Bars, Bullets, and Icons

You can get these simple graphics from the All Free Graphics Web site to spruce up your page. The temptation is to use
a lot of them because you can; don't yield to it. Be especially careful with animated GIFs. An envelope or mailbox
constantly opening and closing at the bottom of a Web page can be mighty irritating.

Use bars in place of <HR> (hard rule) separators. Position them carefully.

<P ALIGN="CENTER"><P>

Bullets are used to attract attention. (NEW!) is always popular. Small balls fall into the bullet category.

Icons, those small graphical representations, make great clickable images (links to other files). The image replaces the
text that identifies the hotlink. This is the principle behind all those "Click here for…" banner graphics you see on every
Web site.

To eliminate the "hot" blue border around a linked icon, add BORDER="0" to the image tag.

B.9.10 Graphics Update

Flash 5— Need I say more? Types of graphics fall in and out of favor. The understated look is always good.

B.9.11 External Sights 'n' Sounds

You can use anchor and reference to link to an image as a separate entity. This will open a page to a stand-alone
image. Many sites use this device to keep slow loading, large graphics below the main page.

link anchor

The syntax is the same for a sound (.au, .wav) or movie (.mov, .mpg)

NOTE: Sound and movies are slow loaders and not everyone can access these.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.10 Troubleshooting
Even pages put seamlessly together using WYSIWYG software can turn out not quite as expected. Usually the problem
is something involving fancier HTML elements. (FrontPage is notorious for constantly trying to second-guess the
author.) For those who are drawers of water and hewers of HTML, the problems are much more mundane. The
following covers the most common errors. Believe me when I say everybody who has written HTML has done all of
these.

1. Watch out for overlapping tags:

Example of <I>overlapping tags<I>

<!-- here the author wants the last two words in italics, and everything but the last word to be bold. -->

It should be <I>this</I><I> instead</I>

<!-- That's what keeps them buying FrontPage -->

2. Make sure all the tags are matched.

<H1>Win a million dollars! </H1>

Forgetting to stop an action can result in interesting effects such as an entire page in italics or headline sized
type.

3. Be sure there are no missing parts to a tag (/, <, >, or ").

4. Embed only anchors and character tags inside defining tags.

<H1>Hot Stuff </H1>

5. Watch out for misspellings such as HREP or Hl (letter el) for H1 (one).

B.10.1 Ask Heloise!

The more popular browsers will correct most errors they detect. That doesn't mean that your page doesn't look hosed
on someone else's browser. If that person is trying to get some useful information, the error may thwart his efforts.

Ideally, all pages should be validated. This process checks for missing parts, overlapping tags, unmatched tags, and
other problems. The W3 consortium has a validator on its site at www.w3.org.

Check your code against more than one browser. Only standard-issue HTML works on both Netscape and IE, and the
latest standard may not work on earlier browser versions. Metatags and style sheets, the norm by today's standards,
have to be commented out because the earlier browsers will print them code and all, right on the user's screen.

To be safe put all tag content after the equal sign in double quotes.

<BODY BGCOLOR="aqua" BACKGROUND="grandma.jpg">

<P ALIGN="RIGHT">

Sometimes browsers get cranky and won't recognize a qualifier even when it's a clone of a tag you've used countless
times with no trouble.

Even if you use a WYSIWYG editor double check all your ALT tags. The WYSIWYG will put in ALT="00187.gif" or
"fzzypic1.jpg" because that's what the image source is called. If you can't figure out how to make them more user
friendly using the WYSIWYG side, add them on the HTML side. Dreamweaver files can be opened in Notepad, and
FrontPage has a nice HTML source code page incorporated in it.

B.10.2 Some Sites that Help You with HTML

www.w3c.org

World Wide Web Consortium— This is the authority on all things involving the Web.

hotwired.lycos.com/webmonkey

WebMonkey— Full of hip tutorials on all sorts of Web-related topics.

www.ncsa.uiuc.edu/General/Training

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

www.ncsa.uiuc.edu/General/Training

National Center for Supercomputing— the home of Mosaic.

www.ncsa.uiuc.edu/General/Training/HTMLIntro/HTML.Help.html

The ultimate beginner's manual: read it online and print it out for future reference.

www.htmlgoodies.com

HTML Goodies— excellent tutorials by Joe Burns, Ph.D.; subscribe to his newsletters.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.11 Metatags, Cascading Style Sheets, and Java
These are some topics that you should know about.

Metatags: more than you want anyone to know about your site but really need to tell them

Cascading style sheets: giving a "pulled together" look to even the largest sites

Java scripts and JavaScript: where the action is

B.11.1 Metatags Example (Part 1)

Metatags are a study in themselves. Each part of the following example shows you the most common tags used. Some
sites put the tags in Part 1 of the example first, followed by the TITLE tag and then the real metatag meat. They all
follow the complex tag form seen below. The META NAME portion stays the same. You change the part in quotes after
the CONTENT= to fit your situation. The first part is standard. You can copy it verbatim except for the CONTENT portion
of the META NAME="Author" tag.

<HEAD>
<TITLE>Simon Says Put the Title First</TITLE>
<META NAME="Author" CONTENT="myownwebpage.com">
<META NAME="distribution" CONTENT="global">
<META NAME="resource-type" CONTENT="document">
<META NAME="language" CONTENT="en">
</HEAD>

B.11.2 Metatags Example (Part 2)

This part illustrates the keywords that identify your site to some search engines. Notice the great variety of keywords
used by this site. Most of them are common to many sites. It's not so much a case of trying to be different but of giving
the people what they want. The trick is to pick words that match what your audience is looking for (note the word
"free"), which explains why a Web search can lead to some very strange results indeed.

META NAME="Keywords" CONTENT="SHOPPING, JOB BANK, Sign Up!, Find-A-Job, Post-A-Job, CLASSIFIEDS,
Search Ads, Place Ad, Change Ad, Delete Ad, Cool Notify, Hot List, DIRECTORIES, ActiveX, ASP, C/C++, CGI,
Databases, Emerging Tech, HTML/DHTML, Intranets, Java, JavaScript, Middleware, Perl, Visual Basic, XML, What's Cool,
What's New, Japanese Pages, REFERENCE, Online Reference Library, LEARNING CENTER, Course Catalog, Tutorials,
Experts Q&A, JOURNAL, Tech Focus, Tech Workshop, Staff Picks, Users' Choice, Profiles, NEWS CENTRAL, Archive,
DOWNLOADS, Free Graphics, Free Scripts, COMMUNITY, Discussions, J.D.A., Whos Who, CALENDAR, Online Events,
Industry Events, Conferences, ABOUT US, Who We Are, What We Do, News About Us, Advertising Info, Vendor Info,
Job Openings, Awards, FAQs, email, highlights, developers, Current issues">

B.11.3 Metatags Example (Part 3)

This tag describes your site and your purpose. When users do a Web search the description is what the search engine
retrieves and prints (together with the title) in the search results.

<META NAME="description" CONTENT="myownwebpage.com is the leading online service for novice Web page
developers. It includes So Help Me Mama, the unofficial and utterly useless directory for Java, as well as news,
information, tutorials, and directories for other Internet technologies including ActiveX, JavaScript, Perl, VRML, Java
Beans, push technologies, and other Internet and intranet technologies. myownwebpage.com is also the home of Really
Cheap Software, the Unprofessional Developer's Store, where na•ve developers can purchase and download thousands
of Web, authoring, and other development products at some of today's highest prices.">

B.11.4 Style Sheet Example

Originally, Web pages were all about information and not about formatting; certainly not about style. Discreet additions
of color and subtle graphics were one thing but spinning, screaming, flashing page parts quite another. Not only was
this not dignified, but the variety of colors and styles meant more work for the developer maintaining the Web site. As
things got more complicated, style sheets were introduced as a way to create a look without so much hand tweaking.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

things got more complicated, style sheets were introduced as a way to create a look without so much hand tweaking.

The site developer puts the requirements for color and text elements in one of three places, and these determine the
look of the site. For special cases you can define the requirements inside a tag, such as the body tag. For a simple site
with few pages to maintain you can define the requirements in the <HEAD> portion of each page. (See the example
below.) For a large site or one that keeps changing its look you can define the requirements in a separate document.
The cascading part of CSS (cascading style sheets) comes from the way style requirements are prioritized. Local (inside
tag) requirements take precedence over document (inside the head portion) requirements, which take precedence over
global (separate document) requirements. In this introductory overview we will use as an example the within-document
form. NOTE: this is not as straightforward as old-fashioned HTML. It doesn't use the traditional start/stop tags except to
identify the section as style.

Because older browsers can't deal with style sheets, everything defining the style must be placed between comment
tags and contained in a section surrounded by <STYLE> tags. Various elements are defined using an identifier and its
qualifiers. You must put these attributes inside curly braces. A qualifier (such as font size or font family) is followed by a
colon and a specifier (such as 24 pt or sans serif). A semicolon separates sets of attributes for each element you choose
to define. The example shown uses standard elements and suggested attributes.

<HEAD>
<TITLE>You call that a style sheet?</TITLE>
<STYLE="text/css">
<!--
BODY {background: #FFFFFF}
H1 {font-size: 24pt; font-family: arial}
H2 {font-size: 18pt; font-family: braggadocio}
H3 {font size: 14pt; font-family: sans-serif}
-->
</STYLE>
</HEAD>

B.11.5 JavaScript Example

JavaScript adds action to a Web page. Its advantages are that it is not compiled and doesn't have to run on a server.
Web developers use JavaScript to create small "events" such as pop-up windows (see the example below) and image
rollovers. As with style sheets, older browsers can't handle JavaScript so it must be hidden inside comment tags. The
example shown causes three pop-up windows to appear successively on a Web page when launched. Like other special
effects on the Web, this sort of thing can be overdone.

<head> <title>First Exercise</title>
<script language="JavaScript">

<!-- hide me

alert("Here's a little script");
alert("Just to show");
alert("That I know JavaScript!");

// end hide -->

</script>
</head>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.12 Looking Behind the Scenes (or, What Did We Do Before the
Right-Click?)
To borrow source code or download graphics use your right mouse button to open a menu of selections. If you wish to
view source code, right-click on a clear area of the background. Good old IE launches a separate Notepad document
you can save with a new filename to examine at your leisure. If you are interested in capturing an image, right-click on
the image. Choose "save image/picture as." It's usually good to rename the file, especially if it's called something like
0018dr.jpg.

To capture some text, highlight it with your mouse and copy it using <Ctrl>-c. Paste it into a document using <Ctrl>-v.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.13 What About Frames?
The way things are going, frames, like sex, politics, and religion, will be a topic that one may not discuss in polite
company. People either love them or loath them. WebMonkey has several tutorials on frames. Go to
hotwired.lycos.com/webmonkey/authoring and click on the frames topic.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.14 Some Final Thoughts
Consider how your page will be used. If people have to read a lot, they don't want attention-getting elements
distracting them. Finally, here are a few general tips to keep in mind:

The current standard for HTML tags is lowercase.

Container is the jazzy new word for any HTML element (<P>, <TD>).

With the advent of style sheets, <DIV> is the hip new tag. Its main use is as a container to identify style
elements you've created and named yourself versus the standard type shown in the style example. It's one of
those complex tags with parts. Check out online tutorials from HTML Goodies or WebMonkey to learn more
about this.

If you are going to create a table, draw it first. Write the necessary code in those fields that will need special
tabs, and use the annotated sketch as a reference for coding.

Visible e-mail addresses can attract spam (junk e-mail); CGI forms offer more control.

Check Web sites devoted to HTML to learn of the latest developments (see "Some Sites that Help You with
HTML" on page 599).

Examine the source code on pages you like to help you develop your own pages.

About the Author of This Tutorial

I work for the Navy in Monterey, California. In 1996 my employer, Fleet Numerical Meteorology and Oceanography
Center, which supplies weather data for the Navy's ships and planes, was preparing to launch a Web site for its users.
No adequate software package was available, but the job had to be done. As part of a "train the trainer" endeavor, I
took a class on the Internet and the information superhighway at the nearby Naval Postgraduate School. One project,
building a Web page using HTML, led me to create and teach a class in HTML basics that helped provide talented co-
workers with the knowledge to launch our first Internet pages. Even though we now use more sophisticated Web-
building tools, I've taught that basic class many times.

— Joan Murray

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix C. CGI and Perl: The Hyper Dynamic Duo

Section C.1. What Is CGI?

Section C.2. Internet Communication Between Client and Server

Section C.3. Creating a Web Page with HTML

Section C.4. How HTML and CGI Work Together

Section C.5. Log Files

Section C.6. Where to Find CGI Applications

Section C.7. Getting Information Into and Out of the CGI Script

Section C.8. Processing Forms with CGI

Section C.9. The CGI.pm Module

EXERCISE C.1

EXERCISE C.2

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.1 What Is CGI?
Thoughout this book everything has happened in the browser because we have been talking about client-side
JavaScript. When we discussed HTML forms, we learned how to create a form and validate it, but we stopped there. We
mentioned that the form, if submitted, would be sent to a server program for further processing, normally by a CGI
script. This server program was assigned to the ACTION attribute of the HTML <form> tag, but we never really covered
what happened on the server side. Now we will discuss how the browser communicates with the server, how the
information is sent between the browser and server, and what the happens to information when it gets to the server.
The standard we will use on the server side is called CGI.

CGI stands for the Common Gateway Interface (CGI), a simple protocol that allows a Web or HTTP server to talk to a
program or script. Through this gateway a program recieves information from the server and sends information back.
The program can further validate forms, query databases, send email, communicate with electronic banking
applications, etc. The programming language that is connected to the gateway is called a CGI program. In this Appendix
we will use the Perl language because it is the most popular for writing CGI scripts, although any programming
language that can be executed on the server is fine, including C++, C, Fortran, AppleScript, TCL, and Visual Basic.

Figure C.1. The relationship between the browser, server, and CGI program.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.2 Internet Communication Between Client and Server

C.2.1 The HTTP Server

On the Internet, communication is also handled by a TCP/IP connection. The Web is based on this model. The server
side responds to client (browser) requests and provides feedback by sending back a document, by executing a CGI
program, or by issuing an error message. The network protocol that is used by the Web so that the server and client
know how to talk to each other is the Hypertext Transport Protocol, or HTTP. This does not preclude the TCP/IP protocol
being implemented. HTTP objects are mapped onto the transport data units, a process that is beyond the scope of this
discussion; it is a simple, straightforward process that is unnoticed by the typical Web user. (See www.cis.ohio-
state.edu/cgi-bin/rfc/rfc2068.html for a technical description of HTTP.) The HTTP protocol was built for the Web to
handle hypermedia information; it is object-oriented and stateless. In object-oriented terminology, the documents and
files are called objects and the operations that are associated with the HTTP protocol are called methods. When a
protocol is stateless, neither the client nor the server stores information about each other, but manages its own state
information.

Once a TCP/IP connection is established between the Web server and client, the client will request some service from
the server. Web servers are normally located at well-known TCP port 80. The client tells the server what type of data it
can handle by sending Accept statements with its requests. For example, one client may accept only HTML text,
whereas another client might accept sounds and images as well as text. The server will try to handle the request
(requests and responses are in ASCII text) and send back whatever information it can to the client (browser).

Example C.1

(Client's (Browser) Request)
GET /pub HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.0 Gold
Host: severname.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,*/*

Example C.2

(Server's Response)
HTTP/1.1 200 OK
Server: Apache/1.2b8
Date: Mon, 22 Jan 2001 13:43:22 GMT
Last-modified: Mon, 01 Dec 2000 12:15:33
Content-length: 288
Accept-Ranges: bytes
Connection: close
Content-type: text/html

<HTML><HEAD><TITLE>Hello World!</TITLE>
 ---continue with body---
</HTML>
Connection closed by foreign host.

The response confirms what HTTP version was used, the status code describing the results of the server's attempt (did
it succeed or fail?), a header, and data. The header part of the message indicates whether the request is okay, what
type of data is being returned (for example, the content type may be html/text), and how many bytes are being sent.
The data part contains the actual text being sent.

The user then sees a formatted page on the screen, which may contain highlighted hyperlinks to some other page.
Regardless of whether the user clicks on a hyperlink, once the document is displayed, that transaction is completed and
the TCP/IP connection will be closed. Once closed, a new connection will be started if there is another request. What
happened in the last transaction is of no interest to either client or server; in other words, the protocol is stateless.

HTTP is also used to communicate between browsers, proxies, and gateways to other Internet systems supported by
FTP, Gopher, WAIS, and NNTP protocols.

C.2.2 HTTP Status Codes and the Log Files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the server responds to the client, it sends information that includes the way it handled the request. Most Web
browsers handle these codes silently if they fall in the range between 100 and 300. The codes within the 100 range are
informational, indicating that the server's request is being processed. The most common status code is 200, indicating
success, which means the information requested was accepted and fulfilled.

Check your server's access log to see what status codes were sent by your server after a transaction was completed.[1]

The following example consists of excerpts taken from the Apache server's access log. This log reports information
about a request handled by the server and the status code generated as a result of the request. The error log contains
any standard error messages that the program would ordinarily send to the screen, such as syntax or compiler errors.

[1] For more detailed information on status codes, see www.w3.org/Protocols/HTTP/HTRESP.html

Table C.1. HTTP status codes
Status Code Message

100 Continue

200 Success, OK

204 No Content

301 Document Moved

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

500 Internal Server Error

501 Not Implemented

503 Service Unavailable

Example C.3

(From Apache's Access log)
1 susan - - [06/Jul/1997:14:32:23 -0700] "GET /cgi-bin/hello.cgi HTTP/1.0" 500 633
2 susan - - [16/Jun/1997:11:27:32 -0700] "GET /cgi-bin/hello.cgi HTTP/1.0" 200 1325
3 susan - - [07/Jul/1997:09:03:20 -0700] "GET /htdocs/index.html HTTP/1.0" 404 170

EXPLANATION

1. The server hostname is susan, followed by two dashes indicating unknown values, such as user ID and
password. The time the request was logged, the type of request is GET (see "The GET Method" on page 632),
and the file accessed was hello.cgi. The protocol is HTTP/1.0. The status code sent by the server was 500,
Internal Server Error, meaning that there was some internal error, such as a syntax error in the program,
hello.cgi. The browser's request was not fulfilled. The number of bytes sent was 633.

