
JavaScript: The Good Parts
by Douglas Crockford

Publisher: O'Reilly
Pub Date: May 2, 2008
Print ISBN-13: 978-0-596-51774-8
Pages: 170

Table of Contents | Index

Overview

Most programming languages contain good and bad parts, but JavaScript has more than its share of
the bad, having been developed and released in a hurry before it could be refined. This authoritative
book scrapes away these bad features to reveal a subset of JavaScript that's more reliable, readable,
and maintainable than the language as a whole-a subset you can use to create truly extensible and
efficient code. Considered the JavaScript expert by many people in the development community,
author Douglas Crockford identifies the abundance of good ideas that make JavaScript an outstanding
object-oriented programming language-ideas such as functions, loose typing, dynamic objects, and an
expressive object literal notation. Unfortunately, these good ideas are mixed in with bad and
downright awful ideas, like a programming model based on global variables. When Java applets failed,
JavaScript became the language of the Web by default, making its popularity almost completely
independent of its qualities as a programming language. In JavaScript: The Good Parts, Crockford
finally digs through the steaming pile of good intentions and blunders to give you a detailed look at all
the genuinely elegant parts of JavaScript, including:

Syntax

Objects

Functions

Inheritance

Arrays

Regular expressions

Methods

Style

Beautiful features

The real beauty? As you move ahead with the subset of JavaScript that this book presents, you'll also
sidestep the need to unlearn all the bad parts. Of course, if you want to find out more about the bad
parts and how to use them badly, simply consult any other JavaScript book. With JavaScript: The
Good Parts, you'll discover a beautiful, elegant, lightweight and highly expressive language that lets
you create effective code, whether you're managing object libraries or just trying to get Ajax to run
fast. If you develop sites or applications for the Web, this book is an absolute must.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaScript: The Good Parts
by Douglas Crockford

Publisher: O'Reilly
Pub Date: May 2, 2008
Print ISBN-13: 978-0-596-51774-8
Pages: 170

Table of Contents | Index
Dedication
Preface
Chapter 1. Good Parts

Section 1.1. Why JavaScript?
Section 1.2. Analyzing JavaScript
Section 1.3. A Simple Testing Ground

Chapter 2. Grammar
Section 2.1. Whitespace
Section 2.2. Names
Section 2.3. Numbers
Section 2.4. Strings
Section 2.5. Statements
Section 2.6. Expressions
Section 2.7. Literals
Section 2.8. Functions

Chapter 3. Objects
Section 3.1. Object Literals
Section 3.2. Retrieval
Section 3.3. Update
Section 3.4. Reference
Section 3.5. Prototype
Section 3.6. Reflection
Section 3.7. Enumeration
Section 3.8. Delete
Section 3.9. Global Abatement

Chapter 4. Functions
Section 4.1. Function Objects
Section 4.2. Function Literal
Section 4.3. Invocation
Section 4.4. Arguments
Section 4.5. Return
Section 4.6. Exceptions
Section 4.7. Augmenting Types
Section 4.8. Recursion
Section 4.9. Scope
Section 4.10. Closure
Section 4.11. Callbacks
Section 4.12. Module
Section 4.13. Cascade
Section 4.14. Curry
Section 4.15. Memoization

Chapter 5. Inheritance
Section 5.1. Pseudoclassical
Section 5.2. Object Specifiers
Section 5.3. Prototypal
Section 5.4. Functional
Section 5.5. Parts

Chapter 6. Arrays
Section 6.1. Array Literals
Section 6.2. Length
Section 6.3. Delete
Section 6.4. Enumeration
Section 6.5. Confusion
Section 6.6. Methods
Section 6.7. Dimensions

Chapter 7. Regular Expressions
Section 7.1. An Example
Section 7.2. Construction
Section 7.3. Elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Section 7.3. Elements
Chapter 8. Methods
Chapter 9. Style
Chapter 10. Beautiful Features
Appendix A. Awful Parts

Section A.1. Global Variables
Section A.2. Scope
Section A.3. Semicolon Insertion
Section A.4. Reserved Words
Section A.5. Unicode
Section A.6. typeof
Section A.7. parseInt
Section A.8. +
Section A.9. Floating Point
Section A.10. NaN
Section A.11. Phony Arrays
Section A.12. Falsy Values
Section A.13. hasOwnProperty
Section A.14. Object

Appendix B. Bad Parts
Section B.1. ==
Section B.2. with Statement
Section B.3. eval
Section B.4. continue Statement
Section B.5. switch Fall Through
Section B.6. Block-less Statements
Section B.7. ++ --
Section B.8. Bitwise Operators
Section B.9. The function Statement Versus the function Expression
Section B.10. Typed Wrappers
Section B.11. new
Section B.12. void

Appendix C. JSLint
Section C.1. Undefined Variables and Functions
Section C.2. Members
Section C.3. Options
Section C.4. Semicolon
Section C.5. Line Breaking
Section C.6. Comma
Section C.7. Required Blocks
Section C.8. Forbidden Blocks
Section C.9. Expression Statements
Section C.10. for in Statement
Section C.11. switch Statement
Section C.12. var Statement
Section C.13. with Statement
Section C.14. =
Section C.15. == and !=
Section C.16. Labels
Section C.17. Unreachable Code
Section C.18. Confusing Pluses and Minuses
Section C.19. ++ and --
Section C.20. Bitwise Operators
Section C.21. eval Is Evil
Section C.22. void
Section C.23. Regular Expressions
Section C.24. Constructors and new
Section C.25. Not Looked For
Section C.26. HTML
Section C.27. JSON
Section C.28. Report

Appendix D. Syntax Diagrams
Appendix E. JSON

Section E.1. JSON Syntax
Section E.2. Using JSON Securely
Section E.3. A JSON Parser

Colophon
Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaScript: The Good Parts

by Douglas Crockford

Copyright © 2008 Yahoo! Inc. All rights reserved. Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent

Production Editor: Sumita Mukherji

Copyeditor: Genevieve d'Entremont

Proofreader: Sumita Mukherji

Indexer: Julie Hawks

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Robert Romano

Printing History:

May 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. JavaScript: The Good Parts, the image of a Plain Tiger butterfly, and related trade
dress are trademarks of O'Reilly Media, Inc.

Java ™ is a trademark of Sun Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-51774-8

[M]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dedication

For the Lads: Clement, Philbert, Seymore, Stern, and, lest we forget, C. Twildo.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
If we offend, it is with our good will That you should think, we come not to offend, But
with good will. To show our simple skill, That is the true beginning of our end.

—William Shakespeare, A Midsummer Night's Dream

This is a book about the JavaScript programming language. It is intended for programmers who, by
happenstance or curiosity, are venturing into JavaScript for the first time. It is also intended for
programmers who have been working with JavaScript at a novice level and are now ready for a more
sophisticated relationship with the language. JavaScript is a surprisingly powerful language. Its
unconventionality presents some challenges, but being a small language, it is easily mastered.

My goal here is to help you to learn to think in JavaScript. I will show you the components of the
language and start you on the process of discovering the ways those components can be put together.
This is not a reference book. It is not exhaustive about the language and its quirks. It doesn't contain
everything you'll ever need to know. That stuff you can easily find online. Instead, this book just
contains the things that are really important.

This is not a book for beginners. Someday I hope to write a JavaScript: The First Parts book, but this
is not that book. This is not a book about Ajax or web programming. The focus is exclusively on
JavaScript, which is just one of the languages the web developer must master.

This is not a book for dummies. This book is small, but it is dense. There is a lot of material packed
into it. Don't be discouraged if it takes multiple readings to get it. Your efforts will be rewarded.

P2.1. Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, filenames, and file extensions.

Constant width

Indicates computer coding in a broad sense. This includes commands, options, variables,
attributes, keys, requests, functions, methods, types, classes, modules, properties,
parameters, values, objects, events, event handlers, XML and XHTML tags, macros, and
keywords.

Constant width bold

Indicates commands or other text that should be typed literally by the user.

P2.2. Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your
programs and documentation. You do not need to contact us for permission. For example, writing a
program that uses several chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question
by citing this book and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "JavaScript: The Good Parts by Douglas Crockford. Copyright 2008

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

publisher, and ISBN. For example: "JavaScript: The Good Parts by Douglas Crockford. Copyright 2008
Yahoo! Inc., 978-0-596-51774-8."

If you feel your use of code examples falls outside fair use or the permission given here, feel free to
contact us at permissions@oreilly.com.

P2.3. Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite technology book, that means
the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

P2.4. How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/9780596517748/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com/

P2.5. Acknowledgments

I want to thank the reviewers who pointed out my many egregious errors. There are few things better
in life than having really smart people point out your blunders. It is even better when they do it before
you go public. Thank you, Steve Souders, Bill Scott, Julien LeComte, Stoyan Stefanov, Eric Miraglia,
and Elliotte Rusty Harold.

I want to thank the people I worked with at Electric Communities and State Software who helped me
discover that deep down there was goodness in this language, especially Chip Morningstar, Randy
Farmer, John La, Mark Miller, Scott Shattuck, and Bill Edney.

I want to thank Yahoo! Inc. for giving me time to work on this project and for being such a great place
to work, and thanks to all members of the Ajax Strike Force, past and present. I also want to thank
O'Reilly Media, Inc., particularly Mary Treseler, Simon St.Laurent, and Sumita Mukherji for making
things go so smoothly.

Special thanks to Professor Lisa Drake for all those things she does. And I want to thank the guys in
ECMA TC39 who are struggling to make ECMAScript a better language.

Finally, thanks to Brendan Eich, the world's most misunderstood programming language designer,
without whom this book would not have been necessary.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Good Parts
...setting the attractions of my good parts aside I have no other charms.

—William Shakespeare, The Merry Wives of Windsor

When I was a young journeyman programmer, I would learn about every feature of the languages I
was using, and I would attempt to use all of those features when I wrote. I suppose it was a way of
showing off, and I suppose it worked because I was the guy you went to if you wanted to know how to
use a particular feature.

Eventually I figured out that some of those features were more trouble than they were worth. Some of
them were poorly specified, and so were more likely to cause portability problems. Some resulted in
code that was difficult to read or modify. Some induced me to write in a manner that was too tricky
and error-prone. And some of those features were design errors. Sometimes language designers make
mistakes.

Most programming languages contain good parts and bad parts. I discovered that I could be a better
programmer by using only the good parts and avoiding the bad parts. After all, how can you build
something good out of bad parts?

It is rarely possible for standards committees to remove imperfections from a language because doing
so would cause the breakage of all of the bad programs that depend on those bad parts. They are
usually powerless to do anything except heap more features on top of the existing pile of
imperfections. And the new features do not always interact harmoniously, thus producing more bad
parts.

But you have the power to define your own subset. You can write better programs by relying
exclusively on the good parts.

JavaScript is a language with more than its share of bad parts. It went from non-existence to global
adoption in an alarmingly short period of time. It never had an interval in the lab when it could be
tried out and polished. It went straight into Netscape Navigator 2 just as it was, and it was very
rough. When Java™ applets failed, JavaScript became the "Language of the Web" by default.
JavaScript's popularity is almost completely independent of its qualities as a programming language.

Fortunately, JavaScript has some extraordinarily good parts. In JavaScript, there is a beautiful,
elegant, highly expressive language that is buried under a steaming pile of good intentions and
blunders. The best nature of JavaScript is so effectively hidden that for many years the prevailing
opinion of JavaScript was that it was an unsightly, incompetent toy. My intention here is to expose the
goodness in JavaScript, an outstanding, dynamic programming language. JavaScript is a block of
marble, and I chip away the features that are not beautiful until the language's true nature reveals
itself. I believe that the elegant subset I carved out is vastly superior to the language as a whole,
being more reliable, readable, and maintainable.

This book will not attempt to fully describe the language. Instead, it will focus on the good parts with
occasional warnings to avoid the bad. The subset that will be described here can be used to construct
reliable, readable programs small and large. By focusing on just the good parts, we can reduce
learning time, increase robustness, and save some trees.

Perhaps the greatest benefit of studying the good parts is that you can avoid the need to unlearn the
bad parts. Unlearning bad patterns is very difficult. It is a painful task that most of us face with
extreme reluctance. Sometimes languages are subsetted to make them work better for students. But
in this case, I am subsetting JavaScript to make it work better for professionals.

1.1. Why JavaScript?

JavaScript is an important language because it is the language of the web browser. Its association
with the browser makes it one of the most popular programming languages in the world. At the same
time, it is one of the most despised programming languages in the world. The API of the browser, the
Document Object Model (DOM) is quite awful, and JavaScript is unfairly blamed. The DOM would be
painful to work with in any language. The DOM is poorly specified and inconsistently implemented. This
book touches only very lightly on the DOM. I think writing a Good Parts book about the DOM would be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

book touches only very lightly on the DOM. I think writing a Good Parts book about the DOM would be
extremely challenging.

JavaScript is most despised because it isn't SOME OTHER LANGUAGE. If you are good in SOME OTHER
LANGUAGE and you have to program in an environment that only supports JavaScript, then you are
forced to use JavaScript, and that is annoying. Most people in that situation don't even bother to learn
JavaScript first, and then they are surprised when JavaScript turns out to have significant differences
from the SOME OTHER LANGUAGE they would rather be using, and that those differences matter.

The amazing thing about JavaScript is that it is possible to get work done with it without knowing
much about the language, or even knowing much about programming. It is a language with enormous
expressive power. It is even better when you know what you're doing. Programming is difficult
business. It should never be undertaken in ignorance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Good Parts
...setting the attractions of my good parts aside I have no other charms.

—William Shakespeare, The Merry Wives of Windsor

When I was a young journeyman programmer, I would learn about every feature of the languages I
was using, and I would attempt to use all of those features when I wrote. I suppose it was a way of
showing off, and I suppose it worked because I was the guy you went to if you wanted to know how to
use a particular feature.

Eventually I figured out that some of those features were more trouble than they were worth. Some of
them were poorly specified, and so were more likely to cause portability problems. Some resulted in
code that was difficult to read or modify. Some induced me to write in a manner that was too tricky
and error-prone. And some of those features were design errors. Sometimes language designers make
mistakes.

Most programming languages contain good parts and bad parts. I discovered that I could be a better
programmer by using only the good parts and avoiding the bad parts. After all, how can you build
something good out of bad parts?

It is rarely possible for standards committees to remove imperfections from a language because doing
so would cause the breakage of all of the bad programs that depend on those bad parts. They are
usually powerless to do anything except heap more features on top of the existing pile of
imperfections. And the new features do not always interact harmoniously, thus producing more bad
parts.

But you have the power to define your own subset. You can write better programs by relying
exclusively on the good parts.

JavaScript is a language with more than its share of bad parts. It went from non-existence to global
adoption in an alarmingly short period of time. It never had an interval in the lab when it could be
tried out and polished. It went straight into Netscape Navigator 2 just as it was, and it was very
rough. When Java™ applets failed, JavaScript became the "Language of the Web" by default.
JavaScript's popularity is almost completely independent of its qualities as a programming language.

Fortunately, JavaScript has some extraordinarily good parts. In JavaScript, there is a beautiful,
elegant, highly expressive language that is buried under a steaming pile of good intentions and
blunders. The best nature of JavaScript is so effectively hidden that for many years the prevailing
opinion of JavaScript was that it was an unsightly, incompetent toy. My intention here is to expose the
goodness in JavaScript, an outstanding, dynamic programming language. JavaScript is a block of
marble, and I chip away the features that are not beautiful until the language's true nature reveals
itself. I believe that the elegant subset I carved out is vastly superior to the language as a whole,
being more reliable, readable, and maintainable.

This book will not attempt to fully describe the language. Instead, it will focus on the good parts with
occasional warnings to avoid the bad. The subset that will be described here can be used to construct
reliable, readable programs small and large. By focusing on just the good parts, we can reduce
learning time, increase robustness, and save some trees.

Perhaps the greatest benefit of studying the good parts is that you can avoid the need to unlearn the
bad parts. Unlearning bad patterns is very difficult. It is a painful task that most of us face with
extreme reluctance. Sometimes languages are subsetted to make them work better for students. But
in this case, I am subsetting JavaScript to make it work better for professionals.

1.1. Why JavaScript?

JavaScript is an important language because it is the language of the web browser. Its association
with the browser makes it one of the most popular programming languages in the world. At the same
time, it is one of the most despised programming languages in the world. The API of the browser, the
Document Object Model (DOM) is quite awful, and JavaScript is unfairly blamed. The DOM would be
painful to work with in any language. The DOM is poorly specified and inconsistently implemented. This
book touches only very lightly on the DOM. I think writing a Good Parts book about the DOM would be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

book touches only very lightly on the DOM. I think writing a Good Parts book about the DOM would be
extremely challenging.

JavaScript is most despised because it isn't SOME OTHER LANGUAGE. If you are good in SOME OTHER
LANGUAGE and you have to program in an environment that only supports JavaScript, then you are
forced to use JavaScript, and that is annoying. Most people in that situation don't even bother to learn
JavaScript first, and then they are surprised when JavaScript turns out to have significant differences
from the SOME OTHER LANGUAGE they would rather be using, and that those differences matter.

The amazing thing about JavaScript is that it is possible to get work done with it without knowing
much about the language, or even knowing much about programming. It is a language with enormous
expressive power. It is even better when you know what you're doing. Programming is difficult
business. It should never be undertaken in ignorance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2. Analyzing JavaScript

JavaScript is built on some very good ideas and a few very bad ones.

The very good ideas include functions, loose typing, dynamic objects, and an expressive object literal
notation. The bad ideas include a programming model based on global variables.

JavaScript's functions are first class objects with (mostly) lexical scoping. JavaScript is the first lambda
language to go mainstream. Deep down, JavaScript has more in common with Lisp and Scheme than
with Java. It is Lisp in C's clothing. This makes JavaScript a remarkably powerful language.

The fashion in most programming languages today demands strong typing. The theory is that strong
typing allows a compiler to detect a large class of errors at compile time. The sooner we can detect
and repair errors, the less they cost us. JavaScript is a loosely typed language, so JavaScript compilers
are unable to detect type errors. This can be alarming to people who are coming to JavaScript from
strongly typed languages. But it turns out that strong typing does not eliminate the need for careful
testing. And I have found in my work that the sorts of errors that strong type checking finds are not
the errors I worry about. On the other hand, I find loose typing to be liberating. I don't need to form
complex class hierarchies. And I never have to cast or wrestle with the type system to get the
behavior that I want.

JavaScript has a very powerful object literal notation. Objects can be created simply by listing their
components. This notation was the inspiration for JSON, the popular data interchange format. (There
will be more about JSON in Appendix E.)

A controversial feature in JavaScript is prototypal inheritance. JavaScript has a class-free object
system in which objects inherit properties directly from other objects. This is really powerful, but it is
unfamiliar to classically trained programmers. If you attempt to apply classical design patterns directly
to JavaScript, you will be frustrated. But if you learn to work with JavaScript's prototypal nature, your
efforts will be rewarded.

JavaScript is much maligned for its choice of key ideas. For the most part, though, those choices were
good, if unusual. But there was one choice that was particularly bad: JavaScript depends on global
variables for linkage. All of the top-level variables of all compilation units are tossed together in a
common namespace called the global object. This is a bad thing because global variables are evil, and
in JavaScript they are fundamental. Fortunately, as we will see, JavaScript also gives us the tools to
mitigate this problem.

In a few cases, we can't ignore the bad parts. There are some unavoidable awful parts, which will be
called out as they occur. They will also be summarized in Appendix A. But we will succeed in avoiding
most of the bad parts in this book, summarizing much of what was left out in Appendix B. If you want
to learn more about the bad parts and how to use them badly, consult any other JavaScript book.

The standard that defines JavaScript (aka JScript) is the third edition of The ECMAScript Programming
Language, which is available from http://www.ecma-international.org/publications/files/ecma-
st/ECMA-262.pdf. The language described in this book is a proper subset of ECMAScript. This book
does not describe the whole language because it leaves out the bad parts. The treatment here is not
exhaustive. It avoids the edge cases. You should, too. There is danger and misery at the edges.

Appendix C describes a programming tool called JSLint, a JavaScript parser that can analyze a
JavaScript program and report on the bad parts that it contains. JSLint provides a degree of rigor that
is generally lacking in JavaScript development. It can give you confidence that your programs contain
only the good parts.

JavaScript is a language of many contrasts. It contains many errors and sharp edges, so you might
wonder, "Why should I use JavaScript?" There are two answers. The first is that you don't have a
choice. The Web has become an important platform for application development, and JavaScript is the
only language that is found in all browsers. It is unfortunate that Java failed in that environment; if it
hadn't, there could be a choice for people desiring a strongly typed classical language. But Java did fail
and JavaScript is flourishing, so there is evidence that JavaScript did something right.

The other answer is that, despite its deficiencies, JavaScript is really good. It is lightweight and
expressive. And once you get the hang of it, functional programming is a lot of fun.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expressive. And once you get the hang of it, functional programming is a lot of fun.

But in order to use the language well, you must be well informed about its limitations. I will pound on
those with some brutality. Don't let that discourage you. The good parts are good enough to
compensate for the bad parts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3. A Simple Testing Ground

If you have a web browser and any text editor, you have everything you need to run JavaScript
programs. First, make an HTML file with a name like program.html:

<html><body><pre><script src="program.js">
</script></pre></body></html>

Then, make a file in the same directory with a name like program.js:

document.writeln('Hello, world!');

Next, open your HTML file in your browser to see the result. Throughout the book, a method method is
used to define new methods. This is its definition:

Function.prototype.method = function (name, func) {
 this.prototype[name] = func;
 return this;
};

It will be explained in Chapter 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Grammar
I know it well: I read it in the grammar long ago.

—William Shakespeare, The Tragedy of Titus Andronicus

This chapter introduces the grammar of the good parts of JavaScript, presenting a quick overview of
how the language is structured. We will represent the grammar with railroad diagrams.

The rules for interpreting these diagrams are simple:

You start on the left edge and follow the tracks to the right edge.

As you go, you will encounter literals in ovals, and rules or descriptions in rectangles.

Any sequence that can be made by following the tracks is legal.

Any sequence that cannot be made by following the tracks is not legal.

Railroad diagrams with one bar at each end allow whitespace to be inserted between any pair of
tokens. Railroad diagrams with two bars at each end do not.

The grammar of the good parts presented in this chapter is significantly simpler than the grammar of
the whole language.

2.1. Whitespace

Whitespace can take the form of formatting characters or comments. Whitespace is usually
insignificant, but it is occasionally necessary to use whitespace to separate sequences of characters
that would otherwise be combined into a single token. For example, in:

var that = this;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the space between var and that cannot be removed, but the other spaces can be removed.

JavaScript offers two forms of comments, block comments formed with /* */ and line-ending
comments starting with //. Comments should be used liberally to improve the readability of your
programs. Take care that the comments always accurately describe the code. Obsolete comments are
worse than no comments.

The /* */ form of block comments came from a language called PL/I. PL/I chose those strange pairs
as the symbols for comments because they were unlikely to occur in that language's programs, except
perhaps in string literals. In JavaScript, those pairs can also occur in regular expression literals, so
block comments are not safe for commenting out blocks of code. For example:

/*
 var rm_a = /a*/.match(s);
*/

causes a syntax error. So, it is recommended that /* */ comments be avoided and // comments be
used instead. In this book, // will be used exclusively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Grammar
I know it well: I read it in the grammar long ago.

—William Shakespeare, The Tragedy of Titus Andronicus

This chapter introduces the grammar of the good parts of JavaScript, presenting a quick overview of
how the language is structured. We will represent the grammar with railroad diagrams.

The rules for interpreting these diagrams are simple:

You start on the left edge and follow the tracks to the right edge.

As you go, you will encounter literals in ovals, and rules or descriptions in rectangles.

Any sequence that can be made by following the tracks is legal.

Any sequence that cannot be made by following the tracks is not legal.

Railroad diagrams with one bar at each end allow whitespace to be inserted between any pair of
tokens. Railroad diagrams with two bars at each end do not.

The grammar of the good parts presented in this chapter is significantly simpler than the grammar of
the whole language.

2.1. Whitespace

Whitespace can take the form of formatting characters or comments. Whitespace is usually
insignificant, but it is occasionally necessary to use whitespace to separate sequences of characters
that would otherwise be combined into a single token. For example, in:

var that = this;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the space between var and that cannot be removed, but the other spaces can be removed.

JavaScript offers two forms of comments, block comments formed with /* */ and line-ending
comments starting with //. Comments should be used liberally to improve the readability of your
programs. Take care that the comments always accurately describe the code. Obsolete comments are
worse than no comments.

The /* */ form of block comments came from a language called PL/I. PL/I chose those strange pairs
as the symbols for comments because they were unlikely to occur in that language's programs, except
perhaps in string literals. In JavaScript, those pairs can also occur in regular expression literals, so
block comments are not safe for commenting out blocks of code. For example:

/*
 var rm_a = /a*/.match(s);
*/

causes a syntax error. So, it is recommended that /* */ comments be avoided and // comments be
used instead. In this book, // will be used exclusively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2. Names

A name is a letter optionally followed by one or more letters, digits, or underbars. A name cannot be
one of these reserved words:

abstract
boolean break byte
case catch char class const continue
debugger default delete do double
else enum export extends
false final finally float for function
goto
if implements import in instanceof int interface
long
native new null
package private protected public
return
short static super switch synchronized
this throw throws transient true try typeof
var volatile void
while with

Most of the reserved words in this list are not used in the language. The list does not include some
words that should have been reserved but were not, such as undefined, NaN, and Infinity. It is not
permitted to name a variable or parameter with a reserved word. Worse, it is not permitted to use a
reserved word as the name of an object property in an object literal or following a dot in a refinement.

Names are used for statements, variables, parameters, property names, operators, and labels.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3. Numbers

JavaScript has a single number type. Internally, it is represented as 64-bit floating point, the same as
Java's double. Unlike most other programming languages, there is no separate integer type, so 1 and
1.0 are the same value. This is a significant convenience because problems of overflow in short
integers are completely avoided, and all you need to know about a number is that it is a number. A
large class of numeric type errors is avoided.

If a number literal has an exponent part, then the value of the literal is computed by multiplying the
part before the e by 10 raised to the power of the part after the e. So 100 and 1e2 are the same
number.

Negative numbers can be formed by using the - prefix operator.

The value NaN is a number value that is the result of an operation that cannot produce a normal result.
NaN is not equal to any value, including itself. You can detect NaN with the isNaN(number) function.

The value Infinity represents all values greater than 1.79769313486231570e+308.

Numbers have methods (see Chapter 8). JavaScript has a Math object that contains a set of methods
that act on numbers. For example, the Math.floor(number) method can be used to convert a
number into an integer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4. Strings

A string literal can be wrapped in single quotes or double quotes. It can contain zero or more
characters. The \ (backslash) is the escape character. JavaScript was built at a time when Unicode
was a 16-bit character set, so all characters in JavaScript are 16 bits wide.

JavaScript does not have a character type. To represent a character, make a string with just one
character in it.

The escape sequences allow for inserting characters into strings that are not normally permitted, such
as backslashes, quotes, and control characters. The \u convention allows for specifying character code
points numerically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"A" === "\u0041"

Strings have a length property. For example, "seven".length is 5.

Strings are immutable. Once it is made, a string can never be changed. But it is easy to make a new
string by concatenating other strings together with the + operator. Two strings containing exactly the
same characters in the same order are considered to be the same string. So:

'c' + 'a' + 't' === 'cat'

is true.

Strings have methods (see Chapter 8):

'cat'.toUpperCase() === 'CAT'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5. Statements

A compilation unit contains a set of executable statements. In web browsers, each <script> tag
delivers a compilation unit that is compiled and immediately executed. Lacking a linker, JavaScript
throws them all together in a common global namespace. There is more on global variables in
Appendix A.

When used inside of a function, the var statement defines the function's private variables.

The switch, while, for, and do statements are allowed to have an optional label prefix that
interacts with the break statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Statements tend to be executed in order from top to bottom. The sequence of execution can be
altered by the conditional statements (if and switch), by the looping statements (while, for, and
do), by the disruptive statements (break, return, and throw), and by function invocation.

A block is a set of statements wrapped in curly braces. Unlike many other languages, blocks in
JavaScript do not create a new scope, so variables should be defined at the top of the function, not in
blocks.

The if statement changes the flow of the program based in the value of the expression. The then
block is executed if the expression is truthy; otherwise, the optional else branch is taken.

Here are the falsy values:

false

null

undefined

The empty string ''

The number 0

The number NaN

All other values are truthy, including true, the string 'false', and all objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The switch statement performs a multiway branch. It compares the expression for equality with all of
the specified cases. The expression can produce a number or a string. When an exact match is found,
the statements of the matching case clause are executed. If there is no match, the optional default
statements are executed.

A case clause contains one or more case expressions. The case expressions need not be constants.
The statement following a clause should be a disruptive statement to prevent fall through into the next
case. The break statement can be used to exit from a switch.

The while statement performs a simple loop. If the expression is falsy, then the loop will break. While
the expression is truthy, the block will be executed.

The for statement is a more complicated looping statement. It comes in two forms.

The conventional form is controlled by three optional clauses: the initialization, the condition, and the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The conventional form is controlled by three optional clauses: the initialization, the condition, and the
increment. First, the initialization is done, which typically initializes the loop variable. Then, the
condition is evaluated. Typically, this tests the loop variable against a completion criterion. If the
condition is omitted, then a condition of true is assumed. If the condition is falsy, the loop breaks.
Otherwise, the block is executed, then the increment executes, and then the loop repeats with the
condition.

The other form (called for in) enumerates the property names (or keys) of an object. On each
iteration, another property name string from the object is assigned to the variable.

It is usually necessary to test object.hasOwnProperty(variable) to determine whether the property
name is truly a member of the object or was found instead on the prototype chain.

for (myvar in obj) {
 if (obj.hasownProperty(myvar)) {
 ...
 }
}

The do statement is like the while statement except that the expression is tested after the block is
executed instead of before. That means that the block will always be executed at least once.

The try statement executes a block and catches any exceptions that were thrown by the block. The
catch clause defines a new variable that will receive the exception object.

The throw statement raises an exception. If the throw statement is in a try block, then control goes
to the catch clause. Otherwise, the function invocation is abandoned, and control goes to the catch
clause of the try in the calling function.

The expression is usually an object literal containing a name property and a message property. The
catcher of the exception can use that information to determine what to do.

The return statement causes the early return from a function. It can also specify the value to be
returned. If a return expression is not specified, then the return value will be undefined.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

returned. If a return expression is not specified, then the return value will be undefined.

JavaScript does not allow a line end between the return and the expression.

The break statement causes the exit from a loop statement or a switch statement. It can optionally
have a label that will cause an exit from the labeled statement.

JavaScript does not allow a line end between the break and the label.

An expression statement can either assign values to one or more variables or members, invoke a
method, delete a property from an object. The = operator is used for assignment. Do not confuse it
with the === equality operator. The += operator can add or concatenate.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.6. Expressions

The simplest expressions are a literal value (such as a string or number), a variable, a built-in value
(true, false, null, undefined, NaN, or Infinity), an invocation expression preceded by new, a
refinement expression preceded by delete, an expression wrapped in parentheses, an expression
preceded by a prefix operator, or an expression followed by:

An infix operator and another expression

The ? ternary operator followed by another expression, then by :, and then by yet another
expression

An invocation

A refinement

The ? ternary operator takes three operands. If the first operand is truthy, it produces the value of the
second operand. But if the first operand is falsy, it produces the value of the third operand.

The operators at the top of the operator precedence list in Table 2-1 have higher precedence. They
bind the tightest. The operators at the bottom have the lowest precedence. Parentheses can be used
to alter the normal precedence, so:

2 + 3 * 5 === 17
(2 + 3) * 5 === 25

Table 2-1. Operator precedence
. [] () Refinement and invocation

delete new typeof + - ! Unary operators

* / % Multiplication, division, modulo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

+ - Addition/concatenation, subtraction

>= <= > < Inequality

=== !== Equality

&& Logical and

|| Logical or

?: Ternary

The values produced by typeof are 'number', 'string', 'boolean', 'undefined', 'function', and
'object'. If the operand is an array or null, then the result is 'object', which is wrong. There will
be more about typeof in Chapter 6 and Appendix A.

If the operand of ! is truthy, it produces false. Otherwise, it produces true.

The + operator adds or concatenates. If you want it to add, make sure both operands are numbers.

The / operator can produce a noninteger result even if both operands are integers.

The && operator produces the value of its first operand if the first operand is falsy. Otherwise, it
produces the value of the second operand.

The || operator produces the value of its first operand if the first operand is truthy. Otherwise, it
produces the value of the second operand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

produces the value of the second operand.

Invocation causes the execution of a function value. The invocation operator is a pair of parentheses
that follow the function value. The parentheses can contain arguments that will be delivered to the
function. There will be much more about functions in Chapter 4.

A refinement is used to specify a property or element of an object or array. This will be described in
detail in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.7. Literals

Object literals are a convenient notation for specifying new objects. The names of the properties can
be specified as names or as strings. The names are treated as literal names, not as variable names, so
the names of the properties of the object must be known at compile time. The values of the properties
are expressions. There will be more about object literals in the next chapter.

Array literals are a convenient notation for specifying new arrays. There will be more about array
literals in Chapter 6.

There will be more about regular expressions in Chapter 7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.8. Functions

A function literal defines a function value. It can have an optional name that it can use to call itself
recursively. It can specify a list of parameters that will act as variables initialized by the invocation
arguments. The body of the function includes variable definitions and statements. There will be more
about functions in Chapter 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Objects
Upon a homely object Love can wink.

—William Shakespeare, The Two Gentlemen of Verona

The simple types of JavaScript are numbers, strings, booleans (true and false), null, and
undefined. All other values are objects. Numbers, strings, and booleans are object-like in that they
have methods, but they are immutable. Objects in JavaScript are mutable keyed collections. In
JavaScript, arrays are objects, functions are objects, regular expressions are objects, and, of course,
objects are objects.

An object is a container of properties, where a property has a name and a value. A property name can
be any string, including the empty string. A property value can be any JavaScript value except for
undefined.

Objects in JavaScript are class-free. There is no constraint on the names of new properties or on the
values of properties. Objects are useful for collecting and organizing data. Objects can contain other
objects, so they can easily represent tree or graph structures.

JavaScript includes a prototype linkage feature that allows one object to inherit the properties of
another. When used well, this can reduce object initialization time and memory consumption.

3.1. Object Literals

Object literals provide a very convenient notation for creating new object values. An object literal is a
pair of curly braces surrounding zero or more name/value pairs. An object literal can appear anywhere
an expression can appear:

var empty_object = {};

var stooge = {
 "first-name": "Jerome",
 "last-name": "Howard"
};

A property's name can be any string, including the empty string. The quotes around a property's name
in an object literal are optional if the name would be a legal JavaScript name and not a reserved word.
So quotes are required around "first-name", but are optional around first_name. Commas are used
to separate the pairs.

A property's value can be obtained from any expression, including another object literal. Objects can
nest:

var flight = {
 airline: "Oceanic",
 number: 815,
 departure: {
 IATA: "SYD",
 time: "2004-09-22 14:55",
 city: "Sydney"
 },
 arrival: {
 IATA: "LAX",
 time: "2004-09-23 10:42",
 city: "Los Angeles"
 }
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Objects
Upon a homely object Love can wink.

—William Shakespeare, The Two Gentlemen of Verona

The simple types of JavaScript are numbers, strings, booleans (true and false), null, and
undefined. All other values are objects. Numbers, strings, and booleans are object-like in that they
have methods, but they are immutable. Objects in JavaScript are mutable keyed collections. In
JavaScript, arrays are objects, functions are objects, regular expressions are objects, and, of course,
objects are objects.

An object is a container of properties, where a property has a name and a value. A property name can
be any string, including the empty string. A property value can be any JavaScript value except for
undefined.

Objects in JavaScript are class-free. There is no constraint on the names of new properties or on the
values of properties. Objects are useful for collecting and organizing data. Objects can contain other
objects, so they can easily represent tree or graph structures.

JavaScript includes a prototype linkage feature that allows one object to inherit the properties of
another. When used well, this can reduce object initialization time and memory consumption.

3.1. Object Literals

Object literals provide a very convenient notation for creating new object values. An object literal is a
pair of curly braces surrounding zero or more name/value pairs. An object literal can appear anywhere
an expression can appear:

var empty_object = {};

var stooge = {
 "first-name": "Jerome",
 "last-name": "Howard"
};

A property's name can be any string, including the empty string. The quotes around a property's name
in an object literal are optional if the name would be a legal JavaScript name and not a reserved word.
So quotes are required around "first-name", but are optional around first_name. Commas are used
to separate the pairs.

A property's value can be obtained from any expression, including another object literal. Objects can
nest:

var flight = {
 airline: "Oceanic",
 number: 815,
 departure: {
 IATA: "SYD",
 time: "2004-09-22 14:55",
 city: "Sydney"
 },
 arrival: {
 IATA: "LAX",
 time: "2004-09-23 10:42",
 city: "Los Angeles"
 }
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2. Retrieval

Values can be retrieved from an object by wrapping a string expression in a [] suffix. If the string
expression is a constant, and if it is a legal JavaScript name and not a reserved word, then the .
notation can be used instead. The . notation is preferred because it is more compact and it reads
better:

stooge["first-name"] // "Joe"
flight.departure.IATA // "SYD"

The undefined value is produced if an attempt is made to retrieve a nonexistent member:

stooge["middle-name"] // undefined
flight.status // undefined
stooge["FIRST-NAME"] // undefined

The || operator can be used to fill in default values:

var middle = stooge["middle-name"] || "(none)";
var status = flight.status || "unknown";

Attempting to retrieve values from undefined will throw a TypeError exception. This can be guarded
against with the && operator:

flight.equipment // undefined
flight.equipment.model // throw "TypeError"
flight.equipment && flight.equipment.model // undefined

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3. Update

A value in an object can be updated by assignment. If the property name already exists in the object,
the property value is replaced:

stooge['first-name'] = 'Jerome';

If the object does not already have that property name, the object is augmented:

stooge['middle-name'] = 'Lester';
stooge.nickname = 'Curly';
flight.equipment = {
 model: 'Boeing 777'
};
flight.status = 'overdue';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4. Reference

Objects are passed around by reference. They are never copied:

var x = stooge;
x.nickname = 'Curly';
var nick = stooge.nickname;
 // nick is 'Curly' because x and stooge
 // are references to the same object

var a = {}, b = {}, c = {};
 // a, b, and c each refer to a
 // different empty object
a = b = c = {};
 // a, b, and c all refer to
 // the same empty object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5. Prototype

Every object is linked to a prototype object from which it can inherit properties. All objects created
from object literals are linked to Object.prototype, an object that comes standard with JavaScript.

When you make a new object, you can select the object that should be its prototype. The mechanism
that JavaScript provides to do this is messy and complex, but it can be significantly simplified. We will
add a beget method to the Object function. The beget method creates a new object that uses an old
object as its prototype. There will be much more about functions in the next chapter.

if (typeof Object.beget !== 'function') {
 Object.beget = function (o) {
 var F = function () {};
 F.prototype = o;
 return new F();
 };
}
var another_stooge = Object.beget(stooge);

The prototype link has no effect on updating. When we make changes to an object, the object's
prototype is not touched:

another_stooge['first-name'] = 'Harry';
another_stooge['middle-name'] = 'Moses';
another_stooge.nickname = 'Moe';

The prototype link is used only in retrieval. If we try to retrieve a property value from an object, and if
the object lacks the property name, then JavaScript attempts to retrieve the property value from the
prototype object. And if that object is lacking the property, then it goes to its prototype, and so on
until the process finally bottoms out with Object.prototype. If the desired property exists nowhere in
the prototype chain, then the result is the undefined value. This is called delegation.

The prototype relationship is a dynamic relationship. If we add a new property to a prototype, that
property will immediately be visible in all of the objects that are based on that prototype:

stooge.profession = 'actor';
another_stooge.profession // 'actor'

We will see more about the prototype chain in Chapter 6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6. Reflection

It is easy to inspect an object to determine what properties it has by attempting to retrieve the
properties and examining the values obtained. The typeof operator can be very helpful in determining
the type of a property:

typeof flight.number // 'number'
typeof flight.status // 'string'
typeof flight.arrival // 'object'
typeof flight.manifest // 'undefined'

Some care must be taken because any property on the prototype chain can produce a value:

typeof flight.toString // 'function'
typeof flight.constructor // 'function'

There are two approaches to dealing with these undesired properties. The first is to have your
program look for and reject function values. Generally, when you are reflecting, you are interested in
data, and so you should be aware that some values could be functions.

The other approach is to use the hasOwnProperty method, which returns true if the object has a
particular property. The hasOwnProperty method does not look at the prototype chain:

flight.hasOwnProperty('number') // true
flight.hasOwnProperty('constructor') // false

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.7. Enumeration

The for in statement can loop over all of the property names in an object. The enumeration will
include all of the properties—including functions and prototype properties that you might not be
interested in—so it is necessary to filter out the values you don't want. The most common filters are
the hasOwnProperty method and using typeof to exclude functions:

var name;
for (name in another_stooge) {
 if (typeof another_stooge[name] !== 'function') {
 document.writeln(name + ': ' + another_stooge[name]);
 }
}

There is no guarantee on the order of the names, so be prepared for the names to appear in any
order. If you want to assure that the properties appear in a particular order, it is best to avoid the for
in statement entirely and instead make an array containing the names of the properties in the correct
order:

var i;
var properties = [
 'first-name',
 'middle-name',
 'last-name',
 'profession'
];
for (i = 0; i < properties.length; i += 1) {
 document.writeln(properties[i] + ': ' +
 another_stooge[properties[i]]);
 }
}

By using for instead of for in, we were able to get the properties we wanted without worrying about
what might be dredged up from the prototype chain, and we got them in the correct order.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.8. Delete

The delete operator can be used to remove a property from an object. It will remove a property from
the object if it has one. It will not touch any of the objects in the prototype linkage.

Removing a property from an object may allow a property from the prototype linkage to shine
through:

another_stooge.nickname // 'Moe'

// Remove nickname from another_stooge, revealing
// the nickname of the prototype.

delete another_stooge.nickname;

another_stooge.nickname // 'Curly'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.9. Global Abatement

JavaScript makes it easy to define global variables that can hold all of the assets of your application.
Unfortunately, global variables weaken the resiliency of programs and should be avoided.

One way to minimize the use of global variables is to create a single global variable for your
application:

var MYAPP = {};

That variable then becomes the container for your application:

MYAPP.stooge = {
 "first-name": "Joe",
 "last-name": "Howard"
};

MYAPP.flight = {
 airline: "Oceanic",
 number: 815,
 departure: {
 IATA: "SYD",
 time: "2004-09-22 14:55",
 city: "Sydney"
 },
 arrival: {
 IATA: "LAX",
 time: "2004-09-23 10:42",
 city: "Los Angeles"
 }
};

By reducing your global footprint to a single name, you significantly reduce the chance of bad
interactions with other applications, widgets, or libraries. Your program also becomes easier to read
because it is obvious that MYAPP.stooge refers to a top-level structure. In the next chapter, we will
see ways to use closure for information hiding, which is another effective global abatement technique.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Functions
Why, every fault's condemn'd ere it be done: Mine were the very cipher of a function. . .

—William Shakespeare, Measure for Measure

The best thing about JavaScript is its implementation of functions. It got almost everything right. But,
as you should expect with JavaScript, it didn't get everything right.

A function encloses a set of statements. Functions are the fundamental modular unit of JavaScript.
They are used for code reuse, information hiding, and composition. Functions are used to specify the
behavior of objects. Generally, the craft of programming is the factoring of a set of requirements into
a set of functions and data structures.

4.1. Function Objects

Functions in JavaScript are objects. Objects are collections of name/value pairs having a hidden link to
a prototype object. Objects produced from object literals are linked to Object.prototype. Function
objects are linked to Function.prototype (which is itself linked to Object.prototype). Every
function is also created with two additional hidden properties: the function's context and the code that
implements the function's behavior.

Every function object is also created with a prototype property. Its value is an object with a
constructor property whose value is the function. This is distinct from the hidden link to
Function.prototype. The meaning of this convoluted construction will be revealed in the next
chapter.

Since functions are objects, they can be used like any other value. Functions can be stored in
variables, objects, and arrays. Functions can be passed as arguments to functions, and functions can
be returned from functions. Also, since functions are objects, functions can have methods.

The thing that is special about functions is that they can be invoked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Functions
Why, every fault's condemn'd ere it be done: Mine were the very cipher of a function. . .

—William Shakespeare, Measure for Measure

The best thing about JavaScript is its implementation of functions. It got almost everything right. But,
as you should expect with JavaScript, it didn't get everything right.

A function encloses a set of statements. Functions are the fundamental modular unit of JavaScript.
They are used for code reuse, information hiding, and composition. Functions are used to specify the
behavior of objects. Generally, the craft of programming is the factoring of a set of requirements into
a set of functions and data structures.

4.1. Function Objects

Functions in JavaScript are objects. Objects are collections of name/value pairs having a hidden link to
a prototype object. Objects produced from object literals are linked to Object.prototype. Function
objects are linked to Function.prototype (which is itself linked to Object.prototype). Every
function is also created with two additional hidden properties: the function's context and the code that
implements the function's behavior.

Every function object is also created with a prototype property. Its value is an object with a
constructor property whose value is the function. This is distinct from the hidden link to
Function.prototype. The meaning of this convoluted construction will be revealed in the next
chapter.

Since functions are objects, they can be used like any other value. Functions can be stored in
variables, objects, and arrays. Functions can be passed as arguments to functions, and functions can
be returned from functions. Also, since functions are objects, functions can have methods.

The thing that is special about functions is that they can be invoked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2. Function Literal

Function objects are created with function literals:

// Create a variable called add and store a function
// in it that adds two numbers.

var add = function (a, b) {
 return a + b;
};

A function literal has four parts. The first part is the reserved word function.

The optional second part is the function's name. The function can use its name to call itself recursively.
The name can also be used by debuggers and development tools to identify the function. If a function
is not given a name, as shown in the previous example, it is said to be anonymous.

The third part is the set of parameters of the function, wrapped in parentheses. Within the
parentheses is a set of zero or more parameter names, separated by commas. These names will be
defined as variables in the function. Unlike ordinary variables, instead of being initialized to
undefined, they will be initialized to the arguments supplied when the function is invoked.

The fourth part is a set of statements wrapped in curly braces. These statements are the body of the
function. They are executed when the function is invoked.

A function literal can appear anywhere that an expression can appear. Functions can be defined inside
of other functions. An inner function of course has access to its parameters and variables. An inner
function also enjoys access to the parameters and variables of the functions it is nested within. The
function object created by a function literal contains a link to that outer context. This is called closure.
This is the source of enormous expressive power.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3. Invocation

Invoking a function suspends the execution of the current function, passing control and parameters to
the new function. In addition to the declared parameters, every function receives two additional
parameters: this and arguments. The this parameter is very important in object oriented
programming, and its value is determined by the invocation pattern. There are four patterns of
invocation in JavaScript: the method invocation pattern, the function invocation pattern, the
constructor invocation pattern, and the apply invocation pattern. The patterns differ in how the bonus
parameter this is initialized.

The invocation operator is a pair of parentheses that follow any expression that produces a function
value. The parentheses can contain zero or more expressions, separated by commas. Each expression
produces one argument value. Each of the argument values will be assigned to the function's
parameter names. There is no runtime error when the number of arguments and the number of
parameters do not match. If there are too many argument values, the extra argument values will be
ignored. If there are too few argument values, the undefined value will be substituted for the missing
values. There is no type checking on the argument values: any type of value can be passed to any
parameter.

4.3.1. The Method Invocation Pattern

When a function is stored as a property of an object, we call it a method. When a method is invoked,
this is bound to that object. If an invocation expression contains a refinement (that is, a . dot
expression or [subscript] expression), it is invoked as a method:

// Create myObject. It has a value and an increment
// method. The increment method takes an optional
// parameter. If the argument is not a number, then 1
// is used as the default.

var myObject = {
 value: 0;
 increment: function (inc) {
 this.value += typeof inc === 'number' ? inc : 1;
 }
};

myObject.increment();
document.writeln(myObject.value); // 1

myObject.increment(2);
document.writeln(myObject.value); // 3

A method can use this to access the object so that it can retrieve values from the object or modify
the object. The binding of this to the object happens at invocation time. This very late binding makes
functions that use this highly reusable. Methods that get their object context from this are called
public methods.

4.3.2. The Function Invocation Pattern

When a function is not the property of an object, then it is invoked as a function:

var sum = add(3, 4); // sum is 7

When a function is invoked with this pattern, this is bound to the global object. This was a mistake in
the design of the language. Had the language been designed correctly, when the inner function is
invoked, this would still be bound to the this variable of the outer function. A consequence of this
error is that a method cannot employ an inner function to help it do its work because the inner
function does not share the method's access to the object as its this is bound to the wrong value.
Fortunately, there is an easy workaround. If the method defines a variable and assigns it the value of
this, the inner function will have access to this through that variable. By convention, the name of
that variable is that:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that variable is that:

// Augment myObject with a double method.

myObject.double = function () {
 var that = this; // Workaround.

 var helper = function () {
 that.value = add(that.value, that.value)
 };

 helper(); // Invoke helper as a function.
};

// Invoke double as a method.

myObject.double();
document.writeln(myObject.getValue()); // 6

4.3.3. The Constructor Invocation Pattern

JavaScript is a prototypal inheritance language. That means that objects can inherit properties directly
from other objects. The language is class-free.

This is a radical departure from the current fashion. Most languages today are classical. Prototypal
inheritance is powerfully expressive, but is not widely understood. JavaScript itself is not confident in
its prototypal nature, so it offers an object-making syntax that is reminiscent of the classical
languages. Few classical programmers found prototypal inheritance to be acceptable, and classically
inspired syntax obscures the language's true prototypal nature. It is the worst of both worlds.

If a function is invoked with the new prefix, then a new object will be created with a hidden link to the
value of the function's prototype member, and this will be bound to that new object.

The new prefix also changes the behavior of the return statement. We will see more about that next.

// Create a constructor function called Quo.
// It makes an object with a status property.

var Quo = function (string) {
 this.status = string;
};

// Give all instances of Quo a public method
// called get_status.

Quo.prototype.get_status = function () {
 return this.status;
};

// Make an instance of Quo.

var myQuo = new Quo("confused");

document.writeln(myQuo.get_status()); // confused

Functions that are intended to be used with the new prefix are called constructors. By convention, they
are kept in variables with a capitalized name. If a constructor is called without the new prefix, very bad
things can happen without a compile-time or runtime warning, so the capitalization convention is really
important.

Use of this style of constructor functions is not recommended. We will see better alternatives in the
next chapter.

4.3.4. The Apply Invocation Pattern

Because JavaScript is a functional object-oriented language, functions can have methods.

The apply method lets us construct an array of arguments to use to invoke a function. It also lets us
choose the value of this. The apply method takes two parameters. The first is the value that should

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

choose the value of this. The apply method takes two parameters. The first is the value that should
be bound to this. The second is an array of parameters.

// Make an array of 2 numbers and add them.

var array = [3, 4];
var sum = add.apply(null, array); // sum is 7

// Make an object with a status member.

var statusObject = {
 status: 'A-OK'
};

// statusObject does not inherit from Quo.prototype,
// but we can invoke the get_status method on
// statusObject even though statusObject does not have
// a get_status method.

var status = Quo.prototype.get_status.apply(statusObject);
 // status is 'A-OK'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4. Arguments

A bonus parameter that is available to functions when they are invoked is the arguments array. It
gives the function access to all of the arguments that were supplied with the invocation, including
excess arguments that were not assigned to parameters. This makes it possible to write functions that
take an unspecified number of parameters:

// Make a function that adds a lot of stuff.

// Note that defining the variable sum inside of
// the function does not interfere with the sum
// defined outside of the function. The function
// only sees the inner one.

var sum = function () {
 var i, sum = 0;
 for (i = 0; i < arguments.length; i += 1) {
 sum += arguments[i];
 }
 return sum;
};

document.writeln(sum(4, 8, 15, 16, 23, 42)); // 108

This is not a particularly useful pattern. In Chapter 6, we will see how we can add a similar method to
an array.

Because of a design error, arguments is not really an array. It is an array-like object. arguments has a
length property, but it lacks all of the array methods. We will see a consequence of that design error
at the end of this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5. Return

When a function is invoked, it begins execution with the first statement, and ends when it hits the }
that closes the function body. That causes the function to return control to the part of the program
that invoked the function.

The return statement can be used to cause the function to return early. When return is executed,
the function returns immediately without executing the remaining statements.

A function always returns a value. If the return value is not specified, then undefined is returned.

If the function was invoked with the new prefix and the return value is not an object, then this (the
new object) is returned instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.6. Exceptions

JavaScript provides an exception handling mechanism. Exceptions are unusual (but not completely
unexpected) mishaps that interfere with the normal flow of a program. When such a mishap is
detected, your program should throw an exception:

var add = function (a, b) {
 if (typeof a !== 'number' || typeof b !== 'number') {
 throw {
 name: 'TypeError',
 message: 'add needs numbers'
 }
 }
 return a + b;
}

The throw statement interrupts execution of the function. It should be given an exception object
containing a name property that identifies the type of the exception, and a descriptive message
property. You can also add other properties.

The exception object will be delivered to the catch clause of a try statement:

// Make a try_it function that calls the new add
// function incorrectly.

var try_it = function () {
 try {
 add("seven");
 } catch (e) {
 document.writeln(e.name + ': ' + e.message);
 }
}

tryIt();

If an exception is thrown within a try block, control will go to its catch clause.

A try statement has a single catch block that will catch all exceptions. If your handling depends on
the type of the exception, then the exception handler will have to inspect the name to determine the
type of the exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.7. Augmenting Types

JavaScript allows the basic types of the language to be augmented. In Chapter 3, we saw that adding
a method to Object.prototype makes that method available to all objects. This also works for
functions, arrays, strings, numbers, regular expressions, and booleans.

For example, by augmenting Function.prototype, we can make a method available to all functions:

Function.prototype.method = function (name, func) {
 this.prototype[name] = func;
 return this;
};

By augmenting Function.prototype with a method method, we no longer have to type the name of
the prototype property. That bit of ugliness can now be hidden.

JavaScript does not have a separate integer type, so it is sometimes necessary to extract just the
integer part of a number. The method JavaScript provides to do that is ugly. We can fix it by adding
an integer method to Number.prototype. It uses either Math.ceiling or Math.floor, depending on
the sign of the number:

Number.method('integer', function () {
 return Math[this < 0 ? 'ceiling' : 'floor'](this);
});

document.writeln((-10 / 3).integer()); // -3

JavaScript lacks a method that removes spaces from the ends of a string. That is an easy oversight to
fix:

String.method('trim', function () {
 return this.replace(/^\s+|\s+$/g, '');
});

document.writeln('"' + " neat ".trim() + '"');

Our trim method uses a regular expression. We will see much more about regular expressions in
Chapter 7.

By augmenting the basic types, we can make significant improvements to the expressiveness of the
language. Because of the dynamic nature of JavaScript's prototypal inheritance, all values are
immediately endowed with the new methods, even values that were created before the methods were
created.

The prototypes of the basic types are public structures, so care must be taken when mixing libraries.
One defensive technique is to add a method only if the method is known to be missing:

// Add a method conditionally.

Function.prototype.method = function (name, func) {
 if (!this.prototype[name]) {
 this.prototype[name] = func;
 }
};

Another concern is that the for in statement interacts badly with prototypes. We saw a couple of
ways to mitigate that in Chapter 3: we can use the hasOwnProperty method to screen out inherited
properties, and we can look for specific types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

properties, and we can look for specific types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.8. Recursion

A recursive function is a function that calls itself, either directly or indirectly. Recursion is a powerful
programming technique in which a problem is divided into a set of similar subproblems, each solved
with a trivial solution. Generally, a recursive function calls itself to solve its subproblems.