2. Status code 200 indicates success! The request was fullfilled.

3. Status code 404, Not Found, means that the server found nothing matching the URL requested.

C.2.3 The URL (Uniform Resource Locator)

URLs are what you use to get around on the Web. You click on a hotlink and you are transported to some new page, or
you type a URL in the browser's Location box and a file opens up or a script runs. It is a virtual address that specifies
the location of pages, objects, scripts, etc. It refers to an existing protocol such as HTTP, Gopher, FTP, mailto, file,
Telnet, or news (see Table C.2). A typical URL for the popular Web HTTP protocol looks like this:

http://www.comp.com/dir/text.html

Table C.2. Web protocols.
Protocol Function Example

http: Hyper Text Transfer Protocol http://www.nnic.noaa.gov/cgi-bin/netcast.cgi open Web page or start
CGI script

ftp: File Transfer Protocol ftp://jague.gsfc.nasa.gov/pub

mailto: Mail protocol by e-mail address mailto:debbiej@aol.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

file: Open a local file file://opt/apache/htdocs/file.html

telnet: Open a Telnet session telnet://nickym@netcom.com

news: Opens a news session by news
server

news:alt.fan.john-lennon Name or Address

The two basic pieces of information provided in the URL are the protocol http and the data needed by the protocol,
www.comp.com/dir/files/text.html. The parts of the URL are further defined in Table C.3.

Table C.3. Parts of a URL.
Part Description

protocol Service such as HTTP, Gopher, FTP, Telnet, news, etc.

host/IP number DNS host name or its IP number

port TCP port number used by server, normally port 80

path Path and filename reference for the object on a server

parameters Specific parameters used by the object on a server

query The query string for a CGI script

fragment Reference to subset of the object

The default HTTP network port is 80; if an HTTP server resides on a different network port, say 12345 on
www.comp.com, then the URL becomes

http://www.comp.com.12345/dir/text.html

Not all parts of a URL are necessary. If you are searching for a document in the Locator box in the Netscape browser,
the URL may not need the port number, parameters, query, or fragment parts. If the URL is part of a hotlink in the
HTML document, it may contain a relative path to the next document, that is, relative to the root directory of the
server. If the user has filled in a form, the URL line may contain information appended to a question mark in the URL
line. The appearance of the URL really depends on what protocol you are using and what operation you are trying to
accomplish.

Example C.4

1 http://www.cis.ohio-state.edu/htbin/rfc2068.html
2 http://127.0.0.1/Sample.html
3 ftp://oak.oakland.edu/pub/
4 file://opt/apache_1.2b8/htdocs/index.html
5 http://susan/cgi-bin/form.cgi?string=hello+there

EXPLANATION

1. The protocol is http.

The hostname www.cis.ohio-state.edu/htbin/rfc2068.html consists of the following parts:[a]

[a] Most Web severs run on hostnames starting with www, but this is only a convention.

The hostname translated to an IP address by the Domain Name Service, DNS.

The domain name is ohio-state.edu.

The top-level domain name is edu.

The directory where the HTML file is stored is htbin.

The file to be retrieved is rfc20868.html, an HTML document.

2. The protocol is http.

The IP address is used instead of the hostname; this is the IP address for a local host.

The file is in the server's document root. The file consists of HTML text.

3. The protocol is ftp.

The host oak.oakland.

The top-level domain is edu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The directory is pub.

4. The protocol is file. A local file will be opened.

The hostname is missing. It then refers to the local host.

The full path to the file index.html is listed.

5. The information after the question mark is the query part of the URL, which may have resulted from submitting
input into a form. The query string is URL encoded. In this example, a plus sign has replaced the space between
hello and there. The server stores this query in an environment variable called QUERY_STRING. It will be
passed on to a CGI program called from the HTML document. (See "The GET Method" on page 632.)

File URLs and the Server's Root Directory

If the protocol used in the URL is file, the server assumes that file is on the local machine. A full pathname followed by
a filename is included in the URL. When the protocol is followed by a server name, all pathnames are relative to the
document root of the server. The document root is the directory defined in the server's configuration file as the main
directory for your Web server. The leading slash that precedes the path is not really part of the path as with the UNIX
absolute path, which starts at the root directory. Rather, the leading slash is used to separate the path from the
hostname. An example of a URL leading to documents in the server's root directory:

http://www.myserver/index.html

The full UNIX pathname for this might be

/usr/bin/myserver/htdocs/index.html

A shorthand method for linking to a document on the same server is called a partial or relative URL. For example, if a
document at http://www.myserver/stories/webjoke.html contains a link to images/webjoke.gif, this is a relative URL.
The browser will expand the relative URL to its absolute URL, http://www.myserver/stories/images/webjoke.gif, and
make a request for that document if asked.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.3 Creating a Web Page with HTML
In order to write Web pages, you must learn at least some of what makes up the HTML language. There are volumes
written on this subject. Here we will cover just enough to introduce you to HTML and give you the basics so that you
can write some simple dynamic pages with forms and CGI scripts. See Appendix B for a succinct tutorial on HTML.

As previously stated, Web pages are written as ASCII text files in HTML. HTML consists of a set of instructions called
tags that tell your Web browser how to display the text in the page.[2] When you type in the URL or click on a
hyperlink in a page, the browser (client) communicates to the server that it needs a file and the file is sent back to the
browser. The file contains HTML content that may consist of plain text, images, audio, video, and hyperlinks. It's the
browser's job to interpret the HTML tags and display the formatted page on your screen. (To look at the source file for a
Web page, you can use the View Document menu under View in the Netscape browser, or using Internet Explorer select
the View menu and then select Source to see the HTML tags used to produce the page.)

[2] If you have ever used the UNIX programs nroff and troff for formatting text, you'll immediately recognize the
tags used for formatting with HTML.

Creating Tags

The HTML source file can be created with any text editor. Its name ends in .html or .htm to indicate it is an HTML file.
The HTML tags that describe the way the document looks are enclosed in angle brackets < >. The tags are easy to
read. If you want to create a title, for example, the tag instruction is enclosed in brackets and the actual text for the
title is sandwiched between the marker that starts the instruction, <TITLE>, and the tag that ends the instruction,
</TITLE>. The following line is called a TITLE element, consisting of the <TITLE> start tag, the enclosed text, and the
</TITLE> end tag. A tag may also have attributes to further describe its function. For example, a text input area may
allow a specified number of rows and columns, or an image may be aligned and centered at the top of the page. The
elements and attributes are case-insensitive.

<TITLE>War and Peace</TITLE>

When the browser sees this instruction, the title will be printed in the bar at the top of the browser's window as a title
for the page. To put comments in the HTML document, the commented text is inserted between <!-- and -->.

Because HTML is a structured language, there are rules about how to place the tags in a document. These rules are
discussed below.

A Simple HTML Document

The following HTML file is created in your favorite text editor and consists of a simple set of tagged elements.

Example C.5

(The HTML Text File)
1 <HTML>
2 <HEAD>
3 <TITLE>Hyper Test</Title>
4 </HEAD>
5 <BODY>
6 <H1>Hello To You and Yours!</H1>
7 <H2 ALIGN="center">Welcome
8 </H2>
9 <P>Life is good. Today is <I>Friday.</I></P>
10 </BODY>
11 </HTML>

EXPLANATION

1. All of the text for the HTML document is between the <HTML> start tag and the </HTML> end tag. Although
HTML is the standard language for creating Web pages, there are other markup languages that look like HTML;
The HTML element identifies this as an HTML document. You can omit these tags and your browser will not
complain. It is just more official to use them.

2. Between the <HEAD> tag and </HEAD> tag information about the document is inserted, such as the title. This
information is not displayed with the rest of the document text. The <HEAD> tag always comes right after the
<HTML> tag.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The <TITLE> tag is used to create the title shown at the top of the browser window.

4. This is the closing tag for the <HEAD> tag.

5. The main part of the document appears in the browser's window, and is enclosed between the <BODY> start
tag and </BODY> end tag.

6. A level 1 heading is enclosed between the <H1> and </H1> start and end tags.

7. This is a level 2 heading. The ALIGN attribute tells the browser to center the heading on the page.

8. This is the end tag for a level 2 heading.

9. The <P> starts a new paragraph. The string Friday will be printed in italicized text. </P> marks the end of the
paragraph.

10. This tag marks the end of the body of the document.

11. This tag marks the end of the HTML document.

Figure C.2. The HTML document from Example C.5, as displayed in Internet
Explorer.

Table C.4. Simple HTML tags and what they do.
Tag Element Function

<!-- text --> Commented text; nothing is displayed.

<BASE
HREF="http://www.bus.com/my.html">

Where this document is stored.

<HTML>document</HTML> Found at the beginning and end of the document, indicating to a browser
that this is an HTML document.

<HEAD>headinginfo</HEAD> First element inside the document. Contains title, metatags, JavaScript, and
CSS. Only the title is displayed directly.

<TITLE>title of the document</TITLE> Title of the document; displayed outside the document text in a window
frame or top of the screen. Can be placed in the bookmark list.

<BODY>document contents</BODY> Contains all the text and other objects to be displayed.

<H1>heading type</H1> Creates boldface heading elements for heading levels 1 through 6. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<H1>heading type</H1> Creates boldface heading elements for heading levels 1 through 6. The
levels elements are: H1, H2, H3, H4, H5, and H6. The largest, topmost
heading is H1.

<P>text</P> Paragraph tag. Marks the beginning of a paragraph. Inserts a break after a
block of text. Can go anywhere on the line. Ending paragraph tags are
optional. Paragraphs end when a </P> or another <P> (marking a new
paragraph) is encountered.

text Bold text.

<I>text</I> Italic text.

<TT>text</TT> Typewriter text.

<U>text</U> Underlined text.

 Line break.

<HR> Horizontal shadow line.

 Start of an unordered (bulleted) list.

 An item in a list.

 Another item in a list.

 The end of the list.

 Start of an ordered list.

<DL> Descriptive list.

<DT> An item in a descriptive list

<DT> Another item in a descriptive list.

</DL> End of the descriptive list.

 Bold text.

 Italic text.

<BLOCKQUOTE>text</BLOCKQUOTE> Italicized blocked text with spaces before and after quote.

<A HREF SRC="URL"> Creates a hotlink to a resource at address in URL on the Web.

 Loads an image into a Web page. URL is the address of the image file.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.4 How HTML and CGI Work Together
As previously discussed, HTML is the markup language used to determine the way a Web page will be displayed. CGI is
a protocol that allows the server to extend its functionality. A CGI program is executed on behalf of the server mainly to
process forms such as a registration form or a shopping list. If you have purchased a book or CD from Amazon.com,
you know what a form looks like. When a browser (client) makes a request of the server, the server examines the URL.
If the server sees cgi-bin as a directory in the path, it will go to that directory, open a pipe, and execute the CGI
program. The CGI program gets its input from the pipe and sends its standard output back though the pipe to
the server. Standard error is sent to the server's error log. If the CGI program is to talk to the server, it must speak
the Web language, since this is the language that is ultimately used by the browser to display a page. The CGI program
then will format its data with HTML tags and send it back to the HTTP server. The server will then return this document
to the browser where the HTML tags will be rendered and displayed to the user.

Figure C.3. The client/server/CGI program relationship.

C.4.1 A Simple CGI Script

The following Perl script consists of a series of print statements, most of which send HTML output back to STDOUT
(piped to the server). This program is executed directly from the CGI directory, cgi-bin. Some servers require that CGI
script names end in .cgi or .pl so that they can be recognized as CGI scripts. After creating the script, the execute
permission for the file must be turned on. For UNIX systems, at the shell prompt type

chmod 755 <scriptname>

or

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chmod +x <scriptname>

The URL entered in the browser Location window includes the protocol, the name of the host machine, the directory
where the CGI scripts are stored, and the name of the CGI script. The URL will look like this:

http://servername/cgi-bin/perl_script.pl

The HTTP Headers

The first line of output for most CGI programs is an HTTP header that tells the browser what type of output the program
is sending to it. Right after the header line, there must be a blank line and two newlines. The two most common types
of headers, also called MIME types (which stands for multipurpose Internet extension), are "Content-type:
text/html\n\n" and "Content-type: text/plain\n\n." Another type of header is called the Location header, which is used
to redirect the browser to a different Web page. And finally, Cookie headers are used to set cookies for maintaining
state; that is, keeping track of information that would normally be lost once the transaction between the server and
browser is closed.

Table C.5. HTTP headers.
Header Type Value

Content-type: text/plain Plain text

Content-type: text/html HTML tags and text

Content-type: image/gif GIF graphics

Location: http://www.... Redirection to another Web page

Set-cookie: NAME=VALUE... Cookie Set a cookie on a client browser

Right after the header line, there must be a blank line. This is accomplished by ending the line with \n\n in Perl.

Example C.6

1 #!/bin/perl
2 print "Content-type: text/html\n\n"; # The HTTP header
3 print "<HTML><HEAD><TITLE> CGI/Perl First Try</TITLE></HEAD>\n";
4 print "<BODY BGCOLOR=Black TEXT=White>\n";
5 print "<H1><CENTER> Howdy, World! </CENTER></H1>\n";
6 print "<H2><CENTER> It's ";
7 print "<!--comments -->"; # This is how HTML comments are
 included
8 print `date`; # Execute the UNIX date command
9 print "and all's well.\n";
10 print "</H2></BODY></HTML>\n";

EXPLANATION

1. This first line is critical. Many Web servers will not run a CGI script if this line is missing. This tells the server
where Perl is installed.

2. This line is called the MIME header. No matter what programming language you are using, the first output of
your CGI program must be a MIME header followed by two newlines. This line indicates what type of data your
application will be sending. In this case, the CGI script will be sending HTML text back to the server. The \n\n
cause a blank line to be printed. The blank line is also crucial to success of your CGI program.

3. The next lines sent from Perl back to the server are straight HTML tags and text. This line creates the header
information, in this case, a title for the document.

4. This defines the background color as black and the textual material as white.

5. <H1> is a level 1 heading. It is the largest of the headings and prints in bold text. Howdy, World! will be
formatted as a level 1 heading and centered on the page.

6. All text from this point until line 10 will be formatted as a level 2, centered heading.

7. This is how comments are inserted into an HTML document. They are not displayed by the browser.

8. The UNIX date command is executed and its output is included as part of the centered, second-level heading. A
better way to get the date so that your program is portable is to use localtime, a Perl built-in. Try changing line
9 to

$now = localtime;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$now = localtime;

print "$now\n";)

9. This line is printed as part of heading level 2.

10. These tags end the second level heading, the body of the document and the HTML document itself.

Figure C.4. Output from the CGI program in Example C.6.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.5 Log Files

Error Logs and STDERR

Normally, error messages are sent to the terminal screen (STDERR) when something goes wrong in a Perl script, but
when launched by a server as a CGI script, the errors are not sent to the screen, but to the server's error log file. In the
browser you may see "Empty Document" or "Internal Server Error," which tells you nothing about what went wrong in
the program.

Always check your syntax at the shell command line with the -c switch before handing the script to the server.
Otherwise, you will not see your error messages unless you check the log files. Check the syntax of your Perl
scripts with the -c switch.

Example C.7

(At the Command line)
1 perl -c perlscript
2 perlscript syntax OK

Example C.8

(Perl syntax errors shown in the Apache server's error log)

 [Mon Jul 20 10:44:04 1998] access to /opt/apache_1.2b8/
 cgi-bin/submit-form failed for susan, reason: Premature end
 of script headers
 [Mon Sep 14 11:11:32 1998] httpd: caught SIGTERM, shutting down
 [Fri Sep 25 16:13:11 1998] Server configured -- resuming normal
 operations
1 Bare word found where operator expected at welcome.pl line 21,
 near "/font></TABLE"
 (Missing operator before TABLE?)
2 syntax error at welcome.pl line 21, near "<TH><"
 syntax error at welcome.pl line 24, near "else"
 [Fri Sep 25 16:16:18 1998] access to /opt/apache_1.2b8/
 cgi-bin/visit_count.pl failed for susan, reason:
 Premature end of script headers

Access Logs and Status Codes

Check your server's access log to see what status codes were sent by your server after a transaction was complete.[3]

The following example consists of excerpts taken from the Apache server's access log. This log reports information
about a request handled by the server and the status code generated as a result of the request.

[3] For more detailed information on status codes, see www.w3.org/Protocols/HTTP/HTRESP.html

Table C.6. HTTP status codes.
Status Message Code

100 Continue

200 Success, OK

204 No Content

301 Document Moved

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

500 Internal Server Error

501 Not Implemented

503 Service Unavailable

Example C.9

(Status codes from the Apache server's access log)

1 susan - - [08/Oct./1999:10:45:36 -0700]
 "GET /cog-bin/visit_count.pl HTTP/1.0" 500 388
2 susan - - [08/Oct./1999:10:45:59 -0700]
 "GET /cgi-bin/visit_count.pl HTTP/1.0" 200 426

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.6 Where to Find CGI Applications
There are a number of Web sites that provide online resources to help you get started in writing your own CGI scripts. Most house prebuilt scripts that you can freely
download, examine, and modify. Browsing through some of following sites can also give you a good idea of how Web pages are designed.

Table C.7. Web sites for CGI beginners and developers (just a few of thousands!).
The Web Site

www.virtualville.com/library/cgi.html

www.virtualville.com/library/scripts.html

www.scriptarchive.com

www.extropia.com/opensource.html

www.perl.com/CPAN/

cgi-lib/berkeley.edu

dir.yahoo.com/Computers_and_Internet/Software/Internet/World_Wide_Web/Servers/Server_Side_Scripting/Common_Gateway_Interface__CGI_/

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.7 Getting Information Into and Out of the CGI Script
The server and the CGI script communicate in four major ways. Once the browser has sent a request to the server, the
server can then send it on to the CGI script. The CGI script gets its input from the server as:

1. Environment variables

2. Query strings

3. Standard input

4. Extra path information

After the CGI program gets the input from the server it parses and processes it, and then formats it so that the server
can relay the information back to the browser. The CGI script sends output through the gateway by

1. Generating new documents on the fly

2. Sending existing static files to the standard output

3. Using URLs that redirect the browser to go somewhere else for a document

C.7.1 CGI Environment Variables

The CGI program is passed a number of environment variables from the server. The environment variables are set
when the server executes the gateway program, and are set for all requests. The environment variables contain
information about the server, the CGI program, the ports and protocols, path information, etc. User input is normally
assigned to the QUERY_STRING environment variable. In the following example, this variable has no value because the
user never was asked for input; that is, the HTML document has no INPUT tags.

The environment variables are set for all requests and are sent by the server to the CGI program. In a Perl program,
the environment variables are assigned to the %ENV hash as key/value pairs. They are shown in Table C.8.

Table C.8. CGI environment variables.
Name Value Example

AUTH_TYPE Validates user if server supports user authentication

CONTENT_TYPE The MIME type of the query data text/html

CONTENT_LENGTH The number of bytes passed from the server to CGI
program

Content-Length=55

DOCUMENT ROOT The directory from which the server serves Web
documents

/opt/apache/htdocs/index.html

GATEWAY_INTERFACE The revision of the CGI used by the server CGI/1.1

HTTP_ACCEPT The MIME types accepted by the client image/gif, image/jpeg, etc

HTTP_CONNECTION The preferred HTTP connection type Keep-Alive

HTTP_HOST The name of the host machine susan

HTTP_USER_AGENT The browser (client) sending the request Mozilla/3.01(X11;I; Sun05.5.1
sun4m)

PATH_INFO Extra path information passed to a CGI program

PATH_TRANSLATED The PATH_INFO translated to its absolute path

QUERY_STRING The string obtained from a GET request from the URL
(information following the ? in the URL)

http://susan/cgi-bin/form1.cgi?
Name=Christian+Dobbins

REMOTE_HOST The remote hostname of the user making a request eqrc.ai.mit.edu

REMOTE_ADDR The IP address of the host making a request 192.100.1.11

REMOTE_PORT The port number of the host making a request 33015

REQUEST_METHOD The method used to get information to the CGI program GET, POST, etc

SCRIPT_FILENAME The absolute pathname of the CGI program /opt/apache/cgi-bin/hello.cgi

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SCRIPT_NAME The relative pathname of the CGI program; a partial URL /cgi-bin/hello.cgi

SERVER_ADMIN E-mail address of the system administrator root@susan

SERVER_NAME The server's hostname, DNS alias, or IP address susan, 127.0.0.0

SERVER_PROTOCOL The name and version of the protocol HTTP/1.0

SERVER_SOFTWARE Name and version of the server software Apache/1.2b8

An HTML File with a Link to a CGI Script

The following example is an HTML file that will allow the user to print out all the environment variables. When the
browser displays this document, the user can click on the hotlink here and the CGI script, env.cgi, will then be executed
by the server. In the HTML document the string here and the URL http://susan/cgi-bin/env.cgi are enclosed in the <A>
 anchor tags. If the hotlink is ignored by the user, the browser displays the rest of the document. The following
example is the HTML source file that will be interpreted by the browser. The browser's output is shown in Figure C.5.

Example C.10

(The HTML file with a hotlink to a CGI script)
1 <HTML>
2 <HEAD>
3 <TITLE>TESTING ENV VARIABLES</TITLE>
 </HEAD>
 <BODY>
 <P>
 <H1> Major Test </H1>
4 <P> If you would like to see the environment variables

 being passed on by the server, click .
5 here
 <P>Text continues here...
 </BODY>
 </HTML>

Figure C.5. Output of the HTML file in Example C.10. It contains a hotlink to the
CGI script.

EXPLANATION

1. The <HTML> tag says this document is using the HTML protocol.

2. The <HEAD> tag contains the title and any information that will be displayed outside the actual document.

3. The <TITLE> tag is displayed in the top bar of the browser window.

4. The <P> tag is the start of a paragraph. The
 tag causes the line to break.

5. The <A> tag is assigned the path to the CGI script, env.cgi, on server localhost. The word here will be
displayed by the browser in blue underlined letters. If the user clicks on this word, the CGI script will be
executed by the server. The script will print out all of the environment variables passed to the script from the
server. This is one of the ways information is given to a CGI script by a Web server. The actual CGI script is
shown below, in Example C.11.

Example C.11

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example C.11

(The CGI Script)
1 #!/bin/perl
2 print "Content type: text/plain\n\n";
3 print "CGI/1.1 test script report:\n\n";
4 # Print out all the environment variables

5 while(($key, $value)=each(%ENV)){
6 print "$key = $value\n";
 }

EXPLANATION

1. The #! line is important to your server if your server is running on a UNIX platform. It is the path to the Perl
interpreter. The line must be the correct pathname to your version of perl or you will receive the following error
message from your server:

Internal Server Error ...

2. The first line generated by the CGI script is a valid HTTP header, ending with a blank line. The header contains a
content type (also called a MIME type) followed by text/plain, meaning that the document will consist of plain
text. If the script were to include HTML tags, the content type would be text/html.

3. The version of the Common Gateway Interface used by this server is printed.

4. This is a Perl comment line.

5. The %ENV hash contains environment variables (keys and values) passed into the Perl script from the server.
The each function will return both the key and the value and store them in scalars, $key and $value,
respectively.

6. The $key/$value pairs are printed back to STDOUT, which has been connected to the server by a pipe
mechanism.

Figure C.6. The environment variables displayed by the CGI script in Example C.11.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.8 Processing Forms with CGI
Processing user input is one of the most common reasons for using a CGI script. This is normally done with forms. The
form offers you a number of methods, called virtual input devices, with which to accept input. These include radio
buttons, checkboxes, pop-up menus, and text boxes. All forms are in HTML documents and begin with a <FORM> tag
and end with a </FORM> tag. A method attribute may be assigned. The method attribute indicates how the form will be
processed. The GET method is the default and the POST method is the most commonly used alternative. The GET
method is preferable for operations that will not affect the state of the server; that is, simple document retrieval and
database lookups, etc., whereas the POST method is preferred for handing operations that may change the state of the
server, such as adding or deleting records from a database. These methods will be described in the next section. The
ACTION attribute is assigned the URL of the CGI script that will be executed when the data is submitted by pressing the
Submit button.

The browser gets input from the user by displaying fields that can be edited. The fields are created by the HTML
<INPUT TYPE=key/value> tag. These fields might take the form of checkboxes, text boxes, radio buttons, etc. The data
that is entered into the form is sent to the server in an encoded string format in a name/value pair scheme. The value
represents the actual input data. The CGI programmer must understand how this input is encoded in order to parse it
and use it effectively. First let's see how input gets into the browser by looking at a simple document and the HTML
code used to produce it. The user will be able to click on a button or enter data in the text box. The input in this
example won't be processed, thereby causing an error to be sent to the server's error log when the Submit button is
selected. Nothing will be displayed by the browser. The default for obtaining input is the GET method.

A summary of the steps in producing a form is

1. START: Start the form with the HTML <FORM> tag.

2. ACTION: The ACTION attribute of the <FORM> tag is the URL of the CGI script that will process the data input
from the form.

3. METHOD: Provide a method on how to process the data input. The default is the GET method.

4. CREATE: Create the form with buttons and boxes and whatever looks nice using HTML tags and fields.

5. SUBMIT: Create a Submit button so that the form can be processed. This will launch the CGI script listed in the
ACTION attribute.

6. END: End the form and the HTML document.

C.8.1 Input Types for Forms

Table C.9. Form input types.
Input
Type

Attributes Description

CHECKBOX NAME, VALUE Displays a square box that can be checked. Creates name/value pairs from user input.
Multiple boxes can be checked.

FILE NAME Specifies files to be uploaded to the server. MIME type must be multipart/form-data.

HIDDEN NAME, VALUE Provides name/value pair without displaying an object on the screen.

IMAGE SRC, VALUE,
ALIGN

Same as the Submit button, but displays an image instead of text. The image is in a file
found at SRC.

PASSWORD NAME, VALUE Like a text box but input is hidden. Asterisks appear in the box to replace characters
typed.

RADIO NAME, VALUE Like checkboxes, except only one box (or circle) can be checked at a time.

RESET NAME, VALUE Resets the form to its original position; clears all input fields.

SELECT NAME,
OPTION SIZE,
MULTIPLE

Provides pop-up menus and scrollable lists. Only one can be selected. Attribute
MULTIPLE creates a visibly scrollable list. A SIZE of 1 creates a pop-up menu with only
one visible box.

SUBMIT NAME, VALUE When pressed, executes the form; launches CGI.

TEXT NAME

SIZE,
MAXLENGTH

Creates a text box for user input.

SIZE specifies the size of the text box. MAXLENGTH specifies the maximum number of
characters allowed.

TEXTAREA NAME, SIZE Creates a text area that can take input spanning multiple lines. ROWS and COLUMNS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TEXTAREA NAME, SIZE

ROWS, COLS

Creates a text area that can take input spanning multiple lines. ROWS and COLUMNS
specify the size of the box.

C.8.2 Creating an HTML Form

A Simple Form with Text Fields, Radio Buttons, Checkboxes, and Pop-up Menus

First let's see how input gets into the browser by looking at a simple document and the HTML code used to produce it.
The user will be able to click on a button, or enter data in the text box. The input in this example won't be processed,
thus causing an error to be sent to the server's error log when the Submit button is selected. Nothing will be displayed
by the browser. The HTML file is normally stored under the server's root in a directory called htdocs. If the HTML file is
created on the local machine, then the file:/// protocol is used in the Location box with the full pathname of the HTML
file, which would normally end with an .html or .htm extension.

Figure C.7. A form as it is initially displayed.

Figure C.8. A form filled with user input.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure C.8. A form filled with user input.

Example C.12

(The HTML Form Source File)
1 <HTML><HEAD>
2 <TITLE>First CGI Form</TITLE></HEAD>
 <HR>
3 <FORM ACTION="/cgi-bin/bookstuff/form1.cgi" >
4 <P> Type your name here:
5 <INPUT TYPE="text" NAME="namestring" SIZE=50>
6 <P>
 Talk about yourself here:

7 <TEXTAREA NAME="comments" ROWS=5 COLS=50>I was born... </TEXTAREA>

8 <P> Choose your food:
9 <INPUT TYPE="radio" NAME="choice" VALUE="burger">Hamburger
 <INPUT TYPE="radio" NAME="choice" VALUE="fish">Fish
 <INPUT TYPE="radio" NAME="choice" VALUE="steak">Steak
 <INPUT TYPE="radio" NAME="choice" VALUE="yogurt">Yogurt
 <P> Choose a work place:

10 <INPUT TYPE="checkbox" NAME="place" VALUE="LA">Los Angeles

 <INPUT TYPE="checkbox" NAME="place" VALUE="SJ">San Jose

 <INPUT TYPE="checkbox" NAME="place" VALUE="SF" Checked>
 San Francisco
 <P>
11 Choose a vacation spot:
12 <SELECT NAME="location"> <OPTION SELECTED VALUE="hawaii"> Hawaii

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12 <SELECT NAME="location"> <OPTION SELECTED VALUE="hawaii"> Hawaii
 <OPTION VALUE="bali">Bali
 <OPTION VALUE="maine">Maine
 <OPTION VALUE="paris">Paris
 </SELECT> <P>
13 <INPUT TYPE="SUBMIT" VALUE="Submit">
14 <INPUT TYPE="RESET" VALUE="Clear">
 </FORM> </HTML>

EXPLANATION

1. This tag says that this is the start of an HTML document.

2. The <TITLE> tag; the title appears outside of the browser's main window.

3. The beginning of a <FORM> tag, which specifies where the browser will send the input data and the method
that will be used to process it. The default method is the GET method. When the data is submitted, the CGI
script will be executed by the server. The CGI script is located under the server's root directory in the cgi-bin
directory, the directory where CGI scripts are normally stored. In this example, the CGI script is stored in a
directory called bookstuff, below the cgi-bin directory.

4. The <P> tag starts a new paragraph. The tag says the text that follows will be in bold type. The user is
asked for input.

5. The input type is a text box that will hold up to 50 characters. When the user types text into the text box, that
text will be stored in the user-defined NAME value, namestring. For example, if the user types Stefan Lundstom,
the browser will assign namestring=Stefan Lundstrom to the query string. If assigned a VALUE attribute, the
text field can take a default; i.e., text that appears in the text box when it is initially displayed by the browser.

6. The user is asked for input.

7. The text area is similar to the text field, but will allow input that scans multiple lines. The <TEXTAREA> tag will
produce a rectangle (name comments) with dimensions in rows and columns (5 rows by 50 columns) and an
optional default value (I was born...).

8. The user is asked to pick from a series of menu items.

9. The first input type is a list of radio buttons. Only one button can be selected. The input type has two attributes:
a TYPE and a NAME. The value of the NAME attribute choice, for example, will be assigned burger if the user
clicks on the Hamburger option. choice=burger is passed onto the CGI program. And if the user selects Fish,
choice=fish will be assigned to the query string, and so on. These key/value pairs are used to build a query
string to pass onto the CGI program after the Submit button is pressed.

10. The input type this time is in the form of checkboxes. More than one checkbox may be selected. The optional
default box is already checked. When the user selects one of the checkboxes, the value of the NAME attribute
will be assigned one of the values from the VALUE attribute such as place=LA if Los Angeles is checked.

11. The user is asked for input.

12. The<SELECT> tag is used to produce a pop-up menu (also called a drop-down list) or a scrollable list. The
NAME option is required. It is used to define the name for the set of options. For a pop-up menu, the SIZE
attribute is not necessary; it defaults to 1. The pop-up menu initially displays one option and expands to a
menu when that option is clicked. Only one selection can be made from the menu. If a SIZE attribute is given,
that many items will be displayed. If the MULTIPLE attribute is given (e.g., SELECT MULTIPLE NAME=whatever),
the menu appears as a scrollable list, displaying all of the options.

13. If the user clicks the Submit button, the CGI script listed in the form's ACTION attribute will be launched. In this
example, the script wasn't programmed to do anything. An error message is sent to the server's error log and
to the browser.

14. If the Clear button is clicked, all of the input boxes are reset back to their defaults.

C.8.3 The GET Method

The simplest and most widely supported type of form is created with what is called the GET method. It is used every
time the browser requests a document. If a method is not supplied, the GET method is the default. It is the only
method used for retrieving static HTML files and images.

Since HTML is an object-oriented language, you may recall that a method is a name for an object-oriented
subroutine.The GET method passes data to the CGI program by appending the input to the program's URL, usually as a
URL-encoded string. The QUERY_STRING environment variable is assigned the value of the encoded string.

Servers often have size limitations on the length of the URL. For example, the UNIX size is limited to 1240 bytes. If a
lot of information is being passed to the server, the POST method should be used.

Figure C.9. The HTML form created in the following Example C.13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure C.9. The HTML form created in the following Example C.13.

Example C.13

HTML Source File with a Form Tag and ACTION Attribute

 <HTML><HEAD><TITLE>First CGI Form</TITLE></HEAD>
 <HR>
1 <FORM ACTION="/cgi-bin/form1.cgi" METHOD=GET>
 <! When user presses "submit", cgi script is called to process
 input >
2 Please enter your name:

3 <INPUT TYPE="text" SIZE=50 NAME="Name">
 <P>
 Please enter your phone number:

4 <INPUT TYPE="text" SIZE=30 NAME="Phone">
 <P>
5 <INPUT TYPE=SUBMIT VALUE="Send">
 <INPUT TYPE=RESET VALUE="Clear">
6 </FORM>
 </HTML>

EXPLANATION

1. The <FORM> tag specifies the URL and method that will be used to process a form. When a user submits the
form, the browser will send all the data it has obtained from the browser to the Web server. The ACTION
attribute tells the server to call a CGI script at the location designated in the URL and send the data on to that
program to be processed. The METHOD attribute tells the browser how the input data is to be sent to the
server. The GET method is the default, so it does not need to be assigned here. The CGI program can do
whatever it wants to with the data and, when finished, will send it back to the server. The server will then relay
the information back to the browser for display.

2. The user is asked for input.

3. The input type is a text box that will hold up to 50 characters. The NAME attribute is assigned the string Name.
This will be the key part of the key/value pair. The user will type something in the text box. The value entered
by the user will be assigned to the NAME key. This NAME=VALUE pair will be sent to the CGI script in that
format; for example, Name=Christian.

4. The NAME attribute for the input type is Phone. Whatever the user types in the text box will be sent to the CGI
program as Phone=VALUE; for example, Phone=510-456-1234

5. The SUBMIT attribute for the input type causes a Submit button to appear with the string Send written on the
button. If this box is selected, the CGI program will be executed. The input is sent to the CGI program. The
RESET attribute allows the user to clear all the input devices by clicking on the Clear button.

6. The </FORM> tag ends the form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure C.10. Filling out the form from Example C.13.

Example C.14

(The CGI Script)
1 #!/bin/perl
 # The CGI script that will process the form information sent
 # from the server
2 print "Content-type: text/html\n\n";

 print "First CGI form :\n\n";
 # Print out only the QUERY_STRING environment variable

3 while(($key, $value)=each(%ENV)){
4 print "<H3>$key = <I>$value</I></H3>
"
 if $key eq "QUERY_STRING";
 }

EXPLANATION

1. The #! line tells the server where to find the Perl interpreter.

2. Perl's output goes to the browser rather than the screen. The content type (also called the MIME type) is
text/html text since there are HTML tags in the text.

3. Perl's input comes from the server. The while loop is used to loop through all of the environment variables in
the %ENV hash. These variables were passed into the Perl script from the Web server.

4. This line will be printed only when the value of the QUERY_STRING environment variable is found. It wasn't
really necessary to loop through the entire list. It would have been sufficient to just type print
"$ENV{QUERY_STRING}
";.

C.8.4 Processing the Form

The Encoded Query String

When using the GET method, information is sent to the CGI program in the environment variable, QUERY_STRING.[4]

The string is URL-encoded. In fact, all data contained in an HTML form is sent from the browser to the server in an
encoded format. When the GET method is used, this encoded data can be seen on the URL line in your browser
preceded by a question mark. The string following the ? will be sent to the CGI program in the QUERY_STRING
environment variable. Each key/value pair is separated by an ampersand (&) and spaces are replaced with plus signs
(+). Any non-alphanumeric values are replaced with their hexadecimal equivalent, preceded by a percent sign (%).
After pressing the Submit button in the previous example, you would see the input strings in your browser's Location
box (Netscape), appended to the URL line and preceded by a question mark. The highlighted part in the following
example is the part that will be assigned to the environment variable, QUERY_STRING. The QUERY_STRING
environment variable will be passed to your Perl script in the %ENV hash. To access the key/value pair in your Perl
script, add a print statement: print $ENV{QUERY_STRING};

[4] When using the POST method, input is assigned to a variable from STDIN and encoded the same way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[4] When using the POST method, input is assigned to a variable from STDIN and encoded the same way.

Example C.15

1 What you see in the Location box of the browser:

http://servername/cgi-bin/
 form1.cgi?Name=Christian+Dobbins&Phone=543-123-4567

2 What the server sends to the browser in the ENV hash value,
 QUERY_STRING:

QUERY_STRING=Name=Christian+Dobbins&Phone=543-123-4567

Figure C.11. Output of the CGI script from Example C.13.

Decoding the Query String with Perl

Decoding the query string is not a difficult task because Perl has such a large number of string manipulation functions,
such as tr, s, split, substr, pack, etc. Once you get the query string from the server into your Perl program, you can
parse it and do whatever you want with the data. For removing &, +, and = signs from a query string, use the
substitution command, s, the split function, or the translate function, tr. To deal with the hexadecimal-to-character
conversion of those characters preceded by a % sign, the pack function is normally used.