The Towers of Hanoi is a famous puzzle. The equipment includes three posts and a set of discs of
various diameters with holes in their centers. The setup stacks all of the discs on the source post with
smaller discs on top of larger discs. The goal is to move the stack to the destination post by moving
one disc at a time to another post, never placing a larger disc on a smaller disc. This puzzle has a
trivial recursive solution:

var hanoi = function (disc, src, aux, dst) {
 if (disc > 0) {
 hanoi(disc - 1, src, dst, aux);
 document.writeln('Move disc ' + disc +
 ' from ' + src + ' to ' + dst);
 hanoi(disc - 1, aux, src, dst);
 }
}

hanoi(3, 'Src', 'Aux', 'Dst');

It produces this solution for three discs:

Move disc 1 from Src to Dst
Move disc 2 from Src to Aux
Move disc 1 from Dst to Aux
Move disc 3 from Src to Dst
Move disc 1 from Aux to Src
Move disc 2 from Aux to Dst
Move disc 1 from Src to Dst

The hanoi function moves a stack of discs from one post to another, using the auxiliary post if
necessary. It breaks the problem into three subproblems. First, it uncovers the bottom disc by moving
the substack above it to the auxiliary post. It can then move the bottom disc to the destination post.
Finally, it can move the substack from the auxiliary post to the destination post. The movement of the
substack is handled by calling itself recursively to work out those subproblems.

The hanoi function is passed the number of the disc it is to move and the three posts it is to use.
When it calls itself, it is to deal with the disc that is above the disc it is currently working on.
Eventually, it will be called with a nonexistent disc number. In that case, it does nothing. That act of
nothingness gives us confidence that the function does not recurse forever.

Recursive functions can be very effective in manipulating tree structures such as the browser's
Document Object Model (DOM). Each recursive call is given a smaller piece of the tree to work on:

Code View:

// Define a walk_the_DOM function that visits every
// node of the tree in HTML source order, starting
// from some given node. It invokes a function,
// passing it each node in turn. walk_the_DOM calls
// itself to process each of the child nodes.

var walk_the_DOM = function walk(node, func) {
 func(node);
 node = node.firstChild;
 while (node) {
 walk(node, func);
 node = node.nextSibling;
 }
};

// Define a getElementsByAttribute function. It
// takes an attribute name string and an optional

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// takes an attribute name string and an optional
// matching value. It calls walk_the_DOM, passing it a
// function that looks for an attribute name in the
// node. The matching nodes are accumulated in a
// results array.

var getElementsByAttribute = function (att, value) {
 var results = [];

 walk_the_DOM(document.body, function (node) {
 var actual = node.nodeType === 1 && node.getAttribute(att);
 if (typeof actual === 'string' &&
 (actual === value || typeof value !== 'string')) {
 results.push(node);
 }
 });

 return results;
};

Some languages offer the tail recursion optimization. This means that if a function returns the result of
invoking itself recursively, then the invocation is replaced with a loop, which can significantly speed
things up. Unfortunately, JavaScript does not currently provide tail recursion optimization. Functions
that recurse very deeply can fail by exhausting the return stack:

// Make a factorial function with tail
// recursion. It is tail recursive because
// it returns the result of calling itself.

// JavaScript does not currently optimize this form.

var factorial = function factorial(i, a) {
 a = a || 1;
 if (i < 2) {
 return a;
 }
 return factorial(i - 1, a * i);
};

document.writeln(factorial(4)); // 24

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.9. Scope

Scope in a programming language controls the visibility and lifetimes of variables and parameters.
This is an important service to the programmer because it reduces naming collisions and provides
automatic memory management:

var foo = function () {
 var a = 3, b = 5;

 var bar = function () {
 var b = 7, c = 11;

// At this point, a is 3, b is 7, and c is 11

 a += b + c;

// At this point, a is 21, b is 7, and c is 11

 };

// At this point, a is 3, b is 5, and c is not defined

 bar();

// At this point, a is 21, b is 5

};

Most languages with C syntax have block scope. All variables defined in a block (a list of statements
wrapped with curly braces) are not visible from outside of the block. The variables defined in a block
can be released when execution of the block is finished. This is a good thing.

Unfortunately, JavaScript does not have block scope even though its block syntax suggests that it
does. This confusion can be a source of errors.

JavaScript does have function scope. That means that the parameters and variables defined in a
function are not visible outside of the function, and that a variable defined anywhere within a function
is visible everywhere within the function.

In many modern languages, it is recommended that variables be declared as late as possible, at the
first point of use. That turns out to be bad advice for JavaScript because it lacks block scope. So
instead, it is best to declare all of the variables used in a function at the top of the function body.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.10. Closure

The good news about scope is that inner functions get access to the parameters and variables of the
functions they are defined within (with the exception of this and arguments). This is a very good
thing.

Our getElementsByClassName function worked because it declared a results variable, and the inner
function that it passed to walk_the_DOM also had access to the results variable.

A more interesting case is when the inner function has a longer lifetime than its outer function.

Earlier, we made a myObject that had a value and an increment method. Suppose we wanted to
protect the value from unauthorized changes.

Instead of initializing myObject with an object literal, we will initialize myObject by calling a function
that returns an object literal. That function defines a value variable. That variable is always available
to the increment and getValue methods, but the function's scope keeps it hidden from the rest of the
program:

var myObject = function () {
 var value = 0;

 return {
 increment: function (inc) {
 value += typeof inc === 'number' ? inc : 1;
 },
 getValue: function () {
 return value;
 }
 }
}();

We are not assigning a function to myObject. We are assigning the result of invoking that function.
Notice the () on the last line. The function returns an object containing two methods, and those
methods continue to enjoy the privilege of access to the value variable.

The Quo constructor from earlier in this chapter produced an object with a status property and a
get_status method. But that doesn't seem very interesting. Why would you call a getter method on a
property you could access directly? It would be more useful if the status property were private. So,
let's define a different kind of quo function to do that:

// Create a maker function called quo. It makes an
// object with a get_status method and a private
// status property.

var quo = function (status) {
 return {
 get_status: function () {
 return status;
 }
 };
};

// Make an instance of quo.

var myQuo = quo("amazed");

document.writeln(myQuo.get_status());

This quo function is designed to be used without the new prefix, so the name is not capitalized. When
we call quo, it returns a new object containing a get_status method. A reference to that object is
stored in myQuo. The get_status method still has privileged access to quo's status property even
though quo has already returned. get_status does not have access to a copy of the parameter; it has

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

though quo has already returned. get_status does not have access to a copy of the parameter; it has
access to the parameter itself. This is possible because the function has access to the context in which
it was created. This is called closure.

Let's look at a more useful example:

// Define a function that sets a DOM node's color
// to yellow and then fades it to white.

var fade = function (node) {
 var level = 1;
 var step = function () {
 var hex = level.toString(16);
 node.style.backgroundColor = '#FFFF' + hex + hex;
 if (level < 15) {
 level += 1;
 setTimeout(step, 100);
 }
 };
 setTimeout(step, 100);
};

fade(document.body);

We call fade, passing it document.body (the node created by the HTML <body> tag). fade sets level
to 1. It defines a step function. It calls setTimeout, passing it the step function and a time (100
milliseconds). It then returns—fade has finished.

Suddenly, about a 10th of a second later, the step function gets invoked. It makes a base 16
character from fade's level. It then modifies the background color of fade's node. It then looks at
fade's level. If it hasn't gotten to white yet, it then increments fade's level and uses setTimeout to
schedule itself to run again.

Suddenly, the step function gets invoked again. But this time, fade 's level is 2. fade returned a
while ago, but its variables continue to live as long as they are needed by one or more of fade's inner
functions.

It is important to understand that the inner function has access to the actual variables of the outer
functions and not copies in order to avoid the following problem:

Code View:

// BAD EXAMPLE
// Make a function that assigns event handler functions to an array
 of nodes the wrong way.
// When you click on a node, an alert box is supposed to display the ordinal
of the node.
// But it always displays the number of nodes instead.

var add_the_handlers = function (nodes) {
 var i;
 for (i = 0; i < nodes.length; i += 1) {
 nodes[i].onclick = function (e) {
 alert(i);
 }
 }
};

// END BAD EXAMPLE

The add_the_handlers function was intended to give each handler a unique number (i). It fails
because the handler functions are bound to the variable i, not the value of the variable i at the time
the function was made:

Code View:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code View:

// BETTER EXAMPLE

// Make a function that assigns event handler functions to an array of nodes
 the right way.
// When you click on a node, an alert box will display the ordinal of the node.

var add_the_handlers = function (nodes) {
 var i;
 for (i = 0; i < nodes.length; i += 1) {
 nodes[i].onclick = function (i) {
 return function (e) {
 alert(i);
 };
 }(i);
 }
};

Now, instead of assigning a function to onclick, we define a function and immediately invoke it,
passing in i. That function will return an event handler function that is bound to the value of i that
was passed in, not to the i defined in add_the_handlers. That returned function is assigned to
onclick.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.11. Callbacks

Functions can make it easier to deal with discontinuous events. For example, suppose there is a
sequence that begins with a user interaction, making a request of the server, and finally displaying the
server's response. The naïve way to write that would be:

request = prepare_the_request();
response = send_request_synchronously(request);
display(response);

The problem with this approach is that a synchronous request over the network will leave the client in
a frozen state. If either the network or the server is slow, the degradation in responsiveness will be
unacceptable.

A better approach is to make an asynchronous request, providing a callback function that will be
invoked when the server's response is received. An asynchronous function returns immediately, so the
client isn't blocked:

request = prepare_the_request();
send_request_asynchronously(request, function (response) {
 display(response);
 });

We pass a function parameter to the send_request_asynchronously function that will be called when
the response is available.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.12. Module

We can use functions and closure to make modules. A module is a function or object that presents an
interface but that hides its state and implementation. By using functions to produce modules, we can
almost completely eliminate our use of global variables, thereby mitigating one of JavaScript's worst
features.

For example, suppose we want to augment String with a deentityify method. Its job is to look for
HTML entities in a string and replace them with their equivalents. It makes sense to keep the names
of the entities and their equivalents in an object. But where should we keep the object? We could put
it in a global variable, but global variables are evil. We could define it in the function itself, but that
has a runtime cost because the literal must be evaluated every time the function is invoked. The ideal
approach is to put it in a closure, and perhaps provide an extra method that can add additional
entities:

Code View:

String.method('deentityify', function () {

// The entity table. It maps entity names to
// characters.

 var entity = {
 quot: '"',
 lt: '<',
 gt: '>'
 };

// Return the deentityify method.

 return function () {

// This is the deentityify method. It calls the string
// replace method, looking for substrings that start
// with '&' and end with ';'. If the characters in
// between are in the entity table, then replace the
// entity with the character from the table. It uses
// a regular expression (Chapter 7).

 return this.replace(/&([^&;]+);/g,
 function (a, b) {
 var r = entity[b];
 return typeof r === 'string' ? r : a;
 }
);
 };
}());

Notice the last line. We immediately invoke the function we just made with the () operator. That
invocation creates and returns the function that becomes the deentityify method.

document.writeln(
 '<">'.deentityify()); // <">

The module pattern takes advantage of function scope and closure to create relationships that are
binding and private. In this example, only the deentityify method has access to the entity data
structure.

The general pattern of a module is a function that defines private variables and functions; creates
privileged functions which, through closure, will have access to the private variables and functions;
and that returns the privileged functions or stores them in an accessible place.

Use of the module pattern can eliminate the use of global variables. It promotes information hiding
and other good design practices. It is very effective in encapsulating applications and other singletons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and other good design practices. It is very effective in encapsulating applications and other singletons.

It can also be used to produce objects that are secure. Let's suppose we want to make an object that
produces a serial number:

Code View:

var serial_maker = function () {

// Produce an object that produces unique strings. A
// unique string is made up of two parts: a prefix
// and a sequence number. The object comes with
// methods for setting the prefix and sequence
// number, and a gensym method that produces unique
// strings.

 var prefix = '';
 var seq = 0;
 return {
 set_prefix: function (p) {
 prefix = String(p);
 },
 set_seq: function (s) {
 seq = s;
 },
 gensym: function () {
 var result = prefix + seq;
 seq += 1;
 return result;
 }
 };
}();

var seqer = serial_maker();
seqer.set_prefix = 'Q';
seqer.set_seq = 1000;
var unique = seqer.gensym(); // unique is "Q1000"

The methods do not make use of this or that. As a result, there is no way to compromise the seqer.
It isn't possible to get or change the prefix or seq except as permitted by the methods. The seqer
object is mutable, so the methods could be replaced, but that still does not give access to its secrets.
seqer is simply a collection of functions, and those functions are capabilities that grant specific powers
to use or modify the secret state.

If we passed seqer.gensym to a third party's function, that function would be able to generate unique
strings, but would be unable to change the prefix or seq.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.13. Cascade

Some methods do not have a return value. For example, it is typical for methods that set or change
the state of an object to return nothing. If we have those methods return this instead of undefined,
we can enable cascades. In a cascade, we can call many methods on the same object in sequence in a
single statement. An Ajax library that enables cascades would allow us to write in a style like this:

getElement('myBoxDiv').
 move(350, 150).
 width(100).
 height(100).
 color('red').
 border('10px outset').
 padding('4px').
 appendText("Please stand by").
 on('mousedown', function (m) {
 this.startDrag(m, this.getNinth(m));
 }).
 on('mousemove', 'drag').
 on('mouseup', 'stopDrag').
 later(2000, function () {
 this.
 color('yellow').
 setHTML("What hath God wraught?").
 slide(400, 40, 200, 200);
 }).
 tip('This box is resizeable');

In this example, the getElement function produces an object that gives functionality to the DOM
element with id="myBoxDiv". The methods allow us to move the element, change its dimensions and
styling, and add behavior. Each of those methods returns the object, so the result of the invocation
can be used for the next invocation.

Cascading can produce interfaces that are very expressive. It can help control the tendency to make
interfaces that try to do too much at once.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.14. Curry

Functions are values, and we can manipulate function values in interesting ways. Currying allows us to
produce a new function by combining a function and an argument:

var add1 = add.curry(1);
document.writeln(add1(6)); // 7

add1 is a function that was created by passing 1 to add 's curry method. The add1 function adds 1 to
its argument. JavaScript does not have a curry method, but we can fix that by augmenting
Function.prototype:

Function.method('curry', function () {
 var args = arguments, that = this;
 return function () {
 return that.apply(null, args.concat(arguments));
 };
}); // Something isn't right...

The curry method works by creating a closure that holds that original function and the arguments to
curry. It returns a function that, when invoked, returns the result of calling that original function,
passing it all of the arguments from the invocation of curry and the current invocation. It uses the
Array concat method to concatenate the two arrays of arguments together.

Unfortunately, as we saw earlier, the arguments array is not an array, so it does not have the concat
method. To work around that, we will apply the array slice method on both of the arguments arrays.
This produces arrays that behave correctly with the concat method:

Function.method('curry', function () {
 var slice = Array.prototype.slice,
 args = slice.apply(arguments),
 that = this;
 return function () {
 return that.apply(null, args.concat(slice.apply(arguments)));
 };
});

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.15. Memoization

Functions can use objects to remember the results of previous operations, making it possible to avoid
unnecessary work. This optimization is called memoization. JavaScript's objects and arrays are very
convenient for this.

Let's say we want a recursive function to compute Fibonacci numbers. A Fibonacci number is the sum
of the two previous Fibonacci numbers. The first two are 0 and 1:

var fibonacci = function (n) {
 return n < 2 ? n : fibonacci(n - 1) + fibonacci(n - 2);
};

for (var i = 0; i <= 10; i += 1) {
 document.writeln('// ' + i + ': ' + fibonacci(i));
}

// 0: 0
// 1: 1
// 2: 1
// 3: 2
// 4: 3
// 5: 5
// 6: 8
// 7: 13
// 8: 21
// 9: 34
// 10: 55

This works, but it is doing a lot of unnecessary work. The fibonacci function is called 453 times. We
call it 11 times, and it calls itself 442 times in computing values that were probably already recently
computed. If we memoize the function, we can significantly reduce its workload.

We will keep our memoized results in a memo array that we can hide in a closure. When our function is
called, it first looks to see if it already knows the result. If it does, it can immediately return it:

var fibonacci = function () {
 var memo = [0, 1];
 var fib = function (n) {
 var result = memo[n];
 if (typeof result !== 'number') {
 result = fib(n - 1) + fib(n - 2);
 memo[n] = result;
 }
 return result;
 };
 return fib;
}();

This function returns the same results, but it is called only 29 times. We called it 11 times. It called
itself 18 times to obtain the previously memoized results.

We can generalize this by making a function that helps us make memoized functions. The memoizer
function will take an initial memo array and the fundamental function. It returns a shell function that
manages the memo store and that calls the fundamental function as needed. We pass the shell
function and the function's parameters to the fundamental function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function and the function's parameters to the fundamental function:

var memoizer = function (memo, fundamental) {
 var shell = function (n) {
 var result = memo[n];
 if (typeof result !== 'number') {
 result = fundamental(shell, n);
 memo[n] = result;
 }
 return result;
 };
 return shell;
};

We can now define fibonacci with the memoizer, providing the initial memo array and fundamental
function:

var fibonacci = memoizer([0, 1], function (shell, n) {
 return shell(n - 1) + shell(n - 2);
});

By devising functions that produce other functions, we can significantly reduce the amount of work we
have to do. For example, to produce a memoizing factorial function, we only need to supply the basic
factorial formula:

var factorial = memoizer([1, 1], function (shell, n) {
 return n * shell(n - 1);
});

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Inheritance
Divides one thing entire to many objects; Like perspectives, which rightly gazed upon
Show nothing but confusion. . .

—William Shakespeare, The Tragedy of King Richard the Second

Inheritance is an important topic in most programming languages.

In the classical languages (such as Java), inheritance (or extends) provides two useful services. First,
it is a form of code reuse. If a new class is mostly similar to an existing class, you only have to specify
the differences. Patterns of code reuse are extremely important because they have the potential to
significantly reduce the cost of software development. The other benefit of classical inheritance is that
it includes the specification of a system of types. This mostly frees the programmer from having to
write explicit casting operations, which is a very good thing because when casting, the safety benefits
of a type system are lost.

JavaScript, being a loosely typed language, never casts. The lineage of an object is irrelevant. What
matters about an object is what it can do, not what it is descended from.

JavaScript provides a much richer set of code reuse patterns. It can ape the classical pattern, but it
also supports other patterns that are more expressive. The set of possible inheritance patterns in
JavaScript is vast. In this chapter, we'll look at a few of the most straightforward patterns. Much more
complicated constructions are possible, but it is usually best to keep it simple.

In classical languages, objects are instances of classes, and a class can inherit from another class.
JavaScript is a prototypal language, which means that objects inherit directly from other objects.

5.1. Pseudoclassical

JavaScript is conflicted about its prototypal nature. Its prototype mechanism is obscured by some
complicated syntactic business that looks vaguely classical. Instead of having objects inherit directly
from other objects, an unnecessary level of indirection is inserted such that objects are produced by
constructor functions.

When a function object is created, the Function constructor that produces the function object runs
some code like this:

this.prototype = {constructor: this};

The new function object is given a prototype property whose value is an object containing a
constructor property whose value is the new function object. The prototype object is the place
where inherited traits are to be deposited. Every function gets a prototype object because the
language does not provide a way of determining which functions are intended to be used as
constructors. The constructor property is not useful. It is the prototype object that is important.

When a function is invoked with the constructor invocation pattern using the new prefix, this modifies
the way in which the function is executed. If the new operator were a method instead of an operator, it
could have been implemented like this:

Function.method('new', function () {

// Create a new object that inherits from the
// constructor's prototype.

 var that = Object.beget(this.prototype)

// Invoke the constructor, binding -this- to
// the new object.

 var other = this.apply(that, arguments);

// If its return value isn't an object,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// If its return value isn't an object,
// substitute the new object.

 return (typeof other === 'object' && other) || that;
});

We can define a constructor and augment its prototype:

var Mammal = function (name) {
 this.name = name;
};

Mammal.prototype.get_name = function () {
 return this.name;
};

Mammal.prototype.says = function () {
 return this.saying || '';
};

Now, we can make an instance:

var myMammal = new Mammal('Herb the Mammal');
var name = myMammal.get_name(); // 'Herb the Mammal'

We can make another pseudoclass that inherits from Mammal by defining its constructor function and
replacing its prototype with an instance of Mammal:

Code View:

var Cat = function (name) {
 this.name = name;
 this.saying = 'meow';
};

// Replace Cat.prototype with a new instance of Mammal

Cat.prototype = new Mammal();

// Augment the new prototype with
// purr and get_name methods.

Cat.prototype.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
};
Cat.prototype.get_name = function () {
 return this.says() + ' ' + this.name +
 ' ' + this.says();
};

var myCat = new Cat('Henrietta');
var says = myCat.says(); // 'meow'
var purr = myCat.purr(5); // 'r-r-r-r-r'
var name = myCat.get_name();
// 'meow Henrietta meow'

The pseudoclassical pattern was intended to look sort of object-oriented, but it is looking quite alien.
We can hide some of the ugliness by using the method method and defining an inherits method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We can hide some of the ugliness by using the method method and defining an inherits method:

Function.method('inherits', function (Parent) {
 this.prototype = new Parent();
 return this;
});

Our inherits and method methods return this, allowing us to program in a cascade style. We can
now make our Cat with one statement.

var Cat = function (name) {
 this.name = name;
 this.saying = 'meow';
}.
 inherits(Mammal).
 method('purr', function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
 }).
 method('get_name', function () {
 return this.says() + ' ' + this.name +
 ' ' + this.says();
 });

By hiding the prototype jazz, it now looks a bit less alien. But have we really improved anything? We
now have constructor functions that act like classes, but at the edges, there may be surprising
behavior. There is no privacy; all properties are public. There is no access to super methods.

Even worse, there is a serious hazard with the use of constructor functions. If you forget to include the
new prefix when calling a constructor function, then this will not be bound to a new object. Sadly,
this will be bound to the global object, so instead of augmenting your new object, you will be
clobbering global variables. That is really bad. There is no compile warning, and there is no runtime
warning.

This is a serious design error in the language. To mitigate this problem, there is a convention that all
constructor functions are named with an initial capital, and that nothing else is spelled with an initial
capital. This gives us a prayer that visual inspection can find a missing new. A much better alternative
is to not use new at all.

The pseudoclassical form can provide comfort to programmers who are unfamiliar with JavaScript, but
it also hides the true nature of the language. The classically inspired notation can induce programmers
to compose hierarchies that are unnecessarily deep and complicated. Much of the complexity of class
hierarchies is motivated by the constraints of static type checking. JavaScript is completely free of
those constraints. In classical languages, class inheritance is the only form of code reuse. JavaScript
has more and better options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Inheritance
Divides one thing entire to many objects; Like perspectives, which rightly gazed upon
Show nothing but confusion. . .

—William Shakespeare, The Tragedy of King Richard the Second

Inheritance is an important topic in most programming languages.

In the classical languages (such as Java), inheritance (or extends) provides two useful services. First,
it is a form of code reuse. If a new class is mostly similar to an existing class, you only have to specify
the differences. Patterns of code reuse are extremely important because they have the potential to
significantly reduce the cost of software development. The other benefit of classical inheritance is that
it includes the specification of a system of types. This mostly frees the programmer from having to
write explicit casting operations, which is a very good thing because when casting, the safety benefits
of a type system are lost.

JavaScript, being a loosely typed language, never casts. The lineage of an object is irrelevant. What
matters about an object is what it can do, not what it is descended from.

JavaScript provides a much richer set of code reuse patterns. It can ape the classical pattern, but it
also supports other patterns that are more expressive. The set of possible inheritance patterns in
JavaScript is vast. In this chapter, we'll look at a few of the most straightforward patterns. Much more
complicated constructions are possible, but it is usually best to keep it simple.

In classical languages, objects are instances of classes, and a class can inherit from another class.
JavaScript is a prototypal language, which means that objects inherit directly from other objects.

5.1. Pseudoclassical

JavaScript is conflicted about its prototypal nature. Its prototype mechanism is obscured by some
complicated syntactic business that looks vaguely classical. Instead of having objects inherit directly
from other objects, an unnecessary level of indirection is inserted such that objects are produced by
constructor functions.

When a function object is created, the Function constructor that produces the function object runs
some code like this:

this.prototype = {constructor: this};

The new function object is given a prototype property whose value is an object containing a
constructor property whose value is the new function object. The prototype object is the place
where inherited traits are to be deposited. Every function gets a prototype object because the
language does not provide a way of determining which functions are intended to be used as
constructors. The constructor property is not useful. It is the prototype object that is important.

When a function is invoked with the constructor invocation pattern using the new prefix, this modifies
the way in which the function is executed. If the new operator were a method instead of an operator, it
could have been implemented like this:

Function.method('new', function () {

// Create a new object that inherits from the
// constructor's prototype.

 var that = Object.beget(this.prototype)

// Invoke the constructor, binding -this- to
// the new object.

 var other = this.apply(that, arguments);

// If its return value isn't an object,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// If its return value isn't an object,
// substitute the new object.

 return (typeof other === 'object' && other) || that;
});

We can define a constructor and augment its prototype:

var Mammal = function (name) {
 this.name = name;
};

Mammal.prototype.get_name = function () {
 return this.name;
};

Mammal.prototype.says = function () {
 return this.saying || '';
};

Now, we can make an instance:

var myMammal = new Mammal('Herb the Mammal');
var name = myMammal.get_name(); // 'Herb the Mammal'

We can make another pseudoclass that inherits from Mammal by defining its constructor function and
replacing its prototype with an instance of Mammal:

Code View:

var Cat = function (name) {
 this.name = name;
 this.saying = 'meow';
};

// Replace Cat.prototype with a new instance of Mammal

Cat.prototype = new Mammal();

// Augment the new prototype with
// purr and get_name methods.

Cat.prototype.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
};
Cat.prototype.get_name = function () {
 return this.says() + ' ' + this.name +
 ' ' + this.says();
};

var myCat = new Cat('Henrietta');
var says = myCat.says(); // 'meow'
var purr = myCat.purr(5); // 'r-r-r-r-r'
var name = myCat.get_name();
// 'meow Henrietta meow'

The pseudoclassical pattern was intended to look sort of object-oriented, but it is looking quite alien.
We can hide some of the ugliness by using the method method and defining an inherits method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We can hide some of the ugliness by using the method method and defining an inherits method:

Function.method('inherits', function (Parent) {
 this.prototype = new Parent();
 return this;
});

Our inherits and method methods return this, allowing us to program in a cascade style. We can
now make our Cat with one statement.

var Cat = function (name) {
 this.name = name;
 this.saying = 'meow';
}.
 inherits(Mammal).
 method('purr', function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
 }).
 method('get_name', function () {
 return this.says() + ' ' + this.name +
 ' ' + this.says();
 });

By hiding the prototype jazz, it now looks a bit less alien. But have we really improved anything? We
now have constructor functions that act like classes, but at the edges, there may be surprising
behavior. There is no privacy; all properties are public. There is no access to super methods.

Even worse, there is a serious hazard with the use of constructor functions. If you forget to include the
new prefix when calling a constructor function, then this will not be bound to a new object. Sadly,
this will be bound to the global object, so instead of augmenting your new object, you will be
clobbering global variables. That is really bad. There is no compile warning, and there is no runtime
warning.

This is a serious design error in the language. To mitigate this problem, there is a convention that all
constructor functions are named with an initial capital, and that nothing else is spelled with an initial
capital. This gives us a prayer that visual inspection can find a missing new. A much better alternative
is to not use new at all.

The pseudoclassical form can provide comfort to programmers who are unfamiliar with JavaScript, but
it also hides the true nature of the language. The classically inspired notation can induce programmers
to compose hierarchies that are unnecessarily deep and complicated. Much of the complexity of class
hierarchies is motivated by the constraints of static type checking. JavaScript is completely free of
those constraints. In classical languages, class inheritance is the only form of code reuse. JavaScript
has more and better options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2. Object Specifiers

It sometimes happens that a constructor is given a very large number of parameters. This can be
troublesome because it can be very difficult to remember the order of the arguments. In such cases, it
can be much friendlier if we write the constructor to accept a single object specifier instead. That
object contains the specification of the object to be constructed. So, instead of:

var myObject = maker(f, l, m, c, s);

we can write:

var myObject = maker({
 first: f,
 last: l,
 state: s,
 city: c
});

The arguments can now be listed in any order, arguments can be left out if the constructor is smart
about defaults, and the code is much easier to read.

This can have a secondary benefit when working with JSON (see Appendix E). JSON text can only
describe data, but sometimes the data represents an object, and it would be useful to associate the
data with its methods. This can be done trivially if the constructor takes an object specifier because we
can simply pass the JSON object to the constructor and it will return a fully constituted object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3. Prototypal

In a purely prototypal pattern, we dispense with classes. We focus instead on the objects. Prototypal
inheritance is conceptually simpler than classical inheritance: a new object can inherit the properties of
an old object. This is perhaps unfamiliar, but it is really easy to understand. You start by making a
useful object. You can then make many more objects that are like that one. The classification process
of breaking an application down into a set of nested abstract classes can be completely avoided.

Let's start by using an object literal to make a useful object:

var myMammal = {
 name : 'Herb the Mammal',
 get_name : function () {
 return this.name;
 },
 says : function () {
 return this.saying || '';
 }
};

Once we have an object that we like, we can make more instances with the Object.beget method
from Chapter 3. We can then customize the new instances:

var myCat = Object.beget(myMammal);
myCat.name = 'Henrietta';
myCat.saying = 'meow';
myCat.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
};
myCat.get_name = function () {
 return this.says + ' ' + this.name + ' ' + this.says;
};

This is differential inheritance. By customizing a new object, we specify the differences from the object
on which it is based.

Sometimes is it useful for data structures to inherit from other data structures. Here is an example:
Suppose we are parsing a language such as JavaScript or TEX in which a pair of curly braces indicates
a scope. Items defined in a scope are not visible outside of the scope. In a sense, an inner scope
inherits from its outer scope. JavaScript objects are very good at representing this relationship. The
block function is called when a left curly brace is encountered. The parse function will look up
symbols from scope, and augment scope when it defines new symbols:

var block = function () {

// Remember the current scope. Make a new scope that
// includes everything from the current one.

 var oldScope = scope;
 scope = Object.beget(scope);

// Advance past the left curly brace.

 advance('{');

// Parse using the new scope.

 parse(scope);

// Advance past the right curly brace and discard the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Advance past the right curly brace and discard the
// new scope, restoring the old one.

 advance('}');
 scope = oldScope;
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4. Functional

One weakness of the inheritance patterns we have seen so far is that we get no privacy. All properties
of an object are visible. We get no private variables and no private methods. Sometimes that doesn't
matter, but sometimes it matters a lot. In frustration, some uninformed programmers have adopted a
pattern of pretend privacy. If they have a property that they wish to make private, they give it an
odd-looking name, with the hope that other users of the code will pretend that they cannot see the
odd looking members. Fortunately, we have a much better alternative in an application of the module
pattern.

We start by making a function that will produce objects. We will give it a name that starts with a
lowercase letter because it will not require the use of the new prefix. The function contains four steps:

1. It creates a new object. There are lots of ways to make an object. It can make an object
literal, or it can call a constructor function with the new prefix, or it can use the
Object.beget method to make a new instance from an existing object, or it can call any
function that returns an object.

2. It optionally defines private instance variables and methods. These are just ordinary vars
of the function.

3. It augments that new object with methods. Those methods will have privileged access to
the parameters and the vars defined in the second step.

4. It returns that new object.

Here is a pseudocode template for a functional constructor (boldface text added for emphasis):

var constructor = function (spec, my) {
 var that, other private instance variables;
 my = my || {};

 Add shared variables and functions to my
 that = a new object;
 Add privileged methods to that
 return that;
}

The spec object contains all of the information that the constructor needs to make an instance. The
contents of the spec could be copied into private variables or transformed by other functions. Or the
methods can access information from spec as they need it. (A simplification is to replace spec with a
single value. This is useful when the object being constructed does not need a whole spec object.)

The my object is a container of secrets that are shared by the constructors in the inheritance chain.
The use of the my object is optional. If a my object is not passed in, then a my object is made.

Next, declare the private instance variables and private methods for the object. This is done by simply
declaring variables. The variables and inner functions of the constructor become the private members
of the instance. The inner functions have access to spec and my and that and the private variables.

Next, add the shared secrets to the my object. This is done by assignment:

my.member = value;

Now, we make a new object and assign it to that. There are lots of ways to make a new object. We
can use an object literal. We can call a pseudoclassical constructor with the new operator. We can use
the Object.beget method on a prototype object. Or, we can call another functional constructor,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Object.beget method on a prototype object. Or, we can call another functional constructor,
passing it a spec object (possibly the same spec object that was passed to this constructor) and the
my object. The my object allows the other constructor to share the material that we put into my. The
other constructor may also put its own shared secrets into my so that our constructor can take
advantage of it.

Next, we augment that, adding the privileged methods that make up the object's interface. We can
assign new functions to members of that. Or, more securely, we can define the functions first as
private methods, and then assign them to that:

var methodical = function () {
 ...
};
that.methodical = methodical;

The advantage to defining methodical in two steps is that if other methods want to call methodical,
they can call methodical() instead of that.methodical(). If the instance is damaged or tampered
with so that that.methodical is replaced, the methods that call methodical will continue to work the
same because their private methodical is not affected by modification of the instance.

Finally, we return that.

Let's apply this pattern to our mammal example. We don't need my here, so we'll just leave it out, but
we will use a spec object.

The name and saying properties are now completely private. They are accessible only via the
privileged get_name and says methods:

var mammal = function (spec) {
 var that = {};

 that.get_name = function () {
 return spec.name;
 };

 that.says = function () {
 return spec.saying || '';
 };

 return that;
};

var myMammal = mammal({name: 'Herb'});

In the pseudoclassical pattern, the Cat constructor function had to duplicate work that was done by
the Mammal constructor. That isn't necessary in the functional pattern because the Cat constructor will
call the Mammal constructor, letting Mammal do most of the work of object creation, so Cat only has to
concern itself with the differences:

var cat = function (spec) {
 spec.saying = spec.saying || 'meow';
 var that = mammal(spec);
 that.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
 };
 that.get_name = function () {
 return that.says() + ' ' + spec.name +
 ' ' + that.says();
 return that;
};

var myCat = cat({name: 'Henrietta'});

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var myCat = cat({name: 'Henrietta'});

The functional pattern also gives us a way to deal with super methods. We will make a superior
method that takes a method name and returns a function that invokes that method. The function will
invoke the original method even if the property is changed:

Object.method('superior', function (name) {
 var that = this,
 method = that[name];
 return function () {
 return method.apply(that, arguments);
 };
});

Let's try it out on a coolcat that is just like cat except it has a cooler get_name method that calls the
super method. It requires just a little bit of preparation. We will declare a super_get_name variable
and assign it the result of invoking the superior method:

var coolcat = function (spec) {
 var that = cat(spec),
 super_get_name = that.superior('get_name');
 that.get_name = function (n) {
 return 'like ' + super_get_name() + ' baby';
 };
 return that;
};

var myCoolCat = coolcat({name: 'Bix'});
var name = myCoolCat.get_name();
// 'like meow Bix meow baby'

The functional pattern has a great deal of flexibility. It requires less effort than the pseudoclassical
pattern, and gives us better encapsulation and information hiding and access to super methods.

If all of the state of an object is private, then the object is tamper-proof. Properties of the object can
be replaced or deleted, but the integrity of the object is not compromised. If we create an object in
the functional style, and if all of the methods of the object make no use of this or that, then the
object is durable. A durable object is simply a collection of functions that act as capabilities.

A durable object cannot be compromised. Access to a durable object does not give an attacker the
ability to access the internal state of the object except as permitted by the methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5. Parts

We can compose objects out of sets of parts. For example, we can make a function that can add
simple event processing features to any object. It adds an on method, a fire method, and a private
event registry:

Code View:

var eventuality = function (that) {
 var registry = {};

 that.fire = function (event) {

// Fire an event on an object. The event can be either
// a string containing the name of the event or an
// object containing a type property containing the
// name of the event. Handlers registered by the 'on'
// method that match the event name will be invoked.

 var array,
 func,
 handler,
 i,
 type = typeof event === 'string' ?
 event : event.type;

// If an array of handlers exist for this event, then
// loop through it and execute the handlers in order.

 if (registry.hasOwnProperty(type)) {
 array = registry[type];
 for (i = 0; i < array.length; i += 1) {
 handler = array[i];

// A handler record contains a method and an optional
// array of parameters. If the method is a name, look
// up the function.

 func = handler.method;
 if (typeof func === 'string') {
 func = this[func];
 }

// Invoke a handler. If the record contained
// parameters, then pass them. Otherwise, pass the
// event object.

 func.apply(this,
 handler.parameters || [event]);
 }
 }
 return this;
 };

 that.on = function (type, method, parameters) {

// Register an event. Make a handler record. Put it
// in a handler array, making one if it doesn't yet
// exist for this type.

 var handler = {
 method: method,
 parameters: parameters
 };
 if (registry.hasOwnProperty(type)) {
 registry[type].push(handler);
 } else {
 registry[type] = [handler];
 }
 return this;
 };
 return that;
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We could call eventuality on any individual object, bestowing it with event handling methods. We
could also call it in a constructor function before that is returned:

eventuality(that);

In this way, a constructor could assemble objects from a set of parts. JavaScript's loose typing is a big
benefit here because we are not burdened with a type system that is concerned about the lineage of
classes. Instead, we can focus on the character of their contents.

If we wanted eventuality to have access to the object's private state, we could pass it the my bundle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Arrays
Thee I'll chase hence, thou wolf in sheep's array.

—William Shakespeare, The First Part of Henry the Sixth

An array is a linear allocation of memory in which elements are accessed by integers that are used to
compute offsets. Arrays can be very fast data structures. Unfortunately, JavaScript does not have
anything like this kind of array.

Instead, JavaScript provides an object that has some array-like characteristics. It converts array
subscripts into strings that are used to make properties. It is significantly slower than a real array, but
it can be more convenient to use. Retrieval and updating of properties work the same as with objects,
except that there is a special trick with integer property names. Arrays have their own literal format.
Arrays also have a much more useful set of built-in methods, described in Chapter 8.

6.1. Array Literals

Array literals provide a very convenient notation for creating new array values. An array literal is a
pair of square brackets surrounding zero or more values separated by commas. An array literal can
appear anywhere an expression can appear. The first value will get the property name '0', the second
value will get the property name '1', and so on:

var empty = [];
var numbers = [
 'zero', 'one', 'two', 'three', 'four',
 'five', 'six', 'seven', 'eight', 'nine'
];

empty[1] // undefined
numbers[1] // 'one'

empty.length // 0
numbers.length // 10

The object literal:

var numbers_object = {
 '0': 'zero', '1': 'one', '2': 'two',
 '3': 'three', '4': 'four', '5': 'five',
 '6': 'six', '7': 'seven', '8': 'eight',
 '9': 'nine'
};

produces a similar result. Both numbers and number_object are objects containing 10 properties, and
those properties have exactly the same names and values. But there are also significant differences.
numbers inherits from Array.prototype, whereas number_object inherits from Object.prototype,
so numbers inherits a larger set of useful methods. Also, numbers gets the mysterious length
property, while number_object does not.

In most languages, the elements of an array are all required to be of the same type. JavaScript allows
an array to contain any mixture of values:

var misc = [
 'string', 98.6, true, false, null, undefined,
 ['nested', 'array'], {object: true}, NaN,
 Infinity
];
misc.length // 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Arrays
Thee I'll chase hence, thou wolf in sheep's array.

—William Shakespeare, The First Part of Henry the Sixth

An array is a linear allocation of memory in which elements are accessed by integers that are used to
compute offsets. Arrays can be very fast data structures. Unfortunately, JavaScript does not have
anything like this kind of array.

Instead, JavaScript provides an object that has some array-like characteristics. It converts array
subscripts into strings that are used to make properties. It is significantly slower than a real array, but
it can be more convenient to use. Retrieval and updating of properties work the same as with objects,
except that there is a special trick with integer property names. Arrays have their own literal format.
Arrays also have a much more useful set of built-in methods, described in Chapter 8.

6.1. Array Literals

Array literals provide a very convenient notation for creating new array values. An array literal is a
pair of square brackets surrounding zero or more values separated by commas. An array literal can
appear anywhere an expression can appear. The first value will get the property name '0', the second
value will get the property name '1', and so on:

var empty = [];
var numbers = [
 'zero', 'one', 'two', 'three', 'four',
 'five', 'six', 'seven', 'eight', 'nine'
];

empty[1] // undefined
numbers[1] // 'one'

empty.length // 0
numbers.length // 10

The object literal:

var numbers_object = {
 '0': 'zero', '1': 'one', '2': 'two',
 '3': 'three', '4': 'four', '5': 'five',
 '6': 'six', '7': 'seven', '8': 'eight',
 '9': 'nine'
};

produces a similar result. Both numbers and number_object are objects containing 10 properties, and
those properties have exactly the same names and values. But there are also significant differences.
numbers inherits from Array.prototype, whereas number_object inherits from Object.prototype,
so numbers inherits a larger set of useful methods. Also, numbers gets the mysterious length
property, while number_object does not.

In most languages, the elements of an array are all required to be of the same type. JavaScript allows
an array to contain any mixture of values:

var misc = [
 'string', 98.6, true, false, null, undefined,
 ['nested', 'array'], {object: true}, NaN,
 Infinity
];
misc.length // 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2. Length

Every array has a length property. Unlike most other languages, JavaScript's array length is not an
upper bound. If you store an element with a subscript that is greater than or equal to the current
length, the length will increase to contain the new element. There is no array bounds error.

The length property is the largest integer property name in the array plus one. This is not necessarily
the number of properties in the array:

var myArray = [];
myArray.length // 0

myArray[1000000] = true;
myArray.length // 1000001
// myArray contains one property.

The [] postfix subscript operator converts its expression to a string using the expression's toString
method if it has one. That string will be used as the property name. If the string looks like a positive
integer that is greater than or equal to the array's current length and is less than 4,294,967,295,
then the length of the array is set to the new subscript plus one.

The length can be set explicitly. Making the length larger does not allocate more space for the array.
Making the length smaller will cause all properties with a subscript that is greater than or equal to the
new length to be deleted:

numbers.length = 3;
// numbers is ['zero', 'one', 'two']

A new element can be appended to the end of an array by assigning to the array's current length:

numbers[numbers.length] = 'shi';
// numbers is ['zero', 'one', 'two', 'shi']

It is sometimes more convenient to use the push method to accomplish the same thing:

numbers.push('go');
// numbers is ['zero', 'one', 'two', 'shi', 'go']

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3. Delete

Since JavaScript's arrays are really objects, the delete operator can be used to remove elements
from an array:

delete numbers[2];
// numbers is ['zero', 'one', undefined, 'shi', 'go']

Unfortunately, that leaves a hole in the array. This is because the elements to the right of the deleted
element retain their original names. What you usually want is to decrement the names of each of the
elements to the right.

Fortunately, JavaScript arrays have a splice method. It can do surgery on an array, deleting some
number of elements and replacing them with other elements. The first argument is an ordinal in the
array. The second argument is the number of elements to delete. Any additional arguments get
inserted into the array at that point:

numbers.splice(2, 1);
// numbers is ['zero', 'one', 'shi', 'go']

The property whose value is 'shi' has its key changed from '4' to '3'. Because every property after
the deleted property must be removed and reinserted with a new key, this might not go quickly for
large arrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4. Enumeration

Since JavaScript's arrays are really objects, the for in statement can be used to iterate over all of
the properties of an array. Unfortunately, for in makes no guarantee about the order of the
properties, and most array applications expect the elements to be produced in numerical order. Also,
there is still the problem with unexpected properties being dredged up from the prototype chain.

Fortunately, the conventional for statement avoids these problems. JavaScript's for statement is
similar to that in most C-like languages. It is controlled by three clauses—the first initializes the loop,
the second is the while condition, and the third does the increment:

var i;
for (i = 0; i < myArray.length; i += 1) {
 document.writeln(myArray[i]);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5. Confusion

A common error in JavaScript programs is to use an object when an array is required or an array
when an object is required. The rule is simple: when the property names are small sequential integers,
you should use an array. Otherwise, use an object.

JavaScript itself is confused about the difference between arrays and objects. The typeof operator
reports that the type of an array is 'object', which isn't very helpful.

JavaScript does not have a good mechanism for distinguishing between arrays and objects. We can
work around that deficiency by defining our own is_array function:

var is_array = function (value) {
 return value &&
 typeof value === 'object' &&
 value.constructor === Array;
};

Unfortunately, it fails to identify arrays that were constructed in a different window or frame. If we
want to accurately detect those foreign arrays, we have to work a little harder:

var is_array = function (value) {
 return value &&
 typeof value === 'object' &&
 typeof value.length === 'number' &&
 typeof value.splice === 'function' &&
 !(value.propertyIsEnumerable('length'));
};

First, we ask if the value is truthy. We do this to reject null and other falsy values. Second, we ask if
the typeof value is 'object'. This will be true for objects, arrays, and (weirdly) null. Third, we ask
if the value has a length property that is a number. This will always be true for arrays, but usually
not for objects. Fourth, we ask if the value contains a splice method. This again will be true for all
arrays. Finally, we ask if the length property is enumerable (will length be produced by a for in
loop?). That will be false for all arrays. This is the most reliable test for arrayness that I have found.
It is unfortunate that it is so complicated.

Having such a test, it is possible to write functions that do one thing when passed a single value and
lots of things when passed an array of values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.6. Methods

JavaScript provides a set of methods for acting on arrays. The methods are functions stored in
Array.prototype. In Chapter 3, we saw that Object.prototype can be augmented.
Array.prototype can be augmented as well.

For example, suppose we want to add an array method that will allow us to do computation on an
array:

Array.method('reduce', function (f, value) {
 var i;
 for (i = 0; i < this.length; i += 1) {
 value = f(this[i], value);
 }
 return value;
});

By adding a function to Array.prototype, every array inherits the method. In this case, we defined a
reduce method that takes a function and a starting value. For each element of the array, it calls the
function with an element and the value, and computes a new value. When it is finished, it returns the
value. If we pass in a function that adds two numbers, it computes the sum. If we pass in a function
that multiplies two numbers, it computes the product:

// Create an array of numbers.

var data = [4, 8, 15, 16, 23, 42];

// Define two simple functions. One will add two
// numbers. The other will multiply two numbers.

var add = function (a, b) {
 return a + b;
};

var mult = function (a, b) {
 return a * b;
};

// Invoke the data's reduce method, passing in the
// add function.

var sum = data.reduce(add, 0); // sum is 108

// Invoke the reduce method again, this time passing
// in the multiply function.

var product = data.reduce(mult, 1);
 // product is 7418880

Because an array is really an object, we can add methods directly to an individual array:

// Give the data array a total function.

data.total = function () {
 return this.reduce(add, 0);
};

total = data.total(); // total is 108

Since the string 'total' is not an integer, adding a total property to an array does not change its
length. Arrays are most useful when the property names are integers, but they are still objects, and
objects can accept any string as a property name.

It is not useful to use the Object.beget method from Chapter 3 on arrays because it produces an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is not useful to use the Object.beget method from Chapter 3 on arrays because it produces an
object, not an array. The object produced will inherit the array's values and methods, but it will not
have the special length property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.7. Dimensions

JavaScript arrays usually are not initialized. If you ask for a new array with [], it will be empty. If you
access a missing element, you will get the undefined value. If you are aware of that, or if you will
naturally set every element before you attempt to retrieve it, then all is well. But if you are
implementing algorithms that assume that every element starts with a known value (such as 0), then
you must prep the array yourself. JavaScript should have provided some form of an Array.dim
method to do this, but we can easily correct this oversight:

Array.dim = function (dimension, initial) {
 var a = [], i;
 for (i = 0; i < dimension; i += 1) {
 a[i] = initial;
 }
 return a;
}

// Make an array containing 10 zeros.

var myArray = Array.dim(10, 0);

JavaScript does not have arrays of more than one dimension, but like most C languages, it can have
arrays of arrays:

var matrix = [
 [0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]
];
matrix[2][1] // 7

To make a two-dimensional array or an array of arrays, you must build the arrays yourself:

for (i = 0; i < n; i += 1) {
 my_array[i] = [];
}

// Note: Array.dim(n, []) will not work here.
// Each element would get a reference to the same
// array, which would be very bad.

The cells of an empty matrix will initially have the value undefined. If you want them to have a
different initial value, you must explicitly set them. Again, JavaScript should have provided better
support for matrixes. We can correct that, too:

Code View:

Array.matrix = function (m, n, initial) {
 var a, i, j, mat = [];
 for (i = 0; i < m; i += 1) {
 a = [];
 for (j = 0; j < n; j += 1) {
 a[j] = 0;
 }
 mat[i] = a;
 }
 return mat;
}

// Make a 4 * 4 matrix filled with zeros.

var myMatrix = Array.matrix(4, 4, 0);

document.writeln(myMatrix[3][3]); // 0

// Method to make an identity matrix.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Method to make an identity matrix.

Array.identity = function (n) {
 var i, mat = Array.matrix(n, n, 0);
 for (i = 0; i < n; i += 1) {
 mat[i][i] = 1;
 }
 return mat;
}

myMatrix = Array.identity(4);

document.writeln(myMatrix[3][3]); // 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Regular Expressions
Whereas the contrary bringeth bliss, And is a pattern of celestial peace. Whom should
we match with Henry, being a king. . .

—William Shakespeare, The First Part of Henry the Sixth

Many of JavaScript's features were borrowed from other languages. The syntax came from Java,
functions came from Scheme, and prototypal inheritance came from Self. JavaScript's Regular
Expression feature was borrowed from Perl.

A regular expression is the specification of the syntax of a simple language. Regular expressions are
used with methods to search, replace, and extract information from strings. The methods that work
with regular expressions are regexp.exec, regexp.test, string.match, string.replace,
string.search, and string.split. These will all be described in Chapter 8. Regular expressions
usually have a significant performance advantage over equivalent string operations in JavaScript.

Regular expressions came from the mathematical study of formal languages. Ken Thompson adapted
Stephen Kleene's theoretical work on type-3 languages into a practical pattern matcher that could be
embedded in tools such as text editors and programming languages.

The syntax of regular expressions in JavaScript conforms closely to the original formulations from Bell
Labs, with some reinterpretation and extension adopted from Perl. The rules for writing regular
expressions can be surprisingly complex because they interpret characters in some positions as
operators, and in slightly different positions as literals. Worse than being hard to write, this makes
regular expressions hard to read and dangerous to modify. It is necessary to have a fairly complete
understanding of the full complexity of regular expressions to correctly read them. To mitigate this, I
have simplified the rules a little. As presented here, regular expressions will be slightly less terse, but
they will also be slightly easier to use correctly. And that is a good thing because regular expressions
can be very difficult to maintain and debug.

Today's regular expressions are not strictly regular, but they can be very useful. Regular expressions
tend to be extremely terse, even cryptic. They are easy to use in their simplest form, but they can
quickly become bewildering. JavaScript's regular expressions are difficult to read in part because they
do not allow comments or whitespace. All of the parts of a regular expression are pushed tightly
together, making them almost indecipherable. This is a particular concern when they are used in
security applications for scanning and validation. If you cannot read and understand a regular
expression, how can you have confidence that it will work correctly for all inputs? Yet, despite their
obvious drawbacks, regular expressions are widely used.

7.1. An Example

Here is an example. It is a regular expression that matches URLs. The pages of this book are not
infinitely wide, so I broke it into two lines. In a JavaScript program, the regular expression must be on
a single line. Whitespace is significant:

var parse_url = /^(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-A-Za-z]+)
(?::(\d+))?(?:\/([^?#]*))?(?:\?([^#]*))?(?:#(.*))?$/;

var url = "http://www.ora.com:80/goodparts?q#fragment";

Let's call parse_url's exec method. If it successfully matches the string that we pass it, it will return
an array containing pieces extracted from the url:

var url = "http://www.ora.com:80/goodparts?q#fragment";

var result = parse_url.exec(url);

var names = ['url', 'scheme', 'slash', 'host', 'port',
 'path', 'query', 'hash'];

var blanks = ' ';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var blanks = ' ';
var i;

for (i = 0; i < names.length; i += 1) {
 document.writeln(names[i] + ':' +
 blanks.substring(names[i].length), result[i]);
}

This produces:

url: http://www.ora.com:80/goodparts?q#fragment
scheme: http
slash: //
host: www.ora.com
port: 80
path: goodparts
query: q
hash: fragment

In Chapter 2, we used railroad diagrams to describe the JavaScript language. We can also use them to
describe the languages defined by regular expressions. That may make it easier to see what a regular
expression does. This is a railroad diagram for parse_url.

Regular expressions cannot be broken into smaller pieces the way that functions can, so the track
representing parse_url is a long one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

representing parse_url is a long one.

Let's factor parse_url into its parts to see how it works:

^

The ^ character indicates the beginning of the string. It is an anchor that prevents exec from skipping
over a non-URL-like prefix:

(?:([A-Za-z]+):)?

This factor matches a scheme name, but only if it is followed by a : (colon). The (?: . . .) indicates a
noncapturing group. The suffix ? indicates that the group is optional.

It means repeat zero or one time. The (. . .) indicates a capturing group. A capturing group copies
the text it matches and places it in the result array. Each capturing group is given a number. This
first capturing group is 1, so a copy of the text matched by this capturing group will appear in
result[1]. The [. . .] indicates a character class. This character class, A-Za-z, contains 26
uppercase letters and 26 lowercase letters. The hyphens indicate ranges, from A to Z. The suffix +
indicates that the character class will be matched one or more times. The group is followed by the :
character, which will be matched literally:

(\/{0,3})

The next factor is capturing group 2. \/ indicates that a / (slash) character should be matched. It is
escaped with \ (backslash) so that it is not misinterpreted as the end of the regular expression literal.
The suffix {0,3} indicates that the / will be matched 0 or 1 or 2 or 3 times:

([0-9.\-A-Za-z]+)

The next factor is capturing group 3. It will match a host name, which is made up of one or more
digits, letters, or . or -. The - was escaped as \- to prevent it from being confused with a range
hyphen:

(?::(\d+))?

The next factor optionally matches a port number, which is a sequence of one or more digits preceded
by a :. \d represents a digit character. The series of one or more digits will be capturing group 4:

(?:\/([^?#]*))?

We have another optional group. This one begins with a /. The character class [^?#] begins with a ^,
which indicates that the class includes all characters except ? and #. The * indicates that the character
class is matched zero or more times.

Note that I am being sloppy here. The class of all characters except ? and # includes line-ending
characters, control characters, and lots of other characters that really shouldn't be matched here. Most
of the time this will do want we want, but there is a risk that some bad text could slip through. Sloppy
regular expressions are a popular source of security exploits. It is a lot easier to write sloppy regular
expressions than rigorous regular expressions:

(?:\?([^#]*))?

Next, we have an optional group that begins with a ?. It contains capturing group 6, which contains
zero or more characters that are not #:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

zero or more characters that are not #:

(?:#(.*))?

We have a final optional group that begins with #. The . will match any character except a line-ending
character:

$

The $ represents the end of the string. It assures us that there was no extra material after the end of
the URL.

Those are the factors of the regular expression parse_url.[1]

[1] When you press them all together again, it is visually quite confusing: /^(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-
A-Za-z]+)?(?::(\d+))?(?:\/([^?#]*))?(?:\?([^#]*))?(?:#(.*))?$/

It is possible to make regular expressions that are more complex than parse_url, but I wouldn't
recommend it. Regular expressions are best when they are short and simple. Only then can we have
confidence that they are working correctly and that they could be successfully modified if necessary.

There is a very high degree of compatibility between JavaScript language processors. The part of the
language that is least portable is the implementation of regular expressions. Regular expressions that
are very complicated or convoluted are more likely to have portability problems. Nested regular
expressions can also suffer horrible performance problems in some implementations. Simplicity is the
best strategy.

Let's look at another example: a regular expression that matches numbers. Numbers can have an
integer part with an optional minus sign, an optional fractional part, and an optional exponent part:

var parse_number = /^-?\d+(?:\.\d*)?(?:e[+\-]?\d+)?$/i;

var test = function (num) {
 document.writeln(parse_number.test(num));
};

test('1'); // true
test('number'); // false
test('98.6'); // true
test('132.21.86.100'); // false
test('123.45E-67'); // true
test('123.45D-67'); // false

parse_number successfully identified the strings that conformed to our specification and those that did
not, but for those that did not, it gives us no information on why or where they failed the number test.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's break down parse_number:

/^ $/i

We again use ^ and $ to anchor the regular expression. This causes all of the characters in the text to
be matched against the regular expression. If we had omitted the anchors, the regular expression
would tell us if a string contains a number. With the anchors, it tells us if the string contains only a
number. If we included just the ^, it would match strings starting with a number. If we included just
the $, it would match strings ending with a number.

The i flag causes case to be ignored when matching letters. The only letter in our pattern is e. We
want that e to also match E. We could have written the e factor as [Ee] or (?:E|e), but we didn't
have to because we used the i flag:

-?

The ? suffix on the minus sign indicates that the minus sign is optional:

\d+

\d means the same as [0-9]. It matches a digit. The + suffix causes it to match one or more digits:

(?:\.\d*)?

The (?: . . .)? indicates an optional noncapturing group. It is usually better to use noncapturing
groups instead of the less ugly capturing groups because capturing has a performance penalty. The
group will match a decimal point followed by zero or more digits:

(?:e[+\-]?\d+)?

This is another optional noncapturing group. It matches e (or E), an optional sign, and one or more
digits.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Regular Expressions
Whereas the contrary bringeth bliss, And is a pattern of celestial peace. Whom should
we match with Henry, being a king. . .

—William Shakespeare, The First Part of Henry the Sixth

Many of JavaScript's features were borrowed from other languages. The syntax came from Java,
functions came from Scheme, and prototypal inheritance came from Self. JavaScript's Regular
Expression feature was borrowed from Perl.

A regular expression is the specification of the syntax of a simple language. Regular expressions are
used with methods to search, replace, and extract information from strings. The methods that work
with regular expressions are regexp.exec, regexp.test, string.match, string.replace,
string.search, and string.split. These will all be described in Chapter 8. Regular expressions
usually have a significant performance advantage over equivalent string operations in JavaScript.

Regular expressions came from the mathematical study of formal languages. Ken Thompson adapted
Stephen Kleene's theoretical work on type-3 languages into a practical pattern matcher that could be
embedded in tools such as text editors and programming languages.

The syntax of regular expressions in JavaScript conforms closely to the original formulations from Bell
Labs, with some reinterpretation and extension adopted from Perl. The rules for writing regular
expressions can be surprisingly complex because they interpret characters in some positions as
operators, and in slightly different positions as literals. Worse than being hard to write, this makes
regular expressions hard to read and dangerous to modify. It is necessary to have a fairly complete
understanding of the full complexity of regular expressions to correctly read them. To mitigate this, I
have simplified the rules a little. As presented here, regular expressions will be slightly less terse, but
they will also be slightly easier to use correctly. And that is a good thing because regular expressions
can be very difficult to maintain and debug.

Today's regular expressions are not strictly regular, but they can be very useful. Regular expressions
tend to be extremely terse, even cryptic. They are easy to use in their simplest form, but they can
quickly become bewildering. JavaScript's regular expressions are difficult to read in part because they
do not allow comments or whitespace. All of the parts of a regular expression are pushed tightly
together, making them almost indecipherable. This is a particular concern when they are used in
security applications for scanning and validation. If you cannot read and understand a regular
expression, how can you have confidence that it will work correctly for all inputs? Yet, despite their
obvious drawbacks, regular expressions are widely used.

7.1. An Example

Here is an example. It is a regular expression that matches URLs. The pages of this book are not
infinitely wide, so I broke it into two lines. In a JavaScript program, the regular expression must be on
a single line. Whitespace is significant:

var parse_url = /^(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-A-Za-z]+)
(?::(\d+))?(?:\/([^?#]*))?(?:\?([^#]*))?(?:#(.*))?$/;

var url = "http://www.ora.com:80/goodparts?q#fragment";

Let's call parse_url's exec method. If it successfully matches the string that we pass it, it will return
an array containing pieces extracted from the url:

var url = "http://www.ora.com:80/goodparts?q#fragment";

var result = parse_url.exec(url);

var names = ['url', 'scheme', 'slash', 'host', 'port',
 'path', 'query', 'hash'];

var blanks = ' ';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var blanks = ' ';
var i;

for (i = 0; i < names.length; i += 1) {
 document.writeln(names[i] + ':' +
 blanks.substring(names[i].length), result[i]);
}

This produces:

url: http://www.ora.com:80/goodparts?q#fragment
scheme: http
slash: //
host: www.ora.com
port: 80
path: goodparts
query: q
hash: fragment

In Chapter 2, we used railroad diagrams to describe the JavaScript language. We can also use them to
describe the languages defined by regular expressions. That may make it easier to see what a regular
expression does. This is a railroad diagram for parse_url.

Regular expressions cannot be broken into smaller pieces the way that functions can, so the track
representing parse_url is a long one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

representing parse_url is a long one.

Let's factor parse_url into its parts to see how it works:

^

The ^ character indicates the beginning of the string. It is an anchor that prevents exec from skipping
over a non-URL-like prefix:

(?:([A-Za-z]+):)?

This factor matches a scheme name, but only if it is followed by a : (colon). The (?: . . .) indicates a
noncapturing group. The suffix ? indicates that the group is optional.

It means repeat zero or one time. The (. . .) indicates a capturing group. A capturing group copies
the text it matches and places it in the result array. Each capturing group is given a number. This
first capturing group is 1, so a copy of the text matched by this capturing group will appear in
result[1]. The [. . .] indicates a character class. This character class, A-Za-z, contains 26
uppercase letters and 26 lowercase letters. The hyphens indicate ranges, from A to Z. The suffix +
indicates that the character class will be matched one or more times. The group is followed by the :
character, which will be matched literally:

(\/{0,3})

The next factor is capturing group 2. \/ indicates that a / (slash) character should be matched. It is
escaped with \ (backslash) so that it is not misinterpreted as the end of the regular expression literal.
The suffix {0,3} indicates that the / will be matched 0 or 1 or 2 or 3 times:

([0-9.\-A-Za-z]+)

The next factor is capturing group 3. It will match a host name, which is made up of one or more
digits, letters, or . or -. The - was escaped as \- to prevent it from being confused with a range
hyphen:

(?::(\d+))?

The next factor optionally matches a port number, which is a sequence of one or more digits preceded
by a :. \d represents a digit character. The series of one or more digits will be capturing group 4:

(?:\/([^?#]*))?

We have another optional group. This one begins with a /. The character class [^?#] begins with a ^,
which indicates that the class includes all characters except ? and #. The * indicates that the character
class is matched zero or more times.

Note that I am being sloppy here. The class of all characters except ? and # includes line-ending
characters, control characters, and lots of other characters that really shouldn't be matched here. Most
of the time this will do want we want, but there is a risk that some bad text could slip through. Sloppy
regular expressions are a popular source of security exploits. It is a lot easier to write sloppy regular
expressions than rigorous regular expressions:

(?:\?([^#]*))?

Next, we have an optional group that begins with a ?. It contains capturing group 6, which contains
zero or more characters that are not #:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

zero or more characters that are not #:

(?:#(.*))?

We have a final optional group that begins with #. The . will match any character except a line-ending
character:

$

The $ represents the end of the string. It assures us that there was no extra material after the end of
the URL.

Those are the factors of the regular expression parse_url.[1]

[1] When you press them all together again, it is visually quite confusing: /^(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-
A-Za-z]+)?(?::(\d+))?(?:\/([^?#]*))?(?:\?([^#]*))?(?:#(.*))?$/

It is possible to make regular expressions that are more complex than parse_url, but I wouldn't
recommend it. Regular expressions are best when they are short and simple. Only then can we have
confidence that they are working correctly and that they could be successfully modified if necessary.

There is a very high degree of compatibility between JavaScript language processors. The part of the
language that is least portable is the implementation of regular expressions. Regular expressions that
are very complicated or convoluted are more likely to have portability problems. Nested regular
expressions can also suffer horrible performance problems in some implementations. Simplicity is the
best strategy.

Let's look at another example: a regular expression that matches numbers. Numbers can have an
integer part with an optional minus sign, an optional fractional part, and an optional exponent part:

var parse_number = /^-?\d+(?:\.\d*)?(?:e[+\-]?\d+)?$/i;

var test = function (num) {
 document.writeln(parse_number.test(num));
};

test('1'); // true
test('number'); // false
test('98.6'); // true
test('132.21.86.100'); // false
test('123.45E-67'); // true
test('123.45D-67'); // false

parse_number successfully identified the strings that conformed to our specification and those that did
not, but for those that did not, it gives us no information on why or where they failed the number test.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's break down parse_number:

/^ $/i

We again use ^ and $ to anchor the regular expression. This causes all of the characters in the text to
be matched against the regular expression. If we had omitted the anchors, the regular expression
would tell us if a string contains a number. With the anchors, it tells us if the string contains only a
number. If we included just the ^, it would match strings starting with a number. If we included just
the $, it would match strings ending with a number.

The i flag causes case to be ignored when matching letters. The only letter in our pattern is e. We
want that e to also match E. We could have written the e factor as [Ee] or (?:E|e), but we didn't
have to because we used the i flag:

-?

The ? suffix on the minus sign indicates that the minus sign is optional:

\d+

\d means the same as [0-9]. It matches a digit. The + suffix causes it to match one or more digits:

(?:\.\d*)?

The (?: . . .)? indicates an optional noncapturing group. It is usually better to use noncapturing
groups instead of the less ugly capturing groups because capturing has a performance penalty. The
group will match a decimal point followed by zero or more digits:

(?:e[+\-]?\d+)?

This is another optional noncapturing group. It matches e (or E), an optional sign, and one or more
digits.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2. Construction

There are two ways to make a RegExp object. The preferred way, as we saw in the examples, is to use
a regular expression literal.

Regular expression literals are enclosed in slashes. This can be a little tricky because slash is also used
as the division operator and in comments.

There are three flags that can be set on a RegExp. They are indicated by the letters g, i, and m, as
listed in Table 7-1. The flags are appended directly to the end of the RegExp literal:

// Make a regular expression object that matches
// a JavaScript string.

var my_regexp = /"(?:\\.|[^\\\"])*"/g;

Table 7-1. Flags for regular expressions

Flag Meaning

g Global (match multiple times; the precise meaning of this varies with the method)

i Insensitive (ignore character case)

m Multiline (^ and $ can match line-ending characters)

The other way to make a regular expression is to use the RegExp constructor. The constructor takes a
string and compiles it into a RegExp object. Some care must be taken in building the string because
backslashes have a somewhat different meaning in regular expressions than in string literals. It is
usually necessary to double the backslashes and escape the quotes:

// Make a regular expression object that matches
// a JavaScript string.

var my_regexp =
 new RegExp("\"(?:\\.|[^\\\\\\\"])*\"", 'g');

The second parameter is a string specifying the flags. The RegExp constructor is useful when a regular
expression must be generated at runtime using material that is not available to the programmer.

RegExp objects contain the properties listed in Table 7-2.

Table 7-2. Properties of RegExp objects

Property Use

global true if the g flag was used.

ignoreCase true if the i flag was used.

lastIndex The index at which to start the next exec match. Initially it is zero.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multiline true if the m flag was used.

source The source text of the regular expression.

RegExp objects made by regular expression literals share a single instance:

function make_a_matcher() {
 return /a/gi;
}

var x = make_a_matcher();
var y = make_a_matcher();

// Beware: x and y are the same object!

x.lastIndex = 10;

document.writeln(y.lastIndex); // 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3. Elements

Let's look more closely at the elements that make up regular expressions.

7.3.1. Regexp Choice

A regexp choice contains one or more regexp sequences. The sequences are separated by the |
(vertical bar) character. The choice matches if any of the sequences match. It attempts to match each
of the sequences in order. So:

"into".match(/in|int/)

matches the in in into. It wouldn't match int because the match of in was successful.

7.3.2. Regexp Sequence

A regexp sequence contains one or more regexp factors. Each factor can optionally be followed by a
quantifier that determines how many times the factor is allowed to appear. If there is no quantifier,
then the factor will be matched one time.

7.3.3. Regexp Factor

A regexp factor can be a character, a parenthesized group, a character class, or an escape sequence.
All characters are treated literally except for the control characters and the special characters:

\ / [] () { } ? + * | . ^ $

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\ / [] () { } ? + * | . ^ $

which must be escaped with a \ prefix if they are to be matched literally. When in doubt, any special
character can be given a \ prefix to make it literal. The \ prefix does not make letters or digits literal.

An unescaped . matches any character except a line-ending character.

An unescaped ^ matches the beginning of the text when the lastIndex property is zero. It can also
match line-ending characters when the m flag is specified.

An unescaped $ matches the end of the text. It can also match line-ending characters when the m flag
is specified.

7.3.4. Regexp Escape

The backslash character indicates escapement in regexp factors as well as in strings, but in regexp
factors, it works a little differently.

As in strings, \f is the formfeed character, \n is the newline character, \r is the carriage return
character, \t is the tab character, and \u allows for specifying a Unicode character as a 16-bit hex
constant. In regexp factors, \b is not the backspace character.

\d is the same as [0-9]. It matches a digit. \D is the opposite: [^0-9].

\s is the same as [\f\n\r\t\u000B\u0020\u00A0\u2028\u2029]. This is a partial set of Unicode
whitespace characters. \S is the opposite: [^\f\n\r\t\u000B\u0020\u00A0\u2028\u2029].

\w is the same as [0-9A-Z_a-z]. \W is the opposite: [^0-9A-Z_a-z]. This is supposed to represent
the characters that appear in words. Unfortunately, the class it defines is useless for working with
virtually any real language. If you need to match a class of letters, you must specify your own class.

A simple letter class is [A-Za-z\u00C0-\u1FFF\u2800-\uFFFD]. It includes all of Unicode's letters, but
it also includes thousands of characters that are not letters. Unicode is large and complex. An exact
letter class of the Basic Multilingual Plane is possible, but would be huge and inefficient. JavaScript's
regular expressions provide extremely poor support for internationalization.

\b was intended to be a word-boundary anchor that would make it easier to match text on word
boundaries. Unfortunately, it uses \w to find word boundaries, so it is completely useless for
multilingual applications. This is not a good part.

\1 is a reference to the text that was captured by group 1 so that it can be matched again. For

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\1 is a reference to the text that was captured by group 1 so that it can be matched again. For
example, you could search text for duplicated words with:

var doubled_words =
 /[A-Za-z\u00C0-\u1FFF\u2800-\uFFFD'\-]+\s+\1/gi;

doubled_words looks for occurrences of words (strings containing 1 or more letters) followed by
whitespace followed by the same word.

\2 is a reference to group 2, \3 is a reference to group 3, and so on.

7.3.5. Regexp Group

There are four kinds of groups:

Capturing

A capturing group is a regexp choice wrapped in parentheses. The characters that match
the group will be captured. Every capture group is given a number. The first capturing (in
the regular expression is group 1. The second capturing (in the regular expression is
group 2.

Noncapturing

A noncapturing group has a (?: prefix. A noncapturing group simply matches; it does not
capture the matched text. This has the advantage of slight faster performance.
Noncapturing groups do not interfere with the numbering of capturing groups.

Positive lookahead

A positive lookahead group has a (?= prefix. It is like a noncapturing group except that
after the group matches, the text is rewound to where the group started, effectively
matching nothing. This is not a good part.

Negative lookahead

A negative lookahead group has a (?! prefix. It is like a positive lookahead group, except
that it matches only if it fails to match. This is not a good part.

7.3.6. Regexp Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3.6. Regexp Class

A regexp class is a convenient way of specifying one of a set of characters. For example, if we wanted
to match a vowel, we could write (?:a|e|i|o|u), but it is more conveniently written as the class
[aeiou].

Classes provide two other conveniences. The first is that ranges of characters can be specified. So, the
set of 32 ASCII special characters:

! " # $ % & ' () * +, - . / :
; < = > ? @ [\] ^ _ ` { | }

could be written as:

Code View:

(?:!|"|#|\$|%|&|'|\(|\)|*|\+|,|-|\.|\/|:|;|<|=|>|@|\[|\\|]|\^|_|` |\{|\||\}|)

but is slightly more nicely written as:

[!-\/:-@\[-`{-]

which includes the characters from ! through / and : through @ and [through ` and { through . It
is still pretty nasty looking.

The other convenience is the complementing of a class. If the first character after the [is ^, then the
class excludes the specified characters.

So [^!-\/:-@\[-`{-] matches any character that is not one of the ASCII special characters.

7.3.7. Regexp Class Escape

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The rules of escapement within a character class are slightly different than those for a regexp factor.
[\b] is the backspace character. Here are the special characters that should be escaped in a character
class:

- / [\] ^

7.3.8. Regexp Quantifier

A regexp factor may have a regexp quantifier suffix that determines how many times the factor should
match. A number wrapped in curly braces means that the factor should match that many times. So,
/www/ matches the same as /w{3}/. {3,6} will match 3, 4, 5, or 6 times. {3,} will match 3 or more
times.

? is the same as {0,1}. * is the same as {0,}. + is the same as {1,}.

Matching tends to be greedy, matching as many repetitions as possible up to the limit, if there is one.
If the quantifier has an extra ? suffix, then matching tends to be lazy, attempting to match as few
repetitions as possible. It is usually best to stick with the greedy matching.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Methods
Though this be madness, yet there is method in 't.

—William Shakespeare, The Tragedy of Hamlet, Prince of Denmark

JavaScript includes a small set of standard methods that are available on the standard types.

Array

array.concat(item...)

The concat method produces a new array containing a shallow copy of this
array with the items appended to it. If an item is an array, then each of its
elements is appended individually. Also see array.push(item...) later in this
chapter.

var a = ['a', 'b', 'c'];
var b = ['x', 'y', 'z'];
var c = a.concat(b, true);
// c is ['a', 'b', 'c', 'x', 'y', 'z', true]

array.join(separator)

The join method makes a string from an array . It does this by making a string
of each of the array 's elements, and then concatenating them all together with
a separator between them. The default separator is ','. To join without
separation, use an empty string as the separator.

If you are assembling a string from a large number of pieces, it is usually faster
to put the pieces into an array and join them than it is to concatenate the
pieces with the + operator:

var a = ['a', 'b', 'c'];
a.push('d');
var c = a.join(''); // c is 'abcd';

array.pop()

The pop and push methods make an array work like a stack. The pop method
removes and returns the last element in this array . If the array is empty, it
returns undefined.

var a = ['a', 'b', 'c'];
var c = a.pop(); // a is ['a', 'b'] & c is 'c'

pop can be implemented like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pop can be implemented like this:

Array.method('pop', function () {
 return this.splice(this.length - 1, 1)[0];
});

array.push(item...)

The push method appends items to the end of an array. Unlike the concat
method, it modifies the array and appends array items whole. It returns the new
length of the array:

var a = ['a', 'b', 'c'];
var b = ['x', 'y', 'z'];
var c = a.push(b, true);
// a is ['a', 'b', 'c', ['x', 'y', 'z'], true]
// c is 5;

push can be implemented like this:

Array.method('push', function () {
 this.splice.apply(
 this,
 [this.length, 0].
 concat(Array.prototype.slice.apply(arguments)));
 return this.length;
});

array.reverse()

The reverse method modifies the array by reversing the order of the elements.
It returns the array:

var a = ['a', 'b', 'c'];
var b = a.reverse();
// both a and b are ['c', 'b', 'a']

array.shift()

The shift method removes the first element from an array and returns it. If the
array is empty, it returns undefined. shift is usually much slower than pop:

var a = ['a', 'b', 'c'];
var c = a.shift(); // a is ['b', 'c'] & c is 'a'

shift can be implemented like this:

Array.method('shift', function () {
 return this.splice(0, 1)[0];
});

array.slice(start, end)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array.slice(start, end)

The slice method makes a shallow copy of a portion of an array . The first
element copied will be array [start]. It will stop before copying array [end
]. The end parameter is optional, and the default is array .length. If either
parameter is negative, array .length will be added to them in an attempt to
make them nonnegative. If start is greater than or equal to array .length, the
result will be a new empty array. Do not confuse slice with splice. Also see
string .slice later in this chapter.

var a = ['a', 'b', 'c'];
var b = a.slice(0, 1); // b is ['a']
var c = a.slice(1); // c is ['b', 'c']
var d = a.slice(1, 2); // d is ['b']

array.sort(comparefn)

The sort method sorts the contents of an array in place. It sorts arrays of
numbers incorrectly:

var n = [4, 8, 15, 16, 23, 42];
n.sort();
// n is [15, 16, 23, 4, 42, 8]

JavaScript's default comparison function assumes that the elements to be sorted
are strings. It isn't clever enough to test the type of the elements before
comparing them, so it converts the numbers to strings as it compares them,
ensuring a shockingly incorrect result.

Fortunately, you may replace the comparison function with your own. Your
comparison function should take two parameters and return 0 if the two
parameters are equal, a negative number if the first parameter should come
first, and a positive number if the second parameter should come first. (Old-
timers might be reminded of the FORTRAN II arithmetic IF statement.)

n.sort(function (a, b) {
 return a - b;
});
// n is [4, 8, 15, 16, 23, 42];

That function will sort numbers, but it doesn't sort strings. If we want to be able
to sort any array of simple values, we must work harder:

var m = ['aa', 'bb', 'a', 4, 8, 15, 16, 23, 42];
m.sort(function (a, b) {
 if (a === b) {
 return 0;
 }
 if (typeof a === typeof b) {
 return a < b ? -1 : 1;
 }
 return typeof a < typeof b ? -1 : 1;
});
// m is [4, 8, 15, 16, 23, 42, 'a', 'aa', 'bb']

If case is not significant, your comparison function should convert the operands
to lowercase before comparing them. Also see string .localeCompare later in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to lowercase before comparing them. Also see string .localeCompare later in
this chapter.

With a smarter comparison function, we can sort an array of objects. To make
things easier for the general case, we will write a function that will make
comparison functions:

Code View:

// Function by takes a member name string and returns
// a comparison function that can be used to sort an
// array of objects that contain that member.

var by = function (name) {
 return function (o, p) {
 var a, b;
 if (typeof o === 'object' && typeof p === 'object' && o && p) {
 a = o[name];
 b = p[name];
 if (a === b) {
 return 0;
 }
 if (typeof a === typeof b) {
 return a < b ? -1 : 1;
 }
 return typeof a < typeof b ? -1 : 1;
 } else {
 throw {
 name: 'Error',
 message: 'Expected an object when sorting by ' + name;
 };
 }
 };
};

var s = [
 {first: 'Joe', last: 'Besser'},
 {first: 'Moe', last: 'Howard'},
 {first: 'Joe', last: 'DeRita'},
 {first: 'Shemp', last: 'Howard'},
 {first: 'Larry', last: 'Fine'},
 {first: 'Curly', last: 'Howard'}
];
s.sort(by('first')); // s is [
// {first: 'Curly', last: 'Howard'},
// {first: 'Joe', last: 'DeRita'},
// {first: 'Joe', last: 'Besser'},
// {first: 'Larry', last: 'Fine'},
// {first: 'Moe', last: 'Howard'},
// {first: 'Shemp', last: 'Howard'}
//]

The sort method is not stable, so:

s.sort(by('first')).sort(by('last'));

is not guaranteed to produce the correct sequence. If you want to sort on
multiple keys, you again need to do more work. We can modify by to take a
second parameter, another compare method that will be called to break ties
when the major key produces a match:

Code View:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code View:

// Function by takes a member name string and an
// optional minor comparison function and returns
// a comparison function that can be used to sort an
// array of objects that contain that member. The
// minor comparison function is used to break ties
// when the o[name] and p[name] are equal.

var by = function (name, minor) {
 return function (o, p) {
 var a, b;
 if (o && p && typeof o === 'object' && typeof p === 'object') {
 a = o[name];
 b = p[name];
 if (a === b) {
 return typeof minor === 'function' ? minor(o, p) : 0;
 }
 if (typeof a === typeof b) {
 return a < b ? -1 : 1;
 }
 return typeof a < typeof b ? -1 : 1;
 } else {
 throw {
 name: 'Error',
 message: 'Expected an object when sorting by ' + name;
 };
 }
 };
};

s.sort(by('last', by('first'))); // s is [
// {first: 'Joe', last: 'Besser'},
// {first: 'Joe', last: 'DeRita'},
// {first: 'Larry', last: 'Fine'},
// {first: 'Curly', last: 'Howard'},
// {first: 'Moe', last: 'Howard'},
// {first: 'Shemp', last: 'Howard'}
//]

array.splice(start, deleteCount, item...)

The splice method removes elements from an array, replacing them with new
item s. The start parameter is the number of a position within the array . The
deleteCount parameter is the number of elements to delete starting from that
position. If there are additional parameters, those item s will be inserted at the
position. It returns an array containing the deleted elements.

The most popular use of splice is to delete elements from an array. Do not
confuse splice with slice:

var a = ['a', 'b', 'c'];
var r = a.splice(1, 1, 'ache', 'bug');
// a is ['a', 'ache', 'bug', 'c']
// r is ['b']

splice can be implemented like this:

Code View:

Array.method('splice', function (start, deleteCount) {
 var max = Math.max,
 min = Math.min,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 min = Math.min,
 delta,
 element,
 insertCount = max(arguments.length - 2, 0),
 k = 0,
 len = this.length,
 new_len,
 result = [],
 shift_count;

 start = start || 0;
 if (start < 0) {
 start += len;
 }
 start = max(min(start, len), 0);
 deleteCount = max(min(typeof deleteCount === 'number' ?
 deleteCount : len, len - start), 0);
 delta = insertCount - deleteCount;
 new_len = len + delta;
 while (k < deleteCount) {
 element = this[start + k];
 if (element !== undefined) {
 result[k] = element;
 }
 k += 1;
 }
 shift_count = len - start - deleteCount;
 if (delta < 0) {
 k = start + insertCount;
 while (shift_count) {
 this[k] = this[k - delta];
 k += 1;
 shift_count -= 1;
 }
 this.length = new_len;
 } else if (delta > 0) {
 k = 1;
 while (shift_count) {
 this[new_len - k] = this[len - k];
 k += 1;
 shift_count -= 1;
 }
 }
 for (k = 0; k < insertCount; k += 1) {
 this[start + k] = arguments[k + 2];
 }
 return result;
});

array.unshift(item...)

The unshift method is like the push method except that it shoves the item s
onto the front of this array instead of at the end. It returns the array 's new
length:

var a = ['a', 'b', 'c'];
var r = a.unshift('?', '@');
// a is ['?', '@', 'a', 'b', 'c']
// r is 5

unshift can be implemented like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unshift can be implemented like this:

Array.method('unshift', function () {
 this.splice.apply(this,
 [0, 0].concat(Array.prototype.slice.apply(arguments)));
 return this.length;
});

Function

function.apply(thisArg, argArray)

The apply method invokes a function, passing in the object that will be bound
to this and an optional array of arguments. The apply method is used in the
apply invocation pattern (Chapter 4):

Function.method('bind', function (that) {

// Return a function that will call this function as
// though it is a method of that object.

 var method = this,
 slice = Array.prototype.slice,
 args = slice.apply(arguments, [1]);
 return function () {
 return method.apply(that,
 args.concat(slice.apply(arguments, [0])));
 };
});

var x = function () {
 return this.value;
}.bind({value: 666});
alert(x()); // 666

Number

number.toExponential(fractionDigits)

The toExponential method converts this number to a string in the exponential
form. The optional fractionDigits parameter controls the number of decimal
places. It should be between 0 and 20:

document.writeln(Math.PI.toExponential(0));
document.writeln(Math.PI.toExponential(2));
document.writeln(Math.PI.toExponential(7));
document.writeln(Math.PI.toExponential(16));
document.writeln(Math.PI.toExponential());

// Produces

3e+0
3.14e+0
3.1415927e+0
3.1415926535897930e+0
3.141592653589793e+0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.141592653589793e+0

number.toFixed(fractionDigits)

The toFixed method converts this number to a string in the decimal form. The
optional fractionDigits parameter controls the number of decimal places. It
should be between 0 and 20. The default is 0:

document.writeln(Math.PI.toFixed(0));
document.writeln(Math.PI.toFixed(2));
document.writeln(Math.PI.toFixed(7));
document.writeln(Math.PI.toFixed(16));
document.writeln(Math.PI.toFixed());

// Produces

3
3.14
3.1415927
3.1415926535897930
3

number.toPrecision(precision)

The toPrecision method converts this number to a string in the decimal form.
The optional precision parameter controls the number of digits of precision. It
should be between 1 and 21:

document.writeln(Math.PI.toPrecision(2));
document.writeln(Math.PI.toPrecision(7));
document.writeln(Math.PI.toPrecision(16));
document.writeln(Math.PI.toPrecision());

// Produces

3.1
3.141593
3.141592653589793
3.141592653589793

number.toString(radix)

The toString method converts this number to a string. The optional radix
parameter controls radix, or base. It should be between 2 and 36. The default
radix is base 10. The radix parameter is most commonly used with integers,
but it can be used on any number.

The most common case, number .toString(), can be written more simply as
String(number):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String(number):

document.writeln(Math.PI.toString(2));
document.writeln(Math.PI.toString(8));
document.writeln(Math.PI.toString(16));
document.writeln(Math.PI.toString());

// Produces

11.001001000011111101101010100010001000010110100011
3.1103755242102643
3.243f6a8885a3
3.141592653589793

Object

object.hasOwnProperty(name)

The hasOwnProperty method returns true if the object contains a property
having the name . The prototype chain is not examined. This method is useless if
the name is hasOwnProperty:

var a = {member: true};
var b = Object.beget(a); // from Chapter 3
var t = a.hasOwnProperty('member'); // t is true
var u = b.hasOwnProperty('member'); // u is false
var v = b.member; // v is true

RegExp

regexp.exec(string)

The exec method is the most powerful (and slowest) of the methods that use
regular expressions. If it successfully matches the regexp and the string, it
returns an array. The 0 element of the array will contain the substring that
matched the regexp . The 1 element is the text captured by group 1, the 2
element is the text captured by group 2, and so on. If the match fails, it returns
null.

If the regexp has a g flag, things are a little more complicated. The searching
begins not at position 0 of the string, but at position regexp .lastIndex (which
is initially zero). If the match is successful, then regexp .lastIndex will be set
to the position of the first character after the match. An unsuccessful match
resets regexp .lastIndex to 0.

This allows you to search for several occurrences of a pattern in a string by
calling exec in a loop. There are a couple things to watch out for. If you exit the
loop early, you must reset regexp .lastIndex to 0 yourself before entering the
loop again. Also, the ^ factor matches only when regexp .lastIndex is 0:

Code View:

// Break a simple html text into tags and texts.
// (See string.replace for the entityify method.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// (See string.replace for the entityify method.)

// For each tag or text, produce an array containing
// [0] The full matched tag or text
// [1] The tag name
// [2] The /, if there is one
// [3] The attributes, if any

var text = '<html><body bgcolor=linen><p>' +
 'This is bold<\/b>!<\/p><\/body><\/html>';
var tags = /[^<>]+|<(\/?)([A-Za-z]+)([^<>]*)>/g;
var a, i;

while ((a = tags.exec(text))) {
 for (i = 0; i < a.length; i += 1) {
 document.writeln(('// [' + i + '] ' + a[i]).entityify());
 }
 document.writeln();
}

// Result:

// [0] <html>
// [1]
// [2] html
// [3]

// [0] <body bgcolor=linen>
// [1]
// [2] body
// [3] bgcolor=linen

// [0] <p>
// [1]
// [2] p
// [3]

// [0] This is
// [1] undefined
// [2] undefined
// [3] undefined

// [0]
// [1]
// [2] b
// [3]

// [0] bold
// [1] undefined
// [2] undefined
// [3] undefined

// [0]
// [1] /
// [2] b
// [3]

// [0] !
// [1] undefined
// [2] undefined
// [3] undefined

// [0] </p>
// [1] /
// [2] p
// [3]

regexp.test(string)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

regexp.test(string)

The test method is the simplest (and fastest) of the methods that use regular
expressions. If the regexp matches the string, it returns true ; otherwise, it
returns false. Do not use the g flag with this method:

var b = /&.+;/.test('frank & beans');
// b is true

test could be implemented as:

RegExp.method('test', function (string) {
 return this.exec(string) !== null;
});

String

string.charAt(pos)

The charAt method returns the character at position pos in this string . If pos
is less than zero or greater than or equal to string .length, it returns the
empty string. JavaScript does not have a character type. The result of this
method is a string:

var name = 'Curly';
var initial = name.charAt(0); // initial is 'C'

charAt could be implemented as:

String.method('charAt', function () {
 return this.slice(0, 1);
});

string.charCodeAt(pos)

The charCodeAt method is the same as charAt except that instead of returning
a string, it returns an integer representation of the code point value of the
character at position pos in that string . If pos is less than zero or greater than
or equal to string .length, it returns NaN:

var name = 'Curly';
var initial = name.charCodeAt(0); // initial is 67

string.concat(string...)

The concat method makes a new string by concatenating other strings together.
It is rarely used because the + operator is more convenient:

var s = 'C'.concat('a', 't'); // s is 'Cat'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var s = 'C'.concat('a', 't'); // s is 'Cat'

string.indexOf(searchString, position)

The indexOf method searches for a searchString within a string. If it is found,
it returns the position of the first matched character; otherwise, it returns -1.
The optional position parameter causes the search to begin at some specified
position in the string:

var text = 'Mississippi';
var p = text.indexOf('ss'); // p is 2
p = text.indexOf('ss', 3); // p is 5
p = text.indexOf('ss', 6); // p is -1

string.lastIndexOf(searchString, position)

The lastIndexOf method is like the indexOf method, except that it searches
from the end of the string instead of the front:

var text = 'Mississippi';
var p = text.lastIndexOf('ss'); // p is 5
p = text.lastIndexOf('ss', 3); // p is 2
p = text.lastIndexOf('ss', 6); // p is 5

string.localeCompare(that)

The localCompare method compares two strings. The rules for how the strings
are compared are not specified. If this string is less than that string, the result
is negative. If they are equal, the result is zero. This is similar to the convention
for the array .sort comparison function:

var m = ['AAA', 'A', 'aa', 'a', 'Aa', 'aaa'];
m.sort(function (a, b) {
 return a.localeCompare(b);
});
// m (in some locale) is
// ['a', 'A', 'aa', 'Aa', 'aaa', 'AAA']

string.match(regexp)

The match method matches a string and a regular expression. How it does this
depends on the g flag. If there is no g flag, then the result of calling string
.match(regexp) is the same as calling regexp .exec(string). However, if
the regexp has the g flag, then it produces an array of all the matches but
excludes the capturing groups:

var text = '<html><body bgcolor=linen><p>' +
 'This is bold<\/b>!<\/p><\/body><\/html>';
var tags = /[^<>]+|<(\/?)([A-Za-z]+)([^<>]*)>/g;
var a, i;

a = text.match(tags);
for (i = 0; i < a.length; i += 1) {
 document.writeln(('// [' + i + '] ' + a[i]).entityify());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 document.writeln(('// [' + i + '] ' + a[i]).entityify());
}

// The result is

// [0] <html>
// [1] <body bgcolor=linen>
// [2] <p>
// [3] This is
// [4]
// [5] bold
// [6]
// [7] !
// [8] </p>
// [9] </body>
// [10] </html>

string.replace(searchValue, replaceValue)

The replace method does a search and replace operation on this string,
producing a new string. The searchValue argument can be a string or a regular
expression object. If it is a string, only the first occurrence of the searchValue is
replaced, so:

var result = "mother_in_law".replace('_', '-');

will produce "mother-in_law", which might be a disappointment.

If searchValue is a regular expression and if it has the g flag, then it will replace
all occurrences. If it does not have the g flag, then it will replace only the first
occurrence.

The replaceValue can be a string or a function. If replaceValue is a string, the
character $ has special meaning:

// Capture 3 digits within parens

var oldareacode = /\((\d{3})\)/g;
var p = '(555)666-1212'.replace(oldareacode, '$1-');
// p is '555-555-1212'

Dollar sequence Replacement

$$ $

$& The matched text

$number Capture group text

$` The text preceding the match

$' The text following the match

If the replaceValue is a function, it will be called for each match, and the string
returned by the function will be used as the replacement text. The first
parameter passed to the function is the matched text. The second parameter is
the text of capture group 1, the next parameter is the text of capture group 2,
and so on:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and so on:

String.method('entityify', function () {

 var character = {
 '<' : '<',
 '>' : '>',
 '&' : '&',
 '"' : '"'
 };

// Return the string.entityify method, which
// returns the result of calling the replace method.
// Its replaceValue function returns the result of
// looking a character up in an object. This use of
// an object usually outperforms switch statements.

 return function () {
 return this.replace(/[<>&"]/g, function (c) {
 return character[c];
 });
 };
}());
alert("<&>".entityify()); // <&>

string.search(regexp)

The search method is like the indexOf method, except that it takes a regular
expression object instead of a string. It returns the position of the first character
of the first match, if there is one, or -1 if the search fails. The g flag is ignored.
There is no position parameter:

var text = 'and in it he says "Any damn fool could';
var pos = text.search(/["']/); // pos is 18

string.slice(start, end)

The slice method makes a new string by copying a portion of another string.
If the start parameter is negative, it adds string .length to it. The end
parameter is optional, and its default value is string .length. If the end
parameter is negative, then string .length is added to it. The end parameter is
one greater than the position of the last character. To get n characters starting at
position p, use string .slice(p, p + n). Also see string .substring and
array .slice, later and earlier in this chapter, respectively.

var text = 'and in it he says "Any damn fool could';
var a = text.slice(18);
// a is '"Any damn fool could'
var b = text.slice(0, 3);
// b is 'and'
var c = text.slice(-5);
// c is 'could'
var d = text.slice(19, 32);
// d is 'Any damn fool'

string.split(separator, limit)

The split method creates an array of strings by splitting this string into pieces.
The optional limit parameter can limit the number of pieces that will be split.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The optional limit parameter can limit the number of pieces that will be split.
The separator parameter can be a string or a regular expression.

If the separator is the empty string, an array of single characters is produced:

var digits = '0123456789';
var a = digits.split('', 5);
// a is ['0', '1', '2', '3', '456789']

Otherwise, the string is searched for all occurrences of the separator. Each
unit of text between the separators is copied into the array. The g flag is
ignored:

var ip = '192.168.1.0';
var b = ip.split('.');
// b is ['192', '168', '1', '0']

var c = '|a|b|c|'.split('|');
// c is ['', 'a', 'b', 'c', '']

var text = 'last, first ,middle';
var d = text.split(/\s*,\s*/);
// d is [
// 'last',
// 'first',
// 'middle'
//]

There are some special cases to watch out for. Text from capturing groups will be
included in the split:

var e = text.split(/\s*(,)\s*/);
// e is [
// 'last',
// ',',
// 'first',
// ',',
// 'middle'
//]

Some implementations suppress empty strings in the output array when the
separator is a regular expression:

var f = '|a|b|c|'.split(/\|/);
// f is ['a', 'b', 'c'] on some systems, and
// f is ['', 'a', 'b', 'c', ''] on others

string.substring(start, end)

The substring method is the same as the slice method except that it doesn't
handle the adjustment for negative parameters. There is no reason to use the
substring method. Use slice instead.

string.toLocaleLowerCase()

The toLocaleLowerCase method produces a new string that is made by
converting this string to lowercase using the rules for the locale. This is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

converting this string to lowercase using the rules for the locale. This is
primarily for the benefit of Turkish because in that language `I' converts to 1,
not `i'.

string.toLocaleUpperCase()

The toLocaleUpperCase method produces a new string that is made by
converting this string to uppercase using the rules for the locale. This is

primarily for the benefit of Turkish, because in that language `i' converts to `
', not `I'.

string.toLowerCase()

The toLowerCase method produces a new string that is made by converting this
string to lowercase.

string.toUpperCase()

The toUpperCase method produces a new string that is made by converting this
string to uppercase.

String.fromCharCode(char...)

The String.fromCharCode function produces a string from a series of numbers.

var a = String.fromCharCode(67, 97, 116);
// a is 'Cat'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Style
Here is a silly stately style indeed!

—William Shakespeare, The First Part of Henry the Sixth

Computer programs are the most complex things that humans make. Programs are made up of a
huge number of parts, expressed as functions, statements, and expressions that are arranged in
sequences that must be virtually free of error. The runtime behavior has little resemblance to the
program that implements it. Software is usually expected to be modified over the course of its
productive life. The process of converting one correct program into a different correct program is
extremely challenging.

Good programs have a structure that anticipates—but is not overly burdened by—the possible
modifications that will be required in the future. Good programs also have a clear presentation. If a
program is expressed well, then we have the best chance of being able to understand it so that it can
be successfully modified or repaired.

These concerns are true for all programming languages, and are especially true for JavaScript.
JavaScript's loose typing and excessive error tolerance provide little compile-time assurance of our
programs' quality, so to compensate, we should code with strict discipline.

JavaScript contains a large set of weak or problematic features that can undermine our attempts to
write good programs. We should obviously avoid JavaScript's worst features. Surprisingly, perhaps, we
should also avoid the features that are often useful but occasionally hazardous. Such features are
attractive nuisances, and by avoiding them, a large class of potential errors is avoided.

The long-term value of software to an organization is in direct proportion to the quality of the
codebase. Over its lifetime, a program will be handled by many pairs of hands and eyes. If a program
is able to clearly communicate its structure and characteristics, it is less likely to break when it is
modified in the never-too-distant future.

JavaScript code is often sent directly to the public. It should always be of publication quality. Neatness
counts. By writing in a clear and consistent style, your programs become easier to read.

Programmers can debate endlessly on what constitutes good style. Most programmers are firmly
rooted in what they're used to, such as the prevailing style where they went to school, or at their first
job. Some have had profitable careers with no sense of style at all. Isn't that proof that style doesn't
matter? And even if style doesn't matter, isn't one style as good as any other?

It turns out that style matters in programming for the same reason that it matters in writing. It makes
for better reading.

Computer programs are sometimes thought of as a write-only medium, so it matters little how it is
written as long as it works. But it turns out that the likelihood a program will work is significantly
enhanced by our ability to read it, which also increases the likelihood that it actually works as
intended. It is also the nature of software to be extensively modified over its productive life. If we can
read and understand it, then we can hope to modify and improve it.

Throughout this book I have used a consistent style. My intention was to make the code examples as
easy to read as possible. I used whitespace consistently to give you more cues about the meaning of
my programs.

I indented the contents of blocks and object literals four spaces. I placed a space between if and (so
that the if didn't look like a function invocation. Only in invocations do I make (adjacent with the
preceding symbol. I put spaces around all infix operators except for . and [, which do not get spaces
because they have higher precedence. I use a space after every comma and colon.

I put at most one statement on a line. Multiple statements on a line can be misread. If a statement
doesn't fit on a line, I will break it after a comma or a binary operator. That gives more protection
against copy/paste errors that are masked by semicolon insertion. (The tragedy of semicolon insertion
will be revealed in Appendix A.) I indent the remainder of the statement an extra four spaces, or eight
spaces if four would be ambiguous (such as a line break in the condition part of an if statement).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

spaces if four would be ambiguous (such as a line break in the condition part of an if statement).

I always use blocks with structured statements such as if and while because it is less error prone. I
have seen:

if (a)
 b();

become:

if (a)
 b();
 c();

which is an error that is very difficult to spot. It looks like:

if (a) {
 b();
 c();
}

but it means:

if (a) {
 b();
}
c();

Code that appears to mean one thing but actually means another is likely to cause bugs. A pair of
braces is really cheap protection against bugs that can be expensive to find.

I always use the K&R style, putting the { at the end of a line instead of the front, because it avoids a
horrible design blunder in JavaScript's return statement.

I included some comments. I like to put comments in my programs to leave information that will be
read at a later time by people (possibly myself) who will need to understand what I was thinking.
Sometimes I think about comments as a time machine that I use to send important messages to
future me.

I struggle to keep comments up-to-date. Erroneous comments can make programs even harder to
read and understand. I can't afford that.

I tried to not waste your time with useless comments like this:

i = 0; // Set i to zero.

In JavaScript, I prefer to use line comments. I reserve block comments for formal documentation and
for commenting out.

I prefer to make the structure of my programs self-illuminating, eliminating the need for comments. I
am not always successful, so while my programs are awaiting perfection, I am writing comments.

JavaScript has C syntax, but its blocks don't have scope. So, the convention that variables should be
declared at their first use is really bad advice in JavaScript. JavaScript has function scope, but not
block scope, so I declare all of my variables at the beginning of each function. JavaScript allows
variables to be declared after they are used. That feels like a mistake to me, and I don't want to write
programs that look like mistakes. I want my mistakes to stand out. Similarly, I never use an
assignment expression in the condition part of an if because:

if (a = b) { ... }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (a = b) { ... }

is probably intended to be:

if (a === b) { ... }

I want to avoid idioms that look like mistakes.

I never allow switch cases to fall through to the next case. I once found a bug in my code caused by
an unintended fall through immediately after having made a vigorous speech about why fall through
was sometimes useful. I was fortunate in that I was able to learn from the experience. When
reviewing the features of a language, I now pay special attention to features that are sometimes
useful but occasionally dangerous. Those are the worst parts because it is difficult to tell whether they
are being used correctly. That is a place where bugs hide.

Quality was not a motivating concern in the design, implementation, or standardization of JavaScript.
That puts a greater burden on the users of the language to resist the language's weaknesses.

JavaScript provides support for large programs, but it also provides forms and idioms that work
against large programs. For example, JavaScript provides conveniences for the use of global variables,
but global variables become increasingly problematic as programs scale in complexity.

I use a single global variable to contain an application or library. Every object has its own namespace,
so it is easy to use objects to organize my code. Use of closure provides further information hiding,
increasing the strength of my modules.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Beautiful Features
Thus, expecting thy reply, I profane my lips on thy foot, my eyes on thy picture, and my
heart on thy every part. Thine, in the dearest design of industry. . .

—William Shakespeare, Love's Labor's Lost

I was invited last year to contribute a chapter to Andy Oram's and Greg Wilson's Beautiful Code
(O'Reilly), an anthology on the theme of beauty as expressed in computer programs. I wanted to write
my chapter in JavaScript. I wanted to use it to present something abstract, powerful, and useful to
show that the language was up to it. And I wanted to avoid the browser and other venues in which
JavaScript is typecast. I wanted to show something respectable with some heft to it.

I immediately thought of Vaughn Pratt's Top Down Operator Precedence parser, which I use in JSLint
(see Appendix C). Parsing is an important topic in computing. The ability to write a compiler for a
language in itself is still a test for the completeness of a language.

I wanted to include all of the code for a parser in JavaScript that parses JavaScript. But my chapter
was just one of 30 or 40, so I felt constrained in the number of pages I could consume. A further
complication was that most of my readers would have no experience with JavaScript, so I also would
have to introduce the language and its peculiarities.

So, I decided to subset the language. That way, I wouldn't have to parse the whole language, and I
wouldn't have to describe the whole language. I called the subset Simplified JavaScript. Selecting the
subset was easy: it included just the features that I needed to write a parser. This is how I described
it in Beautiful Code:

Simplified JavaScript is just the good stuff, including:

Functions as firortranst class objects

Functions in Simplified JavaScript are lambdas with lexical scoping.

Dynamic objects with prototypal inheritance

Objects are class-free. We can add a new member to any object by ordinary assignment.
An object can inherit members from another object.

Object literals and array literals

This is a very convenient notation for creating new objects and arrays. JavaScript literals
were the inspiration for the JSON data interchange format.

The subset contained the best of the Good Parts. Even though it was a small language, it was very
expressive and powerful. JavaScript has lots of additional features that really don't add very much,
and as you'll find in the appendixes that follow, it has a lot of features with negative value. There was
nothing ugly or bad in the subset. All of that fell away.

Simplified JavaScript isn't strictly a subset. I added a few new features. The simplest was adding pi as
a simple constant. I did that to demonstrate a feature of the parser. I also demonstrated a better
reserved word policy and showed that reserved words are unnecessary. In a function, a word cannot
be used as both a variable or parameter name and a language feature. You can use a word for one or
the other, and the programmer gets to choose. That makes a language easier to learn because you
don't need to be aware of features you don't use. And it makes the language easier to extend because
it isn't necessary to reserve more words to add new features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I also added block scope. Block scope is not a necessary feature, but not having it confuses
experienced programmers. I included block scope because I anticipated that my parser would be used
to parse languages that are not JavaScript, and those languages would do scoping correctly. The code
I wrote for the parser is written in a style that doesn't care if block scope is available or not. I
recommend that you write that way, too.

When I started thinking about this book, I wanted to take the subset idea further, to show how to take
an existing programming language and make significant improvements to it by making no changes
except to exclude the low-value features.

We see a lot of feature-driven product design in which the cost of features is not properly accounted.
Features can have a negative value to consumers because they make the products more difficult to
understand and use. We are finding that people like products that just work. It turns out that designs
that just work are much harder to produce than designs that assemble long lists of features.

Features have a specification cost, a design cost, and a development cost. There is a testing cost and
a reliability cost. The more features there are, the more likely one will develop problems or will
interact badly with another. In software systems, there is a storage cost, which was becoming
negligible, but in mobile applications is becoming significant again. There are ascending performance
costs because Moore's Law doesn't apply to batteries.

Features have a documentation cost. Every feature adds pages to the manual, increasing training
costs. Features that offer value to a minority of users impose a cost on all users. So, in designing
products and programming languages, we want to get the core features—the good parts—right
because that is where we create most of the value.

We all find the good parts in the products that we use. We value simplicity, and when simplicity isn't
offered to us, we make it ourselves. My microwave oven has tons of features, but the only ones I use
are cook and the clock. And setting the clock is a struggle. We cope with the complexity of feature-
driven design by finding and sticking with the good parts.

It would be nice if products and programming languages were designed to have only good parts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. Awful Parts
That will prove awful both in deed and word.

—William Shakespeare, Pericles, Prince of Tyre

In this chapter, I present the problematic features of JavaScript that are not easily avoided. You must
be aware of these things and be prepared to cope.

A.1. Global Variables

The worst of all of JavaScript's bad features is its dependence on global variables. A global variable is
a variable that is visible in every scope. Global variables can be a convenience in very small programs,
but they quickly become unwieldy as programs get larger. Because a global variable can be changed
by any part of the program at any time, they can significantly complicate the behavior of the program.
Use of global variables degrades the reliability of the programs that use them.

Global variables make it harder to run independent subprograms in the same program. If the
subprograms happen to have global variables that share the same names, then they will interfere with
each other and likely fail, usually in difficult to diagnose ways.

Lots of languages have global variables. For example, Java's public static members are global
variables. The problem with JavaScript isn't just that it allows them, it requires them. JavaScript does
not have a linker. All compilation units are loaded into a common global object.

There are three ways to define global variables. The first is to place a var statement outside of any
function:

var foo = value;

The second is to add a property directly to the global object. The global object is the container of all
global variables. In web browsers, the global object goes by the name window:

window.foo = value;

The third is to use a variable without declaring it. This is called implied global:

foo = value;

This was intended as a convenience to beginners by making it unnecessary to declare variables before
using them. Unfortunately, forgetting to declare a variable is a very common mistake. JavaScript's
policy of making forgotten variables global creates bugs that can be very difficult to find.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. Awful Parts
That will prove awful both in deed and word.

—William Shakespeare, Pericles, Prince of Tyre

In this chapter, I present the problematic features of JavaScript that are not easily avoided. You must
be aware of these things and be prepared to cope.

A.1. Global Variables

The worst of all of JavaScript's bad features is its dependence on global variables. A global variable is
a variable that is visible in every scope. Global variables can be a convenience in very small programs,
but they quickly become unwieldy as programs get larger. Because a global variable can be changed
by any part of the program at any time, they can significantly complicate the behavior of the program.
Use of global variables degrades the reliability of the programs that use them.

Global variables make it harder to run independent subprograms in the same program. If the
subprograms happen to have global variables that share the same names, then they will interfere with
each other and likely fail, usually in difficult to diagnose ways.

Lots of languages have global variables. For example, Java's public static members are global
variables. The problem with JavaScript isn't just that it allows them, it requires them. JavaScript does
not have a linker. All compilation units are loaded into a common global object.

There are three ways to define global variables. The first is to place a var statement outside of any
function:

var foo = value;

The second is to add a property directly to the global object. The global object is the container of all
global variables. In web browsers, the global object goes by the name window:

window.foo = value;

The third is to use a variable without declaring it. This is called implied global:

foo = value;

This was intended as a convenience to beginners by making it unnecessary to declare variables before
using them. Unfortunately, forgetting to declare a variable is a very common mistake. JavaScript's
policy of making forgotten variables global creates bugs that can be very difficult to find.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2. Scope

JavaScript's syntax comes from C. In all other C-like languages, a block (a set of statements wrapped
in curly braces) creates a scope. Variables declared in a block are not visible outside of the block.
JavaScript uses the block syntax, but does not provide block scope: a variable declared in a block is
visible everywhere in the function containing the block. This can be surprising to programmers with
experience in other languages.

In most languages, it is generally best to declare variables at the site of first use. That turns out to be
a bad practice in JavaScript because it does not have block scope. It is better to declare all variables
at the top of each function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.3. Semicolon Insertion

JavaScript has a mechanism that tries to correct faulty programs by automatically inserting
semicolons. Do not depend on this. It can mask more serious errors.

It sometimes inserts semicolons in places where they are not welcome. Consider the consequences of
semicolon insertion on the return statement. If a return statement returns a value, that value
expression must begin on the same line as the return:

return
{
 status: true
};

This appears to return an object containing a status member. Unfortunately, semicolon insertion
turns it into a statement that returns undefined. There is no warning that semicolon insertion caused
the misinterpretation of the program. The problem can be avoided if the { is placed at the end of the
previous line and not at the beginning of the next line:

return {
 status: true
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.4. Reserved Words

The following words are reserved in JavaScript:

Code View:

abstract boolean break byte case catch char class const continue
 debugger default delete do double else enum export extends false final
 finally float for
 function goto if implements import in instanceof int interface long native new null
 package private protected public return short static super switch synchronized this
 throw throws transient true try typeof var volatile void while with

Most of these words are not used in the language.

They cannot be used to name variables or parameters. When reserved words are used as keys in
object literals, they must be quoted. They cannot be used with the dot notation, so it is sometimes
necessary to use the bracket notation instead:

var method; // ok
var class; // illegal
object = {box: value}; // ok
object = {case: value}; // illegal
object = {'case': value}; // ok
object.box = value; // ok
object.case = value; // illegal
object['case'] = value; // ok

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.5. Unicode

JavaScript was designed at a time when Unicode was expected to have at most 65,536 characters. It
has since grown to have a capacity of more than 1 million characters.

JavaScript's characters are 16 bits. That is enough to cover the original 65,536 (which is now known
as the Basic Multilingual Plane). Each of the remaining million characters can be represented as a pair
of characters. Unicode considers the pair to be a single character. JavaScript thinks the pair is two
distinct characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.6. typeof

The typeof operator returns a string that identifies the type of its operand. So:

typeof 98.6

produces 'number'. Unfortunately:

typeof null

returns 'object' instead of 'null'. Oops. A better test for null is simply:

my_value === null

A bigger problem is testing a value for objectness. typeof cannot distinguish between null and
objects, but you can because null is falsy and all objects are truthy:

if (my_value && typeof my_value === 'object') {
 // my_value is an object or an array!
}

Also see the later sections "Section A.10" and "Section A.11."

Implementations disagree on the type of regular expression objects. Some implementations report
that:

typeof /a/

is 'object', and others say that it is 'function'. It might have been more useful to report
'regexp', but the standard does not allow that.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.7. parseInt

parseInt is a function that converts a string into an integer. It stops when it sees a nondigit, so
parseInt("16") and parseInt("16 tons") produce the same result. It would be nice if the function
somehow informed us about the extra text, but it doesn't.