Table C.10. Encoding symbols in a query string.
Symbol Function

& Separates key/value pairs.

+ Replaces spaces.

%xy Represents any ASCII character with a value of less than 21 hexadecimal (33 decimal), or greater than 7f
(127 decimal) and special characters ?, &, %, +, and = . These characters must be escaped with a %,
followed by the hexadecimal equivalence (xy) of that character, e.g., %2F represents a forward slash, and
%2c represents a comma.

Table C.11. URL hex-encoded characters.
Character Value

Tab %09

Space %20

! %21

" %22

%23

$ %24

% %25

& %26

(%28

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

) %29

, %2C

. %2E

/ %2F

: %3A

; %3B

< %3C

= %3D

> %3E

? %3F

@ %40

[%5B

\ %5C

] %5D

^ %5E

' %60

{ %7B

| %7C

} %7D

~ %7E

Parsing the Form's Input with Perl

After the Perl CGI script gets the input from the form, it will be decoded. This is done by splitting up the key/value pairs
and replacing special characters with regular text. Once parsed, the information can be used to create a guest book, a
database, send e-mail to the user, and so on.

The routines for parsing the encoded string can be stored in subroutines and saved in your personal library, or you can
take advantage of the CGI.pm library module, part of Perl's standard distribution, which eliminates all the bother.

Decoding the Query String

Steps to decode are handled with Perl functions. The following shows a URL-encoded string assigned to
$ENV{QUERY_STRING}.

Name=Christian+Dobbins&Phone=510-456-1234&Sign=Virgo

The key/pair values show that the URL has three pieces of information separated by the ampersand (&): Name, Phone,
and Sign:

Name=Christian+Dobbins&Phone=510-456-1234&Sign=Virgo

The first thing to do would be to split up the line and create an array (see step 1 below). After splitting up the string by
ampersands, remove the + with the tr or s functions and split the remaining string into key/value pairs with the split
function using the = as the split delimiter (see step 2 below).

1. @key_value = split(/&/, $ENV{QUERY_STRING});
 print "@key_value\n";

2. Output:
 Name=Christian+Dobbins Phone=510-456-1234 Sign=Virgo

The @key_value array created by splitting the query string:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The @key_value array created by splitting the query string:

Name=Christian+Dobbins Phone=510-456-1234 Sign=Virgo

3. foreach $pair (@key_value){
 $pair =~ tr/+/ /;
 ($key, $value) = split(/=/, $pair);
 print "\t$key: $value\n";
 }

4. Output:
 Name: Christian Dobbins
 Phone: 510-456-1234
 Sign: Virgo

Example C.16

(Another URL-Encoded String assigned to $ENV{QUERY_STRING})

1 $input="string=Joe+Smith%3A%2450%2c000%3A02%2F03%2F77";
2 $input=~s/%(..)/pack("c", hex($1))/ge;
3 print $input,"\n";

 Output:
 string=Joe+Smith:$50,000:02/03/77

EXPLANATION

1. This string contains ASCII characters that are less than 33 decimal and greater than 127, the colon, the dollar
sign, the comma, and the forward slash.

2. The pack function is used to convert hexadecimal-coded characters back into character format.

3. The search side of the substitution, /%(..)/, is a regular expression that contains a literal percent sign followed
by any two characters (each dot represents one character) enclosed in parentheses. The parentheses are used
so that Perl can store the two characters it finds in the special scalar, $1.

On the replacement side of the substitution, the pack function will first use the hex function to convert the two
hexadecimal characters stored in $1 to their corresponding decimal values and then pack the resulting decimal
values into an unsigned character. The result of this execution is assigned to the scalar, $input.

Now you will have to remove the + sign.

C.8.5 Putting It All Together

The GET Method

Now it is time to put together a form that will be processed by a Perl CGI program using the GET method. The CGI
program will decode the query string and display the final results on the HTML page that is returned after the form was
filled out and the Submit button pressed.

The following examples demonstrate

1. The HTML fillout form

2. The HTML source file that produced the form

3. The form after it has been processed by the CGI script

4. The Perl CGI script that processed the form

Example C.17

(The HTML source file)

 <HTML><HEAD><TITLE>CGI Form</TITLE></HEAD><BODY>
 <HR>
1 <FORM ACTION="http://127.0.0.1/cgi-bin/getmethod.cgi" METHOD=GET>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 <FORM ACTION="http://127.0.0.1/cgi-bin/getmethod.cgi" METHOD=GET>
 <!When user presses "submit", cgi script is called to process input >
2 Please enter your name:

3 <INPUT TYPE="text" SIZE=50 NAME=Name>
 <P>
 Plese enter your salary ($####.##):

 <INPUT TYPE="text" SIZE=30 NAME=Salary>
 <P>
 Plese enter your birth date (mm/dd/yy):

 <INPUT TYPE="text" SIZE=30 NAME=Birthdate>
 <P>
4 <INPUT TYPE=SUBMIT VALUE="Submit Query">
 <INPUT TYPE=RESET VALUE="Reset">
5 </FORM>
 </BODY></HTML>

EXPLANATION

1. The form is started with the <FORM> tag. When the user presses the Submit button on the form, the ACTION
attribute is triggers the HTTP server on this machine (local host is IP address 127.0.0.1) to start up the script
called getmethod.cgi found under the server's root in the cgi-bin directory.

2. The user is asked for information.

3. The user will fill in the text boxes with his name, salary, etc.

4. When the user presses the Submit button, the CGI script assigned to the ACTION attribute will be activated.

5. This is the end of the form tag.

Figure C.12. The HTML form from Example C.17.

Example C.18

 #!/usr/bin/perl
 # The CGI script that processes the form shown in Figure C.12.
1 print "Content-type: text/html\n\n";
 print "<H2><U>Decoding the query string</U></H2>";

 # Getting the input
2 $inputstring=$ENV{QUERY_STRING};
 print "Before decoding:
";
 print "<H3>$inputstring</H3>";

 # Translate + signs to space
3 $inputstring =~ tr/+/ /;

 # Decoding the hexadecimal characters
4 $inputstring=~s/%(..)/pack("C", hex($1))/ge;

 # After decoding %xy
 print "-" x 80, "
";
 print "After decoding <I>%xy</I>:";
5 print "<H3>$inputstring</H3>";
 # Extracting & and creating key/value pairs
6 @key_value=split(/&/, $inputstring);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6 @key_value=split(/&/, $inputstring);
7 foreach $pair (@key_value){
 ($key, $value) = split(/=/, $pair);
8 %input{$key} = $value; # Creating a hash
 }
 # After decoding
 print "-" x 80, "
";
 print "After decoding + and &:";
9 while(($key, $value)=each(%input)){
10 print "<H3>$key: <I>$value</I></H3>";
 }
 print "Now what do we want to do with this information?"

EXPLANATION

1. This MIME header line describes the format of the data returned from this program to be HTML text. The two
newlines (required!) end the header information.

2. The %ENV hash contains the key/value pairs sent to this Perl program by the Web server. The value of the
QUERY_STRING environment variable is assigned to a scalar, $inputstring.

3. The tr function translates all + signs to spaces.

4. The pack function converts any hexadecimal numbers to their corresponding ASCII characters.

5. The value of the scalar $inputstring is sent from the Perl script to the server and then on to the browser.

6. The scalar $inputstring is now split by ampersands. The output returned is stored in the three-element
array,@key_value, as:

Name=Louise Cederstrom&Salary=$200,000&Birthdate=7/16/51

7. The foreach loop is used to iterate through the @key_value array. The resulting key/value pairs are created by
splitting each array element by the = sign.

8. A new hash called %input is created with corresponding key/value pairs.

9. The while loop is used to iterate through the hash.

10. The new key/value pair is printed and sent back to the Web server. The browser displays the output. Now that
the Perl script has parsed and stored the input that came from the form, it is up to the programmer to decide
what to do with this data. He may send back an e-mail to the user, store the information in a database, create
an address book, etc. The real work is done!

Figure C.13. Output after CGI/Perl processing, Example C.18.

The POST Method

The only real difference between the GET and POST methods is the way that input is passed from the server to the CGI
program. When the GET method is used, the server sends input to the CGI program in the QUERY_STRING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

program. When the GET method is used, the server sends input to the CGI program in the QUERY_STRING
environment variable.

When the POST method is used, the CGI program gets input from standard input, STDIN. Either way, the input is
encoded in exactly the same way. One reason for using the POST method is that some browsers restrict the amount of
data that can be stored in the QUERY_STRING environment variable. The POST method doesn't store its data in the
query string. Also, the GET method displays the input data in the URL line in the Location box of the browser, whereas
the POST method hides the data. Since the POST method does not append input to the URL, it is often used in
processing forms where there is a lot of data being filled into forms.

In an HTML document, the <FORM> tag starts the form. The ACTION attribute tells the browser where to send the
data that is collected from the user, and the METHOD attribute tells the browser how to send it. If the POST is method
used, the output from the browser is sent to the server and then to the CGI program's standard input, STDIN. The
amount of data, that is, the number of bytes taken as input from the user, is stored in the CONTENT_LENGTH
environment variable.

Rather than assigning the input to the QUERY_STRING environment variable, the browser sends the input to the server
in a message body, similar to the way e-mail messages are sent. The server then encapsulates all the data and sends it
on to the CGI program.

The CGI program reads input data from the STDIN stream via a pipe.

The Perl read function reads the CONTENT_LENGTH amount of bytes, saves the input data in a scalar, and then
processes it the same way it processes input coming from the query string. It's not that the format for the input has
changed; it's just how it got into the program. Note that after the POST method has been used, the browser's Location
box does not contain the input in the URL as it did with the GET method.

Example C.19

 (The HTML source file)
 <HTML>
 <HEAD>
 <TITLE>CGI Form</TITLE>
 <HR>
1 <FORM ACTION="http://127.0.0.1/cgi-bin/postmethod.cgi" METHOD=POST>
 <!When user presses "submit", cgi script is called to process input >
2 Please enter your name:

3 <INPUT TYPE="text" SIZE=50 NAME=Name>
 <P>
 Please enter your salary ($####.##):

 <INPUT TYPE="text" SIZE=30 NAME=Salary>
 <P>
 Please enter your birth date (mm/dd/yy):

 <INPUT TYPE="text" SIZE=30 NAME=Birthdate>
 <P>
4 <INPUT TYPE=SUBMIT VALUE="Submit Query">
 <INPUT TYPE=RESET VALUE="Reset">
5 </FORM>
 </HTML>

EXPLANATION

1. The <FORM> tag starts the form. The ACTION attribute is assigned the URL of the CGI script, postmethod.cgi,
that will be executed whent the Submit button is pressed by the user, and the METHOD attribute is assigned
POST to indicate how the data coming from the form will be handled.

2. The user is asked for input.

3. Text Fields are created to hold the user's name, salary, and birth date.

4. The Submit button is created.

5. The form is ended.

Example C.20

(The CGI Script)
 #!/bin/perl
 # Scriptname: postmethod.cgi
1 print "Content-type: text/html\n\n";
 print "<H2><U>Decoding the query string</U></H2>";

 # Getting the input
2 if ($ENV{REQUEST_METHOD} eq 'GET'){
3 $inputstring=$ENV{QUERY_STRING};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3 $inputstring=$ENV{QUERY_STRING};
 }
 else{
4 read(STDIN, $inputstring, $ENV{'CONTENT_LENGTH'});
 }
5 print "Before decoding:
";
 print "<H3>$inputstring</H3>";

 # Replace + signs with spaces
6 $inputstring =~ tr/+/ /;

 # Decoding the hexadecimal characters
7 $inputstring=~s/%(..)/pack("C", hex($1))/ge;
 # After decoding %xy
 print "-" x 80, "
";
8 print "After decoding <I>%xy</I>:";
 print "<H3>$inputstring</H3>";

 # Extracting the & and = to create key/value pairs

9 @key_value=split(/&/, $inputstring);
10 foreach $pair (@key_value){
11 ($key, $value) = split(/=/, $pair);
12 %input{$key} = $value; # Creating a hash to save the data
 }
 # After decoding
 print "-" x 80, "
";
 print "After decoding + and &:";
13 while(($key, $value)=each(%input)){
 # Printing the contents of the hash
 print "<H3>$key: <I>$value</I></H3>";
 }
 print "Now what do we want to do with this information?";

EXPLANATION

1. The content being sent to the browser is text interspersed with HTML tags.

2. One of the environment variables sent by the server to the script is $ENV{REQUEST_METHOD}, which will have
a value of either GET or POST.

3. If the value of the $ENV{REQUEST_METHOD} variable is GET, the scalar, $inputstring will be assigned the value
of the query string, $ENV{QUERY_STRING}.

4. If the value of the $ENV{REQUEST_METHOD} variable is POST, the scalar, $inputstring will be assigned the
input coming from the standard input stream via the read function. The amount of data read is found in the
environment variable, $ENV{CONTENT-LENGTH}.

5. The value of $inputstring is printed with the URL encoding still in place; for example, a space is represented by
a + sign, the key/value pairs are separated with an &, and the % sign is followed by the hexadecimal value of
the character it represents.

6. All + signs are translated to single spaces.

7. This line replaces the hexadecimal characters with their corresponding ASCII values.

8. After decoding the % hex values, the value of $inputstring is printed.

9. The split function uses the & as a field separator.

10. The foreach loop iterates through array, assigning each element, in turn, to $pair.

11. Key/value pairs are created by splitting the string at = signs.

12. A hash, %input, is being created on the fly. It will consist of key/value pairs created by splitting up the input
string.

13. The each function extracts the key/value pairs from the %input hash. Each time through the loop the next
key/value pair is extracted and displayed in the browser.

Figure C.14. The HTML input form from Example C.19.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure C.14. The HTML input form from Example C.19.

Figure C.15. The output from the CGI script in Example C.20.

C.8.6 Handling E-Mail

The SMTP Server

When processing a form, it is often necessary to send e-mail before exiting. You may be sending e-mail to the user
and/or to yourself with the submitted form data. E-mail cannot be sent over the Internet without a valid SMTP (Simple
Mail Transfer Protocol) server. [5]

[5] The format for Internet mail messages is defined by RFC822.

The SMTP server is an instance of a mail daemon program that listens for incoming mail on Port 25. SMTP is a TCP-
based client/server protocol where the client sends messages to the server. UNIX systems commonly use a mail
program called sendmail to act as the SMTP server listening for incoming mail. Normally you would run sendmail at the
command line with the recipient's name as an argument. To end the e-mail message, a period is placed on a line by
itself. In a CGI script, the mail will not be sent interactively, so you will probably want to use the sendmail options to
control these features. See Table C.12.

Table C.12. sendmail options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table C.12. sendmail options.
Option What It Does

-o A sendmail option follows

-t Reads headers To, From, Cc, and Bcc information from message body

-f "email address" Message is from this e-mail address

-F "name" Message is from name

-i Periods will be ignored if on a line by themselves

-odq Queues up multiple e-mail messages to be delivered asynchronously

For Windows, two programs similar to sendmail are Blat, a public domain Win32 console utility that sends e-mail using
the SMTP protocol (see www.interlog.com/~tcharron/blat.html), and wSendmail, a small utility that can send e-mail
from programs, the command line, or directly from an HTML form (see www.kode.net/wsendmail.html or
www.softseek.com/Internet/E_Mail/E_Mail_Tools). Go to CPAN and find the MailFolder package, which contains modules
such as Mail::Folder, Mail::Internet, and Net::SMTP, to further simplify the sending and receiving e-mail. For a
complete discussion on sendmail, see www.networkcomputing.com/unixworld/tutorial008.

Example C.21

(From the HTML form where the e-mail information is collected)

<FORM METHOD="post" ACTION="http://127.0.0.1/cgi-bin/submit-form">
<INPUT TYPE="hidden" NAME="xemailx"
 VALUE="elizabeth@ellieq.com">
<INPUT TYPE="hidden" NAME="xsubjext"
 VALUE="Course Registration">
<INPUT TYPE="hidden" NAME="xgoodbyex"
 VALUE="Thank you for registering.">
<P>

<TABLE CELLSPACING=0 CELLPADDING=0>
<TR>
 <TD ALIGN=right>First Name:</TD>
 <TD ALIGN=left><INPUT TYPE=text NAME="first_name*" VALUE="">
 </TD>
</TR>
<TR> <TD ALIGN=right>Last Name:</TD>
 <TD ALIGN=left><INPUT TYPE=text NAME="last_name*"
 VALUE=""></TD>
</TR>
<TR>
 <TD ALIGN=right>Company:</TD>
 <TD ALIGN=left><INPUT TYPE=text SIZE=30 NAME="company*"
 VALUE=""></TD>
</TR>
<TR>
 <TD ALIGN=right>Address1:</TD>
 <TD ALIGN=left><INPUT TYPE=text SIZE=30
 NAME="address1*" VALUE=""></TD>
</TR>
<TR>
 <TD ALIGN=right>Address2:</TD>
 <TD ALIGN=left><INPUT TYPE=text SIZE=30 NAME="address2"
 VALUE=""></TD>
</TR>
<TR>
 <TD ALIGN=right>City/Town:</TD>
 <TD ALIGN=left><INPUT TYPE=text SIZE=30 NAME="city*"
 VALUE=""></TD>
</TR>
<TR>
 <TD ALIGN=right>State/Province:</TD>
 <TD ALIGN=left><INPUT TYPE=text SIZE=10 NAME="state"
 VALUE=""> Abbreviation or code</TD></TR>
<TR>
 <TD ALIGN=right>Postal/Zip Code:</TD>
 <TD ALIGN=left><INPUT TYPE=text SIZE=10 NAME="zip"
 VALUE=""></TD>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 VALUE=""></TD>
 </TR>

--

<continues here>

Figure C.16. Portion of the HTML registration form from Example C.21.