If the first character of the string is 0, then the string is evaluated in base 8 instead of base 10. In
base 8, 8 and 9 are not digits, so parseInt("08") and parseInt("09") produce 0 as their result. This
error causes problems in programs that parse dates and times. Fortunately, parseInt can take a radix
parameter, so that parseInt("08", 10) produces 8. I recommend that you always provide the radix
parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.8. +

The + operator can add or concatenate. Which one it does depends on the types of the parameters. If
either operand is an empty string, it produces the other operand converted to a string. If both
operands are numbers, it produces the sum. Otherwise, it converts both operands to strings and
concatenates them. This complicated behavior is a common source of bugs. If you intend + to add,
make sure that both operands are numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.9. Floating Point

Binary floating-point numbers are inept at handling decimal fractions, so 0.1 + 0.2 is not equal to 0.3.
This is the most frequently reported bug in JavaScript, and it is an intentional consequence of having
adopted the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754). This standard is well-
suited for many applications, but it violates most of the things you learned about numbers in middle
school. Fortunately, integer arithmetic in floating point is exact, so decimal representation errors can
be avoided by scaling.

For example, dollar values can be converted to whole cents values by multiplying them by 100. The
cents then can be accurately added. The sum can be divided by 100 to convert back into dollars.
People have a reasonable expectation when they count money that the results will be exact.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.10. NaN

The value NaN is a special quantity defined by IEEE 754. It stands for not a number, even though:

typeof NaN === 'number' // true

The value can be produced by attempting to convert a string to a number when the string is not in the
form of a number. For example:

+ '0' // 0
+ 'oops' // NaN

If NaN is an operand in an arithmetic operation, then NaN will be the result. So, if you have a chain of
formulas that produce NaN as a result, at least one of the inputs was NaN, or NaN was generated
somewhere.

You can test for NaN. As we have seen, typeof does not distinguish between numbers and NaN, and it
turns out that NaN is not equal to itself. So, surprisingly:

NaN === NaN // false
NaN !== NaN // true

JavaScript provides an isNaN function that can distinguish between numbers and NaN:

isNaN(NaN) // true
isNaN(0) // false
isNaN('oops') // true
isNaN('0') // false

The isFinite function is the best way of determining whether a value can be used as a number
because it rejects NaN and Infinity. Unfortunately, isFinite will attempt to convert its operand to a
number, so it is not a good test if a value is not actually a number. You may want to define your own
isNumber function:

function isNumber(value) { return typeof value === 'number' &&
 isFinite(value);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.11. Phony Arrays

JavaScript does not have real arrays. That isn't all bad. JavaScript's arrays are really easy to use.
There is no need to give them a dimension, and they never generate out-of-bounds errors. But their
performance can be considerably worse than real arrays.

The typeof operator does not distinguish between arrays and objects. To determine that a value is an
array, you also need to consult its constructor property:

if (my_value && typeof my_value === 'object' &&
 my_value.constructor === Array) {
 // my_value is an array!
}

That test will give a false negative if an array was created in a different frame or window. This test is
more reliable when the value might have been created in another frame:

if (my_value && typeof my_value === 'object' &&
 typeof my_value.length === 'number' &&
 !(my_value.propertyIsEnumerable('length')) {
 // my_value is truly an array!
}

The arguments array is not an array; it is an object with a length member. That test will identify the
arguments array as an array, which is sometimes what you want, even though arguments does not
have any of the array methods. In any case, the test can still fail if the propertyIsEnumerable
method is overridden.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.12. Falsy Values

JavaScript has a surprisingly large set of falsy values, shown in See Table A-1.

Table A-1. The many falsy values of JavaScript

Value Type

0 Number

NaN (not a number) Number

'' (empty string) String

false Boolean

null Object

undefined Undefined

These values are all falsy, but they are not interchangeable. For example, this is the wrong way to
determine if an object is missing a member:

value = myObject[name];
if (value == null) {
 alert(name + ' not found.');
}

undefined is the value of missing members, but the snippet is testing for null. It is using the ==
operator (see Appendix B), which does type coercion, instead of the more reliable === operator.
Sometimes those two errors cancel each other out. Sometimes they don't.

undefined and NaN are not constants. They are global variables, and you can change their values.
That should not be possible, and yet it is. Don't do it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.13. hasOwnProperty

In Chapter 3, the hasOwnProperty method was offered as a filter to work around a problem with the
for in statement. Unfortunately, hasOwnProperty is a method, not an operator, so in any object it
could be replaced with a different function or even a value that is not a function:

var name;
another_stooge.hasOwnProperty = null; // trouble
for (name in another_stooge) {
 if (another_stooge.hasOwnProperty(name)) { // boom
 document.writeln(name + ': ' + another_stooge[name]);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.14. Object

JavaScript's objects are never truly empty because they can pick up members from the prototype
chain. Sometimes that matters. For example, suppose you are writing a program that counts the
number of occurrences of each word in a text. We can use the toLowerCase method to normalize the
text to lowercase, and then use the split method with a regular expression to produce an array of
words. We can then loop through the words and count the number of times we see each one:

var i;
var word;
var text =
 "This oracle of comfort has so pleased me, " +
 "That when I am in heaven I shall desire " +
 "To see what this child does, " +
 "and praise my Constructor.";

var words = text.toLowerCase().split(/[\s,.]+/);
var count = {};
for (i = 0; i < words.length; i += 1) {
 word = words[i];
 if (count[word]) {
 count[word] += 1;
 } else {
 count[word] = 1;
 }
}

If we look at the results, count['this'] is 2 and count.heaven is 1, but count.constructor
contains a crazy looking string. The reason is that the count object inherits from Object.prototype,
and Object.prototype contains a member named constructor whose value is Object. The +=
operator, like the + operator, does concatenation rather than addition when its operands are not
numbers. Object is a function, so += converts it to a string somehow and concatenates a 1 to its butt.

We can avoid problems like this the same way we avoid problems with for in: by testing for
membership with the hasOwnProperty method or by looking for specific types. In this case, our test
for the truthiness of count[word] was not specific enough. We could have written instead:

if (typeof count[word] === 'number') {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B. Bad Parts
And, I pray thee now, tell me for which of my bad parts didst thou first fall in love with
me?

—William Shakespeare, Much Ado About Nothing

In this appendix, I present some of the problematic features of JavaScript that are easily avoided. By
simply avoiding these features, you make JavaScript a better language, and yourself a better
programmer.

B.1. ==

JavaScript has two sets of equality operators: === and !==, and their evil twins == and !=. The good
ones work the way you would expect. If the two operands are of the same type and have the same
value, then === produces true and !== produces false. The evil twins do the right thing when the
operands are of the same type, but if they are of different types, they attempt to coerce the values.
The rules by which they do that are complicated and unmemorable. These are some of the interesting
cases:

'' == '0' // false
0 == '' // true
0 == '0' // true

false == 'false' // false
false == '0' // true

false == undefined // false
false == null // false
null == undefined // true

' \t\r\n ' == 0 // true

The lack of transitivity is alarming. My advice is to never use the evil twins. Instead, always use ===
and !==. All of the comparisons just shown produce false with the === operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B. Bad Parts
And, I pray thee now, tell me for which of my bad parts didst thou first fall in love with
me?

—William Shakespeare, Much Ado About Nothing

In this appendix, I present some of the problematic features of JavaScript that are easily avoided. By
simply avoiding these features, you make JavaScript a better language, and yourself a better
programmer.

B.1. ==

JavaScript has two sets of equality operators: === and !==, and their evil twins == and !=. The good
ones work the way you would expect. If the two operands are of the same type and have the same
value, then === produces true and !== produces false. The evil twins do the right thing when the
operands are of the same type, but if they are of different types, they attempt to coerce the values.
The rules by which they do that are complicated and unmemorable. These are some of the interesting
cases:

'' == '0' // false
0 == '' // true
0 == '0' // true

false == 'false' // false
false == '0' // true

false == undefined // false
false == null // false
null == undefined // true

' \t\r\n ' == 0 // true

The lack of transitivity is alarming. My advice is to never use the evil twins. Instead, always use ===
and !==. All of the comparisons just shown produce false with the === operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.2. with Statement

JavaScript has a with statement that was intended to provide a shorthand when accessing the
properties of an object. Unfortunately, its results can sometimes be unpredictable, so it should be
avoided.

The statement:

with (obj) {
 a = b;
}

does the same thing as:

if (obj.a === undefined) {
 a = obj.b === undefined ? b : obj.b;
} else {
 obj.a = obj.b === undefined ? b : obj.b;
}

So, it is the same as one of these statements:

a = b;
a = obj.b;
obj.a = b;
obj.a = obj.b;

It is not possible to tell from reading the program which of those statements you will get. It can vary
from one running of the program to the next. It can even vary while the program is running. If you
can't read a program and understand what it is going to do, it is impossible to have confidence that it
will correctly do what you want.

Simply by being in the language, the with statement significantly slows down JavaScript processors
because it frustrates the lexical binding of variable names. It was well intentioned, but the language
would be better if it didn't have it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.3. eval

The eval function passes a string to the JavaScript compiler and executes the result. It is the single
most misused feature of JavaScript. It is most commonly used by people who have an incomplete
understanding of the language. For example, if you know about the dot notation, but are ignorant of
the subscript notation, you might write:

eval("myValue = myObject." + myKey + ";");

instead of:

myvalue = myObject[myKey];

The eval form is much harder to read. This form will be significantly slower because it needs to run
the compiler just to execute a trivial assignment statement. It also frustrates JSLint (see Appendix C),
so the tool's ability to detect problems is significantly reduced.

The eval function also compromises the security of your application because it grants too much
authority to the eval'd text. And it compromises the performance of the language as a whole in the
same way that the with statement does.

The Function constructor is another form of eval, and should similarly be avoided.

The browser provides setTimeout and setInterval functions that can take string arguments or
function arguments. When given string arguments, setTimeout and setInterval act as eval. The
string argument form also should be avoided.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.4. continue Statement

The continue statement jumps to the top of the loop. I have never seen a piece of code that was not
improved by refactoring it to remove the continue statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.5. switch Fall Through

The switch statement was modeled after the FORTRAN IV computed go to statement. Each case falls
through into the next case unless you explicitly disrupt the flow.

Someone wrote to me once suggesting that JSLint should give a warning when a case falls through
into another case. He pointed out that this is a very common source of errors, and it is a difficult error
to see in the code. I answered that that was all true, but that the benefit of compactness obtained by
falling through more than compensated for the chance of error.

The next day, he reported that there was an error in JSLint. It was misidentifying an error. I
investigated, and it turned out that I had a case that was falling through. In that moment, I achieved
enlightenment. I no longer use intentional fall throughs. That discipline makes it much easier to find
the unintentional fall throughs.

The worst features of a language aren't the features that are obviously dangerous or useless. Those
are easily avoided. The worst features are the attractive nuisances, the features that are both useful
and dangerous.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.6. Block-less Statements

An if or while or do or for statement can take a block or a single statement. The single statement
form is another attractive nuisance. It offers the advantage of saving two characters, a dubious
advantage. It obscures the program's structure so that subsequent manipulators of the code can
easily insert bugs. For example:

if (ok)
 t = true;

can become:

if (ok)
 t = true;
 advance();

which looks like:

if (ok) {
 t = true;
 advance();
}

but which actually means:

if (ok) {
 t = true;
}
advance();

Programs that appear to do one thing but actually do another are much harder to get right. A
disciplined and consistent use of blocks makes it easier to get it right.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.7. ++ --

The increment and decrement operators make it possible to write in an extremely terse style. In
languages such as C, they made it possible to write one-liners that could do string copies:

for (p = src, q = dest; !*p; p++, q++) *q = *p;

They also encourage a programming style that, as it turns out, is reckless. Most of the buffer overrun
bugs that created terrible security vulnerabilities were due to code like this.

In my own practice, I observed that when I used ++ and --, my code tended to be too tight, too
tricky, too cryptic. So, as a matter of discipline, I don't use them any more. I think that as a result,
my coding style has become cleaner.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.8. Bitwise Operators

JavaScript has the same set of bitwise operators as Java:

& and
| or
^ xor
 not

>> signed right shift
>>> unsigned right shift
<< left shift

In Java, the bitwise operators work with integers. JavaScript doesn't have integers. It only has double
precision floating-point numbers. So, the bitwise operators convert their number operands into
integers, do their business, and then convert them back. In most languages, these operators are very
close to the hardware and very fast. In JavaScript, they are very far from the hardware and very slow.
JavaScript is rarely used for doing bit manipulation.

As a result, in JavaScript programs, it is more likely that & is a mistyped && operator. The presence of
the bitwise operators reduces some of the language's redundancy, making it easier for bugs to hide.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.9. The function Statement Versus the function Expression

JavaScript has a function statement as well as a function expression. This is confusing because they
can look exactly the same. A function statement is shorthand for a var statement with a function
value.

The statement:

function foo() {}

means about the same thing as:

var foo = function foo() {};

Throughout this book, I have been using the second form because it makes it clear that foo is a
variable containing a function value. To use the language well, it is important to understand that
functions are values.

function statements are subject to hoisting. This means that regardless of where a function is
placed, it is moved to the top of the scope in which it is defined. This relaxes the requirement that
functions should be declared before used, which I think leads to sloppiness. It also prohibits the use of
function statements in if statements. It turns out that most browsers allow function statements in
if statements, but they vary in how that should be interpreted. That creates portability problems.

The first thing in a statement cannot be a function expression because the official grammar assumes
that a statement that starts with the word function is a function statement. The workaround is to
wrap the function expression in parentheses:

(function () {
 var hidden_variable;

 // This function can have some impact on
 // the environment, but introduces no new
 // global variables.
})();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.10. Typed Wrappers

JavaScript has a set of typed wrappers. For example:

new Boolean(false)

produces an object that has a valueOf method that returns the wrapped value. This turns out to be
completely unnecessary and occasionally confusing. Don't use new Boolean or new Number or new
String.

Also avoid new Object and new Array. Use {} and [] instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.11. new

JavaScript's new operator creates a new object that inherits from the operand's prototype member,
and then calls the operand, binding the new object to this. This gives the operand (which had better
be a constructor function) a chance to customize the new object before it is returned to the requestor.

If you forget to use the new operator, you instead get an ordinary function call, and this is bound to
the global object instead of to a new object. That means that your function will be clobbering global
variables when it attempts to initialize the new members. That is a very bad thing. There is no
compile-time warning. There is no runtime warning.

By convention, functions that are intended to be used with new should be given names with initial
capital letters, and names with initial capital letters should be used only with constructor functions that
take the new prefix. This convention gives us a visual cue that can help spot expensive mistakes that
the language itself is keen to overlook.

An even better coping strategy is to not use new at all.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.12. void

In many languages, void is a type that has no values. In JavaScript, void is an operator that takes an
operand and returns undefined. This is not useful, and it is very confusing. Avoid void.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C. JSLint
What error drives our eyes and ears amiss?

—William Shakespeare, The Comedy of Errors

When C was a young programming language, there were several common programming errors that
were not caught by the primitive compilers, so an accessory program called lint was developed that
would scan a source file, looking for problems.

As C matured, the definition of the language was strengthened to eliminate some insecurities, and
compilers got better at issuing warnings. lint is no longer needed.

JavaScript is a young-for-its-age language. It was originally intended to do small tasks in web pages,
tasks for which Java was too heavy and clumsy. But JavaScript is a very capable language, and it is
now being used in larger projects. Many of the features that were intended to make the language easy
to use are troublesome for larger projects. A lint for JavaScript is needed: JSLint, a JavaScript
syntax checker and verifier.

JSLint is a code quality tool for JavaScript. It takes a source text and scans it. If it finds a problem, it
returns a message describing the problem and an approximate location within the source. The problem
is not necessarily a syntax error, although it often is. JSLint looks at some style conventions as well as
structural problems. It does not prove that your program is correct. It just provides another set of
eyes to help spot problems.

JSLint defines a professional subset of JavaScript, a stricter language than that defined by the third
edition of the ECMAScript Language Specification. The subset is closely related to the style
recommendations from Chapter 9.

JavaScript is a sloppy language, but inside it there is an elegant, better language. JSLint helps you to
program in that better language and to avoid most of the slop.

JSLint can be found at http://www.JSLint.com/.

C.1. Undefined Variables and Functions

JavaScript's biggest problem is its dependence on global variables, particularly implied global
variables. If a variable is not explicitly declared (usually with the var statement), then JavaScript
assumes that the variable was global. This can mask misspelled names and other problems.

JSLint expects that all variables and functions will be declared before they are used or invoked. This
allows it to detect implied global variables. It is also good practice because it makes programs easier
to read.

Sometimes a file is dependent on global variables and functions that are defined elsewhere. You can
identify these to JSLint by including a comment in your file that lists the global functions and objects
that your program depends on, but that are not defined in your program or script file.

A global declaration comment can be used to list all of the names that you are intentionally using as
global variables. JSLint can use this information to identify misspellings and forgotten var declarations.
A global declaration can look like this:

/*global getElementByAttribute, breakCycles, hanoi */

A global declaration starts with /*global. Notice that there is no space before the g. You can have as
many /*global comments as you like. They must appear before the use of the variables they specify.

Some globals can be predefined for you (see the later section "Section C.3"). Select the "Assume a
browser" (browser) option to predefine the standard global properties that are supplied by web
browsers, such as window and document and alert. Select the "Assume Rhino" (rhino) option to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

browsers, such as window and document and alert. Select the "Assume Rhino" (rhino) option to
predefine the global properties provided by the Rhino environment. Select the "Assume a Yahoo
Widget" (widget) option to predefine the global properties provided by the Yahoo! Widgets
environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C. JSLint
What error drives our eyes and ears amiss?

—William Shakespeare, The Comedy of Errors

When C was a young programming language, there were several common programming errors that
were not caught by the primitive compilers, so an accessory program called lint was developed that
would scan a source file, looking for problems.

As C matured, the definition of the language was strengthened to eliminate some insecurities, and
compilers got better at issuing warnings. lint is no longer needed.

JavaScript is a young-for-its-age language. It was originally intended to do small tasks in web pages,
tasks for which Java was too heavy and clumsy. But JavaScript is a very capable language, and it is
now being used in larger projects. Many of the features that were intended to make the language easy
to use are troublesome for larger projects. A lint for JavaScript is needed: JSLint, a JavaScript
syntax checker and verifier.

JSLint is a code quality tool for JavaScript. It takes a source text and scans it. If it finds a problem, it
returns a message describing the problem and an approximate location within the source. The problem
is not necessarily a syntax error, although it often is. JSLint looks at some style conventions as well as
structural problems. It does not prove that your program is correct. It just provides another set of
eyes to help spot problems.

JSLint defines a professional subset of JavaScript, a stricter language than that defined by the third
edition of the ECMAScript Language Specification. The subset is closely related to the style
recommendations from Chapter 9.

JavaScript is a sloppy language, but inside it there is an elegant, better language. JSLint helps you to
program in that better language and to avoid most of the slop.

JSLint can be found at http://www.JSLint.com/.

C.1. Undefined Variables and Functions

JavaScript's biggest problem is its dependence on global variables, particularly implied global
variables. If a variable is not explicitly declared (usually with the var statement), then JavaScript
assumes that the variable was global. This can mask misspelled names and other problems.

JSLint expects that all variables and functions will be declared before they are used or invoked. This
allows it to detect implied global variables. It is also good practice because it makes programs easier
to read.

Sometimes a file is dependent on global variables and functions that are defined elsewhere. You can
identify these to JSLint by including a comment in your file that lists the global functions and objects
that your program depends on, but that are not defined in your program or script file.

A global declaration comment can be used to list all of the names that you are intentionally using as
global variables. JSLint can use this information to identify misspellings and forgotten var declarations.
A global declaration can look like this:

/*global getElementByAttribute, breakCycles, hanoi */

A global declaration starts with /*global. Notice that there is no space before the g. You can have as
many /*global comments as you like. They must appear before the use of the variables they specify.

Some globals can be predefined for you (see the later section "Section C.3"). Select the "Assume a
browser" (browser) option to predefine the standard global properties that are supplied by web
browsers, such as window and document and alert. Select the "Assume Rhino" (rhino) option to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

browsers, such as window and document and alert. Select the "Assume Rhino" (rhino) option to
predefine the global properties provided by the Rhino environment. Select the "Assume a Yahoo
Widget" (widget) option to predefine the global properties provided by the Yahoo! Widgets
environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.2. Members

Since JavaScript is a loosely typed dynamic-object language, it is not possible to determine at compile
time if property names are spelled correctly. JSLint provides some assistance with this.

At the bottom of its report, JSLint displays a /*members*/ comment. It contains all of the names and
string literals that were used with dot notation, subscript notation, and object literals to name the
members of objects. You can look through the list for misspellings. Member names that were used
only once are shown in italics. This is to make misspellings easier to spot.

You can copy the /*members*/ comment into your script file. JSLint will check the spelling of all
property names against the list. That way, you can have JSLint look for misspellings for you:

/*members doTell, iDoDeclare, mercySakes,
 myGoodness, ohGoOn, wellShutMyMouth */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.3. Options

The implementation of JSLint accepts an option object that allows you to determine the subset of
JavaScript that is acceptable to you. It is also possible to set those options within the source of a
script.

An option specification can look like this:

/*jslint nomen: true, evil: false */

An option specification starts with /*jslint. Notice that there is no space before the j. The
specification contains a sequence of name/value pairs, where the names are JSLint options and the
values are true or false. An option specification takes precedence over the option object. All of the
options default to false. Table C-1 lists the options available in using JSLint.

Table C-1. JSLint options

Option Meaning

adsafe true if ADsafe.org rules should be enforced

bitwise true if bitwise operators should not be allowed

browser true if the standard browser globals should be predefined

cap true if uppercase HTML should be allowed

debug true if debugger statements should be allowed

eqeqeq true if === should be required

evil true if eval should be allowed

for in true if unfiltered for in statements should be allowed

fragment true if HTML fragments should be allowed

glovar true if var should not be allowed to declare global variables

laxbreak true if statement breaks should not be checked

nomen true if names should be checked

on true if HTML event handlers should be allowed

passfail true if the scan should stop on first error

plusplus true if ++ and -- should not be allowed

rhino true if the Rhino environment globals should be predefined

undef true if undefined global variables are errors

white true if strict whitespace rules apply

widget true if the Yahoo! Widgets globals should be predefined

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.4. Semicolon

JavaScript uses a C-like syntax, which requires the use of semicolons to delimit statements. JavaScript
attempts to make semicolons optional with a semicolon insertion mechanism. This is dangerous.

Like C, JavaScript has ++ and -- and (operators, which can be prefixes or suffixes. The
disambiguation is done by the semicolon.

In JavaScript, a linefeed can be whitespace, or it can act as a semicolon. This replaces one ambiguity
with another.

JSLint expects that every statement be followed by ; except for for, function, if, switch, try, and
while. JSLint does not expect to see unnecessary semicolons or the empty statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.5. Line Breaking

As a further defense against the masking of errors by the semicolon insertion mechanism, JSLint
expects long statements to be broken only after one of these punctuation characters or operators:

, . ; : { } ([= < > ? ! + - * / % ^ | &
== != <= >= += -= *= /= %= ^= |= &= << >> || &&
=== !== <<= >>= >>> >>>=

JSLint does not expect to see a long statement broken after an identifier, a string, a number, a closer,
or a suffix operator:

)] ++ --

JSLint allows you to turn on the "Tolerate sloppy line breaking" (laxbreak) option.

Semicolon insertion can mask copy/paste errors. If you always break lines after operators, then JSLint
can do a better job of finding those errors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.6. Comma

The comma operator can lead to excessively tricky expressions. It can also mask some programming
errors.

JSLint expects to see the comma used as a separator, but not as an operator (except in the
initialization and incrementation parts of the for statement). It does not expect to see elided elements
in array literals. Extra commas should not be used. A comma should not appear after the last element
of an array literal or object literal because it can be misinterpreted by some browsers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.7. Required Blocks

JSLint expects that if and for statements will be made with blocks—that is, with statements enclosed
in braces ({}).

JavaScript allows an if to be written like this:

if (condition)
 statement;

That form is known to contribute to mistakes in projects where many programmers are working on the
same code. That is why JSLint expects the use of a block:

if (condition) {
 statements;
}

Experience shows that this form is more resilient.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.8. Forbidden Blocks

In many languages, a block introduces a scope. Variables introduced in a block are not visible outside
of the block.

In JavaScript, blocks do not introduce a scope. There is only function-scope. A variable introduced
anywhere in a function is visible everywhere in the function. JavaScript's blocks confuse experienced
programmers and lead to errors because the familiar syntax makes a false promise.

JSLint expects blocks with function, if, switch, while, for, do, and try statements and nowhere
else. An exception is made for an unblocked if statement on an else or for in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.9. Expression Statements

An expression statement is expected to be an assignment, a function/method call, or delete. All other
expression statements are considered errors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.10. for in Statement

The for in statement allows for looping through the names of all of the properties of an object.
Unfortunately, it also loops through all of the members that were inherited through the prototype
chain. This has the bad side effect of serving up method functions when the interest is in the data
members.

The body of every for in statement should be wrapped in an if statement that does filtering. if can
select for a particular type or range of values, it can exclude functions, or it can exclude properties
from the prototype. For example:

for (name in object) {
 if (object.hasOwnProperty(name)) {

 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.11. switch Statement

A common error in switch statements is to forget to place a break statement after each case,
resulting in unintended fall-through. JSLint expects that the statement before the next case or default
is one of these: break, return, or throw.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.12. var Statement

JavaScript allows var definitions to occur anywhere within a function. JSLint is stricter.

JSLint expects that:

A var will be declared only once, and that it will be declared before it is used.

A function will be declared before it is used.

Parameters will not also be declared as vars.

JSLint does not expect:

The arguments array to be declared as a var.

That a variable will be declared in a block. This is because JavaScript blocks do not have block
scope. This can have unexpected consequences, so define all variables at the top of the function
body.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.13. with Statement

The with statement was intended to provide a shorthand in accessing members in deeply nested
objects. Unfortunately, it behaves very badly when setting new members. Never use the with
statement. Use a var instead.

JSLint does not expect to see a with statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.14. =

JSLint does not expect to see an assignment statement in the condition part of an if or while
statement. This is because it is more likely that:

if (a = b) {
 ...
}

was intended to be:

if (a == b) {
 ...
}

If you really intend an assignment, wrap it in another set of parentheses:

if ((a = b)) {
 ...
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.15. == and !=

The == and != operators do type coercion before comparing. This is bad because it causes ' \f\r
\n\t ' == 0 to be true. This can mask type errors.

When comparing to any of the following values, always use the === or !== operators, which do not do
type coercion:

0 '' undefined null false true

If you want the type coercion, then use the short form. Instead of:

(foo != 0)

just say:

(foo)

And instead of:

(foo == 0)

say:

(!foo)

Use of the === and !== operators is always preferred. There is a "Disallow == and != " (eqeqeq)
option, which requires the use of === and !== in all cases.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.16. Labels

JavaScript allows any statement to have a label, and labels have a separate namespace. JSLint is
stricter.

JSLint expects labels only on statements that interact with break: switch, while, do, and for. JSLint
expects that labels will be distinct from variables and parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.17. Unreachable Code

JSLint expects that a return, break, continue, or throw statement will be followed by a } or case or
default.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.18. Confusing Pluses and Minuses

JSLint expects that + will not be followed by + or ++, and that - will not be followed by - or --. A
misplaced space can turn + + into ++, an error that is difficult to see. Use parentheses to avoid
confusion.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.19. ++ and --

The ++ (increment) and -- (decrement) operators have been known to contribute to bad code by
encouraging excessive trickiness. They are second only to faulty architecture in enabling to viruses
and other security menaces. The JSLint option plusplus prohibits the use of these operators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.20. Bitwise Operators

JavaScript does not have an integer type, but it does have bitwise operators. The bitwise operators
convert their operands from floating-point to integers and back, so they are not nearly as efficient as
they are in C or other languages. They are rarely useful in browser applications. The similarity to the
logical operators can mask some programming errors. The bitwise option prohibits the use of these
operators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.21. eval Is Evil

The eval function and its relatives (Function, setTimeout, and setInterval) provide access to the
JavaScript compiler. This is sometimes useful, but in most cases it indicates the presence of extremely
bad coding. The eval function is the most misused feature of JavaScript.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.22. void

In most C-like languages, void is a type. In JavaScript, void is a prefix operator that always returns
undefined. JSLint does not expect to see void because it is confusing and not very useful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.23. Regular Expressions

Regular expressions are written in a terse and cryptic notation. JSLint looks for problems that may
cause portability problems. It also attempts to resolve visual ambiguities by recommending explicit
escapement.

JavaScript's syntax for regular expression literals overloads the / character. To avoid ambiguity, JSLint
expects that the character preceding a regular expression literal is a (or = or : or , character.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.24. Constructors and new

Constructors are functions that are designed to be used with the new prefix. The new prefix creates a
new object based on the function's prototype, and binds that object to the function's implied this
parameter. If you neglect to use the new prefix, no new object will be made, and this will be bound to
the global object. This is a serious mistake.

JSLint enforces the convention that constructor functions be given names with initial uppercase letters.
JSLint does not expect to see a function invocation with an initial uppercase name unless it has the
new prefix. JSLint does not expect to see the new prefix used with functions whose names do not start
with initial uppercase.

JSLint does not expect to see the wrapper forms new Number, new String, or new Boolean.

JSLint does not expect to see new Object (use {} instead).

JSLint does not expect to see new Array (use [] instead).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.25. Not Looked For

JSLint does not do flow analysis to determine that variables are assigned values before they are used.
This is because variables are given a value (undefined) that is a reasonable default for many
applications.

JSLint does not do any kind of global analysis. It does not attempt to determine that functions used
with new are really constructors (except by enforcing capitalization conventions), or that method
names are spelled correctly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.26. HTML

JSLint is able to handle HTML text. It can inspect the JavaScript content contained within <script>...
</script> tags and event handlers. It also inspects the HTML content, looking for problems that are
known to interfere with JavaScript:

All tag names must be in lowercase.

All tags that can take a close tag (such as </p>) must have a close tag.

All tags are correctly nested.

The entity < must be used for literal <.

JSLint is less anal than the sycophantic conformity demanded by XHTML, but more strict than the
popular browsers.

JSLint also checks for the occurrence of </ in string literals. You should always write <\/ instead. The
extra backslash is ignored by the JavaScript compiler, but not by the HTML parser. Tricks like this
should not be necessary, and yet they are.

There is an option that allows use of uppercase tag names. There is also an option that allows the use
of inline HTML event handlers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.27. JSON

JSLint can also check that JSON data structures are well formed. If the first character JSLint sees is {
or [, then it strictly enforces the JSON rules. See Appendix E.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.28. Report

If JSLint is able to complete its scan, it generates a function report. It lists the following for each
function:

The line number on which it starts.

Its name. In the case of anonymous functions, JSLint will "guess" the name.

The parameters.

Closure: the variables and parameters that are declared in the function that are used by its
inner functions.

Variables: the variables declared in the function that are used only by the function.

Unused: the variables that are declared in the function that are not used. This may be an
indication of an error.

Outer: variables used by this function that are declared in another function.

Global: global variables that are used by this function.

Label: statement labels that are used by this function.

The report will also include a list of all of the member names that were used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix D. Syntax Diagrams
Thou map of woe, that thus dost talk in signs!

—William Shakespeare, The Tragedy of Titus Andronicus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix E. JSON
Farewell: the leisure and the fearful time Cuts off the ceremonious vows of love And
ample interchange of sweet discourse, Which so long sunder'd friends shoulddwell upon:
God give us leisure for these rites of love! Once more, adieu: be valiant, and speed well!

—William Shakespeare, The Tragedy of Richard the Third

JavaScript Object Notation (JSON) is a lightweight data interchange format. It is based on JavaScript's
object literal notation, one of JavaScript's best parts. Even though it is a subset of JavaScript, it is
language independent. It can be used to exchange data between programs written in all modern
programming languages. It is a text format, so it is readable by humans and machines. It is easy to
implement and easy to use. There is a lot of material about JSON at http://www.JSON.org/.

E.1. JSON Syntax

JSON has six kinds of values: objects, arrays, string, numbers, booleans (true and false), and the
special value null. Whitespace (spaces, tabs, carriage returns, and newline characters) may be
inserted before or after any value. This can make JSON texts easier for humans to read. Whitespace
may be omitted to reduce transmission or storage costs.

A JSON object is an unordered container of name/value pairs. A name can be any string. A value can
be any JSON value, including arrays and objects. JSON objects can be nested to any depth, but
generally it is most effective to keep them relatively flat. Most languages have a feature that maps
easily to JSON objects, such as an object, struct, record, dictionary, hash table, property list, or
associative array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JSON array is an ordered sequence of values. A value can be any JSON value, including arrays
and objects. Most languages have a feature that maps easily onto JSON arrays, such as an array,
vector, list, or sequence.

A JSON string is wrapped in double quotes. The \ character is used for escapement. JSON allows the /
character to be escaped so that JSON can be embedded in HTML <script> tags. HTML does not allow
the sequence </ except to start the </script> tag. JSON allows <\/, which produces the same result
but does not confuse HTML.

JSON numbers are like JavaScript numbers. A leading zero is not allowed on integers because some
languages use that to indicate the octal. That kind of radix confusion is not desirable in a data
interchange format. A number can be an integer, real, or scientific.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That's it. That is all of JSON. JSON's design goals were to be minimal, portable, textual, and a subset
of JavaScript. The less we need to agree on in order to interoperate, the more easily we can
interoperate.

Code View:

[
 {
 "first": "Jerome",
 "middle": "Lester",
 "last": "Howard",
 "nick-name": "Curly",
 "born": 1903,
 "died": 1952,
 "quote": "nyuk-nyuk-nyuk!"
 },
 {
 "first": "Harry",
 "middle": "Moses",
 "last": "Howard",
 "nick-name": "Moe",
 "born": 1897,
 "died": 1975,
 "quote": "Why, you!"
 },
 {
 "first": "Louis",
 "last": "Feinberg",
 "nick-name": "Larry",
 "born": 1902,
 "died": 1975,
 "quote": "I'm sorry. Moe, it was an accident!"
 }
]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix E. JSON
Farewell: the leisure and the fearful time Cuts off the ceremonious vows of love And
ample interchange of sweet discourse, Which so long sunder'd friends shoulddwell upon:
God give us leisure for these rites of love! Once more, adieu: be valiant, and speed well!

—William Shakespeare, The Tragedy of Richard the Third

JavaScript Object Notation (JSON) is a lightweight data interchange format. It is based on JavaScript's
object literal notation, one of JavaScript's best parts. Even though it is a subset of JavaScript, it is
language independent. It can be used to exchange data between programs written in all modern
programming languages. It is a text format, so it is readable by humans and machines. It is easy to
implement and easy to use. There is a lot of material about JSON at http://www.JSON.org/.

E.1. JSON Syntax

JSON has six kinds of values: objects, arrays, string, numbers, booleans (true and false), and the
special value null. Whitespace (spaces, tabs, carriage returns, and newline characters) may be
inserted before or after any value. This can make JSON texts easier for humans to read. Whitespace
may be omitted to reduce transmission or storage costs.

A JSON object is an unordered container of name/value pairs. A name can be any string. A value can
be any JSON value, including arrays and objects. JSON objects can be nested to any depth, but
generally it is most effective to keep them relatively flat. Most languages have a feature that maps
easily to JSON objects, such as an object, struct, record, dictionary, hash table, property list, or
associative array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JSON array is an ordered sequence of values. A value can be any JSON value, including arrays
and objects. Most languages have a feature that maps easily onto JSON arrays, such as an array,
vector, list, or sequence.

A JSON string is wrapped in double quotes. The \ character is used for escapement. JSON allows the /
character to be escaped so that JSON can be embedded in HTML <script> tags. HTML does not allow
the sequence </ except to start the </script> tag. JSON allows <\/, which produces the same result
but does not confuse HTML.

JSON numbers are like JavaScript numbers. A leading zero is not allowed on integers because some
languages use that to indicate the octal. That kind of radix confusion is not desirable in a data
interchange format. A number can be an integer, real, or scientific.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That's it. That is all of JSON. JSON's design goals were to be minimal, portable, textual, and a subset
of JavaScript. The less we need to agree on in order to interoperate, the more easily we can
interoperate.

Code View:

[
 {
 "first": "Jerome",
 "middle": "Lester",
 "last": "Howard",
 "nick-name": "Curly",
 "born": 1903,
 "died": 1952,
 "quote": "nyuk-nyuk-nyuk!"
 },
 {
 "first": "Harry",
 "middle": "Moses",
 "last": "Howard",
 "nick-name": "Moe",
 "born": 1897,
 "died": 1975,
 "quote": "Why, you!"
 },
 {
 "first": "Louis",
 "last": "Feinberg",
 "nick-name": "Larry",
 "born": 1902,
 "died": 1975,
 "quote": "I'm sorry. Moe, it was an accident!"
 }
]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.2. Using JSON Securely

JSON is particularly easy to use in web applications because JSON is JavaScript. A JSON text can be
turned into a useful data structure with the eval function:

var myData = eval('(' + myJSONText + ')');

(The concatenation of the parentheses around the JSON text is a workaround for an ambiguity in
JavaScript's grammar.)

The eval function has horrendous security problems, however. Is it safe to use eval to parse a JSON
text? Currently, the best technique for obtaining data from a server in a web browser is through
XMLHttpRequest. XMLHttpRequest can obtain data only from the same server that produced the
HTML. eval ing text from that server is no less secure than the original HTML. But, that assumes the
server is malicious. What if the server is simply incompetent?

An incompetent server might not do the JSON encoding correctly. If it builds JSON texts by slapping
together some strings rather than using a proper JSON encoder, then it could unintentionally send
dangerous material. If it acts as a proxy and simply passes JSON text through without determining
whether it is well formed, then it could send dangerous material again.

The danger can be avoided by using the JSON.parse method instead of eval (see
http://www.JSON.org/json2.js). JSON.parse will throw an exception if the text contains anything
dangerous. It is recommended that you always use JSON.parse instead of eval to defend against
server incompetence. It is also good practice for the day when the browser provides safe data access
to other servers.

There is another danger in the interaction between external data and innerHTML. A common Ajax
pattern is for the server to send an HTML text fragment that gets assigned to the innerHTML property
of an HTML element. This is a very bad practice. If the HTML text contains a <script> tag or its
equivalent, then an evil script will run. This again could be due to server incompetence.

What specifically is the danger? If an evil script gets to run on your page, it gets access to all of the
state and capabilities of the page. It can interact with your server, and your server will not be able to
distinguish the evil requests from legitimate requests. The evil script has access to the global object,
which gives it access to all of the data in the application except for variables hidden in closures. It has
access to the document object, which gives it access to everything that the user sees. It also gives the
evil script the capability to dialog with the user. The browser's location bar and all of the anti-phishing
chrome will tell the user that the dialog should be trusted. The document object also gives the evil
script access to the network, allowing it to load more evil scripts, or to probe for sites within your
firewall, or to send the secrets it has learned to any server in the world.

This danger is a direct consequence of JavaScript's global object, which is far and away the worst part
of JavaScript's many bad parts. These dangers are not caused by Ajax or JSON or XMLHttpRequest or
Web 2.0 (whatever that is). These dangers have been in the browser since the introduction of
JavaScript, and will remain until JavaScript is replaced. Be careful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.3. A JSON Parser

This is an implementation of a JSON parser in JavaScript:

Code View:

var json_parse = function () {

// This is a function that can parse a JSON text, producing a JavaScript
// data structure. It is a simple, recursive descent parser.

// We are defining the function inside of another function to avoid creating
// global variables.

 var at, // The index of the current character
 ch, // The current character
 escapee = {
 '"': '"'
 '\\': '\\',
 '/': '/',
 b: 'b',
 f: '\f',
 n: '\n',
 r: '\r'
 t: '\t'
 },
 text,

 error = function (m) {

// Call error when something is wrong.

 throw {
 name: 'SyntaxError',
 message: m,
 at: at,
 text: text
 };
 },

 next = function (c) {

// If a c parameter is provided, verify that it matches the current character.

 if (c && c !== ch) {
 error("Expected '" + c + "' instead of '" + ch + "'");
 }

// Get the next character. When there are no more characters,
// return the empty string.

 ch = text.charAt(at);
 at += 1;
 return ch;
 },

 number = function () {

// Parse a number value.

 var number,
 string = '';

 if (ch === '-') {
 string = '-';
 next('-');
 }
 while (ch >= '0' && ch <= '9') {
 string += ch;
 next();
 }
 if (ch === '.') {
 string += '.';
 while (next() && ch >= '0' && ch <= '9') {
 string += ch;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }
 if (ch === 'e' || ch === 'E') {
 string += ch;
 next();
 if (ch === '-' || ch === '+') {
 string += ch;
 next();
 }
 while (ch >= '0' && ch <= '9') {
 string += ch;
 next();
 }
 }
 number = +string;
 if (isNaN(number)) {
 error("Bad number");
 } else {
 return number;
 }
 },

 string = function () {

// Parse a string value.

 var hex,
 i,
 string = '',
 uffff;

// When parsing for string values, we must look for " and \ characters.

 if (ch === '"') {
 while (next()) {
 if (ch === '"') {
 next();
 return string;
 } else if (ch === '\\') {
 next();
 if (ch === 'u') {
 uffff = 0;
 for (i = 0; i < 4; i += 1) {
 hex = parseInt(next(), 16);
 if (!isFinite(hex)) {
 break;
 }
 uffff = uffff * 16 + hex;
 }
 string += String.fromCharCode(uffff);
 } else if (typeof escapee[ch] === 'string') {
 string += escapee[ch];
 } else {
 break;
 }
 } else {
 string += ch;
 }
 }
 }
 error("Bad string");
 },

 white = function () {

// Skip whitespace.

 while (ch && ch <= ' ') {
 next();
 }
 },

 word = function () {

// true, false, or null.

 switch (ch) {
 case 't':
 next('t');
 next('r');
 next('u');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 next('u');
 next('e');
 return true;
 case 'f':
 next('f');
 next('a');
 next('l');
 next('s');
 next('e');
 return false;
 case 'n':
 next('n');
 next('u');
 next('l');
 next('l');
 return null;
 }
 error("Unexpected '" + ch + "'");
 },

 value, // Place holder for the value function.

 array = function () {

// Parse an array value.

 var array = [];

 if (ch === '[') {
 next('[');
 white();
 if (ch === ']') {
 next(']');
 return array; // empty array
 }
 while (ch) {
 array.push(value());
 white();
 if (ch === ']') {
 next(']');
 return array;
 }
 next(',');
 white();
 }
 }
 error("Bad array");
 },

 object = function () {

// Parse an object value.

 var key,
 object = {};

 if (ch === '{') {
 next('{');
 white();
 if (ch === '}') {
 next('}');
 return object; // empty object
 }
 while (ch) {
 key = string();
 white();
 next(':');
 object[key] = value();
 white();
 if (ch === '}') {
 next('}');
 return object;
 }
 next(',');
 white();
 }
 }
 error("Bad object");
 };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 value = function () {

// Parse a JSON value. It could be an object, an array, a string, a number,
// or a word.

 white();
 switch (ch) {
 case '{':
 return object();
 case '[':
 return array();
 case '"':
 return string();
 case '-':
 return number();
 default:
 return ch >= '0' && ch <= '9' ? number() : word();
 }
 };

// Return the json_parse function. It will have access to all of the above
// functions and variables.

 return function (source, reviver) {
 var result;

 text = source;
 at = 0;
 ch = ' ';
 result = value();
 white();
 if (ch) {
 error("Syntax error");
 }

// If there is a reviver function, we recursively walk the new structure,
// passing each name/value pair to the reviver function for possible
// transformation, starting with a temporary boot object that holds the result
// in an empty key. If there is not a reviver function, we simply return the
// result.

 return typeof reviver === 'function' ?
 function walk(holder, key) {
 var k, v, value = holder[key];
 if (value && typeof value === 'object') {
 for (k in value) {
 if (Object.hasOwnProperty.call(value, k)) {
 v = walk(value, k);
 if (v !== undefined) {
 value[k] = v;
 } else {
 delete value[k];
 }
 }
 }
 }
 return reviver.call(holder, key, value);
 }({'': result}, '') : result;

 };
}();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix. Colophon
The animal on the cover of JavaScript: The Good Parts is a Plain Tiger butterfly (Danaus chrysippus).
Outside of Asia, the insect is also known as the African Monarch. It is a medium-size butterfly
characterized by bright orange wings with six black spots and alternating black-and-white stripes.

Its striking looks have been noted for millennia by scientists and artists. The writer Vladimir Nabokov—
who was also a noted lepidopterist—had admiring words for the butterfly in an otherwise scathing New
York Times book review of Alice Ford's Audubon's Butterflies, Moths, and Other Studies (The Studio
Publications). In the book, Ford labels drawings made previous to and during Audubon's time in the
19th century as "scientifi-cally [sic] unsophisticated."

In response to Ford, Nabokov writes, "The unsophistication is all her own. She might have looked up
John Abbot's prodigious representations of North American lepidoptera, 1797, or the splendid plates of
18th- and early-19th-century German lepidopterists. She might have traveled back some 33 centuries
to the times of Tuthmosis IV or Amenophis III and, instead of the obvious scarab, found there frescoes
with a marvelous Egyptian butterfly (subtly combining the pattern of our Painted Lady and the body of
an African ally of the Monarch)."

While the Plain Tiger's beauty is part of its charm, its looks can also be deadly. During its larval
stages, the butterfly ingests alkaloids that are poisonous to birds—its main predator—which are often
attracted to the insect's markings. After ingesting the Plain Tiger, a bird will vomit repeatedly—
occasionally fatally. If the bird lives, it will let other birds know to avoid the insect, which can also be
recognized by its leisurely, meandering pattern of flying low to the earth.

The cover image is from Dover's Animals. The cover font is Adobe ITC Garamond. The text font is
Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

!= operator 2nd
!== operator
& and
&& operator
+ operator 2nd
 confusing pluses and minuses
++ increment operator 2nd 3rd
 confusing pluses and minuses
+= operator
- negation operator
- subtraction operator
-- decrement operator 2nd 3rd
-- operator, confusing pluses and minuses
/ operator
/* */ form of block comments
// comments

 not
<< left shift
= operator 2nd
== operator 2nd 3rd
=== operator 2nd 3rd
>> signed right shift
>>> unsigned right shift
? ternary operator
[] postfix subscript operator
\ escape character
^ xor
| or
|| operator 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

adsafe option (JSLint)
Apply Invocation Pattern
arguments
arguments array
array literals
array.concat() method
array.join() method
array.pop() method
Array.prototype
array.push() method
array.reverse() method
array.shift() method
array.slice() method
array.sort() method
array.splice() method
array.unshift() method
arrays 2nd
 appending new elements
 arrays of arrays
 cells of an empty matrix
 confusion
 delete operator
 dimensions
 elements of
 enumeration
 length property
 literals
 methods
 Object.beget method
 splice method
 typeof operator
 undefined value
assignment
assignment statement
augmenting types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

beautiful features
bitwise operators 2nd
bitwise option (JSLint)
block comments 2nd
block scope 2nd
blockless statements
blocks 2nd
booleans
braces
break statement 2nd 3rd
browser option (JSLint)
built-in value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

callbacks
cap option (JSLint)
cascades
case clause
casting
catch clause
character type
closure
comma operator
comments 2nd
concatenation
constructor functions
 hazards
 new prefix, forgetting to include
Constructor Invocation Pattern
constructor property
constructors
 defining
continue statement 2nd
curly braces
curry method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

debug option (JSLint)
deentityify method
delegation
delete operator 2nd
differential inheritance
do statement 2nd
Document Object Model (DOM)
durable object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

ECMAScript Language Specification
empty string
enumeration
eqeqeq option (JSLint)
equality operators
escape character
escape sequences
eval function 2nd
 security problems
evil option (JSLint)
exceptions
executable statements
expression statements
expressions
 ? ternary operator
 built-in value
 infix operator
 invocation
 literal value
 operator precedence
 preceded by prefix operator
 refinement
 refinement expression preceded by delete
 variables
 wrapped in parentheses

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

factorial 2nd
Fibonacci numbers
floating-point numbers
for in statement 2nd
 objects
for statements 2nd 3rd
forin option (JSLint)
fragment option (JSLint)
Function constructor 2nd
function invocation
Function Invocation Pattern
function object, when object is created
function statement versus function expression
function.apply() method
functional pattern (inheritance)
functions 2nd 3rd
 arguments
 augmenting types
 callbacks
 cascades
 closure
 curry method
 exceptions
 general pattern of a module
 invocation
 Apply Invocation Pattern
 Constructor Invocation Pattern
 Function Invocation Pattern
 Method Invocation Pattern
 new prefix
 invocation operator
 invoked with constructor invocation
 literals
 memoization
 modules
 objects
 recursive
 Document Object Model (DOM)
 Fibonacci numbers
 tail recursion optimization
 Towers of Hanoi puzzle
 return statement
 scope
 that produce objects
 var statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

global declarations
global object
global variables 2nd 3rd 4th
glovar option (JSLint)
good style
grammar
 functions
 literals
 names
 numbers
 methods
 negative
 object literals
 rules for interpreting diagrams
 strings
 immutability
 length property
 whitespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

hasOwnProperty method 2nd 3rd
HTML
 <script> tags (JSON)
 innerHTML property
 JSLint

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

if statements 2nd
implied global
Infinity 2nd 3rd
inheritance 2nd
 differential
 functional pattern
 object specifiers
 parts
 prototypal pattern (inheritance)
 pseudoclassical pattern 2nd
inherits method
innerHTML property
instances, creating
invocation operator 2nd
invocations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

JavaScript
 analyzing
 standard
 why use
JSLint 2nd
 != operator
 + operator, confusing pluses and minuses
 ++ increment operator
 confusing pluses and minuses
 - operator, confusing pluses and minuses
 -- decrement operator
 confusing pluses and minuses
 = operator
 == operator
 assignment statement
 bitwise operators
 blocks
 break statement
 comma operator
 constructor functions
 continue statement
 eval function
 expression statements
 for in statement
 for statements
 function report
 functions
 global declarations
 global variables
 HTML
 if statements
 JSON
 labels
 line breaking
 members
 new prefix
 options
 regular expressions
 return statement
 semicolons
 switch statements
 throw statement
 var statements
 variables
 void
 where to find
 with statement
JSON
JSON (JavaScript Object Notation) 2nd
 / character
 array
 eval function
 HTML <script> tags
 innerHTML property
 JSLint
 numbers
 object
 string
 syntax
 text example
 using securely
JSON.parse method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSON.parse method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

K&R style
Kleene, Stephen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

labeled statement
labels
laxbreak option (JSLint)
length property (arrays)
line breaking
line comments
line-ending comments
looping statement 2nd
loosely typed language

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

Math object
memoization
message property
Method Invocation Pattern
method method
methods
 array.concat()
 array.join()
 array.pop()
 array.push()
 array.reverse()
 array.shift()
 array.slice()
 array.sort()
 array.splice()
 array.unshift ()
 arrays
 function.apply()
 number.toExponential()
 number.toFixed()
 number.toPrecision()
 number.toString()
 object.hasOwnProperty()
 regexp.exec() 2nd
 regexp.test() 2nd
 string.charAt()
 string.charCodeAt()
 string.concat()
 String.fromCharCode()
 string.indexOf()
 string.lastIndexOf()
 string.localeCompare()
 string.match() 2nd
 string.replace() 2nd
 string.search() 2nd
 string.slice()
 string.split() 2nd
 string.substring()
 string.toLocaleLowerCase()
 string.toLocaleUpperCase()
 string.toLowerCase()
 string.toUpperCase()
 that work with regular expressions
modules
 general pattern
multiple statements
my object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

name property
names
NaN (not a number) 2nd 3rd 4th 5th
negative numbers
new operator 2nd 3rd 4th
 forgetting to include
 functions
newline
nomen option (JSLint)
null 2nd 3rd 4th
number literal
number.toExponential() method
number.toFixed() method
number.toPrecision() method
number.toString() method
numbers 2nd
 methods
 negative
numbers object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

object literals 2nd
object specifiers
Object.beget method 2nd
object.hasOwnProperty() method
Object.prototype
objects 2nd
 creating new
 defined
 delegation
 delete operator
 durable
 enumeration
 for in statement
 functions
 global variables
 hasOwnProperty method
 literals
 properties
 property on prototype chain
 prototype
 link
 reference
 reflection
 retrieving values
 undefined 2nd
 updating values
 || operator
on option (JSLint)
operator precedence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

parseInt function
passfail option (JSLint)
pi as simple constant
plusplus option (JSLint)
Pratt, Vaughn
private methods
privileged methods
problematic features of JavaScript
 + operator
 arrays
 bitwise operators
 blockless statements
 continue statement
 equality operators
 eval function
 falsy values
 floating-point numbers
 function statement versus function expression
 global variables
 hasOwnProperty method
 increment and decrement operators
 NaN (not a number)
 new operator
 objects
 parseInt function
 reserved words
 scope
 semicolons
 single statement form
 string argument form
 switch statement
 typed wrappers
 typeof operator
 Unicode
 void
 with statement
prototypal inheritance
prototypal inheritance language
prototypal pattern
prototype property
prototypes of basic types
pseudoclass, creating
pseudoclassical pattern (inheritance) 2nd
punctuation characters or operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

railroad diagrams
recursion
 Document Object Model (DOM)
 Fibonacci numbers
 tail recursion optimization
 Towers of Hanoi puzzle
reflection
RegExp objects, properties
regexp.exec() method 2nd
regexp.test() method 2nd
regular expressions 2nd
 $ character
 (...)
 (?! prefix
 (?: prefix
 (?:...)?
 (?= prefix
 / character
 ? character
 \1 character
 \b character 2nd
 \d
 \D character
 \d character
 \f character
 \n character
 \r character
 \S character
 \s character
 \t character
 \u character
 \W character
 \w character
 ^ character 2nd
 backslash character
 capturing group 2nd
 carriage return character
 construction
 elements
 regexp choice
 regexp class
 regexp class escape
 regexp escape
 regexp factor 2nd
 regexp group
 regexp quantifier
 regexp sequence
 flags
 formfeed character
 matching digits
 matching URLs
 methods that work with
 negative lookahead group
 newline character
 noncapturing group 2nd
 optional group
 optional noncapturing group
 positive lookahead group
 railroad diagrams
 repeat zero or one time
 simple letter class
 sloppy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sloppy
 tab character
 Unicode characters
reserved words 2nd
return statement 2nd 3rd
rhino option (JSLint)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

says method
scope 2nd 3rd
semicolons 2nd
seqer object
setInterval function
setTimeout function
Simplified JavaScript
single statement form
spec object 2nd
splice method (arrays)
statements
 blocks
 break 2nd
 case clause
 catch clause
 do 2nd
 executable
 execution order
 for 2nd
 for in
 if
 labeled
 loop
 looping
 return
 switch 2nd 3rd
 then block
 throw
 try
 var, functions
 while 2nd
string argument form
string literal
String, augmenting with deentityify method
string.charAt() method
string.charCodeAt() method
string.concat() method
String.fromCharCode() method
string.indexOf() method
string.lastIndexOf() method
string.localeCompare() method
string.match() method 2nd
string.replace() method 2nd
string.search() method 2nd
string.slice() method
string.split() method 2nd
string.substring() method
string.toLocaleLowerCase() method
string.toLocaleUpperCase() method
string.toLowerCase() method
string.toUpperCase() method
strings 2nd
 empty
 immutability
 length property
structured statements
style
 block comments
 braces
 comments
 global variables
 good

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 good
 invocations
 K&R
 line comments
 multiple statements
 structured statements
 switch cases
super methods
superior method
switch statement 2nd 3rd 4th 5th 6th
syntax diagrams

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

tail recursion optimization
testing environment
then block
this keyword
Thompson, Ken
throw statement 2nd
Top Down Operator Precedence parser
Towers of Hanoi puzzle
trim method
try statement
typed wrappers
TypeError exception
typeof operator 2nd 3rd 4th
types
 prototypes of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

undef option (JSLint)
undefined 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Unicode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

var statements
 functions
variables 2nd
void operator 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

while statement 2nd
white option (JSLint)
whitespace
widget option (JSLint)
Wilson, Greg
with statement 2nd
wrappers, typed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

adsafe option (JSLint)
Apply Invocation Pattern
arguments
arguments array
array literals
array.concat() method
array.join() method
array.pop() method
Array.prototype
array.push() method
array.reverse() method
array.shift() method
array.slice() method
array.sort() method
array.splice() method
array.unshift() method
arrays 2nd
 appending new elements
 arrays of arrays
 cells of an empty matrix
 confusion
 delete operator
 dimensions
 elements of
 enumeration
 length property
 literals
 methods
 Object.beget method
 splice method
 typeof operator
 undefined value
assignment
assignment statement
augmenting types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2. Analyzing JavaScript

JavaScript is built on some very good ideas and a few very bad ones.

The very good ideas include functions, loose typing, dynamic objects, and an expressive object literal
notation. The bad ideas include a programming model based on global variables.

JavaScript's functions are first class objects with (mostly) lexical scoping. JavaScript is the first lambda
language to go mainstream. Deep down, JavaScript has more in common with Lisp and Scheme than
with Java. It is Lisp in C's clothing. This makes JavaScript a remarkably powerful language.

The fashion in most programming languages today demands strong typing. The theory is that strong
typing allows a compiler to detect a large class of errors at compile time. The sooner we can detect
and repair errors, the less they cost us. JavaScript is a loosely typed language, so JavaScript compilers
are unable to detect type errors. This can be alarming to people who are coming to JavaScript from
strongly typed languages. But it turns out that strong typing does not eliminate the need for careful
testing. And I have found in my work that the sorts of errors that strong type checking finds are not
the errors I worry about. On the other hand, I find loose typing to be liberating. I don't need to form
complex class hierarchies. And I never have to cast or wrestle with the type system to get the
behavior that I want.

JavaScript has a very powerful object literal notation. Objects can be created simply by listing their
components. This notation was the inspiration for JSON, the popular data interchange format. (There
will be more about JSON in Appendix E.)

A controversial feature in JavaScript is prototypal inheritance. JavaScript has a class-free object
system in which objects inherit properties directly from other objects. This is really powerful, but it is
unfamiliar to classically trained programmers. If you attempt to apply classical design patterns directly
to JavaScript, you will be frustrated. But if you learn to work with JavaScript's prototypal nature, your
efforts will be rewarded.

JavaScript is much maligned for its choice of key ideas. For the most part, though, those choices were
good, if unusual. But there was one choice that was particularly bad: JavaScript depends on global
variables for linkage. All of the top-level variables of all compilation units are tossed together in a
common namespace called the global object. This is a bad thing because global variables are evil, and
in JavaScript they are fundamental. Fortunately, as we will see, JavaScript also gives us the tools to
mitigate this problem.

In a few cases, we can't ignore the bad parts. There are some unavoidable awful parts, which will be
called out as they occur. They will also be summarized in Appendix A. But we will succeed in avoiding
most of the bad parts in this book, summarizing much of what was left out in Appendix B. If you want
to learn more about the bad parts and how to use them badly, consult any other JavaScript book.

The standard that defines JavaScript (aka JScript) is the third edition of The ECMAScript Programming
Language, which is available from http://www.ecma-international.org/publications/files/ecma-
st/ECMA-262.pdf. The language described in this book is a proper subset of ECMAScript. This book
does not describe the whole language because it leaves out the bad parts. The treatment here is not
exhaustive. It avoids the edge cases. You should, too. There is danger and misery at the edges.

Appendix C describes a programming tool called JSLint, a JavaScript parser that can analyze a
JavaScript program and report on the bad parts that it contains. JSLint provides a degree of rigor that
is generally lacking in JavaScript development. It can give you confidence that your programs contain
only the good parts.

JavaScript is a language of many contrasts. It contains many errors and sharp edges, so you might
wonder, "Why should I use JavaScript?" There are two answers. The first is that you don't have a
choice. The Web has become an important platform for application development, and JavaScript is the
only language that is found in all browsers. It is unfortunate that Java failed in that environment; if it
hadn't, there could be a choice for people desiring a strongly typed classical language. But Java did fail
and JavaScript is flourishing, so there is evidence that JavaScript did something right.

The other answer is that, despite its deficiencies, JavaScript is really good. It is lightweight and
expressive. And once you get the hang of it, functional programming is a lot of fun.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expressive. And once you get the hang of it, functional programming is a lot of fun.

But in order to use the language well, you must be well informed about its limitations. I will pound on
those with some brutality. Don't let that discourage you. The good parts are good enough to
compensate for the bad parts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Regular Expressions
Whereas the contrary bringeth bliss, And is a pattern of celestial peace. Whom should
we match with Henry, being a king. . .

—William Shakespeare, The First Part of Henry the Sixth

Many of JavaScript's features were borrowed from other languages. The syntax came from Java,
functions came from Scheme, and prototypal inheritance came from Self. JavaScript's Regular
Expression feature was borrowed from Perl.

A regular expression is the specification of the syntax of a simple language. Regular expressions are
used with methods to search, replace, and extract information from strings. The methods that work
with regular expressions are regexp.exec, regexp.test, string.match, string.replace,
string.search, and string.split. These will all be described in Chapter 8. Regular expressions
usually have a significant performance advantage over equivalent string operations in JavaScript.

Regular expressions came from the mathematical study of formal languages. Ken Thompson adapted
Stephen Kleene's theoretical work on type-3 languages into a practical pattern matcher that could be
embedded in tools such as text editors and programming languages.

The syntax of regular expressions in JavaScript conforms closely to the original formulations from Bell
Labs, with some reinterpretation and extension adopted from Perl. The rules for writing regular
expressions can be surprisingly complex because they interpret characters in some positions as
operators, and in slightly different positions as literals. Worse than being hard to write, this makes
regular expressions hard to read and dangerous to modify. It is necessary to have a fairly complete
understanding of the full complexity of regular expressions to correctly read them. To mitigate this, I
have simplified the rules a little. As presented here, regular expressions will be slightly less terse, but
they will also be slightly easier to use correctly. And that is a good thing because regular expressions
can be very difficult to maintain and debug.

Today's regular expressions are not strictly regular, but they can be very useful. Regular expressions
tend to be extremely terse, even cryptic. They are easy to use in their simplest form, but they can
quickly become bewildering. JavaScript's regular expressions are difficult to read in part because they
do not allow comments or whitespace. All of the parts of a regular expression are pushed tightly
together, making them almost indecipherable. This is a particular concern when they are used in
security applications for scanning and validation. If you cannot read and understand a regular
expression, how can you have confidence that it will work correctly for all inputs? Yet, despite their
obvious drawbacks, regular expressions are widely used.

7.1. An Example

Here is an example. It is a regular expression that matches URLs. The pages of this book are not
infinitely wide, so I broke it into two lines. In a JavaScript program, the regular expression must be on
a single line. Whitespace is significant:

var parse_url = /^(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-A-Za-z]+)
(?::(\d+))?(?:\/([^?#]*))?(?:\?([^#]*))?(?:#(.*))?$/;

var url = "http://www.ora.com:80/goodparts?q#fragment";

Let's call parse_url's exec method. If it successfully matches the string that we pass it, it will return
an array containing pieces extracted from the url:

var url = "http://www.ora.com:80/goodparts?q#fragment";

var result = parse_url.exec(url);

var names = ['url', 'scheme', 'slash', 'host', 'port',
 'path', 'query', 'hash'];

var blanks = ' ';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var blanks = ' ';
var i;

for (i = 0; i < names.length; i += 1) {
 document.writeln(names[i] + ':' +
 blanks.substring(names[i].length), result[i]);
}

This produces:

url: http://www.ora.com:80/goodparts?q#fragment
scheme: http
slash: //
host: www.ora.com
port: 80
path: goodparts
query: q
hash: fragment

In Chapter 2, we used railroad diagrams to describe the JavaScript language. We can also use them to
describe the languages defined by regular expressions. That may make it easier to see what a regular
expression does. This is a railroad diagram for parse_url.

Regular expressions cannot be broken into smaller pieces the way that functions can, so the track
representing parse_url is a long one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

representing parse_url is a long one.

Let's factor parse_url into its parts to see how it works:

^

The ^ character indicates the beginning of the string. It is an anchor that prevents exec from skipping
over a non-URL-like prefix:

(?:([A-Za-z]+):)?

This factor matches a scheme name, but only if it is followed by a : (colon). The (?: . . .) indicates a
noncapturing group. The suffix ? indicates that the group is optional.

It means repeat zero or one time. The (. . .) indicates a capturing group. A capturing group copies
the text it matches and places it in the result array. Each capturing group is given a number. This
first capturing group is 1, so a copy of the text matched by this capturing group will appear in
result[1]. The [. . .] indicates a character class. This character class, A-Za-z, contains 26
uppercase letters and 26 lowercase letters. The hyphens indicate ranges, from A to Z. The suffix +
indicates that the character class will be matched one or more times. The group is followed by the :
character, which will be matched literally:

(\/{0,3})

The next factor is capturing group 2. \/ indicates that a / (slash) character should be matched. It is
escaped with \ (backslash) so that it is not misinterpreted as the end of the regular expression literal.
The suffix {0,3} indicates that the / will be matched 0 or 1 or 2 or 3 times:

([0-9.\-A-Za-z]+)

The next factor is capturing group 3. It will match a host name, which is made up of one or more
digits, letters, or . or -. The - was escaped as \- to prevent it from being confused with a range
hyphen:

(?::(\d+))?

The next factor optionally matches a port number, which is a sequence of one or more digits preceded
by a :. \d represents a digit character. The series of one or more digits will be capturing group 4:

(?:\/([^?#]*))?

We have another optional group. This one begins with a /. The character class [^?#] begins with a ^,
which indicates that the class includes all characters except ? and #. The * indicates that the character
class is matched zero or more times.

Note that I am being sloppy here. The class of all characters except ? and # includes line-ending
characters, control characters, and lots of other characters that really shouldn't be matched here. Most
of the time this will do want we want, but there is a risk that some bad text could slip through. Sloppy
regular expressions are a popular source of security exploits. It is a lot easier to write sloppy regular
expressions than rigorous regular expressions:

(?:\?([^#]*))?

Next, we have an optional group that begins with a ?. It contains capturing group 6, which contains
zero or more characters that are not #:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

zero or more characters that are not #:

(?:#(.*))?

We have a final optional group that begins with #. The . will match any character except a line-ending
character:

$

The $ represents the end of the string. It assures us that there was no extra material after the end of
the URL.

Those are the factors of the regular expression parse_url.[1]

[1] When you press them all together again, it is visually quite confusing: /^(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-
A-Za-z]+)?(?::(\d+))?(?:\/([^?#]*))?(?:\?([^#]*))?(?:#(.*))?$/

It is possible to make regular expressions that are more complex than parse_url, but I wouldn't
recommend it. Regular expressions are best when they are short and simple. Only then can we have
confidence that they are working correctly and that they could be successfully modified if necessary.

There is a very high degree of compatibility between JavaScript language processors. The part of the
language that is least portable is the implementation of regular expressions. Regular expressions that
are very complicated or convoluted are more likely to have portability problems. Nested regular
expressions can also suffer horrible performance problems in some implementations. Simplicity is the
best strategy.

Let's look at another example: a regular expression that matches numbers. Numbers can have an
integer part with an optional minus sign, an optional fractional part, and an optional exponent part:

var parse_number = /^-?\d+(?:\.\d*)?(?:e[+\-]?\d+)?$/i;

var test = function (num) {
 document.writeln(parse_number.test(num));
};

test('1'); // true
test('number'); // false
test('98.6'); // true
test('132.21.86.100'); // false
test('123.45E-67'); // true
test('123.45D-67'); // false

parse_number successfully identified the strings that conformed to our specification and those that did
not, but for those that did not, it gives us no information on why or where they failed the number test.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's break down parse_number:

/^ $/i

We again use ^ and $ to anchor the regular expression. This causes all of the characters in the text to
be matched against the regular expression. If we had omitted the anchors, the regular expression
would tell us if a string contains a number. With the anchors, it tells us if the string contains only a
number. If we included just the ^, it would match strings starting with a number. If we included just
the $, it would match strings ending with a number.

The i flag causes case to be ignored when matching letters. The only letter in our pattern is e. We
want that e to also match E. We could have written the e factor as [Ee] or (?:E|e), but we didn't
have to because we used the i flag:

-?

The ? suffix on the minus sign indicates that the minus sign is optional:

\d+

\d means the same as [0-9]. It matches a digit. The + suffix causes it to match one or more digits:

(?:\.\d*)?

The (?: . . .)? indicates an optional noncapturing group. It is usually better to use noncapturing
groups instead of the less ugly capturing groups because capturing has a performance penalty. The
group will match a decimal point followed by zero or more digits:

(?:e[+\-]?\d+)?

This is another optional noncapturing group. It matches e (or E), an optional sign, and one or more
digits.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4. Arguments

A bonus parameter that is available to functions when they are invoked is the arguments array. It
gives the function access to all of the arguments that were supplied with the invocation, including
excess arguments that were not assigned to parameters. This makes it possible to write functions that
take an unspecified number of parameters:

// Make a function that adds a lot of stuff.

// Note that defining the variable sum inside of
// the function does not interfere with the sum
// defined outside of the function. The function
// only sees the inner one.

var sum = function () {
 var i, sum = 0;
 for (i = 0; i < arguments.length; i += 1) {
 sum += arguments[i];
 }
 return sum;
};

document.writeln(sum(4, 8, 15, 16, 23, 42)); // 108

This is not a particularly useful pattern. In Chapter 6, we will see how we can add a similar method to
an array.

Because of a design error, arguments is not really an array. It is an array-like object. arguments has a
length property, but it lacks all of the array methods. We will see a consequence of that design error
at the end of this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Arrays
Thee I'll chase hence, thou wolf in sheep's array.

—William Shakespeare, The First Part of Henry the Sixth

An array is a linear allocation of memory in which elements are accessed by integers that are used to
compute offsets. Arrays can be very fast data structures. Unfortunately, JavaScript does not have
anything like this kind of array.

Instead, JavaScript provides an object that has some array-like characteristics. It converts array
subscripts into strings that are used to make properties. It is significantly slower than a real array, but
it can be more convenient to use. Retrieval and updating of properties work the same as with objects,
except that there is a special trick with integer property names. Arrays have their own literal format.
Arrays also have a much more useful set of built-in methods, described in Chapter 8.

6.1. Array Literals

Array literals provide a very convenient notation for creating new array values. An array literal is a
pair of square brackets surrounding zero or more values separated by commas. An array literal can
appear anywhere an expression can appear. The first value will get the property name '0', the second
value will get the property name '1', and so on:

var empty = [];
var numbers = [
 'zero', 'one', 'two', 'three', 'four',
 'five', 'six', 'seven', 'eight', 'nine'
];

empty[1] // undefined
numbers[1] // 'one'

empty.length // 0
numbers.length // 10

The object literal:

var numbers_object = {
 '0': 'zero', '1': 'one', '2': 'two',
 '3': 'three', '4': 'four', '5': 'five',
 '6': 'six', '7': 'seven', '8': 'eight',
 '9': 'nine'
};

produces a similar result. Both numbers and number_object are objects containing 10 properties, and
those properties have exactly the same names and values. But there are also significant differences.
numbers inherits from Array.prototype, whereas number_object inherits from Object.prototype,
so numbers inherits a larger set of useful methods. Also, numbers gets the mysterious length
property, while number_object does not.

In most languages, the elements of an array are all required to be of the same type. JavaScript allows
an array to contain any mixture of values:

var misc = [
 'string', 98.6, true, false, null, undefined,
 ['nested', 'array'], {object: true}, NaN,
 Infinity
];
misc.length // 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Arrays
Thee I'll chase hence, thou wolf in sheep's array.

—William Shakespeare, The First Part of Henry the Sixth

An array is a linear allocation of memory in which elements are accessed by integers that are used to
compute offsets. Arrays can be very fast data structures. Unfortunately, JavaScript does not have
anything like this kind of array.

Instead, JavaScript provides an object that has some array-like characteristics. It converts array
subscripts into strings that are used to make properties. It is significantly slower than a real array, but
it can be more convenient to use. Retrieval and updating of properties work the same as with objects,
except that there is a special trick with integer property names. Arrays have their own literal format.
Arrays also have a much more useful set of built-in methods, described in Chapter 8.

6.1. Array Literals

Array literals provide a very convenient notation for creating new array values. An array literal is a
pair of square brackets surrounding zero or more values separated by commas. An array literal can
appear anywhere an expression can appear. The first value will get the property name '0', the second
value will get the property name '1', and so on:

var empty = [];
var numbers = [
 'zero', 'one', 'two', 'three', 'four',
 'five', 'six', 'seven', 'eight', 'nine'
];

empty[1] // undefined
numbers[1] // 'one'

empty.length // 0
numbers.length // 10

The object literal:

var numbers_object = {
 '0': 'zero', '1': 'one', '2': 'two',
 '3': 'three', '4': 'four', '5': 'five',
 '6': 'six', '7': 'seven', '8': 'eight',
 '9': 'nine'
};

produces a similar result. Both numbers and number_object are objects containing 10 properties, and
those properties have exactly the same names and values. But there are also significant differences.
numbers inherits from Array.prototype, whereas number_object inherits from Object.prototype,
so numbers inherits a larger set of useful methods. Also, numbers gets the mysterious length
property, while number_object does not.

In most languages, the elements of an array are all required to be of the same type. JavaScript allows
an array to contain any mixture of values:

var misc = [
 'string', 98.6, true, false, null, undefined,
 ['nested', 'array'], {object: true}, NaN,
 Infinity
];
misc.length // 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.7. Augmenting Types

JavaScript allows the basic types of the language to be augmented. In Chapter 3, we saw that adding
a method to Object.prototype makes that method available to all objects. This also works for
functions, arrays, strings, numbers, regular expressions, and booleans.

For example, by augmenting Function.prototype, we can make a method available to all functions:

Function.prototype.method = function (name, func) {
 this.prototype[name] = func;
 return this;
};

By augmenting Function.prototype with a method method, we no longer have to type the name of
the prototype property. That bit of ugliness can now be hidden.

JavaScript does not have a separate integer type, so it is sometimes necessary to extract just the
integer part of a number. The method JavaScript provides to do that is ugly. We can fix it by adding
an integer method to Number.prototype. It uses either Math.ceiling or Math.floor, depending on
the sign of the number:

Number.method('integer', function () {
 return Math[this < 0 ? 'ceiling' : 'floor'](this);
});

document.writeln((-10 / 3).integer()); // -3

JavaScript lacks a method that removes spaces from the ends of a string. That is an easy oversight to
fix:

String.method('trim', function () {
 return this.replace(/^\s+|\s+$/g, '');
});

document.writeln('"' + " neat ".trim() + '"');

Our trim method uses a regular expression. We will see much more about regular expressions in
Chapter 7.

By augmenting the basic types, we can make significant improvements to the expressiveness of the
language. Because of the dynamic nature of JavaScript's prototypal inheritance, all values are
immediately endowed with the new methods, even values that were created before the methods were
created.

The prototypes of the basic types are public structures, so care must be taken when mixing libraries.
One defensive technique is to add a method only if the method is known to be missing:

// Add a method conditionally.

Function.prototype.method = function (name, func) {
 if (!this.prototype[name]) {
 this.prototype[name] = func;
 }
};

Another concern is that the for in statement interacts badly with prototypes. We saw a couple of
ways to mitigate that in Chapter 3: we can use the hasOwnProperty method to screen out inherited
properties, and we can look for specific types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

properties, and we can look for specific types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. Awful Parts
That will prove awful both in deed and word.

—William Shakespeare, Pericles, Prince of Tyre

In this chapter, I present the problematic features of JavaScript that are not easily avoided. You must
be aware of these things and be prepared to cope.

A.1. Global Variables

The worst of all of JavaScript's bad features is its dependence on global variables. A global variable is
a variable that is visible in every scope. Global variables can be a convenience in very small programs,
but they quickly become unwieldy as programs get larger. Because a global variable can be changed
by any part of the program at any time, they can significantly complicate the behavior of the program.
Use of global variables degrades the reliability of the programs that use them.

Global variables make it harder to run independent subprograms in the same program. If the
subprograms happen to have global variables that share the same names, then they will interfere with
each other and likely fail, usually in difficult to diagnose ways.

Lots of languages have global variables. For example, Java's public static members are global
variables. The problem with JavaScript isn't just that it allows them, it requires them. JavaScript does
not have a linker. All compilation units are loaded into a common global object.

There are three ways to define global variables. The first is to place a var statement outside of any
function:

var foo = value;

The second is to add a property directly to the global object. The global object is the container of all
global variables. In web browsers, the global object goes by the name window:

window.foo = value;

The third is to use a variable without declaring it. This is called implied global:

foo = value;

This was intended as a convenience to beginners by making it unnecessary to declare variables before
using them. Unfortunately, forgetting to declare a variable is a very common mistake. JavaScript's
policy of making forgotten variables global creates bugs that can be very difficult to find.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.3. A JSON Parser

This is an implementation of a JSON parser in JavaScript:

Code View:

var json_parse = function () {

// This is a function that can parse a JSON text, producing a JavaScript
// data structure. It is a simple, recursive descent parser.

// We are defining the function inside of another function to avoid creating
// global variables.

 var at, // The index of the current character
 ch, // The current character
 escapee = {
 '"': '"'
 '\\': '\\',
 '/': '/',
 b: 'b',
 f: '\f',
 n: '\n',
 r: '\r'
 t: '\t'
 },
 text,

 error = function (m) {

// Call error when something is wrong.

 throw {
 name: 'SyntaxError',
 message: m,
 at: at,
 text: text
 };
 },

 next = function (c) {

// If a c parameter is provided, verify that it matches the current character.

 if (c && c !== ch) {
 error("Expected '" + c + "' instead of '" + ch + "'");
 }

// Get the next character. When there are no more characters,
// return the empty string.

 ch = text.charAt(at);
 at += 1;
 return ch;
 },

 number = function () {

// Parse a number value.

 var number,
 string = '';

 if (ch === '-') {
 string = '-';
 next('-');
 }
 while (ch >= '0' && ch <= '9') {
 string += ch;
 next();
 }
 if (ch === '.') {
 string += '.';
 while (next() && ch >= '0' && ch <= '9') {
 string += ch;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }
 if (ch === 'e' || ch === 'E') {
 string += ch;
 next();
 if (ch === '-' || ch === '+') {
 string += ch;
 next();
 }
 while (ch >= '0' && ch <= '9') {
 string += ch;
 next();
 }
 }
 number = +string;
 if (isNaN(number)) {
 error("Bad number");
 } else {
 return number;
 }
 },

 string = function () {

// Parse a string value.

 var hex,
 i,
 string = '',
 uffff;

// When parsing for string values, we must look for " and \ characters.

 if (ch === '"') {
 while (next()) {
 if (ch === '"') {
 next();
 return string;
 } else if (ch === '\\') {
 next();
 if (ch === 'u') {
 uffff = 0;
 for (i = 0; i < 4; i += 1) {
 hex = parseInt(next(), 16);
 if (!isFinite(hex)) {
 break;
 }
 uffff = uffff * 16 + hex;
 }
 string += String.fromCharCode(uffff);
 } else if (typeof escapee[ch] === 'string') {
 string += escapee[ch];
 } else {
 break;
 }
 } else {
 string += ch;
 }
 }
 }
 error("Bad string");
 },

 white = function () {

// Skip whitespace.

 while (ch && ch <= ' ') {
 next();
 }
 },

 word = function () {

// true, false, or null.

 switch (ch) {
 case 't':
 next('t');
 next('r');
 next('u');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 next('u');
 next('e');
 return true;
 case 'f':
 next('f');
 next('a');
 next('l');
 next('s');
 next('e');
 return false;
 case 'n':
 next('n');
 next('u');
 next('l');
 next('l');
 return null;
 }
 error("Unexpected '" + ch + "'");
 },

 value, // Place holder for the value function.

 array = function () {

// Parse an array value.

 var array = [];

 if (ch === '[') {
 next('[');
 white();
 if (ch === ']') {
 next(']');
 return array; // empty array
 }
 while (ch) {
 array.push(value());
 white();
 if (ch === ']') {
 next(']');
 return array;
 }
 next(',');
 white();
 }
 }
 error("Bad array");
 },

 object = function () {

// Parse an object value.

 var key,
 object = {};

 if (ch === '{') {
 next('{');
 white();
 if (ch === '}') {
 next('}');
 return object; // empty object
 }
 while (ch) {
 key = string();
 white();
 next(':');
 object[key] = value();
 white();
 if (ch === '}') {
 next('}');
 return object;
 }
 next(',');
 white();
 }
 }
 error("Bad object");
 };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 value = function () {

// Parse a JSON value. It could be an object, an array, a string, a number,
// or a word.

 white();
 switch (ch) {
 case '{':
 return object();
 case '[':
 return array();
 case '"':
 return string();
 case '-':
 return number();
 default:
 return ch >= '0' && ch <= '9' ? number() : word();
 }
 };

// Return the json_parse function. It will have access to all of the above
// functions and variables.

 return function (source, reviver) {
 var result;

 text = source;
 at = 0;
 ch = ' ';
 result = value();
 white();
 if (ch) {
 error("Syntax error");
 }

// If there is a reviver function, we recursively walk the new structure,
// passing each name/value pair to the reviver function for possible
// transformation, starting with a temporary boot object that holds the result
// in an empty key. If there is not a reviver function, we simply return the
// result.

 return typeof reviver === 'function' ?
 function walk(holder, key) {
 var k, v, value = holder[key];
 if (value && typeof value === 'object') {
 for (k in value) {
 if (Object.hasOwnProperty.call(value, k)) {
 v = walk(value, k);
 if (v !== undefined) {
 value[k] = v;
 } else {
 delete value[k];
 }
 }
 }
 }
 return reviver.call(holder, key, value);
 }({'': result}, '') : result;

 };
}();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3. A Simple Testing Ground

If you have a web browser and any text editor, you have everything you need to run JavaScript
programs. First, make an HTML file with a name like program.html:

<html><body><pre><script src="program.js">
</script></pre></body></html>

Then, make a file in the same directory with a name like program.js:

document.writeln('Hello, world!');

Next, open your HTML file in your browser to see the result. Throughout the book, a method method is
used to define new methods. This is its definition:

Function.prototype.method = function (name, func) {
 this.prototype[name] = func;
 return this;
};

It will be explained in Chapter 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

beautiful features
bitwise operators 2nd
bitwise option (JSLint)
block comments 2nd
block scope 2nd
blockless statements
blocks 2nd
booleans
braces
break statement 2nd 3rd
browser option (JSLint)
built-in value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B. Bad Parts
And, I pray thee now, tell me for which of my bad parts didst thou first fall in love with
me?

—William Shakespeare, Much Ado About Nothing

In this appendix, I present some of the problematic features of JavaScript that are easily avoided. By
simply avoiding these features, you make JavaScript a better language, and yourself a better
programmer.

B.1. ==

JavaScript has two sets of equality operators: === and !==, and their evil twins == and !=. The good
ones work the way you would expect. If the two operands are of the same type and have the same
value, then === produces true and !== produces false. The evil twins do the right thing when the
operands are of the same type, but if they are of different types, they attempt to coerce the values.
The rules by which they do that are complicated and unmemorable. These are some of the interesting
cases:

'' == '0' // false
0 == '' // true
0 == '0' // true

false == 'false' // false
false == '0' // true

false == undefined // false
false == null // false
null == undefined // true

' \t\r\n ' == 0 // true

The lack of transitivity is alarming. My advice is to never use the evil twins. Instead, always use ===
and !==. All of the comparisons just shown produce false with the === operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Beautiful Features
Thus, expecting thy reply, I profane my lips on thy foot, my eyes on thy picture, and my
heart on thy every part. Thine, in the dearest design of industry. . .

—William Shakespeare, Love's Labor's Lost

I was invited last year to contribute a chapter to Andy Oram's and Greg Wilson's Beautiful Code
(O'Reilly), an anthology on the theme of beauty as expressed in computer programs. I wanted to write
my chapter in JavaScript. I wanted to use it to present something abstract, powerful, and useful to
show that the language was up to it. And I wanted to avoid the browser and other venues in which
JavaScript is typecast. I wanted to show something respectable with some heft to it.

I immediately thought of Vaughn Pratt's Top Down Operator Precedence parser, which I use in JSLint
(see Appendix C). Parsing is an important topic in computing. The ability to write a compiler for a
language in itself is still a test for the completeness of a language.

I wanted to include all of the code for a parser in JavaScript that parses JavaScript. But my chapter
was just one of 30 or 40, so I felt constrained in the number of pages I could consume. A further
complication was that most of my readers would have no experience with JavaScript, so I also would
have to introduce the language and its peculiarities.

So, I decided to subset the language. That way, I wouldn't have to parse the whole language, and I
wouldn't have to describe the whole language. I called the subset Simplified JavaScript. Selecting the
subset was easy: it included just the features that I needed to write a parser. This is how I described
it in Beautiful Code:

Simplified JavaScript is just the good stuff, including:

Functions as firortranst class objects

Functions in Simplified JavaScript are lambdas with lexical scoping.

Dynamic objects with prototypal inheritance

Objects are class-free. We can add a new member to any object by ordinary assignment.
An object can inherit members from another object.

Object literals and array literals

This is a very convenient notation for creating new objects and arrays. JavaScript literals
were the inspiration for the JSON data interchange format.

The subset contained the best of the Good Parts. Even though it was a small language, it was very
expressive and powerful. JavaScript has lots of additional features that really don't add very much,
and as you'll find in the appendixes that follow, it has a lot of features with negative value. There was
nothing ugly or bad in the subset. All of that fell away.

Simplified JavaScript isn't strictly a subset. I added a few new features. The simplest was adding pi as
a simple constant. I did that to demonstrate a feature of the parser. I also demonstrated a better
reserved word policy and showed that reserved words are unnecessary. In a function, a word cannot
be used as both a variable or parameter name and a language feature. You can use a word for one or
the other, and the programmer gets to choose. That makes a language easier to learn because you
don't need to be aware of features you don't use. And it makes the language easier to extend because
it isn't necessary to reserve more words to add new features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I also added block scope. Block scope is not a necessary feature, but not having it confuses
experienced programmers. I included block scope because I anticipated that my parser would be used
to parse languages that are not JavaScript, and those languages would do scoping correctly. The code
I wrote for the parser is written in a style that doesn't care if block scope is available or not. I
recommend that you write that way, too.

When I started thinking about this book, I wanted to take the subset idea further, to show how to take
an existing programming language and make significant improvements to it by making no changes
except to exclude the low-value features.

We see a lot of feature-driven product design in which the cost of features is not properly accounted.
Features can have a negative value to consumers because they make the products more difficult to
understand and use. We are finding that people like products that just work. It turns out that designs
that just work are much harder to produce than designs that assemble long lists of features.

Features have a specification cost, a design cost, and a development cost. There is a testing cost and
a reliability cost. The more features there are, the more likely one will develop problems or will
interact badly with another. In software systems, there is a storage cost, which was becoming
negligible, but in mobile applications is becoming significant again. There are ascending performance
costs because Moore's Law doesn't apply to batteries.

Features have a documentation cost. Every feature adds pages to the manual, increasing training
costs. Features that offer value to a minority of users impose a cost on all users. So, in designing
products and programming languages, we want to get the core features—the good parts—right
because that is where we create most of the value.

We all find the good parts in the products that we use. We value simplicity, and when simplicity isn't
offered to us, we make it ourselves. My microwave oven has tons of features, but the only ones I use
are cook and the clock. And setting the clock is a struggle. We cope with the complexity of feature-
driven design by finding and sticking with the good parts.

It would be nice if products and programming languages were designed to have only good parts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.20. Bitwise Operators

JavaScript does not have an integer type, but it does have bitwise operators. The bitwise operators
convert their operands from floating-point to integers and back, so they are not nearly as efficient as
they are in C or other languages. They are rarely useful in browser applications. The similarity to the
logical operators can mask some programming errors. The bitwise option prohibits the use of these
operators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.8. Bitwise Operators

JavaScript has the same set of bitwise operators as Java:

& and
| or
^ xor
 not

>> signed right shift
>>> unsigned right shift
<< left shift

In Java, the bitwise operators work with integers. JavaScript doesn't have integers. It only has double
precision floating-point numbers. So, the bitwise operators convert their number operands into
integers, do their business, and then convert them back. In most languages, these operators are very
close to the hardware and very fast. In JavaScript, they are very far from the hardware and very slow.
JavaScript is rarely used for doing bit manipulation.

As a result, in JavaScript programs, it is more likely that & is a mistyped && operator. The presence of
the bitwise operators reduces some of the language's redundancy, making it easier for bugs to hide.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.6. Block-less Statements

An if or while or do or for statement can take a block or a single statement. The single statement
form is another attractive nuisance. It offers the advantage of saving two characters, a dubious
advantage. It obscures the program's structure so that subsequent manipulators of the code can
easily insert bugs. For example:

if (ok)
 t = true;

can become:

if (ok)
 t = true;
 advance();

which looks like:

if (ok) {
 t = true;
 advance();
}

but which actually means:

if (ok) {
 t = true;
}
advance();

Programs that appear to do one thing but actually do another are much harder to get right. A
disciplined and consistent use of blocks makes it easier to get it right.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

callbacks
cap option (JSLint)
cascades
case clause
casting
catch clause
character type
closure
comma operator
comments 2nd
concatenation
constructor functions
 hazards
 new prefix, forgetting to include
Constructor Invocation Pattern
constructor property
constructors
 defining
continue statement 2nd
curly braces
curry method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.11. Callbacks

Functions can make it easier to deal with discontinuous events. For example, suppose there is a
sequence that begins with a user interaction, making a request of the server, and finally displaying the
server's response. The naïve way to write that would be:

request = prepare_the_request();
response = send_request_synchronously(request);
display(response);

The problem with this approach is that a synchronous request over the network will leave the client in
a frozen state. If either the network or the server is slow, the degradation in responsiveness will be
unacceptable.

A better approach is to make an asynchronous request, providing a callback function that will be
invoked when the server's response is received. An asynchronous function returns immediately, so the
client isn't blocked:

request = prepare_the_request();
send_request_asynchronously(request, function (response) {
 display(response);
 });

We pass a function parameter to the send_request_asynchronously function that will be called when
the response is available.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.13. Cascade

Some methods do not have a return value. For example, it is typical for methods that set or change
the state of an object to return nothing. If we have those methods return this instead of undefined,
we can enable cascades. In a cascade, we can call many methods on the same object in sequence in a
single statement. An Ajax library that enables cascades would allow us to write in a style like this:

getElement('myBoxDiv').
 move(350, 150).
 width(100).
 height(100).
 color('red').
 border('10px outset').
 padding('4px').
 appendText("Please stand by").
 on('mousedown', function (m) {
 this.startDrag(m, this.getNinth(m));
 }).
 on('mousemove', 'drag').
 on('mouseup', 'stopDrag').
 later(2000, function () {
 this.
 color('yellow').
 setHTML("What hath God wraught?").
 slide(400, 40, 200, 200);
 }).
 tip('This box is resizeable');

In this example, the getElement function produces an object that gives functionality to the DOM
element with id="myBoxDiv". The methods allow us to move the element, change its dimensions and
styling, and add behavior. Each of those methods returns the object, so the result of the invocation
can be used for the next invocation.

Cascading can produce interfaces that are very expressive. It can help control the tendency to make
interfaces that try to do too much at once.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.10. Closure

The good news about scope is that inner functions get access to the parameters and variables of the
functions they are defined within (with the exception of this and arguments). This is a very good
thing.

Our getElementsByClassName function worked because it declared a results variable, and the inner
function that it passed to walk_the_DOM also had access to the results variable.

A more interesting case is when the inner function has a longer lifetime than its outer function.

Earlier, we made a myObject that had a value and an increment method. Suppose we wanted to
protect the value from unauthorized changes.

Instead of initializing myObject with an object literal, we will initialize myObject by calling a function
that returns an object literal. That function defines a value variable. That variable is always available
to the increment and getValue methods, but the function's scope keeps it hidden from the rest of the
program:

var myObject = function () {
 var value = 0;

 return {
 increment: function (inc) {
 value += typeof inc === 'number' ? inc : 1;
 },
 getValue: function () {
 return value;
 }
 }
}();

We are not assigning a function to myObject. We are assigning the result of invoking that function.
Notice the () on the last line. The function returns an object containing two methods, and those
methods continue to enjoy the privilege of access to the value variable.

The Quo constructor from earlier in this chapter produced an object with a status property and a
get_status method. But that doesn't seem very interesting. Why would you call a getter method on a
property you could access directly? It would be more useful if the status property were private. So,
let's define a different kind of quo function to do that:

// Create a maker function called quo. It makes an
// object with a get_status method and a private
// status property.

var quo = function (status) {
 return {
 get_status: function () {
 return status;
 }
 };
};

// Make an instance of quo.

var myQuo = quo("amazed");

document.writeln(myQuo.get_status());

This quo function is designed to be used without the new prefix, so the name is not capitalized. When
we call quo, it returns a new object containing a get_status method. A reference to that object is
stored in myQuo. The get_status method still has privileged access to quo's status property even
though quo has already returned. get_status does not have access to a copy of the parameter; it has

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

though quo has already returned. get_status does not have access to a copy of the parameter; it has
access to the parameter itself. This is possible because the function has access to the context in which
it was created. This is called closure.

Let's look at a more useful example:

// Define a function that sets a DOM node's color
// to yellow and then fades it to white.

var fade = function (node) {
 var level = 1;
 var step = function () {
 var hex = level.toString(16);
 node.style.backgroundColor = '#FFFF' + hex + hex;
 if (level < 15) {
 level += 1;
 setTimeout(step, 100);
 }
 };
 setTimeout(step, 100);
};

fade(document.body);

We call fade, passing it document.body (the node created by the HTML <body> tag). fade sets level
to 1. It defines a step function. It calls setTimeout, passing it the step function and a time (100
milliseconds). It then returns—fade has finished.

Suddenly, about a 10th of a second later, the step function gets invoked. It makes a base 16
character from fade's level. It then modifies the background color of fade's node. It then looks at
fade's level. If it hasn't gotten to white yet, it then increments fade's level and uses setTimeout to
schedule itself to run again.

Suddenly, the step function gets invoked again. But this time, fade 's level is 2. fade returned a
while ago, but its variables continue to live as long as they are needed by one or more of fade's inner
functions.

It is important to understand that the inner function has access to the actual variables of the outer
functions and not copies in order to avoid the following problem:

Code View:

// BAD EXAMPLE
// Make a function that assigns event handler functions to an array
 of nodes the wrong way.
// When you click on a node, an alert box is supposed to display the ordinal
of the node.
// But it always displays the number of nodes instead.

var add_the_handlers = function (nodes) {
 var i;
 for (i = 0; i < nodes.length; i += 1) {
 nodes[i].onclick = function (e) {
 alert(i);
 }
 }
};

// END BAD EXAMPLE

The add_the_handlers function was intended to give each handler a unique number (i). It fails
because the handler functions are bound to the variable i, not the value of the variable i at the time
the function was made:

Code View:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code View:

// BETTER EXAMPLE

// Make a function that assigns event handler functions to an array of nodes
 the right way.
// When you click on a node, an alert box will display the ordinal of the node.

var add_the_handlers = function (nodes) {
 var i;
 for (i = 0; i < nodes.length; i += 1) {
 nodes[i].onclick = function (i) {
 return function (e) {
 alert(i);
 };
 }(i);
 }
};

Now, instead of assigning a function to onclick, we define a function and immediately invoke it,
passing in i. That function will return an event handler function that is bound to the value of i that
was passed in, not to the i defined in add_the_handlers. That returned function is assigned to
onclick.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix. Colophon
The animal on the cover of JavaScript: The Good Parts is a Plain Tiger butterfly (Danaus chrysippus).
Outside of Asia, the insect is also known as the African Monarch. It is a medium-size butterfly
characterized by bright orange wings with six black spots and alternating black-and-white stripes.

Its striking looks have been noted for millennia by scientists and artists. The writer Vladimir Nabokov—
who was also a noted lepidopterist—had admiring words for the butterfly in an otherwise scathing New
York Times book review of Alice Ford's Audubon's Butterflies, Moths, and Other Studies (The Studio
Publications). In the book, Ford labels drawings made previous to and during Audubon's time in the
19th century as "scientifi-cally [sic] unsophisticated."

In response to Ford, Nabokov writes, "The unsophistication is all her own. She might have looked up
John Abbot's prodigious representations of North American lepidoptera, 1797, or the splendid plates of
18th- and early-19th-century German lepidopterists. She might have traveled back some 33 centuries
to the times of Tuthmosis IV or Amenophis III and, instead of the obvious scarab, found there frescoes
with a marvelous Egyptian butterfly (subtly combining the pattern of our Painted Lady and the body of
an African ally of the Monarch)."

While the Plain Tiger's beauty is part of its charm, its looks can also be deadly. During its larval
stages, the butterfly ingests alkaloids that are poisonous to birds—its main predator—which are often
attracted to the insect's markings. After ingesting the Plain Tiger, a bird will vomit repeatedly—
occasionally fatally. If the bird lives, it will let other birds know to avoid the insect, which can also be
recognized by its leisurely, meandering pattern of flying low to the earth.

The cover image is from Dover's Animals. The cover font is Adobe ITC Garamond. The text font is
Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.6. Comma

The comma operator can lead to excessively tricky expressions. It can also mask some programming
errors.

JSLint expects to see the comma used as a separator, but not as an operator (except in the
initialization and incrementation parts of the for statement). It does not expect to see elided elements
in array literals. Extra commas should not be used. A comma should not appear after the last element
of an array literal or object literal because it can be misinterpreted by some browsers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.18. Confusing Pluses and Minuses

JSLint expects that + will not be followed by + or ++, and that - will not be followed by - or --. A
misplaced space can turn + + into ++, an error that is difficult to see. Use parentheses to avoid
confusion.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5. Confusion

A common error in JavaScript programs is to use an object when an array is required or an array
when an object is required. The rule is simple: when the property names are small sequential integers,
you should use an array. Otherwise, use an object.

JavaScript itself is confused about the difference between arrays and objects. The typeof operator
reports that the type of an array is 'object', which isn't very helpful.

JavaScript does not have a good mechanism for distinguishing between arrays and objects. We can
work around that deficiency by defining our own is_array function:

var is_array = function (value) {
 return value &&
 typeof value === 'object' &&
 value.constructor === Array;
};

Unfortunately, it fails to identify arrays that were constructed in a different window or frame. If we
want to accurately detect those foreign arrays, we have to work a little harder:

var is_array = function (value) {
 return value &&
 typeof value === 'object' &&
 typeof value.length === 'number' &&
 typeof value.splice === 'function' &&
 !(value.propertyIsEnumerable('length'));
};

First, we ask if the value is truthy. We do this to reject null and other falsy values. Second, we ask if
the typeof value is 'object'. This will be true for objects, arrays, and (weirdly) null. Third, we ask
if the value has a length property that is a number. This will always be true for arrays, but usually
not for objects. Fourth, we ask if the value contains a splice method. This again will be true for all
arrays. Finally, we ask if the length property is enumerable (will length be produced by a for in
loop?). That will be false for all arrays. This is the most reliable test for arrayness that I have found.
It is unfortunate that it is so complicated.

Having such a test, it is possible to write functions that do one thing when passed a single value and
lots of things when passed an array of values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2. Construction

There are two ways to make a RegExp object. The preferred way, as we saw in the examples, is to use
a regular expression literal.

Regular expression literals are enclosed in slashes. This can be a little tricky because slash is also used
as the division operator and in comments.

There are three flags that can be set on a RegExp. They are indicated by the letters g, i, and m, as
listed in Table 7-1. The flags are appended directly to the end of the RegExp literal:

// Make a regular expression object that matches
// a JavaScript string.

var my_regexp = /"(?:\\.|[^\\\"])*"/g;

Table 7-1. Flags for regular expressions

Flag Meaning

g Global (match multiple times; the precise meaning of this varies with the method)

i Insensitive (ignore character case)

m Multiline (^ and $ can match line-ending characters)

The other way to make a regular expression is to use the RegExp constructor. The constructor takes a
string and compiles it into a RegExp object. Some care must be taken in building the string because
backslashes have a somewhat different meaning in regular expressions than in string literals. It is
usually necessary to double the backslashes and escape the quotes:

// Make a regular expression object that matches
// a JavaScript string.

var my_regexp =
 new RegExp("\"(?:\\.|[^\\\\\\\"])*\"", 'g');

The second parameter is a string specifying the flags. The RegExp constructor is useful when a regular
expression must be generated at runtime using material that is not available to the programmer.

RegExp objects contain the properties listed in Table 7-2.

Table 7-2. Properties of RegExp objects

Property Use

global true if the g flag was used.

ignoreCase true if the i flag was used.

lastIndex The index at which to start the next exec match. Initially it is zero.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multiline true if the m flag was used.

source The source text of the regular expression.

RegExp objects made by regular expression literals share a single instance:

function make_a_matcher() {
 return /a/gi;
}

var x = make_a_matcher();
var y = make_a_matcher();

// Beware: x and y are the same object!

x.lastIndex = 10;

document.writeln(y.lastIndex); // 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.24. Constructors and new

Constructors are functions that are designed to be used with the new prefix. The new prefix creates a
new object based on the function's prototype, and binds that object to the function's implied this
parameter. If you neglect to use the new prefix, no new object will be made, and this will be bound to
the global object. This is a serious mistake.

JSLint enforces the convention that constructor functions be given names with initial uppercase letters.
JSLint does not expect to see a function invocation with an initial uppercase name unless it has the
new prefix. JSLint does not expect to see the new prefix used with functions whose names do not start
with initial uppercase.

JSLint does not expect to see the wrapper forms new Number, new String, or new Boolean.

JSLint does not expect to see new Object (use {} instead).

JSLint does not expect to see new Array (use [] instead).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.4. continue Statement

The continue statement jumps to the top of the loop. I have never seen a piece of code that was not
improved by refactoring it to remove the continue statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.14. Curry

Functions are values, and we can manipulate function values in interesting ways. Currying allows us to
produce a new function by combining a function and an argument:

var add1 = add.curry(1);
document.writeln(add1(6)); // 7

add1 is a function that was created by passing 1 to add 's curry method. The add1 function adds 1 to
its argument. JavaScript does not have a curry method, but we can fix that by augmenting
Function.prototype:

Function.method('curry', function () {
 var args = arguments, that = this;
 return function () {
 return that.apply(null, args.concat(arguments));
 };
}); // Something isn't right...

The curry method works by creating a closure that holds that original function and the arguments to
curry. It returns a function that, when invoked, returns the result of calling that original function,
passing it all of the arguments from the invocation of curry and the current invocation. It uses the
Array concat method to concatenate the two arrays of arguments together.

Unfortunately, as we saw earlier, the arguments array is not an array, so it does not have the concat
method. To work around that, we will apply the array slice method on both of the arguments arrays.
This produces arrays that behave correctly with the concat method:

Function.method('curry', function () {
 var slice = Array.prototype.slice,
 args = slice.apply(arguments),
 that = this;
 return function () {
 return that.apply(null, args.concat(slice.apply(arguments)));
 };
});

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

debug option (JSLint)
deentityify method
delegation
delete operator 2nd
differential inheritance
do statement 2nd
Document Object Model (DOM)
durable object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dedication

For the Lads: Clement, Philbert, Seymore, Stern, and, lest we forget, C. Twildo.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3. Delete

Since JavaScript's arrays are really objects, the delete operator can be used to remove elements
from an array:

delete numbers[2];
// numbers is ['zero', 'one', undefined, 'shi', 'go']

Unfortunately, that leaves a hole in the array. This is because the elements to the right of the deleted
element retain their original names. What you usually want is to decrement the names of each of the
elements to the right.

Fortunately, JavaScript arrays have a splice method. It can do surgery on an array, deleting some
number of elements and replacing them with other elements. The first argument is an ordinal in the
array. The second argument is the number of elements to delete. Any additional arguments get
inserted into the array at that point:

numbers.splice(2, 1);
// numbers is ['zero', 'one', 'shi', 'go']

The property whose value is 'shi' has its key changed from '4' to '3'. Because every property after
the deleted property must be removed and reinserted with a new key, this might not go quickly for
large arrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.8. Delete

The delete operator can be used to remove a property from an object. It will remove a property from
the object if it has one. It will not touch any of the objects in the prototype linkage.

Removing a property from an object may allow a property from the prototype linkage to shine
through:

another_stooge.nickname // 'Moe'

// Remove nickname from another_stooge, revealing
// the nickname of the prototype.

delete another_stooge.nickname;

another_stooge.nickname // 'Curly'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.7. Dimensions

JavaScript arrays usually are not initialized. If you ask for a new array with [], it will be empty. If you
access a missing element, you will get the undefined value. If you are aware of that, or if you will
naturally set every element before you attempt to retrieve it, then all is well. But if you are
implementing algorithms that assume that every element starts with a known value (such as 0), then
you must prep the array yourself. JavaScript should have provided some form of an Array.dim
method to do this, but we can easily correct this oversight:

Array.dim = function (dimension, initial) {
 var a = [], i;
 for (i = 0; i < dimension; i += 1) {
 a[i] = initial;
 }
 return a;
}

// Make an array containing 10 zeros.

var myArray = Array.dim(10, 0);

JavaScript does not have arrays of more than one dimension, but like most C languages, it can have
arrays of arrays:

var matrix = [
 [0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]
];
matrix[2][1] // 7

To make a two-dimensional array or an array of arrays, you must build the arrays yourself:

for (i = 0; i < n; i += 1) {
 my_array[i] = [];
}

// Note: Array.dim(n, []) will not work here.
// Each element would get a reference to the same
// array, which would be very bad.

The cells of an empty matrix will initially have the value undefined. If you want them to have a
different initial value, you must explicitly set them. Again, JavaScript should have provided better
support for matrixes. We can correct that, too:

Code View:

Array.matrix = function (m, n, initial) {
 var a, i, j, mat = [];
 for (i = 0; i < m; i += 1) {
 a = [];
 for (j = 0; j < n; j += 1) {
 a[j] = 0;
 }
 mat[i] = a;
 }
 return mat;
}

// Make a 4 * 4 matrix filled with zeros.

var myMatrix = Array.matrix(4, 4, 0);

document.writeln(myMatrix[3][3]); // 0

// Method to make an identity matrix.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Method to make an identity matrix.

Array.identity = function (n) {
 var i, mat = Array.matrix(n, n, 0);
 for (i = 0; i < n; i += 1) {
 mat[i][i] = 1;
 }
 return mat;
}

myMatrix = Array.identity(4);

document.writeln(myMatrix[3][3]); // 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

ECMAScript Language Specification
empty string
enumeration
eqeqeq option (JSLint)
equality operators
escape character
escape sequences
eval function 2nd
 security problems
evil option (JSLint)
exceptions
executable statements
expression statements
expressions
 ? ternary operator
 built-in value
 infix operator
 invocation
 literal value
 operator precedence
 preceded by prefix operator
 refinement
 refinement expression preceded by delete
 variables
 wrapped in parentheses

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3. Elements

Let's look more closely at the elements that make up regular expressions.

7.3.1. Regexp Choice

A regexp choice contains one or more regexp sequences. The sequences are separated by the |
(vertical bar) character. The choice matches if any of the sequences match. It attempts to match each
of the sequences in order. So:

"into".match(/in|int/)

matches the in in into. It wouldn't match int because the match of in was successful.

7.3.2. Regexp Sequence

A regexp sequence contains one or more regexp factors. Each factor can optionally be followed by a
quantifier that determines how many times the factor is allowed to appear. If there is no quantifier,
then the factor will be matched one time.

7.3.3. Regexp Factor

A regexp factor can be a character, a parenthesized group, a character class, or an escape sequence.
All characters are treated literally except for the control characters and the special characters:

\ / [] () { } ? + * | . ^ $

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\ / [] () { } ? + * | . ^ $

which must be escaped with a \ prefix if they are to be matched literally. When in doubt, any special
character can be given a \ prefix to make it literal. The \ prefix does not make letters or digits literal.

An unescaped . matches any character except a line-ending character.

An unescaped ^ matches the beginning of the text when the lastIndex property is zero. It can also
match line-ending characters when the m flag is specified.

An unescaped $ matches the end of the text. It can also match line-ending characters when the m flag
is specified.

7.3.4. Regexp Escape

The backslash character indicates escapement in regexp factors as well as in strings, but in regexp
factors, it works a little differently.

As in strings, \f is the formfeed character, \n is the newline character, \r is the carriage return
character, \t is the tab character, and \u allows for specifying a Unicode character as a 16-bit hex
constant. In regexp factors, \b is not the backspace character.

\d is the same as [0-9]. It matches a digit. \D is the opposite: [^0-9].

\s is the same as [\f\n\r\t\u000B\u0020\u00A0\u2028\u2029]. This is a partial set of Unicode
whitespace characters. \S is the opposite: [^\f\n\r\t\u000B\u0020\u00A0\u2028\u2029].

\w is the same as [0-9A-Z_a-z]. \W is the opposite: [^0-9A-Z_a-z]. This is supposed to represent
the characters that appear in words. Unfortunately, the class it defines is useless for working with
virtually any real language. If you need to match a class of letters, you must specify your own class.

A simple letter class is [A-Za-z\u00C0-\u1FFF\u2800-\uFFFD]. It includes all of Unicode's letters, but
it also includes thousands of characters that are not letters. Unicode is large and complex. An exact
letter class of the Basic Multilingual Plane is possible, but would be huge and inefficient. JavaScript's
regular expressions provide extremely poor support for internationalization.

\b was intended to be a word-boundary anchor that would make it easier to match text on word
boundaries. Unfortunately, it uses \w to find word boundaries, so it is completely useless for
multilingual applications. This is not a good part.

\1 is a reference to the text that was captured by group 1 so that it can be matched again. For

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\1 is a reference to the text that was captured by group 1 so that it can be matched again. For
example, you could search text for duplicated words with:

var doubled_words =
 /[A-Za-z\u00C0-\u1FFF\u2800-\uFFFD'\-]+\s+\1/gi;

doubled_words looks for occurrences of words (strings containing 1 or more letters) followed by
whitespace followed by the same word.

\2 is a reference to group 2, \3 is a reference to group 3, and so on.

7.3.5. Regexp Group

There are four kinds of groups:

Capturing

A capturing group is a regexp choice wrapped in parentheses. The characters that match
the group will be captured. Every capture group is given a number. The first capturing (in
the regular expression is group 1. The second capturing (in the regular expression is
group 2.

Noncapturing

A noncapturing group has a (?: prefix. A noncapturing group simply matches; it does not
capture the matched text. This has the advantage of slight faster performance.
Noncapturing groups do not interfere with the numbering of capturing groups.

Positive lookahead

A positive lookahead group has a (?= prefix. It is like a noncapturing group except that
after the group matches, the text is rewound to where the group started, effectively
matching nothing. This is not a good part.

Negative lookahead

A negative lookahead group has a (?! prefix. It is like a positive lookahead group, except
that it matches only if it fails to match. This is not a good part.

7.3.6. Regexp Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3.6. Regexp Class

A regexp class is a convenient way of specifying one of a set of characters. For example, if we wanted
to match a vowel, we could write (?:a|e|i|o|u), but it is more conveniently written as the class
[aeiou].

Classes provide two other conveniences. The first is that ranges of characters can be specified. So, the
set of 32 ASCII special characters:

! " # $ % & ' () * +, - . / :
; < = > ? @ [\] ^ _ ` { | }

could be written as:

Code View:

(?:!|"|#|\$|%|&|'|\(|\)|*|\+|,|-|\.|\/|:|;|<|=|>|@|\[|\\|]|\^|_|` |\{|\||\}|)

but is slightly more nicely written as:

[!-\/:-@\[-`{-]

which includes the characters from ! through / and : through @ and [through ` and { through . It
is still pretty nasty looking.

The other convenience is the complementing of a class. If the first character after the [is ^, then the
class excludes the specified characters.

So [^!-\/:-@\[-`{-] matches any character that is not one of the ASCII special characters.