Example C.22

(From a CGI script)
An HTML Form was first created and processed to get the name of the
user who will receive the e-mail, the person it's from, and the
subject line.
1 $mailprogram="/usr/lib/sendmail"; # Your mail program goes here
2 $sendto="$input{xemailx}"; # Mailing address goes here
3 $from="$input{xmailx}";
4 $subject="$input{xsubjext}";

5 open(MAIL, "|$mailprogram -t -oi") || die "Can't open mail
 program: $!\n";
 # -t option takes the headers from the lines following the mail
 # command -oi options prevent a period at the beginning of a
 # line from meaning end of input
6 print MAIL "To: $sendto\n";
 print MAIL "From: $from\n";
 print MAIL "Subject: $subject\n\n";

7 print MAIL <<EOF; # Start a "here document"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7 print MAIL <<EOF; # Start a "here document"

 Registration Information for $input{$first_name}
 $input{$last_name}:
 Date of Registration: $today

 First Name: $input{$first_name}
 Last Name: $input{$last_name}
 Street Address: $input{$address}
 City: $input{$city}
 State/Province: $input{$state}

 <Rest of message goes here>

8 EOF
9 close MAIL; # Close the filter

EXPLANATION

1. The name of the mail program being used here is sendmail, located in the UNIX subdirectory, /usr/lib.

2. This line will be assigned to the To: header in the e-mail document.

3. This line will be assigned to the From: header in the e-mail document.

4. And this line is the Subject: header in the e-mail document.

5. Perl is going to open a filter called MAIL that will pipe the user's e-mail message to the sendmail program. The -
t option tells sendmail to scan the e-mail document for the To:, From:, and Subject: lines (instead of from the
command line) and the -i option tells the mail program to ignore any period that may be found on a line by
itself.

6. These are the header lines indicating to whom the mail is going, where it's going, and the subject of the mail.
These values were pulled from the form.

7. A here document is started. The text between EOF and EOF is sent to the sendmail program via the MAIL filter.

8. EOF marks the end of the here document.

9. The MAIL filter is closed.

The Mail::Mailer Perl Module

Mail::Mailer provides a simple interface for sending Internet mail with sendmail and mail or mailx.

Example C.23

[View full width]

(From a CGI script)
1 use Mail::Mailer;
2 my $mailobj = new Mail::Mailer("smtp", Server=>"www.ellieq.com");
3 $mailer -> open({
 To => $emailaddress,
 From => $sender,
 Subject => "Testing email..."
 });
 # The mail message is created in a here document
4 print $mailobj << EOF;
 This is a test to see if the Mail::Mailer module is working for us. Thankyou for

 participating in this little experiment!
 EOF

5 close $mailobj;

EXPLANATION

1. After downloading Mail::Mailer from CPAN, it is to be used in the CGI script.

2. The constructor new is called with the name of the SMTP server passed as the first argument. Mail will use the
Net::SMTP Perl module to send the mail. The server will relay the message on to the e-mail address listed in
the To: header. A pointer to the mail object is returned.

3. The Mail::Mailer's open method is called with an anonymous hash as an argument, consisting of three
attributes: the To: field with the recipent's address, the From: field with the sender's address, and the Subject:
field. The open method creates a Perl output filter. Output from the script will go as input to mail program.

4. A here document is created to send the e-mail message.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. A here document is created to send the e-mail message.

5. The object is closed; that is, the mail filter is closed.

E-mail and the mailto: Protocol

HTML anchors can be used to create links to files and to e-mail adresses. When a user selects the e-mail hyperlink,
their e-mail program starts an e-mail message to the address specified in the HREF attribute. The mailto: protocol is
followed by the valid e-mail address.

Example C.24

[View full width]

(Portion of the HTML form showing the e-mail hyperlink)
</MENU>
<P>
Students unable to send appropriate payment information will be dropped from the class

 unceremoniously.
<P>
<I>
If you would like to speak to one of our staff, please dial +1(530)899-1824.

If you have a question , click here.

<I>Provide as much detail in your request as possible, so that we may reply

 quickly and as informative as possible.</I>
</TD>
</TR>

If you would like to speak with someone, please dial +1(530) 899-1824
<HR>

Figure C.17. The HTML form and hyperlink to an e-mail address, from Example
C.24.

Figure C.18. E-mail window that appears after clicking on the hyperlink, from
Example C.24.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example C.24.

C.8.7 Extra Path Information

Information can also be provided to the CGI script by appending some extra path information to the URL of the HTML
document. The path information starts with a forward slash (/) so that the server can identify where the CGI script ends
and the new information begins. The information can then be processed in the CGI script by parsing the value of the
PATH_INFO environment variable where this extra information is stored.

If the information appended is a path to another file, the PATH_TRANSLATED environment variable is also set, mapping
the PATH_INFO value to the document root directory. The document root directory is found in the DOCUMENT_ROOT
environment variable. The pathname is treated as relative to the root directory of the server.

Example C.25

(The HTML Document)

1 <HTML>
2 <HEAD>
 <Title>Testing Env Variables</title>
 </HEAD>
 <BODY>
 <P>
 <H1> Major Test </h1>
 <P> If You Would Like To See The Environment Variables

 Being Passed On By The Server, Click .

3 <A Href="Http://susan/cgi-bin/pathinfo.cgi/color=red/
 size=small">here
 <P>
 Text Continues Here...
 </BODY>
 </HTML>

Example C.26

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example C.26

(The CGI Script)

 #!/bin/perl

1 print "Content type: text/html\n\n";

 print "CGI/1.0 test script report:\n\n";

 print "The argument count is ", $#ARGV + 1, ".\n";
 print "The arguments are @ARGV.\n";
 # Print out all the environment variables

2 while(($key, $value)=each(%ENV)){
3 print "$key = $value\n";
 }

 print "=" x 30, "\n";
4 print "$ENV{PATH_INFO}\n";
5 $line=$ENV{PATH_INFO};
6 $line=~tr/\// /;
7 @info = split(" ", $line);
8 print "$info[0]\n";
9 eval "\$$info[0]\n";
10 print $color;

EXPLANATION

1. The content type is text/html.

2. The loop iterates through each of the ENV variables, assigning the key to $key and the corresponding value to
$value.

3. Each key and value is printed.

4. The value for the $ENV{PATH_INFO} environment variable is printed.

5. The value of $ENV{PATH_INFO} variable is assigned to the scalar $line.

6. All forward slashes are replaced with spaces. /color=red/size=small will become color=red size=small and
assigned to $line.

7. The split function splits the scalar $line into an array, using spaces as the separator.

8. The first element of the array, color=red, is printed.

9. The eval function evaluates the expression and assigns red to $color.

10. When the scalar $color is printed, the value is red.

Figure C.19. CGI output with extra path information, from Example C.26.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.8.8 Server Side Includes

It is not always necessary to produce a full-blown CGI script just to get a small amount of data on the fly from a static
HTML document. If you just wanted to know the name of a remote server, the current file, or the date and time, etc., it
would seem silly to have to write a CGI script. Now most servers support a shortcut feature that allows the HTML
document to output these small amounts of information without requiring an HTTP header. The feature is called SSI,
short for Server Side Includes, which are really just HTML directives that are inserted into the HTML document; this
type of file normally ends with .shtml.

FORMAT

<!--command option=value -->

Example C.27

<!--#exec cgi="/cgi-bin/joker/motto"-->

EXPLANATION

Executes the CGI program enclosed in quotes as though it was called from an anchor link.

Table C.13. Some common SSI commands.
Command Example Meaning

config <!-- #config
sizefmt="bytes" -->

Sets the format for display size of the file in bytes

echo <!-- #echo
var="DATE_GMT" -->

Prints the date in Greenwich Mean Time (same as UTC); other values are
shown in Example C.28

exec <!-- #exec cmd="finger" --
>

Executes shell command finger

flastmod <!-- $flastmod
file="test.html" -->

Inserts a file in the current directory or in a subdirectory

fsize <!-- #fsize file="test.html"
-->

Prints the size of the file

include <!-- #include
file="myfile.html" -->

Inserts a file in the current directory or in a subdirectory

The following example is the HTML source test file from an OmniHTTPd Web server.

Example C.28

 <HTML>
 <HEAD>
 <Meta Http-equiv="Pragma" Content="No-cache">
 <Title>CGI And SSI Test</title>
 </head>
 <Body Bgcolor="#ffffff">
 <H1>CGI And SSI Test</h1>

 <Hr>
 <H2>standard CGI Test</h2>
 You Are Visitor # <P>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 You Are Visitor # <P>
 <Hr>

1 <H2>Server Side Includes</h2>
 If Server Side Includes Are Enabled, You Will See Data Values Below:
 <P>
2 The Date Is: <!--#echo Var="Date_local"-->

3 The Current Version Of The Server Is:
 <!--#echo Var="Server_software"-->

4 The CGI Gateway Version Is:
 <!--#echo Var="Gateway_interface"-->

5 The Server Name Is: <!--#echo Var="Server_name"-->

6 This File Is Called: <!--#echo Var="Document_name"-->

7 This File's Uri Is: <!--#echo Var= "Document_uri"-->

8 The Query String Is:
 <!--# Echo Var="Query_string_unescaped"-->

9 This File Was Last Modified:
 <!--#echo Var="Last_modified"-->

10 The Size Of The Unprocessed File Is
 !--#fsize Virtual="/test.shtml"-->

11 You Are Using <!--#echo Var="Http_user_agent"-->

12 You Came From <!--#echo Var="Http_referer"--><P>

 <Input Type="Submit" Value="Go!">
 </FORM>
 <HR>
 </BODY>
 </HTML>

EXPLANATION

1. Server side includes is enclosed in heading tags to print. If server side includes are enabled, you will see data
values below:

2. The date is: Jul 22 1999

3. The current version of the server is: OmniHTTPd/2.0a2(Win32;i386)

4. The CGI gateway version is: CGI/1.1

5. The server name is: ellie.Learn1.com

6. This file is called: C:\HTTPD\HTDOCS\test.shtml

7. This file's URI is: /test/shtml

8. The query string is:

9. This file was last modified: Jun24 1997

10. The size of the unprocessed file is 1989

11. You are using Mozilla/2.01KIT (Win95; U)

12. You came from http://127.0.0.1/default.htm

An Object-Oriented Perl/CGI Program

If you would like to study a complete CGI program, written by a professional Web developer, go to Appendix B.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.9 The CGI.pm Module

C.9.1 Introduction

The most popular Perl 5 library for writing dynamic CGI programs such as guestbooks, page counters, feedback forms,
etc., is the CGI.pm module written by Lincoln Stein; it is included in the standard Perl library starting with version
5.004. The most recent version of CGI.pm can be found at www.perl.com/CPAN. CGI.pm not only takes advantage of
the object-oriented features that were introduced in Perl 5, it also provides methods (GET and POST) to interpret query
strings, handle forms, and hide the details of HTML syntax.

Lincoln Stein has also written Official Guide to Programming with CGI.pm[6] (www.wiley.com/compbooks/stein), an
excellent, easy-to-read guide from which much of the following information was gleaned.

[6] Stein, L., Official Guide to Programming with CGI.pm, The Standard for Building Web Scripts, Wiley Computer
Publishing, 1998.

C.9.2 Advantages

1. CGI.pm allows you to keep a fillout form (HTML) and the script that parses it, all in one file under the cgi-bin
directory. In this way your HTML file (that holds the form) and your CGI script (that reads, parses, and handles
the form data) are not so far apart.[7]

[7] Ibid.

2. After the user has filled out a form, the results appear on the same page; in other words, the user doesn't have
to backpage to see what was on the form and the fillout form does not lose data, it maintains its state. Data
that doesn't disappear is called "sticky." To override stickiness, see "The override Argument" on page 690.

3. All the reading and parsing of form data is handled by the module.

4. Methods are used to replace HTML tags for creating text boxes, radio buttons, menus, etc. to create the form,
as well as for assigning standard tags such as headers, titles, paragraph breaks, horizontal rule lines, breaks,
etc.

5. To see what HTML tags are produced by the CGI.pm module, from the View menu, select Source (in Internet
Explorer) after the form has been displayed.

6. Accepting uploaded files and managing cookies is easier with the CGI.pm module.

C.9.3 Two Styles of Programming with CGI.pm

The Object-Oriented Style

Using the object-oriented style, you create one or more CGI objects and then use object methods to create the various
elements of the page. Each CGI object starts out with the list of named parameters that were passed to your CGI script
by the server. You can modify the objects and send them to a file or database. Each object is independent; it has its
own parameter list. If a form has been filled out, its contents can be saved from one run of the script to the next; that
is, it maintains its state. (Normally the HTML documents are stateless, in other words, everything is lost when the
page exits.)

Example C.29

1 use CGI;
2 $obj=new CGI; # Create the CGI object
3 print $obj->header, # Use functions to create the HTML page
4 $obj->start_html("Object oriented syntax"),
5 $obj->h1("This is a test..."),
 $obj->h2("This is a test..."),
 $obj->h3("This is a test..."),
6 $obj->end_html;

EXPLANATION

The following output can be seen by viewing the source from the browser. It demonstrates the HTML output produced
by the CGI.pm module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

by the CGI.pm module.

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head><title>Object oriented syntax</title></head><body>
<h1>This is a test...</h1>
<h2>This is a test...</h2>
<h3>This is a test...</h3>
</body
</html>

Figure C.20. Output from the object-oriented CGI script in Example C.29.

Function-Oriented Style

The function-oriented style is easier to use than the objectoriented style, because you don't create or manipulate the
CGI object directly. The module creates a default CGI object for you. You use the same built-in functions to manipulate
the object, pass parameters to the functions to create the HTML tags, and retrieve the information passed into the
form.

Although the function-oriented style provides a cleaner programming interface, it limits you to using one CGI object at a
time.

The following example uses the function-oriented interface. The main differences are that the :standard functions must
be imported into the program's namespace, and you don't create a CGI object. It is created for you.[8]

[8] A default object called $CGI::Q is created, which can be accessed directly if needed.

Example C.30

 #!/usr/bin/perl
1 use CGI qw(:standard); # Function-oriented style uses a set of
 # standard functions
2 print header,
3 start_html("Function oriented syntax"),
4 h1("This is a test..."),
 h2("This is a test..."),
 h3("This is a test..."),
5 end_html;

Figure C.21. Output from the function-oriented CGI script in Example C.30.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure C.21. Output from the function-oriented CGI script in Example C.30.

C.9.4 How Input from Forms Is Processed

A CGI script consists of two parts: the part that creates the form that will be displayed in the browser, and the part that
retrieves the input from the form, parses it, and handles the information by sending it back to the browser, to a
database, to e-mail, etc.

Creating the HTML Form

Methods are provided to simplify the task of creating the HTML form. For example, there are methods to start and end
the HTML form, methods for creating headers, checkboxes, pop-up menus, radio buttons, Submit and Reset buttons,
etc. Table C.14 lists the most used of the HTML methods provided by CGI.pm.

When passing arguments to the CGI.pm methods, two styles can be used:

Named arguments— passed as key/value pairs. Argument names are preceded by a leading dash and are
case insensitive.

Example C.31

(Named Arguments)
1 print popup_menu(-name=>'place',
 -values=>['Hawaii','Europe','Mexico', 'Japan'],
 -default=>'Hawaii',
);
2 print popup_menu(-name=>'place',
 -values=> \@countries,
 -default=>'Hawaii',
);

EXPLANATION

1. The arguments being passed to the popup_menu method are called named parameters or argument
lists. The argument names in this examples are -name, -values, and -default. These arguments are
always preceded by a leading dash and are case insensitive. If the argument name might conflict with
some built-in Perl function or reserved word, quote the argument. Note that the arguments are passed
to the method as a set of key/value pairs. The -values key has a corresponding value consisting of an
anonymous array of countries.

2. This is exactly like the previous example, except that the value for the -values key is a reference to an
array of countries. Somewhere else in the program, the array @countries was created and given values.

Positional arguments— passed as strings, they represent a value. They are used with simple HTML tags. For
example, CGI.pm provides the h1() method to produce the HTML tags, <H1> and </H1>. The argument for
h1() is the string of text that is normally inserted between the tags. The method is called as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print h1("This is a positional argument");

which translates to

<H1>This is a positional argument</H1>

If using HTML attributes,[9] and the first argument is a reference to an anonymous hash, the attribute and its
values are added after the leading tag into the list. For example:

[9] Attributes do not require a leading dash.

print h1({-align=>CENTER}, "This heading is centered");

translates to

<H1 ALIGN="CENTER">This heading is centered</H1>

If the arguments are a reference to an anonymous list, each item in the list will be properly distributed within
the tag. For example:

print li(['apples', 'pears', 'peaches']);

translates to three bulleted list items:

apples pears peaches

whereas

print li('apples', 'pears', 'peaches');

translates to one bulleted list item:

apples pears peaches

Example C.32

(The CGI script)
 # Shortcut calling styles with HTML methods
 use CGI qw(:standard); # Function-oriented style print header
1 start_html("Testing arguments"),
 b(),
2 p(),
3 p("red", "green", "yellow"),
4 p("This is a string"),
5 p({-align=>center}, "red", "green", "yellow"),
6 p({-align=>left}, ["red","green","yellow"]),
 end_html;
(Output produced by CGI.pm methods)
1 Content-Type: text/html; charset=ISO-8859-1<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head><title>Testing arguments</title></head>
 <body>

2 <p />
3 <p>red green yellow</p>
4 <p>This is a string</p>
5 <p align="center">red green yellow</p>
6 <p align="left">red</p> <p align="left">green</p>
 <p align="left">yellow</p>
 </body>
 </html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </html>

EXPLANATION

1. The function-oriented style of the CGI.pm module is used. The START_HTML method generates the header
information and starts the body of the HTML document.

2. The p() (paragraph method) generates a paragraph tag that takes no arguments. It is a start tag only.

3. The quoted list of comma-separated arguments produces a single string argument. The paragraph's text is
displayed as one line on the brower: red green yellow. It consists of a start tag, the arguments as a single
string, and an end tag.

4. The string is also displayed as a single string. It consists of a start tag, the string, and and end tag.

5. The string is a centered paragraph. This paragraph tag consists of a start tag, attributes, arguments, and an
end tag.

6. This paragraph tag displays each word, left-justified, on a line by itself. It consists of a start tag, with the
attributes for left alignment distributed across each of the listed arguments. The arguments are listed as a
reference to an anonymous array.

To avoid conflicts and warnings (-w switch), enclose all arguments in quotes.