7.3.7. Regexp Class Escape

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The rules of escapement within a character class are slightly different than those for a regexp factor.
[\b] is the backspace character. Here are the special characters that should be escaped in a character
class:

- / [\] ^

7.3.8. Regexp Quantifier

A regexp factor may have a regexp quantifier suffix that determines how many times the factor should
match. A number wrapped in curly braces means that the factor should match that many times. So,
/www/ matches the same as /w{3}/. {3,6} will match 3, 4, 5, or 6 times. {3,} will match 3 or more
times.

? is the same as {0,1}. * is the same as {0,}. + is the same as {1,}.

Matching tends to be greedy, matching as many repetitions as possible up to the limit, if there is one.
If the quantifier has an extra ? suffix, then matching tends to be lazy, attempting to match as few
repetitions as possible. It is usually best to stick with the greedy matching.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4. Enumeration

Since JavaScript's arrays are really objects, the for in statement can be used to iterate over all of
the properties of an array. Unfortunately, for in makes no guarantee about the order of the
properties, and most array applications expect the elements to be produced in numerical order. Also,
there is still the problem with unexpected properties being dredged up from the prototype chain.

Fortunately, the conventional for statement avoids these problems. JavaScript's for statement is
similar to that in most C-like languages. It is controlled by three clauses—the first initializes the loop,
the second is the while condition, and the third does the increment:

var i;
for (i = 0; i < myArray.length; i += 1) {
 document.writeln(myArray[i]);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.7. Enumeration

The for in statement can loop over all of the property names in an object. The enumeration will
include all of the properties—including functions and prototype properties that you might not be
interested in—so it is necessary to filter out the values you don't want. The most common filters are
the hasOwnProperty method and using typeof to exclude functions:

var name;
for (name in another_stooge) {
 if (typeof another_stooge[name] !== 'function') {
 document.writeln(name + ': ' + another_stooge[name]);
 }
}

There is no guarantee on the order of the names, so be prepared for the names to appear in any
order. If you want to assure that the properties appear in a particular order, it is best to avoid the for
in statement entirely and instead make an array containing the names of the properties in the correct
order:

var i;
var properties = [
 'first-name',
 'middle-name',
 'last-name',
 'profession'
];
for (i = 0; i < properties.length; i += 1) {
 document.writeln(properties[i] + ': ' +
 another_stooge[properties[i]]);
 }
}

By using for instead of for in, we were able to get the properties we wanted without worrying about
what might be dredged up from the prototype chain, and we got them in the correct order.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.14. =

JSLint does not expect to see an assignment statement in the condition part of an if or while
statement. This is because it is more likely that:

if (a = b) {
 ...
}

was intended to be:

if (a == b) {
 ...
}

If you really intend an assignment, wrap it in another set of parentheses:

if ((a = b)) {
 ...
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B. Bad Parts
And, I pray thee now, tell me for which of my bad parts didst thou first fall in love with
me?

—William Shakespeare, Much Ado About Nothing

In this appendix, I present some of the problematic features of JavaScript that are easily avoided. By
simply avoiding these features, you make JavaScript a better language, and yourself a better
programmer.

B.1. ==

JavaScript has two sets of equality operators: === and !==, and their evil twins == and !=. The good
ones work the way you would expect. If the two operands are of the same type and have the same
value, then === produces true and !== produces false. The evil twins do the right thing when the
operands are of the same type, but if they are of different types, they attempt to coerce the values.
The rules by which they do that are complicated and unmemorable. These are some of the interesting
cases:

'' == '0' // false
0 == '' // true
0 == '0' // true

false == 'false' // false
false == '0' // true

false == undefined // false
false == null // false
null == undefined // true

' \t\r\n ' == 0 // true

The lack of transitivity is alarming. My advice is to never use the evil twins. Instead, always use ===
and !==. All of the comparisons just shown produce false with the === operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.15. == and !=

The == and != operators do type coercion before comparing. This is bad because it causes ' \f\r
\n\t ' == 0 to be true. This can mask type errors.

When comparing to any of the following values, always use the === or !== operators, which do not do
type coercion:

0 '' undefined null false true

If you want the type coercion, then use the short form. Instead of:

(foo != 0)

just say:

(foo)

And instead of:

(foo == 0)

say:

(!foo)

Use of the === and !== operators is always preferred. There is a "Disallow == and != " (eqeqeq)
option, which requires the use of === and !== in all cases.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.3. eval

The eval function passes a string to the JavaScript compiler and executes the result. It is the single
most misused feature of JavaScript. It is most commonly used by people who have an incomplete
understanding of the language. For example, if you know about the dot notation, but are ignorant of
the subscript notation, you might write:

eval("myValue = myObject." + myKey + ";");

instead of:

myvalue = myObject[myKey];

The eval form is much harder to read. This form will be significantly slower because it needs to run
the compiler just to execute a trivial assignment statement. It also frustrates JSLint (see Appendix C),
so the tool's ability to detect problems is significantly reduced.

The eval function also compromises the security of your application because it grants too much
authority to the eval'd text. And it compromises the performance of the language as a whole in the
same way that the with statement does.

The Function constructor is another form of eval, and should similarly be avoided.

The browser provides setTimeout and setInterval functions that can take string arguments or
function arguments. When given string arguments, setTimeout and setInterval act as eval. The
string argument form also should be avoided.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.21. eval Is Evil

The eval function and its relatives (Function, setTimeout, and setInterval) provide access to the
JavaScript compiler. This is sometimes useful, but in most cases it indicates the presence of extremely
bad coding. The eval function is the most misused feature of JavaScript.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.6. Exceptions

JavaScript provides an exception handling mechanism. Exceptions are unusual (but not completely
unexpected) mishaps that interfere with the normal flow of a program. When such a mishap is
detected, your program should throw an exception:

var add = function (a, b) {
 if (typeof a !== 'number' || typeof b !== 'number') {
 throw {
 name: 'TypeError',
 message: 'add needs numbers'
 }
 }
 return a + b;
}

The throw statement interrupts execution of the function. It should be given an exception object
containing a name property that identifies the type of the exception, and a descriptive message
property. You can also add other properties.

The exception object will be delivered to the catch clause of a try statement:

// Make a try_it function that calls the new add
// function incorrectly.

var try_it = function () {
 try {
 add("seven");
 } catch (e) {
 document.writeln(e.name + ': ' + e.message);
 }
}

tryIt();

If an exception is thrown within a try block, control will go to its catch clause.

A try statement has a single catch block that will catch all exceptions. If your handling depends on
the type of the exception, then the exception handler will have to inspect the name to determine the
type of the exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.6. Expressions

The simplest expressions are a literal value (such as a string or number), a variable, a built-in value
(true, false, null, undefined, NaN, or Infinity), an invocation expression preceded by new, a
refinement expression preceded by delete, an expression wrapped in parentheses, an expression
preceded by a prefix operator, or an expression followed by:

An infix operator and another expression

The ? ternary operator followed by another expression, then by :, and then by yet another
expression

An invocation

A refinement

The ? ternary operator takes three operands. If the first operand is truthy, it produces the value of the
second operand. But if the first operand is falsy, it produces the value of the third operand.

The operators at the top of the operator precedence list in Table 2-1 have higher precedence. They
bind the tightest. The operators at the bottom have the lowest precedence. Parentheses can be used
to alter the normal precedence, so:

2 + 3 * 5 === 17
(2 + 3) * 5 === 25

Table 2-1. Operator precedence
. [] () Refinement and invocation

delete new typeof + - ! Unary operators

* / % Multiplication, division, modulo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

+ - Addition/concatenation, subtraction

>= <= > < Inequality

=== !== Equality

&& Logical and

|| Logical or

?: Ternary

The values produced by typeof are 'number', 'string', 'boolean', 'undefined', 'function', and
'object'. If the operand is an array or null, then the result is 'object', which is wrong. There will
be more about typeof in Chapter 6 and Appendix A.

If the operand of ! is truthy, it produces false. Otherwise, it produces true.

The + operator adds or concatenates. If you want it to add, make sure both operands are numbers.

The / operator can produce a noninteger result even if both operands are integers.

The && operator produces the value of its first operand if the first operand is falsy. Otherwise, it
produces the value of the second operand.

The || operator produces the value of its first operand if the first operand is truthy. Otherwise, it
produces the value of the second operand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

produces the value of the second operand.

Invocation causes the execution of a function value. The invocation operator is a pair of parentheses
that follow the function value. The parentheses can contain arguments that will be delivered to the
function. There will be much more about functions in Chapter 4.

A refinement is used to specify a property or element of an object or array. This will be described in
detail in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.9. Expression Statements

An expression statement is expected to be an assignment, a function/method call, or delete. All other
expression statements are considered errors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

factorial 2nd
Fibonacci numbers
floating-point numbers
for in statement 2nd
 objects
for statements 2nd 3rd
forin option (JSLint)
fragment option (JSLint)
Function constructor 2nd
function invocation
Function Invocation Pattern
function object, when object is created
function statement versus function expression
function.apply() method
functional pattern (inheritance)
functions 2nd 3rd
 arguments
 augmenting types
 callbacks
 cascades
 closure
 curry method
 exceptions
 general pattern of a module
 invocation
 Apply Invocation Pattern
 Constructor Invocation Pattern
 Function Invocation Pattern
 Method Invocation Pattern
 new prefix
 invocation operator
 invoked with constructor invocation
 literals
 memoization
 modules
 objects
 recursive
 Document Object Model (DOM)
 Fibonacci numbers
 tail recursion optimization
 Towers of Hanoi puzzle
 return statement
 scope
 that produce objects
 var statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.12. Falsy Values

JavaScript has a surprisingly large set of falsy values, shown in See Table A-1.

Table A-1. The many falsy values of JavaScript

Value Type

0 Number

NaN (not a number) Number

'' (empty string) String

false Boolean

null Object

undefined Undefined

These values are all falsy, but they are not interchangeable. For example, this is the wrong way to
determine if an object is missing a member:

value = myObject[name];
if (value == null) {
 alert(name + ' not found.');
}

undefined is the value of missing members, but the snippet is testing for null. It is using the ==
operator (see Appendix B), which does type coercion, instead of the more reliable === operator.
Sometimes those two errors cancel each other out. Sometimes they don't.

undefined and NaN are not constants. They are global variables, and you can change their values.
That should not be possible, and yet it is. Don't do it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.9. Floating Point

Binary floating-point numbers are inept at handling decimal fractions, so 0.1 + 0.2 is not equal to 0.3.
This is the most frequently reported bug in JavaScript, and it is an intentional consequence of having
adopted the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754). This standard is well-
suited for many applications, but it violates most of the things you learned about numbers in middle
school. Fortunately, integer arithmetic in floating point is exact, so decimal representation errors can
be avoided by scaling.

For example, dollar values can be converted to whole cents values by multiplying them by 100. The
cents then can be accurately added. The sum can be divided by 100 to convert back into dollars.
People have a reasonable expectation when they count money that the results will be exact.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.8. Forbidden Blocks

In many languages, a block introduces a scope. Variables introduced in a block are not visible outside
of the block.

In JavaScript, blocks do not introduce a scope. There is only function-scope. A variable introduced
anywhere in a function is visible everywhere in the function. JavaScript's blocks confuse experienced
programmers and lead to errors because the familiar syntax makes a false promise.

JSLint expects blocks with function, if, switch, while, for, do, and try statements and nowhere
else. An exception is made for an unblocked if statement on an else or for in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.10. for in Statement

The for in statement allows for looping through the names of all of the properties of an object.
Unfortunately, it also loops through all of the members that were inherited through the prototype
chain. This has the bad side effect of serving up method functions when the interest is in the data
members.

The body of every for in statement should be wrapped in an if statement that does filtering. if can
select for a particular type or range of values, it can exclude functions, or it can exclude properties
from the prototype. For example:

for (name in object) {
 if (object.hasOwnProperty(name)) {

 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4. Functional

One weakness of the inheritance patterns we have seen so far is that we get no privacy. All properties
of an object are visible. We get no private variables and no private methods. Sometimes that doesn't
matter, but sometimes it matters a lot. In frustration, some uninformed programmers have adopted a
pattern of pretend privacy. If they have a property that they wish to make private, they give it an
odd-looking name, with the hope that other users of the code will pretend that they cannot see the
odd looking members. Fortunately, we have a much better alternative in an application of the module
pattern.

We start by making a function that will produce objects. We will give it a name that starts with a
lowercase letter because it will not require the use of the new prefix. The function contains four steps:

1. It creates a new object. There are lots of ways to make an object. It can make an object
literal, or it can call a constructor function with the new prefix, or it can use the
Object.beget method to make a new instance from an existing object, or it can call any
function that returns an object.

2. It optionally defines private instance variables and methods. These are just ordinary vars
of the function.

3. It augments that new object with methods. Those methods will have privileged access to
the parameters and the vars defined in the second step.

4. It returns that new object.

Here is a pseudocode template for a functional constructor (boldface text added for emphasis):

var constructor = function (spec, my) {
 var that, other private instance variables;
 my = my || {};

 Add shared variables and functions to my
 that = a new object;
 Add privileged methods to that
 return that;
}

The spec object contains all of the information that the constructor needs to make an instance. The
contents of the spec could be copied into private variables or transformed by other functions. Or the
methods can access information from spec as they need it. (A simplification is to replace spec with a
single value. This is useful when the object being constructed does not need a whole spec object.)

The my object is a container of secrets that are shared by the constructors in the inheritance chain.
The use of the my object is optional. If a my object is not passed in, then a my object is made.

Next, declare the private instance variables and private methods for the object. This is done by simply
declaring variables. The variables and inner functions of the constructor become the private members
of the instance. The inner functions have access to spec and my and that and the private variables.

Next, add the shared secrets to the my object. This is done by assignment:

my.member = value;

Now, we make a new object and assign it to that. There are lots of ways to make a new object. We
can use an object literal. We can call a pseudoclassical constructor with the new operator. We can use
the Object.beget method on a prototype object. Or, we can call another functional constructor,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Object.beget method on a prototype object. Or, we can call another functional constructor,
passing it a spec object (possibly the same spec object that was passed to this constructor) and the
my object. The my object allows the other constructor to share the material that we put into my. The
other constructor may also put its own shared secrets into my so that our constructor can take
advantage of it.

Next, we augment that, adding the privileged methods that make up the object's interface. We can
assign new functions to members of that. Or, more securely, we can define the functions first as
private methods, and then assign them to that:

var methodical = function () {
 ...
};
that.methodical = methodical;

The advantage to defining methodical in two steps is that if other methods want to call methodical,
they can call methodical() instead of that.methodical(). If the instance is damaged or tampered
with so that that.methodical is replaced, the methods that call methodical will continue to work the
same because their private methodical is not affected by modification of the instance.

Finally, we return that.

Let's apply this pattern to our mammal example. We don't need my here, so we'll just leave it out, but
we will use a spec object.

The name and saying properties are now completely private. They are accessible only via the
privileged get_name and says methods:

var mammal = function (spec) {
 var that = {};

 that.get_name = function () {
 return spec.name;
 };

 that.says = function () {
 return spec.saying || '';
 };

 return that;
};

var myMammal = mammal({name: 'Herb'});

In the pseudoclassical pattern, the Cat constructor function had to duplicate work that was done by
the Mammal constructor. That isn't necessary in the functional pattern because the Cat constructor will
call the Mammal constructor, letting Mammal do most of the work of object creation, so Cat only has to
concern itself with the differences:

var cat = function (spec) {
 spec.saying = spec.saying || 'meow';
 var that = mammal(spec);
 that.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
 };
 that.get_name = function () {
 return that.says() + ' ' + spec.name +
 ' ' + that.says();
 return that;
};

var myCat = cat({name: 'Henrietta'});

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var myCat = cat({name: 'Henrietta'});

The functional pattern also gives us a way to deal with super methods. We will make a superior
method that takes a method name and returns a function that invokes that method. The function will
invoke the original method even if the property is changed:

Object.method('superior', function (name) {
 var that = this,
 method = that[name];
 return function () {
 return method.apply(that, arguments);
 };
});

Let's try it out on a coolcat that is just like cat except it has a cooler get_name method that calls the
super method. It requires just a little bit of preparation. We will declare a super_get_name variable
and assign it the result of invoking the superior method:

var coolcat = function (spec) {
 var that = cat(spec),
 super_get_name = that.superior('get_name');
 that.get_name = function (n) {
 return 'like ' + super_get_name() + ' baby';
 };
 return that;
};

var myCoolCat = coolcat({name: 'Bix'});
var name = myCoolCat.get_name();
// 'like meow Bix meow baby'

The functional pattern has a great deal of flexibility. It requires less effort than the pseudoclassical
pattern, and gives us better encapsulation and information hiding and access to super methods.

If all of the state of an object is private, then the object is tamper-proof. Properties of the object can
be replaced or deleted, but the integrity of the object is not compromised. If we create an object in
the functional style, and if all of the methods of the object make no use of this or that, then the
object is durable. A durable object is simply a collection of functions that act as capabilities.

A durable object cannot be compromised. Access to a durable object does not give an attacker the
ability to access the internal state of the object except as permitted by the methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.8. Functions

A function literal defines a function value. It can have an optional name that it can use to call itself
recursively. It can specify a list of parameters that will act as variables initialized by the invocation
arguments. The body of the function includes variable definitions and statements. There will be more
about functions in Chapter 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Functions
Why, every fault's condemn'd ere it be done: Mine were the very cipher of a function. . .

—William Shakespeare, Measure for Measure

The best thing about JavaScript is its implementation of functions. It got almost everything right. But,
as you should expect with JavaScript, it didn't get everything right.

A function encloses a set of statements. Functions are the fundamental modular unit of JavaScript.
They are used for code reuse, information hiding, and composition. Functions are used to specify the
behavior of objects. Generally, the craft of programming is the factoring of a set of requirements into
a set of functions and data structures.

4.1. Function Objects

Functions in JavaScript are objects. Objects are collections of name/value pairs having a hidden link to
a prototype object. Objects produced from object literals are linked to Object.prototype. Function
objects are linked to Function.prototype (which is itself linked to Object.prototype). Every
function is also created with two additional hidden properties: the function's context and the code that
implements the function's behavior.

Every function object is also created with a prototype property. Its value is an object with a
constructor property whose value is the function. This is distinct from the hidden link to
Function.prototype. The meaning of this convoluted construction will be revealed in the next
chapter.

Since functions are objects, they can be used like any other value. Functions can be stored in
variables, objects, and arrays. Functions can be passed as arguments to functions, and functions can
be returned from functions. Also, since functions are objects, functions can have methods.

The thing that is special about functions is that they can be invoked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2. Function Literal

Function objects are created with function literals:

// Create a variable called add and store a function
// in it that adds two numbers.

var add = function (a, b) {
 return a + b;
};

A function literal has four parts. The first part is the reserved word function.

The optional second part is the function's name. The function can use its name to call itself recursively.
The name can also be used by debuggers and development tools to identify the function. If a function
is not given a name, as shown in the previous example, it is said to be anonymous.

The third part is the set of parameters of the function, wrapped in parentheses. Within the
parentheses is a set of zero or more parameter names, separated by commas. These names will be
defined as variables in the function. Unlike ordinary variables, instead of being initialized to
undefined, they will be initialized to the arguments supplied when the function is invoked.

The fourth part is a set of statements wrapped in curly braces. These statements are the body of the
function. They are executed when the function is invoked.

A function literal can appear anywhere that an expression can appear. Functions can be defined inside
of other functions. An inner function of course has access to its parameters and variables. An inner
function also enjoys access to the parameters and variables of the functions it is nested within. The
function object created by a function literal contains a link to that outer context. This is called closure.
This is the source of enormous expressive power.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Functions
Why, every fault's condemn'd ere it be done: Mine were the very cipher of a function. . .

—William Shakespeare, Measure for Measure

The best thing about JavaScript is its implementation of functions. It got almost everything right. But,
as you should expect with JavaScript, it didn't get everything right.

A function encloses a set of statements. Functions are the fundamental modular unit of JavaScript.
They are used for code reuse, information hiding, and composition. Functions are used to specify the
behavior of objects. Generally, the craft of programming is the factoring of a set of requirements into
a set of functions and data structures.

4.1. Function Objects

Functions in JavaScript are objects. Objects are collections of name/value pairs having a hidden link to
a prototype object. Objects produced from object literals are linked to Object.prototype. Function
objects are linked to Function.prototype (which is itself linked to Object.prototype). Every
function is also created with two additional hidden properties: the function's context and the code that
implements the function's behavior.

Every function object is also created with a prototype property. Its value is an object with a
constructor property whose value is the function. This is distinct from the hidden link to
Function.prototype. The meaning of this convoluted construction will be revealed in the next
chapter.

Since functions are objects, they can be used like any other value. Functions can be stored in
variables, objects, and arrays. Functions can be passed as arguments to functions, and functions can
be returned from functions. Also, since functions are objects, functions can have methods.

The thing that is special about functions is that they can be invoked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

global declarations
global object
global variables 2nd 3rd 4th
glovar option (JSLint)
good style
grammar
 functions
 literals
 names
 numbers
 methods
 negative
 object literals
 rules for interpreting diagrams
 strings
 immutability
 length property
 whitespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.9. Global Abatement

JavaScript makes it easy to define global variables that can hold all of the assets of your application.
Unfortunately, global variables weaken the resiliency of programs and should be avoided.

One way to minimize the use of global variables is to create a single global variable for your
application:

var MYAPP = {};

That variable then becomes the container for your application:

MYAPP.stooge = {
 "first-name": "Joe",
 "last-name": "Howard"
};

MYAPP.flight = {
 airline: "Oceanic",
 number: 815,
 departure: {
 IATA: "SYD",
 time: "2004-09-22 14:55",
 city: "Sydney"
 },
 arrival: {
 IATA: "LAX",
 time: "2004-09-23 10:42",
 city: "Los Angeles"
 }
};

By reducing your global footprint to a single name, you significantly reduce the chance of bad
interactions with other applications, widgets, or libraries. Your program also becomes easier to read
because it is obvious that MYAPP.stooge refers to a top-level structure. In the next chapter, we will
see ways to use closure for information hiding, which is another effective global abatement technique.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. Awful Parts
That will prove awful both in deed and word.

—William Shakespeare, Pericles, Prince of Tyre

In this chapter, I present the problematic features of JavaScript that are not easily avoided. You must
be aware of these things and be prepared to cope.

A.1. Global Variables

The worst of all of JavaScript's bad features is its dependence on global variables. A global variable is
a variable that is visible in every scope. Global variables can be a convenience in very small programs,
but they quickly become unwieldy as programs get larger. Because a global variable can be changed
by any part of the program at any time, they can significantly complicate the behavior of the program.
Use of global variables degrades the reliability of the programs that use them.

Global variables make it harder to run independent subprograms in the same program. If the
subprograms happen to have global variables that share the same names, then they will interfere with
each other and likely fail, usually in difficult to diagnose ways.

Lots of languages have global variables. For example, Java's public static members are global
variables. The problem with JavaScript isn't just that it allows them, it requires them. JavaScript does
not have a linker. All compilation units are loaded into a common global object.

There are three ways to define global variables. The first is to place a var statement outside of any
function:

var foo = value;

The second is to add a property directly to the global object. The global object is the container of all
global variables. In web browsers, the global object goes by the name window:

window.foo = value;

The third is to use a variable without declaring it. This is called implied global:

foo = value;

This was intended as a convenience to beginners by making it unnecessary to declare variables before
using them. Unfortunately, forgetting to declare a variable is a very common mistake. JavaScript's
policy of making forgotten variables global creates bugs that can be very difficult to find.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Good Parts
...setting the attractions of my good parts aside I have no other charms.

—William Shakespeare, The Merry Wives of Windsor

When I was a young journeyman programmer, I would learn about every feature of the languages I
was using, and I would attempt to use all of those features when I wrote. I suppose it was a way of
showing off, and I suppose it worked because I was the guy you went to if you wanted to know how to
use a particular feature.

Eventually I figured out that some of those features were more trouble than they were worth. Some of
them were poorly specified, and so were more likely to cause portability problems. Some resulted in
code that was difficult to read or modify. Some induced me to write in a manner that was too tricky
and error-prone. And some of those features were design errors. Sometimes language designers make
mistakes.

Most programming languages contain good parts and bad parts. I discovered that I could be a better
programmer by using only the good parts and avoiding the bad parts. After all, how can you build
something good out of bad parts?

It is rarely possible for standards committees to remove imperfections from a language because doing
so would cause the breakage of all of the bad programs that depend on those bad parts. They are
usually powerless to do anything except heap more features on top of the existing pile of
imperfections. And the new features do not always interact harmoniously, thus producing more bad
parts.

But you have the power to define your own subset. You can write better programs by relying
exclusively on the good parts.

JavaScript is a language with more than its share of bad parts. It went from non-existence to global
adoption in an alarmingly short period of time. It never had an interval in the lab when it could be
tried out and polished. It went straight into Netscape Navigator 2 just as it was, and it was very
rough. When Java™ applets failed, JavaScript became the "Language of the Web" by default.
JavaScript's popularity is almost completely independent of its qualities as a programming language.

Fortunately, JavaScript has some extraordinarily good parts. In JavaScript, there is a beautiful,
elegant, highly expressive language that is buried under a steaming pile of good intentions and
blunders. The best nature of JavaScript is so effectively hidden that for many years the prevailing
opinion of JavaScript was that it was an unsightly, incompetent toy. My intention here is to expose the
goodness in JavaScript, an outstanding, dynamic programming language. JavaScript is a block of
marble, and I chip away the features that are not beautiful until the language's true nature reveals
itself. I believe that the elegant subset I carved out is vastly superior to the language as a whole,
being more reliable, readable, and maintainable.

This book will not attempt to fully describe the language. Instead, it will focus on the good parts with
occasional warnings to avoid the bad. The subset that will be described here can be used to construct
reliable, readable programs small and large. By focusing on just the good parts, we can reduce
learning time, increase robustness, and save some trees.

Perhaps the greatest benefit of studying the good parts is that you can avoid the need to unlearn the
bad parts. Unlearning bad patterns is very difficult. It is a painful task that most of us face with
extreme reluctance. Sometimes languages are subsetted to make them work better for students. But
in this case, I am subsetting JavaScript to make it work better for professionals.

1.1. Why JavaScript?

JavaScript is an important language because it is the language of the web browser. Its association
with the browser makes it one of the most popular programming languages in the world. At the same
time, it is one of the most despised programming languages in the world. The API of the browser, the
Document Object Model (DOM) is quite awful, and JavaScript is unfairly blamed. The DOM would be
painful to work with in any language. The DOM is poorly specified and inconsistently implemented. This
book touches only very lightly on the DOM. I think writing a Good Parts book about the DOM would be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

book touches only very lightly on the DOM. I think writing a Good Parts book about the DOM would be
extremely challenging.

JavaScript is most despised because it isn't SOME OTHER LANGUAGE. If you are good in SOME OTHER
LANGUAGE and you have to program in an environment that only supports JavaScript, then you are
forced to use JavaScript, and that is annoying. Most people in that situation don't even bother to learn
JavaScript first, and then they are surprised when JavaScript turns out to have significant differences
from the SOME OTHER LANGUAGE they would rather be using, and that those differences matter.

The amazing thing about JavaScript is that it is possible to get work done with it without knowing
much about the language, or even knowing much about programming. It is a language with enormous
expressive power. It is even better when you know what you're doing. Programming is difficult
business. It should never be undertaken in ignorance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Grammar
I know it well: I read it in the grammar long ago.

—William Shakespeare, The Tragedy of Titus Andronicus

This chapter introduces the grammar of the good parts of JavaScript, presenting a quick overview of
how the language is structured. We will represent the grammar with railroad diagrams.

The rules for interpreting these diagrams are simple:

You start on the left edge and follow the tracks to the right edge.

As you go, you will encounter literals in ovals, and rules or descriptions in rectangles.

Any sequence that can be made by following the tracks is legal.

Any sequence that cannot be made by following the tracks is not legal.

Railroad diagrams with one bar at each end allow whitespace to be inserted between any pair of
tokens. Railroad diagrams with two bars at each end do not.

The grammar of the good parts presented in this chapter is significantly simpler than the grammar of
the whole language.

2.1. Whitespace

Whitespace can take the form of formatting characters or comments. Whitespace is usually
insignificant, but it is occasionally necessary to use whitespace to separate sequences of characters
that would otherwise be combined into a single token. For example, in:

var that = this;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the space between var and that cannot be removed, but the other spaces can be removed.

JavaScript offers two forms of comments, block comments formed with /* */ and line-ending
comments starting with //. Comments should be used liberally to improve the readability of your
programs. Take care that the comments always accurately describe the code. Obsolete comments are
worse than no comments.

The /* */ form of block comments came from a language called PL/I. PL/I chose those strange pairs
as the symbols for comments because they were unlikely to occur in that language's programs, except
perhaps in string literals. In JavaScript, those pairs can also occur in regular expression literals, so
block comments are not safe for commenting out blocks of code. For example:

/*
 var rm_a = /a*/.match(s);
*/

causes a syntax error. So, it is recommended that /* */ comments be avoided and // comments be
used instead. In this book, // will be used exclusively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

hasOwnProperty method 2nd 3rd
HTML
 <script> tags (JSON)
 innerHTML property
 JSLint

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.13. hasOwnProperty

In Chapter 3, the hasOwnProperty method was offered as a filter to work around a problem with the
for in statement. Unfortunately, hasOwnProperty is a method, not an operator, so in any object it
could be replaced with a different function or even a value that is not a function:

var name;
another_stooge.hasOwnProperty = null; // trouble
for (name in another_stooge) {
 if (another_stooge.hasOwnProperty(name)) { // boom
 document.writeln(name + ': ' + another_stooge[name]);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.26. HTML

JSLint is able to handle HTML text. It can inspect the JavaScript content contained within <script>...
</script> tags and event handlers. It also inspects the HTML content, looking for problems that are
known to interfere with JavaScript:

All tag names must be in lowercase.

All tags that can take a close tag (such as </p>) must have a close tag.

All tags are correctly nested.

The entity < must be used for literal <.

JSLint is less anal than the sycophantic conformity demanded by XHTML, but more strict than the
popular browsers.

JSLint also checks for the occurrence of </ in string literals. You should always write <\/ instead. The
extra backslash is ignored by the JavaScript compiler, but not by the HTML parser. Tricks like this
should not be necessary, and yet they are.

There is an option that allows use of uppercase tag names. There is also an option that allows the use
of inline HTML event handlers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

if statements 2nd
implied global
Infinity 2nd 3rd
inheritance 2nd
 differential
 functional pattern
 object specifiers
 parts
 prototypal pattern (inheritance)
 pseudoclassical pattern 2nd
inherits method
innerHTML property
instances, creating
invocation operator 2nd
invocations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Inheritance
Divides one thing entire to many objects; Like perspectives, which rightly gazed upon
Show nothing but confusion. . .

—William Shakespeare, The Tragedy of King Richard the Second

Inheritance is an important topic in most programming languages.

In the classical languages (such as Java), inheritance (or extends) provides two useful services. First,
it is a form of code reuse. If a new class is mostly similar to an existing class, you only have to specify
the differences. Patterns of code reuse are extremely important because they have the potential to
significantly reduce the cost of software development. The other benefit of classical inheritance is that
it includes the specification of a system of types. This mostly frees the programmer from having to
write explicit casting operations, which is a very good thing because when casting, the safety benefits
of a type system are lost.

JavaScript, being a loosely typed language, never casts. The lineage of an object is irrelevant. What
matters about an object is what it can do, not what it is descended from.

JavaScript provides a much richer set of code reuse patterns. It can ape the classical pattern, but it
also supports other patterns that are more expressive. The set of possible inheritance patterns in
JavaScript is vast. In this chapter, we'll look at a few of the most straightforward patterns. Much more
complicated constructions are possible, but it is usually best to keep it simple.

In classical languages, objects are instances of classes, and a class can inherit from another class.
JavaScript is a prototypal language, which means that objects inherit directly from other objects.

5.1. Pseudoclassical

JavaScript is conflicted about its prototypal nature. Its prototype mechanism is obscured by some
complicated syntactic business that looks vaguely classical. Instead of having objects inherit directly
from other objects, an unnecessary level of indirection is inserted such that objects are produced by
constructor functions.

When a function object is created, the Function constructor that produces the function object runs
some code like this:

this.prototype = {constructor: this};

The new function object is given a prototype property whose value is an object containing a
constructor property whose value is the new function object. The prototype object is the place
where inherited traits are to be deposited. Every function gets a prototype object because the
language does not provide a way of determining which functions are intended to be used as
constructors. The constructor property is not useful. It is the prototype object that is important.

When a function is invoked with the constructor invocation pattern using the new prefix, this modifies
the way in which the function is executed. If the new operator were a method instead of an operator, it
could have been implemented like this:

Function.method('new', function () {

// Create a new object that inherits from the
// constructor's prototype.

 var that = Object.beget(this.prototype)

// Invoke the constructor, binding -this- to
// the new object.

 var other = this.apply(that, arguments);

// If its return value isn't an object,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// If its return value isn't an object,
// substitute the new object.

 return (typeof other === 'object' && other) || that;
});

We can define a constructor and augment its prototype:

var Mammal = function (name) {
 this.name = name;
};

Mammal.prototype.get_name = function () {
 return this.name;
};

Mammal.prototype.says = function () {
 return this.saying || '';
};

Now, we can make an instance:

var myMammal = new Mammal('Herb the Mammal');
var name = myMammal.get_name(); // 'Herb the Mammal'

We can make another pseudoclass that inherits from Mammal by defining its constructor function and
replacing its prototype with an instance of Mammal:

Code View:

var Cat = function (name) {
 this.name = name;
 this.saying = 'meow';
};

// Replace Cat.prototype with a new instance of Mammal

Cat.prototype = new Mammal();

// Augment the new prototype with
// purr and get_name methods.

Cat.prototype.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
};
Cat.prototype.get_name = function () {
 return this.says() + ' ' + this.name +
 ' ' + this.says();
};

var myCat = new Cat('Henrietta');
var says = myCat.says(); // 'meow'
var purr = myCat.purr(5); // 'r-r-r-r-r'
var name = myCat.get_name();
// 'meow Henrietta meow'

The pseudoclassical pattern was intended to look sort of object-oriented, but it is looking quite alien.
We can hide some of the ugliness by using the method method and defining an inherits method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We can hide some of the ugliness by using the method method and defining an inherits method:

Function.method('inherits', function (Parent) {
 this.prototype = new Parent();
 return this;
});

Our inherits and method methods return this, allowing us to program in a cascade style. We can
now make our Cat with one statement.

var Cat = function (name) {
 this.name = name;
 this.saying = 'meow';
}.
 inherits(Mammal).
 method('purr', function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
 }).
 method('get_name', function () {
 return this.says() + ' ' + this.name +
 ' ' + this.says();
 });

By hiding the prototype jazz, it now looks a bit less alien. But have we really improved anything? We
now have constructor functions that act like classes, but at the edges, there may be surprising
behavior. There is no privacy; all properties are public. There is no access to super methods.

Even worse, there is a serious hazard with the use of constructor functions. If you forget to include the
new prefix when calling a constructor function, then this will not be bound to a new object. Sadly,
this will be bound to the global object, so instead of augmenting your new object, you will be
clobbering global variables. That is really bad. There is no compile warning, and there is no runtime
warning.

This is a serious design error in the language. To mitigate this problem, there is a convention that all
constructor functions are named with an initial capital, and that nothing else is spelled with an initial
capital. This gives us a prayer that visual inspection can find a missing new. A much better alternative
is to not use new at all.

The pseudoclassical form can provide comfort to programmers who are unfamiliar with JavaScript, but
it also hides the true nature of the language. The classically inspired notation can induce programmers
to compose hierarchies that are unnecessarily deep and complicated. Much of the complexity of class
hierarchies is motivated by the constraints of static type checking. JavaScript is completely free of
those constraints. In classical languages, class inheritance is the only form of code reuse. JavaScript
has more and better options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3. Invocation

Invoking a function suspends the execution of the current function, passing control and parameters to
the new function. In addition to the declared parameters, every function receives two additional
parameters: this and arguments. The this parameter is very important in object oriented
programming, and its value is determined by the invocation pattern. There are four patterns of
invocation in JavaScript: the method invocation pattern, the function invocation pattern, the
constructor invocation pattern, and the apply invocation pattern. The patterns differ in how the bonus
parameter this is initialized.

The invocation operator is a pair of parentheses that follow any expression that produces a function
value. The parentheses can contain zero or more expressions, separated by commas. Each expression
produces one argument value. Each of the argument values will be assigned to the function's
parameter names. There is no runtime error when the number of arguments and the number of
parameters do not match. If there are too many argument values, the extra argument values will be
ignored. If there are too few argument values, the undefined value will be substituted for the missing
values. There is no type checking on the argument values: any type of value can be passed to any
parameter.

4.3.1. The Method Invocation Pattern

When a function is stored as a property of an object, we call it a method. When a method is invoked,
this is bound to that object. If an invocation expression contains a refinement (that is, a . dot
expression or [subscript] expression), it is invoked as a method:

// Create myObject. It has a value and an increment
// method. The increment method takes an optional
// parameter. If the argument is not a number, then 1
// is used as the default.

var myObject = {
 value: 0;
 increment: function (inc) {
 this.value += typeof inc === 'number' ? inc : 1;
 }
};

myObject.increment();
document.writeln(myObject.value); // 1

myObject.increment(2);
document.writeln(myObject.value); // 3

A method can use this to access the object so that it can retrieve values from the object or modify
the object. The binding of this to the object happens at invocation time. This very late binding makes
functions that use this highly reusable. Methods that get their object context from this are called
public methods.

4.3.2. The Function Invocation Pattern

When a function is not the property of an object, then it is invoked as a function:

var sum = add(3, 4); // sum is 7

When a function is invoked with this pattern, this is bound to the global object. This was a mistake in
the design of the language. Had the language been designed correctly, when the inner function is
invoked, this would still be bound to the this variable of the outer function. A consequence of this
error is that a method cannot employ an inner function to help it do its work because the inner
function does not share the method's access to the object as its this is bound to the wrong value.
Fortunately, there is an easy workaround. If the method defines a variable and assigns it the value of
this, the inner function will have access to this through that variable. By convention, the name of
that variable is that:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that variable is that:

// Augment myObject with a double method.

myObject.double = function () {
 var that = this; // Workaround.

 var helper = function () {
 that.value = add(that.value, that.value)
 };

 helper(); // Invoke helper as a function.
};

// Invoke double as a method.

myObject.double();
document.writeln(myObject.getValue()); // 6

4.3.3. The Constructor Invocation Pattern

JavaScript is a prototypal inheritance language. That means that objects can inherit properties directly
from other objects. The language is class-free.

This is a radical departure from the current fashion. Most languages today are classical. Prototypal
inheritance is powerfully expressive, but is not widely understood. JavaScript itself is not confident in
its prototypal nature, so it offers an object-making syntax that is reminiscent of the classical
languages. Few classical programmers found prototypal inheritance to be acceptable, and classically
inspired syntax obscures the language's true prototypal nature. It is the worst of both worlds.

If a function is invoked with the new prefix, then a new object will be created with a hidden link to the
value of the function's prototype member, and this will be bound to that new object.

The new prefix also changes the behavior of the return statement. We will see more about that next.

// Create a constructor function called Quo.
// It makes an object with a status property.

var Quo = function (string) {
 this.status = string;
};

// Give all instances of Quo a public method
// called get_status.

Quo.prototype.get_status = function () {
 return this.status;
};

// Make an instance of Quo.

var myQuo = new Quo("confused");

document.writeln(myQuo.get_status()); // confused

Functions that are intended to be used with the new prefix are called constructors. By convention, they
are kept in variables with a capitalized name. If a constructor is called without the new prefix, very bad
things can happen without a compile-time or runtime warning, so the capitalization convention is really
important.

Use of this style of constructor functions is not recommended. We will see better alternatives in the
next chapter.

4.3.4. The Apply Invocation Pattern

Because JavaScript is a functional object-oriented language, functions can have methods.

The apply method lets us construct an array of arguments to use to invoke a function. It also lets us
choose the value of this. The apply method takes two parameters. The first is the value that should

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

choose the value of this. The apply method takes two parameters. The first is the value that should
be bound to this. The second is an array of parameters.

// Make an array of 2 numbers and add them.

var array = [3, 4];
var sum = add.apply(null, array); // sum is 7

// Make an object with a status member.

var statusObject = {
 status: 'A-OK'
};

// statusObject does not inherit from Quo.prototype,
// but we can invoke the get_status method on
// statusObject even though statusObject does not have
// a get_status method.

var status = Quo.prototype.get_status.apply(statusObject);
 // status is 'A-OK'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

JavaScript
 analyzing
 standard
 why use
JSLint 2nd
 != operator
 + operator, confusing pluses and minuses
 ++ increment operator
 confusing pluses and minuses
 - operator, confusing pluses and minuses
 -- decrement operator
 confusing pluses and minuses
 = operator
 == operator
 assignment statement
 bitwise operators
 blocks
 break statement
 comma operator
 constructor functions
 continue statement
 eval function
 expression statements
 for in statement
 for statements
 function report
 functions
 global declarations
 global variables
 HTML
 if statements
 JSON
 labels
 line breaking
 members
 new prefix
 options
 regular expressions
 return statement
 semicolons
 switch statements
 throw statement
 var statements
 variables
 void
 where to find
 with statement
JSON
JSON (JavaScript Object Notation) 2nd
 / character
 array
 eval function
 HTML <script> tags
 innerHTML property
 JSLint
 numbers
 object
 string
 syntax
 text example
 using securely
JSON.parse method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSON.parse method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C. JSLint
What error drives our eyes and ears amiss?

—William Shakespeare, The Comedy of Errors

When C was a young programming language, there were several common programming errors that
were not caught by the primitive compilers, so an accessory program called lint was developed that
would scan a source file, looking for problems.

As C matured, the definition of the language was strengthened to eliminate some insecurities, and
compilers got better at issuing warnings. lint is no longer needed.

JavaScript is a young-for-its-age language. It was originally intended to do small tasks in web pages,
tasks for which Java was too heavy and clumsy. But JavaScript is a very capable language, and it is
now being used in larger projects. Many of the features that were intended to make the language easy
to use are troublesome for larger projects. A lint for JavaScript is needed: JSLint, a JavaScript
syntax checker and verifier.

JSLint is a code quality tool for JavaScript. It takes a source text and scans it. If it finds a problem, it
returns a message describing the problem and an approximate location within the source. The problem
is not necessarily a syntax error, although it often is. JSLint looks at some style conventions as well as
structural problems. It does not prove that your program is correct. It just provides another set of
eyes to help spot problems.

JSLint defines a professional subset of JavaScript, a stricter language than that defined by the third
edition of the ECMAScript Language Specification. The subset is closely related to the style
recommendations from Chapter 9.

JavaScript is a sloppy language, but inside it there is an elegant, better language. JSLint helps you to
program in that better language and to avoid most of the slop.

JSLint can be found at http://www.JSLint.com/.

C.1. Undefined Variables and Functions

JavaScript's biggest problem is its dependence on global variables, particularly implied global
variables. If a variable is not explicitly declared (usually with the var statement), then JavaScript
assumes that the variable was global. This can mask misspelled names and other problems.

JSLint expects that all variables and functions will be declared before they are used or invoked. This
allows it to detect implied global variables. It is also good practice because it makes programs easier
to read.

Sometimes a file is dependent on global variables and functions that are defined elsewhere. You can
identify these to JSLint by including a comment in your file that lists the global functions and objects
that your program depends on, but that are not defined in your program or script file.

A global declaration comment can be used to list all of the names that you are intentionally using as
global variables. JSLint can use this information to identify misspellings and forgotten var declarations.
A global declaration can look like this:

/*global getElementByAttribute, breakCycles, hanoi */

A global declaration starts with /*global. Notice that there is no space before the g. You can have as
many /*global comments as you like. They must appear before the use of the variables they specify.

Some globals can be predefined for you (see the later section "Section C.3"). Select the "Assume a
browser" (browser) option to predefine the standard global properties that are supplied by web
browsers, such as window and document and alert. Select the "Assume Rhino" (rhino) option to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

browsers, such as window and document and alert. Select the "Assume Rhino" (rhino) option to
predefine the global properties provided by the Rhino environment. Select the "Assume a Yahoo
Widget" (widget) option to predefine the global properties provided by the Yahoo! Widgets
environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.27. JSON

JSLint can also check that JSON data structures are well formed. If the first character JSLint sees is {
or [, then it strictly enforces the JSON rules. See Appendix E.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix E. JSON
Farewell: the leisure and the fearful time Cuts off the ceremonious vows of love And
ample interchange of sweet discourse, Which so long sunder'd friends shoulddwell upon:
God give us leisure for these rites of love! Once more, adieu: be valiant, and speed well!

—William Shakespeare, The Tragedy of Richard the Third

JavaScript Object Notation (JSON) is a lightweight data interchange format. It is based on JavaScript's
object literal notation, one of JavaScript's best parts. Even though it is a subset of JavaScript, it is
language independent. It can be used to exchange data between programs written in all modern
programming languages. It is a text format, so it is readable by humans and machines. It is easy to
implement and easy to use. There is a lot of material about JSON at http://www.JSON.org/.

E.1. JSON Syntax

JSON has six kinds of values: objects, arrays, string, numbers, booleans (true and false), and the
special value null. Whitespace (spaces, tabs, carriage returns, and newline characters) may be
inserted before or after any value. This can make JSON texts easier for humans to read. Whitespace
may be omitted to reduce transmission or storage costs.

A JSON object is an unordered container of name/value pairs. A name can be any string. A value can
be any JSON value, including arrays and objects. JSON objects can be nested to any depth, but
generally it is most effective to keep them relatively flat. Most languages have a feature that maps
easily to JSON objects, such as an object, struct, record, dictionary, hash table, property list, or
associative array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JSON array is an ordered sequence of values. A value can be any JSON value, including arrays
and objects. Most languages have a feature that maps easily onto JSON arrays, such as an array,
vector, list, or sequence.

A JSON string is wrapped in double quotes. The \ character is used for escapement. JSON allows the /
character to be escaped so that JSON can be embedded in HTML <script> tags. HTML does not allow
the sequence </ except to start the </script> tag. JSON allows <\/, which produces the same result
but does not confuse HTML.

JSON numbers are like JavaScript numbers. A leading zero is not allowed on integers because some
languages use that to indicate the octal. That kind of radix confusion is not desirable in a data
interchange format. A number can be an integer, real, or scientific.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That's it. That is all of JSON. JSON's design goals were to be minimal, portable, textual, and a subset
of JavaScript. The less we need to agree on in order to interoperate, the more easily we can
interoperate.

Code View:

[
 {
 "first": "Jerome",
 "middle": "Lester",
 "last": "Howard",
 "nick-name": "Curly",
 "born": 1903,
 "died": 1952,
 "quote": "nyuk-nyuk-nyuk!"
 },
 {
 "first": "Harry",
 "middle": "Moses",
 "last": "Howard",
 "nick-name": "Moe",
 "born": 1897,
 "died": 1975,
 "quote": "Why, you!"
 },
 {
 "first": "Louis",
 "last": "Feinberg",
 "nick-name": "Larry",
 "born": 1902,
 "died": 1975,
 "quote": "I'm sorry. Moe, it was an accident!"
 }
]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix E. JSON
Farewell: the leisure and the fearful time Cuts off the ceremonious vows of love And
ample interchange of sweet discourse, Which so long sunder'd friends shoulddwell upon:
God give us leisure for these rites of love! Once more, adieu: be valiant, and speed well!

—William Shakespeare, The Tragedy of Richard the Third

JavaScript Object Notation (JSON) is a lightweight data interchange format. It is based on JavaScript's
object literal notation, one of JavaScript's best parts. Even though it is a subset of JavaScript, it is
language independent. It can be used to exchange data between programs written in all modern
programming languages. It is a text format, so it is readable by humans and machines. It is easy to
implement and easy to use. There is a lot of material about JSON at http://www.JSON.org/.

E.1. JSON Syntax

JSON has six kinds of values: objects, arrays, string, numbers, booleans (true and false), and the
special value null. Whitespace (spaces, tabs, carriage returns, and newline characters) may be
inserted before or after any value. This can make JSON texts easier for humans to read. Whitespace
may be omitted to reduce transmission or storage costs.

A JSON object is an unordered container of name/value pairs. A name can be any string. A value can
be any JSON value, including arrays and objects. JSON objects can be nested to any depth, but
generally it is most effective to keep them relatively flat. Most languages have a feature that maps
easily to JSON objects, such as an object, struct, record, dictionary, hash table, property list, or
associative array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JSON array is an ordered sequence of values. A value can be any JSON value, including arrays
and objects. Most languages have a feature that maps easily onto JSON arrays, such as an array,
vector, list, or sequence.

A JSON string is wrapped in double quotes. The \ character is used for escapement. JSON allows the /
character to be escaped so that JSON can be embedded in HTML <script> tags. HTML does not allow
the sequence </ except to start the </script> tag. JSON allows <\/, which produces the same result
but does not confuse HTML.

JSON numbers are like JavaScript numbers. A leading zero is not allowed on integers because some
languages use that to indicate the octal. That kind of radix confusion is not desirable in a data
interchange format. A number can be an integer, real, or scientific.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That's it. That is all of JSON. JSON's design goals were to be minimal, portable, textual, and a subset
of JavaScript. The less we need to agree on in order to interoperate, the more easily we can
interoperate.

Code View:

[
 {
 "first": "Jerome",
 "middle": "Lester",
 "last": "Howard",
 "nick-name": "Curly",
 "born": 1903,
 "died": 1952,
 "quote": "nyuk-nyuk-nyuk!"
 },
 {
 "first": "Harry",
 "middle": "Moses",
 "last": "Howard",
 "nick-name": "Moe",
 "born": 1897,
 "died": 1975,
 "quote": "Why, you!"
 },
 {
 "first": "Louis",
 "last": "Feinberg",
 "nick-name": "Larry",
 "born": 1902,
 "died": 1975,
 "quote": "I'm sorry. Moe, it was an accident!"
 }
]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

K&R style
Kleene, Stephen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

labeled statement
labels
laxbreak option (JSLint)
length property (arrays)
line breaking
line comments
line-ending comments
looping statement 2nd
loosely typed language

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.16. Labels

JavaScript allows any statement to have a label, and labels have a separate namespace. JSLint is
stricter.

JSLint expects labels only on statements that interact with break: switch, while, do, and for. JSLint
expects that labels will be distinct from variables and parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2. Length

Every array has a length property. Unlike most other languages, JavaScript's array length is not an
upper bound. If you store an element with a subscript that is greater than or equal to the current
length, the length will increase to contain the new element. There is no array bounds error.

The length property is the largest integer property name in the array plus one. This is not necessarily
the number of properties in the array:

var myArray = [];
myArray.length // 0

myArray[1000000] = true;
myArray.length // 1000001
// myArray contains one property.

The [] postfix subscript operator converts its expression to a string using the expression's toString
method if it has one. That string will be used as the property name. If the string looks like a positive
integer that is greater than or equal to the array's current length and is less than 4,294,967,295,
then the length of the array is set to the new subscript plus one.

The length can be set explicitly. Making the length larger does not allocate more space for the array.
Making the length smaller will cause all properties with a subscript that is greater than or equal to the
new length to be deleted:

numbers.length = 3;
// numbers is ['zero', 'one', 'two']

A new element can be appended to the end of an array by assigning to the array's current length:

numbers[numbers.length] = 'shi';
// numbers is ['zero', 'one', 'two', 'shi']

It is sometimes more convenient to use the push method to accomplish the same thing:

numbers.push('go');
// numbers is ['zero', 'one', 'two', 'shi', 'go']

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.5. Line Breaking

As a further defense against the masking of errors by the semicolon insertion mechanism, JSLint
expects long statements to be broken only after one of these punctuation characters or operators:

, . ; : { } ([= < > ? ! + - * / % ^ | &
== != <= >= += -= *= /= %= ^= |= &= << >> || &&
=== !== <<= >>= >>> >>>=

JSLint does not expect to see a long statement broken after an identifier, a string, a number, a closer,
or a suffix operator:

)] ++ --

JSLint allows you to turn on the "Tolerate sloppy line breaking" (laxbreak) option.

Semicolon insertion can mask copy/paste errors. If you always break lines after operators, then JSLint
can do a better job of finding those errors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.7. Literals

Object literals are a convenient notation for specifying new objects. The names of the properties can
be specified as names or as strings. The names are treated as literal names, not as variable names, so
the names of the properties of the object must be known at compile time. The values of the properties
are expressions. There will be more about object literals in the next chapter.

Array literals are a convenient notation for specifying new arrays. There will be more about array
literals in Chapter 6.

There will be more about regular expressions in Chapter 7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

Math object
memoization
message property
Method Invocation Pattern
method method
methods
 array.concat()
 array.join()
 array.pop()
 array.push()
 array.reverse()
 array.shift()
 array.slice()
 array.sort()
 array.splice()
 array.unshift ()
 arrays
 function.apply()
 number.toExponential()
 number.toFixed()
 number.toPrecision()
 number.toString()
 object.hasOwnProperty()
 regexp.exec() 2nd
 regexp.test() 2nd
 string.charAt()
 string.charCodeAt()
 string.concat()
 String.fromCharCode()
 string.indexOf()
 string.lastIndexOf()
 string.localeCompare()
 string.match() 2nd
 string.replace() 2nd
 string.search() 2nd
 string.slice()
 string.split() 2nd
 string.substring()
 string.toLocaleLowerCase()
 string.toLocaleUpperCase()
 string.toLowerCase()
 string.toUpperCase()
 that work with regular expressions
modules
 general pattern
multiple statements
my object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaScript: The Good Parts
by Douglas Crockford

Publisher: O'Reilly
Pub Date: May 2, 2008
Print ISBN-13: 978-0-596-51774-8
Pages: 170

Table of Contents | Index

Overview

Most programming languages contain good and bad parts, but JavaScript has more than its share of
the bad, having been developed and released in a hurry before it could be refined. This authoritative
book scrapes away these bad features to reveal a subset of JavaScript that's more reliable, readable,
and maintainable than the language as a whole-a subset you can use to create truly extensible and
efficient code. Considered the JavaScript expert by many people in the development community,
author Douglas Crockford identifies the abundance of good ideas that make JavaScript an outstanding
object-oriented programming language-ideas such as functions, loose typing, dynamic objects, and an
expressive object literal notation. Unfortunately, these good ideas are mixed in with bad and
downright awful ideas, like a programming model based on global variables. When Java applets failed,
JavaScript became the language of the Web by default, making its popularity almost completely
independent of its qualities as a programming language. In JavaScript: The Good Parts, Crockford
finally digs through the steaming pile of good intentions and blunders to give you a detailed look at all
the genuinely elegant parts of JavaScript, including:

Syntax

Objects

Functions

Inheritance

Arrays

Regular expressions

Methods

Style

Beautiful features

The real beauty? As you move ahead with the subset of JavaScript that this book presents, you'll also
sidestep the need to unlearn all the bad parts. Of course, if you want to find out more about the bad
parts and how to use them badly, simply consult any other JavaScript book. With JavaScript: The
Good Parts, you'll discover a beautiful, elegant, lightweight and highly expressive language that lets
you create effective code, whether you're managing object libraries or just trying to get Ajax to run
fast. If you develop sites or applications for the Web, this book is an absolute must.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.2. Members

Since JavaScript is a loosely typed dynamic-object language, it is not possible to determine at compile
time if property names are spelled correctly. JSLint provides some assistance with this.

At the bottom of its report, JSLint displays a /*members*/ comment. It contains all of the names and
string literals that were used with dot notation, subscript notation, and object literals to name the
members of objects. You can look through the list for misspellings. Member names that were used
only once are shown in italics. This is to make misspellings easier to spot.

You can copy the /*members*/ comment into your script file. JSLint will check the spelling of all
property names against the list. That way, you can have JSLint look for misspellings for you:

/*members doTell, iDoDeclare, mercySakes,
 myGoodness, ohGoOn, wellShutMyMouth */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.15. Memoization

Functions can use objects to remember the results of previous operations, making it possible to avoid
unnecessary work. This optimization is called memoization. JavaScript's objects and arrays are very
convenient for this.

Let's say we want a recursive function to compute Fibonacci numbers. A Fibonacci number is the sum
of the two previous Fibonacci numbers. The first two are 0 and 1:

var fibonacci = function (n) {
 return n < 2 ? n : fibonacci(n - 1) + fibonacci(n - 2);
};

for (var i = 0; i <= 10; i += 1) {
 document.writeln('// ' + i + ': ' + fibonacci(i));
}

// 0: 0
// 1: 1
// 2: 1
// 3: 2
// 4: 3
// 5: 5
// 6: 8
// 7: 13
// 8: 21
// 9: 34
// 10: 55

This works, but it is doing a lot of unnecessary work. The fibonacci function is called 453 times. We
call it 11 times, and it calls itself 442 times in computing values that were probably already recently
computed. If we memoize the function, we can significantly reduce its workload.

We will keep our memoized results in a memo array that we can hide in a closure. When our function is
called, it first looks to see if it already knows the result. If it does, it can immediately return it:

var fibonacci = function () {
 var memo = [0, 1];
 var fib = function (n) {
 var result = memo[n];
 if (typeof result !== 'number') {
 result = fib(n - 1) + fib(n - 2);
 memo[n] = result;
 }
 return result;
 };
 return fib;
}();

This function returns the same results, but it is called only 29 times. We called it 11 times. It called
itself 18 times to obtain the previously memoized results.

We can generalize this by making a function that helps us make memoized functions. The memoizer
function will take an initial memo array and the fundamental function. It returns a shell function that
manages the memo store and that calls the fundamental function as needed. We pass the shell
function and the function's parameters to the fundamental function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function and the function's parameters to the fundamental function:

var memoizer = function (memo, fundamental) {
 var shell = function (n) {
 var result = memo[n];
 if (typeof result !== 'number') {
 result = fundamental(shell, n);
 memo[n] = result;
 }
 return result;
 };
 return shell;
};

We can now define fibonacci with the memoizer, providing the initial memo array and fundamental
function:

var fibonacci = memoizer([0, 1], function (shell, n) {
 return shell(n - 1) + shell(n - 2);
});

By devising functions that produce other functions, we can significantly reduce the amount of work we
have to do. For example, to produce a memoizing factorial function, we only need to supply the basic
factorial formula:

var factorial = memoizer([1, 1], function (shell, n) {
 return n * shell(n - 1);
});

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.6. Methods

JavaScript provides a set of methods for acting on arrays. The methods are functions stored in
Array.prototype. In Chapter 3, we saw that Object.prototype can be augmented.
Array.prototype can be augmented as well.

For example, suppose we want to add an array method that will allow us to do computation on an
array:

Array.method('reduce', function (f, value) {
 var i;
 for (i = 0; i < this.length; i += 1) {
 value = f(this[i], value);
 }
 return value;
});

By adding a function to Array.prototype, every array inherits the method. In this case, we defined a
reduce method that takes a function and a starting value. For each element of the array, it calls the
function with an element and the value, and computes a new value. When it is finished, it returns the
value. If we pass in a function that adds two numbers, it computes the sum. If we pass in a function
that multiplies two numbers, it computes the product:

// Create an array of numbers.

var data = [4, 8, 15, 16, 23, 42];

// Define two simple functions. One will add two
// numbers. The other will multiply two numbers.

var add = function (a, b) {
 return a + b;
};

var mult = function (a, b) {
 return a * b;
};

// Invoke the data's reduce method, passing in the
// add function.

var sum = data.reduce(add, 0); // sum is 108

// Invoke the reduce method again, this time passing
// in the multiply function.

var product = data.reduce(mult, 1);
 // product is 7418880

Because an array is really an object, we can add methods directly to an individual array:

// Give the data array a total function.

data.total = function () {
 return this.reduce(add, 0);
};

total = data.total(); // total is 108

Since the string 'total' is not an integer, adding a total property to an array does not change its
length. Arrays are most useful when the property names are integers, but they are still objects, and
objects can accept any string as a property name.

It is not useful to use the Object.beget method from Chapter 3 on arrays because it produces an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is not useful to use the Object.beget method from Chapter 3 on arrays because it produces an
object, not an array. The object produced will inherit the array's values and methods, but it will not
have the special length property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Methods
Though this be madness, yet there is method in 't.

—William Shakespeare, The Tragedy of Hamlet, Prince of Denmark

JavaScript includes a small set of standard methods that are available on the standard types.

Array

array.concat(item...)

The concat method produces a new array containing a shallow copy of this
array with the items appended to it. If an item is an array, then each of its
elements is appended individually. Also see array.push(item...) later in this
chapter.

var a = ['a', 'b', 'c'];
var b = ['x', 'y', 'z'];
var c = a.concat(b, true);
// c is ['a', 'b', 'c', 'x', 'y', 'z', true]

array.join(separator)

The join method makes a string from an array . It does this by making a string
of each of the array 's elements, and then concatenating them all together with
a separator between them. The default separator is ','. To join without
separation, use an empty string as the separator.

If you are assembling a string from a large number of pieces, it is usually faster
to put the pieces into an array and join them than it is to concatenate the
pieces with the + operator:

var a = ['a', 'b', 'c'];
a.push('d');
var c = a.join(''); // c is 'abcd';

array.pop()

The pop and push methods make an array work like a stack. The pop method
removes and returns the last element in this array . If the array is empty, it
returns undefined.

var a = ['a', 'b', 'c'];
var c = a.pop(); // a is ['a', 'b'] & c is 'c'

pop can be implemented like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pop can be implemented like this:

Array.method('pop', function () {
 return this.splice(this.length - 1, 1)[0];
});

array.push(item...)

The push method appends items to the end of an array. Unlike the concat
method, it modifies the array and appends array items whole. It returns the new
length of the array:

var a = ['a', 'b', 'c'];
var b = ['x', 'y', 'z'];
var c = a.push(b, true);
// a is ['a', 'b', 'c', ['x', 'y', 'z'], true]
// c is 5;

push can be implemented like this:

Array.method('push', function () {
 this.splice.apply(
 this,
 [this.length, 0].
 concat(Array.prototype.slice.apply(arguments)));
 return this.length;
});

array.reverse()

The reverse method modifies the array by reversing the order of the elements.
It returns the array:

var a = ['a', 'b', 'c'];
var b = a.reverse();
// both a and b are ['c', 'b', 'a']

array.shift()

The shift method removes the first element from an array and returns it. If the
array is empty, it returns undefined. shift is usually much slower than pop:

var a = ['a', 'b', 'c'];
var c = a.shift(); // a is ['b', 'c'] & c is 'a'

shift can be implemented like this:

Array.method('shift', function () {
 return this.splice(0, 1)[0];
});

array.slice(start, end)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array.slice(start, end)

The slice method makes a shallow copy of a portion of an array . The first
element copied will be array [start]. It will stop before copying array [end
]. The end parameter is optional, and the default is array .length. If either
parameter is negative, array .length will be added to them in an attempt to
make them nonnegative. If start is greater than or equal to array .length, the
result will be a new empty array. Do not confuse slice with splice. Also see
string .slice later in this chapter.

var a = ['a', 'b', 'c'];
var b = a.slice(0, 1); // b is ['a']
var c = a.slice(1); // c is ['b', 'c']
var d = a.slice(1, 2); // d is ['b']

array.sort(comparefn)

The sort method sorts the contents of an array in place. It sorts arrays of
numbers incorrectly:

var n = [4, 8, 15, 16, 23, 42];
n.sort();
// n is [15, 16, 23, 4, 42, 8]

JavaScript's default comparison function assumes that the elements to be sorted
are strings. It isn't clever enough to test the type of the elements before
comparing them, so it converts the numbers to strings as it compares them,
ensuring a shockingly incorrect result.

Fortunately, you may replace the comparison function with your own. Your
comparison function should take two parameters and return 0 if the two
parameters are equal, a negative number if the first parameter should come
first, and a positive number if the second parameter should come first. (Old-
timers might be reminded of the FORTRAN II arithmetic IF statement.)

n.sort(function (a, b) {
 return a - b;
});
// n is [4, 8, 15, 16, 23, 42];

That function will sort numbers, but it doesn't sort strings. If we want to be able
to sort any array of simple values, we must work harder:

var m = ['aa', 'bb', 'a', 4, 8, 15, 16, 23, 42];
m.sort(function (a, b) {
 if (a === b) {
 return 0;
 }
 if (typeof a === typeof b) {
 return a < b ? -1 : 1;
 }
 return typeof a < typeof b ? -1 : 1;
});
// m is [4, 8, 15, 16, 23, 42, 'a', 'aa', 'bb']

If case is not significant, your comparison function should convert the operands
to lowercase before comparing them. Also see string .localeCompare later in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to lowercase before comparing them. Also see string .localeCompare later in
this chapter.

With a smarter comparison function, we can sort an array of objects. To make
things easier for the general case, we will write a function that will make
comparison functions:

Code View:

// Function by takes a member name string and returns
// a comparison function that can be used to sort an
// array of objects that contain that member.

var by = function (name) {
 return function (o, p) {
 var a, b;
 if (typeof o === 'object' && typeof p === 'object' && o && p) {
 a = o[name];
 b = p[name];
 if (a === b) {
 return 0;
 }
 if (typeof a === typeof b) {
 return a < b ? -1 : 1;
 }
 return typeof a < typeof b ? -1 : 1;
 } else {
 throw {
 name: 'Error',
 message: 'Expected an object when sorting by ' + name;
 };
 }
 };
};

var s = [
 {first: 'Joe', last: 'Besser'},
 {first: 'Moe', last: 'Howard'},
 {first: 'Joe', last: 'DeRita'},
 {first: 'Shemp', last: 'Howard'},
 {first: 'Larry', last: 'Fine'},
 {first: 'Curly', last: 'Howard'}
];
s.sort(by('first')); // s is [
// {first: 'Curly', last: 'Howard'},
// {first: 'Joe', last: 'DeRita'},
// {first: 'Joe', last: 'Besser'},
// {first: 'Larry', last: 'Fine'},
// {first: 'Moe', last: 'Howard'},
// {first: 'Shemp', last: 'Howard'}
//]

The sort method is not stable, so:

s.sort(by('first')).sort(by('last'));

is not guaranteed to produce the correct sequence. If you want to sort on
multiple keys, you again need to do more work. We can modify by to take a
second parameter, another compare method that will be called to break ties
when the major key produces a match:

Code View:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code View:

// Function by takes a member name string and an
// optional minor comparison function and returns
// a comparison function that can be used to sort an
// array of objects that contain that member. The
// minor comparison function is used to break ties
// when the o[name] and p[name] are equal.

var by = function (name, minor) {
 return function (o, p) {
 var a, b;
 if (o && p && typeof o === 'object' && typeof p === 'object') {
 a = o[name];
 b = p[name];
 if (a === b) {
 return typeof minor === 'function' ? minor(o, p) : 0;
 }
 if (typeof a === typeof b) {
 return a < b ? -1 : 1;
 }
 return typeof a < typeof b ? -1 : 1;
 } else {
 throw {
 name: 'Error',
 message: 'Expected an object when sorting by ' + name;
 };
 }
 };
};

s.sort(by('last', by('first'))); // s is [
// {first: 'Joe', last: 'Besser'},
// {first: 'Joe', last: 'DeRita'},
// {first: 'Larry', last: 'Fine'},
// {first: 'Curly', last: 'Howard'},
// {first: 'Moe', last: 'Howard'},
// {first: 'Shemp', last: 'Howard'}
//]

array.splice(start, deleteCount, item...)

The splice method removes elements from an array, replacing them with new
item s. The start parameter is the number of a position within the array . The
deleteCount parameter is the number of elements to delete starting from that
position. If there are additional parameters, those item s will be inserted at the
position. It returns an array containing the deleted elements.

The most popular use of splice is to delete elements from an array. Do not
confuse splice with slice:

var a = ['a', 'b', 'c'];
var r = a.splice(1, 1, 'ache', 'bug');
// a is ['a', 'ache', 'bug', 'c']
// r is ['b']

splice can be implemented like this:

Code View:

Array.method('splice', function (start, deleteCount) {
 var max = Math.max,
 min = Math.min,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 min = Math.min,
 delta,
 element,
 insertCount = max(arguments.length - 2, 0),
 k = 0,
 len = this.length,
 new_len,
 result = [],
 shift_count;

 start = start || 0;
 if (start < 0) {
 start += len;
 }
 start = max(min(start, len), 0);
 deleteCount = max(min(typeof deleteCount === 'number' ?
 deleteCount : len, len - start), 0);
 delta = insertCount - deleteCount;
 new_len = len + delta;
 while (k < deleteCount) {
 element = this[start + k];
 if (element !== undefined) {
 result[k] = element;
 }
 k += 1;
 }
 shift_count = len - start - deleteCount;
 if (delta < 0) {
 k = start + insertCount;
 while (shift_count) {
 this[k] = this[k - delta];
 k += 1;
 shift_count -= 1;
 }
 this.length = new_len;
 } else if (delta > 0) {
 k = 1;
 while (shift_count) {
 this[new_len - k] = this[len - k];
 k += 1;
 shift_count -= 1;
 }
 }
 for (k = 0; k < insertCount; k += 1) {
 this[start + k] = arguments[k + 2];
 }
 return result;
});

array.unshift(item...)

The unshift method is like the push method except that it shoves the item s
onto the front of this array instead of at the end. It returns the array 's new
length:

var a = ['a', 'b', 'c'];
var r = a.unshift('?', '@');
// a is ['?', '@', 'a', 'b', 'c']
// r is 5

unshift can be implemented like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unshift can be implemented like this:

Array.method('unshift', function () {
 this.splice.apply(this,
 [0, 0].concat(Array.prototype.slice.apply(arguments)));
 return this.length;
});

Function

function.apply(thisArg, argArray)

The apply method invokes a function, passing in the object that will be bound
to this and an optional array of arguments. The apply method is used in the
apply invocation pattern (Chapter 4):

Function.method('bind', function (that) {

// Return a function that will call this function as
// though it is a method of that object.

 var method = this,
 slice = Array.prototype.slice,
 args = slice.apply(arguments, [1]);
 return function () {
 return method.apply(that,
 args.concat(slice.apply(arguments, [0])));
 };
});

var x = function () {
 return this.value;
}.bind({value: 666});
alert(x()); // 666

Number

number.toExponential(fractionDigits)

The toExponential method converts this number to a string in the exponential
form. The optional fractionDigits parameter controls the number of decimal
places. It should be between 0 and 20:

document.writeln(Math.PI.toExponential(0));
document.writeln(Math.PI.toExponential(2));
document.writeln(Math.PI.toExponential(7));
document.writeln(Math.PI.toExponential(16));
document.writeln(Math.PI.toExponential());

// Produces

3e+0
3.14e+0
3.1415927e+0
3.1415926535897930e+0
3.141592653589793e+0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.141592653589793e+0

number.toFixed(fractionDigits)

The toFixed method converts this number to a string in the decimal form. The
optional fractionDigits parameter controls the number of decimal places. It
should be between 0 and 20. The default is 0:

document.writeln(Math.PI.toFixed(0));
document.writeln(Math.PI.toFixed(2));
document.writeln(Math.PI.toFixed(7));
document.writeln(Math.PI.toFixed(16));
document.writeln(Math.PI.toFixed());

// Produces

3
3.14
3.1415927
3.1415926535897930
3

number.toPrecision(precision)

The toPrecision method converts this number to a string in the decimal form.
The optional precision parameter controls the number of digits of precision. It
should be between 1 and 21:

document.writeln(Math.PI.toPrecision(2));
document.writeln(Math.PI.toPrecision(7));
document.writeln(Math.PI.toPrecision(16));
document.writeln(Math.PI.toPrecision());

// Produces

3.1
3.141593
3.141592653589793
3.141592653589793

number.toString(radix)

The toString method converts this number to a string. The optional radix
parameter controls radix, or base. It should be between 2 and 36. The default
radix is base 10. The radix parameter is most commonly used with integers,
but it can be used on any number.

The most common case, number .toString(), can be written more simply as
String(number):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String(number):

document.writeln(Math.PI.toString(2));
document.writeln(Math.PI.toString(8));
document.writeln(Math.PI.toString(16));
document.writeln(Math.PI.toString());

// Produces

11.001001000011111101101010100010001000010110100011
3.1103755242102643
3.243f6a8885a3
3.141592653589793

Object

object.hasOwnProperty(name)

The hasOwnProperty method returns true if the object contains a property
having the name . The prototype chain is not examined. This method is useless if
the name is hasOwnProperty:

var a = {member: true};
var b = Object.beget(a); // from Chapter 3
var t = a.hasOwnProperty('member'); // t is true
var u = b.hasOwnProperty('member'); // u is false
var v = b.member; // v is true

RegExp

regexp.exec(string)

The exec method is the most powerful (and slowest) of the methods that use
regular expressions. If it successfully matches the regexp and the string, it
returns an array. The 0 element of the array will contain the substring that
matched the regexp . The 1 element is the text captured by group 1, the 2
element is the text captured by group 2, and so on. If the match fails, it returns
null.

If the regexp has a g flag, things are a little more complicated. The searching
begins not at position 0 of the string, but at position regexp .lastIndex (which
is initially zero). If the match is successful, then regexp .lastIndex will be set
to the position of the first character after the match. An unsuccessful match
resets regexp .lastIndex to 0.

This allows you to search for several occurrences of a pattern in a string by
calling exec in a loop. There are a couple things to watch out for. If you exit the
loop early, you must reset regexp .lastIndex to 0 yourself before entering the
loop again. Also, the ^ factor matches only when regexp .lastIndex is 0:

Code View:

// Break a simple html text into tags and texts.
// (See string.replace for the entityify method.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// (See string.replace for the entityify method.)

// For each tag or text, produce an array containing
// [0] The full matched tag or text
// [1] The tag name
// [2] The /, if there is one
// [3] The attributes, if any

var text = '<html><body bgcolor=linen><p>' +
 'This is bold<\/b>!<\/p><\/body><\/html>';
var tags = /[^<>]+|<(\/?)([A-Za-z]+)([^<>]*)>/g;
var a, i;

while ((a = tags.exec(text))) {
 for (i = 0; i < a.length; i += 1) {
 document.writeln(('// [' + i + '] ' + a[i]).entityify());
 }
 document.writeln();
}

// Result:

// [0] <html>
// [1]
// [2] html
// [3]

// [0] <body bgcolor=linen>
// [1]
// [2] body
// [3] bgcolor=linen

// [0] <p>
// [1]
// [2] p
// [3]

// [0] This is
// [1] undefined
// [2] undefined
// [3] undefined

// [0]
// [1]
// [2] b
// [3]

// [0] bold
// [1] undefined
// [2] undefined
// [3] undefined

// [0]
// [1] /
// [2] b
// [3]

// [0] !
// [1] undefined
// [2] undefined
// [3] undefined

// [0] </p>
// [1] /
// [2] p
// [3]

regexp.test(string)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

regexp.test(string)

The test method is the simplest (and fastest) of the methods that use regular
expressions. If the regexp matches the string, it returns true ; otherwise, it
returns false. Do not use the g flag with this method:

var b = /&.+;/.test('frank & beans');
// b is true

test could be implemented as:

RegExp.method('test', function (string) {
 return this.exec(string) !== null;
});

String

string.charAt(pos)

The charAt method returns the character at position pos in this string . If pos
is less than zero or greater than or equal to string .length, it returns the
empty string. JavaScript does not have a character type. The result of this
method is a string:

var name = 'Curly';
var initial = name.charAt(0); // initial is 'C'

charAt could be implemented as:

String.method('charAt', function () {
 return this.slice(0, 1);
});

string.charCodeAt(pos)

The charCodeAt method is the same as charAt except that instead of returning
a string, it returns an integer representation of the code point value of the
character at position pos in that string . If pos is less than zero or greater than
or equal to string .length, it returns NaN:

var name = 'Curly';
var initial = name.charCodeAt(0); // initial is 67

string.concat(string...)

The concat method makes a new string by concatenating other strings together.
It is rarely used because the + operator is more convenient:

var s = 'C'.concat('a', 't'); // s is 'Cat'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var s = 'C'.concat('a', 't'); // s is 'Cat'

string.indexOf(searchString, position)

The indexOf method searches for a searchString within a string. If it is found,
it returns the position of the first matched character; otherwise, it returns -1.
The optional position parameter causes the search to begin at some specified
position in the string:

var text = 'Mississippi';
var p = text.indexOf('ss'); // p is 2
p = text.indexOf('ss', 3); // p is 5
p = text.indexOf('ss', 6); // p is -1

string.lastIndexOf(searchString, position)

The lastIndexOf method is like the indexOf method, except that it searches
from the end of the string instead of the front:

var text = 'Mississippi';
var p = text.lastIndexOf('ss'); // p is 5
p = text.lastIndexOf('ss', 3); // p is 2
p = text.lastIndexOf('ss', 6); // p is 5

string.localeCompare(that)

The localCompare method compares two strings. The rules for how the strings
are compared are not specified. If this string is less than that string, the result
is negative. If they are equal, the result is zero. This is similar to the convention
for the array .sort comparison function:

var m = ['AAA', 'A', 'aa', 'a', 'Aa', 'aaa'];
m.sort(function (a, b) {
 return a.localeCompare(b);
});
// m (in some locale) is
// ['a', 'A', 'aa', 'Aa', 'aaa', 'AAA']

string.match(regexp)

The match method matches a string and a regular expression. How it does this
depends on the g flag. If there is no g flag, then the result of calling string
.match(regexp) is the same as calling regexp .exec(string). However, if
the regexp has the g flag, then it produces an array of all the matches but
excludes the capturing groups:

var text = '<html><body bgcolor=linen><p>' +
 'This is bold<\/b>!<\/p><\/body><\/html>';
var tags = /[^<>]+|<(\/?)([A-Za-z]+)([^<>]*)>/g;
var a, i;

a = text.match(tags);
for (i = 0; i < a.length; i += 1) {
 document.writeln(('// [' + i + '] ' + a[i]).entityify());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 document.writeln(('// [' + i + '] ' + a[i]).entityify());
}

// The result is

// [0] <html>
// [1] <body bgcolor=linen>
// [2] <p>
// [3] This is
// [4]
// [5] bold
// [6]
// [7] !
// [8] </p>
// [9] </body>
// [10] </html>

string.replace(searchValue, replaceValue)

The replace method does a search and replace operation on this string,
producing a new string. The searchValue argument can be a string or a regular
expression object. If it is a string, only the first occurrence of the searchValue is
replaced, so:

var result = "mother_in_law".replace('_', '-');

will produce "mother-in_law", which might be a disappointment.

If searchValue is a regular expression and if it has the g flag, then it will replace
all occurrences. If it does not have the g flag, then it will replace only the first
occurrence.

The replaceValue can be a string or a function. If replaceValue is a string, the
character $ has special meaning:

// Capture 3 digits within parens

var oldareacode = /\((\d{3})\)/g;
var p = '(555)666-1212'.replace(oldareacode, '$1-');
// p is '555-555-1212'

Dollar sequence Replacement

$$ $

$& The matched text

$number Capture group text

$` The text preceding the match

$' The text following the match

If the replaceValue is a function, it will be called for each match, and the string
returned by the function will be used as the replacement text. The first
parameter passed to the function is the matched text. The second parameter is
the text of capture group 1, the next parameter is the text of capture group 2,
and so on:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and so on:

String.method('entityify', function () {

 var character = {
 '<' : '<',
 '>' : '>',
 '&' : '&',
 '"' : '"'
 };

// Return the string.entityify method, which
// returns the result of calling the replace method.
// Its replaceValue function returns the result of
// looking a character up in an object. This use of
// an object usually outperforms switch statements.

 return function () {
 return this.replace(/[<>&"]/g, function (c) {
 return character[c];
 });
 };
}());
alert("<&>".entityify()); // <&>

string.search(regexp)

The search method is like the indexOf method, except that it takes a regular
expression object instead of a string. It returns the position of the first character
of the first match, if there is one, or -1 if the search fails. The g flag is ignored.
There is no position parameter:

var text = 'and in it he says "Any damn fool could';
var pos = text.search(/["']/); // pos is 18

string.slice(start, end)

The slice method makes a new string by copying a portion of another string.
If the start parameter is negative, it adds string .length to it. The end
parameter is optional, and its default value is string .length. If the end
parameter is negative, then string .length is added to it. The end parameter is
one greater than the position of the last character. To get n characters starting at
position p, use string .slice(p, p + n). Also see string .substring and
array .slice, later and earlier in this chapter, respectively.

var text = 'and in it he says "Any damn fool could';
var a = text.slice(18);
// a is '"Any damn fool could'
var b = text.slice(0, 3);
// b is 'and'
var c = text.slice(-5);
// c is 'could'
var d = text.slice(19, 32);
// d is 'Any damn fool'

string.split(separator, limit)

The split method creates an array of strings by splitting this string into pieces.
The optional limit parameter can limit the number of pieces that will be split.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The optional limit parameter can limit the number of pieces that will be split.
The separator parameter can be a string or a regular expression.

If the separator is the empty string, an array of single characters is produced:

var digits = '0123456789';
var a = digits.split('', 5);
// a is ['0', '1', '2', '3', '456789']

Otherwise, the string is searched for all occurrences of the separator. Each
unit of text between the separators is copied into the array. The g flag is
ignored:

var ip = '192.168.1.0';
var b = ip.split('.');
// b is ['192', '168', '1', '0']

var c = '|a|b|c|'.split('|');
// c is ['', 'a', 'b', 'c', '']

var text = 'last, first ,middle';
var d = text.split(/\s*,\s*/);
// d is [
// 'last',
// 'first',
// 'middle'
//]

There are some special cases to watch out for. Text from capturing groups will be
included in the split:

var e = text.split(/\s*(,)\s*/);
// e is [
// 'last',
// ',',
// 'first',
// ',',
// 'middle'
//]

Some implementations suppress empty strings in the output array when the
separator is a regular expression:

var f = '|a|b|c|'.split(/\|/);
// f is ['a', 'b', 'c'] on some systems, and
// f is ['', 'a', 'b', 'c', ''] on others

string.substring(start, end)

The substring method is the same as the slice method except that it doesn't
handle the adjustment for negative parameters. There is no reason to use the
substring method. Use slice instead.

string.toLocaleLowerCase()

The toLocaleLowerCase method produces a new string that is made by
converting this string to lowercase using the rules for the locale. This is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

converting this string to lowercase using the rules for the locale. This is
primarily for the benefit of Turkish because in that language `I' converts to 1,
not `i'.

string.toLocaleUpperCase()

The toLocaleUpperCase method produces a new string that is made by
converting this string to uppercase using the rules for the locale. This is

primarily for the benefit of Turkish, because in that language `i' converts to `
', not `I'.

string.toLowerCase()

The toLowerCase method produces a new string that is made by converting this
string to lowercase.

string.toUpperCase()

The toUpperCase method produces a new string that is made by converting this
string to uppercase.

String.fromCharCode(char...)

The String.fromCharCode function produces a string from a series of numbers.

var a = String.fromCharCode(67, 97, 116);
// a is 'Cat'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.12. Module

We can use functions and closure to make modules. A module is a function or object that presents an
interface but that hides its state and implementation. By using functions to produce modules, we can
almost completely eliminate our use of global variables, thereby mitigating one of JavaScript's worst
features.

For example, suppose we want to augment String with a deentityify method. Its job is to look for
HTML entities in a string and replace them with their equivalents. It makes sense to keep the names
of the entities and their equivalents in an object. But where should we keep the object? We could put
it in a global variable, but global variables are evil. We could define it in the function itself, but that
has a runtime cost because the literal must be evaluated every time the function is invoked. The ideal
approach is to put it in a closure, and perhaps provide an extra method that can add additional
entities:

Code View:

String.method('deentityify', function () {

// The entity table. It maps entity names to
// characters.

 var entity = {
 quot: '"',
 lt: '<',
 gt: '>'
 };

// Return the deentityify method.

 return function () {

// This is the deentityify method. It calls the string
// replace method, looking for substrings that start
// with '&' and end with ';'. If the characters in
// between are in the entity table, then replace the
// entity with the character from the table. It uses
// a regular expression (Chapter 7).

 return this.replace(/&([^&;]+);/g,
 function (a, b) {
 var r = entity[b];
 return typeof r === 'string' ? r : a;
 }
);
 };
}());

Notice the last line. We immediately invoke the function we just made with the () operator. That
invocation creates and returns the function that becomes the deentityify method.

document.writeln(
 '<">'.deentityify()); // <">

The module pattern takes advantage of function scope and closure to create relationships that are
binding and private. In this example, only the deentityify method has access to the entity data
structure.

The general pattern of a module is a function that defines private variables and functions; creates
privileged functions which, through closure, will have access to the private variables and functions;
and that returns the privileged functions or stores them in an accessible place.

Use of the module pattern can eliminate the use of global variables. It promotes information hiding
and other good design practices. It is very effective in encapsulating applications and other singletons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and other good design practices. It is very effective in encapsulating applications and other singletons.

It can also be used to produce objects that are secure. Let's suppose we want to make an object that
produces a serial number:

Code View:

var serial_maker = function () {

// Produce an object that produces unique strings. A
// unique string is made up of two parts: a prefix
// and a sequence number. The object comes with
// methods for setting the prefix and sequence
// number, and a gensym method that produces unique
// strings.

 var prefix = '';
 var seq = 0;
 return {
 set_prefix: function (p) {
 prefix = String(p);
 },
 set_seq: function (s) {
 seq = s;
 },
 gensym: function () {
 var result = prefix + seq;
 seq += 1;
 return result;
 }
 };
}();

var seqer = serial_maker();
seqer.set_prefix = 'Q';
seqer.set_seq = 1000;
var unique = seqer.gensym(); // unique is "Q1000"

The methods do not make use of this or that. As a result, there is no way to compromise the seqer.
It isn't possible to get or change the prefix or seq except as permitted by the methods. The seqer
object is mutable, so the methods could be replaced, but that still does not give access to its secrets.
seqer is simply a collection of functions, and those functions are capabilities that grant specific powers
to use or modify the secret state.

If we passed seqer.gensym to a third party's function, that function would be able to generate unique
strings, but would be unable to change the prefix or seq.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

name property
names
NaN (not a number) 2nd 3rd 4th 5th
negative numbers
new operator 2nd 3rd 4th
 forgetting to include
 functions
newline
nomen option (JSLint)
null 2nd 3rd 4th
number literal
number.toExponential() method
number.toFixed() method
number.toPrecision() method
number.toString() method
numbers 2nd
 methods
 negative
numbers object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2. Names

A name is a letter optionally followed by one or more letters, digits, or underbars. A name cannot be
one of these reserved words:

abstract
boolean break byte
case catch char class const continue
debugger default delete do double
else enum export extends
false final finally float for function
goto
if implements import in instanceof int interface
long
native new null
package private protected public
return
short static super switch synchronized
this throw throws transient true try typeof
var volatile void
while with

Most of the reserved words in this list are not used in the language. The list does not include some
words that should have been reserved but were not, such as undefined, NaN, and Infinity. It is not
permitted to name a variable or parameter with a reserved word. Worse, it is not permitted to use a
reserved word as the name of an object property in an object literal or following a dot in a refinement.

Names are used for statements, variables, parameters, property names, operators, and labels.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.10. NaN

The value NaN is a special quantity defined by IEEE 754. It stands for not a number, even though:

typeof NaN === 'number' // true

The value can be produced by attempting to convert a string to a number when the string is not in the
form of a number. For example:

+ '0' // 0
+ 'oops' // NaN

If NaN is an operand in an arithmetic operation, then NaN will be the result. So, if you have a chain of
formulas that produce NaN as a result, at least one of the inputs was NaN, or NaN was generated
somewhere.

You can test for NaN. As we have seen, typeof does not distinguish between numbers and NaN, and it
turns out that NaN is not equal to itself. So, surprisingly:

NaN === NaN // false
NaN !== NaN // true

JavaScript provides an isNaN function that can distinguish between numbers and NaN:

isNaN(NaN) // true
isNaN(0) // false
isNaN('oops') // true
isNaN('0') // false

The isFinite function is the best way of determining whether a value can be used as a number
because it rejects NaN and Infinity. Unfortunately, isFinite will attempt to convert its operand to a
number, so it is not a good test if a value is not actually a number. You may want to define your own
isNumber function:

function isNumber(value) { return typeof value === 'number' &&
 isFinite(value);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.11. new

JavaScript's new operator creates a new object that inherits from the operand's prototype member,
and then calls the operand, binding the new object to this. This gives the operand (which had better
be a constructor function) a chance to customize the new object before it is returned to the requestor.

If you forget to use the new operator, you instead get an ordinary function call, and this is bound to
the global object instead of to a new object. That means that your function will be clobbering global
variables when it attempts to initialize the new members. That is a very bad thing. There is no
compile-time warning. There is no runtime warning.

By convention, functions that are intended to be used with new should be given names with initial
capital letters, and names with initial capital letters should be used only with constructor functions that
take the new prefix. This convention gives us a visual cue that can help spot expensive mistakes that
the language itself is keen to overlook.

An even better coping strategy is to not use new at all.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.25. Not Looked For

JSLint does not do flow analysis to determine that variables are assigned values before they are used.
This is because variables are given a value (undefined) that is a reasonable default for many
applications.

JSLint does not do any kind of global analysis. It does not attempt to determine that functions used
with new are really constructors (except by enforcing capitalization conventions), or that method
names are spelled correctly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3. Numbers

JavaScript has a single number type. Internally, it is represented as 64-bit floating point, the same as
Java's double. Unlike most other programming languages, there is no separate integer type, so 1 and
1.0 are the same value. This is a significant convenience because problems of overflow in short
integers are completely avoided, and all you need to know about a number is that it is a number. A
large class of numeric type errors is avoided.

If a number literal has an exponent part, then the value of the literal is computed by multiplying the
part before the e by 10 raised to the power of the part after the e. So 100 and 1e2 are the same
number.

Negative numbers can be formed by using the - prefix operator.

The value NaN is a number value that is the result of an operation that cannot produce a normal result.
NaN is not equal to any value, including itself. You can detect NaN with the isNaN(number) function.

The value Infinity represents all values greater than 1.79769313486231570e+308.

Numbers have methods (see Chapter 8). JavaScript has a Math object that contains a set of methods
that act on numbers. For example, the Math.floor(number) method can be used to convert a
number into an integer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

object literals 2nd
object specifiers
Object.beget method 2nd
object.hasOwnProperty() method
Object.prototype
objects 2nd
 creating new
 defined
 delegation
 delete operator
 durable
 enumeration
 for in statement
 functions
 global variables
 hasOwnProperty method
 literals
 properties
 property on prototype chain
 prototype
 link
 reference
 reflection
 retrieving values
 undefined 2nd
 updating values
 || operator
on option (JSLint)
operator precedence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.14. Object

JavaScript's objects are never truly empty because they can pick up members from the prototype
chain. Sometimes that matters. For example, suppose you are writing a program that counts the
number of occurrences of each word in a text. We can use the toLowerCase method to normalize the
text to lowercase, and then use the split method with a regular expression to produce an array of
words. We can then loop through the words and count the number of times we see each one:

var i;
var word;
var text =
 "This oracle of comfort has so pleased me, " +
 "That when I am in heaven I shall desire " +
 "To see what this child does, " +
 "and praise my Constructor.";

var words = text.toLowerCase().split(/[\s,.]+/);
var count = {};
for (i = 0; i < words.length; i += 1) {
 word = words[i];
 if (count[word]) {
 count[word] += 1;
 } else {
 count[word] = 1;
 }
}

If we look at the results, count['this'] is 2 and count.heaven is 1, but count.constructor
contains a crazy looking string. The reason is that the count object inherits from Object.prototype,
and Object.prototype contains a member named constructor whose value is Object. The +=
operator, like the + operator, does concatenation rather than addition when its operands are not
numbers. Object is a function, so += converts it to a string somehow and concatenates a 1 to its butt.

We can avoid problems like this the same way we avoid problems with for in: by testing for
membership with the hasOwnProperty method or by looking for specific types. In this case, our test
for the truthiness of count[word] was not specific enough. We could have written instead:

if (typeof count[word] === 'number') {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Objects
Upon a homely object Love can wink.

—William Shakespeare, The Two Gentlemen of Verona

The simple types of JavaScript are numbers, strings, booleans (true and false), null, and
undefined. All other values are objects. Numbers, strings, and booleans are object-like in that they
have methods, but they are immutable. Objects in JavaScript are mutable keyed collections. In
JavaScript, arrays are objects, functions are objects, regular expressions are objects, and, of course,
objects are objects.

An object is a container of properties, where a property has a name and a value. A property name can
be any string, including the empty string. A property value can be any JavaScript value except for
undefined.

Objects in JavaScript are class-free. There is no constraint on the names of new properties or on the
values of properties. Objects are useful for collecting and organizing data. Objects can contain other
objects, so they can easily represent tree or graph structures.

JavaScript includes a prototype linkage feature that allows one object to inherit the properties of
another. When used well, this can reduce object initialization time and memory consumption.

3.1. Object Literals

Object literals provide a very convenient notation for creating new object values. An object literal is a
pair of curly braces surrounding zero or more name/value pairs. An object literal can appear anywhere
an expression can appear:

var empty_object = {};

var stooge = {
 "first-name": "Jerome",
 "last-name": "Howard"
};

A property's name can be any string, including the empty string. The quotes around a property's name
in an object literal are optional if the name would be a legal JavaScript name and not a reserved word.
So quotes are required around "first-name", but are optional around first_name. Commas are used
to separate the pairs.

A property's value can be obtained from any expression, including another object literal. Objects can
nest:

var flight = {
 airline: "Oceanic",
 number: 815,
 departure: {
 IATA: "SYD",
 time: "2004-09-22 14:55",
 city: "Sydney"
 },
 arrival: {
 IATA: "LAX",
 time: "2004-09-23 10:42",
 city: "Los Angeles"
 }
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Objects
Upon a homely object Love can wink.

—William Shakespeare, The Two Gentlemen of Verona

The simple types of JavaScript are numbers, strings, booleans (true and false), null, and
undefined. All other values are objects. Numbers, strings, and booleans are object-like in that they
have methods, but they are immutable. Objects in JavaScript are mutable keyed collections. In
JavaScript, arrays are objects, functions are objects, regular expressions are objects, and, of course,
objects are objects.

An object is a container of properties, where a property has a name and a value. A property name can
be any string, including the empty string. A property value can be any JavaScript value except for
undefined.

Objects in JavaScript are class-free. There is no constraint on the names of new properties or on the
values of properties. Objects are useful for collecting and organizing data. Objects can contain other
objects, so they can easily represent tree or graph structures.

JavaScript includes a prototype linkage feature that allows one object to inherit the properties of
another. When used well, this can reduce object initialization time and memory consumption.

3.1. Object Literals

Object literals provide a very convenient notation for creating new object values. An object literal is a
pair of curly braces surrounding zero or more name/value pairs. An object literal can appear anywhere
an expression can appear:

var empty_object = {};

var stooge = {
 "first-name": "Jerome",
 "last-name": "Howard"
};

A property's name can be any string, including the empty string. The quotes around a property's name
in an object literal are optional if the name would be a legal JavaScript name and not a reserved word.
So quotes are required around "first-name", but are optional around first_name. Commas are used
to separate the pairs.

A property's value can be obtained from any expression, including another object literal. Objects can
nest:

var flight = {
 airline: "Oceanic",
 number: 815,
 departure: {
 IATA: "SYD",
 time: "2004-09-22 14:55",
 city: "Sydney"
 },
 arrival: {
 IATA: "LAX",
 time: "2004-09-23 10:42",
 city: "Los Angeles"
 }
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2. Object Specifiers

It sometimes happens that a constructor is given a very large number of parameters. This can be
troublesome because it can be very difficult to remember the order of the arguments. In such cases, it
can be much friendlier if we write the constructor to accept a single object specifier instead. That
object contains the specification of the object to be constructed. So, instead of:

var myObject = maker(f, l, m, c, s);

we can write:

var myObject = maker({
 first: f,
 last: l,
 state: s,
 city: c
});

The arguments can now be listed in any order, arguments can be left out if the constructor is smart
about defaults, and the code is much easier to read.

This can have a secondary benefit when working with JSON (see Appendix E). JSON text can only
describe data, but sometimes the data represents an object, and it would be useful to associate the
data with its methods. This can be done trivially if the constructor takes an object specifier because we
can simply pass the JSON object to the constructor and it will return a fully constituted object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.3. Options

The implementation of JSLint accepts an option object that allows you to determine the subset of
JavaScript that is acceptable to you. It is also possible to set those options within the source of a
script.

An option specification can look like this:

/*jslint nomen: true, evil: false */

An option specification starts with /*jslint. Notice that there is no space before the j. The
specification contains a sequence of name/value pairs, where the names are JSLint options and the
values are true or false. An option specification takes precedence over the option object. All of the
options default to false. Table C-1 lists the options available in using JSLint.

Table C-1. JSLint options

Option Meaning

adsafe true if ADsafe.org rules should be enforced

bitwise true if bitwise operators should not be allowed

browser true if the standard browser globals should be predefined

cap true if uppercase HTML should be allowed

debug true if debugger statements should be allowed

eqeqeq true if === should be required

evil true if eval should be allowed

for in true if unfiltered for in statements should be allowed

fragment true if HTML fragments should be allowed

glovar true if var should not be allowed to declare global variables

laxbreak true if statement breaks should not be checked

nomen true if names should be checked

on true if HTML event handlers should be allowed

passfail true if the scan should stop on first error

plusplus true if ++ and -- should not be allowed

rhino true if the Rhino environment globals should be predefined

undef true if undefined global variables are errors

white true if strict whitespace rules apply

widget true if the Yahoo! Widgets globals should be predefined

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

parseInt function
passfail option (JSLint)
pi as simple constant
plusplus option (JSLint)
Pratt, Vaughn
private methods
privileged methods
problematic features of JavaScript
 + operator
 arrays
 bitwise operators
 blockless statements
 continue statement
 equality operators
 eval function
 falsy values
 floating-point numbers
 function statement versus function expression
 global variables
 hasOwnProperty method
 increment and decrement operators
 NaN (not a number)
 new operator
 objects
 parseInt function
 reserved words
 scope
 semicolons
 single statement form
 string argument form
 switch statement
 typed wrappers
 typeof operator
 Unicode
 void
 with statement
prototypal inheritance
prototypal inheritance language
prototypal pattern
prototype property
prototypes of basic types
pseudoclass, creating
pseudoclassical pattern (inheritance) 2nd
punctuation characters or operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.7. parseInt

parseInt is a function that converts a string into an integer. It stops when it sees a nondigit, so
parseInt("16") and parseInt("16 tons") produce the same result. It would be nice if the function
somehow informed us about the extra text, but it doesn't.

If the first character of the string is 0, then the string is evaluated in base 8 instead of base 10. In
base 8, 8 and 9 are not digits, so parseInt("08") and parseInt("09") produce 0 as their result. This
error causes problems in programs that parse dates and times. Fortunately, parseInt can take a radix
parameter, so that parseInt("08", 10) produces 8. I recommend that you always provide the radix
parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5. Parts

We can compose objects out of sets of parts. For example, we can make a function that can add
simple event processing features to any object. It adds an on method, a fire method, and a private
event registry:

Code View:

var eventuality = function (that) {
 var registry = {};

 that.fire = function (event) {

// Fire an event on an object. The event can be either
// a string containing the name of the event or an
// object containing a type property containing the
// name of the event. Handlers registered by the 'on'
// method that match the event name will be invoked.

 var array,
 func,
 handler,
 i,
 type = typeof event === 'string' ?
 event : event.type;

// If an array of handlers exist for this event, then
// loop through it and execute the handlers in order.

 if (registry.hasOwnProperty(type)) {
 array = registry[type];
 for (i = 0; i < array.length; i += 1) {
 handler = array[i];

// A handler record contains a method and an optional
// array of parameters. If the method is a name, look
// up the function.

 func = handler.method;
 if (typeof func === 'string') {
 func = this[func];
 }

// Invoke a handler. If the record contained
// parameters, then pass them. Otherwise, pass the
// event object.

 func.apply(this,
 handler.parameters || [event]);
 }
 }
 return this;
 };

 that.on = function (type, method, parameters) {

// Register an event. Make a handler record. Put it
// in a handler array, making one if it doesn't yet
// exist for this type.

 var handler = {
 method: method,
 parameters: parameters
 };
 if (registry.hasOwnProperty(type)) {
 registry[type].push(handler);
 } else {
 registry[type] = [handler];
 }
 return this;
 };
 return that;
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We could call eventuality on any individual object, bestowing it with event handling methods. We
could also call it in a constructor function before that is returned:

eventuality(that);

In this way, a constructor could assemble objects from a set of parts. JavaScript's loose typing is a big
benefit here because we are not burdened with a type system that is concerned about the lineage of
classes. Instead, we can focus on the character of their contents.

If we wanted eventuality to have access to the object's private state, we could pass it the my bundle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.11. Phony Arrays

JavaScript does not have real arrays. That isn't all bad. JavaScript's arrays are really easy to use.
There is no need to give them a dimension, and they never generate out-of-bounds errors. But their
performance can be considerably worse than real arrays.

The typeof operator does not distinguish between arrays and objects. To determine that a value is an
array, you also need to consult its constructor property:

if (my_value && typeof my_value === 'object' &&
 my_value.constructor === Array) {
 // my_value is an array!
}

That test will give a false negative if an array was created in a different frame or window. This test is
more reliable when the value might have been created in another frame:

if (my_value && typeof my_value === 'object' &&
 typeof my_value.length === 'number' &&
 !(my_value.propertyIsEnumerable('length')) {
 // my_value is truly an array!
}

The arguments array is not an array; it is an object with a length member. That test will identify the
arguments array as an array, which is sometimes what you want, even though arguments does not
have any of the array methods. In any case, the test can still fail if the propertyIsEnumerable
method is overridden.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.8. +

The + operator can add or concatenate. Which one it does depends on the types of the parameters. If
either operand is an empty string, it produces the other operand converted to a string. If both
operands are numbers, it produces the sum. Otherwise, it converts both operands to strings and
concatenates them. This complicated behavior is a common source of bugs. If you intend + to add,
make sure that both operands are numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.7. ++ --

The increment and decrement operators make it possible to write in an extremely terse style. In
languages such as C, they made it possible to write one-liners that could do string copies:

for (p = src, q = dest; !*p; p++, q++) *q = *p;

They also encourage a programming style that, as it turns out, is reckless. Most of the buffer overrun
bugs that created terrible security vulnerabilities were due to code like this.

In my own practice, I observed that when I used ++ and --, my code tended to be too tight, too
tricky, too cryptic. So, as a matter of discipline, I don't use them any more. I think that as a result,
my coding style has become cleaner.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.19. ++ and --

The ++ (increment) and -- (decrement) operators have been known to contribute to bad code by
encouraging excessive trickiness. They are second only to faulty architecture in enabling to viruses
and other security menaces. The JSLint option plusplus prohibits the use of these operators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
If we offend, it is with our good will That you should think, we come not to offend, But
with good will. To show our simple skill, That is the true beginning of our end.

—William Shakespeare, A Midsummer Night's Dream

This is a book about the JavaScript programming language. It is intended for programmers who, by
happenstance or curiosity, are venturing into JavaScript for the first time. It is also intended for
programmers who have been working with JavaScript at a novice level and are now ready for a more
sophisticated relationship with the language. JavaScript is a surprisingly powerful language. Its
unconventionality presents some challenges, but being a small language, it is easily mastered.

My goal here is to help you to learn to think in JavaScript. I will show you the components of the
language and start you on the process of discovering the ways those components can be put together.
This is not a reference book. It is not exhaustive about the language and its quirks. It doesn't contain
everything you'll ever need to know. That stuff you can easily find online. Instead, this book just
contains the things that are really important.

This is not a book for beginners. Someday I hope to write a JavaScript: The First Parts book, but this
is not that book. This is not a book about Ajax or web programming. The focus is exclusively on
JavaScript, which is just one of the languages the web developer must master.

This is not a book for dummies. This book is small, but it is dense. There is a lot of material packed
into it. Don't be discouraged if it takes multiple readings to get it. Your efforts will be rewarded.

P2.1. Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, filenames, and file extensions.

Constant width

Indicates computer coding in a broad sense. This includes commands, options, variables,
attributes, keys, requests, functions, methods, types, classes, modules, properties,
parameters, values, objects, events, event handlers, XML and XHTML tags, macros, and
keywords.

Constant width bold

Indicates commands or other text that should be typed literally by the user.

P2.2. Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your
programs and documentation. You do not need to contact us for permission. For example, writing a
program that uses several chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question
by citing this book and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "JavaScript: The Good Parts by Douglas Crockford. Copyright 2008

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

publisher, and ISBN. For example: "JavaScript: The Good Parts by Douglas Crockford. Copyright 2008
Yahoo! Inc., 978-0-596-51774-8."

If you feel your use of code examples falls outside fair use or the permission given here, feel free to
contact us at permissions@oreilly.com.

P2.3. Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite technology book, that means
the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

P2.4. How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/9780596517748/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com/

P2.5. Acknowledgments

I want to thank the reviewers who pointed out my many egregious errors. There are few things better
in life than having really smart people point out your blunders. It is even better when they do it before
you go public. Thank you, Steve Souders, Bill Scott, Julien LeComte, Stoyan Stefanov, Eric Miraglia,
and Elliotte Rusty Harold.

I want to thank the people I worked with at Electric Communities and State Software who helped me
discover that deep down there was goodness in this language, especially Chip Morningstar, Randy
Farmer, John La, Mark Miller, Scott Shattuck, and Bill Edney.

I want to thank Yahoo! Inc. for giving me time to work on this project and for being such a great place
to work, and thanks to all members of the Ajax Strike Force, past and present. I also want to thank
O'Reilly Media, Inc., particularly Mary Treseler, Simon St.Laurent, and Sumita Mukherji for making
things go so smoothly.

Special thanks to Professor Lisa Drake for all those things she does. And I want to thank the guys in
ECMA TC39 who are struggling to make ECMAScript a better language.

Finally, thanks to Brendan Eich, the world's most misunderstood programming language designer,
without whom this book would not have been necessary.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaScript: The Good Parts

by Douglas Crockford

Copyright © 2008 Yahoo! Inc. All rights reserved. Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent

Production Editor: Sumita Mukherji

Copyeditor: Genevieve d'Entremont

Proofreader: Sumita Mukherji

Indexer: Julie Hawks

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Robert Romano

Printing History:

May 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. JavaScript: The Good Parts, the image of a Plain Tiger butterfly, and related trade
dress are trademarks of O'Reilly Media, Inc.

Java ™ is a trademark of Sun Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-51774-8

[M]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3. Prototypal

In a purely prototypal pattern, we dispense with classes. We focus instead on the objects. Prototypal
inheritance is conceptually simpler than classical inheritance: a new object can inherit the properties of
an old object. This is perhaps unfamiliar, but it is really easy to understand. You start by making a
useful object. You can then make many more objects that are like that one. The classification process
of breaking an application down into a set of nested abstract classes can be completely avoided.

Let's start by using an object literal to make a useful object:

var myMammal = {
 name : 'Herb the Mammal',
 get_name : function () {
 return this.name;
 },
 says : function () {
 return this.saying || '';
 }
};

Once we have an object that we like, we can make more instances with the Object.beget method
from Chapter 3. We can then customize the new instances:

var myCat = Object.beget(myMammal);
myCat.name = 'Henrietta';
myCat.saying = 'meow';
myCat.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
};
myCat.get_name = function () {
 return this.says + ' ' + this.name + ' ' + this.says;
};

This is differential inheritance. By customizing a new object, we specify the differences from the object
on which it is based.

Sometimes is it useful for data structures to inherit from other data structures. Here is an example:
Suppose we are parsing a language such as JavaScript or TEX in which a pair of curly braces indicates
a scope. Items defined in a scope are not visible outside of the scope. In a sense, an inner scope
inherits from its outer scope. JavaScript objects are very good at representing this relationship. The
block function is called when a left curly brace is encountered. The parse function will look up
symbols from scope, and augment scope when it defines new symbols:

var block = function () {

// Remember the current scope. Make a new scope that
// includes everything from the current one.

 var oldScope = scope;
 scope = Object.beget(scope);

// Advance past the left curly brace.

 advance('{');

// Parse using the new scope.

 parse(scope);

// Advance past the right curly brace and discard the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Advance past the right curly brace and discard the
// new scope, restoring the old one.

 advance('}');
 scope = oldScope;
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5. Prototype

Every object is linked to a prototype object from which it can inherit properties. All objects created
from object literals are linked to Object.prototype, an object that comes standard with JavaScript.

When you make a new object, you can select the object that should be its prototype. The mechanism
that JavaScript provides to do this is messy and complex, but it can be significantly simplified. We will
add a beget method to the Object function. The beget method creates a new object that uses an old
object as its prototype. There will be much more about functions in the next chapter.

if (typeof Object.beget !== 'function') {
 Object.beget = function (o) {
 var F = function () {};
 F.prototype = o;
 return new F();
 };
}
var another_stooge = Object.beget(stooge);

The prototype link has no effect on updating. When we make changes to an object, the object's
prototype is not touched:

another_stooge['first-name'] = 'Harry';
another_stooge['middle-name'] = 'Moses';
another_stooge.nickname = 'Moe';

The prototype link is used only in retrieval. If we try to retrieve a property value from an object, and if
the object lacks the property name, then JavaScript attempts to retrieve the property value from the
prototype object. And if that object is lacking the property, then it goes to its prototype, and so on
until the process finally bottoms out with Object.prototype. If the desired property exists nowhere in
the prototype chain, then the result is the undefined value. This is called delegation.

The prototype relationship is a dynamic relationship. If we add a new property to a prototype, that
property will immediately be visible in all of the objects that are based on that prototype:

stooge.profession = 'actor';
another_stooge.profession // 'actor'

We will see more about the prototype chain in Chapter 6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Inheritance
Divides one thing entire to many objects; Like perspectives, which rightly gazed upon
Show nothing but confusion. . .

—William Shakespeare, The Tragedy of King Richard the Second

Inheritance is an important topic in most programming languages.

In the classical languages (such as Java), inheritance (or extends) provides two useful services. First,
it is a form of code reuse. If a new class is mostly similar to an existing class, you only have to specify
the differences. Patterns of code reuse are extremely important because they have the potential to
significantly reduce the cost of software development. The other benefit of classical inheritance is that
it includes the specification of a system of types. This mostly frees the programmer from having to
write explicit casting operations, which is a very good thing because when casting, the safety benefits
of a type system are lost.

JavaScript, being a loosely typed language, never casts. The lineage of an object is irrelevant. What
matters about an object is what it can do, not what it is descended from.

JavaScript provides a much richer set of code reuse patterns. It can ape the classical pattern, but it
also supports other patterns that are more expressive. The set of possible inheritance patterns in
JavaScript is vast. In this chapter, we'll look at a few of the most straightforward patterns. Much more
complicated constructions are possible, but it is usually best to keep it simple.

In classical languages, objects are instances of classes, and a class can inherit from another class.
JavaScript is a prototypal language, which means that objects inherit directly from other objects.

5.1. Pseudoclassical

JavaScript is conflicted about its prototypal nature. Its prototype mechanism is obscured by some
complicated syntactic business that looks vaguely classical. Instead of having objects inherit directly
from other objects, an unnecessary level of indirection is inserted such that objects are produced by
constructor functions.

When a function object is created, the Function constructor that produces the function object runs
some code like this:

this.prototype = {constructor: this};

The new function object is given a prototype property whose value is an object containing a
constructor property whose value is the new function object. The prototype object is the place
where inherited traits are to be deposited. Every function gets a prototype object because the
language does not provide a way of determining which functions are intended to be used as
constructors. The constructor property is not useful. It is the prototype object that is important.