Table C.14. HTML methods.
Method What it Does Attributes

a() Anchor tag

<A>

-href, -name, -onClick, -onMouseOver, -target

applet() (:html3 group) Embedding applets

<APPLET>

-align, -alt, -code, -codebase, -height, -hspace, -
name, -vspace, -width

b() Bold text

basefont() (:html3) Set size of base font

-size (sizes 1–7)

big (:netscape group) Increase text size

<BIG>

blink (:netscape group) Creates blinking text

<BLINK>

br() Creates a line break

button() Creates a push button to start a
JavaScript event handler when
pressed

-name, -onClick, -value, -label

caption (:html3) Inserts a caption above a table

<CAPTION>

-align, -valign

center() (:netscape
group)

Center text

<CENTER>

Doesn't seem to work Use the <CENTER> tag.

cite() Creates text in a proportional italic
font

<CITE>

checkbox() Creates a single named checkbox
and label

-checked, -selected, -on, -label, -name, -onClick, -
override, -force, -value

checkbox_group() Creates a set of checkboxes linked
by one name

-columns, -cols, -colheaders, -default, -defaults, -
labels, -linebreak, -name, -nolabels, -onClick, -
override, -force, -rows, -rowheaders, -value, -values

code() Creates text in a monospace font

<CODE>

dd() Definition item of definition list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dd() Definition item of definition list
<DD>

defaults() Creates a fillout button for
submitting a form as though for the
first time; clears the old parameter
list

dl() Creates a definition list

<DL>; see dd()

-compact

dt() Term part of definition list

<DT>

em() Emphatic (italic) text

end_form(), endform() Terminate a form

</FORM>

end_html() Ends an HTML document

</BODY></HTML>

font() (:netscape
group)

Changes font -color, -face, -size

frame() (:netscape
group)

Defines a frame -marginheight, -marginwidth, -name, -noresize, -
scrolling, -src

frameset() (:netscape
group)

Creates a frameset <FRAMESET> -cols, -rows

h1()...h6() Creates heading levels 1–6 <H1>,
<H2> ... <H6>

hidden() Creates a hidden, invisible text
field, uneditable by the user

hr() Creates a horizontal rule

<HR>

-align, -noshade, -size, -width

i() Creates italic text

<I>

img() Creates an inline image

-align, -alt, -border, -height, -width, -hspace, -ismap,
-src, -lowsrc, -vrspace, -usemap

image_button() Produces an inline image that
doubles as a form submission
button

-align, -alt.-height, -name, -src, -width

kbd() Creates text with keyboard style

li() Creates list item for an ordered or
unordered list

-type, -value

ol() Start an ordered list -compact, -start, -type

p() Creates a paragraph

<P>

-align, -class

password_field() Creates a password field; text
entered will be stars

popup_menu() Creates a pop-up menu

<SELECT><OPTION>

-default, -labels, -name, -onBlur, -onChange, -
onFocus, -override, -force, -value, -values

pre() Creates preformatted typewriter
text for maintaining line breaks,
etc.

<PRE>

radio_group() Creates a set of radio buttons all
linked by one name

-columns, -cols, -colheaders, -default, -labels, -
linebreak, -name, -nolabels, -onClick, -override, -
force, -rows, -rowheaders, -value, -values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

force, -rows, -rowheaders, -value, -values

reset() Creates form's Reset button

scrolling_list() Controls a scrolling list box form
element

-default, -defaults, -labels, -multiple, -name, -onBlur,
-onChange, -onFocus, -override, -force, -size, -value,
-values

Select() Creates a select tag; Note the
uppercase "S" to avoid conflict with
Perl's built-in select function.

<SELECT>

small() (:netscape
group)

Reduce size of text

start_form(),startform() Starts an HTML form

<FORM>

start_multipart_form(), Just like start_form, but used when
uploading files

strong() Bold text

submit() Creates a Submit button for a form -name, -onClick, -value, -label

sup() (:netscape group) Superscripted text

table() (:html3 group) Creates a table -align,bgcolor, -border, -bordercolor, -bordercolor-
dark, -bordercolorlight, -cellpadding, -hspace, -
vspace, -width

td() (:html3 group) Creates a table data cell

<TD>

-align, -bgcolor, -bordercolor, -bordercolorlight,-
bordercolordark, -colspan, -nowrap, -rowspan, -
valign, -width

textarea() Creates a multiline text box -cols, -columns, -name, -onChange, -onFocus,0nBlur,
-onSelect, -override, -force, -value, -default, -wrap

textfield() Produces a one-line text entry field -maxLength, -name, -onChange, -onFocus, -onBlur, -
onSelect, -override, -force, -size, -value, -default

th() (:html3 group) Creates a table header

<TH>

Tr() (:html3 group) Defines a table row; Note the
uppercase "T" to avoid conflict with
Perl's tr function.

<TR>

-align,bgcolor, -bordercolor, -bordercolordark, -
bordercolorlight, -valign

tt() Typewriter font

ul() Start unordered list

Processing the Form's Data with param()

After the user has filled in a form, CGI.pm will take the input from the form and store it in name/value pairs. The names
and values can be retrieved with the param() function. When param() is called, if null is returned, then the form has not
yet been filled out. If the param() function returns true (non-null), then the form must have been filled out, and the
param() function can be used to retrieve the form information. If you want an individual value, the param() can retrieve
it by its name. The following example illustrates the two parts to the CGI program: the HTML form, and how to get the
information with the param() function. For a list of other methods used to process parameters, see Table C.16.

Example C.33

 #!/usr/bin/perl
1 use CGI qw(:standard);
2 print header;
3 print start_html(-title=>'Using the Function-Oriented Syntax',
 -BGCOLOR=>'yellow');
4 print img({-src=>'/Images/GreenBalloon.gif', -align=LEFT}),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 print img({-src=>'/Images/GreenBalloon.gif', -align=LEFT}),
5 h1("Let's Hear From You!"),
 h2("I'm interested."),

6 start_form,
7 "What's your name? ", textfield('name'),
8 p,
 "What's your occupation? ", textfield('job'),
 p,
9 "Select a vacation spot. ", popup_menu(
 -name=>'place',
 -values=>['Hawaii','Europe','Mexico', 'Japan'],
),
 p,
10 submit,
11 end_form;

 print hr;

12 if (param()){ # If the form has been filled out,
 # there are parameters
13 print "Your name is ", em(param('name')),
 p,
 "Your occupation is ", em(param('job')),
 p,
 "Your vacation spot is", em(param('place')),
 hr;
 }

EXPLANATION

1. The use directive says that the CGI.pm module is being loaded and will import the :standard set of function
calls, which use a syntax new in library versions 1.21 and higher. This syntax allows you to call methods
without explicitly creating an object with the new constructor method; that is, the object is created for you. The
Official Guide to Programming with CGI.pm by Lincoln Stein contains a complete list of shortcuts.

2. The header method header returns the Content-type: header. You can provide your own MIME type if you
choose, otherwise it defaults to text/html.

3. This will return a canned HTML header and the opening <BODY> tag. Parameters are optional and are in the
form -title, -author, and -base. Any additional parameters, such as the Netscape unofficial BGCOLOR attribute,
are added to the <BODY> tag; for example, BGCOLOR=>yellow.

4. The img method allows you to load an image. This GIF image is stored under the document's root in a directory
called Images. It is aligned to the left of the text. Note: The print function here does not terminate until line 11.
All of the CGI functions are passed as a comma-separated list to the print function.

5. This will produce a level 1 heading tag. It's a shortcut and will produce the <H1> HTML tag.

6. This method starts a form. The defaults for the form are the ACTION attribute, assigned the URL of this script,
and the METHOD attribute, assigned the POST method.

7. The textfield method creates a text field box. The first parameter is the NAME for the field, the second
parameter representing the VALUE is optional. NAME is assigned name and VALUE is assigned "".

8. The p is a shortcut for a paragraph <P>.

9. The popup_menu method creates a menu. The required first argument is the menu's name (-name). The
second argument, -values, is an array of menu items. It can be either anonymous or named.

10. The submit method creates the Submit button.

11. This line ends the form.

12. If the param method returns non-null, each of the values associated with the parameters will be printed.

13. The param method returns the value associated with name; in other words, what the user typed as input for
that parameter.

Figure C.22. Output from lines 1–11 in Example C.33 before filling out the form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure C.22. Output from lines 1–11 in Example C.33 before filling out the form.

Figure C.23. The completed form and result of CGI.pm processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Checking the Form at the Command Line

If you want to see the HTML tags generated by the CGI.pm form, you can run your script at the command line, but you
will probably see the following error message:

(Offline mode: enter name=value pairs on standard input)

You can handle this by typing in key/value pairs and then pressing <Ctrl>-d (UNIX) or <Ctrl>-z (Windows) or by
passing an empty parameter list. When the parameter list is empty, the output will let you see the HTML tags that were
produced without any values assigned. See Example C.34.

Example C.34

(At the Command Line)
1 $ perl talkaboutyou.pl
 (Offline mode: enter name=value pairs on standard input)
 name=Dan
 job=Father
 place=Hawaii
 <Now press Ctrl-d or Ctrl-z>

(Output)
 Content-Type: text/html

 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
 <HTML><HEAD><TITLE>Using the Function Oriented Syntax</TITLE>
 </HEAD><BODY BGCOLOR="yellow">
 <H1>Let's Hear From You!</H1>
 <H2>I'm internested.</H2>
 <FORM METHOD="POST" ENCTYPE="application/x-www-form-urlencoded">
 What's your name? <INPUT TYPE="text" NAME="name"
 VALUE="Dan"><P>What's your occupation? <INPUT TYPE="text"
 NAME="job" VALUE="Father"><P>Select a vacation spot.
 <SELECT NAME="place">
 <OPTION SELECTED VALUE="Hawaii">Hawaii
 <OPTION VALUE="Europe">Europe
 <OPTION VALUE="Mexico">Mexico
 <OPTION VALUE="Japan">Japan
 </SELECT>
 <P><INPUT TYPE="submit" NAME=".submit"></FORM>
 <HR>Your name is Dan<P>Your occupation is Father
 <P>Your vacation spot is Hawaii<HR>

(At the Command Line)
2 $ perl talkaboutyou.pl < /dev/null or perl talkaboutyou.pl ' '
 Content-Type: text/html

(Output)
 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
 <HTML><HEAD><TITLE>Using the Function Oriented Syntax</TITLE>
 </HEAD><BODY BGCOLOR="yellow">
 <H1>Let's Hear From You!</H1>
 <H2>I'm interested.</H2><FORM METHOD="POST"
 ENCTYPE="application/x-wwwform-urlencoded">
 What's your name? <INPUT TYPE="text" NAME="name"
 VALUE=""><P>What's your occupation? <INPUT TYPE="text"
 NAME="job" VALUE=""><P>Select a vacation spot.
 <SELECT NAME="place">
 <OPTION VALUE="Hawaii">Hawaii
 <OPTION VALUE="Europe">Europe
 <OPTION VALUE="Mexico">Mexico
 <OPTION VALUE="Japan">Japan
 </SELECT>
 <P><INPUT TYPE="submit" NAME=".submit"></FORM><HR>Your name is
 <P>Your occupation is <P>Your vacation spot is <HR>

EXPLANATION

1. When running in offline mode, you can enter the key/value pairs as standard input. You need to check the form
so that you get the right keys and then supply the values yourself. In this example, name=Dan, job=Father,
place=Hawaii were supplied by the user. After pressing <Ctrl>-d (UNIX) or <Ctrl>-z (Windows), the input will
be processed by CGI.pm.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. By passing an empty parameter list, you can see the HTML output as it appears without the values assigned. If
using UNIX, /dev/null is the UNIX bit bucket (black hole), and reading from that directory is the same as
reading from an empty file. By supplying a set of empty quotes as an argument, the effect is the same.

C.9.5 CGI.pm Form Elements

Table C.15. CGI methods.
Method Example What It Does

append $query–>append(-name=>'value'); Appends values to parameter

checkbox $query–>checkbox(-name=>'checkbox_name', -
checked=>'checked', -value=>'on', -label=>'clickme');

Creates a standalone checkbox

checkbox_group $query–>checkbox_group(-name=> 'group_name', -
values=>[list], -default=>[sublist], -linebreak=>'true',
-labels=>\%hash);

Creates a group of checkboxes

cookie $query–>cookie(-name=>'sessionID', -
value=>'whatever', -expires=>'+3h', -path=>'/', -
domain=>'ucsc.edu', -secure=>1);

Creates a Netscape cookie

defaults $query–>defaults; Creates a button that resets the form
to its defaults

delete $query–>delete('param'); Deletes a parameter

delete_all $query–>delete; Deletes all parameters; clears $query,
the object

endform $query–>endform; Ends the <FORM> tag

header $query–>header(-cookie=>'cookiename'); Puts a cookie in the HTTP header

hidden $query–>hidden(-name=>'hidden', -default=>[list]); Creates a hidden-from-view text field

image_button $query–>image_button(-name=>'button', -
src=>'/source/URL', -align=>'MIDDLE');

Creates a clickable image button

import_names $query–>import_names('namespace'); Imports variables into namespace

keywords @keywords = $query–>keywords; Obtains parsed keywords from the
Isindex input string and returns an
array

new $query = new CGI; Parses input and puts it in object
$query for both the GET and POST
methods

 $query = new CGI(INPUTFILE); Reads contents of form from
previously opened filehandle

param @params = $query–>param(-name=>'name', -
value=>'value');

Returns an array of parameter names
passed into the script

 $value = $query–>('arg'); Returns a value (or list of values) for
the @values = $query–>('arg')
parameter passed

password_field $query–>password_field(-name=>'secret' -value=>'start',
-size=>60, -maxlength=>80);

Creates a password field

popup_menu $query–>popup_menu(-name=>'menu' -
values=>@items, -defaults=>'name', -labels=>\%hash);

Creates a pop-up menu

radio_group $query–>radio_group(-name=>'group_name', -values=>[
list], -default=>'name', -linebreak=>'true', -
labels=>\%hash);

Creates a group of radio buttons

reset $query–>reset; Creates the Reset button to clear a
form boxes to former values

save $query–>save(FILEHANDLE); Saves the state of a form to a file

scrolling_list $query–>scrolling_list(-name=>'listname', -values=>[list
], -default=> [sublist], -multiple=>'true', -
labels=>\%hash);

Creates a scrolling list

startform $query–>startform(-method=> -action=>, -encoding); Returns a <FORM> tag with optional

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

startform $query–>startform(-method=> -action=>, -encoding); Returns a <FORM> tag with optional
method, action, and encoding

submit $query–>submit(-name=>'button', -value=>'value'); Creates the Submit button for forms

textarea Same as text field, but includes
multiline text entry box

textfield $query–>textfield(-name=>'field', -default=>'start', -
size=>50, -maxlength=>90);

Creates a text field box

Table C.16. CGI parameter methods.
Method What It Does Example

delete(),
Delete()

Deletes a named parameter from parameter list. Delete must be used if
you are using the function-oriented style of CGI.pm.

$obj–>delete('Joe');

$obj–>delete(-
name=>'Joe');

Delete('Joe');

Delete(-
name=>'Joe');

delete_all(),
Delete_all()

Deletes all CGI parameters. $obj–>delete_all();

Delete_all();

import_names() Imports all CGI parameters into a specified namespace.

param() Retrieves parameters from a fillout form in key/value pairs. Can return a
list or a scalar.

print $obj–>param();

@list=$obj–>param();

print param('Joe');

$name=$obj–
>param(-
name=>'Joe');

Methods For Generating Form Input Fields

The following examples use the object-oriented style, and can easily be replaced with the function-oriented style by
removing all object references. The print_form subroutine will cause the form to be displayed in the browser window
and the do_work subroutine will produce output when the param method returns a true value, meaning that the form
was filled out and processed.

The texfield() Method

The textfield method creates a text field. The text field allows the user to type in a single line of text into a rectangular
box. The box dimensions can be specified with the -size argument, where the size is the width in characters, and -
maxlength (a positive integer) sets an upper limit on how many characters the user can enter. If -maxlength is not
specified, the default is to enter as many characters as you like. With the -value argument, the field can be given a
default value, text that will appear in the box when it is first displayed.

FORMAT

print $obj->textfield('name_of_textfield');
print $obj->textfield(
 -name=>'name_of_textfield',
 -value=>'default starting text',
 -size=>'60', # Width in characters
 -maxlength=>'90'); # Upper width limit

Example C.35

#!/usr/bin/perl
1 use CGI;
2 $query = new CGI;
 # Create a CGI object
3 print $query->header;
4 print $query->start_html("Forms and Text Fields");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 print $query->start_html("Forms and Text Fields");
5 print $query->h2("Example: The textfield method");

6 &print_form($query);
7 &do_work($query) if ($query->param);
 print $query->end_html;

8 sub print_form{
9 my($query) = @_;
10 print $query->startform;
 print "What is your name? ";
11 print $query->textfield('name'); # A simple text field
 print $query->br();

12 print "What is your occupation? ";
13 print $query->textfield(-name=>'occupation', # Giving values
 -default=>'Retired', # to the
 -size=>60, # text field
 -maxlength=>120,
);
 print $query->br();
14 print $query->submit('action', 'Enter ');
15 print $query->reset();
16 print $query->endform;
 print $query->hr();
 }
17 sub do_work{
 my ($query) = @_;
 my (@values, $key);
 print $query->("<H2>Here are the settings</H2>");
18 foreach $key ($query->param){
 print "$key: \n";
19 @values=$query->param($key);
 print join(", ",@values), "
";
 }
 }

EXPLANATION

1. The CGI.pm module is loaded. It is an object-oriented module.

2. The CGI constructor method, called new, is called and a reference to a CGI object is returned.

3. The HTML header information is printed; for example, Content-type: text/html.

4. The start_html method produces the HTML tags to start HTML, the title Forms and Textfields, and the body tag.

5. The h2 method produces an <H2>, heading level 2, tag.

6. This user-defined print_form function is called, with a reference to the CGI object is passed as an argument.

7. The do_work function is called with a reference to the CGI object passed as an argument. This is a user-defined
function that will only be called if the param function returns true, and param returns true only if the form has
been filled out.

8. The print_form function is defined.

9. The first argument is a reference to the CGI object.

10. The startform method produces the HTML <FORM> tag.

11. The textfield method produces a text box with one parameter, name. Whatever is assigned to the text box will
be assigned to name.

12. The user is asked to provide input into the text box.

13. This textfield method is sent arguments as key/value hash pairs to further define the text field. The default will
show in the box. See the output of this example in Figure C.24.

Figure C.24. Output for text field form, Example C.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure C.24. Output for text field form, Example C.35.

14. The submit method creates a Submit button with the text Enter in the button.

15. The reset method creates a Reset button with the default text Reset in the the button.

16. The endform method creates the HTML </FORM> tag.

17. This is the user's do_work function that is called after the user fills out the form and presses the Submit (Enter)
button. It processes the information supplied in the form with the param function.

18. The param function returns a key and a list of values associated with that key. The key is the name of the
parameter for the input form and the values are what were assigned to it either by the user or in the form. For
example, the key named occupation was filled in by the user as jack of all trades, whereas the action key in the
Submit button was assigned Enter within the form before it was processed.

Figure C.25. Output after the form was filled out and processed, Example C.35.

Figure C.26. The HTML source that was produced by CGI.pm.