When a function is invoked with the constructor invocation pattern using the new prefix, this modifies
the way in which the function is executed. If the new operator were a method instead of an operator, it
could have been implemented like this:

Function.method('new', function () {

// Create a new object that inherits from the
// constructor's prototype.

 var that = Object.beget(this.prototype)

// Invoke the constructor, binding -this- to
// the new object.

 var other = this.apply(that, arguments);

// If its return value isn't an object,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// If its return value isn't an object,
// substitute the new object.

 return (typeof other === 'object' && other) || that;
});

We can define a constructor and augment its prototype:

var Mammal = function (name) {
 this.name = name;
};

Mammal.prototype.get_name = function () {
 return this.name;
};

Mammal.prototype.says = function () {
 return this.saying || '';
};

Now, we can make an instance:

var myMammal = new Mammal('Herb the Mammal');
var name = myMammal.get_name(); // 'Herb the Mammal'

We can make another pseudoclass that inherits from Mammal by defining its constructor function and
replacing its prototype with an instance of Mammal:

Code View:

var Cat = function (name) {
 this.name = name;
 this.saying = 'meow';
};

// Replace Cat.prototype with a new instance of Mammal

Cat.prototype = new Mammal();

// Augment the new prototype with
// purr and get_name methods.

Cat.prototype.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
};
Cat.prototype.get_name = function () {
 return this.says() + ' ' + this.name +
 ' ' + this.says();
};

var myCat = new Cat('Henrietta');
var says = myCat.says(); // 'meow'
var purr = myCat.purr(5); // 'r-r-r-r-r'
var name = myCat.get_name();
// 'meow Henrietta meow'

The pseudoclassical pattern was intended to look sort of object-oriented, but it is looking quite alien.
We can hide some of the ugliness by using the method method and defining an inherits method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We can hide some of the ugliness by using the method method and defining an inherits method:

Function.method('inherits', function (Parent) {
 this.prototype = new Parent();
 return this;
});

Our inherits and method methods return this, allowing us to program in a cascade style. We can
now make our Cat with one statement.

var Cat = function (name) {
 this.name = name;
 this.saying = 'meow';
}.
 inherits(Mammal).
 method('purr', function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
 }).
 method('get_name', function () {
 return this.says() + ' ' + this.name +
 ' ' + this.says();
 });

By hiding the prototype jazz, it now looks a bit less alien. But have we really improved anything? We
now have constructor functions that act like classes, but at the edges, there may be surprising
behavior. There is no privacy; all properties are public. There is no access to super methods.

Even worse, there is a serious hazard with the use of constructor functions. If you forget to include the
new prefix when calling a constructor function, then this will not be bound to a new object. Sadly,
this will be bound to the global object, so instead of augmenting your new object, you will be
clobbering global variables. That is really bad. There is no compile warning, and there is no runtime
warning.

This is a serious design error in the language. To mitigate this problem, there is a convention that all
constructor functions are named with an initial capital, and that nothing else is spelled with an initial
capital. This gives us a prayer that visual inspection can find a missing new. A much better alternative
is to not use new at all.

The pseudoclassical form can provide comfort to programmers who are unfamiliar with JavaScript, but
it also hides the true nature of the language. The classically inspired notation can induce programmers
to compose hierarchies that are unnecessarily deep and complicated. Much of the complexity of class
hierarchies is motivated by the constraints of static type checking. JavaScript is completely free of
those constraints. In classical languages, class inheritance is the only form of code reuse. JavaScript
has more and better options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

railroad diagrams
recursion
 Document Object Model (DOM)
 Fibonacci numbers
 tail recursion optimization
 Towers of Hanoi puzzle
reflection
RegExp objects, properties
regexp.exec() method 2nd
regexp.test() method 2nd
regular expressions 2nd
 $ character
 (...)
 (?! prefix
 (?: prefix
 (?:...)?
 (?= prefix
 / character
 ? character
 \1 character
 \b character 2nd
 \d
 \D character
 \d character
 \f character
 \n character
 \r character
 \S character
 \s character
 \t character
 \u character
 \W character
 \w character
 ^ character 2nd
 backslash character
 capturing group 2nd
 carriage return character
 construction
 elements
 regexp choice
 regexp class
 regexp class escape
 regexp escape
 regexp factor 2nd
 regexp group
 regexp quantifier
 regexp sequence
 flags
 formfeed character
 matching digits
 matching URLs
 methods that work with
 negative lookahead group
 newline character
 noncapturing group 2nd
 optional group
 optional noncapturing group
 positive lookahead group
 railroad diagrams
 repeat zero or one time
 simple letter class
 sloppy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sloppy
 tab character
 Unicode characters
reserved words 2nd
return statement 2nd 3rd
rhino option (JSLint)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.8. Recursion

A recursive function is a function that calls itself, either directly or indirectly. Recursion is a powerful
programming technique in which a problem is divided into a set of similar subproblems, each solved
with a trivial solution. Generally, a recursive function calls itself to solve its subproblems.

The Towers of Hanoi is a famous puzzle. The equipment includes three posts and a set of discs of
various diameters with holes in their centers. The setup stacks all of the discs on the source post with
smaller discs on top of larger discs. The goal is to move the stack to the destination post by moving
one disc at a time to another post, never placing a larger disc on a smaller disc. This puzzle has a
trivial recursive solution:

var hanoi = function (disc, src, aux, dst) {
 if (disc > 0) {
 hanoi(disc - 1, src, dst, aux);
 document.writeln('Move disc ' + disc +
 ' from ' + src + ' to ' + dst);
 hanoi(disc - 1, aux, src, dst);
 }
}

hanoi(3, 'Src', 'Aux', 'Dst');

It produces this solution for three discs:

Move disc 1 from Src to Dst
Move disc 2 from Src to Aux
Move disc 1 from Dst to Aux
Move disc 3 from Src to Dst
Move disc 1 from Aux to Src
Move disc 2 from Aux to Dst
Move disc 1 from Src to Dst

The hanoi function moves a stack of discs from one post to another, using the auxiliary post if
necessary. It breaks the problem into three subproblems. First, it uncovers the bottom disc by moving
the substack above it to the auxiliary post. It can then move the bottom disc to the destination post.
Finally, it can move the substack from the auxiliary post to the destination post. The movement of the
substack is handled by calling itself recursively to work out those subproblems.

The hanoi function is passed the number of the disc it is to move and the three posts it is to use.
When it calls itself, it is to deal with the disc that is above the disc it is currently working on.
Eventually, it will be called with a nonexistent disc number. In that case, it does nothing. That act of
nothingness gives us confidence that the function does not recurse forever.

Recursive functions can be very effective in manipulating tree structures such as the browser's
Document Object Model (DOM). Each recursive call is given a smaller piece of the tree to work on:

Code View:

// Define a walk_the_DOM function that visits every
// node of the tree in HTML source order, starting
// from some given node. It invokes a function,
// passing it each node in turn. walk_the_DOM calls
// itself to process each of the child nodes.

var walk_the_DOM = function walk(node, func) {
 func(node);
 node = node.firstChild;
 while (node) {
 walk(node, func);
 node = node.nextSibling;
 }
};

// Define a getElementsByAttribute function. It
// takes an attribute name string and an optional

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// takes an attribute name string and an optional
// matching value. It calls walk_the_DOM, passing it a
// function that looks for an attribute name in the
// node. The matching nodes are accumulated in a
// results array.

var getElementsByAttribute = function (att, value) {
 var results = [];

 walk_the_DOM(document.body, function (node) {
 var actual = node.nodeType === 1 && node.getAttribute(att);
 if (typeof actual === 'string' &&
 (actual === value || typeof value !== 'string')) {
 results.push(node);
 }
 });

 return results;
};

Some languages offer the tail recursion optimization. This means that if a function returns the result of
invoking itself recursively, then the invocation is replaced with a loop, which can significantly speed
things up. Unfortunately, JavaScript does not currently provide tail recursion optimization. Functions
that recurse very deeply can fail by exhausting the return stack:

// Make a factorial function with tail
// recursion. It is tail recursive because
// it returns the result of calling itself.

// JavaScript does not currently optimize this form.

var factorial = function factorial(i, a) {
 a = a || 1;
 if (i < 2) {
 return a;
 }
 return factorial(i - 1, a * i);
};

document.writeln(factorial(4)); // 24

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4. Reference

Objects are passed around by reference. They are never copied:

var x = stooge;
x.nickname = 'Curly';
var nick = stooge.nickname;
 // nick is 'Curly' because x and stooge
 // are references to the same object

var a = {}, b = {}, c = {};
 // a, b, and c each refer to a
 // different empty object
a = b = c = {};
 // a, b, and c all refer to
 // the same empty object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6. Reflection

It is easy to inspect an object to determine what properties it has by attempting to retrieve the
properties and examining the values obtained. The typeof operator can be very helpful in determining
the type of a property:

typeof flight.number // 'number'
typeof flight.status // 'string'
typeof flight.arrival // 'object'
typeof flight.manifest // 'undefined'

Some care must be taken because any property on the prototype chain can produce a value:

typeof flight.toString // 'function'
typeof flight.constructor // 'function'

There are two approaches to dealing with these undesired properties. The first is to have your
program look for and reject function values. Generally, when you are reflecting, you are interested in
data, and so you should be aware that some values could be functions.

The other approach is to use the hasOwnProperty method, which returns true if the object has a
particular property. The hasOwnProperty method does not look at the prototype chain:

flight.hasOwnProperty('number') // true
flight.hasOwnProperty('constructor') // false

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.23. Regular Expressions

Regular expressions are written in a terse and cryptic notation. JSLint looks for problems that may
cause portability problems. It also attempts to resolve visual ambiguities by recommending explicit
escapement.

JavaScript's syntax for regular expression literals overloads the / character. To avoid ambiguity, JSLint
expects that the character preceding a regular expression literal is a (or = or : or , character.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Regular Expressions
Whereas the contrary bringeth bliss, And is a pattern of celestial peace. Whom should
we match with Henry, being a king. . .

—William Shakespeare, The First Part of Henry the Sixth

Many of JavaScript's features were borrowed from other languages. The syntax came from Java,
functions came from Scheme, and prototypal inheritance came from Self. JavaScript's Regular
Expression feature was borrowed from Perl.

A regular expression is the specification of the syntax of a simple language. Regular expressions are
used with methods to search, replace, and extract information from strings. The methods that work
with regular expressions are regexp.exec, regexp.test, string.match, string.replace,
string.search, and string.split. These will all be described in Chapter 8. Regular expressions
usually have a significant performance advantage over equivalent string operations in JavaScript.

Regular expressions came from the mathematical study of formal languages. Ken Thompson adapted
Stephen Kleene's theoretical work on type-3 languages into a practical pattern matcher that could be
embedded in tools such as text editors and programming languages.

The syntax of regular expressions in JavaScript conforms closely to the original formulations from Bell
Labs, with some reinterpretation and extension adopted from Perl. The rules for writing regular
expressions can be surprisingly complex because they interpret characters in some positions as
operators, and in slightly different positions as literals. Worse than being hard to write, this makes
regular expressions hard to read and dangerous to modify. It is necessary to have a fairly complete
understanding of the full complexity of regular expressions to correctly read them. To mitigate this, I
have simplified the rules a little. As presented here, regular expressions will be slightly less terse, but
they will also be slightly easier to use correctly. And that is a good thing because regular expressions
can be very difficult to maintain and debug.

Today's regular expressions are not strictly regular, but they can be very useful. Regular expressions
tend to be extremely terse, even cryptic. They are easy to use in their simplest form, but they can
quickly become bewildering. JavaScript's regular expressions are difficult to read in part because they
do not allow comments or whitespace. All of the parts of a regular expression are pushed tightly
together, making them almost indecipherable. This is a particular concern when they are used in
security applications for scanning and validation. If you cannot read and understand a regular
expression, how can you have confidence that it will work correctly for all inputs? Yet, despite their
obvious drawbacks, regular expressions are widely used.

7.1. An Example

Here is an example. It is a regular expression that matches URLs. The pages of this book are not
infinitely wide, so I broke it into two lines. In a JavaScript program, the regular expression must be on
a single line. Whitespace is significant:

var parse_url = /^(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-A-Za-z]+)
(?::(\d+))?(?:\/([^?#]*))?(?:\?([^#]*))?(?:#(.*))?$/;

var url = "http://www.ora.com:80/goodparts?q#fragment";

Let's call parse_url's exec method. If it successfully matches the string that we pass it, it will return
an array containing pieces extracted from the url:

var url = "http://www.ora.com:80/goodparts?q#fragment";

var result = parse_url.exec(url);

var names = ['url', 'scheme', 'slash', 'host', 'port',
 'path', 'query', 'hash'];

var blanks = ' ';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var blanks = ' ';
var i;

for (i = 0; i < names.length; i += 1) {
 document.writeln(names[i] + ':' +
 blanks.substring(names[i].length), result[i]);
}

This produces:

url: http://www.ora.com:80/goodparts?q#fragment
scheme: http
slash: //
host: www.ora.com
port: 80
path: goodparts
query: q
hash: fragment

In Chapter 2, we used railroad diagrams to describe the JavaScript language. We can also use them to
describe the languages defined by regular expressions. That may make it easier to see what a regular
expression does. This is a railroad diagram for parse_url.

Regular expressions cannot be broken into smaller pieces the way that functions can, so the track
representing parse_url is a long one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

representing parse_url is a long one.

Let's factor parse_url into its parts to see how it works:

^

The ^ character indicates the beginning of the string. It is an anchor that prevents exec from skipping
over a non-URL-like prefix:

(?:([A-Za-z]+):)?

This factor matches a scheme name, but only if it is followed by a : (colon). The (?: . . .) indicates a
noncapturing group. The suffix ? indicates that the group is optional.

It means repeat zero or one time. The (. . .) indicates a capturing group. A capturing group copies
the text it matches and places it in the result array. Each capturing group is given a number. This
first capturing group is 1, so a copy of the text matched by this capturing group will appear in
result[1]. The [. . .] indicates a character class. This character class, A-Za-z, contains 26
uppercase letters and 26 lowercase letters. The hyphens indicate ranges, from A to Z. The suffix +
indicates that the character class will be matched one or more times. The group is followed by the :
character, which will be matched literally:

(\/{0,3})

The next factor is capturing group 2. \/ indicates that a / (slash) character should be matched. It is
escaped with \ (backslash) so that it is not misinterpreted as the end of the regular expression literal.
The suffix {0,3} indicates that the / will be matched 0 or 1 or 2 or 3 times:

([0-9.\-A-Za-z]+)

The next factor is capturing group 3. It will match a host name, which is made up of one or more
digits, letters, or . or -. The - was escaped as \- to prevent it from being confused with a range
hyphen:

(?::(\d+))?

The next factor optionally matches a port number, which is a sequence of one or more digits preceded
by a :. \d represents a digit character. The series of one or more digits will be capturing group 4:

(?:\/([^?#]*))?

We have another optional group. This one begins with a /. The character class [^?#] begins with a ^,
which indicates that the class includes all characters except ? and #. The * indicates that the character
class is matched zero or more times.

Note that I am being sloppy here. The class of all characters except ? and # includes line-ending
characters, control characters, and lots of other characters that really shouldn't be matched here. Most
of the time this will do want we want, but there is a risk that some bad text could slip through. Sloppy
regular expressions are a popular source of security exploits. It is a lot easier to write sloppy regular
expressions than rigorous regular expressions:

(?:\?([^#]*))?

Next, we have an optional group that begins with a ?. It contains capturing group 6, which contains
zero or more characters that are not #:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

zero or more characters that are not #:

(?:#(.*))?

We have a final optional group that begins with #. The . will match any character except a line-ending
character:

$

The $ represents the end of the string. It assures us that there was no extra material after the end of
the URL.

Those are the factors of the regular expression parse_url.[1]

[1] When you press them all together again, it is visually quite confusing: /^(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-
A-Za-z]+)?(?::(\d+))?(?:\/([^?#]*))?(?:\?([^#]*))?(?:#(.*))?$/

It is possible to make regular expressions that are more complex than parse_url, but I wouldn't
recommend it. Regular expressions are best when they are short and simple. Only then can we have
confidence that they are working correctly and that they could be successfully modified if necessary.

There is a very high degree of compatibility between JavaScript language processors. The part of the
language that is least portable is the implementation of regular expressions. Regular expressions that
are very complicated or convoluted are more likely to have portability problems. Nested regular
expressions can also suffer horrible performance problems in some implementations. Simplicity is the
best strategy.

Let's look at another example: a regular expression that matches numbers. Numbers can have an
integer part with an optional minus sign, an optional fractional part, and an optional exponent part:

var parse_number = /^-?\d+(?:\.\d*)?(?:e[+\-]?\d+)?$/i;

var test = function (num) {
 document.writeln(parse_number.test(num));
};

test('1'); // true
test('number'); // false
test('98.6'); // true
test('132.21.86.100'); // false
test('123.45E-67'); // true
test('123.45D-67'); // false

parse_number successfully identified the strings that conformed to our specification and those that did
not, but for those that did not, it gives us no information on why or where they failed the number test.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's break down parse_number:

/^ $/i

We again use ^ and $ to anchor the regular expression. This causes all of the characters in the text to
be matched against the regular expression. If we had omitted the anchors, the regular expression
would tell us if a string contains a number. With the anchors, it tells us if the string contains only a
number. If we included just the ^, it would match strings starting with a number. If we included just
the $, it would match strings ending with a number.

The i flag causes case to be ignored when matching letters. The only letter in our pattern is e. We
want that e to also match E. We could have written the e factor as [Ee] or (?:E|e), but we didn't
have to because we used the i flag:

-?

The ? suffix on the minus sign indicates that the minus sign is optional:

\d+

\d means the same as [0-9]. It matches a digit. The + suffix causes it to match one or more digits:

(?:\.\d*)?

The (?: . . .)? indicates an optional noncapturing group. It is usually better to use noncapturing
groups instead of the less ugly capturing groups because capturing has a performance penalty. The
group will match a decimal point followed by zero or more digits:

(?:e[+\-]?\d+)?

This is another optional noncapturing group. It matches e (or E), an optional sign, and one or more
digits.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.28. Report

If JSLint is able to complete its scan, it generates a function report. It lists the following for each
function:

The line number on which it starts.

Its name. In the case of anonymous functions, JSLint will "guess" the name.

The parameters.

Closure: the variables and parameters that are declared in the function that are used by its
inner functions.

Variables: the variables declared in the function that are used only by the function.

Unused: the variables that are declared in the function that are not used. This may be an
indication of an error.

Outer: variables used by this function that are declared in another function.

Global: global variables that are used by this function.

Label: statement labels that are used by this function.

The report will also include a list of all of the member names that were used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.7. Required Blocks

JSLint expects that if and for statements will be made with blocks—that is, with statements enclosed
in braces ({}).

JavaScript allows an if to be written like this:

if (condition)
 statement;

That form is known to contribute to mistakes in projects where many programmers are working on the
same code. That is why JSLint expects the use of a block:

if (condition) {
 statements;
}

Experience shows that this form is more resilient.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.4. Reserved Words

The following words are reserved in JavaScript:

Code View:

abstract boolean break byte case catch char class const continue
 debugger default delete do double else enum export extends false final
 finally float for
 function goto if implements import in instanceof int interface long native new null
 package private protected public return short static super switch synchronized this
 throw throws transient true try typeof var volatile void while with

Most of these words are not used in the language.

They cannot be used to name variables or parameters. When reserved words are used as keys in
object literals, they must be quoted. They cannot be used with the dot notation, so it is sometimes
necessary to use the bracket notation instead:

var method; // ok
var class; // illegal
object = {box: value}; // ok
object = {case: value}; // illegal
object = {'case': value}; // ok
object.box = value; // ok
object.case = value; // illegal
object['case'] = value; // ok

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2. Retrieval

Values can be retrieved from an object by wrapping a string expression in a [] suffix. If the string
expression is a constant, and if it is a legal JavaScript name and not a reserved word, then the .
notation can be used instead. The . notation is preferred because it is more compact and it reads
better:

stooge["first-name"] // "Joe"
flight.departure.IATA // "SYD"

The undefined value is produced if an attempt is made to retrieve a nonexistent member:

stooge["middle-name"] // undefined
flight.status // undefined
stooge["FIRST-NAME"] // undefined

The || operator can be used to fill in default values:

var middle = stooge["middle-name"] || "(none)";
var status = flight.status || "unknown";

Attempting to retrieve values from undefined will throw a TypeError exception. This can be guarded
against with the && operator:

flight.equipment // undefined
flight.equipment.model // throw "TypeError"
flight.equipment && flight.equipment.model // undefined

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5. Return

When a function is invoked, it begins execution with the first statement, and ends when it hits the }
that closes the function body. That causes the function to return control to the part of the program
that invoked the function.

The return statement can be used to cause the function to return early. When return is executed,
the function returns immediately without executing the remaining statements.

A function always returns a value. If the return value is not specified, then undefined is returned.

If the function was invoked with the new prefix and the return value is not an object, then this (the
new object) is returned instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

says method
scope 2nd 3rd
semicolons 2nd
seqer object
setInterval function
setTimeout function
Simplified JavaScript
single statement form
spec object 2nd
splice method (arrays)
statements
 blocks
 break 2nd
 case clause
 catch clause
 do 2nd
 executable
 execution order
 for 2nd
 for in
 if
 labeled
 loop
 looping
 return
 switch 2nd 3rd
 then block
 throw
 try
 var, functions
 while 2nd
string argument form
string literal
String, augmenting with deentityify method
string.charAt() method
string.charCodeAt() method
string.concat() method
String.fromCharCode() method
string.indexOf() method
string.lastIndexOf() method
string.localeCompare() method
string.match() method 2nd
string.replace() method 2nd
string.search() method 2nd
string.slice() method
string.split() method 2nd
string.substring() method
string.toLocaleLowerCase() method
string.toLocaleUpperCase() method
string.toLowerCase() method
string.toUpperCase() method
strings 2nd
 empty
 immutability
 length property
structured statements
style
 block comments
 braces
 comments
 global variables
 good

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 good
 invocations
 K&R
 line comments
 multiple statements
 structured statements
 switch cases
super methods
superior method
switch statement 2nd 3rd 4th 5th 6th
syntax diagrams

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2. Scope

JavaScript's syntax comes from C. In all other C-like languages, a block (a set of statements wrapped
in curly braces) creates a scope. Variables declared in a block are not visible outside of the block.
JavaScript uses the block syntax, but does not provide block scope: a variable declared in a block is
visible everywhere in the function containing the block. This can be surprising to programmers with
experience in other languages.

In most languages, it is generally best to declare variables at the site of first use. That turns out to be
a bad practice in JavaScript because it does not have block scope. It is better to declare all variables
at the top of each function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.9. Scope

Scope in a programming language controls the visibility and lifetimes of variables and parameters.
This is an important service to the programmer because it reduces naming collisions and provides
automatic memory management:

var foo = function () {
 var a = 3, b = 5;

 var bar = function () {
 var b = 7, c = 11;

// At this point, a is 3, b is 7, and c is 11

 a += b + c;

// At this point, a is 21, b is 7, and c is 11

 };

// At this point, a is 3, b is 5, and c is not defined

 bar();

// At this point, a is 21, b is 5

};

Most languages with C syntax have block scope. All variables defined in a block (a list of statements
wrapped with curly braces) are not visible from outside of the block. The variables defined in a block
can be released when execution of the block is finished. This is a good thing.

Unfortunately, JavaScript does not have block scope even though its block syntax suggests that it
does. This confusion can be a source of errors.

JavaScript does have function scope. That means that the parameters and variables defined in a
function are not visible outside of the function, and that a variable defined anywhere within a function
is visible everywhere within the function.

In many modern languages, it is recommended that variables be declared as late as possible, at the
first point of use. That turns out to be bad advice for JavaScript because it lacks block scope. So
instead, it is best to declare all of the variables used in a function at the top of the function body.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.4. Semicolon

JavaScript uses a C-like syntax, which requires the use of semicolons to delimit statements. JavaScript
attempts to make semicolons optional with a semicolon insertion mechanism. This is dangerous.

Like C, JavaScript has ++ and -- and (operators, which can be prefixes or suffixes. The
disambiguation is done by the semicolon.

In JavaScript, a linefeed can be whitespace, or it can act as a semicolon. This replaces one ambiguity
with another.

JSLint expects that every statement be followed by ; except for for, function, if, switch, try, and
while. JSLint does not expect to see unnecessary semicolons or the empty statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.3. Semicolon Insertion

JavaScript has a mechanism that tries to correct faulty programs by automatically inserting
semicolons. Do not depend on this. It can mask more serious errors.

It sometimes inserts semicolons in places where they are not welcome. Consider the consequences of
semicolon insertion on the return statement. If a return statement returns a value, that value
expression must begin on the same line as the return:

return
{
 status: true
};

This appears to return an object containing a status member. Unfortunately, semicolon insertion
turns it into a statement that returns undefined. There is no warning that semicolon insertion caused
the misinterpretation of the program. The problem can be avoided if the { is placed at the end of the
previous line and not at the beginning of the next line:

return {
 status: true
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5. Statements

A compilation unit contains a set of executable statements. In web browsers, each <script> tag
delivers a compilation unit that is compiled and immediately executed. Lacking a linker, JavaScript
throws them all together in a common global namespace. There is more on global variables in
Appendix A.

When used inside of a function, the var statement defines the function's private variables.

The switch, while, for, and do statements are allowed to have an optional label prefix that
interacts with the break statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Statements tend to be executed in order from top to bottom. The sequence of execution can be
altered by the conditional statements (if and switch), by the looping statements (while, for, and
do), by the disruptive statements (break, return, and throw), and by function invocation.

A block is a set of statements wrapped in curly braces. Unlike many other languages, blocks in
JavaScript do not create a new scope, so variables should be defined at the top of the function, not in
blocks.

The if statement changes the flow of the program based in the value of the expression. The then
block is executed if the expression is truthy; otherwise, the optional else branch is taken.

Here are the falsy values:

false

null

undefined

The empty string ''

The number 0

The number NaN

All other values are truthy, including true, the string 'false', and all objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The switch statement performs a multiway branch. It compares the expression for equality with all of
the specified cases. The expression can produce a number or a string. When an exact match is found,
the statements of the matching case clause are executed. If there is no match, the optional default
statements are executed.

A case clause contains one or more case expressions. The case expressions need not be constants.
The statement following a clause should be a disruptive statement to prevent fall through into the next
case. The break statement can be used to exit from a switch.

The while statement performs a simple loop. If the expression is falsy, then the loop will break. While
the expression is truthy, the block will be executed.

The for statement is a more complicated looping statement. It comes in two forms.

The conventional form is controlled by three optional clauses: the initialization, the condition, and the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The conventional form is controlled by three optional clauses: the initialization, the condition, and the
increment. First, the initialization is done, which typically initializes the loop variable. Then, the
condition is evaluated. Typically, this tests the loop variable against a completion criterion. If the
condition is omitted, then a condition of true is assumed. If the condition is falsy, the loop breaks.
Otherwise, the block is executed, then the increment executes, and then the loop repeats with the
condition.

The other form (called for in) enumerates the property names (or keys) of an object. On each
iteration, another property name string from the object is assigned to the variable.

It is usually necessary to test object.hasOwnProperty(variable) to determine whether the property
name is truly a member of the object or was found instead on the prototype chain.

for (myvar in obj) {
 if (obj.hasownProperty(myvar)) {
 ...
 }
}

The do statement is like the while statement except that the expression is tested after the block is
executed instead of before. That means that the block will always be executed at least once.

The try statement executes a block and catches any exceptions that were thrown by the block. The
catch clause defines a new variable that will receive the exception object.

The throw statement raises an exception. If the throw statement is in a try block, then control goes
to the catch clause. Otherwise, the function invocation is abandoned, and control goes to the catch
clause of the try in the calling function.

The expression is usually an object literal containing a name property and a message property. The
catcher of the exception can use that information to determine what to do.

The return statement causes the early return from a function. It can also specify the value to be
returned. If a return expression is not specified, then the return value will be undefined.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

returned. If a return expression is not specified, then the return value will be undefined.

JavaScript does not allow a line end between the return and the expression.

The break statement causes the exit from a loop statement or a switch statement. It can optionally
have a label that will cause an exit from the labeled statement.

JavaScript does not allow a line end between the break and the label.

An expression statement can either assign values to one or more variables or members, invoke a
method, delete a property from an object. The = operator is used for assignment. Do not confuse it
with the === equality operator. The += operator can add or concatenate.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4. Strings

A string literal can be wrapped in single quotes or double quotes. It can contain zero or more
characters. The \ (backslash) is the escape character. JavaScript was built at a time when Unicode
was a 16-bit character set, so all characters in JavaScript are 16 bits wide.

JavaScript does not have a character type. To represent a character, make a string with just one
character in it.

The escape sequences allow for inserting characters into strings that are not normally permitted, such
as backslashes, quotes, and control characters. The \u convention allows for specifying character code
points numerically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"A" === "\u0041"

Strings have a length property. For example, "seven".length is 5.

Strings are immutable. Once it is made, a string can never be changed. But it is easy to make a new
string by concatenating other strings together with the + operator. Two strings containing exactly the
same characters in the same order are considered to be the same string. So:

'c' + 'a' + 't' === 'cat'

is true.

Strings have methods (see Chapter 8):

'cat'.toUpperCase() === 'CAT'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Style
Here is a silly stately style indeed!

—William Shakespeare, The First Part of Henry the Sixth

Computer programs are the most complex things that humans make. Programs are made up of a
huge number of parts, expressed as functions, statements, and expressions that are arranged in
sequences that must be virtually free of error. The runtime behavior has little resemblance to the
program that implements it. Software is usually expected to be modified over the course of its
productive life. The process of converting one correct program into a different correct program is
extremely challenging.

Good programs have a structure that anticipates—but is not overly burdened by—the possible
modifications that will be required in the future. Good programs also have a clear presentation. If a
program is expressed well, then we have the best chance of being able to understand it so that it can
be successfully modified or repaired.

These concerns are true for all programming languages, and are especially true for JavaScript.
JavaScript's loose typing and excessive error tolerance provide little compile-time assurance of our
programs' quality, so to compensate, we should code with strict discipline.

JavaScript contains a large set of weak or problematic features that can undermine our attempts to
write good programs. We should obviously avoid JavaScript's worst features. Surprisingly, perhaps, we
should also avoid the features that are often useful but occasionally hazardous. Such features are
attractive nuisances, and by avoiding them, a large class of potential errors is avoided.

The long-term value of software to an organization is in direct proportion to the quality of the
codebase. Over its lifetime, a program will be handled by many pairs of hands and eyes. If a program
is able to clearly communicate its structure and characteristics, it is less likely to break when it is
modified in the never-too-distant future.

JavaScript code is often sent directly to the public. It should always be of publication quality. Neatness
counts. By writing in a clear and consistent style, your programs become easier to read.

Programmers can debate endlessly on what constitutes good style. Most programmers are firmly
rooted in what they're used to, such as the prevailing style where they went to school, or at their first
job. Some have had profitable careers with no sense of style at all. Isn't that proof that style doesn't
matter? And even if style doesn't matter, isn't one style as good as any other?

It turns out that style matters in programming for the same reason that it matters in writing. It makes
for better reading.

Computer programs are sometimes thought of as a write-only medium, so it matters little how it is
written as long as it works. But it turns out that the likelihood a program will work is significantly
enhanced by our ability to read it, which also increases the likelihood that it actually works as
intended. It is also the nature of software to be extensively modified over its productive life. If we can
read and understand it, then we can hope to modify and improve it.

Throughout this book I have used a consistent style. My intention was to make the code examples as
easy to read as possible. I used whitespace consistently to give you more cues about the meaning of
my programs.

I indented the contents of blocks and object literals four spaces. I placed a space between if and (so
that the if didn't look like a function invocation. Only in invocations do I make (adjacent with the
preceding symbol. I put spaces around all infix operators except for . and [, which do not get spaces
because they have higher precedence. I use a space after every comma and colon.

I put at most one statement on a line. Multiple statements on a line can be misread. If a statement
doesn't fit on a line, I will break it after a comma or a binary operator. That gives more protection
against copy/paste errors that are masked by semicolon insertion. (The tragedy of semicolon insertion
will be revealed in Appendix A.) I indent the remainder of the statement an extra four spaces, or eight
spaces if four would be ambiguous (such as a line break in the condition part of an if statement).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

spaces if four would be ambiguous (such as a line break in the condition part of an if statement).

I always use blocks with structured statements such as if and while because it is less error prone. I
have seen:

if (a)
 b();

become:

if (a)
 b();
 c();

which is an error that is very difficult to spot. It looks like:

if (a) {
 b();
 c();
}

but it means:

if (a) {
 b();
}
c();

Code that appears to mean one thing but actually means another is likely to cause bugs. A pair of
braces is really cheap protection against bugs that can be expensive to find.

I always use the K&R style, putting the { at the end of a line instead of the front, because it avoids a
horrible design blunder in JavaScript's return statement.

I included some comments. I like to put comments in my programs to leave information that will be
read at a later time by people (possibly myself) who will need to understand what I was thinking.
Sometimes I think about comments as a time machine that I use to send important messages to
future me.

I struggle to keep comments up-to-date. Erroneous comments can make programs even harder to
read and understand. I can't afford that.

I tried to not waste your time with useless comments like this:

i = 0; // Set i to zero.

In JavaScript, I prefer to use line comments. I reserve block comments for formal documentation and
for commenting out.

I prefer to make the structure of my programs self-illuminating, eliminating the need for comments. I
am not always successful, so while my programs are awaiting perfection, I am writing comments.

JavaScript has C syntax, but its blocks don't have scope. So, the convention that variables should be
declared at their first use is really bad advice in JavaScript. JavaScript has function scope, but not
block scope, so I declare all of my variables at the beginning of each function. JavaScript allows
variables to be declared after they are used. That feels like a mistake to me, and I don't want to write
programs that look like mistakes. I want my mistakes to stand out. Similarly, I never use an
assignment expression in the condition part of an if because:

if (a = b) { ... }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (a = b) { ... }

is probably intended to be:

if (a === b) { ... }

I want to avoid idioms that look like mistakes.

I never allow switch cases to fall through to the next case. I once found a bug in my code caused by
an unintended fall through immediately after having made a vigorous speech about why fall through
was sometimes useful. I was fortunate in that I was able to learn from the experience. When
reviewing the features of a language, I now pay special attention to features that are sometimes
useful but occasionally dangerous. Those are the worst parts because it is difficult to tell whether they
are being used correctly. That is a place where bugs hide.

Quality was not a motivating concern in the design, implementation, or standardization of JavaScript.
That puts a greater burden on the users of the language to resist the language's weaknesses.

JavaScript provides support for large programs, but it also provides forms and idioms that work
against large programs. For example, JavaScript provides conveniences for the use of global variables,
but global variables become increasingly problematic as programs scale in complexity.

I use a single global variable to contain an application or library. Every object has its own namespace,
so it is easy to use objects to organize my code. Use of closure provides further information hiding,
increasing the strength of my modules.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.5. switch Fall Through

The switch statement was modeled after the FORTRAN IV computed go to statement. Each case falls
through into the next case unless you explicitly disrupt the flow.

Someone wrote to me once suggesting that JSLint should give a warning when a case falls through
into another case. He pointed out that this is a very common source of errors, and it is a difficult error
to see in the code. I answered that that was all true, but that the benefit of compactness obtained by
falling through more than compensated for the chance of error.

The next day, he reported that there was an error in JSLint. It was misidentifying an error. I
investigated, and it turned out that I had a case that was falling through. In that moment, I achieved
enlightenment. I no longer use intentional fall throughs. That discipline makes it much easier to find
the unintentional fall throughs.

The worst features of a language aren't the features that are obviously dangerous or useless. Those
are easily avoided. The worst features are the attractive nuisances, the features that are both useful
and dangerous.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.11. switch Statement

A common error in switch statements is to forget to place a break statement after each case,
resulting in unintended fall-through. JSLint expects that the statement before the next case or default
is one of these: break, return, or throw.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

!= operator 2nd
!== operator
& and
&& operator
+ operator 2nd
 confusing pluses and minuses
++ increment operator 2nd 3rd
 confusing pluses and minuses
+= operator
- negation operator
- subtraction operator
-- decrement operator 2nd 3rd
-- operator, confusing pluses and minuses
/ operator
/* */ form of block comments
// comments

 not
<< left shift
= operator 2nd
== operator 2nd 3rd
=== operator 2nd 3rd
>> signed right shift
>>> unsigned right shift
? ternary operator
[] postfix subscript operator
\ escape character
^ xor
| or
|| operator 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix D. Syntax Diagrams
Thou map of woe, that thus dost talk in signs!

—William Shakespeare, The Tragedy of Titus Andronicus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

tail recursion optimization
testing environment
then block
this keyword
Thompson, Ken
throw statement 2nd
Top Down Operator Precedence parser
Towers of Hanoi puzzle
trim method
try statement
typed wrappers
TypeError exception
typeof operator 2nd 3rd 4th
types
 prototypes of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.9. The function Statement Versus the function Expression

JavaScript has a function statement as well as a function expression. This is confusing because they
can look exactly the same. A function statement is shorthand for a var statement with a function
value.

The statement:

function foo() {}

means about the same thing as:

var foo = function foo() {};

Throughout this book, I have been using the second form because it makes it clear that foo is a
variable containing a function value. To use the language well, it is important to understand that
functions are values.

function statements are subject to hoisting. This means that regardless of where a function is
placed, it is moved to the top of the scope in which it is defined. This relaxes the requirement that
functions should be declared before used, which I think leads to sloppiness. It also prohibits the use of
function statements in if statements. It turns out that most browsers allow function statements in
if statements, but they vary in how that should be interpreted. That creates portability problems.

The first thing in a statement cannot be a function expression because the official grammar assumes
that a statement that starts with the word function is a function statement. The workaround is to
wrap the function expression in parentheses:

(function () {
 var hidden_variable;

 // This function can have some impact on
 // the environment, but introduces no new
 // global variables.
})();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaScript: The Good Parts
by Douglas Crockford

Publisher: O'Reilly
Pub Date: May 2, 2008
Print ISBN-13: 978-0-596-51774-8
Pages: 170

Table of Contents | Index
Dedication
Preface
Chapter 1. Good Parts

Section 1.1. Why JavaScript?
Section 1.2. Analyzing JavaScript
Section 1.3. A Simple Testing Ground

Chapter 2. Grammar
Section 2.1. Whitespace
Section 2.2. Names
Section 2.3. Numbers
Section 2.4. Strings
Section 2.5. Statements
Section 2.6. Expressions
Section 2.7. Literals
Section 2.8. Functions

Chapter 3. Objects
Section 3.1. Object Literals
Section 3.2. Retrieval
Section 3.3. Update
Section 3.4. Reference
Section 3.5. Prototype
Section 3.6. Reflection
Section 3.7. Enumeration
Section 3.8. Delete
Section 3.9. Global Abatement

Chapter 4. Functions
Section 4.1. Function Objects
Section 4.2. Function Literal
Section 4.3. Invocation
Section 4.4. Arguments
Section 4.5. Return
Section 4.6. Exceptions
Section 4.7. Augmenting Types
Section 4.8. Recursion
Section 4.9. Scope
Section 4.10. Closure
Section 4.11. Callbacks
Section 4.12. Module
Section 4.13. Cascade
Section 4.14. Curry
Section 4.15. Memoization

Chapter 5. Inheritance
Section 5.1. Pseudoclassical
Section 5.2. Object Specifiers
Section 5.3. Prototypal
Section 5.4. Functional
Section 5.5. Parts

Chapter 6. Arrays
Section 6.1. Array Literals
Section 6.2. Length
Section 6.3. Delete
Section 6.4. Enumeration
Section 6.5. Confusion
Section 6.6. Methods
Section 6.7. Dimensions

Chapter 7. Regular Expressions
Section 7.1. An Example
Section 7.2. Construction
Section 7.3. Elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Section 7.3. Elements
Chapter 8. Methods
Chapter 9. Style
Chapter 10. Beautiful Features
Appendix A. Awful Parts

Section A.1. Global Variables
Section A.2. Scope
Section A.3. Semicolon Insertion
Section A.4. Reserved Words
Section A.5. Unicode
Section A.6. typeof
Section A.7. parseInt
Section A.8. +
Section A.9. Floating Point
Section A.10. NaN
Section A.11. Phony Arrays
Section A.12. Falsy Values
Section A.13. hasOwnProperty
Section A.14. Object

Appendix B. Bad Parts
Section B.1. ==
Section B.2. with Statement
Section B.3. eval
Section B.4. continue Statement
Section B.5. switch Fall Through
Section B.6. Block-less Statements
Section B.7. ++ --
Section B.8. Bitwise Operators
Section B.9. The function Statement Versus the function Expression
Section B.10. Typed Wrappers
Section B.11. new
Section B.12. void

Appendix C. JSLint
Section C.1. Undefined Variables and Functions
Section C.2. Members
Section C.3. Options
Section C.4. Semicolon
Section C.5. Line Breaking
Section C.6. Comma
Section C.7. Required Blocks
Section C.8. Forbidden Blocks
Section C.9. Expression Statements
Section C.10. for in Statement
Section C.11. switch Statement
Section C.12. var Statement
Section C.13. with Statement
Section C.14. =
Section C.15. == and !=
Section C.16. Labels
Section C.17. Unreachable Code
Section C.18. Confusing Pluses and Minuses
Section C.19. ++ and --
Section C.20. Bitwise Operators
Section C.21. eval Is Evil
Section C.22. void
Section C.23. Regular Expressions
Section C.24. Constructors and new
Section C.25. Not Looked For
Section C.26. HTML
Section C.27. JSON
Section C.28. Report

Appendix D. Syntax Diagrams
Appendix E. JSON

Section E.1. JSON Syntax
Section E.2. Using JSON Securely
Section E.3. A JSON Parser

Colophon
Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.10. Typed Wrappers

JavaScript has a set of typed wrappers. For example:

new Boolean(false)

produces an object that has a valueOf method that returns the wrapped value. This turns out to be
completely unnecessary and occasionally confusing. Don't use new Boolean or new Number or new
String.

Also avoid new Object and new Array. Use {} and [] instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.6. typeof

The typeof operator returns a string that identifies the type of its operand. So:

typeof 98.6

produces 'number'. Unfortunately:

typeof null

returns 'object' instead of 'null'. Oops. A better test for null is simply:

my_value === null

A bigger problem is testing a value for objectness. typeof cannot distinguish between null and
objects, but you can because null is falsy and all objects are truthy:

if (my_value && typeof my_value === 'object') {
 // my_value is an object or an array!
}

Also see the later sections "Section A.10" and "Section A.11."

Implementations disagree on the type of regular expression objects. Some implementations report
that:

typeof /a/

is 'object', and others say that it is 'function'. It might have been more useful to report
'regexp', but the standard does not allow that.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

undef option (JSLint)
undefined 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Unicode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C. JSLint
What error drives our eyes and ears amiss?

—William Shakespeare, The Comedy of Errors

When C was a young programming language, there were several common programming errors that
were not caught by the primitive compilers, so an accessory program called lint was developed that
would scan a source file, looking for problems.

As C matured, the definition of the language was strengthened to eliminate some insecurities, and
compilers got better at issuing warnings. lint is no longer needed.

JavaScript is a young-for-its-age language. It was originally intended to do small tasks in web pages,
tasks for which Java was too heavy and clumsy. But JavaScript is a very capable language, and it is
now being used in larger projects. Many of the features that were intended to make the language easy
to use are troublesome for larger projects. A lint for JavaScript is needed: JSLint, a JavaScript
syntax checker and verifier.

JSLint is a code quality tool for JavaScript. It takes a source text and scans it. If it finds a problem, it
returns a message describing the problem and an approximate location within the source. The problem
is not necessarily a syntax error, although it often is. JSLint looks at some style conventions as well as
structural problems. It does not prove that your program is correct. It just provides another set of
eyes to help spot problems.

JSLint defines a professional subset of JavaScript, a stricter language than that defined by the third
edition of the ECMAScript Language Specification. The subset is closely related to the style
recommendations from Chapter 9.

JavaScript is a sloppy language, but inside it there is an elegant, better language. JSLint helps you to
program in that better language and to avoid most of the slop.

JSLint can be found at http://www.JSLint.com/.

C.1. Undefined Variables and Functions

JavaScript's biggest problem is its dependence on global variables, particularly implied global
variables. If a variable is not explicitly declared (usually with the var statement), then JavaScript
assumes that the variable was global. This can mask misspelled names and other problems.

JSLint expects that all variables and functions will be declared before they are used or invoked. This
allows it to detect implied global variables. It is also good practice because it makes programs easier
to read.

Sometimes a file is dependent on global variables and functions that are defined elsewhere. You can
identify these to JSLint by including a comment in your file that lists the global functions and objects
that your program depends on, but that are not defined in your program or script file.

A global declaration comment can be used to list all of the names that you are intentionally using as
global variables. JSLint can use this information to identify misspellings and forgotten var declarations.
A global declaration can look like this:

/*global getElementByAttribute, breakCycles, hanoi */

A global declaration starts with /*global. Notice that there is no space before the g. You can have as
many /*global comments as you like. They must appear before the use of the variables they specify.

Some globals can be predefined for you (see the later section "Section C.3"). Select the "Assume a
browser" (browser) option to predefine the standard global properties that are supplied by web
browsers, such as window and document and alert. Select the "Assume Rhino" (rhino) option to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

browsers, such as window and document and alert. Select the "Assume Rhino" (rhino) option to
predefine the global properties provided by the Rhino environment. Select the "Assume a Yahoo
Widget" (widget) option to predefine the global properties provided by the Yahoo! Widgets
environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.5. Unicode

JavaScript was designed at a time when Unicode was expected to have at most 65,536 characters. It
has since grown to have a capacity of more than 1 million characters.

JavaScript's characters are 16 bits. That is enough to cover the original 65,536 (which is now known
as the Basic Multilingual Plane). Each of the remaining million characters can be represented as a pair
of characters. Unicode considers the pair to be a single character. JavaScript thinks the pair is two
distinct characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.17. Unreachable Code

JSLint expects that a return, break, continue, or throw statement will be followed by a } or case or
default.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3. Update

A value in an object can be updated by assignment. If the property name already exists in the object,
the property value is replaced:

stooge['first-name'] = 'Jerome';

If the object does not already have that property name, the object is augmented:

stooge['middle-name'] = 'Lester';
stooge.nickname = 'Curly';
flight.equipment = {
 model: 'Boeing 777'
};
flight.status = 'overdue';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.2. Using JSON Securely

JSON is particularly easy to use in web applications because JSON is JavaScript. A JSON text can be
turned into a useful data structure with the eval function:

var myData = eval('(' + myJSONText + ')');

(The concatenation of the parentheses around the JSON text is a workaround for an ambiguity in
JavaScript's grammar.)

The eval function has horrendous security problems, however. Is it safe to use eval to parse a JSON
text? Currently, the best technique for obtaining data from a server in a web browser is through
XMLHttpRequest. XMLHttpRequest can obtain data only from the same server that produced the
HTML. eval ing text from that server is no less secure than the original HTML. But, that assumes the
server is malicious. What if the server is simply incompetent?

An incompetent server might not do the JSON encoding correctly. If it builds JSON texts by slapping
together some strings rather than using a proper JSON encoder, then it could unintentionally send
dangerous material. If it acts as a proxy and simply passes JSON text through without determining
whether it is well formed, then it could send dangerous material again.

The danger can be avoided by using the JSON.parse method instead of eval (see
http://www.JSON.org/json2.js). JSON.parse will throw an exception if the text contains anything
dangerous. It is recommended that you always use JSON.parse instead of eval to defend against
server incompetence. It is also good practice for the day when the browser provides safe data access
to other servers.

There is another danger in the interaction between external data and innerHTML. A common Ajax
pattern is for the server to send an HTML text fragment that gets assigned to the innerHTML property
of an HTML element. This is a very bad practice. If the HTML text contains a <script> tag or its
equivalent, then an evil script will run. This again could be due to server incompetence.

What specifically is the danger? If an evil script gets to run on your page, it gets access to all of the
state and capabilities of the page. It can interact with your server, and your server will not be able to
distinguish the evil requests from legitimate requests. The evil script has access to the global object,
which gives it access to all of the data in the application except for variables hidden in closures. It has
access to the document object, which gives it access to everything that the user sees. It also gives the
evil script the capability to dialog with the user. The browser's location bar and all of the anti-phishing
chrome will tell the user that the dialog should be trusted. The document object also gives the evil
script access to the network, allowing it to load more evil scripts, or to probe for sites within your
firewall, or to send the secrets it has learned to any server in the world.

This danger is a direct consequence of JavaScript's global object, which is far and away the worst part
of JavaScript's many bad parts. These dangers are not caused by Ajax or JSON or XMLHttpRequest or
Web 2.0 (whatever that is). These dangers have been in the browser since the introduction of
JavaScript, and will remain until JavaScript is replaced. Be careful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

var statements
 functions
variables 2nd
void operator 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.12. var Statement

JavaScript allows var definitions to occur anywhere within a function. JSLint is stricter.

JSLint expects that:

A var will be declared only once, and that it will be declared before it is used.

A function will be declared before it is used.

Parameters will not also be declared as vars.

JSLint does not expect:

The arguments array to be declared as a var.

That a variable will be declared in a block. This is because JavaScript blocks do not have block
scope. This can have unexpected consequences, so define all variables at the top of the function
body.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.22. void

In most C-like languages, void is a type. In JavaScript, void is a prefix operator that always returns
undefined. JSLint does not expect to see void because it is confusing and not very useful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.12. void

In many languages, void is a type that has no values. In JavaScript, void is an operator that takes an
operand and returns undefined. This is not useful, and it is very confusing. Avoid void.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W]

while statement 2nd
white option (JSLint)
whitespace
widget option (JSLint)
Wilson, Greg
with statement 2nd
wrappers, typed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Grammar
I know it well: I read it in the grammar long ago.

—William Shakespeare, The Tragedy of Titus Andronicus

This chapter introduces the grammar of the good parts of JavaScript, presenting a quick overview of
how the language is structured. We will represent the grammar with railroad diagrams.

The rules for interpreting these diagrams are simple:

You start on the left edge and follow the tracks to the right edge.

As you go, you will encounter literals in ovals, and rules or descriptions in rectangles.

Any sequence that can be made by following the tracks is legal.

Any sequence that cannot be made by following the tracks is not legal.

Railroad diagrams with one bar at each end allow whitespace to be inserted between any pair of
tokens. Railroad diagrams with two bars at each end do not.

The grammar of the good parts presented in this chapter is significantly simpler than the grammar of
the whole language.

2.1. Whitespace

Whitespace can take the form of formatting characters or comments. Whitespace is usually
insignificant, but it is occasionally necessary to use whitespace to separate sequences of characters
that would otherwise be combined into a single token. For example, in:

var that = this;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the space between var and that cannot be removed, but the other spaces can be removed.

JavaScript offers two forms of comments, block comments formed with /* */ and line-ending
comments starting with //. Comments should be used liberally to improve the readability of your
programs. Take care that the comments always accurately describe the code. Obsolete comments are
worse than no comments.

The /* */ form of block comments came from a language called PL/I. PL/I chose those strange pairs
as the symbols for comments because they were unlikely to occur in that language's programs, except
perhaps in string literals. In JavaScript, those pairs can also occur in regular expression literals, so
block comments are not safe for commenting out blocks of code. For example:

/*
 var rm_a = /a*/.match(s);
*/

causes a syntax error. So, it is recommended that /* */ comments be avoided and // comments be
used instead. In this book, // will be used exclusively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Good Parts
...setting the attractions of my good parts aside I have no other charms.

—William Shakespeare, The Merry Wives of Windsor

When I was a young journeyman programmer, I would learn about every feature of the languages I
was using, and I would attempt to use all of those features when I wrote. I suppose it was a way of
showing off, and I suppose it worked because I was the guy you went to if you wanted to know how to
use a particular feature.

Eventually I figured out that some of those features were more trouble than they were worth. Some of
them were poorly specified, and so were more likely to cause portability problems. Some resulted in
code that was difficult to read or modify. Some induced me to write in a manner that was too tricky
and error-prone. And some of those features were design errors. Sometimes language designers make
mistakes.

Most programming languages contain good parts and bad parts. I discovered that I could be a better
programmer by using only the good parts and avoiding the bad parts. After all, how can you build
something good out of bad parts?

It is rarely possible for standards committees to remove imperfections from a language because doing
so would cause the breakage of all of the bad programs that depend on those bad parts. They are
usually powerless to do anything except heap more features on top of the existing pile of
imperfections. And the new features do not always interact harmoniously, thus producing more bad
parts.

But you have the power to define your own subset. You can write better programs by relying
exclusively on the good parts.

JavaScript is a language with more than its share of bad parts. It went from non-existence to global
adoption in an alarmingly short period of time. It never had an interval in the lab when it could be
tried out and polished. It went straight into Netscape Navigator 2 just as it was, and it was very
rough. When Java™ applets failed, JavaScript became the "Language of the Web" by default.
JavaScript's popularity is almost completely independent of its qualities as a programming language.

Fortunately, JavaScript has some extraordinarily good parts. In JavaScript, there is a beautiful,
elegant, highly expressive language that is buried under a steaming pile of good intentions and
blunders. The best nature of JavaScript is so effectively hidden that for many years the prevailing
opinion of JavaScript was that it was an unsightly, incompetent toy. My intention here is to expose the
goodness in JavaScript, an outstanding, dynamic programming language. JavaScript is a block of
marble, and I chip away the features that are not beautiful until the language's true nature reveals
itself. I believe that the elegant subset I carved out is vastly superior to the language as a whole,
being more reliable, readable, and maintainable.

This book will not attempt to fully describe the language. Instead, it will focus on the good parts with
occasional warnings to avoid the bad. The subset that will be described here can be used to construct
reliable, readable programs small and large. By focusing on just the good parts, we can reduce
learning time, increase robustness, and save some trees.

Perhaps the greatest benefit of studying the good parts is that you can avoid the need to unlearn the
bad parts. Unlearning bad patterns is very difficult. It is a painful task that most of us face with
extreme reluctance. Sometimes languages are subsetted to make them work better for students. But
in this case, I am subsetting JavaScript to make it work better for professionals.

1.1. Why JavaScript?

JavaScript is an important language because it is the language of the web browser. Its association
with the browser makes it one of the most popular programming languages in the world. At the same
time, it is one of the most despised programming languages in the world. The API of the browser, the
Document Object Model (DOM) is quite awful, and JavaScript is unfairly blamed. The DOM would be
painful to work with in any language. The DOM is poorly specified and inconsistently implemented. This
book touches only very lightly on the DOM. I think writing a Good Parts book about the DOM would be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

book touches only very lightly on the DOM. I think writing a Good Parts book about the DOM would be
extremely challenging.

JavaScript is most despised because it isn't SOME OTHER LANGUAGE. If you are good in SOME OTHER
LANGUAGE and you have to program in an environment that only supports JavaScript, then you are
forced to use JavaScript, and that is annoying. Most people in that situation don't even bother to learn
JavaScript first, and then they are surprised when JavaScript turns out to have significant differences
from the SOME OTHER LANGUAGE they would rather be using, and that those differences matter.

The amazing thing about JavaScript is that it is possible to get work done with it without knowing
much about the language, or even knowing much about programming. It is a language with enormous
expressive power. It is even better when you know what you're doing. Programming is difficult
business. It should never be undertaken in ignorance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.13. with Statement

The with statement was intended to provide a shorthand in accessing members in deeply nested
objects. Unfortunately, it behaves very badly when setting new members. Never use the with
statement. Use a var instead.

JSLint does not expect to see a with statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.2. with Statement

JavaScript has a with statement that was intended to provide a shorthand when accessing the
properties of an object. Unfortunately, its results can sometimes be unpredictable, so it should be
avoided.

The statement:

with (obj) {
 a = b;
}

does the same thing as:

if (obj.a === undefined) {
 a = obj.b === undefined ? b : obj.b;
} else {
 obj.a = obj.b === undefined ? b : obj.b;
}

So, it is the same as one of these statements:

a = b;
a = obj.b;
obj.a = b;
obj.a = obj.b;

It is not possible to tell from reading the program which of those statements you will get. It can vary
from one running of the program to the next. It can even vary while the program is running. If you
can't read a program and understand what it is going to do, it is impossible to have confidence that it
will correctly do what you want.

Simply by being in the language, the with statement significantly slows down JavaScript processors
because it frustrates the lexical binding of variable names. It was well intentioned, but the language
would be better if it didn't have it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