The checkbox() Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The checkbox() Method

The checkbox() method is used to create a simple checkbox for a yes or no (Boolean) response. The checkbox has
NAME and VALUE attributes, where -name gives the CGI parameter a name and -value contains one item or a reference
to a list of items that can be selected. If the -checked is assigned 1, the box will start as checked. If -label assigned a
value, it will be printed next to the checkbox; if not, the -name value of the checkbox will be printed. If not selected,
the checkbox will contain an empty parameter.

The checkbox_group() method creates a set of checkboxes all linked by a single name. The options are not mutually
exclusive; that is, the user can check one or more items. If -linebreak is assigned a non-zero number, the options will
be vertically aligned. Ordinarily, the options would be displayed in a horizontal row. (See Example C.36.)

FORMAT

print $obj->checkbox(-name=>'name_of_checkbox',
 -checked=>1,
 -value=>'ON'
 -label=>'Click on me'
);

%labels = ('choice1'=>'red',
 'choice2'=>'blue',
 'choice3'=>'yellow',
);
print $obj->checkbox_group(-name=>'name_of_checkbox',
 -values=>['choice1', 'choice2',
 'choice3', 'green',...],
 -default=>['choice1', 'green'],
 -linebreak => 1,
 -labels=>\%labels
);

Example C.36

 #!/usr/bin/perl
 use CGI;
 $query = new CGI;
 print $query->header;
 print $query->start_html("The Object Oriented CGI and Forms");
 print "<H2>Example using Forms with Checkboxes</H2>\n";

 &print_formstuff($query);
 &do_work($query) if ($query->param);

 print $query->end_html;
 sub print_formstuff{
 my($query) = @_;
1 print $query->startform;

 print "What is your name? ";
 print $query->textfield('name'); # A simple text field
 print "
";

 print "Are you married?
";
2 print $query->checkbox(-name=>'Married',
 -label=>'If not, click me');
 # Simple checkbox
 print "

";
 print "What age group(s) do you hang out with?
";
3 print $query->checkbox_group(-name=>'age_group',
 -values=>['12-18', '19-38',
 '39-58','59-100'],
 -default=>['19-38'],
 -linebreak=>'true',
);
4 print $query->submit('action', 'Select');
5 print $query->reset('Clear');
 print $query->endform;
 print "<HR>\n";
 }

6 sub do_work{
 my ($query) = @_;
 my (@values, $key);
 print "<H2>Here are the settings</H2>";
7 foreach $key ($query->param){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7 foreach $key ($query->param){
 print "$key: \n";
8 @values=$query->param($key);
 print join(", ",@values), "
";
 }
 }

EXPLANATION

1. The startform method produces the HTML <FORM> tag.

2. The is the simplest kind of checkbox. If the user is not married, he should click the box. The name of the
checkbox is Single, the label, If not, click me is displayed next to the checkbox. If -checked is assigned 1, the
box will be checked when it is first displayed.

3. This an example of a checkbox group where a set of related checkboxes are linked by a common name,
age_group. The -values argument is assigned a reference to a list of options that will appear to the right of each
of the checkboxes. If -labels were used it would contain a hash consisting of key/value pairs that would be used
as the labels on each of the checkboxes. The -default argument determines which boxes will be checked when
the checkboxes are first displayed. The -linebreak argument is set to a non-zero value, true, which will cause
the options to be displayed as a vertical list.

4. When the user presses the Submit button, labeled Select, the form will be processed.

5. The Reset button clears the screen only if the user has not yet submitted the form. To override "stickiness,"
that is, to set the checkboxes back to original default values, set the -override argument to a non-zero value.

6. The do_work function is called when the form is submitted. This is where all the reading and parsing of the form
input is handled.

7. Each of the parameters that came in from the form (key/value pairs) are printed.

Figure C.27. Output for checkbox form in Example C.36.

Figure C.28. Output after the form was filled out and processed, Example C.36.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The radio_group() and popup_menu() Methods

To select among a set of mutually exclusive choices, you can use radio buttons or pop-up menus. Radio button groups
allow a small number of choices to be grouped together to fit in the form; for a large number of choices, the pop-up
menu is better. They both have arguments consisting of name/value pairs. Since the value argument consists of more
than one selection, it takes a reference to an array. The -default argument is the value that is displayed when the menu
first appears. The optional argument -labels is provided if you want to use different values for the user-visible label
inside the radio group or pop-up menu and the value returned to your script. It's a pointer to an associative array
relating menu values to corresponding user-visible labels. If a default isn't given, the first item is selected in the pop-up
menu.

FORMAT

%labels = ('choice1'=>'red',
 'choice2'=>'blue',
 'choice3'=>'yellow',
);
print $obj->radio_group(-name=>'name_of_radio_group',
 -values=>['choice1','choice2',
 'choice3', 'green', ...],
 -default=>['choice1', 'green'],
 -linebreak => 1,
 -labels=>\%labels
);

%labels = ('choice1'=>'red',
 'choice2'=>'blue',
 'choice3'=>'yellow',
);
print $obj->popup_menu(-name=>'name_of_popup_menu',
 -values=>['choice1','choice2','choice3',
 'green',...],
 -default=>['choice1', 'green'],
 -linebreak => 1,
 -labels=>\%labels
);

Example C.37

 #!/bin/perl
1 use CGI;
 $query = new CGI;
 print $query->header;
 print $query->start_html("The Object-Oriented CGI and Forms");
 print "<H2>Example using Forms with Radio Buttons</H2>\n";
 &print_formstuff($query);
 &do_work($query) if ($query->param);
 print $query->end_html;
 sub print_formstuff{
 my($query) = @_;
 print $query->startform;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print $query->startform;
 print "What is your name? ";
 print $query->textfield('name'); # A simple text field
 print "
";
 print "Select your favorite color?
";

2 print $query->radio_group(-name=>'color',
 -values=>['red', 'green',
 'blue','yellow'],
 -default=>'green',
 -linebreak=>'true',
);
 print $query->submit('action', 'submit');
 print $query->reset('Clear');
 print $query->endform;
 print "<HR>\n";
 }
 sub do_work{
 my ($query) = @_;
 my (@values, $key);
 print "<H2>Here are the settings</H2>";
3 foreach $key ($query->param){
 print "$key: \n";
4 @values=$query->param($key);
 print join(", ",@values), "
";
 }
 }

EXPLANATION

1. The CGI.pm module is loaded.

2. A radio group is created in the form by calling the CGI radio_group method with its arguments. The values of
the individual radio buttons will be seen to the right of each button. The default button that will be checked
when the form is first displayed is green. The -linebreak argument places the buttons in a vertical position
rather than in a horizontal line across the screen.The user can select only one button.

3. After the user has filled out the form and pressed the Submit button, the param method will return the keys
and values that were sent to the CGI script.

4. The key/value pairs are displayed.

Figure C.29. Output for radio button form, Example C.37.

Figure C.30. Output after form was filled out and processed, Example C.37.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure C.30. Output after form was filled out and processed, Example C.37.

Labels

Labels allow the buttons to have user-friendly names that are associated with different corresponding values within the
program. In the following example, the labels stop, go, and warn will appear beside radio buttons in the browser
window. The values returned by the param method will be red, green, and yellow, respectively.

Example C.38

(The -labels Parameter -- Segment from CGI script)
 print $query->startform;
 print "What is your name? ";
 print $query->textfield('name'); # A simple text field
 print "
";
 print "We're at a cross section. Pick your light.
";
1 print $query->radio_group(-name=>'color',
2 -values=>['red', 'green', 'yellow'],
 -linebreak=>'true',
3 -labels=>{red=>'stop',
 green=>'go',
 yellow=>'warn',
 },
4 -default=>'green',
);
 print $query->submit('action', 'submit');
 print $query->reset('Clear');
 print $query->endform;
 }

EXPLANATION

1. The radio_group method is called with its arguments. Only one value can be selected.

2. The values that the params function returns will be either red, green, or yellow.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The labels are what actually appear next to each radio button. The user will see stop, go, and warn in the
browser, but the CGI parameters associated with those labels are red, green, and yellow, respectively. If, for
example, the user clicks on the stop button, the key/value pair passed to the script will be color=>red.

4. The default button is to have the button labeled go checked.

Figure C.31. Output for labels form after being filled out and processed, Example
C.38.

The popup_menu() Method

The pop-up menu is also referred to as a drop-down list. It is a list of selections that will be displayed when the user
clicks on the scrollbar icon to the right of the text. Only one selection can be made.

Example C.39

#!/usr/bin/perl
use CGI;
$query = new CGI;
print $query->header;
print $query->start_html("The Object-Oriented CGI and Forms");
print "<H2>Example using Forms with Pop-up Menus</H2>\n";
&print_formstuff($query);
&do_work($query) if ($query->param);
print $query->end_html;

sub print_formstuff{
my($query) = @_;
print $query->startform;
print "What is your name? ";
print $query->textfield('name'); # A simple text field
print "
";
print "Select your favorite color?
";
print $query->popup_menu(-name=>'color',
 -values=>['red', 'green', 'blue',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -values=>['red', 'green', 'blue',
 'yellow'],
 -default=>'green',
 -labels=>'\%labels',
);
print $query->submit('action', 'submit');
print $query->reset('Clear');
print $query->endform;
print "<HR>\n";
}

sub do_work{
 my ($query) = @_;
 my (@values, $key);
 print "<H2>Here are the settings</H2>";
 foreach $key ($query->param){
 print "$key: \n";
 @values=$query->param($key);
 print join(", ",@values), "
";
 }
}

Figure C.32. Output for pop-up menu form, Example C.39.

Figure C.33. Output for pop-up menu form after being filled out and processed,
Example C.39.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The submit() and reset() Methods

The submit() method creates a button that, when pressed, sends form input to the CGI script. If given an argument,
you can label the button, often for the purpose of distinguishing it from other buttons if several Submit buttons are
used.

The reset() method is used to clear all the entries in a form. It restores the form to the state it was in when last loaded,
not to its default state. (See "The defaults Method," below.)

Clearing Fields

The override Argument

Note that if you press the Reset button or restart the same form, the previous information is sticky; in other words, the
input box is not cleared. You can force the entry to be cleared by using the -override or -force argument with a non-
zero value; for example:

textfield(-name=>'name', -override=>1);

The defaults Method

The defaults() method clears all entries in the form to the state of the form when it was first displayed in the browser
window; that is, the parameter list is cleared. To create a user-readable button, call the defaults method; for example:

print defaults(-name=>'Clear All Entries');

Error Handling

When your CGI.pm script contains errors, the error messages are normally sent by the server to error log files
configured under the server's root. If the program aborts, the browser will display "Document contains no data" or
"Server Error." These messages are not very helpful.

The carpout and fatalsToBrowser Methods

CGI.pm provides methods, not only to store errors in your own log file, but also to see fatal error messages in the
browser's window. The carpout function is provided for this purpose. Since is not exported by default, you must import
it explicitly by writing:

use CGI::Carp qw(carpout);

The carpout function requires one argument, a reference to a user-defined filehandle where errors will be sent. It
should be called in a BEGIN block at the top of the CGI application so that compiler errors will be caught. To cause fatal
errors from die, croak, and confess to also appear in the browser window, the fatalsToBrowser function must also be
imported.

Example C.40

 #!/usr/bin/perl
1 use CGI;
2 BEGIN{ use CGI::Carp qw(fatalsToBrowser carpout);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2 BEGIN{ use CGI::Carp qw(fatalsToBrowser carpout);
3 open(LOG,">>errors.log") ||die "Couldn't open log file\n";
4 carpout(LOG);
 }
 $query = new CGI;
 <Program continues here>

EXPLANATION

1. The CGI.pm module is loaded.

2. The CGI::Carp module is also loaded. This Carp module takes two arguments: fatalsToBrowser and carpout.
The first argument, fatalstobrowswer, sends Perl errors to the browser and carpout makes it all possible by
redirecting the standard error from the screen to the browser and error log.

3. A file called errors.log is opened for creation/appending. This log file will contain the error messages that will
also be seen in the browser.

4. The carpout function will send errors to the errors.log file. Here is a line from that file:

[Thu Feb 8 18:59:04 2001] C:\httpd\CGI-BIN\carpout.pl: Testing error messages from CGI script.

Figure C.34. Redirecting errors with carpout and fatalsToBrowser.

Changing the Default Message

By default, the software error message is followed by a note to contact the Webmaster by e-mail with the time and date
of the error. If you want to change the default message, you can use the set_message method, which must be
imported into the programs namespace.

FORMAT

use CGI::Carp qw(fatalsToBrowser set_message);
set_message("Error message!");
set_message(\reference_to_subroutine);

Example C.41

1 use CGI;
2 BEGIN{ use CGI::Carp qw(fatalsToBrowser carpout);
3 open(LOG,">>errors.log") ||die "Couldn't open log file\n";
4 carpout(LOG);
5 sub handle_errors {
6 my $msg = shift;
7 print "<h1>Software Error Alert!!</h1>";
 print "<h2>Your program sent this error:
<I>
 $msg</h2></I>";
 }
 }
8 set_message(\&handle_errors);
9 die("Testing error messages from CGI script.\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9 die("Testing error messages from CGI script.\n");

EXPLANATION

1. The CGI.pm module is loaded.

2. The CGI::Carp module is also loaded. The Carp.pm module takes two arguments: fatalsToBrowser and carpout.
The first argument, fatalsToBrowser sends Perl errors to the browser and carpout makes it all possible by
redirecting the standard error from the screen to the browser and error log.

3. A file called errors.log is opened for creation/appending. This log file will contain the error messages that will
also be seen in the browser.

4. The carpout function will send errors to the errors.log file.

5. A user-defined subroutine called handle_errors is defined. It will produce a customized error message in the
user's browser window.

6. The first argument to handle_errors subroutine is the error message coming from a die or croak. In this
example, the die message on line 9 will be be assigned to $msg, unless the die on line 3 happens first. This
message will also be sent to the log file, errors.log.

7. This error message will be sent to the browser.

8. The set_message method is called with a reference to the user-defined subroutine handle_errors, passed as an
argument. handle_errors contains the customized error message.

9. The die function will cause the program to exit, sending its error message to the handle_errors subroutine via
set_message.

Figure C.35. Output of error message from Example C.41.

Example C.42

(Contents of the errors.log file created by carpout)
carpout.pl syntax OK
[Thu Feb 8 18:27:48 2001] C:\httpd\CGI-BIN\carpout.pl: Testing err
rom CGI script.
[Thu Feb 8 18:30:01 2001] C:\httpd\CGI-BIN\carpout.pl: <h1>Testing
es from CGI script.
[Thu Feb 8 18:55:53 2001] C:\httpd\CGI-BIN\carpout.pl: Undefined s
in::set_message called at C:\httpd\CGI-BIN\carpout.pl line 11.
[Thu Feb 8 18:55:53 2001] C:\httpd\CGI-BIN\carpout.pl: BEGIN faile
n aborted at C:\httpd\CGI-BIN\carpout.pl line 12.
[Thu Feb 8 18:56:49 2001] carpout.pl: Undefined subroutine &main::
alled at carpout.pl line 11.
[Thu Feb 8 18:56:49 2001] carpout.pl: BEGIN failed--compilation ab
out.pl line 12.

Cookies

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cookies

The HTTP protocol, by design, is stateless in order to keep the connections brief. After a transaction is completed, the
connection is lost and the browser and server have no recollection of what transpired from one session to the next. But
now that the Internet is used as a huge shopping center, it is often necessary to keep track of users and what they
have purchased, their preferences, registration information, etc. Netscape introduced cookies in order to establish a
persistent state; that is, keep information around that would normally be lost at the end of a transaction. Cookies offer
a way to keep track of visitors and their preferences after they have visited a site.

The cookie is a piece of data that is sent by the server from your CGI script to the visitor's browser where it is stored in
a file (often called cookie.txt or just cookie) for as long as you specify. It is a string assigned to an HTTP header that
gets entered into the memory of the browser (client) and then stored in a file on the hard drive. The browser maintains
a list of cookies on disk that belong to a particular Web server and returns them back to the Web server via the HTTP
header during subsequent interactions. When the server gets the cookie it assigns the cookie values (name/value pairs)
to the HTTP_COOKIE environment variable. The cookie, then, is passed back and forth between the browser and the
server. The CGI program can set the cookie in a cookie response header (Set-Cookie) and retrieve values from the
cookie from the environment variable, HTTP_COOKIE.

By default, the cookie is short-term and expires when the current browser session terminates, but it can be made
persistent by setting an expiration date to some later time, after which it will be discarded. The path decides where the
cookie is valid for a particular server. If not set, it defaults to the location of the script that set the cookie. The path it
refers to is the server's path, where the server's root is /. The domain name is the domain where the cookie is valid;
that is, the current domain as in 127.0.0.1 or www.ellieq.com.

Cookies are set in the HTTP cookie header as follows:

Set-Cookie: Name=Value; expires=Date; path=Path; domain=Domainname; secure

Example C.43

#!/bin/perl
A simple CGI script to demonstrate setting and retrieving a cookie.
Run the program twice: the first time to set the cookie on the
client side, and second to retrieve the cookie from the browser
and get its value from the environment variable,
$ENV{HTTP_COOKIE, coming from the server.

1 my $name = "Ellie";
2 my $expiration_date = "Friday, 17-Feb-01 00:00:00: GMT";
3 my $path = "/cgi-bin";

4 print "Set-Cookie: shopper=$name, expires=$expiration_date,
 path=$path\n";
 print "Content-type: text/html\n\n";

5 print <<EOF;
 <html><head><Title>Cookie Test</Title></Head>
 <body>
 <h1>Chocolate chip cookie!!</h1>
 <h2>Got milk?</h2>
 <hr>
 <p>
 What's in the HTTP_COOKIE environment variable?

6 $ENV{HTTP_COOKIE}
 <p>
 <hr>
 </body></html>
 EOF

EXPLANATION

1. The variable is set for the shopper's name.

2. The expiration date is set for when the cookie will be deleted.

3. This is the path on the server where the cookie is valid.

4. This is the HTTP header that is assigned the information that will be stored in the cookie file in the browser.

5. This is the start of the here document that will contain the HTML tags to be rendered by the browser.

6. The value of the HTTP_COOKIE environment variable displays the cookie information that was retrieved and
sent back to the server from the browser in an HTTP header.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure C.36. The HTTP_Cookie environment variable.

Table C.17. Cookie values.
Name Name of the cookie. The term Name is the actual name of the cookie; for example, it could be

preference=blue where preference is the name of the cookie and blue is the data assigned to the cookie.

Value Data assigned to the cookie; spaces, semicolons, commas, not allowed.

Date When the cookie will expire: s = seconds; m = minutes; h = hours; d = days; now, M = months; y = years;
Fri,15-Mar-00 12:35:33 GMT; e.g., +30m is 30 minutes from now; -1d is yesterday; +2M is two months
from now; and now is now.

Path Path where cookie is valid.

Domain Domain name refers to the domain where the script is running and the cookie is valid.

Secure Makes the cookie invalid unless a secure connection is established.

The values of the cookie are stored in the HTTP_COOKIE environment variable. Netscape limits the number of cookies
to 300. CGI.pm makes it easy to use cookies. See the following Example C.44.

Example C.44

 #!/usr/bin/perl
1 use CGI;
2 $query = new CGI;
3 if ($query->param && $query->param('color') ne ""){
4 $color=$query->param('color') ; # Did the user pick a color
 }
5 elsif ($query->cookie('preference')){ # Is there a cookie
 # already?
6 $color=$query->cookie('preference'); # Then go get it!
 }
 else{
7 $color='yellow';} # Set a default background color if
 # a cookie doesn't exist, and the user didn't
 # select a preference
8 $cookie=$query->cookie(-name=>'preference',
 -value=>"$color", # Set the cookie values
 -expires=>'+30d',
);
9 print $query->header(-cookie=>$cookie);
 # Setting the HTTP cookie header

10 print $query->start_html(-title=>"Using Cookies",
 -bgcolor=>"$color",
);
 print $query->h2("Example: Making Cookies");

 &print_prompt($query);
 &do_work($query) if ($query->param);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 &do_work($query) if ($query->param);

 print $query->end_html;

11 sub print_prompt{
 my($query) = @_;
 print $query->startform;
 print "What is your name? ";
 print $query->textfield(-name=>'name',
 -size=>30); # A simple text field
 print "
";
 print "What is your occupation? ";
 print $query->textfield(-name=>'occupation', # Giving values
 -default=>'Retired', # to text field
 -size=>30,
 -maxlength=>120
);

 print "
";
 print "What is your favorite color? ";
 print $query->textfield(-name=>'color'); # Giving values
 print $query->br();
 print $query->submit('action', 'Enter');
 print $query->reset();
 print $query->endform;
 print $query->hr();
 }
12 sub do_work{
 my ($query) = @_;
 my (@values, $key);
 print "<H2>Here are the settings</H2>";
13 foreach $key ($query->param){
 print "$key: \n";
 @values=$query->param($key);
 print join(", ",@values), "
";
 }
 }

EXPLANATION

1. The module is loaded into this script.

2. The CGI module's constructor, new, is called and a reference to a CGI object is returned and assigned to
$query. We will be using the object-oriented form of CGI.pm in this example.

3. If the form was filled out and if the user selected a color, the param function will return true; in other words, if
param is not a null string, the value of the selected color will be assigned to the scalar, $color.

4. If the form has been filled out, and a cookie was sent back to the server, the value of the cookie will be
retrieved and store it in the scalar, $color.

5. If the user didn't select a color, and there was no cookie, then the default background will be set to yellow.

6. If a cookie was set, retrieve the value of the preference from the cookie. The cookie method will extract the
value of the HTTP_COOKIE environment variable.

7. If this is the first time this script has been run, a default value of yellow will be set for the background color.

8. Key/value pairs for the cookie are set. The cookie is set to expire after 30 days. If no expiration date is set, the
cookie is only good for the current session of the browser.

9. The header method creates the HTTP cookie.

10. The background color for the HTML page is set by the start_html method.

11. The method that displays the HTML form is defined.

12. The method that parses the form after it has been filled out is defined.

13. Each of the key/value pairs produced by the param method are displayed.

Example C.45

(What the Cookie HTTP header looks like)

Set-Cookie: preference=yellow; path=/form1CGI.cgi; expires=Sun,
17-Sep-2000 09:46:26 GMT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure C.37. The default background color was set to yellow.

Figure C.38. The user's preference, lightblue, is stored in a cookie.

C.9.6 HTTP Header Methods

A cookie is assigned to an HTTP header as shown in the previous example. Table C.18 lists other methods that can be
used to create and retrieve information from HTTP headers.

Table C.18. HTTP header methods.
HTTP Header

Method What It Does

accept() Lists MIME types or type

auth_type() Returns authorization type for the current session

cookie() Creates and retreives cookies

header() Returns a valid HTTP header and MIME type

https() Returns information about SSL for a session

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

path_info() Sets and retrieves addtional path information

path_translated() Returns additional path information

query_string() Returns the URL encoded query string

raw_cookie() Returns a list of unprocessed cookies sent from the browser

redirect() Generates an HTTP header with a redirection request to the browser to load a page at that
location

referer() Returns the URL of the page the browser displayed before starting your script

remote_addr() Returns the IP address of the remote host, possibly a proxy server

remote_ident() Returns remote user's login name if the identity daemon is activiated

remote_host() Returns the DNS name of the remote host

remote_user() Returns the account name used to authenticate a password

request_method() Returns the HTTP method, GET, POST, or HEAD

script_name() Returns the URL of this script relative to the server's root

self_url() Returns the URL of the CGI script: protocol, host, port, path, additional path info, and parameter
list; can be used to reinvoke the current script

server_name() Returns the name of the Web server

server_software() Returns the name and version of the Web server

server_port() Returns the port number for the current session (usually 80)

url() Returns URL of the current script without additional path information and query string

user_agent() Returns browser information

user_name() Returns remote user's name if it can

virtual_host() Returns the name of the virtual host being accessed by the browser

Example C.46

 #!/usr/bin/perl
 use CGI qw(:standard);
1 print header;
2 print start_html(-title=>'Using header Methods'),
 h1("Let's find out about this session!"),
 p,
3 h4 "Your server is called ", server_name(),
 p,
4 "Your server port number is ", server_port(),
 p,
5 "This script name is: ", script_name(),
 p,
6 "Your browser is ", user_agent(), "and it's out of date!",
 p,
7 "The query string looks like this: ", query_string(),
 p,
8 "Where am I? Your URL is: \n", url(),
 p,
9 "Cookies set: ", raw_cookie();

10 print end_html;

Figure C.39. Output from Example C.46.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure C.39. Output from Example C.46.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISE C.1

1: The Environment Variables and CGI

Create a CGI script that will print to the browser:

The name of the server is: <Put the values here.>

The gateway protocol is:

The client machine's IP address:

The client machine's name:

The document root is:

The CGI script name is:

(Hint: Use the %ENV hash.)

2: Creating A CGI Program

a. Write a CGI script called town_crier that will contain HTML text and Perl statements.

b. The script will contain two subroutines: &welcome and &countem.

c. The welcome subroutine will print Welcome Sir Richard!!. Use a blue font that blinks the welcome.
(Note: Internet Explorer ignores blink.) The subroutine will also print today's date. (Use the ctime
library function.)

d. The subroutine called countem will be written in a file called countem.pl. The town_crier script will
call countem passing its name (town_crier) as an argument to the subroutine. Remember, the name
of the script is stored in the $0 variable, e.g., &countem ($0);. The subroutine will return the
number of times the page has been visited.

e. See Figure 10.40 for an idea of how this script will display its output in the browser's window.

f. The countem function should be designed to

Take an argument— the name of the file that called it. Unless there is a file called
town_crier.log already in the directory, the file will be created. Either way, the file will be
opened for reading and writing. (If the countem function were called from another Perl
script, then the log file created would have the name of that script, followed by the .log
extension.)

If the log file is empty, countem will write the value 1 into the file; otherwise a line will be
read from the file. The line will contain a number. The number will be read in and stored in a
variable. Its value will be incremented by 1. Each time town_crier is executed, this function
is called.

The new number will be sent back to the file, overwriting the number that was there.

The log file will be closed.

The countem subroutine will return the value of the number to the calling program. (In the
example, I put the number in a cell of an HTML table and sent the whole string back to the
town_ crier. Don't bother to try to create the table if you don't have time. Just send back
the number.)

If running on a UNIX system, use the flock function to put an exclusive lock on the log file
while you are using it and will remove the lock when you are finished.

Figure C.40. Output of the CGI program in Exercise C.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure C.40. Output of the CGI program in Exercise C.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EXERCISE C.2

1: Creating Forms—HTML

a. Create a Web page called Stirbucks that contains a form to order coffee, similar to the order form in
Figure C.41.

Figure C.41. The Stirbucks Web page order form.

b. In the action attribute of the initial <FORM> tag, specify a URL that directs the server to a CGI
script using the default GET method.

c. Test your file in a browser.

d. The CGI script will print the value of the QUERY_STRING environment variable.

2: Processing Forms—CGI

a. Write a CGI script that will send back to the user an HTML page that thanks him for his order and
tells him the coffee he selected will be delivered to his shipping address. Use the GET method. After
getting the information from the form, write your own fuction to parse the input.

b. Redesign the form to include the POST method. The program will test which method was used and
call the parse function.

c. Create a DBM file that keeps a list of the e-mail addresses submitted. When a user submits an
order, his e-mail address will be listed in the DBM file. Make sure there are no duplicates. Design a
function to do this.

d. The CGI script will handle e-mail. Send e-mail to yourself confirming the information that was
submitted. Design another function to handle e-mail.

3: Rewrite the Stirbucks program so that the HTML form and the CGI script are in one CGI program created

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3: Rewrite the Stirbucks program so that the HTML form and the CGI script are in one CGI program created
with the CGI.pm module. Use the function-oriented style.

4: Add to the Stirbucks program a cookie that will save the user's preferences so that each time he orders
coffee, he will get a free sweet. If he doesn't state a preference, he will get a bagel with his coffee. The
bagel or the alternate choice for a free sweet is saved in a Netscape cookie. The cookie should not expire for
1 week. (See Figure C.42.)

Figure C.42. Cookie output.

5: Write a CGI script (with the CGI.pm module) that will replace the ATM script you wrote in Chapter 11. The
new CGI script will provide a form in the browser that will produce a menu of items; that is, deposit,
withdraw, balance, etc. Use the object-oriented CGI methods to create the HTML form. In the same script,
the param function will check which selection was checked, and, based on the selection, the appropriate
method will be called from Checking.pm. After the form has been filled out and submitted, the results of
processing will appear on the same page.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

License Agreement and Limited Warranty
READ THE FOLLOWING TERMS AND CONDITIONS CAREFULLY BEFORE OPENING THIS SOFTWARE PACKAGE. THIS
LEGAL DOCUMENT IS AN AGREEMENT BETWEEN YOU AND PRENTICE-HALL, INC. (THE "COMPANY"). BY OPENING THIS
SEALED SOFTWARE PACKAGE, YOU ARE AGREEING TO BE BOUND BY THESE TERMS AND CONDITIONS. IF YOU DO
NOT AGREE WITH THESE TERMS AND CONDITIONS, DO NOT OPEN THE SOFTWARE PACKAGE. PROMPTLY RETURN THE
UNOPENED SOFTWARE PACKAGE AND ALL ACCOMPANYING ITEMS TO THE PLACE YOU OBTAINED THEM FOR A FULL
REFUND OF ANY SUMS YOU HAVE PAID.

1. GRANT OF LICENSE: In consideration of your payment of the license fee, which is part of the price you paid for this
product, and your agreement to abide by the terms and conditions of this Agreement, the Company grants to you a
nonexclusive right to use and display the copy of the enclosed software program (hereinafter the "software") on a
single computer (i.e., with a single CPU) at a single location so long as you comply with the terms of this Agreement.
The Company reserves all rights not expressly granted to you under this Agreement.

2. OWNERSHIP OF SOFTWARE: You own only the magnetic or physical media (the enclosed software) on which the
software is recorded or fixed, but the Company retains all the rights, title, and ownership to the software recorded on
the original software copy(ies) and all subsequent copies of the software, regardless of the form or media on which the
original or other copies may exist. This license is not a sale of the original software or any copy to you.

3. COPY RESTRICTIONS: This software and the accompanying printed materials and user manual (the
"Documentation") are the subject of copyright. You may not copy the Documentation or the software, except that you
may make a single copy of the software for backup or archival purposes only. You may be held legally responsible for
any copying or copyright infringement which is caused or encouraged by your failure to abide by the terms of this
restriction.

4. USE RESTRICTIONS: You may not network the software or otherwise use it on more than one computer or
computer terminal at the same time. You may physically transfer the software from one computer to another provided
that the software is used on only one computer at a time. You may not distribute copies of the software or
Documentation to others. You may not reverse engineer, disassemble, decompile, modify, adapt, translate, or create
derivative works based on the software or the Documentation without the prior written consent of the Company.

5. TRANSFER RESTRICTIONS: The enclosed software is licensed only to you and may not be transferred to any one
else without the prior written consent of the Company. Any unauthorized transfer of the software shall result in the
immediate termination of this Agreement.

6. TERMINATION: This license is effective until terminated. This license will terminate automatically without notice
from the Company and become null and void if you fail to comply with any provisions or limitations of this license. Upon
termination, you shall destroy the Documentation and all copies of the software. All provisions of this Agreement as to
warranties, limitation of liability, remedies or damages, and our ownership rights shall survive termination.

7. MISCELLANEOUS: This Agreement shall be construed in accordance with the laws of the United States of America
and the State of New York and shall benefit the Company, its affiliates, and assignees.

8. LIMITED WARRANTY AND DISCLAIMER OF WARRANTY: The Company warrants that the software, when
properly used in accordance with the Documentation, will operate in substantial conformity with the description of the
software set forth in the Documentation. The Company does not warrant that the software will meet your requirements
or that the operation of the software will be uninterrupted or error-free. The Company warrants that the media on
which the software is delivered shall be free from defects in materials and workmanship under normal use for a period
of thirty (30) days from the date of your purchase. Your only remedy and the Company's only obligation under these
limited warranties is, at the Company's option, return of the warranted item for a refund of any amounts paid by you or
replacement of the item. Any replacement of software or media under the warranties shall not extend the original
warranty period. The limited warranty set forth above shall not apply to any software which the Company determines in
good faith has been subject to misuse, neglect, improper installation, repair, alteration, or damage by you. EXCEPT FOR
THE EXPRESSED WARRANTIES SET FORTH ABOVE, THE COMPANY DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. EXCEPT FOR THE EXPRESS WARRANTY SET FORTH ABOVE, THE COMPANY DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATION REGARDING THE USE OR THE RESULTS OF THE USE OF THE
SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE.

IN NO EVENT, SHALL THE COMPANY OR ITS EMPLOYEES, AGENTS, SUPPLIERS, OR CONTRACTORS BE LIABLE FOR ANY
INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE
LICENSE GRANTED UNDER THIS AGREEMENT, OR FOR LOSS OF USE, LOSS OF DATA, LOSS OF INCOME OR PROFIT,
OR OTHER LOSSES, SUSTAINED AS A RESULT OF INJURY TO ANY PERSON, OR LOSS OF OR DAMAGE TO PROPERTY,
OR CLAIMS OF THIRD PARTIES, EVEN IF THE COMPANY OR AN AUTHORIZED REPRESENTATIVE OF THE COMPANY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL LIABILITY OF THE COMPANY FOR
DAMAGES WITH RESPECT TO THE SOFTWARE EXCEED THE AMOUNTS ACTUALLY PAID BY YOU, IF ANY, FOR THE
SOFTWARE.

SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL,
INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT ALWAYS APPLY. THE
WARRANTIES IN THIS AGREEMENT GIVE YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS
WHICH VARY IN ACCORDANCE WITH LOCAL LAW.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHICH VARY IN ACCORDANCE WITH LOCAL LAW.

ACKNOWLEDGMENT

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS
TERMS AND CONDITIONS. YOU ALSO AGREE THAT THIS AGREEMENT IS THE COMPLETE AND EXCLUSIVE STATEMENT
OF THE AGREEMENT BETWEEN YOU AND THE COMPANY AND SUPERSEDES ALL PROPOSALS OR PRIOR AGREEMENTS,
ORAL, OR WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN YOU AND THE COMPANY OR ANY
REPRESENTATIVE OF THE COMPANY RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

Should you have any questions concerning this Agreement or if you wish to contact the Company for any reason, please
contact in writing at the address below.

Robin Short

Prentice Hall PTR

One Lake Street

Upper Saddle River, New Jersey 07458

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

About the CD-ROM
Welcome to JavaScript by Example. This CD-ROM contains the JavaScript code examples that correspond with the
examples shown in the book. It also contains Netscape's Core JavaScript Guide version 1.5, and Netscape's Core
JavaScript Reference version 1.5.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using the CD-ROM Contents
To use the contents of the CD-ROM, start your Web browser, and open the file index.html located in the top-level
directory of the CD-ROM. From there, you will see links to all of the code examples used in the book. You will also see
links to the two Netscape manuals.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

System Requirements
You must have installed Internet Explorer version 5 or higher, Netscape Navigator version 7 or higher, or Mozilla
version 1.0 or higher; and any operating system supporting one of these browsers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

License Agreement
Use of the software accompanying JavaScript by Example is subject to the terms of the License Agreement and Limited
Warranty, found on the previous two pages.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Technical Support
Prentice Hall does not offer technical support for any of the programs on the CD-ROM. However, if the CD-ROM is
damaged, you may obtain a replacement copy by sending an e-mail that describes the problem to:
disc_exchange@prenhall.com.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

#! line
%ENV
21521
 H4
 The override Argument
24519
 H2
 D.10.2_ Some Sites that Help You with HTML
29825
 H4
 The defaults Method
41513
 H2
 19.8.3_ The GET Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

Access log
ACTION attribute
Attributes

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

Browser 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

CGI 2nd
CGI Applications
CGI Environment Variables
CGI script 2nd 3rd
Client
Client/server
Comments
Cookie
Cookie headers

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

DOCUMENT_ROOT environment variable
Domain

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

Elements
ENV variables
Environment Variables
environment variables
Error log
Extra path information
Extra Path Information

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

Fields
ftp

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

Gateway
Gopher

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

Host
Hotlink
HTML
 tags 2nd
HTML document 2nd 3rd
HTTP 2nd 3rd 4th
HTTP header
HTTP headers
HTTP Status Codes
Hypertext Transport Protocol

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

image/gif

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

Logfiles

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

mailto
Markup language
Method
MIME header
MIME type

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

Netscape
 browser
news

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

PATH_INFO environment variable
PATH_TRANSLATED environment variable
Permission
Port
Protocol 2nd 3rd 4th

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

Query
Query Strings
QUERY_STRING environment variable

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

Root directory 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

Server 2nd 3rd
Server Side Includes
split Function
SSI
Standard input
Status code
Status codes
Submit button
System Calls

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

TCP/IP
telnet
text/html
text/plain

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

URL 2nd 3rd 4th 5th

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [P] [Q] [R] [S] [T] [U] [W]

WAIS
Web pages
Web server
Web sites

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

